
HAL Id: tel-03052499
https://theses.hal.science/tel-03052499

Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic of curves in the context of bilinear and
post-quantum cryptography

Simon Masson

To cite this version:
Simon Masson. Algorithmic of curves in the context of bilinear and post-quantum cryptography.
Cryptography and Security [cs.CR]. Université de Lorraine, 2020. English. �NNT : 2020LORR0151�.
�tel-03052499�

https://theses.hal.science/tel-03052499
https://hal.archives-ouvertes.fr

École doctorale IAEM Lorraine

Algorithmique des courbes destinées
au contexte de la cryptographie

bilinéaire et post-quantique

THÈSE

présentée et soutenue publiquement le 4 décembre 2020

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Simon Masson

Composition du jury

Présidente : Monique Teillaud Directrice de recherche, INRIA Nancy

Rapporteurs : Andreas Enge Directeur de recherche, INRIA Bordeaux
Francisco Rodŕıguez-Henŕıquez Directeur de recherche, CINVESTAV Mexico

Examinateur : Emmanuel Fouotsa Chargé de cours, Université de Bamenda

Invité : Olivier Bernard Ingénieur cryptologue, Thales

Directeurs de thèse : Emmanuel Thomé Directeur de recherche, INRIA Nancy
Aurore Guillevic Chargée de recherche, INRIA Nancy

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Remerciements

Ce document n’aurait pu voir le jour sans l’aide précieuse de mes deux directeurs de thèse. Merci
Emmanuel et Aurore pour votre expertise et votre disponibilité durant ces trois années.

Je suis aussi très reconaissant envers Andreas Enge et Francisco Rodrígues–Henríquez pour
leurs rapports minutieux. Merci également à Emmanuel Fouotsa et Monique Teillaud pour avoir
accepté de faire partie de mon jury, et enfin à Olivier Bernard pour m’avoir fait découvrir le
monde des courbes elliptiques ainsi que son “livre bleu”.

Je remercie toute l’équipe du laboratoire Chiffre de Thales Gennevilliers. J’ai été accueilli
dans une ambiance très chaleureuse, et j’ai vraiment apprécié mon passage dans le couloir avec
vue sur la tour Eiffel. J’ai eu la chance de pouvoir me déplacer entre Gennevilliers et Nancy avec
beaucoup de liberté. Merci à Anne pour l’aide lors des (rares) problèmes logistiques.

Malgré ma présence partielle au LORIA à Nancy, j’ai été très bien accueilli par toute l’équipe
CARAMBA. Merci pour ces “cafés jeunes” très productifs, pour votre expertise sur des domaines
très variés (Qp, Climb’Up, les choucas, etc.). Merci à Tom, Robin et Michel de m’avoir permis de
me sentir chez moi à chaque passage rue du Portugal, et à Tarek (ceux qui le connaissent savent
de quoi je parle).

Je remercie aussi tous les collègues avec qui j’ai eu l’occasion de travailler : Luca pour m’avoir
fait découvrir les isogénies à Versailles et pour m’avoir fait confiance par la suite, Antonio pour
nos nombreuses conversations sur Twitter, et enfin Christophe et Antonin pour m’avoir aidé à
plusieurs reprises pour différents algorithmes.

Je tiens à remercier toutes les personnes que j’ai pu cotoyer durant ces dernières années. Merci
à tous mes coéquipiers volleyeurs de Coutances, Boulogne-Billancourt et Sartrouville. Merci à
mes amis rencontrés lors de mon passage aux universités de Nantes, Rennes et Versailles. Merci à
tous les gens que j’ai eu la chance de cotoyer sur Paris. Vous êtes trop nombreux pour que je
puisse tous vous citer ici.

Merci enfin à ma famille pour m’avoir toujours soutenu depuis le début. Merci de m’avoir
inculqué les bases de la cryptographie à base d’isogénies dès mon plus jeune âge : preuve en est la
peinture ci-dessous que j’ai faite à l’âge de 3 ans. On reconnaît bien-sûr le graphe de 2-isogénies
de courbes supersingulières définies sur Fp (à isomorphisme sur Fp près) pour p ≡ 1 mod 4.

, un an avant [Cou06].

i

ii

Contents

Résumé en français vii

Introduction 1

Chapter 1 Finite fields 5

1.1 Discrete logarithm problem algorithms . 6

1.1.1 The baby-step–giant-step algorithm . 6

1.1.2 Index calculus method . 7

1.1.3 Sieving in number fields . 8

1.1.4 Practical examples . 11

1.2 Arithmetic of finite fields . 14

1.2.1 Multiplications . 14

1.2.2 Frobenius power . 16

1.2.3 Inversions . 16

1.2.4 Exponentiations . 16

1.2.5 Summary . 18

Chapter 2 Elliptic curves 19

2.1 Definition . 20

2.2 Group law . 21

2.3 Isogenies of elliptic curves . 23

2.4 Torsion . 24

2.5 Endomorphism rings of elliptic curves . 25

2.5.1 Orders in imaginary quadratic fields. 25

2.5.2 Maximal orders in quaternion algebras . 26

2.5.3 Structure of endomorphism rings of elliptic curves 26

2.5.4 The Complex Multiplication (CM) method 27

2.6 Automorphisms of elliptic curves . 27

2.7 Twists of curves . 28

iii

Contents

2.8 Elliptic curves in cryptography . 30

2.8.1 Discrete logarithm over an elliptic curve 30

2.8.2 Formulas in different models . 31

2.8.3 Scalar multiplication . 34

2.8.4 Subgroup security . 36

2.8.5 Twist security . 36

Chapter 3 Isogenies in cryptography 39

3.1 Isogeny graphs . 39

3.1.1 Ordinary curves . 40

3.1.2 Supersingular curves . 43

3.2 Isogeny computation . 46

3.2.1 Vélu’s formulas . 46

3.2.2 Isogenies of degree a power of ` . 47

3.3 Isogeny-based cryptography . 51

3.3.1 The CRS key exchange and its improvements 53

3.3.2 CSIDH . 54

3.3.3 SIDH . 55

3.3.4 An open problem . 56

Chapter 4 Pairing-friendly curves 59

4.1 Pairing constructions . 60

4.1.1 Definition . 60

4.1.2 The Miller function . 62

4.1.3 The Weil pairing . 63

4.1.4 The Tate pairing . 64

4.1.5 The ate pairing . 65

4.1.6 Optimal pairings . 65

4.2 Pairing-friendly elliptic curves . 66

4.2.1 Elliptic curves not designed for pairings 66

4.2.2 Generation of pairing-friendly elliptic curves 67

4.3 Pairing cost in the general case . 70

4.3.1 Curve subgroup choices . 70

4.3.2 Miller step . 72

4.3.3 Final exponentiation . 74

4.4 Pairing cost in the case of three families of curves 74

4.4.1 Barreto-Naehrig curves. 75

iv

4.4.2 Barreto-Lynn-Scoot curves (k = 12). 76

4.4.3 Kashisa-Schaefer-Scott curves (k = 16). 77

Chapter 5 New pairing-friendly curves 79

5.1 A modified Cocks-Pinch algorithm . 80

5.1.1 Pros and cons of the Cocks-Pinch algorithm 80

5.1.2 Tweak of the Cocks-Pinch algorithm . 81

5.1.3 Special form of the obtained prime . 82

5.2 Generation of curves . 83

5.2.1 Size of r and p for a 128-bit security level 84

5.2.2 Choice of discriminant . 84

5.2.3 Low weight parameters . 84

5.2.4 Twist-secure and subgroup-secure parameters. 85

5.2.5 Our new curves . 86

5.3 Pairing cost . 90

5.3.1 The Miller loop . 90

5.3.2 Final exponentiation . 91

5.4 Comparison of curves . 93

5.4.1 Elliptic curve scalar multiplication in G1 and G2. 94

5.4.2 Pairing timing estimation . 94

Chapter 6 Representation of endomorphism rings of supersingular curves 99

6.1 Lattices . 100

6.2 Quaternion algebras . 102

6.3 Orders and ideals . 103

6.3.1 Orders in quaternion algebras . 103

6.3.2 Ideals in quaternion orders . 103

6.3.3 Quotient of orders . 105

6.4 Deuring correspondence . 106

6.5 Solving equations with curve points . 108

6.5.1 Torsion decomposition . 108

6.5.2 Solving the equation using linear algebra 110

6.6 Maximal orders through isogenies . 112

6.6.1 From ideal to isogeny . 113

6.6.2 From isogeny to ideal . 114

6.6.3 Computing equivalent ideals . 116

6.7 Conclusion . 120

v

Contents

Chapter 7 Verifiable delay functions from isogenies and pairings 121

7.1 Definition and applications . 122

7.1.1 Definition . 122

7.1.2 Applications . 122

7.2 Existing constructions . 123

7.2.1 Chaining hash functions . 123

7.2.2 Modular square roots . 123

7.2.3 Time-lock puzzles . 124

7.2.4 Wesolowski’s VDF . 124

7.2.5 Pietrzak’s VDF . 124

7.2.6 Univariate permutation polynomials . 124

7.3 A new VDF construction framework . 125

7.4 Two instantiations with supersingular elliptic curves 127

7.4.1 VDF from supersingular curves over Fp 127

7.4.2 VDF from supersingular curves over Fp2 129

7.4.3 Properties of the VDFs. 130

7.5 Security and parameter sizes . 130

7.5.1 Attacks . 131

7.5.2 Shortcut attacks on special curves . 134

7.6 Implementation . 136

7.6.1 Evaluation . 137

7.6.2 Verification . 138

7.6.3 Measurements . 138

7.7 Conclusion and perspectives . 139

Conclusion 141

Bibliography 143

vi

Résumé en français

Cette thèse étudie l’algorithmique d’objets mathématiques liés à des protocoles cryptographiques.
Les courbes elliptiques sont actuellement très utilisées, autant pour des signatures électroniques
(ECDSA) que pour des échanges de clés (ECDH). Nous étudions ici deux familles particulières de
courbes. D’une part, nous nous intéressons à des courbes à couplages, dont l’arithmétique est
étroitement liée aux calculs dans une extension d’un corps fini. Nous proposons dans le Chapitre 5
de nouvelles courbes résistantes aux dernières avancées sur les attaques de logarithme discret
dans le cas des couplages. D’autre part, nous étudions les courbes supersingulières utilisées en
cryptographie à base d’isogénies. Dans le chapitre 6, nous implémentons le calcul d’anneaux
d’endomorphismes de ces courbes, étant donné la connaissance d’une isogénie. Enfin, dans
le chapitre 7, nous présentons deux constructions de fonctions à délai vérifiables, basées sur
des calculs de couplages et d’évaluations d’isogénies de grand degré friable. Ces dernières ne
sont pas considérées comme résistantes aux ordinateurs quantiques, mais apportent plusieurs
nouveautés par rapport aux constructions actuelles. Nous analysons leur sécurité et effectuons
une comparaison entre toutes ces fonctions à un niveau de sécurité de 128 bits.

Chapitre 1. Corps finis

Nous présentons dans ce premier chapitre des exemples de groupes utilisés dans des applications
à la cryptographie et qui sont centraux pour les applications des chapitres 4 et 5. Pour un corps
fini Fpk (avec p un nombre premier et k est un entier strictement positif), nous considérons un
sous-groupe d’ordre premier r de F∗

pk
, et nous notons g un de ses générateurs : G = 〈g〉 ⊂ F∗

pk
.

Dans ce groupe, le calcul de logarithme discret est difficile : si h = gx avec 0 ≤ x ≤ r− 1, alors le
meilleur algorithme pour retrouver x à partir de g et h est sous-exponentiel en la taille de r. À
partir d’un groupe cyclique, Diffie et Hellman ont introduit en 1976 une solution pour partager un
secret commun, qui est actuellement très utilisé en pratique: Alice (resp. Bob) choisit un entier
secret a (resp. b) et calcule sa clé publique gA = ga (resp. gB = gb). A partir de ces valeurs,
Alice et Bob ont la clé gab = gbA = gaB en commun.

Dans le cas des corps finis, une méthode basée sur un calcul d’indices permet d’obtenir des
algorithmes avec une complexité sous-exponentielle. A partir d’une base de facteurs S composée
de petits éléments de F∗

pk
, l’algorithme se déroule en trois étapes : une collecte de relations,

de l’algèbre linéaire grâce aux relations afin de déterminer des logarithmes discrets de certains
éléments, et enfin le calcul du logarithme discret cible à partir des calculs précédents.

Les algorithmes de calcul d’indices que nous étudions ici sont basés sur des méthodes de
crible dans différentes structures algébriques. Lorsque p est relativement petit, un logarithme
discret peut être obtenu à l’aide d’algorithmes quasi-polynomiaux [BGJT14]. Pour des tailles
de corps finis plus grandes, les meilleurs algorithmes ont une complexité sous-exponentielle
Lpk(1/3, c+ o(1)), où Lpk(α, c) = exp(c(log pk)(log log pk)1−α). Dans la suite, nous considérons

vii

Résumé en français

des corps de moyenne et grande caractéristique, pour lesquelles l’algorithme le plus efficace est
un crible algébrique, aussi appelé NFS pour Number Field Sieve). L’idée du crible algébrique
est d’obtenir des relations comme dans le calcul d’indices, en passant par des morphismes dans
deux corps deux nombres. Le choix des polynômes qui définissent ces corps permettent d’obtenir
différentes complexités pour calculer des logarithmes discrets.

Z[x]

Z[x]/(f1(x)) Z[x]/(f2(x))

Fpk
mod (p,R(x)) mod (p,R(x))

Diagramme commutatif pour NFS.

Le choix original des polynômes permettait de cribler d’une part dans un corps de nombres,
et d’autre part dans Z (en choisissant deg f2 = 1). L’algorithme original permettait de calculer
des logarithmes discrets dans un corps premier Fp, correspondant à degR = 1, et sa complexité
est Lp(1/3, 3

√
64/9 + o(1)). Plusieurs variantes ont ensuite permi de cribler dans des tours

d’extensions de corps, et de réduire la constante de la complexité. Ainsi, cela permet d’estimer
plus précisemment la complexité pratique de ces algorithmes pour certaines tailles de corps. Les
complexités sont résumées dans le tableau suivant.

Variante de NFS Caracteristique Complexité asymptotique
Lpk(1/3, c+ o(1))

Originale Grande c = 3
√

64/9

(généralisée) Joux-Lercier Grande c = 3
√

64/9

Speciale Grande, spéciale c = 3
√

32/9

Conjuguée Moyenne c = 3
√

96/9

(étendue) Tower Moyenne c = 3
√

48/9

Spéciale Tower Moyenne, spéciale c = 3
√

32/9

À partir des estimations du coût des variantes de NFS, nous obtenons des tailles de corps
finis pour un niveau de sécurité donné. En particulier, nous nous focalisons sur le niveau de
128 bits : nous cherchons des tailles pour p et k tel que le meilleur algorithme de calcul de
logarithme discret a un coût de O(2128) opérations. De plus, nous nous intéressons à des tours
d’extension particulières, qui seront utilisées dans les Chapitres 4, 5 et 7. Nous obtenons des
estimations de temps de calcul de la multiplication dans Fpk (notée mk) en calculant le nombre
de multiplications d’entiers modulo p, puis en estimant le coût de l’arithmétique sur Fp. De
même, nous estimons le coût d’une élévation au carré sk, d’un Frobenius fk, et d’inversions ik
dans Fpk . Nous portons aussi une attention particulière aux carrés cyclotomiques scyclo

k , calculs
spécifiques à un sous-groupe d’ordre Φk(p) de Fpk .

viii

k 1 2 3 5 6 7 8 12 16

mk m 3m 6m 13m 18m 22m 27m 54m 81m
sk m 2m 5m 13m 12m 22m 18m 36m 54m
fk 0 0 2m 4m 4m 6m 6m 10m 14m

scyclo
k 6m 12m 18m 36m

ik − i1 0 4m 12m 48m 34m 104m 44m 94m 134m
ik, with i1 = 25m 25m 29m 37m 73m 59m 129m 69m 119m 159m

Chapitre 2. Courbes elliptiques

Les courbes elliptiques sont des courbes algébriques très répandues dans les applications cryp-
tographiques. Elles ont une structure particulière qui permet de définir une loi de groupe.
Géométriquement, cette loi peut être représentée à l’aide de lignes obliques et verticales :

`P,Q(x, y)

P

Q

R

P +Q

Loi de groupe géométrique.

Le groupe des points d’une courbe elliptique est un groupe abélien, et les meilleurs algorithmes
pour calculer des logarithmes discrets dans ce cas sont des algorithmes génériques. En particulier,
les variantes de NFS ne s’appliquent pas et la complexité est exponentielle en la taille du groupe
considéré. Cela permet d’obtenir des tailles de clés beaucoup plus petites que dans le cas de F∗

pk

décrit précédemment. A titre d’exemple, pour un niveau de sécurité de 128 bits, il est recommandé
d’utiliser un corps premier (générique) d’au moins 3072 bits alors qu’un sous-groupe d’ordre
premier de E(Fq) de taille ≈ 2256 est souvent suffisant. Dans certains cas, des attaques peuvent
permettre de réduire la sécurité. Nous étudions ici les attaques basées sur les petits sous-groupes
et utilisant des tordues de courbes elliptiques. L’attaque du milieu est un cas classique qui
s’adapte bien dans le cas où #E(Fq) est pair : Ève se fait passer pour Alice et modifie sa clé
publique afin d’obtenir une partie du secret de Bob.

ix

Résumé en français

Alice Ève Bob

K = [sB]P2

sA = a sB = bPA = [a]P P ′A ∈ E[2]

Attaque par intrusion au milieu quand #E(Fq) est pair.

Nous présentons aussi dans ce chapitre différentes possiblités pour calculer la loi de groupe,
suivant la structure de la courbe choisie. Nous apportons enfin des détails sur la structure
des courbes étudiées. Il est par exemple possible d’obtenir des éléments de torsion grâce aux
polynômes de division. Pour un entier ` premier à la caractéristique, la `-torsion est isomorphe à
Z/`Z×Z/`Z. Il est fréquent d’appeler G1 et G2 deux sous-groupes d’ordre ` générant la `-torsion
complète. Ces deux groupes seront réutilisés pour les applications à base de couplages dans
les chapitres qui suivent. Il est aussi possible de caractériser l’anneau d’endomorphismes d’une
courbe elliptique. Cela permet de séparer les courbes en deux catégories : les courbes ordinaires
(utilisées dans les Chapitres 4 et 5) pour lesquelles l’anneau d’endomorphismes est un ordre dans
le corps quadratique imaginaire Q(

√
t2 − 4q) et les courbes super-singulières (utilisées dans les

Chapitres 6 et 7) pour lesquelles l’anneau d’endomorphismes est un ordre maximal d’une algèbre
de quaternions particulière.

Chapitre 3. Isogénies de courbes elliptiques

Les isogénies de courbes elliptiques apportent des applications cryptographiques qui se distinguent
de la cryptographie basée sur les courbes elliptiques : ce n’est pas le problème du logarithme
discret sur une courbe qui est utilisé. La cryptographie à base d’isogénies repose sur le fait qu’il
est difficile de déterminer une isogénie entre deux courbes. Nous considérons ici seulement des
isogénies cycliques (dont le noyau est un sous-groupe cyclique des points de la courbe).

Nous rappelons d’abord la structure du graphe d’isogénies dans le cas des courbes ordi-
naires. Cela permet de définir une action de groupe et donne des applications intéressantes en
cryptographie, avec notamment [DKS18].

Nous nous intéressons ensuite au cas des courbes supersingulières définies sur Fp2 . Le graphe
d’isomorphismes de courbes isogènes est beaucoup moins structuré et cela permet de définir
des algorithmes résistants aux ordinateurs quantiques. L’échange de clé SIDH est décrit en
Section 3.3.3. Nous notons ici 〈P2, Q2〉 et 〈P3, Q3〉 des bases de la 2− et 3−torsion.

E

EA

EB

EAB

φA
de n

oyau

P2
+ [sA

]Q2

φA(P3) φA(Q3)

φB de noyauP
3 + [sB]Q

3

φB(P2) φB(Q2)

Isogénie de noyau
φB (P

2) + [sA]φB (Q
2)

Isog
énie

de n
oyau

φA(P3)
+ [sB

]φA
(Q3)

Échange de clé Diffie-Hellman en utilisant des isogénies de courbes super-singulières.

x

Le cas du graphe d’isogénies super-singulières définies sur Fp est à la frontière entre les deux
précédents cas, puisqu’il utilise un graphe de classes d’isomorphismes particuliers de courbes
(super-singulières) qui a une structure très proche du cas ordinaire. Une isogénie définie sur Fp peut
être représentée par l’action d’un idéal du groupe de classes du corps quadratique correspondant
à Endp(E). Cela permet des applications en cryptographie telles que [CLM+18], ou encore la
signature [BKV19]. La figure ci-dessous donne un exemple d’échange de clé dans sa version
décrite avec des idéaux du groupe de classes agissant sur l’ensemble des courbes super-singulières
définies sur Fp.

•

•

•

•
••

•

•

•

•

•

•

•
• •

•

•

•

E, courbe de départ (publique)

l2

l3

Ea
l5

l7
Eb

l2

l3

l5

l7

Eab, courbe partagée (secrète)

Nous nous intéressons aussi dans ce chapitre au coût de calcul d’isogénies. Les applications du
Chapitre 7 utilisent le fait que les meilleurs algorithmes de calcul d’isogénies ont une complexité
exponentielle en le degré de l’isogénie. Nous présentons plusieurs variantes provenant de [JD11]
afin d’évaluer des isogénies.

Chapitre 4. Courbes à couplages

Un couplage est une application e : G × G′ → G′′ entre trois groupes G,G′ et G′′ d’exposant
premier qui est non-dégénérée, bilinéaire et évaluable de manière efficace.

Les couplages ont été introduits avec des sous-groupes d’une courbe elliptique et d’un corps
fini. Plus précisement, G et G′ sont des sous-groupes de points d’une courbe elliptique et G′′ est
un groupe de racines r-ièmes de l’unité dans un corps fini Fqk . Avec ces notations, Alice, Bob et
Charlie peuvent partager un secret commun en un tour en utilisant le protocole ci-dessous. La
loi de groupe est en notation additive pour G et G′, et en notation multiplicative pour G′′. En
utilisant la bilinéarité du couplage, Alice calcule e([b]P, [c]Q)a = e(P,Q)abc. De manière similaire,
Bob et Charlie peuvent aussi calculer e(P,Q)abc, le secret commun.

xi

Résumé en français

A

B

C

[a]Q

[b]P

[a]P

[c]Q

[b]Q
[c]P

Échange de clé Diffie–Hellman à trois en un tour.

En pratique, les couplages manipulent des points d’ordre premier r d’une courbe elliptique
E définie sur Fq. Il est parfois nécessaire d’étendre la courbe E à Fqk , où k est le degré de
plongement par rapport à r, c’est-à-dire le plus petit entier tel que toute la r-torsion est rationelle
sur Fqk . A partir de cette extension Fqk de Fq, les constructions de couplages se basent sur
une évaluation de fonction de Miller. Pour Q ∈ E(Fqk) et n ∈ Z, la fonction de Miller fn,Q
est la fonction rationnelle de Fqk(E) telle que div(fn,Q) = n(Q) − ([n]Q) − (n − 1)(0E). Des
algorithmes permettent d’évaluer une fonction de Miller en un diviseur en temps linéaire en
log2(n). Dans la suite, nous notons pour DQ (pour Q un point d’ordre r) un diviseur équivalent
au diviseur r(Q)− r(0E). À partir de cette fonction, trois couplages sont fréquemment utilisés,
avec des contraintes différentes. Les groupes d’exposant r utilisés sont E[r], E(Fqk)/rE(Fqk),
ainsi que F∗

qk
/(F∗

qk
)r. En pratique, on peut souvent se passer de ces groupes abstraits et choisir

des représentants de classes d’équivalence dans G1 et G2 pour les groupes de la courbe, et des
racines r-ième de l’unité pour les représentants de F∗

qk
/(F∗

qk
)r. Dans la suite, nous considérons

des points P et Q d’ordre r d’une courbe elliptique, et choisissons DQ (resp. DP) de sorte que
son support soit disjoint de {P, 0E} (resp. {Q, 0E}). Ainsi, cela permet de définir :

• Le couplage de Weil er(P,Q) = fr,P (DQ)/fr,Q(DP) pour P et Q dans E(Fqk)[r].

• Le couplage de Tate réduit tr(P,Q) = fr,P (DQ)(qk−1)/r pour P ∈ E(Fqk)[r] et Q ∈
E(Fqk)/rE(Fqk).

• Le couplage de ate réduit Ar(Q,P) = fT,Q(DP)(qk−1)/r pour (Q,P) ∈ G2 ×G1, et T une
racine k-ième de l’unité modulo r.

Les couplages manipulent des points définis sur Fqk où k est le degré de plongement. Il faut
donc choisir une courbe particulière de sorte que k ne soit pas trop grand et que les calculs soient
raisonnables. Plusieurs méthodes de générations de courbes permettent d’obtenir des courbes
à couplages. Nous présentons dans ce chapitre trois familles de courbes dont les paramètre (la
caractéristique p, la trace t, l’ordre des sous-groupes r, etc.) sont paramétrisés par des polynômes.

• Les courbes Barreto-Naehrig (BN) sont paramétrées par les polynômes suivants :

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,

t(x) = 6x2 + 1,

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

Elles ont un degré de plongement k = 12 et les automorphismes de la courbe permettent
de manipuler exclusivement des élements de Fp2 (au lieu de Fp12). Ces courbes étaient

xii

particulièrement intéressantes avant les récentes variantes de NFS puisqu’elles permettaient
d’obtenir une courbe définie sur Fp et un corps fini Fp12 de taille minimale pour atteindre le
niveau de sécurité de 128 bits. Depuis les variantes Spéciale, Tower et spécial Tower, il a
fallu augmenter la taille de la caractéristique, et donc du corps finis Fpk .

• Les courbes Barreto-Lynn-Scott (BLS12) sont aussi définies pour un degré de plongement
k = 12, et possèdent les mêmes propriétés que les courbes BN en terme d’automorphismes.
Elles sont paramétrées par :

r(x) = x4 − x2 + 1,

t(x) = x+ 1,

p(x) = (x6 − 2x5 + 2x3 + x+ 1)/3.

Ces courbes étaient aussi optimales dans le même sens que les courbes BN, et nécessitent
désormais une caractéristique plus grande pour obtenir des applications qui ne sont pas
vulnérables aux variantes de NFS.

• Les courbes Kashisa-Schaefer-Scott (KSS16) ont un degré de plongement k = 16 et possèdent
des automorphismes de degré 4 qui permettent de manipuler des points définis sur Fp4 . Les
entiers r, t et p de la courbe sont paramétrés par :

r(x) = (x8 + 48x4 + 625)/61250,

t(x) = (2x5 + 41x+ 35)/35,

p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125)/980.

Cette troisième famille est aussi vulnérable aux variantes de NFS.

Nous étudions le coût du couplage de ate réduit pour un niveau de sécurité de 128 bits. Pour
les courbes BN, Barbulescu et Duquesne proposent dans [BD19] de choisir x0 = 2114 +2101−214−1
et ainsi obtenir un niveau de sécurité suffisant pour le calcul de logarithmes discrets sur les deux
sous-groupes G1 et G2 de la courbe, ainsi que sur le corps fini Fp12 . De même, ils proposent de
choisir x0 = −277 + 250 + 233 pour les courbes BLS12 et x0 = 235 − 232 − 218 + 28 + 1 pour les
courbes KSS16. Ces choix de paramètres sont en particulier liés aux estimations du coût de NFS
étudié dans le chapitre 1. La définition du couplage de ate réduit est différente pour ces trois
familles de courbes, mais se calcule en deux étapes : une boucle de Miller pour une exponentiation
à la puissance (pk − 1)/r. Nous résumons ici le coût en donnant le nombre de multiplications
nécessaire pour chacune de ces deux étapes.

Curve Miller loop Final exponentiation Optimal ate
BN 12005m 5742m 17747m

BLS12 7685m 6288m 13973m

KSS16 7573m 25521m 33094m

Chapitre 5. Nouvelles courbes à couplages

Dans ce chapitre, nous construisons de nouvelles courbes à couplages résistantes aux variantes de
NFS. En particulier, nous générons des courbes pour lesquelles le corps fini n’est pas vulnérable
aux attaques SNFS (en utilisant une caractéristique qui n’est pas vulnérable au caractère spécial).
Notre méthode de génération est une variante de la méthode Cocks–Pinch. L’algorithme est le
suivant :

xiii

Résumé en français

Entrée. un degré de plongement k, un discriminant −D, une plage d’entiers
{T0, . . . , Tmax}, une taille d’entier λr et une taille d’entier λp.
Sortie. Une courbe à couplage de degré de plongement k, de discriminant −D avec
dlog2(p)e = λp et dlog2(r)e = λr.
Pour T entre T0 et Tmax faire

Si r = Φk(T) n’est pas premier, continuer.
Si dlog2(r)e 6= λr ou −D n’est pas un carré modulo r, continuer.
Pour i entre 1 et k − 1 tel que gcd(i, k) = 1 faire

t0 = T i + 1 mod r; y0 = (t0 − 2)/
√
−D mod r.

Soit π0 = t0+y0
√
−D

2 .

Choisir ht et hy tels que π = π0 +
ht+hy

√
−D

2 r est un entier algébrique,
et dlog2(ππ̄)e = λp.
t = t0 + htr; y = y0 + hyr; p = ππ̄ = (t2 +Dy2)/4.
Si p est un premier congru à 1 modulo 4 alors retourner [p, r, T, t, y].

Nous utilisons cet algorithme afin de sélectionner des courbes qui possèdent de bonnes
propriétés en terme de sécurité : logarithme discret difficile sur la courbe et sur le corps fini Fpk ,
sécurité par rapport aux attaques sur les petits sous-groupes et sur la tordue quadratique, etc.
Nous obtenons des courbes de degré de plongement k = 5 à 8 pour un niveau de sécurité de
128 bits, et les comparons aux courbes BN, BLS12 et KSS16 avec des paramètres légèrement
plus petits que ceux proposés par Barbulescu et Duquesne (présentés dans le chapitre 4). Nous
comparons aussi nos courbes aux constructions de [CMR17] de degré de plongement k = 1. En
estimant le coût d’une multiplication sur Fp pour différentes tailles de premiers, nous obtenons le
coût d’un couplage optimal sur les différentes courbes.

Courbe Premier Boucle de Miller
Estimation de temps

Exponentiation
Estimation de temps Total Estimation

de temps

k = 5 663-bit 14496m
2.6ms

9809m
1.8ms 24305m 4.4ms

k = 6 672-bit 4601m
0.8ms

3871m
0.7ms 8472m 1.5ms

k = 7 512-bit 18330m
1.9ms

13439m
1.4ms 31769m 3.4ms

k = 8 544-bit 4502m
0.6ms

7056m
0.9ms 11558m 1.5ms

BN 446-bit 11620m
1.0ms

5349m
0.5ms 16969m 1.4ms

BLS12 446-bit 7805m
0.7ms

7723m
0.7ms 15528m 1.3ms

BN 462-bit 12180m
1.3ms

5727m
0.6ms 17907m 1.9ms

BLS12 461-bit 7685m
0.8ms

6283m
0.7ms 13968m 1.5ms

KSS16 339-bit 7691m
0.5ms

18235m
1.2ms 25926m 1.7ms

k = 1 3072-bit 4651m
17.7ms

4100m
15.6ms 8751m 33.3ms

xiv

Chapitre 6. Endomorphismes de courbes super-singulières

L’anneau d’endomorphisme d’une courbe elliptique super-singulière est un ordre maximal d’une
algèbre de quaternion de la forme H−a,−b := Q1+Qi+Qj+Qk, avec i2+a = 0, j2+b = 0 et k = ij
pour des entiers a et b spécifiques. Etant donnée une courbe super-singulière aléatoire (c’est-à-dire
ne provenant pas d’une courbe définie sur un corps de nombre avec un petit discriminant), le
meilleur algorithme pour calculer l’anneau d’endomorphismes est exponentiel en la taille des
paramètres de la courbe. Les constructions cryptographiques à base d’isogénies telles que SIDH
ou CSIDH ont une sécurité qui repose sur ce problème.

Les récents travaux [KLPT14] et [GPS20] permettent de calculer l’anneau d’endomorphismes
d’une courbe étant donnée une isogénie entre celle-ci et une courbe d’anneau d’endomorphismes
connu. Nous proposons ici une implémentation de ces algorithmes pour une estimation pratique
de leur complexité. Notre code est disponible à l’adresse

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.

Chapitre 7. Fonctions à délai vérifiables

Dans ce dernier chapitre, nous proposons deux constructions de fonction à délai vérifiables (VDF).
Par définition, une telle fonction se décompose en trois étapes :

1. Init(λ, T) → (ek, vk) : une procédure d’initialisation qui prend en entrée un paramètre de
sécurité λ, un paramètre de délai T , et retourne des paramètres pubics (une clé d’évaluation
ek et une clé de vérification vk).

2. Éval(ek, s) → (a, π) : une procédure pour évaluer la fonction pour une entrée s. La sortie
produite est l’image a de s, ainsi qu’une preuve π (qui peut être vide) qui sera utilisée pour
la vérification. Cette procédure est censée être évaluable en au moins T étapes, même avec
plusieurs machines mises en parallèle.

3. Vérif(vk, s, a, π) → {vrai,faux} : une procédure qui permet de vérifier que a est bien la
sortie de s (en utilisant la preuve π).

Des VDF ont été construites à partir d’exponentiations modulaires modulo un entier RSA,
ou encore avec des multiplications d’idéaux dans le groupe de classes d’un corps quadratique
imaginaire. Chacune des VDF a ses avantages et ses inconvénients, mais aucune VDF résistant
aux ordinateurs quantiques n’a été construite. Nous proposons ici des constructions basées sur
le calcul d’isogénies pour l’évaluation, et une vérification à l’aide de couplages. Nous proposons
deux versions : une avec des isogénies définies sur Fp, et une avec des isogénies définies sur Fp2 .

xv

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies

Résumé en français

Version sur Fp Version sur Fp2

Init(λ, T)

1. Choisir des premiers r, p avec des propriétés de sécurité par rapport au
paramètre de sécurité λ;

2. Sélectionner une courbe super-singulière E définie sur Fp;

3. Choisir une direction dans le graphe
horizontal de `-isogénies, et calculer
l’isogénie cyclique φ : E → E′ de degré
`T , et sa duale φ̂;

3. Calculer une marche aléatoire de T
pas dans le Fp2-graphe de `-isogénies,
définissant une `T -isogénie cyclique φ :
E → E′ et sa duale φ̂;

4. Choisr un générateur P de G1 = τ−1
2 (Et(Fp)[r]), et calculer φ(P);

5. Retourner (ek, vk) =
(
φ̂, (E,E′, P, φ(P))

)
.

Éval(φ̂, Q ∈ G′2) Éval(φ̂, Q ∈ E′[r])
calculer et retourner φ̂(Q). calculer et retourner (Tr ◦φ̂)(Q).

Vérif(E,E′, P,Q, φ(P), φ̂(Q)) : Vérif(E,E′, P,Q, φ(P), (Tr ◦φ̂)(Q))

vérifier que φ̂(Q) ∈ G2 = E(Fp)[r] et
e(P, φ̂(Q)) = e′(φ(P), Q).

vérifier que (Tr ◦φ̂)(Q) ∈ E(Fp)[r] et
e(P, (Tr ◦φ̂)(Q)) = e(φ(P), Q)2.

Nous étudions la sécurité de ces deux constructions. Nos constructions reposent sur la difficulté
de calculer des logarithmes discrets dans un corps fini F∗p2 . En ce sens, nos deux constructions
ne sont pas résistantes aux ordinateurs quantiques et ce problème reste ouvert à ce jour. Nous
définissons cependant une résistance partielle pour la VDF définie sur Fp2 dans le sens où un
attaquant doit réutiliser son attaque quantique à chaque évaluation de la VDF. Ce n’est pas le
cas des constructions dans un anneau RSA ou dans le groupe de classes d’un corps quadratique
imaginaire (l’attaquant peut effectuer son attaque quantique dès lors que l’initialisation est
effectuée). Notre VDF doit être initialisée avec une courbe dont l’anneau d’endomorphismes n’est
pas connu. En effet, des attaques basées sur des calculs d’anneaux d’endomorphismes des courbes
permettent de calculer un raccourcis dans le graphe d’isogénies, et ainsi obtenir une évaluation en
temps inférieur à T . Pour remédier à cela, il faut choisir la courbe de départ grâce à un tierce
de confiance, ou bien effectuer au préalable une marche aléatoire à plusieurs afin de commencer
l’étape d’initialisation avec une courbe dont personne ne connaît l’anneau d’endomorphismes.
Cette utilisation de tierce personne est aussi récessaire dans le cas des VDF basées sur RSA, mais
pas dans le cas de celles utilisant des idéaux du groupe de classes d’un corps quadratique. Nous
proposons enfin une implémentation de nos VDF, disponible à l’adresse

https://github.com/isogenies-vdf/isogenies-vdf-sage/.

Nous obtenons en particulier les mesures suivantes pour un niveau de sécurité de 128 bits (sur
une machine Intel Core i7-8700 @ 3.20GHz, avec SageMath 8.5) :

xvi

https://github.com/isogenies-vdf/isogenies-vdf-sage/

Protocole Étape taille de ek Temps Débit

Fp graph
Setup 238 kb 90 s 0.75isog/ms

Evaluation – 89 s 0.75isog/ms
Verification – 0.3 s –

Fp2 graph
Setup 491 kb 193 s 0.35isog/ms

Evaluation – 297 s 0.23isog/ms
Verification – 4 s –

xvii

Résumé en français

xviii

List of Figures

1.1 Diffie–Hellman key exchange in F∗
pk

= 〈g〉. 5
1.2 Commutative diagram for NFS. 9
1.3 Commutative diagram for TNFS. 11
1.4 Measurement and interpolation of a multiplication modulo different bitlength primes. 15
1.5 Towers of extension of degree 2, 3, 5 and 7 considered here. 15

2.1 Affine part of the elliptic curve defined over R by y2 = x3 − x. 20
2.2 Geometric group law. 22
2.3 Twists of elliptic curves in the different cases of Theorem 2.24. 29
2.4 Man-in-the-middle attack when 2 divides #E(Fq). 36

3.1 Possible endomorphism rings of ordinary curves when t2 − 4q = −22 · 34 · 71. . . . 41
3.2 The connected components of the 3-isogeny graph corresponding to Figure 3.1 . . 42
3.3 Supersingular 2-isogeny graph over Fp2 where p = 22 · 33 − 1 and t = −2p. 44
3.4 Supersingular 2-isogeny Fp-graph over Fp where p = 22 · 33 − 1. 45
3.5 `-isogenies defined over Fp from a supersingular curve. 46
3.6 Computational structure of Algorithm 3.1 when n = 4. 49
3.7 Computational structure of the mirror of Algorithm 3.1 when n = 4. 49
3.8 Computational structure of Algorithm 3.2 when n = 8. 50
3.9 The CRS key exchange in the case of a = l2l3 and b = l5l7 53

4.1 Two-round Diffie–Hellman with three participants. 59
4.2 Tripartite one-round Diffie–Hellman. 61

7.1 Instantiation of the Verifiable Delay Function over Fp. 128
7.2 Instantiation of the Verifiable Delay Function over Fp2 130

xix

List of Figures

xx

Introduction

History of cryptography

Cryptography is the science of securing communica-
tion in the presence of third parties. The roots of
cryptography are found in the Roman and Egyptian
civilizations. One of the most famous examples of
cryptographic encryption schemes is the shift of three
letters, used by Caesar in order to communicate with
his generals. It is clear that an exhaustive search on
the different possible keys totally breaks this encryp-
tion scheme.

A

A

B

B

C

C

D

D
E

E
F

F

G

G

H

H

I

I J

J KK
L

L
M

M

N

N

O

O

P

P

Q

Q
R

R
S

S

T

T

U

U

V

VW

WX X
Y

Y
Z

Z

+3

Symmetric and asymmetric cryptography

Before 1976, all the encryption schemes needed a secret key, and most of the designs themselves
were kept secret. Diffie and Hellman proposed new directions in cryptography in [DH76]. This
paper marked the begining of a new period for cryptography. They distinguish cryptography in
two categories of schemes:

• The symmetric schemes are protocols where the two participants already share a secret in
common. A symmetric cryptography encryption scheme can be illustrated as follows: Alice
and Bob share a common key that opens a locker. In order to communicate, they simply
put their message into a box and use the locker to keep the confidentiality of their message.
We do not study the symmetric cryptography in this thesis. The standard for symmetric
encryption is the AES scheme [AES01]. In order to use it, it is needed to share a common
secret, which can be done using asymmetric cryptography.

• The asymmetric cryptography corresponds to all the communications where the participants
do not have a common secret. In particular, digital signatures, key exchanges, and also
zero-knowledge proof of identification fall in this category of cryptographic schemes. This
category is also called public key cryptography in the sense that it uses some private and
public keys. Encryption schemes based on public and private keys are also part of the
asymmetric cryptography. Rivest, Shamir and Adelman introduced in 1978 a setting for
public key cryptosystems [RSA78]. It is related to factorization of integers and is still widely
used today.

1

Introduction

– Bob chooses two large prime integers p and q corresponding to its secret key. He also
computes its public key N = pq.

– From N , Alice encrypts a message using a specific algorithm we do not detail here.

– In order to decrypt, the knowledge of the factorization of N is essential. This problem
of factorization of integers is known to have a complexity which is subexponential (we
give a formal definition in the next section). Hence, Bob chooses large primes p and q
so that nobody can get the factorization, and he is the only one able to decrypt the
message.

Diffie and Hellman describe in [DH76] a way of sharing a common secret using a different
mathematical object. We study in this thesis different structures related to asymmetric
cryptography. Security of public key cryptography should be based on the hardness of some
rare but well-known mathematical problems. The RSA encryption scheme is related to
the integer factorization problem, while the Diffie-Hellman key exchange assumes that the
discrete logarithm problem on the group considered is hard. We define in the next section
the hardness of an algorithmic problem.

Algorithmic complexity and cryptographic security

Cryptographic schemes are said to be secure at a level λ if it takes more than 2λ operations in
order to break the scheme (get relevant information on the secret). The choice of the parameters
of a public key cryptosystem is closely related to the best algorithm for solving the underlying
mathematical problem. It is common to consider the asymptotic complexity of algorithms using
the O notation. An algorithm has polynomial (resp. exponential) complexity if its asymptotic
cost is polynomial (resp. exponential) in the size of the parameter inputs. We introduce the L
notation in order to define sub-exponential complexity. Suppose that an algorithm takes q as an
input. We define

Lq(α) = exp((log q)α(log log q)1−α).

This notation allows us to represent a complexity which is between polynomial and exponential,
using the parameter α. Lq(0) = log q is polynomial in the log of q, while Lq(1) = q is exponential
in log q. For 0 < α < 1, Lq(α) corresponds to a complexity which is called subexponential.

The integer factorization and the discrete logarithm problem over a finite field have subexpo-
nential complexity with a parameter α = 1/3. These complexities hold on a classical computer.
A quantum computer would break these schemes in polynomial time.

The threat of quantum computers

Quantum computations have been introduced theoretically at the end of the twentieth century.
Recently, investment into quantum computing research has increased in both the public and
private sector. The possible existence of a quantum computer threaten the current cryptographic
schemes. Both the factorization and the discrete logarithm problem would be computed in
quantum polynomial time. In order to prevent this threat, the National Institute of Standards
and Technology (NIST) began in 2017 a standardization campaign for post-quantum protocols.
The considered candidates are based on different mathematical problems, sometimes new for the
cryptography community.

2

In this thesis, we investigate mathematical objects related to asymmetric cryptography.
More precisely, we focus on structures related to elliptic curves. We study both classical and
post-quantum cryptography of several algorithms, depending on the context.

Organisation of the thesis

Chapter 1 introduces a first possible structure for designing key exchange. The group of invertible
elements of a finite field is cyclic and looking at a prime order subgroup leads to efficient
instantiations of key echanges. This chapter splits in two parts: first, we investigate the recent
improvements on the Number Field Sieve (NFS) algorithm variants which compute the discrete
logarithm over a finite field, and then we investigate the efficiency of the arithmetic in several
sizes of finite fields.

Chapter 2 describes another structure used in practice for cryptography, called elliptic curves.
These algebraic curves have a group structure and for a generic curve, solving the discrete
logarithm problem has exponential complexity in the size of the group considered. We study the
optimizations available for the group law and consider the set of endomorphisms of elliptic curves.

Chapter 3 considers morphisms between elliptic curves, called isogenies. Some cryptosystems
based on isogenies of elliptic curves are not threatened by quantum computers so that they define
post-quantum cryptography protocols. We investigate the computation of isogenies of large prime
power degree in the case of elliptic curves called supersingular. We finally present several key
exchanges based on different settings.

Chapter 4 is a study of particular families of curves allowing specific applications to cryptog-
raphy. An efficient bilinear map relates groups of points of the elliptic curve to a multiplicative
subgroup of a finite field. These curves are called pairing-friendly curves. We recall the different
methods for generating such curves and study the choice of parameters in order to reach the
128-bit security level. Cryptosystems based on pairings are vulnerable to attacks on the discrete
logarithm on the curve as well as in the finite field. Some of the curves are threatened by the
recent variants described in Chapter 1. We finally estimate the cost of computing a pairing on
these curves, for a 128-bit security level.

Chapter 5 investigates the construction of new families of curves resistant to the recent variants
of NFS. We study the trade-off between security and efficiency for these new curves and compare
them with the curves of Chapter 4.

Chapter 6 provides an implementation of algorithms from recent works. The security of the
cryptographic schemes based on isogenies of supersingular curves relies on the fact that it is
hard (i.e. the best algorithms are exponential in the parameters defining the curves) to compute
endomorphism rings of the curves. We provide a code that allows us to compute these rings when
an isogeny is known (i.e. the easy case).

Chapter 7 presents two constructions of specific functions called Verifiable Delay Functions
(VDF). We use supersingular pairing-friendly curves so that the evaluation is based on composing
isogenies of elliptic curves, and the verification evaluates pairings.

3

Introduction

4

1 ••

Finite fields

In this chapter, we instantiate examples of groups which bring applications to cryptography
and are central in the theory of Chapters 4 and 5. In order to define these groups, we need to
introduce finite fields. We denote Fq a field with q elements. If q = p is prime, one can see Fp as
the ring of integers modulo p which is indeed a field: every non-zero x ∈ Z/pZ has an inverse
which can be computed using the extended gcd algorithm). If q = pk with p a prime integer
and k ≥ 1, then one can define the field Fpk to be the quotient of Fp[x] by a monic irreducible
polynomial R of degree k: Fpk := Fp[x]/(R(x)). Given this definition, Fpk is a degree k extension
of Fp. Up to isomorphism, finite fields are unique in the sense that two irreducible polynomials of
Fp[x] of degree k lead to isomorphic finite fields.

We consider the multiplicative subgroup of Fpk denoted F∗
pk
. Let g be a generator of the cyclic

group F∗
pk

= Fpk − {0}. The discrete logarithm problem in F∗
pk

= 〈g〉 is hard in the sense that
given h ∈ F∗

pk
, the best algorithm to find 0 ≤ x ≤ pk − 1 such that h = gx has subexponential

complexity in the input size O(k log p). We study this complexity in the case of particular finite
fields in Section 1.1.

From this group, we obtain many applications to cryptography. In the seventies, Diffie and
Hellman obtained a key exchange (see Figure 1.1) which is still very used in practice: Alice
(resp. Bob) chooses a secret integer a (resp. b) and compute her public key gA = ga (resp.
gB = gb). From these values, they can compute the common secret gab = gbA = gaB. Originally,
the Diffie–Hellman key exchange was designed for a multiplicative subgroup of a finite field, but
it has been extended to other groups (for instance the group of points of an elliptic curve, see
Chapter 2). This protocol is still deployed because the discrete logarithm problem and the related

Alice
(a), gA = ga

Bob
(b), gB = gb

K = gab = gbA = gaB

Figure 1.1: Diffie–Hellman key exchange in F∗
pk

= 〈g〉.

Diffie–Hellman problem are still hard in various large finite fields. We present in Section 1.1

5

Chapter 1. Finite fields

algorithms for computing discrete logarithms in different categories of finite fields. We present
in particular estimations of these algorithms for finite fields that are relevant in the context of
cryptographic applications of Chapters 4 and 5.

Summary
1.1 Discrete logarithm problem algorithms 6

1.1.1 The baby-step–giant-step algorithm . 6

1.1.2 Index calculus method . 7

1.1.3 Sieving in number fields . 8

1.1.4 Practical examples . 11

1.2 Arithmetic of finite fields . 14

1.2.1 Multiplications . 14

1.2.2 Frobenius power . 16

1.2.3 Inversions . 16

1.2.4 Exponentiations . 16

1.2.5 Summary . 18

From now on, an element x ∈ Fpk is represented as a polynomial, which is a representative of
a coset of Fp[x] modulo R(x), i.e. k coefficients in Fp. In Section 1.2, we investigate the arithmetic
computation in various finite fields (different size of prime p, and different extension degree k). In
particular, we obtain timing estimations that will be our point of comparison for pairing efficiency
in Chapters 4 and 5.

1.1 Discrete logarithm problem algorithms

We recall the discrete logarithm problem in the case of a generic cyclic group G = 〈g〉 of order
`: given h ∈ G, find x ∈ Z/`Z such that h = gx. We begin with a generic algorithm in the
sense that it would work in any cyclic group, with polynomial time group operations (including
comparison).

1.1.1 The baby-step–giant-step algorithm

We write the discrete logarithm x as x = x0 + d
√
`ex1, where x0, x1 < d

√
`e. In a first phase, we

compute all the possible values for hg−x0 and store them in a data structure that allows fast
searching, together with the corresponding value of x0. In the second phase, all values gx1d

√
`e

are computed, and each time we check whether the group element belongs to the list of elements
computed in the first phase. When it matches, we have h = gx0+x1d

√
`e and we deduce the solution

from x0 and x1. This algorithm computes O(
√
`) group operations while storing and sorting

O(
√
`) group elements. The time and space complexity is Õ(

√
`).

In practice, other algorithms achieve the Õ(
√
`) complexity together with essentially no

memory. The Pollard-Rho algorithm has the advantage to be easily parallelizable, even though
it is not rigorously analyzed without assumptions on the existence of hash functions with nice
properties.

We investigate in Chapter 2 groups whose order is as large as 2256. For these groups, the best
algorithm for solving the discrete logarithm problem has O(

√
`) complexity so that we reach the

128-bit security level (
√
` ≈ 2128).

6

1.1. Discrete logarithm problem algorithms

1.1.2 Index calculus method

In the case of finite fields, we deal with a multiplicative subgroup G of Fpk . In this context,
the index calculus method depends on a chosen factor base S composed of small elements of G.
The best algorithms for computing discrete logarithms in finite fields are based on this method,
originally from Adleman [Adl79]. The index calculus method splits in three steps:

1. Relations collection. We aim to get several relations gai =
∏
q∈S q

eq,i . To do so, we try
different values for ai until we obtain an element gai whose prime factors are all in S. The
cost of the relation collection really depends on the algorithm used to get the S factors of
gai .

2. Linear algebra. By taking logarithms of the previous relations, we obtain linear equations
modulo the order ` of the group considered: ai ≡

∑
q∈S eq,i log q (mod `), where the

unknowns are the log q for q ∈ S. If enough relations are collected in Step 1, we compute
the logarithms of the set S by solving a matrix kernel whose rows are the exponents in the
relations collection.

3. Find a relation between h and the small elements and recover the discrete logarithm x from
the logarithms obtained in Step 2.

Remark 1.1. Note that the first two steps of the index calculus method do not depend on h and
can be seen as precomputations. It means that once Steps 1 and 2 are done, one only needs to
execute Step 3 to get the discrete logarithm of h.

The index calculus algorithms we study here are based on sieving in different algebraic
structures in order to get the relations of Step 1 above. Depending on the size of the parameters
defining the finite field, the efficiency of the algorithms varies. When p is relatively small,
quasi-polynomial time algorithms can be designed [BGJT14], but when p grows, the most
efficient algorithms have subexponential complexity, namely Lpk(1/3, c+ o(1)) where Lpk(α, c) =

exp(c(log pk)α(log log pk)1−α). Choosing the suited algorithm depends on the size of p compared
to pk.

Definition 1.2 (Small, medium, and large characteristic). Let (pi)i∈N be a sequence of prime
integers, and (ki)i∈N be a sequence of integers such that 9kii → +∞. Then, the family of finite
fields F

p
ki
i

is said to be:

• of small characteristic if there exists c > 0 such that the primes pi can be parametrized as
pi = L

p
ki
i

(αi, c) for αi < 1/3,

• of medium characteristic if there exists c > 0 such that the primes pi can be parametrized
as pi = L

p
ki
i

(αi, c) for αi ∈]1/3, 2/3[,

• of large characteristic if there exists c > 0 such that the primes pi can be parametrized as
pi = L

p
ki
i

(αi, c) for αi > 2/3.

Quasi-polynomial time algorithms [BGJT14, GKZ14] are efficient in small characteristic, but
we consider here fields of medium and large characteristic. In these cases, the best algorithms for
computing discrete logarithms are related to sieving in number fields.

7

Chapter 1. Finite fields

1.1.3 Sieving in number fields

From now on, we consider fields of medium and large characteristic: the prime fields correspond
to p = Lp(1, 1) and the non-prime fields are of the form Fpk with 256 ≤ log2(p) ≤ 672 and
5 ≤ k ≤ 16. For this range of sizes, the “large” or “medium characteristic” algorithms are the
ones that perform best. The computation of discrete logarithms in these types of finite fields is
addressed by the Number Field Sieve algorithm (NFS). It computes the relations collection by
sieving in subrings of number fields.

The Number Field Sieve has been introduced in 1990 for large integer factorization, but is
also suited for discrete logarithm computations over finite fields. Today, the largest computation
records [BGG+20] for integer factorization as well as for discrete logarithm over Fp have been
done using an efficient implementation of the NFS algorithm (CADO-NFS [Tea17]). The idea is
to search for relations using two number fields as follows:

• Define two subrings of number fields using particular irreducible polynomials f1(x) and
f2(x). These polynomials need to have appropriate degrees and coefficient sizes, and a
common factor R(x) modulo p (where degR = k).

• Select a range of polynomials of the form a− bx ∈ Z[x].

• Map them into two different number fields by reducing modulo f1(x) and f2(x) and collect
the relations in these two different structures. Reducing modulo fi (i = 1, 2), we obtain
elements of the form a− bαi where αi is a root of the polynomial fi. In number fields, the
prime factorization is not always unique. That is why we deal with factorization in prime
ideals. This way, we look for ideals (a− bα1) having few (small norm) prime factors. The
factorization in prime ideals is closely related to the factorization of the norm of the ideal,
which is in this case N(a − bαi) = bdfi(a/b). When this integer is B-smooth, we know
that the principal ideal (a− bαi) splits into a product of prime ideals of norm less than B:
(a− bαi) =

∏
N(q)<B qeq .

• Choosing f1 and f2 so that the two algebraic structures have nothing to do with each other,
we obtain relations when ideals have B-smooth norm in both sides of Figure 1.2. Then,
we map these relations into Fpk using a reduction modulo (p,R(x)). Technical difficulties
arise from the fact that only elements, and not prime ideals in the number field, can be
reduced modulo the prime ideal (p,R(x)). These obstructions are dealt with using standard
techniques which we do not detail here.

• Finally, we end the index calculus algorithm using sparse linear algebra for recovering the
logarithms of the small elements, and then the targeted discrete logarithm. We warn the
reader that we do not investigate here the technicalities of the NFS algorithm.

We refer to [LLJ93] for a complete presentation of the Number Field Sieve algorithm. The NFS
setup is often represented with the commutative diagram of Figure 1.2.

The polynomial selection is an essential step for the NFS efficiency. The two polynomials
f1(x) and f2(x) need to have small enough coefficients for the algorithm to perform well. We
develop in the next paragraphs several choices that are well adapted with NFS when parameters
become large.

The original NFS setup. The initial NFS algorithm was set for a prime finite field Fp. It
corresponds to degR = 1 in Figure 1.2. We choose the two polynomials f1(x) and f2(x) so that

8

1.1. Discrete logarithm problem algorithms

Z[x]

Z[x]/(f1(x)) Z[x]/(f2(x))

Fpk
mod (p,R(x)) mod (p,R(x))

Figure 1.2: Commutative diagram for NFS.

we get relations in two well-known rings: on the one hand, we look for relations in Z, and on the
other hand, we study ideals of a number field of degree d. Note that the degree d is tuned after a
complexity analysis of the whole algorithm. We do not investigate further, but the asymptotic
value of d is the integer closest to (3 log p/ log log p)1/3 [Gor93, Sch93]. In practice, d is often
between 4 and 7. The original NFS setup selects the two polynomials f1(x), f2(x) ∈ Z[x] as
follows:

• We first choose an irreducible polynomial f1(x) ∈ Z[x] of degree d having a root m
modulo p. To do so, we set m to be an integer close to p1/d and write p in base m. The
coefficients of p in base m define an irreducible polynomial f1(x) =

∑d
i=0 f1,ix

i so that
p =

∑d
i=0 f1,im

i = f1(m) and the f1,i are bounded with m. This lets us define a subring
Z[x]/(f1(x)) of the number field Q[x]/(f1(x)) (the left part of Figure 1.2). From now on,
we write this number field Q(α1) (i.e. f1(α1) = 0).

• From this polynomial, we simply set f2(x) = x−m so that f1 and f2 share a common root
m modulo p. It corresponds to the right part of Figure 1.2 and as we choose a degree 1
polynomial, the order Z[x]/(f2(x)) = Z[m] is isomorphic to Z.

From this setup, we get relations by trying several polynomials of the form a− bx ∈ Z[x], and
map them in the two number fields. We do not investigate the detailed complexity of each step
of the algorithm but simply give the final asymptotic complexity: Lp(1/3, 3

√
64/9 + o(1)). We

refer the reader to [LLJ93, Gor93, Sch93] for details on the complexity of the algorithm.
We present few variants of the original setup, which improve in particular cases the NFS

cost. The Joux-Lercier algorithm [JL03] applies for prime fields, and have the same asymptotic
complexity Lp(1/3, 3

√
64/9 + o(1)).

The Joux-Lercier variant. Joux and Lercier propose in [JL03] another polynomial selection,
which works with two number fields of defining polynomials of degree d and d− 1:

1. Choose f1(x) of degree d with tiny coefficients, irreducible over Q, with a root m modulo p.

2. Define the vector subspace in Z[x] of all the polynomials multiple of p and (x −m) and
of degree up to d − 1: Z[x]〈p, x − m,x(x − m), x2(x − m), . . . , xd−2(x − m)〉. One can
represent this set with a matrix whose rows are p and the xi(x−m) in the canonical basis
(1, x, x2, . . . , xd−1):

p 0 . . . 0

−m 1 0
...

0
. 0

0 0 −m 1

9

Chapter 1. Finite fields

3. Using lattice based reduction on the matrix, obtain a short vector corresponding to a
polynomial f2 with small coefficients. More precisely, f2(x) ∈ Z[x] and ‖f2‖∞ = O(p1/d)
and f2(m) = 0 mod p.

In the same way as in the left part of the initial setup of NFS, we need to work with
principal ideals in both Z[x]/(f1(x)) and Z[x]/(f2(x)). The complexity of this variant is also
Lpk(1/3, 3

√
64/9 + o(1)), but we will see in Section 1.1.4 that sometimes it performs better than

the initial setup. The algorithm is generalized to any (non-prime) finite field in [Bar13, BGGM15],
with the same complexity. Other variants apply to non-prime fields. We mention only two variants
that work in non-prime fields.

• The generalized Joux-Lercier [Bar13] works in large characteristic non-prime fields with
complexity Lpk(1/3, 3

√
64/9 + o(1)).

• The Joux-Lercier-Smart-Vercauteren variant [JLSV06] applies for a larger range non-prime
fields (including medium characteristic) with complexity Lpk(1/3, 3

√
128/9 + o(1)).

• In medium characteristic, the Conjugation variant [BGGM15] is preferred. Its asymptotic
complexity is Lpk(1/3, 3

√
96/9 + o(1)).

A significant improvement was obtained in 2013 by Joux and Pierrot [JP14] in some particular
cases when p is special in the sense of a definition we give in the next paragraph.

The special variant. In [JP14], Joux and Pierrot introduce a variant of NFS when the
characteristic p of the field Fpk can be parameterized by a polynomial with several properties.
This new variant improves the constant in the exponent of the NFS complexity, and applies for
many applications in pairing-based cryptography, studied in Chapters 4, 5 and 7. The situation is
quite similar to the Special Number Field Sieve (SNFS) situation of old [Gor93], which allows for
particularly efficient factoring of numbers of a special form. As it turns out, extensions of this
“special form” benefit apply to discrete logarithm context as well, which is why the Joux-Pierrot
method is also referred to as an SNFS(-like) algorithm. For the Special Number Field Sieve to
apply, the prime p needs to be parametrized by a special prime in the sense of the following
informal definition.

Definition 1.3 (Special prime). A prime p is special if p = P (u) where P (x) has degree d at
least 3, and coefficients significantly smaller than p1/d.

In this context, Joux and Pierrot slightly change the choice of polynomials in the NFS setting.
The polynomial f1 is chosen of the form f1(x) = xk + s(x) − u. s(x) is a polynomial of small
degree with coefficients 0, 1 and −1, such that f1(x) is irreducible over Z. As u ≈ p1/ degP , the f1

coefficients are small enough for the NFS efficiency. Then, they fix f2(x) = P (xk + s(x)) so that
deg f2 = k degP and its coefficients are small enough (in O(log2(k)degP), see [JP14]). Modulo
f1(x), xk + s(x) ≡ u and so f2(x) ≡ P (u) = p. Finally, f2(x) is a multiple of f1(x) modulo
p, and gcd(f1, f2) ≡ f1(x) mod p is an irreducible polynomial of degree k, which leads to an
efficient NFS variant. Once again, we do not precisely detail the complexity analysis, but the
SNFS setup leads to a very different asymptotic cost: Lpk(1/3, 3

√
32/9 + o(1)). In practice, this

smaller constant is significant at the 128-bit security level. This variant applies only when the
prime is special in the sense of Definition 1.3. We now describe another variant which applies in
towers of finite fields.

10

1.1. Discrete logarithm problem algorithms

NFS variant Characteristic Asymptotic complexity
Lpk(1/3, c+ o(1))

Initial setup Large c = 3
√

64/9

(generalized) Joux-Lercier Large c = 3
√

64/9

Special Large, special c = 3
√

32/9

Conjugation Medium c = 3
√

96/9

(extended) Tower Medium c = 3
√

48/9

Special Tower Medium, special c = 3
√

32/9

Table 1.1: Asymptotic complexities of the Number Fied Sieve variants

The (extented) tower variant. Barbulescu, Gaudry and Kleinjung introduced in 2015 the
Tower Number Field Sieve (TNFS) in [BGK15]. The main idea of the tower variant is to work
with polynomials whose coefficients are in R = Z[x]/(h(x)) instead of Z, where h is a monic
irreducible polynomial of degree k. In order to get a diagram similar to Figure 1.2, we also require
having a unique ideal p above p in R, in order to map our polynomials into Fpk . This setup
is improved in [KB16] when there exists subfields of Fpk , which means that k is composite. In
this context, write k = ηκ with η, κ 6= 1. Then, choose h(x) and φ(x) to be monic irreducible
polynomials of degree η and κ. This way, the extended TNFS is summarized in Figure 1.3, where
R is the order Z[t]/(h(t)).

R[x]

R(α1) := R[x]/(f1(x)) R[x]/(f2(x)) =: R(α2)

(R/pR)[x]/(φ(x))
mod (p, φ(x)) mod (p, φ(x))

Figure 1.3: Commutative diagram for TNFS.

The complexity of this algorithm depends on the choice of the subfields of Fpk (and hence the
choices for h(x) and φ(x)). If k is prime, then the extended TNFS corresponds to the initial TNFS
of [BGK15] and is often not more efficient than the JSLV setting. The asymptotic complexity of
the TNFS variant is Lpk(1/3, 3

√
48/9 + o(1)). This (extended) tower variant can also be adapted

to a special setting.

The special tower variant. The best complexity of the NFS variants is achieved for a special
prime together with proper subfields. Barbulescu, Gaudry and Kleinjung in [BGK15], and then
Kim and Barbulescu in [KB16] adapt the Joux-Pierrot special variant with their tower NFS. The
efficient choices of f1(x) and f2(x) from SNFS together with h(x) and φ(x) from TNFS lead to
the STNFS setting whose asymptotic complexity is Lpk(1/3, 3

√
32/9 + o(1)).

1.1.4 Practical examples

We end this NFS exposition with two typical examples: first, a prime field with a non-special
prime p, and then a degree k = 12 extension of a prime field where the special variants apply.

11

Chapter 1. Finite fields

The Number Field Sieve is efficiently implemented in practice (see [Tea17]). Not all the variants
presented in Table 1.1 are implemented, but we are able to estimate the cost of these sieving
methods more precisely using the tool provided in the URL below, which is more accurate than
the asymptotic complexities.

https://gitlab.inria.fr/tnfs-alpha/alpha.

The reader can refer to [GS19] for more information on these cost estimations.

A non-special prime field

We begin with a simple example in the sense that only few variants apply. We consider here
a prime field so that the tower variants do not make sense, and we also consider p that is not
special in the sense of Definition 1.3: p = r2A2 + 1 where r = 2256 − 2194 − 1 and A is a random
integer of 1280 bits such that Ar ≡ 2 mod 4. For instance, let

A = 11178383037109115702629987811692648017014796539562957939109071944
75572592246254514114919885913704393021436290446967275237352961782
70127869708198088399326830893938384641987509100633741961709235621
70330515999228978847736605604407946688366081823166084678395047320
55398961073319567775782234203412020187048509905393811895892963500
9353919427457489123427782274798863899746345647866789963703654.

In this context, p is 3072-bit long and we do not know how to get a polynomial representation of
p whose coefficients would be small enough. We present here two choices for f1 and f2:

• Using the initial NFS setup without any optimization on the choice of m, we can obtain
the two polynomials

f1(x) = x6 + 3x5 + y4x
4 + y3x

3 + y2x
2 + y1x+ y0 f2(x) = x−m

where
y4 = 6013838836171647623244069004988209943307481664524333

0133641140072779715050554487150627597937669677985433
065023216175024213196046555286188754286677961631

y3 = 1190825939925321449405240489792666528739062405552795
1421640714126224885549466268299174276085009524037422
005696065903193470740841378520702685880763350847997

y2 = 3706765398673334493890632826536953325922322169507379
6959242457619222073737238844172976151873195710879478

04485505733815758926507015594935745934944368164561
y1 = 1096836450910643140896904736172114585751377242065357

2104619198811131951224692299173735493548725853952966
759983595006908285808100183558499838908118760714352

y0 = 5469509133431277608470459854656629903673111086128777
3396836059508944579900060951094682765573059003815277

2300448894698362884523720712157825393050000634580
m = 1281579773457339116885283379949960483220820883427072

3886772767642619866021568481641651872974889550143268
212577574254564095099802702768826668055173032996279.

We estimate that the discrete logarithm computation would run in 2144 operations.

12

https://gitlab.inria.fr/tnfs-alpha/alpha

1.1. Discrete logarithm problem algorithms

• The Joux-Lercier setting is the best choice for the polynomial selection in this case. Choosing
deg f1 = 7 and deg f2 = 6, we get (for instance using [Tea17]) the two polynomials

f1(x) = −3− x− x2 + 3x3 − 2x4 − 2x5 + 2x6 + x7, f2(x) =
6∑
i=0

zix
i

where

z6 = −468003106014815455078667528441419562775462674864784597497818489860
37592233749521206351243658858499476739812272153823059567280985030

z5 = 1071490713495487237803169124940732592411888493636320979712053413069
216039926469767849031404301228841732954566345187382351613174998036

z4 = 6881872143678761116264019581793583850395042120395738330253659392492
69930905944187559358898166246096104145359469233521002172246304729

z3 = −970229492537284859386773073602450930051132385073654758379937764028
714613650980808997007508677232914580863512757352851345381850976065

z2 = −144889407966809445520938146283617787239384637686255524183442113678
438322595064306372300229567678078134395537794871721320224142036505

z1 = 4131657732690807105260563746385629815913453398590195192939644356830
63049082358325603511969314354745219864046439438302001392569094309

z0 = −280237448879880158746708095467988203903692813900060539106300239850
116043946868408704261999556381830276919769100562346864360697109954.

We obtain that the estimated cost is approximately 2128 operations for this range of
parameter sizes.

Finally, we can consider that the field Fp reaches the 128-bit security level in the sense that the
best algorithm would cost at least 2128 operations.

A field where the special tower variant applies

We consider a finite field for which all the variants apply. We do not detail how to estimate the
practical cost of the NFS variants and we only give the asymptotic complexity. However, the
computation of discrete logarithms is an active research subject and even if some of the variants
presented above are not implemented yet, we are able to estimate the practical cost of the variants
using for instance [GS19] together with their code mentioned above. We now look at Fp12 where
p = P (u) = 36u4 + 36u3 + 24u2 + 6u+ 1. We consider u = −262 − 255 − 1; one can check that
P (u) is indeed a prime integer of 254 bits. We now estimate the complexity of two NFS variants.

• Using the special parameterization of p, one can choose f1 and f2 as in the SNFS variant:

f1(x) = x12 + x2 − x− u f2(x) = P (x12 + x2 − x)

Using this setup, the NFS algorithm cost estimation is 2128 operations.

• Using the work of Guillevic and Singh, we obtain the polynomial choices for the STNFS
variant:

h(t) = t6 + t3 + 2t2 − 2t+ 1

f1(x) = 36x8 + 36tx6 + 24t2x4 + 6t3x2 + t4 ∈ R[x]/(h(t))

f2(x) = x2 − 4593689212103950336t ∈ R[x]/(h(t)).

The sieving method cost estimation using their code is 2103 operations.

13

Chapter 1. Finite fields

In order to reach the 128-bit security level for the discrete logarithm problem over this field Fp12 ,
one needs to take a larger seed u. Choosing u = 2110 + 236 + 1 as in [PSNB11], we obtain a
5343-bit finite field and all the NFS variants would run in at least 2132 operations. The best
parameter choice for the STNFS variant is obtained for deg h = 6,deg f1 = 8 and deg f2 = 2 as
above.

1.2 Arithmetic of finite fields

In the next chapters, we estimate the cost of several computations involving finite field operations.
We investigate the cost of the arithmetic of various finite fields in this section. As we aim at the
cryptographic size fields for a 128-bit security level, we study a range of fields whose size log2(pk)
is between 3000 bits (Section 1.1.4) and 5500 bits (Section 1.1.4). In particular, we study prime
fields arithmetic where log2(p) = 3072 as in Section 1.1.4, and operations in extension fields Fpk
where log2(p) ≥ 256 and 5 ≤ k ≤ 16, with different sizes of pk.

The finite field operations are closely related to polynomial and integer arithmetic. We
consider here the main operations in finite fields: multiplications, squarings, inversions. Note
that we neglect the cost of additions and multiplications by small constants, which are not
significant compared to multiplications. We also investigate exponentiations, building blocks
of the Diffie–Hellman key exchange of Figure 1.1. In particular, we look for optimizations for
particular exponents (Frobenius power, exponentiations in particular subgroups of F∗

pk
).

Notations. From now on, we denote m (resp. s, i) the cost of one multiplication (resp. a
squaring, an inversion) in Fp. For a field Fpk , we denote mk (resp. sk, ik, fk, cu) to be the cost
of a multiplication (resp. a squaring, an inversion, a Frobenius, an exponentiation to the power
u). We estimate the arithmetic cost in extension fields by counting the number of multiplications
in Fp.

1.2.1 Multiplications

We consider prime fields and extension fields separately. For prime fields, we measure the Fp
multiplications for various sizes of p using an efficient library, whereas we estimate mk in terms
of m, and use our previous measurements to get a time estimation.

Measurements in prime fields

We represents elements of Fp as integers of size log2(p). As for integer arithmetic, the cost of addi-
tions and multiplications by small constants are neglected with respect to the Fp multiplications.

The RELIC library [AG] provides an efficient finite field arithmetic for various sizes of primes.
In particular, we are able to measure multiplications over Fp for various sizes of primes p. As
we target the 128-bit security level for the discrete logarithm problem over F∗

pk
, we will consider

fields of size pk in the range of the two examples of Section 1.1.4. Hence, we consider large
3072-bit primes p, and also smaller primes corresponding to k > 1, with four to eleven 64-bit
machine words (i.e. 192 < log2(p) ≤ 704). The RELIC library provides measurements for integers
of maximum 10 machine-words. We use a Intel Core i7-8700 CPU, 3.20GHz with TurboBoost
disabled in order to get reproducible timings, and then estimate the cost of m in the case of
eleven machine-words using the interpolation of Figure 1.4.

14

1.2. Arithmetic of finite fields

4 6 7 8 9 10 11

32

65
85

106

129

154

w number of 64-bit machine-words

ti
m
e
(n
s)

RELIC measurement
Interpolation t = 1.5w2

Figure 1.4: Measurement and interpolation of a multiplication modulo different bitlength primes.

For the larger size log2(p) = 3072, we use the same machine and measure a multiplication
of 48 machine-word integers using the GNU MP library [Gt20]. We finally obtain that it costs
3800ns.

Estimations in extension fields

In order to provide a common comparison base, we give estimated costs for multiplications
using Karatsuba-like formulas [DÓSD06, Mon05, CH07]. We treat squarings and multiplications
separately because the formula differ slightly. In Chapters 4 and 5, we are interested in finite
fields of degree k ∈ {5, 6, 7, 8, 12, 16}. Hence, we consider here extensions of degree 2, 3, 5 and 7
as in Figure 1.5.

Fp

Fp2

Fp4 Fp8 Fp16

Fp3

Fp6 Fp12

Fp5

Fp7

2

2

3

3

25

7

2

2 2

Figure 1.5: Towers of extension of degree 2, 3, 5 and 7 considered here.

Remark 1.4 (Binomial extensions). From now on, we suppose that an extension Fqk of Fq is
defined using a binomial irreducible polynomial P = xk−α where a ∈ Fq. Using this construction
Fqk = Fq(x) where x is a root of P , xk = αk in Fqk and several computations can be optimized
(see Section 1.2.2). Over a prime field Fp, p ≡ 1 mod k is necessary in order to build the extension
Fpk over Fp with a binomial irreducible polynomial.

For degree 2 and 3 extensions, the costs come directly from the Karatsuba formulas while for
prime extension degrees k = 5 and 7, we use the slightly different formulas from [Mon05]. We

15

Chapter 1. Finite fields

neglect here the cost of multiplications by small constants.

mk =

3mk/2 if k is even,
6mk/3 if 3 divides k,
13m if k = 5,

22m if k = 7,

sk =

2mk/2 if k is even,
2mk/3 + 3sk/3 if 3 divides k,
13m if k = 5,

22m if k = 7

Sparse multiplications

We also investigate the case of sparse element multiplications. In Chapters 4 and 5, we are
interested in the cases of extension degrees divisible by 4 or 6. Elements of Fqd (d ∈ {4, 6}) are
represented with polynomials with d coefficients in Fq. If both of the elements we multiply have
coefficients alternating zero and non-zero integers, we estimate that it simply corresponds to
a multiplication in Fqd/2 . However, if only one element has few zeros, it is a bit trickier. We
call these special cases dense×sparse multiplications, and consider the particular case where the
sparse element has two or three non-zero coefficients. More precisely, we investigate the cases of
interest of Chapters 4 and 5:

• In Fq4 , we consider a dense element a = a0 + a1x+ a2x
2 + a3x

3 and a sparse element with
only two non-zero coefficients b = b1x

i1 + b2x
i2 , where 0 ≤ i1, i2 ≤ 3, and ai, bi ∈ Fq. A

dense×sparse multiplication can be computed in 8 multiplication in Fq (instead of 9 with
the two Karatsuba formulas).

• In Fq6 , we consider (with similar notations) a sparse b with three zero coefficients in Fq, and
using [Gui13, page 92], the computations of a · b costs 13 multiplications in Fq instead of 18.

1.2.2 Frobenius power

A common computation in finite fields is the exponentiation to the power p (the characteristic of
the field concerned). Obviously, the Frobenius is trivial over prime fields: ωp0 = ω0 for ω0 ∈ Fp.
Over extension fields, it is very useful to define the tower using a binomial polynomial in order
to perform the Frobenius power. This is possible only when p ≡ 1 mod k (see Remark 1.4). Let
w =

∑k−1
i=0 ωix

i ∈ Fpk = Fp[x]/(xk − α). Then, wpj = ω0 +
∑k−1

i=1 ωix
ipj . The terms xipj do not

depend on w and are precomputed. By Euclidean division by k, xipj = xujk+i = αujxi. Therefore
we have at most fk = (k − 1)m for any pj-th power Frobenius. Note that for k even, we have
xk/2·(p

j−1) = α(pj−1)/2 = ±1 so that xk/2·pj = ±xk/2, whence one multiplication can be saved.

1.2.3 Inversions

We estimate the cost of inversions in extension fields in terms of m as in the previous sections.
We also estimate i ≈ 25m; this is clearly implementation-dependent (as well as our measurements
of Section 1.2.1). The computation of an inversion is closely related to efficient Frobenius powers:

a−1 = (NormF
qk
/Fq(a))−1 × aq × · · · × aqk−1

.

Consequences of the above are given in [WS07], notably i2 = 2m+ 2s+ i and i3 = 9m+ 3s+ i,
neglecting additions. Recursive application yields ik for k = 2, 3, 4, 6, 8, 12, 16. For k = 5, we
compute t := aq×· · ·×aq4 = ((aq)1+q)1+q2 and then use the fact that the norm of a is in Fp to get
NormFp5/Fp(a) = a× t = a0t0 + α

∑k−1
j=1 aitk−i. We finally obtain that i5 = 3f5 + 2mk + i + 10m,

and i7 is obtained in a similar way.

16

1.2. Arithmetic of finite fields

1.2.4 Exponentiations

Exponentiation is the basic operation of the Diffie–Hellman key exchange in a finite field, as
presented in Figure 1.1. Exponentiations can be computed efficiently with Algorithm 1.1. It
computes log2(n)− 1 squarings and HW(n)− 1 multiplications, where HW(n) is the Hamming
weight of n.

Many optimizations can improve this cost depending on the context, but the asymptotic
complexity stays linear in the size of the exponent n. We detail here the non-adjacent form
exponentiation.

Exponentiation in NAF. In some particular finite fields (for instance in F2127−1), inversions
can be computed efficiently so that the square-and-multiply algorithm is more efficient when
designed with another representation than the binary form.

Definition 1.5 (Non-adjacent form, [HMV03, page 98]). The non-adjacent form (NAF) of an
integer n is the unique sequence {n0, . . . , nd} of 0, 1 and −1 such that n =

∑d−1
i=0 ni2

i, and two
non-zero values cannot be adjacent.

Non-adjacent form has more zeros than the binary form, and so an exponentiation can be
performed more efficiently when inversions are cheap. Algorithm 1.2 costs log2(n) squarings and
HW2-NAF(n) multiplications or (efficient) inversions.

Algorithm 1.1: Square-and-multiply(x, n)
Input. x ∈ Fpk ,

n an integer.
Output. xn.
Cost. (log2(n)− 1)sk + (HW(n)− 1)mk.

Write n =
∑d

i=0 bi2
i with bi ∈ {0, 1}

R← 1
for i from d− 1 downto 0 do
R← R2

if bi = 1 then
R← R · x

end if
end for
return R

Algorithm 1.2: NAF-square-and-multiply(x, n)
Input. x ∈ Fpk ,

n an integer.
Output. xn.
Cost. (log2(n)− 1)sk + (HW2-NAF(n)− 1)mk.

Write n in NAF: n =
∑d

i=0 bi2
i with

bi ∈ {0, 1,−1}
R← 1
for i from d− 1 downto 0 do
R← R2

if bi = 1 then
R← R · x

else if bi = −1 then
R← R · x−1

end if
end for
return R

In Chapter 2, we investigate exponentiations where inversions are almost free so that the NAF
is often used (called scalar multiplication in this context).

Exponentiation in base p. Exponentiations can be performed more efficiently using a base
p decomposition together with the efficient Frobenius powers of Section 1.2.2. Suppose x =∑n

i=0 xip
i. Then, ax is computed as ax =

∏n
i=0

(
ap

i
)xi

. If the prime p is special in the sense of
Definition 1.3 (say p = P (u)), then a decomposition in base u leads to faster exponentiations.

17

Chapter 1. Finite fields

We detail the cost of various exponentiations in Chapters 4 and 5, using special and non-special
primes.

Cyclotomic subgroup exponentiation

We go into detail on exponentiations in cyclotomic subgroup, following [GS10]. We now consider
the subgroup GΦk(p) of F∗

pk
of order Φk(p), where Φk is the k-th cyclotomic polynomial. We

are interested in exponentiations in GΦk(p). Granger and Scott obtain in [GS10, page 7] that
a cyclotomic squaring in Fpk where k is divisible by 6 costs scyclo

k = 3sk/3 using the tower of
extensions Fqk/6 ↪→ Fqk/3 ↪→ Fqk . Similarly, cyclotomic squarings apply in finite fields of even
degree k. In [GS10, page 4], they obtain that scyclo

k = 2sk/2. From that, an exponentiation of an
element of GΦk(p) to the power u costs cu = (log2(u)− 1)scyclo

k + (HW(u)− 1)mk.

1.2.5 Summary

Table 1.2 summarises these estimated costs. We compared Table 1.2 with timings of the RELIC
library [AG] for primes p of 6 to 8 machine-words and k = 2, 6, 12 on an Intel Core i5-4570 CPU,
3.20GHz. The accordance is satisfactory (within 10%), to the point that we use Table 1.2 as
a base. Additionally, we also measured the relative costs of i, s, and m on the same platform,
leading to i ≈ 25m and s ≈m. These approximations are clearly implementation-dependent.

k 1 2 3 5 6 7 8 12 16

mk m 3m 6m 13m 18m 22m 27m 54m 81m
sk m 2m 5m 13m 12m 22m 18m 36m 54m
fk 0 0 2m 4m 4m 6m 6m 10m 14m

scyclo
k 6m 12m 18m 36m

ik − i1 0 4m 12m 48m 34m 104m 44m 94m 134m
ik, with i1 = 25m 25m 29m 37m 73m 59m 129m 69m 119m 159m

Table 1.2: Relative cost of mk, sk and ik for finite field extensions of interest in Chapters 4 and 5.

18

2 •• •

Elliptic curves

In this section, we introduce elliptic curves and their application in cryptography. Points of an
elliptic curve form a group for which the discrete logarithm problem is hard. The best known
algorithms for solving the elliptic curve DLP have exponential complexity. Thus, this problem
leads to many protocols such as the Elliptic Curve Diffie–Hellman (ECDH) key exchange and the
Elliptic Curve Digital Signature Algorithm (ECDSA). Algebraic curves play an important role in
cryptography and are widespread. More recently, particular maps between elliptic curves opened
new doors for post-quantum cryptography. In order to understand these different protocols, we
need to study the algebra behind these curves.

We introduce here the Weierstrass model representing an elliptic curve, together with formulas
for computing the group law. From this group structure, we look at subgroups of the curve and
morphisms of curves. In Chapter 3, the main tool will be particular morphisms called isogenies.
We present here a few properties of these maps. We investigate further isogenies in Chapter 3.
We also look at twists of curves, an important tool to obtain a gain of performance on the
computation of pairings, the main subject of Chapter 4.

Finally, we give some details on the use of elliptic curves in applied cryptography. We introduce
different models for representing the elliptic curve. These representations lead to different costs
for the group law. The scalar multiplication, main step of elliptic-curve-based algorithms, has
a variable cost depending on the model used. The last section of this chapter explains how to
choose elliptic curve parameters from a cryptographic security point of view. The size of the
parameters are important, but other properties matter, too. Twists of curves and small subgroups
can lead to attacks on the discrete logarithm problem in some particular cases.

Summary
2.1 Definition . 20
2.2 Group law . 21
2.3 Isogenies of elliptic curves . 23
2.4 Torsion . 24
2.5 Endomorphism rings of elliptic curves 25
2.6 Automorphisms of elliptic curves . 27
2.7 Twists of curves . 28
2.8 Elliptic curves in cryptography . 30

19

Chapter 2. Elliptic curves

2.1 Definition

A general definition of an elliptic curve over a field K requires algebraic geometry theory.

Definition 2.1 (Elliptic curve). An elliptic curve over K is a smooth projective curve of genus 1
with a distinguished K-rational point.

We will not need this abstract definition. The reader can look at [Har77] for a complete
introduction to algebraic geometry. Beyond this definition, elliptic curves are varieties in the
projective plane. Hence, an elliptic curve can be represented by an homogeneous polynomial
equation in three variables. A point of the curve is a triple (X,Y, Z) satisfying the polynomial
equation, and projective coordinates correspond to the class of points modulo the relation
(X,Y, Z) ∼ (λX, λY, λZ) for all λ ∈ K. We now denote (X : Y : Z) for the class of the point
(X,Y, Z), and P2(K) for the set of classes of points. Using substitutions, several polynomials lead
to different models defining an elliptic curve with a polynomial equation. The usual model for
introducing an elliptic curve is the Weierstrass model.

Definition 2.2 (Weierstrass model). An elliptic curve E over a field K can be defined by a
non-singular equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (2.1)

where a1, . . . , a6 ∈ K, together with a distinguished K-rational point.

We can represent the curve using an affine equation using the map (X,Y, Z) 7→ (X/Z, Y/Z, 1),
plus an extra point (0 : 1 : 0). The affine version of Equation (2.1) is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.2)

x

y

Figure 2.1: Affine part of the elliptic curve defined over R by y2 = x3 − x.

From now on, we consider elliptic curves defined over a field Fq of characteristic p > 3 (hence,
q is a power of p). In such fields, 2 is invertible and the substitution (x, y) 7→ (x, (y− a1x− a3)/2)
allows us to rewrite Equation (2.2) as

y2 = 4x3 + b2x
2 + 2b4x+ b6 (2.3)

where
b2 = a2

1 + 4a4 b4 = 2a4 + a1a3 b6 = a2
3 + 4a6.

Finally, 3 ∈ Fq is also invertible and the map (x, y) 7→ ((x − 3b2)/36, y/108) allows us rewrite
Equation (2.3) as a short Weierstrass equation:

y2 = x3 − 27c4x− 54c6 (2.4)

20

2.2. Group law

where c4 = b22 − 24b4 and c6 = −b32 + 36b2b4 − 216b6.
Now, we consider elliptic curves in short Weierstrass form and note Ea,b for the curve defined

with y2 = x3 + ax+ b. We define its j-invariant as j(Ea,b) = 1728 4a3

4a3+27b2
. We will see at the

end of Section 2.3 in which sense it is an invariant.

2.2 Group law

In this section, we present how to geometrically construct a group law on an elliptic curve. We
now consider an elliptic curve in Weierstrass form E : y2 = x3 + ax+ b where a, b ∈ Fq, together
with the extra point (0 : 1 : 0). We denote the geometrical curve E := {(x : y : z) ∈ P2(F̄q), y2z =
x3 + axz2 + bz3} and for k ∈ N∗, E(Fqk) := {(x : y : z) ∈ P2(Fqk), y2z = x3 + axz2 + bz3}. The
Galois group G(F̄q/Fqk) acts on E, and so E(Fqk) can be defined as the fixed points of E by the
Galois group. We obtain a geometric group law using lines passing through points of the curve.
Let P and Q be two points of E. The line passing through P and Q intersects the curve E in
exactly three points (counted with multiplicity) by the Bézout theorem [ST15, §A.4]. The neutral
element of our group law is by construction 0E = (0 : 1 : 0). Now, we suppose that P and Q are
affine points (xP , yP , 1) and (xQ, yQ, 1). If (xP , yP) = (xQ,−yQ), then P and Q define a vertical
line and its equation is simply `P,Q(x, y) = x− xP . Except this special case, the line (PQ) is not
vertical, and its equation is given by

`P,Q(x, y) = (y − yP) + λ(xP − x), where λ =

{ yQ−yP
xQ−xP if P 6= Q;
3x2P+a

2yP
if P = Q.

From this equation, and using the equation of the curve, we can explicitly determine the third
point R of the intersection E ∩ (PQ):

xR = λ2 − xP − xQ
yR = λ(xP − xR)− yP .

Now, we define a law of composition, written in additive notation: we define the point P +Q to
be the point (xR,−yR), intersecting the vertical line vR(x, y) = x− xR = 0 with the curve E.

One can verify that for k ∈ N∗, E(Fqk) form an abelian group. The tricky part is the
associativity, that can be proved using symbolic computation. Another way is to obtain a
bijection between the curve and a group and prove that it is actually a group isomorphism. The
isomorphic group is the set of classes of degree 0 divisors modulo principal divisors. We introduce
here the necessary definitions of the theory. We denote Div(E) the free abelian group generated
by the points of E.

Definition 2.3 (Divisor). A divisor D ∈ Div(E) is a formal sum D =
∑

P∈E(F̄q) nP (P), where
nP ∈ Z and nP = 0 except for a finite set of points.

The Galois group G(F̄q,Fq) acts naturally on points and divisors. For σ ∈ G(F̄q,Fq), σ((xP :
yP : zP)) = (σ(xP) : σ(yP) : σ(zP)). With the notations of Definition 2.3,

σ(D) =
∑

P∈E(F̄q)

nP (σ(P)).

We say that for k ≥ 1, a divisor is defined over Fqk if, and only if, σ(D) = D for all σ ∈ G(F̄q,Fqk).

21

Chapter 2. Elliptic curves

`P,Q(x, y)

P

Q

R

P +Q

Figure 2.2: Geometric group law.

Definition 2.4 (Degree of a divisor). The degree of a divisor D is degD =
∑

P∈E nP .

We denote Div0(E) = {D ∈ Div(E)/degD = 0}, and Fqk(E) the set of rational functions over
the curve E (as in [Sil86, page 3]). If 0 6= f ∈ Fqk(E), we define div(f) :=

∑
P∈E(F̄q) ordP (f)(P),

where ordP (f) is the order of f at the point P , as defined in [Sil86, page 18].

Proposition 2.5. Let `P,Q be a line as defined above. Then, by definition of the group law,
div(`P,Q) = (P) + (Q) + (−(P +Q))− 3(0E). Moreover, div(`Q−P,P) = div(`P,−Q).

If D =
∑

P∈E(F̄q) nP (P) is a divisor of degree 0 whose support is disjoint from the support
of div(f), we define f(D) to be

∏
P∈Ē(Fq) f(P)nP . A divisor D is principal if it is of the form

D = div(g) for a non-zero g ∈ Fqk(E). We obtain an equivalence relation

Definition 2.6. Two divisors D1 and D2 are equivalent if D1 −D2 is a principal divisor.

The Picard group Pic(E) is the quotient of Div(E) by the principal divisors. Finally, we
denote Pic0(E) the degree 0 part of the divisor class group of E. There is a group isomorphism
between an elliptic curve E and Pic0(E). This result is not obvious, and in our context, we only
need the geometric construction. We refer to [Sil86, page 62] for details on this proof.

The opposite of a point P is −P = (xP ,−yP), and formulas are slightly different for a doubling
step [2]P or an addition P +Q:

x[2]P = ((3x2
P + a)/(2yP))2 − 2xP

y[2]P = 3xP (3x2
P + a)/(2yP)− ((3x2

P + a)/(2yP))3 − yP
xP+Q = ((yQ − yP)/(xQ − xP))2 − (xQ + xP)

yP+Q = (2xP + xQ)(yQ − yP)/(xQ − xP)− ((yQ − yP)/(xQ − xP))3 − yP .

We detail the cost of this algorithm and how to get more efficient formulas in Section 2.8.2.

22

2.3. Isogenies of elliptic curves

2.3 Isogenies of elliptic curves

In this section, we introduce isogenies of elliptic curves, which are particular rational maps.

Definition 2.7 (Morphism). A morphism of curves is a rational map defined everywhere.

In our context, every rational map of elliptic curves is a morphism. Over the algebraic closure,
a rational map of elliptic curves is either constant or surjective.

Definition 2.8 (Isogeny). Let E and E′ be two elliptic curves defined over Fq and Fqk an extension
of degree k. An isogeny φ : E → E′ is a non-constant rational map such that φ(0E) = 0E′. An
isogeny is said to be defined over Fqk if the rational functions defining φ have coefficients in Fqk .

Hence, over F̄q, isogenies are surjective morphisms. One can prove that isogenies are
actually group morphisms [Sil86, page 71]. If E and E′ are elliptic curves in short Weier-
strass form, an isogeny φ : E → E′ can be defined by an affine rational map of the form
φ(x, y) = (u(x)/v(x), ys(x)/t(x)), where u, v, s, t ∈ Fqk [x] for an integer k ≥ 1. An isogeny
φ : E → E′ induces an injective morphism

φ∗ : Fqk(E′) ↪→ Fqk(E)

f 7−→ φ ◦ f.

We obtain an extension field φ∗(Fqk(E′)) ⊂ Fqk(E).

Definition 2.9 (Degree). The degree of an isogeny φ : E → E′ is the degree of the extension
field Fqk(E)/φ∗(Fqk(E′)). We also write `-isogeny for an isogeny of degree `.

The structure of isogeny depends on the separability of the extension field φ∗(Fqk(E′)) ⊂ Fqk(E).

Definition 2.10 (Separable, inseparable isogeny). An isogeny φ : E → E′ is separable if the
extension Fqk(E)/φ∗(Fqk(E′)) is separable, i.e. if every element in Fqk(E) has a split minimal
polynomial with simple roots.
An isogeny is inseparable if it is not separable, and purely inseparable if the extension is.

Inseparable isogenies are closely related to the Frobenius isogeny, which is purely inseparable
(recall that p is the characteristic of Fq):

π : Ea,b −→ Eap,bp

(x, y) 7−→ (xp, yp).

An isogeny φ can be split into two isogenies: φ = α ◦πn where α is separable, and n ≥ 0. The
degree of a separable isogeny is simply the size of its kernel. Finally, given an isogeny φ : E → E′,
there always exists a dual isogeny φ̂ : E′ → E such that φ ◦ φ̂ = [deg(φ)] [Sil86, Theorem 6.1].

Definition 2.11 (Isomorphism). An isogeny φ : E → E′ is an isomorphism if there exists an
isogeny φ′ : E′ → E such that φ ◦ φ′ = Id.

Isomorphisms are isogenies of degree one, and can be written of the form (x, y) 7→ (u2x, u3y)
where u ∈ F̄q. Two curves Ea,b and Ea′,b′ are isomorphic if, and only if, a′ = u4a and b′ = u6b for
an element u ∈ F̄q. The j-invariant defined at the end of Section 2.1 is an invariant of isomorphic
curves: j(Ea,b) = j(Eu4a,u6b). Two curves are isomorphic over Fqk if, and only if, the isomorphism
is defined over Fqk (i.e. u2, u3 ∈ Fqk).

23

Chapter 2. Elliptic curves

2.4 Torsion

Given an elliptic curve Ea,b (denoted E in this section) defined over Fq with q = pn, we defined
the Frobenius isogeny π. Composing n times this isogeny, we obtain πn : (x, y) 7→ (xq, yq) which
is an endomorphism because E(pn) = E. This endomorphism is often called the q-Frobenius. Its
characteristic polynomial is X2− tX+q and the trace t can be computed using a polynomial-time
algorithm [Sch95]. The number of Fq-rational points on the curve is related to the trace of the
Frobenius [Sil86, page 141]:

#E(Fq) = q + 1− t.

The Hasse bound [Sil86, page 138] shows that |t| ≤ 2
√
q.

Given a point P of E(Fq), by the Lagrange theorem, ` = ord(P) divides q + 1 − t. The
`-torsion set, written E[`], is the set of points of E (defined over the algebraic closure F̄q) that
satisfy [`]P = 0E . We also denote E(Fqk)[`] := E[`] ∩E(Fqk). The `-th division polynomial of E
is closely related to the `-torsion. Division polynomials are defined recursively with the relations:

ψ0 = 0 ψ1 = 1 ψ2 = 2y ψ3 = 3x4 + 6ax2 + 12bx− a2

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 m ≥ 2

ψ2m =
(
ψm
2y

)
(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) m ≥ 3

and indeed, if gcd(`, q) = 1,

0E 6= P ∈ E[`] ⇐⇒

{
ψ`(xP) = 0 ` is odd
ψ`(xP)/yP = 0 ` is even.

Remark 2.12. ψ` ∈ Z[x, a, b] (resp. Z[x, y, a, b]) if ` is odd (resp. even). In practice, division
polynomials can be computed recursively, but their degrees grow very fast so we can compute
them only for small values of `.

The `-torsion set has a special structure:

E[`] =

{
Z/`Z× Z/`Z if gcd(`, q) = 1

{0E} or Z/`Z otherwise.

Hence, ψ` has a number of roots which is (`2 − 1)/2, (` − 1)/2 or 0 (given that P and −P
have the same x-coordinate). Looking at the torsion on the algebraic closure is interesting only
from a theoretical point of view. In practice, when gcd(`, q) = 1, we look at points on the
smallest extension field such that the `-torsion is fully rational. Usually, we call G1 and G2 two
distinct subgroups of order ` defining the `-torsion. A canonical choice can be done using the πn

endomorphism. Over E[`], πn is an endomorphism of the Z/`Z-module E[`]. Its eigenvalues are
1 and q. We can use the eigenspaces of πn in order to make a choice of two subgroups of the
`-torsion: G1 = E[`]∩ ker(πn − [1]) and G2 = E[`]∩ ker(πn − [q]). In particular, with this choice,
G1 is defined over Fq and G2 over Fqk for an integer k which is called the embedding degree.

Definition 2.13 (Embedding degree). Let E be an elliptic curve defined over Fq and ` an integer
coprime to q. The embedding degree of E with respect to ` is the smallest integer k such that
E(Fqk)[`] = (Z/`Z)2.

Remark 2.14. We will give an equivalent definition in Chapter 4.

24

2.5. Endomorphism rings of elliptic curves

The structure of E[p] allows us to split elliptic curves in two families: ordinary and supersin-
gular curves.

Definition 2.15 (Ordinary and supersingular curves). An elliptic curve E over a field of
characteristic p is ordinary if E[p] = Z/pZ and supersingular if E[p] = {0E}.

Supersingular curves can always be defined over a quadratic finite field (i.e. q = p2), and in
this case, p divides the trace t. In particular, if E is a supersingular curve defined over a prime
field Fp, #E(Fp) = p + 1. One can prove that the embedding degree of a supersingular curve
always divides 6. More precisely, over prime fields, supersingular elliptic curves have embedding
degree 1, 2 or 3 [Gal05, page 199].

We now look at endomorphism rings of elliptic curves. The structure depends on the
supersingularity of the curve.

2.5 Endomorphism rings of elliptic curves

Endomorphisms of elliptic curves are isogenies with same domain and codomain. In particular,
given a curve E defined over Fq, we have already seen an endomorphism: the q-Frobenius. The
group law induces scalar multiplications endomorphisms P 7→ [n]P . We develop the theory of
scalar multiplication in Section 2.8.3. Hence, the lattice generated by [1] and π is included in
End(E). Recall that π has characteristic polynomial X2− tX+q so the lattice can be represented
as Z + Z

√
−D where D is the square-free part of t2 − 4q. We now introduce orders of quadratic

fields and quaternion algebras, closely related to the description of endomorphism rings of elliptic
curves.

2.5.1 Orders in imaginary quadratic fields.

We introduce the needed tools for the theory of orders in imaginary quadratic fields. We refer
to [Cox97] for a complete study of orders in number fields. Let K be a quadratic extension of Q
defined with x2 + d for a positive square-free integer d. We define quadratic fields using their
discriminant, always 0 or 1 modulo 4.

Definition 2.16 (Discriminant of K). The discriminant of K is

Disc(K) =

{
−d if − d ≡ 1 mod 4

−4d otherwise.

To every discriminant corresponds an imaginary quadratic field. In the following, we consider
a field of discriminant −D, and write K = Q(

√
−D). Note that Q(

√
−d) and Q(

√
−D) are

isomorphic even when −D = −4d: the isomorphism is simply x+ y
√
−d 7→ x+ y/2

√
−D.

Orders are Z-modules of K of rank 2 that are also subrings. Thus, we represent orders as
a Z-basis with two elements. As it is a subring of K, we often choose 1 as a basis vector, and
write orders of the form Z[α] = {n+mα,n,m ∈ Z} for a given α. The discriminant Disc(O) of
an order O is the discriminant of the minimal polynomial of α. A common example of order is
the ring of integers of K, denoted OK . In imaginary quadratic fields, it is of the form Z[ω] where

ω =

{√
−d if −D ≡ 0 mod 4,

(1 +
√
−d)/2 if −D ≡ 1 mod 4.

25

Chapter 2. Elliptic curves

The discriminant of the maximal order OK is actually the discriminant −D of the field: depending
on the congruence class of d mod 4, ω has minimal polynomial x2 + d or x2 − x+ (1 + d)/4, so
OK has discriminant −4d or −d, which is Disc(K). The ring of integers is actually the unique
maximal order of K: every order is contained in OK . Thus, every order O of K is of the form
Z[fω] for an integer f which satisfies f = [OK : O].

Definition 2.17 (Conductor). Let O2 ⊂ O1 be two orders in K. The index [O1 : O2] is called
the conductor of O2 in O1.

Remark 2.18. The discriminants of O1 and O2 satisfy Disc(O2) = f2 Disc(O1). If O = Z[fω] as
above, then f is the conductor of O in OK .

2.5.2 Maximal orders in quaternion algebras

A quaternion algebra is a non-commutative Q-algebra of dimension 4 defined with four generators:
H−a,−b = Q1 + Qi + Qj + Qk where i2 + a = 0, j2 + b = 0 and k = ij = −ji. As in the case
of quadratic fields, orders are full rank lattices that are also subrings of H−a,−b, but maximal
orders are not unique. In our context, we consider a quaternion algebra ramified only at p and ∞.
It means that H−a,−b ⊗Qp and H−a,−b ⊗ R are division algebras. See [Voi20, Section 14.1] for
details. Depending on the class of p mod 8, Pizer gives in [Piz80, page 368] a couple of integers
(a, b) such that the algebra H−a,−b satisfies these properties of ramification. In particular,

• If p = 3 mod 4, (a, b) = (1, p).

• If p = 5 mod 8, (a, b) = (2, p).

• If p = 1 mod 8, (a, b) = (r, p) where r = 3 mod 4 and (p/r) = −1. Assuming that
the generalized Riemann hypothesis is true, there exists r = O(log2

2(p)) satisfying these
conditions.

We will give some details on orders of quaternion algebra in Chapter 6. We refer to [Voi20] for a
complete study of the theory of quaternion algebras.

2.5.3 Structure of endomorphism rings of elliptic curves

The structure of End(E) is closely related to the supersingularity of E.

Theorem 2.19 (Endomorphism ring structure [Sil86, page 102]). Let E be an elliptic curve
defined over Fq where q is a power of p. Then,

• If E is ordinary, then End(E) is an order in the imaginary quadratic field Q(
√
t2 − 4q).

• If E is supersingular, then End(E) is a maximal order in the quaternion algebra H−a,−b as
above.

Example 2.20. Let E : y2 = x3 − x defined over a prime field Fp. Then,

• If p = 3 mod 4, then −1 is not a square over Fp, and assuming Fp2 = Fp[x]/(x2 + 1) = Fp(i),
(x, y) 7→ (−x, iy) is an endomorphism that anticommutes with the Frobenius π. E is
supersingular and End(E) is a maximal order in a quaternion algebra.

• If p = 1 mod 4, the latter endomorphism now commutes with the Frobenius π. One can
prove (by computing the trace for example) that the curve is ordinary in this case of
congruence of p.

26

2.6. Automorphisms of elliptic curves

We go into detail on examples of endomorphism rings of ordinary curves in Section 3.1.1 and
study the supersingular case in Chapter 6.

2.5.4 The Complex Multiplication (CM) method

Over a field of characteristic 0, the endomorphism ring is commutative. Hence, over Q, an elliptic
curve has an endomorphism ring which is either Z or an order of an imaginary quadratic field. It
is possible to generate an elliptic curve over a number field of given endomorphism ring (specified
by an order OD of discriminant D) thanks to the CM method, closely related to the Hilbert
class polynomial. We denote Ell(O) to be the set of isomorphism classes of elliptic curves with
endomorphism ring the order O.

Definition 2.21 (Hilbert class polynomial). The Hilbert class polynomial is the polynomial
HD(X) =

∏
E∈Ell(OD)(X − j(E)) where OD is the order of discriminant −D.

Hilbert class polynomials are irreducible and have integer coefficients. Their study is related
to the class group theory. We will give some details of this theory in Chapter 3. This polynomial
can be computed modulo a prime p with space complexity O(|D|1/2+ε log2(p)) and O(|D|1+ε)
time complexity using an algorithm presented in [Sut10]. The algorithm has been improved
in [ES10] and is practical up to D ≈ 1016.

From the Hilbert class polynomial HD, each root j0 is a j-invariant of an elliptic curve
over a number field of given endomorphism ring (of discriminant −D). Then, the elliptic curve
equation can be recovered easily from j0: if j0 = 0 (resp. 1728), the curve E : y2 = x3 + 1 (resp.
E : y2 = x3 + x) satisfy j(E) = j0. Otherwise, one verifies that Equation (2.5) defines an elliptic
curve of j-invariant j0:

y2 = x3 + 3j0x/(1728− j0) + 2j0/(1728− j0). (2.5)

We obtain an elliptic curve defined over Fp by reducing a curve defined over a number field
modulo a prime p. The reduced curve is ordinary (resp. supersingular) if, and only if p splits
(resp. is inert) in the order of discriminant −D. The case where p ramifies does not occur here as
p� D. Inert and splitting primes are in the same proportion. Thus, reduced curves are ordinary
for half of the primes.

In practice, the CM method produces particular curves with a small discriminant (their
computation needs the knowledge of HD). The question of generating an elliptic curve with
a random (large discriminant) endomorphism ring will be detailed in Section 3.3.4. The CM
method will be useful for generating ordinary elliptic curves in Chapter 4.

2.6 Automorphisms of elliptic curves

Automorphisms of elliptic curves are endomorphisms of degree 1. Using the bijection of Theo-
rem 2.19, automorphisms are units of a common mathematical object representing the endomor-
phism ring. In imaginary quadratic number fields, a unit is a root of a cyclotomic polynomial.
Hence, we look at cyclotomic polynomials of degree dividing 2: T − 1, T + 1, T 2 + T + 1, T 2 + 1
and T 2 − T + 1. Finally the units group is always a cyclic group of order 2, 4 or 6:

• If D = 4, integer units are {±1,±i} ' Z/4Z where i =
√
−1.

• If D = 3, integer units are {±1,±j,±j2} ' Z/6Z where j = (1 +
√
−3)/2.

27

Chapter 2. Elliptic curves

• If D 6∈ {1, 3}, units are {±1} ' Z/2Z.

A general study of units of quaternion algebras is given in [Voi20, Chapter 32]. The main
difference with imaginary quadratic fields is the case of H−1,−1 and H−1,−3, where units are
non-commutative subgroups of SO3(Q). In our context, endomorphism rings are maximal orders
of quaternion algebras of the form H−r,−p where r = 1, 2 or O(log2

2(p)) and p is large. In these
cases, the structure of units is the same as in the case of imaginary quadratic fields: Z/2Z,
Z/4Z or Z/6Z. Finally, an elliptic curve has only few automorphisms, and the structure of the
automorphism group described in Theorem 2.22 lets us describe particular isomorphic curves,
called twists.

Theorem 2.22 (Automorphisms of elliptic curves). Let E be an elliptic curve over Fq where q is
a power of a prime p > 3. Then, Aut(E) ' Z/nZ where n = 6 if j(E) = 0, n = 4 if j(E) = 1728
and n = 2 if j(E) 6= 0, 1728.

2.7 Twists of curves

Twists are particular isomorphisms of elliptic curves. Twisted curves arise naturally when we
look at points of a curve Ea,b defined over Fq. Given x ∈ Fq, it corresponds to the abscissa of a
point of Ea,b with probability 1/2 + 1/(q − 1). When it is not the case, (x3 + ax+ b)

√
v gives

rise to a point of Ea,b for any non-square v ∈ F∗q so that we naturally have a map

Ea,b 7−→ Eta,b : vy2 = x3 + ax+ b

(x, y) 7−→ (x,
√
vy)

which is an isomorphism defined over Fq2 = Fq[x]/(x2 − v). As we have seen at the end of
Section 2.3, isomorphisms can be written in the form (x, y) 7→ (u2x, u3y) for u ∈ F̄q. In our case,
we can choose u =

√
v and we obtain

Ea,b 7−→ Eta,b = Ev2a,v3b
(x, y) 7−→ (

√
v

2
x,
√
v

3
y).

The curve Eta,b is called the quadratic twist of Ea,b.

Definition 2.23 (Twists of an elliptic curve). A twist of an elliptic curve E defined over Fq is
an elliptic curve E′, also defined over Fq, such that E and E′ are isomorphic over F̄q. Two twists
are equivalent if they are isomorphic over Fq. We say that the twist is of degree d if the minimal
extension defining the ismorphism is Fqd.

From the structure of the automorphism group, [Sil86, page 343] obtains that there are only
twists of degree dividing 6.

Theorem 2.24. Let Ea,b be an elliptic curve defined over Fq of characteristic p > 3. Then,

• If j(E) 6= 0, 1728, E has only one twist of degree 2 called the quadratic twist. If v ∈ F∗q is a
non-square, the isomorphism is given by (x, y) 7→ (vx,

√
v

3
y).

• If j(E) = 1728, then E has one quadratic twist and two twists of degree 4, called quartic
twists. If w ∈ F∗q is such that x4 − w is irreducible, then we define Fq4 = Fq(4

√
w). Thus,

one quartic twist is defined by (x, y) 7→ (
√
wx, 4
√
w

3
y) and the quadratic twist is defined by

(x, y) 7→ (wx,
√
w

3
y).

28

2.7. Twists of curves

• If j(E) = 0, then E has two degree 6 twists, called sextic twists, two twists of degree 3 and
one quadratic twist. Given z ∈ F∗q such that x6 − z is irreducible, then a sextic twist is
defined by (x, y) 7→ (3

√
zx,
√
zy).

Ea,b Ev2a,v3b
quadratic

Ea,0

Ewa,0

Ew2a,0

Ew3a,0

quartic

qu
art
icquartic

qu
art
ic

quadratic

quadratic

E0,b

E0,zb

E0,z2b

E0,z3b

E0,z4b

E0,z5b

sextic

sextic

sex
ticsextic

se
xt
ic

sex
tic

quadratic

qua
dra

tic quadratic

Figure 2.3: Twists of elliptic curves in the different cases of Theorem 2.24.

Remark 2.25. Twists of an elliptic curve defined over Fq are all defined over Fq, but the isomorphism
map is defined over Fqd (where d = 2, 4 or 6).

From this construction of the quadratic twist at the begining of this section, we can see
that each x ∈ Fq always gives two points of the set {Ea,b(Fq), Eta,b(Fq)}. Finally, #Ea,b(Fq) and
#Eta,b(Fq) are closely related, and if t is the trace of the Frobenius as in Section 2.4, then

#Ea,b(Fq) = q + 1− t #Eta,b(Fq) = q + 1 + t.

A similar approach lets us compute the trace of quartic and sextic twisted curves.

• If Ea,b has j-invariant 1728, then b = 0 and the curve has quartic twists.

#Ea,0(Fq) = q + 1− t #Ewa,0(Fq) = q + 1 + 2y

#Ew2a,0(Fq) = q + 1 + t #Ew3a,0(Fq) = q + 1− 2y

where y satisfies t2 − 4q = −4y2.

• If Ea,b has j-invariant 0, then a = 0 and the curve has sextic twists.

#E0,b(Fq) = q+1− t #E0,zb(Fq) = q+1− (−3y+ t)/2 #E0,z2b = q+1− (3y− t)/2

#E0,z3b(Fq) = q+1+t #E0,z4b(Fq) = q+1−(−3y−t)/2 #E0,z5b = q+1−(3y+t)/2

where y satisfies t2 − 4q = −3y2.

29

Chapter 2. Elliptic curves

Compression of the G2 elements

Twists can be used to represent elements of an elliptic curve in a compressed form. We refer
to [Ver10] for details. Suppose that E is an elliptic curve defined over Fq, with embedding degree
k = dk′ with d = 2, 4 or 6 according to Theorem 2.24. Then, defining E over Fqk/d , E has a twist
of degree d:

τd : E −→ E′

(x, y) 7−→ (xα2, yα3)

where α ∈ Fqk is a root of the irreducible polynomial Xd − u ∈ Fqk/d [X] (for a given u ∈ Fqk/d).
Thus, E(Fqk) ' E′(Fqk) and the subgroup G2, defined over Fqk , can be seen as τ−1

d (G′2) where
G′2 is a subgroup of E′(Fqk/d). Hence, the coordinates of a point of G2 are represented using only
k/d elements of Fq.

Weierstrass representation with a = −3

As we will see in Section 2.8.2, elliptic curve cryptography can be more efficient when the elliptic
curve is defined with the Weierstrass equation y2 = x3− 3x+ c. Suppose that Ea,b is a an elliptic
curve defined with a general equation y2 = x3 + ax+ b over Fq.

• If −3/a is a 4-th power in Fq (say −3 = au4), then the Fq-isomorphism (x, y) 7→ (xu2, yu3)
allows us to choose the isomorphic elliptic curve E−3,bu6 : y2 = x3 − 3x+ bu6. These two
curves have the same torsion structure and twists structure.

• If −3/a is not a 4-th power in Fq, then we can use the quadratic twist in order to get a
similar property. By construction of the quadratic twist, let v be a non-square in Fq. Then,
Eta,b : y2 = x3 + av2x + bv3 and v2 is not a 4-th power (otherwise, v would be a square).
Finally, −3/(av2) is a 4-th power and the property applies to Eta,b. Going back with the
quadratic twist, Ea,b is isomorphic to a curve of Weierstrass equation y2 = x3− 3w2x+ cw3,
where w ∈ Fq is a non-square1.

2.8 Elliptic curves in cryptography

In this section, we consider the discrete logarithm problem in elliptic-curve-based cryptography.
We introduce efficient algorithms for computing the group law, and explain how insecure a curve
can be when its structure has specificites. We will reuse the concepts introduced here in Chapter 4,
when we look for new elliptic curves for pairing-based cryptography.

2.8.1 Discrete logarithm over an elliptic curve

As we have seen in Section 2.2, rational points of an elliptic curve form a group and we can
consider the discrete logarithm problem on this group. Given a point P ∈ E(Fq) and [s]P , find
the integer s. This problem is considered hard and the best algorithms breaking the DLP are
actually generic algorithms. The baby-step–giant-step algorithm of Section 1.1.1 has a complexity
O(
√

#G) where G is the group used for DLP. This is in fact the best known complexity to date
for solving the DLP. In our context, the group is not E(Fq), but the subgroup generated by P .
Hence, in order to use the DLP over an elliptic curve, we need a large prime order subgroup. For
a 128-bit security level, we will use an elliptic curve E defined over Fq such that #E(Fq) has a

1w can be chosen small.

30

2.8. Elliptic curves in cryptography

large prime factor ≈ 2256. From the Hasse bound described in Section 2.4, #E(Fq) ≈ q and so
we look for q ≈ 2256 in order to obtain a safe curve.

In cryptographic applications, the security will be based on the DLP and so we often compute
a scalar multiplication [n]P = P + . . .+P (n times) for a large (256 bits) integer n. Given a point
P = (xP , yP) in affine Weierstrass coordinates, the point [n]P is determined by Equation (2.6),
where ψn is the n-th division polynomial of E defined in Section 2.4.

[n]P =

(
x− ψn−1ψn+1

ψn(xP , yP)2
,
ψ2n(xP , yP)

2ψn(xP , yP)4

)
. (2.6)

When we want to compute large scalar multiplications on the curve, we do not use these
polynomials: as we have seen, their degrees grow very fast. Instead, we use Algorithm 2.1 that is
an analogue of the square-and-multiply algorithm (called double-and-add in additive groups).

Algorithm 2.1: Scalar multiplication(n, P)
Input. n and integer,

P a point of E(Fq).
Output. [n]P .
Write n =

∑d
i=0 bi2

i with bi ∈ {0, 1}
R← P
for i from d− 1 downto 0 do
R← Dbl(R)
if bi = 1 then
R← Add(R,P)

end if
end for
return R

This algorithm computes doubling (Dbl) and addition (Add) steps, and so we need an efficient
group law in order to efficiently compute scalar multiplications. Using substitutions, many
equations can represent an elliptic curve in the same way as the Weierstrass equation. Thus,
using different models of elliptic curve, the group law is computed differently.

2.8.2 Formulas in different models

In Section 2.2, we have given formulas for computing the group law. In order to get more efficient
addition and doubling steps, we can rewrite formulas in projective coordinates so that no inversion
is needed. In Algorithms 2.2 and 2.3, a doubling step (resp. an addition step) costs 11 (resp. 14)
multiplications (assuming 1s = 1m). These algorithms are provided in [BL08].

31

Chapter 2. Elliptic curves

Algorithm 2.2: Addition step in Weier-
strass coordinates
Input. P = (X1,Y1,Z1),

Q = (X2,Y2,Z2).
Output. P+Q = (X3,Y3,Z3).
Cost. 2s and 12m.
Y1Z2 = Y1*Z2
X1Z2 = X1*Z2
Z1Z2 = Z1*Z2
u = Y2*Z1-Y1Z2
uu = u**2
v = X2*Z1-X1Z2
vv = v**2
vvv = v*vv
R = vv*X1Z2
A = uu*Z1Z2-vvv-2*R
X3 = v*A
Y3 = u*(R-A)-vvv*Y1Z2
Z3 = vvv*Z1Z2

Algorithm 2.3: Doubling step in Weier-
strass coordinates
Input. P = (X1,Y1,Z1).
Output. [2]P = (X3,Y3,Z3).
Cost. 6s and 5m.

XX = X1**2
ZZ = Z1**2
w = a*ZZ+3*XX
s = 2*Y1*Z1
ss = s**2
sss = s*ss
R = Y1*s
RR = R**2
B = (X1+R)**2-XX-RR
h = w**2-2*B
X3 = h*s
Y3 = w*(B-h)-2*RR
Z3 = sss

In Algorithm 2.1, the computation uses more doubling steps than additions. Hence, we can
use a change of variables in order to get a faster doubling step. We present here the modified
Jacobian and Montgomery coordinates. More models and their detailed group law costs are
presented in [BL08] and at https://hyperelliptic.org/.

Definition 2.26 (Projective Jacobian model). The elliptic curve Ea,b can be defined with a
projective Jacobian equation Y 2 = X3 + aXZ4 + bZ6 using the substitution from the short
Weierstrass model (x, y) 7→ (xz2, yz3, z).

Using this model, a doubling step (resp. addition step) now costs only 9 (resp. 16) mul-
tiplications. The modified Jacobian coordinates [CMO98] are simply a tweak where a fourth
coordinate corresponds to the square of the Z-coordinate. Using this modification, addition costs
two additional multiplications, but one multiplication is saved for the doubling step.

Remark 2.27. When the curve has a Weierstrass equation of the form E−3·u2,b·u3 for a small u, a
trick allows us to save one multiplication in Algorithm 2.3.

32

https://hyperelliptic.org/

2.8. Elliptic curves in cryptography

Algorithm 2.4: Addition step in modified
Jacobian coordinates
Input. P = (X1,Y1,Z1,T1),

Q = (X2,Y2,Z2,T2).
Output. P+Q = (X3,Y3,Z3,T3).
Cost. 7s and 11m.
ZZ1 = Z1**2
ZZ2 = Z2**2
U1 = X1*ZZ2
U2 = X2*ZZ1
S1 = Y1*Z2*ZZ2
S2 = Y2*Z1*ZZ1
H = U2-U1
I = (2*H)**2
J = H*I
r = 2*(S2-S1)
V = U1*I
X3 = r**2-J-2*V
Y3 = r*(V-X3)-2*S1*J
Z3 = ((Z1+Z2)**2-ZZ1-ZZ2)*H
ZZ3 = Z3**2
T3 = a*ZZ3**2

Algorithm 2.5: Doubling step in modified
Jacobian coordinates
Input. P = (X1,Y1,Z1,T1).
Output. [2]P = (X3,Y3,Z3,T3).
Cost. 5s and 3m.

XX = X1**2
A = 2*Y1**2
AA = A**2
U = 2*AA
S = (X1+A)**2-XX-AA
M = 3*XX+T1
X3 = M**2-2*S
Y3 = M*(S-X3)-U
Z3 = 2*Y1*Z1
T3 = 2*U*T1

Definition 2.28 (Montgomery model [CS18]). Let Ea,b be an elliptic curve defined over a finite
field Fq. If #Ea,b(Fq) = 0 mod 4 and x3 + ax+ b has a root α ∈ Fq such that 3α2 + a is a square
in Fq, then Ea,b can be defined with a Montgomery equation

By2 = x3 +Ax2 + x,

where B = 1/
√

3α2 + a and A = 3αB, using the substitution (x, y) 7→ (B(x− α), By).

In this model, the formula to compute the x-coordinate of [2]P does not depend on yP , and
the x-coordinate of P +Q can be computed from xP , xQ and xP−Q:

x[2]P =
(x2
P − 1)2

4xP (x2
P +AxP + 1)

xP+QxP−Q(xP − xQ)2 = (xPxQ − 1)2.

We obtain partial doubling and differential addition steps in the sense that only the x-coordinate is
computed, and the addition step needs xP−Q as input. We will see that these partial computations
let us compute efficiently a scalar multiplication. The cost of the partial doubling step (resp.
partial addition step) is 4 multiplications (resp. 6 multiplications) using projective coordinates.
As we compute only the x and z-coordinates of points in projective model, we use the notation
x(P) = (xP , zP).

33

Chapter 2. Elliptic curves

Algorithm 2.6: xAdd differential addition step
in Montgomery coordinates
Input. x(P −Q) =(X1,Z1),

x(P) =(X2,Z2),
x(Q) =(X3,Z3).

Output. x(P +Q) =(X5,Z5).
Cost. 2s and 4m.
A = X2+Z2
B = X2-Z2
C = X3+Z3
D = X3-Z3
DA = D*A
CB = C*B
X5 = Z1*(DA+CB)**2
Z5 = X1*(DA-CB)**2

Algorithm 2.7: xDbl doubling step in
Montgomery coordinates
Input. x(P) =(X1,Z1).
Output. x([2]P) =(X3,Z3).
Cost. 2s and 2m.

A = X1+Z1
AA = A**2
B = X1-Z1
BB = B**2
C = AA-BB
X3 = AA*BB
Z3 = C*(BB+(a+2)*C/4)

In order to obtain the entire point, an extra square-root computation is needed to get the
y-coordinate. Most of the time, the x-coordinate is sufficient and we compute the y-coordinate
only few times, without any square-root. More details will be given at the end of Section 2.8.3.
We summarize in Table 2.1 the costs in terms of finite field multiplications. We use the same
notations as in Chapter 1.

Coordinates Doubling step Alg. Addition step Alg.
Weierstrass projective 9m 2.2 16m 2.3
Modified Jacobian projective 8m 2.4 18m 2.5
Montgomery projective (x-only) 4m 2.6 6m 2.7

Table 2.1: Cost of the group law in different models of elliptic curves, from [BL08]

2.8.3 Scalar multiplication

As explained in Section 2.8.1, the main algorithm in elliptic curve cryptography is the scalar
multiplication. Algorithm 2.1 is very similar to a square-and-multiply algorithm, and has a
complexity linear in the size of the scalar (O(log2(n))). Writing n = bd2

d+ . . .+ b12 + b0 in binary
representation, Algorithm 2.1 reads the bits bi of n, computes a doubling step, and if bi = 1, an
addition step. Hence, if we denote HW(n) the number of 1 in the binary representation of n,
Algorithm 2.1 costs (log2(n)− 1) doubling steps and (HW(n)− 1)/2 addition steps in average.
Asymptotically, Algorithm 2.1 has complexity O(log2(n)) curve operations. In practice the cost
of the scalar multiplication can be improved by a constant factor.

Signed binary representation of n. Changing the representation basis of n can improve
Algorithm 2.1. Representing n in base b for b > 2 does not improve the concrete complexity
because the multiplication by b step (computed logb(n) − 1 times) becomes expensive when b
grows. Similarly to the exponentiations of Section 1.2.4, the NAF representation of Definition 1.5
lets us obtain more zeros than in the binary representation (and hence less addition steps). Note
that the addition step is now either an addition, either a subtraction, but a subtraction has the

34

2.8. Elliptic curves in cryptography

same cost as an addition. In average, a scalar multiplication with the non-adjacent form needs
log2(n) doublings and log2(n)/3 additions/subtractions. For instance, to compute [2d − 1]P , the
NAF lets us compute the scalar multiplication in d− 1 doublings and 1 subtraction instead of
d− 2 doublings and d− 2 additions with a binary representation.

Sliding window. During a scalar multiplication [n]P , the scalar n is read bit by bit. The
idea of the sliding window [HMV03, page 99] is to read these bits by blocks of w. This way, we
compute the scalar multiplication using log2(n)/w squarings and 3 log2(n)/w multiplications (in
average). This method needs the precomputations of {[i]P, 2 ≤ i ≤ 2w−1 − 1}. Depending on the
context, this method can be efficient, for example if the point P is fixed.

GLV method. Another improvement of the scalar multiplication is the GLV method [GLV01].
Given a low degree endomorphism of the curve ψ with eigenvalue λ, the computation of [n]P
can be decomposed into [n1]P + [n2]ψ(P), where n1 and n2 are determined by a (dimension 2)
lattice reduction, writing the vector (n, 0) in the basis of the lattice Z + Zλ. Finally, as ψ has
a low degree, its evaluation on P is efficient. Using the lattice reduction, the scalars n1 and n2

are of the size of
√
n and the two scalar multiplications [n1]P and [n2]ψ(P) can be computed in

parallel. Once the precomputation of ψ(P) and ψ(P) + P is done, the GLV method leads to a
reduction by a factor 2 of the cost of the scalar multiplication. In particular, this algorithm is
efficient for curves of j-invariant 0 and 1728, for which a very fast endomorphism is known. The
GLV method can be generalized into a four-dimensional GLV on Q-curves [Smi16, LS14]. Using
a particular prime p, the finite field arithmetic can be improved, leading to a very efficient group
law [CL15, BDM18].

The case of Montgomery coordinates

Algorithm 2.1 computes Dbl and Add steps. Hence, it can be computed in Weierstrass or Jacobian
coordinates, but not with the x-only arithmetic in Montgomery coordinates. In this case, we use
Algorithm 2.8 to compute the x-coordinate of [n]P .

Algorithm 2.8: x-only scalar multiplication(n, P)
Input. n an integer,

P = (xP , yP).
Output. [n]P = (x0, y0).

Write n =
∑d

i=0 bi2
i with bi ∈ {0, 1}

(x0, x1)← (xP , xDbl(xP))
for i from d− 1 downto 0 do
if bi = 1 then

(x0, x1)← (xAdd(x0, x1, xP), xDbl(x0))
else

(x0, x1)← (xDbl(x0), xAdd(x0, x1, xP))
end if

end for
return (x0, y0) using Equation (2.7)

Denote R0 (resp. R1) the point of x-coordinate x0 (resp. x1). During the for loop of

35

Chapter 2. Elliptic curves

Algorithm 2.8, xR0−R1 is an invariant equal to xP . This explains why xAdd third input is always
xP . Finally, x0 (resp. x1) is the x-coordinate of [n]P (resp. [n+1]P). At the end of Algorithm 2.8,
the y-coordinate y0 of [n]P is recovered using the following formula:

y0 =
(xPx0 + 1)(xP + x0 + 2A)− 2A− (xP − x0)2x1

2ByP
. (2.7)

A detailed analysis of the cost of Algorithm 2.8 is given in [CS18]. In theory, the Montgomery
model is the fastest model but as explained in Definition 2.28, an elliptic curve needs to satisfy
specific properties in order to be represented in Montgomery coordinates. The modified projective
model is a good choice for a generic curve (characteristic p > 3). Moreover, optimizations are
available when the curve equation is y2 = x3 − 3x+ b′: two multiplications can be saved in the
addition algorithm. As we have seen in Section 2.7, it is possible half of the time.

2.8.4 Subgroup security

As we have seen in the begining of Section 2.8, for a cryptographic application, we use an elliptic
curve whose order has a large subgroup of prime order r of 256 bits. Whenever the group
E(Fq) has few small subgroups, then one can do a man-in-the-middle attack during particular
protocols if implemented without adequate protection. For instance, this attack could work in
a Diffie–Hellman key exchange, as in Figure 2.4. Suppose that Alice and Bob want to share
a common key using their respective secrets a and b. Suppose also that the elliptic curve E
has order #E(Fq) = 2r where r is a 256-bit integer. Then, an attacker (Eve) can simply do a
man-in-the-middle attack and send a point P2 ∈ E(Fq)[2] instead of Alice’s public key Pa = [a]P .
Then, from the common secret key, Eve recovers the secret of Bob modulo 2, i.e. one bit of the
secret. This attack generalizes for other small primes. Eve computes discrete logarithms in small
subgroups as long as they are not too large. To counter this attack, Bob needs to check whether
PA is indeed in the large subgroup.

In the next chapters, we will use the following definitions which measure the number of small
subgroups.

Definition 2.29 (η-subgroup-security). A curve E is η-subgroup-secure over Fq if all the factors
of E(Fq) are at least as large as r, except those of size η.

Definition 2.30 (ρ-value). The ρ-value is the ratio ρ = log2(q)/ log2(r). It is used to measure
how far the curve parameters are from the optimal case where the curve is of prime order (ρ = 1
in this case).

Alice Eve Bob

K = [sB]P2

sA = a sB = bPA = [a]P P ′A = P2

Figure 2.4: Man-in-the-middle attack when 2 divides #E(Fq).

36

2.8. Elliptic curves in cryptography

2.8.5 Twist security

The latter subgroup attack can also be used on the quadratic twist.

Definition 2.31 (Twist-subgroup-security). A curve is twist-subgroup-secure if its quadratic twist
is subgroup-secure.

In Figure 2.4, if Alice uses x-only arithmetic on Montgomery curve, then she needs to recover
yPA from xPA before sending it to Bob. As we have seen in Section 2.7, xPA is also the x-coordinate
of points of the quadratic twist of E. Hence, Eve can send P ′A a point of the twist Et, instead
of PA. Then the same attack can be applied if P ′A has a smooth order. In order to prevent
this attack, it is important to design elliptic curve cryptography where the security of E and
its quadratic twist are equivalent or, alternatively, to implement (quite expensive) checks that
peer-provided points belong to the expected curve.

Most (unfortunately, not all) standard elliptic curves have been designed in order to have
twist- and subgroup-security. A study of several standards covering selection of curves for use
in elliptic-curve cryptography is given at https://safecurves.cr.yp.to/. For instance, the
curve Ed25519 [Ber06] is subgroup- and twist-secure in the sense that #Ed25519(Fp) = 23 · r
and #Ed25519t(Fp) = 22 · r′, where r (resp. r′) is a prime integer of 252 (resp. 253) bits. In
Chapter 4, we will design elliptic curves with particular properties. Among them, we will study
their subgroup- and twist-security.

37

https://safecurves.cr.yp.to/

Chapter 2. Elliptic curves

38

3 •
•

•
•

Isogenies in cryptography

In this chapter, we use isogenies of elliptic curves introduced in Chapter 2 to define several
post-quantum cryptography protocols. The hard problem we use is not related to a discrete
logarithm problem in a subgroup of points of an elliptic curve as in Chapter 2, but we will see in
Chapter 7 that we can merge the two problems to get interesting cryptographic applications.

We begin this chapter with some details on isogenies. In particular, we present the graph of
isogenies, which has a very different structure depending on the supersingularity of the elliptic
curves we consider. On the one hand, ordinary curves are closely related to the class group theory.
On the other hand, supersingular curves correspond to cosets of maximal orders in a quaternion
algebra. In a second section, we dig into detail on the computation of isogenies in order to walk
through the isogeny graph. From these isogenies, one can obtain post-quantum cryptography
protocols, which are detailed in the last section.

Summary
3.1 Isogeny graphs . 39

3.1.1 Ordinary curves . 40
3.1.2 Supersingular curves . 43

3.2 Isogeny computation . 46
3.2.1 Vélu’s formulas . 46
3.2.2 Isogenies of degree a power of ` . 47

3.3 Isogeny-based cryptography . 51
3.3.1 The CRS key exchange and its improvements 53
3.3.2 CSIDH . 54
3.3.3 SIDH . 55
3.3.4 An open problem . 56

3.1 Isogeny graphs

We consider now separable isogenies in the sense of Definitions 2.8 and 2.10, and curves up to an
F̄p-isomorphism. Such isogenies are fully defined from their kernel: from an elliptic curve E defined

39

Chapter 3. Isogenies in cryptography

over Fq and a finite subgroup G ⊂ E(F̄q), there exists a unique isogeny (up to an F̄p-isomorphism
of the target curve) φ : E → E/G i.e., an isogeny from E with kernel G. Recall that for separable
isogenies, deg(φ) = #G. In the following, we consider curves up to an F̄q-isomorphism, or up to
an F̄q-isogeny. From the considerations of Chapter 2, there exists for any `-isogeny φ : E → E′ a
unique `-isogeny φ̂ : E′ → E, called the dual of φ, such that φ ◦ φ̂ = [`] on E′ and φ̂ ◦ φ = [`] on
E. This shows that being `-isogenous is a symmetric relation, and that being isogenous is an
equivalence relation (as well as being isomorphic).

Definition 3.1 (Isogeny class, isomorphism class). An isogeny class is a set of F̄q-isogenous
elliptic curves. Similarly, an isomorphism class is the set of F̄q-isomorphic elliptic curves. An
Fq-isogeny (resp. Fq-isomorphism) class is the set of curves isogenous (resp. isomorphic) where
the isogeny (resp. the isomorphism) is defined over Fq.

We consider the infinite graph of F̄q-isogenous curves: vertices of the graph are F̄q-isomorphism
classes of elliptic curves, and edges correspond to isogenies between curves. We use the j-invariant
to label the vertices of the graph: the j-invariant is an invariant for F̄q-isomorphic elliptic
curves. We also consider the subgraph of `-isogenous curves (where ` is a prime different from the
characteristic p of Fq). It means that for a curve E (a representative of an isomorphism class, i.e. a
vertex), we only look at isogenies of degree `, i.e. at order-` subgroups of E(F̄q)[`]. From Section 2.4,
the `-torsion subgroup E[`] is a 2-dimensional Z/`Z vector space. Writing E[`] = 〈P`, Q`〉, the
(cyclic) subgroups of order ` of E[`] are generated by the [i]P` +Q` (0 ≤ i ≤ `− 1) and P`. Hence
there are exactly `+ 1 isogenies (edges) of degree ` from a given curve (a vertex of the graph),
and the `-isogeny graph is (`+ 1)-regular.

Looking only at isogenies defined over Fq, the Fq-isogeny class has particular properties. A
theorem of Tate states that two curves are isogenous over Fq if and only if they have the same
number of points over Fq, thus in particular it preserves the trace and the supersingularity. Hence,
a graph of Fq-isogenous curves contains either ordinary curves or supersingular curves. Thus, we
study the isogeny graph by considering the ordinary and the supersingular cases separately.

3.1.1 Ordinary curves

The theory of isogenous ordinary curves has been studied by Kohel in [Koh96]. The graph of
ordinary curves is structured by the different endomorphism rings of the isogenous curves. As
described in Theorem 2.19, endomorphism rings of ordinary curves defined over Fq with trace t are
orders in the imaginary quadratic field K = Q(

√
t2 − 4q). We denote −D < 0 the discriminant

of K (see Definition 2.16).
The endomorphism ring of an ordinary curve E defined over Fq is isomorphic to an order of

K, and considering π ∈ K such that π2 − tπ + q = 0, the suborder Z[π] is always contained in
End(E): the Frobenius (x, y) 7→ (xq, yq) is an endomorphism corresponding to π in K, and scalar
multiplications are endomorphisms corresponding to the integers Z in K. From the notations of
Section 2.5.1, we write its discriminant −Dπ = t2−4q and its conductor fπ: −Dπ = −Df2

π . Hence,
Z[π] ⊆ End(E) ⊆ OK and there is only a finite number of possible choices for endomorphism
rings of ordinary curves defined over Fq, corresponding to the conductors dividing fπ. As an
illustration, we give the possible endomorphism rings for a small value of Dπ in Figure 3.1, where
the indices are written on the edges.

We now fix a prime ` coprime to q. If φ : E → E′ is an `-isogeny, then one of the two
endomorphism rings (End(E) or End(E′)) contains the other one, with index 1 or ` [Koh96, page
44]. From that, we define three different types of isogenies.

40

3.1. Isogeny graphs

Z[1+
√
−D

2] = OQ(
√
−D)

Z[
√
−D]Z[3

√
−D]Z[π] = Z[32

√
−D]

Z[1+3
√
−D

2]Z[1+32
√
−D

2]

2

33

33

2 2

Figure 3.1: Possible endomorphism rings of ordinary curves when t2 − 4q = −22 · 34 · 71.

Definition 3.2 (Horizontal, descending and ascending isogenies). Let φ : E → E′ be an `-isogeny.
Then,

• If End(E) = End(E′), φ is said to be horizontal,

• If [End(E) : End(E′)] = `, φ is said to be descending,

• If [End(E′) : End(E)] = `, φ is said to be ascending.

In particular, an `-isogeny graph corresponds to a chain of inclusions of orders where the
conductors between them are `. Kohel obtains in [Koh96, page 44] the following proposition
which uses the Kronecker symbol (−D`) (see also [DFHPS16]).

Proposition 3.3. Let E be an ordinary elliptic curve such that

Z[π] End(E) OK .
fπ/f f

Then, for a prime ` 6= p, the number of `-isogenies from E is determined as follows:

• If ` divides f but not fπ/f , then there is only one ascending isogeny,

• If ` divides both f and fπ/f , then there are one ascending isogeny and ` descending isogenies,

• If ` divides neither f nor fπ/f , then there are 1 + (−D`) horizontal isogenies,

• If ` does not divide f but divides fπ/f , then there are 1 + (−D`) horizontal isogenies and
`− (−D`) descending isogenies.

The graph of `-isogenies is often represented with different layers for each possible endomor-
phism ring, and is thus called a volcano. The graph has different connected components (see
Figure 3.1 for an example).

We provide a concrete example corresponding to the cases of Figure 3.1. We choose a curve
with endomorphism ring the maximal order of Q(

√
−D) with D = 71, that is Z[1+

√
−D

2] because
−D ≡ 1 mod 4. Let p = 5851 and E1394,2040 defined over Fp. This way, E1394,2040 has j-invariant
5726 which is a root of the Hilbert class polynomial H71(x), and so End(E1394,2040) = Z[1+

√
−D

2].
Moreover, the curve satisfies t2 − 4p = −22 · 34 · 71 so that Z[π] has conductor 2 · 32, meaning
that we are indeed in the case of Figure 3.1.
The `-isogeny graph of ordinary curves is infinite, but if we restrict to curves defined over Fp,
it corresponds to endomorphism rings that are orders of Figure 3.1. All these curves have as a
suborder Z[π] ⊂ End(E). Looking at 3-isogenous curves, we can reach endomorphism rings of
conductor a power of 3 in Z[1+

√
−D

2], namely Z[1+3
√
−D

2] and Z[1+32
√
−D

2].
This way, the volcano of 3-isogenies has three layers represented with the arcs below and we

41

Chapter 3. Isogenies in cryptography

know the number of ascending, descending and horizontal isogenies depending on the different
conductors. For example, the j = 5725 curve corresponds to the maximal order OK with
conductor f = 1, and as (−71

3) = 1, there are 1 + 1 horizontal isogenies and 3 − 1 descending
isogenies.

Z[1+
√
−D

2]

Z[1+3
√
−D

2]

Z[1+32
√
−D

2]

• • •

• •

• • • • • •

5726

Practically, we reach the neighbor curves of j = 5726 using the eight points of order 3 defined over
Fp, which form four distinct subgroups. They lead to four isogenies of degree 3 from E1394,2040.
We obtain two curves (j = 4481 and 4341) with the same endomorphism ring OK , and two curves
(j = 4120 and 3489) with endomorphism ring Z[1+3

√
−D

2]. Finally, the structure of the graph
gives the number of curves at each height (which corresponds to the degrees of H34·71, H32·71

and H71). We get the connected component of the graph of 3-isogenies in the right hand side of
Figure 3.2. If we begin with another curve whose j-invariant is a root of H22·32a·71(x) (0 ≤ a ≤ 2),
then it corresponds to the left hand side of Figure 3.2, which is similar to the right hand side
because deg(H22·71) = deg(H71), deg(H22·32·71) = deg(H32·71) and deg(H22·34·71) = deg(H34·71).
The curve whose j-invariant is 5508 has endomorphism ring Z[

√
−D] (conductor 4 in OK).

•

••
•

•
• •

•

•

•

•••

•

•

•

•

• • •

•

j = 5508

•
•
•
•
•
•
•
•
•

•
••

•••••
•

•
•
•
•
•
•
•
•
•
•
•
•
•
• • • • • •

•
•
•
•
•

•

••
•

•
• •

•

•

•

•••

•

•

•

•

• • •

•

j = 5726

4120

34894481

4341

•
•
•
•
•
•
•
•
•

•
••

•••••
•

•
•
•
•
•
•
•
•
•
•
•
•
•
• • • • • •

•
•
•
•
•

Figure 3.2: The connected components of the 3-isogeny graph corresponding to Figure 3.1

Class group action. In the ordinary case, isogenies can be translated in terms of a group action.
We refer to [DF17, page 26] for a more complete description. Suppose that E is an elliptic curve of
endomorphism ring an order O. A (fractional) ideal I of O can be seen as a set of endomorphisms
of E (up to a scalar). Hence, it makes sense to consider E[I] := {P ∈ E,α(P) = 0E for all α ∈ I}.
From this subgroup of the curve E, we obtain an action of the fractional ideals on the curves of

42

3.1. Isogeny graphs

endomorphism ring O by applying the isogeny of kernel E[I]. Principal ideals act trivially: the
unique isogeny whose kernel is the subgroup E[αO] is the endomorphism α, which is an isogeny
from E to itself. Thus we look at the quotient group of fractional ideals by the principal ones,
called the class group. It acts simply transitively on the set Ell(O) (defined in Section 2.5.4) as
follows:

Cl(O)× Ell(O) −→ Ell(O)
(I, E) 7−→ I ∗ E = E/E[I].

In particular, the set of Ell(O) has # Cl(O) elements, the computation of an isogeny is related to
an ideal action. More precisely, an isogeny of prime degree ` corresponds to an ideal l of norm `
in the class group. Hence, in order to get an efficient group action, it makes sense to decompose
ideals of the class group into products of smooth ideals, which corresponds to isogenies of smooth
degree (see Section 3.2 for details on the efficiency of the isogeny computation). We will see in
Section 3.3 possible instantiations of an efficient group action.

3.1.2 Supersingular curves

Graphs of supersingular isogenies have been studied by Mestre [Mes86], Pizer [Piz90, Piz98],
Kohel [Koh96], Delfs and Galbraith [DG16], among others. The story is very different from the
ordinary case. Supersingular curves defined over a field of characteristic p can always be defined
over Fp2 (see [Sil86, page 145]). Hence, we now consider supersingular elliptic curves defined
over a quadratic finite field Fq where q = p2. By the Hasse bound, the trace of t of the curve
satisfies |t| ≤ 2

√
q. By definition of the supersingularity, p divides t and finally, t ∈ {0,±p,±2p}.

Proposition 3.4 shows that the only interesting cases of isogeny graphs of supersingular curves
are for trace t = ±2p.

Proposition 3.4. Let E be a supersingular curve defined over Fp2 . If the trace t of the curve is
0, p or −p, then the isogeny class contains only one point.

Proof. The order Z[π] has discriminant t2 − 4q. If t = 0 (resp. t = ±p), then t2 − 4q = −4p2

(resp. −3p2). It corresponds to the fundamental discriminant −4 (resp. −3), and hence H4(x) =
(x− 1728) and jE = 1728 (resp. H3(x) = x and jE = 0).

Remark 3.5. We consider in Proposition 3.4 the trace of the curve as seen over Fp2 . Looking at
supersingular curves defined over Fp, there is more than one curve of trace (over Fp) t = 0 on the
Fp-isogeny class. We investigate these curves in Section 3.1.2.

Elliptic curves with trace t = ±2p have order #E(Fp2) = p2 + 1 − t = (p ∓ 1)2. These
elliptic curves, defined over a finite field of characteristic p of the form p = f`± 1 always have a
Fp2-rational subgroup of order `: #E(Fp2) = f2`2.

Graph of curves defined over Fp2

The study of the graph of supersingular curves is closely related to the endomorphism rings of
elliptic curves. From Theorem 2.19, we know the structure of endomorphism rings of supersingular
elliptic curves. Thus, we do not encounter the concept of horizontal isogenies anymore: every
endomorphism ring is isomorphic to a maximal order in a quaternion algebra, and to every
maximal order corresponds exactly a pair of (Fp2/Fp-Galois conjugate) supersingular curves.
Contrary to the theory of orders in imaginary quadratic fields, there are many different maximal
orders in quaternion algebras. We investigate this correspondence explicitly in Chapter 6.

43

Chapter 3. Isogenies in cryptography

Isogenous curves have the same Frobenius characteristic polynomial and hence the same trace
t. Hence, supersingular curves of trace t = 2p and −2p produce two distinct isogeny classes. The
number of curves (up to isomorphism) in each class is given by

bp/12c+

0 if p ≡ 1 mod 12

1 if p ≡ 5, 7 mod 12

2 if p ≡ 11 mod 12.

The two graphs (of curves with t = 2p and t = −2p) are isomorphic in the sense that each curve
of trace 2p is isomorphic to a curve of trace −2p (and the isomorphism is the quadratic twist,
defined over a quadratic extension of Fp2). We typically speak of supersingular graphs over F̄p
and over Fp2 indistinctly.

We now provide an example of supersingular isogeny graph. Let p = 22 ·33−1 and Fp2 = Fp(i)
where i2 = −1. Consider the elliptic curve E102i+81,10i+53 defined over Fp2 . Its trace is t = −2p
and #E(Fp2) = (p + 1)2 = 24 · 36. There are bp/12c + 2 = 10 curves in the isogeny class
containing this curve, and the graph of 2-isogenies is 3-regular (except at the ramification vertices
j = 0, 1728).

•

•

•

•

•

•

•

•

•

•

0 1728

Figure 3.3: Supersingular 2-isogeny graph over Fp2 where p = 22 · 33 − 1 and t = −2p.

In the next paragraph, we consider the graph of Fp-isomorphism classes of supersingular
curves defined over Fp, and isogenies defined over Fp. We may find inside the graph of curves
defined over Fp2 a sub-structure inherited from the graph of curves defined over Fp. One may be
tempted to think that the Fp2-graph contains the Fp-graph as a subgraph, however the situation
is slightly subtler: indeed, supersingular curves defined over Fp are isogenous to their quadratic
twists, thus the Fp-graph contains pairs of vertices that become isomorphic in Fp2 . Hence, the
`-isogeny graph of curves and isogenies defined over Fp is a double cover (outside the ramification
points at j = 0, 1728) of the Fp-subgraph contained in the `-isogeny graph over Fp2 . The Fp-graph
corresponding to Figure 3.3 is given in Figure 3.4.

Graphs of curves defined over Fp

Delfs and Galbraith showed that one obtains the same kinds of undirected graphs as for ordinary
curves using horizontal, ascending and descending isogenies. In this context, the ring of endomor-
phisms of E defined over Fp is denoted Endp(E) and is an order of an imaginary quadratic field, as
in the ordinary case. In the same way, Z[π] is an order of discriminant t2− 4p = −4p, which leads
to only two possible Fp-endomorphism rings: Z[

√
−p] and Z[1+

√
−p

2] depending on the congruence
of p modulo 4. In this context, we say that an isogeny φ : E → E′ is horizontal whenever

44

3.1. Isogeny graphs

• •

•

•

••

••

••

•• 17280

94

94

Figure 3.4: Supersingular 2-isogeny Fp-graph over Fp where p = 22 · 33 − 1. Gray vertices
correspond to the quadratic twist of the black vertices

Endp(E) ' Endp(E
′). We define the horizontal isogeny classes as in Definition 3.1, but restricting

to horizontal isogenies (equivalently, it is the set of curves with same Fp-endomorphism ring).
Delfs and Galbraith showed that there are one or two horizontal isogeny classes of supersingular
curves over Fp, according to whether p = 1 or 3 mod 4. Precisely:

• If p = 1 mod 4, then Endp(E) ' Z[
√
−p] for all curves.

• If p = 3 mod 4, then Endp(E) is isomorphic to one of Z[
√
−p] or Z[1+

√
−p

2]; the horizontal
isogeny class associated to Z[1+

√
−p

2] is called the surface, and the horizontal isogeny class
associated to Z[

√
−p] is called the floor.

We apply Proposition 3.3 in a particular case where the only possible conductor f of Endp(E) in
the maximal order of Q(

√
−p) is either 1 or 2.

Proposition 3.6 (from [Koh96, page 44]). Let E be a supersingular elliptic curve defined over
Fp. Then, the number of `-isogenies defined over Fp depends on the divisibility of f and f/fπ by
`:

• If ` is an odd prime, then ` does not divide neither f or fπ/f and and there are 1 +
(−D

`

)
horizontal isogenies. If

(−p
`

)
= −1, there is no `-isogeny of supersingular curves defined

over Fp, i.e., the `-isogeny graph is made of isolated vertices. If
(−p
`

)
= 1, every curve has

exactly two horizontal `-isogenies, thus each horizontal isogeny class is partitioned into a
finite number of cycles.

• If ` = 2, then the structure depends on the maximality of Endp(E) which is closely related
to the congruence of p modulo 4.

– If p = 1 mod 4, Endp(E) is maximal in Q(
√
−p) and has discriminant −4p, and every

curve has exactly 1 +
(
−4p

2

)
= 1 horizontal `-isogeny.

– If p = 3 mod 4, then every curve on the floor corresponds to a conductor f = 2 and so
has exactly one non-horizontal `-isogeny going to a curve on the surface, whereas for
curves on the surface, the number of isogenies is related to the congruence of p mod 8.
If p = 7 mod 8, they have exactly two horizontal `-isogenies, plus one non-horizontal
going to the floor (dual to the one coming from the floor); if p = 3 mod 8, they have
three non-horizontal isogenies going to three curves on the floor (dual to the ones
coming from the floor).

Figure 3.5 describes the different possible `-isogenies defined over Fp for a given supersingular
curve (defined over Fp) represented with the symbol ◦. In cryptographic applications, we will only
be interested in cycles of horizontal isogenies, thus either the second case or the fourth case (on the

45

Chapter 3. Isogenies in cryptography

surface) of Figure 3.5. In particular, we present in Section 3.3.2 a key exchange [CLM+18] that
focuses on ` 6= 2 and

(−p
`

)
= 1. We investigate in Chapter 7 the case of ` = 2 and p = 7 mod 8.

◦ ◦

••

◦ • ◦

••

•

◦

• •• ◦

•

` 6= 2 ` 6= 2 ` = 2 ` = 2 ` = 2 ` = 2(−p
`

)
= −1

(−p
`

)
= 1 p = 1 mod 4 p = 7 mod 8 p = 3 mod 8 p = 3 mod 4.

(surface) (surface) (floor)

Figure 3.5: `-isogenies defined over Fp from a supersingular curve.

3.2 Isogeny computation

We consider here separable isogenies in the sense of Definitions 2.8 and 2.10. The degree of an
isogeny φ is the degree of the field extension induced by φ∗ (see Definition 2.9), but in the case
of separable isogenies, it corresponds to the size of its kernel. A separable isogeny is said to be
cyclic if its kernel is; we will mostly deal with cyclic isogenies in Chapter 7. We first investigate
formulas for computing `-isogenies in O(`), called Vélu’s formulas.

3.2.1 Vélu’s formulas

In [Vél71], Vélu introduces formulas for computing a separable isogeny, given its kernel. The
complexity of the algorithm is linear in the size of the kernel (i.e. the degree).

Proposition 3.7 (Vélu’s formulas). Let Ea,b be an elliptic curve defined over a field K, and let
G ⊂ E(K̄) be a finite subgroup. We denote G∗ = G− {0E}. The separable isogeny

φ : P 7−→

xP +
∑
Q∈G∗

xP+Q − xQ, yP +
∑
Q∈G∗

yP+Q − yQ

has kernel G and codomain Ea′,b′ where

a′ = a− 5
∑
Q∈G∗

(3x2
Q + a) b′ = b− 7

∑
Q∈G∗

(5x3
Q + 3axQ + b).

From the formulas, the complexity of the algorithm is linear in the size of the subgroup G: it
computes sums of points for all elements of G. Hence, Vélu’s formulas are inefficient for large
degrees. From now on, we consider that ` is a small prime, and that φ is an isogeny of degree a
power of `. As we consider separable isogenies, it also corresponds to the order of the kernel G.
If #G = `n, then Vélu’s formulas become very expensive as n grows. We usually speak about a
walk on the `-isogeny graph instead of a `n-isogeny. Indeed, in order to compute a `n-isogeny, we
start at a given curve, and compute n isogenies of degree ` and stop at another curve.

In practice, we use slightly different formulas in order to get efficient algorithms:

46

3.2. Isogeny computation

• As we look at curves up to an isomorphism (defined over F̄p or Fp depending on the context),
we can choose the codomain curve representing the isomorphism class coset in order to
improve the efficiency.

• From the considerations of Table 2.1, the elliptic curve group law arithmetic is more efficient
in x-only Montgomery coordinates.

From now on, we assume that the elliptic curves we consider can be written in Montgomery
coordinates (with an equation By2 = x3 + Ax2 + x). An F̄p-isomorphism class representative
can be chosen with B = 1 so that we consider only the A coefficient in the following. We adapt
Proposition 3.7 in order to get x-only formulas in the Montgomery model. As an example, we
investigate the case of 2-isogenies.

Isogenies of degree 2. Cyclic isogenies are closely related to their kernel, so we need to study
the 2-torsion of Montgomery curves.

Proposition 3.8. Let E be an elliptic curve defined by a Montgomery equation By2 = x3+Ax2+x.
Then, E[2] = {0E , (0, 0), (α, 0), (1/α, 0)} where α is a root of x2 +Ax+ 1.

From now on, we represent elliptic curves with an equation Mα : y2 = x3 − (α+ 1/α)x2 + x.
Applying the formulas for the order 2 subgroup G = {0E , (α, 0)}, we get the rational maps defining
a degree 2 isogeny. Efficient formulas have been obtained in order to preserve the Montgomery
model and improve the efficiency of the 2-isogeny evaluation. We refer to [JD11] and [Ren18] for
details.

Proposition 3.9 (Derived from [Ren18, page 10]). Let α 6= 0 and Mα be an elliptic curve in
Montgomery model. Define

f0(x) =
(x+ 1)2

4αx
fα(x) =

x(αx− 1)

x− α
f1/α(x) =

x(x− α)

αx− 1
.

Then, fα defines an isogeny of kernel 〈(α, 0)〉

φα : Mα −→ M2α(α+
√
α2−1)−1

(x, y) 7−→ (fα(x),
√
αyf ′α(x)).

Using this codomain curve, the two other isogenies of kernel generated by (0, 0) and (1/α, 0) are
defined by (x, y) 7→ (f0(x), c0yf

′
0(x)) and (f1/α(x), c1/αyf

′
1/α(x)) for two constants c0 and c1/α we

do not explicit here.

This codomain isomorphism class representative M2α(α+
√
α2−1)−1 is chosen so that φα(0, 0) =

φα(1/α, 0) = (0, 0). As φ̂ ◦ φ = [2], the kernel of φ̂ is (0, 0) and φ̂(x, y) = (f0(x), . . .). We
now investigate isogenies of degree a power of 2 as a composition of isogenies of degree 2. In
the following, Vélu(P) denotes the isogeny of kernel P , computed using Vélu’s formulas (or
Proposition 3.9 if ` = 2).

We now focus on the case of isogenies of degree `n where ` is a prime. Recall that we look
at separable isogenies, i.e. defined with their kernel. Using the Chinese Remainder Theorem on
the kernel subgroup, we can always split an isogeny as a composition of isogenies of prime power
degree.

47

Chapter 3. Isogenies in cryptography

3.2.2 Isogenies of degree a power of `

In Chapter 7, we aim to evaluate isogenies of degree a power of 2 at points, and compute
j-invariant of the codomain curve. Vélu’s formulas can be adapted for a group of order `n but
become quickly impractical as the complexity is linear in the degree.

De Feo, Jao and Plût decompose an isogeny of degree `n into n isogenies of degree ` in [DFJP14].
We first investigate the computation of a 4-isogeny as an example. Such an isogeny has a cyclic
kernel generated by a point P4 of order 4. One can compute the isogeny by splitting the compu-
tation into two isogenies of degree 2 as follows:

1. Compute P2 = [2]P4, a point of order 2.

2. Use Proposition 3.9 to compute the 2-isogeny
φ1 whose kernel is 〈P2〉, and evaluate it at P4.
The point φ1(P4) has order 2:

[2]φ1(P4) = φ1(P2) = 0.

3. Compute the 2-isogeny φ2 of kernel 〈φ1(P4)〉,
again using Proposition 3.9. φ2◦φ1 is an isogeny
of kernel 〈P4〉 as required.

•

• •

0

P4

P2 = [2]P4

[2] φ1

φ1(P4)

φ2

φ2 ◦ φ1(P4) =

This algorithm can be adapted to decompose an isogeny of degree `n as n isogenies of degree
`. Several variants (also presented in [DFJP14]) compute an `n-isogeny by decomposing it into n
isogenies of prime degree `. Let φ be an isogeny of degree `n. The kernel of φ is a subgroup of
order `n. As in the example above, let ker(φ) = 〈P 〉 for a point P of order `n. Then, the isogeny
φ can be computed using an algorithm of [JD11] that requires a strategy. In the following, we
explain three strategies of [JD11]. All these strategies compute some scalar multiplications [`]
and some `-isogenies. From now on, we denote c[`] the cost of a scalar multiplication by ` and
c`-isog the cost of an isogeny of degree `.

The comb strategy

The first algorithm we present is probably the simplest way of splitting φ into n isogenies of
degree `. Algorithm 3.1 comes from [JD11] and computes the `n-isogeny with mostly scalar
multiplications by `. Figure 3.6 explains how the algorithm works: the top vertex (•) is the point
P defining the kernel of the target isogeny φ. The isogeny splits as φn ◦ . . . ◦ φ1. Each isogeny
kernel is computed using mostly scalar multiplications by `:

• The kernel of φ1 is [`n−1]P , computed using n− 1 scalar multiplications by `.

• From this point, φ1 is computed using the formulas of Proposition 3.9. φ1(P) is a point of
order 2n−1 as [2n−1]φ1(P) = φ1([2n−1]P) = 0.

• ker(φ2) is obtained in the same way using φ1(P) and n− 2 scalar multiplications by `, and
so on.

Finally, Algorithm 3.1 computes (n− 1)n/2 scalar multiplications by ` and n isogenies of degree
` using Vélu’s formulas, leading to a cost of n(n−1)

2 c[`] + nc`-isog.

48

3.2. Isogeny computation

Algorithm 3.1: ComputeIsogenyComb(P) from [JD11]
Input. P a point of order a power of `.
Output. A list of `-isogenies corresponding to the isogeny of kernel P .

if P = 0 then
return Id

end if
P` ← P
while [`]P 6= 0 do
P` ← [`]P`

end while
φ1 ← Vélu(P`)
return ComputeIsogenyComb(φ1(P)) and φ1

••

•

•

•

••

•

•

••

• ••

φ1[`]

[`]

[`]

φ2[`]

[`] φ3[`]

0
φ4

ker(φ1) ker(φ2) ker(φ3) ker(φ4)

Figure 3.6: Computational structure of Algorithm 3.1 when n = 4.

Remark 3.10. Another comb strategy can be obtained reversing the roles of isogenies and scalar
multiplications (see [JD11]). Once the first kernel point [`n−1]P is obtained, one computes φ1 at
all the intermediate points (i.e. the [`j]P) and iterates replacing P by φ1(P) which is of order
`n−1. Figure 3.7 describes this variant in the case n = 3. It computes more isogenies than scalar
multiplications, and its cost is (n− 1)c[`] + n(n−1)+2

2 c`-isog.

•

•

•

•

•

•

•

•

••

φ1

φ2

φ3

φ1

φ2φ1

[`]

[`]

[`]

0
φ4

Figure 3.7: Computational structure of the mirror of Algorithm 3.1 when n = 4.

For fixed ` (so that c[`] = O(1)), the complexity is quadratic in n. It can be improved to
O(n log2(n)) using a symmetric strategy.

The symmetric strategy

The two previous strategies compute either mostly multiplications, either mostly isogenies. The
symmetric strategy is more balanced and computes as many isogenies as scalar multiplications.

49

Chapter 3. Isogenies in cryptography

Moreover, this strategy really improves the complexity as the isogeny of degree `n is computed in
O(n log2(n)) steps (isogenies or scalar multiplications). In Algorithm 3.2, we suppose that n is a
power of 2 for simplicity. The cost of Algorithm 3.2 is precisely n log2(n)

2 c[`] + (n log2(n)
2 + 1)c`-isog.

As before, Figure 3.8 is clearer for understanding the algorithm.

Algorithm 3.2: ComputeIsogenySymmetric(n, P)
Input. n an integer,

P a point of order `n.
Output. A list of n isogenies of degree ` corresponding to the isogeny of kernel P .

if n = 1 then
return Vélu(P)

end if
P ′ ← [`n/2]P
φ← ComputeIsogenySymmetric(n/2, P ′)
return ComputeIsogenySymmetric(n/2, φ(P)) and φ

•

• •

• • • •
• • • • • • • • 0

Figure 3.8: Computational structure of Algorithm 3.2 when n = 8.

The optimal strategy

For very small `, a multiplication by ` costs roughly as much as an `-isogeny. But when ` grows,
c[`] � c`-isog. We finally present the optimal strategy that computes the trade-off between the
number of scalar multiplications [`] and the number of `-isogenies (given the cost of c[`] and
c`-isog as parameters). A binary tree corresponding to a strategy is coded in a list of integers
representing the number of leaves at the right of each node, begining at the top node and walking
in depth-first left-first. Algorithm 3.3 is taken from [JAC+19, Algorithm 46] and computes a good
strategy to optimize the total cost of an `n-isogeny, given as inputs the number n of `-isogenies,
the cost p of a scalar multiplication [`] and the cost q of an `-isogeny.

The algorithms presented above can be translated using this representation:

• The comb strategy of Figure 3.6 is coded with [3,2,1] and its mirror in Figure 3.7 with
[1,1,1].

• The symmetric strategy of Figure 3.8 corresponds to [4,2,1,1,2,1,1].

From a strategy s output from Algorithm 3.3, Algorithm 3.4 computes the evaluation of
the isogeny of kernel generated by P , at a point Q (using the strategy s). We provide here the
derecursified version.

50

3.3. Isogeny-based cryptography

Algorithm 3.3: GenerateStrategy(n, p, q)
Input. n an integer,

p = c[`],
q = c`-isog.

Output. A strategy optimizing the cost of the corresponding isogeny.

S ← a dictionary where the value at 1 is an empty list
C ← a dictionnary where the value at 1 is 0
for i from 2 to n+ 1 do
b← argmin0<b<i(C[i− b] + C[b] + bp+ (i− b)q)
S[i]← the concatenation of b, S[i− b] and S[b]
C[i]← C[i− b] + C[b] + bp+ (i− b)q

end for
return S[n+ 1]

Asymptotic complexity

We end this section with the asymptotic cost of isogenies. If φ is an `n-isogeny, then the cost of
the computation depends clearly on the size and the smoothness of the degree. More precisely, the
strategy output by Algorithm 3.3 is closely related to the size of the prime degree `. Algorithm 3.3
finds an optimal trade-off between the number of scalar multiplications [`] and the number of
`-isogenies. Asymptotically, Algorithm 2.1 computes a scalar multiplication [`] in O(log2(`))
base-field multiplications. Algorithms for `-isogenies have exponential complexity when ` increase.
The recent work [BFLS20] of Bernstein, De Feo, Leroux and Smith relates isogeny computations
with resultants and polynomial evaluations. Using the formulas of the group law in Montgomery
coordinates together with a well-chosen index system, they reach the Õ(

√
`) asymptotic complexity.

This work leads to improvements on practical cost of the key exchange of Section 3.3.2. The
general complexity of an `n-isogeny can be estimated as follows:

• When ` is fixed and small, the cost of Vélu’s formulas is roughly as large as scalar
multiplications, and the optimal strategy is very close to Algorithm 3.2 whose cost is
O(n log2(n)) base field multiplications.

• When ` becomes large, the cost of Vélu’s formulas is exponentially larger than a scalar
multiplication, and the optimal strategy is the comb strategy of Algorithm 3.1. The total
cost is Õ(n2 log2(`) + n

√
`). For a fixed `, the cost is dominated by O(n2) base field

multiplications.

3.3 Isogeny-based cryptography

Isogenies have been introduced in cryptography with a focus on ordinary curves in 1997 by
Couveignes [Cou06]. Independently, Rostovstev and Stolbunov [RS06] studied a similar approach
in 2006. The underlying protocol is a key exchange that we denote now CRS. It was not
efficient and hence did not interest the cryptography community until the potential threat of
quantum computers. De Feo and Jao obtain in 2011 a quantum-resistant Diffie–Hellman key
exchange [JD11], leading to one of the NIST Post-Quantum competition candidate for key
exchange, called SIKE [JAC+19]. More recently, isogenies of ordinary curves and Fp-supersingular

51

Chapter 3. Isogenies in cryptography

Algorithm 3.4: ComputeIsogenyFromStrategy(s, P,Q)
Input. s a strategy,

P a point generating a kernel isogeny,
Q another point of the curve.

Output. R the image of Q by the isogeny of kernel 〈P 〉.

l← size(s), i← 0
Q ← {(l, P)}
R← Q
while Q is not empty do

(h, T)← Q.popLast()
if h = 1 then
φ← Vélu(T)
Q′ ← {}
while Q is not empty do

(h′, T ′)← Q.popFirst()
Append (h′ − 1, φ(T ′)) to Q′

end while
Q ← Q′
R← φ(R)
l = l − 1

else if 0 < s[i] < h then
Append (h, T) to Q
Append (h− s[i], [`s[i]]T) to Q
i← i+ 1

end if
end while
return R

Apply φ at Q
and reverse
the queue

52

3.3. Isogeny-based cryptography

curves have been studied in [DKS18, CLM+18]. In consequence, a key exchange has been designed
and is called CSIDH. It uses supersingular curves defined over Fp, and is closely related to the
CRS original idea. This variant has led to many applications such as signatures [DG19, BKV19].

Isogeny-based cryptography has become interesting because of the following hard problem:
given two isomorphism classes of elliptic curves, find an isogeny between them. Even if isogenies
have a lot of structure, the best known algorithm for solving the problem for supersingular curves
defined over Fp2 has exponential complexity. Sub-exponential algorithms apply in the case of
ordinary curves and supersingular curves defined over Fp. In the following sections, we describe
three key exchange protocols in the three cases studied above: ordinary curves, supersingular
curves defined over Fp, and finally supersingular curves defined over Fp2 .

3.3.1 The CRS key exchange and its improvements

Key exchanges based on isogenies of ordinary curves have been introduced with the works of
Couveignes [Cou06] and Rostovstev and Stolbunov [RS06]. It can be summarized as a group
action on a set of isomorphism classes of curves. More precisely, suppose that E is an ordinary
elliptic curve defined over Fp of order O (so End(E) = O) representing an isomorphism class.
Then, using the action of the class group Cl(O) (see Section 3.1.1), we obtain a key exchange as
follows:

1. Alice chooses her secret ideal a ∈ Cl(O) and sends to Bob Ea := a ∗ E.

2. Bob chooses his secret ideal b ∈ Cl(O) and sends to Alice Eb := b ∗ E.

3. They share the common secret Eab := (a ∗ b) ∗ E = a ∗ Eb = b ∗ Ea.

In order to compute the group action, Couveignes [Cou06] proposes to split the ideal as a
product of small norm ideals, and Rostovstev and Stolbunov [RS06] compute the action of small
ideals using isogenies. Practically, the action of an ideal a = l2l3 corresponds to an isogeny of
degree 2 and an isogeny of degree 3. A key exchange is described in Figure 3.9, where Alice
chooses a = l2l3 and Bob chooses b = l5l7.

•

•

•

•
••

•

•

•

•

•

•

•
• •

•

•

•

E, public starting curve

l2

l3

Ea
l5

l7
Eb

l2

l3

l5

l7

Eab, secret shared curve

Figure 3.9: The CRS key exchange in the case of a = l2l3 and b = l5l7

De Feo, Kieffer and Smith [DKS18] improve the efficiency by selecting curves with a particular
torsion over Fp. Looking at an ideal a =

∏
i l
ei
i , the action of the li can be efficiently computed

53

Chapter 3. Isogenies in cryptography

using Vélu’s formulas if the norm of li divides #E(Fp) (or its quadratic twist). Thus, they select
an ordinary curve whose order (or its quadratic twist order) has as many small prime factors as
possible. They obtain an elliptic curve defined over Fp with

p = 7

 ∏
2≤`≤380, ` prime

`

− 1.

The primes of the set S = {3, 5, 7, 11, 13, 17, 103, 523, 821, 947, 1723} divide either #E(Fp) or
#Et(Fp). From an ideal a factoring into a =

∏
i l
ei
i ,

• if N(li) is in S, then the action of li is computed using Vélu’s formulas (and if N(li) divides
p+ 1, l̄i can also be computed at no additional cost),

• Otherwise, the isogeny corresponding to li is computed using another algorithm called the
Elkies step.

Unfortunately, the latter is more expensive and the author of [DKS18] are not able to generate a
curve with enough small prime divisors so that it contains all li norms. Finally, the key exchange
is computed in roughly 5 minutes for a 128-bit security level. We refer to [DKS18] for more
details on this protocol.

In a security point of view, the CRS system relies on the assumptions that given two curves of
endomorphism ring O, it is hard to find a (smooth degree) isogeny E → E′, and that the curves
are really uniformly sampled in Ell(O). The protocol is threatened by a quantum algorithm
related to the dihedral hidden subgroup problem, based on the work of Kuperberg [Kup05] and
Regev [Reg04]. Its complexity is subexponential (Lq(1/2, c) for a constant c > 0). The practical
cost is not clearly determined, and is an active field of research. In the same time, Martindale et
al. [CLM+18] obtain a similar protocol using supersingular elliptic curves defined over Fp, called
CSIDH.

3.3.2 CSIDH

Chronologically, CSIDH [CLM+18] appears after the SIDH key exchange of Section 3.3.3, but
structurally, it is closely related to the CRS primitive. The efficiency of the key exchange
of [DKS18] is affected by the fact that the curve order does not have enough small divisors (and
so Vélu’s formulas do not always apply). Instead of working over ordinary curves, Martindale et
al. choose to work with supersingular curves defined over a prime field Fp. For these curves, the
trace (over Fp) is 0 and its order is #E(Fp) = p+ 1. Fixing a prime p =

∏
i `i − 1, the factors of

the curve order are precisely the `i. Using enough primes `i, Vélu’s formulas can be computed
for all ideals as desired.

Supersingular curves defined over Fp2 do not have a class group action so it does not make
sense to consider a protocol as in Section 3.3.1. However, from the considerations of Section 3.1.2,
the structure of the graph of curves and isogenies defined only over Fp is very similar to the
case of ordinary curves. Thus, Endp(E) is either Z[

√
−p] or Z[1+

√
−p

2], and if p+ 1 =
∏
i `i, one

expects that the ideals of Cl(Endp(E)) split as products of prime-norm ideals
∏
i l
ei
i so that the

action is efficient with Vélu’s formulas. The security of CSIDH relies on the same assumptions as
in the ordinary case, and so it leads to a subexponential complexity. The authors of [CLM+18]
provide an example of setting for a 128-bit security level. Let p = 4 · l1 · · · l74− 1 where l1 through
l73 are the smallest 73 odd primes and l74 = 587. Then, the action of Cl(Z[

√
−p]) leads to an

54

3.3. Isogeny-based cryptography

efficient key exchange. Finally, the CSIDH key exchange is much more efficient than the protocol
with ordinary curves in [DKS18], and leads to a computation in roughly 100ms.

CSIDH also leads to other cryptographic applications such as signatures. Briefly, the class
group order Cl(Z[

√
−p]) has been computed in [BKV19] and it has been proved that it is a cyclic

group leading to an efficient Fiat-Shamir signature called CSI-FiSh. The CSIDH construction
has many variants. For example, [CD20] works on the surface of the volcano in order to improve
the efficiency. One of the functions designed in Chapter 7 is closely related to the CSIDH setting,
where the isogeny walk is entirely done over the Fp-graph.

3.3.3 SIDH

The SIDH key exchange [JD11] has nothing to do with CSIDH in the sense that it computes
isogenies of supersingular curves without staying on an invariant order of the full endomorphism
ring. Thus, it does not use a commutative group action and the security of the scheme is based
on a structure which is not threatened by subexponential attacks. In consequence, the public key
sizes are smaller for SIDH than for CSIDH. We investigate the pros and the cons of SIDH in this
section.

Let E be an elliptic curve defined over Fp, where p = 2e3f−1, and such that #E(Fp2) = (2e3f)2.
Choose P2, Q2 a basis of E[2e], and P3, Q3 a basis of E[3f]. In this context, the SIDH key exchange
proceeds as follows:

1. Alice chooses her secret integer sA ∈ Z/2eZ and deduces her isogeny φA : E → EA whose
kernel is P2 + sAQ2. She computes her public key which is composed of j(EA), and the
additional points φA(P3), φA(Q3).

2. Bob chooses his secret integer sB ∈ Z/3fZ and deduces his isogeny φB : E → EB whose
kernel is P3 + sBQ3. He computes his public key which is composed of j(EB), and the
additional points φB(P2), φB(Q2).

3. Alice (resp. Bob) computes the isogeny EB → EAB (resp. EA → EBA) whose kernel is
φB(P2) + sAφB(P3) (resp. φA(P3) + sBφA(Q3)). They end at the same isomorphic class of
curve and share the common secret j(EAB).

E

EA

EB

EAB

φA
of ke

rnel

P2
+ [sA

]Q2

φA(P3) φA(Q3)

φB of kernelP
3 + [sB]Q

3

φB(P2) φB(Q2)

Isogeny of kernel
φB (P

2) + [sA]φB (Q
2)

Isog
eny

of ke
rnel

φA(P3)
+ [sB

]φA
(Q3)

Security estimation. The security of the SIDH key exchange is based on the fact that it
is hard to recover an isogeny given two isomorphism classes of curves on the graph. More
precisely, given two supersingular elliptic curves, the best (time complexity) algorithm for finding

55

Chapter 3. Isogenies in cryptography

a path of isogenies between the curves is a meet-in-the-middle algorithm. Its complexity is
exponential in the size of the graph. Using classical computers, the asymptotic complexity is
O(
√

max(2e, 3f)) = O(4
√
p). On a quantum computer, the meet-in-the-middle attack can be

done in O(3
√

max(2e, 3f)) = O(6
√
p) [Tan09], but also requires O(6

√
p) storage. A conservative

estimate for the parameter size is to choose a prime p of bitlength 6 times the security level.
However, from a practical point of view, this massive storage is not feasible for a 128-bit security
level. The van Oorschot-Wiener golden collision finding algorithm [vW99] would have a better
efficiency [ACC+19] and in conclusion, log2(p) = 448 is sufficient in order to reach a 128-bit
security level.

Remark 3.11. Note that the additional data sent in the SIDH key exchange is not exploited in the
cryptanalysis above. It is still an open question to know if these data can leak crucial information
on the secret isogeny.

Key encapsulation. The SIDH key exchange is secure only with ephemeral keys. Alice is able
to get information on Bob’s secret by trying different well-chosen fake public keys [GPST16].
Moreover, there is currently no known method for public key validation in the case of SIDH.
In consequence, SIDH with static public keys is not recommended and a key-encapsulation is
preferred. The isogeny-based key encapsulation is called SIKE [JAC+19] and proceeds as follows
(where H and H ′ are hash functions with respective codomain Z/3fZ and {0, 1}B, B fixed):

1. Alice chooses her secret integer sA ∈ Z/2eZ and deduces her isogeny φA : E → EA whose
kernel is P2 + sAQ2. She computes her public key PA = {j(EA), φA(P3), φA(Q3)}.

2. Bob uses Alice’s public key and an randomly chosen message m to get his secret sB =
H(PA,m) ∈ Z/3fZ, and deduces his isogeny φB : E → EB whose kernel is P3 + sBQ3. He
computes the isogeny EA → EBA whose kernel is φA(P3) + sBφA(Q3) and sends to Alice
H ′(j(EBA))⊕m together with his public key PB = {j(EB), φB(P2), φB(Q2)}.

3. Alice uses PB and her secret key to compute j(EAB) and then H ′(j(EAB)) in order to
recover Bob’s initial random value m. She can also recompute Bob’s secret key and check
that Bob has not acted maliciously.

SIKE [JAC+19] provides explicit parameters to reach different levels of security using a key
encapsulation.

3.3.4 An open problem

We end this chapter with an open problem related to the generation of random supersingular
curves. More precisely, we would like to be able to generate a supersingular elliptic curve defined
over Fp2 whose endomorphism ring is unknown.

For a fixed prime p, we have obtained the number of F̄p-isomorphism classes of supersingular
curves defined over Fp2 . For a fixed trace t = 2p, this number is bp/12c+εp for εp ∈ {0, 1, 2}. More
generally, there are O(p) F̄p-isomorphism classes of supersingular curves among the O(p2) classes
of curves defined over Fp2 (represented as j-invariants in Fp2). In consequence, a curve chosen
at random (for instance by choosing randomly a, b ∈ Fp2 to define a curve Ea,b) is supersingular
with probability ≈ 1/p which is negligible when p is of cryptographic size.

In all the protocols we described above such as SIDH or CSIDH, the initial elliptic curve
is a curve of small discriminant. It is often simplified by choosing a curve with j = 0 or 1728
which corresponds to −D = −3 or −4, but one could use the CM method in order to get another

56

3.3. Isogeny-based cryptography

supersingular curve. By fixing a CM curve as in Section 2.5.4 and reducing modulo a prime
p, we get a curve which is supersingular or ordinary depending on the prime decomposition in
the order OD where −D is the discriminant of the curve. Inert and splitting primes are in the
same proportion and so we are able to generate supersingular curves in this way, but only with a
small discriminant (recall that the largest computed Hilbert class polynomials have discriminant
≈ 1015 [ES10]). Then, from a small discriminant, it is possible to determine (and evaluate) all
the endomorphisms of End(E). See Chapter 6 for details.

Finally, the only way to get a supersingular curve of unknown endomorphism ring is to begin
with a curve such as a CM curve, and compute a random walk on the isogeny graph. However,
the knowledge of the walk brings information that lets us compute once again End(E). The only
way to get a supersingular curve E without knowing End(E) is to “forget” the walk, which means
either to compute the walk using multiparty computation, or give to compute the walk by a third
party, which should be trusted.

Hence, the problem of generating a supersingular elliptic curve without knowing its endomor-
phism ring is still an open problem. A potential solution would lead to interesting properties for
the tools we introduce in Chapter 7.

57

Chapter 3. Isogenies in cryptography

58

4 •
•

•
•
•

Pairing-friendly curves

In this chapter, we consider new situations where the elliptic curve DLP is not sufficient. For
instance, we consider the straightforward generalization of the Diffie–Hellman key exchange with
three participants, called tripartite key exchange. Using the classical Diffie–Hellman over an
elliptic curve with a point P of large prime order, Alice, Bob and Charlie can share a common key
in two rounds. First, from her secret a, Alice sends the point [a]P to Bob. Then, using the point
[c]P received from Charlie, Alice sends [a][c]P to Bob. The two other participants send similar
points so that they share a common secret [abc]P . This protocol is explained in Figure 4.1.

A

B

C

[a]P[b]P

[c]P

First round.

A

B

C

[a][c]P[b][a]P

[c][b]P

Second round.

Figure 4.1: Two-round Diffie–Hellman with three participants.

In this chapter, we introduce a mathematical object that lets us generalize this key exchange
in one round. This tool is called a pairing and was introduced in the early 2000’s by Joux [Jou04].
In 2004, Boneh et al. obtained short signatures [BLS04], and more recently, new applications
have been proposed, e.g. zero-knowledge proofs [BCCT12] used in the Zcash cryptocurrency and
electronic voting.

We first define what a pairing is, and explain how to compute variants on an elliptic curve.
Pairing-based cryptography relies on the hardness of the discrete logarithm problem in three
groups: the multiplicative group of a finite field (studied in Chapter 1), and two groups of

59

Chapter 4. Pairing-friendly curves

points of an elliptic curve (studied in Chapter 2). We present here methods for generating
pairing-friendly elliptic curves, i.e. elliptic curves for which a pairing is efficiently computable.
Families of pairing-friendly curves induce a discrete logarithm over a finite field threatened by the
recent NFS variants presented in Chapter 1. Hence, for these curves, the size of the parameters
needs to be increased in order to obtain a target security level. In consequence, we present how
to generate new elliptic curves that are immune to these attacks. Finally, we estimate the cost of
a pairing computation. We clarify the trade-off between the available optimizations and the size
of the parameters.

Summary
4.1 Pairing constructions . 60

4.1.1 Definition . 60
4.1.2 The Miller function . 62
4.1.3 The Weil pairing . 63
4.1.4 The Tate pairing . 64
4.1.5 The ate pairing . 65
4.1.6 Optimal pairings . 65

4.2 Pairing-friendly elliptic curves . 66
4.2.1 Elliptic curves not designed for pairings 66
4.2.2 Generation of pairing-friendly elliptic curves 67

4.3 Pairing cost in the general case . 70
4.3.1 Curve subgroup choices . 70
4.3.2 Miller step . 72
4.3.3 Final exponentiation . 74

4.4 Pairing cost in the case of three families of curves 74
4.4.1 Barreto-Naehrig curves. 75
4.4.2 Barreto-Lynn-Scoot curves (k = 12). 76
4.4.3 Kashisa-Schaefer-Scott curves (k = 16). 77

4.1 Pairing constructions

4.1.1 Definition

We begin with the general definition of a pairing, with general groups. In practice, pairings are
instantiated over an elliptic curve and a finite field.

Definition 4.1 (Pairing). A pairing is an application

e : G×G′ −→ G′′

(g, g′) 7−→ e(g, g′)

between three groups G,G′ and G′′ of prime exponent that is

• non-degenerate:
e(g, g′) = 1G′′ for all g ∈ G =⇒ g′ = 1G′ ,

e(g, g′) = 1G′′ for all g′ ∈ G′ =⇒ g = 1G.

60

4.1. Pairing constructions

• bilinear: for g, h ∈ G and g′, h′ ∈ G′,

e(g · h, g′) = e(g, g′) · e(h, g′) and e(g, g′ · h′) = e(g, g′)e(g, h′).

• efficiently computable (computing the application has a polynomial complexity and is efficient
in practice).

Pairings have been introduced with an instantiation using an elliptic curve and a finite field.
In this context, G and G′ are groups of points of an elliptic curve and G′′ will be a group of
r-th roots of unity in a finite field. With this notation, Alice, Bob and Charlie can share a
common secret in one round using the protocol explained in Figure 4.2. The group law is denoted
additively for G and G′, and multiplicatively for G′′. From the bilinearity of the pairing, Alice
computes e([b]P, [c]Q)a = e(P,Q)abc. Using similar computations, Bob and Charlie are also able
to compute e(P,Q)abc, the common secret key.

A

B

C

[a]Q

[b]P

[a]P

[c]Q

[b]Q
[c]P

Figure 4.2: Tripartite one-round Diffie–Hellman.

Several protocols and applications were introduced few years later. We mention here the
BLS signature [BLS04] which produces short signatures. As in Chapter 2, we compute scalar
multiplications of points of an elliptic curve which has particular properties (these curves are called
pairing-friendly and this definition is detailed in Section 4.2). Thus, let E be a pairing-friendly
elliptic curve defined over a prime field Fp. The secret key in the BLS signature is a scalar s < r
where r is the exponents of the three groups involved in the pairing above. The public key is a
pair of points (P, [s]P) ∈ G. To sign a message m, the signer computes a hash Q = H(m) ∈ G′
and gives back the signature [s]Q. The verifier then checks that e(P, [s]Q) = e([s]P,Q). We now
investigate the details on the three groups G, G′ and G′′. In practice, these groups depend on
the choice of the pairing, but the signature is always a point of the curve, and so it leads to
short signatures (compared to ECDSA or RSA signatures). These signatures benefit from other
properties (such as the signature aggregation [BGLS03]) but we do not detail them here. BLS
signatures are closely related to the framework we introduce in Section 7.3.

Given a field Fq and a prime integer r such that gcd(r, q) = 1, we denote µr the group
of r-th roots of unity in F̄q. This group is of exponent r, defined over a finite extension of
Fq. The following theorem gives an equivalent definition of the embedding degree, defined in
Definition 2.13.

Theorem 4.2 (Balasubramanian and Koblitz, [Gal05, page 192]). Let E be an elliptic curve
defined over Fq and let r be a prime dividing #E(Fq). Suppose that r does not divide (q − 1) and
that gcd(r, q) = 1. Then, k is the embedding degree of E with respect to r if, and only if, Fqk is
the smallest extension of Fq containing µr.

61

Chapter 4. Pairing-friendly curves

Let E be an elliptic curve defined over Fq with a prime integer r coprime to q dividing #E(Fq).
Let k be the embedding degree with respect to r. We present groups of exponents r useful for
defining elliptic-curve-based pairings:

• The r-torsion subgroup E[r], isomorphic to Z/rZ× Z/rZ.
By definition of the embedding degree, E[r] is fully rational over Fqk : E(Fqk)[r] = E[r]. We
will use the notations introduced in Section 2.4: E[r] = G1×G2 where G1 = E[r]∩ker(π−[1])
and G2 = E[r] ∩ ker(π − [q]).

• The quotient group E(Fqk)/rE(Fqk), isomorphic to Z/rZ× Z/rZ.
In a cryptographic context, cosets can be represented by the r-torsion points. Indeed, there
is no point of order ri (i > 1) over E(Fqk). Hence, by the finite abelian group theorem, there
is an isomorphism ι : E(Fqk)

∼−→ H×Z/rZ×Z/rZ, where H is a group of order coprime to
r. Now, if Q ∈ E(Fqk), ι(Q) = (Q0, Q1, Q2) and so Q− ι−1((0, Q1, Q2)) = ι−1((Q0, 0, 0)) ∈
E(Fqk)[r]. Finally, in the quotient group E(Fqk)/rE(Fqk), Q ∼ ι−1((0, Q1, Q2)) which is a
point of r-torsion.

• The quotient group F∗
qk
/(F∗

qk
)r, isomorphic to Z/rZ.

This group is also isomorphic the group of r-th roots of unity, by the map x 7→ x(qk−1)/r,
and is denoted G in the following.

Before going into the details of pairing constructions, we need to introduce the Miller function,
which will be one of the main computations of this chapter.

4.1.2 The Miller function

The Miller function is a function that, given a point, returns a function of the curve that meets
certain conditions. We will not need to compute Miller functions, but only their evaluations at
points.

Definition 4.3 (Miller function). Let Q ∈ E(Fqk) and n ∈ Z. The Miller function is an element
fn,Q ∈ Fqk(E) such that div(f) = n(Q)− ([n]Q)− (n− 1)(0E).

Note that fn,Q is determined uniquely up to a multiplication by an element of F∗
qk
. Such a

function can be computed using the Miller algorithm, presented in Algorithm 4.1. The main
idea of the algorithm is to compute the point [n]Q and save the group law line computations.
Recall that from [i]Q and [j]Q, the point [i + j]Q is computed using the line `[i]Q,[j]Q(x, y) of
Section 2.2, and a vertical line v[i+j]Q(x, y) = x− x[i+j]Q. Indeed, we observe that

div(fi+j,Q) = div(fi,Q) + div(fj,Q) + ([i]Q) + ([j]Q)− ([i+ j]Q)− (0E)

and the extra term ([i]Q) + ([j]Q)− ([i+ j]Q)− (0E) is closely related to the computation of
[i+ j]Q from [i]Q and [j]Q:

div(`[i]Q,[j]Q) = ([i]Q) + ([j]Q) + (−[i+ j]Q)− 3(0E),

div(v[i+j]Q) = ([i+ j]Q) + (−[i+ j]Q)− 2(0E).

Finally, we obtain

div(fi+j,Q) = div(fi,Q) + div(fj,Q) + div(`[i]Q,[j]Q)− div(v[i+j]Q)

62

4.1. Pairing constructions

and so the Miller functions satisfy (up to a constant multiplication)

fi+j,Q = fi,Qfj,Q
`[i]Q,[j]Q

v[i+j]Q
. (4.1)

Using Equation (4.1), we can compute fn,Q using a square-and-multiply-like algorithm. Instead
of computing the whole function fn,Q (which has very large coefficients in practice) and then
evaluating it at a point P , we compute and evaluate at the same time during the algorithm. Thus,
we compute only multiplications over Fqk instead of Fqk(E). At the end, the Miller function
evaluation is very similar to an exponentiation in Fqk . Algorithm 4.1 details the computation of
fn,Q, and its evaluation at the same time at a point P .

Algorithm 4.1: MillerLoop(n, P,Q) – Compute m = fn,Q(P).
Input. n an integer,

P a point of the curve E.
Output. Q ∈ E[r].

m← 1
S ← Q
for b from the second most significant bit of n to the least do
m← m2 · `S,S(P)/v2S(P)
S ← [2]S
if b = 1 then
m← m · `S,Q(P)/vS+Q(P)
S ← S +Q

end if
end for
return m

Although the Miller function evaluation in Algorithm 4.1 is more expensive than an exponen-
tiation xn in Fqk , the complexity of both algorithms is linear in the size of n. Depending on the
curve structure, optimizations are possible. We investigate them in Section 4.3. We are now in a
position to define elliptic-curve-based pairings, using the groups of exponent r of Section 4.1.1.

4.1.3 The Weil pairing

Let P,Q ∈ E[r]. Let fr,P (resp. fr,Q) ∈ Fqk(E) be the Miller function defined in Definition 4.3.
Note that [r]P = [r]Q = 0E so div(fr,P) = r(P)− r(0E) and div(fr,Q) = r(Q)− r(0E). Let DP

(resp. DQ) be a degree zero divisor equivalent to (P)− (0E) (resp. (Q)− (0E)), defined over Fqk ,
whose support is disjoint with {Q, 0E} (resp {P, 0E}); one can simply sample S ∈ E(Fqk) until
DP := (P + S)− (S) suits.

The Weil pairing is defined using the r-torsion group E[r] and the group of r-th roots of unity
µr ⊂ F∗

qk
.

Theorem 4.4 (Weil pairing [Gal05, page 185]). The map

er : E(Fqk)[r]× E(Fqk)[r] −→ µr
(P,Q) 7−→ fr,P (DQ)/fr,Q(DP)

is non-degenerate and bilinear.

63

Chapter 4. Pairing-friendly curves

As defined in Section 2.2, for DQ = (Q+S)−(S), the value of fr,P (DQ) is fr,P (Q+S)/fr,P (S).
Thus, the Weil pairing is computed by evaluating Miller functions at points instead of divisors.
Using four times Algorithm 4.1, we are able to compute the Weil pairing. We investigate the cost
of Algorithm 4.1 and its optimizations in Section 4.3. It applies in particular for the Weil pairing.
In practice, these Miller functions are expensive. In consequence, the Tate pairing or its variants
are preferred for efficiency. We present these new pairings in the next sections.

Remark 4.5. The Weil pairing is also defined for r = `e with a small prime `. Moreover, if P 6= 0E ,
then Q lies in the subgroup generated by P if, and only if, e`e(P,Q)`

e−1
= 1. From this result,

one can obtain the matrix representation of an endomorphism f on the `e-torsion using the Weil
pairing: from a basis {P1, P2} of E[`e],

f(Pj) = a1,jP1 + a2,jP2 j ∈ {1, 2}

and the coefficients (ai,j)i,j can be obtained by computing discrete logarithms:

a1,1 = DLer(P1,P2)(er(f(P1), P2)), a2,1 = DLer(P2,P1)(er(f(P1), P1)),

a1,2 = DLer(P1,P2)(er(f(P2), P2)), a2,2 = DLer(P2,P1)(er(f(P2), P1)).

Note that these computations are efficient in a group of smooth order `e.

4.1.4 The Tate pairing

The Tate pairing is slightly more complicated to define because it uses the quotient groups
E(Fqk)/rE(Fqk) and F∗

qk
/(F∗

qk
)r. In practice, we will see that representatives of cosets in these

two groups can also be chosen in E[r] and µr. Moreover, we will see that this pairing is more
efficient than the Weil pairing.

Let P ∈ E[r] as in the Weil pairing, together with the Miller function fr,P . Let Q ∈ E(Fqk)
and denote DQ a degree zero divisor equivalent to (Q) − (0E) whose support is disjoint with
{P, 0E}. In the same way as for the Weil pairing, one can compute fr,P (DQ) ∈ Fqk . Moreover,
for Q′ ∈ Q+ rE(Fqk), one can prove that fr,P (Q′) ≡ fr,P (Q) mod (F∗

qk
)r. From this fact, we are

able to define the Tate pairing.

Theorem 4.6 (Tate pairing [Gal05, page 185]). The map

t̃r : E(Fqk)[r]× E(Fqk)/rE(Fqk) −→ F∗
qk
/(F∗

qk
)r

(P,Q) 7−→ fr,P (DQ)

is non-degenerate and bilinear.

The Weil and the Tate pairings have several properties [Gal05, page 187]. In particular, they
are compatible with isogenies. If φ : E → E′ is an isogeny with dual φ̂, P ∈ E(Fqk)[r] and
Q ∈ E′(Fqk)[r], then

er(φ(P), Q) = er(P, φ̂(Q)).

From Section 4.1.1, we can choose Q ∈ E[r] in order to represent a coset in E(Fqk)/rE(Fqk).
The Miller algorithm computes fr,P (DQ) ∈ F∗

qk
/(F∗

qk
)r. In cryptographic applications, we expect

that two choices of coset representatives Q ∼ Q′ in E(Fqk)/rE(Fqk) lead to the same coset
representative in F∗

qk
/(F∗

qk
)r. To get this property, we define the reduced Tate pairing, which

computes a coset representative as a value of the group of r-th roots of unity:

64

4.1. Pairing constructions

Definition 4.7 (Reduced Tate pairing). The reduced Tate pairing is the non-degenerate bilinear
application

tr : E(Fqk)[r]× E(Fqk)/rE(Fqk) −→ µr
(P,Q) 7−→ fr,P (DQ)(qk−1)/r.

We will investigate the cost of raising to the power (qk − 1)/r as well as the optimizations of
Algorithm 4.1 in Section 4.3. As for the Weil pairing, if DQ = (Q+ S)− (S), then fr,P (DQ) =
fr,P (Q + S)/fr,P (S) is computed using Algorithm 4.1 twice. Nevertheless, we will see later
that in the case of the reduced Tate pairing, this can be done using only one computation of
Algorithm 4.1.

Finally, we introduce a variant of the Tate pairing.

4.1.5 The ate pairing

We present the ate pairing following [HSV06]. Raising tr to the power m for an integer m coprime
to r corresponds to a permutation of the roots of unity, and hence leads to another pairing which
is a variant of the Tate pairing. Moreover, one can prove that

fab,Q = f ba,Q · fb,[a]Q. (4.2)

From Equation (4.2) and using fm,[r]P = fm,0E = 1, we obtain that tr(P,Q)m = fmr,P (DQ)(qk−1)/r.
Finally, choosing a particular integer m and swapping P and Q, this pairing can be efficiently
computed. Let T be an integer that is a k-th root of unity mod r. By definition of the embedding
degree, qk = 1 mod r and so we can write T = qj mod r for a given integer j. Let d = gcd(k, j).
Remark that r divides T k/d − 1 and define m = (T k/d − 1)/r. Then,

tr(Q,P)m = fTk/d−1,Q(DP)(qk−1)/r = fTk/d,Q(DP)(qk−1)/r.

Using Equation (4.2) together with the fact that [T]Q = [qj]Q, we obtain

fTk/d,Q = fT
k/d−1

T,Q · fTk/d−2

T,[q]Q · · · fT,[qk/d−1]Q = f
∑k/d−1
i=0 Tk/d−1−iqij

T,Q .

As T = qj mod r, this last exponent modulo r is qj(k/d−1)k/d, which is not a multiple of r
(otherwise, k would not be the embedding degree with respect to r). Thus, this exponentiation is
a permutation of the r-th roots of unity in Fqk and Hess, Smart and Vercauteren [HSV06] define
the reduced ate pairing:

Ar,T : G2 ×G1 −→ µr
(Q,P) 7−→ fT,Q(DP)(qk−1)/r,

for a k-th root of unity T .

4.1.6 Optimal pairings

Weil, Tate and ate pairing efficiency depends on the size of the Miller loop. As T is a k-th root of
unity, writing T = qj mod r and d = gcd(k, j), r divides Φk/d(T). Hence, it gives a lower bound
for the size of T : log2(T) ≥ log2(r)/ϕ(k/d) ≥ log2(r)/ϕ(k), where ϕ is the Euler totient function.
From this bound, Vercauteren defines optimal pairings in [Ver10].

65

Chapter 4. Pairing-friendly curves

Definition 4.8 (Optimal pairing, [Ver10, page 5]). Let e : G × G′ → G′′ be a pairing with
|G| = |G′| = |G′′| = r and G′′ ⊂ Fqk . Then the pairing is called an optimal pairing if it can be
computed in log2(r)/ϕ(k) + ε(k) basic Miller iterations, with ε(k) ≤ log2(k).

From this definition, the ate pairing can be turned into an optimal ate pairing by choosing T
with small coordinates in base q.

Theorem 4.9 ([Ver10, page 6]). Let T = mr with r 6≡ 0 mod m and T =
∑l

i=0 ciq
i. Then,

ar,[c0,...,cl] : G2 ×G1 −→ µr

(Q,P) 7−→
(∏l

i=0 f
qi

ci,Q
(DP) ·

∏l−1
i=0

`[si+1]Q,[ciq
i]Q(P)

v[si]Q(P)

)(qk−1)/r

with si =
∑l

j=i cjq
j, defines a pairing if mkqk−1 6≡ ((qk − 1)/r) ·

∑l
i=0 iciq

i−1 mod r.

In practice, we use elliptic curves for which k-th roots of unity have only few non-zero
coordinates in base q. We will see in the next section several examples of curves together with
their optimal ate version. For instance, if an elliptic curve has a small trace t, an optimal pairing
can be obtained from choosing T = t− 1 (recall that q + 1− t = 0 mod r so t− 1 is a primitive
k-th root of unity).

4.2 Pairing-friendly elliptic curves

In this section we explain how to generate pairing-friendly elliptic curves, i.e. elliptic curves for
which a pairing is efficiently computable. From now on, we focus on elliptic curves defined over a
prime field denoted Fp. We begin this section with curves that are not pairing-friendly.

4.2.1 Elliptic curves not designed for pairings

Random elliptic curves. Given a random elliptic curve defined over Fp (one can sample
a, b ∈ Fp until 4a3 + 27b2 6= 0, and choose Ea,b), its embedding degree k with respect to a prime
divisor r of #Ea,b(Fp) is roughly of size log2(r). Recall that log2(r) ≥ 256 for a 128-bit security
target. Thus, the target finite field Fpk is too large for practical computations. Random elliptic
curves have huge embedding degrees and are hence not pairing-friendly.

Elliptic curves defined over a small characteristic field. Elliptic curves defined over a
small characteristic field are not recommended : an algorithm for computing the discrete logarithm
problem in small characteristic in quasi-polynomial time was proposed in 2014 [BGJT14]. This
algorithm was heuristic until 2019, when Kleinjung and Wesolowski proved it [KW19]. In
consequence, in order to reach a security level, the size of the finite field Fpk needs to be much
larger than in the case of large characteristic. For efficient pairing-based applications, we look for
elliptic curves defined over a large characteristic prime field Fp.

Supersingular elliptic curves. The first suggested pairings in [Jou04] used supersingular
elliptic curves, because they were the first known way to produce curves with a small embedding
degree. More precisely, we have seen in Section 2.4 that these curves have an embedding degree
k = 2 or 3 in large characteristic. The target finite field is F∗p2 or F∗p6 , and from the considerations
of Chapter 1, we need to choose a large prime p in order to obtain a given security level. In a
practical point of view, the cost of the pairing is affected when p increases.

66

4.2. Pairing-friendly elliptic curves

Remark 4.10. we will see in Chapter 7 that supersingular curves become interesting for applications
that mix isogeny-based cryptography together with pairing-based cryptography.

4.2.2 Generation of pairing-friendly elliptic curves

In the context of pairing-based cryptography, we leave supersingular curves and focus on ordinary
curves. The only known methods for generating pairing-friendly elliptic curves are based on the
CM method, described in Section 2.5. Instead of generating parameters a, b of a curve Ea,b, we
look at parameters p, r and t requiring the properties of a pairing-friendly elliptic curve. Then,
using the Hilbert class polynomial, we are able to generate an elliptic curve E defined over Fp,
for which r divides p+ 1− t = E(Fp). Hence, we are able to generate only small discriminant
pairing-friendly ordinary elliptic curves. Parameters of the curves we expect to generate need to
satisfy the following properties.

• The integers r and p are (large) primes.
We look for an elliptic curve E defined over Fp and for pairings defined with groups of
prime order r.

• r divides p+ 1− t.
We want a subgroup of order r in E(Fp).

• The square-free part −D of t2 − 4p is smaller in absolute value than 1015.
The method for generating the curve coefficients is based on the Hilbert class polynomial,
which can be efficiently computed modulo p for a discriminant D ≤ 1015 [Sut10].

• The trace t is non-zero.
Supersingular curves defined over Fp have trace t = 0 (see Section 3.1.2).

• The smallest integer k ≥ 1 such that r divides pk − 1 is relatively small.
We look for pairing-friendly curves, i.e. curves with a small embedding degree.

• pk is large enough to resist discrete logarithm computations.

A complete survey of the different methods for generating pairing-friendly curves is given
in [FST10].

The two first approaches were proposed by Dupont, Enge and Morain in [DEM05], and Cocks
and Pinch in [CP01]. Dupont et al. gave a method where t and r are simultaneously computed
using resultants, whereas Cocks and Pinch proposed a more flexible algorithm. Both of these
methods produce elliptic curves with a large trace t ≈ r, and hence do not fit with an efficient ate
pairing. Recall that the Miller loop T in the ate pairing is a k-th root of unity, which is closely
related to t− 1: (t− 1)k = qk = 1 mod r. We detail in Algorithm 4.2 the Cocks-Pinch method,
usable with arbitrary embedding degree. Even if it produces an expensive ate pairing, we will see
that the prime p generated with this algorithm is not special in the sense of Definition 1.3. In
Chapter 5, we will modify this algorithm in order to obtain elliptic curves resistant to S(T)NFS
variants, together with an efficient (optimal) ate pairing.

67

Chapter 4. Pairing-friendly curves

Algorithm 4.2: CocksPinch(k,−D)

Input. k an embedding degree,
−D a discriminant.

Output. p, r, t and y parameters of a pairing-friendly elliptic curve.

while True do
Let r be a random prime such that k divides r − 1 and (−D/r) = 1.
Let T be a random primitive k-th root of unity in (Z/rZ)∗. Let
t′ = T + 1.
Let y′ = (t′ − 2)/

√
−D mod r.

Let t ∈ Z (resp. y ∈ Z) be congruent to t′ mod r (resp. y′ mod r).
p = (t2 +Dy2)/4.
if p is prime then
return p, r, t, y

end if
end while

Then, polynomial methods were also proposed by Barreto, Lynn, and Scott [BLS03], and
independently by Brezing and Weng [BW05]. These methods parameterize the characteristic
p, the trace t, and the curve subgroup order r by polynomials. We need to define polynomials
representing primes.

Definition 4.11 (from [FST10, page 11]). Let f(x) be a polynomial with rational coefficients.
f represents primes if f(x) is non-constant and irreducible, has positive leading coefficient, and
satisfies f(x) ∈ Z for some x ∈ Z, and also gcd({f(x) such that x, f(x) ∈ Z}) = 1.

The most general construction is stated by Brezing and Weng.

Theorem 4.12 (from [FST10]). Fix a positive integer k and a positive square-free integer D.
Execute the following steps:

1. Find an irreducible polynomial r(x) ∈ Z[x] with positive leading coefficient such that
K = Q[x]/(r(x)) is a number field containing

√
−D and the k-th cyclotomic field.

2. Choose a primitive k-th root of unity ζk ∈ K.

3. Let t(x) ∈ Q[x] be a polynomial mapping to ζk + 1 in K.

4. Let y(x) ∈ Q[x] be a polynomial mapping to (ζk − 2)/
√
−D in K.

5. Let p(x) ∈ Q[x] be given by (t(x)2 +Dy(x)2)/4.

Suppose p(x) represents primes and y(x0) ∈ Z for some x0 ∈ Z. Then, the triple (t(x), r(x), y(x))
parameterizes a family of elliptic curves with embedding degree k and discriminant −D.

Barreto, Lynn and Scott [BLS03] gave a construction where r(x) is a cyclotomic polynomial
Φk, and Brezing and Weng extended it with r(x) = Φ`(x) where ` is a multiple of the embedding
degree k. Several families were obtained with this method, and are surveyed in [FST10]. In some
cases, non-cyclotomic polynomials lead to more effective constructions. One method to obtain
such extensions is to evaluate Φ`(x) at some polynomial u(x). When Φ`(u(x)) factors, we may
gain some advantage.

68

4.2. Pairing-friendly elliptic curves

As we target the 128-bit security level, the study of the discrete logarithm problem over finite
fields of Chapter 1 gives a lower bound on the size of the target finite field: log2(pk) > 3000.
From Chapter 2, we already know that log2(p) > 256, and choosing a small embedding degree
k ≤ 3 leads to a large prime p and hence slow pairing computations. We present here three
families of curves of embedding degree k = 12 and 16, constructed from the polynomial method
described above. We will see in Section 4.3 how efficient is the ate pairing on these curves.

The Barreto-Naehrig family. Barreto and Naehrig provided in [BN06] a family of pairing-
friendly elliptic curves of embedding degree k = 12 and discriminant D = 3. The construction is
based on Theorem 4.12 where r(x) comes from a factor of Φ12(6x2), rescaled in order to have
integer coefficients. Using this construction, r, t and p are parameterized by

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,

t(x) = 6x2 + 1,

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

BN curves have ρ-value ρ = 1 in the sense that p(x) + 1− t(x) = r(x). The quadratic twisted
curve order is parameterized by p(x)+1+t(x) which is also an irreducible polynomial. An optimal
ate pairing is derived in [Ver10, page 10]. Setting T = λ− λ2 + λ3 + 6x+ 2 = r · (6x2 − 6x+ 2)
(where λ is a primitive 12-th root of unity) in Theorem 4.9, the ate pairing can be computed as
ar,[6x+2,1,−1,1](Q,P).

Before the last NFS improvements [BGK15, FGHT17, JP14, KB16], the parameters of these
curves fit very well for a 128-bit security level: setting x = −262 − 255 − 1, the primes p and r
were 256-bit integers (which is the minimal size to reach a 128-bit security in an elliptic curve),
and the finite field Fp12 was large enough to reach the 128-bit security level. Unfortunately, the
BN parameters fit also very well with the recent variants of NFS: the prime is parameterized by
the polynomial p(x) which has small coefficients and degree 4, and the field has several subfields.
To reach the 128-bit security level, we need to study the NFS variant applied to the field Fp(x)12 ,
for a given x. We estimated in Section 1.1.4 that the finite field Fp12 needs to be 5500-bit long in
order to reach the 128-bit security level. Setting a seed x = 2114 + 2101− 214− 1, [BD19] obtain a
curve which satisfies log2(p) = log2(r) = 462. Hence, the target finite field is 5535-bit long, large
enough to be STNFS-resistant. The quadratic twisted curve is also of prime order so that the
curve is twist- and subgroup-secure.

The BLS family. We introduce another family which is called the Barreto-Lynn-Scott (BLS)
family [BLS03]. These curves have embedding degree 3i and 2i · 3 (i ≥ 0), and are very popular
for embedding degree k = 12. In this case, BN and BLS12 curves are very similar for several
aspects. First, r, t and p are also parameterized with polynomials:

r(x) = x4 − x2 + 1,

t(x) = x+ 1,

p(x) = (x6 − 2x5 + 2x3 + x+ 1)/3.

As p(x) + 1− t(x) = r(x) · (x− 1)2/3, BLS12 curves have a ρ-value ρ > 1, but in practice, we will
see that this cofactor is relatively small for a 128-bit security level. Both of BN and BLS12 curves
have discriminant D = 3 and hence sextic twists. The pairing computation is slightly simpler
in the case of BLS curves: choosing T = t− 1 = x, the ate pairing is optimal in the sense that

69

Chapter 4. Pairing-friendly curves

log2(x) ≤ log2(r(x))/ϕ(12). We will investigate the cost of this pairing in Section 4.3. The target
finite field is Fp(x)12 as in the case of BN curves. In consequence, the study of the NFS variants
on this field is closely related to the story of the BN curves. For a 128-bit target security, one
needs to choose x such that Fp(x)12 is 5500-bit long. For instance, Barbulescu and Duquesne have
chosen x = −277 + 250 + 233 [BD19], we obtain an elliptic curve defined over Fp with a prime
p = p(x) of 461 bits, and a subgroup of order r(x) with log2(r(x)) = 308. The target finite field
Fp(x)12 is 5525-bit long, which resists the recent variants of NFS.

The KSS family. The last family we present in this section is the Kachisa-Schaefer-Scott
(KSS) family of curves [KSS08]. This curve construction is available for embedding degree k ∈
{8, 16, 18, 32, 36, 40}, but we present here only the instantiation for k = 16. The parameterization
also comes from the Brezing-Weng method:

r(x) = (x8 + 48x4 + 625)/61250,

t(x) = (2x5 + 41x+ 35)/35,

p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125)/980.

When x ≡ 25 or 45 mod 70, these polynomials have integer coefficients. When also p(x) is prime,
then a pairing-friendly elliptic curve of discriminant D = 4 defined over Fp(x) can be derived. As
for BN and BLS12 curves, the NFS variants apply: Fp(x)16 has subfields and the prime p(x) is
special so that the STNFS algorithm becomes efficient. A STNFS-secure instantiation is given
in [BD19] for x = −235 − 232 − 218 + 28 + 1. This way, the prime p satisfies log2(p) = 339 and
Fp16 is 5424-bit long. The optimal ate pairing on KSS16 curves is given by((

fx,Q(P) · `[x]Q,[p]Q(P)
)p3 · `Q,Q(P)

)(p16−1)/r
.

4.3 Pairing cost in the general case

In the previous section, we have introduced three families of elliptic curves for which an optimal
ate pairing is available. We now count the number of operations over Fp to compute it. As in
Chapter 1, we denote by mk, sk, ik and fk the costs of multiplication, squaring, inversion, and
p-th power Frobenius in Fpk , and by m the cost of a multiplication in Fp. We neglect additions
and multiplications by small constants. We recall the notations for the Hamming weight in
base 2 and in non-adjacent form (NAF) introduced in Chapter 1: HW(x) (resp. HW2-NAF(x))
is the number of non-zero coefficients in the representation of x in base 2 (resp. in the 2-NAF
representation of x).

4.3.1 Curve subgroup choices

In all the pairings introduced in Section 4.1, the points P and Q are chosen in E[r]. By definition
of the embedding degree, E[r] is fully rational over Fpk . Hence, P and Q have coordinates defined
over Fpk . An efficient optimization is to choose particular subgroups of E[r] in order to get points
with sparse coordinates. Thus, Algorithm 4.1 computes some multiplications over Fpk faster when
only few coordinates are non-zero.

By construction, pairing-friendly curves defined over Fp have a subgroup of order r, called
G1 = E[r] ∩ ker(π − [1]). One can choose2 P ∈ G1 and get a point with very sparse coordinates

2It is actually necessary for the ate pairing, defined by construction for (Q,P) ∈ G2 ×G1.

70

4.3. Pairing cost in the general case

(embedding xP and yP in Fpk , k − 1 of their coefficients are zeros). The second point Q can
also be sparse when the extension field Fpk is well-chosen: suppose that the embedding degree k
is divisible by d ∈ {2, 3, 4, 6}, and that Fpk = Fpk/d(α) is defined using a binomial polynomial
Xd−w irreducible over Fpk/d (hence αd = w). Then, if E has twists of degree d, then one twisted
curve E′ can be defined with

τd : Ea,b −→ E′ = Eaα4,bα6

(x, y) 7−→ (xα2, yα3).

From the considerations of Section 2.7, G2 = E[r]∩ ker(π− [p]) ' τ−1
d (G′2) where G′2 ⊆ E′(Fpk/d).

Suppose Q′ = (x′, y′) ∈ G′2 (so x′, y′ ∈ Fpk/d). Then, τ−1
d (Q′) = (x′/α2, y′/α3) = (x′/w ·

αd−2, y′/w · αd−3) has coordinates with only one non-zero coefficient in Fpk/d , instead of the d
expected.
Example 4.13 (Compression of G2). Let E be an elliptic curve of embedding degree k = 12
and discriminant D = 3. In particular, E has sextic twists and its Weierstrass equation is
y2 = x3 + b for a given b ∈ Fp. Choosing an irreducible polynomial X6 − z ∈ Fp2 [X], the
extension field Fp12 can be defined as Fp12 = Fp2(6

√
z). A twisting isomorphism is given by

τ6 : (x, y) ∈ E 7→ (3
√
zx,
√
zy) ∈ E′ where E′ is a sextic twisted curve to E. Then, choosing

Q ∈ G2, we obtain a compression of factor 6 of the coordinates of Q: there exists Q′ = (x′, y′) ∈ G′2
such that Q = τ−1

6 (Q′) = (x′/z · 6
√
z

4
, y′/z · 6

√
z

3
). Writing the coordinates of Q in the basis of

Fp12 over Fp, only two elements among the twelve are non-zero.
A similar trick can be applied for an elliptic curve of embedding degree k = 16 and discriminant
D = 4. Indeed, such a curve has quartic twists and in particular, defining Fp16 = Fp4(4

√
w),

coordinates of points of G2 (in the basis of Fp16) have only four non-zero elements and twelve
zeros.

Reduced pairings with only one Miller function. As we have seen in Section 4.1.3, the
Weil pairing is computed using Algorithm 4.1 four times: fr,P at Q+ S and at S, and fr,Q at
P + S′ and at S′. In the case of reduced pairing, we also compute an extra final exponentiation
to the power (pk − 1)/r which has a non-negligible cost. Nevertheless, this structure of r-th
root of unity lets us compute only one Miller evaluation instead of two. In the reduced Tate
pairing, [BKLS02, page 7] remarks that fr,P (DQ)(pk−1)/r can be computed as follows: instead of
sampling a point S until the divisor DQ = (Q+ S)− (S) has support disjoint with (P)− (0E),
one can keep (Q) − (0E) and replace fr,P by another function gr,P of divisor whose support
is disjoint from {Q, 0E}. One can choose R 6∈ {0E ,−P} and define gr,P to be a function of
divisor div(gr,P) = r(P + R)− r(R) ∼ div(fr,P). Then, the reduced Tate pairing is computed
as gr,P ((Q) − (0E))(pk−1)/r = (gr,P (Q)/gr,P (0E))(pk−1)/r. Among these two Miller functions
evaluations, gr,P (0E) ∈ F∗p when P ∈ E(Fp) (which is the case here). Finally, p − 1 divides
(pk− 1)/r and so this factor gr,P (0E) vanishes after the final exponentiation: gr,P (0E)(pk−1)/r = 1.
To conclude, one computes the reduced Tate pairing using the formula tr(P,Q) = fr,P (Q)(pk−1)/r.
This trick also applies to the reduced ate and its optimal versions. From now on, we compute the
reduced Tate and ate pairings as follows:

tr(P,Q) = fr,P (Q)(pk−1)/r Ar,T (Q,P) = fr,Q(P)(pk−1)/r

As we have seen in Section 4.2.2, an optimal ate pairing can be derived using Theorem 4.9. In
practice, the cost of this pairing (at least on BN, BLS12 and KSS16 curves) is dominated by a
Miller function evaluation and a final exponentiation. We treat the cost of the pairing in the two
following sections.

71

Chapter 4. Pairing-friendly curves

4.3.2 Miller step

In this section, we present a second version of Algorithm 4.1. The main difference between
Algorithms 4.1 and 4.3 is the number of finite field inversions. In Algorithm 4.3, numerators
and denominators are split into two variables in order to compute a single inversion at the end
of the algorithm. Moreover, the integer T can be represented in non-adjacent form (NAF, see
Section 2.8.3) in order to compute as little as possible Addition steps. Note that the case b = −1
in Algorithm 4.3 requires a specific treatment [EM14] because Equation (4.1) is slightly different
with j = 1 and j = −1:

fi+1,Q = fi,Q f1,Q︸︷︷︸
=1

`[i]Q,Q

v[i+1]Q
fi−1,Q = fi,Q f−1,Q︸ ︷︷ ︸

=1/vQ

`[i]Q,−Q

v[i−1]Q
.

Algorithm 4.3: MillerLoop(T, P,Q)

Input. T an integer,
P ∈ E(Fp),
Q ∈ E(Fpk).

Output. fT,Q(P).

(µn,0, µd,0)← vQ(P) .in the NAF case;
(mn,md)← (1, 1); S ← Q;
for b from the second most significant bit of |T | to the least do

(λn, λd)← `S,S(P); S ← [2]S .DoubleLine;
(µn, µd)← vS(P) .VerticalLine;
(mn,md)← (m2

nλnµd,m
2
dλdµn) .Update1;

if b = ±1 then
(λn, λd)← `S,bQ(P); S ← S + bQ .AddLine;
(µn, µd)← vS(P) .VerticalLine;
(mn,md)← (mnλnµd,mdλdµn) .Update2;
if b = −1 then

(mn,md)← (mnµd,0,mdµn,0) .Update3;
end if

end if
end for
if T < 0 then

(mn,md)← (md,mn)
end if
return mn/md

Before going into the details, one can already see that the cost of Algorithm 4.3 is given by
the following formula, where the notation cX denotes the cost of step X, or algorithm X, and
Nb−1,T denotes the number of −1 in the NAF representation of T .

cMillerLoop =(log2(T)− 1) (cDoubleLine + cVerticalLine)

+ (log2(T)− 2)cUpdate1

+ (HW2-NAF(T)− 1)(cAddLine + cVerticalLine + cUpdate2)

+ Nb−1,T (cUpdate3) + ik. (4.3)

72

4.3. Pairing cost in the general case

We now focus on the cost of each step cX in Equation (4.3). Before going into the details of
the line computations and the cost of updates, we present a nice trick that will simplify a lot the
line computations.

Useless factors in subfields. We have seen that only one single Miller function is computed
during a reduced pairing. This comes from the fact that gr,P (0E) ∈ F∗p vanishes after the final
exponentiation. This trick is be generalized in [BKLS02] to all factors in proper subfields of F∗

pk
.

Suppose that x ∈ Fpl with l < k a divisor of k. Then, pl − 1 divides pk − 1 and more precisely,
pl − 1 divides the factor (pk − 1)/r. Thus, x(pk−1)/r = 1. In consequence, all the factors in F∗

pl
do

not need to be computed.

This trick, together with the particular choice of subgroups of E[r] and the existence of twists
defined over a subfield of Fpk , simplifies a lot the computations of the lines.

Vertical lines. When E has even embedding degree k = 2k′, no vertical line need to be
computed. Recall that a vertical line at a point Q ∈ G2, evaluated at a point P ∈ G1, is written
vQ(P) and is simply xP−xQ. Defining E over Fpk′ and Fpk = Fpk′ (

√
w) for w ∈ Fpk′ , the quadratic

twist of E over Fpk′ can be defined using
√
w. Finally, Q = (x′Q/w, y

′
Q/
√
w

3
) for x′Q, y

′
Q ∈ Fpk′ .

Hence, vQ(P) = xP − x′Q/w is a factor in the subfield Fpk/2 . Finally, when the embedding degree
k is even, the vertical line computations always vanish after the final exponentiation and do
not need to be taken into account. Moreover, it simplifies a lot Algorithm 4.3 because there is
no denominator. In particular, Update3 does not need to be computed as it corresponds to
vertical lines. All the curves considered in this chapter have this property so that we consider
here cUpdate3 = 0. However, in Chapter 5, we will consider curves where cUpdate3 > 0.

Addition and doubling lines. The subfield factors in doubling and addition steps also vanish
after the final exponentiation. Hence, these steps can be rewritten more efficiently. In particular,
the line computations have been well studied in the case of j = 0 and 1728 curves. In this case,
twists of degree d ∈ {4, 6} lead to a point Q = (x′Q/w · αd−2, y′Q/w · αd−3) with x′Q, y

′
Q ∈ Fpk/d .

Hence, the computations involve multiplications of sparse elements of Fpk , which correspond
to multiplications in Fpk/d . In [AKL+11, page 12], the cost of DoubleLine and AddLine are
detailed for curves of embedding degree k divisible by 6 and D = 3:

cDoubleLine = 3mk/6 + 6sk/6 + (k/3)m

cAddLine = 11mk/6 + 2sk/6 + (k/3)m.

The output of these functions is an element of Fpk which has only three non-zero coefficients in
Fpk/6 . Similarly, [CLN10, pages 9,10] details the cost in the case of k = 0 mod 4 and D = 4:

cDoubleLine = 2mk/4 + 8sk/4 + (k/2)m

cAddLine = 9mk/4 + 5sk/4 + (k/2)m.

In this case, the output of these functions is an element of Fpk with two non-zero coefficients in
Fpk/4 .

Updates. In the general case, Update1 (resp. Update2) costs 4mk + 2sk (resp. 4m4).
Nevertheless, from the considerations of vertical lines, no denominator is computed when the

73

Chapter 4. Pairing-friendly curves

embedding degree k is even. Moreover, when the curve has twists defined over Fpk/d , the outputs
of the DoubleLine and AddLine steps are sparse element of Fpk . When d = 6, multiplying a
dense element of Fpk with a sparse one (3 non-zero coefficients in Fpk/6) costs 13mk/6 as stated
in Section 1.2.1. Similarly, when d = 4, multiplying an element of Fpk with an element with only
two non-zero coefficients in Fpk/4 costs 8mk/4 instead of 9mk/4 in the general case. Finally, we
obtain that for these curves,

cUpdate1 =

{
13mk/d + sk if d = 6

8mk/d + sk if d = 4
cUpdate2 =

{
13mk/d if d = 6

8mk/d if d = 4.

4.3.3 Final exponentiation

Recall that in the cases of reduced (Tate, ate and optimal ate) pairings, we need to raise to the
power (pk − 1)/r the output of the Miller function. This exponent splits into two parts using the
formula

pk − 1

r
=
pk − 1

Φk(p)
· Φk(p)

r
.

First part. The first part of the exponentiation uses few Frobenius powers and inversions and
its cost depends on the value of Φk(p). Its computation is very efficient because of Frobenius
powers (see Section 1.2.2). In particular, for x ∈ Fpk with k even, xpk/2 is almost free: it is simply
the conjugate of x seen in a quadratic extension of Fpk/2 .

Second part. The second part of the exponentiation is more expensive than the first one.
Notice that the output of the first exponentiation is an element of the cyclotomic subgroup:(
x(pk−1)/Φk(p)

)Φk(p)
= xp

k−1 = 1. Hence, the cyclotomic squarings (see Section 1.2.4) can be
used in the second part of the exponentiation. The cost estimation of raising to this second
exponentiation is specific to each curve. The key ingredient is the base-p representation of the
exponent, since Frobenius powers pi are computed efficiently. The idea is to choose a polynomial
which is a multiple of Φk(p)/r so that the representation in base p has particular coefficients.
Later, we will treat the case of BN, BLS12 and KSS16 curves for which the primes p and r
are parameterized with polynomials. Finally, in these three cases, the cost is dominated by
exponentiations by x, which can be computed efficiently with the formula of Section 1.2.4. We
will detail the case of our three families in the next section.

4.4 Pairing cost in the case of three families of curves

In this section, we investigate the explicit cost of the pairing for the three families of curves which
have been presented in Section 4.2.2: BN, BLS12 and KSS16 elliptic curves. Each of them splits
into a Miller step, possible extra lines computations and a final exponentiation. Several estimates
below differ marginally from [BD19], which uses a different estimated cost for inversions and
multiplications of sparse elements. We provide a script that automatically computes the cost of
the pairing on each curve. The code repository is publicly accessible at:

https://gitlab.inria.fr/smasson/cocks-pinch-variant.

74

https://gitlab.inria.fr/smasson/cocks-pinch-variant

4.4. Pairing cost in the case of three families of curves

4.4.1 Barreto-Naehrig curves.

On BN curves, an optimal pairing is obtained choosing a 12-th root of unity λ and setting
T = λ− λ2 + λ3 + 6x+ 2 = r · (6x2 − 6x+ 2) in Theorem 4.9. Finally, ar,[6x+2,1,−1,1](Q,P) is
computed as follows:

(
f6x+2,Q(P) · `[p3−p2+p]Q,[6x+2]Q(P) · `[p3−p2]Q,[p]Q(P) · `[p3]Q,[−p2]Q(P)

) pk−1
r .

Miller loop. The Miller function computation is f6x+2,Q(P). BN curves have embedding degree
k = 12 and D = 3 so the optimizations of Section 4.3.2 are available. In particular, we benefit
from the sextic twists and the embedding degree is even, so that no denominator is computed.
Updates also benefit of the sparsity of the elements (see Section 1.2.1). Finally, the steps of
Algorithm 4.3 are efficiently computed using subfield multiplications:

cDoubleLine = 3m2 + 6s2 + 4m, cAddLine = 11m2 + 2s2 + 4m,

cUpdate1 = 13m2 + s12, cUpdate2 = 13m2.

We obtain the final cost of the Miller step:

cMillerLoop =(log2(6x+ 2)− 1)(3m2 + 6s2 + 4m) + (log2(6x+ 2)− 2)(13m2 + s12)

+ (HW2-NAF(6x+ 2)− 1)(11m2 + 2s2 + 4m + 13m2).

Extra lines. The optimal pairing ar,[6x+2,1,−1,1] requires few extra line computations. The points
used in these line computations are actually easy to get. The first factor `[p3−p2+p]Q,[6x+2]Q(P) is
a vertical line: p3 − p2 + p = −(6x+ 2) mod r. Hence, this factor can be omitted. The two other
factors simplify using the trick presented in Proposition 2.5:

`[p3−p2]Q,[p]Q = `−[6x+2]Q−[p]Q,[p]Q = `[p]Q,[6x+2]Q

`[p3]Q,−[p2]Q = `−[p+6x+2]Q−[−p2]Q,[−p2]Q = `[−p2]Q,[p+6x+2]Q.

We now write Q′ = [6x + 2]Q, which is output from the Miller algorithm, and Q1 = [p]Q and
Q2 = [p]Q1, computed using Frobenius exponentiations on the (sparse) coordinates of Q and
Q1 (4 times 2m2). Using these notations, the two latter line computations are `Q1,Q′(P) and
`−Q2,Q1+Q′(P), costing one addition line of cost cAddLine and one light addition line. We estimate
that this last operation costs 4m2 + 4m as the point does not need to be computed. Multiplying
them together costs only 7m2 using their sparsity. We finally update the Miller function output
with one dense×sparse multiplication (13m2, see Secton 1.2.1) and obtain:

cExtraLines = (4 · 2m2) + (11m2 + 2s2 + 4m) + (4m2 + 4m) + (7m2) + (13m2)

The precise cost of these operations can probably be improved but it is negligible compared to
the total cost of the pairing computation.

Final exponentiation. The final exponentiation splits into (p6− 1)(p2 + 1)(p4− p2 + 1)/r. As
claimed in Section 4.3.3, the first two factors are easy to compute with Frobenius and inversions:
raising to the power p6 is simply the conjugate of the element seen in a quadratic extension
of Fp6 , and raising to the power p2 is computed in 5m2 using the Frobenius computation in a
sextic extension of Fp2 . We obtain that cFirstExp = (i12 + m12) + (5m2 + m12). The second

75

Chapter 4. Pairing-friendly curves

part of the final exponentiation is to raise to the power Φk(p)/r. BN curves construction uses a
parameterization for the primes p and r. More precisely,

p = p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 r = r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.

Then, we consider d(x) = Φ12(p(x))/r(x) in base p

Φ12(p)/r = p3 + (6x2 + 1)p2 + (−36x3 − 18x2 − 12x+ 1)p+ (−36x3 − 30x2 − 18x− 2).

The most efficient algorithm to compute this last exponentiation is explained in [FKR12, page 4].
Using the fact that a fixed power of a pairing is also a pairing, they choose an exponent so that
the final exponentiation is the most efficient possible. More precisely, d′ is a multiple of d that is
not divisible by r. A lattice-based method lets us obtain that it suffices to raise to the power
d′(x) = 2x(6x2 + 3x+ 1)d(x) =

∑3
i=0 λi(x)pi where

λ0(x) = 1 + 6x+ 12x2 + 12x3, λ1(x) = 4x+ 6x2 + 12x3,

λ2(x) = 6x+ 6x2 + 12x3, λ3(x) = −1 + 4x+ 6x2 + 12x3.

Using this decomposition in base p, [FKR12, page 6] obtain that cSecondExp = 3cx + 3scyclo
12 +

10m12 + 4f12 where cx is the cost of an exponentiation to the power x, which costs (according
to [GS10, page 7])

cx = 4(log2(x)− 1)m2 + (6(HW(x)− 1)− 3)m2 + (HW(x)− 1)m12 + 3(HW(x)− 1)s2 + i2.

Estimated cost for a 128-bit security level. For a 128-bit security level, Barbulescu and
Duquesne recommend in [BD19] to set x = 2114 + 2101 − 214 − 1. Replacing log2(6x + 2) and
HW2-NAF(6x+ 2) by 117 and 7, we obtain

cMillerLoop = 11620m

cFinalExp = 5364m

cOptimalAte = 16984m.

4.4.2 Barreto-Lynn-Scoot curves (k = 12).

On a BLS12 curve, the ate pairing is already optimal in the sense that T = t− 1 = x has the
minimal size. The computation of this optimal pairing is hence simply fx,Q(P)(pk−1)/r, without
any extra line computation.

Miller loop. These curves also benefit from sextic twists and even embedding degree. Hence,
the cost of line computations and updates are the same as for BN curves. Finally, we obtain that

cMillerLoop =(log2(x)− 1)(3m2 + 6s2 + 4m) + (log2(x)− 2)(13m2 + s12)

+ (HW2-NAF(x)− 1)(11m2 + 2s2 + 4m + 13m2).

Final exponentiation. As for BN curves, the exponent splits into two parts using the cy-
clotomic polynomial Φ12(p). We obtain the same first exponentiation which costs cFirstExp =
(i12 +m12)+(5m2 +m12). The second part of the exponentiation is similar with the BN case. We

76

4.4. Pairing cost in the case of three families of curves

finally raise to the power 3Φ12(p)/r using the parameterization p(x) = (x6− 2x5 + 2x3 + x+ 1)/3
and r(x) = x4 − x2 + 1. Written in base p, we obtain that 3Φ12(p)/r =

∑3
i=0 λi(x)pi with

λ0(x) = 3− x+ 2x2 − 2x4 + x5, λ1(x) = −1 + 2x− 2x3 + x4,

λ2(x) = x− 2x2 + x3, λ3(x) = 1− 2x+ x2.

Finally, [AFK+13, page 10] obtains cSecondExp = 5cx + 10m12 + 3f12 + 2scyclo
12 , where cx is the

cost of an exponentiation to the power x, given in Section 4.4.1.

Estimated cost for a 128-bit security level. For a 128-bit security level, Barbulescu and
Duquesne set in [BD19] x = −277 + 250 + 233. We obtain with our formulas

cMillerLoop = 7685m

cFinalExp = 6288m

cOptimalAte = 13973m.

4.4.3 Kashisa-Schaefer-Scott curves (k = 16).

On a KSS16 curve, [ZL12] obtain that ar,[x,1,0,0,0,−2,0,0] is optimal, and raising to the power p3,
we obtain another optimal pairing defined by

((
fx,Q(P) · `[x]Q,[p]Q(P)

)p3 · `Q,Q(P)
)(p16−1)/r

.

Miller loop. The Miller step is efficiently computed using the optimizations of Section 4.3:

cDoubleLine = 2m4 + 8s4 + 8m, cAddLine = 9m4 + 5s4 + 8m,

cUpdate1 = 8m4 + s16, cUpdate2 = 8m4.

The Miller algorithm cost is thus

cMillerLoop =(log2(x)− 1)(2m4 + 8s4 + 8m) + (log2(x)− 2)(8m4 + s16)

+ (HW2-NAF(x)− 1)(9m4 + 5s4 + 8m + 8m4).

Extra lines. As in the case of BN curves, the extra line computations are simplified: denote
Q′ = [x]Q and Q1 = [p]Q. The first point is computed from the Miller function, and the second
one using two Frobenius exponentiations on xQ and yQ, which are sparse because Q ∈ G2

(2m4). According to [ZL12, page 422], the line `Q′,Q1(P) is computed in 4m4 + 8m and `Q,Q(P)
in m4 + s4 + 8m using light line computations (the output points are not computed). The
exponentiation to the power p3 costs only one exponentiation in Fp16 and we finally obtain the
cost of the extra line computations with two sparse multiplications (2 · 2m4):

cExtraLines = (2m4) + (4m4 + 8m) + (m4 + s4 + 8m) + f16 + (2 · 2m4)

Again, we warn the reader that this extra lines computation can probably be improved but it
would be negligible compared to the total cost of the pairing.

77

Chapter 4. Pairing-friendly curves

Final exponentiation. The first part of the exponentiation is just a conjugate, an inversion
and a multiplication (i16 + m16). The second exponentiation is detailed in [ZL12]. They raise to
the power 857500 to get a nice decomposition of the exponent 857500Φ16(p)/r =

∑7
i=0 λi(x)pi.

The λi are provided in [ZL12, page 423]. We estimate that this extra computation costs
34scyclo

16 + 32m16 + 24m4 + 8f16 + i16 + 9(34scyclo
16 + 4m16).

Estimated cost for a 128-bit security level. We reproduce the results from [CLN10] with
the parameter u = 235 − 232 − 218 + 28 + 1 from [BD19]. We obtain:

cMillerLoop = 7573m

cFinalExp = 25521m

cOptimalAte = 33094m.

We conclude this chapter with Table 4.1 which compares the three families of curves at the
128-bit security level. All the counts we obtain are reproducible with the code provided at the
begining of Section 4.4. All these cost estimations can slightly differ in practice, depending on
the implementation.

Curve Miller loop Final exponentiation Optimal ate
BN 12005m 5742m 17747m

BLS12 7685m 6288m 13973m

KSS16 7573m 25521m 33094m

Table 4.1: Cost of the optimal ate pairing for three families of curves at the 128-bit security level.

78

5 •
••

• •
•

New pairing-friendly curves

The recent improvements of the NFS algorithms threaten the security of the discrete logarithm
problem over particular finite fields. The three families of curves presented in Chapter 4 as well
as all families of curves in [FST10] compute p as a polynomial evaluated at a chosen integer. This
(often) enables the STNFS algorithm [JP14], so that the DL problem in Fpk is easier than in
other fields of same bit length. While composite extension degrees are appealing for fast pairing
computation (see Section 4.3.2), they also offer additional parameterization choices for the TNFS
algorithm [KB16]. This also makes DL computations in Fpk more efficient. In order to resist the
recent NFS variants, the sizes of the BN, BLS12 and KSS16 curves parameters need to increased
to get a large enough finite field Fpk . We gave for these three curves in Section 4.4 a detailed
estimation of the number of Fp multiplications to compute an optimal ate pairing for a 128-bit
security level.

Cryptographers looked for curves immune to these attacks. Chatterjee, Menezes and Rodríguez-
Henríquez proposed in [CMR17] to design elliptic curves of embedding degree k = 1 in order to
avoid the TNFS attack. Thus, the target finite field is a prime field. Moreover, since a non-special
prime p is chosen, the Special variant of NFS (SNFS) is not efficient and from the considerations
of Chapter 1, we obtain a lower bound on the size of the field Fp (log2(p) ≥ 3072) in order
to reach the 128-bit security level. These security advantages are balanced by drawbacks with
respect to the efficiency of pairings. On these curves, the ate pairing is not available because
the trace is t = 2. Hence, the Tate pairing must be used. Its cost is given in [CMR17]: for a
256-bit r, the Miller loop costs 4626m + i and the final exponentiation costs 4100m. The total
cost is finally 8726m + i. Note that the cost of m is much larger than in the case of the curves of
Chapter 4: the field Fp is up to six times larger. Enge and Milan proposed in [EM14] curves of
prime embedding degree k ≥ 9 for the larger security levels of 192 and 256 bits before the TNFS
attack. Their choices of curves can be revisited for the security level of 128 bits, considering the
TNFS attack.

In this chapter, we aim to generate new curves of embedding degree k > 1 that can resist the
NFS variants by construction, and estimate the cost of a pairing in these cases. We wish to avoid
special primes so that SNFS is not efficient. We present the results of a joint work [GMT20] with
Aurore Guillevic and Emmanuel Thomé. More precisely, we introduce a method for generating
pairing-friendly curves for which the prime is not parameterized with a polynomial with small

79

Chapter 5. New pairing-friendly curves

coefficients. We study the case of four embedding degrees: k = 5, 6, 7 and 8. Using a prime
embedding degree (k = 5 and 7), the Tower variant of NFS is not efficient, but the optimizations
described in Section 4.3 are not available either. In the case of embedding degree k = 6 and 8,
the Tower NFS is efficient, but we expect to have a prime p which is not special so that the finite
field Fpk is smaller than in the case of BN, BLS12 and KSS16 curves.

The estimation of the pairing cost on these new curves differs slightly from the analysis done
for the curve families in Chapter 4, even though curves of embedding degree 6 and 8 benefit
from the considerations of Section 4.3. We present in Section 5.3 an estimation of an optimal ate
pairing on four curves generated with the modified Cocks-Pinch method of Section 5.1.

We conclude this chapter with a comparison between our new curves (NFS-resistant by
construction) and the curves introduced in Chapter 4 with a larger field Fpk .

Summary
5.1 A modified Cocks-Pinch algorithm . 80

5.1.1 Pros and cons of the Cocks-Pinch algorithm 80

5.1.2 Tweak of the Cocks-Pinch algorithm . 81

5.1.3 Special form of the obtained prime . 82

5.2 Generation of curves . 83

5.2.1 Size of r and p for a 128-bit security level 84

5.2.2 Choice of discriminant . 84

5.2.3 Low weight parameters . 84

5.2.4 Twist-secure and subgroup-secure parameters. 85

5.2.5 Our new curves . 86

5.3 Pairing cost . 90

5.3.1 The Miller loop . 90

5.3.2 Final exponentiation . 91

5.4 Comparison of curves . 93

5.4.1 Elliptic curve scalar multiplication in G1 and G2. 94

5.4.2 Pairing timing estimation . 94

5.1 A modified Cocks-Pinch algorithm

In Chapter 4, we presented families of elliptic curves which have the property of being pairing-
friendly. These curves are constructed from polynomial methods, which lead to optimizations
of the pairing computations. Nevertheless, the recent NFS variants also fit very well with the
polynomial families (and in particular the BN, BLS12 and KSS16 curves presented in Chapter 4).
Hence, in order to reach the 128-bit security level, we need to increase the size of the finite field
Fpk .

In this section, we look for curves defined over Fp where the prime p is not special in the
sense of Definition 1.3. Thus, the targeted curves are not threatened by the recent variants of
NFS and we expect to obtain a smaller Fpk size. Our construction is based on the Cocks-Pinch
algorithm, already presented in Section 4.2.2.

80

5.1. A modified Cocks-Pinch algorithm

5.1.1 Pros and cons of the Cocks-Pinch algorithm

Freely chosen embedding degree. We presented in Algorithm 4.2 the Cocks-Pinch method,
that generates pairing-friendly elliptic curves for any freely chosen embedding degree. This is an
interesting property because we expect to avoid the tower NFS variant, which is more efficient for
composite embedding degrees. Some of the curve families we consider in this chapter have prime
embedding degree. This property avoids the efficiency of the TNFS algorithm, but also disables
optimizations of the pairing computation.

Non-special primes. In the Cocks-Pinch algorithm, the parameters are chosen using integers
mod r, contrary to the polynomial methods that led to the three families of Section 4.2.2. In
Algorithm 4.2, t′ is a polynomial evaluated at the k-th root of unity T . However, y′ is defined
using the inverse of

√
−D mod r.

• When the discriminant is large, 1/
√
−D has no structure and so no sparse polynomial can

parameterize the prime p = (t2 +Dy2)/4.

• Choosing a particular discriminant (typically D = 3 or 4), one can obtain a parameterization
of t and y. For instance, when D = 4 and k = 4,

√
−D = 2T 2 where T is a primitive fourth

root of unity mod r. Then y′ = (T − 1)/
√
−D = (T − 1)T 2/2 is a polynomial in T . Finally,

using a trivial lift from Z/rZ to Z, we obtain a parameterization of p that could accelerate
the discrete logarithm computations using the special variant of NFS.

Slow pairings. The Cocks-Pinch algorithm is not used in practice for one main reason: the
pairing on Cocks-Pinch curves is not efficient. In the original algorithm, the ρ-value is by definition
ρ(E) ≈ 2 because log2(p) ≈ 2(log2(t)− 1). Moreover, the trace t of the curve is an integer mod r
which satisfies log2(t) ≈ log2(r) ≥ 256 for our security level. As we have seen in several examples,
the pairing efficiency is closely related to the trace t of the curve: in the ate pairing, the Miller
function iterates on a k-th root of unity which is a power of t − 1. Using a large trace t, the
number of DoubleLine steps increases and the efficiency is affected. In the next section, we
modify the Cocks-Pinch algorithm in order to generate curves with a small trace t.

5.1.2 Tweak of the Cocks-Pinch algorithm

To avoid special primes, we revisit the Cocks-Pinch method, which constructs pairing-friendly
curves with freely chosen embedding degree k and discriminant −D. The classical Cocks-Pinch
algorithm first fixes the prime r and deduces a root of unity mod r to compute t and then p
satisfying the conditions of pairing-friendly curves. Instead, we first choose T small, and then
compute r such that T is a root of the k-th cyclotomic polynomial Φk mod r. Our variant is given
in Algorithm 5.1. The trace t̄ ∈ Z/rZ can be any of t̄ = T i + 1 mod r where gcd(i, k) = 1, and
±ȳ = (t̄− 2)/±

√
−D mod r as in the original method. We then lift t̄,±ȳ to t0, y0 ∈ Z. There

is a trade-off between non-speciality of the prime p and optimization of the pairing efficiency
(i.e. choosing sparse parameters T , ht and hy). Since

√
−D is only determined up to sign, we fix

the sign indetermination problem as follows.

Remark 5.1 (Normalisation of t0 and y0). When lifting t̄,±ȳ from Z/rZ to Z, we choose t0
as the signed representative of t̄ with smallest absolute value, and y0 as the smallest positive
representative of ±ȳ.

81

Chapter 5. New pairing-friendly curves

The choice of the cofactors ht and hy in Algorithm 5.1 must abide by certain rules so that
the Weil number π is an algebraic integer: if −D ≡ 0 mod 4, then t0 + ht must be even,
and if −D ≡ 1 mod 4, then t0 + y0 + ht + hy must be even. For p to have the desired bit
length, we notice that ht and hy must be chosen in an annulus-like region given by the equation
2λp+1 ≤ (t0 + htr)

2 +D(y0 + hyr)
2 < 2λp+2.

Algorithm 5.1: ModifiedCocksPinch(k,−D,T0, Tmax, λr, λp)

Input. An embedding degree k, a discriminant −D, a range {T0, . . . , Tmax}, a bitlength λr and
a bitlength λp.
Output. A pairing-friendly curve of embedding degree k and fundamental discriminant −D,
where dlog2(p)e = λp and dlog2(r)e = λr.

for T ∈ {T0, . . . , Tmax} do
if r = Φk(T) is not prime then continue
if dlog2(r)e 6= λr or −D is not a square mod r then continue
for i in {1, 2, . . . , k − 1} such that gcd(i, k) = 1 do

t0 = T i + 1 mod r; y0 = (t0 − 2)/
√
−D mod r . see Section 1.2.2

Let π0 = t0+y0
√
−D

2 .

Choose ht and hy such that π = π0 +
ht+hy

√
−D

2 r is an algebraic integer, and
dlog2(ππ̄)e = λp.
t = t0 + htr; y = y0 + hyr; p = ππ̄ = (t2 +Dy2)/4
if p ≡ 1 mod k then . optimization; see Remark 1.4

if p is prime then return [p, r, T, t, y]

5.1.3 Special form of the obtained prime

The special variants of NFS rely on a special form of p: the prime integer should have a polynomial
form p = p(x) where p(x) is a polynomial. Roughly put, for the special variants to apply, p(x)
should have degree at least 3 and (most importantly) tiny coefficients. In Chapter 1, we have
studied several examples of parameterizations where the special variant of NFS apply. In particular,
the prime involved in the BN curves fits with the Special setting: the polynomial p(x) has degree
4 and small coefficients. Parameters of BLS12 and KSS16 curves also fit well with SNFS (one can
use 3p(x) and 980p(x) in order to obtain a polynomial with small coefficients). We will obtain
families of curves where p(x) has a degree larger than 2 but has large coefficients so that the
special setting (STNFS) does not perform better than a generic setting (TNFS).

In this section, we discuss whether we hold to our promise that p, as issued by Algorithm 5.1,
is not special. The prime p has the form

p =
1

4

(
(t0 + htr)

2 +D (y0 + hyr)
2
)

where t0, y0 are centered representatives of T i + 1 mod r and (t0 − 2)/
√
−D mod r resp., and

both r and t0 are low-degree polynomials in T .
If T , ht, and hy are chosen by Algorithm 5.1 as random integers of the desired bit length, and

that D is arbitrary (then y0 has no nice sparse polynomial expression in T), then the expression
above is considered unlikely to yield any computational advantage to an attacker.

82

5.2. Generation of curves

On the other hand, efficiency considerations of Section 4.3 may lead us to choose D specially,
so as to allow extra automorphisms on the curve, for example choose −D as the discriminant of
the d-th cyclotomic field Q(ζd) for some d | k. Then

√
−D typically has a low-degree polynomial

expression in T . Our case of interest is typically D = 4 and D = 3, when some twists may be
defined over a subfield of Fpk . From Section 2.7, this is the case in particular when D = 4 and
4 | k or when D = 3 and 6 | k.

• If D = 4 and k = 4k′, then by construction, T is a primitive k-th root of unity. Hence,
ζ = T k

′ is a fourth root of unity and so up to sign,
√
−4 = 2ζ.

• If D = 3 and k = 6k′, then ζ = T 2k′ is a third root of unity, and so up to sign,
√
−3 = 2ζ+1.

The study of the pairing cost in Section 4.3 explains that the Miller loop and the final exponenti-
ation are accelerated with sparse parameters. In particular, T , ht, and hy can be chosen with low
Hamming weight, and in this context, the answer for the parameterization of p is less clear. In
comparison to other pairing-based constructions however, we have here a multivariate expression
for p (it depends on T , ht, and hy). First there exists no special-purpose NFS construction that
adapts well to a bivariate polynomial. Secondly for fixed ht and hy, one can obtain a univariate
polynomial in T . This setting will provide a notable advantage to NFS only if ht and hy are
tiny enough to produce a sparse polynomial pht,hy(T). As an illustration, here is the multivariate
expression of 4p in the case k = 8, D = 4, and i = 1.

4p = (h2
t + 4h2

y)T
8 + 4hyT

7 − (4hy − 1)T 6 + 2(ht − 1)T 5

+(2h2
t + 8h2

y + 2ht + 1)T 4 + 4hyT
3 − (4hy − 1)T 2 + 2(ht + 1)T

+(h2
t + 4h2

y + 2ht + 1).

If ht and hy are small, one can get a univariate expression for p and exploit the S(T)NFS variant.
In [FK19, Remark 3, Table 3], one finds a family (denoted FK-8 in the following to stand for
Fotiadis-Konstantinou) with D = 4, ht = 1, hy = 0 and p(x) = (x8 + x6 + 5x4 + x2 + 4x+ 4)/4,
r(x) = x4+1, t(x) = x+1+r(x) = x4+x+2, y(x) = (x3−x2)/2 (where p(x) = (t(x)2+4y(x)2)/4).
In the next section, we provide a curve of embedding degree k = 8 where p is of 544 bits, and we
have hy of 16 bits, hence pht,hy(T) has coefficients of more than 32 bits.

5.2 Generation of curves

In this section, we precise how to use Algorithm 5.1 in order to generate STNFS-secure pairing-
friendly curves together with an efficient ate pairing. The code we used is accessible at

https://gitlab.inria.fr/smasson/cocks-pinch-variant.

Some parameters need to be provided to use the CocksPinchVariant function. Note that these
parameters can also be specified in the search.sage script.

We target small embedding degrees k ∈ {5, . . . , 8}, between the k = 1 curves [CMR17], and
the BN and BLS12 curves [BD19]. We specify a parameter (k here) in our code as follows:

$ sage search.sage -k 5 (...)
$ sage search.sage -k 6 (...)
$ sage search.sage -k 7 (...)
$ sage search.sage -k 8 (...)

83

https://gitlab.inria.fr/smasson/cocks-pinch-variant

Chapter 5. New pairing-friendly curves

In order to obtain an efficient ate pairing together with a 128-bit security level, we need to
specify several parameters for our modified Cocks-Pinch algorithm. We compensate the NFS
variants by choosing appropriate size for the prime p in Section 5.2.1. In order to allow as many
twists as possible, we explain the choice of discriminant in Section 5.2.2. Choosing low weight
values for T as well as for the cofactors ht and hy reduces the cost of the pairing; we specify
these parameters in Section 5.2.3. We aim to generate twist-secure and subgroup-secure elliptic
curves as defined in Sections 2.8.4 and 2.8.5. It is sometimes hard to fill all the properties for G1,
G2 and G. We explain our choices in Section 5.2.4. Finally, we provide the curves we found in
Section 5.2.5.

5.2.1 Size of r and p for a 128-bit security level

In order to reach the 128-bit security level, we estimate the size of the subgroups we use: E[r]
and the multiplicative subgroup of order r of F∗

pk
.

Curve subgroups. The situation is quite simple (see Section 2.8.1) on elliptic curves: we
choose a subgroups of order r of 256 bits, which is set in Algorithm 5.1 with λr = 256.

Finite field subgroup. We study the case of finite fields as in Chapter 1. By construction,
our Modified Cocks-Pinch algorithm provides curves resistant to the special variant of NFS: the
prime p is parameterized by a polynomial with large enough coefficients to avoid the special NFS
variant.

The situation for embedding degrees k = 5 and 7 is different than for k = 6 and 8 in the sense
that the TNFS algorithm has no latitude for prime embedding degrees. Thus, the size of the
finite field Fpk can be reduced in the case of prime embedding degrees.

• For curves of embedding degree k = 6 and 8, the TNFS variant applies and we estimate
that the finite field Fpk needs to be roughly up to 4000 bits. Applying the NFS algorithm
and its tower variant when p comes from the Modified Cocks-Pinch method, we reach the
128-bit security level when log2(pk) = 4032 for a curve of embedding degree k = 6 (resp.
log2(pk) = 4352 for a curve of embedding degree k = 8). These sizes bring us a lower bound
for log2(p): λp = 672 (resp. λp = 544).

• For curves of embedding degree k = 5 and 7, the tower variant is not efficient and we can
use a finite field Fpk of roughly 3300 bits. After studying the discrete logarithm problem in
these cases, we estimate that the 128-bit security level is reached for λp = 663 for k = 5,
and λp = 512 for k = 7.

In the same way as for the embedding degree k, these options are specified with the parameters
--lambdar and --lambdap in the CocksPinchVariant function.

5.2.2 Choice of discriminant

According to the efficiency considerations of Section 4.3, we target curves with as many twists
as possible. Algorithm 5.1 uses a freely chosen discriminant D, but it is preferable to choose
D = 3 (resp. D = 4) when the embedding degree is divisible by 6 (resp. by 4). Hence, for k = 6
(resp. k = 8), we set D = 3 (resp. 4) so that a sextic (resp. quartic) twist is available. In the
CocksPinchVariant function, we use -D 3 or -D 4 to specify this parameter. For k = 5 and
7, there is no subfield between Fp and Fpk . In consequence, no twist optimization is possible

84

5.2. Generation of curves

and there is no reason to choose a particular discriminant. For k = 5, we choose arbitrarily
D ≈ 1010, which is well within the feasible range for the CM method (see also Section 5.2.5). In
our code, we set -D 10000000147 which is the first possible discriminant above 1010. For k = 7,
the size of p (512 bits) restricts us to small discriminants, since we must have 4p = t2 +Dy2 with
log2(t), log2(y) ≈ log2(r) = 256. We decided to avoid D = 3 and 4 (even though no known attack
takes advantage of these particular values), and chose D = 20 (-D 20).

5.2.3 Low weight parameters

Algorithm 5.1 iterates on different values of T which is a considerably large integer. The lift from
Z/rZ to Z also depends on the choice of cofactors ht and hy. In terms of efficiency, restricting
to low weight integers results in a pairing speed-up. However, we want a large enough range of
values so that we obtain a suitable curve. We studied the trade-off between a small hamming
weight (or 2-NAF weight) of these integers and the number of possible curves generated.

Miller iteration. The integer T corresponds to the Miller iteration in Algorithm 4.3. The
number of AddLine steps is determined by the Hamming weight of T (or the weight of the
2-NAF of T). We restrict to low weight T in order to get a more efficient Miller loop. There is a
trade-off between the low weight of Miller iteration and the number of curves which can be very
small depending on the properties we aim to satisfy. We found pairing-friendly curves for values
of T which satisfy HW2-NAF(T) ≤ 5, except in the case of k = 7 where the first curves we found
were for HW2-NAF(T) ≤ 8. This option is specified in the CocksPinchVariant function or in the
search.sage file using the synthax --T_choice "2-naf<=5". Note that we obtained a curve of
embedding degree k = 5 using a T of hamming weight HW(T) = 4. Thus, one can reproduce our
search of curve using --T_choice hamming=4 in the provided code.

Lifting coefficients ht and hy. The choice of the cofactors ht and hy in Algorithm 5.1 must be
chosen in an annulus-like region given by the equation 2λp+1 ≤ (t0 +htr)

2 +D(y0 +hyr)
2 < 2λp+2

for p to have the desired bit length. We can restrict our search of curve for small Hamming
weight cofactors so as to accelerate the exponentiation to the power c in the second part of the
final exponentiation. Similarly with the cases of Sections 4.4.1, 4.4.2 and 4.4.3, we would like to
compute the final exponentiation using a polynomial representation of p. In our modified Cocks-
Pinch algorithm, we avoid univariate representation, but a multivariate expression p(ht, hy, T)
is still available when k = 6 or 8 (see Section 5.1.3). Using tiny coefficients ht and hy, this
multivariate expression becomes a univariate one. Hence, we can restrict to both small cofactors
only when k = 5 and 7. In practice, to satisfy the annulus-like region equation, we need to
increase the size of one of the cofactors in the case k = 5.

As the final exponentiation is closely related to exponentiations to the power ht (see Section 5.3),
we restrict on as small T as possible. We found elliptic curves with the desired properties for
|ht| < 4 and HW2-NAF(hy) ≤ 7. This criterion is set using --hty_choice "2-naf<=7:ht:max=4".
In the case of k = 7, the bounds on p let us restrict on |ht|, |hy| < 4.

5.2.4 Twist-secure and subgroup-secure parameters.

We checked our curves for twist-security and subgroup-security (see Section 2.8.4, 2.8.5 and [BCM+15]).
For each curve (say E), G1 and G2 are vulnerable to the twist and subgroup attacks, and G is
also threatened by subgroup attacks. This makes five groups for which we can investigate the
small subgroups:

85

Chapter 5. New pairing-friendly curves

• The curve E defined over Fp corresponding to the subgroup-security of G1,

• The quadratic twist of E, also defined over Fp, corresponding to the twist-subgroup-security
of G1,

• The curve corresponding to the subgroup-security of G2. In the case of k = 5 and 7, no
twist is available and so we investigate E(Fpk). However, in the case of k = 6 (resp. k = 8),
the twist compression lets us investigate a sextic (resp. quartic) twisted curve to E, defined
over Fp (resp. Fp2).

• The quadratic twist of the curve corresponding to G2. In the case of k = 6 (or 8), it is
another sextic (or quartic) twisted curve to E.

• The group G (with respect to Φk(p)).

We aim to generate curves for which the cofactors of the orders of these five groups are not too
large. We did not investigate the G subgroup-security: together with the Cocks-Pinch conditions,
it would require finding parameters such that Φk(p)/r is prime or almost prime. With the sizes
provided in Section 5.2.1, 1088 ≤ log2(Φk(p)/r) ≤ 2816 so it is difficult to factor this thousand-bit
integer entirely and it will very unlikely be prime.

An option is available in our code using the --check_small_subgroup_secure parameter,
which is a bitmap, more precisely a sum of bits corresponding to the four first items above.
For example, --check_small_subgroup_secure 11 corresponds to filter curves which are twist-
secure and subgroup-secure for G1, and twist-secure for G2 (as 11 = 1011

2). This parameter is
also related to authorized cofactors. We provide in our code:

--required_cofactor is a useful option for obtaining an efficient group law on the curve (for
instance, #E(Fp) = 4 (mod r) is necessary for the Montgomery model).

--allowed_size_cofactor is an integer for allowing subgroup of small size (checking the sub-
group attack is not expensive for very small subgroups).

--automatic_cofactor is an option when a factor automatically divides some of the curve orders
we are considering.

5.2.5 Our new curves

Many parameters can be specified in our code. The documentation is available on the repository.
Setting the parameters, we are able to generate pairing-friendly elliptic curves of embedding
degree five to eight. Recall that from the prime p, the discriminant D, the trace t and the
conductor y, we use the complex multiplication (CM) theory of Section 2.5 to recover the curve
equation.

We obtain elliptic curves of embedding degree five to eight. We denote by Et the quadratic
twist of E and Ẽ the degree d twist of E such that E(Fpk)[r] ' Ẽ(Fpk/d)[r]. For the remainder
of this section, the notation pN denotes an arbitrary prime of N bits.

Curve of embedding degree 5

Using the parameters provided in the previous sections, we run the search.sage script as follows:

86

5.2. Generation of curves

sage search.sage -k 5 -D 10000000147\
--hty_choice ht:max=4 --restrict_i '[1]'\
--save --T_choice hamming=4\
--lambdap 663 --lambdar 256\
--check_small_subgroup_secure 15 --required_cofactor 4\
--spawn 4 --parallel-mode hy 0 4294967296

On houblon.loria.fr, a fraction 4/239 of the search space is processed in 128 seconds (wall-clock
time). The following curve was found by job 24165/236:

C=CocksPinchVariantResult(5,10000000147,0xe000000000008000,\
1,ht=3,hy=0x11e36418c7c8b454,\
max_B1=600)

As we decided to choose the largest possible discriminant, we need to compute efficiently the
Hilbert class polynomial in order to obtain the j-invariant of the curve. The classpol package
from Andrew Sutherland provides the algorithm described in [Sut10, ES10]. A specificity of
this software is that it computes the class polynomial modulo p directly. For our discriminant
D ≈ 1010, the computation took less than two hours on one core and we obtain a polynomial HD

of degree 8321. One could have obtained this polynomial faster using the doubleeta parameter
instead of j. The next step is to get a j-invariant by finding a root of this polynomial (it completes
in about twenty minutes).

From the j-invariant, we derive the curve equation using Equation (2.5). We obtain a curve
E : y2 = x3 − 3x+ b5 defined over Fp with

b5 = 0x3dd2d2b0b2e68770bf01b41946ab867390cf9ecc4a858004fc769c
278f079574677c7db3e7201c938b099f85eb6e85f200b95a80b24fdb
df584098d690c6b91b21d00f52cc79473a11123b08ab2a616b4a4fbf

p = 0x40000138cd26ab94b86e1b2f7482785fa18f877591d2a4476b4760
217f860bfe8674e2a4610d669328bda13044c030e8cc836a5b363f2d
4c8abcab71b12091356bb4695c5626bc319d38bf65768c5695f9ad97.

In particular, the curve is twist-secure and subgroup-secure for both G1 and G2 (given a cofactor
4):

#E(Fp) = 22 · p405 · r #Ẽ(Fp5) = p2393 · (22 · p405 · r) · r

#Et(Fp) = 22 · p661 #Et(Fp5) = p2649 · (22 · p661)

r = 0x9610000000015700ab80000126012600c4007000a800e000f000200040008001

The additional parameters to obtain the curve from Algorithm 5.1 are :

T = 264 − 261 + 215, D = 1010 + 147, i = 1, ht = 3, hy = 0x11e36418c7c8b454

and Fp5 can be defined as Fp[x]/(x5 − 5).

Curve of embedding degree 6

In the case of k = 6, we choose the parameters so that it allows to get sextic twists and sparse T ,
ht and hy as described above. A search of curve can be done using

87

https://math.mit.edu/~drew/classpoly_v1.0.2.tar

Chapter 5. New pairing-friendly curves

sage search.sage -k 6 --D 3 \
--hty_choice '2-naf<=7,ht:max=4' \
--save --T_choice '2-naf<=5' \
--lambdap 672 --lambdar 256 \
--check_small_subgroup_secure 7 --required_cofactor 4 \
--allowed_automatic_cofactor 720 --allowed_cofactor 420 \
--allowed_size_cofactor 10

We obtain four interesting curves and one of them is given by

C=CocksPinchVariantResult(6,3,0xefffffffffffffe00000000000000000, \
1,ht=-1,hy=0xffbbffffffffffffc020, \
allowed_cofactor=420,allowed_size_cofactor=10, \
max_B1=600)

The corresponding elliptic curve is E : y2 = x3 − 1, defined over Fp with

p = 0x9401ff90f28bffb0c610fb10bf9e0fefd59211629a7991563c5e468
d43ec9cfe1549fd59c20ab5b9a7cda7f27a0067b8303eeb4b31555cf4
f24050ed155555cd7fa7a5f8aaaaaaad47ede1a6aaaaaaaab69e6dcb

This curve is twist-secure and subgroup-secure for η = 8:

#E(Fp) = 22 · p414 · r #Ẽ(Fp) = 3 · p414 · r

#Et(Fp) = 22 · 3 · 7 · p665 #Et(Fp) = 13 · 19 · p664

r = 0xe0ffffffffffffc400000000000003ff10000000000000200000000000000001

The additional parameters to obtain the curve from Algorithm 5.1 are :

T = 2128 − 2124 − 269, D = 3, i = 1, ht = −1, hy = 280 − 270 − 266 − 0x3fe0

and Fp6 can be defined as Fp[x]/(x6 − 2).

Curve of embedding degree 7

We decided to generate a curve of embedding degree k = 7 with a small discriminant D = 20 (see
Section 5.2.2). The Hilbert class polynomial H20 is easy to compute: H20(x) = x2 − 1264000x−
681472000. We search a curve using the following command. In practice, a parallel search is
preferred.

sage search.sage -k 7 --D 5 \
--hty_choice 'max=3' \
--save --T_choice '2-naf<=8'
--lambdap 512 --lambdar 256 \
--check_small_subgroup_secure 3 \
--required_cofactor 4 \
--allowed_automatic_cofactor 720 --allowed_cofactor 420 \
--allowed_size_cofactor 10

We obtain suitable curve parameters:

88

5.2. Generation of curves

C=CocksPinchVariantResult(7,20,0x5fffb820248, \
6,ht=-2,allowed_cofactor=1232, \
allowed_size_cofactor=10, \
max_B1=600)

The corresponding curve is obtain using a root of the Hilbert class polynomial modulo p. We get
that a curve E : y2 = x3 − 3u2x+ b7u

3 defined over Fp with

b7 = 0x15d384c76889d377dd63600fbe42628e0c386a3e87
915790188d944845aab2b649964f386dc90b3a9b612
0af5da9a2aaead5e415dd958c5cfa80ea61aac268b0

p = 0x8f591a9876a6d2344ae66dd7540ea2fd28174755d1
6c4ae5c5cd5c1d208e639271b48c8ba7453c95a2a9b
e6434f2455504d419f13e35062aa5ebbc49ecfd30f9

u = 11

satisfies
#E(Fp) = 22 · 32 · p251 · r #Et(Fp7) = 25 · 5 · p504

r = 0xb63ccd541c3aa13c7b7098feb312eecf5648fd215c0d2916714b429d14e8f889

The additional parameters to obtain the curve from Algorithm 5.1 are :

T = 243 − 241 − 0x47dfdb8, D = 20, i = 6, ht = −2, hy = 0

and Fp7 can be defined as Fp[x]/(x7 − 2).

Curve of embedding degree 8

The search of the k = 8 curve can be done using the command

sage search.sage -k 8 --D 1 \
--hty_choice '2-naf<=7,ht:max=4' \
--save --T_choice '2-naf<=5' \
--lambdap 544 --lambdar 256 \
--check_small_subgroup_secure 7 --required_cofactor 4 \
--allowed_automatic_cofactor 720 --allowed_cofactor 420 \
--allowed_size_cofactor 10

We finally obtain parameters using:

C8=CocksPinchVariantResult(8,4,0xffc00020fffffffc,1,ht=1,hy=0xdc04, \
allowed_cofactor=420,allowed_size_cofactor=10, \
max_B1=600)

We derive the curve E : y2 = x3 + 2x defined over Fp with

p = 0xbb9dfd549299f1c803ddd5d7c05e7cc0373d9b1ac15b
47aa5aa84626f33e58fe66943943049031ae4ca1d2719b
3a84fa363bcd2539a5cd02c6f4b6b645a58c1085e14411

which satisfies

#E(Fp) = 22 · 32 · 5 · 41 · p275 · r #Et(Fp) = 24 · p540 #Ẽ(Fp2) = 2 · 89 · p824 · r

89

Chapter 5. New pairing-friendly curves

r = 0xff0060739e18d7594a978b0ab6ae4ce3dbfd52a9d00197603fffdf0000000101

The additional parameters to obtain the curve from Algorithm 5.1 are :

T = 264 − 254 + 237 + 232 − 4, D = 4, i = 1, ht = 1, hy = 0xdc04

and Fp8 can be defined as Fp[x]/(x8 − 5).

5.3 Pairing cost

In this section, we estimate the cost of the ate pairing in the case of our four curves generated
by the modified Cocks-Pinch method. By construction, the ate pairing is optimal in the sense
of Definition 4.8: we have tweaked the Cocks-Pinch algorithm so that the k-th root of unity T
mod r is as small as possible. In the context of the ate pairing in these curves, it corresponds
to the Miller iteration: Ar,T (Q,P) = fT,Q(P)(pk−1)/r. The size of the Miller iteration defines
how far the pairing is from optimal. We generated curves where log2(T) = log2(r)/ϕ(k), which
corresponds to the optimal case.

We continue the cost estimation by studying the Miller loop and the final exponentiation
separately. Our curves of embedding degree k = 6 (resp. k = 8) has been constructed so that
it has sextic (resp. quartic) twists. Hence, from the study of Section 4.3, many optimizations
are available for these two curves. The story is slightly different for the two curves of prime
embedding degree: the curves do not have any twist defined over a subfield of Fpk (Fpk does not
have any proper subfield except Fp). Thus, denominators are computed during Algorithm 4.3,
line computation formulas are different from j = 0, 1728 curves, and the final exponentiation
computation cannot use any possible parameterization of the primes p and r. As for BN, BLS12
and KSS16 curves, we count the number of multiplications over Fp.

5.3.1 The Miller loop

Curves with twists. We begin with the estimation for the curves of embedding degree k = 6
and 8 which is very similar to the BN, BLS12 and KSS16 curves. Our two curves have been
constructed so that they have as many twists as possible. In consequence, we can use the
optimizations of Section 4.3.2 in order to compute efficiently the lines, omit denominators, etc.
The study of Sections 4.4.1 and 4.4.2 is very similar to the case of curves of embedding degree
k = 6 and discriminant D = −3. We roughly manipulate elements of Fp6 and Fp instead of Fp12
and Fp2 . We finally obtain:

cMillerLoop =(log2(T)− 1)(3m + 6s + 2m) + (log2(T)− 2)(13m + s6)

+ (HW2-NAF(T)− 1)(11m + 2s + 2m + 13m).

The Miller step in Section 4.4.3 is closely related to the case of our k = 8 curve. Again, it
corresponds to computations on Fp8 and Fp2 instead of Fp16 and Fp4 . The Miller cost for the
k = 8 curve is:

cMillerLoop =(log2(T)− 1)(2m2 + 8s2 + 4m) + (log2(T)− 2)(8m2 + s8)

+ (HW2-NAF(T)− 1)(9m2 + 5s2 + 4m + 8m2).

90

5.3. Pairing cost

Algorithm 5.2: AddLine(S,Q, P) and DoubleLine(S, P)

Input. S ∈ E(Fpk), Q ∈ E(Fpk), P ∈ E(Fp).
Output. The line `S,Q at P ,

The point S +Q.

(X,Y, Z, Z2)← S
(xQ, yQ)← Q
(xP , yP)← P
t1 ← xQ · Z2 −X
t2 ← yQ · Z · Z2 − Y
t3 ← t21
t4 ← t1 · t3
t5 ← X · t3
X← t22 − (t4 + 2t5)
Y ← t2 · (t5 −X)− Y · t4
Z← Z · t1
λd ← Z
λn ← λd · (yP − yQ)− t2 · (xP − xQ)
return ((λn, λd),S = (X,Y,Z,Z2))

Input. S ∈ E(Fpk),P ∈ E(Fp).
Output. The tangent line `S,S at P ,

The point [2]S.

(X,Y, Z, Z2)← S
(xP , yP)← P
t1 ← Y 2

t2 ← 4X · t1
if a = −3u2 for a small u ∈ Fp then

t3 ← 3(X − uZ2) · (X + uZ2)
else

t3 ← 3X2 + a · Z2
2

X← t23 − 2t2
Y ← t3 · (t2 −X)− 8t21
Z← Z · 2Y
λd ← Z · Z2

λn ← λd · yP − 2t1 − t3 · (Z2 · xP −X)
return ((λn, λd),S = (X,Y,Z,Z2))

Algorithm 5.3: VerticalLine(S, P)

Input. S ∈ E(Fpk), P ∈ E(Fp).
Output. The vertical line `S,−S at P .

(X,Y, Z, Z2)← S; (xP , yP)← P
return (µn = Z2 · xP −X,µd = Z2)

Curves of prime embedding degree. In the case of curves of prime embedding degree, the
story is slightly different. There is no subfield between Fp and Fpk and so no compression can be
done using twists. Hence, the Miller loop is computed using multiplications over Fpk . Moreover,
we need to compute denominators and so the Update 1 and 2 are more expensive. Finally, the
Update 3 is necessary and costs 2mk for updating with the vertical line vQ(P).

We reuse Algorithm 4.3 and design the line functions when there is no compression for G2, and
when no subfield factor can be omitted. These functions are detailed as Algorithms 5.2 and 5.3.
The input point S as well as the output point S in these algorithms are in modified Jacobian
coordinates (see Section 2.8.2). Note that our curves of embedding degree k = 5 and 7 have
Weierstrass equations E−3,b5 and E−3·112,b7·113 which leads to an optimization in the Doubling
step, as explained in Remark 2.27.

Counting the number of multiplications and squarings in the latter algorithms, we obtain that
when the embedding degree is prime,

cDoubleLine = 6mk + 4sk + 2km, cAddLine = 10mk + 3sk, cVerticalLine = km,

cUpdate1 = 4mk + 2sk, cUpdate2 = 4mk, cUpdate3 = 2mk.

91

Chapter 5. New pairing-friendly curves

We deduce from Equation (4.3) the Miller step cost for our curves of prime embedding degree:

cMillerLoop =(log2(T)− 1)(6mk + 4sk + 2km + km) + (log2(T)− 2)(4mk + 2sk)

+ (HW2-NAF(T)− 1)(10mk + 3sk + km + 4mk)

+ km + 2Nb−1,Tmk + ik.

5.3.2 Final exponentiation

As in Section 4.3.3, we use the decomposition of the exponent(pk − 1)/r into two factors to
compute the final exponentiation:

pk − 1

r
=
pk − 1

Φk(p)
· Φk(p)

r

First part. The first part of the exponentiation is very similar to the case of BN, BLS12 and
KSS16 curves: the factor (pk − 1)/Φk(p) is a polynomial in p whose coefficients are 0, 1 or −1.
Recall that we always consider binomial extension fields so that the Frobenius can be computed
efficiently (see Section 1.2.2). Thus, we use Frobenius powers to compute the first exponentiation,
as in Section 4.3.3:

• If k = 5, (p5 − 1)/Φ5(p) = p− 1 and the exponentiation costs one Frobenius, one inversion
and one multiplication in Fp5 . Note that we can omit the Frobenius power which appears in
the computation of the inversion (see Section 1.2.3). Finally, cFirstExp = (4m) + i5 + m5.

• If k = 6, (p6− 1)/Φ6(p) = (p+ 1)(p3− 1). The first exponentiation to the power p+ 1 costs
one Frobenius and one multiplication in Fp6 . The second part is computed using the fact
that ap3−1 = ā/a = a2/N(a) (where ā denotes the conjugate of a in Fp6 seen as a quadratic
extension of Fp3). It costs 2s3 + 3m3 + i3. Finally, cFirstExp = f6 + m6 + 2s3 + 3m3 + i3.

• If k = 7, the situation is similar to the case when k = 5. The first exponentiation costs
cFirstExp = (6m) + i7 + m7.

• If k = 8, (p8 − 1)/Φ8(p) = p4 − 1 which costs only cFirstExp = i8 + m8 because ap4 is the
conjugate of a in Fp8 seen as a quadratic extension of Fp4 .

Second part. The second part of the exponentiation is more expensive and is specific to each
curve. The key ingredient is the base-p representation of the exponent, since Frobenius powers pi

are computed efficiently. Notice that in Algorithm 5.1, we have p ≡ (t− 1) ≡ (t0− 1) mod r. Let
c be such that p+ 1− t0 = c · r. The expression (Φk(p)−Φk(t0 − 1))/r simplifies, and we obtain
a nice generic formula in p and t0 for each embedding degree. The actual expression depends on
the exponent i in Algorithm 5.1, as well as on congruence conditions on T . We only detail a few
examples. Formulas for the other cases can be obtained with the companion software mentioned
in Section 4.4.

For k = 8, we choose D = 4 so that
√
−D = 2T 2. When for instance we choose i = 1 in

Algorithm 5.1, we have t0 = T + 1 mod r. This leads to the following expression, where hu
denotes the integer (ht + 1)/2.

Φ8(p)/r = Φ8(t0 − 1)/r + (p+ t0 − 1)(p2 + (t0 − 1)2)c,

c = ((((h2
u − hu + h2

y + 1/4)T + hy)T − hy + 1/4)T

+hu − 1)T + h2
u + h2

y (5.1)

92

5.3. Pairing cost

where Φ8(t0−1)/r = Φ8(T)/r = 1 by construction. To raise to the power Φ8(p)/r, we use the fact
that T is even to deal with fractional values in the exponent. The cost estimation of cc is specific
to each curve, and we give here the details when i = 1. Note that we provide the code for all cases
in the code repository mentioned in Section 4.4. Since the first part of the final exponentiation
has been done, we know that ap4+1 = 0 so that a−1 = ap

4
= a where the conjugate is taken over

the subfield Fp4 . The formula below is specific to i = 1, but we let T = 4U + 2V which is the
most general form (with V ∈ {0, 1}). If we apply this to the parameters in Section 5.2.5, we can
do some simplifications using V = 0 (in square brackets below). Here we use cT to represent the
cost of any set of operations whose cost is similar to b = b2 followed by b = (b2)UbV , although
scheduling above is sometimes different.

ay = ay; au = au; aQ = ayya
u
u; b = aQau; (2cu + 2cy + 2mk)

b = b2; b = (b2a)UbV ; b = bay; (cT + 2mk)

b = b2; [b = baV]; b = (b2)UbV ; b = bay; (cT + mk[+mk])

b = b2; b = (b2a)UbV ; b = bau; b = ba; (cT + 3mk)

b = b2; [b = baV]; b = (b2)UbV ; b = baQ; (cT + mk[+mk])

The cost of an exponentiation to the power c is cc = 11mk + 4cT + 2cu + 2cy in general, and
2mk less if V = 0.

For k = 6, we choose D = 3 so that
√
−D = 2T − 1. We obtain expressions that vary slightly

depending on i, and on the congruence class of ht mod 2 and T mod 3. It also appears that it
is more convenient to compute the cube of the pairing. When for instance we choose i = 1 in
Algorithm 5.1, and that T mod 3 = 1 and ht mod 2 = 1, we have the following expression, where
u = (ht + 1)/2, w = hy/2, and T ′ = T − (T mod 3) = T − 1:

3Φ6(p)/r = 3Φ6(t0 − 1)/r + 3(p+ t0)c,

3c = ((3u2 + 9w2 − 3u− 3w + 1)T ′+

3u2 + 9w2 − 6w)T ′ + 3u2 + 9w2 + 3u− 9w. (5.2)

Raising to the power 3Φk(p)/r thus has the following cost (we give an upper bound on all possible
congruence conditions). We use cu, cw, cT and cT ′ to denote the cost of raising to the powers u,
w, T and T ′ = T − (T mod 3), respectively.

cSecondExp,k=6 = (cT + fk + 2sk + 4mk) + (12mk + 2sk + 2cu + 2cw + 2cT ′).

For k = 5 and k = 7, we use p = (t0 − 1) + cΦk(T) to reduce Φk(p)/r = Φk(p)/Φk(T) (as a
rational function in T) in the form

Φk(p)/r =
∑

0≤j≤k−2

pjaj(c, T).

The exact expression of the coefficients (aj)j depends on k and i, and so does the cost of raising
to these powers. For example, for k = 5 and i = 2, we have

(aj)0≤j≤3 = (−cT 3 − T + 1,−cT 3 − (c+ 1)T + 1, cT 2 + c+ 1, c).

By applying this method, we found that for k = 5 and k = 7, raising to the power Φk(p)/r costs
at most

cSecondExp,k∈{5,7} = 2ik + (k − 2)(fk + cT + 2mk) + cc + mk

where the two inversions can be saved in the favorable case i = 1, and cT and cc are the costs of
raising to the powers T and c, respectively.

93

Chapter 5. New pairing-friendly curves

5.4 Comparison of curves

We compare the four curves generated in Section 5.2.5 with the state of the art: BN and BLS12
curves [AFK+13], KSS16 curves [CLN10, §4], and k = 1 curves [CMR17] presented at the
beginning of this chapter.

5.4.1 Elliptic curve scalar multiplication in G1 and G2.

Our generation of curve leads to large prime values (up to eleven 64-bit words instead of eight
for BN and BLS12 curves). The scalar multiplication cost on G1 is not affected by slow finite
field multiplications because our curves benefit of other improvements: BN (resp. BLS) curves
parameters for 128 bits of security lead to scalar multiplications [k]P on G1 and G2 with
log2(k) ≈ 448 (resp. 300). For our curves of embedding degree five to eight, we choose r of
minimal size (256 bits to withstand the Pollard rho attack). Some curves get benefits of efficient
group law arithmetic: curves of embedding degree 5, 7, and 8 can use the Montgomery coordinates.
The k = 6 curve uses the efficient formulas available for a = 0 curves, widely used in practice.
The Gallant–Lambert–Vanstone (GLV) method can be performed on k = 6 and k = 8 curves in
order to reduce the number of doubling and addition steps. Over G2, the scalar multiplication is
often accelerated by using a twist of the curve. The trick is available for curves of degree 6 and
8, but not for k = 5 and 7. Even if the main topic of this paper is about pairing computations,
various protocols also compute scalar multiplications. Curves of embedding degree 5 and 7 do not
benefit of twists, so the cost over G2 is too expensive for practical applications. Finally, no GLV
optimization is possible in the case of the k = 5 curve which has a large discriminant D ≈ 1010.

5.4.2 Pairing timing estimation

In Sections 4.4 and 5.3, we estimated a pairing cost with a number of finite field operations. This
number is not relevant for a comparison in the sense that the field Fp is of different size depending
on the curves we study. For instance, a multiplication in the 3072-bit field of the k = 1 curves
of [CMR17] is much more expensive than in the 512-bit prime field of our k = 7 Cocks-Pinch
curve. Hence, we compare the pairings using an estimation of how long it would cost in practice.
To do so, we measure the arithmetic operations over Fp for various sizes of prime p on the same
machine (a Intel Core i7-8700 CPU, 3.20GHz with TurboBoost disabled). Thus, we estimate
the pairing cost multiplying the estimated time for m by the number of Fp multiplications for a
pairing. We warn the reader that we did not implement the pairing entirely.

From the considerations of Section 1.2.1, we obtain in Table 5.1 the measurements of the base
field arithmetic with the different primes involved.

From this estimation, we derive an expected timing for the different pairings in Table 5.2.
Again, we warn the reader that timings of Table 5.2 are not real pairing computations, as we
simply used as a base the arithmetic operations of RELIC [AG], and the multiplication costs that
we detailed in Sections 4.4, 5.3 and [CMR17]. This being said, for the curves where an actual
implementation of the optimal ate pairing is available with RELIC (BN and BLS12 curves), the
estimation that we obtain is within 10% of the actual computation time. This gives reasonable
confidence for the validity of the other projected timings.

Miller loop. We obtain a faster Miller loop for k = 6 and k = 8 curves compared to BN and
BLS12 curves. The k = 8 curve has a shorter Miller loop (64-bit) compared to the BN and BLS12
ones (117-bit). The k = 6 curve has a sextic twist that allows to compute fT,Q(P) on Fp of 672

94

5.4. Comparison of curves

Prime size Building block for Fp multiplication
192 < log2(p) ≤ 256 32ns
320 < log2(p) ≤ 384 KSS16 65ns
384 < log2(p) ≤ 448 BN, BLS12 85ns
448 < log2(p) ≤ 512 BN, BLS12, k = 7 106ns
512 < log2(p) ≤ 576 k = 8 129ns
576 < log2(p) ≤ 640 154ns
640 < log2(p) ≤ 704 k = 5, k = 6 181ns*

3008 < log2(p) ≤ 3072 [CMR17] 3800ns**

Table 5.1: Fp multiplication timing for RELIC on a Intel Core i7-8700 CPU, 3.20GHz with
TurboBoost disabled; *Estimation because no measurement is available for 11 machine-word
primes; **Measured with GNU MP

bits, compared to a quadratic field of 922 bits for BN and BLS12 curves. As for the cases k = 5
and k = 7, the Miller loop is not as efficient because no twist is available, and the computation is
done over Fpk . Comparisons between k = 6 and k = 7 curves show that using a curve with twists
is a better option than having a short Miller loop. The best option is obviously to have a short
Miller loop and a curve with twists, as for k = 8 curves.

Final exponentiation. The rewriting tricks used in Section 5.3.2 for the final exponentiation
apply for any curve obtained with Algorithm 5.1 with the optimization r = Φk(T). For k = 6
and k = 8 the cofactor is smaller, and the discriminant D = 3, resp. D = 4, gives formulas that
are as good as for BN and BLS12 curves. For k = 5 and k = 7 curves, the exponentiation is less
efficient because fast cyclotomic squaring formulas are not available.

Total cost. Table 5.2 shows that our new pairing is almost as efficient as the optimal ate
pairing on the BLS12 and KSS16 curves. Given the nature of Table 5.2 which gives estimated
timings, it is however more appropriate to say that the performance difference is within the error
margin. Additionally, we estimate that the optimal ate pairing on our k = 8 curve is up to 22
times more efficient than the Tate pairing on k = 1 curves [CMR17].

Remark 5.2. We also estimated the cost of a Tate pairing on Cocks-Pinch curves without twists
for k = 5, 7 where the first input point P has coordinates in Fp and the second input point
Q has coordinates in Fpk . The doublings and additions of points now take place in Fp, but
the accumulations still require Fpk arithmetic. The costs are cAddLine = 8m + 3s + 2km,
cDoubleLine = 7m + 4s + 2km, cVerticalLine = km, cUpdate1 = 2mk + sk, and cUpdate2 = 2mk

(md ∈ Fp is not computed since it would be 1 after the final exponentiation). The Miller length
is (k − 1) times longer, of length log2 r instead of log2 T . The accumulation steps cUpdate1 cost
(k−1) times more. The Miller loop of a Tate pairing would cost roughly (log2(r)−1)(cDoubleLine+
cVerticalLine)+(log2(r)−2)cUpdate1+(HW2-NAF(r)−1)(cAddLine+cVerticalLine+cUpdate2)+ik.
For k = 5 we have log2(r) = 256 and HW2-NAF(r) = 39, which gives 18585m. For k = 7 we have
log2(r) = 256 and HW2-NAF(r) = 90, which gives 31817m. The gain of swapping P and Q in the
Tate pairing is counterbalanced by the much longer Miller loop and finally, the Miller loop of a
Tate pairing would require more multiplications in Fp compared to an optimal ate Miller loop
costing 14496m for k = 5 and 18830m for k = 7 (see Table 5.2).

95

Chapter 5. New pairing-friendly curves

Curve Prime Miller loop
time estimation

Exponentiation
time estimation Total time

estimation

k = 5 663-bit 14527m
2.6ms

9809m
1.8ms 24336m 4.4ms

k = 6 672-bit 4601m
0.8ms

3871m
0.7ms 8472m 1.5ms

k = 7 512-bit 18381m
1.9ms

13439m
1.4ms 31820m 3.4ms

k = 8 544-bit 4502m
0.6ms

7056m
0.9ms 11558m 1.5ms

BN 446-bit 11620m
1.0ms

5349m
0.5ms 16969m 1.4ms

BLS12 446-bit 7805m
0.7ms

7723m
0.7ms 15528m 1.3ms

BN 462-bit 12180m
1.3ms

5727m
0.6ms 17907m 1.9ms

BLS12 461-bit 7685m
0.8ms

6283m
0.7ms 13968m 1.5ms

KSS16 339-bit 7691m
0.5ms

18235m
1.2ms 25926m 1.7ms

k = 1 3072-bit 4651m
17.7ms

4100m
15.6ms 8751m 33.3ms

Table 5.2: Pairing cost and timing extrapolation from Table 5.1

Comparison with concrete measurements. We did not provide a concrete implementation
of the optimal pairing on our new curves of embedding degree k = 5, 6, 7 and 8, but we
presented an estimation of the pairing time in the differente cases. The RELIC library provides
the computation of the optimal ate pairing on different curves. Using the same machine as for
the measurements of Table 5.1, we obtained optimal ate measurements in order to validate our
estimations.

• On a BLS12 curve with log2(p) = 446, the optimal pairing costs 1.4ms, corresponding to
our estimation in Table 5.2 within 10%.

• The RELIC library also provides the implementation for a BLS12 curve for a larger prime
p. We remark that they do not use a 461-bit prime p as in Table 5.2, but a slightly smaller
one (a 455-bit integer). It does not affect the practical cost because both primes are written
using 8 machine words, leading to the same integer arithmetic cost. Moreover, the Miller
loop has a NAF representation with only one less non-zero bit. Then measurement on this
curve also validates our estimation within 10% as we measured 1.6ms.

• An implementation for our k = 8 curve is also provided in the RELIC library. We measured
that the optimal ate pairing costs 2.1ms, which is more expensive than the expected cost of
Table 5.2. The implementation for the BLS12 curves is older and has been optimized for
longer than the k = 8 construction, explaining this difference. The measurements show that
the difference comes from the final exponentiation: the Miller step costs 0.69ms which is
close to our estimation, while the final exponentiation costs 1.4ms. The major optimization

96

5.4. Comparison of curves

in the k = 8 pairing implementation is the decomposition of the final exponent Φk(p)/r,
which is different from the BLS12 case.

All these concrete measurements correspond to our estimations and it gives reasonable confidence
for the validity of the timings expected for our new curves. In particular, from our estimations on
the k = 5 and k = 7 curves, an implementation of these curves would not lead to a competitive
pairing. Finally, optimizations on the final exponentiation of the k = 8 curve, and a concrete
implementation on the k = 6 curve could be interesting in order to compare with the current
computations on BLS12 curves.

97

Chapter 5. New pairing-friendly curves

98

6 •
••

•
• •

•

Representation of endomorphism rings
of supersingular curves

In this chapter, we implement algorithms related to specific quaternion algebras. The goal of
this chapter is to bring an explicit Deuring correspondence, i.e. a concrete representation of
endomorphism rings of supersingular curves. In the first section, we recall basic facts about
lattices useful in our context. Then, we explain how to represent particular elements of quaternion
algebras together with a way of computing the arithmetic explicitly. In a third section, we define
orders of these algebras and represent them as lattices of rank 4. We also introduce left and
right ideals of orders, represented in the same way as orders. Sections 6.4, 6.5 and 6.6 investigate
the Deuring correspondence, and introduce the necessary algorithms for computing the bijection
through isogenies. Finally, we go into detail on the computation of equivalent ideals using an
algorithm provided in [GPS20], and give a brief conclusion on the efficiency of the algorithms
we provide. We warn the reader that the algorithms presented in this chapter come from recent
works [KLPT14, GPS20]. The implementation aspect was not explicitly provided and the work
of this chapter is to provide practical algorithms. Recently, Luca De Feo, David Kohel, Antonin
Leroux, Christophe Petit and Benjamin Wesolowski presented a post-quantum signature called
SQISign [FKL+20] which is also related to the computation of ideals in a quaternion algebra.
This construction will be presented at Asiacrypt 2020. The implementation of our algorithms is
publicly accessible at

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.

Summary
6.1 Lattices . 100
6.2 Quaternion algebras . 102
6.3 Orders and ideals . 103
6.4 Deuring correspondence . 106
6.5 Solving equations with curve points 108
6.6 Maximal orders through isogenies . 112
6.7 Conclusion . 120

99

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies

Chapter 6. Representation of endomorphism rings of supersingular curves

6.1 Lattices

We consider in this section discrete subgroups of finite rank, also called lattices. In our context, a
lattice L can be represented as L = Z〈v1, . . . , vd〉 where v1, . . . , vd are vectors of Qd. It means
that we consider integer linear combinations of v1, . . . , vd. One can also represent the lattice
L using a matrix whose rows are the vi represented with d rational coefficients, i.e. a matrix
L ∈Md(Q). From now on, lattices are denoted with calligraphic letters and their matrices with
usual letters. From the matrix L, the lattice elements correspond to the (n1, . . . , nd)L, where
n1, . . . , nd ∈ Z. Hence, writing a vector x = (x1, . . . , xd) ∈ Qd, the vector x belongs to L if,
and only if, all coordinates of xL−1 are integers. Indeed, the vector xL−1 corresponds to the
coordinates of x in the basis of L given by the matrix L.

We recall facts about matrix reduction in the context of integer matrices. SLd(Z) denotes the
special linear group of matrices of Md(Z) with determinant ±1.

Definition 6.1 (Equivalence classes in Md(Z)). Two matrices L and L′ of Md(Z) are equivalent
if there exists a matrix U ∈ SLd(Z) such that L = UL′.

Two equivalent matrices represent the same lattice L and the change of variables between
the two bases is given in the matrix U ∈ SLd(Z). It is common to reduce matrices in order
to get a coset representative that satisfy particular conditions. Reduction algorithms cost
depends on the dimension d of the matrices we look for. A survey is presented in [NV10]. The
Hermite–Korkine–Zolotarev (HKZ) algorithm provides a lattice basis that reaches the shortest
vector norms, but is not very efficient in large dimension. The Lenstra–Lenstra–Lovász (LLL)
algorithm is more efficient but the new basis vectors only bounded by a constant (and do not
reach the shortest one). In the following sections, we consider d = 4 so that these reduction
algorithms are very efficient. From now on, we consider the Hermite Normal Form of a matrix.

Definition 6.2 (Hermite Normal Form from [Coh10, page 67]). A matrixM = (mi,j) ∈Md(Z) of
determinant det(M) 6= 0 is in Hermite Normal Form (HNF) if it satisfies the following conditions:

• M is an upper triangular matrix, i.e. mi,j = 0 if i > j.

• For every i, we have mi,i > 0.

• For every j > i, we have 0 ≤ mi,j < mi,i.

Theorem 6.3 (from [Coh10, page 67]). Let M ∈ Md(Z). Then, there exists a unique matrix
H ∈Md(Z) in HNF of the form H = UM with U ∈ SLd(Z).

Remark 6.4. Definition 6.2 and Theorem 6.3 also apply for rectangular matrices of Md,d′(Z) with
d ≥ d′. A matrix in HNF has the following shape

∗ ∗ . . . ∗
0 ∗ . . . ∗
...

.
...

0 . . . 0 ∗
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 0

where the first d′ rows form a matrix in HNF.

100

6.1. Lattices

Computing the HNF of a matrix M corresponds to applying linear algebra using only integer
arithmetic. Cohen provides an algorithm for computing the Hermite Normal Form in [Coh10,
page 68] and its complexity is O(d3) integer operations. In our context, we consider matrices
with rational coefficients, but the lattices are still defined as Z-linear combination of the basis
vector. Hence, it also makes sense to consider the HNF of these matrices of Md(Q). Algorithms
naturally extend by multiplying by the lcm of denominators of the coefficients, as in the case of
number fields (see [Coh10, page 73]).

Definition 6.5 (Extended Hermite Normal Form). Let M = (mi,j) ∈ Md(Q) and c be the
lowest common multiple of the denominators of the mi,j (for 1 ≤ i, j ≤ d). The matrix M is in
extended Hermite Normal Form if the integer-valued matrix M̃ = cM satisfies the conditions of
Definition 6.2.

In particular, the extended HNF of a matrix has (numerators of) coefficients bounded by the
(numerators of the) pivots of their columns, and is upper triangular, similarly to the integer case.
In other words, for a matrix M = (mi,j) ∈Md(Q), there exists a unique matrix H ∈Md(Z) in
HNF of the form H = UcM where c is the common denominator of the mi,j , and U ∈ SLd(Z).

We now recall generalities on lattices. More precisely, we give the definitions and the
computations of the index of a sublattice and the interesection of two lattices (see [Coh10,
Exercise 4.18]).

Index of a sublattice. Given a lattice L′ ⊂ L, the index of L′ in L is the integer [L : L′] :=
#(L/L′). If (v′1, . . . , v

′
d) is a basis of L′, we obtain the index by writing v′1, . . . , v′d in the basis

of L: it corresponds to the determinant of the transformation matrix. As we have seen, the
change of basis is computed using L′L−1 (its rows are the v′1, . . . , v′d in the basis of L) so that
[L : L′] = det(L′L−1).

Intersection of lattices. Given two lattices L = Z〈v1, . . . , vd〉 and L′ = Z〈v′1, . . . , v′d〉, the
intersection L ∩ L′ is composed of vectors that can be written in the form

∑
imivi as well as∑

im
′
iv
′
i, for integers mi,m

′
i. Using the Hermite Normal Form of the matrix composed of L and

L′ vertically joint, one obtains a unimodular matrix U ∈ SL2d(Z) (we denote here U with four
dimension-d matrices) such that (

U1 U ′1
U2 U ′2

)(
L
L′

)
=

(
0

)
.

The matrix composed of L and L′ has 2d rows and d columns so that the Hermite Normal Form
is upper triangular and at least its d last rows are zeros. The upper part represents the lattice
L∪L′. Moreover, U2L+U ′2L

′ = 0. The matrix U2L represents the lattice L̃ =
{
mU2L,m ∈ Zd

}
.

It is exactly the intersection lattice L ∩ L′. Indeed,

• As (m1, . . . ,md)U2 ∈ Zd, we obtain that L̃ ⊂ L. Given the relation U2L = −U ′2L′, the
inclusion L̃ ⊂ L′ is very similar.

• For x ∈ L ∩ L′, there exists m ∈ Zd and m′ ∈ Zd such that mL = m′L′. Then, x =
−m′U ′−1

2 U2L and −m′U ′−1
2 ∈ Zd. Hence, x is in the lattice L̃ and so L̃ = L ∩ L′.

In the next sections, we will represent particular lattices using the matrix notations. More
precisely, we will consider vectors of Q4, corresponding to elements of an algebra of dimension 4,
called a quaternion algebra.

101

Chapter 6. Representation of endomorphism rings of supersingular curves

6.2 Quaternion algebras

From now on, we study non-commutative Q-algebras of dimension 4 defined with four generators,
as in Section 2.5.2. Let p be a prime. We are interested in quaternion algebras H ramified only at
p and ∞: it means that H ⊗Qp and H ⊗ R are division algebras (i.e. algebras where division by
non-zero elements is possible). We refer to [Voi20, Section 14.1] for details on general quaternion
algebras. In this particular case of ramification, these quaternion algebras can always be written
H−a,−b = Q1 + Qi + Qj + Qk where i2 + a = 0, j2 + b = 0 and k = ij. For a given prime p, Pizer
gives in [Piz80, page 368] a couple of integers (a, b) such that the algebra H−a,−b satisfies these
properties of ramification. In particular,

• If p = 3 mod 4, (a, b) = (1, p).

• If p = 5 mod 8, (a, b) = (2, p).

• If p = 1 mod 8, (a, b) = (r, p) where r = 3 mod 4 and (p/r) = −1. Assuming that
the generalized Riemann hypothesis holds, there exists r = O(log2

2(p)) satisfying these
conditions.

For our computations, we will represent a quaternion x by a quadruplet of rationals (x1, x2, x3, x4).
The addition of two quaternions is simply the vector addition, and the multiplication of two
quaternions is computed in Algorithm 6.1, using the matrix

M =

1 i j k
i −a k aj
j −k −b −bi
k aj −bi −ab

 = M11 +M2i +M3j +M4k.

Algorithm 6.1: Multiply(x, y)
Input. x = x11 + x2i + x3j + x4k,

y = y11 + y2i + y3j + y4k.
Output. x× y = r11 + r2i + r3j + r4k.

for i between 1 and 4 do
ri ← x ·Mi · yt

end for
return (r1, . . . , r4)

Quaternion algebras have similarities with number fields: an element of H−a,−b has a degree 2
minimal polynomial by construction. Hence, each element defines a quadratic field. Similarly to
the case of number fields, the conjugate of a quaternion x is defined to be x̄ := x1− ix2− jx3−kx4.
This involution gives rise to the trace and the norm:

Tr(x) = x+ x̄ = 2x1 = 2xM11 N(x) = xM1x̄ = x2
1 + ax2

2 + bx2
3 + abx2

4

and the inverse of a non-zero quaternion x can be computed as x−1 = x̄/N(x).

Definition 6.6 (Integral quaternion). A quaternion x is integral if its minimal polynomial has
integer coefficients.

102

6.3. Orders and ideals

An element is integral if, and only if, Tr(x) and N(x) are in Z. The set of integral elements is
defined as in the case of number fields, but the situation is slightly different: this set is not always
a ring, as illustrated in Example 6.7. We denote this set to be the integers of H−a,−b. In the next
section, we consider particular subsets of the integers, having the property of being a ring.

Example 6.7. Consider the quaternion algebra H−1,−1 defined with i2 = −1, j2 = −1 and k = ij.
Then, α = i and β = (3i + 4j)/5 are integral but neither αβ nor α+ β is integral.

6.3 Orders and ideals

We now consider particular subrings of the set of integers that are called orders.

6.3.1 Orders in quaternion algebras

Definition 6.8 (Order of a quaternion algebra). An order of H−a,−b is a full rank lattice that is
also a subring of H−a,−b. An order is maximal if there is no other order that contains this order.

As a lattice, an order O can also be represented using a matrix. We consider orders of H−a,−b
so a basis of an order can also be represented with four quaternions. In the following, we denote
O ∈M4(Q) to be a matrix representing an order O, and we write O = Z〈b1, . . . , b4〉 when seen
as a subset of H−a,−b.

Definition 6.9 (Discriminant of an order). The discriminant of an order is the integer Disc(O) =
det(Tr(bibj)i,j).

The discriminant can be computed using matrices: Disc(O) = det(2OM1O
t). For a suborder

O′ ⊂ O, Disc(O′) = f2 Disc(O) where f is the index [O : O′]. Indeed, if O′ ⊂ O, then there
is a change of basis matrix T such that O′ = TO and then, Disc(O′) = det(2O′M1O

′t) =
det(2TOM1O

tT t) = Disc(O) · det(T)2. A maximal order has discriminant −p2 so that it is easy
to check the maximality of an order when the ramification is known.

6.3.2 Ideals in quaternion orders

We now consider ideals of orders. In non-commutative rings, we talk about left and right ideals.

Definition 6.10 (Left and right ideals). Let O be an order. Then,

• a O-left ideal I is a subgroup of O such that OI ⊂ I,

• a O-right ideal I is a subgroup of O such that IO ⊂ I.

In particular, an ideal I is included in O (as it is a subgroup) and it makes sense to consider
the index [O : I] of the lattice I inside O.

Definition 6.11 (Norm of an ideal). The norm N(I) of an ideal I is the integer N(I) :=
gcd({N(x) for x ∈ I}).

Remark 6.12. Voight proves in [Voi20, Theorem 16.1.3] that the norm of a O-(left or right) ideal
satisfies N(I) =

√
[O : I].

103

Chapter 6. Representation of endomorphism rings of supersingular curves

Two-generator representation. An ideal I is a lattice of dimension 4, but also a O-module
that can be expressed with two generators: for any α ∈ I,

• a O-left ideal I can be expressed as O · α+O · β for some β ∈ I,

• a O-right ideal I can be expressed as α · O + β · O for some β ∈ I.

Algorithm 6.2 provides a two-generator representation for an O-left ideal I as O ·N(I) +O ·α.

Algorithm 6.2: SecondGenerator(I,m) from [GPS20]
Input. I a matrix representing an ideal I of an order O,

m an integer.
Output. An element α ∈ I such that I = O ·N(I) +O · α.

N ← N(I).
repeat
(increase m if needed)
a← Random(1,m)
b← Random(1,m)
c← Random(1,m)
d← Random(1,m)
α← (a, b, c, d)× I

until N(α) = NM for an integer M such that gcd(N,M) = 1.
return α

Definition 6.13 (Left and right orders). Let I be a (left or right) ideal I of an order O. Then,

OL(I) := {x ∈ H−q,−p, xI ⊂ I} OR(I) := {x ∈ H−q,−p, Ix ⊂ I}.

Given a (left or right) ideal I = Z〈u1, u2, u3, u4〉 of an order O, its left and right orders are

OL(I) =
4⋂
i=1

{x ∈ H−q,−p, xui ⊂ I}, OR(I) =
4⋂
i=1

{x ∈ H−q,−p, uix ⊂ I}

and their lattices correspond to the intersections
⋂4
i=1 Iu

−1
i and

⋂4
i=1 u

−1
i I respectively. Thus, left

and right orders can be computed using algorithms of Section 6.1. Recall that u−1
1 I corresponds

to the lattice Z〈1, u2ū1N(u1) ,
u3ū1
N(u1) ,

u4ū1
N(u1)〉.

Definition 6.14 (Connecting ideal). An ideal I is a connecting ideal between two orders O and
O′ if OL(I) = O and OR(I) = O′.

Equivalence classes of orders and ideals An order O is isomorphic to O′ if there exists an
element b ∈ H−a,−b such that bO = O′b. This leads to an equivalence relation: O ∼ O′ if, and
only if, O is isomorphic to O′. We now consider fractional ideals, i.e. ideals of the form qI with
q ∈ Q∗ and I as above. Considering a (fractional) connecting ideal I between two orders O and
O′, we define the following equivalence relation: I ∼ J if, and only if, there exists b ∈ H−a,−b
such that J = Ib or bI. If I ∼ J , then OL(I) ∼ OL(J) and OR(I) ∼ OR(J).

104

6.3. Orders and ideals

6.3.3 Quotient of orders

We consider an order O of H−a,−b as above, and its quotient by the ideal NO, for a given prime
N . The quotient O/NO is a Z/NZ-quaternion algebra, and Voight obtains in [Voi20, Proposition
2.2.8] that it is isomorphic to M2((Z/NZ)(

√
−a)). From now on, we assume that −a is a square

modulo N so that the endomorphism matrices are defined over Z/NZ. Algorithm 6.3 explicitly
computes the matrix corresponding to an endomorphism of O/NO.

Algorithm 6.3: MatrixModulo(f , N , r)
Input. f an endomorphism of O,

N a prime integer,
r a root of −a in Z/NZ.

Output. A matrix of M2(Z/NZ) representing f in O/NO.

(a, b, c, d)← f .

return
(
a+ br −b(c+ dr)
c− dr a− br

)

In [KLPT14], Kohel et al. obtain particular endomorphisms of an ideal of norm N by
looking at the quotient O/NO. They prove that there is a bijection between M2(Z/NZ) and
P1(Z/NZ)× P1(Z/NZ), and describe the left ideals of O/NO in this representation.

Proposition 6.15 (from [KLPT14]). The map

P1(Z/NZ)× P1(Z/NZ) −→ M2(Z/NZ)

((x : y), (u : v)) 7−→
(
ux uy
vx vy

)
is a bijection, and a left ideal of O/NO corresponds to P1(Z/NZ) × {P0} for a fixed point of
P0 ∈ P1(Z/NZ).

Given α = x+ yi + zj + tk, the elements of the ideal Oα/NO are represented as matrices of
the form

1

x− yr

(
−bu(z + tr) u(z − tr)
−bv(z + tr) v(z − tr)

)
for (u : v) ∈ P1(Z/NZ)

through the bijection M2(Z/NZ) ' O/NO.
Given an ideal I = ON+Oα of norm N , an element γ is in I if, and only if, γ ∈ Oα mod NO.

By Proposition 6.15, α mod NO corresponds to a matrix of the form(
ux uy
vx vy

)
and an element γ of the ideal Oα/NO is of the form(

u0x u0y
v0x v0y

)
for (u0 : v0) ∈ P1(Z/NZ). In Section 6.6.3, we consider elements of ideals and compute them by
looking at O/NO.

105

Chapter 6. Representation of endomorphism rings of supersingular curves

6.4 Deuring correspondence

We now go into detail on the relation between maximal orders of quaternion algebras of Section 6.3.2
and the endomorphism rings of supersingular elliptic curves. From now on, we assume that p and
q are two primes such that H−q,−p is a quaternion algebra ramified at p and ∞ as in [Piz80].

Proposition 6.16 (Deuring correspondence (from [Voi20, Proposition 42.4.7])). There is a
one-to-one correspondence between the set of j-invariants of supersingular elliptic curves defined
over Fp2 up to Galois conjugate and the set of isomorphism classes of maximal orders in the
quaternion algebra H−q,−p.

Remark 6.17. The latter correspondence says that if E is a supersingular elliptic curve, it can be
seen as a coset representative of its isomorphism class up to Galois conjugate. Then, End(E) is
represented by a maximal order of H−q,−p, representing the coset up to isomorphism. In this
context, the quotient O/NO is more intuitive: the subgroup E[N] is isomorphic to Z/NZ×Z/NZ,
and so the coset representatives of O/NO can be chosen as endomorphisms of a 2-dimensional
Z/NZ-vector space, i.e. matrices of M2(Z/NZ).

Example 6.18. Let p = 3 mod 4 be a prime, and E : y2 = x3 − x the elliptic curve defined over
Fp2 = Fp(i) with i2 = −1. E is also defined over Fp and has discriminant −D = −4. These two
properties lead to two endomorphisms (x, y) 7→ (−x, iy) and the Frobenius π : (x, y) 7→ (xp, yp).
The curve E is supersingular and End(E) is a maximal order O of H−1,−p. Looking at the
minimal polynomial of the two latter endomorphisms, we obtain that they correspond to the
quaternions i and j. j(P) = −P for P ∈ E[2] so that (1 + j)(E[2]) = 0 and it makes sense to
consider 1+j

2 as an endomorphism. A basis of the maximal order is given by O = Z〈1, i, 1+j
2 , i+k

2 〉.
Note that it is similar to the case of quadratic fields, where the ring of integer sometimes contains
fractional elements (the ring of integers of Q[

√
−3] is Z[1+

√
−3

2]). Using the lattice representation
of Section 6.1, O is represented with the matrix O, and its Hermite Normal Form is given by H:

O =

1 0 0 0
0 1 0 0

1/2 0 1/2 0
0 1/2 0 1/2

 H =

1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0
0 0 0 1

 .

In order to evaluate 1+π
2 (corresponding to 1+j

2) at a point P , one first computes Q such that
[2]Q = P , and then computes Q+ π(Q).

Similarly, the endomorphism ring of a supersingular curve of j-invariant 0 is also well-known,
and more generally, the computation of the endomorphism ring of small discriminant curves is
possible by computing particular endomorphisms of small degrees. Except these particular curves,
computing the maximal order corresponding to a supersingular elliptic curve (with no additional
information) is a hard problem. Its complexity is exponential in log2(p), even on a quantum
computer. The security of some cryptographic protocols introduced in Chapter 3 relies on the
difficulty of this problem.

In the latter example, we obtained that some endomorphisms require a division of point by 2
in order to be evaluated. More generally, given a representation of the endomorphism ring as a
maximal order in a quaternion algebra, the evaluation of the endomorphisms may require a division
by a large integer D. If φ : E → E′ is an isogeny of degree D, then, DEnd(E′) ' φ ◦End(E) ◦ φ̂.
Endomorphisms of E′ can be computed through the isogeny φ and its dual, together with an
additional division by D of the point considered.

106

6.4. Deuring correspondence

Cost of endomorphism evaluation. We consider the elliptic curve of Example 6.18 so that
evaluation 1, i, j and k is almost free. We also consider an isogeny φ : E → E′ of degree D as
above so that

End(E′) ' 1

D
φ ◦ End(E) ◦ φ̂.

Suppose that we know a quaternion description of End(E′) ≈ O′. In order to evaluate α′ ∈ End(E′)
at a point P , one first compute Q such that [2D]Q = P and then apply φ, 2Dα′ ∈ Z〈1, i, j,k〉
seen as an element of O, and finally φ̂. The cost of evaluating endomorphisms of E′ is closely
related to the cost of dividing a point by D, which is not easy to estimate because the point
involved may be defined over an extension of the field where P is defined.

Example 6.19. Let E : y2 = x3 + x defined over Fp2 where p = 7. Then, the full 23-torsion is
defined over Fp2 = Fp(u) = Fp[x]/(x2 + 1). The point P = (3, 4) has order 23. We look for a point
Q such that [2]Q = P , which means that Q ∈ E[24]. Defining Fp4 = Fp2(v) = Fp2 [y]/(y2− (i+2)),
we obtain that E[24] is fully rational over Fp4 . The point Q = ((2u+1)v+2u+3, (3u+3)v+2u+1)
satisfies the condition [2]Q = P . Note that Q+ (u, 0), Q+ (0, 0) and Q+ (−u, 0) also satisfy this
latter condition. More generally, if [n]Q = P , then [n](Q+Q′) = P for Q′ ∈ E[n].

We consider a point P of order
∏
i p
ei
i and a division by D =

∏
j d

fj
j . Using the Chinese

Remainder Theorem (CRT), P can be decomposed as (Pi)i ∈
∏
iE
′[peii]. We recall here the

constructive group isomorphism of the CRT in the case of an elliptic curve.

Proposition 6.20 (Elliptic curve version of the Chinese Remainder Theorem). Let E be an
elliptic curve defined over Fp2 such that the full

∏
i p
ei
i -torsion is defined over Fp2. Then, there

exists a group isomorphism between E[
∏
i p
ei
i] and

∏
iE[peii]:

E[
∏
i p
ei
i] −→

∏
iE[peii]

P 7−→ ([
∏
j 6=i p

ej
j]P)i

∏
iE[peii] −→ E[

∏
i p
ei
i]

(Pi)i 7−→
∑

j

(∑
i 6=j uip

ei
i

)
Pj

where (ui)i are the Bézout coefficients of the prime power divisors of #E(Fp2):
∑

i uip
ei
i = 1.

Remark 6.21. The cost of the computation of the isomorphisms is an extended Euclidean algorithm
which is O(log2(#E(Fp2))) in the worst case, which is linear in log2(p) by the Hasse bound (see
Section 2.4).

Then, the division by D is done successively using all the prime power factors dfjj on the
points (Pi)i of peii -torsion:

• If dfjj is coprime with peii , then the point Qi,j such that [d
fj
j]Qi,j = Pi is simply Qi,j =

[inv mod p
ei
i

(d
fj
j)]Pi.

• Otherwise, it means that dj = pi and the point Qi,j is a point of order pei+fji . Depending
on the structure of the curve, the E′[pei+fji] is defined over a field which can be very large.
Writing Ai,j , A′i,j a basis of E′[pei+fji], we write Pi = ni,jAi,j + ni,jA

′
i,j and then find Qi,j

by solving the equation (2x− ni,j)Ai,j + (2y − n′i,j)A′i,j = 0. We investigate such equations
in Section 6.5.

From the points Qi,j , we obtain Q such that [D]Q = P using the CRT isomorphism given in
Proposition 6.20.

Algorithm 6.4 presents how to evaluate an endomorphism of a curve isogenous to the curve of
Example 6.18.

107

Chapter 6. Representation of endomorphism rings of supersingular curves

Algorithm 6.4: Evaluate(β, P , φ)
Input. β ∈ O2, an endomorphism of E2,

P ∈ E2(Fp2),
φ : E1 → E2 an isogeny, where E1 is the curve of Example 6.18.

Output. The point β(P).

φ̃← 2 deg(φ)β ∈ Z〈1, i, j,k〉.
Write φ̃ = w11 + w2i + w3j + w4k, wi ∈ Z.
Q← 1

2 deg(φ)P .

R← φ̂(Q).
S ← [w1]R+ [w2]i(R) + [w3]j(R) + [w4]i(j(R)).
T ← φ(S).
return T

In Section 6.6, we will look for the computation of maximal orders corresponding to supersingu-
lar curves, given additional information (for instance, the knowledge of an isogeny). Before going
into detail on the endomorphism ring computation (closely related to evaluating endomorphisms),
we deal with solving equations with curve points, as it will be necessary for Section 6.6.

6.5 Solving equations with curve points

We consider the following equation with unknowns n1, . . . , nk

d∑
i=1

niPi = Q (6.1)

for some fixed points Pi, Q of an elliptic curve E defined over Fp2 . We assume that #E(Fp2)
and its factorization into primes

∏
j `
ej
j is known. Using the elliptic curve version of the Chinese

Remainder Theorem above, it is sufficient to solve the equation on the prime power order
subgroups of E(F̄p).

From now on, we assume that ` is a prime, and the Pi are of order `e. E[`e] is isomorphic
to Z/`eZ× Z/`eZ and so we solve a linear system with a matrix of Md,2(Z/`eZ). Section 6.5.1
explains how to decompose the points Pi in a given basis of E[`e], and Section 6.5.2 details the
linear algebra for solving equations with points such as Equation (6.1).

6.5.1 Torsion decomposition

For any integer e > 0, the subgroup E[`e] is isomorphic to Z/`eZ× Z/`eZ. A basis of E[`e] can
be obtained using Algorithm 6.5. We recall that Φ`e is the `e-th cyclotomic polynomial, and e`e
is the Weil pairing on E[`e]. From now on, we denote E[`e] = 〈A,A′〉 for two points A,A′.

108

6.5. Solving equations with curve points

Algorithm 6.5: TorsionBasis(`, e, E)
Input. ` a prime,

e an integer,
E a supersingular elliptic curve defined over Fq, gcd(`, q) = 1.

Output. A basis A,A′ of E[`e].

Find κ such that E[`e] ⊂ E(Fqκ) and κ is minimal.
Find f the largest integer such that there is some `f -torsion over Fqκ .
c← #E(Fqκ)/`f

repeat
A← [c]Random(E(Fqκ))
A′ ← [c]Random(E(Fqκ))
while [`]A 6= 0 do
A← [`]A

end while
while [`]A′ 6= 0 do
A′ ← [`]A′

end while
until [`e−1]A 6= 0, [`e−1]A′ 6= 0 and e`([`e−1]A, [`e−1]A′) 6= 1
return (A,A′)

Complexity. Algorithm 6.5 is probabilistic as it computes the basis by taking random points
of order dividing `e. The point A has order exactly `e if A ∈ E[`e] and A 6∈ E[`e−1]. It occurs
with probability `2e−`2(e−1)

`2e
= 1− `−2. Hence, we expect to find A in O(1) scalar multiplications.

Similarly, we obtain A′ in a distinct subgroup of 〈A〉 with probability `2−`
`2

= 1 − 1/` and
so the basis is computed in O(1) scalar multiplications on E(Fqκ). Determining κ requires
studing the factorization of the `e-th division polynomial ψ`e(x). One subgroup of the `e

torsion is defined over a quadratic extension of Fqdeg(F (x)) , where F (x) is an irreducible factor of
ψ`e(x)/ψ`e−1(x). In the worst case, the subgroup is defined over an extension of degree O(`e) as
deg(ψ`e) = (`e− 1)/2 for ` coprime with q. In order to get the full `e-torsion, we extend the curve
to Fq2 deg(F (x))k , where k is the embedding degree of the curve with respect to `e, also in O(`e).
Finally, κ = O(`2e). The computation of #E(Fqκ) does not affect the asymptotic complexity
as we only consider supersingular curves. We obtain an overall complexity by estimating the
cost of scalar multiplication over E(Fqκ). The order of E(Fqκ) is roughly O(qκ) and so the final
complexity is O(κ log2(q)) multiplication over Fqκ , i.e. O(`2e log2(q)) multiplications over F

qO(`2e) .

Remark 6.22. In practice, we will often consider elliptic curves defined over Fp2 with the `e-torsion
rational, as in the case of SIDH curves (see Section 3.3.3). In this context, Algorithm 6.5 is very
efficient. For instance, consider the 5-torsion and the 113-torsion of the elliptic curve defined by
y2 = x3 − x over F5323. The 5-torsion is fully rational over an extension of degree 8, but not
over an extension of degree 4. However, the curve is defined over Fp and p = 4 · 113 − 1 so the
113-torsion is fully rational over Fp2 .

From A and A′, a point P ∈ E[`e] decomposes as P = nA+ n′A′ using Algorithm 6.6. The
algorithm computes discrete logarithms in groups of powersmooth order: if P = nA+ n′A′ with
n, n′ < `e, then the bilinearity of the Weil pairing (see Theorem 4.4) shows that

e`e(P,A) = e`e(A
′, A)n and e`e(P,A′) = e`e(A,A

′)n
′
.

109

Chapter 6. Representation of endomorphism rings of supersingular curves

Once the pairings are computed (in O(e log2(`)) multiplications in Fqκ), the two discrete logarithms
are computed using e discrete logarithms in a group of order `, i.e. in O(e

√
`) multiplications

using an adaptation of the algorithm of Section 1.1.1. Remark that if ` is very small, an exhaustive
search in O(`2) is often sufficient for solving discrete logarithms in prime order ` subgroups.
Finally, the overall complexity of Algorithm 6.6 is O(e

√
`) multiplications over Fqκ if A and A′

are defined over Fqκ , with κ = O(`2e).

Algorithm 6.6: InBase(`, e, A, A′, P)
Input. ` a prime,

e an integer,
A,A′ a basis of E[`e],
P ∈ E[`e].

Output. Two integers n1 and n2 such that P = [n1]A+ [n2]A′.

L← the list of the e`e(A,A′)`
i (1 ≤ i < e).

B ← the list of the
√
` baby-steps of the group 〈e`e(A,A′).

w1 ← e`e(P,A)
w2 ← e`e(P,A

′)
(n1, n2)← (0, 0)
for s ∈ {0, . . . , e− 1} do
t1, t2 ← the DL of w`e−1−s

1 and w`e−1−s
2 using the baby-steps list B. . See Section 1.1.1

(w1, w2)← (w1/L[1 + s]t1 , w2/L[1 + s]t2).
(n1, n2)← (n1 + t`s, n2 + t`s).

end for
return (n1, n2).

6.5.2 Solving the equation using linear algebra

Homogeneous equation. We begin with the case where Q = 0E . Using Algorithm 6.6, the
points Pi can be decomposed as aiA+ a′iA

′. Hence, Equation (6.1) can be transformed into

d∑
i=1

niaiA = 0 and
d∑
i=1

nia
′
iA
′ = 0.

Using a matrix representation, solutions of these equations correspond to the kernel of the matrix
of the ai, a′i, i.e. a matrix of Md,2(Z/`eZ):

(n1, . . . , nd)

a1 a′1
...

...
ad a′d

 = (0, 0).

In order to find a solution of the equations, we compute the Hermite Normal Form of the matrix
of the ai and the a′i (seen in Z) so that we get a unimodular transformation matrix T ∈ SLd(Z)
such that

T

a1 a′1
...

...
a4 a′4

 =

(
0

)
.

110

6.5. Solving equations with curve points

There exists i0 ∈ {1, 2} such that for all i > i0,
∑

j Tijaj = Tija
′
j = 0 so that the d− 2 last rows

of T form a basis of the solutions of the equations. Any i-th row (i > i0) provides a solution of
the equation.

Non-homogeneous equation. Solving an equation of the form
∑d

i=1 niPi = Q for a non-zero
Q ∈ E[`e] is very similar. Using the torsion decomposition Q = bA+ b′A′ and Pi = aiA+ a′iA

′

for 1 ≤ i ≤ d, the latter equation is equivalent to

d∑
i=1

niaiA− bA = 0 and
d∑
i=1

nia
′
iA
′ − b′A′ = 0.

Similarly to the homogeneous case, we compute the HNF H of the matrix

a1 a′1
...

...
ad a′d
b b′

 .

The transformation matrix T leads to the relations

d∑
j=1

[Ti,j]Pj + [Ti,d+1]Q = 0 for d+ 1− rk(H) ≤ i ≤ d+ 1

A solution of the equation is a vector of this lattice generated by the rk(H) + 1 last rows of T ,
whose last coefficient is −1. Such a vector is obtained using the HNF of the column matrix C
composed of the {Ti,d+1, d+ 1− rk(H) ≤ i ≤ d+ 1}: we obtain a matrix T ′ ∈Md+1−rk(H)(Z/`eZ)
such that

∑
i T
′
1,iCi,1 = 1. Thus, −

∑
i T
′
1,iTi+rk(H) is of the form (n1, . . . , nd,−1) and leads to a

solution of the non-homogeneous equation.

111

Chapter 6. Representation of endomorphism rings of supersingular curves

Algorithm 6.7: SolveEquation(P1, . . . , Pd, Q)
Input. d points P1, . . . , Pd of E[`e],

Q a point of E[`e].
Output. n1, . . . , nd integers such that

∑d
i=1 niPi = Q.

A,A′ ← a basis of E[`e].
M ← the matrix of Md,2(Z) whose i-th row is InBase(`, e, A,A′, Pi).
if Q = 0E then
H,T ← the HNF of M together with the transformation matrix.
if H has a zero row then
return the corresponding row in T .

else
return ∅

end if
else
N ← the matrix of M1,2(Z) whose row is InBase(`, e, A,A′,−Q).
H,T ← the HNF of the matrix of M and N vertically joint, together with the
transformation matrix.
if H does not have a zero row then
return ∅

else
H ′, T ′ ← the HNF of the column matrix C = (Ti,d+1)rk(H)+1≤i≤d+1.
return −

∑
i T
′
1,iTi+rk(H)

end if
end if

Algorithm 6.7 first computes d times Algorithm 6.6, and then computes simply linear alge-
bra with matrices of Md,2(Z/`eZ), costing O(d) multiplications modulo `e. Thus, the overall
complexity is O(de

√
`) multiplications in F

q2(`−1)`e−1 .
Solving equations with curve points will be useful for the computations of Section 6.6 where

we compute endomorphism rings of supersingular curves through isogenies.

6.6 Maximal orders through isogenies

We consider supersingular curves E1 and E2 defined over Fp2 . We also assume that the full
`e-torsion is rational over Fp2 . Finally, we consider additional information:

• End(E1) is known: the corresponding maximal order O1 = Z〈b1, . . . , b4〉 of H−q,−p is given,
and the endomorphisms can be evaluated at points of E1.

• There is a separable cyclic isogeny φ : E1 → E2 of degree `e. Note that we treat in
the chapter only the case of cyclic isogenies, which is the case of interest of most of the
current cryptographic applications. We assume that a generator of its kernel is given,
i.e. ker(φ) = 〈P 〉 with ord(P) = `e.

Endomorphism rings of E1 and E2 are closely related with the following formula (which is
consequence of [Sil86, Theorem 6.2]):

End(E2) =
1

deg(φ)
φ ◦ End(E1) ◦ φ̂ (6.2)

112

6.6. Maximal orders through isogenies

In this section, we aim to compute the maximal order O2 corresponding to End(E2) through the
isogeny φ. As isogenies connect F̄p-isomorphism classes of supersingular curves, connecting ideals
join the corresponding maximal orders. More precisely, there exists an integral O1-left ideal I
(i.e. I ⊂ O1) connecting O1 and O2 = OR(I).

j(E1) j(E2)

O1 O2End(E1) ≈ ≈ End(E2)

φ

φ̂

I

Ī

In order to understand the relation between φ and I, we introduce a subgroup of E1(F̄p) related
to I and φ.

Definition 6.23 (Ideal torsion subgroup). Let E be a supersingular elliptic curve defined over
Fp2 and O the maximal order corresponding to End(E). Let I be an integral O-left ideal I.
Elements of I represent endomorphisms, and the I torsion subgroup E[I] is the set of points of
E(F̄p) that cancel all endomorphisms of I:

E[I] := {P ∈ E(F̄p), α(P) = 0 for all α ∈ I}.

E[I] is a finite subgroup of E(F̄p). Using this subgroup, Voight brings in [Voi20] the explicit
correspondence as follows:

• If O1 is a maximal order corresponding to End(E1), and I is an integral O1-left ideal, the
subgroup E1[I] defines an (F̄p-isomorphism class of) isogeny φ : E1 → E2 of kernel E1[I].
The codomain curve satisfies End(E2) ∼ OR(I) so that I is a connecting ideal between
End(E1) and End(E2). The isogeny computation is developed in Section 6.6.1.

• If φ is an isogeny between two supersingular curves E1 and E2 with End(E1) ∼ O1, then
there exists an integral O1-left ideal I such that E1[I] = ker(φ), and OR(I) ∼ End(E2).
The ideal computation is developed in Section 6.6.2.

We now investigate the explicit computation of the subgroup E1[I] (from the knowledge of I)
and the ideal I (from the knowledge of the isogeny).

6.6.1 From ideal to isogeny

In this section, we consider that O1 = Z〈b1, . . . , b4〉 is a maximal order of H−q,−p corresponding to
the endomorphism ring of a supersingular curve E1. We also assume that the endomorphisms that
are represented by the quaternions bi can be evaluated at points of the curve E1 (see Example 6.18
for a possible choice for E1). Given an integral O1-left ideal I = Z〈v1, . . . , v4〉 of norm N(I) = `e,
we use Algorithm 6.2 in order to write I = O1 · `e + O1 · α. The I torsion subgroup E1[I] is
generated by a point P ∈ E1[N(I)] so that we look for a point of order `e generating the subgroup.
Recall that the `e-torsion subgroup of a curve is isomorphic to Z/`eZ× Z/`eZ. From now on, we
assume that A and A′ form a basis of the `e-torsion of E1: E1[`e] = 〈A,A′〉. In order to recover
the point P , we need to solve the following equation where n and n′ are the unknowns:

α(nA+ n′A′) = nα(A) + n′α(A′) = 0E1 .

113

Chapter 6. Representation of endomorphism rings of supersingular curves

Note that the order of α(A) divides the order of A. Again, one can use the CRT before solving
an equation as in Section 6.5. Finally, we use one of the algorithms of Section 3.2 in order to
compute the isogeny of kernel E1[I].

Algorithm 6.8: Isogeny(I)
Input. I a matrix representing an O-left ideal I of norm `e.
Output. An isogeny from a curve E (where End(E) = O) with kernel E[I].

A,A′ ← a basis of E[`e] . Algorithm 6.5
Write I = O · `e +O · α . Algorithm 6.2
Compute α(A), α(A′).
Find n and n′ such that α(nA+ n′A′) = 0 . Algorithm 6.7
return the isogeny of kernel 〈[n]A+ [n′]A′〉 . Algorithm 3.2

Complexity. Once a basis of E[2`e] is computed, Algorithm 6.8 is essentially linear algebra with
matrices of M4(Z/`eZ). Hence, the cost is dominated by the computation of the basis of E[2`e]
which costs O(κ log2(p))m2κ if we consider elliptic curves defined over Fp2 (see Algorithm 6.5).

Remark 6.24. In practice, we will be able to compute equivalent ideals (see Section 6.6.3) so
that we will consider a small extension degree κ, and hence obtain an efficient algorithm with
O(log2(p)) multiplications.

Example 6.25. We consider a curve E1 as in Example 6.18 with p = 222315 − 1, and I =
Z〈1+j

2 , i+k
2 , 3j, 3k〉. I is an ideal of norm 3 and can be written I = O1 · 3 + O1 · α with

α = 29+42i+293j+282k
2 . We look for the subgroup E1[I] of E1(F̄p), generated by a point of order 3.

Writing Fp2 = Fp(i) = Fp[x]/(x2 + 1) and choosing

x = 60172068522527, y0 = 48359098373596, y1 = 11824579652131,

the points A = (xi, y0 + iy1) and A′ = π(A) form a basis of E1[3]. We find the kernel point
nA+ n′A′ by solving the equation α(nA+ n′A′) = 0E1 using Algorithm 6.7. More precisely, we
evaluate α at A and A′ and solve a linear system in Z/3Z:

α(A) = A+A′ = α(A′) =⇒ (n, n′)

(
1 1
1 1

)
= (0, 0).

(2, 1) is a solution of the system and provides a generator of the subgroup E1[I] = 〈2A + A′〉.
The corresponding isogeny is defined with the rational maps

(x, y) 7→
(
x3+23219016768x2+62705669x+92876060160

x2+23219016768x+8957953
,y x

3+34828525152x2+60183651151870x+34828514784

x3+34828525152x2+26873859x+34828521696

)
and the codomain curve is E2 : y2 = x3 + 60183409287146x+ 1950397166592.

The latter example is reproducible with the file example/ideal-to-isogeny.m provided in the
repository.

6.6.2 From isogeny to ideal

We consider as in Section 6.6.1 that O1 = Z〈b1, . . . , b4〉 is a maximal order of H−q,−p corresponding
to the endomorphism ring of a supersingular curve E1. We also assume that the bi can be

114

6.6. Maximal orders through isogenies

evaluated at points of E1. Suppose that φ : E1 → E2 is a separable isogeny of degree `e, and that
ker(φ) = 〈P 〉 with ord(P) = `e. We want to find a basis of an ideal I such that E[I] = ker(φ)
as described in Section 6.6. Remark that `e ∈ I because [`e]P = 0. By the two-generator
decomposition of Section 6.3.2, we look for an ideal of the form I = O1`

e +O1α, where α ∈ O
and ker(α) ⊃ 〈P 〉. Hence, the ideal norm is exactly the degree of the isogeny: N(I) = `e. The
only unknown is the endomorphism α =

∑4
i=1 nibi written in the basis of O1. We need to solve

the following equation, where the ni are the unknowns:

4∑
i=1

nibi(P) = 0.

Again, we solve this equation with Algorithm 6.7 together with the CRT and obtain α =
∑4

i=1 nibi.
Finally, I = O1`

e + O1α. One obtains the matrix I of I by computing a 8 × 4 matrix and
reducing to a Hermite Normal Form:

U

(
bi`

e for 1 ≤ i ≤ 4

biα for 1 ≤ i ≤ 4

)
=

(
0

)
.

The four non-zero vectors of the upper triangular part lead to I = Z〈u1, . . . , u4〉. We obtain
the E2 endomorphism ring by computing its right order OR(I) using intersection of lattices as
described in Section 6.3.2.

Algorithm 6.9: Ideal(φ, O)
Input. φ : E → E′ an isogeny of degree `e given by its kernel 〈P 〉,

O = End(E) given with a basis b1, . . . , b4 efficiently computable.
Output. An ideal I of norm `e connecting End(E) and End(E′).

Compute b1(P), . . . , b4(P).
Find (n1, . . . , n4) such that

∑4
i=1 nibi(P) = 0E . Algorithm 6.7

α← n1b1 + . . .+ n4b4.
return O`e +Oα.

As in the case of Algorithm 6.8, the cost of Algorithm 6.9 depends on the parameters, as it
evaluates endomorphisms at points of the curve. Again, once a basis of E[2`e] is computed, linear
algebra leads to an endomorphism α and the ideal O · `e +O · α. Finding a basis of E[2`e] is
done in O(κ log2(p))mκ with Algorithm 6.5. In the worst case, kappa = O(`2e) but we will see in
Section 6.6.3 that we can only deal with a small κ, bringing an efficient algorithm in practice.

We provide here an example where evaluating endomorphisms is efficient.

Example 6.26. We consider the same setting as in Example 6.25. Let p = 222315 − 1 and
E1 : y2 = x3 − x. We consider the isogeny of kernel generated by 2A + A′ obtained at the
end of Example 6.25, and we aim to recover the ideal I. The equation to solve is given by∑4

i=1 nibi(2A+A′) = 0 which leads to

n1(2A+A′) + n2(2A+ 2A′) = 0 ⇐⇒
{

2n1 + 2n2 = 0
n1 + 2n2 = 0

.

115

Chapter 6. Representation of endomorphism rings of supersingular curves

Modulo 3, it leads to n2 = n1 = 0 so that we choose α = b3. In order to get a basis of
I = O1 · 3 +O1 · α, we compute the matrix of the 3bi vertically joint with the biα:

3 0 0 0
0 3 0 0

3/2 0 3/2 0
0 3/2 0 3/2

1/2 0 1/2 0
0 1/2 0 1/2

(1− p)/4 0 1/2 0
0 (1− p)/4 0 1/2

Reducing this matrix to a HNF, the four first non-zero rows lead to the ideal I = Z〈(1 +
j)/2, (i + k)/2, 3j, 3k〉. It is indeed the ideal of the setting of Example 6.25, and its right order is
OR(I) = 〈(1 + j)/2, (i + k)/6, j, 3k〉.
The latter example is reproducible with the file example/isogny-to-ideal.m provided in the
repository.

In practice, evaluating endomorphisms of OR(I) require division by deg(φ) = N(I) which
can be large in cryptographic applications. Instead, [KLPT14, GPS20] look for an equivalent
ideal of norm coprime with the order of the point considered so that evaluating endomorphisms
becomes efficient.

6.6.3 Computing equivalent ideals

Recall that the ideal I corresponding to an isogeny φ satisfies N(I) = deg(φ). Then, the right
order OR(I) corresponds to End(E2) and evaluating endomorphisms of E2 requires computing a
division by N(I) which is often expensive. Example 6.19 requires looking at a degree 2 extension
of Fp2 but in practice, we need to compute scalar divisions of points by large integers, therefore
large extension degrees are needed.

Instead, we look for an ideal J ∼ I of norm N(J) coprime to the factors of p+ 1 (recall that
points of E2(Fp2) have order a divisor of p+ 1). This way, the division of a point of P ∈ E2(Fp2)
by N(J) is simply Q = [inv mod ord(P)(N(J))]P .

E E′

O O′

φ

ψ

I

J

We provide in this section an algorithm described in [GPS20] for computing an equivalent
ideal of powersmooth norm, given an ideal I for which the division point is expensive (i.e. an
ideal of norm powersmooth, but not coprime to p + 1). Finding an equivalent ideal J ∼ I is
related to Proposition 6.27.

Proposition 6.27 (from [GPS20]). Given an ideal I of norm N(I) and an element b ∈ H−q,−p
of norm N(b), the equivalent ideal J = I b̄/N(I) has norm N(J) = N(b)/N(I).

116

6.6. Maximal orders through isogenies

Galbraith, Petit, Silva and Ti proposed in [GPS20] an algorithm for finding an adequate
element b ∈ I such that an ideal of the form I b̄/N(I) has the desired properties. Finding a
fractional ideal (i.e. b 6∈ I) is easy but it does not make sense for the elliptic curve point of view:
a fractional ideal is not included in O2 (Algorithm of Section 6.6.1 does not apply for fractional
ideals). The algorithm of [GPS20] computes an integral ideal J and splits in three steps:
Step 1. Find δ ∈ I = Z〈u1, . . . , u4〉 such that the ideal I ′ := I δ̄/N(I) has prime norm
N(I ′) = N .
Step 2a. Find β1 ∈ O such that N(β1) = NS1 for a smooth integer S1.
Step 2b. Find β2 ∈ Zj + Zk such that β1β2 ∈ I ′.
Step 2c. Find β′2 such that β′2 = λβ2 mod NO and N(β′2) = S2 for a smooth integer S2.
Step 3. Set β = β1β

′
2 and output J := I ′β̄/N .

We precise how to algorithmically obtain these three steps.

Step 1. In order to compute an ideal of prime norm, Galbraith et al. fix a bound m and choose
random integers n1, . . . , n4 between 1 and m such that δ =

∑4
i=1 niui has norm N(I) times a

prime integer N . In our notations, one computes the vector-matrix multiplication (n1, . . . , n4)× I
until the norm of the corresponding quaternion is of the form N ·N(I). Recall that I is the matrix
whose rows are the ui in the base 1, i, j,k. Choosing m = dlog2(p)e and assuming heuristically
that the numbers N generated behave like random numbers, Algorithm 6.10 produces a prime
number N in Õ(

√
p).

Algorithm 6.10: PrimeNormEquivalentIdeal(I,m) from [GPS20]
Input. I a matrix representing an ideal I of an order O,

m an integer.
Output. An ideal of prime norm N , equivalent to I.

repeat
(increase m if needed)
a← Random(1,m)
b← Random(1,m)
c← Random(1,m)
d← Random(1,m)
δ ← (a, b, c, d)× I

until N(δ)/N(I) is prime and is a square mod N .
return I · δ̄/N(I)

The ideal I ′ can be represented with two generators. By Proposition 6.27, it has norm N and
so we can write I ′ = O ·N +O · α for a given α, using Algorithm 6.2. In fact, any α satisfying
gcd(N(α), N2) = N provides a two-generator representation, as N is prime. See [GPS20] for
details.

The following step studies the quotient O/NO. As stated at the end of Section 6.3.2, we also
require for simplicity that −q is a square modulo N . In practice, we often choose H−1,−p as it is
common that p = 3 mod 4.

Step 2a. The search of a quaternion β1 corresponds to solving a norm equation of the form
a2 +qb2 +p(c2 +qd2) = NS1. The powersmooth number S1 is chosen so that the latter equation is
solvable. The authors of [GPS20] consider that S1 needs to be larger than p log2(p). Algorithm 6.11

117

Chapter 6. Representation of endomorphism rings of supersingular curves

finds a quaternion of Z〈1, i, j,k〉 by solving a norm equation: it uniformly chooses two coordinates
of the quaternion, and then use a Cornacchia algorithm in order to get the two others (see [GPS20,
page 163]). We obtain β1 using this algorithm with the input n = N(I)S1, where S1 > p log2(p)
is a powersmooth integer.

Algorithm 6.11: FindQuaternionOfNorm(n) from [GPS20]
Input. n an integer.
Output. A quaternion a1 + bi + cj + dk ∈ H−1,−p of norm n.

m← b
√
n/2pc

repeat
(increase m if needed)
c← Random(1,m)
d← Random(1,m)

until the equation x2 + y2 = n− p(c2 + d2) has a solution.
a, b← a solution of x2 + y2 = n− p(c2 + d2).
return (a, b, c, d)

Step 2b. The next step finds β2 = Cj + Dk satsfying the condition β1β2 ∈ I ′, which is
equivalent to β1β2 ∈ Oα mod NO. An endomorphism of O seen in the quotient O/NO is
described by a matrix of M2(Z/NZ) (see Algorithm 6.3). From this representation of O/NO,
Algorithm 6.12 computes linear algebra modulo N in order to compute the element β2 modulo
NO. More precisely, it first writes α mod NO using Algorithm 6.3:

α mod NO =

(
ux uy
vx vy

)
.

Then, we compute the matrix (mi,j) (resp. (m′i,j)) corresponding to β1j (resp. β1k) in O/NO
in the same way. From Proposition 6.15, there exists(u′ : v′) ∈ P1(Z/NZ) such that (x : y) and
(u′ : v′) map to β1β2 mod NO by the bijection given on page 105. Thus, β2 is obtained by solving
the linear system modulo N :

(C,D, u′, v′)

m11 m12 m21 m22

m′11 m′12 m′21 m′22

−x −y 0 0
0 0 −x −y

 = (0, 0, 0, 0). (6.3)

Algorithm 6.12: ApproximationInIdeal(β1, I)
Input. β1 ∈ O,

I an O-left ideal of prime norm N .
Output. An element β2 ∈ Zj + Zk such that β1β2 ∈ I.

Write I = ON +Oα . Algorithm 6.2
Mα mod N ← α mod NO . Algorithm 6.3
Mβ1j mod N ← β1j mod NO . Algorithm 6.3
Mβ1k mod N ← β1k mod NO . Algorithm 6.3
Find ((x : y), (u : v)) ∈ P1(Z/NZ)× P1(Z/NZ) corresponding to Mα mod N . Propositon 6.15
(C,D, (u′ : v′))← a solution of Equation (6.3).
return (0, 0, C,D)

118

6.6. Maximal orders through isogenies

Step 2c. From β2, the next step computes an element β′2 ∈ I ′ of powersmooth norm S2 such
that β′2 = λβ2 mod NO for a scalar λ ∈ Z. Galbraith et al. estimate that S2 needs to be larger
than p3 log2(p) in order to find a solution. We provide Algorithm 6.13 for details.

Algorithm 6.13: SecondQuaternionApproximation(β2, I, S2)
Input. A quaternion β2 ∈ O of the form Cj +Dk,

I a matrix representing an ideal I of prime norm (output from Algorithm 6.10),
S2 a powersmooth integer.

Output. An element β′2 ∈ I ′ with norm S2, such that β′2 = λβ2 mod NO for a scalar λ ∈ Z.

(0, 0, C,D)← β2.
N ← N(I).
r ← the first odd prime such that S2r/(p(C

2 +D2)) is a square mod N
S2 ← S2r.
λ← a square root of S2/(p(C

2 +D2)) mod N .
repeat
c← Random(1, N)
d← ((S2 − pλ2(C2 +D2)− 2λNCcp)/(2λDp))/N

until the equation x2 + y2 = (S2 − p(λC + cN)2 + (λD + dN)2)/N2 has a solution.
(a, b)← a solution of x2 + y2 = (S2 − p(λC + cN)2 + (λD + dN)2)/N2.
return (Na,Nb, λC + cN, λD + dN)

Step 3. The element β := β1β
′
2 satisfies β = β1λβ2 = λα mod NO. It means that β = λα+Nx

for an element x ∈ O, and so β ∈ I ′ = O ·N +O · α. Moreover, N(β) = N(β1)N(β2) = NS1S2

and so the ideal J := I ′β̄/N has powersmooth norm: N(J) = S1S2.

Summarized algorithm. Algorithm 6.14 summarizes the different steps of the previous algo-
rithms.

Algorithm 6.14: EquivalentIdeal(I)
Input. I a matrix representing an ideal I of an order O.
Output. An equivalent ideal J ∼ I.

I ′ ← an ideal equivalent to I of prime norm N using m = dlog2(p)e . Algorithm 6.10
Write I ′ = O ·N +O · α . Algorithm 6.2
S1 ← a powersmooth integer larger than dp log2(p)e.
S2 ← a powersmooth integer larger than dp3 log2(p)e.
Compute β1 of norm NS1. . Algorithm 6.11
Compute β2 from β1 and I ′ . Algorithm 6.12
Compute β′2 from β2, I ′ and S2 . Algorithm 6.13
β ← β1β

′
2.

return I ′ · β̄/N

Practical complexity. As stated in [GPS20, page 163], the asymptotic complexity of Algo-
rithm 6.14 is Õ(log2(p)3) bit operations, corresponding to the log2(p) tests of (pseudo-)primality
for checking that the Diophantine equation has a solution (see [GPS20, page 163]). Indeed, most

119

Chapter 6. Representation of endomorphism rings of supersingular curves

of the time is spent in these primality tests while running our implementation. Galbraith et
al. obtain that the target ideal J has expected norm Õ(3.5 log2(p)). We provide Example 6.28
in order to show that the constant in the Õ can be significant.

Example 6.28. We end this section with an example of equivalent ideal computation, leading to
two isogenies of different degrees between two curves. Let p = 289 − 1 and E : y2 = x3 − x be
the supersingular elliptic curve defined over Fp2 = Fp(i) = Fp[x]/(x2 + 1). The full 289-torsion is
rational over Fp2 . As we have seen in Example 6.18, End(E) is isomorphic to the maximal order
O = Z〈1, i, 1+j

2 , i+k
2 〉 ⊂ H−1,−p. From an isogeny of degree 287, Algorithm 6.9 computes an ideal

of norm 287. Then, Algorithm 6.10 computes I ′ = Iδ of 54-bit prime norm (28% larger than
log2(p)/2). Algorithm 6.11 outputs a quaternion β1 of 150-bit norm (72% larger than log2(p)), and
Algorithm 6.13 produces a quaternion β′2 of 326-bit norm (22% larger than 3 log2(p)). Finally, the
ideal J has norm a 423-bit powersmooth integer. This is 36% larger than the expected 3.5 log2(p)
size, probably due the asymptotic constant factor in the Õ. The right order of J has a basis with
elements of Z[1

2·3267]〈1, i, j,k〉. Thus, we obtain another representation for endomorphisms of O′
using the fact that OR(J) = ω−1OR(I)ω. Finally, evaluating an endomorphism at a point P can
be computed efficiently with OR(I) if gcd(ord(P), 287) = 1, and OR(J) otherwise.

The latter example is reproducible with the file example/equivalent-ideal.m in the repository.

The equivalent isogeny. The target ideal output in Algorithm 6.14 is also integral so that
it makes sense to consider the corresponding isogeny, of degree N(J). The isogeny is often
expensive to compute directly: computing the isogeny kernel requires looking at E[N(J)] which
is defined over a large extension field. Instead, one can split the ideal J into prime norm ideals so
that it corresponds to prime degree isogenies. Writing J = ON(J) +Oα using Algorithm 6.2, we
set J̃ = O`+O(α mod `O), which corresponds to the first degree ` isogeny, and then iterate on
JJ̃−1. Thus, we can compute an equivalent isogeny given the knowledge of the s-torsion, for the
primes s dividing the powersmooth integer S. We notice that the computation of the equivalent
isogeny is not provided in our implementation.

6.7 Conclusion

In this chapter, we present a concrete algorithmic presentation of the work of [GPS20, KLPT14].
The complexity claimed in the latter works is heuristic, but polynomial in log2(p). It involves
manipulating elements of extension fields that may not be practically reachable in the context of
cryptographic applications. We provided here a concrete implementation in order to estimate a
practical complexity. In the next chapter, we will reuse these algorithms in order to compute a
shortcut in the graph of supersingular curves. This implementation has not been optimized in
the sense that it is used as an illustration of the attack we describe in the following chapter. A
work would be need in order to use the code for constructive cryptography such as the signature
of [GPS20]. Moreover, we did not investigate computations with other initial maximal orders
(we always assume that the initial curve is the curve of j-invariant 1728). Finally, we note that
another work from Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit and Benjamin
Wesolowski will be presented at Asiacrypt 2020 and provides an efficient implementation of
equivalent ideal computation together with a generalization of the [GPS20] signature.

120

7 •
•••

•
• •
•

Verifiable delay functions from isogenies
and pairings

A Verifiable Delay Function (VDF), first formalized in 2018 by Boneh, Bonneau, Bünz and
Fisch [BBBF18], is a function f : X → Y that takes a prescribed wall-clock time to evaluate,
independently of the parallelism of the architecture employed, and such that its output can be
verified efficiently. In a nutshell, it is required that anyone can evaluate f in T sequential steps,
but no less, even with a large number of processors; on top of that, given an input x and an output
y, anyone must be able to verify that y = f(x) in a short amount of time, say in polylog(T). In
this chapter, we recall what is a VDF and its applications. Then, we go through some of the
proposed solutions and describe a new framework for VDFs. This leads to two instantiations of
verifiable delay functions using isogenies of supersingular elliptic curves (studied in Chapter 3)
and bilinear pairings presented in Chapter 4. Section 7.5 gives security proofs and reviews the
available attacks against our proposals. Finally Section 7.6 provides an implementation of our
VDFs, and related measurements. This chapter corresponds to a joint work with Luca De Feo,
Christophe Petit and Antonio Sanso [DMPS19], presented at Asiacrypt 2019.

Summary
7.1 Definition and applications . 122

7.2 Existing constructions . 123

7.3 A new VDF construction framework 125

7.4 Two instantiations with supersingular elliptic curves 127

7.5 Security and parameter sizes . 130

7.6 Implementation . 136

7.7 Conclusion and perspectives . 139

121

Chapter 7. Verifiable delay functions from isogenies and pairings

7.1 Definition and applications

7.1.1 Definition

We recall here the formal definition of a Verifiable Delay Function, following [BBBF18]. A VDF
consists of three algorithms:

1. Setup(λ, T) → (ek, vk) : is a procedure that takes a security parameter λ, a delay parameter
T , and outputs public parameters consisting of an evaluation key ek and a verification key vk.
2. Eval(ek, s) → (a, π) : is a procedure to evaluate the function on input s. It produces the
output a from s, and a (possibly empty) proof π. This procedure is meant to be infeasible in
time less than T .
3. Verify(vk, s, a, π) → {true, false} : is a procedure to verify that a is indeed the correct output
for s, with the help of the proof π.

A VDF shall satisfy three security properties: Correcteness, stating that a honest evaluator
always passes verification, Soundness, stating that a lying evaluator never passes verification,
and Sequentiality, stating that it is impossible to correctly evaluate the VDF in time less than
T − o(T), even when using poly(T) parallel processors. We will give formal security definitions in
Section 7.5, but see also [BBBF18].

According to [BBBF18], the Setup routine should run in time poly(λ); here we slightly relax
this constraint and allow it to run in poly(T, λ). Eval must be doable in time T ; Verify in time
poly(λ). A VDF is said to be optimal when T is allowed to be in o(2λ) without harming security;
note that it does not make sense to have T ∈ O(2λ), since in that case it is cheaper to break
soundness than to run Eval.

7.1.2 Applications

We highlight a few applications of VDFs:

• Constructing a trustworthy randomness beacon, like the one introduced by Rabin in [Rab83],
where a public service produces a continuous stream of guaranteed unbiased randomness.
The classic approach consisting in extracting randomness from entropy pool sources, such
as stock prices or proof-of-work blockchains à la Bitcoin, has been shown to be manipulable
by active attackers [PW18]. For example, while the price of a particular stock may seem
unpredictable to a passive observer, a powerful trader can influence the market trend, making
the random output biased. Here is where VDFs are useful: if the beacon is calculated by
applying a VDF with a long enough delay to the entropy source, the malicious trader would
not have the time to try to “adjust” the market at his own advantage.

The other common solution based on the “commit-and-reveal” paradigm with multiparty
randomness has also been shown to have flaws. Indeed a malicious party with the intention
of manipulating the output might refuse to reveal his commitment after seeing the other
opened commitments, forcing to restart the protocol. This can be mitigated by threshold
techniques, as shown in [SJK+17], or by replacing commitments with VDFs, as shown by
Lenstra and Wesolowski [LW15].

• Reducing energy consumption. VDFs may be used to reduce the energy consumption of
blockchains based on proofs-of-work. An elegant idea by Cohen [Coh17] combines proofs

122

7.2. Existing constructions

of space with VDFs in order to achieve a proof of Space and time. In a nutshell, in order
to write a new block of the blockchain, a miner needs to provide a proof of space and the
output of a verifiable delay function. More precisely, each block Bi is composed of a proof
of space σi and a proof of time τi, which is actually the output of a VDF. In order to win
the block Bi, one needs to compute the VDF first, and the delay parameter depends on the
storage of the miner:

1. A challenge ci for the block Bi is provided in order to determine the miner delay (VDF)
parameter. This challenge is the hash of the previous proof of time τi−1.

2. The miner finds the closest proof of space to ci. We denote ∆ to be the difference
between his closest proof and ci.

3. The miner computes a VDF whose delay parameter is proportional to ∆.

For a description of other applications of VDFs, such as proof of replication or computational
timestamping, we refer to [BBBF18].

7.2 Existing constructions

We present constructions of functions that satisfy some of the criteria to be a verifiable delay
function.

7.2.1 Chaining hash functions

An example of a delay function lacking efficient verification is a chained one-way function:

s→ H(s)→ H(H(s))→ · · · → H(T)(s) = a.

This clearly takes T steps to evaluate, even on a parallel computer, however the only feasible way
to verify the output is to re-evaluate the function. Two related known cryptographic primitives are
the time-lock puzzles defined by Rivest, Shamir, and Wagner in [RSW96] and proofs of sequential
work [MMV13, CP18]. The problem with the former is that it is not publicly verifiable while the
latter is not a function (i.e., it does not have a unique output).

So far, few constructions meet the requirements of a VDF; we summarize them below.

7.2.2 Modular square roots

One of the earlier examples of a VDF can be found in the 1992 paper by Dwork and Naor [DN93].
The underlying idea is rather simple: given a prime number p such that p = 3 mod 4, a (canonical)
square root a =

√
s mod p can be computed using the formula a = s

p+1
4 . This requires about

log(p) sequential squaring operations, i.e Õ(log(p)2) binary operations. On the other hand,
verifying correctness only requires to check that a2 = s, costing Õ(log(p)) binary operations.
Using a delay parameter T = log(p)2, there is a gap between the evaluation and the verification,
but this simple approach has two issues: first, the gap is only polynomial in the delay parameter
(the verification costs Õ(

√
T) binary operations), secondly, due to the possibility of parallelizing

field multiplications, this gap vanishes asymptotically if the evaluator is provided with large
amounts of parallelism (see also Table 7.1). We refer to [BS07] for details on the asymptotic
complexity using nO(1) processors, leading to Õ(

√
T) binary operations for a parallel evaluation.

Lenstra and Wesolowski introduced with Sloth [LW15] the possibility of chaining square root
operations. The problem with this construction, though, is that it does not achieve asymptotically
efficient verification.

123

Chapter 7. Verifiable delay functions from isogenies and pairings

7.2.3 Time-lock puzzles

Time-lock puzzles were introduced by Rivest, Shamir, and Wagner [RSW96] to provide encryption
that can only be decrypted after a given time T . They use a classical RSA modulus N = pq;
the encryption key is then a = s2T mod N for some starting value s. Now, it is clear that
any party knowing ϕ(N) can compute the value of a quickly (they can reduce the exponent
e = 2T mod ϕ(N)). But for everyone else the value of a is obtained by computing T sequential
squaring operations.

The main reason why this construction cannot be classified as a VDF is that there is not an
efficient way to perform public verification without giving away the factorization of N . This issue
has recently been solved, independently, by Pietrzak and Wesolowski. We briefly present their
constructions next; for a more in-depth survey, see [BBF18].

7.2.4 Wesolowski’s VDF

In 2018, Wesolowski presented a VDF based on groups of unknown order [Wes19]. His work
leverages the time lock puzzle described above, introducing a way to publicly verify the output
a = s2T . He defines an interactive protocol where, after seeing the output a, the verifier sends to
the prover a random prime ` < B, where B is some small bound. The prover replies with the
value b = sb2

T /`c; the verifier then checks that a = b`sr, where r = 2T mod `. Because the verifier
only uses public randomness, this protocol can be made non-interactive using the Fiat–Shamir
heuristic. Wesolowski’s proposal shines for the shortness of the proof (only one group element)
and the speed of the verification (only two group exponentiations).

Wesolowski suggests two ways of instantiating groups of unknown order. The first one is
using RSA groups (Z/NZ)∗, like in Section 7.2.3. In order to get a secret RSA integer N (so that
no one knows the factorization of N), a trusted third party is needed to produce the modulus
N . The second is using class groups of imaginary quadratic number fields [Cox97, page 100].
While the former instantiation is better studied in public key cryptography, the second has the
advantage of not requiring a trusted setup.

7.2.5 Pietrzak’s VDF

Concurrently with Wesolowski, Pietrzak [Pie18] introduced another protocol to verify Rivest–
Shamir–Wagner time-lock puzzles. Pietrzak’s verification procedure is an interactive recursive
protocol, where the prover outputs a proof π consisting of O(log(T)) group elements, and the
verifier needs about O(log(T)) time to do the verification. The main advantage of his construction
is that the prover only needs about O(

√
T) group multiplications to build π. Pietrzak presents his

protocol using RSA groups, but class groups like in Wesolowski’s VDF can also be used (although
this affects slightly the computational assumptions needed for soundness).

7.2.6 Univariate permutation polynomials

Boneh, Bonneau, Bünz and Fisch explored in their seminal paper [BBBF18] an approach based
on permutation polynomials over finite fields Fp. In full generality, their proposal is a weaker form
of VDF, where a certain amount of parallelism is needed to give an advantage to the evaluator
(see [BBBF18, Definition 5]). The gist of their approach is that, given a permutation polynomial
of degree T , inverting such polynomial implies computing polynomial GCDs. This operation
takes O(log(p)) multiplications of dense polynomials of degree O(T), and it is conjectured that it
cannot be done in less than T steps on at most O(T 2) processors (see [BBBF18, Assumption 2]).

124

7.3. A new VDF construction framework

VDF Sequential Parallel Verify Setup Proof
Eval Eval size

Modular square root T T 1/2 T 1/2 T 3 —
Univariate permutation polynomials3 T 2 > T − o(T) log (T) log (T) —
Wesolowski’s VDF (1 + 2

log (T))T (1 + 2
s log (T))T λ4 λ3 λ3

Pietrzak’s VDF (1 + 2√
T

)T (1 + 2
s
√
T

)T log (T) λ3 log (T)

Isogeny and pairing VDF T T λ4 Tλ3 —
Isogeny and pairing VDF (optimized) T T λ4 T log(λ) —

Table 7.1: Asymptotic VDF comparison: T represents the delay factor, λ the security parameter,
s the number of processors. For simplicity, we assume that T is super-polynomial in λ. All times
are to be understood up to a (global across a line) constant factor.

On the other hand, any such polynomial can be evaluated, and thus verified, using O(log(T))
operations on O(T) processors, which is exponentially smaller. Moreover, there exists a family
of permutation polynomials, due to Guralnick and Müller [GM97], that can be evaluated in
O(log(T)) operations without parallelism, and it is conjectured in [BBBF18] that the derived
VDF is secure.

The drawbacks of this construction are that the parallelism of the evaluator needs to be
polynomially bounded in T , and that it is based on assumptions that have been seldom studied
in a cryptographic setting.

For completeness we need to mention that a theoretical, albeit impractical, VDF can be
constructed using Incrementally Verifiable SNARKs. Again, we refer to [BBBF18] for a deeper
analysis of the topic.

We compare the asymptotic performance of the VDFs above and of our proposal in Table 7.1.
Outside of modular square roots, all VDFs constructions meet the requirements of an optimal
VDF, however each has its qualitative strengths and weaknesses: permutation polynomials require
to bound the parallelism of the evaluator, and are based on little studied assumptions; VDFs
derived from time-lock puzzles are interactive, have no perfect soundness, and may or may
not require a trusted setup; ours need a trusted setup, and require an effort to validate public
parameters comparable to evaluating the VDF.

7.3 A new VDF construction framework

We start by describing a framework for defining VDFs inspired by the BLS signature scheme
based on pairing groups [BLS04]. We briefly presented the BLS signature in Chapter 4 and recall
it here with few more details:

• The BLS signature uses a pairing friendly elliptic curve E defined over Fp, with a non-
degenerate bilinear pairing e : G1×G2 → Fpk , where G1,G2 are distinct subgroups of prime
order r of the curve E, and k is the embedding degree of the curve with respect to r (see
Definition 2.13).

• The secret key is a scalar s < r, and the public key is a pair of points P, [s]P ∈ G1.
3According to [BBBF18, § 5.1], one must limit the evaluator to O(T 2) parallel processors for the bound on

parallel Eval to hold. VDFs based on permutation polynomials can be evaluated in time O
(
log2(T)

)
using O(T 3.8)

parallel processors.

125

Chapter 7. Verifiable delay functions from isogenies and pairings

• To sign a message m, the signer computes a hash Q = H(m) ∈ G2, and gives back the
signature [s]Q.

• The verifier then checks that e(P, [s]Q) = e([s]P,Q).

The BLS signature is also by design a Verifiable Random Function fs : G2 → G2, where only
the owner of the trapdoor s can evaluate fs, while anyone can verify the result [MRV99]; however,
it is not a VDF because both evaluation and verification are in polylog(r). Our generalization,
instead, has efficient instantiations based on isogeny graphs of supersingular elliptic curves, where
the evaluation can be made exponentially slower than the verification. If the trapdoor is kept
secret, one obtains a signature/identification protocol based on walks in isogeny graphs; if the
trapdoor is made public, one obtains a VDF. Note that this is different from a trapdoor VDF, as
defined by Wesolowski [Wes19], where the trapdoor is used to efficiently compute the evaluation.
We will present our instantiations in Section 7.4.

We use notations of Chapter 4 and denote G1,G2,G′1,G′2 and G to be groups of exponent r
as in Section 4.1.1. Let also e : G1 ×G2 → G and e′ : G′1 ×G′2 → G be non degenerate bilinear
pairings. Furthermore, we assume that there is a pair of bijections φ : G1 → G′1 and φ̂ : G′2 → G2

that satisfy the following diagram,

G1 ×G′2 G′1 ×G′2

G1 ×G2 G

φ× 1

1× φ̂ e′

e

Note that the diagram implies φ and φ̂ are group isomorphisms.
We shall assume that the pairings e, e′ can be evaluated in time polylog(N), whereas both φ

and φ̂ can be evaluated in sequential time T , where T is some parameter independent from r
(but still in o(r)).

Let P be any generator of G1, the public parameters of our system are going to be
(r,G1,G2,G′1,G′2,G, e, e′, P, φ(P)). In the following, we consider subgroups Gi (resp. G′i) of
a pairing friendly elliptic curve E (resp. E′) as in Section 2.4. Thus, P is a point of the curve
E generating the cyclic group G1, and e and e′ are pairings such as in Sections 4.1.3, 4.1.4
and 4.1.5. For efficiency considerations, we consider here the Tate pairing in our implementation
(see Section 7.6.2). Finally, the group G is a multiplicative subgroup of F∗

pk
of order r as in

Chapters 4 and 5. From this setup, we derive two primitives:

An identification protocol. The maps φ and φ̂ are the trapdoor. The verifier gives an element
Q ∈ G′2 to the prover, the proof is the element φ̂(Q). Then, the verifier checks that

e(P, φ̂(Q)) = e′(φ(P), Q).

It should be apparent that BLS signatures [BLS04] correspond to the special case where
G1 = G′1 and G2 = G′2 are orthogonal groups with respect to the pairing e = e′, and φ = φ̂ = [s]
is the multiplication endomorphism by a secret scalar s. This generalization is closely related
to several patents [JMVB09, JV09, BCL12]. More precisely, the latter abstract scheme already
appears in a patent by Broker, Charles and Lauter [BCL12]. We will construct our VDFs using a
similar structure in Section 7.3, but the design and the implementation are different, and likely

126

7.4. Two instantiations with supersingular elliptic curves

more efficient. We shall see in Section 7.5 that our instantiation presents the minor advantage
over BLS signatures of being partially resistant to quantum attacks.

More recently, Koshiba and Takashima [KT16, KT19] have provided a framework and security
definitions for some cryptographic protocols involving pairings and isogenies, called isogenous
pairing groups. They also present key-policy attribute-based encryption schemes based on their
framework.

Our new VDF construction does not fit within any of the previous frameworks: while the
isogeny is secret there, here it is public. Moreover the isogeny involved in our construction has
very large degrees to achieve the delay property; using isogenies of such degree would make
any of the previous protocols unnecessarily slow. Security properties required for VDFs differ
significantly in nature from traditional cryptographic protocols, and none of the computational
assumptions previously used in isogeny-based cryptography, including those in [KT16], is relevant
to our construction.

A verifiable delay function. The maps φ and φ̂ are also part of the public parameters. The
VDF is the map φ̂, Eval simply amounts to evaluating it at points Q ∈ G′2. To verify the output,
one checks that

e(P, φ̂(Q)) = e′(φ(P), Q).

It should be clear that, because the map R 7→ e(P,R) is an isomorphism, verification succeeds
if and only if the output is correct; this will be used to prove correctness and soundness in
Section 7.5. By hypothesis, Eval takes T sequential steps, while the pairings can be evaluated in
time polylog(r).

7.4 Two instantiations with supersingular elliptic curves

We now give two instantiations of the VDF described in Section 7.3, using supersingular elliptic
curves for the pairing groups, and isogenies of prime power degree for the maps φ, φ̂. We will see
in Section 7.5 that the choice of the curves severely affects the security of the protocol, however
we ignore this issue for the moment.

7.4.1 VDF from supersingular curves over Fp
Our first construction uses supersingular curves defined over a prime field Fp. It shares similarities
with the key exchange protocol CSIDH [CLM+18] of Section 3.3.2 and with the VDF based on
class groups of imaginary quadratic fields by Wesolowski [Wes19].

Let p be a prime such that p+ 1 contains a large prime factor r. Let ` be one of:

• ` = 2, only if p = 7 mod 8, or

• a small prime such that
(−p
`

)
= 1.

Let E be a supersingular elliptic curve defined over Fp, and denote by e the Tate pairing on
E[r]. When ` = 2 we shall add the requirement that E[2] ⊂ E(Fp), implying that E is on the
surface. By construction #E(Fp) = p + 1, and E(Fp) contains exactly one cyclic subgroup of
order r, that we shall use as G1 = E(Fp)[r]. Recall that in large characteristic, supersingular
curves defined over Fp have embedding degree k = 2. Hence, the full r-torsion of E is defined
over Fp2 .

127

Chapter 7. Verifiable delay functions from isogenies and pairings

Setup(λ, T)

1. Choose primes r, p with the properties above, according to the security parameter λ;

2. Select a supersingular curve E defined over Fp;
3. Choose a direction on the horizontal `-isogeny graph, and compute a cyclic isogeny
φ : E → E′ of degree `T , and its dual φ̂;

4. Choose a generator P of G1 = τ−1
2 (Et(Fp)[r]), and compute φ(P);

5. Output (ek, vk) =
(
φ̂, (E,E′, P, φ(P))

)
.

Eval(φ̂, Q ∈ G′2)

1. Compute and output φ̂(Q).

Verify(E,E′, P,Q, φ(P), φ̂(Q))

1. Verify that φ̂(Q) ∈ G2 = E(Fp)[r];

2. Verify that e(P, φ̂(Q)) = e′(φ(P), Q).

Figure 7.1: Instantiation of the Verifiable Delay Function over Fp.

We denote Et to be a quadratic twist of E. Using the notations of Section 2.7, Et = τ2(E)
(see Page 30 for the definition of τ2). The rational maps defining τ2 are defined over Fp2 , but
Et is defined over Fp. Moreover, #Et(Fp) = p+ 1, and it contains exactly one cyclic subgroup
Gt

1 = Et(Fp)[r]. We shall then set G2 := τ−1
2 (Gt

1). Finally, the Tate pairing is non-degenerate on
G1 ×G2.

The map φ will be instantiated with an isogeny of degree `T , and the map φ̂ with its dual.
In practice, we assume that these isogenies are stored as a sequence of T isogenies of degree `
(e.g., specified by their kernels), so that evaluating φ and φ̂ can be done in time polynomial in
` and linear in T . For a representation that is more compact by a (large) constant factor, see
Section 7.6.

Because of the way we have chosen `, the graph of (horizontal) `-isogenies containing E is a
cycle of length dividing the class number # Cl(Endp(E)), thus an isogeny of degree `T is obtained
by choosing a direction on the cycle and composing T isogeny steps each of degree `. The isogeny
φ : E → E′ defines an image curve E′/Fp having the same group structure as E; in particular
we define the cyclic groups G′1 = E′(Fp)[r] and G′2 = τ−1

2 (E′t(Fp)[r]), where E′t = τ2(E′) is a
quadratic twist of E′.

Note that it is easy to sample uniformly from any of the groups G1,G2,G′1,G′2, in a way that
does not reveal discrete logarithms4: one simply takes random points on the curves or on their
twists (see [BHKL13] for example) and multiplies by the cofactor (p + 1)/r. The algorithms
defining the VDF are described in Figure 7.1.

The similarity with Wesolowski’s VDF is evident here: all `-isogenies with the same direction
correspond to an ideal a of norm ` inside the quadratic imaginary order O ' Endp(E), which is
also a representative of an ideal class in Cl(O). Composing isogenies corresponds to multiplying
ideals, thus φ corresponds to aT and φ̂ corresponds to a−T in Cl(O). While Wesolowski raises
elements to the power 2T , we only do the equivalent of raising to the power T , because no

4In the elliptic curve cryptography literature, this is typically called hashing into the groups.

128

7.4. Two instantiations with supersingular elliptic curves

analogue of the square-and-multiply algorithm is known for composing isogenies. Of course, the
fundamental difference is in the way we verify the computation.

7.4.2 VDF from supersingular curves over Fp2

Our second VDF is very similar to the previous one, but uses supersingular curves defined over
Fp2 , thus sharing some similarities with the Charles–Goren–Lauter hash function [CGL09], and
with SIDH [JD11, DFJP14]. It deviates slightly from the paradigm presented in Section 7.3 in
that the inputs are not taken in a cyclic group, and evaluation is slower than the previous one by
a factor of about 2 (see Section 7.6), but has some advantages over it that will be discussed in
Section 7.5.

Like before, we choose a prime p such that p+ 1 contains a large prime factor r, and a small
prime `, e.g., ` = 2.5 We again choose a supersingular elliptic curve E defined over Fp (this will
be necessary to define the orthogonal groups G1,G2), however we see it as a curve over Fp2 , so
that t = −2p and #E(Fp2) = (p+ 1)2.

Like before, we define G1 = τ−1
2 (Et(Fp)[r]) and G2 = E(Fp)[r], where Et = τ2(E) is a

quadratic twist of E over Fp. The maps φ, φ̂ are again an isogeny of degree `T and its dual. We
look at cyclic isogenies (i.e. isogenies of cyclic kernel). It corresponds to a non-backtracking walk
on this isogeny graph.

Definition 7.1 (Non-backtracking walk). An isogeny walk is called non-backtracking if no
isogeny step (i.e. a prime degree isogeny of the walk) is followed by its dual.

Hence, we select a cyclic isogeny by doing a non-backtracking walk on this `-isogeny graph.
Over Fp2 , there are (`+ 1)`T−1 possible choices for them, instead of just two in the Fp case.

On the image curve E′, we define G′1 = φ(G1) and G′2 = φ(G2). However, we are now faced
with a difficulty: there is no known efficient way to sample from G′2 or G′1, indeed E′ is generally
defined over Fp2 and it has therefore no Fp-twists. To bypass this problem, we deviate from the
abstract description of Section 7.3, obtaining an r-to-1 map instead of a bijection. Let π be the
Frobenius endomorphism of E over Fp, the trace map on E over Fp2 is the map defined in [Gal05,
page 194] as follows:

Tr : E → E,

P 7→ P + π(P).

In particular, the trace map sends a point E[r] into G2: if P ∈ E[r], P is defined over Fp2 and
π(Tr(P)) = Tr(P) which means that Tr(P) ∈ E(Fp). Moreover, π(P) = −P for P ∈ G1 and the
dual of 1 + π is 1− π. Finally, we obtain that for all P ∈ G1 and R ∈ E[r],

e(P,Tr(R)) = e(P, (1 + π)(R)) = e((1− π)(P), R) = e([2]P,R) = e(P,R)2.

We thus define our VDF as

f : E′[r]→ G2,

Q 7→ (Tr ◦φ̂)(Q),

and the verification is done by checking a pairing equation as before. The algorithms are described
in Figure 7.2.

5For this VDF, there is no practical reason to choose any other prime than ` = 2.

129

Chapter 7. Verifiable delay functions from isogenies and pairings

Setup(λ, T)

1. Choose primes r, p with the properties above, according to the security parameter λ;

2. Select a supersingular curve E defined over Fp;
3. Perform a random non-backtracking walk of length T in the `-isogeny Fp2-graph,

defining a cyclic `T -isogeny φ : E → E′ and its dual φ̂;

4. Choose a generator P of G1 = τ−1
2 (Et(Fp)[r]), and compute φ(P);

5. Output (ek, vk) =
(
φ̂, (E,E′, P, φ(P))

)
.

Eval(φ̂, Q ∈ E′[r])

1. Compute and output (Tr ◦φ̂)(Q).

Verify(E,E′, P,Q, φ(P), (Tr ◦φ̂)(Q))

1. Verify (Tr ◦φ̂)(Q) ∈ G2 = E(Fp)[r];

2. Verify that e(P, (Tr ◦φ̂)(Q)) = e(φ(P), Q)2.

Figure 7.2: Instantiation of the Verifiable Delay Function over Fp2 .

A bijective VDF over Fp2. If a bijection is wanted, an alternative VDF using the Fp2-graph
would swap roles by having E′ defined over Fp, and E over Fp2 . During the Setup phase, a basis
(P,R) of G1 ×G2 is sampled by evaluating φ̂/2T on a basis of G′1 ×G′2, and it is added to the
verification key vk. Then, sampling Q in G′2 is easy, and verifying that φ̂(Q) ∈ G2 can be done by
checking that e(R, φ̂(Q)) = 1. However this protocol is less efficient, because verification requires
two pairing computations instead of one.

7.4.3 Properties of the VDFs.

In slight disagreement with the definitions of [BBBF18], the Setup routines presented here take
O(T) time to compute the isogenies φ, φ̂, and produce evaluation keys of size O(T). While the size
of the evaluation key can be reduced by redoing parts of the computation in Eval (see Section 7.6),
the only known way to verify the public parameters is to, essentially, rerun the Setup.

We also note that, although T can be arbitrary (we discuss bounds on T in the next section),
neither of our VDFs is incremental in the sense of [BBBF18], meaning that a single parameter
set produced by Setup shall support more than one delay T . A possible workaround is to have
Setup include some intermediate curves in the verification key, so that a single Setup can be used
for many delay parameters up to T , at the cost of increasing the size of the verification key.

Finally, the VDF over Fp is decodable in the sense of [BBBF18], meaning that given the
output φ̂(Q) one can compute the input Q (although not more efficiently than evaluating φ̂); the
VDF over Fp2 , on the other hand, is obviously not decodable because it is non-injective.

7.5 Security and parameter sizes

We now give formal security definitions and proofs, following [BBBF18]. A VDF must satisfy
three security properties: correctness, soundess, and sequentiality, as defined below. In [BBBF18],

130

7.5. Security and parameter sizes

soundness is a weaker property where the evaluator is allowed a negligible cheating probability;
we introduce here the stronger notion of perfect soundness, which is achieved by our VDFs.

Definition 7.2 (Correctness, soundness). The VDFs of Section 7.4 are correct if, for any λ, T ,
public parameters (ek, vk)← Setup(λ, T), and all input Q, if R← Eval(ek, Q) then Verify(vk, Q,R)
outputs true.

They are perfectly sound if for all λ, T , public parameters (ek, vk) ← Setup(λ, T), and all
input Q, if R 6= Eval(ek, Q) then Verify(vk, Q,R) outputs false.

Theorem 7.3. The VDFs of Section 7.4 are correct and perfectly sound.

Proof. The map R 7→ e(P,R) is a group isomorphism between the output space G2 ⊂ E[r] and
the multiplicative subgroup µr ⊂ Fp2 . Hence, verification succeeds if and only if the output is
correct.

Sequentiality is the defining property of VDFs, and is much subtler to define. Intuitively, we
want it to be impossible to evaluate the VDF faster than running Eval, even given an unbounded
amount of parallel resources, and even if the adversary is allowed a large amount of precomputation
after the public parameters are generated. We must of course exclude trivial cases where, for
example, the adversary precomputes a list of input-output pairs, hence we model security as a
game where the adversary is allowed a polynomial amount of precomputation, after which he
receives a random input point Q and must produce the output φ̂(Q) (or Tr ◦φ̂(Q)) faster than
Eval with non-negligible probability. We also introduce here a new definition: if the adversary
cannot break sequentiality, even when he is allowed a quantum precomputation before seeing the
point Q, we say that the VDF is quantum annoying.

Definition 7.4 (Sequentiality, quantum annoyance). The VDFs of Section 7.4 are sequential if
no pair of randomized algorithms A0, which runs in total time poly(T, λ), and A1, which runs in
parallel time less than T , can win with non-negligible probability the following sequentiality game

1. (ek, vk)
$← Setup(λ, T), where the random input tape to Setup is filled with uniformly

distributed bits,

2. A← A0(λ, ek, vk, T),

3. Q $← G′2, uniformly sampled,

4. Q′ ← A1(A, vk, Q),

where winning is defined as outputting Q′ = φ̂(Q) (or Q′ = Tr ◦φ̂(Q)).
Moreover, if A0 is allowed a quantum computation in poly(T, λ), we say that the VDFs are

quantum annoying.

We leave aside the question of formally defining a computational model where “running in
parallel time less than T ” has a definite meaning; see [BBBF18, Wes19] for details.

We shall see soon that Setup must use a secret randomness to select the starting curve E/Fp;
after that, Setup is only left with choosing the isogeny φ : E → E′ and the generator P ∈ E[r],
and both choices can be done using public randomness. Furthermore A0 is allowed poly(T)
computation, so it can compute φ̂ and evaluate φ on P (and also evaluate φ̂ on polynomially
many points of G′2). Hence, choice of E/Fp aside, Setup can be absorbed into A0; this justifies
defining the following problem, which is a simple rewording of the sequentiality hypothesis:

131

Chapter 7. Verifiable delay functions from isogenies and pairings

Definition 7.5 (Isogeny shortcut problem (over k)). Let E be a curve uniformly sampled in the
set of all supersingular curves defined over Fp. Given an isogeny φ : E → E′ of degree `T to a
curve E′/k, with k = Fp or k = Fp2 ; being allowed a precomputation taking total time poly(T, λ),
evaluate φ̂(Q) on a random point Q ∈ E′(k)[r] in parallel time less than T .

7.5.1 Attacks

We now discuss three natural attack strategies on the isogeny shortcut problem, and we use them
to set parameter sizes. We summarize their complexities in Table 7.2.

Pairing inversion. The simplest attack exploits the same properties as the verification. It
works both against the VDFs and the generalization of BLS signatures sketched in Section 7.3.
Given P, φ(P), Q, to compute φ̂(Q) (or (Tr ◦φ̂)(Q)) it is enough to solve the pairing inversion
problem e(P, ·) = e′(φ(P), Q), studied in [GHV08]. Note that this attack must be repeated for
each new input Q.

The hardness of the pairing inversion problem impacts the size of r and p. Given that our
curves have embedding degrees 2 or 1, the best algorithm at our disposal is the Number Field
Sieve for Fp2 , described in Chapter 1. To reach the 128-bit security level, we take p around 1500
bits, and r of 256 bits.

Computing shortcuts. A different path to breaking our VDFs consists in finding a “simpler”
isogeny from E to E′, agreeing with φ on E[r], but taking less parallel time to compute. This
kind of attacks can be decomposed in two steps: first find a “simpler” isogeny ψ : E → E′ (e.g.,
of lower degree), then find an endomorphism ω ∈ End(E) such that ω ◦ ψ̂ agrees with φ̂ on E′[r].

Concerning the first step, when deg φ is super-polynomial in p, a lower degree isogeny
ψ : E → E′ always exists; indeed Pizer [Piz90, Piz98] has shown that `-isogeny graphs of
supersingular curves over F̄p are optimal expanders for any prime `, and thus have diameter in
O(log(p)), implying that there is an `-isogeny walk connecting E to E′ of degree polynomial in p.
However, it may be difficult to compute such an isogeny in general: the best generic algorithm in
the case of Fp2-graphs is a birthday paradox method [GHS02, DG16], that finds a collision in
O(
√
p) isogeny steps on average. Note that the only quantum speedup known for this problem is

a generic Grover search, giving a square-root acceleration at best [BJS14].
For curves over Fp, computing the structure of the class group Cl(Endp(E)) allows an attacker

to find an equivalent isogeny ψ, of (smooth) lower degree. A similar computation is at the hearth
of the signature scheme CSI-FiSh [BKV19], and has recently been demonstrated to be doable
for primes of around 500 bits. Nevertheless, the asymptotically best algorithm, due to Jao and
Soukharev [JS10], computes an equivalent isogeny of smooth subexponential degree using Lp(1/2)
operations, and is thus not better than the pairing inversion attack mentioned above. We will
sketch later how a similar attack can be performed in polynomial time on a quantum computer.

After computing a “simpler” isogeny ψ : E → E′, we are left with the problem of finding ω
such that ω ◦ ψ̂ = φ̂ on E′[r]. This problem can be solved by computing discrete logarithms in
E[r], which is again not easier than the pairing inversion problem; however, this attack needs only
to be performed once on the public parameters, and can then be used to speed up any evaluation.

So far, we have only discussed the computation of shortcuts in the generic case; however,
when E or E′ are special curves, there are much better ways to solve this problem, that would
lead to a complete break of our VDFs. We discuss this issue in Subsection 7.5.2.

132

7.5. Security and parameter sizes

Parallel isogeny evaluation. Finally, the last attack path would be to find a better parallel
algorithm for evaluating isogenies of degree `T . All known algorithms require to go through
each of the T intermediate curves, one after the other. Barring shortcut techniques as described
above, it seems unlikely that an algorithm “skipping” intermediate curves could exist. This is not
dissimilar from the case of VDFs based on groups of unknown order, where one argues that in
order to compute g2T all intermediate values g2i must be computed. After all, a 2-isogeny is only
a simple generalization of the multiplication-by-2 map of an elliptic curve, it thus seems believable
that a chain of 2-isogenies must be evaluated sequentially passing through all intermediate curves.

It is certainly possible to aggregate steps in blocks, e.g., replace two 2-isogenies with one
4-isogeny, as it is typically done in implementations of SIDH/SIKE [CLN16]. This is analogous
to replacing n squarings with a single power-of-2n in group-based VDFs; previous work on
parallel modular exponentiation suggests that, in some complexity models, there may be a small
asymptotic gain in doing so [BS07], however the viability of these algorithms has never been
validated in practice. At any rate, algorithms for parallel modular exponentiation would need to
be adapted for isogeny evaluation, and we believe that, in this respect, isogeny-based VDFs can
only be as weak as group-based VDFs, but no more. This is certainly the newest and most unusual
problem in the area of elliptic curve cryptography, and the one that needs more investigation.

Bounds on T . None of the attacks so far has set an upper bound on T . By the birthday
paradox, we shall take T smaller than the square root of the size of the isogeny graph, because a
loop in the isogeny walk could be optimized away from Eval. Given that the size of the isogeny
graphs is O(

√
p) and O(p) respectively, we obtain bounds of O(4

√
p) for Fp, and O(

√
p) for Fp2 .

However, these bounds are much higher than the best attacks, that are subexponential in p.
Thus T is effectively only bounded by the theoretical limit of being subexponential in λ.

On future attack improvements. While the isogeny shortcut problem is new, we argue
that improvements to any of the three attack strategies outlined above would have important
consequences in cryptography, beyond our VDF constructions. Pairing inversion is a well-known
problem in classical cryptography, and an attack on it will affect a large number of pairing-based
protocols [GHV08]. Shortening an isogeny walk from a curve leads to an endomorphism of this
curve; this is believed to be hard computational task, which underlies the security of other
cryptosystems [CGL09, GPS17]. Finally, faster parallel isogeny computations will benefit other
isogeny-based cryptographic protocols, such as key exchange [JD11, CLM+18, AKC+17] and
signatures [YAJ+17, DG19].

Quantum security. We briefly analyze our proposals in the post-quantum setting. Obviously,
Shor’s algorithm breaks the pairing inversion problems in polynomial time, thus our VDFs cannot
be considered post-quantum. However, looking at Definition 7.4, we see that this attack can only
be applied after the input point Q is given to A1; thus our VDFs have a chance of being quantum
annoying as defined there. In a plausible future where quantum computers do exist, but are very
expensive and slow, it may still be more interesting to evaluate the VDF in the legitimate way,
rather than attack the pairing inversion problem with Shor’s algorithm. We argue that, given
current knowledge, our VDF over Fp2 is quantum annoying, whereas the one over Fp is not.

Indeed, as long as the input point Q is unknown, the only strategy currently available for A0

is to compute an isogeny shortcut, as described previously. In the Fp2 case, this would involve
finding a cycle in the isogeny graph through E/Fp and E′/Fp2 , a problem that is believed to be
quantum-resistant when E and E′ are generic supersingular curves [GPST16, EHL+18].

133

Chapter 7. Verifiable delay functions from isogenies and pairings

Classical Quantum
Fp graph Fp2 graph Fp graph Fp2 graph

Computing shortcuts Lp(1/2) O(
√
p) polylog(p) O(4

√
p)

Pairing inversion Lp(1/3) Lp(1/3) polylog(p) polylog(p)

Table 7.2: Complexity of the known attacks on the sequentiality of our VDFs, assuming the
endomorphism rings of the supersingular curves are unknown (see Subsection 7.5.2 for a polynomial
time classical attack when the endomorphism rings are known). Computing shortcuts targets
public parameters independently of the input to the VDFs, and can be thus be run as a pre-
computation. Pairing inversion attacks a single input point, and must be re-run for every new
input.

For the Fp case, on the other hand, it is enough to compute the structure of Cl(Endp(E)),
along with a basis of “short” generators, a task doable in polynomial time on a quantum computer
using Kitaev’s generalization of Shor’s algorithm [Kit95]. Then an isogeny ψ : E → E′ of
lower degree defined over Fp can be computed by solving a closest vector problem: although
polynomial-time lattice reduction algorithms (both classical and quantum) can only reach isogeny
degrees exponential in log(p), this may be enough to break some large delay parameters, and
it can be very efficient in practice, as showcased by the signature scheme CSI-FiSh [BKV19].
Finally, since ψ and φ are both defined over Fp, the subgroup G2 = E(Fp)[r] is an eigenspace for
the endomorphism ψ̂ ◦ φ; then a discrete logarithm computation in G2 finds a scalar s such that
[s] ◦ ψ̂ = φ̂ on G′2.

Security of the identification protocol. For completeness, we briefly come back to the
security of the generalization of the BLS identification protocol sketched in Section 7.3.

We are not interested in sequentiality in this case, thus shortcut attacks are not relevant here.
Instead, key recovery is equivalent to the problem of finding a secret isogeny φ : E → E′, given
E,E′, a basis (P,Q) of E[r], and φ(P), φ(Q). This problem is much more similar to classical
problems in isogeny based cryptography, and is obviously harder than the isogeny shortcut
problem.

The best known classical attacks, both for the Fp and the Fp2 case, are in the square root
of the graph size (respectively, O(4

√
p) and O(

√
p)). But key recovery is hard even for quantum

computers: the best attack for the Fp case is Kuperberg’s algorithm for the Hidden Shift
Problem [Kup05, Reg04, Kup13, CJS14, BS20, BIJ18, JLLRL18, BLMP19], which finds φ in
exp(

√
log(p)) quantum operations; whereas in the Fp2 case quantum computers give a square-root

speedup via Grover’s algorithm at best [BJS14].
Hence, both identification protocols have a security property similar to the quantum annoyance

defined in Definition 7.4: any forgery requires running a new instance of Shor’s algorithm, while
key recovery is infeasible on quantum computers. This may be a useful replacement for basic
BLS signatures in contexts where Shor’s algorithm is slow and expensive, and signatures must be
produced fast.

Finally, we remark that our protocol, unlike BLS, is succinct, in the sense that the secret
isogeny is potentially sub-exponentially larger than the proof of knowledge. At present, this seems
rather limited, since our protocol is not zero-knowledge, however we hope that further research
may add more useful properties to it.

134

7.5. Security and parameter sizes

7.5.2 Shortcut attacks on special curves

We now come back to the shortcut attacks analyzed previously. We saw that the best algorithms
available in the general case have exponential or sub-exponential complexity, and are in general
not better than a simple pairing inversion attack. However, when the endomorphism ring of the
starting curve E is known, a much better algorithm exists, completely breaking sequentiality of
our VDFs. We now present a sketch of the attack, and the only known solution to avoid it.

Attack overview. We shall suppose that the delay parameter T is super-linear in log(p). To
simplify our description we also assume that E is the curve defined by the equation y2 = x3 + x,
with j-invariant j = 1728. However, the attack can be generalized to an arbitrary curve provided
we know its endomorphism ring. It can also be applied to our VDF over Fp, because an attacker
is not bound to keep all computations in Fp.

The attack has two main steps. First, we compute an alternative isogeny ψ : E → E′ with a
powersmooth and reasonably small degree (polynomial in p). This is achieved using the algorithms
of Chapter 6. Second, we compute an endomorphism ω ∈ End(E) such that the actions of ω ◦ ψ̂
and φ̂ are identical on E[r]. By expressing ω on a set of generators of End(E), we are able to
evaluate ω ◦ ψ̂ efficiently on E[r], and thus we can answer evaluation queries in a time much
shorter than T .

Computing shortcuts. Let φ : E = E0 → ET = E′ be given as a composition of degree `
isogenies. We now show how to compute an alternative isogeny ψ : E → E′ with much shorter
degree.

A natural idea to solve this problem is to translate this problem to an analogous problem in
the quaternion algebra Bp,∞ ramified at p and at infinity, solve the problem in the quaternion
algebra, and translate the solution back to the geometric setting. We investigated this problem
in Chapter 6, more precisely in Section 6.6.3. The curve E0 corresponds to Example 6.18 and
End(E0) is isomorphic to a maximal order O0 of Bp,∞ which is fully known. Algorithms of
Chapter 6 require compute torsion points of order deg φ, which have exponential size in general.

We adapt an idea used in the collision algorithm of [PL17, EHL+18] to avoid this problem.
Let φi : E0 → Ei correspond to the first i steps of the isogeny. Let Ii be the corresponding ideal,
and let n(Ii) = `i denote its norm. Assume we have already computed an ideal Ji in the class of
Ii with powersmooth norm (see Algorithm 6.14). We sketch how to compute an ideal in the class
of Ii+1 with powersmooth norm.

1. Compute the ` + 1 ideals Ki+1,k, k = 0, . . . , ` with norm n(Ji)` such that Ki+1,k mod
n(Ji)O0 = Ji. Algorithms for this task are provided in [KV10], and correspond to
writing Ji = O0N(Ji) + O0αi using Algorithm 6.2, and then find Ki+1,k of the form
O0n(Ji)`+O0α̃i+1,k where α̃i+1,k is found by solving α̃i+1,k = α mod n(Ji)O0 (representing
O0/n(Ji)O0 as in Section 6.3.3).

2. Apply Algorithm 6.14 to each Ki+1,k to obtain new ideals Ji+1,k in the same classes
respectively.

3. Translate each ideal Ji+1,k to an isogeny ψi+1,k using Algorithm 6.8.

4. Identify the (usually unique) k such that the image of ψi+1,k has j-invariant ji+1 = j(Ei+1).

5. Set Ji+1 = Ji+1,k.

135

Chapter 7. Verifiable delay functions from isogenies and pairings

To obtain the desired isogeny ψ, we repeat those steps for i = 1, . . . , T − 1. When i = T − 1, we
additionally set ψ = ψT,k.

The heuristic bounds and the experiments in [KLPT14] show that the degree of ψi is polynomial
in p (more precisely O(p7/2)) and the computation can be completed in time poly(T, log(p)). The
isogeny ψ : E → E′ has powersmooth degree much smaller than that of φ, and can therefore be
evaluated much faster.

Matching image points on the r-torsion. Using the notations of Chapter 6, the endomor-
phism θ := ψ̂ ◦φ can be written as θ = a11+a2i+a3j+a4k with a1, a2, a3, a4 ∈ Z[1/2]. Moreover
we have

ai = 〈θ, αi〉 := (θ ◦ α̂i + αi ◦ θ̂)/2

for αi = 1, i, j,k respectively, and these coefficients can be computed using a variant of Schoof’s
algorithm [Koh96, Theorem 81], by evaluating those maps on small torsion points and applying the
Chinese remainder theorem. Note that |ai| ≤ deg θ degαi, so this computation can be performed
in time poly(T, log p).

If we now set ω = Rθ̂, where R = `T /(a2
0 + a2

1 + pa2
2 + pa2

3), then ω ◦ ψ̂ = φ̂. But ω can be
evaluated at any point Q ∈ E[r] as

ω(Q) =
∑

[Rai mod r] α̂i(Q),

at a cost of only O(log(r)) operations. Thus we can replace Eval(Q) with the evaluation of ψ̂
followed by the evaluation of ω, for a total costs of only polylog(p), which is less than T by
hypothesis.

Countering the attack. The KLPT algorithm only works when the starting curve E has an
endomorphism ring that is, in their words, extremal and special. Extremal means that E is
defined over Fp, a condition common to all instantiations of our VDF; however only few curves
are also special, for example j(E) = 1728, or other curves with complex multiplication by an
order with small discriminant.

The KPLT algorithm extends to a non-special curve E, when a path E → E0 to a special
curve E0 is known. Unfortunately, all known methods to select random supersingular curves do
so by starting a random walk from some special curve; hence, there is no known way to produce
a random supersingular curve E/Fp without producing a backdoor E → E0.

At present, the only way to counter the attack presented here is to use a trusted setup to
produce a random curve E/Fp, i.e., having a trusted authority (or many trusted authorities
engaged in a multi-party protocol) compute a walk E0 → E from a special curve E0, and then
throw the backdoor away.

A note on ordinary curves. One can naturally ask whether it is possible to obtain VDFs
from ordinary isogeny graphs. Although it is conceivable to have a variant of our VDF over Fp
using ordinary curves, no secure instantiation is currently known. Indeed, all known ordinary
pairing-friendly curves are obtained using variations of the CM method, and thus have small
quadratic discriminant and small isogeny class. In this case it is possible to compute the structure
of End(E), and do a shortcut attack similar to the one above.

We proceed in two steps as before. We first find an isogeny ψ : E → E′ of small powersmooth
degree; since the isogeny class is small, this can even be done by exhaustive search.

136

7.6. Implementation

Then, we are left with the problem of finding ω ∈ End(E) such that ω ◦ ψ̂ = φ̂ when restricted
to E[r]. We proceed as before: using Schoof’s algorithm we compute θ = ψ̂ ◦ φ = a+ bπ for some
a, b ∈ Q, then we set ω = `T θ̂/(a2 + pb2), and we replace Eval by ω ◦ ψ̂.

A family of ordinary pairing friendly elliptic curves with generic discriminant would provide
the perfect instantiation for our VDFs, as it would not be vulnerable to any known shortcut
attack, and thus would not need a trusted setup. Unfortunately, all known constructions of
pairing-friendly elliptic curves use complex multiplication and hence produce curves with small
discriminants [FST10].

7.6 Implementation

Our proposed VDFs can be easily implemented using the fundamental blocks already available
for pairing-based and isogeny-based cryptography. A drawback of our method being the long
setup time and the large evaluation key, we present here an implementation that improves both
by orders of magnitude.

7.6.1 Evaluation

We focus on 2-isogenies, as they are the most obvious candidate for an implementation. There
are two standard ways to compute a 2-isogeny walk from a curve E : y2 = f(x). The first
is to factor the 2-division polynomial f(x) to obtain all the points of order 2, then use Vélu’s
formulas [Vél71] to test all directions and step in the wanted one. Since Vélu’s formulas also
produce the generator of the dual isogeny to the direction one is coming from, this root can be
quotiented out from f(x), and thus we are left with solving one square root per curve. The second
way is to take a point at random on E and multiply it by the cofactor #E/2. If we obtain a
2-torsion point defining the wanted direction, then we compute it and we move to the next curve;
otherwise we try with a different point. Both ways require O(log(p)) operations in the base field
for one step, and thus O(T log(p)) operations to compute the full isogeny walk. After the isogeny
φ is computed, the list of the kernel points can be stored so to be able to evaluate φ in O(T)
operations. However, this implies storing T points and curves, which may require a large storage.

Fortunately, using isogeny evaluation techniques pioneered in SIDH [DFJP14], and applied
in [DPB17] to the CGL hash function [CGL09], it is possible to absorb the log(p) factor and
shorten the evaluation key size by the same amount. For this, we choose a prime of the form
p = 2nfr − 1, so that all curves in the isogeny graph have rational points of order 2n−1 or 2n

(depending on whether we use Fp-graphs or Fp2-graphs). This way, a single point Pi on Ei can
be used to define n (or n− 1) consecutive steps in the graph, and the corresponding isogeny can
be evaluated in n log(n) operations using the optimal strategy techniques from [DFJP14].

More in detail, in the Fp2 case, the curve Ei has group structure E(Fp2) ' (Z/(p + 1)Z)2,
and is usually not defined over Fp. We can compute a point Pi of order 2n by taking a point at
random and multiplying by fr, then verifying that Pi has the wanted order. We check that Pi
does not start a backtracking isogeny and we use it to advance n steps in the graph, then we
start again.

In the Fp case, because we chose a curve on the surface, the group structure is E(Fp) '
Z/p+1

2 Z× Z/2Z (see [MVO91]), hence the highest order we can get for Pi is 2n−1. Such point
Pi will define 2n−2 horizontal isogeny steps in the “positive” direction determined by the ideal
(π− 1) ⊂ End(E), plus one last step that is either in the same direction, or going to the floor. To
avoid “getting stuck” on the floor, we use Pi to advance n− 2 steps, then start again.

137

Chapter 7. Verifiable delay functions from isogenies and pairings

Using these techniques, only ≈ T/n points need to be computed and the full walk is computed
in O(T log n) operations. One has the choice between storing all the intermediate 2-torsion points,
or storing only the higher order points Pi. In the first case, we use O(T) storage and evaluation
time; in the second case, we use O(T/n) storage and O(T log n) evaluation time. Since n ≈ log p,
the slowdown in the second case is likely to be negligible in front of other factors, such as data
transfer delays, or speedups due to dedicated hardware.

In practice, we use a projective (x, z)-only Montgomery model for our curves, for which small
degree isogeny formulas are the most efficient [CLN16]. Points defined over Fp2 are then stored in
4 log2(p) bits, and a curve is represented by y2 = x3 + ax2 + x using 2 log2(p) bits. The isogeny φ̂
is decomposed in small degree isogenies, and each one is represented by its kernel and its image
curve. If we choose to represent φ̂ as a composition of 2-isogenies, its representation is stored in
2T log2(p) bits. If we decide to represent it as a composition of 2n-isogenies, storing kernels and
curve coefficients requires T/n(4 log2(p) + 2 log2(p)) = 6T log2(p)/n bits.

7.6.2 Verification

For verification, we apply standard optimization techniques for the pairing computation. We
stress that, while most of the implementation efforts on pairing have focused on ordinary elliptic
curves with smaller field sizes, such as BN curves [BN06], our situation is somewhat different.
Contrary to the cases of ordinary curves studied in Chapter 4 and 5, the Tate pairing is here more
efficient than the ate pairing: our curves have a trace t as large as p which is much larger than r
as we choose p = 2nfr − 1. Hence, the Tate pairing tr is preferred because it features a shorter
Miller loop than in the ate pairing case. Thus, the verification equation (e.g., in the Fp-case)

tr(φ̂(Q), P) = tr(Q,φ(P))

can be checked by computing two Miller loops and one final exponentiation. We use common
optimizations for the Miller loop, such as quadratic twist tricks. In the final exponentiation, we
benefit from the special form of the prime p, indeed

p2 − 1

r
= (p− 1)

p+ 1

r
= (p− 1)2nf = (2nfr − 2)2nf = 2n+1f(2n−1fr − 1).

7.6.3 Measurements

To validate our proposals, we implemented a (non-optimized) proof of concept in SageMath [Sag18].
The code repository is publicly accessible at:

https://github.com/isogenies-vdf/isogenies-vdf-sage/.

For a 128-bit secure VDF, we choose a prime r of 256 bits, and set n = 1244, f = 63 to obtain a
1506-bit prime p = 2124463r − 1. In 2020, discrete logarithm computations in the subgroup of
order r of Fp2 , using the best available variants of NFS, are believed to require more than 2128

computations.
We ran benchmarks on an Intel Core i7-8700 processor clocked at 3.20GHz. We aimed a few

minutes evaluation time, and thus we set the delay parameter T ≈ 216. Whenever a VDF would
be computed in a longer time, we provide the throughput by millisecond. Currently, our pairing
implementation is faster over Fp because these curves benefit of the distortion map to compute
the pairing entirely over Fp. Over Fp2 , points are twice larger and many additional vertical lines
and inversions are needed to compute the pairing. The results are given in Table 7.3.

138

https://github.com/isogenies-vdf/isogenies-vdf-sage/

7.7. Conclusion and perspectives

Protocol Step ek size Time Throughput

Fp graph
Setup 238 kb 90 s 0.75isog/ms

Evaluation – 89 s 0.75isog/ms
Verification – 0.3 s –

Fp2 graph
Setup 491 kb 193 s 0.35isog/ms

Evaluation – 297 s 0.23isog/ms
Verification – 4 s –

Table 7.3: Measurements for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, with SageMath 8.5

We stress that these numbers only show that our VDFs are practical, however they do not
say much on how they compare to other VDF proposals. Indeed, while setup and verification
can be compared on the basis of their speed (in software), it is mostly meaningless to compare
evaluation this way.

The meaningful comparison is on circuit area and clock frequency. For two VDFs, comparing
the cost of the evaluation for a fixed delay parameter does not make sense: one step for each
function may not have the same cost. In order to get a fair comparison, one needs to measure
the cost of a single step of the evaluation loop. At this stage, it is impossible for us to give
such numbers, however we can give some qualitative arguments to compare our VDFs to the
competitors. At the 128 bits security level, the unit step in RSA-based VDFs is a squaring
modulo an RSA modulus of more than 2000 bits. This unit step is roughly comparable to one
multiplication in our field Fp. In the simplest case, the unit step in our VDFs is the evaluation
of a 2-isogeny over Fp (or Fp2); using the best formulas for Montgomery curves [Ren18], this
requires 2 parallel runs of 2 multiplications each. Thus we expect the circuit for one unit step of
our VDF to have roughly double the surface and half the clock frequency. Similar considerations
also apply to VDFs based on class groups.

7.7 Conclusion and perspectives

We presented two new candidate Verifiable Delay Functions, based on assumptions from pairing-
based and isogeny-based cryptography. Our VDFs are practical, and offer several advantages over
previous proposals.

• Both our constructions are optimal and perfectly sound. We observe that the construction
based on univariate permutation polynomials of Boneh et al. [BBBF18] also has both
properties, but its security relies on an ad hoc limit assumption on the amount of parallelism
available to the adversary.

• Unlike the VDF constructions of Pietrzak [Pie18] and Wesolowski [Wes19], ours are inher-
ently non-interactive, the output being efficiently verifiable without attaching a proof.

• By using mathematical tools also used in other cryptographic contexts, our constructions
benefit from pre-existing research in these areas both from an efficiency and security point
of view.

• While the use of isogenies does not magically make our functions post-quantum (in fact they
can be broken with a discrete logarithm computation), one of our two constructions still
offers some partial resistance to quantum attacks; we call this property quantum annoyance.

139

Chapter 7. Verifiable delay functions from isogenies and pairings

The main drawback of our proposals is that, given current knowledge, the only secure way to
instantiate our VDFs requires a trusted setup, or, said otherwise, that our VDFs can be easily
backdoored. Indeed, both our setups require to start from a supersingular elliptic curve with
unknown endomorphism ring. No general algorithm is known to compute the endomorphism ring
of supersingular elliptic curves, however the only known ways to generate supersingular curves
involve a random isogeny walk from a curve with small discriminant (e.g., j = 0 or j = 1728),
and it has been shown that knowledge of the isogeny walk permits computing the endomorphism
ring in polynomial time [KLPT14, EHL+18]. Hence, the only way to instantiate our VDFs
involves a trusted setup that performs a random isogeny walk and then forgets it. We stress that
trusted setups also appear in other constructions, and that does not rule them out for practical
applications; in fact, the Ethereum cryptocurrency is currently considering standardization of a
VDF based on a trusted RSA setup [Dra18]. Furthermore, while it is clear that a trusted setup is
necessary in the RSA setting, this looks much less like a fatality in our case: it is totally believable
that in the near future a way is found to generate random supersingular curves with unknown
endomorphism ring, thus bypassing the need for the trusted setup. Finally, a distributed trusted
setup with n− 1 threshold security can be efficiently constructed in our case purely from isogeny
assumptions, whereas the RSA setting requires heavy multi-party computation machinery and
very large bandwidth.

Another limitation on the utility of our VDFs is that the time required to setup public
parameters is of the same order of magnitude as that required to evaluate the function; furthermore,
validating public parameters requires the same amount of time as evaluating the function, and the
evaluator is required to use O(T) storage for evaluating in optimal time. While these drawbacks
are acceptable in applications that require delays in the order of minutes or hours (the majority
of applications in blockchains), they prevent our VDFs from being used with very long delays. In
our implementation, we propose some possible tradeoffs that mitigate these problems, however
further research is needed to better address them.

At present, our constructions require a trusted setup to generate initial parameters. It is
an important open problem to find an algorithm to generate random supersingular curves in a
way that does not reveal their endomorphism ring, and we encourage the community to work
on it. As long as such an algorithm is missing, it is interesting to look for efficient multi-party
algorithms for doing isogeny walks.

It would also be interesting to reduce the cost of validating public parameters, ideally to a time
independent from the delay parameter T . Relatedly, our VDFs have large storage requirements
for the evaluator; in our implementation we presented a way to mitigate this issue, however this
creates a compromise between storage and evaluation time, that needs to be carefully considered
by the evaluator, depending on the intended application. More research on practical ways to
mitigate the price of the large storage is desirable.

Here we only sketched the shortcut attack against insecure instances using special curves. It
would be interesting to do a more detailed analysis of its complexity, of its limitations, and of its
possible generalizations; we leave this as future work. We also encourage research on alternative
ways to break the Isogeny Shortcut Problem, for example finding ways to parallelize isogeny
evaluation.

Finally, our VDFs can be seen as a generalization of BLS signatures: if the isogeny is kept
secret, we obtain a proof of knowledge of an isogeny walk between two curves, that can be used
for identification or signatures. At the moment, the only advantage over BLS signatures is a weak
form of quantum resistance; we hope that further research would add useful properties to our
protocol enabling more applications.

140

Conclusion

In this thesis, we investigated the algorithmic point of view of curve-based cryptography. It
includes applications to pairing-based cryptography and isogeny-based cryptography.

On the one hand, our work studied the arithmetic related to pairing-friendly curves. First, it
involves the study of the arithmetic efficiency and the security of the discrete logarithm problem
in finite field extensions. Secondly, we estimated the arithmetic on pairing-friendly curves. More
precisely, we estimated the cost of the pairing computation on the state-of-the-art curves, and
obtained new parameters of curves of embedding degrees five to eight. We finally compare our new
curves with the current ones, at the same security level (128-bit). In order to get fair estimations
of the security of our new curves (as well as for curves of Chapter 4), it would be interesting to
investigate the cost of the Tower variant of NFS on concrete instantiations of parameters. The
implementation of the optimal ate pairing on our new curves (more precisely, on k = 8 curves
that are the most promising for efficiency) is slightly different from the current implementations.
The library [AG] investigates an efficient implementation in order to get concrete measurement
comparisons with the current Barreto-Naehrig, Barreto-Lynn-Scoot and Kachisa-Schaefer-Scott
curves. These new curves of embedding degree k = 8 are currently in a standardization process.

On the other hand, we looked at the arithmetic of isogeny-based cryptography. We provided
an implementation of algorithms that compute endomorphism rings of supersingular curves, given
the knowledge of an isogeny from a curve with small discriminant. This work is related to the
cryptanalysis of isogeny-based cryptography, but is also interesting for constructing new primitives
such as post-quantum isogeny-based signatures. Recently, the construction of Galbraith, Petit
and Silva [GPS20] has been generalized by De Feo, Kohel, Leroux, Petit and Wesolowski. This
new construction is called SQISign [FKL+20] and will be presented at Asiacrypt 2020. Our
implementation is far from efficient for cryptographic size experiments. It would be interesting to
provide an implementation in an open-source language, with a more efficient arithmetic.

Isogeny-based cryptosystems compute large degree morphisms between curves, that often
affects the efficiency of the cryptographic applications. This comes from the fact that the best
algorithm for computing an isogeny of prime degree d is exponential in log2(d). We use this
assumption in order to design two verifiable delay functions. The computation requires evaluating
many isogenies of prime degree, and the verification is computed using pairings. Our VDF are
not post-quantum because the security relies on the discrete logarithm problem over a finite
field, and uses a trusted setup. We compare our constructions with several other VDF designed
by Wesolowski and Pietrzak. The construction of a post-quantum verifiable delay function is
currently an open problem that would have interesting applications in real-world cryptography.

141

Conclusion

142

Bibliography

[ACC+19] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes,
and Francisco Rodríguez-Henríquez. On the cost of computing isogenies between
supersingular elliptic curves. In Carlos Cid and Michael J. Jacobson Jr:, editors,
SAC 2018, volume 11349 of LNCS, pages 322–343. Springer, Heidelberg, August
2019.

[Adl79] Leonard M. Adleman. A subexponential algorithm for the discrete logarithm problem
with applications to cryptography. 20th Annual Symposium on Foundations of
Computer Science (sfcs 1979), pages 55–60, 1979.

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Technol-
ogy (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001.

[AFK+13] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and
Francisco Rodríguez-Henríquez. Implementing pairings at the 192-bit security level.
In Michel Abdalla and Tanja Lange, editors, PAIRING 2012, volume 7708 of LNCS,
pages 177–195. Springer, Heidelberg, May 2013.

[AG] Diego F. Aranha and Conrado P. L. Gouvêa. RELIC is an Efficient LIbrary for
Cryptography. https://github.com/relic-toolkit/relic.

[AKC+17] Reza Azarderakhsh, Brian Koziel, Matt Campagna, Brian LaMacchia, Craig Costello,
Patrick Longa, Luca De Feo, Michael Naehrig, Basil Hess, Joost Renes, Amir Jalali,
Vladimir Soukharev, David Jao, and David Urbanik. Supersingular isogeny key
encapsulation, 2017.

[AKL+11] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and
Julio Cesar López-Hernández. Faster explicit formulas for computing pairings over
ordinary curves. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 48–68. Springer, Heidelberg, May 2011.

[Bar13] Razvan Barbulescu. Algorithmes de logarithmes discrets dans les corps finis.
thèse de doctorat, Université de Lorraine, Nancy, France, 2013. https://tel.
archives-ouvertes.fr/tel-00925228.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018.

143

https://github.com/relic-toolkit/relic
https://tel.archives-ouvertes.fr/tel-00925228
https://tel.archives-ouvertes.fr/tel-00925228

Bibliography

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Shafi Goldwasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

[BCL12] Reinier M Broker, Denis X Charles, and Kristin E Lauter. Cryptographic applications
of efficiently evaluating large degree isogenies, August 2012. US Patent 8,250,367.

[BCM+15] Paulo S. L. M. Barreto, Craig Costello, Rafael Misoczki, Michael Naehrig, Geo-
vandro C. C. F. Pereira, and Gustavo Zanon. Subgroup security in pairing-based
cryptography. In Kristin E. Lauter and Francisco Rodríguez-Henríquez, editors,
LATINCRYPT 2015, volume 9230 of LNCS, pages 245–265. Springer, Heidelberg,
August 2015.

[BD19] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pairings.
Journal of Cryptology, 32(4):1298–1336, October 2019.

[BDM18] Olivier Bernard, Renaud Dubois, and Simon Masson. Efficient four-dimensional
GLV curve with high security. Cryptology ePrint Archive, Report 2018/305, 2018.
https://eprint.iacr.org/2018/305.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958
of LNCS, pages 207–228. Springer, Heidelberg, April 2006.

[BFLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degre. ANTS XIV, 2020.

[BGG+20] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel
Thomé, and Paul Zimmermann. Comparing the difficulty of factorization and
discrete logarithm: A 240-digit experiment. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 62–91.
Springer, Heidelberg, August 2020.

[BGGM15] Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain. Improv-
ing NFS for the discrete logarithm problem in non-prime finite fields. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 129–155. Springer, Heidelberg, April 2015.

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuris-
tic quasi-polynomial algorithm for discrete logarithm in finite fields of small charac-
teristic. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 1–16. Springer, Heidelberg, May 2014.

[BGK15] Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The tower number
field sieve. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II,
volume 9453 of LNCS, pages 31–55. Springer, Heidelberg, November / December
2015.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 416–432. Springer, Heidelberg, May 2003.

144

https://eprint.iacr.org/2018/305

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 967–980.
ACM Press, November 2013.

[BIJ18] Jean-François Biasse, Annamaria Iezzi, and Michael J. Jr. Jacobson. A note on the
security of CSIDH. In Debrup Chakraborty and Tetsu Iwata, editors, Progress in
Cryptology – INDOCRYPT 2018, pages 153–168, Cham, 2018. Springer International
Publishing.

[BJS14] Jean-François Biasse, David Jao, and Anirudh Sankar. A quantum algorithm for
computing isogenies between supersingular elliptic curves. In International Conference
in Cryptology in India, pages 428–442. Springer, 2014.

[BKLS02] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient
algorithms for pairing-based cryptosystems. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 354–368. Springer, Heidelberg, August 2002.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages
227–247. Springer, Heidelberg, December 2019.

[BL08] Daniel Bernstein and Tanja Lange. Analysis and optimization of elliptic-curve single-
scalar multiplication. In Gary L. Mullen, Daniel Panario, and Igor E. Shparlinski,
editors, Finite Fields and Applications - 8th International Conference, Fq8, Mel-
bourne, Australia, July 9-13, 2007, Proceedings, Contemporary Mathematics Series,
pages 1–20, United States, 2008. American Mathematical Society.

[BLMP19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum
circuits for the CSIDH: Optimizing quantum evaluation of isogenies. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS,
pages 409–441. Springer, Heidelberg, May 2019.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves
with prescribed embedding degrees. In Stelvio Cimato, Clemente Galdi, and Giuseppe
Persiano, editors, SCN 02, volume 2576 of LNCS, pages 257–267. Springer, Heidelberg,
September 2003.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(4):297–319, September 2004.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime
order. In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of
LNCS, pages 319–331. Springer, Heidelberg, August 2006.

[BS07] Daniel Bernstein and Jonathan Sorenson. Modular exponentiation via the explicit
chinese remainder theorem. Mathematics of Computation, 76(257):443–454, 2007.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume
12106 of LNCS, pages 493–522. Springer, Heidelberg, May 2020.

145

Bibliography

[BW05] Friederike Brezing and Annegret Weng. Elliptic curves suitable for pairing based
cryptography. Designs, Codes and Cryptography, 37(1):133–141, 2005.

[CD20] Wouter Castryck and Thomas Decru. CSIDH on the surface. In Jintai Ding and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, pages 111–129. Springer, Heidelberg, 2020.

[CGL09] Denis X. Charles, Eyal Z. Goren, and Kristin E. Lauter. Cryptographic hash functions
from expander graphs. Journal of Cryptology, 22(1):93–113, January 2009.

[CH07] Jaewook Chung and Masud A. Hasan. Asymmetric squaring formulae. In 18th IEEE
Symposium on Computer Arithmetic (ARITH ’07), pages 113–122, June 2007.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. Journal of Mathematical Cryptology,
8(1):1–29, 2014.

[CL15] Craig Costello and Patrick Longa. FourQ: Four-dimensional decompositions on a
Q-curve over the Mersenne prime. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 214–235. Springer, Heidelberg,
November / December 2015.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. In Thomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS,
pages 395–427. Springer, Heidelberg, December 2018.

[CLN10] Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing computations on
curves with high-degree twists. In Phong Q. Nguyen and David Pointcheval, editors,
PKC 2010, volume 6056 of LNCS, pages 224–242. Springer, Heidelberg, May 2010.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for Super-
singular Isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology
Conference, pages 572–601. Springer Berlin Heidelberg, 2016.

[CMO98] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve exponen-
tiation using mixed coordinates. In Kazuo Ohta and Dingyi Pei, editors, ASI-
ACRYPT’98, volume 1514 of LNCS, pages 51–65. Springer, Heidelberg, October
1998.

[CMR17] Sanjit Chatterjee, Alfred Menezes, and Francisco Rodríguez-Henríquez. On instanti-
ating pairing-based protocols with elliptic curves of embedding degree one. IEEE
Trans. Computers, 66(6):1061–1070, 2017.

[Coh10] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer, 2010.

[Coh17] Bram Cohen. Proofs of space and time. Blockchain Protocol Analysis and Security
Engineering, 2017.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291, 2006. http://eprint.iacr.org/2006/291.

146

http://eprint.iacr.org/2006/291

[Cox97] David A. Cox. Primes of the form x2 + ny2: Fermat, class field theory, and complex
multiplication. Wiley, 1997.

[CP01] Clifford Cocks and Richard G.E. Pinch. Identity-based cryptosystems based on the
Weil pairing. Unpublished manuscript, 2001.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
pages 451–467, Cham, 2018. Springer International Publishing.

[CS18] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic - the
case of large characteristic fields. Journal of Cryptographic Engineering, 8(3):227–240,
2018.

[DEM05] Régis Dupont, Andreas Enge, and François Morain. Building curves with arbitrary
small MOV degree over finite prime fields. Journal of Cryptology, 18(2):79–89, April
2005.

[DF17] Luca De Feo. Mathematics of isogeny based cryptography. Lecture notes. École
Mathématique Africaine. Thiès, Sénégal, 2017.

[DFHPS16] Luca De Feo, Cyril Hugounenq, Jérôme Plût, and Éric Schost. Explicit isogenies in
quadratic time in any characteristic. LMS Journal of Computation and Mathematics,
19(A):267–282, 2016.

[DFJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2014.

[DG16] Christina Delfs and Steven D. Galbraith. Computing isogenies between supersingular
elliptic curves over Fp. Designs, Codes and Cryptography, 78(2):425–440, February
2016.

[DG19] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures from
class group actions. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 759–789. Springer, Heidelberg, May 2019.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DKS18] Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards practical key exchange
from ordinary isogeny graphs. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 365–394. Springer,
Heidelberg, December 2018.

[DMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay
functions from supersingular isogenies and pairings. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages
248–277. Springer, Heidelberg, December 2019.

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Ernest F. Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages 139–147,
Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

147

Bibliography

[DÓSD06] Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab.
Multiplication and squaring on pairing-friendly fields. Cryptology ePrint Archive,
Report 2006/471, 2006. http://eprint.iacr.org/2006/471.

[DPB17] Javad Doliskani, Geovandro C. C. F. Pereira, and Paulo S. L. M. Barreto. Faster
cryptographic hash function from supersingular isogeny graphs. Cryptology ePrint
Archive, Report 2017/1202, 2017.

[Dra18] Justin Drake. Minimal VDF randomness beacon. Ethereum Research, 2018.

[EHL+18] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings: Reduc-
tions and solutions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 329–368. Springer, Heidelberg,
April / May 2018.

[EM14] Andreas Enge and Jérôme Milan. Implementing cryptographic pairings at standard
security levels. In Rajat Subhra Chakraborty, Vashek Matyas, and Patrick Schaumont,
editors, Security, Privacy, and Applied Cryptography Engineering - 4th International
Conference, SPACE 2014, Pune, India, October 18-22, 2014. Proceedings, volume
8804 of Lecture Notes in Computer Science, pages 28–46. Springer, 2014.

[ES10] Andreas Enge and Andrew V. Sutherland. Class invariants by the CRT method. In
Guillaume Hanrot, François Morain, and Emmanuel Thomé, editors, Algorithmic
Number Theory, 9th International Symposium, ANTS-IX, Nancy, France, July 19-23,
2010. Proceedings, volume 6197 of Lecture Notes in Computer Science, pages 142–156.
Springer, 2010.

[FGHT17] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. A kilobit
hidden SNFS discrete logarithm computation. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages
202–231. Springer, Heidelberg, April / May 2017.

[FK19] Georgios Fotiadis and Elisavet Konstantinou. TNFS resistant families of pairing-
friendly elliptic curves. Theoretical Computer Science, 800:73–89, 31 December 2019.
https://ia.cr/2018/1017.

[FKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. Sqisign: compact post-quantum signatures from quaternions and isoge-
nies. Cryptology ePrint Archive, Report 2020/1240, 2020. https://eprint.iacr.
org/2020/1240.

[FKR12] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodríguez-Henríquez.
Faster hashing to G2. In Ali Miri and Serge Vaudenay, editors, SAC 2011, vol-
ume 7118 of LNCS, pages 412–430. Springer, Heidelberg, August 2012.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly
elliptic curves. Journal of Cryptology, 23(2):224–280, April 2010.

[Gal05] Steven Galbraith. Pairings. In Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart,
editors, Advances in Elliptic Curve Cryptography, London Mathematical Society
Lecture Note Series, page 183–214. Cambridge University Press, 2005.

148

http://eprint.iacr.org/2006/471
https://ia.cr/2018/1017
https://eprint.iacr.org/2020/1240
https://eprint.iacr.org/2020/1240

[GHS02] Steven D. Galbraith, Florian Hess, and Nigel P. Smart. Extending the GHS Weil
descent attack. In Advances in cryptology–EUROCRYPT 2002 (Amsterdam), volume
2332 of Lecture Notes in Computer Science, pages 29–44. Springer, Berlin, 2002.

[GHV08] Steven D. Galbraith, Florian Hess, and Frederik Vercauteren. Aspects of pairing
inversion. IEEE Transactions on Information Theory, 54(12):5719–5728, 2008.

[GKZ14] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ‘128-bit secure’
supersingular binary curves - (or how to solve discrete logarithms in F24·1223 and
F212·367). In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 126–145. Springer, Heidelberg, August 2014.

[GLV01] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point mul-
tiplication on elliptic curves with efficient endomorphisms. In Joe Kilian, editor,
Advances in Cryptology — CRYPTO 2001, pages 190–200. Springer, 2001.

[GM97] Robert M. Guralnick and Peter Müller. Exceptional polynomials of affine type.
Journal of Algebra, 194(2):429–454, 1997.

[GMT20] Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks–pinch curves of
embedding degrees five to eight and optimal ate pairing computation. Designs, Codes
and Cryptography, 88:1047–1081, 03 2020.

[Gor93] Daniel M. Gordon. Designing and detecting trapdoors for discrete log cryptosystems.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 66–75.
Springer, Heidelberg, August 1993.

[GPS17] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification protocols
and signature schemes based on supersingular isogeny problems. In Advances in
Cryptology - ASIACRYPT 2017, pages 3–33, 2017.

[GPS20] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification protocols and
signature schemes based on supersingular isogeny problems. Journal of Cryptology,
33(1):130–175, January 2020.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security
of supersingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 63–91. Springer,
Heidelberg, December 2016.

[GS10] Robert Granger and Michael Scott. Faster squaring in the cyclotomic subgroup
of sixth degree extensions. In Phong Q. Nguyen and David Pointcheval, editors,
PKC 2010, volume 6056 of LNCS, pages 209–223. Springer, Heidelberg, May 2010.

[GS19] Aurore Guillevic and Shashank Singh. On the alpha value of polynomials in the
tower number field sieve algorithm. Cryptology ePrint Archive, Report 2019/885,
2019. https://eprint.iacr.org/2019/885.

[Gt20] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 6.2.0 edition, 2020. http://gmplib.org/.

149

https://eprint.iacr.org/2019/885
http://gmplib.org/

Bibliography

[Gui13] Aurore Guillevic. Arithmetic of pairings on algebraic curves for cryptography.
thèse de doctorat, École Normale Supérieure, Paris, France, 2013. https://tel.
archives-ouvertes.fr/tel-00921940.

[Har77] Robin Hartshorne. Algebraic Geometry. Springer, 1977. Graduate texts in mathe-
matics, no. 52.

[HMV03] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer, 2003.

[HSV06] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The eta pairing revisited.
IEEE Trans. Inf. Theor., 52(10):4595–4602, October 2006.

[JAC+19] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik,
and Geovandro Pereira. SIKE. Technical report, National Institute of Stan-
dards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography
- 4th International Workshop, PQCrypto 2011, pages 19–34. Springer, Heidelberg,
November / December 2011.

[JL03] Antoine Joux and Reynald Lercier. Improvements to the general number field sieve
for discrete logarithms in prime fields. A comparison with the Gaussian integer
method. Math. Comput., 72(242):953–967, 2003.

[JLLRL18] David Jao, Jason LeGrow, Christopher Leonardi, and Luiz Ruiz-Lopez. A polynomial
quantum space attack on CRS and CSIDH. In MathCrypt 2018, 2018. To appear.

[JLSV06] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren. The number
field sieve in the medium prime case. In Cynthia Dwork, editor, CRYPTO 2006,
volume 4117 of LNCS, pages 326–344. Springer, Heidelberg, August 2006.

[JMVB09] David Y Jao, Peter L Montgomery, Ramarathnam Venkatesan, and Victor Boyko.
Systems and methods for generation and validation of isogeny-based signatures,
November 2009. US Patent 7,617,397.

[Jou04] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of
Cryptology, 17(4):263–276, September 2004.

[JP14] Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn - application to
pairing-friendly constructions. In Zhenfu Cao and Fangguo Zhang, editors, PAIRING
2013, volume 8365 of LNCS, pages 45–61. Springer, Heidelberg, November 2014.

[JS10] David Jao and Vladimir Soukharev. A subexponential algorithm for evaluating large
degree isogenies. In ANTS IX: Proceedings of the Algorithmic Number Theory 9th
International Symposium, volume 6197 of Lecture Notes in Computer Science, pages
219–233, Berlin, Heidelberg, 2010. Springer.

150

https://tel.archives-ouvertes.fr/tel-00921940
https://tel.archives-ouvertes.fr/tel-00921940
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[JV09] David Y Jao and Ramarathnam Venkatesan. Use of isogenies for design of cryptosys-
tems, March 2009. US Patent 7,499,544.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new
complexity for the medium prime case. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 543–571. Springer,
Heidelberg, August 2016.

[Kit95] Alexey Yuri Kitaev. Quantum measurements and the abelian stabilizer problem.
arXiv preprint quant-ph/9511026, 1995.

[KLPT14] David R. Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the
quaternion-isogeny path problem. LMS Journal of Computation and Mathematics,
17(A):418–432, 2014.

[Koh96] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California at Berkley, 1996.

[KSS08] Ezekiel J. Kachisa, Edward F. Schaefer, and Michael Scott. Constructing Brezing-
Weng pairing-friendly elliptic curves using elements in the cyclotomic field. In
Steven D. Galbraith and Kenneth G. Paterson, editors, PAIRING 2008, volume 5209
of LNCS, pages 126–135. Springer, Heidelberg, September 2008.

[KT16] Takeshi Koshiba and Katsuyuki Takashima. Pairing cryptography meets isogeny:
A new framework of isogenous pairing groups. Cryptology ePrint Archive, Report
2016/1138, 2016.

[KT19] Takeshi Koshiba and Katsuyuki Takashima. New assumptions on isogenous pairing
groups with applications to attribute-based encryption. In Kwangsu Lee, editor,
Information Security and Cryptology – ICISC 2018, pages 3–19, Cham, 2019. Springer
International Publishing.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal of Computing, 35(1):170–188, 2005.

[Kup13] Greg Kuperberg. Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In Simone Severini and Fernando Brandao, editors, 8th
Conference on the Theory of Quantum Computation, Communication and Cryptog-
raphy (TQC 2013), volume 22 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 20–34, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[KV10] Markus Kirschmer and John Voight. Algorithmic enumeration of ideal classes for
quaternion orders. SIAM Journal on Computing, 39(5):1714–1747, 2010.

[KW19] Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in quasi-
polynomial time in finite fields of fixed characteristic. Cryptology ePrint Archive,
Report 2019/751, 2019. https://eprint.iacr.org/2019/751.

[LLJ93] Arjen K. Lenstra and Hendrik W. Lenstra Jr., editors. The development of the
number field sieve, volume 1554 of LNM. Springer, 1993. https://doi.org/10.
1007/BFb0091534.

151

https://eprint.iacr.org/2019/751
https://doi.org/10.1007/BFb0091534
https://doi.org/10.1007/BFb0091534

Bibliography

[LS14] Patrick Longa and Francesco Sica. Four-dimensional Gallant-Lambert-Vanstone
scalar multiplication. Journal of Cryptology, 27(2):248–283, April 2014.

[LW15] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx.
IACR Cryptology ePrint Archive, 2015:366, 2015.

[Mes86] Jean-François Mestre. La méthode des graphes. Exemples et applications. In
Proceedings of the international conference on class numbers and fundamental units
of algebraic number fields (Katata, 1986), Nagoya, 1986. Nagoya University.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of
sequential work. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, pages 373–388. ACM, 2013.

[Mon05] Peter L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE
Transactions on Computers, 54:362–369, March 2005.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In
40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039),
pages 120–130, Oct 1999.

[MVO91] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing elliptic curve
logarithms to logarithms in a finite field. In STOC ’91: Proceedings of the twenty-
third annual ACM symposium on Theory of computing, pages 80–89, New York, NY,
USA, 1991. ACM.

[NV10] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and
Applications. ISC. Springer, Heidelberg, 2010.

[Pie18] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019), volume 124 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 60:1–60:15, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Piz80] Arnold Pizer. An algorithm for computing modular forms on γ0(n)∗. Journal of
Algebra 64, pages 340–390, 1980.

[Piz90] Arnold K. Pizer. Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society (N.S.), 23(1), 1990.

[Piz98] Arnold K. Pizer. Ramanujan graphs. In Computational perspectives on number
theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math. Amer. Math. Soc.,
Providence, RI, 1998.

[PL17] Christophe Petit and Kristin Lauter. Hard and easy problems for supersingular
isogeny graphs. Cryptology ePrint Archive, Report 2017/962, 2017.

[PSNB11] Geovandro C.C.F. Pereira, Marcos A. Simplício, Michael Naehrig, and Paulo S.L.M.
Barreto. A family of implementation-friendly BN elliptic curves. Journal of Systems
and Software, 84(8):1319 – 1326, 2011.

[PW18] Cécile Pierrot and Benjamin Wesolowski. Malleability of the blockchain’s entropy.
Cryptography and Communications, 10(1):211–233, Jan 2018.

152

[Rab83] Michael O. Rabin. Transaction protection by beacons. Journal of Computer and
System Sciences, 27(2):256–267, 1983.

[Reg04] Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space. arXiv:quant-ph/0406151, June 2004.

[Ren18] Joost Renes. Computing isogenies between Montgomery curves using the action of
(0, 0). In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 9th International Conference, PQCrypto 2018, pages 229–247. Springer, Heidelberg,
2018.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On
Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. http://eprint.iacr.
org/2006/145.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-
release crypto. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1996.

[Sag18] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.0), 2018.

[Sch93] Oliver Schirokauer. Discrete logarithms and local units. Philos. Trans. Roy. Soc.
London Ser. A, 345(1676):409–423, 1993. http://rsta.royalsocietypublishing.
org/content/345/1676/409, http://doi.org/10.1098/rsta.1993.0139.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Journal de théorie
des nombres de Bordeaux, 7(1):219–254, 1995.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate texts
in mathematics. Springer, 1986.

[SJK+17] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser,
Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed
randomness. In IEEE Symposium on Security and Privacy, pages 444–460. IEEE
Computer Society, 2017.

[Smi16] Benjamin Smith. The Q-curve construction for endomorphism-accelerated elliptic
curves. Journal of cryptology, 29(4):806–832, October 2016.

[ST15] Joseph H. Silverman and John T. Tate. Rational Points on Elliptic Curves. Springer,
2nd edition, 2015.

[Sut10] Andrew V. Sutherland. Computing hilbert class polynomials with the chinese
remainder theorem. Mathematics of Computation, 80(273):501–538, May 2010.

[Tan09] Seiichiro Tani. Claw finding algorithms using quantum walk. Theoretical Computer
Science, 410(50):5285–5297, 2009.

153

http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
http://rsta.royalsocietypublishing.org/content/345/1676/409
http://rsta.royalsocietypublishing.org/content/345/1676/409
http://doi.org/10.1098/rsta.1993.0139

Bibliography

[Tea17] The CADO-NFS Development Team. CADO-NFS, an implementation of the number
field sieve algorithm, 2017. Release 2.3.0.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie
des Sciences de Paris, 273:238–241, 1971.

[Ver10] Frederik Vercauteren. Optimal pairings. IEEE Trans. Inf. Theory, 56(1):455–461,
2010.

[Voi20] John Voight. Quaternion algebras, 2020. Draft available at https://math.dartmouth.
edu/~jvoight/quat.html.

[vW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptana-
lytic applications. Journal of Cryptology, 12(1):1–28, January 1999.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 379–407, Cham,
2019. Springer International Publishing.

[WS07] Claire Whelan and Michael Scott. The importance of the final exponentiation in
pairings when considering fault attacks. In Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji
Okamoto, and Takeshi Okamoto, editors, PAIRING 2007, volume 4575 of LNCS,
pages 225–246. Springer, Heidelberg, July 2007.

[YAJ+17] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev.
A post-quantum digital signature scheme based on supersingular isogenies. In Aggelos
Kiayias, editor, Financial Cryptography and Data Security, pages 163–181, Cham,
2017. Springer International Publishing.

[ZL12] Xusheng Zhang and Dongdai Lin. Analysis of optimum pairing products at high
security levels. In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012,
volume 7668 of LNCS, pages 412–430. Springer, Heidelberg, December 2012.

154

https://math.dartmouth.edu/~jvoight/quat.html
https://math.dartmouth.edu/~jvoight/quat.html

Résumé

Cette thèse étudie l’algorithmie de plusieurs applications cryptographiques liées aux courbes
elliptiques et aux isogénies de courbes elliptiques. D’une part, nous étudions le compromis entre
efficacité et sécurité concernant les courbes à couplages pour un niveau de sécurité de 128 bits.
La menace des récentes avancées sur le calcul de logarithme discret dans certains corps finis
nous oriente vers l’étude de nouvelles courbes à couplage. Nous effectuons une comparaison de
l’efficacité de ces nouvelles courbes avec celles utilisées actuellement en estimant le temps de
calcul pratique. D’autre part, nous présentons la cryptographie à base d’isogénies de courbes
supersingulières, considérées actuellement comme résistantes aux ordinateurs quantiques. Nous
portons une attention particulière à la sécurité de ces protocoles en apportant une implémentation
des calculs d’idéaux connectants entre ordres maximaux d’algèbres de quaternions. Enfin, nous
présentons deux constructions de fonctions à délai vérifiables, basées sur des calculs de couplages
et d’évaluations d’isogénies de grand degré friable. Ces dernières ne sont pas considérées comme
résistantes aux ordinateurs quantiques, mais apportent plusieurs nouveautés par rapport aux
constructions actuelles. Nous analysons leur sécurité et effectuons une comparaison entre toutes
ces fonctions à un niveau de sécurité de 128 bits.

Mots-clés: courbes elliptiques, isogénies, algèbre de quaternions, couplage, fonction à délai
vérifiable.

Abstract

This thesis studies the algorithmic of several cryptographic applications related to elliptic
curves and isogenies of elliptic curves. On the one hand, we study the tradeoff between efficiency
and security in pairing-based cryptography at the 128-bit security level. The threat of the recent
improvements on the discrete logarithm computation over specific finite fields lead us to study
new pairing-friendly curves. We give a comparison of efficiency between our new curves and
the state-of-the-art curves by estimating the measurement in practice. On the other and, we
present isogeny-based cryptography, considered to be post-quantum resistant. We look at a
concrete implementation of cryptanalysis based on connecting ideals between maximal orders
of quaternion algebras. Finally, we present two constructions of verifiable delay functions based
on computations of pairings and isogenies of large smooth degree. These functions are not
considered to be post-quantum resistant, but bring several new properties compared to the
current constructions. We analyse their security and give a comparison of all the known functions
at the 128-bit security level.

Keywords: elliptic curves, isogenies, quaternion algebra, pairing, verifiable delay function.

155

156

	Résumé en français
	Introduction
	Finite fields
	Discrete logarithm problem algorithms
	The baby-step–giant-step algorithm
	Index calculus method
	Sieving in number fields
	Practical examples

	Arithmetic of finite fields
	Multiplications
	Frobenius power
	Inversions
	Exponentiations
	Summary

	Elliptic curves
	Definition
	Group law
	Isogenies of elliptic curves
	Torsion
	Endomorphism rings of elliptic curves
	Orders in imaginary quadratic fields.
	Maximal orders in quaternion algebras
	Structure of endomorphism rings of elliptic curves
	The Complex Multiplication (CM) method

	Automorphisms of elliptic curves
	Twists of curves
	Elliptic curves in cryptography
	Discrete logarithm over an elliptic curve
	Formulas in different models
	Scalar multiplication
	Subgroup security
	Twist security

	Isogenies in cryptography
	Isogeny graphs
	Ordinary curves
	Supersingular curves

	Isogeny computation
	Vélu's formulas
	Isogenies of degree a power of

	Isogeny-based cryptography
	The CRS key exchange and its improvements
	CSIDH
	SIDH
	An open problem

	Pairing-friendly curves
	Pairing constructions
	Definition
	The Miller function
	The Weil pairing
	The Tate pairing
	The ate pairing
	Optimal pairings

	Pairing-friendly elliptic curves
	Elliptic curves not designed for pairings
	Generation of pairing-friendly elliptic curves

	Pairing cost in the general case
	Curve subgroup choices
	Miller step
	Final exponentiation

	Pairing cost in the case of three families of curves
	Barreto-Naehrig curves.
	Barreto-Lynn-Scoot curves (k=12).
	Kashisa-Schaefer-Scott curves (k=16).

	New pairing-friendly curves
	A modified Cocks-Pinch algorithm
	Pros and cons of the Cocks-Pinch algorithm
	Tweak of the Cocks-Pinch algorithm
	Special form of the obtained prime

	Generation of curves
	Size of r and p for a 128-bit security level
	Choice of discriminant
	Low weight parameters
	Twist-secure and subgroup-secure parameters.
	Our new curves

	Pairing cost
	The Miller loop
	Final exponentiation

	Comparison of curves
	Elliptic curve scalar multiplication in G1 and G2.
	Pairing timing estimation

	Representation of endomorphism rings of supersingular curves
	Lattices
	Quaternion algebras
	Orders and ideals
	Orders in quaternion algebras
	Ideals in quaternion orders
	Quotient of orders

	Deuring correspondence
	Solving equations with curve points
	Torsion decomposition
	Solving the equation using linear algebra

	Maximal orders through isogenies
	From ideal to isogeny
	From isogeny to ideal
	Computing equivalent ideals

	Conclusion

	Verifiable delay functions from isogenies and pairings
	Definition and applications
	Definition
	Applications

	Existing constructions
	Chaining hash functions
	Modular square roots
	Time-lock puzzles
	Wesolowski's VDF
	Pietrzak's VDF
	Univariate permutation polynomials

	A new VDF construction framework
	Two instantiations with supersingular elliptic curves
	VDF from supersingular curves over Fp
	VDF from supersingular curves over Fp2
	Properties of the VDFs.

	Security and parameter sizes
	Attacks
	Shortcut attacks on special curves

	Implementation
	Evaluation
	Verification
	Measurements

	Conclusion and perspectives

	Conclusion
	Bibliography

