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Résumé

Le traitement informatique des objets qui nous entourent, naturels ou créés par
l’homme, demande toujours de passer par une phase de traduction en entités
traitables par des programmes. Le choix de ces représentations abstraites est tou-
jours crucial pour l’efficacité des traitements et est le terrain d’améliorations con-
stantes. Mais il est un autre aspect émergent : le lien entre l’objet à représenter et
"sa" représentation n’est pas forcément bijectif ! Ainsi la nature ambiguë de cer-
taines structures discrètes pose problème pour la modélisation ainsi que le traite-
ment et l’analyse à l’aide d’un programme informatique. Le langage dit “naturel”,
et sous sa forme en particulier de représentation textuelle, en est un exemple. Le
sujet de cette thèse consiste à explorer cette question, que nous étudions à l’aide de
méthodes combinatoires et géométriques. Ces méthodes nous permettent de for-
maliser le problème d’extraction d’information dans des grands réseaux d’entités
ainsi que de construire des représentations géométriques utiles pour le traitement
du langage naturel.

Dans un premier temps, nous commençons par démontrer des propriétés
combinatoires des graphes de séquences intervenant de manière implicite dans
les modèles séquentiels. Ces propriétés concernent essentiellement le problème
inverse de trouver une séquence représentant un graphe donné. Les algorithmes
qui en découlent nous permettent d’effectuer une comparaison expérimentale de
différents modèles séquentiels utilisés en modélisation du langage.

Dans un second temps, nous considérons une application pour le problème
d’identification d’entités nommées. A la suite d’une revue de solutions récentes,
nous proposons une méthode compétitive basée sur la comparaison de structures
de graphes de connaissances et moins coûteuse en annotations d’exemples dédiés
au problème. Nous établissons également une analyse expérimentale d’influence
d’entités à partir de relations capitalistiques. Cette analyse suggère l’élargissement
du cadre d’application de l’identification d’entités à des bases de connaissances de
natures différentes. Ces solutions sont aujourd’hui utilisées au sein d’une librairie
logicielle dans le secteur bancaire.

Ensuite, nous développons une étude géométrique de représentations de
mots récemment proposées, au cours de laquelle nous discutons une conjecture
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géométrique théoriquement et expérimentalement. Cette étude suggère que les
analogies du langage sont difficilement transposables en propriétés géométriques,
et nous amène a considérer le paradigme de la géométrie des distances afin de
construire de nouvelles représentations.

Enfin, nous proposons une méthodologie basée sur le paradigme de la géométrie
des distances afin de construire de nouvelles représentations de mots ou d’entités.
Nous proposons des algorithmes de résolution de ce problème à grande échelle,
qui nous permettent de construire des représentations interprétables et compéti-
tives en performance pour des tâches extrinsèques. Plus généralement, nous pro-
posons à travers ce paradigme un nouveau cadre et piste d’explorations pour la
construction de représentations en apprentissage machine.
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Abstract

The automated treatment of familiar objects, either natural or artifacts, al-
ways relies on a translation into entities manageable by computer programs. The
choice of these abstract representations is always crucial for the efficiency of the
treatments and receives the utmost attention from computer scientists and devel-
opers. However, another problem rises: the correspondence between the object
to be treated and "its" representation is not necessarily one-to-one! Therefore, the
ambiguous nature of certain discrete structures is problematic for their modeling
as well as their processing and analysis with a program. Natural language, and
in particular its textual representation, is an example. The subject of this thesis is
to explore this question, which we approach using combinatorial and geometric
methods. These methods allow us to address the problem of extracting informa-
tion from large networks of entities and to construct representations useful for
natural language processing.

Firstly, we start by showing combinatorial properties of a family of graphs
implicitly involved in sequential models. These properties essentially concern the
inverse problem of finding a sequence representing a given graph. The resulting
algorithms allow us to carry out an experimental comparison of different sequen-
tial models used in language modeling.

Secondly, we consider an application for the problem of identifying named
entities. Following a review of recent solutions, we propose a competitive method
based on the comparison of knowledge graph structures which is less costly in
annotating examples dedicated to the problem. We also establish an experimental
analysis of the influence of entities from capital relations. This analysis suggests
to broaden the framework for applying the identification of entities to knowledge
bases of different natures. These solutions are used today in a software library in
the banking sector.

Then, we perform a geometric study of recently proposed representations of
words, during which we discuss a geometric conjecture theoretically and exper-
imentally. This study suggests that language analogies are difficult to transpose
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into geometric properties, and leads us to consider the paradigm of distance ge-
ometry in order to construct new representations.

Finally, we propose a methodology based on the paradigm of distance ge-
ometry in order to build new representations of words or entities. We propose
algorithms for solving this problem on some large scale instances, which allow us
to build interpretable and competitive representations in performance for extrinsic
tasks. More generally, we propose through this paradigm a new framework and
research leads for the construction of representations in machine learning.
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1
Introduction

1.1 A bit of History: Computer science and Language

1.1.1 Formal languages
The concept of language and its study as a mathematical object has a rich scien-
tific history developed in the second part of the 20th century, which formalized
the initial idea of the grammarian Panini (around 5th century B.C, for a relatively
recent reference, we refer to (Cardona, 1997)). This formalization is based on the
founding idea that language must respect structural rules described by a formal
grammar. Given a set of symbols, usually containing a start symbol S (and possi-
bly a stop symbol), the language is constructed by applying different production
rules recursively to an initial sequence of symbols. Let us consider the following
example. Given the vocabulary Σ = {a, b} and start symbol S, let N∗ be the set of
positive natural integers and let us consider the formal rules:

1. S → aSb

2. S → b

3. akSbk → akbak ∀k ∈ N∗
(1.1)

where the operator→ consists in replacing the left term (called) nonterminal sym-
bol within a string, and Σ are the terminal symbols, which cannot be input of the

S

b

anSbn

anbn+1

anban

rule 2

rule 1

rule 2

rule 3

rule 1

Figure 1.1 – Generation of the formal language defined with the set of rules de-
scribed in Equations 1.1, where n is an strictly positive integer describing N∗;
namely the node anban corresponds to the set of strings {anban | n ∈ N∗}
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operator→. Here an is the n-concatenation of a. Then, the construction rules must
be applied as follows: starting with S, the choice of rule leads to a path possible
strings illustrated in Figure 1.1. By immediate recursion, the language defined by
Equation 1.1 is exactly {b, anbn+1, anban |n ∈ N∗} (by convention, we do not include
the strings containing the start symbol S because it is not in the alphabet). The set
of production rules contained a formal grammar thereby defines a language, wh-
ich are all the set of strings composed of symbols in the alphabet reachable from
the start symbol and using the formal rules.

Based on this formulation, fertile theoretical results have been established,
such as the classification of Chomsky ((Chomsky, 1956), cf. Fig. 1.2), which estab-
lishes a hierarchy of families of formal languages based on the characteristics of
the grammars defining them or, equivalently, of the automata recognizing them.

For example, let us consider the left regular grammars. If A is a nonterminal
symbol, and a, b are terminal symbols (hence a, b ∈ Σ ), and ε is the empty string,
then the corresponding derivation rules have the following form:

1. A→ a

2. A→ Ba

3. A→ ε

(1.2)

If the rule A → Ba is replaced by A → aB, then the grammar is right regular. In
the standard terminology, the most simple group of grammars, called regular are
composed of the left and right regular grammars. Besides, a finite automaton, which
models a certain form of sequential derivations, is defined as (Q,Σ, δ, q0, F ) where:

◦ Q is a finite set of states
◦ Σ is a finite set of input symbols (alphabet)
◦ δ is a transition function: δ : Q× Σ→ Q

◦ q0 is an initial state
◦ F is a set of accept states

A finite automaton is said to recognize a string s if a sequence of states, r0, r1, · · · , rn
exist in Q such that r0 is a initial state, rn ∈ F and ri+1 = δ(ri, ai+1) Then, it can
be proved that finite automaton exactly recognizes all strings generated by regular
grammars. For instance, the formal language in Figure 1.1 is not regular (and actu-
ally not even context-free) since the derivation rules are not of the form of those in
Equations 1.2 (or those of a right regular grammar). Thus, it cannot be recognized
by a finite automaton.

The other main types of formal grammars are contex-free, contex-sensitive and
recursively enumerable; and each of those can also be associated to specific type of
automaton (respectively pushdown, linear bounded and Turing machine) as depicted
in Figure 1.2. We refer our reader to (Eilenberg, 1974) for the mathematical founda-
tions of Automata theory, and (Hopcroft et al., 2001) for a general introduction and
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relations with languages. This classification is a fundamental result of language
theory, and has lots of theoretical and practical implications in complexity and
learning theories, but also for the design of programming language and compiling
systems.

regular

context free

context sensitive

recursively enumerable

(a) Formal grammar

finite

pushdown

linear bounded

Turing machine

(b) Type of automaton

Figure 1.2 – Chomksy hierarchy and Grammar / Automaton correspondence

Historically, a subfield of combinatorics emerged during the same period,
and studies the properties of sequences formed on a finite alphabet X . Axel Thue,
in the early 1900s, was one of the first interested in such questions, among which
the existence of factorization of words (Thue, 1912). Such ideas were rediscovered
later on, for special cases, including the study of square-free sequences, which are
not of the form ff where f is a pattern built on the alphabetX . This field also led to
developments in discrete algebra; related conjectures on the repetitions of patterns
were formulated in 1972 by (Dejean, 1972), and proven in the beginning of the 20th

century (Rao, 2011; Currie and Rampersad, 2011), with Dejean’s Theorem. We refer
to (Berstel and Perrin, 2007) for a thorough description of the origins of this field.

More recently, important progress has been achieved both in hardware and
software engineering in the second part of the 20th century, allowing to perform
operations on very large databases. In this context, massive network infrastruc-
tures were developed, along with the indexing of a large amount of web pages,
giving birth to the irresistible search engines in the end of the 20th century. How-
ever, first attempts to model natural language using simple vector space models go
back to the 1970s, namely Index terms (Salton et al., 1975), term frequency inverse
document frequency (TF-IDF) (Ramos et al., 2003), and corresponding software
solutions SMART (Salton, 1971b), Lucène (Hatcher and Gospodnetic, 2004).

In the late 2000s and beginning of the 2010s, the computing power associated
with large data volume collection encouraged the intensive (and in some cases, ill-
advised) use of Machine learning techniques to perform tasks of natural language
such as text classification or language translation. Despite significant experimen-
tal progress, especially concerning information retrieval problems and machine
translation, both fundamental understanding of natural language and designing
interpretable models in the applications remain largely opened.
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1.1.2 Formal Language, Natural Language and Artificial
Intelligence

Given the theoretical and practical results concerning formal languages, a legit-
imate question to consider is whether natural language can be described using
Chomksy’s formalism. Several attempts of formalization have been developed in
the literature. (Kornai, 1985) presented three independent arguments that natural
language stringsets can be considered as regular (type 3 in Chomsky classification),
if arbitrary long “sequences” can be considered.

However, it seems that the formalization of the grammar of a natural lan-
guage such as English (i.e not only considering stringsets nor semantics) is not
Context-free (Shieber, 1985) (i.e not even type 2 in Chomsky classification). How-
ever such statements have been nuanced in (Gross, 1981), due to the fact that
counter-examples are relatively rare although significant. Even a context-free gram-
mar has been proposed for French (Salkoff, 1980). Here, we will not develop the
formalizations or proofs of such statements, the point being that formalization of
natural language is now rather unsuccessful, for instance in the objective to con-
struct machines able to hold a conversation as a human would. We will rather
adopt and reformulate a distinction already discussed namely in (Thom, 1970). A
total formalization of natural languages seems to be excluded for the following
reasons:

• If a simultaneous total formalization of the given language, but also of the
meta-language (i.e the semantics) required to express the theory was possi-
ble, the paradoxes that prohibit formalization of global arithmetic would ap-
pear. The sentence: “The sentence that I write right now is not well formed”
would be contradictory.

• If we only impose the formalization of the language but not the semantics
(meta-language), any formalization of natural languages contains “self-filling”
axioms which increase the length of well-formed expressions. For instance,
if “E” is a well-formed expression, the expression “I” say that “E” is also
well formed. This leads to consider “well-formed” expressions as long as
we want. However, it is accepted, even for skilfull authors with very long
sentences (e.g Marcel Proust), that there exists an upper bound on the length
of the sentences. In a standard formal system, there are no restrictions as to
the possibility of using the axioms as often as you like, which would yield
a contradiction. Therefore, any attempt to explain the linguistic form must
necessarily have a dynamic aspect which makes counts, given a sentence, for
its creation as a process that ensures its grammatical correction. However, all
of these processes are subject to psycho-physiologic constraints which limit
the number and the relative disposition of axioms. In other terms, axioms
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cannot be used infinitely. For this matter, Thom (1970) uses the wonderful
expression: “Such axioms would get tired when we use them.”

• The notion of "well-formed" expression in a natural language is not absolute:
there is a practically continuous graduation of non-grammaticality or seman-
tically unacceptable sentences. It should also be noted that any strict border
between non-grammaticality and semantic unacceptability is arbitrary.

We see that the difficulty lies mainly in the semantics, which cannot be de-
cuced trivially from syntax. However, the current formal theories (e.g.generative
grammars) have their own mathematical interest, and have undeniable value in
terms of a local description of the forms language. They have revealed, in partic-
ular, universal aspects of formal mechanisms found among all human languages
(Everaert et al., 2015). Other empirical approaches highlighted such universal sim-
ilarities (del Prado, 2011).

It is also worth to note that this development is related to Alan Turing’s origi-
nal question of artificial intelligence (Turing, 1950) “Can machine think?” If natural
language, among other dimensions of human activity, cannot be formalized totally,
should we expect automata to perform? In his original paper, an argument going
in favor of a positive answer, is that although there are formal limitations to the
powers of any particular machine, it has been implicitly considered that: “without
any sort of proof, that no such limitations apply to the human intellect”. However,
the difficulty may lie in the fact that human capacity to introduce new ideas or rea-
sonings is not bound to any type of formal system: what we usually call intuition
escapes formal law of logic! Therefore, the design of learning machines obeys rules
that our brain is not - at least in appearance - tight to.

1.1.3 “Learning” Machines
Modern artificial intelligence is interested in - among others - algorithms perform-
ing empirically well for end-tasks (e.g. image or text classification) with respect
to a ground truth. In this regard, a regressor is a function f : X → Y , that maps
observations X1, ..., Xn to respective observations Y1, ..., Yn. A regressor is said to be
a classifier where Y is discrete (usually finite), for which the most simple example
is binary classification. This situation is commonly referred to as supervised learn-
ing. Also, regressors are usually defined as a family of functions indexed by a set
a parameters. When the set of parameters is finite, the situations is referred to as
parametric learning, and in the other case, non-parametric (which can be mislead-
ing). Finally, if empirical observations of Y cannot be used (or are not available)
but still exist in the model, the framework is called unsupervised learning.

The learning phase consists in computing a function that could map as well
as possible the observations from X to their corresponding value in Y . Supposing
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that f belongs to a set of functions indexed by a set of parameters, it corresponds to
finding the best parameters for this problem. Then, inference for a new point Xn+1

is computed as f(Xn+1). There exists a large family of these algorithms, called
learning algorithms. The theoretical and empirical studies of this branch of algo-
rithms form the field of Machine Learning.

The Theory of Learnability is concerned with the formalization of learnabil-
ity for programs in terms of complexity (Valiant, 1984; Schapire, 1990). This for-
malism has namely led to demonstrate that regular and context free languages (in
the sense of Chomsky) cannot be learnt, which means that there is no polynomial
time algorithm executable on a Turing machine that would allow to approximate
any task performed by an Oracle (e.g. Human), when given examples of inputs
and outputs. Does this mean that we should not expect a machine to perform well
for natural language (since natural language is not even context-free)? The answer
to this question is not clear, due to the very general nature of the original state-
ment. Indeed, a possible weaker statement of this result would be: learning to
approximately solve all natural language processing related problems is NP-hard.
However, when considered isolated natural language problems, the unknown still
remains.

Statistical learning theory is a subfield of machine learning studying the
question of learning and prediction from a statistical point of view. In particu-
lar, the relation between empirical risk minimization (find an optimal set of pa-
rameters to minimize the error rate) and generalization, which is the capacity of a
learning algorithm to “correctly” predict or classify new samples. Moreover, sev-
eral concepts developed in this field, such as the Vapnik–Chervonenkis dimension
(Vapnik, 1995), have given tools useful for complexity theory.

In this context, Deep Neural Networks, which can be defined as a certain
family of regressors inspired from the humain brain (LeCun et al., 2015), achieved
remarkable experimental results in the beginning of the 2010s. They give state-
of-the-art performances for several problems, including image classification with
thousands of complex classes (Krizhevsky et al., 2012) (with a significant mar-
gin), but also speech recognition (Hinton et al., 2012), biomedical applications
(Leung et al., 2014). They also provide competitive or state-of-the-art performance
in natural language understanding (Sutskever et al., 2014) but with a non signif-
icant margin. Despite research on the mathematical framework to analyse their
properties (Mallat, 2016), many of these remain unknown, both concerning their
numerical analysis (such as guaranteed convergence of optimization algorithms),
or approximation theorems, which are necessary to fully understand the mathe-
matics of these networks. Also, little to none of their generating mechanisms is
fully understood: this is essentially due to the fact that these approaches are essen-
tially statistic and not causal.
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Besides, the question of representation learning, originally refered to as fea-
ture learning, is concerned with the problem of automatically constructing a perti-
nent representation for learning algorithms, which would ideally replace manual
feature engineering, or be computed in the same time as the learning procedure.

Several approaches have been proposed for this matter, such as greedy iter-
ative methods (Hinton et al., 2006), auto-encoders (Ballard, 1987), manifold learn-
ing; or sparse coding. For more details on the subject, we refer to the survey (Ben-
gio et al., 2013). One of the challenges of representation learning is the difficulty
in establishing a clear objective for training. In the case of standard end-tasks,
such as classification, the objective is very often to minimize the number of mis-
classifications on the training dataset. In the case of representation learning, the
objective is a priori removed from the ultimate objective, which is to learn a pre-
dictor.

Representation learning is also concerned with the curse of dimensionality,
an important bottleneck in statistical learning, which implies that the number of
samples to reach convergence is exponential with regards to the dimension. In-
deed, images, but also speech and text data and are naturally represented high
dimensional spaces if taken as such. Theoretical results concerning representa-
tions in machine learning are somehow limited; indeed, such representations are
rather prefered empirically given an end-task.

1.2 Examples of Related Problems

Among the many artificial intelligence problems, there exist a plethora of natural
language processing and information retrieval tasks. This thesis is obviously not
intended to address each of these, but some of them are here addressed and/or
used as applications. These problems do not have an empty intersection, and
many of them are closely related. In some cases, reductions exist from one to an-
other. Also, it appears than “performing well” empirically for some of them is a
priori more difficult than others. Due to crucial role of semantics in natural lan-
guage, it is however very difficult to establish a strict hierarchy or separation of
problems. However, we think it is wise to group them as follows. This list might
is not exhaustive, but we believe it contains central problems in natural language
processing:

• Automatic speech recognition (audio), Speech-to-text, Text-to-speech

• Combinatory Categorical Grammar, Constituency or dependency parsing (ex-
tract a tree from a sentence that represents its syntactic structure).

• Part-of-speech tagging or named entity recognition.
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• Text classification: attribute a label to a sentence or document a label (adressed
in this thesis)

• Information extraction, knowledge base completion, Coreference resolution,
Word sense disambiguation, Entity identification (adressed in this thesis)

• Grammatical error correction

• Machine translation, Lexical normalization (translating/transforming a non
standard text to a standard register)

• Multi-modal emotion recognition, Sentiment analysis

• Relationship extraction between named entities (e.g. relations between char-
acters in a novel).

• Question answering, Semantic textual similarity, Common sense, Natural
language inference: determining whether a "hypothesis" is true (entailment),
false (contradiction), or undetermined (neutral) given a "premise".

• Summarization, Simplification (modifying the content and structure of a text
in order to make it easier to read and understand)

• Intent Detection and Slot Filling: interpreting user commands/queries by
extracting the intent and the relevant slots.

• Taxonomy learning (hierarchically classify concepts from text)

1.3 Overview of the Contributions

As discussed in the previous Section, significant experimental progress has been
obtained with models such as deep neural networks for a plethora of applications
including natural language processing. However, several practical issues remain
such as domain adaptation (i.e the capacity to transfer knowledge from some task
or dataset to another), combined with the need for large annotated data volume.

Therefore, we investigate a potential weaknesses of some “standard” se-
quential models. To this end, we conduct in Chapter 3 a theoretical analysis of the
ambiguity for a family of language models, refered to as context-based language
models, or co-occurence based models.

However, in Chapter 4, we show that these models allow to design practical
and scalable algorithms which can challenge deep-learning on specific tasks, and
which would require relatively few annotated samples to reach good experimental
performance. This led us to show that based on a adequate formulation of the
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problem of entity identification - which consists in mapping text entities to entries
in a database similarly to a search engine-, standard graph-based models have
better of competitite performance requiring fewer annotated samples.

These context based models have also been used in order to output word
or sentence vector representations which have played a major role in artificial in-
telligence and natural language processing. For some of these representations, a
geometrical conjecture connecting word vectors and the notion of semantic anal-
ogy was formulated, which we analyze in Chapter 5. We also provide an analysis
of a partition function of word vectors.

Finally, these geometric properties lead us to consider other geometric meth-
ods to generate word embeddings, and in particular within the framework of dis-
tance geometry in Chapter 6.

The next subsections sum up our contributions. Their purpose is to provide
the reader with the general idea of each chapter and how they articulate with each
other. The background notions and terminology necessary to understand their
content will be presented in Chapter 2.

1.3.1 Sequence Graphs and Ambiguity in Language Models: a
Combinatorial Study

The intent of several natural language models is to extract the semantic informa-
tion contained in a sentence or a document. Popular methods to achieve this ob-
jective is to consider the co-occurences of words within context of size w (Mikolov
et al., 2013a; Pennington et al., 2014; Arora et al., 2016b), which can be represented
as a weighted graph (which we refer to as sequence graph, or a graph of words). How-
ever, these representations induce a level of ambiguity, as displayed in Figure 1.3.

To be or not

(a) No ambiguity (w = 3)

To be or not

(b) Ambiguity (w = 2)

Figure 1.3 – The two sequence graphs built for the sentence “To be or not to be” us-
ing window sizes 3 (a) and 2 respectively (b). In the second case, the information to
reconstruct the sentence is insufficient, hence creating ambiguity, since any circular
permutation of the words admits the same representation. Chapter 3 explores this
question in generality.

In Chapter 3, we are interested in questions related to the level of ambigu-
ity generated with these models. In particular, we define the notion of sequence
graph, a combinatorial object encoding their information. Two main theoretical
combinatorial properties are investigated, in particular the existence of a sequence

34



1.3 - OVERVIEW OF THE CONTRIBUTIONS

given an arbitrary graph, and the number of possible sequence (i.e sentences or
documents) from which a given graph can originate from.

We also show an experimental comparison between these context-based mod-
els and recent sequential derived from recurrent neural networks, which by con-
struction do not share this property.

1.3.2 Entity Identification and Analysis of a Knowledge Graph

Despite the form of ambiguity induced by co-occurence based models as discussed
in Chapter 3, we will show in Chapter 4 they can be very efficient for information
retrieval problems.

The structure of a document can be analysed under the prism of the role of
central entities in the text, motivating the question of identifying them automati-
cally. In the context of natural language processing, the definition of an entity is
not universal but will be properly defined in Chapter 2 and Chapter 4. In this Sec-
tion, let us consider that an entity is a real-world object and usually has a physical
existence, and usually denoted with a proper name. The problem of Entity discov-
ery consists in detecting these entities and identifying them within a database. For
instance, in the sentence:

John Kennedy was the president of the United States.

A named entity recognition program should be able to label John Kennedy and
United States as entities (and the remaining words as non-entities), and classify the
type of entities within categories such as Person, Place, or Organisation. The process
of identification, which we will be interested in Chapter 4 consists in identifying
the pertinent corresponding entry in a database. These two problems are inter-
esting in the sense thay they allow to create a structure from a natural language
document, and thereby helping to contribute to its automatic treatment.

More precisely, in the frame of Chapter 4, this “database” is represented by
a Knowledge base, or Knowledge graph. A Knowledge graph is a form of relational
database providing supplementary descriptive and semantic information about
entities. The semantic information is contained in a graph structure, where a node
represents an entity, and an edge represents a semantic relation. Each node of the
graph potentially contains metadata, such as text description or classification via
an Ontology.

Therefore, in Chapter 4, we suppose that the identification of entities within
text documents always relies on the existence of background knowledge. We also
provide in Section 8.2 of the Appendix an analysis of a knowledge graph con-
structed from economic and financial data.
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1.3.3 Study of a Geometrical Conjecture and Partition Function
Property for Word Vectors
Co-occurence based models are also used to generate word or sentence represen-
tations in vectorial form. Indeed, the majority of machine learning algorithms take
vectorial input, whereas the native structure of text are discrete sequences. Several
procedure exist to generate word embeddings, which we present in Chapter 2.

In Chapter 5, we will discuss several properties of theses representations.
First, we discuss a geometrical conjecture relating semantic analogies and word
vectors.

(a) word2vec (b) glove

Figure 1.4 – Example of a geometric property of word vectors for analogies (the x
and y axis represent the coordinates of the word vectors, and each colour corre-
spond to a quadruplet of words implied in an analogy), discussed in Chapter 5.

Besides, we discuss a probabilistic property for word vectors, named the con-
centration the partition function. This property was presented in previous work in
a model for word vectors (Arora et al., 2016a), where the text generation process is
driven by a random walk ( ct | 1 ≤ t ≤ T ), representing a latent discourse vector.
If wt is the word at step t, ct the discourse vector, and vw vector of word w then this
model supposes the following conditional model:

P(wt = w|ct) ∝ exp(〈ct, vw〉)

And the partition function Zc, similarly to statistical physics, is computed as a sum
of states Zc =

∑
v exp(〈v, c〉). Then, under some assumptions, it can be proven that

this partition function concentrates around its mean with high probability, and
was suggested that it played an important role in the co-occurrence based models
since it allows to derive formal relations between pointwise mutual information
(PMI), which is pure statistical information based of co-occurrences of words, and
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the scalar product of word vectors, which is a geometric quantity. By weakening
the assumptions of the generative model, in particular that the words vectors are
generated uniformly and independently, and that the discourse vector are close
to a sphere of radius R ≤ 2, we show that a similar concentration phenomenon
happens, suggesting this property is not specific to these assumptions.

1.3.4 Efficient Representations with Distance Geometry
Traditional methods to construct word representations are the output of optimiza-
tion schemes solved by Stochastic Gradient Descent (for a detailed explanation of
this notion, cf. Chapter 2) .

In Chapter 6, we propose a new word embedding method based on the Dis-
tance Geometry Problem (DGP), whose aim is to find object positions based on a
subset of their pairwise distances. Considering the empirical Pointwise Mutual In-
formation (PMI) as an inner product approximation, we discuss two algorithms to
obtain approximate solutions of the underlying Euclidean DGP on large instances.
The resulting algorithms are considerably faster than state-of-the-art algorithms,
with similar performance for classification tasks. The main advantage of our ap-
proach for practical use is its significantly lower computational complexity, which
allows us to train representations much faster with a negligible quality loss, a use-
ful property for domain specific corpora.

1.3.5 Software
The code implementation of the algorithms and experiments presented in this dis-
sertation are available (links in the corresponding chapters), except the third one
for confidentiality reasons:

• Sequence graph recognition and counting algorithms: Direct approach, dynamic pro-
gramming and linear integer programming formulations (Matlab and Python)

• Scalable graph based method for named entity identification (Python)

• Analysis of a economic and financial knowledge graph (Python).

• Geometry and Analogies: A Study and Propagation Method for Word Representa-
tions (Python)

• Distance geometry for word representations (Matlab and Python)
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2
Background Notions
and Terminology

In this chapter we present the background material and terminology that will be
used throughout the different chapters of this dissertation. Special mention is
given to notions in Graph Theory, Combinatorics, Complexity theory. Some ba-
sic notions of Analysis and Linear Algebra are also presented.

2.1 Graph Theory and Combinatorics

Graphs, which are well-studied structures, are utilized to model different types of
entities and their relationships. Graph-based representations have become ubiq-
uitous in many application domains. For instance, social networks, protein and
gene regulatory networks, and textual documents are commonly represented as
graphs. Furthermore, in the past years, graph classification has arisen as an im-
portant topic in many domains such as in Computational Biology (Schölkopf et al.,
2004), in Chemistry (Mahé and Vert, 2009), where one wants to predict the mu-
tagenicity of a chemical compound by comparing its graph representation with
other compounds of known functionality. These representations have also been
used successfully for document similarity (Nikolentzos et al., 2017a).

Besides, in this dissertation we will be interested in estimating and demon-
strating several properties of computational compexity, especially in Chapter 3 and
Chapter 6. To this end, in the remaining of this subsection, we present the useful
terminology and notations employed from graph theory and complexity theory.

• A graph G is a couple (V,E) where V is a discrete set of elements called nodes,
or vertices, and E ⊂ {{x, y} | (x, y) ∈ V 2} a set of edges. Similarly, a multigraph
is a couple (V,E) where parallel edges are authorized.

• An directed graph, or digraph, is a graph where the edges are oriented, i.e E ⊂
{(x, y) | (x, y) ∈ V 2}.

• A strongly connected component of a digraph is a maximum set of vertices (in
terms of inclusion) such that there exists a path between each pair of vertices
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in S. A digraph is strongly connected if it has only one strongly connected
component (equal to itself). For undirected graphs, such component is sim-
ply said to be connected.

• A path (or a walk) is a finite or infinite sequence of edges which joins a se-
quence of vertices. A cricuit is a path starting and ending at the same vertex.
A trail is a path without repeated edges. A cycle is a trail starting and ending
at the same vertex.

• A Eulerian path of a graph is a path that visits every of its edges exactly once.
A graph is said to be semi-Eulerian if it has a Eulerian path, and Eulerian if it
has a Eulerian cycle.

• A Hamiltonian path of graph is a path that visits every of its vertices ex-
actly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian
graph.

• A tree is an undirected graph in which any two vertices are connected by
exactly one path, or equivalently a connected acyclic undirected graph.

• A directed tree (or polytree) is a directed acyclic graph (DAG) whose underly-
ing undirected graph is a tree.

• A forest is an acyclic undirected graph, or equivalently a disjoint union of
trees. Similarly, a directed forest (or polyforest) is a directed acyclic graph whose
underlying undirected graph is a forest.

• A vertex order of a graph with n vertices is a bijective correspondence between
its vertices and {1, ..., n} (equivalently, it is a permutation of its vertices).

• Let G be a graph, and let H be a subgraph of G, i.e., H ⊂ G. By definition a
subgraph H is defined to be a k-core of G, denoted by Gk, if it is a maximal
connected subgraph of G in which all nodes have degree at least k.

• The degeneracy of a graph G is defined as the maximum integer k for which
graph G contains a non-empty k-core subgraph.

• A node i of a graph G has core number k, if it belongs to a k-core of G but not
to any of its (k + 1)-core.

• For (k, n) ∈ N2 and n ≥ k,
(
n
k

)
is the standard binomial coefficient given by(

n
k

)
= n!

k!(n−k)!

• Sn represents the set of permutations of {1, ..., n}.
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• Card S, #S or |S| represent the cardinal of a set S.

• If X and Y are two sets, X ' Y means there exists a bijection f : X −→ Y .

2.2 Complexity Theory

In several parts of this dissertation, especially in Chapter 3, 4 and 6, we will be in-
terested in the complexity analysis of certain algorithms. In this section we remind
some related notions and terminology. For a general introduction and develop-
ment to the field of Complexity Theory, the reader may refer to Refs. Papadimitriou
(2003); Arora and Barak (2009).

• The computational complexity of an algorithm is a measure of the number of
the number of elementary operations in order to execute the said algorithm.
An elementary operation is any one of the arithmetic operations (addition,
subtraction, multiplication, division) or a comparison between two numbers,
or the execution of a branching instruction (e.g inequality testing).

• f = O(g) (resp. f = Õ(g)) means that f is upper bounded by g (resp. upper
bounded ignoring logarithmic factors) in the neighborhood considered. For
instance, if f(n) representing the complexity of an algorithm depending on
the size of the input represented by n, f(n) = O(log n) means that there exists
a constant C such that f(n) ≤ C log n

• We make use of standard list of logic symbols. In particular, ∧ and ∨ repre-
sent respectively the logical conjunction and logical (inclusive) disjunction.

• A decision problem is a mathematical problem whose answer is Boolean.

• A reduction of a decision problem is a transformation of its variable inputs and
parameters into a new decision problem such that finding the solution of
the original problem is equivalent to find the solution of the new problem.
In other terms, the function f used for the reduction maps the inputs of L
having True output, to inputs of L′ having True output, and False inputs of
L to False inputs of L′. Therefore, if L (resp. L′) represents the set of inputs
of the original problem (resp. the new problem) having True output, then
x ∈ L ⇐⇒ f(x) ∈ L′. From a complexity theory point of view, different
types of reductions can be considered. However, in this dissertation, we will
implicitly consider only the most standard types of reductions, often referred
to as Karp reductions. A Karp reduction uses a polynomial time computable
function to reduce one problem to another; which means only a polynomial
number of operations are required for the transformation f , with respect to

40



2.3 - DISTANCE GEOMETRY

the size of the input of the initial problem. This fundamental property of
Karp reductions implies that they preserve the main classes of complexities
defined below.

• Based on the notion of reduction, we remind the standard definitions of
P/NP and {NP, #P}-completeness and hardness:

• A decision problem is in P if it can be solved by a deterministic Turing
machine in polynomial time.

• A decision problem is in NP if a given solution to the problem can be
verified to be correct by a deterministic Turing machine in polynomial
time.

• A decision problem is NP-hard if all the problems of NP can be reduced
to it after a polynomial reduction.

• A decision problem is NP-complete if it is NP and NP-hard.
• #P is the set of the counting problems associated with the decision prob-

lems in NP. The definitions of #P-hardness/completeness are defined as
in the two previous points replacing NP by #P.

Finally, an optimisation problem minx∈X f(x) is said to belong to one of these
classes when its following decisional formulation

Given x ∈ X ∃? y ∈ X such that f(y) < f(x)

verifies the class definition.

2.3 Distance Geometry

In the historical context described in Section 1.1, several common tasks in data
science rely explicitly or implicitly on distances between entities, and many of the
designed algorithms take input in vectorial form. Distance geometry studies the
properties of points given some of their relative distances. It has appeared under
several forms over centuries but its formalization is relatively recent, in the end of
the 19th century. In the general theory, the considered space can be a metric space,
or a differential manifold, but in this dissertation we consider the Euclidean Dis-
tance Geometry Problem, whose formulation takes place in a vector space of finite
dimension, where || · || is a Euclidean norm:

Distance Geometry Problem (DGP). Given an integer K > 0, and a sim-
ple undirected graph G = (V,E) whose edges are weighted by a pos-
itive function d : E → R+, determine whether there is a function x :
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V → RK such that:

∀{u, v} ∈ E, ||x(u)− x(v)|| = d({u, v}) (2.1)

In the 1950s, Blumenthal considered the fundamental problem of distance
geometry, which he called the “subset problem” (Blumenthal, 1970) [Ch. IV §36,
p.91], i.e. finding necessary and sufficient conditions to decide whether a given
matrix is a distance matrix. The first results concerning these problems were ob-
tained by Cayley (Cayley, 1841), and then Menger (Menger, 1931) with sufficient
conditions that all (K + 3) × (K + 3) square submatrices of the given matrix are
distance matrices (see (Blumenthal, 1970) [Thm. 38.1]. In the last part of this thesis,
we will explore the paradigm of Euclidean distance geometry in order to construct
vectorial representations. This idea originated from the observation that distances
between objects are often available, whereas machine learning algorithms usually
take vectorial representations as inputs. Supplementary notions and results in dis-
tance geometry will be adressed in Chapter 6. For a survey on Euclidian distance
geometry, we refer to Liberti et al. (2014).

We also define the notion of lateration for a vertex order which will be useful,
especially in Chapter 3 and 6 as follows:

(K+1)-Lateration Order. Let K be a integer > 0, and let G be a graph. A
vertex order of G is called (K + 1)-lateration order if:

1. the first K + 1 vertices form a clique;

2. for every vertex i > K + 1, vertex i has at least K + 1 adjacent
predecessors.

Finally, we remind the reader some general notions in global optimization
useful for Chapter 5. LetK andK ′ be stricly positive integers, f and g are functions
from Rd to R and RK to RK′ respectively. We consider an optimization problem
formulated as:

min
x∈RK

f(x)

s.t. g(x) = 0

Then, the Karush Kuhn and Tucker conditions (or KKT conditions (Karush, 2014)) are
necessary conditions for its solutions. They are expressed as follows:

∃λ ∈ RK ∇f(x) + λ∇g(x) = 0

g(x) = 0

If f is convex and g is affine, these conditions become sufficient.
Furthermore, if min is replaced by max, KKT conditions for this problem are

the same. However, they become sufficient if f is concave and g is affine.
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2.4 Analysis and Linear Algebra

For this section let c, d and m be stricly positive integers.

• Z, R and C are respectively the set of integers, reals, and complex numbers. N is
the set of positive integers.

• If Ω ⊂ Rd, Ω̊ is a shorthand for the topological interior of Ω.

• Let Ω ⊂ Rd. If it exists, the Lebesgue integral of a function
f : Ω′ ⊃ Ω −→ Rm is referred to as∫

Ω

f(x)dx

• A function Ω ⊂ R −→ R is said to be strictly increasing if and only if ∀(x, y) ∈
Ω2 x < y =⇒ f(x) < f(y). f is strictly decreasing if and only if −f is
strictly increasing.

• A function Ω ⊂ R −→ R is said to be non decreasing (or increasing) if and only
if ∀(x, y) ∈ Ω2 x ≤ y =⇒ f(x) ≤ f(y). f is non increasing if and only if −f
is non decreasing.

• Let Ω ⊂ Rd be a convex set, i.e (x, y) ∈ Ω2 =⇒ tx+ (1− t)y ∈ Ω.
A function f : Ω ⊂ Rd −→ R is convex if and only if

∀t ∈ [0, 1] ∀(x, y) ∈ Ω2 f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

f is concave if and only if −f is convex. Furthermore, f is said to be logarith-
mically convex (resp. concave) if and only if log f is convex (resp. concave).

• Given a probability space, the probability of an event E is referred to as P(E),
or P(E). An empirical probability is also referred to as p(E).

• Given a function f , P(x) ∝ f(x) means that the probability of x is equals f(x)

up to a normalization constant (independent of x).

• When a random variable X admits a density, E[X] is the expectation of X , and
V[X] its variance.

• Let K be a subset of R (not necessarily a field, but at least a ring).Mc,d(K) is a
shorthand for the c× d matrices with coefficients in K andMd(K) the square
matrices of size d × d. If M ∈ Mc,d(K), M t ∈ Md,c(K) is the transpose of M ,
Sp(M) represents its set of eigenvalues (some of these eigenvalues might be in
C) and Tr(M) its trace, i.e the sum of its eigenvalues.
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• We use other standard notations of linear algebra. In all this dissertation, we
will essentially consider linear subspaces of Rd for d > 0 associated with the
field of real scalars. In particular,

span{x1, . . . , xm}

is a shorthand for the linear subspace generated by the vectors x1, ..., xm.

• Unless stated otherwise, ||.|| is the euclidian norm on Rd with the associated
scalar product 〈·, ·〉, i.e ||x|| =

√
〈x, x〉 =

∑d
i=1 x

2
i . Besides, ||.||F is the Frobe-

nius norm overMd(R), with ||M ||F =
√
〈M,M〉F = Tr(M tM).

• Om is the set of orthogonal matrices, i.e:

Om = {M ∈Mm(R) |M tM = Im}

where Im is the identity matrix.

• If M ∈ Md(R) is a symmetric matrix, it admits a decomposition: M = UσU t

where U ∈ Od. Moreover, if Sp(M) ⊂ R+ (set of positive reals), (i.e. all the
coeffcients of σ are positive) then M is said to be positive semi-definite (PSD).
In this case, the square root of M is defined as

√
M = U

√
σV where

√
σ is the

diagonal matrix obtained from the square roots elements of σ.

• Let M ∈ Mc,d(K). A singular value decomposition of M is the triplet (U, σ, V )

where (U, V ) ∈ (Oc × Od and σ ∈ Mc,d(K) is a diagonal matrix. This decom-
position always exists, but is not unique in general.

• The pseudo-inverse of a matrix M is obtained with a singular value decom-
position M = Uσ∗V with U and V are orthogonal matrices and σ a diagonal
matrix. Then the pseudo-inverse ofM can be defined asM+ = V σ+U t, where
σ+ is the diagonal matrix whose non zero coefficients have been inversed.

• A matrix M is an upper Hessenberg matrix if and only if the indices of its non
zero-coefficients verify: i ≤ j+1. M is a lower Hessenberg matrix if and only
if MT is an upper Hessenberg matrix, where MT is the transposed matrix of
M .

2.5 Empirical Evaluation

For several artificial intelligence problems, and in particular for natural language
processing, evaluating perfectly the performance of a program for any end-task
is an open-research problem. For instance, an algorithm that would evaluate the
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“performance” of another learning algorithm for a natural language-related task,
such as text summarization, would require to be able to model the semantics of
language in order to evaluate pertinence of the output of the algorithm. Therefore
solving (in the strong sense) such evaluation can be considered, in some sense, as
difficult as the initial problem.

However, in this thesis, the applications we consider are supposed to belong
to a subclass of problems known to be well evaluated. We will adopt here stan-
dard evaluation measures, for which ground truth annotations have already been
provided, by a human or a program:

• Binary classification:

– True Positive (TP) – the system correctly predicts a positive class for a
positive example, resulting in a correct acceptance.

– True Negative (TN) – the system correctly predicts a negative class for a
negative example, resulting in a correct rejection.

– False Positive (FP) – the system wrongly predicts a positive class for a
negative example, resulting in a false alarm.

– False Negative (FN) – the system wrongly predicts a negative class for a
positive example, resulting in a miss.

– Precision (or specificity): It is probably the most intuitive metric and cor-
responds to the fraction of correct predictions restricted to the positive
class P = TP+TN

TP+TN+FP+FN

– Recall (or sensitivity): Consider a medical doctor that uses a specialized
search engine to retrieve all ill patients – we realize that no miss can be
tolerated, which translates into wanting to reduce the number of false
negatives with respect to true postives. This leads to the definition of
recall: R = TP

TP+FN

– F1-score: Depending on the task at hand and the context, priority is
given to sole precision or recall. However, in general both are impor-
tant. However, it is arbitrary to compare two systems where one has a
better precision and the other one a better recall. Several combinations
are considered, but we will here mainly consider the standard F1-score
measure: F1 = 2P×R

P+R
.

• Information retrieval: Similarly to classification, given a query, an algorithm
returning a set of items for the query, and a known set of relevant items, the
following scores are defined:

– Precision@k = Number of items that are relevant within top-k results
k
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– Recall@k = Number of items that are relevant within top-k results
Total number of relevant items

These metrics are used for several problems concerned with large databases
or networks of entities, e.g. those mentioned in this manuscript:

• Network of entities described with a knowledge graph (database paired with
a semantic graph).

• Network of legal entities in the economy. Each entity represents an organiza-
tion or a person.

2.6 Other Definitions

In this section we provide some general definitions in linguistics and natural lan-
guage processing useful throughout this dissertation. The other notions used lo-
cally will be properly defined in the beginning of each chapter.

2.6.1 Linguistics
• Language: A language is a structured system of communication. It can be

seen the method of communication between two entities (and thereby non
limited to humans).

• Grammar: From Greek γραμματική. In linguistics, grammar is the set of rules
governing the use of a formal or natural language, in particular the compo-
sition of phrases and words.

• Syntax: From Greek συν + τάσσω: “to put together”. In linguistics, syntax is
the study of sentences and their structure which conform to the grammar of
the language.

• Semantics: Semantics (from Ancient Greek: σημαίνω: to signify ) is the study
of the meaning of a language, from a linguistic and philosophical point of
view. It is concerned with the relationship between signifiers - like words,
phrases, signs, and symbols. It also plays an important role in the study of
formal programming languages.

• Predicate: In linguistics, a predicate is a property of a subject in a sentence.
A predicate is therefore an expression that contains a verb. In this thesis, we
will consider the traditionnal grammar definition, where the predicate can
include more than the verb. In the sentence: He is in the park; He is the sub-
ject and is in the park is the predicate. The grammar notion of predicate has
to be distinguished from the one in mathematical logic, where it is commonly
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understood to be a Boolean-valued function: X → {0, 1} called a predicate
on X .

• Ontology: (From Greek ὄν (genitif ὄντος: “being”, or more precisely: “that wh-
ich is”) and λόγος): discourse) In computational linguistics and information
science, an ontology is composed of a representation, definition of the cate-
gories, properties and relations between the concepts, data and entities. In
practice, an ontology can be represented by a Knowledge graph which con-
tains the properties of a subject area and how they are related, by defining a
set of concepts and categories that represent the subject.

• Lexicon: A lexicon (from Greek λεξικόν: dictionary) is the complete set of
meaningful units in a language (or a subject); the words, etc., as in a dictio-
nary, but without the definitions. In this thesis, we might also refer to the
lexicon as the vocabulary. We suppose the lexison is finite and by doing so,
we suppose that there exists n ∈ N∗ such that V ' {1, ..., n}.

• Homonymy: From Greek όμοιος: “same” and όνομα “name”. In linguistics,
homonyms, broadly defined, are words sharing the same spelling, regardless
of pronunciation) or homophones (words that share the same pronunciation),
or both. For example, according to this definition, the words bat (animal)
and bat (baseball instrument) are homonyms. The words see (vision) and sea
(body of water) are homophones.

• Polysemy: Polysemy (from Greek πολύ: “many” and σημαίνω: “to mean”) is
the capacity for a word (or sentence) to have several meanings. Polysemy
is thus distinct from homonymy (or homophony for that matter) which is
often an accidental similarity between two words. Such distinction can be
established in practice by considering the history of the word to see if the
two meanings are historically related.

2.6.2 Natural language processing

We present three methods of word vector generation, which are useful for Chap-
ter 5 and Chapter 6, where additional discussions are provided.

Window size and context. In order to present these methods, few preliminary
definitions are necessary, and will also be useful throughout all the dissertation. A
document (or a sentence, which can be seen as a short document) is composed of
tokens whose values are words. In this document, a window of size w ∈ N∗ repre-
sents a consecutive sequence ofw tokens. For instance, in a document composed of
p ∈ N∗ tokens, a window of size w defines exactly p− w contexts in the document.
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word2vec. (Mikolov et al., 2013a) Also referred to as Skip-gram model. The skip-
gram model aims to predict the surrounding context words given a center word,
using the maximum likelihood principle on the probability:

P( wt−ω, . . . , wt−1, wt+1, . . . , wt+ω | wt).

which represents the probabilities of the surrounding context words (for a window
size w + 1, cf. previous definition) given a word at position t. The objective of the
skip-gram model is to maximize the empirical log-likelihood:

T∑
t=1

∑
c∈C(t)

log p(wc|wt), (2.2)

where C(t) is the set of indices of words surrounding the word wt. and T is the
number of tokens (size of the training set).

The skip-gram model makes the following assumption:

P(wc|wt) ∝ exp(〈vc, vt〉)

where vc (resp vt) are the word vectors of word wc (resp. wt). Therefore, for
a chosen context position c ∈ C(t), using the binary logistic loss, we can consider
the following negative log-likelihood to be minimized:

log
(
1 + e−〈vt,vc〉

)
+

∑
n∈N(t,c)

log
(
1 + e〈vt,vn〉

)
,

where N(t, c) is a set of negative examples sampled from the vocabulary.
By summing over t = 1, ..., T , and over c ∈ C(t), this yields the following

objective function:

T∑
t=1

 ∑
c∈C(t)

log
(
1 + e−〈vt,vc〉

)
+

∑
n∈N(t,c)

log
(
1 + e〈vt,vn〉

) . (2.3)

Usually, this optimization problem is solved approximately using Stochastic
Gradient Descent (Carpentier and Cohen, 2017; Bottou et al., 2018).

fastText. In (Bojanowski et al., 2017) An extension of the skip-gram model (i.e
word2vec) is fastText, which takes account the morphology of words: a vector
representation is associated to each character s-gram and words are represented as
the sum of these vectors.

48



2.7 - DATASETS

Glove (Pennington et al., 2014) Given a natural integer w strictly positive, Glove
embeddings are constructed with an embedding
v : V → RK , by solving a weighted least-squares regression problem

min
v,â,b̂

∑
i

∑
j

f(Cij)
(
〈vi, vj〉+ âi + b̂j − log(Cij)

)2

, (2.4)

where Cij represents the number of co-occurences of word i and j in a window of
size w, and f(Cij) = min(Cij, 100)3/4.

2.7 Datasets

In this section, we briefly describe the datasets used in this thesis. The ones used
Chapter 3 are synthetic datasets, so generated from our implementation (cf. Sec-
tion 1.3). The remaining datasets are open-source, except (Dijk, 2018).

• Knowledge bases: DBPedia/Wikipedia 2016 (Lehmann et al., 2015). DBPedia
is a very large database, meta data of wikipedia which classifies its webpages
into classes by the means of an Ontology.

• Orbis Van Dyuk (Dijk, 2018): Dataset built from Orbis is a database composed
of about one hundred million entities, developed by a specialized group
based in Bureau Van Dijk’s Brussels office, aggregating several sources of
data. More details are given in Chapter 4, Section 8.2.2.

• Named entity linking: TAC-KBP (Ji et al., 2014): Dataset from the National
institute of Standards ant technologies (NIST), within the Text Analysis Con-
ference’s Knowledge Base Population (TAC-KBP) track, which aimed to link
a given named entity mention from a source document to an existing Knowl-
edge Base (KB).

• AIDA/CoNLL (Yosef et al., 2011): It contains assignments of entities to the
mentions of named entities annotated for the original CoNLL 2003 entity
recognition task.

• In the experiments of Chapter 5, we use the datasets of analogies (Mikolov
et al., 2013a). It contains 19544 question pairs (8,869 semantic and 10,675
syntactic (i.e. morphological) questions) and 14 types of relations (9 morpho-
logical and 5 semantic). Each line contains a quadruplet of words composing
an analogy, e.g:

Paris France Beirut Lebanon
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• In the experiments of Chapter 5 and 6, we use several Word embeddings
datasets: Glove (Pennington et al., 2014), word2vec Mikolov et al. (2013a),
and fastText (Bojanowski et al., 2017), where each file represent a different
dictionnary between words and their vector representation.

• In the text classification experiments of Chapter 5 and 6, we make use of:

1. WebKB: 4 most frequent categories of webpages from The 4 Universities
Data Set.

2. Amazon (Blitzer et al., 2007) is composed of product reviews acquired from
Amazon over four different sub-collections.

3. Subjectivity (Pang and Lee, 2004) contains sentences considered as subjec-
tive gathered from the websites Rotten Tomatoes and sentences considered
as objective gathered from IMDB.
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3
Sequence Graphs and
Ambiguity in Language Models:
A Combinatorial Study

Several sequential and language models rely on an assumption modeling each
local contexts as a “bag of words”. In this chapter, we study the combinatorial
implications of such assumption for the corresponding word or sentences rep-
resentations. In particular, we present theoretical results concerning the family
of sequence graphs, for which realizations yield equivalent representations given
this assumption. Several combinatorial problems are presented, depending on
three levels of generalisation (window size, graph orientation, and weights), and
whether some of these are NP-complete is left opened. Based on these results,
we also establish different algorithms, including a dynamic programming formu-
lation, to count and explicit the different realizations of a sequence graph. This
allows us to show that the bag of words assumption can induce an important num-
ber of sentences to have the same representations, even for relatively short context
window sizes.

3.1 Introduction

About the notion of context

To understand the meaning of a word, it is necessary to take into consideration
its environment. The very notion of context has been developed theoretically as a
linguistic concept in (Gross, 2010), for which the main conclusions are as follows:

• The lexicon cannot be separated from the syntax, from the combinatorics of
the words;

• The semantics is not autonomous: it is the result of the combination of lexical
elements organized in a certain way.
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• We can postulate that there are three independent levels in the linguistic de-
scription, that of the lexicon, of the syntax and of the semantics, because we
do not see how they could be articulated, if they were independent.

• The existence of polysemy, which is one of the fundamental properties of
natural languages, obliges to link these three levels, which can only be done
on the basis of the lexicon.

• The use of a word, represented by a simple sentence, consists of a predicate
with a determined pattern of arguments. This predicate has properties, dif-
ferent from those it might have in another environment.

• The description of such use implies recognition of its context, that is to say of
its appropriate environment.

• It stands to reason that the minimal unit of analysis is not the word level, but
rather the sentence level, hence their importance in language models.

This motivates the study of the representations of a context, from a computational
point of view, which we address in this chapter.

Context and representations

In the fields of Natural Language Processing (NLP) and Information Retrieval (IR),
concise representations of words and textual documents are essential for several
tasks, including document classification (Skianis et al., 2018), role labelling Roth
and Woodsend (2014), and named entity recognition (Nadeau and Sekine, 2007).
In particular, the Bag-Of-Words (BOW) representations (Salton et al., 1975; Ramos
et al., 2003) encode a text and/or a sentence as a vector x of weighted occurrences.
If D represents the a corpus of documents, and x a document in D, then two stan-
dard representations can be defined as follows:

(f, t) ∈Rv × Rv

fi = frequency of word i in x and ti = fi × idfi = fi × log
|D|

|{dj : i ∈ dj}|

f is the vector of frequencies of the words in the document, and t is composed of
these frequencies weighted by the rarity of the term considered, measured with the
ratio |D|/|{dj : i ∈ dj}|. This term can tend to infinity with a large corpus, hence the
log term. Using BOWs, classic tasks such as document similarity computation and
indexing can be efficiently computed using sparse linear algebra, leading to their
presence at the core of popular software solutions such SMART Salton (1971b) or
Lucene Hatcher and Gospodnetic (2004).
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Linux is not UNIX but

(a) No ambiguity (w = 3)

Linux is not UNIX but

(b) Ambiguity (w = 2)

Figure 3.1 – Sequence graphs (or graphs-of-words) built for the sentence “Linux is
not UNIX but Linux” using window sizes 3 (a) and 2 respectively (b). In the sec-
ond case, the sequence graph is ambiguous, since any circular permutation of the
words admits the same representation.

The invariance of the BOW representation to permutations of the words in
the document can lead to multiple documents being summarized by the same
BOW. Indeed, the number of documents having the same BOW representation
grows at factorial rate with the size of the document. Moreover, this high degree of
ambiguity has practical consequences for fine-grained classification tasks, as em-
pirically shown by Malliaros and Skianis (2015); Skianis et al. (2018) in the context
of multi-label classification. For these reasons, more recent works introduced the
Graph of Words Gibert et al. (2011); Rousseau et al. (2015) and Peng et al. (2018)
(GOW), which supplements the contents of BOW with statistics of co-occurrences
within a window of fixed size w, introduced to mitigate the degree of ambiguity
induced by the representation.

Several models such as word2vec Mikolov et al. (2013a), Glove Pennington
et al. (2014) also use the same type of information and allow to increase perfor-
mance for multiple tasks in natural language processing.

While GOW representations are more precise than Bag-of-Words, they still
induce some level of ambiguity, i.e. a given graph can represent several sequences,
as illustrated in Figure 3.1. Our study is thus motivated by a quantification of the
level of ambiguity, seen as an algorithmic problem, coupled with an empirical as-
sessment of the consequences of ambiguity in the context of classification. As a first
natural step, we also consider the realizability of a given GOW, i.e. the existence of
a sequence admitting an input GOW as its representation.

After introducing in Section 3.2 the formal definition of a sequence graph,
which is the combinatorial abstraction of a Graph-Of-Words, and descriptions of
our main problems, we establish in Section 3.4 complexity aspects of deciding the
existence and counting sequences in GOWs associated with a window size w = 2.
Then we consider in Section 3.5 the general case w ≥ 3, and propose an expo-
nential dynamic programming algorithm to count admissible sequences. Finally,
we assess the prevalence of ambiguity within a synthetic dataset, and observe that
sequences invariant with respect to the GOW representation do not lead to invari-
ance with respect to LSTM, a popular neural network.
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3.2 Definitions and Problem Statement

In the following, let x = x1, x2, ..., xp be a finite sequence of discrete elements
among a finite vocabulary X . Without loss of generality, we can suppose that
X = {1, ..., n}, and let Ip = {1, ..., p}.

Definition 3.1. G = (V,E) is the graph of the sequence x with window size w ∈ N∗ if
and only if V = {xi | i ∈ Ip}, and

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2
p , |k − k′| ≤ w − 1, xk = i and xk′ = j (3.1)

For a digraph G = (V,A), Eq. 3.1 is replaced by

(i, j) ∈ A ⇐⇒ ∃(k, k′) ∈ I2
p , k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j (3.2)

Finally, a weighted sequence digraph G is endowed with the matrix Π(G) = (πij) such
that:

πij = Card {(k, k′) ∈ I2
p | k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j} (3.3)

By convention, a weighted (undirected) sequence graph is endowed with Π = (πij), πij =

π
′
ij + π

′
ji if i 6= j and π′ij otherwise, where π′ verifies Eq. 3.3.

We say that x is a w-admissible sequence for G if G is the graph of the sequence x.
G is referred to as the w-sequence graph of x.

πij represents the number of co-occurrences of i and j in a window of size w.
Hence, the graph of a sequence x is unique for a given w. In the following, we use
Gw(x) as a shorthand for the w-sequence graph of x. In the weighted and directed
case, it can be obtained with Algorithm 1.

Algorithm 1: Construction of the weighted sequence digraph of a sequence x
Data: Sequence x of length p, window size w, p ≥ w ≥ 2

Result: (Gw(x), Π)

1 V ← Ø;
2 d← number of distinct elements of x;
3 Initialize Π = (πi,j) to d× d matrix of zeros;
4 for i = 1→ p− 1 do
5 V ← V ∪ {xi, xi+1} ;
6 for j = i+ 1→ min(i+ w − 1, p) do
7 πxi,xj ← πxi,xj + 1;

8 Return V, Π
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If G is not directed, one should replace line 7 of Algorithm 1 by the “sym-
metrized” update:

if πi 6= πj : α← πxi,xj , πxi,xj ← α + 1, πxj ,xi ← α + 1

else : πxi,xi ← πxi,xi + 1
(3.4)

The procedure in Algorithm 1 defines a correspondence between the se-
quence set X? into the set of all finite graphs:

Definition 3.2. Let X∗ be the set of finite sequences built on the alphabet X , G the set of
finite graphs and w ∈ N∗ a window size. Based on the previous definition, let φw be the
function defined as:

X? → G
φw : x 7→ Gw(x)

(3.5)

Therefore, in this chapter, G ∈ Imφw = {φw(x) | x ∈ X?} exactly means that
G is a w−sequence graph. We also extend the definition of φw to the case of weighted
sequence-graphs by endowing Gw(x) the weights matrix Π defined in Algorithm 3.1.

For a given w, the two problems we address in this chapter are the charac-
terization (or recognition) of w-sequences graph, and the counting of the number
of their w-admissible sequences.

Related work

Sequence graphs encode the information of several co-occurrences based mod-
els (Arora et al., 2016a; Mikolov et al., 2013c; Pennington et al., 2014). To the best of
our knowledge, the ambiguity and realizability questions addressed in this chap-
ter were never systematically addressed by prior work in computational linguis-
tics. Furthermore, we believe the problems studied in this chapter are interesting
from a graph theoretical and algorithmic point of view, and appear to be devoid of
reduction to other well-known problems.

However, some similarities exist between our problem and others studied
in the Distance Geometry (DG) literature. In distance geometry, the input con-
sists of a set of pairwise distances between points, having unknown positions in
a K-dimensional space. The problem then consists in determining (the existence
of) a set of positions for the points, satisfying the distance constraints. When the
distances are precise, a position is fully characterized from K + 1 constraining
neighbors, the problem can be solved by finding a sequential order for processing
points, such that the assignment of a point is always by at least K + 1 among its
neighbors (Liberti et al., 2014). This statement shares some level of similarity with
our problem since an admissible sequence for a window w = K+ 2 also represents
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a linear ordering of its nodes, in which w − 1 = K + 1 of the neighbors have lower
value with respect to the order.

The reasons for the insufficiency of linear ordering in DG to solve our realiz-
ability problem are twofold. First, each element of the sequence x in the ordering
for “traditional” distance geometry (sensors, or atoms in a protein) is associated a
unique vertex in the graph. This is not the case we investigate here, since a sym-
bol can be repeated several times in the sequence, but only one vertex is created
in the graph. This implies that, in a linear ordering, the vertex associated to the
ith element (i ≥ w) of x can have strictly less than w − 1 distinct neighbors while
being a sequence graph. Such situation is is forbidden in DG ordering, even when
the loops are authorized (Lavor et al., 2013). Finally, in the majority of cases, the
graphs are undirected in distance geometry, although recent but preliminary stud-
ies consider the orientation as available information (Billinge et al., 2018).

Notations

In the following, we useMd(N) as a shorthand for the square d × d matrices over
the set of natural integers, Tr(M) for the trace of a matrix M , and Sp(M) for its set
of eigenvalues.

Problem 1 (REALIZABLEw).
Parameters: Window size w
Input: Graph G (and optional matrix weights Π)
Output: True if (G,Π) is the w-sequence graph of some sequence x, False otherwise.

Problem 2 (NUMREALIZATIONSw).
Parameters: Window size w
Input: Graph G (and optional matrix weights Π)
Output: The number of realizations of G, i.e. preimages of G through φw such that
|{x ∈ X? | φw(x) = G}| if finite, or +∞ otherwise.

Note that the last problem strictly generalizes the previous one, as REALIZABLEw
can be solved by testing the nullity of the number of suitable realizations computed
by NUMREALIZATIONSw.

3.3 Motivations, Summary of the Theoretical Results
and Relation with Language Models

As presented in Chapter 1 the difficulty for the design of automatic treatment
of natural language lies mainly in the semantics rather than syntax. Many co-
occurence based models thus attemps to capture semantic relations between words,
“drowned” in the syntax. To do so, some of these models take as unique input the
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statistics of the presence of words within contexts of a constant size. For instance,
let us consider the traditional pointwise mutual information (PMI), defined as:

PMI(i, j′) , log
P(i, j)

P(i)P(j)
(3.6)

where P(i, j) is the probability of finding words i and j in the same window of
size w in a document, and P(i), P(j) are the marginal probabilities. Then, PMI

information is empirically computed from the co-occurence statistics encoded in
the weights matrix Π, so that several realizations of the corresponding sequence
graph (in the sense of Definition 3.1) would yield the same PMI values.

There exist a variety of other models taking the similar input (Mikolov et al.,
2013a; Pennington et al., 2014; Arora et al., 2016a) which will be addressed in de-
tails in Chapter 5 and 6. Similarly to PMI, sequence graphs encode the informa-
tion of their input. Therefore, the output of NUMREALIZATIONSw is a measure
of the level of ambiguity generated by these models when representing a docu-
ment. REALIZABLEw is a second theoretical graph problem which is related to
NUMREALIZATIONSw, and appeared naturally in our study as a intermediate step
towards the resolution of NUMREALIZATIONSw.

The remaining of this chapter is organized as follows. In the next two sec-
tions we present the combinatorial results for w = 2, and the general case (w ≥ 3).
We remind our reader that the parameter w is fixed so the complexity results only
take in account the Graph G and (potential) matrix weights Π.

In particular, Section 3.4, contains full characterizations of REALIZABLE2 and
NUMREALIZATIONS2 are presented, in terms of complexity, and algorithms to
solve them. The case w = 2 is separated from the case w ≥ since it corresponds to
the simplest case, solved via an Eulerian reduction.

In Section 3.5, several theoretical results are presented. We prove a complex-
ity result of REALIZABLEw, in the undirected and unweighted case. We also present
an polynomial time algorithm to solve REALIZABLEw in this case. Besides, a Linear
integer programming formulation of REALIZABLEw and a dynamic programming
formulation NUMREALIZATIONSw in the general case are discussed. We test these
formulations on several instances and show that NUMREALIZATIONSw can have
an output stricly greater than one, even for large window sizes.

In Section 3.6, we present a complexity study of one of the algorithm which
allowed to solve NUMREALIZATIONSw, whose average complexity to be much bet-
ter than worse case scenario. We also provide several instances we solved using
this formulation in the Appendix 8.

In Section 3.7 we present a use of these results for the understanding of the
level of ambiguity of co-occurence based models. To do so, we elaborate and dis-
cuss the results of two experiments. First we illustrate the number of realizations
representing a weighted digraph, averaged on 500 sequence graphs computed on
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natural language documents of less than 100 words. In a second experiment, we
compare the ambiguity of co-occurence based models with a recurrent neural net-
work. To do so, we estimate the normed difference of the representations of the
network (weights obtained after training) between two realizations of a given se-
quence graph, and between a realization and a random sequences generated from
the same vocabulary.

Conclusions are given in Section 3.8.

3.4 Complexity Results over 2-Sequence Graphs

In this section, we consider w = 2. Algorithm 1 encodes each adjacency in the
sequence x as an edge in Gw(x). This characterization enables relatively simple
algorithmic treatment, leading to the results summarized in Table 3.1, which we
further elaborate in this section. Namely, ψ(G) is a linear transformation of G with
respect to its number of vertices and edges (cf. Definition 3.4).

Table 3.1 – Complexity for various instances of our problems (w = 2)

NUMREALIZATIONS2 REALIZABLE2

Data Instance Complexity #Sequences Complexity Characterization

Unweighted graph P {0,+∞} P G connected
Weighted graph #P-hard {0, 1} ∪ 2N∗ P ψ(G) (semi)Eulerian
Unweighted digraph P {0, 1,+∞} P Theorem 3.1
Weighted digraph P N P ψ(G) (semi)Eulerian

Obviously, the simplest case concerns undirected graphs as stated in:

Proposition 3.1. Let G = (V,E) be an unweighted and undirected graph with |V | > 1.
Then, the following assertions are equivalent:

(i) G is connected
(ii) G has a 2-admissible sequence
(iii) G admits an infinite number of 2-admissible sequences

Proof. If G is connected, a sequence is obtained by visiting all edges, for instance
using a list of arbitrary sequences and shortest paths. The other implications are
immediate.

For digraphs, the previous characterization is wrong, even with strong con-
nectivity. A counter example is given in Fig. 3.2a. However, strong connectivity
remains a sufficient condition:
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Proposition 3.2. Let G = (V,A) be a unweighted digraph. If G is strongly connected
then G ∈ Imφ2. Moreover, a 2-admissible sequence can start or end at any given vertex of
G.

Proof. Straightforward, similarly to (i) =⇒ (ii) for Proposition 3.1.

Proposition 3.3. Let G = (V,E) be an unweighted digraph. If G is Eulerian or semi-
Eulerian, then G ∈ Imφ2.

Proof. If G is Eulerian or semi-Eulerian, there exists a walk going through all its
arcs, this walk defines a 2-admissible sequence.

Again the converse of Proposition 3.3 does not hold as depicted in Fig. 3.2b.
First, it is natural to consider the case of directed acyclic graphs (DAGs):

Proposition 3.4. Let G = (V,A) be a DAG. G is a 2-sequence graph if and only if it is
a directed path, i.e G is a directed tree (or polytree) where each node has at most one child
and at most one parent. In this case, G has a unique 2-admissible sequence.

Proof. If G is a directed path, since G is finite, it admits a source node. Therefore
a 2-admissible sequence is obtained by simply going through all vertices from the
source node. This is obviously the only one.

Conversely, let us suppose G is a DAG and a 2-sequence graph. If G is not
a directed path, there are two cases: either there exists a vertex having two out-
vertices, or two in-vertices. Let s be a vertex having 2 distinct out-vertices c1 and
c2. This is not possible since there cannot be a walk going through (s, c1) and (s, c2):
G would have a circuit otherwise. Finally a vertex v cannot have two in-vertices p1

and p2: if a 2-admissible sequence existed, it would have to go through (p1, v) and
(p2, v), creating a cycle, hence the contradiction.

Every directed graph G is a DAG of its strongly connected components. In
the following, letR(G) be the DAG obtained by contracting the strongly connected
components of G.

Proposition 3.5. Let G = (V,A) be a digraph. If G is a 2-sequence graph then R(G) is a
2-sequence graph.

Proof. LetG be a 2-sequence graph, and let us suppose thatR(G) is not a 2-sequence
graph. Since R(G) is a DAG, then using Proposition 3.4, it cannot be a directed
path, so R(G) has either a node having two out-vertices or two in-vertices. Let S
be a node of R(G) having at least 2 distinct children C1 and C2. This means that
there exist three distinct corresponding nodes in V , s, v1 and v2 such that (s, v1) ∈ E
and (s, v2) ∈ E. Since G is a 2-sequence graph, there exists a walk covering (s, v1)

and (s, v2), such walk would make S, C1 and C2 the same node in R(G), hence
the contradiction. The case for which a vertex has two parents is dealt with simi-
larly.
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The converse of Proposition 3.5 does not hold as depicted in Fig. 3.2d, which
motivates the following definition.

Definition 3.3. LetG be a digraph, andR+(G) be the weighted DAG obtained fromR(G),
such that the weight of an arc (u, v) of R(G) is attributed the number of arcs between the
two corresponding strongly connected components of G.

Theorem 3.1. Let G = (V,E) be an unweighted digraph. G is a 2-sequence graph if and
only if R+(G) is a directed path and its weights are all equal to 1.

Proof. IfG is a 2-sequence graph,R(G) is a 2-sequence graph using Proposition 3.5.
Also Proposition 3.4 implies that R(G) and R+(G) are directed paths. Moreover, if
R+(G) had a weight strictly greater that 1, then there would be strictly more than
one arc between two connected components C1 and C2. All these edges go in the
same direction otherwise C1 ∪ C2 would form a strongly connected component.
This is a contradiction since any 2-admissible sequence would have to go from C1

to C2 and then come back to C1 (or conversely) which would would make C1 ∪ C2

a strongly connected component.
Conversely, let us suppose R+(G) is a a directed path and its weights are

equal to one. First, there exists a walk x1, ..., xp covering all arcs ofR+(G) verifying:
(i) ∀i, xi ∈ V or xi represents a strongly connected component of G, (ii) there is
only one arc in G between from xi to xi+1 and (iii) x has no repetition, i.e there is
no common node in G between xi and xi+1. We construct a 2-admissible sequence
y for G by means of the following procedure.

Initialisation: If x1 ∈ V , we simply set y ← x1. Otherwise, x1 corresponds
to a strongly connected component C1 of G and we add to y any 2-admissible se-
quence of C1.

For i ∈ {1, .., p− 1}:

1 2 3
(a) 1 2 3 is a 2-admissible sequence but G
is not strongly connected

1
2 34 5

(b) 3 5 3 1 2 1 2 3 2 4 is a 2-admissible se-
quence but the graph is not Eulerian nor
semi-Eulerian

1 2

34
(c) G is not a 2-sequence graph...

c1

c2

(d) ... whereas R(G) is.

Figure 3.2 – Counter examples for w = 2

61



CHAPTER 3 - SEQUENCE GRAPHS AND AMBIGUITY IN LANGUAGE MODELS:
A COMBINATORIAL STUDY

• If (xi, xi+1) ∈ E: we add xi+1 to the sequence y.

• If xi ∈ V and xi+1 is a strongly connected component Ci ofG: By assumption,
there exists only one arc of G from xi to a node of Ci, say ci0. Since Ci is
strongly connected, using Proposition 3.2, Ci has a walk going through all of
its arcs and starting in ci0, say ci0, ..., cip. We add ci0, ..., c

i
p to y.

• If xi corresponds to a strongly connected component Ci and xi+1 ∈ V : we
perform similar operations by stopping on the single node of Ci that has a
edge to xi+1 (this is possible thanks to Proposition 3.2).

• xi and xi+1 both correspond to strongly connected components Ci and Ci+1 ,
there exists only one arc between inE between Ci and Ci+1, say ei = (vi, vi+1).
We can complete y by a walk from the last vertex visited which belong to Ci
and vi, and then by a 2-admissible sequence through Ci+1 starting in vi and
ending in vi+1.

End For

The process stops when i = p− 1, and all arcs are visited by the sequence y.

Therefore, an algorithm to decide if a digraph is a 2-sequence graph is ob-
tained by extracting its strongly connected components (there exist linear time al-
gorithms e.g (Sharir, 1981)), and to count the number of arcs between these.

Corollary 3.1.1. Let G be an unweighted digraph. The possible numbers of 2-admissible
sequences forG is exactly {0, 1,+∞}. Moreover,G admits a unique 2-admissible sequence
if and only if G is a directed path.

Proof. Let G a be 2-sequence graph. G verifies the characterization of Theorem 3.1.
If R(G) has a node C representing a strongly connected component of G (or a node
with a loop), then by adding an arbitrary number of cycles in C to the admissible
sequence y, the new sequence is still admissible. Otherwise, if every node of R(G)

is in V without self-loops in E, then G is a DAG. Using Proposition 3.4, y is the
unique 2-admissible sequence.

Weighted 2-sequence graphs

The weighted case cannot be treated similarly due to the constraint of Equation 3.3.
A counterexample is depicted in Fig. 3.3. Moreover, a weighted graph has a finite
number of admissible sequences. This property can seen using Proposition 3.6
below.
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1 2 33 1

1

Figure 3.3 – G is strongly connected but is not a 2-sequence graph

Proposition 3.6. If a graph is a weighted w-sequence graph, all of its admissible sequences
have the same length.

Proof. Let x be a w-admissible sequence for G of length p. If G is a digraph, Algo-
rithm 1 increments (p−w+ 1)(w− 1) + (w−1)(w−2)

2
times the total weight, therefore:

∑
i,j

πij = (p− w + 1)(w − 1) +
(w − 1)(w − 2)

2
(3.7)

If w ≥ 2, this yields: p = w − 1− w−2
2

+ 1
(w−1)

∑
i,j πij

Otherwise, if G is undirected, the weights matrix obtained with Algorithm 1
does not yield Eq. 3.7, due to the update of Eq. 3.4. The weights on the diagonal
remain the same, but the others are multiplied by 2, hence the formula:∑

i,j

πij + Tr(Π) = 2(p− w + 1)(w − 1) + (w − 1)(w − 2) (3.8)

leading to p = 1
2(w−1)

[
∑

i,j πij + Tr(Π)].

Corollary 3.1.2. Let G be a weighted w-sequence digraph, and Π its weights matrix. If w
even, then (w − 1) |

∑
i,j πij .

Corollary 3.1.3. Let G be a w-sequence (unoriented) graph and Π its weights matrix.
Then 2(w − 1) |

∑
i,j πij + Tr(Π).

Definition 3.4. Let ψ(G) be the auxiliary multigraph with the same vertices as G =

(V,E) and with πij edges between (i, j) ∈ V 2.

Due to the previous study, the characterization of weighted 2-sequence graphs
using ψ(G) is immediate. A semi-eulerian graph is a graph that admits a Eulerian
walk (instead of cycle for eulerian graphs).

Theorem 3.2. If G is a weighted graph (directed or not), with Π(G) ∈ Md(N), then:
G ∈ Imφ2 ⇐⇒ ψ(G) is connected and semi-eulerian.

Proof. G ∈ Imφ2 means that there is a path going through each edge (i, j) ∈ E

exactly πij times. This trail corresponds to a semi-eulerian path in ψ(G).
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Counting 2-admissible sequences for weighted graphs

Counting eulerian paths in graphs has already been studied. Here, we use lemma 3.1
to conclude.

Lemma 3.1. Let G = (V,E) a weighted 2-sequence graph (possibly oriented). Let E be
the set of eulerian paths of ψ(G) and S be the set of 2-realizations of G. Then

#E = (#S)
∏
e∈E

πe! (3.9)

Proof. We will first prove this result for digraphs. If e = (v1, v2) is an edge of a
digraph, we will represent the source and target vertex of e as e(s) and e(t). Let
(e1, e2, ..., eh) be a eulerian path of ψ(G) defined as a sequence of its edges. Then
∀(i, j) ∈ {1, ..., h}2, ei 6= ej and ∀i ∈ {1, ..., h − 1}, ei(t) = ei+1(s). Let us consider
the transformation:

E −→ S
(e1, e2, ..., eh) 7→ (e1(s), e2(s), ..., ep−1(s), eh(t))

(3.10)

We have already shown this transformation is surjective: any 2-sequence of G can
be obtained with a eulerian path of ψ(G). We will now consider the action of Sh on
E . For a eulerian path, let us suppose that two edges of ψ(G) have been permuted,
say e1 and ei0 without loss of generality. If the two corresponding sequences are
the same:

(ei0(s), e2(s), ..., eh(t)) = (e1(s), e2(s), ..., ei0(s), ..., eh(t))

Obviously, ei0(s) = e1(s). Also e1(t) = e2(s) implies ei0(t) = e1(t). This shows that
ei0 and e1 are associated to the same edge in E. Therefore, given a 2-sequence,
the choice of a corresponding eulerian path corresponds to the choice of σ =

(τ1, ..., τ|E|) where τe is a permutation of {1, ..., πe} (or ∅ if πe = 0) representing
the visit order of the related edges of ψ(G). Therefore #E = (#S)

∏
e∈E πe!

If G is undirected, the proof is still valid, but the operators e 7→ e(s) and e 7→
e(t) are now induced by the natural direction of the eulerian path considered.

Proposition 3.7. Couting the number of 2-sequences for a weighted graph is #P -complete.
However, if G is a weighted digraph, with Π(G) ∈ Md(N), then, the number p2 of 2-
admissible sequences is given by:

p2 =
t(ψ(G))∏
e∈E πe!

∏
v∈V

(
degψ(G)(ψ(v))− 1

)
! (3.11)

where t(G) is the number of spanning trees of G. If L is the Laplacian matrix of G,
then t(G) is given by:

t(G) =
∏

λi∈Sp(L)
λi 6=0

λi (3.12)
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Proof. Counting the number of eulerian paths in an undirected graph has been
proven to be a #P -complete problem (Brightwell and Winkler, 2005). On the other
hand, BEST Theorem (van Aardenne-Ehrenfest and de Bruijn, 2009)) and Matrix
tree theorem (Chaiken, 1982)) yield a formula for digraphs. Since G 7→ ψ(G) is
bijective, we use Lemma 3.1 to conclude.

To use formula 3.11, degψ(G)(ψ(v)) can be obtained using the following for-
mula:

degψ(G)(ψ(v)) =
∑
u∈V

πuv +
∑
u∈V

πvu (3.13)

Corollary 3.2.1. The possible number of realizations of a weighted 2-digraph is exactly N.

Proof. Two proofs (at least) are possible: one using Equation 3.11. The most ele-
gant consists in considering the cycle of n vertices where each weight is equal to 1

(Figure 3.4). It has exactly n realizations since a 2-admissible sequence can start at
any vertex.

1

2
3

4

5
n

1

11

1

1

Figure 3.4 – Cycle of length n

Proposition 3.8. The possible number of realizations of a weighted 2-graph (undirected)
is exactly {0, 1} ∪ 2N∗.

Proof. By convention, a graph with one vertex has one realization. Now, let G =

(V,E) be a 2-graph with strictly more than one vertex. Let (v1, v2) ∈ E be an edge
such that v1 6= v2. In this case, we will show that the number of eulerian paths
of ψ(G) is even and conclude using Equation 3.9. Let E1 (resp. E2) be the set of
eulerian paths of ψ(G) visiting v1 then v2 (respectively v2 then v1). Let f : E1 −→ E2

be the transformation reversing a path. f is bijective hence #E1 = #E2. Moreover,
by definition of a eulerian path, E1 ∩ E2 = ∅. Therefore #E = 2 #E1.

3.5 General Sequence Graphs

The characterization of 3-graphs is not the same for 2-graphs, as shows the counter-
example in Fig 3.5a: the depicted graph has no self-edge so there must exist at least
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one clique of size 3, which is not the case. Similarly, Fig. 3.5b depicts a counter
example for directed graphs: G does not have self-edges, so if it had a 3-admissible
sequence, such sequence must be of the form

{1 2 3 1..., 1 3 2 1..., 2 3 1 2..., 3 2 1 3..., 2 1 3 2...}

but then (3, 1) would form an edge.

1 2 3
(a) G is connected

1 2 3
(b) G is strongly con-
nected

Figure 3.5 – Counter-examples for w = 3

3.5.1 Direct Approach

Similarly to the procedure in Sec. 3.4, we will use an auxiliary graph built on G.
LetH(G) = (E,HE) be the new graph obtained with the following procedure. Two
edges e = (v1, v2), f = (v3, v4) of E are connected in H(G) if and only if:

v2 = v3 and (v1, v4) ∈ E (3.14)

This defines an injective correspondence EH → V 3: an edge of H(G) can be
seen as an unique triplet v1, v2, v3 where (v1, v2), (v1, v3) and (v2, v3) ∈ E. Therefore,
by definition, a walk P in H(G) is always of the form:

P = (t1, t2), ..., (tp−1, tp) s.t ∀i ∈ {1, ..., p− 1}, (ti, ti+1) ∈ E (3.15)

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk
going through all edges of H(G) (thus visiting every non isolated node and creat-
ing all edges of G). However, the converse is not true as depicted in Fig. 3.6.

1 2

34
(a) G

31

24
23

43

42

41
34

32

(b) H(G)

Figure 3.6 – G is a 3-sequence graph with 3 4 2 3 4 1 as a realization but H(G) is not
a 2-sequence graph (since it is not connected).

66



3.5 - GENERAL SEQUENCE GRAPHS

In order to determine ifG = (V,E) has an admissible sequence in the general
case, a procedure is to recursively merge pairs of vertices, maintaining constraints
depending on E. These constraints are similar to Eq. 3.14. We adopt the following
notations, ui,j = (ui, uj) and u1:k = (u1, ..., uk). The iterative procedure for w ≥ 3 is
summed up in the following equation. Namely, ∀k ∈ {2, ..., w − 2}, one has

E(k) = {u1:k+1 ∈ V k+1 | u1:k ∈ E(k−1), u2:k+1 ∈ E(k−1) ∧ (u1, uk+1) ∈ E} (3.16)

Definition 3.5. Let H(k) = (E(k−1), E(k)), it can be defined recursively through:

H(0) = G ∀k ∈ N∗, H(k) = f(H(k−1)) (3.17)

where f transforms edges into vertices and creates edges between new vertices that verify
Eq. 3.16.

The computation ofH(p) requires p iterations, and the number of vertices and
edges of H(k) can increase during iterations (the complete graph is an example for
which these numbers increase exponentially).

Relation with adjoint graphs. At first sight, it might seem that H(1) is similar to
an adjoint graph, and H(k) an iterated adjoint graph of G. We remind our reader
that an adjoint graph (also called derived graph or line graph in the literature) is
defined as graph having the edges of G as its vertices, with adjacency determined
by the adjacency of the edges inG. These graphs are interesting for several reasons:

(i) They admit a characterization in terms of forbidden patterns (Beineke, 1970).

(ii) Some NP-complete problems become solvable in polynomial time when re-
stricted to adjoint graphs, such as the stable set problem (Minty, 1980).

(iii) There exists an iteration value for which the line graph is hamiltonian.

More interestingly, (ii) is also valid for a class of graphs containing the class
of adjoint graphs, called the claw-free graphs. A graph is said to be claw-free it it
does not have a subgraph corresponding the pattern in Figure 3.7.

1

2 3 3

Figure 3.7 – A claw pattern

Unfortunately, for general sequence graphs, H(1) do not have this property.
A simple counter example can be obtained considering the sequence:
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x = 1, 2, 3, 1, 2, 4, 1, 2, 5 (3.18)

for which H(1)(x) contains a claw (in the directed and undirected cases).

Definition 3.6. Let u be a vertex of H(k) for k ∈ N, u = (u1, ..., uk, uk+1). The sequence
x = u1, ..., uk+1 is the authentic sequence of u. We also call an authentic sequence of a
walk on H(k):

P = (x1, ..., xk+1), (x2, ..., xk+2), ..., (xv, ..., xv+k)

the sequence x1, x2, ..., xv+k. Finally, P (or x) generates G if φw(x) = G.

Proposition 3.9. Let x = x1, ..., xp be a w-admissible sequence of a graph (or digraph)
G = (V,E). If w ≤ p, x, then x is an authentic sequence of a walk of length p− w + 1 on
H(w−2).

Proof. Let x = x1, ..., xp be a w-admissible sequence of G. In the following, if
P is a walk on H(w−2), let P [i] be the i-th element of P , P [i] ∈ H(w−2): P [i] =

(P [i]1, ..., P [i]w−1).
Let us suppose that w ≤ p (which we can always do), and let us show the

following property by induction on k:

∀k ∈ {w − 1, ..., p}, ∃ walk P on H(w−2) such that :

x1:k = P [1]1, P [2]1, ..., P [k − (w − 1)]1, P [k + 1− (w − 1)]1:(w−1)

• Initialization: k = w − 1. By construction of H(w−2), x1:w−1 is the authentic
sequence of the “static walk”: P = P [1] = x1:w−1 ∈ H(w−2).
• Induction: let us suppose the property is verified for k ∈ {w − 1, ..., p − 1}, i.e
there exists a walk P on H(w−2) such that:

x1:k = P [1]1, P [2]2, ..., P [k − (w − 1)]1, P [k + 1− (w − 1)]1:(w−1)

Since x is w-admissible, then by definition:

∀i ∈ {k + 1− (w − 1), ..., k}, ∀j ∈ {i+ 1, ...,min{k + 1, i+ w − 1}} : (xi, xj) ∈ E

Therefore, by definition of H(w−2), ξk+1 = xk+1−(w−1), ..., xk+1 ∈ H(w−2).
Let P [k + 2− (w − 1)] =∧ ξk+1, then

P [k + 2− (w − 1)]1:(w−1) = xk+1−(w−1), ..., xk+1

Besides, from the induction assumption: ∀i ∈ {1, ..., k + 1 − (w − 1)}, P [i]1 = xi.
This ensures that:

x1:(k+1) = P [1]1, P [2]1, ..., P [k + 1− (w − 1)]1, P [k + 2− (w − 1)]1:(w−1)

which ends the induction and the proof.
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Theorem 3.3. Let G a graph and w ∈ N∗−{1, 2}. IfG is undirected then REALIZABLEw
is in P .

Proof. An algorithm is obtained by going through all the connected components
of H(w−2). Let C1, ..., Cm be the connected components of H(w−2), which can be
computed in polynomial time (Hopcroft and Tarjan, 1973). For each i ∈ {1, ...,m}
it is possible to construct a path onCi visiting each edge at least once in polynomial
time (for instance iteratively using shortest paths). Let W1, ...,Wm such walks and
X1, ..., Xm their respective admissible sequences.

Using Proposition 3.9, G is a w-sequence graph if and only if there exists a
walk W̃i0 on some Ci0 whose authentic sequence generates exactly the edges of G.
However, the authentic sequence Xi0 creates more edges than any walk on Ci0 by
construction.

In conclusion, the assertion:

∃i ∈ {1, ...,m}, φw(Xi) = G (3.19)

is a characterization that G is a w-sequence. This assertion is decidable in polyno-
mial time since for all i, φw(Xi) is computable in polynomial time (cf. Algorithm
1).

The analogue of the aforementioned procedure for digraphs would consist
in enumerating all paths in the DAG R(H(w−2)). However, the number of paths
can be exponential in this case, even for a sequence graph. This is the case from
the sequence graph obtained with Example 3.1.

Example 3.1. Let xinit ∈ N22 be the sequence

xinit = 0, 3, 1, 2, 3, 4, 4, 2, 5, 1, 4, 6, 3, 5, 6, 6, 4, 7, 0, 8, 5, 7 (3.20)

and for P ∈ N∗, let x ∈ N22P be the sequence be defined iteratively by:

∀i ∈ {0, ..., P − 1} x22i:22(i+1) = (1 + i)xinit (3.21)

Then, with the same notations, for w = 3, R(H(x)) has at least 2P paths.

Figure 3.8 and 3.9 highlight the exponential increase of the number of paths
with respect to P . Therefore, the complexity of the algorithm used to prove The-
orem 3.3 can be exponential in the directed case. Obviously, this does not prove
anything regarding the complexity class of this problem, which we leave open for
future work.

Finally, it should be noted that if C is a (strongly) connected component of
H(w−2), there might exist several walks visiting (at least once) every edge. There-
fore, the correspondence C 7→ X between a component and “its” authentic se-
quence used in the proof of Theorem 3.3 might seem ambiguous. However, the
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0

1

2

3

45

6

7

8

(a) G = φ3(xinit) (b) R(H(xinit)) (P = 1)

(c) R(H(x)) (P = 2)

Figure 3.8 – Illustration of Example 3.1. 3.8a and 3.8b: Graph G and R(H) asso-
ciated to the sequence xinit are defined with Equations 3.20 and 3.21. Figure 3.8c
shows R(H(x)) with P = 2. Green vertices represent strongly connected compo-
nents of H , whereas red ones correspond to vertices of H . Each increment of P
multiplies the number of paths by (at least) 2.

following lemma shows that choice of such representation for the component is
not important as long as it visits every edge at least once. Moreover, it is possible
to reconstruct all admissible sequences from walks on R(Hw−2).

Lemma 3.2. Let x be a walk on H(w−2) whose authentic sequence is w-admissible for
G. If x goes through a strongly component C of H(w−2), adding any supplementary path
included in C to x leaves its authentic sequence w-admissible. Any graph generated by a
walk on H(w−2) can be generated by a walk on R(H(w−2)).

Proof. Let P = P [1], , ...,P [r] a walk on H(w−2) going through a strongly connected
component C, with an arbitrary ordering of its vertices: C = {c1, ..., cm}. This
means:

∃(m0, i0) ∈ {1, ...,m} × {1, ..., r − 1} P [i0] = cm0 (cm0 ,P [i0 + 1]) ∈ E(w−2)

Now, let PC = cm0 , cj1 , ..., cjv be a path in C with (cjv , P [i0 + 1]) ∈ E. Let Q
be the new path: Q = P [1], ..., P [i0], cj1 , ..., cjv , P [i0 + 1], ..., P [r]. The two following
properties are immediate:
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(a) P = 2 (b) P = 5

(c) P = 10

Figure 3.9 – DAGs R(H(x))) where x is defined with Eq.eqs. (3.20) and (3.21) for
P ∈ {2, 5, 10} and w = 3. Green vertices represent strongly connected components
of H , whereas red ones are vertices of H . R(H(x)) has at least 2P directed paths.

• By construction of H(w−2), the edges (between elements of V ) created by any
walk on H(w−2) are in E, in particular those generated by Q.

• Q generates more edges than P .

Therefore, if the authentic sequence of P is w-admissible, so is the authentic se-
quence of Q. To prove the second part of the lemma, let us label every node of
R(H(w−2)) representing a strongly connected component ofH(w−2) by any 2−admissible
sequence (one exists thanks to Proposition 3.2). A walk onH(w−2) say x1, . . . , xp can
be met by a walk on R(H(w−2)) using the following procedure:

For i ∈ {1, ..., p− 1}:
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P [1] P [2] P [3]

c3c2

P [4]

C

Figure 3.10 – A path (blue nodes) in H(w−2) going through a strongly connected
component. Adding any supplementary cycle in C (e.g red cycle) leaves its au-
thentic sequence admissible.

• if xi, xi+1 ∈ E(w−2), we keep xi and xi+1

• if xi is a vertex of H(w−2), and xi+1 is in a strongly connected component of
H(w−2) (but a node of R(H(w−2))), represented by c1, ..., cCi , then a path from
xi+1 to c1 exists since the component is strongly connected. Let xi+1, p1, . . . , pm, c1

be such path. Then, we keep

xi, xi+1, p1, . . . , pm, c1, . . . , cCi

Using the aforementioned result, this does not perturb admissibility.

• if xi+1 is a vertex of H(w−2) and xi is in a strongly connected component of
H(w−2), we proceed similarly (the roles of xi and xi+1 are swapped).

• if both xi+1 and xi are strongly connected components of H(w−2), we add
intermediary nodes to both components similarly.

1 2

34
(a) G

31

24
23

43

42

41
34

32

(b) H(1)

31

2443

41 32

34234

(c) R(H(1))

Figure 3.11 – Procedure to find a 3-admissible sequence. a) G is a given digraph. b)
H(1) is computed following Equation 3.14. c) The walk 34234, 41 in R(H(1)), which
covers one of its components, generates G. Its authentic sequence is 3 4 2 3 4 1, and
therefore is a realization of G.
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Algorithm 2: A recognition algorithm for unweighted digraphs
Input: Graph G, window width w
Output: (Boolean, empty set or w-admissible sequence)

1 Build H(w−2) recursively (e.g with 3.17);
2 Construct Rw

H = R(H(w−2)) ;
3 for source-sink path in Rw

H do
4 if authentic sequence of path is w-admissible for G then
5 return (True, sequence)

6 return (False, ∅);

3.5.2 REALIZABLEw: Linear Integer Programming Formulation
Let G = (V,E) be a graph with integer weights πe∈E and n be the number of ver-
tices of G. In this model, we represent a sequence x of length p over the alphabet
{1, ...n} as a (0− 1) matrix X ∈Mn,p({0, 1}) encoding the sequence x:

Xi,j =

{
1 if xj = i

0 otherwise

It should be noted that the set sequence of sequences over the alphabet
{1, ...n} is exactly represented by the (0− 1) matrices such that

∀j ∈ {1, ..., p}
n∑
i=1

Xi,j = 1

Given a window size w, a unit of πe=(v1,v2) corresponds to the appearance
of two elements v1, v2 at a distance i ∈ {1, ..., w − 1} in the sequence. Now, let
us consider a fixed distance i, and a starting index j ∈ {1, ..., p − i}, we we use a
intermediate slack variable yej (i) ∈ {0, 1} to model the presence of such appearance
using the constraint:

Xv1,jXv2,j+i = yej (i) (3.22)

Then, the Boolean variable yej (i) is equal to 1 when v1 is located at position j
and v2 at position j + i. We linearize Eq. 3.22 as:

−Xv1,j + yej (i) ≤ 0

−Xv2,j+i + yej (i) ≤ 0

Xv1,1 +Xv2,j+i − yej (i) ≤ 1

(3.23)

Each slack variable yek(i) is attributed to an edge e, a relative distance i ∈ {1, ..., w−
1} and a starting position k ∈ {1, ..., p− i}. Given our constraint formulation, every
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slack variable is attributed 3 constraints. For a digraph, the number of possible pair
positions for a unit of πe=(v1,v2) is given by:

C =
w−1∑
i=1

(p− i) = p(w − 1)− w(w − 1)

2
= (w − 1)(p− w

2
) (3.24)

Therefore, in our model, C corresponds to the number of slack variables attributed
to the constraints for an edge of the graph.

On the contrary, the absence of an edge e = (v1, v2), corresponding to πe = 0,
can be modeled for a distance i ∈ {1, ..., w−1} and a starting position j ∈ {1, ..., p−
i} as:

Xv1,j +Xv2,j+i ≤ 1

Then, REALIZABLEw can be formulated as the following linear integer pro-
gram:

min
X∈{0,1}p×n,y∈{0,1}|E|×C

∑
e∈E

∑
i∈{1,...,w−1}

ye1(i) + ...+ yep−i(i)

under the constraints

∀j ∈ {1, ..., p}
n∑
i=1

Xi,j = 1

∀e = (v1, v2) ∈ E
∀e′ = (v

′

1, v
′

2) /∈ E
∀i ∈ {1, ..., w − 1}



−Xv1,1 + ye1(i) ≤ 0

−Xv2,1+i + ye1(i) ≤ 0

Xv1,1 +Xv2,1+i − ye1(i) ≤ 1

...
−Xv1,p−i + yep−i(i) ≤ 0

−Xv2,p + yep−i(i) ≤ 0

Xv1,p−i +Xv2,p − yep−i(i) ≤ 1

Xv′1,1
+Xv′2,1+i ≤ 1

...
Xv′1,p−i +Xv′2,p

≤ 1

and ∀e ∈ E
∑

i∈{1,...,w−1}

ye1(i) + ...+ yep−i(i) ≥ πe

If the objective function reaches
∑

e∈E πe at its minimum then the output
of REALIZABLEw(G,Π, w) is True, and False otherwise. An example of instance
solved by this formulation can be seen in Figure 3.12.

However, one of the limitations in this formulation is the high number of
constraints combined with the dimension of the decision variables. Indeed, the
problem has at least n2×C constraints and at least p ×n decision variables, where
C = (w − 1)(p− w

2
) (See details above Equation 3.24).
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0

1

2
(a) Graph G

2 3 1

2 0 2

2 3 2




(b) Matrix Π

2 2 1 2 0 0 1 0 2 1
(c) A solution

Figure 3.12 – Example of instance solved using the Linear Integer Programming
formulation. The initial graph G and weights matrix Π were constructed from the
sequence 2 2 0 1 0 0 1 2 2 1. The output X generated provides another solution,
presented in c).

Therefore, with w = 5 (window width), p = 50 (sequence length), and n =

20 (number of vertices), the number of constraints is greater than 76000, and the
number of decision variables is greater than 1000. In this case, the problem size
make the integer programming formulation intractable.

3.5.3 NUMREALIZATIONSw: Dynamic Programming Formulation
We did not present a way to count admissible sequences in the general case. Al-
though the tractability of our problems (NP-hardness of REALIZABLEw, #P-hardness
of NUMREALIZATIONSw) currently remains open for some cases, we present in this
subsection a method based on dynamic programming valid for all cases.

The recursion proceeds by extending a partial sequence, initially set to be
empty, keeping track of represented edges along the way. Namely, considerNw[Π, p,u]

to be the number of w-admissible sequences of length p for the graph G = (V,E),
respecting a weight matrix Π = (πij)i,j∈V 2 , preceded by a sequence of nodes u :=

(u1, . . . , u|u|) ∈ V ? (V ? is the set of sequences constructed on the alphabet composed
of the vertices of G). It can be shown that, for all ∀p ≥ 1, Π ∈ N|V 2| and u ∈ V ≤w,
Nw[Π, p,u] obeys the following formula, using the notations of Section 3.5:

Nw [Π, p,u] =
∑
v∈V

Φ ( Π′(u,v), p− 1,u ) (3.25)

where

Φ(Π′(u,v), p− 1,u) =


Nw

[
Π′(u,v), p− 1, (u1, ..., u|u|, v)

]
if |u| < w − 1

Nw

[
Π′(u,v), p− 1, (u2, ..., uw−1, v)

]
if |u| = w − 1

(3.26)

and Π′ is an update of the matrix Π following:

Π′(u,v) := ( πij − # { k ∈ { 1, ..., |u|} | (uk, v) = (i, j) } )(i,j)∈V 2 (3.27)
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The base case of this recurrence corresponds to p = 0, and is initialized as:

∀ Π, Nw[Π, 0,u] =

{
1 if Π = (0)(i,j)∈V 2

0 otherwise.
(3.28)

The total number of admissible sequences is then found in Nw[Π, p, ε], i.e. setting u

to the empty prefix ε, allowing the sequence to start from any node.
A test of this method on an instance is shown in Figure 3.13, for which the

dynamic programming formulation with memoization performed relatively fast
(about one minute on a laptop with 2, 8 GHz Intel Core i7 4 cores and 16Gb of
RAM) . Supplementary exemples are shown in the Appendix8, Section 8.1 for wh-
ich computing times were at most some minutes in the same configuration.
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0

1

2
3

4

56

7

8

9

10

11

12

13

(a) Sequence graph

0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 2 0 0 0 1 0 1 0 0 0 0

1 1 1 0 0 1 0 2 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 3 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0




(b) Weights matrix Π

7 3 2 7 3 12 5 6 2 3 9 7 3 0 1 4 10 8 11 13

7 3 12 5 6 2 3 9 7 3 2 7 3 0 1 4 10 8 11 13

7 3 12 5 6 2 3 7 2 3 9 7 3 0 1 4 10 8 11 13

(c) Different realizations

Figure 3.13 – p = 20, w = 3
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3.6 Complexity Study

In this section, we present a detailed analysis of the algorithmic complexity of our
dynamic programming formulation, which turned out to be surprinsingly better
than the worst case scenario. Indeed, this method allowed us to solve several
instances with reasonable sizes such as those presented in Section 8.1.

Linear integer programming

Unlike the dynamic programming formulation, the linear integer programming
formulation “complexity” is difficult to establish since the formulation does not
appear to have trivial properties (e.g total unimodularity) or reductions to other
known problems. In practice, we used Mixed Integer linear programming (MILP)
solvers such as Branch and Bound (e.g intlingprog in Matlab [R2018a]). They turned
out to be efficient for small values ofw, p but suffered important limitations as soon
as w ≥ 5 and p ≥ 30 .

Dynamic programming formulation

We will analyse the complexity of our dynamic formulation in details. In particu-
lar, we will compare the worst case scenario complexity and the average complex-
ity over a set of matrices Π in the directed case (the undirected case can be ana-
lyzed using the same methodology). The recurrence presented in Equations 3.25,
3.26 and 3.27 can be computed in O(|V |w ×

∏
i,j∈V 2(πi,j + 1)) time using memoiza-

tion, for p the sequence length. The complexity can be refined by noting that in the
directed case: ∑

i,j∈V 2

πi,j ≤ w × p (3.29)

Indeed, we remind our reader that in the case of directed graphs (Proposition 3.6):∑
i,j

πij = (p− w + 1)(w − 1) +
(w − 1)(w − 2)

2
(3.30)

In this case, the product
∏

i,j∈V 2(πi,j + 1) can be bounded more precisely.

3.6.1 Preliminaries
We will start by proving useful lemmas for this section.

Lemma 3.3. Let mz,m, p be integers such that 0 < p ≤ m and mz ≤ m. Let Rm be the
positive scaled simplex of (R+)p:

Rm = {(x1, . . . , xp) ∈ (R+)p
p∑
i=1

xi = m} (3.31)
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Let Sm and Sm,mz be the sets of integers defined as:

Sm = Rm ∩ Np (3.32)

Sm,mz = {x ∈ Sm #{ i ∈ {1, . . . , r} | xi > 0 } = mz} (3.33)

Let φ : R −→ R be an affine function, i.e φ(x) = αx + β such that α > 0 and
β > 0.

Let f be the function defined by:

f(x) =

p∏
i=1

φ(xi) (3.34)

Finally let L be the line in Rp:

L = { (x1, . . . , xp) ∈ Rp | x1 = x2 = . . . = xp } (3.35)

Then:

(i) maxx∈Rm f(x) is reached for a point in L

(ii) minx∈Rm f(x) is reached for a point of the form (0, . . . , 0,m)

(iii) maxx∈Sm f(x) is reached for a point of the form

(1, 1, . . . , 1︸ ︷︷ ︸
m terms

, 0, 0, ..., 0︸ ︷︷ ︸
p−m terms

)

(iv) minx∈Sm,mz f(x) is reached for a point of the form

(1, 1, . . . , 1︸ ︷︷ ︸
mz − 1 terms

,m−mz + 1, 0, 0, . . . , 0︸ ︷︷ ︸
m−mz terms

)

Proof. This lemma relies on the property of the logarithm:

∀(ε, a, b) ∈ (R+∗)3

b− ε > 0 =⇒ log φ(a) + log φ(b) ≤ log φ(a+ ε) + log φ(b− ε)
(3.36)

Which can be proved by considering the function, for (a, b) ∈ (R+∗)2:

g : [0, b[−→ R, ε 7→ log φ(a+ ε) + log φ(b− ε)− log φ(a) + log φ(b)

Since φ(x) = αx+ β with α > 0 and β > 0, then for a > 0 and b > 0:

g(ε) = log(1 +
αε

φ(a)
)− log(1− αε

φ(b)
) > 0

where the last inequality holds because α, ε and φ are strictly positive. Then, g is
positive, which proves Equation 3.36.
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Now, let us prove (i), (ii), (iii), (iv).

(i) Without loss of generality, let us suppose the maximum is reached for a point
x ∈ Rm such that x1 < x2. Then, for 0 < ε < x2, using inequality 3.36:

log φ(x1) + log φ(x2) ≤ log φ(x1 + ε) + log φ(x2 − ε) (3.37)

Which yields:
φ(x1)φ(x2) ≤ φ(x1 + ε)φ(x2 − ε) (3.38)

So the value of the function f can be increased by increasing x1 by ε and
decreasing x2 by ε (and x still belongs to Rm), until x1 = x2.

(ii) Similarly, without loss of generality, let us suppose the minimum is reached
for a point x ∈ Rm such that 0 < x1 ≤ x2.

Then, we can use a similar reasoning to (i).

Let ε > 0 such that ε < x1 ≤ x2 and y, z be defined as y = x1−ε and z = x2 +ε.
Then y > 0 and 0 < ε < z, and inequality 3.37 becomes:

log φ(y) + log φ(z) ≤ log φ(y + ε) + log φ(z − ε) (3.39)

Which corresponds to:

log φ(x1 − ε) + log φ(x2 + ε) ≤ log φ(x1) + log φ(x2)

Composing by the exponential yields:

φ(x1 − ε)φ(x2 + ε) ≤ φ(x1)φ(x2)

This shows that the value of f can be decreased by decreasing x1 by ε and
increasing x2 by ε (and x still belongs to Rm).

The process can be repeated until x1 = 0.

(iii) To prove (iii), let a and b two integers such that b − a > 0. Then, if b > 2, let
ε = 1, then 0 < ε < b, hence inequality 3.36 becomes:

log φ(a) + log φ(b) ≤ log φ(a+ 1) + log φ(b− 1) (3.40)

Now, let us suppose, without loss of generality, that the minimum is reached
on a point of Sm such that 0 < x1 ≤ x2 − 1. If x2 = 1 then x1 = 0 and there is
nothing to prove.

Otherwise, x2 > 1, with ε = 1 then ε < x2, and using equation 3.40:

log φ(x1) + log φ(x2) ≤ log φ(x1 + 1) + log φ(x2 − 1)
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Therefore we can use the same reasoning as for (i): the value of f can be
increased by increasing x1 of 1 and decreasing x2 of 1 (and x still belongs to
Sm).

(iv) Finally, we can prove (iv) using a similar reasoning as (ii) but with with the
constraint x1 > 1 and x2 > 1 and x1, x2 ∈ N .

Lemma 3.4. Let m, r and mz be three strictly positive integers, such that
mz ≤ min(m, r). Let Sm and Sm,mz the sets be defined as:

Sm = {(x1, ..., xr) ∈ Nr

r∑
i=1

xi = m} (3.41)

Sm,mz = {x ∈ Sm #{ i ∈ {1, ..., r} | xi > 0 } = mz} (3.42)

Then the cardinals of Sm and Sm,mz are given by

#Sm =

(
m+ r − 1

r − 1

)
#Sm,mz =

(
r

mz

)(
m− 1

mz − 1

)
(3.43)

Proof. We will start by proving the following assertions:

(i) Let Imz ,m be the set of strictly increasing functions from {1, ...,mz} to {0, ...,m}.
Then, #Imz ,m =

(
m+1
mz

)
. Let I∗mz ,m be the subset of Imz ,m composed of func-

tions having no zero. Then, #I∗mz ,m =
(
m
mz

)
.

(ii) Let Jr,m be the set of non decreasing functions from {1, ..., r} to
{0, ...,m}. Then #Jr,m =

(
m+r
r

)
.

(iii) Jr,m '
m⋃
i=1

Si. If S∗i is the subset of Si of strictly positive integers, then I∗m,mz '
m⋃
i=1

S∗i .

(i) The image of a strictly increasing function from {1, ...,mz} to {1, ...,m} is
a subset of {0, ...,m} of cardinal mz. Given a subset S of mz elements of
{1, ...,m}, there exists a unique increasing function from {1, ...,mz} to S. There-
fore there is a bijection between strictly increasing functions from {1, ...,mz}
to {0, ...,m} and the subsets of mz elements of {0, ...,m}, whose cardinal is(
m+1
mz

)
, hence #Imz ,m =

(
m+1
mz

)
. Similarly, I∗mz ,m is in bijection with the subsets

of mz elements of {1, ...,m}, so #I∗mz ,m =
(
m
mz

)
81



CHAPTER 3 - SEQUENCE GRAPHS AND AMBIGUITY IN LANGUAGE MODELS:
A COMBINATORIAL STUDY

(ii) Let us consider the function ξ : Jr,m −→ Ir,r+m−1 defined by:

ξ(f)[x] = f(x) + x− 1 (3.44)

Then it is easy to verify that ξ is a bijection, with ξ−1(g)[x] = g(x)− x+ 1

Therefore Jr,m ' Ir,r+m−1 and #Jr,m = #Ir,r+m−1 =
(
m+r
r

)
using (i).

(iii) To each sequence (x1, ..., xr) verifying x1 + ... + xr ≤ m and x1, ..., xr ∈ N a
corresponds a unique increasing function (f(x1) = y1, ..., f(xr) = yr) defined
by

yk = x1 + ....+ xk (3.45)

Conversely, to an increasing function (f(x1) = y1, ..., f(xr) = yr) corresponds
a unique sequence (x1, ..., xr) defined by

x1 = y1 and xk = yk − yk−1 (3.46)

verifying ∀k ∈ {1, ..., r}, xk ∈ N and x1 + ...+ xr = yr ≤ m

This proves Jr,m '
⋃
i≤m Si. Using the same reasoning, I∗m,mz '

m⋃
i=1

S∗i .

Now, let us prove that #Sm =
(
m+r−1
r−1

)
.

Let Tm =
⋃
i≤m Si. Since Sm = Tm \ Tm−1 and Tm ∩ Tm−1 = ∅

#Sm = #Tm −#Tm−1

= #Jr,m −#Jr,m−1

=

(
m+ r

r

)
−
(
m+ r − 1

r

)
#Sm =

(
m+ r − 1

r − 1

) (3.47)

Finally, we will prove that #Sm,mz =
(
r
mz

)(
m−1
mz−1

)
.

Setting mz positions i1, ..., imz ∈ {1, ..., r}, there are by definition exactly
#S∗mz = #I∗mz −#I∗mz−1 =

(
m
m

)
−
(
m−1
mz

)
=
(
m−1
mz−1

)
corresponding elements of Sm,mz .

Considering all the possible positions, finally #Sm,mz =
(
r
mz

)(
m−1
mz−1

)
.

Lemma 3.5. With the same definitions as in Lemma 3.4, for any positive integers mz, m
such that mz ≤ m, if x ∈ Sm,mz then:

2mz−1(m−mz + 2) ≤
r∏
i=1

(xi + 1) ≤ (
m

mz

+ 1)mz (3.48)

Proof. This can be proved directly from Lemma 3.3.
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3.6.2 Main Complexity Results
Proposition 3.10. Let WC be the worst case complexity of our dynamic programming
formulation (Section 3.5.3) in the directed case. If w is the window width and p the length
of the considered sequences, then:

WC ∈ O(|V |w 2wp) (3.49)

Proof. We already know thatWC ∈ O(|V |w ×
∏

i,j∈V 2(πi,j + 1)).
Let m be defined as:

m , (p− w + 1)(w − 1) +
(w − 1)(w − 2)

2

Then we already mentioned (Proposition 3.6):∑
i,j

πij = m

Which implies m ≤ wp, and the worst case complexity can be upper-bounded by
estimating

M = max
Π∈Sm

∏
i,j∈V 2

(πi,j + 1)

Let φ : x 7→ (x + 1). Then, φ verifies the conditions of Lemma 3.3. Therefore the
previous maximum is reached for a point where

πi,j = 1 or πi,j = 0

Hence:
M ≤ 2m ≤ 2wp

Thus, despite the apparently extremely high complexity of our algorithm, it
is still possible to compute Nw[Π, p, u1:w] for “reasonable” values of p and w, even
in the worst case scenario.

Now, let us consider an estimation of the average complexity of the dynamic
programming formulation. We will consider as a first approximation the random-
ness of Π and fix the size of the graph instance. Therefore, we are interested in

EC = EΠ [
∏
i,j∈V 2

(πi,j + 1) ] (3.50)

where the coefficients πi,j are distributed uniformly on the scaled simplex:∑
i,j∈V 2

πi,j = w p (3.51)
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The final average complexity will be given by:

AC = V wEC (3.52)

We have already proved that AC ≤ 2n from the worst case complexity eval-
uation. The objective of this section is to obtain a tighter upper-bound and show it
is significantly lower than the worst case scenario.

Proposition 3.11. In the conditions of our complexity model where the matrix weights are
seen as uniform random variable on the scaled simplex (Eq. 3.51):

L(wp, n2) ≤ EC ≤ U(wp, n2) (3.53)

where

L(m, r) =
1(

m+r−1
r−1

) min(r,m)∑
mz=1

(
r

mz

)(
m− 1

mz − 1

)
2mz−1(m−mz + 2)

U(m, r) =
1(

m+r−1
r−1

) min(r,m)∑
mz=1

(
r

mz

)(
m− 1

mz − 1

)
(
m

mz

+ 1)mz

(3.54)

Proof. Recall that n represents the number of distinct elements of the sequence, p
the sequence length and w the window width. Let us consider two strictly positive
integers m (representing w p) and r (representing n2). Since n ≤ p, we suppose that
w
√
r ≤ m. Let Sm be the subset of Nr defined as:

Sm = {(x1, ..., xr) ∈ Nr

r∑
i=1

xi = m} (3.55)

The idea of our method is to decompose Sm in a partition where more precise
bounds of EC can be derived. In the following, let mz be a strictly positive such
that mz ≤ min(r,m) representing a number of non zeros integers, and Sm,mz be the
subset of Sm defined as

Sm,mz = {x ∈ Sm #{ i ∈ {1, ..., r} | xi > 0 } = mz} (3.56)

Then, the Sm,mz define a partition of Sm in the following sense:

Sm =
r⋃

mz=1

Sm,mz and ∀mz 6= m′z Sm,mz ∩ Sm,m′z = ∅ (3.57)

Using Lemma 3.4:

#Sm =

(
m+ r − 1

r − 1

)
#Sm,mz =

(
r

mz

)(
m− 1

mz − 1

)
(3.58)
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Then, if x1, ..., xr are sampled uniformly on Sm, we obtain:

E [
r∏
i=1

(xi + 1) ] =
1(

m+r−1
r−1

) ∑
x∈Sm

r∏
i=1

(xi + 1)

=
1(

m+r−1
r−1

) p∑
mz=1

∑
x∈Sm,mz

r∏
i=1

(xi + 1)

(3.59)

Using Lemma 3.5, x ∈ Sm,mz implies that

2mz−1(m−mz + 1) ≤
r∏
i=1

(xi + 1) ≤ (
m

mz

+ 1)mz (3.60)

Therefore:

E [
r∏
i=1

(xi + 1) ] ≤ 1(
m+r−1
r−1

) r∑
mz=1

#Sm,mz(
m

mz

+ 1)mz

≤ 1(
m+r−1
r−1

) r∑
mz=1

(
r

mz

)(
m− 1

mz − 1

)
(
m

mz

+ 1)mz
(3.61)

Let U(m, r) be defined as the right hand side of the above inequality:

U(m, r) =
1(

m+r−1
r−1

) r∑
mz=1

(
r

mz

)(
m− 1

mz − 1

)
(
m

mz

+ 1)mz (3.62)

Similarly,

E [
r∏
i=1

(xi + 1) ] ≥ 1(
m+r−1
r−1

) r∑
mz=1

(
r

mz

)(
m− 1

mz − 1

)
2mz−1(m−mz + 2) (3.63)

Let L(m, r) be defined as the right hand side of the above inequality:

L(m, r) =
1(

m+r−1
r−1

) r∑
mz=1

(
r

mz

)(
m− 1

mz − 1

)
2mz−1(m−mz + 2) (3.64)

Then

L(m, r) ≤ E [
r∏
i=1

(xi + 1) ] ≤ U(m, r) (3.65)

Considering the initial problem parameters:

m = w p

r = |V |2 = n2
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We have just shown:

L(wp, n2) ≤ EC ≤ U(wp, n2) (3.66)

Now, let us make the assumption: α ∈]0, 1], which controls the number of
repetitions of symbols in the sequence:

n = αp (3.67)

Then:
L(w p, α2p2) ≤ EC ≤ U(w p, α2p2) (3.68)

Recall the expression of the average and worst case complexities (respec-
tively noted AC andWC):

AC = nwEC WC = nw2w p (3.69)

Then it is possible to estimate a lower bound of the ratio between the worst
case complexity and the average complexity:

2w p

U(w p, α2p2)
(3.70)

This ratio is displayed on Fig. 3.14 for p ≤ 15 and several values of α andw. It
appears clearly that the average complexity is significantly lower than worst case
complexity, which explains the behavior of the algorithm in practice, significantly
better than the worst case scenario.

For a fair description of our dynamic programming algorithm, we also have
represented in Figure 3.15 lower bounds of the average complexity factor EC for
the same range of parameters α, w and p, i.e the function:

L(w p, α2p2) (3.71)

For reasons of visibility, we have only considered the factor EC , which should
normally be multiplied by nw (cf Eq. 3.69).

As a conclusion of this complexity study, our dynamic programming formu-
lation behaves significantly better in the average case than in the worst case sce-
nario, but its complexity still suffers exponential complexity. In practice, as soon
as w ≥ 10 and n ≥ 300, time and memory issues are encountered (the memory
required in that case exceeds 32Gb, even with memoization).
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Figure 3.14 – Average complexity (AC) vs. worst case complexity (WC) of the dy-
namic programming formulation. Curves represent a lower bound of the ratio WCAC
corresponding to f : p 7→ 2wp

H(w p,α2p2)
for several values of w and α (log − log scale).

The average complexity is significantly lower than worst case complexity.
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Figure 3.15 – Lower bound of average complexityAC of the dynamic programming
formulation, displayed with: g : p 7→ L(w p, α2p2) for several values of w and α

(log− log scale). The average complexity suffers from exponential cost. For reasons
of readability, we have only considered the factor EC , which should normally be
multiplied by nw (cf Eq. 3.69).
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3.7 Application to Sequential Models

3.7.1 Number of Equivalent Sequences for Weighted Sequence
Digraphs

Since the dynamic programming method in Sec. 3.5.3 is exponential in the worst
case, we provide results for relatively short sequences generated from text data (a
dump of english Wikipedia, 2016) of 500 documents, each of them having a length
p ∈ {50, 100, 150}. Each document contained a minimum of 3

4
p distinct words.

For each w ∈ [3, 10], we estimate the number of admissible sequences yielding the
same representations for a set of documents and different window size using the
procedure described in Sec. 3.5.3 to compute Nw. It should be noted that Nw is a
lower bound of the number of total admissible sequences, since a starting pattern
is required (the first w tokens).

Results are reported in the first plot of Figure 3.16. For w = 2, the number of
sequences (obtained using Proposition 3.7) was significantly larger ( > 105), so not
reported in the figure for clarity. As expected, the number of distinct admissible
sequences tends to 1 when the window size increases. This suggests that window
sizes used in co-occurrence based models should be usually larger or equal to 5. In
natural language processing, a frequent configuration is w = 10 (Pennington et al.,
2014; Sanjeev et al., 2017). However, some examples with different realizations
exist, even for w = 10 and p = 50.

3.7.2 Comparison with a Recurrent Neural Network
The second experiment we consider is to evaluate the difference of the parameters
between a sequential model trained on two admissible sequences of a given graph.
The sequential model we are considering are a class of recurrent dynamical recur-
rent models, referred to as long short term memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997). These models have attracted new interest due to experi-
mental progress for time series prediction (Greff et al., 2016) and natural language
processing (Bartunov et al., 2016; Chen et al., 2016; Vaswani et al., 2017). LSTMs
are a class of recurrent neural networks:

ht = f(WxW
xt
x +Whht−1 + b) (3.72)

where f is the activation function,Wx, Wh and b are parameters, and xt is the t-th
token in the sentence. LSTM is a recurrent neural network architecture designed
to capture long-distance dependencies. The set of parameters we compare are the
set of parameters (independent of time t) which fully defined the transitions (they
do not exactly correspond to Wx, W xt

x and b but are easily available from the im-
plementations).
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Given a window size w, the task we consider is to predict the next element
of the sequence given the w−1 previous ones. If the sequences were equivalent for
the sequential model, the model weights should, if not converge, be similar after
training.

To generate pairs of admissible sequences encoding for non trivial graphs
(i.e not the complete graph), we use an algorithm based on Lemma 3.2. We gener-
ate w-admissible sequences (thousand tokens long), for w ∈ {2, 3}, but could not
provide other pairs for w > 3 due to excessive computational time. We compare
the pairs of admissible sequences with a pair of one of the sequences, and a se-
quence generated randomly uniformly on the same vocabulary. We implemented
the LSTM network using the Python library Keras (Chollet et al., 2015), a high-level
API running over TensorFlow (Abadi et al., 2015). In order to remove randomness
from the training algorithm, we froze the seed generating initial weights (the op-
timization directions being fixed by the data). We chose tanh as main activation
function, sigmoid for the recurrent activations, with 2 units. The number of units
is chosen relatively low in order to obtain a reasonable number of weights (in this
case 16).

Two last plots of Fig. 3.16 report the results for w ∈ {2, 3}, Wx represents all
the weights of the network for a sequence x. For w = 2, the norm of the differ-
ence between the weights for 2 admissible sequences is lower than with one of the
sequence and a random one, but this proximity does not appear to be significant
compared with a random sequence. For w = 3, the recurrent network has rela-
tively close weights for two admissible sequences when compared with a random
one.

3.8 Conclusion

In this preliminary study, we presented some theoretical results and practical al-
gorithms for the family of sequence graphs. The problems REALIZABLEw and
NUMREALIZATIONSw seem to be devoid of reductions, although the apparent con-
nections between REALIZABLEw with vertex ordering problem in Distance Geom-
etry (Omer and Mucherino, 2020).

We applied these results to experiments for sequential models, with a focus
on natural language modeling. This study can be of use used for several sequen-
tial models, such as continuous bag of words (CBOW), skip-grams ((Mikolov et al.,
2013a; Goldberg and Levy, 2014; Song et al., 2018)), pointwise mutual information
models (Pennington et al., 2014) and generative probabilistic models (Arora et al.,
2016a; Sanjeev et al., 2017). These experiments suggest that ambiguity induced by
graphical representations are not present with recurrent neural networks, suggest-
ing a semantic difference for the initial considered sequences.
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Figure 3.16 – The first plot displays the average lower bound (Nw) on the average
number of realizations, computed for 500 sequence graphs, as a function of the
window size. Two next plots (first one for w = 2 and second for w = 3) display
the norm of the difference of the weights for two sequences (either two admissible
sequences, or an admissible sequence and a random one), i.e ||Wx1 − Wx2||2 as
function of the Epoch, during the training of a LSTM. All plots are in log− log scale.

The computational complexity hardness of the considered problems remains
open for some instances, and we plan to address their complexity in future work,
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for instance by exploiting the structural properties of sequence graphs (e.g. exis-
tence of forbidden patterns).
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4
Entity Identification

In the previous chapter we highlighted the degree of ambiguity induced by graph-
based representations of sequences. This degree of ambiguity can be problematic
when the problem at hand requires an accurate resolution of the representations
used as input of learning algorithms. In this chapter, we are interested in demon-
strating that such representations can nevertheless be very effective for an infor-
mation extraction problem. To do so, we present a problem consisting in identi-
fying named entities from textual data, referred to as named entity identification.
We will show that this problem can be solved efficiently using a graph-based ap-
proach; namely, the sequence graphs studied in Chapter 3 will be used as repre-
sentations for named entity identification.

Firstly, the problem of named entity identification (or named entity linking)
we are concerned with is defined as follows: we assume a set of queries, named
entities, that have to be identified within a knowledge base. This knowledge base
is represented by a text database paired with a semantic graph, endowed with a
classification of entities (ontology). Besides, we also made an empirical analysis
of a knowledge base representing an Ownership network. The motivation of this
analysis was to apply the methods studied in this chapter for named entity iden-
tification. This knowledge base represents a network of entities, endowed with
a simple ontology (individuals and organizations). However, the content of this
Knowledge Base, and in particular the text description of the entities, was found
to be insufficient we could note use this knowledge graph as a sufficient support
for named entity identification.

In sections 4.1 to 4.5, we present state-of-the-art methods in named entity
identification, and propose a new method for individual identification requiring
few annotated data samples. We demonstrate its scalability and performance over
standard datasets, for several ontology configurations.

Our approach is well-motivated for integration in real systems. Indeed, re-
cent deep learning methods, despite their capacity to improve experimental preci-
sion, require lots of parameter tuning along with large volume of annotated data.
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4.1 Introduction

4.1.1 Basic Concepts and Definitions
The structure of a document can be analysed under the prism of the role of central
entities in the text. The purpose of Named entity discovery (NED) in information
retrieval is two-fold. First, it aims at extracting pre-defined sets of words from text
documents: this corresponds to Named entity recognition (NER). These words are
representations of named entities (such as names, places, locations, ...). Then, these
entity mentions paired with their context are seen as queries to be identified within a
database: this corresponds to named entity identification or named entity linking
(NEL). NEL is also refered as named entity disambiguation. The interest in NEL
has grown recently in several fields: in bioinformatics, to obtain locations of viral
sequences from databases Weissenbacher et al. (2015), or to process biomedical
litterature Zheng et al. (2015). It also revealed to be useful in recruitment in order
to identify employer names in a database Liu et al. (2018).

Firstly, it is important to stress that the subtask of NED, Named entity recog-
nition (NER), is not trivial since we do not have an exhaustive list of the possible
spellings of named entities. Moreover their text representation can change (for
example, “J. Kennedy" vs. “John Kennedy"). In this chapter we focus on the sec-
ond task, Named entity linking (NEL). This motivates a more precise definition of
a Named entity (and Mention/Query). An entity is a real-world object and usu-
ally has a physical existence. It is denoted with a proper name. In the expression
“Named Entity", the word “Named" aims to restrict the possible set of entities to
only those for which one or many rigid designators stands for the referent (Nadeau
and Sekine, 2007). When a named entity appears in a document, its surface form
can also be refered as a mention. Finally, a query refers to the mention, the context
where it appears, and a type of entity considered.

Besides, the classification of these entities leads to the notion of Ontology. In
this chapter, an ontology is represented as a tree of entity types. In the following,
the variable T represents the total number of nodes of this tree minus one (we
do not count the root node since it is uninformative). Originally, entities had a
very limited number of types (Nadeau and Sekine, 2007), such as person (PER),
organization (ORG), and localization (GPE) (and in that case, T = 3). These types
play a central role for named entity recognition and identification. An example of
ontology is given in Fig. 4.1. More recently, due to the increase in the volume of the
Web data, fine-grained classifications are available, with hundreds of entity types.
DBPedia1 (Lehmann et al., 2015) is an example of such fined-grained classification.

The identification of named entities thereby relies on background knowl-

1http://wiki.dbpedia.org/services-resources/ontology
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Entity

PER

Politician
ORG

Political Party Association

GPE

City

Figure 4.1 – Example of ontology, T = 7

edge, usually constructed in a Knowledge base/graph: A knowledge base is a
database providing supplementary descriptive and semantic information about
entities. The semantic information is contained in a knowledge graph, where a
node represents an entity, and an edge represents a semantic relation. The knowl-
edge graph can be of any kind (directed, weighted, ...). See Figure 4.2 for an exam-
ple.

- E1 - Politician -
- John F. Kennedy -

John F. Kennedy served as the
35th President of the U.S.A

- E2 - Political Party -
- Democratic Party
(United States) -

The Democratic Party is a
major contemporary po-
litical party in the U.S.A

- E3 - City -
- Washington -

Washington is the
capital of the U.S.A

Figure 4.2 – Representation of an unweighted directed semantic graph (Wikipedi-
a/NIST TAC-KBP Challenge 2010). An edge between two entities E1 and E2 rep-
resents a url link from E1 web page to E2 web page.

Given a named entity query, the purpose of Named entity linking (NEL) is to
identify the corresponding ground truth entity (gold entity) in a database (knowledge
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base). For a detailed description of a concrete competition in entity linking, we refer
to (Ji et al., 2014).

Linking can be done individually or collectively (Individual and collective
linking. In the first case, queries are independent. In the collective framework,
we consider a set of queries that usually originates from the same document, and
for which gold entities (i.e ground truth entities) should have some proximity, or
coherence. In this chapter, we propose individual linking approach.

4.1.2 Contributions
In this chapter, we provide a brief survey of existing methods for named entity
linking. Then, we investigate a method for individual named entity linking. The
first step of this method, refered as entity filtering, reduces entity candidates to top
K entities for one query. The second step, refered as entity identification, aims at
identifying the true entity among the remaining K candidates, based on a new
graph-based algorithm. We include an experimental evaluation of our method
with several datasets, with an analysis of the impact of parameterK, the ontology
parameter T , and a detailed comparison with existing approaches. The implemen-
tation used for experiments are available at our repository2.. We do not include
NIL-detection problem (detect if a query is referring to an entity that is not in the
knowledge base, for instance (Ji et al., 2014)).

4.1.3 Another Example of Knowledge Base: Ownership network
The construction of knowledge bases represent an important challenge in the field
of Information Retrieval. Their structure allow to address other tasks including
Question Answering (QA) or relation extraction (Ji and Grishman, 2011). As men-
tioned in the Section 4.1.1, we consider DBPedia (Lehmann et al., 2015) in our ex-
periments as the knowledge base for named entity identification.

Besides, we also made an exploratory analysis of another knowledge base
representing an Ownership network (cf Illustration in Figure 4.3). The motivation
of this analysis was to apply the methods studied in this chapter for named en-
tity identification. This knowledge base represents a network of entities, endowed
with a simple ontology (individuals and organizations). However, the content of
this Knowledge Base, and in particular the text description of the entities, was
found to be insufficient we could note use this knowledge graph as a sufficient
support for named entity identification. For the sake of consistency with the sub-
ject of this Chapter, we leave in the Section 8.2 of the Appendix the discussion of
the methodology and results of this analysis. The presented methodology can be

2Link to repository
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Figure 4.3 – Illustration an ownership network knowledge graph. The analysis is
provided in the Appendix, Section 8.2. This subgraph represents a dense commu-
nity of entities agregated by country (Orbis database)

used in the case of pre-processing and understanding of a knowledge base. An
extended version of this work is available in (Khalife et al., 2019b).

4.2 Related Work

In the following subsections, we present three families of algorithms for named
entity linking. In the remaining of this chapter, we adopt the following notations:
E = {1, ..., E} ⊂ N: indexes of entities and Q = {1, ..., Q} ⊂ N: indexes of queries,
êi: system’s output entity index for query index qi.

4.2.1 Graphs for NEL
Formulation: Given a scoring function measuring a form of similarity between a
query and an entity, let Wi,j be the corresponding score between the query i and
the entity j. For individual disambiguation, one wants to perform independent
query-entity attribution. A straightforward formulation is:

êi = arg max
j∈E

Wi,j (4.1)

In this case, the total cost is separable in the variable i, but the score Wi,j can use
the knowledge graph structure: this is the case in our approach. For the sake of
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completeness, we give a description of the collective linking formulation. In this
framework the optimization formulation is different: the underlying gold entities
should respect some arbitrary semantic coherence. The coherence information is
represented within a coherence function ψ : EQ → R between the entity candi-
dates. Usually ψ is defined from the knowledge graph structure. For example ψ
can be defined using the opposite sign of the shortest-path function on the knowl-
edge graph. With these notations, the set of selected entities are formally defined
as:

ê1, ..., êQ = arg max
j1,..,jQ∈EQ

[(

Q∑
l=1

Wl,jl) + ψ(j1, ..., jQ)] (4.2)

Eq. (4.2) can be formulated as a Boolean integer program. Its NP-hardness
Cucerzan (2007) does not allow to solve the general case for an important num-
ber of queries. Ratinov et al. (2011) evaluated local and global approaches to find
solutions of an approximation of Eq. (4.2) with Eq. (4.3), given a new coherence
function ψ̃, and for each query indexed by l a disambiguation context of entities
Cl:

ê1, ..., êQ = arg max
j1,..,jq∈EQ

[(

Q∑
l=1

Wl,jl +
∑
k∈Cl

ψ̃(jl, jk))] (4.3)

The formulation with Eq. (4.3) is halfway between individual and collective
linking: it suggests to select a convenient set of disambiguation contexts, and then
solving locally for each query. In the same time, it still enforces some coherence
among the predicted entities. Collective linking also has other formulations: Han
et al. (2011) proposed a collective formulation for entity linking decisions, in which
evidence can be reinforced into high-probability decisions.

For individual graph based linking, a rule based on the importance of the
entity node in the knowledge graph rule has been studied experimentally Guo
et al. (2011).

Other graph-based approaches have been developed. Hoffart et al. (2011),
and Alhelbawy and Gaizauskas (2014) proposed to link efficiently a query to its
corresponding entity using the weighted undirected bipartite graph (Fig. 4.4). The
idea is to extract a dense subgraph in which every query node is connected to
exactly one entity, yielding the most likely disambiguation. In general, this com-
binatorial optimization problem is NP-hard with respect to the number of nodes,
since they generalize Steiner-tree problem Hoffart et al. (2011). However heuristics
to solve this problem have been experimented: Hoffart et al. (2011) and Alhelbawy
and Gaizauskas (2014) proposed a discarding algorithm using taboo search and lo-
cal similarities with polynomial complexity. Adaptations of PageRank algorithm
were carried out to provide each entity a popularity score: Usbeck et al. (2014)
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a

b

e1

e2

e3

wa,e1

...

...

...
we1,e2

we2,e3

...
wb,e3

Figure 4.4 – Directed query/entity bipartite weighted graph. Nodes e1, e2, e3 are
entities in the knowledge base (same as Fig. 4.2). Nodes a and b are entity queries
extracted from text documents, and wx,y is the score between two node x and y.

built a weighted graph of all queries and entities based on local and global sim-
ilarities, and capitalize on the Hyperlink-Induced Topic Search (HITS) algorithm
to produce node authority scores. Then, within similar entities to queries, only
entities with high authority will be retained.

4.2.2 Probabilistic Graphical Models

Another interesting idea is to consider named entity queries as random variables
and their true entities as hidden states. Unlike character recognition where the
hidden state space is constant, with a cardinal of 26 for latin alphabet, the number
of possible states S per entity is large (usually S ≥ 106). Since Viterbi algorithm
has an O(N |S|2) complexity, where N is the number of observations, inference
is inefficient. To overcome this issue, Alhelbawy and Gaizauskas (2013) consid-
ers a reduced set of candidates per query using query text information. Using
annotation, an Hidden Markov Model (HMM) is trained on the reduced set of
candidates. Inference is made using message passing (Viterbi algorithm) to find
the most probable named entity sequence. Another approach using probabilistic
graphical model has been provided by Ganea et al. (2016), with a factor graph that
uses popularity-based prior.

4.2.3 Embeddings and Deep Architectures

Recent advances in neural networks conception suggested to use word embed-
dings and convolutional neural networks to solve the named entity linking prob-
lem.

Sun et al. (2015) proposed to maximize a corrupted cosine similarity between
a query, its annotated gold entity and a false entity. An example of learning rep-
resentations for entities using a neural architecture is achieved in Yamada et al.
(2017), a linking system based on the similarity of average of pre-trained entity
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embeddings has been proposed Yamada et al. (2016), with an O(QE2) complex-
ity. Finally other architectures have been proposed Sil et al. (2018); Raiman and
Raiman (2018), the latter using a fine-grained ontology type system and reaching
promising results on several datasets.

4.3 Methodology

In this section we present a novel graph-based method for NEL. As a preprocess-
ing step, we propose a new but simple entity filtering method using information
retrieval techniques to obtain a limited number of entity candidates. The novelty
of our method lies in the subsection 4.3.2 where we present a new graph-based
method for final entity identification.

4.3.1 Entity Filtering

To discard wrong entity candidates, we use the three sources of information in the
query q = (m, c, t̂): the mention name, the information contained in the rest of
document, and the entity type. Obviously, the NEL problem becomes easier as the
ontology size grows (i.e the larger is T ), on the contrary of the NER problem. In
order to improve existing entity filtering algorithms, we propose a routine based
on three main components below. The algorithm is summarized in Algorithm 3).

a - preProcess: For trivial queries having a mention name equal to an existing
entity name and type, we implemented a naive match pre-processing. If a mention
has the same name and the same type, its gold entity is labelled as the correspond-
ing entity.

b - acronymDetection & acronymScore: Acronym detection and expansion is a
common topic in bioinformatics. We refer to Ehrmann et al. (2013) for a survey
of acronym detection methods. We implemented a simple rule-based decision for
acronym detection, following Gusfield (1997): a string is tagged as an acronym if
there are two or more capital letters, and that distance between two consecutive
capital letters is always one. The similarity score for acronym extension is chosen
as the length of longest common substring Apostolico and Guerra (1987) between
the acronym and capital letters of the target.

c - JN & contextScore: When the named entity mention is not tagged as an
acronym, comparison with entity titles is performed by computing N-grams for
N ∈ {2, 3, 4}, and use Jaccard Index of mention name and entity title. It is refered as
JN in algorithm 3. We also mesure similarity between the context of the query and
the text description of an entity in the knowledge base. We experimented several
techniques: TF-IDF, BM25 , BM25+ based on the probabilistic retrieval framework
developed in the 1970s and 1980s (we refer to Robertson et al. (2009) for a recent
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description). The experimental results were very similar in terms of recall. We
present results obtained with TFIDF (cf. Sec. 4.4).

Algorithm 3: Entity filtering (generation of entity candidates)

Input: ParameterK, Query (q = (m, c, t̂)), Entities and types (ej, tj)1≤j≤E ,
Output: Top K entities

1 ds = [ ];
2 yacr ← acronymDetection(m)

3 for j = 1→ E do
4 if tj == t̂ then
5 if yacr == 1 then
6 sn = acronymScore(m, ej) ;
7 else
8 sn = JN(m, ej) ;
9 end

10 sc = tfidfScore(c, ej) ;
11 st = 1

2
(sn + contextScore(c, ej)) ;

12 Sorted insertion by value of {j : st} in ds ;
13 end
14 end
15 Return ds[:K] (K top entities ) ;

4.3.2 Graph-based Identification

In this section, we present our graph-based method for named entity identification.
This graph-based method uses enriched features extraction from the knowledge
graph, in order to re-rank top entity candidates.

Feature extraction: Let q and e respectively be a query and an entity. T still
represents the number of distinct entity types in the ontology. Let s be a scoring
function between a query and an entity. Let Nt(e) the set of entity neighbors of
type t (cf. Fig 4.5 for an example). By convention ifNt(e) = ∅, then s(q,Nt(e)) , 0.
f(q, e) is the filtering score obtained with Algorithm 3. We define the features
vector associated with the couple (q, e),Xq,e as the scores concatenation:

(Xq,e)0 = f(q, e)

∀t ∈ {1, ...,T }, (Xq,e)t = s(q,Nt(e))
(4.4)
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Cambridge 1

Cambridgeshire

Fitzwilliam Museum

England

Wilf Mannion

Cambridge 2

Massachussets

United States

MIT Museum

Figure 4.5 – Two homonyms: Cambridge cities. Each color is assigned to a node in
the ontology. If t1 is associated to the entity type Country, and t2 to Football player,
then
Nt1(Cambridge 1) = {England}
Nt2(Cambridge 1) = {Wilf Mannion}
Nt1(Cambridge 2) = {United States}
Nt2(Cambridge 2) = ∅

The label of a couple (q, e) is defined as:

Y q,e =

{
1 if e is the gold entity of q
0 otherwise

(4.5)

Supervised NEL: With this formulation, we can train NEL standard regres-
sors or classifiers in a supervised learning framework. At inference, the couple
(q, ê) maximizing the prediction score yields predicted entity ê. If same scores are
returned for different couples, we return one of the candidates (either randomly or
by alphabetical order, but this situation did not occur in practice). The feature ex-
traction and inference procedures are summed up in Algorithm 4 and Algorithm 5
respectively.

Algorithm 4: Feature extraction using knowledge graph and ontology
Input: Knowledge GraphG, Query q, Entity candidate ewith initial

filtering score s0, Types (tj)1≤j≤T
Output: Score vectors between query and candidates

1 Xq,e = [s0] ;
2 Get neighbor nodes of e;
3 for j = 1 to T do
4 Aggregate text description of neighbors of type tj ;
5 Compute score stj between Ntj(e) and the query q;
6 Append stj to Xq,e;

7 Score vectors (Xq,e)1≤j≤T+1 ;

103



CHAPTER 4 - ENTITY IDENTIFICATION

Algorithm 5: Named entity identification (Inference)
Input: Knowledge baseB and its graphGB, queries (qi)1≤i≤M , scoring

thresholdK, trained predictor F̂
Output: List of estimated entities

1 for i = 1 to M do
2 Use filtering on query qi andB, return a list ofK top ranked entities

(eih)1≤h≤K ;
3 Use Algorithm 4 usingGB, onK entity candidates, return new score

vectors;
4 Evaluate F̂ on each vector score and use maximum a posteriori to infer

estimated entity ĝi ;

5 Return (ĝi)1≤i≤M (list of estimated entities) ;

Graph-based scoring functions: In the identification step, features defined
from Eq. (4.4) require the choice of a scoring function. First of all, several repre-
sentations for q and e are possible. In our first experiment, we used the standard
TFIDF representation for the supervised learning procedure described previously,
and the corresponding scoring function with cosine similarity. This allowed to
increase slightly empirical accuracy over entity filtering.

In order to explore a broader class of scoring functions, we consider the
graph of words representations introduced in Chapter 3 as sequence graphs. In-
deed, bag of words representations can be considered as a special case of graph
of words representations, for which edge deleting operations have been applied.
Here, we consider that the query context and the entity description are both com-
posed of at least 10 words for GOW to be meaningful. The final step to define a
scoring function as in Eq. (4.4), is to compare the two graph structures (one from
the query context and the other from the entity description).

Given two graphs G and H, determining if G is isomorphic H allows to mea-
sure graph similarities Cordella et al. (2004). However, for several applications,
including the topic of this Chapter, isomorphic conditions are too rigid since two
documents can be similar without isomorphic GOWs. Also, we are interested in
graph similarity measures taking in account structure (word relations) and node
attributes (words). For this reason, graph kernels have been popularized as a pow-
erful tool to measure graph similarity in a continuous fashion.

Following the notations of Sec. 4.3.2, and k a graph kernel, we considered
the family of scoring functions: (q, e) 7→ k(GoWq, GoWNt(e)) in our experiments. If
Nt(e) contains more than one node, we concatenate their text content and compute
a GoW. As mentioned previously, this family of functions contains some of the bag
of words scoring functions, such as TFIDF. We obtained better empirical results
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using standard graph kernels (cf. next paragraph for examples). It should be noted
that we could not use graph kernels for the first step (entity filtering), since the
computation time would be too long. On the contrary, the identification step takes
as input a limited amount of entity candidates, which makes the computation time
reasonable.

Graph of words window, graph kernels & regressors: We selected as a graph-
of-word window w = 4 (same results were obtained for w ∈ {3, 4, 5, 6}), with
different graph kernels, including Shortest-path kernel, Weisfeiler-Lehman kernel.
The accuracy results for each graph kernel were very close, but higher than with
TFIDF scoring (1% to 2% better). In Sec. 4.4, we report results for the pyramid
match graph kernel, for its low complexity among standard kernels (See Nikolent-
zos et al. (2017b)). Finally, we used several standard classifiers: regression trees,
support vector machines, and logistic regression. We obtained better results with
logistic regression (reported in Table 4.1).

Computational complexity: The average total complexity (filtering and iden-
tification) is: O(M(E +KTG)) where G is an upper-bound of the complexity re-
quired to compute the graph kernel value between the query GOW and the entity
GOW. G is a relatively small constant since the query and entity texts are relatively
short (typically less than 200 words), so that a kernel value can be computed in less
than a second on a laptop with a 2, 8 GHz Intel Core i7. We report this in Table 4.2,
along with some experimental computing times.

4.4 Experimental Setup and Evaluation

The source code of our experiments along with documentation, and datasets sam-
ples are available at our repository.

4.4.1 Datasets, Entity Types and Ontology

We remind the description of the datasets used in this Section (we also remind our
reader that Section 2.7 contains a description of all the datasets used throughout
all the dissertation.).

First, TAC-KBP (Ji et al., 2014) is a dataset from the National institute of Stan-
dards ant technologies (NIST), within the Text Analysis Conference’s Knowledge
Base Population (TAC-KBP) track, which aimed to link a given named entity men-
tion from a source document to an existing Knowledge Base (KB).

Second, AIDA/CoNLL (Yosef et al., 2011) contains assignments of entities
to the mentions of named entities annotated for the original CoNLL 2003 entity
recognition task.

Each query in theses datasets contains its gold entity id and type. TAC-
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Table 4.1 – Comparison with state-of-the art methods for K = 7 and T = 249.
PGMs stands for probabilistic graphical model. /: not available in the reference.
ND: not detailed.

Reference Method Nil detect. Train. size
P@1 (Accuracy) ± std %

TAC09 TAC10 AIDA

61 PGM No ∼ 106 / / 87.39

62 PGM/DL No ∼ 106 / / 92.22

167 DL No ∼ 106 82.26 83.92 /
186 DL No ∼ 106 / 85.2 93.1

187 DL No ∼ 106 / 87.7 94.3

67 DL Yes ∼ 106 / 87.2 92.7

162 DL ND ∼ 106 / 87.4 93.0

140 DL ND ∼ 106 / 90.85 94.87

77 Graphs Yes ∼ 104 84.89 82.40 /
86 Graphs No ∼ 104 / / 81.91

Ours Graphs No ∼ 103, 104 93.67±0.06 94.70±0.05 93.56±0.06

KBP is composed of a knowledge base containing 818741 entities. TAC09 contains
1675 test queries, and TAC10 1074 for train and 1020 for test. CoNLL/AIDA is
composed of 22516 queries for training and 4379 queries for test.

The other methods, mainly deep learning (DL) in Table 4.1 use millions of
training examples from Wikipedia’s anchor links and corresponding entities. In
our method, we did not use this additional training data, but only those provided
by the original challenges.

Also, we considered a more recent Knowledge base (Wikipedia 2016 dump
with 2880838 entities) since the original Wikipedia 2010 dump is not available any-
more. The ontology we considered is available on DBPedia1. We must remind that
our method does not include fined-grained entity recognition from the queries: we
suppose this given as input in the data. For the implementation of graph kernels,
we used the GraKeL software library (Siglidis et al., 2018).

4.4.2 Results

We compare our methods with most performing baselines. Table 4.1 sums up
our experimental results (averaged P@1 is also referred as accuracy (Sun et al.,
2015)). We included standard deviation of the accuracy, but could not include
p-significance of our method, due to the difficulty to reproduce other baselines
experiments (no source code is publicly available, or filtering method is not de-
tailed). Our method yields remarkable accuracy on TAC09 dataset, CoNLL/AIDA
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Table 4.2 – Computing times rounded to the minute. Q = 1000, E = 2.8 × 106,
G ≤ 200, K = 7, T = 249. Setup 1: Single CPU with 32Gb Ram, 4-cores 2.40GHz.
Setup 2: Distributed cluster with variety of 20 CPU processors equivalent to setup
1 (Spark/Hadoop technology)

Component Complexity
Time (mn.)

Setup 1 Setup 2

Filtering O(ME) 196 15

Identification O(QKTG) 153 10
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Figure 4.6 – Impact ofK and T on average P@1.

and TAC10 datasets. It performs better than any existing graph-based methods,
outperforms all existing methods on two NIST TAC09 and TAC10, and is com-
petitive with state-of-the arts methods on CoNLL/AIDA. We also report impact of
parameter K on average precision P@1 (accuracy). Results are in Fig. 4.6. Low val-
ues of K, corresponding to limited exploration, lead to a decrease accuracy. High
values of K yield too many entity candidates and an imbalanced learning prob-
lem, resulting in a decrease of accuracy. Results are similar for 5 ≤ K ≤ 10, and
allow a 2% to 3% improvement over filtering. As expected, the precision is strictly
increasing with respect to T but the variation is bounded by 5% for T ∈ [3, 249].

4.5 Conclusion

In this chapter, we proposed a new methodology concerning the problem of named
entity linking. First, we presented an entity filtering algorithm to return entity can-
didates that improves over trivial association rules. Then, each entity candidate is
matched with a new representation built on a subgraph centered on their node.
These representations use information contained in the ontology of the knowledge

107



CHAPTER 4 - ENTITY IDENTIFICATION

base. Finally, we used standard supervised learning to identify entities in the top
candidates from filtering. We showed experimentally with standard datasets that
named entity linking systematically improves over filtering using graph-based
identification (for 2 ≤K ≤ 10), up to 3%. Our experiments show that our method
is competitive with state-of-the-art, and is stable with respect to K and T , has
good complexity allowing reasonable experimental computing time. Our linking
system is relatively easy to implement, with few hyper-parameters. Last but not
least, it does not require lots of data compared with deep learning to reach good
experimental performance: only a few thousands of training samples were used to
reach these results.
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5
Geometry, Words
and Representations

Despite the ambiguity induced by graph-based representations studied in Chap-
ter 3, we have shown in Chapter 4 that combined with a simple filtering method,
they allow to address a problem of information retrieval, named entity identifica-
tion. With a pertinent formulation, these representations allow to reach state-of-
the-art performance while requiring few annotated samples.

These representations did not incorporate any language-specific method, but
were only based on association rules, graphical representations and the existence
of a knowledge graph. Therefore, they are not endowed with any description or
information of the language; but are empirically adequate for the given problem.

Moreover, the sequence graphs studied in Chapter 3 and used in Chapter 4
can also be seen as combinatorial objects which attempt to extract the semantics
between words based on the co-occurrences in the same context. They also were
used to compute several vector representations used in machine learning (Mikolov
et al., 2013a; Pennington et al., 2014; Arora et al., 2016a,b). In this regard, we will
address in this chapter some part of the relation between semantics and geometry
of these representations.

Cognitive but non computational approaches have been developed on the
subject. For instance, (Gärdenfors, 2014) proposes a theory of semantics that bridges
cognitive science and linguistics which encompasses different theories of cognitive
processes. He argues that our mind organizes the information involved in com-
municative acts in a format that can be modeled in geometric or topological terms.
Also, (Chilton, 2014) proposes that spatial cognition provides the foundation of
linguistic meanings into new dimensions and develops a theoretical framework
based on simple geometric principles.

These links between cognitive system and space can also be transposed to
some geometric properties of representations of words. Considering that words
can be represented by geometric forms, for example word vectors (vector repre-
sentations are the main input format for machine learning algorithms, these word
vectors are referred to as word embeddings), it is then possible to imagine any kind
of geometric property translating an underlying semantic link.
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5.1 Introduction

More precisely, in this chapter, we discuss two main properties. The first one con-
cerns the well-known claim that language analogies yield almost parallel vector
differences for a family of word embeddings. On the one hand, we show that this
property, while it does hold for a handful of cases, fails to hold in general especially
in high dimension, using the best known publicly available word embeddings. On
the other hand, we show that this property is not crucial for basic natural language
processing tasks such as text classification. We achieve this by a simple algorithm
which yields updated word embeddings where this property holds: we show that
in these word representations, text classification tasks have about the same perfor-
mance.

This geometrical property has lead to a generative model (Arora et al., 2016a),
of which a corollary attempts to justify this geometric property. We will be inter-
ested in a central property of this model (related to a partition function which
depends on the word vectors and discourse vectors, defined in Section 5.2.3 and
Section 5.3). This property is central for all the theoretical developments for this
model, including the relations between statistical indicators such as pointwise mu-
tual information, and the scalar product of word vectors. Mainly, we will prove
that this partition function is almost constant for a family of word vectors which
are not following this model. This implies in particular that it does not represent a
pertinent test for the quality of word vectors, but also as an indicator of compliance
with the random walk model proposed by (Arora et al., 2016a).

5.1.1 Context and Motivations

The motivation to build word representations as vectors in a Euclidean space is
twofold. First, geometrical representations can possibly enhance our understand-
ing of a language. Second, these representations can be useful for information
retrieval on large datasets, for which semantic operations become algebraic opera-
tions. First attempts to model natural language using simple vector space models
go back to the 1970s, namely index terms (Salton et al., 1975), term frequency in-
verse document frequency (TF-IDF) (Ramos et al., 2003), corresponding software
solutions SMART (Salton, 1971b), and Lucene (Hatcher and Gospodnetic, 2004). In
recent work about word representations, it has been emphasized that many ana-
logies such as “king is to man what queen is to woman”, yielded almost parallel
difference vectors in the space of the two most significant coordinates (Mikolov
et al., 2013c; Pennington et al., 2014), that is to say (if d = 2):
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(ui | 1 ≤ i ≤ n) ∈ Rd being the word representations
(3,4) is an analogy of (1,2)⇔ ∃ε ∈ Rd s.t u2 − u1 = u4 − u3 + ε

where ||ε|| � min(||u2 − u1||, ||u4 − u3||)
(5.1)

In Equation (5.1) ||x|| � ||y||means in practice that ||x|| is much smaller than
||y||. Equation (5.1) is stricter than just parallelism, but we adopt this version be-
cause it corresponds to the version the scientific press has amplified in such a way
that now it appears to be part of layman knowledge about word representations
(Mikolov et al., 2013b; Vylomova et al., 2015; Bolukbasi et al., 2016). We hope the
study contained in this chapter will help clear a misinterpretation.

Recent work leads us to cast word representations into two families: static
representations, where each word of the language is associated to a unique element
(scope of this chapter), and contextual representations, where the entity represent-
ing each word may depend on the context (we do not consider this case in this
chapter).

5.1.2 Contributions
The attention devoted in the literature to Equation (5.1) might have been excessive,
based on the following criteria:

◦ The proportion of analogies leading to the geometric Equation (5.1) is small.

◦ The classification of analogies based on Equation (5.1) or parallelism does not
appear as an easy task.

Furthermore, we present a very simple propagation method in the graph of
analogies, enabling our notion of parallelism in Eq (5.1). Our code is available
online.1. This method allow us to conduct experiments demonstrating that such
property does not appear to be important for text classification.

Finally, in Section 5.3, we study a property of a generative model which at-
tempted to provide theoretical foundations of the property of Equation (5.1) . We
will prove that this partition function is almost constant for a family of word vec-
tors which are not following this model. This implies in particular that a test re-
lated to a partition function cannot be used as a compliance witness for this gener-
ative model, and is not a guarantee for pertinent word vectors.

1Link to repository
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5.2 Related Work

5.2.1 Word Embeddings

In the static representations family, after the first vector space models (Index terms,
TF-IDF, SMART (Salton, 1971b), Lucene (Hatcher and Gospodnetic, 2004)), Skip-
gram and statistical log-bilinear regression models became very popular. The most
famous are Glove (Pennington et al., 2014), Word2vec (Mikolov et al., 2013c), and
fastText (Bojanowski et al., 2017). Since word embeddings are computed once and
for all for a given string, this causes polysemy for fixed embeddings. To overcome
this issue, the family of dynamic representations has gained in attention very recently
due to the increase of deep learning methods. ELMo (Peters et al., 2018), and Bert
(Devlin et al., 2018) representations take in account context, letters, and n-grams
of each word. We do not address comparison with these methods in this chapter
because of the lack of analysis of their geometric properties.

There have been attempts to evaluate the semantic quality of word embed-
dings (Jastrzebski et al., 2017), namely:

◦ Semantic similarity (Calculate Spearman correlation between cosine similar-
ity of the model and human rated similarity of word pairs)

◦ Semantic analogy (Analogy prediction accuracy)

◦ Text categorisation (Purity measure)

However, in practice, these semantic quality measures are not preferred for
applications: the quality of word embeddings is evaluated on very specific tasks,
such as text classification or named entity recognition. In addition, recent work
(Nissim et al., 2019) has shown that the use of analogies to uncover human biases
should be carried out very carefully, in a fair and transparent way. For example
(Caliskan et al., 2017) analyzed gender bias from language corpora, but balanced
their results by checking against the actual distribution of jobs between genders.

5.2.2 Relation Embeddings for Named Entities

An entity is a real-world object and denoted with a proper name. In the expression
“Named Entity”, the word “Named” aims at restricting the possible set of entities
to only those for which one or many rigid designators stands for the referent. For
this reason, named entities have an important role in text information retrieval
(Nadeau and Sekine, 2007). An entity relation can be seen as an example of relation
we consider for analogies (example: Paris is the capital of France, such as Madrid
to Spain). There exist several attempts to model these relations, for example as

113



CHAPTER 5 - GEOMETRY, WORDS AND REPRESENTATIONS

translations (Bordes et al., 2013; Wang et al., 2014), or as hyperplanes (Lin et al.,
2015).

5.2.3 Word Embeddings, Linear Structures and Pointwise
Mutual Information

In this subsection, we will focus on a recent analysis of pointwise mutual infor-
mation, which aims at providing a piece of explanation of the linear structure for
analogies (Arora et al., 2016a, 2018). This work provides a generative model with
priors to compute closed form expressions for word statistics. In the following,
f = O(g) (resp. f = Õ(g)) means that f is upper bounded by g (resp. upper
bounded ignoring logarithmic factors) in the considered neighborhood. The gen-
eration of sentences in a given text corpus is made under the following generative
assumptions:

◦ Assumption 1: The ensemble of word vectors consists of independent and
identically distributed (i.i.d.) samples generated by v = s v̂, where v̂ is drawn
from the spherical Gaussian distribution in Rd and s is an integrable random
scalar, always upper bounded by a constant κ ∈ R+.

◦ Assumption 2: Let d be an stricly positive integer corresponding to the word
vectors dimension. The text generation process is driven by a random walk
of a vector ct, i.e. if wt is the word at step t, there exists a latent discourse
vector ct such that P(wt = w|ct) ∝ exp(〈ct, vw〉). Moreover, ∃κ ≥ 0 and ε1 ≥ 0

such that ∀t ≥ 0:

|s| ≤ κ

Ect+1(e
κ
√
d||ct+1−ct||2) ≤ 1 + ε1

(5.2)

In the following, P(w,w′) is the probability that two words w and w′ occur
in a window of size 2 (the result can be generalized to any window size), P(w)

is the marginal probability of w. PMI(w,w
′
) is the pointwise mutual information

between two words w and w
′(Church and Hanks, 1990). Under these conditions,

we have the following result:

Theorem 5.1. (Arora et al., 2016a) Let n denote the number of words and d denote the
dimension of the representations. If Assumption 1 and Assumption 2 are verified, then the
following holds for any words w and w′ :

PMI(w,w′) , log
P(w,w′)

P(w)P(w′)
=
〈vw, vw′〉

d
±O(ε)

with ε = Õ(
1√
n

) + Õ(
1

d
) +O(ε1)

(5.3)
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Equation (5.3) shows that we could expect high cosine similarity for point-
wise close terms (if ε is negligible).

The main aspect we are interested in is the relationship between linear struc-
tures and analogies. In (Arora et al., 2016a), the subject is treated with an assump-
tion following (Pennington et al., 2014), stated in Equation (5.4). Let χ be any set
of words, and a and b words that are involved in a semantic relationR. Then there
exist two scalars vR(χ) and ξabR(χ) such that:

P(χ|a)

P(χ|b)
= vR(χ) ξabR(χ) (5.4)

We failed to fully understand the argument made in (Arora et al., 2016a;
Pennington et al., 2014) linking word vectors to differences thereof. However, if
we assume Equation (5.4), by Equation (5.3) we obtain the following.

Corollary 5.1.1. Let V be the n× d matrix whose rows are the vectors of words in dimen-
sion d. Let va and vb be vectors corresponding respectively to words a and b. Assume a and
b are involved in a relation R. Let log(vR) the element-wise log of vector vR. Then there
exists a vector ξ′abR ∈ Rn such that:

V (va − vb) = d log(vR) + ξ
′

abR (5.5)

Proof. Let x a word, and a, b two words sharing a relation R. On the one hand,
taking the log of Equation (5.4):

log(
P(x|a)

P(x|b)
) = log(vR(x)) + log(ξabR(x)) (5.6)

On the other hand, using Equation (5.3), ∃ εabx ∈ R such that:

log(
P(x|a)

P(x|b)
) = log(

P(x, a)P(b)

P(x, b)P(a)
)

= log(
P(x, a)P(b)P(x)

P(x, b)P(a)P(x)
)

= PMI(x, a)− PMI(x, b)

log(
P(x|a)

P(x|b)
) =
〈vx, va − vb〉

d
+ εabx (5.7)

Combining equations (5.6) and (5.7), for any x:

〈vx, va − vb〉 = d log(vR(x)) + d(log(ξabR(x))− εabx) (5.8)
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Let V the matrix whose rows are the word vectors. V (va−vb) is a vector of Rn

whose component associated with word x is exactly 〈vx, va−vb〉. Then, let vR be the
element-wise log of vector vR, and ξ

′

abR the vectors of components d(log ξabR(x) −
εabx). Then, Eq (5.8) is exactly Eq (5.5).

It is shown in (Arora et al., 2016a) that ||V +ξ′abR|| ≤ ||ξ
′

abR||, where V + is the
pseudo-inverse of V (if needed, cf. Definition 2.4). In other words, the “noise”
factor ξ′ can be reduced. This reduction may not be sufficient if ξabR is too large to
start with.

In the next section, we will address in details a fundamental property used
for the generative model presented in this subsection, which is one of the sufficient
conditions implying 5.1. We will show that it cannot be used as a intrinsic test for
the word vectors since it holds as long as the discourse vectors are close to a sphere
of radius R ≤ 2 and some mild assumptions on the distribution of word vectors.

5.3 Discussion about the Concentration of the
Partition Function

In this section, we discuss a theoretical property presented in (Arora et al., 2016a),
called the concentration of the partition function Zc, which is defined as

Zc =
∑
v

exp(〈v, c〉) (5.9)

where v are the word vectors, and c is a latent discourse vector. We remind our
reader that in the generative model discussed in section 5.2.3, the model treats
corpus generation as a dynamic process, where the t-th word is produced at step
t. The process is driven by a random walk of a discourse vector c. Its coordinates
represent the current topic. In this section, we are not interested in the dynamics
of this model, but rather by an asymptotic property of the partition function Zc.

By analogy with statistical physics, this partition function is the sum of prob-
abilities of the particles state given macroscopic parameters such as temperature,
over all the particles. More precisely, in our context, the particles considered are
words and the states are the appearances of a word given a latent discourse vector
(which is the equivalent of the physical temperature). This latent discourse vector
represents a context of fixed length (similarly to the context mentioned in Chap-
ter 3). The aim of this section is to study the variations of Zc with respect to the
random variable c. This study is motivated by the use of partition concentration as
a theoretical basis to demonstrate the relationships between PMI and scalar prod-
uct of word vectors (Arora et al., 2016a), which in turn could potentially explain
the initial conjecture 5.1.
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Following the assumptions of Section 5.2.3, if the word vectors satisfy the
Bayesian prior described in the model details, and n is the number of words, then
the concentration of partition is stated as follows (Arora et al., 2016a, Lemma 2.1):

P[(1− εz)Z ≤ Zc ≤ (1 + εz)Z] ≥ 1− δ (5.10)

for some constant Z (independant of c) and εz = Õ(1/n) and δ = exp(−Ω(log(n))),
where again f = O(g) (resp. f = Õ(g)) means that f is upper bounded by g (resp.
upper bounded ignoring logarithmic factors) in the considered neighborhood.

We are interested in this property since it is central for the development of
all the following theorems and propositions in (Arora et al., 2016a), including the
relation between pointwise mutual information and scalar product of word vectors
stated in Theorem 5.1.

Furthermore, in the experiments conducted in (Arora et al., 2016a, Section
5.1), the property expressed in Equation 5.10 is evaluated on the word vectors gen-
erated by displaying the histogram of the partition function Zc, which should con-
centrate around its mean. By doing so, this concentration of partition functions is
implicitly considered as a mean to evaluate how well the word vectors follow the
generative model. In this section, we will show this property holds by weakening
the assumptions, modulo a small constant.

5.3.1 Preliminaries
In this section, we will start by proving three useful lemmas to prove our main
result.

Lemma 5.1. Let ψ : R → [0,+∞[ be a twice continuously differentiable strictly convex
even function, satisfying the following properties:

1. ψ′(0) = 0

2. β 7→ ψ′(β)/β is injective on R+∗.

3. ∀β 6= 0 ψ′′(0)− ψ′(β)/β > 0

4. ∀β 6= 0 ψ′′(β)− ψ′(β)/β < 0

Then, the optimization problem

min
d∑
i=1

ψ(xi) =∧ Ψ(x)

s.t.
1

2
‖x‖2 =

1

2
R2

has the following extreme points:
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1. x∗ = ±Rek, where ek is the k-th canonical vector of Rd corresponding to global
minimizers;

2. x∗i = ± R√
d

, for i = 1, . . . , d, corresponding to global maximizers.

Proof. Let us consider the first order optimality conditions. The Lagrange equa-
tions are

∇Φ(x) + λx = 0

or equivalently
∀i ∈ {1, . . . , d} ψ′(xi) + λxi = 0 (5.11)

For the remaining of this proof, let (x, λ) ∈ Rd × R be a fixed vector and scalar
verifying Equation (5.11). Such x and λ exists because we are considering a con-
tinuous function over a compact set, thus it attains a maximum and a minimum
in the feasible set. Notice that xi = 0 solves this equation for any λ. However, we
cannot set xi = 0 for every i ∈ {1, . . . , d}, because x = 0 is infeasible.

Therefore, there should be components some components of x verifying xi 6=
0. For the non-zero components of x, Equation (5.11) must hold for the same λ.
Since the gradient of the constraint does not vanish at any feasible point, the Lin-
ear Independence Constraint Qualification (LICQ) holds and hence there exists λ
fulfilling Equation (5.11) for some feasible point.

First, we remark that λ 6= 0. Indeed, if λ = 0, then from Equation (5.11),
∀i f ′(xi) = 0, but f is convex and f ′(0) = 0, which implies that xi = 0 for all i,
leading to an infeasible point.

Thus, for the non-zero components of x, from Equation (5.11), we obtain

xi 6= 0 =⇒ λ = −ψ
′(xi)

xi
6= 0

But, since β 7→ ψ′(β)/β is injective on R+∗, we conclude that the non-zero compo-
nents of x must be all equal, i.e ∃β∗ > 0 s.t. ∀i xi 6= 0 =⇒ xi = β∗. From the
feasibility of x, we conclude that

β∗ = ± R√
‖x‖0

where ‖x‖0 denotes the number of non-zero entries of x.
Let us now analyze the second order conditions for the feasible points veri-

fying Equation (5.11). Since the objective function is separable, the Hessian of the
Lagrangian∇2

xxL(x, λ) is a diagonal matrix whose diagonal entries are

[∇2
xxL(x, λ)]ii = ψ′′(xi)− ψ′(β∗)/β∗ for i = 1, . . . , d.
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From the properties of f , we can deduce

[∇2
xxL(x, λ)]ii =

{
ψ′′(0)− f ′(β∗)/β∗ if xi = 0

ψ′′(β∗)− ψ′(β∗)/β∗ otherwise

For the remaining of this proof, for given α and β, let δ(α, β) =∧ ψ′′(α) − ψ′(β)/β.
We remind our reader that, by assumption, β 6= 0 =⇒ δ(0, β) > 0 and δ(β, β) < 0.

Therefore, for a given y ∈ Rd, we have

yT∇2
xxL(x, λ)y = δ(0, β∗)

∑
i:xi=0

y2
i + δ(β∗, β∗)

∑
i:xi 6=0

y2
i .

If all components of x are non-zero, then we get

∀y ∈ Rd \ {0} yT∇2
xxL(x, λ)y = δ(β∗, β∗)

∑
i:xi 6=0

y2
i < 0

Also, we already proved non zero components of x must be equal; this proves

that x verifying ∀i ∈ {1, . . . , d}, xi = ± R√
d

satisfy the second order sufficient

conditions for a local maximizer.
Now, let us show that if x has at least one zero component and more than one

non-zero components, then x is a saddle-point. Without loss of generality, assume
that exactly two entries of x are non-zero, then due to the previous discussion, they
must be equal, e.g. xT = (0, . . . , 0, β, β). The sufficient second order conditions
concern the Hessian of the Lagrangian with respect to primal variables, which
should be positive definite when restricted on the linear null space of the Jacobian
of the constraint inequalities. In this case, this linear space is given by:

x⊥ = {y ∈ Rd : y = (w1, . . . , wd−2, α,−α), w ∈ Rd−2, α ∈ R},

In particular, choosing y = (w1, 0, . . . , 0, α,−α) ∈ x⊥, we obtain

yT∇2
xxL(x, λ)y = δ(0, β∗)w1 + 2δ(β∗, β∗)α2

Then:

i) w1 > 0 and α = 0 =⇒ yT∇2
xxL(x, λ)y > 0

ii) w1 = 0 and α 6= 0 =⇒ yT∇2
xxL(x, λ)y < 0

This implies that x is neither a minimizer nor a maximizer.
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Finally, if x = ±Rek, for some canonical vector ek, we obtain, for every y ∈
x⊥ \ {0},

yT∇2
xxL(x, λ)y = δ(0, β∗)

∑
i:xi=0

y2
i + δ(β∗, β∗)× 0 = δ(0, β∗)

∑
i:xi=0

y2
i > 0

which proves that x = ±Rek satisfies the second order sufficient conditions for a
local minimizer.

Furthermore, since f is even, and the maximizers (and minimizers) described
above only differ by the sign of their entries, we can conclude that all of them are
global.

We present a similar result for the annulus domain:

Lemma 5.2. Let η be a strictly positive real and let 1 be the vector of ones of appropriate
dimension. With the same notations conditions as in Lemma 5.1, replacing SR by Ωη

defined by:
Ωη = {x ∈ Rd | R ≤ ||x||2 ≤ R + η} (5.12)

Then

(i) Ψ reaches its minimum on Ωη for the vector x = Rek

(ii) Ψ reaches its maximum on Ωη for the vector R+η√
d
1

Proof. Both (i) and (ii) can be proved in two steps:

(i) Since ψ is even, we limit the study on the set of positive vectors. We show that
the maximum of ψ is reached on the sphere of radius R + η, and on the sphere of
radius R for the minimum. This can be proved by remarking that:

x > 0, x ∈ Ω̊η and R < λ||x|| < R + η =⇒ λx ∈ Ωη and ψ(λx) > ψ(x)

Which can be deduced by the fact that ψ is strictly convex and ψ′(0) = 0, hence ψ
is increasing on R+. This implies that the minimum of Ψ is reached on the sphere
of radius R, and its maximum on the sphere of radius R + η.

(ii) Then, we use Lemma 5.1 to conclude.

Lemma 5.3. Consider the function f : Rd −→ R defined by:

f(c) =
d∏
i=1

{
sinh(Lci)

ci
if ci 6= 0

L otherwise
(5.13)

Then Ψ = log(f) verifies the assumptions of Lemma 5.1 and 5.2.
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Proof. In order to simplify the expressions, we will consider that L = 1 but the
general case can be treated similarly. First, let us consider the function

φ : x 7→

{
sinh(ci)
ci

if ci 6= 0

1 otherwise

And in the following, let ψ = log φ.

i) First, ψ is twice continuously differentiable. Indeed, ψ is continous on R and

lim
x→0

ψ′(x) = 0 (5.14)

So with the derivation extension theorem, ψ is differentiable in 0 and ψ′(0) = 0.
We use the same reasoning with φ′ and show that ψ is twice differentiable on R,
ψ′′(0) = 1

3
.

ii) ψ strictly logarithmically convex by composition since:
- log is stricly increasing on R+∗

- φ is strictly convex on R, this can be seen from its second derivative:

∀x 6= 0 φ′′(x) =
−1− 2x2 + cosh(2x)

2x4
> 0

which can be deduce from the Taylor series of cosh.

iii) ψ is even since φ is. Besides, as proved in i), we have ψ′(0) = 0 and ψ′′(0) = 1
3
.

Furthermore, for x 6= 0:

ψ′′(0)− ψ′(x)

x
=

1

3
− ψ′(x)

x
=

1

3
− 1

sinh(x)
(
cosh(x)

x
− sinh(x)

x2
) (5.15)

and

ψ′′(x)− ψ′(x)

x
= −xcoth(x)

sinh(x)
(
cosh(x)

x
− sinh(x)

x2
)

+
x

sinh(x)
(−2

cosh(x)

x2
+ 2

sinh(x)

x3
+

sinh(x)

x
)

(5.16)

Now, let us prove:

iv) ∀x 6= 0, ψ′′(0)− ψ′(x)
x

> 0

v) ∀x 6= 0, ψ′′(x)− ψ′(x)
x

< 0

vi) x 7→ ψ′(x)
x

is injective on R+∗.
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After computations, we remind that:

φ′(x) =
x coshx− sinhx

x2
and φ′′(x) =

(x3 + 2x) sinhx− 2x2 coshx

x4

In particular:

ψ′(x) =
φ′(x)

φ(x)

=
x coshx− sinhx

x sinhx

=
coshx

sinhx
− 1

x
= cothx− 1

x

=

(
1

x
+
x

3
− x3

45
+ · · ·

)
− 1

x

=
x

3
− x3

45
+ · · ·

Now, let us consider the function q be defined as:

q(x) =


ψ′(x)

x
x 6= 0

q(0) = 1
3

otherwise

After some algebraic manipulation and Taylor series expansion of coth, we
obtain

∀x 6= 0 q(x) =
−1 + x cothx

x2

=

−1 + x

(
1

x
+
x

3
+ · · ·

)
x2

=
1

3
− x2

45
+ 2

x4

945
+ · · ·

(5.17)

and

q′(x) =
2− x(cothx+ x csch2 x)

x3

=
1

15
(
1

3
− 1)x+

1

189
(
1

5
− 1)2x3 + . . .

(5.18)

which implies: ∀x > 0 ψ′(x)
x

= q′(x) < 0.
Besides,

q′′(x) =
1

15
(
1

3
− 1) +

1

189
(
1

5
− 1)6x2 + . . . < 0

hence q′(0) = 0 and ∀x q′′(x) < 0, implying that q(0) = 1
3

is the global maximum:
∀x ∈ R q(x) ≤ 1/3. This also proves that the function q is injective (since q′ is
negative and strictly increasing) and Properties v) and vi) are proved.
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Moreover,

ψ′′(x) =
φ′′(x)φ(x)− φ′(x)2

φ(x)2
=

1

x2
− csch2 x

=
1

x2
−
(

1

x2
− 1

3
+
x2

15
− · · ·

)
=

1

3
− x2

15
+ · · · (5.19)

implying

∀x 6= 0 ψ′′(0)− ψ′(x)

x
=

1

3
− q(x) > 0

showing Property iii). Finally:

x 6= 0 ψ′′(x)− ψ′(x)

x
=

2− x(cothx+ x csch2 x)

x2

=
1

15
(
1

3
− 1)x2 +

1

189
(
1

5
− 1)2x4 + · · · < 0

(5.20)

proving iv).

5.3.2 Main Inequality
We now present our result concerning the partition function.

Proposition 5.1. Let n be the number of words, and let us suppose the word vectors are
generated independently and uniformly in a centered cube of Rd, and the discourse vectors
in domain close to sphere of radius R ≤ 2. Then, if the discourse vectors are close to a
sphere of radius R ≤ 2 described by Ωη

Ωη = {R ≤ ||x||2 ≤ R + η} (5.21)

(e.g η ≤ 0.25) then there exists γ � 1 such that ∀ε > 0, the following inequality holds
with probability 1− α:

(1− ε)(1− γ)E[Z0] ≤ Zc ≤ (1 + ε)(1 + γ)E[Z0] (5.22)

where Z0 corresponds to a constant discourse vector c0 and α ≤ exp(−1
2
ε2n2).

Proof. Let v, c ∈ Rd be the word and discourse vectors, respectively, with the fol-
lowing properties:

‖v‖ ≤ κ (5.23)

E [〈v, c〉] = 0 (5.24)

From (5.23) and Cauchy-Schwarz inequality

〈v, c〉 ≤ |〈v, c〉| ≤ ‖v‖‖c‖ ≤ 3κ (5.25)
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where we suppose ||c|| ≤ 3 by assumption. It follows that

exp〈v, c〉 ≤ exp 3κ (5.26)

Since the random vectors v are i.i.d. and by convexity of the exponential, we
have from (5.24)

E [Zc] = nE [exp〈v, c〉] ≥ n expE [〈v, c〉] = n exp(0) = n (5.27)

Moreover, we are also able to bound the variance of Zc:

Var [Zc] =
∑
v

Var [exp〈v, c〉] = nVar [exp〈v, c〉]

≤ nE [exp 2〈v, c〉] ≤ nE [exp(6κ)] = exp(6κ)n (5.28)

Now let Λ be the constant defined as follows:

Λ = exp(6κ) (5.29)

Let ε > 0. Thanks to (5.26) and (5.28), we can apply the Bernstein’s inequality
to the sum of random variables Zc =

∑
v exp〈v, c〉, to obtain

P [|Zc − E [Zc] | > εn] ≤ exp

(
−

1
2
ε2n2

nΛ + 1
3

√
Λεn

)
(5.30)

and from (5.27)

P [|Zc − E [Zc] | > εE [Zc]] ≤ exp

(
−

1
2
ε2n2

nΛ + 1
3

√
Λεn

)
(5.31)

which shows the concentration of Zc around E [Zc] for any fixed unit norm vector
c.

Let us show now that E [Zc] does not vary much with c. To this end, we need
additional assumptions about the distribution of v apart from (5.23) and (5.24). We
are interested in E[Zc], and in particular the amplitude of its variation with respect
to c. If the word vectors admit a density function ξ, then:

Ev[exp(〈v, c〉)] =

∫
Ω

exp(〈v, c〉)ξ(v)dv (5.32)

If the word vectors are independent and identically distributed, it should be
noted that:

Ev[Zc] = nEv[exp(〈v, c〉)] (5.33)

where n is the number of words. Firstly, in order to simplify the calculation, we
will consider that v is distributed uniformly on Ω which is the cube of Rd centered
in 0, of side length 2L. Then, integration using Fubini Theorem yields:
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Ev[exp(〈v, c〉)] = 2d
d∏
i=1

sinh(Lci)

ci
(5.34)

Consider the function f : Rd −→ R defined by:

f(c) =
d∏
i=1

{
sinh(Lci)

ci
if ci 6= 0

L otherwise
(5.35)

We will first discuss the variations in the amplitude of f on the sphere SR
centered in 0 with radius R. The relative amplitude of the variations of f on SR is
given by:

maxc∈SR f(c)−minc∈SR f(c)

minc∈SR f(c)
=

maxc∈SR E[Zc]−minc∈SR E[Zc]

minc∈SR E[Zc]
(5.36)

We first show that log f verifies the conditions of Lemma 5.1. To do so, in
order to simplify the expressions, we will consider that L = 1 but the general case
can be treated similarly. First,

φ : x 7→

{
sinh(ci)
ci

if ci 6= 0

1 otherwise

is twice continuously differentiable, and logarithmically convex. Indeed, after
computations:

Using Lemmas 5.3 and 5.1, and we can infer the two following properties:

• On the one hand, f reaches its maximum at a point c such that:

c1 = c2 = . . . = cd =
R√
d

(5.37)

And then

max
c∈SR

f(c) = [

√
d

R
sinh(

LR√
d

)]d (5.38)

• On the other hand, the minimum of f is reached for a point where every coor-
dinate has been set to 0 except one (such point exists on the sphere), and therefore,
f reaches its minimum on a point c such that

φ(c1) = . . . = φ(cd−1) = L and φ(cd) =
sinh(LR)

R
(5.39)
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Hence,

min
c∈SR

f(c) = Ld−1 sinh(LR)

R
(5.40)

A first interesting result is that the extrema of f do not depend on the dimen-
sion if L = 1.

It should be noted that the absolute variations of E[Zc] = n 2d f(c) increases
exponentially with respect to the dimension d and linearly with respect to the num-
ber of words n, the maximum relative variation of E[Zc] in Equation (5.36) is the
same as f .

Now, let us observe the behavior of the maximum of f , when the dimension
d tends to infinity. The Taylor expansion at order 3 of sinh in 0 is given by:

sinh(x) = x+
x3

6
+ o(x3) (5.41)

Therefore, using properties of the exponential:

max
c∈SR

f(c) =
d→+∞

(

√
d

R
)d [

LR√
d

+
1

6
(
LR√
d

)3 + o(
LR√
d

)3 ]d

= (L+
LR2

6d
+ o(

1

d
))d

= Ld(1 +
R2

6d
+ o(

1

d
))d

∼
d→+∞

Lde
R2

6

(5.42)

Then, if d� 1 (e.g d ≥ 50):

∆(R) =
maxc∈SR f(c)−minc∈SR f(c)

minc∈SR f(c)

∼
d→+∞

L
e
R2

6

sinh(LR)
R

− 1

(5.43)

This ratio does not depend on the dimension, regardless of the radius of the
sphere considered. The graph of the function ∆ : x 7→ ∆(R) for L = 1 is drawn in
Figure 5.1. In particular, ||∆||∞,[0,2] ≤ 10−1. In particular, this implies that if R ≤ 2

(and L ≤ 1):
maxc∈SR E[Zc]−minc∈SR E[Zc]

minc∈SR E[Zc]
= ∆(R) ≤ 10−1 (5.44)

Finally, if Ωη is replaced by the domain defined by

R ≤ ||x||2 ≤ R + η (5.45)
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0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

Figure 5.1 – Illustration of the maximum relative variations of E[Zc], with the func-

tion ∆ : x 7→ e
x2

6

sinh(x)
x

− 1. The x-axis represents the radius considered and the y-axis

the value of the maximum relative variation.

ηR

(a) Ωη

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4
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η = 0.05
η = 0.25
η = 0.5

(b) ∆η for η ∈ {0.05, 0.25, 0.5}

Figure 5.2 – Illustration of the maximum relative variations of E[Zc] for L = 1 on
Ωη. The x-axis represents the radius R considered and the y-axis the value of the
maximum relative variation.
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Then the extremum of f on Ωη can be deduced from Lemma 5.2 and are given
by

min
c ∈Ωη

f(c) = Ld−1 sinh(LR)

R
(5.46)

max
c ∈Ωη

f(c) = [

√
d

R + η
sinh(

L(R + η)√
d

)]d (5.47)

Similarly,

maxc∈Ωη E[Zc]−minc∈Ωη E[Zc]

minc∈Ωη E[Zc]
∼

d→+∞
L
e

(R+η)2

6

sinh(R)
R

− 1 (5.48)

Let ∆η = e
(R+η)2

6

sinh(R)
R

− 1. Plots of ∆η for several values of η are given in Fig. 5.2b.

Let Z0 be a partition function for a constant discourse vector x0 ∈ SR. The
two events are equivalent:

|Zc − E[Zc] | > εE[Zc] ⇐⇒
∣∣∣ Zc
E[Z0]

− E[Zc]

E[Z0]

∣∣∣ > ε
E[Zc]

E[Z0]
(5.49)

Using the previous study, we know that∣∣∣E[Zc]

E[Z0]
− 1
∣∣∣ ≤ ||∆||∞ (5.50)

Which implies that

ε
E[Zc]

E[Z0]
≥ ε(1− ||∆||∞) (5.51)

From Equation 5.49:

|Zc − E[Zc] | > εE[Zc] =⇒
∣∣∣ Zc
E[Z0]

− E[Zc]

E[Z0]

∣∣∣ > ε(1− ||∆||∞) (5.52)

Let E be the event corresponding to the right hand side. Then:

P(E) ≤ P(|Zc − E[Zc]| > εE[Zc])

≤ α
(5.53)

where the second line is obtained from Equation 5.31. We recall that ε is an arbi-
trarily small real number, and

α = exp

(
−

1
2
ε2n2

nΛ + 1
3

√
Λεn

)
(5.54)
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Hence, with (high) probability 1− α:

−ε(1− ||∆||∞) +
E[Zc]

E[Z0]
≤ Zc

E[Z0]
≤ E[Zc]

E[Z0]
+ ε(1− ||∆||∞)

≤ E[Zc]

E[Z0]
+ ε(1 + ||∆||∞)

(5.55)

Again, using:

1− ||∆||∞ ≤
E[Zc]

E[Z0]
≤ 1 + ||∆||∞ (5.56)

We finally have with probability 1− α:

(1− ε)(1− ||∆||∞)E[Z0] ≤ Zc ≤ (1 + ε)(1 + ||∆||∞)E[Z0] (5.57)

ε is arbitrarily small, and we saw that ||∆||∞ ≤ 10−1, for a domain close to a sphere
of radius R ≤ 2. Setting γ = ||∆||∞, this concludes the proof.

Therefore, the condition of the concentration function in (Arora et al., 2016a,
Section 5.1) does not appear as a significant quality test for word vectors, since it
holds for any context vector close to a sphere a radius R ≤ 2. Nevertheless, this
concentration property is necessary to prove the main theoretical results of (Arora
et al., 2016a). These results were advertised as the theoretical foundations for the
relation between linear structure of word vectors and semantic analogies. In order
to complete our study in this direction, we shall propose in the next sections an
empirical analysis of existing embeddings with regard to analogies and parallelism
of vector differences.

5.4 Experiments with Existing Representations

In this section, we present a list of experiments we ran on the most common used
word representations.

5.4.1 Sanity Check

The exact meaning of the statement that analogies are geometrically characterized
in word vectors is as follows (Mikolov et al., 2013b; Pennington et al., 2014). For
each quadruplet of words involved in an analogy (a, b, c, d), consider the word
vector triplet (va, vb, vc), and the difference vector xab = vb − va. Then we run
Principal Component Analysis (PCA, (Jolliffe, 2011)) on the set of word vectors to
get representations in R2. Find the k nearest neighbours of vc + xab in the word
embedding set (with k small). Finally, examine the k words and choose the most
appropriate word d for the analogy a : b = c : d.
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In order to verify this geometric on some quadruplets, we ran this proto-
col in many dimensions with a corpus of analogies obtained from (Mikolov et al.,
2013a). We display the results which seem to verify property 5.1 obtained in Fig-
ure 5.3, which suggest its validity, and motivating a more thorough analysis in this
Chapter.

(a) word2vec (b) glove

(c) fastText

Figure 5.3 – Sanity check run on some analogies obtained from Google analo-
gies (Mikolov et al., 2013a). The x and y axis corresponds to 2D dimensional output
ot the PCA. Each color represents 4 words implied in an Analogy.

5.4.2 Analogies Protocol

In this subsection we show that the protocol we described in Sect. 5.4.1 for finding
analogies does not really work in general. We ran it on 50 word triplets (a, b, c) as
input, with k = 10 in the k-NN stage, but only obtained 35 correct valid analogies,
namely those in Fig. 5.4.
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’Athens:Greece=Baghdad:Iraq’, ’Ottawa:Canada=Islamabad:Pakistan’
’Ashgabat:Turkmenistan=Athens:Greece’, ’Beirut:Lebanon=Bern:Switzerland’,

’Bujumbura:Burundi=Conakry:Guinea’, ’Doha:Qatar=Hanoi:Vietnam’,
’his:her=brothers:sisters’, ’easy:easier=simple:simpler’,
’low:lower=tight:tighter’, ’strong:stronger=bad:worse’,

’cold:coldest=low:lowest’, ’discover:discovering=enhance:enhancing’,
’play:playing=sing:singing’, ’think:thinking=implement:implementing’,
’Cambodia:Cambodian=Croatia:Croatian’, ’Greece:Greek=Italy:Italian’,
’flying:flew=jumping:jumped’, ’looking:looked=screaming:screamed’,

’selling:sold=taking:took’, ’thinking:thought=flying:flew’,
’child:children=snake:snakes’, ’mouse:mice=computer:computers’,

Figure 5.4 – Some valid analogies following Protocol 5.4.2 obtained with Google
Analogies Dataset. The notation i:j=k:l means that the semantic relation between
i and j is similar to the one between k and l.

5.4.3 Turning the Protocol into an Algorithm

The protocol described in Sect. 5.4.2 is termed “protocol” rather than “algorithm”
because it involves a human interaction when choosing the appropriate word out
of the set of k = 5 nearest neighbours to vc + (vb − va). Since natural language
processing tasks usually concern sets of words of higher cardinalities than humans
can handle, we are interested in an algorithm for finding analogies rather than a
protocol. In this section we present an algorithm which takes the human decision
out of the protocol sketched above. Then we show that this algorithm has the same
shortcomings as the protocol, as shown in Sect. 5.4.2.

We first remark that the obvious way to turn the protocol of Sect. 5.4.2 into
an algorithm is to set k = 1 in the k-NN stage, which obviously removes the need
for a human choice. If we do this, however, we cannot even complete the famous
“king:man=queen:woman” analogy: instead of “woman”, we actually get “king”
using Glove embeddings.

Following our first definition in Equation (5.1), we instead propose the no-
tion of strong parallelism in Equation (5.58):

||vd − vc − (vb − va)|| ≤ τ min(||vb − va||, ||vd − vc||) (5.58)

where τ is a small scalar. Equation (5.58) is a sufficient condition for quasi-parallelism
between vd − vc and vb − va. The algorithm is very simple: given quadruplets
(a, b, c, d) of words, tag the quadruplet as a valid analogy if Equation (5.58) is satis-
fied. We also generalize the PCA dimensional reduction from 2D to more dimen-
sionalities. We ran this algorithm on a database of quadruplets corresponding to
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Table 5.1 – Analogies from Equation (5.58), F1-score

Dimension
word2vec glove fastText

τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2

2 1.08 % 5.17 % 3.34 % 12.93 % 0.97 % 4.92 %
10 0.00 % 0.00% 0.00 % 0.09 % 0.00 % 0.00%
20 0.00 % 0.00 % 0.00 % 0.00% 0.00 % 0.00%
50 0.00 % 0.00% 0.00 % 0.00% 0.00 % 0.00%

100 0.00 % 0.00 % 0.00 % 0.00% 0.00 % 0.00%
300 0.00 % 0.00 % 0.00 % 0.00% 0.00 % 0.00%

valid analogies (Google analogies, cf. Description 2.7), and obtained the results in
Table 5.1. The fact that the results are surprisingly low was one of our initial mo-
tivations for this study. The failure of this algorithm indicates that the geometric
relation Equation (5.1) for analogies may be more incidental than systematic.

5.4.4 Supervised Classification
The failure of an algorithm for correctly labelling analogies (i.e attributing False or
Wrong to a quadruplet of words) based on Equation (5.58) (see Sect. 5.4.3) does not
necessarily imply that analogies are not correctly labeled (at least approximately)
using other means. In this section we propose a very common supervised learning
approach with a simple k−NN.

More precisely, we used a 5−NN to predict analogies using vector differ-
ences, following Equation (5.1). If (a, b, c, d) is an analogy quadruplet, we use the
representation:

xabcd = (vb − va, vd − vc) (5.59)

to predict the class of the quadruplet (a, b, c, d) (either no relation or being the cap-
ital of, plural, etc). If the angles between the vectors vb − va and vd − vc - which
is directly related to parallelism - contain important information with respect to
analogies, this representation should yield a good classification score. The dataset
used is composed of 13 types of analogies, with thousand of examples in total2.
We considered 1000 pairs of words sharing a relation, with 13 labels (1 to 13, re-
spectively: capital-common-countries and capital-world (merged), currency, city-
in-state, family, adjective-to-adverb, opposite, comparative, superlative, present-
participle, nationality-adjective, past-tense, plural, plural-verbs), and 1000 pairs of

2Link to repository
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Table 5.2 – Multi-class F1 score classification of analogies based on Equation 5.59
(5-nearest neighbors)

Dimension word2vec glove fastText

2 62.47 % 69.30 % 68.74 %
10 86.44 % 85.62 % 90.40 %
20 74.74 % 77.45 % 80.57 %
50 55.11 % 61.24 % 55.30 %

100 50.57 % 51.26 % 50.56 %
300 51.12 % 51.72 % 49.98 %

words sharing no relation (label 0). In order to generate different random quadru-
plets, we ran 500 simulations. Average results are in Table 5.2.

The results in Table 5.2 suggest that the representations obtained from Equa-
tion (5.59) allow a good classification of analogies in dimension 10 when Euclidean
geometry is used with a 5−NN. However, in the remaining dimensions, vector dif-
ferences do not encode enough information with regards to analogies.

5.5 Parallelism for Analogies with Graph
Propagation

In this section we present an algorithm which takes an existing word embedding
as input, and outputs a modified word embedding for which analogies correspond
to a notion of parallelism in vector differences. These new word embeddings will
be later used (see Sect. 5.6) to contradict the hypothesis that analogies correspond-
ing to parallel vector differences does not make the word embedding better for
common classification tasks.

Let r be a strictly positive integer and let us consider a family of semantic
relations (Rk|1 ≤ k ≤ r). For instance, this family can contain the plural or su-
perlative relation. One of the relations Rk creates the analogy a : b = c : d, if and
only if: aRkb and cRkd, i.e semantic relations create quadruplets of analogies in the
following sense:

(a, b, c, d) is an analogy quadruplet ⇐⇒ ∃k, aRkb and dRkc (5.60)

A sufficient condition for Relation (5.1) to hold for a quadruplet is for each
pair a, b in the relationRk:
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∃µk ∈ Rd , aRkb ⇐⇒ vb = va + µk (5.61)

Equation (5.61) can be generalized to other functions than summing a con-
stant vector, namely it suffices that

∃fk : Rd −→ Rd , vaRkvb ⇐⇒ vb = fk(va) (5.62)

Other choices of fk might be interesting, but are not considered for the re-
maining of this Chapter.

In order to generate word vectors satisfying Equation (5.61), we propose a
routine using propagation on graphs. The first step consists in building a directed
graph of words (V,E) encoding analogies:

(i, j) ∈ E ⇔ ∃k (iRkj) (5.63)

Therefore, we can label each edge of the type k of analogy involved (namely
being the capital of, plural, etc). Then, we use a graph propagation algorithm (Al-
gorithm 6) involving Equation (5.61) relation. We remark that propagation requires
initial node representations.

Algorithm 6: Graph propagation for analogies
Input: List of relations, vectors µ1, ..., µr ∈ Rd

Output: New representations
1 Build graph G of analogies (Equation (5.63));
2 Extract connected components C1, ..., Cc from G;
3 for j = 1→ c do
4 Select source node s1 ∈ Cj ;
5 vs1 ← Generate initial representation of s1;
6 s2, ..., s|Cj | ← Breadth first search from s1;
7 for r = 2→ |Cj| do
8 k ← index of relation between sr and sr+1;
9 vsr+1 = vsr + µk;

10 Return (vi | 1 ≤ i ≤ |G|)

Proposition 5.2. Let G the graph of analogies. If G is a forest, then the representations
obtained with Algorithm 6 satisfy Equation (5.61).

Proof. A forest structure implies the existence of a source node s for each com-
ponent in G. For each component, every visited node with breadth-first search
starting from s has only one parent, so the update defined Line 9 in Algorithm 6
defines a representation that satisfies Equation (5.61) for the current node and its
parent.
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However, if G is not a forest, words can have several parents. In this case,
if (parent1, child) is visited before (parent2, child), our graph propagation method
will not respect Equation (5.61) for (parent1, child). This is the case with homonyms.
For example, Peso is the currency for Argentina, but the currency for Mexico too.
In practice, we selected µ1, ..., µr as a family of independent vectors in Rd. We
found better results in our experiments when ∀i, ||µi|| ≥ d. This can be explained
by the fact that the vectors of relations needs to be non negligible when compared
to difference of the words vectors.

This method allows to construct representations of words which almost per-
fectly respect the analogies. A priori, this constitutes a strong and useful prop-
erty for many tasks in language processing. However, the main limitation of this
method is its dependence on a set of analogies and therefore cannot be general-
ized to new ones (the dataset of Google Analogies we consider is not exhaustive).
This method nonetheless allows us to discuss the importance of this property in
the next section with regard to text classification tasks.

5.6 Experiments with New Embeddings

In this section we present results of the experiments described in Sec. 5.4 with the
updated embeddings obtained with the propagation Algorithm 6. We call X++ the
new word embeddings obtained with the propagation algorithm from the word
embeddings X.

5.6.1 Classification of Analogies

Analogies From “parallelism”:

As in Section 5.4.3 using Equation (5.58). Results are in Table 5.3. F1-scores are
almost perfect (by design) in all dimensions.

With Supervised Learning:

We conduct similar experiments to those described in Section 5.4.4: 1000 pairs of
words sharing a relation with 13 labels (1 to 13), and 1000 pairs of words sharing
no relation (label 0). Results are in table 5.4.

5.6.2 Text classification: comparison using k-NN

We used three datasets: one for binary classification (Subjectivity) and two for
multi-class classification (WebKB and Amazon). For reasons of time computation

135



CHAPTER 5 - GEOMETRY, WORDS AND REPRESENTATIONS

Table 5.3 – Analogies from Equation (5.58) with updated embeddings, F1-score

Dimension
word2vec++ glove++ fastText++

τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2

2 96.80 % 96.50 % 97.92 % 97.15 % 98.15 % 97.61 %
10 98.48% 98.54 % 97.88 % 97.88 % 98.25 % 98.31 %
20 98.12 % 98.18 % 98.14 % 98.43 % 96.56 % 96.56%
50 96.80 % 96.80% 98.28 % 98.36 % 98.17 % 98.17%

100 98.08 % 98.08 % 98.19 % 98.19 % 98.06 % 98.06 %
300 98.41 % 98.41 % 98.40 % 98.40 % 98.30 % 98.30 %

Table 5.4 – Multi-class F1 score on classification of analogies based on Equation 5.59
with updated embeddings (5-nearest neighbors)

Dimension word2vec++ glove++ fastText++

2 99.73 % 99.44 % 99.31 %
10 99.75 % 99.36 % 99.64 %
20 99.80 % 99.52 % 99.94 %
50 99.56 % 99.63 % 99.49 %

100 99.89 % 99.54 % 99.42 %
300 99.40 % 99.86 % 99.45 %
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Table 5.5 – Text classification (d = 20), F1-score

Subject. WebKB Amazon

word2vec 81.69 % 71.50 % 65.20 %
word2vec++ 81.69 % 71.50 % 65.20 %

glove 81.02 % 71.00 % 63.60 %
glove++ 80.38 % 72.00 % 61.00 %
fastText 82.14 % 70.50 % 60.00 %

fastText++ 81.57 % 72.00 % 56.40 %

we used a subset of WebKB and Amazon datasets (500 samples). The implemen-
tation and datasets are available online3. Results are in Table 5.5.

5.7 Conclusion

In this chapter, we discussed some properties of a generative model for words vec-
tors and the well-advertised “geometrical property” of word embeddings w.r.t. ana-
logies. Firstly, we discussed a property of a partition function, and proved that this
function is almost constant whenever the discourse vectors are close to a sphere of
radius ≤ 2, which suggests that the intrinsic quality of word vectors cannot be
tested against this property, since it is only a weak necessary condition of the stud-
ied generative model.

Second, by using a corpus of analogies, we showed that the related geomet-
ric property does not hold in general, in two or more dimensions. We conclude
that the appearance of this geometrical property might be incidental rather than
systematic or even likely.

This is somewhat in contrast to the theoretical findings of (Arora et al., 2016a).
One possible way to reconcile these two views is that the concentration of mea-
sure argument in (Arora et al., 2016a, Lemma 2.1) might yield high errors in vec-
tors spaces having dimension as low as R300. Using very high-dimensional vector
spaces might conceivably increase the occurrence of almost parallel differences for
analogies. By the phenomenon of distance resolution (Beyer et al., 1999), however,
algorithms based on finding closest vectors in high dimensions require computa-
tions with ever higher precision when the vectors are generated randomly. More-
over, the model of (Arora et al., 2016a) only warrants approximate parallelism. So,
even if high dimensional word vectors pairs were almost parallel with high prob-

3Link to repository
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ability, verifying this property might require considerable computational work re-
lated to floating point precision.

By creating word embeddings on which the geometrical property is enforced
by design, we also showed empirically that the property appears to be irrelevant
w.r.t. the performance of a common information retrieval algorithm (k-NN). So,
whether it holds or not, unless one is trying to find analogies by using the prop-
erty, is probably a moot point. We are obviously grateful to this property for the
(considerable, but unscientific) benefit of having attracted some attention of the
general public to an important aspect of computational linguistics.
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6
Distance Geometry
and Representations

The content of the previous chapter focused on two main discussions.
First, we studied a geometrical conjecture for a family of word vectors wh-

ich stated that quadruplets of words implied in semantic analogies often generate
almost parallel lines. We discussed this property in details and show with several
experiments that it does not hold in general, in two or more dimensions. Further-
more, we showed that this property does not allow to classify analogies with high
precision, suggesting that the appearance of this geometrical property might be
rather incidental rather than systematic.

Second, we presented the attempts to provide theoretical foundations of this
property. By considering the probabilistic generative model proposed by (Arora
et al., 2016a), we discussed an essential property of these foundations, called the
concentration of the partition function. This property concerns the concentration of
this partition function around its mean (with respect to the discourse vector). This
means that with high probability, the partition function remains almost constant
when the discourse vector varies. In our study, we proved that if the word vectors
are generated uniformly in a centered cube, and the discourse vectors remain close
to a sphere of radius ≤ 2 (which is one of the assumption made in (Arora et al.,
2016a)), the partition function remains almost constant around its mean, regardless
the other asymptotic properties of the discourse vectors, which seemed to play an
important role in the aforementioned model.

Therefore, our conclusions were two-fold. First, the assumptions implying
geometrical relations for analogies are not verified in practice. Either the conjecture
of (Pennington et al., 2014) (stated in Equation 5.4) is false or the assumptions of
the generative model are not verified empirically. Second, the concentration of
partition functions discussed in Section 5.3 does not seem a good evaluation of the
quality of word vectors.

Besides, many methods construct word embeddings by solving an uncon-
strained optimization problem (either maximizing a likelihood or minimizing a
misfit of co-occurrence data) via Stochastic Gradient Descent (Pennington et al.,
2014; Mikolov et al., 2013a; Bojanowski et al., 2017; Peters et al., 2018; Devlin et al.,
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2018). Traditionally, these optimization formulations arise either from word co-
occurrence based models (e.g word2vec, GloVe, fastText discussed in Chapter 5), or
encoders combined with a masked language model (e.g BERT (Devlin et al., 2018)).
In this chapter we propose word embedding methods based on the Distance Ge-
ometry Problem (DGP): find object positions based on a subset of their pairwise
distances. Considering the empirical Pointwise Mutual Information (PMI) as an
inner product approximation, we discuss two algorithms to obtain approximate
solutions of the underlying Euclidean DGP on large instances. The resulting al-
gorithms are considerably faster than state-of-the-art algorithms such as GloVe,
fastText or BERT, with similar performance for classification tasks. The main ad-
vantage of our approach for practical use is its significantly lower computational
complexity, which allows us to train representations much faster with a negligible
quality loss, a useful property for domain specific corpora.

6.1 Introduction

Context and Motivations

In recent years, the most successful algorithms for Natural Language Processing
(NLP) tasks (e.g. text classification, machine translation, named entity recognition)
rely on vector representations of words and sentences constructed with a variety of
approaches.First, following the first vector space models based on index terms (TF-
IDF, Software: SMART (Salton, 1971a), Lucène (Hatcher and Gospodnetic, 2004)),
co-occurrence based models in the early 2010s improved empirical performance
for NLP tasks, motivating a geometric conjecture relating analogies on word pairs
to proximity between the corresponding word vector differences, as advertised
in (Pennington et al., 2014). This conjecture was studied in (Arora et al., 2016a)
using a connection between scalar products of word vectors and pointwise mu-
tual information (PMI). Despite the uncertain nature of the assumptions support-
ing this conjecture, as discussed in (Khalife et al., 2019a), the property connecting
scalar product of word vectors and PMI hold with high probability at infinity (i.e
as the vocabulary size becomes sufficiently large). These properties popularized
several representations obtained with methods such as word2vec, Glove or other
similar co-occurrence based models (Mikolov et al., 2013c; Pennington et al., 2014;
Arora et al., 2017).

Then, to overcome polysemy caused by static word embeddings, the family
of contextual representations (for which a word can be attributed different vectors,
depending on its context) have gained momentum, also due to the increased use of
deep learning methods. For instance, ELMo (Peters et al., 2018), and BERT (Devlin
et al., 2018) representations are based on bidirectional encoders combined with
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masked language models incorporating supplementary information such as po-
sition, segment (subword information) and improved significantly the empirical
performance for a variety of NLP tasks.

Most of these constructions rely on an unconstrained minimization of a loss
function using stochastic gradient descent. In this chapter we propose a new
method for constructing word vectors, based on Euclidean Distance Geometry.
The fundamental problem of Distance Geometry (DG) consists in identifying point
positions from information about a subset of their pairwise distances Liberti et al.
(2014). The DG literature provides several tools to address this problems in many
situations.

More specifically, we use DG based methods in order to develop faster word
vectors construction algorithms. Furthermore, we show empirically that such word
vectors behave well on extrinsic tasks Melamud et al. (2016) such as text classifica-
tion.

This Chapter is organized as follows. Section 6.2 briefly reviews some DG
concepts useful to devise our algorithms. Section 6.3 describes the word co-occurrence
model and introduce DG methods for word embeddings. These methods are com-
pared to the state-of-the-art in terms of the training model and computational com-
plexity. Section 6.5 shows the performance of the methods on intrinsic and text
classification tasks. Conclusions are given in Section 6.6.

6.2 Distance geometry

The Distance Geometry problem (DGP, Liberti et al. (2014)) can be defined as fol-
lows:

Problem 3 (Distance Geometry Problem (DGP)). Given an integer K > 0

a integer, and a simple undirected graph G = (V,E) whose edges are weighted
by a positive function d : E → R+, determine whether there is a function x :
V → RK such that:

∀{u, v} ∈ E, ||x(u)− x(v)|| = d({u, v}) (6.1)

where ‖.‖ denotes the Euclidean norm, vi := v(i) ∈ RK , for all i ∈ V , and
dij := d({i, j}), for all {i, j} ∈ E. Let us denote the number of vertices by n =

|V| and the inner product by 〈·, ·〉. A solution for Equation (6.1) is called valid
realization.

The DGP is known to be NP-Hard Saxe (1979). The most relevant polynomial
time case is that of complete graphs, which correspond to fully defined Distance
Matrices D = (d2

ij). We say that D is a Euclidean Distance Matrix (EDM) when
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Equation (6.1) admits a solution for some dimension K. In this case we can solve
Equation (6.1) or determine its infeasibility by a process similar to Classic Multidi-
mensional Scaling and Principal Components Analysis (PCA) (Vidal et al., 2016),
and by Build-p algorithms such as those presented in (Dong and Wu, 2002a, 2003)
when the distances are all provided with high accuracy.

Let 1 denote the vector of ones of appropriate dimension (the vector of ze-
ros will be refered as 0). For a square matrix Z, diag(Z) denotes a vector on the
diagonal elements of Z. From the relation between inner product and Euclidean
norm:

‖vi − vj‖2 = −2〈vi, vj〉+ ‖vi‖2 + ‖vj‖2. (6.2)

Assuming that
∑

i vi = 0, we can define a linear isomorphism K from the space of
symmetric centered matrices SC = {Y ∈ Rn×n : Y = Y >, Y 1 = 0} to the space
of symmetric null diagonal matrices SH = {Z ∈ Rn×n : Z = Z>, diag(Z) = 0},
such that D = K(G) whenever Dij = ‖vi−vj‖2 and Gij = 〈vi, vj〉 (Al-Homidan and
Wolkowicz, 2005). Such a linear transformation is defined by

K(G) = −2G+ 1diag(G)> + diag(G)1>.

Its inverse is given by

K−1(D) = −1

2
JDJ (6.3)

where J = I − (1/n)11> is known as centering matrix.
Due to this one-to-one correspondence, when all pairwise distances are avail-

able, the problem of finding v : V → RK such that ∀ {i, j}, ‖vi − vj‖2 = Dij is
equivalent to finding v : V → RK such that ∀ {i, j}, 〈vi, vj〉 = Gij .

A remarkable result in distance geometry is Schoenberg’s theorem Schoen-
berg (1935); Gower (1982); Dokmanic et al. (2015), which states that D is Euclidean
if and only if G = (−1/2)JDJ is positive semidefinite (PSD). Moreover, if G is
PSD, then it is a genuine Gram matrix (matrix of inner products). Let r = rank(G).
A solution for Equation (6.1) is given by V =

√
ΛrQ

>
r (cf. Definition 2.4) where

G = QΛQ> is the eigendecomposition of G, Λr is a r × r diagonal matrix with the
top r eigenvalues of G, and the columns of Qr contain the corresponding eigen-
vectors. If K ≥ r (we remind that K is the dimension of the DGP problem 3),
V is a solution of Equation (6.1). Else, if K < r, we can choose among the PSD
matrices X of rank ≤ K, one that minimizes ‖X − G‖F where X is the matrix
to be found. A solution is given by QKΛKQ

>
K , where ΛK is diagonal with top K

eigenvalues of G and QK ∈ RK×n contains the corresponding eigenvectors in its
columns. Thus, an approximate realization for Equation (6.1), in dimension K, is
given by V =

√
ΛKQ

>
K .

Last, but not least, if D is not an EDM (e.g. because some dij come from a
noisy measurement), then G is not PSD. Still, a solution of Problem 3 in the least-
squares sense is provided by V + =

√
Λ+
KQ

>
K , where Λ+

K = max(ΛK , 0), where the
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max(·, ·) is component wise. The approximate realization V + is a solution of the
following optimization problem:

min
V ∈RK×n

‖V >V −G‖2
F =

∑
i

∑
j

(〈vi, vj〉 −Gij)
2

(6.4)

where vi is the i-th column of V = (v1 v2 . . . vn).
Since this approach relies on spectral decomposition of a matrix of order n,

in general, its complexity is bounded by O(n3) (Golub and Van Loan, 1996). We
refer to (Demmel et al., 2007) for better estimates.

6.3 Methodology

A natural question, which is preliminary to the use of DG methods, is whether
there exists a distance between words that measures their “semantic difference”.
Using DG methods, such a distance, even if only partially defined, would yield a
set of word vectors satisfying the property:

(A) Two words are semantically correlated if their corresponding vectors are close.

Here, semantic correlation can be interpreted loosely (e.g synonymy, antonym, or
more complicated forms of semantic correlation). However, a function verifying
the property (A) may not satisfy the distance axioms. Furthermore, as discussed
in Globerson et al. (2007), co-occurrence rates also do not satisfy metric constraints.
It is more reasonable to consider the statistical nature of the co-occurrence data Tur-
ney and Pantel (2010), and to interpret observed object pairs i and as drawn from
a joint distribution that is determined by distances or inner products between vec-
tors of the underlying low-dimensional embedding.

In this work, similarly to Globerson et al. (2007), we consider the following
model:

p(i, j) ∝ p(i)p(j)e〈vi,vj〉 (6.5)

where p(i, j) is the probability of finding words i and j in the same window in a
corpus (see Section 6.3.1), p(i), p(j) are the marginal probabilities, and vi, vj ∈ RK

are the corresponding word vectors. This model allows us to devise an approxi-
mation for the inner product based on the PMI. It then makes it possible, using DG
methods, to construct the vectors to be assigned to words.

6.3.1 Co-occurrences and PMI estimator

By definition, a corpus is a set of documents. Each document is a sequence of
elements called tokens whose values are words. The set of all distinct words in
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the corpus is called vocabulary. We consider a window of w consecutive tokens
which slides over a document. By convention, windows do not overlap document
boundaries. Let W be the number of windows in the corpus and n the vocabulary
size. We denote by B ∈ RW×n a matrix whose columns are binary vectors Bi ∈
{0, 1}W , for i = 1, . . . , n with components Bi

` such that:

Bi
` =

{
1 if word i appears in window `

0 otherwise
(6.6)

We define the symmetric n × n matrix C = B>B as the matrix of word-word co-
occurrence counts. Notice that Cij = 〈Bi, Bj〉 is the number of windows in which
words i and j co-occur and Cii is the number of windows in which word i appears.
Furthermore, the vectors (Bi)1≤i≤n are sparse and can be efficiently computed in
both time and memory. Recall that p(i, j) is the probability of words i and j appear-
ing together in a window in a corpus and p(i) =

∑
j p(i, j) and p(j) =

∑
i p(i, j) the

marginal sums. Following Levy and Goldberg (2014), we use an information theo-
retic measure, the pointwise mutual information PMI(i, j) = log(p(i, j)/(p(i)p(j)))

as a measure of association between words Church and Hanks (1990).
Approximating probabilities by relative frequencies, we have

∀{i, j}, p(i, j)

p(i)p(j)
≈ Cij∑

k Ckj
∑

k Cik

∑
k,l

Ckl =: ρij (6.7)

where Cij is an entry of the co-occurrence matrix. A natural definition for the
empirical PMI matrix is the matrix M whose entries are Mij = log ρij . However,
notice that entries of M corresponding to zero co-occurrences Cij = 0 are not well
defined. An alternative, commonly used in NLP Church and Hanks (1990); Levy
and Goldberg (2014), is to consider the corrected empirical PMI matrix M0, where

M0
ij =

{
log ρij, Cij > 0

0, Cij = 0
(6.8)

which is, moreover, a sparse matrix. A variant of Equation (6.8), also considered
in the literature Levy and Goldberg (2014), is the Positive PMI (PPMI): M+ =

max(M, 0).
As we shall see in Section 6.3.6, many methods for word embeddings em-

ploy PMI(i, j) as a surrogate model for the inner product 〈vi, vj〉, at least implicitly
Levy and Goldberg (2014); Arora et al. (2016a); Hashimoto et al. (2016). Since there
is no evident reason for assuming ∀i < j; 〈vi, vj〉 ≥ 0, and, in view of model in
Equation (6.5), we choose Equation (6.8) instead of the PPMI matrix.
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6.3.2 Noisy distances and the positive definite assumption

In distance geometry, the resolution algorithms are sensible to noisy distances. The
impact of the noise with respect to the quality of the approximated solutions is
however difficult to establish precisely in all generality. Some results are avail-
able for very small errors in the distances and when the framework is rigid, which
means that the solution of the given problem cannot be perturbed locally by small
transformations others than translations or rotations(Anderson et al., 2010).

The quality of the solutions of algorithms depends a priori on a very high
precision measurement. In the application we are interested in this chapter, the
distances (or equivalently, the scalar products) are noisy in the sense that they
might not exactly correspond to distances between low-dimensional vectors. Con-
sequently, we cannot ensure that the PMI matrices are positive definite. In order
to provide an order of magnitude of this approximation, we computed some indi-
cators using the following procedure:

(i) First, we extract submatrices corresponding to some k-cores of the underly-
ing graph of the co-occurence matrix (seen as the adjacency matrix). A k-core
(where k ∈ N∗) represents a densely connected subgraph where the induced
degree are at least k (cf definition 2.1). Therefore, the k-cores represent con-
nected subgraphs of words. The reason for considering submatrices are due
to the important computational time to compute the eigenvalues of large ma-
trices (the total PMI matrix has 81, 653 rows and columns).

(ii) We compute the set of eigenvalues of the corresponding sub-PMI matrix, on
the corpus used for our experiments in Section 6.5.

ratio =

∑
λ∈Sp(M),λ>0

λ2

∑
λ∈Sp(M)

λ2

The results are in Figure 6.1. For submatrices of size smaller than 10000, the ratio of
positive eigenvalues is greater than 90%, and the evolution suggests a ratio greater
about 60% for the complete PMI matrix using linear regression on the linear regime
k ≥ 1000.

6.3.3 Geometric Build-Up Algorithm

In Section 6.2, we saw that if all pairwise squared distances d2
ij are available, then

we can solve Equation (6.1) by computing an eigendecomposition in O(n3) opera-
tions, where n is the number of points. In fact, it is sometimes possible to do better
than O(n3). If the graph G admits a vertex order such that the first m ≥ K + 1
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Figure 6.1 – Evolution of the ratio of positive eigenvalues. The x-axis represents the
value of the k-core considered. The y-axis represents the ratio (in Euclidean norm)
of the positive eigenvalues of the corresponding PMI submatrix.

vertices form a clique and for all other vertices i > m, vertex i is adjacent to at least
K + 1 (with a small language abuse, we say that he has K + 1 adjacent predeces-
sors), then it is possible to find a solution for the corresponding DGP in linear time
(Dong and Wu, 2002b).

For i > m, let

δ(i) ⊂ U(i) = {j ∈ V : {j, i} ∈ E ∧ j < i}

be a subset, of sizeM ≥ K+1, of the set U(i) of adjacent predecessors of i, with “<”
being defined by the vertex order. Let us call vertices in δ(i) by reference vertices.

The first m vertices can be embedded first using the process described in
Section 6.2, leading to a cost O(m3). Assuming |δ(i)| = K + 1, for every i > m,
then, following the vertex order, the position of every other vertex i = m+ 1, . . . , n

can be found by solving the quadratic system:

∀j ∈ δ(i), ‖vj − vi‖2 = d2
ji, (6.9)

where δ(i) = {j1, . . . , jK+1} and vj1 , . . . , vjK+1
are the position vectors of K + 1

adjacent predecessors of vertex i. It is not hard to show that when Equation (6.9)
admits a solution, it coincides with the one of a K×K linear system Ax = b, where
A is nonsingular, provided vj1 , . . . , vjK+1

are affinely independent. See (Dong and
Wu, 2002b; Liberti et al., 2014) for further details.

This approach is known in the DG literature as Geometric Build-Up (GBU)
(Dong and Wu, 2002b; Wu and Wu, 2007). The total cost of GBU is given by
O(m3) + (n − m)O(K3), if the involved matrices show no special structure, and
therefore is linear with respect to n if m and K are constant.
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In the following, we discuss our Distance Geometry methods for word em-
beddings, which are variants of this idea.

Geometric build-up with inner products. If all pairwise distances between ver-
tices in δ(i) ∪ {i} = {j1, . . . , jM , i}, with M ≥ K + 1, are known, then, in view of
Equation (6.2), the system (6.9) is equivalent to

∀j ∈ δ(i), 〈vj, vi〉 = Gij, (6.10)

where Gij denotes an entry of the Gram matrix G which, if not directly available,
can be computed from Equation (6.3) applied to a submatrix of D containing the
squared distances corresponding to the subset of vertices δ(i) ∪ {i}.

Notice that Equation (6.10) is again a linear system of the form Ax = b, but
now, with A> = (vi1 . . . viM ) ∈ RK×M and b = (Gj1,i, . . . , GjM ,i)

>.

Fixed references, lower cost. Let us suppose that the reference vertices for every
vertex i > m ≥ K + 1 are fixed as δ(i) = {1, . . . , K + 1, . . . ,m}. In this case, the
linear system that needs to be solved for each i > m is

〈vj, vi〉 = Gij, j = 1, . . . ,m

and, although the right hand side vector b = (G1,i, . . . , Gm,i)
> changes in function

of i, the coefficient matrix A> = (v1 . . . vm) is the same for every i > m. Thus,
concerning the solution of linear systems Avi = bi, for i = m + 1, . . . , n, we can
factor the matrix A ∈ Rm×K only once and exploit its factorization to actually solve
triangular systems of order K for each i > m.

Recall that the least-squares solution of an overdetermined, full-rank system
of linear equations Ax = b, i.e., x that minimizes ‖Ax− b‖2, is given by the solution
of the triangular systemRx = Q>b, whereA = QR, withR ∈ RK×K andQ ∈ Rm×K

is the “economy size” QR decomposition of A.
This scheme leads to a cost ofO(m3+(n−m)K2), where the first submatrix of

G of orderm is embedded using spectral decomposition (see Section 6.2), followed
by QR decomposition ofA = (v1 . . . vm)>, and the positions of the remaining n−m
vertices is found by solving the triangular systems Rx = Q>bi, for i = m+ 1, . . . , n.

6.3.4 Vertex Ordering Problem
The method presented in Section 6.3.3 assumes that vertices of V can be ordered in
a particular way. We remind our reader the definition of a lateration order:

Definition 6.1. Let K be an integer > 0 and let G be a graph. A vertex order of G is called
(K + 1)-lateration order1. if:

1a term that comes from trilateration which is used to find positions in dimension K =

2.(Cassioli et al., 2015)
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1. the first K + 1 vertices form a clique;

2. for every vertex i > K + 1, vertex i has at least K + 1 adjacent predecessors.

These orders can be found in polynomial time by a greedy algorithm (Lavor
et al., 2012a) which tries to grow a vertex order from a given initial (K + 1)-clique.

Usually DGP graphs arising from many problems in practice are quite sparse
and commonly the set of reference vertices δ(i) changes for each i > m ≥ K + 1.

However, when the underlying graph G is complete, any vertex order is in
fact a (K+1)-lateration order. Fortunately this is our case because we know all the
entries of the co-occurrence (or empirical PMI) matrix, from which we obtain the
adjacency information, and then G is complete. We recall our reader that sparsity
of the PMI matrix does not imply distances are missing: indeed, a 0 coefficient
in the matrix does correspond to some the information that the corresponding
pair of words do not appear together in a common context. Thus, we are able
to apply GBU with fixed references discussed in the previous subsection, where
δ(i) = {1, . . . ,m}, for every i > m ≥ K + 1.

Therefore, in the GBU-based methods discussed in this chapter, the proposed
vertex (word) orderings are aimed simply to improve the quality of the word em-
beddings. These orderings will determine which entries of the Gram matrix G are
taken into account in the GBU method (here, we make the approximation that the
PMI matrix is indeed a Gram matrix). Defining a specific vertex order whereas
any vertex would allow to obtain solution has also been explored, namely in the
case of Multidimensional Scaling (Gramacho et al., 2016). Thus, in terms of a loss
function, the vertex order determines the weight of the terms (〈vi, vj〉−Gi,j)

2 in the
objective: 1 for edges {i, j} used in the sequential build-up process and 0 for the
others:

min
V ∈RK×n

m∑
i=1

m∑
j=i+1

(〈vi, vj〉 −Gij)
2 +

n∑
i=m+1

∑
j∈δ(i)

(〈vi, vj〉 −Gij)
2, (6.11)

where m ≥ K + 1 is the size of the initial clique. We remark that, when |E| =

n(n− 1)/2 and δ(i) = U(i), problem (6.11) is equivalent to (6.4).

6.3.5 Divide and Conquer Algorithm

Let G be a Gram matrix of size n × n. The divide and conquer method consists in
the two following steps:

• Divide: consider submatrices Gi (for i ≤ P ) of G, each having size ni×ni, such
that the following conditions hold. (i) EachGi is centered along the diagonal; (ii)Gi

and Gi+1 have at least K+ 1 points in common indexed by Ii; (iii)
∑P−1

i=1 (ni−|Ii|) +
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G =



• • • • · · · ·
• • • • · · · ·
• • • • • • · ·
• • • • • • · ·
· · • • • • • •

· · • • • • • •

· · · · • • • •

· · · · • • • •


Figure 6.2 – Divide step (|I1| = |I2| = 2): the order of sub-instances is from top-left
to bottom right .

nP = n. The division scheme is displayed in Fig. 6.2. Each submatrix defines a
DGP sub-instance. Each such sub-instance is solved with a method such as matrix
factorization or GBU to realize the corresponding points.

• Conquer (merge): after obtaining the solution of each sub-instance, we have to
combine the partial realizations consistently in order to obtain a realization of the
whole graph. This operation is carried out sequentially as follows. The solution of
the first sub-instance is saved. Then, for an instance i + 1, for i ≥ 1, the number I
of common points between sub-instances i and i+ 1 must be at least K+ 1 in order
to define unique translations and rotations for the common points to be aligned.
Let Xi+1 be the current solution obtained in the divide step, Vi ∈ RK×ni be aligned
vectors obtained at the previous step i, and let A(:, j) denote the j-th column of
a matrix A. Then Xi+1 can be aligned by using Procrustes analysis Schönemann
(1966): the best alignment rotation Q̂i and translation T̂i are

Q̂i, T̂i = argmin
Q∈OK ,T∈Rd

I∑
k=1

‖Vi(:, ni − I + k)− (QXi+1(:, k) + T )‖2
2. (6.12)

Where OK is the set of orthogonal matrices, i.e:

OK = {M ∈MK(R) |M tM = IK}

and IK is the identity matrix. Then, positions Vi+1 are updated following:

Vi+1 = Q̂iVi + T̂i 1
> (6.13)

This method is somehow similar to the one presented (Gonçalves, 2017).
However, in this framwork, the author makes the assumptions that we do not
know all pairwise distances (or inner products). In order to "complete" some
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submatrices, it is necessary to compute missing distances from previously com-
puted positions, which contributes to the error propagation. Also, our method
does not contain a pruning part where position candidates are discarded, because
the method presented in (Gonçalves, 2017) is intended for problems a with K-
lateration order, instead of a (K+1)-lateration where the position are determined
without ambiguity (assuming non-degenary of the K+1 references).

It should be noted that PMI-eigs exactly coincides with standard multidi-
mensional scaling (Torgerson, 1952; Cox and Cox, 2008).

6.3.6 Relationship with Other PMI-based Methods
In this section, we put the Distance Geometry methods discussed in previous sec-
tions in perspective with other methods for word embeddings. To assess simi-
larities and differences between them, we analyze their underlying optimization
problems.

We recall that the empirical PMI matrixM0, defined by equations (6.7) and (6.8),
is used as an approximation of the Gram matrixG (Levy and Goldberg, 2014; Arora
et al., 2016a).

PMI-eigs. Word embeddings obtained from the spectral decomposition of the
empirical PMI matrixM0 have been used before in NLP literature (Levy and Gold-
berg, 2014). In view of (6.4), these word vectors are obtained from

min
V ∈RK×n

‖V >V −M0‖2
F =

∑
i

∑
j

(〈vi, vj〉 −M0
ij)

2, (6.14)

where ||.||F is the Frobenius norm. A solution of 6.14 can be constructed from the
top K eigenpairs of M0 as discussed in Section 6.2.

Due to the sparsity of M0 ∈ Rn×n, such eigenpairs are usually computed by
an Implicitly Restarted Lanczos method (IRLM) (Sorensen, 1992) as implemented
in the Matlab routine eigs. Its cost per iteration is given by

O(q(γn) + (6K + 9)qn+ 4q2n+ 2K2n+ (K + q)3)

where q is the number of shifts and γ is the average number of nonzero elements
of rows of M0. See (Lehoucq et al., 1998) for more details. If we denote m̃ = K + q,
then the above cost is O((m̃−K)γn+ nK2 + m̃3).

GBU. By considering the GBU method of Section 6.3.3 with m fixed references,
where δ(i) = {1, . . . ,m}, for all i > m, we aim to solve the optimization problem
(6.11), with M0

ij in place of Gij . In this case, the objective function is the same as
(6.14), but the sum is not over all pairs {i, j}, but only those implied by the vertex
order. For GBU, this vertex order considers first the m most frequent words in the
corpus.
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Divide and conquer. Again, the underlying objective function is a variation of
(6.14) but summing over the pairs {i, j} covered by the sub-matricesM0

1 , . . . ,M
0
P in

the divide step. Concerning the vertex order, in DC we have ordered the vertices
by decreasing coreness. The coreness of a node is defined as the maximum k such
that it belongs to a k-core and not to a k + 1-core, where a k-core is the maximum
subgraph such that each vertex has an induced degree at least k. Computing k-
cores can be done in linear time (Batagelj and Zaversnik, 2003).

Notice that the above methods try to fit the inner products 〈vi, vj〉 to the em-
pirical PMI M0

ij . In (Arora et al., 2016a), the relation between the inner product
〈vi, vj〉 and the pointwise mutual information PMI(i, j) is studied based on a gen-
erative model, whereas in (Hashimoto et al., 2016), the authors suggest that when
the corpus size tends to infinity, for a sufficiently context window of size w, ∀, i, j,
there exist ai and bi, such that

‖vi − vj‖2 ≈ − log(Cij) + ai + bj.

where Cij is an entry of the co-occurrence matrix. Both models claim to be
consistent with matrix factorization methods (Levy and Goldberg, 2014) and oth-
ers based on regression (Pennington et al., 2014) under certain assumptions.

Glove. In (Pennington et al., 2014), the goal is to find an embedding
v : V → RK , by solving a weighted least-squares regression problem

min
v,â,b̂

∑
i

∑
j

f(Cij)
(
〈vi, vj〉+ âi + b̂j − log(Cij)

)2

, (6.15)

where f(Cij) = min(Cij, 100)3/4. Therefore, if â and b̂ were known, one could see
(6.15) as a variant of (6.14) weighted by f(Cij), by using Gij ≈ log(Cij) − âi −
b̂j . Furthermore, for âi = log(Ci/

√
S) and b̂j = log(Cj/

√
S), where Ci =

∑
j Cij

and S =
∑

i

∑
j Cij , we have Gij ≈ M0

ij = log ρij , for Cij > 0, i.e., our empirical
approximation for PMI(i, j).

Whenever Cij = 0, the corresponding term does not appear in (6.15), but in
(6.11), it may contribute to the objective function if either the pair {j, i} is in the
initial clique or j ∈ δ(i).

fastText. In (Bojanowski et al., 2017), an extension of the skip-gram with negative
sampling (SGNS) (Mikolov et al., 2013a) is proposed. This extension takes into
account the morphology of words: a vector representation is associated to each
character s-gram and words are represented as the sum of these vectors.

It was shown in (Levy and Goldberg, 2014) that, under certain assumptions,
SGNS corresponds to a matrix factorization problem whose objective is to factor
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the word-context PMI matrix (a shifted PMI matrix) via Singular Value Decomposi-
tion (SVD, cf. Definition 2.4): MSGNS

ij = 〈Wi, Ĉj〉 = 〈vwi , vcj〉 = PMI(wi, cj)− log k,
where rows of W and Ĉ are word and context vectors such that M = WĈ>, and
k is the number of negative samples in SGNS. Since we are considering a simpler
co-occurrence based model, our context vectors are in fact the word vectors and
we have Ĉ = W andM = WW> such thatMSGNS

ij = 〈vi, vj〉 = PMI(wi, wj)− log k.

Therefore, the above methods are somehow associated, at least implicitly, to
a weighted factorization problem where the matrix to be factored is some variant
of the PMI matrix.

6.4 Complexity Analysis

In this section, we present a complexity analysis of the different algorithms we
compared to construct the word representations. For the sake of completeness, we
will present in the next subsection a short description of Arnoldi-Lanczos algo-
rithm used for the PMI matrix decomposition. This presentation is motivated by
the lower experimental computing times observed for our Geometric build (GB)
and Divide and Conquer (DC) than with PMI-eigs methods. The final complex-
ity comparison and can be found in Section 6.4.2. We also provide experimental
running times in Section 6.5.

6.4.1 PMI Eigendecomposition: Arnoldi-Lanczos Algorithm

In this subsection we present an algorithm to obtain the m largest eigenvalues and
eigenvectors of a symmetric square matrix A of size n×n, and which is particulary
interesting when m � n. This is the case for the PMI matrix decomposition since
the number of words is significantly greater than the desired dimension for the
representation.

Given a symmetric square matrix A the Arnoldi-Lanczos process constructs
a matrix Q whose columns are orthonormal vectors, such that

A = QTQ′

where T is symmetric tridiagonal. To this end, the process depends on an initial
vector v, and when the algorithm stops, the size of Q is n×m, in which case T has
size m×m. The columns of Q form an orthonormal basis for the Krylov subpsace
(Watkins, 2007), which is by definition:

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}.
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This can be thought as the QR decomposition (Gram-Schmidt process) of the ma-
trix

Km = (v Av . . . Am−1v)

i.e., Km = QmRm, with Qm ∈ Rn×m. Then, concerning the eigenproblem, the
eigenpairs of

Tm = QT
mAQm,

will be used to obtain eigenpairs of A.
For now, let us suppose we have built an orthonormal basis q1, . . . , qj of Kj ,

with q1 = v
||v|| . Then, the Gram-Schmidt orthogonalization update of (Ajv | 1 ≤ j ≤

m) in order to build a new vector qj+1 gives

rj = Ajv −
j∑
i=1

(qTi A
jv)qi

qj+1 =
rj
||rj||

(6.16)

It is important to notice that since Kj+1(A, v) = span{v, Av, . . . , Ajv}, then

Kj+1(A, v) = span{q1, Aq1, . . . , A
jq1}

Since Aq1 = αq1 + βq2, with β 6= 0, we obtain

Kj+1(A, v) = span{q1, q2, . . . , A
j−1q2}

and by immediate induction:

Kj+1(A, v) = span{q1, q2, . . . , qj, Aqj}

The main idea to simplify the procedure is to orthogonalize Aqj at step j

instead of Ajv using the Gram-Schmidt scheme:

rj = Aqj −
j∑
i=1

(qTi Aqj)qi

qj+1 =
rj
‖rj‖

(6.17)

This process may continue until we find ‖rk‖ = 0, which means that
span{q1, . . . , qk} is an invariant subspace of A. Grouping the equations 6.17 for
j = 1, . . . , k, we obtain

AQk = QkHk, (6.18)
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where Qk = (q1 . . . qk) and Hk is the k × k matrix defined as follows:

(Hk)ij =


qTi Aqj if j ≥ i

‖ri‖ if i = j + 1 and i ∈ {1, . . . , k − 1}
0 otherwise

(6.19)

If we apply the process to a symmetric matrix A, then from (6.18)

QT
kAQk = Hk

Hk is symmetric because A is. Since Hk is upper Hessenberg (i.e the indices of its
non zero-coefficients verify i ≤ j + 1, cf. Definition 2.4), we conclude that Hk = Tk
is a symmetric tridiagonal matrix:

Hk =



α1 β1

β1 α2 β2

. . . . . . βk−1

βk−1 αk

βk


resulting in an important simplification of (6.17) into the following Arnoldi-Lanczos
process: qj+1 can be obtained from the three term recurrence:

∀j ∈ {1, . . . , k − 1} Aqj = βj−1qj−1 + αjqj + βjqj+1 (6.20)

where ∀j ∈ {1, . . . ,m− 1}:

αj = qTj Aqj (6.21)
rj = (A− αjI)qj − βj−1qj−1 (6.22)

βj = ‖rj‖, qj+1 =
rj
βj

(6.23)

We can reformulate equations (6.20)–(6.23) in matrix form:

AQj = QjTj + βjqj+1e
T
j , (6.24)

where ej is the j-th canonical vector of Rj . The most expensive operation in the
iteration defined by (6.21)–(6.23) is the matrix-vector product Aqj .

Finally, if ‖rk‖ = βk = 0 for k ≤ m, we have AQk = QkTk, or equivalently

QT
kAQk = Tk

If si is an eigenvector of Tk, with corresponding eigenvalue θi, then

AQmsi = QmTmsi = Qm(θisi) = θi(Qmsi),
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so that xi = Qmsi is an eigenvector of A corresponding to θi. Furthermore, at any
iteration j, from (6.24), we can compute eigenpairs (θ

(j)
i , s

(j)
i ) of Tj , and define

x
(j)
i = Qjs

(j)
i .

The pair (θ
(j)
i , x

(j)
i ) is considered as an approximation for an actual eigenpair of A.

The quality of this approximation is measured by the residual

βj|eTj s
(j)
i | = ‖AQjs

(j)
i −QjTjs

(j)
i ‖

= ‖AQjs
(j)
i − θ

(j)
i Qjs

(j)
i ‖ = ‖Ax(j)

i − θ
(j)
i x

(j)
i ‖

Arnoldi-Lanczos “convergence rate”

Since m ≤ n for a n × n matrix A, it does not make sense to think {θ(m)
i }m as an

infinite sequence. But it is still valid to question how fast θ(m)
i approximates an

eigenvalue λi of A. In order to answer this question, our reader can refer to (Saad,
1980):

Theorem 6.1 (Saad’s inequality: Theorem 2 in (Saad, 1980)). Let λ1 > λ2 > · · · > λk
be the k largest eigenvalues of the matrix A, ui their corresponding eigenvectors, λn =

inf{λi} and letm denote the number of Arnoldi-Lanczos iterations. If v is such that vTui 6=
0, for i = 1, . . . , k, then

0 ≤ λi − θ(m)
i ≤ (λi − λn)

(
L

(m)
i tan θ(ui, v)

Tm−i(γi)

)2

, i = 1, . . . , k,

where
γi = 1 + 2

λi − λi+1

λi+1 − λn
,

L
(m)
i =


∏i−1

j=1

θ
(m)
j − λn
θ

(m)
j − λi

, if i 6= 1

1, otherwise

θ(ui, v) is the angle between ui and v and Tm−i(.) is the Chebyshev polynomial of the first
kind and degree m− i.

We observe that the rate of convergence depends on the separation between
λk and λk+1 and the width of the spectrum λk+1 − λn. In fact, in (Saad, 1980) it
is shown that each θ

(m)
i will converge to λi, for 1 ≤ i ≤ k, with convergence rate

bounded by

τi =

(
γi +

√
γ2
i − 1

)2
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Furthermore, according to (Bekas et al., 2008), for v = q1,

tan θ(ui,Km(A, q1)) ≤ Li
Tm−i(γi)

tan θ(ui, q1)

where

θ(ui,Km(A, q1)) = arcsin
‖(I −QmQ

T
m)ui‖

‖QmQT
mui‖

Restarted Arnoldi-Lanczos Algorithms
It should be noted that if the initial vector q1 = v has no components in the direction
of an eigenvector ui of A, i.e. 〈ui, v〉=0, then if ∀x ∈ Km(A, v):

〈x, ui〉 = 〈
m∑
i=1

λiA
iv, ui〉

=
m∑
i=1

λi〈 v, Aiui〉

=
m∑
i=1

λi〈 v, ui〉

= 0

regardless the number m of steps. Restarting techniques exploit this idea and try
to progressively build starting vectors q(`)

1 that at each iteration `, will have larger
components in the direction of desired eigenvectors.

At each iteration ` of a restarted Arnoldi-Lanczos methods, an Arnoldi-Lanczos
decomposition

AQ(`)
m = Q(`)

m T
(`)
m + β(`)

m q
(`)
m+1e

T
m

of size m is obtained from the `-th initial vector q(`)
1 . In explicit restarting, the next

initial vector q(`+1)
1 is obtained by

q
(`+1)
1 = ψ`(A)q

(`)
1 ,

where ψ`(λ) is called filter polynomial.
In implicit restarting, a sequence of p shifted QR iterations are applied to the

tridiagonal matrix T (`)
m resulting in a new Lanczos factorization of size k < m =

k + p:
AQ+

k = Q+
k T

+
k + F+, (6.25)

which is the one that would be obtained with initial vector q+
1 = ψ`(A)q

(`)
1 , where

ψ`(λ) =
1

τ

p∏
i=1

(
λ− µ(`)

i

)
,
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{µ(`)
1 , . . . , µ

(`)
p } is the set of shifts and τ a normalization factor. When p un-

wanted eigenvalues of T (`)
m are taken as shifts, the strategy is called restarting with

exact shifts. For more details, we refer to (Bekas et al., 2008).
Decomposition (6.25) can be expanded to a new Arnoldi-Lanczos decompo-

sition with maximum length m by applying p Arnoldi-Lanczos steps, arriving at

AQ(`+1)
m = Q(`+1)

m T (`+1)
m + β(`+1)

m qm+1e
T
m.

These ideas lead to the Implicitly Restarted Lanczos Method (IRLM). Ac-
cording to (Lehoucq et al., 1998), for fixed values of k and p, the cost of one iteration
of IRLM is

• implicit restart: 2n(k2 + kp) +O((k + p)3);

• p matrix-vector products Av;

• basic Lanczos steps: 9pn;

• orthogonalization corrections: 4(kp+ p2)n,

resulting in a total cost of

p(δn) + (6k + 9)pn+ 4p2n+ 2k2n+O((k + p)3),

where δ is the average number of nonzero entries of rows of A.

6.4.2 Complexity Comparison of GB and DC with Other
co-occurrence Based Models

Table 6.1 – Computational complexity for several word vectors realization

Method Complexity

PMI-eigs O((nK2 + m̃3)niter)

GBU (fixed references) O(m3 + (n−m)K2)

Divide and conquer (DC) O(
∑P

i=1(niK
2 + m̃3

i )n
′(i)
iter + (K + 1)3(P − 1))

Glove O(p0.8nepochsK)

The complexity of the co-occurrence based methods are summed up in Ta-
ble 6.1. Let n = |V| be the size of the vocabulary and K the dimension. Computa-
tion of the top K eigenpairs of the PMI matrix requires O((nK2 + m̃3)niter), where
niter is the number of Implicitly Restarted Lanczos method (IRLM) iterations, wh-
ich depends on the spectrum of the PMI matrix, and m̃ = K + q, where q is the
number of shifts, discussed in Section 6.3.6.

158



6.5 - EXPERIMENTS

For the divide and conquer method, n′(i)iter represents the number of iterations
to solve each sub-instance i using IRLM. Also we consider exactly K + 1 anchors
(also for our experiments), i.e |I1| = ... = |IP−1| = K + 1, where P is the number
of sub-instance. Finally, it should be noted that usually n′iter � niter hence PMI-eigs
complexity is not necessarily lower.

The number of shifts q and qi are internally set in the implementation of eigs
in Matlab and it is difficult to estimate, even though it is likely that K ≤ q � n

and K ≤ qi � ni. Besides, the number of iterations n′iter, niter depends on the
distribution of the eigenvalues of the corresponding matrices. For these reasons,
we do not know how to compare their theoretical complexity. However, we will
compare their empirical running times in Section 6.5.

The complexity study for Glove is detailed in (Pennington et al., 2014, Sec-
tion 3.2) and indicatesO(p0.8nepochs) where p is the number of tokens in the corpus,
and nepochs the number of epochs of the stochastic gradient descent (for a descrip-
tion of Stochastic gradient descent, our reader may refer to (Carpentier and Cohen,
2017; Bottou et al., 2018)). For a fair comparison with other methods, this complex-
ity also depends linearly on the dimension.

For the first three methods of Table 6.1, the dimension seems to be a draw-
back, but their complexities are good in practice. For example, for a corpus com-
posed of p = 2.66 × 108 tokens (corpus described in Section 6.5.1), nepochs = 15

(standard corpus size and parameters), containing about n = 105 different words,
dimension K = 50, with m = 200 references, then:

CGlove = p0.8nepochs K ≈ 4.13× 109

CGBU = m3 + (n−m)K2 ≈ 2.50× 108
(6.26)

These numbers are consistent with running times in our experiments. It
should be noted that these complexity numbers do not take in account pre-processing
of the corpus, which is in all cases O(p): this corresponds to one pass through the
corpus in order to construct the vocabulary, and possibly ignore low-frequency
terms.

6.5 Experiments

6.5.1 Description of The Experiments
To construct our word vectors, we used a corpus of 106 documents from Wikipedia
2016 2, which we cleaned using standard pre-processing methods in NLP (stop
words and punctuation removal). is composed of 266, 561, 061 tokens and 81, 653

2Wikipedia is a standard dataset for the constructions of representations, or the training of neu-
ral networks in Natural Language processing, cf. 123; 138.
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words. We used a window size of w = 10, a standard value used in several word
embedding methods (Mikolov et al., 2013a; Pennington et al., 2014; Arora et al.,
2016a). We provide two experimental evaluations of our word vectors. First, an
intrinsic evaluation of word vectors using QVEC (Tsvetkov et al., 2015), which has
a good correlation with performance of the vectors with semantic evaluation tasks.
QVEC is an efficient intrinsic evaluation measure of the quality of word vectors
based on alignment of features extracted from lexical ressources. These evaluations
are reported in Table 6.2. Second, we evaluate the quality of these representations
over three text classification tasks compared with other word embeddings. Our
implementation includes 3 datasets: WebKb (Multiclass), Subjectivity (Binary) and
Amazon (Binary). Results are reported in Table 6.3. We compare with a baseline
of random word vectors whose components are drawn from a standard Gaussian.
For our classification experiments, we use an implementation of a Convolutional
neural network (Kim, 2014) using Tensorflow library (Abadi et al., 2015) version
1.123. We also compare with bidirectional encoders (BERT) (Devlin et al., 2018).

We provide some practical computing times, in the line of our complexity
study. The embeddings and corresponding times for PMI-eigs, GBU and DC were
generated using Matlab [v.2018.b], running on a CPU of 2 cores Intel(R) Core i5
1.8Ghz with 8 Gb of Ram. Glove and fastText were compiled in the same machine
using GCC Apple LLVM version 10.0.0 (clang-1000.10.44.4).

Table 6.4 reports the times for obtaining the word vectors (left) only, for di-
mensions K = 50, 100, 200, and the total time including the CNN training for
K = 200 (right); parsing time is not included. Besides, for PMI-eigs, DC and
GBU, we added the time for computing the matrix M0 from co-occurrence counts
(≈ 120s) and for DC and GBU we also consider the time for computing the corre-
sponding vertex order (≈ 90s and ≈ 30s, respec.). The parameters used in GBU
were M = m = 4K and the ones of DC were n1 = 20000 and np≥2 = 800. For Glove
and fastText we kept the default parameters from the official code.

6.5.2 Discussion
Table 6.4 shows that our DG word vectors, when combined with a convolutional
neural network lead to F1 scores close to those of BERT in three text classification
tasks, but demanding about half to a quarter of the computing time, depending on
the dataset.

Moreover, from Table 6.4 we observe that the training times for the DG based
methods are remarkably smaller than those of standard word vectors construction
(and also than the training time of bidirectional encoders such as BERT). They
also improve the computational time with respect to the spectral decomposition

3We noticed a significant drop of performance when using version 2.1, the reasons remain un-
known.
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Table 6.2 – Intrinsic evaluation (QVEC). First and second best are in bold and un-
derline, respectively.

Representation K = 50 K = 100 K = 200

Random 9.59 14.89 21.82
GBU (m = M = 4K) 22.72 30.01 37.41
GBU (PPMI) 22.78 30.35 38.61
DC (n1 = 20000, ni≥2 = 800) 26.83 34.21 41.42
PMI-eigs 29.20 36.55 43.74
Glove 28.22 35.43 42.06
fastText 28.17 36.06 43.51

Table 6.3 – F1 score - Text classification. First and second best are in bold and
underline, respectively.

K = 50 K = 100 K = 200

Representation Subject WebKB Amazon Subject WebKB Amazon Subject WebKB Amazon

Random 77.07 90.01 74.96 80.09 91.12 74.26 81.34 91.84 76.33
GBU (m = M = 4K) 87.67 92.33 79.65 88.21 93.04 80.58 88.05 93.68 81.39
DC (n1 = 20000, ni≥2 = 800) 87.87 91.42 81.97 87.86 92.03 80.61 88.28 92.65 82.49
PMI-eigs 87.85 91.67 79.23 88.17 92.19 80.0 88.10 92.52 81.86
Glove 86.34 92.99 79.35 87.96 93.07 79.75 87.62 93.24 79.76
fastText 87.65 92.84 78.67 87.71 93.37 80.64 88.02 93.57 81.57
BERT + fine tuning 91.19 91.56 84.28 91.19 91.56 84.28 91.19 91.56 84.28

of the PMI matrix. The price to be paid for these extremely fast word vectors,
whose performance in text classification is close to the state-of-the-art (Table 6.3),
is possibly a slightly inferior performance in intrinsic tasks (Table 6.2).

6.6 Conclusion

We proposed a formulation based on the Distance Geometry (DG) problem to gen-
erate word vectors. The resulting Geometric Build-Up and Divide and Conquer
algorithms are considerably faster than state-of-the-art algorithms, as Glove and
fastText.

The word vectors obtained by DG methods have performance close to state-
of-the-art in our intrinsic evaluation (QVEC). Also, combined with a convolutional
neural network, DG word vectors lead to F1 scores close to those of BERT in three
text classification tasks, but demanding about half to a quarter of the computing
time, depending on the dataset. The superior speed of our proposed methodology
goes towards the aim of rapidly generating word embeddings from given corpora
relating to specific applications.
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Table 6.4 – Computing times (Left: Word Vectors, Right: Total). First and second
best are in bold and underline, respectively. NA: BERT embeddings are trained
only for the end-task (right table).

Dimensions Datasets
Representations 50 100 200 Represent. + Classif. Subject Amazon WEBKB

Glove 44m 1h07m 2h07m Glove + CNN 7815s 8640s 9120s
fastText 26m 30m 48m fastText + CNN 3075s 3900s 4380s
PMI-Eigs 284s 412s 836s PMI-Eigs + CNN 1031s 1856s 2336s
DC (n1 = 20000, ni≥2 = 800) 307s 348s 452s DC + CNN 602s 1368s 1952s
GBU (m = M = 4K) 159s 168s 188s GBU + CNN 383s 1208s 1688s
BERT NA NA NA BERT + fine tuning 663s 3260s 4647s

Indeed, contextual word embeddings (ELMo, BERT) have significantly im-
proved performance for many NLP tasks recently. However, these models have
been minimally explored on specialty corpora, such as clinical text, as reported
in (Alsentzer et al., 2019). In such cases, there is no publicly-available pre-trained
BERT models. A first possibility is to retrain contextualized word embeddings on
the new corpus, which can turn out to be time consuming. In this context, repre-
sentations which can be trained much faster with a negligible quality loss can turn
out to be useful. In particular, we showed in this chapter that DG based (non con-
textual) word embeddings have this property, and are also competitive on general
NLP classification tasks. These preliminary results motivate us to investigate the
construction of contextualized representations with DG by capitalizing on the time
gain.

We believe there are several ways to extend this work. The first one is to
enrich the information in order to construct context-aware and out of training
samples representations, which would help to address other NLP problems. A
potential way to address their construction would be to consider “multichannel”
distance geometry, stacking different distances (or a corresponding scalar product)
in different channels, and solve the different instances in order to obtain a family
of realizations. An example of channel could correspond to subword information
(subword similarities), or information from other networks (e.g dictionaries, refer-
ence networks (Niwa and Nitta, 1994)). Also, a natural continuation is to replace
the Build-Up algorithm with other Distance Geometry methods, such as the ones
presented in (Lavor et al., 2012b; Omer and Mucherino, 2020).

Finally, the employed DG algorithms to obtain word vectors scale well with
the parameters of the problem (vocabulary size and dimension). Therefore, Dis-
tance Geometry seems a promising paradigm for representation learning for other
applications in machine learning (e.g graph classification).

162



6.6 - CONCLUSION

163



7
Concluding Remarks

As discussed in the introduction, the formal modeling of natural language, along
with its learnability (Thom, 1970; Valiant, 1984) are doomed to failure. In this
thesis, we proposed theoretical and empirical analyzes of efficient representations
for the treatment of some information extraction and natural language processing
problems.

7.1 Summary of Contributions

First, graph-based representations of sequences, which are the native data struc-
ture of written language, pose ambiguity problems, raising theoretical questions
at the interface of graph theory and pattern recognition. In Chapter 3, we have
developed a theoretical study and presented algorithms solving a recognition and
counting problem, which allowed to show that an important degree of ambiguity
can arise from co-occurence based models.

However, these graph-based representations allow to deal efficiently with
certain fine-grained information retrieval problems, with state-of-the art perfor-
mances, as shown in Chapter 4 with the problem of entity identification. Through
the analysis of a knowledge base of economic and financial nature, we also sug-
gested its application in a broader framework.

Then, in Chapter 5, we discussed a geometric approach, based on a gener-
ative statistical model yielding certain geometric properties modulo a noise level.
Mainly, these properties are based on the relation between the scalar product of
vector representations of words and their local mutual information. Relations with
analogies can be deduced, given an additional conjecture. Although some of these
properties are mathematically valid, it remains that language does not seem to ver-
ify them in practice, which can be due to a high noise level, as these properties hold
with high probability at infinity: yet we do not know the convergence speeds of
these models.

Finally, in Chapter 6, we proposed a new method for the generation of rep-
resentations useful for learning algorithms. These representations are based on
the paradigm of the geometry of distances which, from a set of distances, realizes
the points satisfying these constraints. We have presented theoretically valid res-
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olution algorithms when the distances are exact. However, the existence of a Eu-
clidean distance respecting the geometric axioms seems unrealistic. Thus, the dis-
tances that we consider are pseudo-distances implicitly obtained with an approx-
imation of a scalar product. Nonetheless, the solutions we obtain are at the same
time competitive with state-of-the-art performance for text classification, while be-
ing able to be calculated with better complexity.

7.2 Perspectives and Future Work

The first continuation of this work concerns the characterization of sequence graphs,
as well as complexity properties of the recognition and counting problems (at a
first stage P or NP-hardness). In addition to its theoretical interest, it could also
lead to other interesting applications. Due to the three levels of generalizations
(orientation, weights, and window size), some cases remain open. A possible di-
rection is the investigation of forbidden patterns in these structures.

Second, we noticed that there is significant room for improvement of entity
identification algorithms. Indeed, the use of other methods for the filtering part are
preferable, for example with finite state transducers (Hetherington, 2004), which
allow to compute association rules very efficiently.

Then, we think it can be of interest to study the speed of convergence or noise
levels in the probabilistic equalities of the generative models studied in Chapter 5,
which could explain the differences between theoretical and empirical relations.

Distance geometry can also be an interesting new method for exploring other
problems in machine learning and artificial intelligence. Concerning natural lan-
guage, we have seen that it allows to construct performant representations ef-
ficiently. One could also enrich the distances used with several distances and
construct the corresponding representations in “parallel” as described in the con-
clusion of Chapter 6. However, it remains difficult to construct Euclidean dis-
tances respecting both geometric axioms and the semantic relationships. It may be
worth to investigate other types of geometry, for instance differential manifolds for
word and sentence representations. In this setting, distances would correspond to
geodesics. Another possibility would be to consider geometric shapes (e.g solides,
or polytopes).

Finally, it also appeared during this thesis that both graph-based or geomet-
ric models seem strongly disconnected from linguistic structures and notions. It
seems illusory to think that these models will be able to analyze a text as a human
would this way, especially for literature. For this reason, it is desirable to integrate
pure linguistic notions into the models. For this regard we thought of the following
possibilites:

• Use the referencing of construction types. This has namely be studied for
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French in (Gross, 1982).

• Classification of the types of sentences: subject - verb - object sentences using
the algebraic description of singularities of dynamical systems (Thom, 1970).

166



8
Appendix

8.1 Chapter 3: Supplementary Figures and
Experiments

In this section we provide supplementary illustrations related to this chapter.
In particular, are depicted:

• Different instances of sequence graphs having several realizations are de-
picted. These realizations have been computed using our dynamic program-
ming formulation.

• Supplementary illustrations of Example 3.1 and the exponential increase of
paths in the corresponding directed acyclic graph R(H).

8.1.1 p = 10, w = 3

0

1
2

3

45

(a) Sequence graph

0 2 0 0 1 0

1 0 1 0 1 1

1 0 0 1 0 0

1 1 0 0 0 0

1 2 0 0 0 1

0 0 1 1 0 0




(b) Weights matrix Π

4 1 5 2 3 0 1 4 0 1

4 1 0 4 1 5 2 3 0 1

(c) Different Realizations (w = 3)

Figure 8.1 – p = 10, w = 3
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8.1.2 p = 10, w = 4
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
(b) Weights Matrix
Π

4 3 5 4 2 3 1 5 3 0

4 3 5 4 3 2 1 5 3 0

(c) Different Realizations (w = 3)

Figure 8.2 – p = 10, w = 4

8.1.3 p = 20, w = 3
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
(b) Weights matrix Π

7 3 2 7 3 12 5 6 2 3 9 7 3 0 1 4 10 8 11 13

7 3 12 5 6 2 3 9 7 3 2 7 3 0 1 4 10 8 11 13

7 3 12 5 6 2 3 7 2 3 9 7 3 0 1 4 10 8 11 13

(c) Different realizations

Figure 8.3 – p = 20, w = 3
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8.1.4 p = 20, w = 4
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
(b) Weights matrix Π

3 4 9 10 13 11 10 1 13 15 7 13 12 14 2 5 8 6 10 0

3 4 9 10 13 11 10 13 1 15 7 13 12 14 2 5 8 6 10 0

(c) Different realizations

Figure 8.4 – p = 20, w = 4

169



CHAPTER 8 - APPENDIX

8.1.5 p = 20, w = 5
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(a) Sequence graph
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(b) Weights matrix Π
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(c) Different realizations

Figure 8.5 – p = 20, w = 5

8.1.6 p = 20, w = 10
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1 0 1 0 2 1 2 1 0 1 0

2 1 1 0 3 2 5 3 0 1 0

0 0 0 0 0 0 0 0 0 0 0

2 1 3 2 3 3 7 3 2 2 2

0 0 0 2 2 1 2 0 2 1 2

2 1 1 2 6 5 4 3 2 2 2

2 1 1 0 4 3 4 1 0 1 1

0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 1 0 1

0 0 0 1 0 0 0 0 1 0 0




(b) Weights matrix Π

4 2 6 7 1 4 2 6 7 0 4 5 6 9 6 5 4 10 8 3

4 2 6 7 1 4 2 6 7 0 5 4 6 9 6 4 5 10 8 3

(c) Different realizations

Figure 8.6 – p = 20, w = 10
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8.1.7 p = 40, w = 3
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(a) Sequence graph p = 40

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0




(b) Weights matrix Π

3 4 2 3 4 18 13 19 23 28 10 24 17 6 26 1 12 13 8 9 11 1 27 14 15 0 1 25 3 4 20 7 3 4 22 5 0 1 21 16

3 4 2 3 4 20 7 3 4 18 13 19 23 28 10 24 17 6 26 1 12 13 8 9 11 1 27 14 15 0 1 25 3 4 22 5 0 1 21 16

3 4 2 3 4 22 5 0 1 25 3 4 20 7 3 4 18 13 19 23 28 10 24 17 6 26 1 12 13 8 9 11 1 27 14 15 0 1 21 16

3 4 2 3 4 22 5 0 1 25 3 4 20 7 3 4 18 13 19 23 28 10 24 17 6 26 1 12 13 8 9 11 1 27 14 15 0 1 21 16

(c) Different realizations

Figure 8.7 – p = 40, w = 3
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8.1.8 p = 40, w = 10

0
1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(a) Sequence graph p = 40

0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 2 0 1 1 1 1 0 1 1 2 2 1 4 1 1 0 1 1 2 0 0 0 0 0 1

0 0 1 0 0 0 0 1 1 0 0 0 0 0 2 0 0 1 0 0 0 1 1 0 1 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 1 0 1 0 0 1 0 0 0 0 1 1 2 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 1 2 0 0 1 3 2 0 1 0 0 0 6 0 0 1 0 0 0 3 3 2 2 1 1

0 0 1 0 0 0 0 0 0 1 1 1 1 0 2 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0

1 0 2 0 1 1 0 0 0 1 0 1 2 1 3 1 1 0 1 1 1 0 0 0 0 0 0

1 1 2 0 1 1 1 1 0 1 0 1 0 1 3 1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 2 5 2 2 1 2 5 2 2 2 3 3 2 7 2 1 2 1 1 1 2 2 2 2 1 2

0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 1 1 1 2 0 0 0 1 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 1 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1 1 0 2 0 1 0 1 0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1 1 1 2 0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 1 1 1 0 2 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1 1 0 0 2 0 0 1 0 0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 2 0 0 1 0 0 0 1 1 0 1 0 0

0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 2 1 0 0 0 0 0 2 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




(b) Weights matrix Π

7 14 25 7 14 23 3 7 22 21 8 14 24 17 14 2 10 11 12 9 15 19 2 14 20 16 11 5 18 12 14 2 14 13 0 4 7 6 1 26

7 14 25 7 14 23 3 7 22 21 8 14 24 14 17 2 10 11 12 9 15 19 2 14 20 16 11 5 18 12 14 2 14 13 0 4 7 6 1 26

(c) Different realizations

Figure 8.8 – p = 40, w = 10
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8.2 Chapter 4: Analysis of a Knowledge Graph

We saw in the previous subsections that information retrieval problems such as
entity identification depend on the existence of prior information, represented in
structures such as a knowledge graph. In this subsection, we present an additional
example of knowledge graph of entities, and discuss a methodology to analyze
it. We suggest this network can be also treated as in the previous subsections,
for named entity identification or more general tasks. We present a summary of
the methodology and the results. We believe they can be used in the case of pre-
processing and understanding of a knowledge base. An extended version of this
Chapter is available in (Khalife et al., 2019b).

8.2.1 Introduction

Relationships between legal entities can be represented as a weighted directed
graph. We model the global capital ownership network and establish a methodol-
ogy for an empirical analysis of its structure and influence of its entities. To do so,
we employ a variety of metrics from graph analytics and algorithms from the area
of influence maximization. We show that our analysis aligns with macro-economic
information, such as the presence of tax heavens in dense subgraphs of countries,
and countries whose private capital is principally owned by others (taking France
as a case study). Moreover, our results also offer novel intuitions and metrics in
this area by highlighting the existence of strong communities of capitalistic prop-
erty. Finally, we discuss and develop influence maximization methods as a means
to evaluate the impact of entities in this context.

A legal entity is a juridic term that designates an individual, company, or or-
ganization that has legal rights and obligations. In the standard terminology, legal
entities are usually divided into individuals and corporations (e.g companies). The
economic entity principle, stating that financial transactions must be assigned to a
specific business, is considered as one of the fundamental principles of accounting:
an entity must have separate accounting records, except for its subsidiaries. This
principle implies that the nature and clarity of the information describing legal en-
tities is important for compliance standards. Several types of interactions can exist
between these entities, for instance payments or capitalistic property, which define
several type of networks. Some such networks have already been studied, namely
the interbank market Boss et al. (2004) and interbank payment flows Soramäki
et al. (2007). A study on systemic risk in the interbank network, where payment
interactions are treated as a complex network was described in Lenzu and Tedeschi
(2012). Besides, other work attempted to describe the actual topologies observed
in the financial system Inaoka et al. (2004).
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8.2.2 Ownership Network

Description and Preprocessing

Orbis is a database composed of about one hundred million entities, developed by
a specialized group based in Bureau Van Dijk’s Brussels office, aggregating sev-
eral sources of data. A detailed description is given in Dijk (2018). The database
also specifies indirect ownership through a path of auxiliary entities, but this is not
strictly capital ownership, and therefore we do not take into account these rela-
tionships in our study.

The location of an entity is usually a country (or else a region such as Hawaï
(US), La Réunion (Fr.)) that defines where the legal entity has its headquarters.
Therefore, a subsidiary and a parent company can have different locations. See
Beddi and Mayrhofer (2010) for in-depth insights into the role of location in head-
quarters and subsidiaries relationships. The sector of a legal entity is a description
of its activity.

The database had some inconsistencies and missing values. In some cases
entities (and edges) appear multiple times. We merged identical edges into a sin-
gle edge by taking the maximum weight. About 30% of weights are missing. Ac-
cording to the documentation of Orbis, these links are indirect, i.e they represent
ownership through other entities and, since we wish to measure direct ownership,
we simply removed these edges for our analysis.

Motivation and Justification of the Methods Used in the Analysis

The motivations to analyse the knowledge graph under the prism of centrality
measures and entity influence is two-fold.

First, the detection of influential communities of entities has a natural inter-
pretation in economic and financial terms.

Second, the existence of low time complexity algorithms available for this
purpose. Indeed, the considered network being very large, any non (quasi-)linear
time complexity algorithm would result in computational time issue. Besides, sev-
eral possibilities exist in order to model the influence of nodes, for instance with
the influence interdiction problem (Omer and Mucherino, 2020). However to the
best of our knowledge, other formulations do not have linear time algorithm to
obtain good approximate solutions efficiently. On the contrary, centrality mea-
sures (k-cores) and some influence maximization algorithms, which are relatively
straightforward methods, have linear time complexity have proven to be very ef-
ficient in the detection of influential communities.
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Preliminary definitions

In this section we present supplementary notions and definitions used for the anal-
ysis of Orbis network.

Aggregation by attributes

The ownership graph also contain entity attributes (location (country or re-
gion) and a description of the activity (sector), cf Sec. 8.2.2 for a precise descrip-
tion). Here, we present a method to analyze the graph of entities by attributes. Let
A be the set of values for a given attribute of the entities. For (a, b) ∈ A2, let Ga

(resp. Gb) be the set of entities having attribute a (resp. b). We define a new graph
GA = (A, EA) between attribute values in the following way:

wab =
1

|Gb|
∑
j∈Gb

∑
i∈Ga∩N−(j)

wij (8.1)

In other words, GA provides a kind of “meta-graph” based on the pairwise
relationship between the values of A. For example, a graph where A = {a, b} de-
fines two countries, will be a graph of two nodes, inheriting the connectivity in
the form of an aggregation wab on up to two directed edges EA. This definition of
Equation (8.1) insures the following mathematical conveniences, as also in Equa-
tion (8.5):
∀(a, b) ∈ A2

0 ≤ wab (8.2)

wab ≤
1

|Gb|
∑
j∈Gb

∑
i∈Ga∩N−(j)

wij

wab ≤ 1 (8.3)

and ∑
a∈A

wab =
1

|Gb|
∑
j∈Gb

∑
a∈A

∑
i∈Ga∩N−(j)

wij

=
1

|Gb|
∑
j∈Gb

∑
i∈N−(j)

wij

≤ 1

|Gb|
∑
j∈Gb

1∑
a∈A

wab ≤ 1 (8.4)
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Moreover, the choice of Equation (8.1) is a good candidate for the influence of
a attribute a over an attribute b (e.g influence of Germany over France), since it
corresponds to a quantity representing the percentage or total capital owned by a
over b. Therefore, The meta-graph GA allows us to analyze interactions between
attributes (i.e countries or sectors). However the limitation of this analysis lies
in the assumption that entities have the same capital: we will come back to this
limitation in Section 8.2.3.

Rooted influence graph

For each entity, we define a subgraph, the rooted influence graph (RIG), sim-
ilarly to the rooted citation graph (RCG) in collaboration analysis Giatsidis et al.
(2019). The RIG of a vertex i is the subgraph of G induced by the set of vertices
that contain i and all the vertices which can be reached by a directed path. That
is, j ∈ RIG(i) if and only if there is a directed path from vertex i to vertex j. The
resulting directed acyclic graph (DAG) contains all the entites that are directly or
implicitly influenced by the entity i.

Based on this definition, it is natural to consider the following quantities in
the RIG to measure influence of an entity:

• a) out-degree

• b) average degree of the nodes in the RIG

• c) core influence (i.e core number of the considered entity of the undirected
RIG)

Influence maximization

In network and graph theory, influence maximization (IM) is the problem
of maximizing influence with regards to seed nodes using a diffusion model. It
has been extensively studied recently due to its potential commercial value. An
example of application of influence maximization is viral marketing Domingos
and Richardson (2001), where an organization wants to spread the adoption of a
product from selected adopters. Influence maximization is also the corner stone
in other important applications such as network monitoring, rumor control, and
social recommendation.

Model and Methodology

In the following, the capital ownership network is represented as a capitalistic
graph G = (V,E). A vertex i ∈ V represents a legal entity, an oriented edge eij
with weight wij represents capitalistic property: an edge from i to j means that i
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owns capital of j in proportion wij . N+
i andN−i are respectively the out-neighbors

and in-neighbors of vertex i (i.e., set of nodes connected to and from vertex i).
|I| is the cardinal of a finite set I . For mathematical convenience, we impose the
following conventions:

∀e ∈ E, we ∈ [0, 1]

∀i ∈ V,
∑
j∈N−i

wji ≤ 1 (8.5)

In Sec. 8.2.2, we describe how to ensure Eq. (8.5). Following standard juridic
terms, there are two types of entities in the graph:

• Natural person (or physical person): individual human being

• Juridical person: incorporated organizations including corporations, govern-
ment agencies; or non-governmental organizations. A legal person is com-
posed of natural persons, but has a distinct juridic identity.

We suppose that there exist no inner link between the subgraph of natural
persons, eventhough a natural person can have influence over others (we suppose
this link is not explicit so it is not considered as an edge in the graph). Therefore,
it is possible to model this ownership graph as a graph in Fig 8.9.

a

b

e1

e2

e3

wae1

we1e2

we2e3
= we3e2

wae2

wbe2

wbe3

Figure 8.9 – Weighted digraph: natural persons (blue) and organizations (red)

We are interested in studying the influence of legal entities, so the distinction
between natural person and organizations raises an important discussion for the
evaluation of such influence. How do we use the information from the subgraph
of natural persons? A first approximation is to consider that the links between per-
sons and organizations are negligible in terms of global influence. In this case, we
are left with the study of the subgraph of the organizations. A second way to op-
erate is to aggregate information from deleted edges between natural persons and
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organizations, for example by creating additional links between organizations, or
adding node features. In view of the instance at our disposal, and in particular the
fact that the data is poor with regards to personal attributes, we decided to con-
sider the first situation, that is to say to keep only the links between organizations.

Unlike market payment graphs which are very dynamic, the capitalistic graph
evolves across a relatively long time scale and significant changes do not occur fre-
quently (except rare events, such as the onset of an economic crisis). Therefore, we
consider the capitalistic graph constant for our analysis: we will not analyze its
dynamic aspect, although this may be considered in future work.

The data is provided by Bureau Van Dijk Dijk (2018), and lists all the physical
and legal entities. Each of these entities has corresponding metadata: Name, loca-
tion (country and continent), and description. They also have a weighted capital
property over a list of other entities. The original data format is in a non-relational
form (i.e line format): software development was necessary to parse and load data
into a graph.For reasons of confidentiality, the data has been anonymized.

Location-sector analysis of the Orbis network has been proposed to identify
and locate important entities Nakamoto et al. (2019a) and, in a 2015 snapshot, to
analyze the location and sector of conduit firms likely to be used for treaty shop-
ping Nakamoto et al. (2019b). Here, we consider a different model and a more re-
cent version of the network (2018). We also consider an entity and its subsidiaries
as separate, making the assumption that the influence of an entity is also spread
through its subsidiaries.

Degree Distribution and Connected Components

We used the igraph software implementation Csardi and Nepusz (2006) to man-
age the graph structure emanating from this database. After pre-processing, the
graph of organizations is composed of 81, 576, 517 nodes and 6, 818, 574 edges. Fol-
lowing our discussion in the first section, we consider the subgraph of juridical
entities (organizations) for our entity influence analysis. The subgraph of non-
isolated organizations is composed of 6, 518, 718 nodes and 6, 818, 574 edges, with
1, 429, 853 components; additional numbers are in Table 8.1. An important metric
in graph mining is the density, representing the average connectivity (i.e. abun-
dance of edges) of the graph. The density of a directed graph is a real number in
[0, 1], maximized for cliques and minimized for a graph of isolated nodes. For the
graph at hand the density is:

D =
|E|

|V |(|V | − 1)
= 1.571× 10−7

which means that the graph is very sparse. The degree distribution is in Fig. 8.10
and suggests important sparsity. We can see that the degrees vary importantly in
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Table 8.1 – Capitalistic ownership graph instance (Orbis). (1) All edges, (2) Edges
with unknown weights removed

Subgraph Nodes Edges
(1) (2) (1) (2)

Organizations 81, 576, 517 81, 576, 517 6, 818, 574 4, 242, 843

Non isolated organizations 6, 518, 718 4, 789, 294 6, 818, 574 4, 242, 843

Total (natural persons and organizations) 105, 426, 819 105, 426, 819 81, 111, 480 49, 777, 255

the graph. More specifically there are few entities with up to more that a million
capitalistic relations whereas the vast majority have less that one hundred. Also
it is interesting to note that generally the outward edges per node supersede the
incoming ones (i.e. entities acquire more than they are acquired).

The distributions of entities by sector and country are displayed in Tables
8.2 and 8.3. We see that the distribution is not uniform and is not correlated with
the sizes of each country. There are relatively few entities in the United States (US)
compared to some European or South American countries. This is because the data
source has little knowledge of US entities. One possibility for refining the study in
relation to this country would be to supplement Orbis with data from other sources
(but this is outside the scope of this work).

The subgraph of organizations contains a very large component (i.e. a set of
entities where each pair of nodes is connected via a path) of 1, 442, 704 nodes and
1, 816, 874 edges. The other components are very small, smaller than one thousand
nodes. The component-size distribution is in Fig. 8.11, which shows that there
are many small components (some hundreds of nodes) and lots of isolated nodes.
Two drawings of smaller components (less than a thousand nodes) are depicted in
Fig 8.12. We do not include a fine-grained classification of the structure of these
small components. However, in the next subsections we provide the analytics on
the largest component of juridical entities of 1, 442, 704 nodes.

Degeneracy and Centrality Measures

The maximum k-core (defined as the k-core such that Ck is not empty and k is
maximal) of the graph allows to find an approximation of the densest part of the
graph in linear time Batagelj and Zaversnik (2003).

On the one hand, in the original graph of entities restricted to organizations,
the large component of 1, 442, 704 million nodes has a degeneracy value equal to
18 composed of 45 entities. C18 is a very dense community of entities, where each
of them is being owned (resp. owns) the capital of (resp. by) at least 18 other
entities in total. Recall that the other components are much smaller (i.e few hun-
dreds of entities) and sparse, so that degeneracy in these components is not very
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Figure 8.10 – Degree distribution of organizations (Orbis)
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Figure 8.11 – Distribution of the sizes of connected components of juridical or-
ganizations (Orbis) . It contains one large component (∼ 2 millions nodes), and
thousands of small components (from ten and a thousand entities)

informative for data mining.
On the other hand, the distribution of countries and sectors in {Ck | k ≥ 9}

(992 entities) are displayed in Tables 8.4 and 8.5. These tables show that countries
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Table 8.2 – Top 20 most frequent sectors in Orbis

Location Number (total)

Unknown 9691495
Restaurants and mobile food service activities 2478398

Construction of residential and non-residential buildings 1584314
Hairdressing and other beauty treatment 1567390

Retail sale of clothing in specialized stores 1515681
Rental and operating of own or leased real estate 1437334

Retail sale in non-specialized stores with food, beverages or tobacco predominating 1351262
Freight transport by road 1207457

Other retail sale of new goods in specialized stores 1190241
Business and other management consultancy activities 1168437

Non-specialized wholesale trade 1088766
Maintenance and repair of motor vehicles 1064392

Other business support service activities n.e.c. 995030
Activities of other membership organizations n.e.c. 932252

Activities of holding companies 930527
Other specialized construction activities n.e.c. 809568

Advertising agencies 793219
Other building completion and finishing 763069

Engineering activities and related technical consultancy 753509
Retail sale of hardware, paints and glass in specialized stores 715492

Table 8.3 – Top 20 most frequent countries in Orbis

Country Number (total)

Brazil 19550646
China 9865149
Italy 4985420

United Kingdom 4030892
France 3740322

Russian Federation 3258544
Germany 2631038
Australia 2554195

Netherlands 2498228
Colombia 1924520

Czech Republic 1803264
Poland 1607002
Sweden 1594381
Japan 1489379
Spain 1163873
India 1139334

Mexico 965197
Bulgaria 898522
Taiwan 863927

Romania 853540

and sectors are not uniform but shared between a limited amount of countries
(Singapore, Australia, Germany, Ukraine, and France), and sectors (Activities of
holding companies, Buying and selling of own real estate, Other monetary inter-
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(a) Connected component 1 (b) Connected component 2

Figure 8.12 – 2 examples of small components (Orbis)

mediation, Rental and operating of own or leased real estate, Activities of head
offices). These countries and sectors have a more intense interaction for capitalistic
property.

Table 8.4 – 20 most frequent countries in the 10 top-k cores (992 entities from Orbis)

Countries Number

Singapore 440
Australia 331
Germany 256
Ukraine 125
France 69

Malaysia 52
New Zealand 52
Bermuda(GB) 33

India 32
Chile 26
Italy 19

Thailand 15
Hong Kong 10

United Kingdom 6
Cayman Islands(GB) 5

China 2
Ireland 2

Netherlands 2
Israel 1
Japan 1

Luxembourg 1
British virgin islands 1
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Table 8.5 – Most frequent sectors in top k-cores (992 entities from Orbis)

Sector Number

Activities of holding companies 314
Buying and selling of own real estate 84

Other monetary intermediation 64
Rental and operating of own or leased real estate 53

Activities of head offices 46
Other activities auxiliary to financial services, except insurance and pension funding 42

Trusts, funds and similar financial entities 37
Unknown 36

Activities of other membership organisations n.e.c. 36
Publishing of directories and mailing lists 35

Other financial service activities, except insurance and pension funding n.e.c. 32
Sea and coastal freight water transport 25

Real estate agencies 16
Business and other management consultancy activities 16

Precious metals production 15
Other business support service activities n.e.c. 14

Other credit granting 13
Mining of coal and lignite 12

Publishing of journals and periodicals 11
Mining of other non-ferrous metal ores 11

Security and commodity contracts brokerage 11
Fund management activities 10

Other professional, scientific and technical activities n.e.c. 10
Retail sale in non-specialised stores with food, beverages or tobacco predominating 10

Aggregation by Attribute

In order to provide an example of location analysis of such network, we consider
the case of France. We computed the aggregated sites whose capital is most pos-
sessed by French entities (top 20 countries ranked by edge weight). Conversely,
we computed the top 20 aggregate locations that own capital of French entities.
We reported results in Fig. 8.13. The entities most held by the French entities are
those located in their former colonies (i.e. Algeria, Togo, Congo, Côte d’Ivoire,
Benin, Chad, Gabon, Senegal, Cameroon, Comoros, Madagascar, ...). Conversely,
the French entities are mostly owned by those located in economically strong coun-
tries, such as Germany, China, the United States, Japan, the United Kingdom, the
United Arab Emirates, as well as countries geographically close or sharing impor-
tant historial lies (Belgium, Italy, Morocco, ...). We also reported top-5 neighbors
sorted by weight in descending order (tables 8.13d and 8.13c). Top in weights are
much lower that the top out weights, this means that French entities have a ten-
dency to own capital of entities in other countries rather to have capital owned at
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the international level.
Fig. 8.14 depicts the densest k-core (k = 44) on the meta-graph of countries,

and represents the most connected subgraph of countries of capitalistic ownership.
We observe an important proportion of countries in Europe (France, Germany,
United Kingdom, Italy, Spain, Portugal, ...). Other economically strong countries
such as United States, China, United Arab Emirates and Republic of Korea are also
represented. These two categories have a dense collaboration in terms of capital
ownership. Two important aspects about Fig. 8.14:

• Some "tax havens" are present (Cayman Islands, Malta, Cyprus, ...) despite
their relative low number of entities.

• The United States of America are in the densest k-core of the meta-graph of
countries, eventhough they are under-represented in the dataset (less than
850000 entities, cf. Table 8.4).

Fig. 8.15 depicts the densest k-core (k = 218) on the meta-graph of sectors (limited
to 15 sectors with highest degree for visibility). It reveals a dense collaboration
between several economic sectors (Financial activities, real estate, engineering and
technical consultancy, ...).

Influence Analysis

Recall that, in the context of this analysis, influence is the capacity to have an effect on
the development or decisions of an entity. In this subsection we present two different
types of methods to measure it. Then, we compare the results obtained using the
same diffusion model.

Coreness and Rooted Influence Graph

We used two coreness-based methods to measure influence indirectly. First, sort-
ing nodes based on their coreness number in the graph. Second, we compute the
coreness of each node in its RIG, and sort them by decreasing value. Then, we keep
the top-k nodes and consider the distribution of attributes within these. The results
with k = 10000 are in Table 8.16 (left side) for location analysis and in Table 8.6 for
sector analysis.

Influence Maximization:

The idea is to use the influence maximization (IM) paradigm in order to measure
entity influence in the capitalistic graph. Here, we ran the simulations using in-
fluence maximization with martingales, with ε = 0.1 and a seed set of 10 000 nodes.
The output is a seed set of 10000 nodes which is an approximation of the IM so-
lution whose quality will be discussed in Sec. 8.2.3. We display the distributions
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(a) France as target
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(b) France as source

Country to France Weight in %

Belgium 0.88

Germany 0.77

Netherlands 0.51

Italy 0.50

United Kingdom 0.50

(c) Top 5 corresponding meta-
graph weights (France as target)

France to Country Weight in %

Cameroon 39.07

Central African republic 33.33

Senegal 33.12

Benin 26.09

Madagascar 25.21

(d) Top 5 Corresponding meta-graph
weights (France as source)

Figure 8.13 – France as source and target of capital ownership (Orbis)
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Figure 8.14 – Densest k-core on the meta-graph of countries (k = 44, Orbis
database)
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Activities of head offices

Activities of holding companies

Business and other management consultancy activities

Buying and selling of own real estate

Construction of residential and non-residential buildings

Engineering activities and related technical consultancy

Management of real estate on a fee or contract basis

Non-specialised wholesale trade

Other activities auxiliary to financial services except insurance and pension funding

Other business support service activities

Other financial service activities except insurance and pension funding

Other personal service activities

Other professional scientific and technical activities

Rental and operating of own or leased real estate

Trusts funds and similar financial entities

Figure 8.15 – Densest k-core on the meta-graph of sectors (k = 218, limited to 15

highest degree sectors for visibility, Orbis database)

within this seed set in the right part of Table 8.16 for location analysis, and Table 8.7
for sector analysis.

8.2.3 Discussion

The network of capital ownership data of organizations revealed a large compo-
nent, that we analyzed according to the different axes listed in the previous section.
This allows us to define the communities of countries or sectors that are influenc-
ing the economy of capital ownership. In particular we looked at France as a sanity
check, and to provide insight of the functionality of Orbis instance Dijk (2018). We
are measuring implicit entity influence thereof. We highlight the possible limita-
tion of the approximation of different sized entities as having the same capital,
since we aggregated the weights without taking in account the capital value. That
is to say, the size of capital of entities is not explicitly modeled.

The different influence measurements (RIG and IMM) gave significant dif-
ferences in the distributions of attributes. In order to estimate the quality of their
respective solutions, we compared the number of infected nodes using our diffu-
sion model (independent cascades), with entities obtained in the top k-cores of the
graph. We define the ratio τ as the ratio of the seed set size over the number of
vertices of the graph. For practical software reasons (NDlib library Rossetti et al.
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Figure 8.16 – Top 20 influential countries using coreness on the RIG ((a), left) and
influence maximization on the IM ((b), right) on the total network of entities (Orbis)

(a) RIG

Country Number

Italy 1085
Germany 995
Ukraine 880
France 866
India 600
Japan 555

Australia 425
Spain 396

United Kingdom 334
Russian Federation 328

Norway 298
Portugal 277
Austria 258
China 190

Taiwan 190
Belgium 187

Netherlands 178
Thailand 163
Singapore 151
Malaysia 124

(b) IM

Country Number

Germany 1322
China 1161

Australia 1010
France 642
Italy 628

United Kingdom 530
Austria 381
Norway 337

Spain 328
Ukraine 296

Japan 255
Netherlands 220

Belgium 206
Russian Federation 169

Sweden 163
Singapore 137

New Zealand 115
Portugal 115
Poland 108
India 98

(2018)), we considered larger seed sets (τ ∈ {5%, 10%, 15%, 20%} of the considered
graph where τ = 5% corresponds to 75136 nodes). The results are shown in Ta-
ble 8.8. For all seed set sizes, we have obtained better results using RIG coreness
than with IMM. Influence based on coreness on the initial graph yields better solu-
tions for τ ∈ {5%, 10%, 15%} seed set sizes, and IMM performs slightly better than
top-k coreness for τ = 20%. This is an interesting discovery. In spite of good theo-
retical guarantees, the IMM algorithm of influence maximization suffers on some
graph instances and seed set sizes found in practice (such as this one). This is also
in accordance with experiments of Giatsidis et al. (2019) suggesting that coreness
can yield excellent influence measurement in our context of interest of this work.
We suggest that for large and relatively sparse network, influence measurement
with coreness should be considered.

8.2.4 Conclusion

Our analysis based on centrality measures and influence maximization is consis-
tent with economic and historical facts such as the existence of tax havens, and pri-
vate capital ownership over its former colonies (we specifically studied the case of
France). This therefore allowed us to reveal important locations and sectors com-
munities in the economy, and potentially target most influential entities. Initial
seeds using k-cores yield a better influence score for several seed set sizes ranging
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Table 8.6 – Top 20 influential sectors using coreness in the rooted influence graph
(Orbis database)

Sector Number of entities

Activities of holding companies 1079
Other monetary intermediation 659

Activities of head offices 636
Rental and operating of own or leased real estate 344

Other financial service activities, except insurance and pension funding n.e.c. 312
Other activities auxiliary to financial services, except insurance and pension funding 249

Business and other management consultancy activities 244
Unknown 243

Fund management activities 193
Other business support service activities n.e.c. 185

Trusts, funds and similar financial entities 175
Non-specialized wholesale trade 168

Construction of residential and non-residential buildings 137
Development of building projects 132

Buying and selling of own real estate 114
Retail sale in non-specialized stores with food, beverages or tobacco predominating 107

Security and commodity contracts brokerage 100
Production of electricity 97

Administration of financial markets 85
Insurance, reinsurance and pension funding, except compulsory social security 84

Life insurance 81
Non-life insurance 77

from 5% to 20% using the independent cascade diffusion model. Results suggest
that several means should be considered (depending on the size of the seed set) to
measure influence in large networks with similar degree distribution.

We outlined results that should be treated with caution, due to the sparsity of
data, particularly respective of some countries, for example – in this dataset – the
United States. Nevertheless, the overall results provide important insight and in-
formation on the influence of the entities and are for the most part consistent with
the current global economic situation. Of course, further enrichment of the capi-
tal ownership dataset with additional entities and capital information will likely
provide an even more precise quantitative measure of influence. We could also
consider studying the evolution of this graph over time (monthly or yearly), but
this is out of scope of the current study and we leave that line of research for future
work.
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Table 8.7 – Top 20 influential sectors using influence maximization (Orbis database)

Sector Number of entities

Unknown 1181
Activities of holding companies 520

Rental and operating of own or leased real estate 354
Other business support service activities n.e.c. 298

Activities of head offices 291
Buying and selling of own real estate 214

Business and other management consultancy activities 212
Other activities auxiliary to financial services, except insurance and pension funding 180

Development of building projects 155
Production of electricity 153

Construction of residential and non-residential buildings 133
Real estate agencies 132

Trusts, funds and similar financial entities 130
Engineering activities and related technical consultancy 119

Non-specialised wholesale trade 107
Management of real estate on a fee or contract basis 102

Computer programming activities 100
Other financial service activities, except insurance and pension funding n.e.c. 95

Other professional, scientific and technical activities n.e.c. 89
Other transportation support activities 85

Table 8.8 – Comparison with the IC model for several seed set sizes (50 simulations)

Method
σ(S)± std

τ = 5% τ = 10% τ = 15% τ = 20%

Coreness 285250.8± 1304.8 351887.4± 928.8 418440.6± 755.8 474402.2± 454.3

IMM 161485.4± 1211.2 298874.9± 774.3 419304.6± 1055.5 521251.7± 1033.4

RIG coreness 610138.7± 549.8 701871.5± 706.7 799244.1± 661.1 903330.4± 369.1

8.3 Chapter 6: Other distances?

As mentioned in Chapter 6, there are several possibilities for defining distances
between random variables, we discuss some of them in the next two new sub-
sections. Unfortunately, these possibilities are inadequate because of excessive
computational cost; moreover, preliminary experiments showed that they were
far from inducing valid Euclidean distance on RK for K ∈ {50, 100, 150}.

8.3.1 Distances on Random Variables

Given two discrete random variables X and Y , with the same support X , on a
probability space (Ω, A, P ), with joint probability distribution ρ(x, y), we have that
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E[|X − Y |p]1/p = (
∑

(x,y)∈X×X

|x− y|pρ(x, y))1/p (8.6)

defines a distance d : (X, Y ) 7→ d(X, Y ) on the set of corresponding random vari-
ables (Deza and Deza, 2009).

Law of large numbers: If (x1, y1), ..., (xn, yn) are i.i.d observations for the ran-
dom variable (x, y), then the ê(X, Y ) is an estimator of the distance E[|X − Y |p]:

ê(X, Y ) =
1

n

n∑
i=1

|xi − yi|p (8.7)

By continuity d̂(X, Y )p = ê(X, Y )1/p is an estimator of E[|X − Y |p]1/p.
LetX (resp. Y ) be the binary random variable equal to 1 if the word x (resp.y)

appears in a window of size w in a corpus and X = {0, 1}. Then,

E[|X − Y |p] =
∑

(x,y)∈X×X

|x− y|pρ(x, y) (8.8)

= |0− 0|pρ(0, 0) + |1− 0|pρ(1, 0) + |0− 1|pρ(0, 1) + |1− 1|pρ(1, 1)

= ρ(1, 0) + ρ(0, 1) (8.9)

Then d̂(X, Y )p is an estimator of distance between random variables associ-
ated to word x and y.

For p = 2, d(X, Y ) has a scalar product, which is

q(X, Y ) = 〈X, Y 〉 =
∑

(x,y)∈X×X

xy ρ(x, y) (8.10)

An estimator of q(X, Y ) is given by

q̂(X, Y ) =
1

n

n∑
i=1

xiyi (8.11)

Which in our case corresponds to the number of co-occurrences between a word x

and y in a window of size w in a corpus, divided by n which is the total number of
windows considered.

8.3.2 A distance candidate: variation of information

Let H(X) be the entropy of random variable X :

H(X) = −
∑
x∈X

ρ(x) log ρ(x) (8.12)
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I(X, Y ) be the mutual information between random variables X and Y de-
fined as:

I(X, Y ) =
∑

(x,y)∈X×X

ρ(x, y) log
ρ(x, y)

ρ(x)ρ(y)
(8.13)

It is worth noting that

I(X, Y ) = DKL(ρ(x, y)||ρ(x)ρ(y)),

where DKL(.||.) denotes the Kullback-Leibler divergence.
And the variation of information V (X, Y ) such that:

V (X, Y ) = H(X) +H(Y )− 2I(X, Y ) (8.14)

Then, V : (X, Y ) 7→ V (X, Y ) defines a metric on the set of discrete random
variables.
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Titre : Graphes, géométrie et représentations pour le langage et les réseaux d’entités
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Résumé : La nature ambiguë de certaines structures
discrètes pose problème pour la modélisation ainsi
que le traitement et l’analyse à l’aide d’un programme
informatique. Le langage dit “naturel”, et sous sa
forme en particulier de représentation textuelle, en est
un exemple. Le sujet de cette thèse consiste à ex-
plorer cette question, que nous étudions à l’aide de
méthodes combinatoires et géométriques.
Dans un premier temps, nous commençons par
démontrer des propriétés combinatoires d’une fa-
mille de graphes intervenant de manière impli-
cite dans les modèles séquentiels. Ces propriétés
concernent essentiellement le problème inverse de
trouver une séquence représentant un graphe donné,
et nous permettent d’effectuer une comparaison
expérimentale de différents modèles séquentiels uti-
lisés en modélisation du langage.
Dans un second temps, nous considérons une ap-
plication pour le problème d’identification d’entités
nommées. A la suite d’une revue de solutions
récentes, nous proposons une méthode compétitive
basée sur la comparaison de structures de graphes
de connaissances et moins coûteuse en annotations

d’exemples. Nous établissons également une ana-
lyse expérimentale d’influence d’entités à partir de re-
lations capitalistiques, suggérant l’élargissement du
cadre d’application de l’identification d’entités à des
bases de connaissances de natures différentes.
Ensuite, nous développons une étude géométrique
de représentations de mots récemment proposées,
au cours de laquelle nous discutons une conjecture
géométrique théoriquement et expérimentalement.
Cette étude suggère que les analogies du lan-
gage sont difficilement transposables en propriétés
géométriques.
Enfin, nous proposons une méthodologie basée sur
le paradigme de la géométrie des distances afin
de construire de nouvelles représentations de mots
ou d’entités. Nous proposons des algorithmes de
résolution de ce problème à grande échelle, qui
nous permettent de construire des représentations
interprétables et compétitives en performance pour
des tâches extrinsèques. Plus généralement, nous
proposons à travers ce paradigme un nouveau
cadre et piste d’explorations pour la construction de
représentations en apprentissage machine.

Title : Graphs, Geometry and Representations for Language Models and Networks of Entities

Keywords : Combinatorics, Graph theory, Distance geometry, Computational complexity, Natural language
models, Networks

Abstract : The ambiguous nature of certain discrete
structures is problematic for their modeling as well as
their processing and analysis with a program. Natural
language, and in particular its textual representation,
is an example. The subject of this thesis is to explore
this question, which we approach using combinatorial
and geometric methods
Firstly, we start by showing combinatorial proper-
ties of a family of graphs involved in sequential mo-
dels. These properties essentially concern the inverse
problem of finding a sequence representing a given
graph. The resulting algorithms allow us to carry out
an experimental comparison of different sequential
models used in language modeling.
Secondly, we consider an application for the problem
of identifying named entities. Following a review of
recent solutions, we propose a competitive method
based on the comparison of knowledge graph struc-
tures which is less costly in annotating examples de-
dicated to the problem. We also establish an experi-
mental analysis of the influence of entities from ca-

pital relations. This analysis suggests to broaden the
framework for applying the identification of entities to
knowledge bases of different natures.
Then, we perform a geometric study of recently pro-
posed representations of words, during which we dis-
cuss a geometric conjecture theoretically and expe-
rimentally. This study suggests that language analo-
gies are difficult to transpose into geometric proper-
ties, and leads us to consider the paradigm of dis-
tance geometry in order to construct new represen-
tations.
Finally, we propose a methodology based on the pa-
radigm of distance geometry in order to build new re-
presentations of words or entities. We propose algo-
rithms for solving this problem on some large scale
instances, which allow us to build interpretable and
competitive representations in performance for extrin-
sic tasks. More generally, we propose through this pa-
radigm a new framework and research leads for the
construction of representations in machine learning.
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