Vincent Roulet

Antoine Recanati

Damien Scieur

Mathieu Barré

Gregoire Mialon

Radu Dragomir

Yana Hasson

Yann Labbé

Julia Peyre

Les méthodes de Gradient Conditionnel, ou algorithmes de Frank-Wolfe, sont des méthodes itératives du premier ordre utiles pour résoudre des problèmes d'optimisation sous contraintes. Elles sont utilisées dans de nombreux domaines comme l'apprentissage statistique, le traitement du signal, l'apprentissage profond, la géométrie algorithmique et bien d'autres encore. Ces algorithmes décomposent la minimisation d'une fonction non-linéaire en une série de sous problèmes plus simples. Chacun de ces sous-problèmes revient à minimiser une fonction linéaire sous les contraintes, l'oracle de minimisation linéaire. De nombreuses variantes de ces algorithmes existent qui cherchent à s'adapter au mieux aux structures particulières des problèmes d'optimisation sous-jacents. Ainsi de nombreuses directions de recherches restent ouvertes quant à l'analyse et la conception de nouveaux algorithmes de ce type, notamment pour l'apprentissage automatique.

Notre première contribution est de proposer et d'analyser de nouveaux schémas algorithmiques qui s'adaptent à un certain type d'hypothèses génériques. Ces dernières quantifient le comportement de la fonction près des solutions du problème d'optimisation. L'analyse de ces schémas d'algorithmes révèle des taux de convergence qui s'interpolent entre les taux classiques sous-linéaires en O(1/T) et les taux de convergence linéaire. Ces résultats montrent aussi que les algorithmes de Frank-Wolfe s'adaptent facilement à ce genre d'hypothèse puisque l'algorithme n'a pas besoin de connaître les paramètres qui contrôlent les hypothèses structurelles supplémentaires pour accélérer.

Notre seconde contribution s'inscrit dans une question de recherche encore ouverte. Les algorithmes de Frank-Wolfe peuvent accélérer le taux de convergence O(1/T) quand l'ensemble de contraintes est un polytope ou un ensemble fortement convexe. Pour quel autre type de contraintes existe-t-il une version de Frank-Wolfe avec des taux accélérés? Ici nous montrons que l'uniforme convexité, qui généralise la forte convexité, permet d'accélérer l'algorithme de Frank-Wolfe, là encore de manière adaptative. Plus généralement, cela signifie que c'est la courbure des ensembles de contraintes -et pas seulement une quantification spécifique telle que la forte convexité -qui peut accélérer les algorithmes de Frank-Wolfe.

Pour notre troisième contribution, nous proposons des versions des algorithmes de Frank-Wolfe où l'oracle de minimisation linéaire est résolu sur des sous-ensembles aléatoires de l'ensemble de contraintes initial tout en conservant, en espérance, les même taux de convergence asymptotiques. Bien que ces algorithmes ne conservent pas toutes les propriétés classiques des algorithmes de Frank-Wolfe, ce résultat étend les résultats de descente par blocs de coordonnées qui s'appliquent lorsque l'ensemble de contraintes est le produit cartésien d'ensembles plus simples.

Finalement notre quatrième contribution vise à raffiner théoriquement les taux dans le lemme de Carathéodory approximé de sorte à prendre en compte une mesure de la variance, iii dans une norme de Banach, des atomes formant l'enveloppe convexe en question. Ce résultat repose sur un extension des inégalités de concentration de type Serfling, c'est-à-dire de tirage avec remplacement. Nous appliquons ce résultat pour des versions approximées du théorème de Shapley-Folkmann.

En appendice nous relatons des recherches faites en parallèle du sujet principal de recherche. iv

Contributions and thesis outline

This dissertation primarily focuses on designing or analyzing new conditional gradient algorithmic schemes, a.k.a. Frank-Wolfe algorithms. We consider the general constrained optimization problem minimize

x∈C f (x), (1
)
where C is a compact convex set and f is a differentiable convex function. A crucial feature our dissertation demonstrates is that Frank-Wolfe algorithms are adaptive to several types of structural assumptions on the optimization problem.

Chapter 1: This chapter offers a review of Frank-Wolfe algorithms. We survey Frank-Wolfe algorithm and point to existing convergence results and applications. In this chapter, we do not provide new results.

Chapter 2: This chapter focuses on designing and analyzing versions of Frank-Wolfe adaptive to error-bound type conditions. We notably tailor error bounds assumptions for the Frank-Wolfe algorithms. We then show that restarted versions of Frank-Wolfe enjoy new sublinear convergence rates without specific knowledge of the error bounds parameters. In other words, there exist Frank-Wolfe algorithms adaptive to generic structural assumptions on the geometry of the problem around its optimal solutions.

Chapter 3: In this chapter, we focus on the original Frank-Wolfe algorithm. We show that, under appropriate assumptions on f , it enjoys accelerated convergence when the constraint set is uniformly convex. This is a generic quantification of the curvature of a set subsuming strong-convexity. For instance, the p balls are uniformly convex for all p > 1, but strongly convex for p ∈]1, 2] only. Hence, our analysis non-trivially generalizes the various rates under strong-convexity assumptions. It is the curvature of the constraint sets -not just their strong convexity -that leads to accelerated convergence rates for Frank-Wolfe. These conclusions also highlight that the Frank-Wolfe algorithm is adaptive to much more generic constraint set structures, thus explaining faster empirical convergence. Finally, we also show accelerated convergence rates when the set is only locally uniformly convex and provide similar results in online linear optimization.

Chapter 4: Here we propose randomized -or subsampled -variants of the Frank-Wolfe algorithms, which solve linear minimization problems over a small subset of the original domain.

We show that, in expectation, the randomization does not affect the various asymptotic convergence rates. We obtain a O(1/t) sublinear convergence rate for randomized Frank-Wolfe viii and a linear convergence rates for randomized away-step Frank-Wolfe. While subsampling reduces the convergence rate by a constant factor, the cost of the linear minimization step can be a fraction of the deterministic versions, especially when the data is streamed. We illustrate computational gains on regression problems, involving both 1 and latent group lasso penalties.

Conditional Gradient Algorithms

A constrained optimization problem seeks to find the extremal values of a function f : R d → R when x belongs to a set C ⊂ R d . Such optimization problems are pervasive in domains like machine learning, signal processing, economic, computational geometry, deep learning and many others. The problems we consider all along this dissertation are of the form

min x∈C f (x), (1.1)
where f is a convex differentiable function and the constraint set C is a compact convex set.

Since there is usually no analytical formula to describe the solutions of (1.1), numerous algorithmic methods have been designed to find approximate solutions by iteratively refining a sequence of points (x t). With convexity assumptions, the difficulty is not to build algorithms that converge, but to design ones that best reduce the number of iterations and their computational cost to obtain an approximate solution to (1.1).

At each iteration, an algorithm exploits some knowledge of f or C that is accessed via oracles. Most of the algorithms use homogeneous type of oracles at each iteration. As such, one can typically classify them according to the structural knowledge required by these oracles. For instance, first-order algorithms involve computations of the gradient of f . There are also zero-order, second-order, or first-order stochastic algorithms that respectively require the computation of the function values, the Hessians, or stochastic approximation of the gradients.

In constrained optimization problems, algorithms also need to access a set-related oracle. For large-scale instance of (1.1), there are typically two commonly used paradigms: proximal operators or linear minimization oracles (LMO) on C. A proximal operator more or less requires to minimize a quadratic function over the constraint set C. Each type of oracle has its realm of efficiency. In this dissertation, we focus on first-order algorithms relying on Linear Minimization Oracles, known as the Frank-Wolfe algorithms or conditional gradient algorithms.

To avoid confusion, we identify an algorithm to this family when an iteration requires at worst to solve a linear minimization problem over the original domain, a subset of the domain or a reasonable modification of the domain, i.e. a change that does not stealthily amount to a proximal operation.

Analyzing algorithms properties under various structures of the optimization problems helps to build a practitioner synopsis of the many existing algorithms. Conversely, it is crucial to design new algorithms that best use the information given by the oracles in order to reduce the number of inefficient operations.

A key concept we demonstrate in this dissertation is that the Frank-Wolfe algorithms are adaptive to various types of structural assumptions. Our contributions show that there exist Frank-Wolfe variants that exhibit accelerated convergence rates under various parametric structural assumptions, without requiring knowledge of these parameters.

Conditional Gradient Framework

Here we present a partial review of the Frank-Wolfe algorithms. We will interchangeably call these algorithms Frank-Wolfe or conditional gradient algorithms. Our introduction notably focuses on explaining the known adaptive properties of Frank-Wolfe algorithms.

In this section, we first survey some of the critical features of the original Frank-Wolfe algorithm and important related notions in convex analysis and geometry. In Section 1.2, we collect classical convergence results of this algorithm, which we will be referring to during this dissertation. In Section 1.3, we summarize various corrective versions of the Frank-Wolfe algorithm and the rich recent literature analyzing various aspects of these methods. Finally, in Section 1.4, we survey the wealth of Frank-Wolfe algorithms exploring different structural settings besides the smooth convex minimization over a compact convex set. We also point to the many domains leveraging Frank-Wolfe algorithms.

Notations. C will always stand for a convex set and we set aside d for the ambient dimension of C in finite normed spaces. When working in an Hilbertian space we write , its scalar product. The polar of a convex set C is defined as C • y : x, y ≤ 1, ∀x ∈ C . For a matrix M ∈ R n×m , its p-Schatten norm is defined as the p norm of the vector (σ i) of its singular values, ||M || S(p) max{n,m} i=1

σ p i 1/p
. For a set C, we note Aff(C) the affine hull of C, Conv(C) its convex hull and Co(C) its conic hull.

The Frank-Wolfe Algorithm

There are now many different variants of Frank-Wolfe algorithms or conditional gradient methods [Levitin and Polyak, 1966, §6]. Here, we review the original Frank-Wolfe algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF] as it captures many of the properties and concepts that will be used all along this dissertation. It is a first-order iterative method. At each iteration, it finds an element in the domain C that minimizes the linear approximation of the objective function. It then performs a convex update between this element and the current iterate.

Each iteration of the Frank-Wolfe algorithm hence relies on the minimization of a linear function over the domain C, called the Linear Minimization Oracle and defined as follows for h ∈ R d .

LMO C (h) ∈ argmin v∈C h, v .

(1.

2)

The Frank-Wolfe methods are called projection-free as opposed to projected gradient descent or proximal methods. These other types of algorithms update their iterates along feasible directions that do not necessarily maintain the iterates in the domain C. As such, they require some projection oracles, which computational cost is that of minimizing a quadratic function over the domain C. When the domain C is a polytope, the Frank-Wolfe iterations rely on Linear Programming (LP) subproblems. In contrast, proximal methods rely on Quadratic Programming (QP). Another example is the case of the nuclear norm (the 1 norm of a matrix singular values). In that case, the Linear Minimization Oracle requires the knowledge of the leading singular value as opposed to a projection oracle, which relies on the computation of the full singular value decomposition (SVD).

We now state the Frank-Wolfe algorithm with the three main types of line-search in Algorithm 9.

Algorithm 1 The Frank-Wolfe Algorithm Input: x 0 ∈ C, > 0.

1: for t = 0, 1, . . . , T do x t+1 = (1 -γ t)x t + γ t v t 10: end for In (1.2), one can always choose an extreme point of C among the solutions of the linear minimization. This is particularly important as the iterates of the Frank-Wolfe algorithm are convex combinations of these outputs. As such, there is a close link between the extremal structure of C and structural properties of the iterates x t . For instance, if the extreme points of C are low-rank matrices, then the early algorithm iterates (if properly initialized) will also be low-rank-matrices.

In line 4 of Algorithm 9, a stopping criterion is a by-product of the Linear Minimization Oracle. Indeed by optimality of v t and convexity of f , we have -∇f (x t); v t -x t ≥ -∇f (x t); x * -x t ≥ f (x t) -f (x *).

The quantity -∇f (x t); v t -x t is often referred as the Frank-Wolfe gap [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF] and denoted g(x t).

Useful Notions of Convex Geometry

Most of the concepts here are classic elements of convex analysis [Rockafellar, 1970b] that will be useful for this dissertation. Extreme points connect to the structural properties of the Frank-Wolfe iterates. The faces of the convex domain C and associated cones are related to the analysis and design of Frank-Wolfe algorithms. We also define two crucial families of convex domains.

Extreme Points of Convex Sets. A point x of a convex set C is an extreme point of C if and only if it cannot be written λy + (1 -λ)z with x, y ∈ C unless x = y = z [Rockafellar, 1970b, §18]. We will refer to the extremal structure of C as the properties the extreme points of C might share. They are particularly important because there is always an extreme point of C in the solutions of the Linear Minimization Oracle. This is a crucial aspect of conditional gradient algorithms as it allows to enforce specific structures on the iterates that approximate a solution of (1.1). The early iterates are sparse convex combinations of these extremes points, also called atoms. Each specific extremal structure of constraint sets C provides a different meaning to the sparsity of the iterates. For instance, with the 1 balls, the iterates of Frank-Wolfe are sparse in the classical sense, in terms of non-zero coordinates in the canonical basis. With the trace-norm balls, a.k.a. the nuclear balls, the matrix iterates are sparse convex combinations of low-rank matrices. Hence the first iterates are also low-rank matrices. The extremal structure of the convex set C directly controls the structure of the Frank-Wolfe iterates, a useful mechanism in many practical scenarios.

Carathéodory lemma states that for a point x in a convex subset of R d , there exists a representation of it as a convex combination of at most d + 1 extreme points of C. It means that, in theory, it is possible to maintain the Frank-Wolfe iterates as a convex combination of at most d + 1 extreme points of C.

For the specific case of the Frank-Wolfe algorithm, we can only ensure that after T iterations, the iterate will be a convex combination of at most T such extreme points. Most variants of Frank-Wolfe algorithms share or improve over this property, see corrective variants in Section 1.3.

Faces of Convex Sets. Extreme points are zero-dimensional faces of convex sets C. A face F of C is a convex subset of C such that every line segment in C with a relative point in F has both endpoints in F [Rockafellar, 1970b, §18]. The dimension of the face is the dimension of its affine hull. While the extremal structure of C, i.e. the zero-dimensional facial structure, controls the structure of the iterates, the general facial structure of C is more important in the analysis and design of Frank-Wolfe algorithms.

In many practical applications of Frank-Wolfe in machine learning, the constraint sets rarely exhibit pathological behaviours. As an arbitrary example, we never encountered a situation where the set of extreme points was not a closed set, which is however not true in general. Indeed, most of the examples have relatively simple structures such as polytopes, strongly-convex sets, uniformly convex sets, intersections of polytopes and strongly-convex sets or slightly more complex such as nuclear balls or some structured norm balls.

Polytope and Strongly Convex Sets. Polytopes and strongly convex sets are the two families of set for which there exist a Frank-Wolfe variants with both enhanced theoretical and empirical properties.

Polytopes are arguably the most common type of convex sets C appearing in practical applications. Polytopes are bounded sets that can either be represented as the intersection of several half-spaces, an external representation, or as the convex hull of a finite number of points (atoms) A, an internal representation. Polytopes admit a finite number of extreme points and have a homogeneous facial structure, i.e. each face is also a polytope. In Section 1.3, we present the corrective or away versions of the Frank-Wolfe algorithm that were arguably designed for this type of structure.

Strongly convex sets is also an important family of structured sets. It is a specific quantification of the curvature of the boundary of some convex sets. In Chapter 3, we show that more general quantifications of curved sets can be leveraged in the context of the Frank-Wolfe algorithms.

Definition 1.1.1 (strongly-convex sets). A compact convex set C is strongly convex with respect to the norm || • || if and only if there exists α > 0 such that for all (x, y) ∈ C, all γ ∈ [0, 1] and all z ∈ B ||•|| (0, 1) γx + (1 -γ)y + αγ(1 -γ)||x -y|| 2 z ∈ C .

(1.3)

In euclidean finite-dimension settings, we often say that C is a strongly convex set without specifying any norm. It is implicitly with respect to the euclidean norm.

Here, any point x ∈ ∂C is extreme, and the faces of a strongly convex set are the set itself and its extreme points. Others equivalent definitions of the strong convexity of a set exist but are not useful here [START_REF] Weber | Local characterization of strongly convex sets[END_REF]. Note also that Definition 1.1.1 depends on a specific norm || • ||, impacting the value of the constant α. In finite dimension, because norms are equivalent, when a set is strongly convex for a given norm, it is with varying parameters α. This has an influence on some convergence rate of the Frank-Wolfe algorithm. In particular, it is not an affine invariant notion.

The strong-convexity of a set is especially interesting as it often brings a quadratic structure on the optimization problem (1.1) sufficient to accelerate the Frank-Wolfe algorithms, without additional quadratic structure on the function f (besides smoothness), see Section 1.2.

Convex Cones. A convex cone K, is a set in R d such that for any tuple x, y ∈ K and any tuple of non-negative coefficients (α, β), αx + βy ∈ K. Several type of natural convex cone appears in convex geometry [Rockafellar, 1970b, §2]. The situation is considerably simpler for practical analyses of Frank-Wolfe algorithms. The normal cone to a point x ∈ ∂C with respect to C is defined as

K C (x) = h s.t. y -x; h ≤ 0 ∀y ∈ C . (1.4)
At a point x of the boundary of C, K C (x) gathers all the directions that are negatively correlated with all admissible direction to C at x. Normal Cone is a notion very closely related to Linear Minimization Oracles as a extreme point v * solution of argmin v∈C h; v , is such that h ∈ K C (v *). Normal cones offer simple geometrical understanding of the behavior of a Frank-Wolfe algorithm, such as the zig-zag phenomenon [Wolfe, 1970, Guélat and[START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF] or the improved convergence when the set is curved, see Figure ?? in Chapter 3. The analyses of Frank-Wolfe algorithms then often seek to summarize this geometrical perspective into a single algebraical formula. In particular, this is probably the reason why only arguably homogeneous type of structure of the constraint sets has been studied in the analyses of the Frank-Wolfe algorithms.

Useful Notions of Convex Analysis

We have just reviewed the important properties of the convex constraint sets that appear in optimization problem (1.1). Similarly, the convergences of the algorithms also depend on structural assumptions on the objective functions f in (1.1). Most of our work has been done in the context of convex differentiable functions which revolve around two main assumptions, L-smoothness and µ strong convexity. In Section 2.1 of Chapter 2, we review other types of assumptions which provide a way for convex function to interpolate and localize the convexity and strong-convexity behaviors. In Chapter 2, we then define errors bounds for the specific setting of Frank-Wolfe algorithms and show how they can be leveraged.

Definition 1.1.2 (Convex function). A function is convex if for any distinct (x, y) ∈ C and γ ∈ [0, 1] f (γx + (1 -γ)y) ≤ γf (x) + (1 -γ)f (y) .

(1.5)

When (1.5) holds strictly, the function is stricly convex, guaranteeing the unicity of a solution to (1.1). When the function f is differentiable, convexity implies that the function is lower bounded by its linear approximations. Strong convexity then strengthens this by requiring the function to be lower bounded by a quadratic approximation of it. For a differentiable function f we now state the strong convexity property in Definition 1.1.3.

Definition 1.1.3 (Strongly convex function). A differentiable function f on C is strongly convex (with respect to || • ||) if there exists µ > 0 such that for any (x, y) ∈ C

f (y) ≥ f (x) + ∇f (x); y -x + µ 2 ||x -y|| 2 .
(1.6)

Conversely, the L-smoothness property means that the gradient is a L-Lipschitz function on C. It then bounds the amplitude of the variations of the function and means that the function is upper bounded by a quadratic approximation of it, see Definition 1.1.4. For feasible direction methods, this upper bound directly controls the amount of primal decrease to hope for at each iteration.

Definition 1.1.4 (Smooth convex function). A differentiable function f on C is smooth (with respect to || • ||) if there exists L > 0 such that for any (x, y) ∈ C f (y) ≤ f (x) + ∇f (x); y -x + L 2 ||x -y|| 2 .

(1.7)

These properties can be localized. There is also a plethora of conditions and inequality one can derive from convex functions satisfying these assumptions. For instance, a µ > 0 strong convexity (resp. L smoothness) parameter is a lower-bound (resp. upper-bound) on the smallest (resp. largest) eigenvalue of the hessian of f . For other classical relations, we refer to textbooks like [START_REF] Bertsekas | Nonlinear programming[END_REF][START_REF] Boyd | Convex optimization[END_REF][START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF].

Some Constraint Sets

Frank-Wolfe algorithms break down the minimization of a non-linear function into the multiple minimization of linear functions. Linear Minimization is an extensively studied paradigm with many results. Many practical problems come from the relaxation of combinatorial problems for which efficient linear minimization algorithms are known [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF]. For example, the Birkhoff polytope is the convex hull of the permutation matrices and Linear Programming on that domain is efficiently solved with the Hungarian algorithm [Lovasz, 1986, §1.2.]. The subject is already extensively studied, and we refer to the prominent work of [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF]. In particular, [Jaggi, 2013, Table 1] groups an extensive list of constraint set and associated cost of their LMO. We now review a few mechanisms.

Strongly Convex Sets. The p balls and p-Schatten balls for p ∈ [1, 2[are examples of strongly convex sets [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF]. From these, one can designed group norms which balls are also strongly convex, see [Garber and Hazan, 2015, §4] for more details. In particular, these balls admit analytical formula for the Linear Minimization Oracle for any values of the parameter p. For parameters value p > 2, these norm balls are more generally uniformly convex. In Chapter 3, we show that this more general property accelerates the Frank-Wolfe algorithm.

Atomic Sets. In Section 1.1.2, we noted that the extremal structure of the convex set C passes on to the (early) iterates of Frank-Wolfe algorithms. Alternatively, one can select a set of atoms (points) A sharing a specific structure and consider their convex hull conv(A) as the constraint domain in (1.1). The set of extrem points of conv(A) is a subset of A. Hence, provided the structure of the atoms is stable via sparse convex combination (with is the case for instance for low-rank atoms), their structure passes on to the (early) iterates of Frank-Wolfe. This rationale applies also in a regularization perspective, via the gauge function of a convex set. Loosely speaking, the gauge function allows to construct a measurement associated to the set C. It is defined as follows (see [Rockafellar, 1970b, §15])

Ω C (x) inf λ > 0 : x ∈ λC .
(1.8)

In particular, when A is bounded, centrally symmetric with zero its interior, the gauge of conv(A) is a norm [Rockafellar, 1970b, Theorem 15.2.]. The gauge function of the convex hull of an atomic set A hence defines a regularizer that may induce specific structures in the solution of penalized optimization problems. This is the basis to some structure inducing norms [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF][START_REF] Obozinski | Group lasso with overlaps: the latent group lasso approach[END_REF][START_REF] Foygel | Matrix reconstruction with the local max norm[END_REF][START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF][START_REF] Tomioka | Convex tensor decomposition via structured schatten norm regularization[END_REF][START_REF] Wimalawarne | Multitask learning meets tensor factorization: task imputation via convex optimization[END_REF], Richard et al., 2014].

It is interesting to solve the atomic constraint problem with the Frank-Wolfe algorithm as the iterates (and not just the solution of (1.1)) may directly capture the atomic structure. Solving a Linear Minimization Oracle over the convex hull of an atomic domain may also be considerably cheaper that computing the proximal operator.

We finally remark in [Abernethy et al., 2018, Definition 7], the use of gauge functions as a way to define an alternative notion of a set strong-convexity. [START_REF] Molinaro | Curvature of feasible sets in offline and online optimization[END_REF] recently prove that the two notions are equivalent.

Classic Convergence Results

We now detail known convergence rates of the Frank-Wolfe algorithm for specific structures of optimization problem (1.1). When the function is L-smooth and the domain C is a general compact convex set, there is a tight [START_REF] Michael | A tight upper bound on the rate of convergence of frank-wolfe algorithm[END_REF][START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF][START_REF] Lan | The complexity of large-scale convex programming under a linear optimization oracle[END_REF] convergence rate of O(1/T).

However, accelerated convergence rates hold depending on additional structures on C or on the position of the solution x * of (1.1) with respect to ∂C. In these scenarios, the Frank-Wolfe algorithm does not require any specific knowledge of the additional structural properties and adapts to these scenarios. Understanding the full spectrum of structural assumptions that lead to accelerated convergence rates is thus an important research question. For instance, in Chapter 2 (resp. Chapter 3) we prove that some non-quadratic structures of the function f (resp. of the constraint set C) accelerate the Frank-Wolfe algorithm. This section groups convergence results that only concern the original Frank-Wolfe algorithm. Of course, it is not the only projection-free algorithm and the underlying open question remains as follows.

Given a problem structure, what is the best convergence acceleration a projection-free method

(to be designed) can reach?

Understanding for which structures the Frank-Wolfe algorithm accelerate (and is adaptive) is important to design new projection-free algorithm. In Section 1.3, we review convergence results for the corrective variants of Frank-Wolfe. These are arguably designed to adapt to polyhedral domains. In this section, we also discuss results involving approximate Linear Minimization Oracle or affine invariant quantities.

Affine Invariance. The following constant curvature C f [Clarkson, 2010a, (9)] is a measure of the non-linearity of f on the set C.

C f sup x,v∈C γ∈[0,1] y=x+γ(v-x) 2 γ 2 f (y) -f (x) -∇f (x); y -x .
(1.9)

It is a key quantity in the analysis of the Frank-Wolfe algorithm [Clarkson, 2010a[START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF], Lacoste-Julien and Jaggi, 2013], that summarizes properties of f and the constraint set C.

It mingles together the diameter of C and the L-smoothness parameter. In particular, for a L-smooth function, we have [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF]. It also drives the general convergence result of the Frank-Wolfe algorithm [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF].

C f ≤ L • max x,y∈C ||x -y|| 2 for any norm || • ||
Theorem 1.2.1 (Theorem 1 in [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF]). When f is a L-smooth convex function and C a compact convex set, then the iterates of the Frank-Wolfe algorithm (with determinist linesearch) satisfy

f (x T) -f (x *) ≤ C f T + 2 .
(1.10)

In [START_REF] Frank | An algorithm for quadratic programming[END_REF], the sublinear convergence rate of O(1/T) is stated with L • max x,y∈C ||x -y|| 2 in place of C f . Previous rates where not only less tight, but also depended on a specific way to measure the geometry of C. Importantly, this affine invariant analysis with C f (1.10), echoes to the fact that the Frank-Wolfe algorithmic procedure does not require the specification of any distance function.

The curvature constant C f applies to other structural scenarios [Lacoste-Julien and Jaggi, 2013], but is primarily designed for the Frank-Wolfe algorithm. In Section 1.3, we review another curvature constant C A f [Lacoste-Julien and Jaggi, 2013], that are dedicated to corrective variants of Frank-Wolfe. Interestingly, in Chapter 2, we also designed quantities (error bounds) that are an interplay between the properties of the functions, the constraint domains and the types of Frank-Wolfe algorithms.

Line-Search Rules. There are two main types of line-search rules in the Frank-Wolfe algorithm beside exact line-search. The simplest one uses oblivious (or determinists as they are decided beforehand) step sizes proportional to 1 k+1 , where k is the number of iterations [START_REF] Evgeny | Constrained minimization methods[END_REF]Polyak, 1966, Dunn and[START_REF] Joseph | Conditional gradient algorithms with open loop step size rules[END_REF]. These often fail at capturing theoretical and empirical accelerated convergence rates. Alternatively, one can minimize the quadratic upper-bound given by the L-smoothness of the function. This requires the knowledge of an upper bound on the Lipschitz constant. We call it the short step-size rule. [START_REF] Pedregosa | Step-size adaptivity in projectionfree optimization[END_REF] study a versatile adaptive scheme which performs short step sizes by adaptively refining an estimate of the upper bound on the Lipschitz constant L. They prove the efficiency of the approach on all known accelerated convergence regimes. Note also that [START_REF] Robert | New analysis and results for the frank-wolfe method[END_REF] studies constant step size accounting for warm starts.

The Frank-Wolfe algorithm enjoys accelerated convergence rates when the optimum x * is in the interior of C or when the set C is strongly convex. In these two cases, with appropriate structural assumptions on f , the convergence rates are known to be linear. The Frank-Wolfe algorithm is adaptive to these scenarios as it does not need to be modified to obtain these improved convergence rates.

Acceleration I: Optimum in the interior. When the optimum is in the interior of C and f is a L-smooth and µ-strongly convex function, i.e. it enjoys additional quadratic structure, the convergence rate of the Frank-Wolfe algorithm (with exact line-search or short-step sizes) is linear [Guélat and Marcotte, 1986, Theorem 2]. It is conditioned by the non-affine invariant parameters L and µ. Lacoste-Julien and [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF] give an affine invariant convergence result. As defined in (1.9), C f is an affine invariance version of the L-smoothness relative to a set C. Lacoste-Julien and [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF] also define an affine invariant version of µ relative to C in the special case where x * is in the interior of C, see [Lacoste-Julien and Jaggi, 2013, §2] for more details.

Theorem 1.2.2 (Theorem 3 of Lacoste-Julien and [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF]). When x * in the interior of C, then the iterates of the Frank-Wolfe algorithm (with exact line-search or short-step-size) satisfy

f (x T) -f (x *) ≤ (1 -ρ) T (f (x 0) -f (x *)),
(1.11)

with ρ = min 1 2 ; µ F W f C f
, where C f is defined in (1.9) and µ F W f in [Lacoste-Julien and Jaggi, 2013, (3)].

Note that these convergence rates depend implicitly on the distance of x * (via µ F W f) to the boundary of C, hence the rate can become arbitrarily bad. It however highlights that the Frank-Wolfe algorithm is adaptive to the position of the optimal solution and recovers the asymptotic convergence rate of gradient descent when the optimum is in the interior.

Acceleration II: Strongly Convex Set. When the set C is strongly convex (Definition 1.1.1) and there exists c > 0 such that ||∇f (x *)|| > c, the Frank-Wolfe algorithm (with exact linesearch or short step sizes) enjoys a linear convergence rate [START_REF] Evgeny | Constrained minimization methods[END_REF]Polyak, 1966, Demyanov and[START_REF] Demyanov | Approximate methods in optimization problems[END_REF]. In particular, the convergence does not require strong-convexity of the function f . In other words, the additional quadratic structure comes from the constraint set rather than from the function.

f (x T) -f (x *) ≤ 1 -ρ) T (f (x 0) -f (x *)),
(1.12)

where ρ = min 1 2 , αc 8L .

The convergence rate in (1.12) depends on c > 0, a measure of the minimal gradient magnitude on C, and on the parameter α of strong convexity of the set. Both quantities depend on a specific norm and are hence are not affine invariant. To our knowledge, there exists no affine invariant analysis of the Frank-Wolfe algorithm in that setting. Such an analysis would reflect the fact that the Frank-Wolfe algorithm is adaptive to the scenario, with no specific input parameter depending on a choice of norm.

The two linear convergence regimes we have surveyed can both become arbitrarily bad as x * closes the frontier of C, and do not apply in the limit case where the unconstrained optimum lies at the boundary of C. To this end, when the constraint set is strongly convex, [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] prove a general sublinear rate of O(1/T 2) when f is L-smooth and µ-strongly convex (or slightly less than that), see [Garber and Hazan, 2015, Theorem 2].

The Analysis of Dunn. In [START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF][START_REF] Joseph C Dunn | Convergence rates for conditional gradient sequences generated by implicit step length rules[END_REF], Dunn proves accelerated (linear) convergence rates of the Frank-Wolfe algorithm when the optimization problem has a sufficient quadratic structure at x * ∈ ∂C. In particular, his convergence results non-trivially subsume the cases where C is globally or locally strongly convex. In Figure 1.1, we illustrate scenarios where the set is locally not strongly-convex, but the Frank-Wolfe algorithm still enjoys linear convergence. Geometrically, it is sufficient for the linear convergence of the Frank-Wolfe algorithm that there exists a tangent hyperball at the solution x * ∈ ∂C with the (non-zero) gradient normal to this hyperball at x * . Algebraically, for x * ∈ ∂C, [START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF] introduces the following quantity

a x * (σ) = inf x∈C ||x-x * ||≥σ ∇f (x *); x -x * .
(1.13)

In [START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF], lower-bounds on a(σ) determine the converge rate of the Frank-Wolfe algorithm. In particular, when there exists A > 0 such that a x * (σ) ≥ Aσ 2 , the Frank-Wolfe algorithm (with exact line-search or short step-sizes) converges linearly.

Approximate LMO. It is also possible to approximatively solve the Linear Minimization Oracle (line 2 to Algorithm 9) while maintaining the convergence guarantees. This is for instance useful in situations where solving the exact Linear Minimization Oracle is an intractable problem, but efficient approximate solutions exist. There are several ways to quantify the approximation: multiplicatively (see [Lacoste-Julien et al., 2013, Appendix C]) or additively (see [Dunn andHarshbarger, 1978, Jaggi, 2013] or [Freund and Grigas, 2016, Section 5]). An additive δ-approximate solution ṽ to the Linear Minimization Oracle for a convex set C at iterate

x t satisfies -∇f (x t); ṽ ≥ max v∈C -∇f (x t); v -δ. (1.14)
For ν ∈ [0, 1], a multiplicative ν-approximate solution ṽ to the Linear Minimization Oracle for a convex set

C for d ∈ R d satisfies -∇f (x t); ṽ -x t ≥ η • max v∈C -∇f (x t); v -x t . (1.15)
It is then in case-by-case basis that extensions of Frank-Wolfe admit convergence results when using approximate Linear Minimization Oracles. In Lemma 1.A.1 of Appendix 1.A, Note that in the right figure, at x * , there is a quadratic lower bound on a x * (σ) as soon as the negative gradient -∇f

(a) ax * (σ) ≥ A||∇f (x *)||σ 2 (b) ax * (σ) ≥ A||∇f (x *)||σ 2
(x *) ∈ K C (x *) is not orthogonal to the face of C that contains v. The dashed circled represents C ∩ {x | ||x -x * || = σ}.
we provide a proof of the linear convergence of the Frank-Wolfe algorithm when the set in a strongly convex set and using multiplicative approximate LMO. Note that [START_REF] Pedregosa | Step-size adaptivity in projectionfree optimization[END_REF] studied approximate LMO for corrective variants of Frank-Wolfe.

Corrective Frank-Wolfe Algorithms

We now introduce the corrective or away versions of the Frank-Wolfe algorithm. These are designed to use projection-free (linear minimization) oracles that maintain the optimization iterates in the convex feasible region C. They introduce additional type of descent directions with respect to the original Frank-Wolfe algorithm.

They are called corrective when considering the iterates from an algebraical point of view: these directions allow to correct carefully chosen weights of the current (sparse) convex combination of the iterate x t . Alternatively, these additional directions are also called away or in-face directions when considering the algorithm from a geometrical point of view. Indeed, these directions move the current iterate in the current face it belongs to, or away from some selected vertices in the iterates convex combination.

There are many such variants that explore different trade-off and algorithmic designs: various criterions to chose between a classic Frank-Wolfe direction or an away direction; the type of away direction; designing non-atomic versions and many others. Importantly, these methods allow to adaptively capture linear convergence rates when the constraint set is a polytope and the objective function is L-smooth and µ-strongly convex.

Away or Corrective Mecanisms

Away-steps Frank-Wolfe. It was first proposed in [START_REF] Wolfe | Convergence theory in nonlinear programming[END_REF] and analyzed in [START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF]. Along with the iterates (x t), the algorithm maintains the point set S t and the sequence of weights (α v) v∈St such that x t = v∈St α v v. The points in S t are extreme points of C. The main insight is that for any v ∈ S t , x t -v updates of the form

x t+1 = x t + γ(x t -v) with γ ∈ [0, α v /(1 -α v)] maintains x t+1 ∈ C.
These hence define feasible directions that do not require any projection step.

In line 5, the algorithm then selects the vertex v ∈ S t such that x t -v is the best possible descent direction, i.e. the direction most correlated with the negative gradient. This vertex is called the away vertex. In line 7, the algorithm then arbitrates between the Frank-Wolfe and the away direction. It chooses the one most correlated with the negative gradient. Note that many works later considered different choosing criterion.

Algorithm 2 Away-steps Frank-Wolfe (AFW) Let t+1) 14:

Input: x 0 ∈ C, x 0 = v∈S 0 α (0) v v with |S 0 | = s. 1: 2: for t = 0, 1 . . . , T do 3: Compute v FW t = LMO C (∇f (x t)) 4: Let d FW t = v FW t x t FW direction 5: Compute v A t = LMO St (-∇f (x t)) 6: Let d A t = x t -v A t . Away direction 7: if -∇f (x t), d FW t ≥ -∇f (x t),
x t+1 = x t + γ t d t update α (
Let S t+1 = {v ∈ A s.t. α (t+1) v > 0} 15: end for Output:
Algorithm 2 is a corrective version of the Frank-Wolfe algorithm because some iterations explicitly correct one of the weights of the iterate convex combination. This might appear as a loose statement as any iteration of the original Frank-Wolfe algorithm also multiplicatively rescales the weights by (1 -γ t), where γ t is the step-size. The difference is that Frank-Wolfe iterations correct the representation by adding new weights and rescaling accordingly. Awaysteps certainly only correct the current convex combination of the iterates. Note that some other versions, like pair-wise Frank-Wolfe (see Section 1.3.3) are designed to modify only two weights at each iteration.

Fully-Corrective Frank-Wolfe. The away-step Frank-Wolfe focuses primarily on finding a feasible direction that best correlates with the negative gradient. The corrective property of the away-steps appears only as a by-product of that quest. Other trade-offs between correcting the iterates convex representations and obtaining the best immediate local primal decrease can be considered. In particular, the fully corrective Frank-Wolfe [START_REF] Balder | Simplicial decomposition in nonlinear programming algorithms[END_REF][START_REF] Charles | An extension of the frank and wolfe method of feasible directions[END_REF][START_REF] Donald W Hearn | Restricted simplicial decomposition: Computation and extensions[END_REF] can be viewed as being on the other side of the checkboard. Before seeking for immediate local primal decrease via a Frank-Wolfe direction, it searches for the best point (in primal decrease) in the convex hull of the points appearing in the decomposition of the current iterate, a correction of the current iterate, see line 4 in Algorithm 3.

Algorithm 3 Fully-Corrective Frank-Wolfe (FCFW)

Input: x 0 ∈ C, x 0 = v∈S 0 α (0) v v with |S 0 | = s. 1: 2: for t = 0, 1 . . . , T do 3: Compute v t = LMO C (∇f (x t)) 4: (x t+1 , S t+1) = argmin x∈Conv(St {vt}) f (x) 5: end for Output: 1.3.

Linear Convergence on Polytopes

The lower bounds on the Frank-Wolfe algorithm show that in generality, without algorithmic modification, the algorithm could not converge at a linear rate when the function is smooth, enjoys quadratic structures (like strong-convexity) and the set is a polytope. In particular, linear convergence results on the Frank-Wolfe algorithm are known only when the solution of (1.1) is in the interior, or when the set also has quadratic structure [START_REF] Evgeny | Constrained minimization methods[END_REF][START_REF] Demyanov | Approximate methods in optimization problems[END_REF][START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF] -see Section 1.2. The corrective versions of Frank-Wolfe were in particular designed to alleviate these issues.

Recently, two bodies of works [Lacoste-Julien and Jaggi, 2013, Garber and Hazan, 2013a, Lacoste-Julien and Jaggi, 2015b] showed with different techniques that indeed some versions of Frank-Wolfe enjoy global linear convergence rate when the set is a polytope -and the function f has adequate structure. Note also that [START_REF] Beck | Linearly convergent away-step conditional gradient for non-strongly convex functions[END_REF] prove linear convergence under a quadratic error bound instead of the strong-convexity of f , which is a localized quadratic structure on f . Lacoste-Julien and [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF]Jaggi [, 2015b]] give an affine invariant linear convergence result for corrective variants of Frank-Wolfe. Garber and Hazan [2013a,b] also exhibit a modification of the Frank-Wolfe algorithm enjoying linear convergence. Their algorithm relies on a modification of the Frank-Wolfe algorithm, where Local Linear Minimization Oracles (LLMO) replace the Linear Minimization Oracles. This new oracle is efficiently performed when the constraint set is a polytope, although it requires some function parameters. The LLMO is a relaxation of a stronger oracle that minimizes a linear function over the intersection of the original set C and a ball resulting from the strong convexity of f . [START_REF] Lan | The complexity of large-scale convex programming under a linear optimization oracle[END_REF] considers a version of Frank-Wolfe [Lan, 2013, Algorithm 3] with this (expensive) enhanced LMO that admits linear minimization oracle. Interestingly, the link between Frank-Wolfe with LLMO and its corrective variants is not straightforward from the implementation of the LLMO for polytopes.

Under these assumptions, the seek for linear convergence proofs of a modified Frank-Wolfe algorithm has a long history. [START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF] gave the first linear convergence proof with a strict complementarity assumption, i.e. when the constrained optimum is in the relative interior of its optimal face, and the unconstrained optimum is away from the boundary. [START_REF] Beck | A conditional gradient method with linear rate of convergence for solving convex linear systems[END_REF] show linear convergence of the Frank-Wolfe algorithm under a slater condition on their original problem. It is very close to assuming that the optimum is in the relative interior of the constraint set C. Without restriction on the position of the optimum, [START_REF] Migdalas | A regularization of the frank-wolfe method and unification of certain nonlinear programming methods[END_REF], [START_REF] Lan | The complexity of large-scale convex programming under a linear optimization oracle[END_REF] gave linear convergence (for C polytope and f smooth and stronglyconvex) rates but with much stronger oracles that are akin to projection or proximal steps. [START_REF] Michael | On khachiyan's algorithm for the computation of minimumvolume enclosing ellipsoids[END_REF] prove linear convergence when C is the simplex and with no precise dimension dependency of the conditioning number; [Damla Ahipasaoglu et al., 2008, Kumar and[START_REF] Kumar | A linearly convergent linear-time first-order algorithm for support vector classification with a core set result[END_REF] assume the Robinson Condition [START_REF] Stephen M Robinson | Generalized equations and their solutions, part ii: Applications to nonlinear programming[END_REF].

Affine Invariance. As for the Frank-Wolfe algorithm, Lacoste-Julien and [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF] proposes an affine invariant notion of the L-smoothness that is dedicated to the analysis of corrective variants of Frank-Wolfe. We recall the definition of away curvature in [Lacoste-Julien and Jaggi, 2015a, Appendix D], with

C A f sup x,s,v∈C η∈[0,1] y=x+η(s-v) 2 η 2 f (y) -f (x) -η ∇f (x), s -v , (1.16)
where f and C are defined in problem (2.4) above.

Convergence Rates Conditioning. Many alternatives to the original Pyramidal Width of [Lacoste-Julien and Jaggi, 2013], which conditions the linear convergence proof of their analysis, have been considered. The conditioning in [Garber and Hazan, 2013a, Theorem 2] directly depends on problem parameters such as L-smooth, µ-strongly convex parameters or the ambient dimension but [Garber and Hazan, 2013a, Algorithm 2] depends on such specific parameters. This echoes the stronger versions of [START_REF] Lan | The complexity of large-scale convex programming under a linear optimization oracle[END_REF] where the theoretical convergence rates conditioning is also explicit in these parameters. The works of [Garber andMeshi, 2016, Bashiri andZhang, 2017] proposed a condition number that depends on the dimension on the optimal face on which the solution of (1.1) lies, which may be considerably smaller than the ambient dimension. [START_REF] Beck | Linearly convergent away-step conditional gradient for non-strongly convex functions[END_REF] proposes a vertex-facet distance constant condition number. Finally, [Pena andRodriguez, 2018, Gutman andPena, 2018] studied various interesting geometrical notions of conditioning relative to a polytope.

Other Corrective Variants

Many other corrective variants of Frank-Wolfe exist. These rely on different ways to choose between Frank-Wolfe direction and corrective direction or to implement the Fully-Corrective Oracle. For instance [START_REF] Vinyes | Fast column generation for atomic norm regularization[END_REF] propose an efficient version of Fully-Corrective Frank-Wolfe dedicated to difficult atomic sets and where the corrective oracle relies on a specific active-set algorithm. Some also design new possible projection-free corrective directions or construct non-atomic based algorithmic versions.

Pair-Wise Frank-Wolfe. The Pair-Wise Frank-Wolfe algorithm [Mitchell et al., 1974], was revisited in [Lacoste-Julien and Jaggi, 2015a]. Contrary to the AFW (Algorithm 2), it considers only one type of descent direction, parallel to the line joining the Frank-Wolfe vertex (line 3 of Algorithm 2) and the Away vertex (line 5 of Algorithm 2). Interestingly, at each iteration, this algorithm makes a convex update that corrects exactly two weights of the current decomposition of the iterate. Its main drawback is not practical but theoretical as it becomes much harder to account for the number of drop steps and hence influence the linear convergence guarantees, see [Lacoste-Julien and Jaggi, 2015a].

Algorithm 4 Pair-Wise Frank-Wolfe (PFW)

Input: x 0 ∈ C, x 0 = v∈S 0 α (0) v v with |S 0 | = s.
1:

2: for t = 0, 1 . . . , T do 3:

Compute v FW t = LMO C (∇f (x t)) and v A t = LMO St (-∇f (x t))
4:

Let d t = v FW t -v A t .
Pair-wise direction

5:

Set γ t by line-search, with

γ t = argmax γ∈[0,α v A t] f (x t + γd t) 6: Let x t+1 = x t + γ t d t update α (t+1) (see text) 7: Update S t+1 = {v ∈ A s.t. α (t+1) v > 0} 8: end for Output:
Min-Norm Point. Min-Norm Point (MNP) algorithm [START_REF] Wolfe | Finding the nearest point in a polytope[END_REF] is also known to be a corrective variant of Frank-Wolfe algorithms. Note also that [Bach et al., 2013, §9.2.] pointed out that the min-norm point is a particular instance of the Active-Set Method for QP in [Nocedal and Wright, 2006, Algorithm 16.3 in Chapter 16.5.] when the hessian equal to the identity. Min-Norm Point relies on a sequence of affine projections.

Forward-Backward. The forward-backward method of [START_REF] Rao | Forward-backward greedy algorithms for atomic norm regularization[END_REF] is a specific way of performing the fully-corrective step in Algorithm 3, where the forward steps correspond to Frank-Wolfe steps and the backward steps correspond to corrective steps in Algorithm 3 and 2.

Memory-Less Corrective Versions of Frank-Wolfe. Away or corrective versions of Frank-Wolfe as detailed in §1.3.1 perform an additional Linear Minimization Oracle than the Frank-Wolfe algorithm. This LMO requires to store the optimization iterates as convex combinations of atoms. When these algorithms are used to leverage on the projection-free property of the Frank-Wolfe framework -and not necessarily on the trade-off between the structure of the iterates and their approximation quality -, they suffer from a memory overhead, with respect to the Frank-Wolfe Algorithm. There is also a possible runtime overhead because the selection of the best away vertex relies on an enumeration strategy.

For a specific class of polytopes -i.e. polytopes with vertices in {0, 1} d and for which we have access to an algebraic representation -, [START_REF] Garber | Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes[END_REF]] first showed that it is possible to compute an away-step without relying on a specific decomposition of the current iterate. They show that their decomposition invariant version of Frank-Wolfe enjoy linear convergence rates on these polytopes when the function is L-smooth and µ-strongly convex. In particular, they first exhibit conditioning that depends on the sparsity of the optimal solution in term of vertices of the polytopes, i.e. on the dimension of the optimal face. Their work was then extended and refined by [START_REF] Ali | Decomposition-invariant conditional gradient for general polytopes with line search[END_REF] to general polytopes.

In-Face Frank-Wolfe. [Freund et al., 2017] propose an In-face version of Frank-Wolfe algorithms with several key features for the specific application of matrix completion. In-Face refers to the fact that away direction as developped in Section 1.3.1 are directions in the affine hull of the optimal face the current iterate belongs to. Leveraging on the specific structures of the nuclear ball [START_REF] So | Facial structures of schatten p-norms[END_REF], [START_REF] Robert M Freund | An extended frank-wolfe method with "in-face" directions, and its application to low-rank matrix completion[END_REF] hence proposed corrective directions that depends on the optimal face F C (x t) the current iterate x t belongs to. Hence, similarly to [Garber andMeshi, 2016, Bashiri andZhang, 2017], it does not rely on a non-affine invariant atomic representation of the current iterate.

Moreover, they propose a different choosing criterion between classical Frank-Wolfe directions and these in-face directions. In particular, these chosen directions are more favourable to in-face directions which empirically results in a sparser trade-off between accuracy and structure of the iterate. In the case of matrix completion, this corresponds to the trade-off between data fidelity and low-rank structure of the solution. One can loosely interpret these criteria as practical algorithmic schemes between the classic away version of Frank-Wolfe and fully-corrective versions.

Applications and Variants

In the previous section, we presented the original Frank-Wolfe algorithm, its corrective variants and the known scenarios where these algorithms enjoy accelerated convergence rates. We now present some of the many different mechanisms that can be plugged in these algorithms to account for the various specificities of practical applications. For instance, there are stochastic, block-coordinate [Lacoste-Julien et al., 2013[START_REF] Osokin | Minding the gaps for block frank-wolfe optimization of structured svms[END_REF], second-order [START_REF] Carderera | Second-order conditional gradients[END_REF], non-convex [START_REF] Joseph C Dunn | Convergence rates for conditional gradient sequences generated by implicit step length rules[END_REF][START_REF] Lacoste-Julien | Convergence rate of frank-wolfe for non-convex objectives[END_REF], non-smooth and many other different versions of Frank-Wolfe algorithms. In Section 1.4.1, we review some of these mechanisms and in Section 1.4.2 we point to applications leveraging them.

Other Mechanisms

Stochastic Frank-Wolfe. In many practical scenarios, stochastic versions of the gradient are easily accessible and computationally cheaper than the exact gradients. This is, for instance, the case in Empirical Risk Minimization. The function f in (1.1) is the sum of n functions, where n is the size of the dataset, and computing an exact gradient requires the computation of the gradient of n function. It is often preferable to compute less expensive stochastic versions of this gradient over a random batch of these n functions. Algorithms using such stochastic estimators of the gradient are usually called stochastic. Some effort has been dedicated to designing stochastic Frank-Wolfe algorithms, with versions increasing the batch-size at each iteration [Hazan andLuo, 2016, Reddi et al., 2016] and other recently converging with fixed batch-sizes [START_REF] Mokhtari | Stochastic conditional gradient methods: From convex minimization to submodular maximization[END_REF], Hassani et al., 2019[START_REF] Zhang | One sample stochastic frank-wolfe[END_REF][START_REF] Lu | Generalized stochastic frank-wolfe algorithm with stochastic "substitute" gradient for structured convex optimization[END_REF] and enjoying fast convergence rates [START_REF] Négiar | Stochastic frank-wolfe for constrained finite-sum minimization[END_REF].

Reducing Number of Call to Oracles. Some works focused on producing Frank-Wolfe algorithms with the same asymptotic convergence guarantees as their original counter-part while requiring less gradient or LMO calls. For instance, some versions leverage on the gradient sliding mechanism [START_REF] Lan | Conditional gradient sliding for convex optimization[END_REF], where the gradient computation are recycled at subsequent iterations [START_REF] Cheung | Efficient generalized conditional gradient with gradient sliding for composite optimization[END_REF][START_REF] Lan | Conditional gradient sliding for convex optimization[END_REF][START_REF] Qu | Non-convex conditional gradient sliding[END_REF]. Also, Braun et al. [2017b] propose a lazy mechanism to reduce the number of calls to the full Linear Minimization Oracle. A weak separation oracle (that is much weaker than an approximate Linear Minimization Oracle) replaces full LMO calls when these are unnecessary (see also their stochastic version in [START_REF] Lan | Conditional accelerated lazy stochastic gradient descent[END_REF].

Affine Spaces and Matching-Pursuit. Recent works have shown the relation between Frank-Wolfe algorithms and Matching-Pursuit algorithms [Locatello et al., 2017b], which also relies on linear minimization oracle over affine sets. While previous work also considered affine directions [START_REF] Wolfe | Finding the nearest point in a polytope[END_REF], this connection has been particularly fruitful [Locatello et al., 2017c, Combettes andPokutta, 2020].

Cone Constrained or Non-Negative Matching-Pursuit. For cone constrained problem (or nonnegative matching-pursuit algorithms), [Locatello et al., 2017c] designed the first projectionfree algorithms with convergence guarantees for general L-smooth convex functions enjoying sublinear and linear rates. In particular they overcome the difficulty that when the constrained set in a conic hull of an atomic set, -as opposed to the convex or affine hull of an atomic set -classical generalization of MP to non-negative constraints do not satisfy the alignement property, see [Locatello et al., 2017c, §2] and [START_REF] Pena | Polytope conditioning and linear convergence of the frank-wolfe algorithm[END_REF]. This property states that at any suboptimal iterates, there exists a search direction given by the algorithm that is non-negatively correlated with the negative gradient. Hence [Locatello et al., 2017c, Algorithm 2] proposesxt ||xt|| as a possible feasible direction that guarantees that, unless at the optimum, the algorithm always picks a direction striclty positively correlated with the negative gradient. Informally, the first algorithm they propose can be seen as the equivalent of plain Frank-Wolfe algorithm on a cone constrained setting in the sense that it is a first-order projection-free algorithm that suffers from a general sublinear rate of O(1/T). Indeed when the algorithm chooses the directionxt ||xt|| , it changes all the weights. Hence they propose corrective versions [Locatello et al., 2017c, Algorithm 3 and 4] that are the analogous of the away or corrective versions of Frank-Wolfe we reviewed in §1.3. In particular, under appropriate assumption, these enjoy linear convergence rates with a similar analysis as in [Lacoste-Julien and Jaggi, 2013].

Generalized Frank-Wolfe. In this dissertation, we focus on designing and analyzing versions of Frank-Wolfe algorithms for constrained optimization problems. However, conditional gradient methods have also been studied and designed for different minimization problem formulations. There are generalized Frank-Wolfe algorithms for penalized problems or composite problems [START_REF] Bredies | A generalized conditional gradient method and its connection to an iterative shrinkage method[END_REF], [START_REF] Dudik | Lifted coordinate descent for learning with tracenorm regularization[END_REF], [START_REF] Harchaoui | Large-scale image classification with trace-norm regularization[END_REF], [START_REF] Vinyes | Fast column generation for atomic norm regularization[END_REF] of the form min

x∈K f (x) + Φ(x), (1.17)
where K is a cone and Φ a penalty function. These types of Frank-Wolfe algorithms are arguably called generalized because the optimization iterates are unconstrained. The iterates do not necessarily evolve in the constrained sets of the equivalent constraint formulation of the problem. Often, the function Φ is chosen to be the gauge of the convex hull of an atomic set [START_REF] Dudik | Lifted coordinate descent for learning with tracenorm regularization[END_REF], Harchaoui et al., 2012[START_REF] Vinyes | Fast column generation for atomic norm regularization[END_REF] (see Section 1.1.4), or more generally a gauge-like function [Rockafellar, 1970b, Theorem 15.3.], with an emphasis on the composition of a non-decreasing function with an atomic gauge function [Harchaoui et al., 2015, Sun and[START_REF] Sun | Safe screening for the generalized conditional gradient method[END_REF]. These algorithms offer another perspective with respect to the constrained versions and were studied theoretically in [START_REF] Harchaoui | Conditional gradient algorithms for normregularized smooth convex optimization[END_REF][START_REF] Bach | Duality between subgradient and conditional gradient methods[END_REF][START_REF] Yu | Generalized conditional gradient for sparse estimation[END_REF][START_REF] Nesterov | Complexity bounds for primal-dual methods minimizing the model of objective function[END_REF]. Interesting connections have been made with other well-known algorithms like iterative shrinkage method [START_REF] Bredies | A generalized conditional gradient method and its connection to an iterative shrinkage method[END_REF], mirror descent [START_REF] Bach | Duality between subgradient and conditional gradient methods[END_REF] or column generation algorithm [START_REF] Vinyes | Fast column generation for atomic norm regularization[END_REF]].

Online Learning. There is a strong interplay between projection-free online learning, linear online learning and Frank-Wolfe algorithms for offline optimization. New algorithms and convergence analysis have emerged from the interplay.

For instance, [START_REF] Hazan | Projection-free online learning[END_REF] first propose a projection-free (i.e. one linear minimization per iteration) online algorithm that can be seen as a direct transposition of the Frank-Wolfe algorithm in an online setting. The general O(1/T) convergence rate for smooth function translate into a Õ(√ T) regret bound of Online Frank-Wolfe [Hazan and Kale, 2012, Algorithm 1] in the stochastic setting. Similarly Garber and Hazan [2013a] first proposed a projection-free online algorithm that obtain a logarithmic Õ(log(T)) regret bound when the decision set is a polytope and the cost functions are smooth and strongly convex. [START_REF] Lafond | On the online frank-wolfe algorithms for convex and non-convex optimizations[END_REF] also transpose the away algorithms of [START_REF] Lacoste-Julien | Convergence rate of frank-wolfe for non-convex objectives[END_REF]Jaggi, 2013, 2015b] and their analysis to the online setting. Previous work to [START_REF] Hazan | Projection-free online learning[END_REF] seem to have consider only online linear optimization [START_REF] Kalai | Efficient algorithms for online decision problems[END_REF]Vempala, 2005, Huang et al., 2016a]. The Frank-Wolfe setting hence provide a principled efficient manner to transform non-linear problems into a series of linear steps.

Alternatively, the work of [Abernethy andWang, 2017, Abernethy et al., 2018] explore the other way around and derive some Frank-Wolfe algorithms by opposing two online algorithms. They derive new FW algorithms. For instance, [Abernethy et al., 2018, Algorithm 2] has the same convergence rate of O(1/T 2) when the set and function are strongly convex [Abernethy et al., 2018, corollary 11].

Examples of Applications of Frank-Wolfe

Frank-Wolfe algorithms appear in a wealth of applications, like SVM [START_REF] Kenneth L Clarkson | Sublinear optimization for machine learning[END_REF], Ñanculef et al., 2014[START_REF] Osokin | Minding the gaps for block frank-wolfe optimization of structured svms[END_REF], submodular optimization [START_REF] Edmonds | Submodular functions, matroids, and certain polyhedra[END_REF], Bach et al., 2013[START_REF] Andrew An Bian | Guaranteed non-convex optimization: Submodular maximization over continuous domains[END_REF], Hassani et al., 2017[START_REF] Mokhtari | Conditional gradient method for stochastic submodular maximization: Closing the gap[END_REF], coresets [START_REF] Kumar | Minimum-volume enclosing ellipsoids and core sets[END_REF][START_REF] Damla | Linear convergence of a modified frank-wolfe algorithm for computing minimum-volume enclosing ellipsoids[END_REF], Clarkson, 2010a], neural network pruning [START_REF] Ping | Learning infinite RBMs with frank-wolfe[END_REF][START_REF] Scardapane | Group sparse regularization for deep neural networks[END_REF], optimal control theory [START_REF] Henry | Method of gradients[END_REF][START_REF] Elmer | An iterative procedure for computing the minimum of a quadratic form on a convex set[END_REF][START_REF] Earl | A geometrically convergent algorithm for solving optimal control problems[END_REF][START_REF] Dunn | A simple averaging process for approximating the solutions of certain optimal control problems[END_REF][START_REF] Kumar | A control averaging technique for solving a class of singular optimal control problems[END_REF][START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF][START_REF] Joseph C Dunn | Convergence rates for conditional gradient sequences generated by implicit step length rules[END_REF], matrix completion [START_REF] Shalev-Shwartz | Large-scale convex minimization with a low-rank constraint[END_REF], Harchaoui et al., 2012, Dudik et al., 2012[START_REF] Giesen | Optimizing over the growing spectrahedron[END_REF][START_REF] Allen-Zhu | Linear convergence of a frank-wolfe type algorithm over trace-norm balls[END_REF][START_REF] Yurtsever | Sketchy decisions: Convex low-rank matrix optimization with optimal storage[END_REF]] and many others. Let us now regroup a non-exhaustive list of applications of the Frank-Wolfe algorithms.

Non-Hilbert Spaces. Frank-Wolfe methods have also been leveraged as an appealing solution in non-Hilbert spaces. Indeed, each iteration relies on feasible directions that only involve the current iterate and an extreme point of the constraint set. In particular, it was considered for measure spaces [START_REF] Bredies | Inverse problems in spaces of measures[END_REF][START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF][START_REF] Denoyelle | The sliding frank-wolfe algorithm and its application to super-resolution microscopy[END_REF][START_REF] Luise | Sinkhorn barycenters with free support via frank-wolfe algorithm[END_REF]. In that context only non-corrective variants of the Frank-Wolfe method are leveraged. Indeed the corrective variants are known to accelerate convergence when the constraint set is a polytope, which is of limited interest when the underlying space is infinite dimensional. It was also extensively used in optimal transport applications [START_REF] Courty | Optimal transport for domain adaptation[END_REF][START_REF] Vayer | Optimal transport for structured data with application on graphs[END_REF][START_REF] Paty | Subspace robust wasserstein distances[END_REF][START_REF] Luise | Sinkhorn barycenters with free support via frank-wolfe algorithm[END_REF].

Herding. [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF] recently leveraged on the various algorithmic versions and analysis of conditional gradient algorithms to find good quadratic rules to approximate integrals in Reproducing Kernel Hilbert Spaces (RKHS) with norm || • || H , see [Lacoste-Julien et al., 2015, §2.1.] for a complete introduction. Let X be the data point space, Φ the map from X to the RKHS and p a fixed distribution on X . [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF] proposed solving with Frank-Wolfe Algorithms the following problem

argmin g∈M µ p -g , (1.18)
where M Conv Φ(x) | x ∈ X is known as the marginal polytope and µ p E p Φ(x) is the mean element, see [Lacoste-Julien et al., 2015, §2.1.] for the rational behind (1.18). Using various Frank-Wolfe algorithms to solve (1.18) gives differently weighted iterates g t = T t=1 w t e t where e t are extreme points of the marginal polytope M which actually are of the form Φ(x) under some mild assumptions. Hence g t = T t=1 w t Φ(x t), which can be identified to the quadratic rule pt T i=t w t δ xt . This was the basis of improvments for Kernel Herding [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF], particle filtering [Lacoste-Julien et al., 2015], MMD [START_REF] Futami | Bayesian posterior approximation via greedy particle optimization[END_REF] or Bayesian Inference [START_REF] Belanger | Marginal inference in mrfs using frank-wolfe[END_REF][START_REF] Vlad Niculae | Sparsemap: Differentiable sparse structured inference[END_REF].

Computer-Vision. In structured prediction, the relations between objects are modelled via hard constraints. Recent computer vision applications involve large scale settings. Frank-Wolfe methods have been leveraged to deal with constrained discriminative clustering like in action localization [START_REF] Bojanowski | Weakly supervised action labeling in videos under ordering constraints[END_REF]], text-to-video alignment [START_REF] Bojanowski | Weakly-supervised alignment of video with text[END_REF], Alayrac et al., 2016], object co-localization in videos and images [START_REF] Joulin | Efficient image and video co-localization with frank-wolfe algorithm[END_REF] or instancelevel segmentation [START_REF] Seguin | Instance-level video segmentation from object tracks[END_REF]. In these particular cases, the domains are sometimes products of simpler domains. Hence block-coordinate Frank-Wolfe methods can be used to scale the problems [START_REF] Miech | Learning from video and text via large-scale discriminative clustering[END_REF][START_REF] Peyre | Weakly-supervised learning of visual relations[END_REF][START_REF] Miech | Learning a text-video embedding from incomplete and heterogeneous data[END_REF].

Appendices 1.A Proofs 1.A.1 More on Approximate LMO

Here we provide a version of the linear convergence of the Frank-Wolfe algorithm with approximate Linear Minimization Oracle when the set is strongly convex. It is not much different from the proof with exact Linear Minimization Oracle, but we could not find any reference for it. Also, the dependence of the bound on the error is not completely favorable as it depends on the square of the multiplicative approximation error parameter.

-∇f (x t); v t -x t ≥ η • max v∈C -∇f (x t); v -x t .
Then the Frank-Wolfe iterates (with short-step size or exact line-search) satisfies

f (x K) -f (x *) ≤ ρ K (f (x 0) -f (x *)), (1.19) with x 0 ∈ C and ρ max η 2 ; 1 -cη 2 α 4L .
Proof. By L-smoothness and choice of line search, for any γ ∈ [0, 1], we have

f (x t+1) ≤ f (x t) + γ ∇f (x t); v t -x t + γ 2 2 L||v t -x t || 2 .
By strong convexity of C, ṽt (z) = vt+xt 2 + α 4 ||v t -x t || 2 z belong to C for any unit vector z. Because v t is an η-multiplicative approximate LMO, we have (recall

h t = f (x t) -f (x *)) ∇f (x t); v t -x t ≤ η -∇f (x t); ṽt (z) -x t ∇f (x t); v t -x t ≤ η 2 -∇f (x t); v t -x t + ηα 4 ||v t -x t || 2 -∇f (x t); z ∇f (x t); v t -x t ≤ - η 2 h t - ηα 4 ||v t -x t || 2 c
So finally

h t+1 ≤ h t 1 - ηγ 2 + ||v t -x t || 2 γ 2 2 L - cηαγ 4 .
Hence if cηα 2L ≥ 1, we set γ = 1 and we have h t+1 ≤ h t 1 -η 2 . Otherwise we chose γ = cηα

2L

and we have

h t+1 ≤ h t 1 - cη 2 α 4L .
Finally we have,

h t+1 ≤ h t • max η 2 ; 1 - cη 2 α 4L . (1.20)
Chapter 2

Restarting Frank-Wolfe

In this chapter we consider constrained convex minimization problems of the form

min x∈C f (x),
where f is a smooth convex function and C is a compact convex set. Our goal is to adapt and analyze new versions of the Frank-Wolfe algorithms which enjoy accelerated convergence rates under specific conditions. The results in this chapter contribute to suggesting that the Frank-Wolfe algorithms are adaptive to various type of structures of the objective function.

We replace µ-strongly convex assumptions with specially designed error bounds type conditions. We analyze a restarted version of the away-steps Frank-Wolfe when the set is a polytope and a restarted version of Frank-Wolfe when the optimum is in the interior of C. Our results fill the gap between the previous linear O(log 1/) rate and the sublinear O(1/) rate. Our contributions can be summarized as follows.

1. Strong-Wolfe primal bound. Under generic assumptions, we derive strong-Wolfe primal gap bounds generalizing those obtained from strong convexity of f . These bounds are obtained by combining a Łojasiewicz growth condition on f with a scaling inequality on C, and continuously interpolate between the convex and strongly convex cases. In particular, they can be considered as a type of first-order error bounds designed for Frank-Wolfe algorithms.

2. Fractional Frank-Wolfe Algorithms. We then define a new conditional gradients algorithm that dynamically adapts to the parameters of these strong-Wolfe primal bounds using a restart scheme. The resulting algorithm achieves either sub-linear (i.e., O(1/ q) with q ≤ 1) or linear convergence rates depending on the strong-Wolfe primal gap parameters.

The exponent q depends on the growth of the function around the optimum, so the function is not required to be strongly convex in the traditional sense. In particular, we obtain linear rates (depending on the parameters) for non-strongly convex functions. Our rates are satisfied after a mild burn-in phase that does not depend on the target accuracy.

Introduction to Error Bounds

Error bounds quantify function behaviours near their minimizers. As such, they offer a comprehensive framework to capture additional structure in optimization problems. Loosely speaking then, an error bound is a kind of two-body concept involving the properties of the optimization problem and the choice of a specific quantification for the error bound itself. It can also become a three-body concept when accounting for the chosen optimization algorithm (see Section 2.2). For instance, some works focused on characterizing large classes of functions satisfying specific types of error bounds; others on designing optimization algorithms that accelerate by adapting to the error bounds properties, which are often characterized by unknown parameters. In this chapter specifically, we design specific error bounds in the Frank-Wolfe framework and we design new Frank-Wolfe algorithms that adapt to these error bounds.

We now provide a partial review of error bounds in Section 2.1.1. We give pointers to the Kurdika-Łojasiewicz inequality in Section 2.1.2. In Section 2.1.3, we briefly survey works using these tools to design and analyze first-order optimization methods, and refer the reader to [Nguyen, 2017] for an in-depth discussion.

Error Bounds

An error bound is an inequality upper bounding the distance from an arbitrary point in a test set K to the level set of a function in terms of the function values. For an increasing function φ : R + → R + such that Φ(0) = 0, c ∈ R and K ⊂ R d , an error bound takes the following form

dist x, [f ≤ c] ≤ φ(f (x)), ∀x ∈ K .
(2.1)

The function φ(•) is known as the residual function and dist() denotes the Euclidean distance. [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] proved the first type of error bounds, quantifying the distance of a point to the set of solutions to an ensemble of linear equations, then refined in [START_REF] Stephen M Robinson | An application of error bounds for convex programming in a linear space[END_REF][START_REF] Olvi L Mangasarian | A condition number for differentiable convex inequalities[END_REF][START_REF] Auslender | Global regularity theorems[END_REF]] and many others. Denote X * the set of minimizers of f -in this dissertation we will essentially consider strictly convex functions, so that the set X * is a singleton that we write {x * }. When the residual φ is a power function and the level set of interest is the set of minimizers X * , (2.1) are named Hölderian error bounds (HEB). For a µ > 0 and θ ∈ [0, 1], these take the following

form dist x, X * ≤ µ f (x) -f (x *) θ , ∀x ∈ K , (2.2)
where dist x, X * = min x∈X * ||x -x * || 2 . This inequality more closely describes the behaviour of a function around its minimizers. As such, error bounds play an essential role in understanding and designing optimization algorithms.

The early works of Łojasiewicz are fundamental in this vein. He first showed that inequalities (2.2) held generically for large classes of functions, i.e. real analytic or subanalytic functions in [START_REF] Łojasiewicz | Division d'une distribution par une fonction analytique de variables réelles[END_REF][Łojasiewicz, , Lojasiewicz, 1965[START_REF] Łojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF]. After his work, Hölderian error bounds (2.2) are also named as Łojasiewicz error bounds.

From a geometrical point of view, these inequalities characterize the behavior of functions around their extrema and are then known under different variants and names, like sharpness inequalities [Burke and[START_REF] James | Weak sharp minima in mathematical programming[END_REF][START_REF] Burke | Weak sharp minima revisited part i: basic theory[END_REF] or strict minimum conditions. See also the Polyak-Łojasiewciz condition [START_REF] Boris | Gradient methods for the minimisation of functionals[END_REF], Karimi et al., 2016b].

We now recall the Kurdyka-Łojasiewicz gradient inequality, a.k.a. the gradient-dominated inequality, which is a closely related to the error bounds (2.2) [START_REF] Bolte | Characterizations of łojasiewicz inequalities: subgradient flows, talweg, convexity[END_REF][START_REF] Roulet | On the geometry of optimization problems and their structure[END_REF][START_REF] Azé | Nonlinear error bounds via a change of function[END_REF] and has emerged as an important tool for first-order algorithms.

Kurdyka-Łojasiewicz Inequality

Definition 2.1.1 (Łojasiewicz Gradient Inequality). Consider a differentiable function f , a critical point x * and a neighborhood K ⊂ R d . f satisfies a Łojasiewicz gradient inequality in the neighborhood K or x * if there exists c > 0 and θ

∈ [1/2, 1[such that |f (x) -f (x *)| θ ≤ c||∇f (x)|| ∀x ∈ K.
(2.3)

Łojasiewicz first showed inequalities of this type for real analytic and subanalytic functions. See [Lojasiewicz, 1965, §18, Proposition 1] and [Bierstone and Milman, 1988, Proposition 6.8.] which states the Łojasiewicz gradient inequality with θ ∈]0, 1[. [Kurdyka, 1998, §2 Theorem ŁI] extended Łojasiewicez Gradient Inequality to C 1 functions whose graph belong to an ominimal structure. Crucially then [START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF] extended (2.3) to some class of nondifferential functions, replacing ||∇f (x)|| in (2.3) by the non-smooth slope [Bolte et al., 2007, (4)] ||∂f (x)|| = inf ||d|| : d ∈ ∂f (x) . In particular [Bolte et al., 2007, Theorem 3.1] extend (2.3) to continuous subanalytical functions and [Bolte et al., 2007, Theorem 3.3] to the class of convex lower semi-continuous subanalytic functions.

For convex functions, the Łojasiewicz inequality can be understood as a local generalization of strong convexity in the sense that the strong-convexity quadratic lower-bound on f at x * implies that (2.3) holds on C with θ = 1/2. Indeed for a convex function and any

x ∈ C ||x -x * || • ||∇f (x)|| ≥ (x -x *) • ∇f (x) ≥ f (x) -f (x *),
and by strong convexity of f at x * ,

f (x) -f (x *) ≥ (x -x *) • ∇f (x *) ≥0 + µ 2 ||x -x * || 2 ≥ µ 2 ||x -x * || 2 .
Finally for any x ∈ C, combining the two we have

||∇f (x)|| ≥ µ 2 f (x) -f (x *) .
Note also that the convexity of f alone, implies that (2.3) is satisfied with θ = 1, the weak case, with

f (x) -f (x *) ≤ ||∇f (x)||D, ∀x ∈ C ,
where D is the diameter of C. In particular this hints that (2.3) at least (because it does much more than that) continuously captures behaviors in between the structure of differentiable convex function and that of a differentiable strongly convex function.

As explained in [START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF], with regularity alone (2.3) may fail or holds only in the weak sense with θ = 1. [START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF] notably provide two examples of C ∞ functions. The other way around, structure alone may not be sufficient for (2.3) to hold, as the results of [START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF] seem to require at least lower semi-continuity. (2.3) is an intricate relation between structure and regularity.

The parameters (c, θ) are generally unknowns and hard to get. To circumvent the issue, one can either design adaptive methods, which leverage on the additional structure of the function given in (2.3) without knowing the specific parameters, see Section 2.1.3. Another line of work is to find KL exponent (i.e. the value of θ in (2.3)) for various classes of functions [START_REF] Luo | Error bounds for quadratic systems[END_REF][START_REF] Li | Global error bounds for piecewise convex polynomials[END_REF][START_REF] Huy | Global holderian error bound for nondegenerate polynomials[END_REF] and explore how mathematical operations preserve KL exponents, in other words defining a calculus for KL exponents. For instance, [START_REF] Li | Calculus of the exponent of kurdyka-łojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF] deduce the KL exponent of a minimum over a finite number of KL functions or [START_REF] Yu | Deducing kurdyka-lojasiewicz exponent via inf-projection[END_REF] study the effect of inf-projection. Another direction is to relate Kurdyka-Łojasiewicz with others type of error bounds for which explicit quantitative statements may be easier to get. For instance, [START_REF] Li | Calculus of the exponent of kurdyka-łojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF] notably shows that Luo-Tseng error bounds plus some mild assumption on the separation of stationary values give KL exponents of 1 2 .

Error Bounds in Optimization

Kurdyka-Łojasiewicz inequality (2.3) is a local condition that generically holds and generalizes classical structural assumptions such as strong convexity. Hence, it is a key tool for the analysis of optimization methods. [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF] notably shows the use Kurduka-Łojasiewicz inequality for analyzing a variety of optimization algorithms. Some works also considered non-convex settings [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF][START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz inequality[END_REF], 2013[START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF].

Error bounds have been used for composite problems and for alternating or splitting methods [START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz inequality[END_REF], 2013[START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF][START_REF] Frankel | Splitting methods with variable metric for kurdyka-łojasiewicz functions and general convergence rates[END_REF], Karimi et al., 2016b[START_REF] Zhou | A unified approach to error bounds for structured convex optimization problems[END_REF]. Roulet and d'Aspremont [2017] importantly shows that sharpness can adaptively result in accelerated convergence rates for restarts schemes of smooth gradient methods. Restart was previously shown to be heuristically efficient [Giselsson and Boyd, 2014b[START_REF] Brendan | Adaptive restart for accelerated gradient schemes[END_REF][START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF] but without improved computational guarantees. Other works considered sharpness for restart schemes but dit no study the cost of adaptation [Nemirovskii and Nesterov, 1985a] or were not adaptive [START_REF] Liu | Adaptive accelerated gradient converging method under h\"{o} lderian error bound condition[END_REF] to the error bounds parameters. This motivated our work on restarting Frank-Wolfe algorithms.

In the context of Frank-Wolfe algorithms, [START_REF] Beck | Linearly convergent away-step conditional gradient for non-strongly convex functions[END_REF] show that, for polytopes, when replacing the strong-convexity assumption by a quadratic errror bound, i.e. Hölderian error bound with r = 2, the away-step Frank-Wolfe enjoys linear convergence rates. Our work below considers any type of Hölderian behavior, not just a localization of strong convexity. In particular, we specifically design error bounds where the residual function is replaced by Wolfe gaps. We propose a restart scheme argument that captures the same improved convergence rates as in [START_REF] Roulet | On the geometry of optimization problems and their structure[END_REF]d'Aspremont, 2017, Roulet, 2017] but in the setting of Frank-Wolfe algorithms. A very important consequence of this chapter is that these acceleration results Frank-Wolfe algorithms are adaptive to error bound parameters.

Hölderian Error Bounds for Frank-Wolfe

Recall that we consider the following optimization problem minimize f (x) subject to x ∈ C (2.4) in the variables x ∈ R n , where C ⊂ R n is a compact convex set and f : R n → R is a convex function. Let X * be the set of minimizers of f over C and we will consider strictly convex convex functions so that X * = {x * }. We assume that the following linear minimization oracle

LP C (x) argmin z∈C x T z (2.5)
can be computed efficiently.

Wolfe Gaps

By assumption here, we have C = Co(Ext(C)) where Co(•) is the convex hull, Ext(•) the set of extreme points, and Carathéodory's theorem shows that every point x of C can be written as a convex combination of at most n + 1 points in Ext(C) although a given representation can contain more points. We call these points the support of x in C. We say that a support S is proper when the weights that compose the convex combination of x are all positive. We now define the strong-Wolfe gap as follows.

Definition 2.2.1 (Strong-Wolfe Gap). Let f be a smooth convex function, C a polytope, and let x ∈ C be arbitrary. Then the strong-Wolfe gap w(x) over C is defined as

w(x) min S∈Sx max y∈S,z∈C ∇f (x) T (y -z), (2.6)
where x ∈ Co(S) and S x = {S | S ⊂ Ext(C), is finite and x a proper combination of the elements of S}, the set of proper supports of x. We also write

w(x, S) max y∈S,z∈C ∇f (x) T (y -z) given S ∈ S x .
By construction, we have w(x) ≤ w(x, S). Note also that for x ∈ C, the quantity w(x, S) is the sum of the Frank-Wolfe dual gap with the away dual gap in [Lacoste-Julien and Jaggi, 2015a] as shows the following decomposition

w(x, S) = max y∈S ∇f (x) T (y -x) away or Wolfe (dual) gap + max z∈C ∇f (x) T (x -z) Frank-Wolfe (dual) gap .
(2.7)

Note that only w(x, S) is observed in practice, but we use w(x) to simplify the primal bounds and the convergence proof. Also we write the Frank-Wolfe (dual) gap as

g(x) = max z∈C ∇f (x) T (x -z). (2.8)
We first show the following lemma on w(x, S) and w(x).

Lemma 2.2.2. Let x ∈ C. A finite set S = {v i | i ∈ I} with v i ∈ Ext(C) for some finite index set I, is a proper support of x if x = i∈S λ i v i , where 1 T λ = 1 and λ i > 0 for all i ∈ I.
For such a proper support S of x, we have that w(x, S) = 0 if and only if x is an optimal solution of problem (2.4). In particular, w(x) = 0 if and only if x is an optimal solution of problem (2.4).

Proof. We can split w(x, S) in two parts, with

w(x, S) = max y∈S ∇f (x) T (y -x) + max z∈C ∇f (x) T (x -z)
It is easy to see that both summands are nonnegative if x ∈ C. Here g(x) max z∈C ∇f (x)(xz) is the usual Wolfe gap. When x is an optimal solution of problem (2.4), first order optimality conditions implies that ∇f (x) T (x -v) ≤ 0 for all v ∈ C. Since this last quantity is exactly zero when v = x, we have g(x) = 0.

On the other hand let h(x) max y∈S ∇f (x) T (y -x), and suppose x is optimal. If ∇f (x) = 0 we immediately get h(x) = 0. Suppose then ∇f (x) = 0, since x is optimal, ∇f (x) T (x-v i) ≤ 0 for all v i and we can write

x = {i:∇f (x) T (x-v i)=0} λ i v i + {i:∇f (x) T (x-v i)<0} λ i v i = (1 -µ)z 1 + µz 2 for some 0 ≤ µ ≤ 1, where ∇f (x) T (x -z 1) = 0 and ∇f (x) T (x -z 2) < 0. Now 0 = ∇f (x) T (x - x) = µ∇f (x) T (x -z 2) implies µ = 0, hence ∇f (x) T (x -v i) = 0 for all i ∈ S, so h(x) = 0.
Thus we obtain, x optimal implies w(x) = 0. Conversely, we have

f (x) -f ≤ ∇f (x) T (x -x) ≤ max z∈C ∇f (x) T (x -z) ≤ max y∈S,z∈C ∇f (x) T (y -z) = w(x, S)
by convexity (where x is any optimal solution), and the fact that x ∈ Co(S). Hence w(x, S) = 0 implies x optimal. The corollary on w(x) immediately follows by construction.

We will use this notion of curvature for analyzing those algorithms utilizing away steps (Algorithm 5). Note that C A f implicitly considers f to be defined on the Minkowski sum

C A C+(C-C). Similarly (standard) curvature C f [Lacoste-Julien and Jaggi, 2015a, Appendix C] is defined as C f sup x,v∈C η∈[0,1] y=x+η(v-x) 2 η 2 f (y) -f (x) -η ∇f (x), v -x , (2.9)
and is used to bound the complexity of the classical Frank-Wolfe method (Algorithms 9 and 7).

Wolfe Error Bounds

We now introduce growth conditions used to bound the complexity of our variant of the Frank-Wolfe algorithm when solving the constrained optimization problem in (2). Let C be a general compact convex set, the following condition will be at the core of our complexity analysis. Note that similarly as the Kurdyka-Łojasiewciz inequality (as opposed to the Hölderian error bounds), the strong-Wolfe gap is formulated as an upper-bound on the primal gap f (x)-f (x *).

Definition 2.2.3 (Strong-Wolfe primal bound). Let K be a compact neighborhood of X * in C, where X * is the set of solutions of the constrained optimization problem (2). A function f satisfies a r-strong-Wolfe primal bound on K, if and only if there exists r ≥ 1 and µ > 0 such that for all (2.10) and f * its optimal value.

x ∈ K f (x) -f * ≤ µw(x) r ,
In the next section, provided f is a smooth convex function, we will show for instance that r = 2 above guarantees linear convergence of our variant of the away-steps Frank-Wolfe algorithm. This 2-strong-Wolfe primal bound holds for example when f is strongly convex over a polytope, which corresponds to the linear convergence bound in [Lacoste-Julien and Jaggi, 2015a], hence the following observation.

Observation 2.2.4 (f strongly convex and C a polytope). The results in [Lacoste-Julien and Jaggi, 2015a, Theorem 6 in Eq (28)] show that when f is strongly convex and C is a polytope then there exists

µ A f > 0 such that for all x ∈ C f (x) -f * ≤ w(x) 2 2µ A f , hence condition (2.2.
3) holds with r = 2 in this case.

The fact that w(x) = 0 if and only if f (x) = f * means that, in principle, the Łojasiewicz factorization lemma [Bolte et al., 2007, §3.2.] could be used to show that condition (2.10) holds generically but with unobservable parameters. These parameters are inherently hard to infer because (2.10) combines the properties of f and C, not distinguishing between the contribution of the function from that of the structure of the constrained set (a polytope for instance).

Hence, although (2.10) has an appealing succinct form, our results will rely on the combination of a more classical Hölderian error bound (in Definition 2.2.7) defined on f , and a scaling inequality (defined below in Definition 2.2.5), essentially driven by the structure of the set C. The combination of these two inequalities leads to a r-strong-Wolfe primal bound. We first state the scaling inequality relative to the strong-Wolfe gap w(x) that we will use in the context of the the away step variant of the Frank-Wolfe algorithm. Definition 2.2.5 (δ-scaling). A convex set C satisfies a scaling inequality if there exists δ(C) > 0 such that for all x ∈ C \ X * and all differentiable convex function f ,

w(x) ≥ δ(C) max x * ∈X * ∇f (x); x -x * ||x -x * || . (Scaling)
Here again, the strong-Wolfe gap w(x) is the minimum over all proper supports of x of the scalar product of the (negative) gradient with the pairwise direction formed by the difference of the Frank-Wolfe vertex and the away vertex. Hence the δ-scaling inequality compares the worst pairwise FW direction with the normalization of the direction x * -x. Notably this condition is known to hold when C is a polytope, with Lacoste-Julien and Jaggi [2015a] showing the following result (see also [START_REF] David | The condition of a function relative to a polytope[END_REF]Pena, 2018, Pena and[START_REF] Pena | Polytope conditioning and linear convergence of the frank-wolfe algorithm[END_REF] for a simpler variant). Lemma 2.2.6 ([Lacoste-Julien and Jaggi, 2015a]). A polytope satisfies the δ-scaling inequality with δ(C) = P W idth(C), where P W idth(C) is the pyramidal width.

We now recall the definition of the Hölderian error bound for a function f on problem (2) [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF][START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF][START_REF] Łojasiewicz | Sur la géométrie semi-et sous-analytique[END_REF][START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF] (see e.g., [Roulet and d'Aspremont, 2017] for more detailed references).

Definition 2.2.7 (Hölderian error bound (HEB)). Consider a convex function f and K

a com- pact neighborhood of X * in C. For optimization problem (2), f satisfies a (θ, c)-HEB on K if there exists θ ∈ [0, 1] and c > 0 such that for all x ∈ K min x * ∈X * ||x -x * || ≤ c(f (x) -f *) θ .
(HEB)

The Hölderian error bound (HEB) locally quantifies the behavior of f around the constrained optimum of problem (2.4). A similar condition was used to show improved convergence rates for unconstrained optimization in e.g., [START_REF] Nemirovskii | Optimal methods of smooth convex minimization[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization[END_REF][START_REF] Frankel | Splitting methods with variable metric for kurdyka-łojasiewicz functions and general convergence rates[END_REF], Karimi et al., 2016b[START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF], Roulet and d'Aspremont, 2017[START_REF] Li | Calculus of the exponent of kurdyka-łojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF]. Note, as we reviewed in Section 2.1, that strong convexity implies θ-HEB with θ = 1/2 so (HEB) can be seen as a generalization of strong convexity. Here θ will allow us to interpolate between sub-linear and linear convergence rates.

Finally, we show that when Problem (2) satisfies both δ-Scaling and (θ, c)-HEB, the (1

- θ) -1 -Strong-Wolfe primal bound in (2.10) holds. Lemma 2.2.8. Assume f is a differentiable convex function satisfying (θ, c)-HEB on K, and that C satisfies δ-Scaling inequality. Then for all x ∈ K f (x) -f * ≤ c δ r w(x) r , with r = 1 1-θ and f * the objective value at constrained optima. Proof. Assume we have (θ, c)-HEB on K. For x ∈ K\X * , by convexity, with x ∈ argmin x * ∈X * ||x -x * || f (x) -f * ≤ ∇f (x); x -x ||x -x|| ||x -x||.
Hence applying (θ, c)-HEB leads to .11) from which we obtain

f (x) -f * ≤ c ∇f (x); x -x ||x -x|| f (x) -f * θ ≤ c max x * ∈X * ∇f (x); x -x * ||x -x * || f (x) -f * θ , (2
f (x) -f * ≤ c 1 1-θ max x * ∈X * ∇f (x); x -x * ||x -x * || 1 1-θ .
Combining this with the δ-scaling inequality, we have

f (x) -f * ≤ c δ 1 1-θ w(x) 1 1-θ ,
and the desired result.

In the next section, varying values of r ∈ [1, 2] in (2.10) allow to produce sub-linear complexity bounds of the form O(1/ 1/ (2-r)), continuously interpolating between the known sub-linear O(1/) and a linear convergence rate. For simplicity of exposition, we will always pick K = C in what follows. We also write Int(•) for the interior of a set and ReInt(•) for its relative interior.

Discussion

As it will be developed in the following sections, when strong-Wolfe error bounds hold -under a non-weak form, i.e. with r > 1 -we can accelerate our version of the Frank-Wolfe algorithms. This suggests a new perspective for determining which structure in the function f or the constraint set C might lead to the acceleration of Frank-Wolfe algorithms.

However, so far, we derived strong-Wolfe error bound by combining a classical error bound condition (i.e. involving only functional structure) with a scaling inequality which is available for polytopes only, and actually stems from the specific analysis of the Frank-Wolfe algorithms on such constraint sets. It hence remains to explore arguments to derive Wolfe error bounds directly from sub-analytical arguments in the same vein as the Kurdyka-Łojasiwicz inequality.

In particular, no acceleration result (w.r.t. the general O(1/T) for compact convex sets) is known for the Frank-Wolfe algorithms when the constraint set C is not uniformly convex (see our results in Chapter 3) or a polytope.

Hence many highly structured constraint sets are not known to provide accelerated theoretical guarantees besides the convergence rate of O(1/T) that holds for any compact convex set. For instance, there is no enhanced asymptotic convergence rates for the intersection of a 2 ball with a 1 ball nor for group-lasso balls.

Note that the strong-Wolfe gap w(x) combines the algorithm specificity (i.e. the pair-wise direction), the constraint set C and the function f . As such, it is a structured object that is hard to analyse with sub-analytical notions. However, for the very same reason (i.e. the structure), it may provide a good perspective for understanding which algorithmic versions of the Frank-Wolfe algorithm may accelerate on specific constraint sets structures.

With this type of connection, [START_REF] Beck | Linearly convergent away-step conditional gradient for non-strongly convex functions[END_REF] provide a convergence conditioning of Away-steps Frank-Wolfe algorithms (under strong-convexity like assumption) that differs from the geometrical Pyramidal Width. Here we hope that Wolfe error bounds will give new insights in the interplay between the structure of the constraint set and acceleration of the Frank-Wolfe algorithms.

Fractional Away-Step Frank-Wolfe Algorithm

Here, we present a new variant of the Conditional Gradients method using the scaling argument of the parameter-free Lazy Frank-Wolfe variant in [Braun et al., 2017a[START_REF] Braun | Blended conditional gradients: the unconditioning of conditional gradients[END_REF], together with a restart scheme similar to that used for gradient methods in e.g., [Nemirovskii and Nesterov, 1985b, Giselsson and Boyd, 2014a[START_REF] Brendan | Adaptive restart for accelerated gradient schemes[END_REF][START_REF] Fercoq | Restarting accelerated gradient methods with a rough strong convexity estimate[END_REF], Roulet and d'Aspremont, 2017]. This yields an algorithm that dynamically adapts to the local properties of the function and the feasible region around the optimum. The convergence proof relies on two key conditions. One is a scaling inequality (Definition 2.2.5) used to characterize the regularity of C in many Frank-Wolfe complexity bounds which holds on e.g., polytopes and strongly convex sets. The other is a local growth condition which is shown to hold generically for sub-analytic functions by the Łojasiewicz factorization lemma (see e.g., [START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]) and controls for example the impact of restart schemes as in [Roulet and d'Aspremont, 2017].

Earlier work showed that a sharpness condition derived from the Łojasiewicz lemma could be used to improve convergence rates of gradient methods (see e.g., [Nemirovskii and Nesterov, 1985a[START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF], Karimi et al., 2016a] for an overview), however these methods required exact knowledge of the constants appearing in the condition to achieve improved rates. In practice however, these constants are typically not observed. In contrast to this, as in [START_REF] Roulet | On the geometry of optimization problems and their structure[END_REF]d'Aspremont, 2017, Chen et al., 2018], we show using robust restart schemes that our algorithm does not require knowledge of these constants, thus making it essentially parameterfree.

We focus on the case where C is a polytope and f a smooth convex function. This means in particular that condition (Scaling) holds. We now state the Fractional Away-Step Frank-Wolfe method as Algorithm 5, a variant of the Away-Step Frank-Wolfe algorithm, tailored for restarting. It can be seen as the inner loop of [Braun et al., 2018, Algorithm 1], which together with a restart scheme leads to a simple version of [Braun et al., 2018, Algorithm 1] (without the cheaper Weak Separation Oracle that replaces Linear Minimization Oracle). (2.5) and schedule parameter γ > 0.

Algorithm 5 Fractional Away-Step Frank-Wolfe Algorithm

Input: A smooth convex function f with curvature C A f . Starting point x 0 = v∈S 0 α v 0 v ∈ C with support S 0 ⊂ Ext(C). LP oracle
1: t := 0 2: while w(x t , S t) > e -γ w(x 0 , S 0) do 3: v t := LP C (∇f (x t)) and d F W t := v t -x t 4: s t := LP St (-∇f (x t)) with S t current active set and d Away t := x t -s t 5: if -∇f (x t) T d F W t > e -γ w(x 0 , S 0)/2 then 6: d t := d F W t with η max := 1 7: else 8: d t := d Away t with η max := α s t t 1-α s t t 9:
end if 10:

x t+1 := x t + η t d t with η t ∈ [0, η max] via line-search 11:
Update active set S t+1 and coefficients {α v t+1 } v∈S t+1 12:

t := t + 1 13: end while Output: x t ∈ C such that w(x t , S t) ≤ e -γ w(x 0 , S 0)

In the following we will call a step a full-progress step if it is a Frank-Wolfe step or an Away step that is not a drop step, i.e., when η t < α st /(1 -α st). The support S t and the weights α t are updated exactly as in [Lacoste-Julien and Jaggi, 2015a, Away-Steps Frank-Wolfe]. Algorithm 5 depends on a parameter γ > 0 which explicitly controls the number of iterations needed for the algorithm to stop. In particular, a large value of γ will increase the number of iterations and when γ converges to infinity, Algorithm 5 tends to behave exactly like the classical Frank-Wolfe, (i.e., it never chooses the away direction as an update direction, see Appendix 2.C for a proof).

Proposition 2.3.1 below gives an upper bound on the number of iterations required for Algorithm 5 to reach a given target gap w(x T , S T) ≤ w(x 0 , S 0)e -γ . The assumption e -γ w(x 0 , S 0)/2 ≤ C A f in this proposition measures the complexity of a burn-in phase whose cost is marginal as shown in Proposition 2.3.2.

Proposition 2.3.1 (Fractional Away-Step Frank-Wolfe Complexity). Let f be a smooth convex function with away curvature C

A f such that the r-strong-Wolfe primal bound in (2.10) holds on C (with 1 ≤ r ≤ 2 and µ > 0). Let γ > 0 and assume x 0 ∈ C is such that e -γ w(x 0)/2 ≤ C A f . Algorithm 5 outputs an iterate x T ∈ C such that w(x T , S T) ≤ w(x 0 , S 0)e -γ
after at most

T ≤ |S 0 | -|S T | + 16e 2γ C A f µw(x 0 , S 0) r-2
iterations, where S 0 and S T are the supports of respectively x 0 and x T .

Proof. Because of the test criterion in line 5, the update direction d t satisfies (writing r t -∇f (x t)), r T t d t > e -γ w(x 0 , S 0)/2 . Indeed, this holds by definition when choosing the FW direction, otherwise (2.7) yields

w(x t , S t) = r T t d F W t + r T t d Away t > e -γ w 0 ,
(writing w 0 w(x 0 , S 0) to simplify notations) so that

r T t d Away t > e -γ w 0 -r T t d F W t ≥ e -γ w 0 -e -γ w 0 /2 = e -γ w 0 /2.
Using curvature in (1.16), we have for d t ,

f (x t + ηd t) ≤ f (x t) + η∇f (x t) T d t + η 2 2 C A f , which implies f (x t) -f (x t + ηd t) ≥ ηr T t d t - η 2 2 C A f .
We can lower bound progress f (x t) -f (x t+1) with x t+1 = x t + ηd t at each iteration for fullprogress steps. For Frank-Wolfe steps,

f (x t) -f (x t+1) ≥ max η∈[0,1] ηr T t d t - η 2 2 C A f ≥ max η∈[0,1] ηe -γ w 0 /2 - η 2 2 C A f
Hence because of exact line-search (in practice many alternatives exist which will not affect the convergence proofs, see e.g., [START_REF] Pedregosa | Step-size adaptivity in projectionfree optimization[END_REF]), assuming e -γ w 0 /2 ≤ C A f holds,

f (x t) -f (x t+1) ≥ w 2 0 8C A f e 2γ .
(2.12)

For all away steps, we have

f (x t) -f (x t + ηd t) ≥ max η∈[0,ηmax] ηe -γ w 0 /2 - η 2 2 C A f .
Yet for away steps that are not drop steps, assuming e -γ w 0 /2 ≤ C A f again the optimum is obtained for 0 < η * < η max , and the same conclusion as in (2.12) for Frank-Wolfe steps follows.

Write T = T d + T f the number of iterations for Algorithm 5 to finish. Here T d denotes the number of drop steps, while T f stands for the number of full-progress steps. Hence we have,

f (x 0) -f (x T) = T -1 t=0 f (x t) -f (x t+1) ≥ T f w 2 0 8C A f e 2γ .
Because f satisfies a r-Strong-Wolfe primal gap on C we have when

x 0 ∈ C, f (x 0) -f (x T) ≤ f (x 0) -f * ≤ µw(x 0) r ≤ µw(x 0 , S 0) r ,
by definition of w(x). We then get an upper bound on the number T f of full-progress steps

T f ≤ 8C A f e 2γ µw r-2 0 .
Finally writing |S 0 | (resp. |S T |) the size of the support of x 0 (resp. x T), and T F W the number of Frank-Wolfe steps which add a new vertex to an iterate of the Fractional-Away-

Step Frank-Wolfe Algorithm, we get T F W ≤ T f and the size of the support

S t of x t satisfies |S 0 | -T d + T F W = |S T | hence |S 0 | -|S T | + T f ≥ T d ,
and we finally get

T ≤ |S 0 | -|S T | + 16C A f e 2γ µw r-2 0 .
The following observation shows that the assumption e -γ w(x 0 , S 0)/2 ≤ C A f in Proposition 2.3.1 has a marginal impact on complexity. Proposition 2.3.2 (Burn-in phase). After at most

8 e γ γ ln w(x 0 , S 0) 2C A f + |S 0 |,
cumulative iterations of Algorithm 5, with constant schedule parameter γ > 0, we obtain a point x such that e -γ w(x, S)/2 ≤ C A f . Proof. The proof closely follows that of Proposition 2.3.1. Let w 0 = w(x 0 , S 0) and suppose that e -γ w 0 /2 > C A f . Then by curvature, for every full progress step, we would have an optimal step length η t ≥ 1, which we cap to 1 as we form convex combinations. Hence with η t = 1 in this case we have

f (x t) -f (x t+1) ≥ η t e -γ w 0 /2 - η 2 t C A f 2 ≥ e -γ w 0 /2 - C A f 2 ≥ e -γ w 0 /4.
Note that Lemma 2.2.2 implies that when the exit condition is not satisfied, x t cannot be optimal so the left-hand side above cannot be zero. Moreover, via the strong-Wolfe gap we have

f (x 0) -f (x *) ≤ w 0 .
Writing T the number of iterations of the Algorithm 5 before it stopped, with same notation as in Proposition 2.3.1, combining the equations above yields

T f e -γ w 0 /4 ≤ f (x 0) -f (x T) ≤ f (x 0) -f (x *) ≤ w 0 .
Hence

T f e -γ w 0 /4 ≤ w 0 ,
and

T f ≤ 4e γ . Also T = T d + T f ≤ 2T f + |S 0 | -|S T |, so that T ≤ 8e γ + |S 0 |.
Because x T is the output of Algorithm 5, we have w(x T , S T) < e -γ w 0 . Write N the smallest integer such that e -N γ w 0 ≤ 2C A f e γ and xi (for 0 ≤ i ≤ N) the output of the i th call to Algorithm 5. It is sufficient that N satisfies

N ≥ 1 γ ln w 0 2C A f -1.
Similarly write i 0 ≤ N the first integer such that w(

x i 0) < 2C A f e γ . If i 0 = N ,
2C A f + |S 0 | iterations.
Otherwise i 0 < N and hence e -i 0 γ w 0 ≥ C A f e γ from which it follows that

i 0 ≤ 1 γ ln w 0 2C A f e γ ,

Restart Schemes

Consider a point x k-1 with strong-Wolfe gap w(x k-1 , S k-1). Algorithm 5 with parameter γ k > 0, outputs a point x k and we write

x k F(x k-1 , w(x k-1 , S k-1), γ k).
Following [Roulet and d'Aspremont, 2017] we define scheduled restarts for Algorithm 5 as follows.

Algorithm 6 Scheduled restarts for Fractional Away-step Frank-Wolfe

Input: x0 ∈ R n and a sequence γ k > 0 and > 0.

Burn-in phase: compute x 0 via 8 e γ γ ln w(x 0 ,S 0)

2C A f + |S 0 | steps of Algorithm 5.
while w(x k-1) > do

x k = F(x k-1 , w(x k-1 , S k-1), γ k) end while Output: x := x T
Note that one overall burn-in phase is sufficient to ensure the condition e -γ i w(

x i-1 , S i-1)/2 ≤ C A f at each restart.
Algorithm 6 is similar to the restart scheme in [Roulet and d'Aspremont, 2017, Section 4] where a termination criterion is available. In this situation, [Roulet and d'Aspremont, 2017] show that the convergence rate of restarted gradient methods is robust to a suboptimal choice of restart scheme parameter γ. Here we also show that our restart scheme is adaptive to the unknown parameters in (θ, c)-HEB.

Importantly also, Algorithm 6 shares the same structure as the methods in [START_REF] Lan | Conditional accelerated lazy stochastic gradient descent[END_REF][START_REF] Braun | Blended conditional gradients: the unconditioning of conditional gradients[END_REF] but these later methods do not tune the γ parameter. We will see below in Proposition 2.4.3 that tuning γ only has a marginal impact on the complexity bound. Note also that when θ ∈ [0, 1/2], the condition interpolates between the non-strongly convex function f and a strongly convex function scenarios. Note also that a linear function satisfies θ-HEB with θ = 1 and in this case, FW converges in one iteration.

Theorem 2.4.1 (Rate for constant restart schemes). Let f be a smooth convex function with away curvature

C A f . Assume C satisfies δ-Scaling and f is (θ, c)-HEB on C. Let γ > 0 and assume x 0 ∈ C is such that e -γ w(x 0 , S 0)/2 ≤ C A f . With γ k = γ, the output of Algorithm 6 satisfies (r = 1 1-θ)                f (x T) -f * ≤ w 0 1 1 + T C r γ 1 2-r when 1 ≤ r < 2 f (x T) -f * ≤ w 0 exp - γ e 2γ T 8C A f µ when r = 2 , (2.13) after T steps, with w 0 = w(x 0 , S 0), T T -(|S 0 | -|S T |), and
C r γ e γ(2-r) -1 8e 2γ C A f µw(x 0 , S 0) r-2
(2.14)

with µ = c δ .
Proof. Denote by R the number of restarts in Algorithm 5 for T total iterations. By design

w(x R , S R) ≤ w 0 e -γR .
Because f is (θ, c)-HEB and C satisfies δ-Scaling, via Lemma 2.2.8, f satisfies the r-strong-Wolfe primal bound (2.10) with r = 1 1-θ . Using Proposition 2.3.1, the total number T of steps of Algorithms 5 is upper-bounded by

T ≤ |S 0 | -|S T | + 8C A f µe 2γ w r-2 0 R-1 i=0 e -γi(r-2) .
Suppose r < 2, we have the following upper bound on T ,

T ≤ |S 0 | -|S T | + 8C A f µe 2γ w r-2 0 e γ(2-r)R -1 e γ(2-r) -1 , hence e -γR ≤ 1 1 + T C r γ 1 2-r . Thus for 1 ≤ r < 2, w(x R , S R) ≤ w 0 1 1 + T C r γ 1 2-r . The case r = 2 leads to T ≤ |S 0 | -|S T | + 8C A f µe 2γ R, and hence w(x R , S R) ≤ w 0 exp -γ T 8C A
f µe 2γ , which yields the desired result.

Corollary 2.4.2. When C is a polytope and f a smooth convex function satisfying θ-HEB, rates in Theorem 2.4.1 hold. In particular when f is strongly convex, θ = 1 2 (and hence r = 2) and Algorithm 6 converges linearly. When f is simply smooth, θ = 0 (and hence r = 1) and Algorithm 6 converges sub-linearly with a rate of O(1/t).

Note also that for r → 2, we recover the same complexity rates as for r = 2

lim r→2 1 1 + T C r γ 1 2-r = exp - γ e 2γ T 8C A f µ .
The complexity bounds in Theorem 2.4.1 depend on γ, which controls the convergence rate.

Optimal choices of γ depend on r, a constant that we generally do not know nor observe. However, in the following we show that simply picking γ = 1/2 leads to optimal complexity bounds up to a constant factor. In fact, picking a constant gamma (independent of r) we also recover a simple version of [START_REF] Braun | Blended conditional gradients: the unconditioning of conditional gradients[END_REF]

h(x) ≤ e 4 √ e -1 w 0 1 1 + T C r γ * (r) 1 2-r when 1 ≤ r < 2, where C r γ = e γ(2-r) -1 8e 2γ C A f µw(x 0 , S 0) r-2 , as in (2.14). When r = 2, we have γ * (r) = 1/2. Proof. When 1 ≤ r < 2, from Theorem 2.4.1 we have f (x T) -f * ≤ w 0 1 1 + T C r γ 1 2-r .
(2.15)

With definition of C r γ in (2.14), minimizing (2.15) is equivalent to maximizing (for γ > 0)

B(γ) = e γ(2-r) -1 e 2γ .
Hence the optimum schedule parameter γ * (r) is

γ * (r) = ln(2) -ln(r) 2 -r when 1 ≤ r < 2.
In particular γ * (r) ∈]1/2; ln(2)]. Let's now show that the bound in (2.15) obtained with the optimal γ * (r) is comparable to the bound obtained with γ = 1 2 . The function

H(r) = 1 + T C r γ * (r) 1 2-r 1 + T C r 1/2 1 2-r is decreasing in r. Write C 8C A f µw(x 0 , S 0), we have C 1 γ * (1) = 1/(4 C) and C 1 1/2 = √ e-1 e / C hence H(1) = 1 + T C 1 4 1 + T C √ e-1 e ≤ e 4 √ e -1 .
Hence, with H(1) ≥ H(r), we get for any r

∈ [1, 2[1 1 + T C r 1/2 1 2-r ≤ e 4 √ e -1 1 1 + T C r γ * (r) 1 2-r .
When r = 2, the optimal choice for γ is 1/2, maximizing the function γ/e 2γ .

Fractional Frank-Wolfe Algorithm

In this section, we describe how Hölderian error bounds coupled with a restart scheme yield improved convergence bounds for the Frank-Wolfe algorithm.

In Section 2.3, relaxing the strong convexity of f using the (θ, c)-HEB assumption leads to improved sub-linear rates using a restart scheme for the Away step variant of the Frank-Wolfe algorithm, when the set of constraints C is a polytope. For these sets, away steps produce accelerated convergence rates that the (vanilla) Frank-Wolfe algorithm cannot achieve.

However, accelerated convergence holds for the vanilla Frank-Wolfe algorithm in other scenarios. For instance, when the solution of (2.4) is in the interior of the set and f is strongly convex, the convergence of the Frank-Wolfe algorithm is linear. In this vein, we define a fractional version of the Frank-Wolfe algorithm (Algorithm 7) and analyze its restart scheme (Algorithm 8) under the (θ, c)-HEB condition in Section 2.5.2.

Note that restart schemes of the Fractional Frank-Wolfe algorithm perform the very same iterations as the Frank-Wolfe algorithm. However, the restart scheme produces a much simpler proof of improved convergence bounds. The fractional variant is also the structural basis for recent competitive versions of the Frank-Wolfe algorithm [Braun et al., 2017a].

Another acceleration scenario for the Frank-Wolfe algorithm is when the set of constraints C is strongly convex. Under some restrictive assumption on f , the classical analysis [Levitin and Polyak, 1966, (5) in Theorem 6.1] exhibits a linear convergence rate. Recently [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] have shown a general O(1/T 2) sub-linear rate when f and C are strongly convex. We will state new rates for the case where f satisfies (θ, c)-HEB and C is strongly convex, providing a more complete picture. Note that Chapter 3 provides the general extension of this notion of strong-convexity in the set.

For completeness, we would like to mention that δ-scaling for the away step Frank-Wolfe algorithm does not apply in the case where C is a strongly convex set. In fact, Lemma 2.2.6 does not hold anymore, and P W idth can tend to zero in this case.

Restart Schemes for Fractional Frank-Wolfe

We now state the fractional version of the (vanilla) Frank-Wolfe algorithm. The Fractional Frank-Wolfe algorithm 7 is derived from Algorithm 5 by replacing w(x 0 , S 0) with g(x 0), as in (2.8) and dropping the away step update.

Algorithm 7 Fractional Frank-Wolfe Algorithm

Input: A smooth convex function f with curvature C f . Starting point x 0 ∈ C. LP oracle (2.5) and schedule parameter γ > 0. 1: t := 0 2: while g(x t) > e -γ g(x 0) do 3: t := t + 1 6: end while Output: x t ∈ C such that g(x t) ≤ e -γ g(x 0) A constant restart scheme using Algorithm 7 for its inner iteration, recovers the Scaling Frank-Wolfe algorithm [Braun et al., 2017a, Algorithm 7: Parameter-free Lazy Conditional Gradient] up to a slight reformulation with the additional Φ t parameter. The two algorithms have the same restart structure, but the Scaling Frank-Wolfe algorithm additionally uses a weaker oracle (a so-called Weak Separation Oracle) than the Linear Optimization Oracle that we employ here. More precisely, the Scaling Frank-Wolfe algorithm does not necessarily require v t to be the exact nor an approximate solution of the Linear Minimization Problem, but rather to satisfy the condition -∇f (x t); v t -x t > Φ t e -γ . As a consequence, g(x t) is not computed and Φ t is only an upper bound on g(x t). This explains the difference in line 8 of Algorithm 8.

v t := LP C (∇f (x t)) and d F W t := v t -x t 4: x t+1 := x t + η t d F W t with η t ∈ [0, 1] via line-search

Optimum in the Interior of the Feasible Set

We first recall that when the optimal solutions of (2) are in the relative interior of C, a version of the (Scaling) inequality is automatically satisfied. (FW-Scaling) replaces w(x) by g(x) and can be interpreted as a scaling inequality tailored to the (vanilla) Frank-Wolfe algorithm. Note Algorithm 8 Restart Fractional Frank-Wolfe Algorithm Input: A smooth convex function f with curvature C f . Starting point x 0 ∈ C. > 0, LP oracle (2.5) and schedule parameter γ > 0. 1: t := 0 and Φ 0 := g(x 0) 2: while g(x t) > do 3:

v t := LP C (∇f (x t)) and d F W t := v t -x t 4: if -∇f (x t); v t -x t > Φ t e -γ then 5: x t+1 := x t + η t d F W t with η t ∈ [0, 1] via line-search 6: Φ t+1 := Φ t 7: else 8: Φ t+1 := g(x t) (hence Φ t+1 < Φ t e -γ) 9:
end if 10:

t := t + 1 11: end while that the δ parameter depends on the relative distance of the optimal set X * to the boundary of C. This property has already been extensively used in e.g., [START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF], Garber and Hazan, 2013a[START_REF] Garber | Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes[END_REF].

Lemma 2.5.1 (FW δ-scaling when optimum is in relative interior [START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF]).

Assume C is convex and f convex differentiable. Assume X * ⊂ ReInt(C) and choose a z > 0 such that B(x * , z) ∩ Aff(C) ⊂ C for all x * ∈ X * . Then for all x ∈ C such that d(x, X *) ≤ z 2 we have g(x) ≥ z 2 ||Proj Aff(C) ∇f (x) ||, (FW-Scaling)
where Aff(C) is the smallest affine set containing C and g(x) is the Frank-Wolfe (dual) gap as defined in (2.8).

Proof. Let x ∈ B(x * , z 2)∩C. Write d = Proj Aff(C) ∇f (x) . By assumption B(x * , z)∩Aff(C) ⊂ C, hence x -z 2 d ||d|| ∈ C. Denote v the Frank-Wolfe vertex, we have g(x)
-∇f (x); v -x . By optimality of v, we have

g(x) ≥ -∇f (x); x - z 2 d ||d|| -x = z 2 ||Proj Aff(C) ∇f (x) || ,
which is the desired result.

When C is full dimensional, its relative interior matches its interior and the projection operation is the identity. Stating the result in term of the relative interior allows to update the convex set C. Indeed when an iterate hits a face F of C, the future iterates might then remain in the convex F .

We now bound the convergence rate of Algorithm 8 in the following proposition.

Proposition 2.5.2 (Convergence Rate of Restart Fractional FW). Let f be a smooth convex function with curvature C f as defined in (2.9), satisfying (θ, c)-HEB on C. Assume there exists z > 0 such that B(x * , z) ⊂ C for all x * ∈ X * . Let γ > 0 and assume

x 0 is such that e -γ g(x 0) ≤ C f and f (x 0) -f * ≤ z 2 1 θ (burn-in phase). Then the output of Algorithm 6 satisfies (r = 1 1-θ)              f (x T) -f * ≤ g 0 1 1 + T C r γ 1 2-r when 1 ≤ r < 2 f (x T) -f * ≤ g 0 exp - γ e 2γ T 8C f µ when r = 2 ,
after T steps, with g 0 = g(x 0). Also

C r γ e γ(2-r) -1 2e 2γ C f µg(x 0) r-2 with µ = c δ .
Proof. First note that for all t, we have d

(x t , X *) ≤ z 2 . Indeed f (x t)-f * ≤ f (x t-1)-f * ≤ z 2 1 θ . Hence by (θ, c)-HEB we have min x * ∈X * ||x t -x * || ≤ (f (x t) -f *) θ ≤ z 2 .
We can now apply lemma 2.

(cz/2) 1/(1-θ) > 0) f (x) -f * ≤ µg(x) r ,
where r = 1/(1 -θ). The proof then follows exactly that of Fractional Away Frank-Wolfe and its restart schemes (see Proposition 2.3.1 and Theorem 2.4.1), replacing w(x) with g(x). The only change comes from the upper bound on T , the number of iterations needed for Fractional Frank-Wolfe to stop. We recall the key steps to get this bound and update its value. At each iteration

f (x t) -f (x t+1) ≥ max η∈[0,1] {ηe -γ g(x 0) - η 2 2 C f },
such that because of assumption e -γ g(x 0) < C f , we have

f (x t) -f (x t+1) ≥ 1 2 g(x 0) 2 e 2γ C f .
Hence on one side

f (x 0) -f (x T) ≥ T 2 g(x 0) 2 e 2γ C f .
And on the other side, using the r-Wolfe primal bound f (x 0) -f (x T) ≤ µg(x 0) r and finally

T ≤ 2µC f e 2γ g(x 0) r-2 .
The restart scheme is then controlled exactly as in the proof of 2.4.1.

Assuming that e -γ g(x

0) ≤ C f and f (x 0) -f * ≤ z 2 1
θ simplify the statements and it is automatically satisfied after a burn-in phase. However it is fundamental to assume that there exists z > 0 s.t. B(x * , z) ⊂ C for all x * ∈ X * . Indeed this ensures that the optimal set is in the relative interior of C. Note also that a robustness result similar to that of Proposition 2.4.3 holds here.

Appendices 2.A Strongly Convex Constraint Set

When C is strongly convex, strong convexity of f leads to better convergence rate than the sublinear O(1/T). The original analysis of [Levitin and Polyak, 1966, (5) in Theorem 6.1] assumes ||∇f (x)|| ≥ > 0 (irrespective of the strong convexity of f) and hence (θ, c)-HEB cannot be understood as a relaxation of the assumption. This analysis provides linear convergence rate when the unconstrained minimum of f is strictly outside of C. §2.5.2 shows linear convergence when x * is in the interior of C. Hence the remaining case is when the unconstrained minimum of f is in ∂C, the boundary of C (an arguably rare instance).

Recently, the analysis of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] closes this gap by providing a general convergence rate of O(1/T 2) under a (slightly) weaker assumption than strong convexity of f [Garber and Hazan, 2015, see (2)]. The asymptotic rate regime of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] is less appealing than the linear convergence rate in [START_REF] Evgeny | Constrained minimization methods[END_REF]. However, the bound of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] benefits from much better conditioning and can easily dominate other bounds when the optimum is near ∂C. In particular the conditioning of [START_REF] Evgeny | Constrained minimization methods[END_REF] depends on the lower bounding the norm of the gradient on the constraint set which can be arbitrarily small. The analysis of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] adapts to (θ, c)-HEB, as it was detailed in [START_REF] Xu | Frank-wolfe method is automatically adaptive to error bound condition[END_REF]. We recall this below for the sake of completeness.

Theorem 2.A.1. Consider C an α-strongly convex set and f a convex L-smooth function. Assume (θ, c)-HEB for f . Then the iterate of the Frank-Wolfe algorithm (with exact line search or short step sizes) is such that f

(x T) -f (x *) = O 1/T 1/(1-θ) for θ ∈ [0, 1[. Proof.
From [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF], Lemma 1], L-smoothness of f combines with α-strong convexity of C gives

h t+1 ≤ h t • max 1 2 , 1 - α||∇f (x)|| 8L .
On the other hand with (θ, c)-HEB and by convexity of f , (2.11) applies

f (x) -f (x *) 1-θ ≤ c • min y∈X * ∇f (x); x -x * ||x -x * || ≤ c ||∇f (x)|| .
Note that with θ = 1/2, this is the sufficient condition [Garber and Hazan, 2015, (2)] implied by strong convexity that leads to O(1/T 2) convergence rates. Hence combining both we recover this recursive inequality for

h t = f (x t) -f (x *) h t+1 ≤ h t • max 1 2 , 1 - α 8Lc h 1-θ t .
When θ = 0 (convexity), this leads to the classical O(1/T) rate. When θ = 1/2 the above recursion leads to a O(1/T 2) rate as in [Garber and Hazan, 2015, proof of Theorem 2]. Then for any non-negative constants (k, C),

such that 2-2 β 2 β -1 ≤ k and max{h 0 k 1/β , 2 (β-(1-β)(2 β -1))M 1/β } ≤ C (with M α 8L), we have h t ≤ C (t + 1) 1/(1-θ) .
and the desired result. Theorem 2.A.1 interpolates between the general O 1/T rate for smooth convex functions and the O 1/T 2 rate for smooth and strongly convex functions.

2.B Analysis under Hölder Smoothness

In the following we generalize our results on convergence rates using a refined regularity assumption on f . A differentiable function f is (L, s)-Hölder smooth on C when 2]. Hölder smoothness interpolates between non-smooth (s = 1) and smooth (s = 2) assumptions. We write the analog of the away curvature (1.16) for (L, s)-Hölder smooth functions as

||∇f (x) -∇f (y)|| 2 ≤ L||x -y|| s-1 2 , for x, y ∈ C, with s ∈]1,
C A f,s sup x,u,v∈C η∈[0,1] y=x+η(u-v) s η s f (y) -f (x) -η ∇f (x), u -v .
Note that as in (1.16), f needs to be defined on the Minkowski sum C A . Let us now provide equivalent results for the complexity of Fractional Away-Step Frank-Wolfe algorithm and the complexity bound of the constant restart scheme with (L, s)-Hölder smooth functions.

Proposition 2.B.1 (Hölder Smooth Complexity). Let f be a (L, s)-Hölder smooth convex function with away curvature C A f,s such that the r-strong-Wolfe primal bound in (2.10) holds on C with µ > 0. Let γ > 0 and assume

x 0 ∈ C is such that e -γ w(x 0 , S 0)/2 ≤ C A f,s . Algorithm 5 outputs an iterate x T ∈ C such that w(x T , S T) ≤ w(x 0 , S 0)e -γ
after at most (with r = 1 1-θ)

T ≤ |S 0 | -|S T | + 2 1+ s s-1 s s -1 e s s-1 γ µ C A f,s 1 s-1 w(x 0 , S 0) r-s s-1
iterations, where S 0 and S T are the supports of respectively x 0 and x T .

Proof. The proof is very similar to that required for smooth-functions, so we only detail key points. The update direction satisfies

r T t d t > e -γ w 0 /2 . Applying the definition of the Hölder curvature f (x t) -f (x t + ηd t) ≥ max η∈[0,ηmax] {ηe -γ w 0 /2 - η s s C A f,s } = max η∈[0,ηmax] g(η) .
The unconstrained maximum of g is reached at

η * = e -γ w 0 2C A f,s 1 s-1 .
Hence with the burn-in phase hypothesis, we guarantee η * ≤ 1. With classical arguments, for all non-drop steps, the progress in the objective function value is lower bounded by

f (x t) -f (x t + ηd t) ≥ 1 C A f,s 1 s-1 s -1 s 2 -s s-1 e -γ s s-1 w s s-1 0 .
It finally follows that

T ≤ 2µw r-s s-1 0 2 s s-1 s s -1 e γ s s-1 + |S 0 | -|S T |
which is the desired bound.

We are ready to establish the convergence rates of our restart scheme in the Hölder smooth case.

Theorem 2.B.2 (Hölder rate for constant restart schemes). Let f be a (L, s)-Hölder smooth convex function with Hölder curvature C A f,s , satisfying (θ, c)-HEB on C, and C satisfying a δ-Scaling inequality. Let γ > 0 and assume

x 0 ∈ K is such that e -γ w(x 0 , S 0)/2 ≤ C A f,s . With γ k = γ, the output of Algorithm 6 satisfies f (x T) -f * ≤ w 0 1 1 + T C τ γ 1 τ when 1 ≤ r < s s -1 after T steps, with w 0 w(x 0 , S 0), T T -(|S 0 | -|S T |), and τ s s-1 -r. Also C τ γ e γτ -1 C s e s s-1 γ w(x 0) τ , with C s 2 1+ s s-1 s s-1 c δ C A f,s 1 s-1 .
Proof. Denote by R the number of restarts after T total inner iterations. We get

T ≤ R-1 i=0 |S i | -|S i+1 | + 2 1+ s s-1 s s -1 e s s-1 γ C A f,s 1 s-1 µw(x i , S i) r-s s-1 .
Since w(x i , S i) ≤ w 0 e -γi , it follows that

T ≤ |S 0 | -|S T | + 2 1+ s s-1 s s -1 e s s-1 γ C A f,s 1 s-1 µw r-s s-1 0 R-1 i=0 e -γi(r-s s-1) . Write C s = 2 1+ s s-1 s s-1 C A f,s 1 s-1 µ and τ = s s-1 -r we have T ≤ |S 0 | -|S T | + C s e s s-1 γ w r-s s-1 0 e γRτ -1 e γτ -1 , it follows that e -γR ≤ 1 1 + (T -(|S 0 | -|S T |)) (e γτ -1) Cse s s-1 γ w(x 0) τ 1 τ .
which yields the desired result.

Note that r < s s-1 is always ensured because s ∈]1, 2]. In particular we only get linear convergence when r = s = 2 as for gradient methods [Roulet and d'Aspremont, 2017]. We now show, as in Proposition 2.3.2, that the assumption e -γ w(x 0 , S 0)/2 ≤ C A f has a marginal impact on complexity when the function is (L, s)-Hölder smooth.

Proposition 2.B.3 (Burn-in phase for Hölder smooth functions). After at most

4 s s -1 e γ γ ln w 0 2C A f,s + |S 0 |
cumulative iterations of Algorithm 5, with constant schedule parameter γ > 0, we get a point x such that e -γ w(x, S)/2 ≤ C A f,s when f is (L, s)-Hölder smooth with s > 1.

Proof. Assume we have e -γ w 0 /2 > C A f,s . Classically, the curvature argument ensures that we have for non-drop steps

f (x t) -f (x t+1) ≥ η t e -γ w 0 /2 - η s t s C A f,s ≥ e -γ w 0 /2(1 -1/s).
Besides, T f being the number of full steps and T the number of iterations before Fractional Away Frank-Wolfe stops,

f (x 0) -f (x T) ≥ T f e -γ w 0 /2(1 -1/s).
Combining this with f

(x 0) -f (x T) ≤ f (x 0) -f (x *) ≤ w 0 we get T f ≤ 2e γ s s -1 .
Finally with the classical counting argument on drop steps, we obtain

T ≤ 4e γ s s -1 + |S 0 | -|S T | .
Denote R the number of calls to Fractional Away Frank-Wolfe before the last output xR satisfies e -γ w(x, S x)/2 > C A f,s . The strong-Wolfe gap of the N th output of Fractional Away Frank-Wolfe satisfies by definition

w(x N) ≤ e -N γ w 0 , hence we have R ≤ 1 γ ln w 0 2C A f,s
.

Finally each round of Fractional Away Frank-Wolfe under the initial assumption that e -γ w(

x i , S xi)/2 > C A f,s require at most 4e γ s s-1 + |S xi | -|S xi+1 | iterations. Hence a total T t of T t ≤ R i=1 4e γ s s -1 + |S xi | -|S xi+1 | ≤ 4Re γ s s -1 + |S 0 | ≤ 4 s s -1 e γ γ ln w 0 2C A f,s + |S 0 |
which is the desired result.

2.C One Shot Application of the Fractional Away-Step Frank-Wolfe

Running once Fractional Away-step Frank-Wolfe with a large value of γ allows to find an approximate minimizer with the desired precision. The following lemma explains the rate of convergence. Importantly the rate does not depend on r. Hence there is no hope of observing linear convergence for the strongly convex case.

Lemma 2.C.1. Let f be a smooth convex function, > 0 be a target accuracy, and x 0 ∈ C be an initial point. Then for any γ > ln w(x 0) , Algorithm 5 satisfies:

f (x T) -f * ≤ , for T ≥ 2C A f .
Proof. We can stop the algorithm as soon as the criterion w(x t) < in step 2 is met or we observe an away step, whichever comes first. In former case we have f

(x t) -f * ≤ w(t) < , in the latter it holds f (x t) -f * ≤ -∇f (x t)(d F W t) ≤ /2 < .
Thus, when the algorithms stops, we have achieved the target accuracy and it suffices to bound the number of iterations required to achieve that accuracy. Moreover, while running, the algorithm only executes Frank-Wolfe and we drop the FW superscript in the directions; otherwise we would have stopped.

From the proof of Proposition 2.3.1, we have each Frank-Wolfe step ensures progress of the form

f (x t) -f (x t+1) ≥    rt;dt 2 2C A f if r t ; d t ≤ C A f r t ; d t -C A f /2 otherwise.
For convenience, let h t f (x t) -f * . By convexity we have h t ≤ r t ; d t , so that the above becomes

f (x t) -f (x t+1) ≥    h 2 t 2C A f if h t ≤ C A f h t -C A f /2 otherwise.
, and moreover observe that the second case can only happen in the very first step:

h 1 ≤ h 0 -(h 0 -C A f /2) = C A f /2 ≤ 2C A f /t for t = 1 providing the start of the following induction: we claim h t ≤ 2C A f t .
Suppose we have established the bound for t, then for t + 1, we have

h t+1 ≤ 1 - h t 2C A f h t ≤ 2C A f t - 2C A f t 2 ≤ 2C A f t + 1 .
The induction is complete and it follows that the algorithm requires T ≥

2C A f to reach - accuracy.
Chapter 3

Frank-Wolfe on Uniformly Convex Sets

In Chapter 2, we investigated how relaxing properties of the objective function modifies the convergence rates of Frank-Wolfe algorithms. Here we focus on identifying which structures of the constraint sets C lead to accelerated rates with respect to the general O(1/T) for compact convex sets. In particular, we will not seek to relax any assumption related to the objective function.

In Chapter 1, we recalled that the original Frank-Wolfe method solves smooth constrained convex optimization problems at a generic sublinear rate of O(1/T). It enjoys accelerated convergence rates for two fundamental classes of constraints: polytopes and strongly-convex sets. Uniformly convex sets non-trivially subsume strongly convex sets and form a large variety of curved convex sets commonly encountered in machine learning and signal processing. For instance, the p balls are uniformly convex for all p > 1, but strongly convex for p ∈]1, 2] only. In this chapter, we show that these sets induce accelerated convergence rates for the Frank-Wolfe algorithm, which continuously interpolate between known rates. Our accelerated convergence rates emphasize that it is the curvature of the constraint sets -not just their strong convexity -that leads to accelerated convergence rates for the Frank-Wolfe algorithm. These results also importantly highlight that the Frank-Wolfe algorithm is adaptive to much more generic constraint set structures, thus explaining faster empirical convergence. Finally, we also show accelerated convergence rates when the set is only locally uniformly convex and provide similar results in online linear optimization.

Introduction

The Frank-Wolfe method [START_REF] Frank | An algorithm for quadratic programming[END_REF] (Algorithm 9) is a projection-free algorithm designed to solve argmin

x∈C f (x), (OPT)
where C is a compact convex set and f a smooth convex function. Many recent algorithmic developments in this family of methods are motivated by appealing properties already contained in the original Frank-Wolfe algorithm. Each iteration requires to solve a Linear Minimization Oracle (see line 2 in Algorithm 9), instead of a projection or proximal operation that is not computationally competitive in various settings. Also, the Frank-Wolfe iterates are convex combinations of extreme points of C, the solutions of the Linear Minimization Oracle. Hence, depending on the extremal structure of C, early iterates may have a specific structure, being, e.g. , sparse or low rank for instance, that could be traded-off with the iterate approximation quality of problem (OPT). These fundamental properties are among the main features that contribute to the recent revival and extensions of the Frank-Wolfe algorithm [Clarkson, 2010b[START_REF] Jaggi | Convex optimization without projection steps[END_REF] used for instance in large-scale structured prediction [START_REF] Bojanowski | Weakly supervised action labeling in videos under ordering constraints[END_REF], 2015, Alayrac et al., 2016[START_REF] Seguin | Instance-level video segmentation from object tracks[END_REF][START_REF] Miech | Learning from video and text via large-scale discriminative clustering[END_REF][START_REF] Peyre | Weakly-supervised learning of visual relations[END_REF][START_REF] Miech | Learning a text-video embedding from incomplete and heterogeneous data[END_REF], quadrature rules in RKHS [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF], Lacoste-Julien et al., 2015[START_REF] Futami | Bayesian posterior approximation via greedy particle optimization[END_REF], optimal transport [START_REF] Courty | Optimal transport for domain adaptation[END_REF][START_REF] Vayer | Optimal transport for structured data with application on graphs[END_REF][START_REF] Paty | Subspace robust wasserstein distances[END_REF][START_REF] Luise | Sinkhorn barycenters with free support via frank-wolfe algorithm[END_REF], and many others.

Algorithm 9 Frank-Wolfe Algorithm Input: x 0 ∈ C, L upper bound on the Lipschitz constant.

1: for t = 0, 1, . . . , T do 2:

v t ∈ argmax v∈C -∇f (x t); v -x t
Linear minimization oracle 3:

γ t = argmin γ∈[0,1] γ v t -x t ; ∇f (x t) + γ 2 2 L||v t -x t || 2 Short step 4: x t+1 = (1 -γ t)x t + γ t v t
Convex update 5: end for Uniform Convexity. Uniform convexity is a global quantification of the curvature of a convex set C. There exists several definitions, see for instance, [Goncharov and Ivanov, 2017, Theorem 2.1.] and [START_REF] Abernethy | Faster rates for convex-concave games[END_REF][START_REF] Molinaro | Curvature of feasible sets in offline and online optimization[END_REF] for the strongly convex case. Here, we focus on the generalization of a classic definition of the strong convexity of a set [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF].

Definition 3.1.1 (γ uniform convexity of C). A closed set C ⊂ R d is γ C -uniformly convex with respect to a norm || • ||, if for any x, y ∈ C, any η ∈ [0, 1] and any z ∈ R d with ||z|| = 1, we have ηx + (1 -η)y + η(1 -η)γ C (||x -y||)z ∈ C,
where γ C (•) ≥ 0 is a non-decreasing function. In particular when there exists α > 0 and q > 0 such that γ C (r) ≥ αr q , we say that C is (α, q)-uniformly convex or q-uniformly convex.

The uniform convexity assumption strengthens the convexity property of C that any line segment between two points is included in C. It requires a scaled unit ball to fit in C and results in curved sets. Strongly convex sets are uniformly convex sets for which γ C (r) ≥ αr 2 , i.e. (α, 2)-uniformly convex sets. Two common families of uniformly convex sets are the pballs and p-Schatten balls which are uniformly convex for any p > 1 but strongly convex for p ∈]1, 2] only, i.e. 2-uniformly convex sets for p ∈]1, 2].

Convergence Rates for Frank-Wolfe. The Frank-Wolfe algorithm admits a tight [START_REF] Michael | A tight upper bound on the rate of convergence of frank-wolfe algorithm[END_REF][START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF][START_REF] Lan | The complexity of large-scale convex programming under a linear optimization oracle[END_REF] general sublinear convergence rate of O(1/T) when C is a compact convex set and f is a convex L-smooth function. However, when the constraint set C is strongly-convex and inf x∈C ||∇f (x)|| > 0, Algorithm 9 enjoys a linear convergence rate [START_REF] Evgeny | Constrained minimization methods[END_REF]Polyak, 1966, Demyanov and[START_REF] Demyanov | Approximate methods in optimization problems[END_REF]. Later on, the work of [START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF] showed that linear rates are maintained when the constraint set satisfies a condition subsuming local strong-convexity. Interestingly, this linear convergence regime does not require the strongconvexity of f , i.e. the lower quadratic additional structure comes from the constraint set rather than from the function. When x * is in the interior of C and f is strongly convex, Algorithm 9 also enjoys a linear convergence rate [START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF].

These two linear convergence regimes can both become arbitrarily bad as x * gets close to the border of C, and do not apply in the limit case where the unconstrained optimum of f lies at the boundary of C. In this scenario, when the constraint set is strongly convex, [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] prove a general sublinear rate of O(1/T 2) when f is L-smooth and µ-strongly convex. In early iterations, these convergence rates can beat badly-conditioned linear rates.

Other structural assumptions are known to lead to accelerated convergence rates. However, these require elaborate algorithmic enhancements of the original Frank-Wolfe algorithm. Polytopes received much attention in particular, with corrective or away algorithmic mechanisms [START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF]Marcotte, 1986, Hearn et al., 1987] that lead to linear convergence rates under appropriate structures of the objective function [Garber and Hazan, 2013a, Lacoste-Julien and Jaggi, 2013, 2015b[START_REF] Beck | Linearly convergent away-step conditional gradient for non-strongly convex functions[END_REF][START_REF] David | The condition of a function relative to a polytope[END_REF][START_REF] Pena | Polytope conditioning and linear convergence of the frank-wolfe algorithm[END_REF]. Accelerated versions of Frank-Wolfe, when the constraint set is a trace-norm ball (a.k.a. nuclear balls) -which are neither polyhedral nor strongly convex [START_REF] So | Facial structures of schatten p-norms[END_REF] -have also received a lot of attention [START_REF] Robert M Freund | An extended frank-wolfe method with "in-face" directions, and its application to low-rank matrix completion[END_REF][START_REF] Allen-Zhu | Linear convergence of a frank-wolfe type algorithm over trace-norm balls[END_REF][START_REF] Garber | Fast generalized conditional gradient method with applications to matrix recovery problems[END_REF] and are especially useful in matrix completion [START_REF] Jaggi | A simple algorithm for nuclear norm regularized problems[END_REF][START_REF] Shalev-Shwartz | Large-scale convex minimization with a low-rank constraint[END_REF], Harchaoui et al., 2012, Dudik et al., 2012].

Contributions. We show accelerated sublinear convergence rates for the Frank-Wolfe algorithm, with appropriate line-search, for smooth constrained optimization problems when the constraint set is globally or locally uniformly convex. These bounds generalize the rates of [Polyak, 1966, Demyanov and[START_REF] Demyanov | Approximate methods in optimization problems[END_REF], [START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF], and [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] in their respective settings and fill the gap between all known convergence rates, i.e. between O(1/T) and the linear rate of [START_REF] Evgeny | Constrained minimization methods[END_REF][START_REF] Demyanov | Approximate methods in optimization problems[END_REF][START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF], and between O(1/T) and the O(1/T 2) rate of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] (see e.g. concluding remarks of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF]). We also provide similar arguments that interpolate between known regret bounds in an example of projection-free online learning. Overall, we illustrate another key aspect of the Frank-Wolfe algorithms: they are adaptive to many generic structural assumptions.

Outline. In Section 3.2, we analyze the complexity of the Frank-Wolfe algorithm when the constraint set is uniformly convex, under various assumptions on f . In Section 3.2.3, we also establish accelerated convergence rate under weaker assumptions than global or local uniform convexity of the constraint set. In Section 3.3, we focus on the online optimization setting and provide analogous results to the previous section in term of regret bounds. In Section 3.4, we give some examples of uniformly convex sets and relate the uniform convexity notion for sets with that of spaces and functions.

Notation. We use d for the ambient dimension of the compact convex sets C. We denote the boundary of C by ∂C and let N C (x) {d | d; y -x ≤ 0, ∀y ∈ C} denote the normal cone at x with respect to C. In the following, x * is an (optimal) solution to (OPT) and (α, q) denotes the uniform convexity parameters of a set. p stands for the parameters for the various norm balls and might differ from q. We sometimes assume strict convexity of f for the sake of exposition (only). Given a norm || • || we denote by ||d|| * max ||x||≤1 x; d its dual norm and we let h t f (x t) -f (x *) denote the primal gap.

Frank-Wolfe Convergence Analysis with Uniformly Convex Constraints

In Theorem 3.2.2, we show accelerated convergence rate of the Frank-Wolfe algorithm when the constraint set C is (α, q)-uniformly convex (with q ≥ 2) and the smooth convex function satisfies inf x∈C ||∇f (x)|| > 0; this is the interesting case. In Section 3.2.3, we then explore localized uniform convexity on the set C and provide convergence rates in Theorem 3.2.5. In Theorem 3.2.10 we show that (α, q)-uniform convexity ensures convergence rates of the Frank-Wolfe algorithms in between the O(1/T) and O(1/T 2) [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] when the function is strongly convex (and L-smooth), or satisfies a quadratic error bound at x * . We also provide generalized convergence rates assuming Hölderian Error Bounds on f . In all of these scenarios, when the set is uniformly convex, the Frank-Wolfe algorithm (with short step) enjoys accelerated convergence rates with respect to O(1/T).

Proof Sketch. We now provide an informal discussion as to why the uniform convexity of C leads to accelerated convergence rates under the classical assumptions that inf x∈C ||∇f (x)|| > 0 and hence x * ∈ ∂C. Formal arguments are developed in the proof of Theorem 3.2.2. The key point is that if C is curved around x * and f is L-smooth, when ||x t -x * || converges to zero, the quantity ||x t -v t || also converges to zero, which is generally not the case, for instance when the constraint set is a polytope.

In Figure 3.1 we show various such behaviors. Applying the L-smoothness of f to the Frank-Wolfe iterates, the classical iteration inequality is of the form (with γ ∈ [0, 1])

f (x t+1) -f (x *) ≤ f (x t) -f (x *) -γ -∇f (x t); v t -x t + γ 2 2 L||x t -v t || 2 . (3.1)
The non-negative quantity -∇f (x t); v t -x t participates in guaranteeing the function decrease, counter-balanced with ||x t -v t || 2 . The convergence rate then depends on specific relative quantification of these various terms, that we call scaling inequalities in Lemma 3.2.1 and 3.2.4.

Figure 3.1: v F W strong , v F W uni , v F W
poly represent the various FW vertices from the strongly convex set C 0 , the uniformly convex set C 1 and the polytope C 2 .

Scaling Inequality on Uniformly Convex Sets

The following lemma outlines that the uniform convexity of C implies an upper bound on the distance between the current iterate and the Frank-Wolfe vertex as a power of the Frank-Wolfe gap. Note that the uniform convexity is defined with respect to any norm, and not just in terms of an Hilbertian structure. To be even more generic, the uniform convexity can be defined with respect to gauge functions that are not necessarily norms, see, for instance, the strong-convexity of [START_REF] Molinaro | Curvature of feasible sets in offline and online optimization[END_REF].

Lemma 3.2.1. Assume the compact C ⊂ R d is an (α, q)-uniformly convex set with respect to a norm || • ||, with α > 0 and q ≥ 2. Consider x ∈ C, φ ∈ R d and v φ ∈ argmax v∈C φ; v . Then, we have φ; v φ -x ≥ α 2 ||v φ -x|| q ||φ|| * .
In particular for an iterate x t and its associated Frank-Wolfe vertex v t , this yields

-∇f (x t); v t -x t ≥ α 2 ||v t -x t || q ||∇f (x t)|| * . (Global-Scaling) Proof. Because C is (α, q)-uniformly convex, we have that for any z ∈ R d of unit norm (x + v φ)/2 + α/4||x -v φ || q z ∈ C. By optimality of v φ , we have φ; v φ ≥ φ; (x + v φ)/2 + α/4||x - v φ || q φ, z . Hence, choosing the best z implies φ; v φ -x ≥ α/2||v φ -x|| q ||φ|| * .
In other words, when C is uniformly convex, (Global-Scaling) quantifies the trade-off between the Frank-Wolfe gap g(x t) ∇f (x t); x t -v t and the value of ||x t -v t || under consideration in (3.1).

Interpolating linear and sublinear rates

To our knowledge, no accelerated convergence rate of the Frank-Wolfe algorithm is known when the constraint set is uniformly convex but not strongly convex. We fill this gap in Theorem 3.2.2 below. When q goes to +∞, we recover the classic sublinear convergence rate of O(1/T).

Theorem 3.2.2. Consider a convex L-smooth function f and a compact convex set C. Assume that C is (α, q)-uniformly convex set with respect to a norm || • ||, with q ≥ 2. Assume ||∇f (x)|| * ≥ c > 0 for all x ∈ C. Then the iterates of the Frank-Wolfe algorithm, with short step as in Line 3 of Algorithm 9 or exact line search, satisfy

   f (x T) -f (x *) ≤ M/(T + k) 1/(1-2/q) when q > 2 f (x T) -f (x *) ≤ 1 -ρ T h 0 when q = 2, (3.2
)

with ρ = max 1 2 , 1 -cα/L , k (2 -2 η)/(2 η -1) and M max{h 0 k 1/η , 2/((η -(1 -η)(2 η - 1))C) 1/η },
where η 1 -2/q and C (cα/2) 2/q /(2L).

Proof. By L-smoothness of f and because of the short step, we have for γ ∈ [0, 1]

f (x t+1) ≤ f (x t) -γg(x t) + γ 2 2 L||x t -v t || 2 , where g(x t) is the Frank-Wolfe gap. With γ = min 1, g(x t)/(L||x t -v t || 2) we have f (x t+1) ≤ f (x t) - g(x t) 2 • min 1; g(x t) L||x t -v t || 2 . Applying Lemma 3.2.1 with φ = -∇f (x t) gives g(x t) ≥ α/2||x t -v t || q ||∇f (x t)|| * . Then g(x t) ||x t -v t || 2 = g(x t) q/2-1 g(x t) ||x t -v t || q 2/q ≥ α/2||∇f (x t)|| * 2/q g(x t) 1-2/q . (3.3) Finally, because g(x t) ≥ f (x t) -f (x *) = h(x t), we have h(x t+1) ≤ h(x t) - h(x t) 2 min 1; α/2||∇f (x t)|| * 2/q
h(x t) 1-2/q /L , and hence

h(x t+1) ≤ h(x t) • max 1 2 ; 1 -α/2||∇f (x t)|| * 2/q h(x t) 1-2/q /(2L) . (3.4)
Then, by assumption, for all x ∈ C, we have ||∇f (x)|| * > c > 0 and hence (3.4) becomes

h(x t+1) ≤ h(x t) • max 1 2 ; 1 -cα/2 2/q h(x t) 1-2/q /(2L) .
We solve the recursion with Lemma 3.A.1; when q = 2 we recover the linear convergence rate.

Remark 3.2.3. The convergence rates in Theorem 3.2.2 imply convergence rates in term of distance to optimum by applying Lemma 3.2.1 with φ = -∇f (x *) and convexity of f . Indeed, this yields

||x t -x * || q ≤ 2 cα -∇f (x *); x * -x t ≤ 2 cα f (x t) -f (x *) .
Hence, to obtain convergence rates in terms of the distance of the iterates to the optimum, the uniform convexity of the set supersedes that of the function, which is not needed here.

Convergence Rates with Local Uniform Convexity

Theorem 3.2.2 relies on the global uniform convexity of the set. Actually, for the strongly convex case, it is equivalent to the global scaling inequality (Global-Scaling), see [Goncharov and Ivanov, 2017, Theorem 2.1 (g)]. However, weaker assumptions also lead to accelerated convergence rates of the Frank-Wolfe algorithm. In Theorem 3.2.5, we show accelerated convergence rates assuming a local scaling inequality at x * . We then study the sets for which such an inequality holds. We say that a local scaling inequality holds at x * ∈ C, when there exists an α > 0 and q ≥ 2 such that for all x ∈ C -∇f (x *);

x * -x ≥ α/2||∇f (x *)|| * • ||x * -x|| q . (Local-Scaling)
This combines the position of -∇f (x

* + (1 -η)x + η(1 -η)α||x * -x|| q z ∈ C. Then (Local-Scaling) holds at x * with parameters (α, q).
Proof. By definition of local uniform convexity between x * and x, we have that for any

z ∈ R d of unit norm (x * + x)/2 + α/4||x * -x|| q z ∈ C. Then, by optimality of x * , i.e. x * ∈ argmax v∈C -∇f (x *); v , we have -∇f (x *); x * ≥ -∇f (x *); (x * + x)/2 + α/4||x * - x|| q -∇f (x *), z .
Choosing the best z and subtracting both sides by -∇f (x *); x , implies

-∇f (x *); x * -x ≥ α/2||x * -x|| q ||∇f (x *)|| * .
We obtain sublinear convergence rates that are systematically better than the O(1/T) baseline for any q ≥ 2.

Theorem 3.2.5. Consider f an L-smooth convex function and a compact convex set C. Assume ||∇f (x)|| * > c > 0 for all x ∈ C and write x * ∈ ∂C a solution of (OPT). Further, assume that the convex set C satisfies a local scaling inequality at x * with parameters (α, q). Then the iterates of the Frank-Wolfe algorithm, with short step satisfy

   f (x T) -f (x *) ≤ M/(T + k) 1 1-2/(q(q-1)) when q > 2 f (x T) -f (x *) ≤ 1 -ρ T h 0 when q = 2, (3.5
)

with ρ = max 1 2 , 1 -cα/L , k (2 -2 η)/(2 η -1) and M max{h 0 k 1/η , 2/((η -(1 -η)(2 η - 1))C) 1/η },
where η 1-2/(q(q -1)) and C 1/(2LH 2). Note that H depends only on C, α, L and q (see Lemma 3.2.7).

Remark 3.2.6. When the local scaling inequality (Local-Scaling) holds with q = 2, we obtain the same linear convergence regime as in (3.2). With q > 2, the sublinear convergence rates are of order O(1/T 1/(1-2/(q(q-1)))) instead of O(1/T 1/(1-2/q)) when the set is (α, q)-uniformly convex and the global scaling inequality (Global-Scaling) holds. It is an open question to close this gap in the convergence regime with the local scaling inequality only.

The local scaling inequality expresses a property between x * and any x ∈ C. In the following lemma, we show that albeit we only have access to a local scaling inequality, it is still possible to control the variation of the distance of the iterate to its Frank-Wolfe vertex ||x t -v t || in terms of a power of the primal gap, see beginning of Section 3.2 for a qualitative explanation. This is key for the proof of Theorem 3.2.5.

Lemma 3.2.7. Consider f a L-smooth convex function and a compact convex set C. Assume inf x∈C ||∇f (x)|| * > c > 0 and write x * ∈ ∂C the solution of (OPT). Assume that C satisfies a local scaling inequality at x * for problem (OPT) with α > 0 and q ≥ 2, i.e. for all x ∈ C -∇f (x *);

x * -x ≥ α/2||∇f (x *)|| * • ||x * -x|| q (3.6) Write v t argmax v∈C -∇f (x t); v the Frank-Wolfe vertex. Assume that h t = f (x t)-f (x *) ≤ 1
(a simple burn-in phase). Then, we have

||x t -v t || ≤ Hh 1/(q(q-1)) t , (3.7) with H 2 • max 2L cα 1/(q-1) 2 cα 1/(q(q-1))
,

||∇f (x *) -∇f (x t)|| ||v t -x * || ≥ ∇f (x *) -∇f (x t); v t -x * + ∇f (x t); v t -x * ≤0 ≥ ∇f (x *); v t -x * ≥ cα/2||v t -x * || q .
Then, L-smoothness applied to the left hand side leaves us with

||x t -x * || ≥ cα 2L ||v t -x * || q-1 , (3.8)
and a triangular inequality gives

||x t -v t || ≤ ||v t -x * || + ||x * -x t || ||x t -v t || ≤ 2L cα 1/(q-1) ||x t -x * || 1/(q-1) + ||x * -x t ||.
Finally applying (3.6) with x = x t and using that inf

x∈C ||∇f (x)|| * > c > 0, we have ||x t -x * || ≤ 2 cα 1/q h 1/q t which leads to ||x t -v t || ≤ 2L cα 1/(q-1) 2 cα 1/(q(q-1)) h 1/(q(q-1)) t + 2 cα 1/q h 1/q t .
We can simplify this previous expression, and we assumed without loss of generality (i.e. up to a burning-phase) that h t ≤ 1, which implies for q ≥ 2 that h 1/(q(q-1)) t

≥ h 1/q t . With H 2 • max 2L cα 1/(q-1) 2 cα 1/(q(q-1)) , 2 cα 1/q
, we then have

||x t -v t || ≤ Hh 1/(q(q-1)) t .
We now proceed with the proof of Theorem 3.2.5.

Proof of Theorem 3.2.5. With Lemma 3.2.7, which satisfies the assumption of Theorem 3.2.5, we have

||x t -v t || ≤ Hh 1/(q(q-1)) t , with H 2 • max 2L cα 1/(q-1) 2 cα 1/(q(q-1)) , 2 cα 1/q
. We plug this last expression in the classical descent guarantee given by L-smoothness

h t+1 ≤ (1 -γ)h t + γ 2 L 2 ||v t -x t || 2 h t+1 ≤ (1 -γ)h t + γ 2 L 2 H 2 h 2/(q(q-1)) t . The optimal decrease γ ∈ [0, 1] is γ * = min h 1-2/(q(q-1)) t LH 2
, 1 . When γ * = 1, or equivalently h t ≥ LH 2 1-2/(q(q-1)) , we have h t+1 ≤ h t /2. In other words, for the very first iterations, there is a brief linear convergence regime. Otherwise, when γ * ≤ 1, we have

h t+1 ≤ h t 1 - 1 2LH 2 h 1-2/(q(q-1)) t .
(3.9)

When q = 2, this corresponds to the strongly convex case and we recover the classical linearconvergence regime. We conclude using Lemma 3.A.1 that the rate is O 1/T 1/(1-2/(q(q-1))) .

A similar approach appears in [START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF] which introduces the following functional

a x * (σ) inf x∈C ||x-x * ||≥σ ∇f (x *); x -x * ,
and shows than when there exists A > 0 such that a x * (σ) ≥ A||x -x * || 2 , then the Frank-Wolfe algorithm converges linearly, under appropriate line-search rules. This result of [START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF] thus subsumes that of [START_REF] Evgeny | Constrained minimization methods[END_REF]Polyak, 1966, Demyanov and[START_REF] Demyanov | Approximate methods in optimization problems[END_REF]. However, no analysis was conducted for uniformly (but not strongly) convex set.

In Lemma 3.2.4 we showed that a given quantification of local uniform convexity implies the local scaling inequality and hence accelerated convergence rates. However, there are many situations where such a local notion of uniform convexity does not hold but (Local-Scaling) does. This was the essence of [Dunn, 1979, Remark 3.5.] that we state here.

Corollary 3.2.8. Assume there exists a compact and (α, q)-uniformly convex set Γ such that C ⊂ Γ and N Γ (x *) ⊂ N C (x *), where x * is the solution of (OPT). If -∇f (x *) ∈ N Γ (x *), then (Local-Scaling) holds at x * with the (α, q) parameters.

Proof. Here, because N Γ (x *) ⊂ N C (x *), we have that x * ∈ argmax v∈Γ -∇f (x *); v . Also, for x ∈ C ⊂ Γ, by (α, q)-uniform convexity of Γ, we also have that for any z ∈ R d of unit norm that (x * + x)/2 + α/4||x * -x|| q z ∈ Γ. Then, by optimality of x * , we have -∇f (x *); x * ≥ -∇f (x *); (x * + x)/2 + α/4||x * -x|| q -∇f (x *), z . Choosing the best z and subtracting both sides by -∇f (x *); x , implies (for any

x ∈ C) -∇f (x *); x * -x ≥ α/2||x * -x|| q ||∇f (x *)|| * .
There exist numerous notions of local uniform convexity of a set that may imply local scaling inequalities. See for instance, the local directional strong convexity in [Goncharov and Ivanov, 2017, §Local Strong Convexity]. Alternatively, in the context of functions, Hölderian Errors Bounds (HEB) offer a weaker description of localized uniform convexity assumptions while retaining the same convergence rates [START_REF] Kerdreux | Aspremont, and Sebastian Pokutta[END_REF]. And these are known to hold generically for various classes of function [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF][START_REF] Kuntz | Iterative geometric representations for multi-way partitioning[END_REF][START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]. Obtaining a similar characterization for set is of interest. In particular, it is natural to relate enhanced convexity properties of the set gauge function || • || C [Rockafellar, 1970a, §15]

Interpolating Sublinear Rates for Arbitrary x *

When the function is µ-strongly convex and the set C is α-strongly convex, [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] show that the Frank-Wolfe algorithm (with short step) enjoys a general O(1/T 2) convergence rate. In particular, this result does not depend on the location of x * with respect to C. We now generalize this result by relaxing the strong convexity of the constraint set C and the quadratic error bound on f [Garber and Hazan, 2015, (1)].

Hölderian Error Bounds. Let f be a strictly convex L-smooth function and

x * = argmin x∈C f (x)
where C is a compact convex set; the strict convexity assumption is only required to simplify exposition and the results hold more generally with the usual generalizations. We say that f satisfies a (µ, θ)-Hölderian Error Bound when there exists θ ∈ [0, 1/2] such that

||x -x * || ≤ µ(f (x) -f (x *)) θ . (HEB)
When the function f is subanalytic, (HEB) is known to hold generically [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF][START_REF] Kuntz | Iterative geometric representations for multi-way partitioning[END_REF][START_REF] Bolte | The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]. For instance, when f is (µ, r)-uniformly convex with r ≥ 2 (see Definition 3.D.1), then it satisfies a ((2/µ) 1/r , 1/r)-Hölderian Error Bound, which follows from

f (x t) ≥ f (x *) + ∇f (x *); x t -x * ≥0 + µ 2 ||x t -x * || r 2 .
Hence we generalize the convergence result of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] and show that as soon as the set C is (α, q)-uniformly convex with q ≥ 2 and the function f satisfies a non-trivial (µ, θ)-HEB, the Frank-Wolfe algorithm (with short step) enjoys an accelerated convergence rate with respect to O(1/T). In particular when f is µ-strongly convex, it satisfies a (µ, 1/2)-HEB and by varying q ≥ 2 we interpolate all sublinear convergence rates between O(1/T) and O(1/T 2).

In Lemma 3.2.9, we will show an upper bound on ||x t -v t || when combining the uniform convexity of C and a Hölderian Error Bound for f . Lemma 3.2.9 is then the basis for the convergence analysis and similar to Lemma 3.2.1. Overall, Theorem 3.2.2, Theorem 3.2.5 and Theorem 3.2.10 give an almost complete picture of all the accelerated convergence regimes one can expect with the vanilla Frank-Wolfe algorithm.

Lemma 3.2.9. Consider a compact and (α, q)-uniformly convex set C with respect to || • ||. Denote f a strictly convex L-smooth function and

x * = argmin x∈C f (x). Assume that f satisfies a (µ, θ)-Hölderian Error Bound ||x -x * || ≤ µ(f (x) -f (x *)) θ with θ ∈ [0, 1/2]. Then for x t ∈ C we have α/µ||x t -v t || q h 1-θ t ≤ g(x t
), where g(x t) is the Frank-Wolfe gap and v t the Frank-Wolfe vertex.

Proof. By Lemma 3.2.1 we have g(x t) ≥ α||x t -v t || q ||∇f (x t)|| * . Then, by combining the convexity of f , Cauchy-Schwartz and (µ, θ)-Hölderian Error Bound, we have

f (x) -f (x *) ≤ ∇f (x); x -x * ≤ ||∇f (x)|| * • ||x -x * || ≤ µ||∇f (x)|| * • f (x) -f (x *) θ , so that f (x) -f (x *) 1-θ ≤ ||∇f (x)|| * and finally g(x t) ≥ α||x t -v t || q h 1-θ t .
Theorem 3.2.10. Consider a L-smooth convex function f that satisfies a (µ, θ)-HEB with µ > 0 and θ ∈]0, 1/2]. Assume C is a compact and (α, q)-uniformly convex set with respect to ||•|| with q ≥ 2. Then the iterates of the Frank-Wolfe algorithm, with short step or exact line search, satisfy

f (x T) -f (x *) ≤ M/(T + k) 1/(1-2θ/q) , (3.10) with k (2 -2 η)/(2 η -1) and M max{h 0 k 1/η , 2/((η -(1 -η)(2 η -1))C) 1/η },
where η 1 -2θ/q and C (α/µ) 2/q /L. In particular for q = 2 and θ = 1/2, we obtain the O(1/T 2) of [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF].

Proof. From the proof of Theorem 3.2.2, L-smoothness and the step size decision we have

h(x t+1) ≤ h(x t) - g(x t) 2 • min 1; g(x t) L||x t -v t || 2 .
Then using Lemma 3.2.9, we can rewrite

g(x t) ||x t -v t || 2 = g(x t) q/2-1 g(x t) ||x t -v t || q 2/q ≥ α/µ 2/q g(x t) 1-2/q h (1-θ)2/q t .
And because g(x t) ≥ h t , we have

g(x t) ||x t -v t || 2 ≥ α/µ 2/q h 1-2θ/q t .
We finally end up with the following recursion

h(x t+1) ≤ h(x t) • max 1 2 ; 1 -α/µ 2/q h 1-2θ/q t /L ,
and we conclude with Lemma 3.A.1.

Overall, Theorem 3.2.2, Theorem 3.2.5 and Theorem 3.2.10 give an (almost) complete picture of all the accelerated convergence regimes one can expect with the vanilla Frank-Wolfe algorithm.

Online Learning with Linear Oracles and Uniform Convexity

In online convex optimization, the algorithm sequentially decides an action, a point x t in a set C, and then incurs a (convex smooth) loss l t (x t). Algorithms are designed to reduce the cumulative incurred losses over time, F t = 1 t t τ =1 l τ (x τ). The comparison to the best action in hindsight is then defined as the regret of the algorithm, i.e. R T T t=1 l t (x t) -min x∈C T t=1 l t (x). Interesting correspondences have been established between the Frank-Wolfe algorithm and online learning algorithms. For instance, recent works [Abernethy andWang, 2017, Abernethy et al., 2018] derive new Frank-Wolfe-like algorithms and analyses via two online learning algorithms playing against each other. Furthermore, a series of work proposed projection-free online algorithms inspired by their offline counterpart, e.g. [START_REF] Hazan | Projection-free online learning[END_REF] design a Frank-Wolfe online algorithm. In following works, Garber and Hazan [2013b,a] propose projection-free algorithms for online and offline optimization with optimal convergence guarantees where the decision sets are polytopes and the loss functions are strongly-convex. In the same setting, [START_REF] Lafond | On the online frank-wolfe algorithms for convex and non-convex optimizations[END_REF] analyze the online equivalent of the away-step Frank-Wolfe algorithm via a similar analysis to [Lacoste-Julien and [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF]Jaggi, , 2015b]] in the offline setting. Recently, [START_REF] Hazan | Faster projection-free online learning[END_REF] proposed a randomized projection-free algorithm that has a regret of O(T 2/3) with high probability improving over the deterministic O(T 3/4) of [START_REF] Hazan | Projection-free online learning[END_REF] and [START_REF] Levy | Projection free online learning over smooth sets[END_REF] designed a projection-free online algorithm over smooth decision sets; dual to uniformly convex sets [START_REF] Vial | Strong and weak convexity of sets and functions[END_REF].

Online Linear Optimization and Set Curvature. At a high level, when the constraint set is strongly-convex, the analyses of the simple Follow-The-Leader (FTL) for online linear optimization [Huang et al., 2016b] is analogous to the offline convergence analyses of the Frank-Wolfe algorithm when not assuming strong-convexity of the objective function as in [Polyak, 1966[START_REF] Demyanov | Approximate methods in optimization problems[END_REF][START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF]. Indeed, by definition, linear functions do not enjoy non-linear lower bounds, i.e. uniform convexity-like assumptions.

In the online linear setting, we write the functions l t (x) = c t ; x and assume that (c t) belong to a bounded set W (smoothness). FTL consists in choosing the action x t at time t that minimizes the cumulative sum of the previously observed losses, i.e. each iteration solves the minimization of a linear function over C

x T ∈ argmin x∈C T -1 t=1 l t (x) = T -1 t=1 c t ; x .
(3.11)

In general, FTL incurs a worst-case regret of O(T) [START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF]. For online linear learning, Huang et al. [2016b[START_REF] Huang | Following the leader and fast rates in online linear prediction: Curved constraint sets and other regularities[END_REF] study the conditions under which the strong convexity of the decision set C leads to improved regret bounds. In particular, when there exists a c > 0 such that for all T , min 1≤t≤T || 1 t t τ =1 c τ || * ≥ c > 0, then FTL enjoys the optimal regret bound of O(log(T)) [START_REF] Huang | Following the leader and fast rates in online linear prediction: Curved constraint sets and other regularities[END_REF]. This result is the counter part of the offline geometrical convergence analyses of the Frank-Wolfe algorithm when inf x∈C ||∇f (x)|| * ≥ c > 0 and C is a strongly convex set [Polyak, 1966[START_REF] Demyanov | Approximate methods in optimization problems[END_REF][START_REF] Joseph C Dunn | Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals[END_REF]. In Theorem 3.3.1, we hence further support this analogy between online and offline settings. We show that FTL enjoys continuously interpolated regret bounds between O(log(T)) and O(T) for all types of uniform convexity of the decision sets. Again, this covers a much broader spectrum of curved sets, and is similar to Theorem 3.2.2 in the Frank-Wolfe setting. A proof is deferred to Appendix 3.C.

         R T ≤ 2M 2M αL T 1/(q-1) q -1 q -2 T 1-1/(q-1) when q > 2 R T ≤ 4M 2 αL T (1 + log(T)) when q = 2,
(3.12)

where M = sup c∈W ||c|| * , with the losses l t (x) = c t ; x and (c t) belong to the bounded set W.

The following is the generalization of [Huang et al., 2017, (6)] when the set is uniformly convex (see Definition 3.1.1). Note that in our version C can be uniformly convex with respect to any norm. The proof is deferred to Appendix 3.C.

Lemma 3.3.2. Assume C ⊂ R d is a (α, q)-uniformly convex set with respect to || • ||, with α > 0 and q ≥ 2. Consider the non-zero vectors φ 1 , φ 2 ∈ R d and v φ 1 ∈ argmax v∈C φ; v and v φ 2 ∈ argmax v∈C φ; v . Then v φ 1 -v φ 2 ; φ 1 ≤ 1 α 1/(q-1) ||φ 1 -φ 2 || 1+1/(q-1) * (max{||φ 1 || * , ||φ 2 || * }) 1/(q-1) , (3.13) where || • || * is the dual norm to || • ||.
Proof of Theorem 3.3.1. The proof follows exactly that of [Huang et al., 2017, Theorem 5].

Write M = sup c∈F ||c||, F t (x) = 1 t t τ =1 c t ;
x and short cut ∇F t 1 t t τ =1 c t the gradient of the linear function F t (x). Recall that with FTL, x t is defined as

x t ∈ argmin x∈C t-1 τ =1 c t ; x .
As in [Huang et al., 2017, Theorem 5] we have (for any norm || • ||)

||∇F t -∇F t-1 || ≤ 2M t .
Using [Huang et al., 2017, Proposition 2] and Lemma 3.C.1 we get the following upper bound on the regret

R T = T t=1 t x t+1 -x t ; ∇F t ≤ 1 α 1/(q-1) T t=1 t ||∇F t -∇F t-1 || 1+1/(q-1) * (max{||∇F t || * , ||∇F t-1 || * }) 1/(q-1) .
Hence, with L T = min 1≤t≤T ||∇F t || * > 0, we have

R T ≤ 2M 2M αL T 1/(q-1) T t=1
t -1/(q-1) .

Then we have for q > 2

T t=1 t -1/(q-1) = 1 + T t=2 t -1/(q-1) ≤ 1 + T -1 x=1 x -1/(q-1) dx = 1 + t 1-1/(q-1) 1 -1/(q -1) T -1 1 , 58 so that finally R T ≤ 2M 2M αL T 1/(q-1) q -1 q -2 T 1-1/(q-1) .
With the simple FTL, we obtain non-trivial regret bounds, i.e. o(T), whenever the set is uniformly convex, without any curvature assumption on the loss functions (because they are linear). In particular for q ∈ [2, 3], it improves over the general tight regret bound of O(√ T) for smooth convex losses and compact convex decision sets [START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF]. Interestingly, with the same assumption on C, [START_REF] Dekel | Online learning with a hint[END_REF] obtain for online linear optimization, the same asymptotical regret bounds with a variation of Follow-The-Leader incorporating hints. It is remarkable that the presence of hints or the assumption min 1≤t≤T || 1 t t τ =1 c τ || * ≥ c > 0 for all T both lead to the same bounds.

Examples of Uniformly Convex Objects

The uniform convexity assumptions refine the convex properties of several mathematical objects, such as normed spaces, functions, and sets. In this section, we provide some connection between these various notions of uniform convexity. In Section 3.4.1, we recall that norm balls of uniformly convex spaces are uniformly convex sets, and show set uniform convexity of classic norm balls in Section 3.4.2 and illustrate it with numerical experiments in Section 3.5. In Appendix 3.D.2, we show that the level sets of some uniformly convex functions are uniformly convex sets, extending the strong convexity results of [Garber and Hazan, 2015, Section 5].

Uniformly Convex Spaces

The uniform convexity of norm balls (Definition 3.1.1) is closely related to the uniform convexity of normed spaces [Polyak, 1966[START_REF] Maxim | Uniformly convex subsets of the hilbert space with modulus of convexity of the second order[END_REF][START_REF] Lindenstrauss | Classical Banach spaces II: function spaces[END_REF][START_REF] Weber | Local characterization of strongly convex sets[END_REF]. Some works establish sharp uniform convexity results for classical normed spaces such as l p , L p or C p . Most of the practical examples of uniformly convex sets are norm balls and are hence tightly linked with uniformly convex spaces. The property of these sets has many consequences, e.g. [Donahue et al., 1997b]. It also relates to concentration inequalities in Banach Spaces [START_REF] Juditsky | Large deviations of vector-valued martingales in 2-smooth normed spaces[END_REF] and hence implications [START_REF] Ivanov | Approximate carathéodory's theorem in uniformly smooth banach spaces[END_REF] for approximate versions of the Carathéodory theorem [START_REF] Combettes | Revisiting the approximate carath\'eodory problem via the frank-wolfe algorithm[END_REF]. [START_REF] James A Clarkson | Uniformly convex spaces[END_REF][START_REF] Jr | Some uniformly convex spaces[END_REF]] define a uniformly convex normed space (X, ||•||) as a normed space such that, for each > 0, there is a δ > 0 such that if x and y are unit vectors in X with ||x -y|| ≥ , then (x + y)/2 has norm lesser or equal to 1 -δ. Specific quantification of spaces satisfying this property is obtained via the modulus of convexity, a measure of non-linearity of a norm. Definition 3.4.1 (Modulus of convexity). The modulus of convexity of the space (X, || • ||) is defined as

δ X () = inf 1 - x + y 2 ||x|| ≤ 1 , ||y|| ≤ 1 , ||x -y|| ≥ . (3.14)
A normed space X is said to be r-uniformly convex in the case δ X () ≥ C r . These specific lower bounds on the modulus of convexity imply that the balls stemming for such spaces are uniformly convex in the sense of Definition 3.1.1. There exist sharp results for L p and p spaces in [START_REF] James A Clarkson | Uniformly convex spaces[END_REF][START_REF] Hanner | On the uniform convexity of lp and lp[END_REF]. Matrix spaces with p-Schatten norm are known as C p spaces, and sharp results concerning their uniform convexity can be found in [START_REF] Dixmier | Formes linéaires sur un anneau d'opérateurs[END_REF][START_REF] Tomczak-Jaegermann | The moduli of smoothness and convexity and the rademacher averages of the trace classes[END_REF][START_REF] Simon | Trace ideals and their applications[END_REF][START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF]. The following gives a link between the set γ C and space δ X modulus of convexity, see proof in Appendix 3.D.1. Lemma 3.4.2. If a normed space (X, || • ||) is uniformly convex with modulus of convexity δ X (•), then its unit norm ball is δ X (•) uniformly convex with respect to || • ||. Note that if the unit ball

B ||•|| (1) is (α, q)-uniformly convex, then B ||•|| (r) is (α/r q-1 , q)-uniformly convex.

Uniform Convexity of Some Classic Norm Balls

When p ∈]1, 2], p -balls are strongly convex sets and ((p-1)/2, 2)-uniformly convex with respect to || • || p , see for instance [Hanner, 1956, Theorem 2] or [Garber and Hazan, 2015, Lemma 4]. When p > 2, the p -balls are (1/p, p)-uniformly convex with respect to || • || p [Hanner, 1956, Theorem 2]. Uniform convexity also extends the strong convexity of group s,p -norms (with 1 < p, s ≤ 2) [Garber and Hazan, 2015, §5.3. and 5.4.] to the general case p, s > 1. [START_REF] Dixmier | Formes linéaires sur un anneau d'opérateurs[END_REF][START_REF] Tomczak-Jaegermann | The moduli of smoothness and convexity and the rademacher averages of the trace classes[END_REF][START_REF] Simon | Trace ideals and their applications[END_REF][START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF]] focus of the uniform convexity of the (C p , || • || S(p)) spaces, i.e. spaces of matrix where the norm is the p -norm of a matrix singular values . Their unit balls are hence the p-Schatten balls. For p ∈]1, 2], p-Schatten balls are ((p -1)/2, 2)-uniformly convex with respect to || • || S(p) , see [Garber and Hazan, 2015, Lemma 6] and the sharp results of [START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF]. For the case p > 2, [START_REF] Dixmier | Formes linéaires sur un anneau d'opérateurs[END_REF] showed that the p-Schatten balls are (1/p, p)-uniformly convex with respect to || • || S(p) , see also [Ball et al., 1994, §III].

Numerical Illustration

Uniform convexity is a global assumption. Hence, in Theorem 3.2.2, we obtain sublinear convergence that do not depend on the specific location of the solution x * ∈ ∂C. However, some regions of C might be relatively more curved than others and hence exhibit faster convergence rates. This effect is quantified in Theorem 3.2.5 when a local scaling inequality holds.

In Figure 3.1, in the case of the p -balls with p > 2, we vary the approximate location of the optimum x * in the boundary of the p -balls.

Subfigures (3.1a), (3.1b), and (3.1c) are associated to an optimization problem where the solution x * of (OPT) is near the intersection of the p -balls and the half-line generated by d i=1 e i (where the (e i) is the canonical basis), i.e. in curved regions of the boundaries of the p -balls.

Subfigures (3.1d), (3.1e), and (3.1f) corresponds to the same optimization problem where the solution x * to (OPT) is close to the intersection between the half-line generated by e 1 and the boundary of the p -balls, i.e. in flat regions of the boundaries of the p -balls.

We observe that when the optimum is at a curved location, the convergence is quickly linear for p sufficiently close to 2 and appropriate line-search (see Subfigures (3.1b) and (3.1c)). However, when the optimum is near the flat location, we indeed observe sublinear convergence rates (see Subfigures (3.1e) and (3.1f)). It still becomes linear for p = 2.1 with exact line-search in Subfigure (3.1f).

Also, Theorem 3.2.2 gives accelerated rates when using the Frank-Wolfe algorithm with exact line-search or short step. In Subfigures (3.1a) and (3.1d), we show examples of the convergence of the Frank-Wolfe algorithm when using deterministic line-search. The rates are indeed sublinear in O(1/T). In other words, deterministic line-search generally do not lead to accelerated convergence rates when the sets are uniformly convex.

Conclusion

Our results fill the gap between known convergence rates for the Frank Wolfe algorithm. Qualitatively, they also mean that it is the curvature of the constraint set that accelerates the convergence of the Frank-Wolfe algorithm, not just strong-convexity. This emphasis on curvature echoes works in other settings [Huang et al., 2016b]. For the sake of theory, the results could be immediately refined by measuring the local curvature of convex bodies with more sophisticated tools than uniform convexity [START_REF] Schneider | Curvatures of typical convex bodies-the complete picture[END_REF].

From a more practical perspective, uniform convexity encompasses ubiquitous structures of constraint sets appearing in machine learning and signal processing. In applications where the (e.g. regularization) constraints are likely to be active, the assumption that inf x∈C ||∇f (x)|| * > 0 is not restrictive and the value of c quantifies the relevance of the constraints.

Overall our results go back to the basics. They show that the Frank-Wolfe mechanism, i.e. minimizing the linear approximation of the function and doing the right convex update, leads to accelerated convergence rates for a large variety of curved sets, the uniformly convex sets, in a fully-adaptive fashion.

Appendices

3.A Recursive Lemma

The proofs of Theorems 3.2.2, 3.2.5, and 3.2.10 involve finding explicit bounds for sequences (h t) satisfying recursive inequalities of the form,

h t+1 ≤ h t • max{1/2, 1 -Ch η t }. (3.15)
with η < 1. An explicit solution with η = 1/2 is given in [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] and corresponds to h t = O(1/T 2), while for η = 1 we recover the classical sublinear Frank-Wolfe regime of O(1/T). For a η ∈]0, 1], we have O(1/T 1/η) (see for instance [START_REF] Temlyakov | Greedy approximation[END_REF] or [Nguyen and Petrova, 2017, Lemma 4.2.]), which can be guessed via h(t) = (Cη) 1/η t -1/η the solution of the differential equation h (t) = -Ch(t) η+1 for t > 0. A quantitative statement is, for instance, given in [START_REF] Xu | Frank-wolfe method is automatically adaptive to error bound condition[END_REF], proof of Theorem 1.] that we reproduce here.

Lemma 3.A.1 (Recurrence and sub-linear rates). Consider a sequence (h t) t∈N of non-negative numbers satisfying (3.15) with 0 < η ≤ 1, then h T = O 1/T 1/η . More precisely for all t ≥ 0,

h t ≤ M (t + k) 1/η with k (2 -2 η)/(2 η -1) and M max{h 0 k 1/η , 2/((η -(1 -η)(2 η -1))C) 1/η }.

3.B Beyond Local Uniform Convexity

Here we show that additional convexity properties on the gauge function of C imply local scaling inequalities on C. Note that for ease, we assume that the gauge function is differential at x * which is not necessarily the case case when the set C is uniformly convex. Lemma 3.B.1. Consider a compact convex set C with 0 in its interior. Assume the gauge function of C is differentiable and normal cone at the boundary are half-lines. Assume (µ, r)uniformly convex at x * a solution of (OPT) (where f is a convex L-smooth function and inf x∈C ||x|| C > 0), then we have the following scaling inequality for all x ∈ C -∇f

(x *); x -x * ≥ µ ||g|| ||∇f (x *)||||x -x * || q ,
where g ∈ N C (x *) and g; x * = 1.

Proof. We have x * ∈ ∂C. Write g = ∇||x|| C . Then by (µ, r)-uniformly convex of the gauge function we have

||x|| C ≥ ||x * || C =1 + g; x -x * + µ||x -x * || q .
Hence we have

-g; x -x * ≥ 1 -||x|| C ≥0 +µ||x -x * || q ≥ µ||x -x * || q .
When it is differentiable, [Schneider, 2014, (1.39)] show that g satisfies g ∈ N C (x *) and g; x * = 1. Here, the normal cone is a half-line and -∇f (x *) ∈ N C (x *). In particular then -∇f

(x *) = ||∇f (x *)|| ||g|| g. Finally -∇f (x *); x -x * ≥ µ ||g|| ||x -x * || q ||∇f (x *)||.

3.C Proofs in Online Optimization

The following is the generalization of [Huang et al., 2017, (6)] when the set is uniformly convex. Note that in our version C can be uniformly convex with respect to any norm.

Lemma 3.C.1. Assume C ⊂ R d is a (α, q)-uniformly convex set with respect to || • ||, with α > 0 and q ≥ 2. Consider the non-zero vectors φ 1 , φ 2 ∈ R d and v φ 1 ∈ argmax v∈C φ; v and v φ 2 ∈ argmax v∈C φ; v . Then v φ 1 -v φ 2 ; φ 1 ≤ 1 α 1/(q-1) ||φ 1 -φ 2 || 1+1/(q-1) * (max{||φ 1 || * , ||φ 2 || * }) 1/(q-1) , (3.16) where || • || * is the dual norm to || • ||.
Proof. By definition of uniform convexity, for any z of unit norm, v γ (z) ∈ C where

v γ (z) = γv φ 1 + (1 -γ)v φ 2 + γ(1 -γ)α||v φ 1 -v φ 2 || q z.
By optimality of v φ 1 and v φ 2 , we have v γ (z);

φ 1 ≤ v 1 ; φ 1 and v γ (z); φ 2 ≤ v 2 ; φ 2 , so that v γ (z); γφ 1 + (1 -γ)φ 2 ≤ γ v 1 ; φ 1 + (1 -γ) v 2 ; φ 2 .
Write φ γ = γφ 1 + (1 -γ)φ 2 . Then, when developing the left hand side, we get

γ(1 -γ)α||v φ 1 -v φ 2 || q z; φ γ ≤ γ(1 -γ) v φ 1 -v φ 2 ; φ 1 -φ 2
Choosing the best z of unit norm we get

α||v φ 1 -v φ 2 || q ||φ γ || * ≤ v φ 1 -v φ 2 ; φ 1 -φ 2
and for γ = 0 and γ = 1 and via generalized Cauchy-Schwartz we get

α||v φ 1 -v φ 2 || q • max{||φ 1 || * , ||φ 2 || * } ≤ ||v φ 1 -v φ 2 || • ||φ 1 -φ 2 || * .
Then,

v φ 1 -v φ 2 ; φ 1 ≤ ||v φ 1 -v φ 2 || • ||φ 1 -φ 2 || * ≤ 1 α 1/(q-1) ||φ 1 -φ 2 || 1+1/(q-1) * (max{||φ 1 || * , ||φ 2 || * }) 1/(q-1) ,
and we finally obtain (3.16). ≥ δ(||x -y||) and then

3.D Uniformly

x + y 2 + δ(||x -y||)z ≤ x + y 2 + δ(||x -y||) ≤ 1 .
Hence, x+y 2 + δ(||x -y||)z ∈ C. Without loss of generality, consider η ∈]0; 1/2]. We need to show that ηx + (1 -η)y + δ(||x -y||)z ∈ C for any z with norm lesser than 1. First, note that ηx + (1 -η)y = (1 -2η)y + (2η)(x + y)/2. Note also that because 1 -2η ∈ [0, 1], we have for any z of norm lesser than 1

(1 -2η)x + (2η) (x + y)/2 + δ(||x -y||)z ∈ C.
Hence, for any z of norm lesser than 1, we have

ηx + (1 -η)y + 2ηδ(||x -y||)z ∈ C. Or equivalently ηx + (1 -η)y + (1 -η)ηδ(||x -y||) 2η (1 -η)η z ∈ C.

Because 2η

(1-η)η ≥ 1, it follows that for any z of norm lesser than 1 we have

ηx + (1 -η)y + (1 -η)ηδ(||x -y||)z ∈ C,
which conclude on the uniform convexity of the norm ball.

3.D.2 Uniformly Convex Functions

Uniform convexity is also a property of convex functions and defined as follows.

Definition 3.D.1. A differentiable function f is (µ, r)-uniformly convex on a convex set C if there exists r ≥ 2 and µ > 0 such that for all (x, y) ∈ C

f (y) ≥ f (x) + ∇f (x); y -x + µ 2 ||x -y|| r 2 .
We now state the equivalent of [Journée et al., 2010, Theorem 12] for the level sets of uniformly convex functions. This was already used in [START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF] in the case of strongly-convex sets.

Lemma 3.D.2. Let f : R d → R + be a non-negative, L-smooth and (µ, r)-uniformly convex function on R d , with r ≥ 2. Then for any w > 0, the set

L w = x | f (x) ≤ w , is (α, r)-uniformly convex with α = µ √ 2wL .
Proof. The proof follows exactly that of [Journée et al., 2010, Theorem 12], replacing ||x -y|| 2 with ||x -y|| r . We state it for the sake of completeness. Consider w 0 > 0, (x, y) ∈ L w and γ ∈ [0, 1]. We denote z = γx + (1 -γ)y. For u ∈ R d , by L-smoothness applied at z and at x * (the unconstrained optimum of f), we have

f (z + u) ≤ f (z) + ∇f (z); u + L 2 ||u|| 2 2 ≤ f (z) + ||∇f (z)|| • ||u|| + L 2 ||u|| 2 2 ≤ f (z) + 2Lf (z)||u|| + L 2 ||u|| 2 2 = f (z) + L 2 ||u|| 2 .
Note that uniform convexity of f implies that

f (z) ≤ γf (x) + (1 -γ)f (y) - µ 2 γ(1 -γ)||x -y|| r
In particular then, because x, y ∈ L w , we have

f (z) ≤ w -µ 2 γ(1 -γ)||x -y|| r so that f (z + u) ≤ w - µ 2 γ(1 -γ)||x -y|| r + L 2 ||u|| 2 (3.17)
Leveraging on the concavity of the square-root, we get

f (z + u) ≤ √ w - µ 4 √ w γ(1 -γ)||x -y|| r + L 2 ||u|| 2 .
(3.18)

Hence for any u such that

||u|| = µ 2 √ 2wL γ(1 -γ)||x -y|| r , we have z + u ∈ L w . Hence L w is a (µ 2 √
2wL , r)-uniformly convex set. Lemma 3.D.2 restrictively requires smoothness of the uniformly convex function f . Hence we provide the analogous of [Garber and Hazan, 2015, Lemma 3]. Proof. The proof follows exactly that of [Garber and Hazan, 2015, Lemma 3] which itself follows that of [Journée et al., 2010, Theorem 12], where operations involving L-smoothness are replaced by an application of the triangular inequality. Let's consider s ≥ 2, (x, y) ∈ B ||•|| (r) and γ ∈ [0, 1]. We denote z = γx + (1 -γ)y. For u ∈ X, applying successively triangular inequality and (µ, s)-uniform convexity of f (x) = ||x|| 2 , we get

f (z + u) = ||z + u|| 2 ≤ f (z) + ||u|| 2 ≤ r 2 - µ 2 γ(1 -γ)||x -y|| s + ||u|| 2 .
We then use concavity of the square root as before to get

||z + u|| 2 ≤ r - µ 4r γ(1 -γ)||x -y|| s + ||u|| 2 .
In particuler, for u ∈ X such that ||u||

= µ 4r γ(1 -γ)||x -y|| s , we have z + u ∈ B ||•|| (r). Hence B ||•|| (r) is (µ 2r , s)-uniformly convex with respect to || • ||.
These previous lemmas hence allow to translate functional uniformly convex results into results for classic balls norms. For instance, [Shalev-Shwartz, 2007, Lemma 17] showed that for p ∈]1, 2] f (x) = 1/2||x|| The second algorithm is a randomized variant of the Away-step FW algorithm, and again as its deterministic counterpart, reaches linear convergence rate on polytopes making it the first provably convergent randomized variant of Away-step FW. In both cases, while subsampling reduces the convergence rate by a constant factor, the cost of the linear minimization step can be a fraction of the deterministic versions, especially when the data is streamed. We illustrate computational gains on regression problems, involving both 1 and latent group lasso penalties.

Introduction

As in previous chapters, the Frank-Wolfe (FW) or conditional gradient algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF] is applied to solve optimization problems of the form

minimize x∈C f (x) , with C = conv(A) , (OPT)
where A is a (possibly infinite) set of vectors which we call atoms, and conv(A) is its convex hull, see Section 1.1.4. Again, the FW algorithms have seen an impressive revival in recent years, due to their low memory requirements and projection-free iterations, which make them particularly appropriate to solve large scale convex problems, for instance convex relaxations of problems written over combinatorial polytopes [START_REF] Zaslavskiy | A path following algorithm for the graph matching problem[END_REF][START_REF] Joulin | Efficient image and video co-localization with frank-wolfe algorithm[END_REF][START_REF] Joshua T Vogelstein | Fast approximate quadratic programming for graph matching[END_REF]. Despite these attractive properties, for problems with a large number of variables or with a very large atomic set (or both), computing the full gradient and LMO at each iteration may become prohibitive. Designing variants of the FW algorithm which alleviate this computational burden would have a significant practical impact on performance.

One recent direction to achieve this is to replace the LMO with a randomized linear oracle in which the linear minimization is performed only over a random sample of the original atomic domain. This approach has proven to be highly successful on specific problems such as structured SVMs [Lacoste-Julien et al., 2013] and constrained discriminative clustering [START_REF] Miech | Learning from video and text via large-scale discriminative clustering[END_REF][START_REF] Peyre | Weakly-supervised learning of visual relations[END_REF][START_REF] Miech | Learning a text-video embedding from incomplete and heterogeneous data[END_REF]. However, little is known in the general case. Is it possible to design a FW variant with a randomized oracle that achieves the same convergence rate (up to a constant factor) as the non-randomized variant? Can this be extended to linearly-convergent FW algorithms [Lacoste-Julien and Jaggi, 2013, 2015b[START_REF] Garber | Faster rates for the frank-wolfe method over strongly-convex sets[END_REF][START_REF] Pena | Polytope conditioning and linear convergence of the frank-wolfe algorithm[END_REF]? In this chapter, we give a positive answer to both questions and explore the trade-offs between subsampling and convergence rate.

Outline and main contribution. The main contribution of this chapter is to develop and analyze two algorithms that share the projection-free iterations of FW, but in which the LMO is computed only over a random subset of the original domain. In many cases, this results in significant gains in computing the LMO which can also speed up the overall FW algorithm. In practice, the algorithm will run a larger number of cheaper iterations, which is typically more efficient for huge data sets (e.g. in a streaming model where the data does not fit in core memory and can only be accessed by chunks). The paper is structured as follows • §4.2 describes the "Randomized FW" algorithm, proving a sublinear convergence rate.

• §4.3 describes "Randomized Away FW" algorithm, a variant which enjoys a linear convergence rate on polytopes. To the best of our knowledge this is the first provably convergent randomized version of the Away-steps FW algorithm.

• Finally, in §4.4 we discuss implementation aspects of the proposed algorithms and study their performance on lasso and latent group lasso problems.

Note that with the proven sub-linear rate of convergence for Randomized FW (RFW), the cost of the LMO is reduced by the subsampling rate, but this is compensated by the fact that the number of iterations required by RFW to reach same convergence guarantee as FW is itself multiplied by the sampling rate. However, the linear convergence rate in Randomized AFW does not theoretically show a computational advantage since the number of iterations is multiplied by the squared sampling rate, in our highly conservative bounds at least. Nevertheless, our numerical experiments show that randomized versions are often numerically superior to their deterministic counterparts. Related work. Several references have focused on reducing the cost of computing the linear minimization oracle. The analysis of [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF] allows for an error term in the LMO, and so a randomized linear oracle could in principle be analyzed under this framework. However, this is not entirely satisfactory as it requires the approximation error to decrease towards zero as the algorithm progresses. In our algorithm, the subsampling approximation error does not need to decrease.

Lacoste-Julien et al.

[2013] studied a randomized FW variant named block-coordinate FW in which at each step the LMO is computed only over a subset (block) of variables. In this case, the approximation error does not need to decrease to zero, but the method can only be applied to a restricted class of problems: those with a block-separable domain, leaving out significant cases such as 1 -constrained minimization for instance. Because of the block separability, a more aggressive step-size strategy can be used in this case, resulting overall in a different algorithm.

Finally, [START_REF] Frandi | Complexity issues and randomization strategies in frank-wolfe algorithms for machine learning[END_REF] proposed a FW variant which is a particular case of our Algorithm 10 for the Lasso problem, analyzed in [START_REF] Frandi | Fast and scalable lasso via stochastic Frank-Wolfe methods with a convergence guarantee[END_REF]. Our analysis here brings three critical improvements to this last result. First, it is provably convergent for arbitrary atomic domains, not just the 1 ball. Second, it allows a choice of step size that does not require exact line-search (Variant 2), which is typically only feasible for quadratic loss functions. Third, we extend our analysis to linearly-convergent FW variants such as the Away-step FW.

A different technique to alleviate the cost of the linear oracle was recently proposed by Braun et al. [2017b]. In that work, the authors propose a FW variant that replaces the LMO by a "weak" separation oracle. They showed significant speedups in wall-clock performance on practical problems. This approach was combined with gradient sliding in [START_REF] Lan | Conditional accelerated lazy stochastic gradient descent[END_REF], a technique [START_REF] Lan | Conditional gradient sliding for convex optimization[END_REF] that allows skipping the computation of gradients from time to time. However, for problems such as Lasso or latent group lasso, a randomized LMO avoids all full gradient computations, while the lazy weak separation oracle still requires it. Combining these various techniques is an interesting open question.

Proximal coordinate-descent methods [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] (not based on FW) have also been used to solve problems with a huge number of variables. They are particularly effective when associated with variable screening rules such as [START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF][START_REF] Fercoq | Mind the duality gap: safer rules for the lasso[END_REF]. However, for constrained problems, they require evaluating a projection operator, which on some sets such as the latent group lasso ball can be much more expensive than the LMO. Furthermore, these methods require that the projection operator is block-separable, while our method does not.

Notation. We denote sets in calligraphic letter (i.e., A). We use clip [0,1] (s) = max{0, min{1, s}}. Probability is written P and cardinality of a set A is denoted |A|. For x * a solution of (OPT), we write h(x) = f (x) -f (x *) the primal gap. FW variants with randomness in the LMO are called randomized and we reserve the name stochastic for FW variants that replace the gradient with a stochastic approximation, as in [START_REF] Hazan | Variance-reduced and projection-free stochastic optimization[END_REF].

Randomized Frank-Wolfe

In this section we present our first contribution, the Randomized Frank-Wolfe (RFW) algorithm. The method is detailed in Algorithm 10. Compared to the standard FW algorithm, it has the following two distinct features.

First, the LMO is computed over a random subset A t ⊆ A of the original atomic set in which each atom is equally likely to appear, i.e., in which P(v ∈ A t) = η for all v ∈ A (Line 3). For discrete sets this can be implemented simply by drawing uniformly at random a fixed number of elements at each iteration. The sampling parameter η controls the fraction of the domain that is considered by the LMO at each iteration. If η = 1, the LMO considers the full domain at each iteration and the algorithm defaults to the classical FW algorithm. However, for η < 1, the LMO only needs to consider a fraction of the atoms in the original dataset and can be faster than the FW LMO.

Second, unlike in the FW algorithm, the atom chosen by the LMO is not necessarily a descent direction and so it is no longer possible to use the "oblivious" (i.e., independent on the result of the LMO) 2/(2 + t) step-size commonly used in the FW algorithm. We provide two possible choices for this step-size: the first variant (Line 5) chooses the step-size by exact line search and requires to solve a 1-dimensional convex optimization problem. This approach is efficient when this sub-problem has a closed form solution, as it happens for example in the case of quadratic loss functions. The second variant does not need to solve this sub-problem, but in exchange requires to have an estimate of the curvature constant C f (defined in next subsection). Note that in absence of an estimate of this quantity, one can use the bound C f ≤ diam(C) 2 L, where L is the Lipschitz constant of ∇f and diam(C) is the diameter of the domain in euclidean norm.

Gradient coordinate subsampling. We note that the gradient of f only enters Algorithm 10 through the computation of the randomized LMO, and so only the dot product between the gradient and the subsampled atomic set are truly necessary. In some cases the elements of the atomic set have a specific structure that makes computing dot products particularly effective. For example, when the atomic elements are sparse, only the coordinates of the gradient that are in the support of the atomic set need to be evaluated. As a result, for sparse atomic sets such as the 1 ball, the group lasso ball (also known as 1 / 2 ball), or even the latent group lasso [START_REF] Obozinski | Group lasso with overlaps: the latent group lasso approach[END_REF] ball, only a few coordinates of the gradient need to be evaluated at each iteration. The number of exact gradients that need to be evaluated will depend on both the sparsity of this atomic set and the subsampling rate. For example, in the case of the 1 ball, the extreme atoms have a single nonzero coefficient, and so RFW only needs to compute on average dη gradient coefficients at each iteration, where d denotes the ambient dimension.

Stopping criterion. A side-effect of subsampling the linear oracle is that -∇f (x t); s t -x t , where s t is the atom selected by the randomized linear oracle is no longer an upper bound on f (x t) -f (x *). This property is a feature of FW algorithms that cannot be retrieved in our variant. As a replacement, the stopping criteria that we propose is to compute a full LMO every k 1 η iterations, with k ∈ N * (k = 2 is a good default value).

Algorithm 10 Randomized Frank-Wolfe algorithm Input: x 0 ∈ C, sampling ratio 0 < η ≤ 1.

1:

2: for t = 0, 1 . . . , T do 3:

Choose A t such that P(v ∈ A t) = η for all v ∈ A 4:

Compute s t = LMO(∇f (x t), A t) subsampled LMO

5:

Variant 1:

γ t = argmax γ∈[0,1] f ((1 -γ)x t + γs t) exact line-search 6:
Variant 2:

γ t = clip [0,1] (-∇f (x t), s t -x t /C f) short-step size 7:
x t+1 = (1 -γ t)x t + γ t s t 8: end for

Analysis

In this subsection we prove an O(1/t) convergence rate for the RFW algorithm. As is often the case for FW-related algorithms, our convergence result will be stated in terms of the curvature constant C f , which is defined as follows for a convex and differentiable function f and a convex and compact domain C:

C f sup x,s∈C,γ∈[0,1] y=x+γ(s-x) 2 γ 2 f (y) -f (x) -∇f (x), y -x .
It is worth mentioning that a bounded curvature constant C f corresponds to a Lipschitz assumption on the gradient of f [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF].

Theorem 4.2.1. Let f be a function with bounded smoothness constant C f and subsampling parameter η ∈ (0, 1]. Then Algorithm 10 (in both variants) converges towards a solution of (OPT). Furthermore, the following inequality is satisfied: The rate obtained in the previous theorem is similar to known bounds for FW. For example, [Jaggi, 2013, Theorem 1] established for FW a bound of the form

E[h(x T)] ≤ 2(C f + f (x 0) -f (x *)) ηT + 2 . (4
h(x T) ≤ 2C f T + 2 . (4.2)
This is similar to the rate of Theorem 4.2.1, except for the factor η in the denominator. Hence, if our updates are η times as costly as the full FW update (as is the case e.g. for the 1 ball), then the theoretical convergence rate is the same. This bound is likely tight, as in the worst case one will need to sample the whole atomic set to decrease the objective if there is only one descent direction. This is however a very pessimistic scenario, and in practice good descent directions can often be found without sampling the whole atomic set. As we will see in the experimental section, despite these conservative bounds, the algorithm often exhibits large computational gains with respect to the deterministic algorithm.

Randomized Away-steps Frank-Wolfe

A popular variant of the FW algorithm is the Away-steps FW variant of [START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF]. This algorithm adds the option to move away from an atom in the current representation of the iterate. In the case of a polytope domain, it was recently shown to have much better convergence properties, such as linear (i.e. exponential) convergence rates for generally-strongly convex objectives [Garber and Hazan, 2013a[START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF], Lacoste-Julien and Jaggi, 2015b].

In this section we describe the first provably convergent randomized version of the Awaysteps FW, which we name Randomized Away-steps FW (RAFW). We will assume throughout this section that the domain is a polytope, i.e. that C = conv(A), where A is a finite set of atoms. We will make use of the following notation.

• Active set. We denote by S t the active set of the current iterate, i.e. x t decomposes as

x t = v∈St α (t) v v, where α (t)
v > 0 are positive weights that are iteratively updated.

• Subsampling parameter. The method depends on a subsampling parameter p. It controls the amount of computation per iteration of the LMO. In this case, the atomic set is finite and p denotes an integer 1 ≤ p ≤ |A|. This sampling rate is approximately η|A| in the RFW formulation of §4.2.

The method is described in Algorithm 11 and, as in the Away-steps FW, requires computing two linear minimization oracles at each iteration. Unlike the deterministic version, the first oracle is computed on the subsampled set S t ∪ A t (Line 4), where A t is a subset of size min{p, |A\S t |}, sampled uniformly at random from A \S t . The second LMO (Line 6) is computed on the active set, which is also typically much smaller than the atomic domain.

As a result of both oracle calls, we obtain two potential descent directions, the RFW direction d FW t and the Away direction d A t . The chosen direction is the one that correlates the most with the negative gradient, and a maximum step size is chosen to guarantee that the iterates remain feasible (Lines 8-11).

Updating the support. Line 14 requires updating the support and the associated α coefficients. For a FW step we have S t+1 = {s t } if γ t = 1 and otherwise S t+1 = S t ∪ {s t }. The corresponding update of the weights is α

(t+1) v = (1 -γ t)α (t) v when v ∈ S t \ {s t } and α (t+1) st = (1 -γ t)α (t) st + γ t otherwise.
For an away step we instead have the following update rule. When γ t = γ max (which is called a drop step), then S t+1 = S t \{v t }. Combined with γ max < 1 (or equivalently α vt ≤ 1 2) we call them bad drop step, as it corresponds to a situation in which we are not able to guarantee a geometrical decrease of the dual gap.

For away steps in which γ t < γ max , the away atom is not removed from the current representation of the iterate. Hence S t+1 = S t , α

(t+1) v = (1 + γ t)α (t) v for v ∈ S t \ {v t } and α (t+1) vt = (1 + γ t)α (t)
vt -γ t otherwise. Note that when choosing Away step in Line 11, it cannot happen that α vt = 1. Indeed this would imply x t = v t , and so d A t = 0. Since we would have S t = {v t } and the LMO of Line 4 is performed over S t ∪ A t , we necessarily have -∇f (x t), d FW t ≥ 0. It thus leads to a choice of FW step, contradiction.

Algorithm 11 Randomized Away-steps FW (RAFW) Per iteration cost. Establishing the per iteration cost of this algorithm is not as straightforward as for RFW, as the cost of some operations depends on the size of the active set, which varies throughout the iterations. However, for problems with sparse solutions, we have observed empirically that the size of the active set remains small, making the cost of the second LMO and the comparison of Line 8 negligible compared to the cost of an LMO over the full atomic domain. In this regime, and assuming that the atomic domain has a sparse structure that allows gradient coordinate subsampling, RAFW can achieve a per iteration cost that is, like RFW, roughly |A|/p times lower than that of its deterministic counterpart.

Input: x 0 ∈ C, x 0 = v∈A α (0) v v with |S 0 | = s, a

Analysis

We now provide a convergence analysis of the Randomized Away-steps FW algorithm. These convergence results are stated in terms of the away curvature constant C A f and the geometric strong convexity µ A f , which are described in 4.B and in [Lacoste-Julien and Jaggi, 2015b]. Throughout this section we assume that f has bounded C A f , which is implied by the usual assumption of Lipschitz continuity of the gradient, and strictly positive geometric strong convexity constant µ A f , which is verified whenever f is strongly convex and the domain is a polytope.

Theorem 4.3.1. Let C = conv(A), with A a finite set of extreme atoms. Then after T iterations of Algorithm 11 (RAFW) we have the following linear convergence rate

E h(x T +1) ≤ 1 -η 2 ρ f max{0, (T -s)/2 } h(x 0) , (4.3) with ρ f = µ A f 4C A f , η = p |A| and s = |S 0 |.
Proof. See 4.B.

Proof sketch. Our proof structure roughly follows that of the deterministic case in [Lacoste-Julien and Jaggi, 2015b, Beck and[START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF] with some key differences due to the LMO randomness, and can be decomposed into three parts.

The first part consists in upper bounding h t and is no different from the proof of its deterministic counterpart [START_REF] Lacoste-Julien | Convergence rate of frank-wolfe for non-convex objectives[END_REF]Jaggi, 2015b, Beck and[START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF].

The second part consists in lower bounding the progress h t -h t+1 . For this algorithm we can guarantee a decrease of the form (4.4) where g t = -∇f (x t), s t -v t is the partial pair-wise dual gap while gt is the pair-wise dual gap, in which s t is replaced by the result of a full (and not subsampled) LMO.

h t+1 ≤ h t 1 -ρ f g t gt 2 zt ,
We can guarantee a geometric decrease in expectation on h t at each iteration, except for bad drop steps, where we can only secure h t+1 ≤ h t . We mark these by setting z t = 0.

One crucial issue is then to quantify g t /g t . This can be seen as a measure of the quality of the subsampled oracle: if it selects the same atom as the non-subsampled oracle the quotient will be 1, in all other cases it will be ≤ 1.

To ensure a geometrical decrease we further study the probability of events z t = 1 and g t = g t : first, we produce a simple bound on the number of bad drop steps (where z t = 0). Second, when z t = 1 holds, Lemma 4.B.3 provides a lower bound on the probability of g t = g t .

The third and last part of the proof analyzes the expectation of the decrease rate

T t=0 (1 -ρ f gt gt 2) zt
given the above discussion. We produce a conservative bound assuming the maximum possible number of bad drop steps. The key element in this part is to make this maximum a function of the size of the support of the initial iterate and of the number of iteration. The convergence bound is then proven by induction.

Comparison with deterministic convergence rates. The rate for away Frank-Wolfe in [Lacoste-Julien and Jaggi, 2015b, Theorem 8], after T iteration is

h(x T +1) ≤ 1 -ρ f T /2 h(x 0) . (4.5)
Due to the dependency on η 2 of the convergence rate in Theorem 4.3.1, our bound does not show that RAFW is computationally more efficient than AFW. Indeed we use a very conservative proof technique in which we measure progress only when the sub-sampling oracle equals the full one. Also, the cost of both LMOs depends on the support of the iterates which is unknown a priori except for a coarse upper bound (e.g. the support cannot be more than the number of iterations). Nevertheless, the numerical results do show speed ups compared to the deterministic method.

Beyond strong convexity. The strongly convex objective assumption may not hold for many problem instances. However, the linear rate easily holds for f of the form g(Ax) where g is strongly convex and A a linear operator. This type of functions are commonly known as a μ-generally strongly convex function [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF], [START_REF] Wang | Iteration complexity of feasible descent methods for convex optimization[END_REF] or Lacoste-Julien and Jaggi [2015b] (see "Away curvature and geometric strong convexity" in 4.B for definition). The proof simply adapts that of [Lacoste-Julien and Jaggi, 2015b, Th. 11] to our setting.

Theorem 4.3.2. Suppose f has bounded smoothness constant C A f and is μ-generally-strongly convex. Consider the set C = conv(A), with A a finite set of extreme atoms. Then after T iterations of Algorithm 11, with s = |S 0 | and a p parameter of sub-sampling, we have

E h(x T +1) ≤ 1 -η 2 ρf max{0, T -s 2 } h(x 0) , (4.6) with ρf = μ 4C A f and η = p |A| .
Proof. See end of 4.B.

Applications

In this section we compare the proposed methods with their deterministic versions. We consider two regularized least squares problems: one with 1 regularization and another one with latent group lasso (LGL) regularization. In the first case, the domain is a polytope and the analysis of AFW and RAFW holds.

Our results show the FW gap versus number of iterations, and also cumulative number of computed gradient coefficients, which we will label "nbr coefficients of grad". This allows to better reflect the true complexity of our experiments since sub-sampling the LMO in the problems we consider amounts to computing the gradient on a subset of coordinates.

In the case of latent group lasso, we also compared the performance of RFW against FW in terms of wall-clock time on a large dataset stored in disk and accessed sequentially in chunks (i.e., in streaming model).

Lasso problem

Synthetic dataset. We generate a synthetic dataset following the setting of Lacoste-Julien and Jaggi [2015b], with a Gaussian design matrix A of size (200, 500) and noisy measurements b = Ax * + ε, with ε a random Gaussian vector and x * a vector with 10% of nonzero coefficients and values in {-1, +1}.

In Figures 4.1 and 4.2, we consider a problem of the form (OPT), where the domain is an 1 ball, a problem often referred to as Lasso. We compare FW against RFW, and AFW against RAFW. The 1 ball radius set to 40, so that the unconstrained optimum lies outside the domain.

RFW experiments. Figure 4.1 shows a comparison between FW and RFW. Each call to the randomized LMO outputs a direction, likely less aligned with the opposite of the gradient than the direction proposed by FW, which explains why RFW requires more iterations to converge on the upper left graph of Figure 4.1. Each call of the randomized LMO is cheaper than the LMO in terms of number of computed coefficients of the gradient, and the trade-off is beneficial as can be seen on the bottom left graph, where RFW outperforms its deterministic variant in terms of nbr coefficients of grad.

Finally, the right panels of Figure 4.1 provide an insight on the evolution of the sparsity of the iterate, depending on the algorithm. FW and RFW perform similarly in terms of the fraction of recovered support (bottom right graph). In terms of the sparsity of the iterate, RFW under-performs FW (upper right graph). This can be explained as follows: because of the sub-sampling, each atom of the randomized LMO provides a direction less aligned with the opposite of the gradient than the one provided by the LMO. Each update in such a direction may result in putting weight on an atom that would better be off the representation of the iterate. It impacts the iterate all along the algorithm as vanilla FW removes past atoms from the representation only by multiplicatively shrinking their weight.

RAFW experiments. Unlike RFW, the RAFW method outperforms AFW in terms on number of iterations in the upper left graph in Figure 4.2. These graphs also illustrate the linear rate of convergence of both algorithms. The bottom left graph shows that the gap between RAFW and AFW is even larger when comparing the cumulative number of computed coefficients of the gradient required to reach a certain target precision.

This out-performance of RAFW over AFW in term of number of iteration to converge is not predicted by our convergence analysis. We conjecture that the away mechanism improves the trade-off between the cost of the LMO and the alignment of the descent direction with the opposite of the gradient. Indeed, because of the oracle subsampling, the partial FW gap (e.g. the scalar product of the Randomized FW direction with the opposite of the gradient) in RAFW is smaller than in the non randomized variant, and so there is a higher likelihood of performing an away step.

Finally, the away mechanism enables the support of the RAFW to stay close to that of AFW, which was not the case in the comparison of RFW versus FW. This is illustrated in the right panels of Figure 4.2.

Real dataset. On figure 4.3, we test the Lasso problem on the E2006-tf-idf data set [START_REF] Kogan | Predicting risk from financial reports with regression[END_REF], which gathers volatility of stock returns from companies with financial reports. Each financial reports is then represented through its TF-IDF embedding (n = 16087 and d = 8000 after an initial round of feature selection). The regularizing parameter is chosen to obtain solution with a fraction of 0.01 nonzero coefficients.

Latent Group-Lasso

Notation. We denote by [d] the set of indices from 1 to d. For g ⊆ [d] and x ∈ R d , we denote by x (g) the projection of x onto the coordinates in g. We use the notation ∇ (g) f (x t) to denote the gradient with respect to the variables in group g. Similarly x [g] ∈ R d is the vector that equals x in the coordinates of g and 0 elsewhere.

Model. As outlined by [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF], FW algorithms are particularly useful when the domain is a ball of the latent group norm [START_REF] Obozinski | Group lasso with overlaps: the latent group lasso approach[END_REF]. Consider a collection G of subsets of [d] such that g∈G g = [d] and denote by || • || g any norm on R |g| . Frank-Wolfe can be used to solve (OPT) with C being the ball corresponding to the latent group norm

||x|| G def = min v (g) ∈R |g| g∈G ||v (g) || g s.t. x = v∈G v [g] . (4.7)
This formulation matches a constrained version of the regularized [Obozinski et al., 2011, equation (5)] when each || • || g is proportional to the Euclidean norm. For simplicity we will consider || • || g to be the euclidean norm.

When G forms a partition of [d] (i.e., there is no overlap between groups), this norm coincides with the group lasso norm. Sub-sampling. Given g ∈ G, consider the hyper-disk Obozinski et al. [2011, Lemma 8] shows that such constrain set C is the convex hull of A

D g (β) = v ∈ R d | v = v [g] , ||v (g) || ≤ β .
(x t , A t) ∈ argmax v∈At v (gp) , -∇ (gp) f (x t) .
With this formulation we only need to compute the gradient on the g p index. Depending on G and on the sub-sampling rate, this can be a significant computational benefit.

Experiments. We illustrate the convergence speed-up of using RFW over FW for latent group lasso regularized least square regression.

For d = 10000 we consider a collection G of groups of size 10 with an overlap of 3 and the associated atomic set A. We chose the ground truth parameter vector w 0 ∈ conv(A) with a fraction of 0.01 of nonzero coefficients, where on each active group, the coefficients are generated from a Gaussian distribution. The data is a set of n pairs (y i , w i) ∈ R × R d , where w i is generated from a Gaussian distribution and y i = w T i w 0 + ε i , where ε i is again a Guassian random variable. The regularizing parameter is β = 14, set so that the unconstrained optimum lies outside of the constrain set.

Large dataset and Streaming Model. The design matrix is stored in disk. We allow both RFW and FW to access it only through chunks of size n × 500. This streaming model allows a wall clock comparison of the two methods on very large scale problems.

Computing the gradient when the objective is the least squares loss consists in a matrix vector product. Computing it on a batch of coordinates then requires same operation with a smaller matrix. When computing the gradient at each randomized LMO call, the cost of slicing the design matrix can then compensate the gain in doing a smaller matrix vector product.

With data loaded in memory, which is typically the case for large datasets, both the LMO and the randomized LMO have this access data cost. Consider also that RFW allows any scheme of sampling, including one that minimizes the cost of data retrieval.

Conclusion

We gave theoretical guarantees of convergence of randomized versions of FW that exhibit same order of convergence as their deterministic counter-parts. As far as we know, for the case of RAFW, this is the first contribution of the kind. While the theoretical complexity bounds don't necessarily imply this, our numerical experiments show that randomized versions often outperform their deterministic ones on 1 -regularized and latent group lasso regularized least squares. In both cases, randomizing the LMO allows us to compute the gradient only on a subset of its coordinates. We used it to speed up the method in a streaming model where the data is accessed by chunks, but there might be other situations where the structure of the polytope can be leveraged to make subsampling computationally beneficial.

There are other linearly-convergent variants of FW besides AFW, such as the Pairwise FW algorithm [Lacoste-Julien and Jaggi, 2015b], for which it might be possible to derive randomized variants.

Finally, recent results such as [START_REF] Goldfarb | Semi-stochastic frank-wolfe algorithms with awaysteps for block-coordinate structure problems[END_REF][START_REF] Roulet | On the geometry of optimization problems and their structure[END_REF][START_REF] Hazan | Variance-reduced and projection-free stochastic optimization[END_REF]] combine various improvements of FW (away mechanism, sliding, lazy oracles, stochastic FW, etc.). Randomized oracles add to this toolbox and could further improve its benefits.

Appendix notations. We denote by E t the conditional expectation at iteration t, conditioned on all the past and by E a full expectation. We denote by a tilde the values that come from the deterministic analysis of FW. Denote by r t = -∇f (x t). For k ∈ N * , denote by [k] all integer between 1 and k.

4.A Proof of Subsampling for Frank-Wolfe

In this section we provide a convergence proof for Algorithm 10. The proof is loosely inspired by that of [Locatello et al., 2017a, Appendix B.1], with the obvious difference that the result of the LMO is a random variable in our case.

Theorem 4.2.1 . Let f be a function with bounded curvature constant C f , Algorithm 10 for η ∈ (0, 1], (with step-size chosen by either variants) converges towards a solution of (OPT), satisfying

E(f (x T)) -f (x *) ≤ 2(C f + f (x 0) -f (x *)) ηT + 2 . (4.8)
Proof. By definition of the curvature constant, at iteration t we have

f (x t + γ(s t -x t)) ≤ f (x t) + γ ∇f (x t), s t -x t + γ 2 2 C f . (4.9)
By minimizing with respect to γ on [0, 1] we obtain

γ t = clip [0,1] -∇f (x t), s t -x t /C f , (4.10)
which is the definition of γ t in the algorithm with Variant 2. Hence, we have

f (x t+1) ≤ f (x t) + min γ∈[0,1] γ ∇f (x t), s t -x t + γ 2 2 C f ,
an inequality which is also valid for Variant 1 since by the line search procedure the objective function at x t+1 is always equal or smaller than that of Variant 1. Denote by

h t = f (x t)-f (x *), h t+1 ≤ h t + min γ∈[0,1] γ ∇f (x t), s t -x t + γ 2 2 C f .
We write s t the FW atom if we had started the FW algorithm at x t , and E t the expectation conditionned on all the past until x t , we have

E t h t+1 ≤ h t + E t min γ∈[0,1] γ ∇f (x t), s t -x t + γ 2 2 C f (4.11) ≤ h t + P(s t = s t) min γ∈[0,1] γ ∇f (x t), s t -x t + γ 2 2 C f (4.12) ≤ h t + η min γ∈[0,1] -γh(x t) + γ 2 2 C f (4.13) ≤ h t + η -γh(x t) + γ 2 2 C f (for any γ ∈ [0, 1]
, by definition of min) , (4.14) where the second inequality follows from the definition of expectation and the fact that minimum is non-positive since it is zero for γ = 0. The last inequality is a consequence of uniform sampling as well as it uses that the FW gap is an upper bound on the dual gap, e.g.

-∇f (x t), s t -x t ≥ h(x t). Induction. From (4.14) the following is true for any γ ∈ [0, 1]

E t (h t+1) ≤ h t (1 -ηγ) + γ 2 2 ηC f . (4.15)
Taking unconditional expectation and writing H t = E(h t), we get for any γ ∈ [0, 1]

H t+1 ≤ H t (1 -ηγ) + γ 2 2 ηC f . (4.16) With γ t = 2 ηt+2 ∈ [0, 1],
we get by induction

H t ≤ 2 C f + 0 ηt + 2 = γ t (C f + 0), (4.17)
where 0 = f (x 0) -f (x *). Initialization follows the fact that the curvature constant is positive. For t > 0, from (4.16) and the induction hypothesis

H t+1 ≤ γ t (C f + 0)(1 -ηγ t) + γ 2 t 2 ηC f ≤ γ t (C f + 0)(1 -ηγ t) + γ 2 t 2 η(C f + 0) ≤ γ t (C f + 0)(1 -ηγ t + γ t 2 η) ≤ (C f + 0)(1 - γ t 2 η)γ t ≤ (C f + 0)γ t+1 .
The last inequality comes from the fact that (1

-γt 2 η)γ t ≤ γ t+1 . Indeed, with γ t = 2 ηt+2 , it is equivalent to (1 - η ηt + 2) 2 ηt + 2 ≤ 2 η(t + 1) + 2 ⇔ (ηt + 2) -η ηt + 2 ≤ ηt + 2 η(t + 1) + 2 ⇔ (ηt + 2 -η)(η(t + 1) + 2) ≤ (ηt + 2) 2 ⇔ η 2 t 2 + 4ηt + 4 -η 2 ≤ η 2 t 2 + 4ηt + 4.
The last being true, it concludes the proof.

4.B Proof of Subsampling for Away-steps Frank-Wolfe

Away curvature and geometric strong convexity. The away curvature constant is a modification of the curvature constant described in the previous subsection, in which the FW direction s -x is replaced with an arbitrary direction s -v:

C A f sup x,s,v∈C γ∈[0,1] y=x+γ(s-v) 2 γ 2 f (y) -f (x) -γ ∇f (x), s -v .
The geometric strong convexity constant µ f depends on both the function and the domain (in contrast to the standard strong convexity definition) and is defined as (see "An Affine Invariant Notion of Strong Convexity" in [Lacoste-Julien and Jaggi, 2015b] for more details)

µ A f =inf x∈C inf x * ∈C ∇f (x),x * -x <0 2 γ A (x, x *) 2 B f (x, x *) where B f (x, x *) = f (x *) -f (x) -∇f (x),
x * -x and γ A (x, x *) the positive step-size quantity:

γ A (x, x *) := -∇f (x), x * -x -∇f (x), s f (x) -v f (x) .
In particular s f (x) is the Frank Wolfe atom starting from x. v f (x) is the away atom when considering all possible expansions of x as a convex combinations of atoms in A. Denote by S x := {S | S ⊆ A such that x is a proper convex combination of all elements in S} and by

v S(x) := argmax v∈S ∇f (x), v . v f (x) is finally defined by v f (x) argmin {v=v S |S∈Sx} ∇f (x), v .
Following [Lacoste-Julien and Jaggi, 2015b, Lemma 9 in Appendix F], the geometric μgenerally-strongly-convex constant is defined as

μf =inf x∈C inf x * ∈χ * ∇f (x),x * -x <0 1 2γ A (x, x *) 2 f (x *) -f (x) -2 ∇f (x), x * -x ,
where χ * represents the solution set of (OPT).

Notations. In the context of RAFW, A denotes the finite set of extremes atoms such that C = Conv(A). At iteration t, A t is a random subset of element of A \ S t where S t is the current support of the iterate. The Randomized LMO is performed over V t = S t ∪ A t so that for Algorithm 11, s t def ∈ argmax v∈Vt -∇f (x t), v is the FW atom at iteration t for RAFW. Note that when |A \ S t | ≤ p, Algorithm 11 does exactly the same as AFW. For the sake of simplicity we will consider that this is not the case. Indeed we would otherwise fall back into the deterministic setting and the proof would just be that of Lacoste-Julien and Jaggi [2015b].

We use tilde notation for quantities that are specific to the deterministic FW setting. For instance, s t def ∈ argmax v∈A -∇f (x t), v is the FW atom for AFW starting at x t .

Similarly the Away atom is such that v t def ∈ argmin v∈St -∇f (x t), v and it does not depend on the sub-sampling at iteration t. Here we do not use any tilde because it is a quantity that appears both in AFW and its Randomized counter-part.

In AFW, g t -∇f (x t), s t -v t = max s∈A -∇f (x t), s -v t is an upper-bound of the dual gap, named the pair-wise dual gap [Lacoste-Julien and Jaggi, 2015b]. We consider the corresponding partial pair-wise dual gap g t -∇f

(x t), s t -v t = max s∈Vt -∇f (x t), s -v t . It
is partial is the sense that the maximum is computed on a subset V t of A which results in the fact that it is not guaranteed anymore to be an upper-bound on the dual-gap.

Structure of the proof. The proof is structured around a main part that uses = f (x t) -f (x *) with gt . It does not depend on the specific construction of the iterates x t and thus remains the same as that in Lacoste-Julien and Jaggi [2015b]. The second part provides a lower bound on the progress on the algorithm, namely

h t+1 ≤ (1 -ρ f g t g t 2)h t , (4.18)
with

ρ f = µ A f 4C A f
, when it is not doing a bad drop step (defined above). As a proxy for this event,

we use the binary variable z t that equals 0 for bad drop steps and 1 otherwise. The difficulty lies in the fact that we guarantee a geometrical decrease only when g t = g t and z t = 1. Because of the sub-sampling and unlike in the deterministic setting, z t is a random variable. Lemma 4.B.3 provides a lower bound on the probability of interest, P(g t = g t | z t = 1), for the last part of the main proof.

Finally, the last part of the proof constructs a bound on the number of times we can expect both z t = 1 and g t = g t subject to the constraint that at least half of the iterates satisfy z t = 1. It is done by recurrence.

4.B.1 Lemmas

This lemma ensures the chosen direction d t in RAFW is a good descent direction, and links it with g t which may be equal to g t . Lemma 4.B.1. Let s t , v t and d t be as defined in Algorithm 11. Then for

g t def = -∇f (x t), s t -v t , we have -∇f (x t), d t ≥ 1 2 g t ≥ 0 . (4.19)
Proof. The first inequality appeared already in the convergence proof of Lacoste-Julien and Jaggi [2015b, Eq. (6)], which we repeat here for completeness. By the definition of d t we have:

2 -∇f (x t), d t ≥ -∇f (x t), d A t + -∇f (x t), d FW t = -∇f (x t), s t -v t = g t (4.20)
We only need to prove that g t is non-negative. In line 4 of algorithm 11, s t is the output of LMO performs of the set of atoms S t ∪ A t V t ,

s t = argmax s∈Vt -∇f (x t), s ,
so that we have -∇f (x t), s t ≥ -∇f (x t), v t . By definition of g t , it implies g t ≥ 0 .

Lemma 4.B.2 is just a simple combinatorial result needed in Lemma 4.B.3. Consider a sequence of m numbers, we lower bound the probability for the maximum of a subset of size greater than p to be equal to the maximum of the sequence.

P(max i∈Ip r i = max i∈I r i) = P(|I p ∩ M | ≥ 1) . (4.22)
By definition M has at least one element i 0 . Since

{i 0 ∈ I p } ⊂ {|I p ∩ M | ≥ 1} P(|I p ∩ M | ≥ 1) ≥ P({i 0 ∈ I p }) . (4.23)
All subsets are taken uniformly at random, we just have to count the number of subset I p of I of size p with i 0 ∈ I p

P({i 0 ∈ I p }) = m-1 p-1 m p = p m (4.24) P(max i∈Ip r i = max i∈I r i) ≥ p m . (4.25)
In the second part of the main proof we ensure a geometric decrease when both g t = g t and z t = 1, i.e. outside of bad drop steps. The following lemma helps quantifying the probability of g t = g t holding when z t = 1. Lemma 4.B.3. Consider g t (defined in Lemma 4.B.1) to be the partial pair-wise (PW) dual gap of RAFW at iteration t with sub-sampling parameter p on the constrained polytope C = conv(A), where A is a finite set of extremes points of C. g t max s∈A -∇f (x t), s -v t is the pairwise dual gap of AFW starting at x t on this same polytope. Denote by z t the binary random variable that equals 0 when the t th iteration of RAFW makes an away step that is a drop step with γ max < 1 (a bad drop step), and 1 otherwise. Then we have the following bound

P(g t = g t | x t , z t = 1) ≥ p |A| 2 . (PROB) Proof. Recall that g A t r t , d A t . By definition {z t = 0} = {g t < g A t , γ max < 1, γ * t = γ max }, where γ * t argmin γ∈[0,γmax] f (x t + γd A t)
. Its complementary {z t = 1} can thus be expressed as the partition A 1 ∪ A 2 ∪ A 3 where the A i are defined by

A 1 = {g t ≥ g A t } (performs a FW step) (4.26) A 2 = {g t < g A t , α (t) vt /(1 -α (t) vt) ≥ 1} (performs away step with γ max ≥ 1) (4.27) A 3 = {g t < g A t , α (t) vt /(1 -α (t) vt) < 1 , γ * t < α (t) vt /(1 -α (t) vt)}. (4.28)
First note that in the case of A 2 and A 3 ,

γ max = α (t) vt /(1 -α (t)
vt). Though the right hand side formulation highlights that it is entirely determined by x t , recalling that α (t) vt is the mass along the atom v t in the decomposition of x t in §4.3.

From a higher level perspective, these cases are those for which we can guarantee a geometrical decrease of h t = f (x t) -f (x *) (see second part of main proof). By definition, the A i are disjoints. A 1 represents a choice of a FW step in RAFW contrary to A 2 and A 3 which stands for an away step choice in RAFW. A 2 is an away step for which there is enough potential mass (γ max > 1) to move along the away direction and to ensure sufficient objective decreasing. A 3 encompasses the situations where there is not a lot of mass along the away direction (γ max < 1) but which is not a drop step, e.g. the amount of mass is not a limit to the descent.

Our goal is to lower bound P = P(g t = g t | x t , z t = 1). The following probabilities will be with respect to the t th sub-sampling only. Notice that g A t , g t and α vt are known given {x t , z t = 1}. Using Bayes' rule, and because the A i are disjoints, we have

P = P(g t = g t | x t , {z t = 1}) = 3 i=1 P(g t = g t | x t , A i)P(A i | x t) 3 i=1 P(A i | x t) . (4.29)
By definition of g t and g t , g t ≤ g t , so that measuring the probability of an event like {g t = g t } conditionally on {g t ≤ g A t } will naturally depend on whether or not, the deterministic condition g t ≥ g A t is satisfied. Hence the following case distinction.

Recall V t = S t ∪ A t . Case g t < g A t . P = 3 i=1 P(g t = g t | x t , A i , g t < g A t)P(A i | x t , g t < g A t) 3 i=1 P(A i | x t , g t < g A t)
.

(4.30)

Recall that A 1 = {g t ≥ g A t }.
Since by definition g t ≤ g t , conditionally on { g t < g A t }, the probability of A 1 is zero. Consequently the above reduces to

P = 3 i=2 P(g t = g t | x t , A i , g t < g A t)P(A i | x t , g t < g A t) 3 i=2 P(A i | x t , g t < g A t) ≥ p |A| 3 i=2 P(A i | x t , g t < g A t) 3 i=2 P(A i | x t , g t ≤ g A t) = p |A| . (4.31)
Where the last inequality is because for i = 2, 3 we have

P(g t = g t | x t , A i , g t < g A t) ≥ p |A| . Indeed for A 3 (case A 2 is similar) denote P 1 = P(g t = g t | x t , A 3 , g t < g A t) = P(max s∈Vt r t , s = max s∈A r t , s | x t , max s∈Vt r t , s < C 0 , max s∈A r t , s < C 0 , α (t) vt /(1 -α (t) vt) < 1, γ * t < α (t) vt /(1 - with C 0 g A t + r t , v t and r t = -∇f (x t
) not depending on the t th sub-sampling. Also the event {max s∈Vt r t , s < C 0 } is a consequence of {max s∈A r t , s < C 0 } so that P 1 simplifies to

P 1 = P(max s∈Vt r t , s = max s∈A r t , s | x t , max s∈A r t , s < C 0 , α (t) vt /(1 -α (t) vt) < 1, γ * t < α (t) vt /(1 -α (t) vt)).
By definition

γ * t ∈ argmin γ∈[0, α (t) v t 1-α (t) v t] f (x t + γd A t) ,
so that γ * t does not depend on the t th sub-sampling. Finally all the conditioning in the probability P 1 do not depend on this t th sub-sampling. Hence we are in the position of using Lemma 4.B.2 for the sequence (r t , s) s∈A . Also by definition of V t = S t ∪ A t , we have |V t | ≥ p so that we finally get .33) This was what was needed to conclude (4.31).

P(g t = g t | x t , A 3 , g t < g A t) ≥ p |A| . (4
Case g t ≥ g A t .
In such a case, P from (4.29) rewrites as

P = 3 i=1 P(g t = g t | x t , A i , g t ≥ g A t)P(A i | x t , g t ≥ g A t) 3 i=1 P(A i | x t , g t ≥ g A t)
.

(4.34)

Here

P(g t = g t | x t , A i , g t ≥ g A t) = 0 for i = 2, 3 because A i implies g t < g A t .
So that when g t ≥ g A t it is then impossible for g t to equal g t .

P = P(g t = g t | x t , A 1 , g t ≥ g A t)P(A 1 | x t , g t ≥ g A t) 3 i=1 P(A i | x t , g t ≥ g A t)
.

Here also we use, and prove later on (see §below the conclusion of the proof of the Lemma), the lower bound

P(g t = g t | x t , A 1 , g t ≥ g A t) ≥ p |A| , (4.35)
that implies

P ≥ p |A| P(A 1 | x t , g t ≥ g A t) 3 i=1 P(A i | x t , g t ≥ g A t)
.

Because the A i are disjoint, 3 i=1 P(A i | x t , g t ≥ g A t) ≤ 1 we have

P ≥ p |A| P(A 1 | x t , g t ≥ g A t) .
Using a similar lower bound as (4.35), namely

P(A 1 | x t , g t ≥ g A t) ≥ p |A| , (4
P 2 = P(max s∈Vt r t , s -v t = max s∈A r t , s -v t | x t , max s∈Vt r t , s -v t ≥ g A t , max s∈A r t , s -v t ≥ g A t) (4.39) = P(max s∈Vt r t , s = max s∈A r t , s | x t , max s∈Vt r t , s ≥ C 0 , max s∈A r t , s ≥ C 0) , (4.40)
where C 0 g A t + r t , v t and r t does not depend on the random sampling at iteration t. Bayes formula leads to

P 2 = P({max s∈Vt r t , s = max s∈A r t , s } ∩ {max s∈Vt r t , s ≥ C 0 } | x t , max s∈A r t , s ≥ C 0) P(max s∈Vt r t , s ≥ C 0 | x t , max s∈A r t , s ≥ C 0) . (4
E h(x T +1) ≤ 1 -η 2 ρ f max{0, (T -s)/2 } h(x 0) , (4.42) with ρ f = µ A f 4C A f , η = p |A| and s = |S 0 |.
Proof. The classical curvature constant used in proofs related to non-Away Frank-Wolfe is

C f := sup x,s∈C,γ∈[0,1] y=x+γ(s-v) 2 γ 2 f (y) -f (x) -∇f (x), y -x . (4.43)
It is tailored for algorithms in which the update is of the form x t+1 = (1 -γ)x t + γv t , but this is not the shape of all updates in away versions of FW. In Lacoste-Julien and Jaggi [2015b] they introduced a modification of the above curvature constant that we also use to analyze RAFW. It is defined in [Lacoste-Julien and Jaggi, 2015b, equation (26)] as First part. Upper bounding h t : Considering an iterate x t that is not optimal (e.g. x t = x *), from [Lacoste-Julien and Jaggi, 2015b, Eq. (28)], we have

C A f := sup x,s,v∈C,γ∈[0,1] y=x+γ(s-v) 2 γ 2 f (y) -f (x) -γ ∇f (x), s -v . (4
f (x t) -f (x *) = h t ≤ g 2 t 2µ A f , (4.45)
where g t is the pair-wise dual gap defined by g t = s t -v t , -∇f (x t) . s t and v t are respectively the FW atom and the away atom in the classical Away step algorithm (conditionally on x t , the away atom of the randomized variant coincides with the away atom of the non-randomized variant). The result is still valid here as it only uses the definition of the affine invariant version of the strong convexity parameter and does not depend on the way x t are constructed (see upper bounding h t in [Lacoste-Julien and Jaggi, 2015b, Proof for AFW in Theorem 8]).

Note that this implicitly assumes the away atom to be defined, e.g. the support of the iterate x t never to be zero. This is ensured by the algorithm simply because it always does convex updates. Second part. Lower bounding progress h t -h t+1 . Consider x t a non-optimal iterate. At step t, the update in Algorithm 11 writes x t+1 (γ) = x t + γd t . γ is optimized by line-search in the segment [0, γ max]. Because in either cases d t is a difference between two elements of C, from the definition of C A f and because of the exact line search, we have

f (x t+1) ≤ min γ∈[0,γmax] f (x t) + γ ∇f (x t), d t + γ 2 2 C A f , so that for any γ ∈ [0; γ max] f (x t+1) -f (x t) ≤ γ ∇f (x t), d t + γ 2 2 C A f or again γ g t 2 - γ 2 2 C A f ≤ f (x t) -f (x t+1), (4
g 2 t 4C A f - g 2 t 8C A f ≤ f (x t) -f (x t+1) =⇒ g t g t 2 g 2 t 8C A f ≤ h t -h t+1 . (4.47)
Indeed, x t is assumed not to be optimal, so that g t = 0. Combining (4.47) with (4.45) gives

h t+1 ≤ h t - g t g t 2 g 2 t 8C A f (4.48) ≤ h t - g t g t 2 µ A f 4C A f h t (4.49) = 1 -ρ f g t g t 2 h t . (4.50) Case γ max ≥ 1 and γ B t > γ max . γ B t = gt 2C A f implies g t ≥ 2C A f . (4.46) transforms into g t 2 γ - γ 2 2 ≤ f (x t) -f (x t+1) g t g t g t 2 γ - γ 2 2 ≤ f (x t) -f (x t+1) .
Using g t ≥ h t and evaluating at γ = 1, leaves us with and Jaggi, 2015b, Remark 7.] and

h t+1 ≤ 1 - 1 4 g t g t h t . (4.51) Because µ A f ≤ C A f [Lacoste-Julien
ρ f = µ A f 4C A f
, the two previous cases resolve in the following inequality

h t+1 ≤ 1 -ρ f g t g t 2 h t . (4.52)
Case γ max < 1 and γ * t < γ max . By definition

γ * t = argmin γ∈[0,γmax] f (x t + γd t) = F (γ) . (4.53)
f is convex and its minimum on [0; γ max] is not reached at γ max . It is then also a minimum on the interval [0; +∞], and in particular we have Case γ max < 1 and γ * t = γ max . This corresponds to a particular drop step for which we only guarantee h t+1 ≤ h t (exact line-search). We call this case a bad drop step (indeed γ max > 1 and γ * t = γ max also corresponds to a drop step, but for which we can prove a bound of the form h t+1 ≤ h t (1 -ρ f gt gt 2)).

γ * t = argmin γ∈[0,1] f (x t + γd t) = F (γ) . (4
We use the binary indicator z t to distinguish between the step where (4.52) is guaranteed or not. Denote by z t = 0 when doing a bad drop step and z t = 1 otherwise. The second part can be summed-up in

h t+1 ≤ h t (1 -ρ f g t g t 2) zt . (4.55)
Last part. Consider starting RAFW (Algorithm 11) for T iterations at x 0 ∈ conv(V), with s = |S 0 | ≥ 0. We will now prove there are at most T +s 2 drop steps. Let D T be the number of drop steps after iteration T and F T the number of FW step adding a new atom until iteration T . By definition, a FW step is not a drop step so that

D T +F T ≤ T . Also |S T | = |S 0 |+|F T |-|D T |, hence |S T | ≤ |S 0 | -2|D T | + T so that |D T | ≤ T +s-|S T | 2 . Finally because |S T | ≥ 0, we have |D T | ≤ T +s 2 .
From the first two parts of the main proof, we have that

h T ≤ h 0 T -1 t=0 1 -ρ f g t g t 2 zt , (4.56)
where (g t , z t) t∈[0:T -1] are defined along RAFW starting at x 0 . For i < j, we write E i:j the expectation with respect to all sub-sampling between the i th iteration and the j th iteration included. When taking expectation only over sub-sampling i, we write it E i .

We will now prove by recurrence on T ∈ N * that } represents the number of steps (between iteration 0 and T -1) in which z t = 1, e.g. the steps in which there is a possibility of having geometrical decrease. Note that the geometrical decrease happens only when g t = g t .

E 0:T -1 (T -1 t=0 1 -ρ f g t g t 2 zt) ≤ (1 -ρ f η 2) max{0,T -T +s 2 } = F (T, s) ∀s ∈ N ∀x 0 ∈ R d with |S 0 | = s , (4
The key insight in the global bound is to recall (from section 4.3) that if the support is a singleton, i.e. |S t | = 1, RAFW does a FW step hence z t = 1. We consequently distinguish whether or not the first iterate has an initial support of size 1. We then use the recurrence property starting the algorithm at x 1 and running T -1 iterations. Initialization. We will now prove the recurrence property (4.57) for

T = 1. If s ≥ 2, max{0, T - T +s 2 } = 0 and (4.57) is true because (1 -ρ f g 0 g 0 2 ≤ 1. If s = 1
, this implies that the first step needs to be a Frank-Wolfe step. We necessarily have z 0 = 1 and so

E 0 (1 -ρ f g 0 g 0 2 z 0) = E 0 (1 -ρ f g 0 g 0 2 | z 0 = 1) (4.58) ≤ 1 -ρ f P(g 0 = g 0 | z 0 = 1) (4.59) ≤ 1 -ρ f η 2 ≤ 1 ≤ F (1,
E 0:T -1 (T -1 t=0 1 -ρ f g t g t 2 zt) = E 0:T -1 1 -ρ f g 0 g 0 2 z 0 E 1:T -1 (T -1 t=1 1 -ρ f g t g t 2 zt) . (4.61)
We can apply the recurrence property with T -1 iterations and starting point x 1 on

E 1:T -1 (T -1 t=1 1 -ρ f gt gt 2 zt) so that E 0:T -1 (T -1 t=0 1 -ρ f g t g t 2 zt) ≤ E 0 1 -ρ f g 0 g 0 2 z 0 F (T -1, |S 1 |) , (4.62)
where |S 1 |, the support of x 1 , depends on z 0 . Indeed z 0 = 0 implies a drop step and as such it decreases the support of the iterate. Thus we have to distinguish the case according to the size of the support of x 0 .

Case |S 0 | = 1. With x 0 = 0, RAFW starts with a FW step and as such z 0 = 1 as well as 2 ≥ |S 1 | ≥ 1 so that

E 0:T -1 (T -1 t=0 1 -ρ f g t g t 2 zt) = E 0 1 -ρ f g 0 g 0 2 | z 0 = 1 F (T -1, |S 1 |) (4.63) ≤ (1 -ρ f η 2)F (T -1, 2) ≤ F (T, 1) , (4
E 0:T -1 (T -1 t=0 1 -ρ f g t g t 2 zt) ≤ P(z 0 = 1)E 0 1 -ρ f g 0 g 0 2 | z 0 = 1 F (T -1, |S 1 |) (4.65) +P(z 0 = 0)F (T -1, |S 0 | -1) (4.66) ≤ P(z 0 = 1) 1 -ρ f η 2 F (T -1, |S 0 | + 1) + P(z 0 = 0)F (T -1, |S 0 | -1) (4.67) ≤ P(z 0 = 1) 1 -ρ f η 2 F (T -1, s + 1) + P(z 0 = 0)F (T -1, s -1) . (4.68)
We used the fact that

F (T, |S 1 |) ≤ F (T -1, |S 0 | + 1
). Since we do not have access to the values of P(z 0 = 0) and P(z 0 = 1), we bound it in the following manner

E 0:T -1 (T -1 t=0 1 -ρ f g t g t 2 zt) ≤ max (1 -ρ f η 2)F (T -1, s + 1), F (T -1, s -1) ≤ F (T, s) , (4.69)
where the last inequality is just about writing the definition of F . It concludes the heredity result.

Conclusion:

Starting RAFW at x 0 , after T iterations, we have

h T ≤ h 0 T -1 t=0 1 -ρ f g t g t 2 zt . (4.70)
Applying (4.57) we get

E 0:T -1 (h T) ≤ h 0 (1 -ρ f η 2) max{0,T -T +s 2 } ≤ h 0 (1 -ρ f η 2) max{0,
E h(x T +1) ≤ 1 -η 2 ρf max{0, T -s 2 } h(x 0), (4.72
)

with ρf = μ 4C A f and η = p |A| .
Proof. The conclusion of proof of [Lacoste-Julien and Jaggi, 2015b, Th. 11] is that we have similarly as equation (4.45) by:

f (x t) -f (x *) = h t ≤ g 2 t 2μ f , (4.73)
where μf > 0 is a similar measure of the affine invariant strong convexity constant but for generalized strongly convex function.

We can thus write the twin of equation (4.55)

h t+1 ≤ h t 1 -ρf g t g t 2 zt , (4.74) with ρf = μf 4C A f
. The rest of the proof follows is the same as that of Theorem 4.3.1.

Introduction to Carathéodory Lemma

Carathéodory's theorem states that if a point x lies in the convex hull of a set C ⊂ R d , then it can be represented as a convex combination of at most d + 1 points in C. Approximate versions of this theorem seek to approach x using a smaller number of points, while minimizing approximation error. Recent results in this vein [Donahue et al., 1997a[START_REF] Vershynin | How close is the sample covariance matrix to the actual covariance matrix[END_REF][START_REF] Dai | Aggregation of affine estimators[END_REF] have focused on producing tight approximation bounds and the following theorem states, for instance, an upper bound on the number of elements needed to achieve a given level of precision in p norm, given a bound on the diameter of the set C.

Theorem 5.1.1 (Approximate Carathéodory). Let V be a finite subset of R d , x ∈ Co(V) and ε > 0. We assume that V is bounded and we write

D p sup v∈V v p with p ≥ 2.
Then, there exists some m ≤ 8pD 2 p /ε 2 such that

x - m i=1 λ i v i p ≤ ε, for some v i ∈ V and λ i > 0 such that 1 λ = 1.
This result is a direct consequence of Maurey's lemma [START_REF] Pisier | Remarques sur un résultat non publié de B. Maurey. Séminaire Analyse fonctionnelle[END_REF] and is based on a probabilistic argument which samples vectors v i with replacement, using concentration inequalities to control the approximation error. It can also be seen as a direct application of a Frank-Wolfe algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF] to the optimization problem minimize v∈Co(V)

xv 2 2 , (

where each iteration adds at most one extreme point in the representation [Clarkson, 2010a].

In the same vein, [Blum et al., 2016, Remark 2.7] notes that Theorem 5.1.1 for p = 2 follows from the analysis of the perceptron algorithm in [START_REF] Albert B Novikoff | On convergence proofs for perceptrons[END_REF].

Approximate Carathéodory. These types of results appear in functional analysis as a classical consequence of Maurey's lemma in e.g. [START_REF] Pisier | Remarques sur un résultat non publié de B. Maurey. Séminaire Analyse fonctionnelle[END_REF][START_REF] Carl | Inequalities of bernstein-jackson-type and the degree of compactness of operators in banach spaces[END_REF][START_REF] Bourgain | On the duality problem for entropy numbers of operators[END_REF]. Donahue et al. [1997b], in particular, study the rates of convex approximation in functional spaces. See also [Bourgain et al., 2015, Lemma 31] for a very short proof. [START_REF] Mirrokni | Tight bounds for approximate carath\'eodory and beyond[END_REF] prove that Theorem 5.1.1 is tight for p ≥ 2 and suggest algorithmic applications to submodular minimization, while [START_REF] Adiprasito | Theorems of carathéodory, helly, and tverberg without dimension[END_REF] focus on colourful versions of the approximate Carathéodory Theorem. Approximating convex combinations via sampling is ubiquituous in many fields and results similar to approximate Carathéodory appear under many forms and names. For instance, [START_REF] Althöfer | On sparse approximations to randomized strategies and convex combinations[END_REF] shows a version of Theorem 5.1.1 adapted to case where p = ∞, with applications to matrix games. More recently, [START_REF] Barman | Approximating nash equilibria and dense subgraphs via an approximate version of carathéodory's theorem[END_REF] also used Theorem 5.1.1 to compute approximate Nash equilibria and solve densest bipartite subgraph problems.

These versions do not consider the case where m the number of vectors composing the convex approximation is close to N , the number of vectors of V in initial convex combination. Furthermore, these error bounds only use the diameter of Co(V), hence are somewhat oblivious to any other kind of structure in this set. These are the main limitations we seek to remedy in this work.

Sterfling concentration inequalities Probabilistic proofs of Theorem 5.1.1 rely on a concentration inequality which upper bounds deviations from the original convex combination. The quantities that control this upper bound establish a crucial link between the structure of V and approximation quality.

For example, Hoeffding bounds write approximation quality as a function of the diameter of V while Bennett or Bernstein bounds write it as functions of both the diameter and variance of V . Serfling bounds incorporate the influence of the sampling ratio, i.e. the number of nonzero coefficients in the convex approximation divided by the number of nonzero coefficients in the initial convex decomposition.

In particular, Serfling [1974] derives a Hoeffding-Serfling concentration inequality for realvalued random variable. [START_REF] Bardenet | Concentration inequalities for sampling without replacement[END_REF] extended this result to produce a Bernstein-Serfling inequality in the same context. Finally, [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF] shows an Hoeffding-Serfling bound on smooth Banach spaces, relying on martingale concentration inequalities of [START_REF] Pinelis | Optimum bounds for the distributions of martingales in banach spaces[END_REF].

Contribution Our contribution here is twofold. First, we produce a version of Approximate Carathéodory with high sampling ratio in smooth Banach spaces. The proofs rely on a classical sampling argument but we use a Hoeffding-Serfling concentration inequality and sampling without replacement to account for the high sampling ratio.

Second, we prove a Bennett-Serfling concentration inequality on smooth Banach Spaces in this context. This produces an approximation bound using both a diameter and a variance term. The Banach space setting gives us more flexibility in computing of these quantities.

Approximate Caratheodory via Sampling

We now recall several key results extending Theorem 5.1.1 in our context.

High-Sampling ratio

We now focus on the scenario where the number of terms m in the approximation is close to N , i.e. when the sampling ratio is high. The classical proof of Theorem 5.1.1 relies on sampling with replacement which does not provide precise enough bounds. We will use results from [START_REF] Robert | Probability inequalities for the sum in sampling without replacement[END_REF] on real-valued sample sums without replacement to produce a more precise version of the approximate Carathéodory theorem to handle the case where a high fraction of the coefficients is sampled.

Theorem 5.2.1 (High-Sampling Ratio in l ∞). Let x = N j=1 λ j v j for V ∈ R d×N and some λ ∈ R N such that 1 T λ = 1, λ ≥ 0. Let ε > 0 and write R = max{R v , R λ } where    R v = max i λ i v i ∞ R λ = max i |λ i | . Consider m (with γ = 2 log((d + 1)/d)) s.t. m ≥ 1 + N γ(√ N R/ε) 2 1 + γ(√ N R/ε) 2 . (5.2)
Then, there exists some x = j∈J µ j v j with µ ∈ R m and µ ≥ 0, where J ⊂ [1, N] has size m such that

     x -x ∞ ≤ ε j∈J µ j -1 ≤ ε.
Proof. Here the argument consists in approximating x = N j=1 λ j v j by convex combinations of the form S m = j∈J N m λ j v j with J a subset of [N] of size m. We apply several concentration inequalies to first upper bound the probability that ||x -x|| ∞ ≥ ε and then the probability that 1 -i∈J N m λ j ≥ ε, and use an union bound to conclude the proof. Let

S (i) m = j∈J λ j v (i) j
where J is a random subset of [N] of size m, then [Serfling, 1974, Cor 1.1] shows

P N m S (i) m -x (i) ≥ ε ≤ exp -α m ε 2 2N (1 -α m)R 2 v where α m = (m -1)/N is the sampling ratio. Consider β ∈ [0, 1]. To ensure P N m S (i) m -x (i) ≤ ε ≥ β, it is sufficient that α m satisfies (because R ≥ R v) α m 1 -α m ≥ 2 log(1/(1 -β))(R √ N /ε) 2 . (5.3)
Hence with α m as in (5.3), for all coordinate P N m S (i) m -x (i) ≤ ε ≥ β. A union bound yields

P(||x -x|| ∞ ≤ ε) ≥ dβ -(d -1
).

An Hoeffding inequality on the coefficients gives

P N m i∈J λ i -1 ≥ ε ≤ exp(- α m ε 2 2N (1 -α m)R 2),
and because α m satisfies (5.3), we have

P N m i∈J λ i -1 ≥ ε ≤ 1 -β . Write A the event x -x ∞ ≤ ε N m j∈J λ j -1 ≤ ε . An union bound gives P(A) ≥ (d + 1)β -d.
Choosing β = d+1/2 d+1 < 1 leads to P(A) > 0 and the desired result.

Here, R (which is bounded by the diameter of the set V) is the only value accounting for the geometry of V because we use an Hoeffding type concentration inequality. Note finally that N can be bounded by d + 1 using the classical Carathéodory theorem.

Banach Spaces

For completeness, we recall the definition of (2, D)-Banach spaces [Schneider, 2016, Definition 3] and refer to [Schneider, 2016, section 3] for more details. A Hilbert space for instance is (2, 1)-smooth [Schneider, 2016, §4]. Using Banach spaces provides much more versatility and can lead to important gains in measuring the variance or the diameter.

Theorem 5.2.1 uses Hoeffding-Serfling for real-valued random variables to provide error bounds in ∞ norm, while Theorem 5.1.1 produces a bound for any norm || • || p with p ≥ 2. To add flexibility to the diameter bound R v = max i λ i v i ∞ , we extend Theorem 5.2.1 to arbitrary norms in (2, D)-smooth Banach spaces (see definition 5.2.2) using a recent result by [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF]. The concentration inequality they prove allows us to directly handle the sample S m as a vector of a Banach, not component-wise as in the proof of Theorem 5.2.1. Theorem 5.2.3 (High Sampling Ratio in Banach Spaces).

Let x = N j=1 λ j v j for V ∈ R d×N and some λ ∈ R N such that 1 T λ = 1, λ ≥ 0. Let ε > 0 and write R = max{R v , R λ } where R v = max i λ i v i and R λ = max i |λ i |, for some norm • such that (R d , •) is (2, D)-smooth (Definition 5.2.2). Consider m (with γ = 2 log(2/(1 -β)) for some β ∈ [0, 1]) s.t. m ≥ 1 + N γ(√ N D R/ε) 2 1 + γ(√ N D R/ε) 2 (5.4)
Then, there exists some x = j∈J µ j v j with µ ∈ R m and µ ≥ 0, where J ⊂ [1, N] of size m such that

     x -x ≤ ε j∈J µ j -1 ≤ ε.
Proof. We use [Schneider, 2016, Th. 1] instead of [Serfling, 1974, Cor 1.1] in the proof of Theorem 5.2.1. We consider (λ 1 v 1 , . . . , λ N v N), the N elements of the Banach space. Write S m = i∈J λ i v i for J a random subset of [N] of size m. Note that N m S m is an unbiased estimate of x. [Schneider, 2016, Th. 1]

hence implies P N m S m -x ≥ ε ≤ 2 exp - α m ε 2 2D 2 R 2 v N (1 -α m) . Because R > R v , we can replace R v above by R. Consider β ∈]0, 1[. To ensure P N m S m -x ≤ ε ≥ β, it is sufficient that α m verifies α m 1 -α m ≥ 2 log(2/(1 -β))(DR v √ N /ε) 2 .
This means imposing (with γ = 2 log(2/(1 -β)) > 0 for β ∈ [0, 1[)

α m ≥ γ(√ N R D/ε) 2 1 + γ(√ N R D/ε) 2 .
(5.5)

Let's apply again Hoeffding-Serfling to the real-valued (λ j) (here consider it as a random variable). We hence have

P   N m j∈J λ j -1 ≥ ε   ≤ 2 exp -α m ε 2 2N (1 -α m)R 2 λ .
Again, replace R λ above by R. Imposing (5.5)

implies that 2 exp -α m ε 2 2N (1 -α m)R 2 λ ≤ 2 1 -β 2 D 2 . Write A the event N m S m -x ≤ ε N m j∈J λ j -1 ≤ ε . A union bound gives that P(A) ≥ β -2 1 -β 2 D 2 = f (β),
which is strictly positive for some β ∈]0, 1[(for instance by the mean-value theorem since f (0) < 0 and f (1) = 1). This yields the desired result. Note that we need only to choose β such that P(A) > 0 with γ = 2 log(2/(1 -β)) the lowest possible. Hence the best choice of γ depends on D only. For instance in Hilbert spaces, D = 1 and the best choice is β = 1/2 and γ = 2 log(4).

Low Variance

In theorem 5.2.1 and 5.2.3, all that is extracted of the set V , is its diameter measure R v = max i λ i v i ∞ , because the proof relies again on an Hoeffding concentration inequality. Recent results by [START_REF] Bardenet | Concentration inequalities for sampling without replacement[END_REF] provide real-valued Bernstein-Serfling type inequalities where the bound depends on both the diameter R and a standard deviation. Proposition 5.2.4 (Real-valued Bernstein-Serfling [Bardenet et al., 2015]). Let V = {v 1 , . . . , v N } with v i ∈ R and (V 1 , . . . , V m) the random sample without replacement in V . Then, for all ε > 0 and δ ∈ [0, 1], the following concentration inequality holds

P 1 m m i=1 V i -v ≥ ε ≤ exp - mε 2 /2 γ 2 + 2Rε/3 + δ ,
where

γ 2 = (1 -α m)σ 2 + α m σR - 2 log(δ) m -1 , with v = 1 N i v i and        R = max i,j |v i -v j | σ = 1 N N i=1 (v i -v) 2 .
This concentration inequality can lead, using the same proof scheme as in Theorem 5.2.1 to a version of Approximate Carathéodory with high-sampling ratio accounting for both the variance and diameter of the set, in terms of l ∞ norm. [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF] extended the real-valued Hoeffding-Serfling inequality of [START_REF] Bardenet | Concentration inequalities for sampling without replacement[END_REF] to smooth Banach spaces and in what follows, we will show an extension of a Bennett-Serfling inequality to smooth Banach spaces.

High Sampling Ratio and Low Variance

We use Bennett-Serfling inequality to get the following bound.

Lemma 5.2.5. In the setting of Theorem 5.A.5, for any δ 0 ∈]0, 1[and 0 > 0, if the sampling ratio α m satisfies

α m ≥ 2 ln(2/δ 0) 2(Dσ BS m) 2 + 0 R v /3 /N 2 0 + 2 ln(2/δ 0) 2(Dσ BS m) 2 /N , (5.6) we have P 1 m m i=1 V i -v ≥ 0 ≤ δ 0 .
(5.7)

Proof. Given δ 0 ∈]0, 1[and 0 > 0, we are looking for a sampling ratio

α m = m N such that P 1 m m i=1 V i -v ≥ 0 ≤ δ 0 . With Bennett-Serfling concentration inequality, it is sufficient to find α m such that 2 exp - m 2 2 2 N -m N (Dσ BS m) 2 + R v /3 ≤ δ 0 - N α m 2 2(Dσ BS m) 2 (1 -α m) + R v /3 ≤ 2 ln(δ 0 /2), which is equivalent to α m 2 ≥ - 2 N ln(δ 0 /2) 2(Dσ BS m) 2 (1 -α m) + R v /3 , α m ≥ - 2 N ln(δ 0 /2) 2(Dσ BS m) 2 + R v /3 2 -4 N ln(δ 0 /2)(Dσ BS m) 2 .
For (5.7) to be true, it is sufficient that α m satisfies the following,

α m ≥ 2 ln(2/δ 0) 2(Dσ BS m) 2 + 0 R v /3 /N 2 0 + 2 ln(2/δ 0) 2(Dσ BS m) 2 /N .
which is the desired result.

We now conclude with the following Approximate Carathéodory type result.

Theorem 5.2.6 (High Sampling Ratio and low variance in Banach).

Let x = N j=1 λ j v j for V ∈ R d×N and some λ ∈ R N such that 1 T λ = 1, λ ≥ 0. For some norm • such that (R d , •) is (2, D)-smooth, write          R = max i λ i v i σ BS m = 1 m k=1 1 (N -k) 2 m k=1 1 (N -k) 2 σ 2 k 1/2 ∞ , with σ k = E k-1 ||V k -E k-1 (V k)|| 2 ,
where (V k) are obtained via sampling without replacement from the sequence of N vectors

(λ i v i). Consider m (with γ = 2 log(4)) s.t. m ≥ 1 + N γ[2(√ N σ BS m D) 2 + εR/3] ε 2 + γ[2(√ N σ BS m D) 2]
.

(5.8)

Then there exists some x = j∈J µ j v j with µ ∈ R m and µ ≥ 0, where J ⊂

[1, N] has size m, such that      x -x ≤ ε j∈J µ j -1 ≤ ε.
Proof. For clarity we omit that in fact R = max{R v , R λ } and Dσ = D max{σ v , σ λ } where σ v and σ λ are as in (5.10). Consider ε > 0 and β ∈ [0, 1]. Applying Lemma 5.2.5 with δ = 1 -β we have that for α m satisfying

α m ≥ 2 ln(2/(1 -β)) 2(Dσ BS m) 2 + R/3 /N 2 + 2 ln(2/(1 -β)) 2(Dσ BS m) 2 /N . (5.9) that P 1 m m i=1 V i -x ≤ ≥ β .
We use again Bennett-Serfling to the real-valued sequence (N m λ i) i . Because m verify (5.9), for random sample J of size m we have also

P i∈J N m λ i -1 ≤ ≥ β .
Finally an union bound gives that

P ||x -x|| ≤ ε i∈J µ j -1 ≤ ε ≥ 2β -1.
Choosing β > 1 2 leads to the existence of the subset J . [START_REF] Bardenet | Concentration inequalities for sampling without replacement[END_REF] or Kernel Embeddings [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF]. Consider V = {v 1 , . . . , v N }, a set of N vectors in a (2, D)-Banach space with norm ||•|| and V 1 , . . . , V m , the random variables resulting from sampling without replacement. R v sup i ||v i || is the range of V . We introduce a specific notion of standard deviation related to that sampling scheme as follows

σ BS m 1 m k=1 1 (N -k) 2 m k=1 1 (N -k) 2 σ 2 k 1/2 ∞ , (5.10)
where we write || • || ∞ for essential supremum to simplify notations and also

σ k = E k-1 ||V k -E k-1 (V k)|| 2 .
We call σ BS m a standard deviation because it is the square-root of the essential supremum of a convex combination of the terms σ

2 k = E k-1 ||V k -E k-1 (V k)|| 2 . For k = 1, σ 2
1 is exactly the variance of V , while when k = N -1, σ k is better related to the diameter of the set V . The difference between classical notions of variance is due to sampling without replacement. However, when the index k increases, the weights also do, thus putting more weight on diameter-like measures rather than on variance-like measures. The notation σ BS m is an acronym for Bernstein-Serfling variance as a function of m. Finally, note that for smaller values of m, σ BS m is closer to a standard deviation term.

Our goal is to upper-bound the following probability (5.11) as a function of both σ BS m and R v . We call this bound Serfling because the quality of the upper-bound depends on the sampling ratio. [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF] shows an Hoeffding-Serfling bound (i.e. not depending on σ BS m) on (2, D)-Banach spaces, while [START_REF] Bardenet | Concentration inequalities for sampling without replacement[END_REF] provide a Bernstein-Serfling bound for real-valued random variable. Here we expand the result of [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF] to get a Bennett-Serfling inequality in (2, D)-Banach spaces. The proof exploits the forward martingale in [START_REF] Robert | Probability inequalities for the sum in sampling without replacement[END_REF][START_REF] Bardenet | Concentration inequalities for sampling without replacement[END_REF][START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF] associated with the sampling without replacement and uses a result from [START_REF] Pinelis | Optimum bounds for the distributions of martingales in banach spaces[END_REF] to conclude.

P 1 m m i=1 V i - 1 N N i=1 v i ≥ ,

5.A.2 Bennett for Martingales in Smooth Banach Spaces

We recall a slightly modified version of [Pinelis, 1994, Theorem 3.4.]. This theorem is analogous, on martingales defined on Banach spaces, of the Bennett concentration inequality for sums of real independent random variables. Theorem 5.A.3 (Pinelis). Suppose (M k) k∈N is a martingale of a (2, D)-smooth separable Banach space and that there exists (a, b) ∈ R * + such that

sup k ||M k -M k-1 || ∞ ≤ a ∞ j=1 E j-1 ||M j -M j-1 || 2 1/2 ∞ ≤ b/D ,
then for all η ≥ 0,

P(sup k ||M k || ≥ η) ≤ 2 exp - η 2 2(b 2 + ηa/3) . Proof. Write P = P(sup k ||M k || ≥ η).
In the proof of [Pinelis, 1994, theorem 3.4.], we have

P ≤ 2 exp -λη + exp(λa) -1 -λa a 2 b 2 .
Besides, [Sridharan, 2002, equation (16)] gives

inf λ>0 -λ + (e -λ -λ -1)c 2 ≤ - 2 2(c 2 + /3) .
We can then rewrite the initial inequality as

P ≤ 2 exp -λa η a + (exp(λa) -1 -λa) b 2 a 2 ≤ 2 exp - η 2 2(b 2 + ηa/3) .
[[START_REF] Pinelis | Optimum bounds for the distributions of martingales in banach spaces[END_REF] uses the exact minimization on λ which leads to a better but much less convenient form of the Bennett concentration inequality.

5.A.3 Bennett-Serfling in Smooth Banach Spaces

The following lemma allows to identify the parameters (a, b) appearing in theorem 5.A.3.

Lemma 5.A.4.

sup k ||I k || ∞ ≤ R N -m (5.16) ∞ j=1 E j-1 ||I j || 2 1/2 ∞ ≤ σ BS m m (N -m -1)N ,
with σ BS m as in (5.10) and

I k = M k -M k-1 .
106

Proof. (5.16) directly follows from (5.15). Note that I k = 0 for k ≥ m. Because of (5.14), we have

∞ k=1 E k-1 (||I k || 2) 1 2 = m k=1 1 (N -k) 2 σ 2 k 1 2 , with σ 2 k = E k-1 (||V k -E k-1 (V k)|| 2
). Because of (5.10), we have,

∞ k=1 E k-1 (||I k || 2) 1 2 ∞ = σ BS m m k=1 1 (N -k) 2 .
For instance, [Serfling, 1974, Lemma 2.1.] gives

m k=1 1 (N -k) 2 = N -1 k=N -m-1+1 1 k 2 ≤ m N (N -m -1)
.

It leads to

∞ k=1 E k-1 (||I k || 2) 1 2 ∞ ≤ σ BS m m N (N -m -1)
and the desired result.

We finally state our main concentration inequality. Theorem 5.A.5 (Bennett-Serfling in Banach). Consider V a discrete set of N vectors in a (2, D)-Banach space and (V i) i=1,...,m the random variables obtained by sampling without replacements m elements of V . For any > 0 write P m ()

P 1 m m i=1 V i -v ≥ . We have P m () ≤ 2 exp - m 2 2 2 N -m N (Dσ BS m) 2 + R/3 , with v 1 N N i=1 v i , R sup v∈V ||v||, and
σ BS m 1 m k=1 1 (N -k) 2 m k=1 1 (N -k) 2 σ 2 k 1/2 ∞ .
Proof. Using Theorem 5.A.3 with the forward martingale (5.12), we have for any η > 0,

P(sup i ||M i || ≥ η) ≤ 2 exp - η 2 2(b 2 + ηa/3) ,
and writing

P (η) = P 1 N -m m i=1 (V i -v) ≥ η , we have P (η) ≤ P(sup i ||M i || ≥ η). Hence P N -m m η ≤ 2 exp - η 2 2(b 2 + ηa/3) . Because of lemma 5.A.4, a = R N -m and b = Dσ BS m m N (N -m-1
) is a good choice and leads to

P m N -m m η ≤ 2 exp - m 2 2 N -m N (Dσ BS m) 2 + R v /3 , for any η > 0 with = N -m m η.
Here S n is the set of real symmetric matrices of dimension n. Definition A.1.1 states that when moving away from the diagonal in a given row or column of A, the entries are nonincreasing, whereas in Def A.1.2, the non-increase is followed by a non-decrease. For instance, the proximity matrix of points embedded on a circle follows Def A.1.2. In what follows, we write L n R (resp., C n R) the set of R (resp., circular-R) matrices of size n, and P n the set of permutations of n elements. A permutation can be represented by a vector π (lower case) or a matrix Π ∈ {0, 1} n×n (upper case) defined by Π ij = 1 iff π(i) = j, and π = Πe where e = (1, . . . , n) T . We refer to both representations by P n and may omit the subscript n whenever the dimension is clear from the context. We say that A ∈ S n is pre-L R (resp., pre-C R) if there exists a permutation Π ∈ P such that the matrix ΠAΠ T (whose entry (i, j) is A π(i),π(j)) is in L R (resp., C R). Given such A, Seriation seeks to recover this permutation Π, find Π ∈ P such that ΠAΠ T ∈ L R (Linear Seriation) find Π ∈ P such that ΠAΠ T ∈ C R (Circular Seriation)

A widely used method for Linear Seriation is a spectral relaxation based on the graph Laplacian of the similarity matrix. It transposes Spectral Clustering [START_REF] Von | A tutorial on spectral clustering[END_REF] to the case where we wish to infer a latent ordering rather than a latent clustering on the data. Roughly speaking, both methods embed the elements on a line and associate a coordinate

f i ∈ R to each element i ∈ [n]
. Spectral clustering addresses a graph-cut problem by grouping these coordinates into two clusters. Spectral ordering [START_REF] Atkins | A spectral algorithm for seriation and the consecutive ones problem[END_REF] addresses Linear Seriation by sorting the f i . Most Spectral Clustering algorithms actually use a Laplacian embedding of dimension d > 1, denoted d-LE in the following. Latent cluster structure is assumed to be enhanced in the d-LE, and the k-means algorithm [MacQueen et al., 1967[START_REF] Hastie | Unsupervised learning[END_REF] seamlessly identifies the clusters from the embedding. In contrast, Spectral Ordering is restricted to d = 1 by the sorting step (there is no total order relation on R d for d > 1). Still, the latent linear structure may emerge from the d-LE, if the points are distributed along a curve. Also, for d = 2, it may capture the circular structure of the data and allow for solving Circular Seriation. One must then recover a (circular) ordering of points lying in a 1D manifold (a curve, or filament) embedded in R d .

In Section A.2, we review the Spectral Ordering algorithm and the Laplacian Embedding used in Spectral Clustering. We mention graph-walk perspectives on this embedding and how this relates to dimensionality reduction techniques. Finally, we recall how these perspectives relate the discrete Laplacian to continuous Laplacian operators, providing insights about the curve structure of the Laplacian embedding through the spectrum of the limit operators. These asymptotic results were used to infer circular orderings in a tomography application in e.g. [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF]. In Section A.3, we evidence the filamentary structure of the Laplacian Embedding, and provide theoretical guarantees about the Laplacian Embedding based method for Circular Seriation. We then propose a method in Section A.4 to leverage the multidimensional Laplacian embedding in the context of Linear Seriation and Circular Seriation. We eventually present numerical experiments to illustrate how the spectral method gains in robustness by using a multidimensional Laplacian embedding.

A.2 Related Work

A.2.1 Spectral Ordering for Linear Seriation

Linear Seriation can be addressed with a spectral relaxation of the following combinatorial problem,

minimize n i,j=1 A ij |π i -π j | 2 such that π ∈ P n (2-SUM)
Intuitively, the optimal permutation compensates high A ij values with small |π i -π j | 2 , thus laying similar elements nearby. For any f = (f (1), . . . , f (n)) T ∈ R n , the objective of 2-SUM can be written as a quadratic (with simple algebra using the symmetry of A, see Von Luxburg

[2007]), n i,j=1 A ij |f (i) -f (j)| 2 = f T L A f (A.1)
where L A diag(A1)-A is the graph-Laplacian of A. From (A.1), L A is positive-semi-definite for A having non-negative entries, and 1 = (1, . . . , 1) T is an eigenvector associated to λ 0 = 0. The spectral method drops the constraint π ∈ P n in 2-SUM and enforces only norm and orthogonality constraints, π = 1, π T 1 = 0, to avoid the trivial solutions π = 0 and π ∝ 1, yielding,

minimize f T L A f such that f 2 = 1 , f T 1 = 0. (Relax. 2-SUM)
This is an eigenvalue problem on L A solved by f (1) , the eigenvector associated to λ 1 ≥ 0 the second smallest eigenvalue of L A . If the graph defined by A is connected (which we assume further) then λ 1 > 0. From f (1) , one can recover a permutation by sorting its entries. The spectral relaxation of 2-SUM is summarized in Algorithm 12. For pre-L R matrices, Linear Seriation is equivalent to 2-SUM [START_REF] Fogel | Aspremont. Convex relaxations for permutation problems[END_REF], and can be solved with Algorithm 12 [START_REF] Atkins | A spectral algorithm for seriation and the consecutive ones problem[END_REF], as stated in Theorem A.2.1.

Algorithm 12 Spectral ordering [START_REF] Atkins | A spectral algorithm for seriation and the consecutive ones problem[END_REF] Theorem A.2.1 [START_REF] Atkins | A spectral algorithm for seriation and the consecutive ones problem[END_REF]). If A ∈ S n is a pre-L R matrix, then Algorithm 12 recovers a permutation Π ∈ P n such that ΠAΠ T ∈ L n R , i.e., it solves Linear Seriation.

A.2.2 Laplacian Embedding

Let 0 = λ 0 < λ 1 ≤ . . . ≤ λ n-1 , Λ diag (λ 0 , . . . , λ n-1), Φ = (1, f 1 , . . . , f n-1), be the eigendecomposition of L A = ΦΛΦ T . Algorithm 12 embeds the data in 1D through the eigenvector f 1 (1-LE). For any d < n, Φ (d) (f 1 , . . . , f d) defines a d-dimensional embedding (d-LE)

y i = (f 1 (i), f 2 (i), . . . , f d (i)) T ∈ R d , for i = 1, . . . , n. (d-LE)
which solves the following embedding problem,

minimize n i,j=1 A ij y i -y j 2 2 such that Φ = y T 1 , . . . , y T n T ∈ R n×d , ΦT Φ = I d , ΦT 1 n = 0 d (Lap-Emb)
Indeed, like in (A.1), the objective of Lap-Emb can be written Tr ΦT L A Φ (see [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF] for a similar derivation). The 2-SUM intuition still holds: the d-LE lays similar elements nearby, and dissimilar apart, in R d . Other dimensionality reduction techniques such as Multidimensional scaling (MDS) [START_REF] Joseph | Multidimensional scaling[END_REF], kernel PCA [START_REF] Schölkopf | Kernel principal component analysis[END_REF], or Locally Linear Embedding (LLE) [START_REF] Sam | Nonlinear dimensionality reduction by locally linear embedding[END_REF]] could be used as alternatives to embed the data in a way that intuitively preserves the latent ordering. However, guided by the generalization of Algorithm 12 and theoretical results that follow, we restrict ourselves to the Laplacian embedding.

Normalization and Scaling

Given the weighted adjacency matrix W ∈ S n of a graph, its Laplacian reads L = D -W , where D = diag(W 1) has diagonal entries d i = n j=1 W ij (degree of i). Normalizing W ij by d i d j or d i leads to the normalized Laplacians,

L sym = D -1/2 LD -1/2 = I -D -1/2 W D -1/2 L rw = D -1 L = I -D -1 W (A.2)
They correspond to graph-cut normalization (normalized cut or ratio cut). Moreover, L rw has a Markov chain interpretation, where a random walker on edge i jumps to edge j from time t to t + 1 with transition probability P ij W ij /d i . It has connections with diffusion processes, governed by the heat equation ∂Ht ∂t = -∆H t , where ∆ is the Laplacian operator, H t the heat kernel, and t is time [START_REF] Qiu | Clustering and embedding using commute times[END_REF]. These connections lead to diverse Laplacian embeddings backed by theoretical justifications, where the eigenvectors f rw k of L rw are sometimes scaled by decaying weights α k (thus emphasizing the first eigenvectors), ỹi

= (α 1 f rw 1 (i), . . . , α d-1 f rw d (i)) T ∈ R d , for i = 1, . . . , n. ((α, d)-LE)
Laplacian eigenmaps [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF]] is a nonlinear dimensionality reduction technique based on the spectral embedding of L rw (((α, d)-LE) with α k = 1 for all k). Specifically, given points x 1 , . . . , x n ∈ R d , the method computes a heat kernel similarity matrix W ij = exp -x i -x j 2 /t and outputs the first eigenvectors of L rw as a lower dimensional 112 embedding. The choice of the heat kernel is motivated by connections with the heat diffusion process on a manifold, a partial differential equation involving the Laplacian operator. This method has been successful in many machine learning applications such as semi-supervised classification [START_REF] Belkin | Semi-supervised learning on riemannian manifolds[END_REF] and search-engine type ranking [START_REF] Zhou | Ranking on data manifolds[END_REF]. Notably, it provides a global, nonlinear embedding of the points that preserves the local structure.

The commute time distance CTD(i, j) between two nodes i and j on the graph is the expected time for a random walker to travel from node i to node j and then return. The full (α, d)-LE, with α k = (λ rw k) -1/2 and d = n -1, satisfies CTD(i, j) ∝ ỹiỹj . Given the decay of α k , the d-LE with d n approximately preserves the CTD. This embedding has been successfully applied to vision tasks, e.g., anomaly detection [START_REF] James | Euclidean commute time distance embedding and its application to spectral anomaly detection[END_REF], image segmentation and motion tracking [START_REF] Qiu | Clustering and embedding using commute times[END_REF].

Another, closely related dimensionality reduction technique is that of diffusion maps [START_REF] Ronald R Coifman | Diffusion maps[END_REF], where the embedding is derived to preserve diffusion distances, resulting in the (α, d)-LE, for t ≥ 0, α k (t) = (1 -λ rw k) t . Coifman and Lafon [2006], [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF] also propose a normalization of the similarity matrix W ← D -1 W D -1 , to extend the convergence of L rw towards the Laplace-Beltrami operator on a curve when the similarity is obtained through a heat kernel on points that are non uniformly sampled along that curve.

Finally, we will use in practice the heuristic scaling α k = 1/ √ k to damp high dimensions. For a deeper discussion about spectral graph theory and the relations between these methods, see for instance [START_REF] Qiu | Clustering and embedding using commute times[END_REF] and [START_REF] Chung | Discrete green's functions[END_REF].

A.2.3 Link with Continuous Operators

In the context of dimensionality reduction, when the data points x 1 , . . . , x n ∈ R D lie on a manifold M ⊂ R d of dimension K D, the graph Laplacian L of the heat kernel (W ij = exp -x i -x j 2 /t) used in [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF] is a discrete approximation of ∆ M , the Laplace-Beltrami operator on M (a differential operator akin to the Laplace operator, adapted to the local geometry of M). [START_REF] Singer | From graph to manifold laplacian: The convergence rate[END_REF] specify the hypothesis on the data and the rate of convergence of L towards ∆ M when n grows and the heat-kernel bandwidth t shrinks. Von [START_REF] Von Luxburg | Limits of spectral clustering[END_REF] also explore the spectral asymptotics of the spectrum of L to prove consistency of spectral clustering.

This connection with continuous operators gives hints about the Laplacian embedding in some settings of interest for Linear Seriation and Circular Seriation. Indeed, consider n points distributed along a curve Γ ⊂ R D of length 1, parameterized by a smooth function γ : R → R D , Γ = {γ(s) : s ∈ [0, 1]}, say x i = γ(i/n). If their similarity measures their proximity along the curve, then the similarity matrix is a circular-R matrix if the curve is closed (γ(0) = γ(1)), and a R matrix otherwise. [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF] motivate a method for Circular Seriation with the spectrum of the Laplace-Beltrami operator ∆ Γ on Γ when Γ is a closed curve. Indeed, ∆ Γ is simply the second order derivative with respect to the arc-length s, ∆ Γ f (s) = f (s) (for f twice continuously differentiable), and its eigenfunctions are given by,

f (s) = -λf (s). (A.3) With periodic boundary conditions, f (0) = f (1), f (0) = f (1)
, and smoothness assumptions, the first eigenfunction is constant with eigenvalue λ 0 = 0, and the remaining are {cos (2πms), sin (2πms)} ∞ m=1 , associated to the eigenvalues λ m = (2πm) 2 of multiplicity 2.

Hence, the 2-LE, (f 1 (i), f 2 (i)) ≈ (cos (2πs i), sin (2πs i)) should approximately lay the points on a circle, allowing for solving Circular Seriation [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF]. More generally, the 2d-LE, (f 1 (i), . . . , f 2d+1 (i)) T ≈ (cos (2πs i), sin (2πs i), . . . , cos (2dπs i), sin (2dπs i)) is a closed curve in R 2d . If Γ is not closed, we can also find its eigenfunctions. For instance, with Neumann boundary conditions (vanishing normal derivative), say, f (0) = 1, f (1) = 0, f (0) = f (1) = 0, the nontrivial eigenfunctions of ∆ Γ are {cos (πms)} ∞ m=1 , with associated eigenvalues λ m = (πm) 2 of multiplicity 1. The 1-LE f 1 (i) ≈ cos (πs i) respects the monotonicity of i, which is consistent with Theorem A. 2.1. Lafon [2004] invoked this asymptotic argument to solve an instance of Linear Seriation but seemed unaware of the existence of Atkin's Algorithm 12. Note that here too, the d-LE, (f 1 (i), . . . , f d (i)) T ≈ (cos (πs i), . . . , cos (dπs i)) follows a closed curve in R d , with endpoints.

These asymptotic results hint that the Laplacian embedding preserves the latent ordering of data points lying on a curve embedded in R D . However, these results are only asymptotic and there is no known guarantee for the Circular Seriation problem as there is for Linear Seriation. Also, the curve (sometimes called filamentary structure) stemming from the Laplacian embedding has been observed in more general cases where no hypothesis on a latent representation of the data is made, and the input similarity matrix is taken as is (see, e.g., [START_REF] Diaconis | Horseshoes in multidimensional scaling and local kernel methods[END_REF] for a discussion about the horseshoe phenomenon).

A.2.4 Ordering Points Lying on a Curve

Finding the latent ordering of some points lying on (or close to) a curve can also be viewed as an instance of the travelling salesman problem (TSP), for which a plethora of (heuristic or approximation) algorithms exist [START_REF] Reinelt | The traveling salesman: computational solutions for TSP applications[END_REF][START_REF] Laporte | The traveling salesman problem: An overview of exact and approximate algorithms[END_REF]. We can think of this setting as one where the cities to be visited by the salesman are already placed along a single road, thus these TSP instances are easy and may be solved by simple heuristic algorithms.

Existing approaches for Linear Seriation and Circular Seriation have only used 2D embeddings so far, for simplicity. [START_REF] Kuntz | Iterative geometric representations for multi-way partitioning[END_REF] use the 2-LE to find a circular ordering of the data. They use a somehow exotic TSP heuristic which maps the 2D points onto a pre-defined "space-filling" curve, and unroll the curve through its closed form inverse to obtain a 1D embedding and sort the points. [START_REF] Friendly | Corrgrams: Exploratory displays for correlation matrices[END_REF] uses the angle between the first two coordinates of the 2D-MDS embedding and sorts them to perform Linear Seriation. [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF] use the 2-LE to perform Circular Seriation in a tomographic reconstruction setting, and use a simple algorithm that sorts the inverse tangent of the angle between the two components to reorder the points. [START_REF] Liu | Unsupervised embedding of single-cell hi-c data[END_REF] use a similar approach to solve Circular Seriation in a cell-cycle related problem, but with the 2D embedding given by MDS.

A.3 Spectral properties of some (Circular) Robinson Matrices

We have claimed that the d-LE enhances the latent ordering of the data and we now present some theoretical evidences. We adopt a point of view similar to [START_REF] Atkins | A spectral algorithm for seriation and the consecutive ones problem[END_REF], where the feasibility of Linear Seriation relies on structural assumptions on the similarity matrix (L R). For a subclass C * R of C R (set of circular-R matrices), we show that the d-LE lays the points on a closed curve, and that for d = 2, the elements are embedded on a circle according to their latent circular ordering. This is a counterpart of Theorem A.2.1 for Circular Seriation.

It extends the asymptotic results motivating the approach of [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF], shifting the structural assumptions on the elements (data points lying on a curve embedded in R D) to assumptions on the raw similarity matrix that can be verified in practice. Then, we develop a perturbation analysis to bound the deformation of the embedding when the input matrix is in C * R up to a perturbation. Finally, we discuss the spectral properties of some (non circular) L R -matrices that shed light on the filamentary structure of their d-LE for d > 1.

For simplicity, we assume n 2p + 1 odd in the following. The results with n = 2p even are relegated to the Appendix, together with technical proofs. The spectrum of symmetric circulant matrices is known [START_REF] Reichel | Eigenvalues and pseudo-eigenvalues of toeplitz matrices[END_REF][START_REF] Robert | Toeplitz and circulant matrices: A review[END_REF][START_REF] Massey | Distribution of eigenvalues of real symmetric palindromic toeplitz matrices and circulant matrices[END_REF], and for a matrix A of size n = 2p + 1, it is given by, For m = 1, . . . , p, ν m is an eigenvalue of multiplicity 2 with associated eigenvectors y m,cos ,y m,sin . For any m, (y m,cos , y m,sin) embeds the points on a circle, but for m > 1, the circle is walked through m times, hence the ordering of the points on the circle does not follow their latent ordering. The ν m from equations (A.5) are in general not sorted. It is the Robinson property (monotonicity of (b k)) that guarantees that ν 1 ≥ ν m , for m ≥ 1, and thus that the 2-LE embeds the points on a circle that follows the latent ordering and allows one to recover it by scanning through the unit circle. This is formalized in Theorem A.3.2, which is the main result of our paper, proved in Appendix A.C. It provides guarantees in the same form as in Theorem A.2.1 with the simple Algorithm 13 that sorts the angles, used in [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF]. is a double eigenvalue associated to eigenvectors y m,cos ,y m,sin , ν m = 1-ρ 2 1-2ρ cos θm+ρ 2 y m,cos = (cos ((n -2r + 1)θ m /2)) n r=1 y m,sin = (sin ((n -2r + 1)θ m /2)) n r=1 .

A.3.1 Circular Seriation with Symmetric, Circulant Matrices

(A.8)

Linearly decreasing Toeplitz matrices defined by A lin ij = b |i-j| = n -|i -j| have spectral properties analog to those of KMS matrices (trigonometric expression, interlacement, low frequency assigned to largest eigenvalue), but with more technical details available in [START_REF] Bünger | Inverses, determinants, eigenvalues, and eigenvectors of real symmetric toeplitz matrices with linearly increasing entries[END_REF]. This goes beyond the asymptotic case modeled by tridiagonal matrices.

Banded Robinson Toeplitz matrices typically include similarity matrices from DNA sequencing. Actually, any Robinson Toeplitz matrix becomes banded under a thresholding operation. Also, fast decaying Robinson matrices such as KMS matrices are almost banded. There is a rich literature dedicated to the spectrum of generic banded Toeplitz matrices [START_REF] Boeóttcher | Spectral properties of banded Toeplitz matrices[END_REF][START_REF] Robert | Toeplitz and circulant matrices: A review[END_REF][START_REF] Böttcher | Asymptotics of eigenvalues and eigenvectors of toeplitz matrices[END_REF]. However, it mostly provides asymptotic results on the spectra. Notably, some results indicate that the eigenvectors of some banded symmetric Toeplitz matrices become, up to a rotation, close to the sinusoidal, almost equi-spaced eigenvectors observed in equations (A.7) and (A.8) [START_REF] Böttcher | On the structure of the eigenvectors of large hermitian toeplitz band matrices[END_REF][START_REF] Ekström | Are the eigenvalues of banded symmetric toeplitz matrices known in almost closed form? Experimental Mathematics[END_REF].

A.3.4 Spectral Properties of the Laplacian

A.4 Recovering Ordering on Filamentary Structure

We have seen that (some) similarity matrices A with a latent ordering lead to a filamentary d-LE. The d-LE integrates local proximity constraints together into a global consistent embedding. We expect isolated (or, uncorrelated) noise on A to be averaged out by the spectral picture. Therefore, we present Algorithm 14 that redefines the similarity S ij between two items from their proximity within the d-LE. Basically, it fits the points by a line locally, in the same spirit as LLE, which makes sense when the data lies on a linear manifold (curve) embedded in R K . Note that Spectral Ordering (Algorithm 12) projects all points on a given line (it only looks at the first coordinates f 1 (i)) to reorder them. Our method does so in a local neighborhood, allowing for reordering points on a curve with several oscillations. We then run the basic Algorithms 12 (or 13 for Circular Seriation). Hence, the d-LE is eventually used to pre-process the similarity matrix.

In Algorithm 14, we compute a d-LE in line 1 and then a 1-LE (resp., a 2-LE) for linear ordering (resp., a circular ordering) in line 9. For reasonable number of neighbors k in the k-NN of line 4 (in practice, k = 10), the complexity of computing the d-LE dominates Algorithm 14. We shall see in Section A.5 that our method, while being almost as computationally cheap as the base Algorithms 12 and 13 (roughly only a factor 2), yields substantial improvements. In "noise", the basic spectral Algorithm 12 fails to find the layout, as the quadratic loss appearing in 2-SUM is sensitive to outliers. Recanati et al. [2018b] tackle this issue by modifying the loss in 2-SUM to make it more robust. Instead, we show that the simple multi-dimensional extension proposed in Algorithm 14 suffices to capture the ordering of the reads despite the repeats. We used our method to perform the layout of a E. coli bacterial genome. We used reads sequenced with third-generation sequencing data, and computed the overlaps with dedicated software, as detailed in Appendix A.B. The new similarity matrix S computed from the embedding in Algorithm 14 was disconnected, resulting in several connected component instead of one global ordering. However, the sub-orderings could be unambiguously merged into one in a simple way described in Algorithm 15. The Kendall-Tau score between the ordering found and the one obtained by sorting the position of the reads along the genome (obtained by mapping the reads to a reference with minimap2 [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF]) is of 99.5%, using Algorithm 16 to account for the circularity of the genome.

A.6 Conclusion

Here, we brought together results that shed light on the filamentary structure of the Laplacian embedding of serial data. It allows for tackling Linear Seriation and Circular Seriation in a unifying framework. Notably, we provide theoretical guarantees for Circular Seriation analog to those existing for Linear Seriation. These do not make assumptions about the underlying generation of the data matrix, and can be verified a posteriori by the practitioner. Then, we propose a simple method to leverage the filamentary structure of the embedding. It can be seen as a pre-processing of the similarity matrix. Although the complexity is comparable to the baseline methods, experiments on synthetic and real data indicate that this pre-processing substantially improves robustness to noise.

Appendices

Notation: We will commonly denote σ a permutation of {1, . . . , n} and S the set of all such permutations. When represented matricially, σ will often be noted Π while cyclic permutation of {1, . . . , n} will be noted as τ . A will usually denote the matrix of raw pair-wise similarities. S will denote the similarity matrix resulting from Algorithm 14, and k a neighboring parameter. Finally we use indexed version ν (resp., λ) to denote eigenvalues of a similarity matrix (resp. a graph Laplacian).

A.A Additional Algorithms

A.A.1 Merging Connected Components

The new similarity matrix S computed in Algorithm 14 is not necessarily the adjacency matrix of a connected graph, even when the input matrix A is. For instance, when the number of nearest neighbors k is low and the points in the embedding are non uniformly sampled along a curve, S may have several, disjoint connected components (let us say there are C of them in the following). Still, the baseline Algorithm 12 requires a connected similarity matrix as input. When S is disconnected, we run 12 separately in each of the C components, yielding C sub-orderings instead of a global ordering.

However, since A is connected, we can use the edges of A between the connected components to merge the sub-orderings together. Specifically, given the C ordered subsequences, we build a meta similarity matrix between them as follows. For each pair of ordered subsequences (c i , c j), we check whether the elements in one of the two ends of c i have edges with those in one of the two ends of c j in the graph defined by A. According to that measure of similarity and to the direction of these meta-edges (i.e., whether it is the beginning or the end of c i and c j that are similar), we merge together the two subsequences that are the closest to each other. We repeat this operation with the rest of the subsequences and the sequence formed by the latter merge step, until there is only one final sequence, or until the meta similarity between subsequences is zero everywhere. We formalize this procedure in the greedy Algorithm 15, which is implemented in the package at https://github.com/antrec/mdso.

Given C reordered subsequences (one per connected component of S) (c i) i=1,...,C , that form a partition of {1, . . . , n}, and a window size h that define the length of the ends we consider (h must be smaller than half the smallest subsequence), we denote by c - i (resp. c + i) the first (resp. the last) h elements of c i , and a(c i , c j) = u∈c i ,v∈c j A uv is the similarity between the ends c i and c j , for any pair c i , c j , i = j ∈ {1, . . . , C}, and any combination of ends , ∈ {+, -}. Also, we define the meta-similarity between c i and c j by, s(c i , c j) max(a(c + i , c + j), a(c + i , c - j), a(c - i , c + j), a(c - i , c - j)) , (A.9) and (i , j) ∈ {+, -} 2 the combination of signs where the argmax is realized, i.e., such that s(c i , c j) = a(c i i , c j j). Finally, we will use ci to denote the ordered subsequence c i read from the end to the beginning, for instance if c = (1, . . . , n), then c = (n, . . . , 1).

Algorithm 15 Merging connected components

Input: C ordered subsequences forming a partition P = (c 1 , . . . , c C) of {1, . . . , n}, an initial similarity matrix A, a neighborhood parameter h. 1: while C > 1 do 2:

Compute meta-similarity S such that Sij = s(c i , c j), and meta-orientation (i , j), for all pairs of subsequences with equation A.9. find (i, j) ∈ argmax S, and (i , j) the corresponding orientations. else if (i , j) = (-, +)) then Remove c i and c j from P . Add c new to P . Suppose we have data having a circular structure, i.e., we have n items that can be laid on a circle such that the higher the similarity between two elements is, the closer they are on the circle. Then, given an ordering of the points that respects this circular structure (i.e., a solution to Circular Seriation), we can shift this ordering without affecting the circular structure. For instance, in KT (i) ← Kendall-Tau(σ, (π(i), π(i + 1), . . . , π(n), π(1), . . . , π(i -1))) 3: end for 4: best score ← max i=1,...,n KT (i) Output: best score We observe that the method performs roughly equally well with k in a range from 5 to 20, and that the performances drop when k gets too large, around k = 30. This can be interpreted as follows. When k is too large, the assumption that the points in the embedding are locally k that damps the higher dimensions yields better results when d increases, with a plateau rather than a collapse when d gets large. We interpret these results as follows. With the (d-LE), Algorithm 14, line 5 treats equally all dimensions of the embedding. However, the curvature of the embedding tends to increase with the dimension (for C R matrix, the period of the cosines increases linearly with the dimension). The filamentary structure is less smooth and hence more sensitive to noise in high dimensions, which is why the results are improved by damping the high dimensions (or using a reasonably small value for d).

Illustration of Algorithm 14 Here we provide some visual illustrations of the method with a circular banded matrix. Given a matrix A (The following lemma gives an important property of the partial sum of the z (m) k that is useful when combined with proposition A.C.3.

• For q = p 2 + 1, . . . , p -n , we apply (A.11) with q = n (and indeed n ≤ p 2) to get S Finally since (S (1) q) is non-increasing for the considered sub-sequence of q, (A.18) is true.

Case n = 2p. Here z

(1) k k=1,...,p takes unique values in Z n ∪ {-1}. We also need to distinguish according to the parity of m.

• z (m) k k=1,...,n -1 takes also unique value in Z n . We similarly get (A.18) for q = 1, . . . , n -1, and for q = n because S (m) n = 0.

• Consider m odd, from (A.14), S (m) p = S

(1) p = -1 so that we can do the same reasoning as with n odd to prove (A.18) for q = p -n + 1, . . . , p and q = 1, . . . , n . The remaining follows from the symmetry property (A.12) of the sequence (S (1) q) q in Lemma A.C.1.

• m and n even, we have that S

S

(1) q ≥ S (m) q for q < p -1 follows with same techniques as before.

A.C.2 Properties on R-Toeplitz Circular Matrix.

This proposition is a technical method that will be helpful at proving that the eigenvalues of a R-circular Toeplitz matrix are such that ν 1 > ν m . Proof. We have

q k=1 b k w k = q k=1 b k (W k -W k-1) = b q ≥0 W q + q-1 k=1 (b k -b k+1) ≥0 W k ≥ b q Wq + q-1 k=1 (b k -b k+1) Wk = q k=1 b k Wk .
As soon as there exists k 0 ∈ {1, . . . , q} such that

||V i || 2 2 ≤ V F .
We apply [Yu et al., 2014, Theorem 2] to our perturbed matrix, a simpler version of classical davis-Kahan theorem [START_REF] Davis | The rotation of eigenvectors by a perturbation. iii[END_REF]]. In particular we have

Ṽ -V O 2,∞ ≤ Ṽ -V O F Ṽ -V O 2,∞ ≤ 2 3/2 min(√ 2||L H || 2 , ||L H || F) min(|λ 1 |, |λ 2 -λ 1 |)
Finally because A is a R-symmetric-circular Toeplitz, from Theorem A.3.2, the row of V are n ordered points uniformly sampled on the unit circle. Because applying a rotation is equivalent to translating the angle of these points on the circle. It follows that there exists a cyclic permutation τ such that sup

θ σ -1 •τ -1 (1) ≤ • • • ≤ θ σ -1 •τ -1 (n) . (A.40) Finally σ = σ -1 • τ -1 .

 Theorem 1.2.3. Consider C an α-strongly convex set with respect to a norm ||•|| and f a convex L-smooth function. Assume there exists c > 0 such that inf x∈C ||∇f (x)|| > c. The iterates of the Frank-Wolfe algorithm (with line-search of short step-sizes) satisfy

Figure 1

 1 Figure 1.1: In both cases, there exists A > 0 such that a x * (σ) ≥ A||∇f (x *)||σ 2 , and the analysis of Dunn guarantees linear convergence rate. Note however, that on the right figure, C is not locally strongly-convex at x * . The analysis of Dunn goes beyond local strong-convexity. Note that in the right figure, at x * , there is a quadratic lower bound on a x * (σ) as soon as the negative gradient -∇f (x *) ∈ K C (x *) is not orthogonal to the face of C that contains v. The dashed circled represents C ∩ {x | ||x -x * || = σ}.

 Theorem 3.3.1. Let C be a compact and (α, q)-uniformly convex set with respect to||•||. Assume that L T = min 1≤t≤T || 1 t t τ =1 c τ || * > 0. Then the regret R T ofFTL (3.11) for online linear optimization satisfies

Figure 3

 3 Figure3.1: Solving (OPT) with the Frank-Wolfe algorithm where f is a quadratic with condition number 100 and the constraint sets are various p -balls of radius 5. We vary p so that all balls are uniformly convex but not strongly-convex. We vary the position of the solution to (OPT) with respect to the boundaries of the constraints sets. On the first row, we choose the constrained optimum close to the intersection of the set boundary and the line generated by i e i (where the e i form the canonical basis), where p -balls are typically more curved. On the second row, we choose the constrained optimum near the intersection between the set boundary and the line generate by e 1 , a region where the p -balls are flat. On a line, each plot exhibits the behavior of the Frank-Wolfe algorithm iterates with different step size strategy: deterministic line-search (i.e. 1/(k + 1)), short step and exact line-search. To avoid the oscillating behavior of Frank-Wolfe gap, the y-axis represents min k=1,...,T g(x k) where g(•) is the Frank-Wolfe gap and T the number of iterations.

 Lemma 3.D.3. Consider a finite dimensional normed vector space (X, || • ||). Assume f (x) = ||x|| 2 is (µ, s)-uniformly convex function (with r ≥ 2) with respect to || • ||. Then the norm balls B ||•|| (r) = x ∈ X | ||x|| ≤ r are (µ 2r , s)-uniformly convex.

Contents 4 .

 4 1 Introduction . 69 4.2 Randomized Frank-Wolfe . 71 4.2.1 Analysis . 72 4.3 Randomized Away-steps Frank-Wolfe . 73 4.3.1 Analysis . 74 4.4 Applications . 76 4.4.1 Lasso problem . 76 4.4.2 Latent Group-Lasso . 77 4.5 Conclusion . 81 Appendices . 83 4.A Proof of Subsampling for Frank-Wolfe . 83 4.B Proof of Subsampling for Away-steps Frank-Wolfe 84 4.B.1 Lemmas . 86 4.B.2 Main proof . 90

Figure 4 . 1 :Figure 4 . 2 :Figure 4 . 3 :

 414243 Figure 4.1: Comparison between FW and RFW with subsampling parameter η = p |A| = 0.05 (chosen arbitrarily) on the lasso problem. Upper left: progress in FW dual gap versus number of iterations. Lower left: progress of the FW dual gap versus cumulative number of computed coefficients of gradient per call to LMO, called nbr coefficients of grad here. Lower right: recovered coefficients in support of the ground truth versus number of iterations. Upper right: size of support of iterate versus number of iterations.

 be used to solve this problem, with A t def = g∈Gp D g and where the random oracle is performed over a random subset G p ⊆ G of size p. Denoting by g p = g∈Gp g the LMO in RFW becomes LMO

Figure 4 . 4 :

 44 Figure 4.4: Both panels are in log log scale and show convergence speed up for FW and RFW on latent group lasso regularized least square regression. The parameter of subsampling η = 0.1, is chosen arbitrarily. Left: evolution of the precision in FW dual gap versus the wall clock time. Right: evolution of the precision in FW dual gap versus the cumulative number of computed coefficients of the gradient.

 Lemmas 4.B.1 and 4.B.3. Lemma 4.B.2 is only used to prove Lemma 4.B.3. The main proof follows the scheme of the deterministic one of AFW in [Lacoste-Julien and Jaggi, 2015b, Theorem 8]. It is divided in three parts. The first part consists in upper bounding h t def

Lemma 4 .B. 2 .

 42 Consider any sequence (r i) i∈I in R with I = {1, • • • , m}, and a subset I p ⊆ I of size p. We have Consider M = {i ∈ I | r i = max j∈I r j }. We have max i∈Ip r i = max i∈I r i if and only if at least one element of I p belongs to M :

 .44) It differs from C f(4.43) because it allows to move outside of the domain C. We thus require L-lipschitz continuous function on any compact set for that quantity to be upper-bounded. We refer to §curvature constants on [Lacoste-Julien and Jaggi, 2015b, Appendix D] for thorough details. The first part of the proof reuses the scheme of [Lacoste-Julien and Jaggi, 2015b, Theorem 8].

 .54)(4.46) can then be written with γ ∈ [0, 1] which leads to the previous case result (4.52).

 .57)where x 0 = v∈A α (0) v v and S 0 = {v ∈ A s.t. α (0) v > 0}.The rate quantity max{0, T -T +s 2

 .64) by applying (PROB) in Lemma 4.B.3. The last equality concludes the heredity in that case. Case |S 0 | ≥ 2. Here it is possible for z 0 to equal 0 or 1. If z 0 = 1, then |S 1 | ≤ |S 0 | + 1, while if z 0 = 0, it implies a drop step, we have |S 1 | = |S 0 | -1. If we decompose the expectation according to the value of z 0 we obtain

Definition 5 . 2 . 2 .

 522 A Banach space (B, || • ||) is (2, D)-smooth if it a Banach space and there exists D > 0 such that ||x + y|| 2 + ||x -y|| 2 ≤ 2||x|| 2 + 2D||y|| 2 for all x, y ∈ B.

 Figure A.1 displays examples of such matrices.

 Figure A.1: From left to right, R-matrix, circular R-matrix, and a randomly permuted observation of a R-matrix. Seriation seeks to recover the R-matrix from its permuted observation, the permuted R-matrix.

Input:

 Connected similarity matrix A ∈ R n×n 1: Compute Laplacian LA = diag(A1) -A 2: Compute second smallest eigenvector of LA, f1 3: Sort the values of f1 Output: Permutation σ : f1(σ(1)) ≤ . . . ≤ f1(σ(n))

b 2

 2 Let us consider the set C * R of matrices in C R that are circulant, in order to have a closed form expression of their spectrum. A matrix A ∈ R n×n is Toeplitz if its entries are constant on a given diagonal, A ij = b (i-j) for a vector of values b of size 2n -1. A symmetric Toeplitz matrix A satisfies A ij = b |i-j| , with b of size n. In the case of circulant symmetric matrices, we also have that bk = b n-k , for 1 ≤ k ≤ n, thus symmetric circulant matrices are of the form, 1 b 2 • • • b 2 b 1 b 1 b 0 b 1 • • • b 3 b 2 b 2 b 1 b 0 • • • b 4 b 3 b 3 b 4 • • • b 0 b 1 b 1 b 2 b 3 • • • b 1 b 0Where b is a vector of values of size p + 1 (recall that n = 2p + 1). The circular-R assumption (Def A.1.2) imposes that the sequence (b 0 , . . . , b p+1) is non-increasing. We thus define the set C * R of circulant matrices of C R as follows. Definition A.3.1. A matrix A ∈ S n is in C * R iff it verifies A ij = b |i-j| and b k = b n-k for 1 ≤ k ≤ n with (b k) k=0,..., n/2 a non-increasing sequence.

 ν m = b 0 + 2 p k=1 b k cos (2πkm/n) y m,cos = 1 √ n (1, cos (2πm/n) , . . . , cos (2πm(n -1)/n)) y m,sin = 1 √ n (1, sin (2πm/n) , . . . , sin (2πm(n -1)/n)) . (A.5)

For

 circulant matrices A, L A and A have the same eigenvectors sinceL A = diag(A1) -A = cI -A, with c n-1 k=0 b k .For general symmetric Toeplitz matrices, this property no longer holds as c i = n j=1 b |i-j| varies with i. Yet, for fast decaying Toeplitz matrices, c i is almost constant except for i at the edges, namely i close to 1 or to n. Therefore, the eigenvectors of L A resemble those of A except for the "edgy" entries.

Figure A. 2 :

 2 Figure A.2: From left to right: Overlap-based similarity matrix from E. coli reads, and the ordering found with Algorithm 14 versus the position of the reads within a reference genome obtained by mapping to a reference with minimap2; The genome being circular, the ordering is defined up to a shift, which is why we observe two lines instead of one.

 i , j) = (+, -) then 8:c new ← (c i , c j) 9: else if (i , j) = (+, +) then 10: c new ← (c i , cj) 11: else if (i , j) = (-, -)) then 12: c new ← (c i , c j) 13:

 17

 :

 Total reordered sequence c final , which is a permutation if C = 1 or a set of reordered subsequences if the loop broke at line 5. A.A.2 Computing Kendall-Tau Score Between Two Permutations Describing a Circular Ordering

 Figure A.A.1, the graph has a C R affinity matrix whether we use the indexing printed in black (outside the circle), or a shifted version printed in purple (inside the circle). Therefore, we transpose the Kendall-Tau score between two permutations to the case where we want to compare the two permutations up to a shift with Algorithm 16 Algorithm 16 Comparing two permutation defining a circular ordering Input: Two permutations vectors of size n, σ = (σ(1), . . . , σ(n)) and π = (π(1), . .. , π(n))1: for i = 1 to n do 2:

Figure

 Figure A.A.1: Illustration of the shift-invariance of permutations solution to a Circular Seriation problem.

2 :

 2 Figure A.B.2: From left to right: K-T scores for Linear and Circular Seriation for noisy observations of banded, Toeplitz, matrices, displayed for several values of the number of nearest neighbors k, with a fixed value of the dimension of the d-LE, d = 10.fitted by a line no longer holds. Note also that in practice, for small values of k, e.g., k = 5, the new similarity matrix S can be disconnected, and we have to resort to the merging procedure described in Algorithm 15.

 Figure A.B.6), Algorithm 14 computes the d-LE. The 2-LE is plotted for visualization in Figure A.B.6. Then, it creates a new matrix S (Figure A.B.7) from the local alignment of the points in the d-LE. Finally, from the new matrix S, it computes the 2-LE (Figure A.B.7), on which it runs the simple method from Algorithm 13.

 Figure A.B.6 and A.B.7 give a qualitative illustration of how the method behaves compared to the basic Algorithm 13.

 Figure A.B.6: Noisy Circular Banded matrix and associated 2d Laplacian embedding.

 Figure A.B.7: Matrix S created through Algorithm 14, and associated 2d-Laplacian embedding.For the second equality in (A.13), we have (m = 2q):

 Proposition A.C.3. Suppose than for any k = 1, . . . , q : i) and (wi) two sequences of reals. Then, if (b k) k is non increasing and non negative,

 20) holds strictly. The following proposition gives the usual derivations of eigenvalues in the R-circular Toeplitz case. Proposition A.C.4. Consider A, a circular-R Toeplitz matrix of size n.For nFor m = 1, . . . , p each ν m are eigenvalues of A with multiplicity 2 and associated eigenvectorsy m,cos = 1 √ n (1, cos (2πm/n) , . . . , cos (2πm(n -1)/n)) y m,sin = 1 √ n (1, sin (2πm/n) , . . . , sin (2πm(n -1)/n)) . (A.22) For n = 2p ν m b 0 + 2 p-1 k=1 b k cos 2πkm n + b p cos (πm) , (A.23)where ν 0 is still singular, withy (0) = 1 √ n (1, . . . , 1) . ν p also is, with y (p) = 1√ n (+1, -1, . . . , +1, -1) , and there are p -1 double eigenvalues, for m = 1, . . . , p -1, each associated to the two eigenvectors given in equation(A.22).Proof. Let us compute the spectrum of a circular-R, symmetric, circulant Toeplitz matrix. From Gray et al.[2006], the eigenvalues areν m = ρ m = exp(2iπm n),and the corresponding eigenvectors are, y (m) = 1 √ n 1, e -2iπm/n , . . . , e -2iπm(n-1)/n , (A.25) for m = 0, . . . , n -1. Case n is odd, with n = 2p + 1. Using the symmetry assumption b k = b n-k , and the fact that ρ n-k m = ρ n m ρ -k m = ρ -k m , it results in real eigenvalues, ν m = b 0 + p k=1 b k ρ k m +

 Let's denote by (λ 1 , λ 2) the first non-zeros eigenvalues of L and by V its associated 2dimensional eigenspace. Similarly denote by Ṽ the 2-dimensional eigenspace associated to the first non-zeros eigenvalues of L. There exists a rotation matrix O ∈ SO 2 (R) such that|| Ṽ -V O|| F ≤ 2 3/2 min(√ 2||L H || 2 , ||L H || F) min(|λ 1 |, |λ 2 -λ 1 |) . (A.37)

 3.1 Introduction . 3.2 Frank-Wolfe Convergence Analysis with Uniformly Convex Constraints 3.2.1 Scaling Inequality on Uniformly Convex Sets 3.2.2 Interpolating linear and sublinear rates 3.2.3 Convergence Rates with Local Uniform Convexity 3.2.4 Interpolating Sublinear Rates for Arbitrary x * 3.3 Online Learning with Linear Oracles and Uniform Convexity 3.4 Examples of Uniformly Convex Objects . 3.4.1 Uniformly Convex Spaces . 3.4.2 Uniform Convexity of Some Classic Norm Balls 3.5 Numerical Illustration . 3.6 Conclusion . Appendices . 3.A Recursive Lemma . 3.B Beyond Local Uniform Convexity . 3.C Proofs in Online Optimization . 3.D Uniformly Convex Objects .

	Chapter 1

 Lemma 1.A.1 (FW on Strongly Convex Set with Approximate Oracle). Assume f is a convex L-smooth function, C an α-strongly convex set and inf x∈C ||∇f (x)|| > c > 0. Assume the LMO in the Frank-Wolfe algorithm (line 2 in Algorithm 9) is solved with a multiplicative error η ∈ [0, 1], i.e. the Frank-Wolfe vertex v t satisfies

 each of the first N calls to Algorithm 5 runs in less than 8e γ + |S xi | -|S xi+1 | iterations. And we finally need

	at most	8	e γ γ	ln	w 0

 and similarly, each call before the i th 0 of Algorithm 5 requires also a bounded number of iterations 8e γ + |S xi | -|S xi+1 | so that we need at most

	8	e γ γ	ln	w(x 0 , S 0) 2C A f e

γ + |S 0 | iterations, which is the desired result.

 Contents 3.1 Introduction . 47 3.2 Frank-Wolfe Convergence Analysis with Uniformly Convex Constraints . . . 49 3.2.1 Scaling Inequality on Uniformly Convex Sets 50 3.2.2 Interpolating linear and sublinear rates 51 3.2.3 Convergence Rates with Local Uniform Convexity 52 3.2.4 Interpolating Sublinear Rates for Arbitrary x * 55 3.3 Online Learning with Linear Oracles and Uniform Convexity 57 3.4 Examples of Uniformly Convex Objects . 59 3.4.1 Uniformly Convex Spaces . 59 3.4.2 Uniform Convexity of Some Classic Norm Balls 60 3.5 Numerical Illustration . 60 3.6 Conclusion . 61 Appendices . 63 3.A Recursive Lemma . 63 3.B Beyond Local Uniform Convexity . 63 3.C Proofs in Online Optimization . 64 3.D Uniformly Convex Objects . 65 3.D.1 Uniformly Convex Spaces . 65 3.D.2 Uniformly Convex Functions . 65

) with respect to the normal cone of C at x * and the local geometry of C at x * , see Remark 3.2.8. When the set C is globally (α, q)-uniformly convex, this is a direct consequence of Lemma 3.2.1 because -∇f (x *) ∈ N C (x *). In the following lemma, we prove that it is also a consequence of a natural definition of local uniform convexity of C at x

* * . Lemma 3.2.4. Consider a compact convex set C and x * a solution to (OPT). Assume that C is locally (α, q)-uniformly convex at x * with respect to || • || in the sense that, for all x ∈ C, η ∈ [0, 1] and unit norm z ∈ R d , we have ηx

 to convexity properties of the set or directly to local scaling inequalities. For instance, local uniform convexity of the gauge || • || C implies a local scaling inequality for C (see Lemma 3.B.1). This suggests that error bounds as guaranteed with Łojasiewicz-type arguments on the gauge function should imply local scaling inequalities, showing that theses inequalities hold somewhat generically.

 Convex Objects 3.D.1 Uniformly Convex Spaces Proof of Lemma 3.4.2. Assume (X, || • ||) is uniformly convex with modulus of convexity δ(•).

	Then for any (x, y, z) ∈ B ||•|| (1), we have by definition 1 -||x+y|| 2

 2 p was (p -1)-uniformly convex with respect to || • || p .In this chapter we analyze two novel randomized variants ofFrank-Wolfe (FW) or conditional gradient algorithms. While classical FW algorithms require solving a linear minimization problem over the domain at each iteration, the proposed method only requires to solve a linear minimization problem over a small subset of the original domain. The first algorithm that we propose is a randomized variant of the original FW algorithm and achieves a O(1/T) sublinear convergence rate as in the deterministic counterpart on compact convex domains.

	Chapter 4
	Subsampling Frank-Wolfe

 subsampling parameter 1 ≤ p ≤ |A|. Get A t by sampling min{p,|A\S t |} elements uniformly from A\S t . Compute s t = LMO(∇f (x t), S t ∪ A t)

	1:				
	2: for t = 0, 1 . . . , T do		
	3:				
	4:				
	5:	Let d FW t	= s t -x t			RFW direction
	6:	Compute v t = LMO(-∇f (x t), S t)
	7: 8: 9:	Let d A t = x t -v t . if -∇f (x t), d FW t d t = d FW t and γ max = 1 ≥ -∇f (x t), d A t	then	Away direction FW step
	10:	else			
	11:	d t = d A t and γ max = α	(t) vt /(1-α	(t) vt)	Away step
	12:	end if			
	13:				
				(t+1) v	> 0}
	16: end for			
	Output:			

Set γ t by line-search, with γ t = argmax γ∈[0,γmax] f (x t + γd t) 14: Let x t+1 = x t + γ t d t update α (t+1) (see text) 15:

Let S t+1 = {v ∈ A s.t. α

 Since it is hard to precisely count the occurrences of { g t ≥ g A t } and { g t < g A t }, we use a conservative bound in (4.37)P(g t = g t | x t , z t = 1) ≥ p |A|This will of course make our bound on the rate of convergence very conservative.Justification for (4.35) and (4.36).Lets denote the left hand side of(4.35) by P 2 . By definition of g t and g t , with r t = -∇f (x t), we have:

				2	
				.	(4.38)
					.36)
	we finally get				
	P ≥	p |A|	2	.	(4.37)

 where the last inequality is a consequence of applying Lemma 2 on the sequence (r t , s) s∈A Similarly let's denote the left hand side of (4.36) by P 3 . The first inequality is justified because conditionally on { g t ≥ g A t }, {g t = g t } ⊂ {g t ≥ g A t }. The last inequality by applying, similarly as for (4.35), Lemma 4.B.2 on the sequence (r t , s) s∈A .

							.41)
	Conditionally on {max						s∈Vt	r t , s ≥
	C 0 } which leads to					
	P(max					
	P 2 =					
	≥ P(max s∈Vt	r t , s = max s∈A	r t , s | x t , max s∈A	r t , s ≥ C 0) ≥	p |A|	,
	P 3 = P(g t ≥ g A t | x t , g t ≥ g A t)			
	≥ P(g t = g t | x t , g t ≥ g A t), ≥ P(max s∈Vt r t , s = max s∈A r t , s | x t , max s∈A	r t , s ≥ C 0) ≥	p |A|	.
	4.B.2 Main proof					
	Theorem 4.3.1 . Consider the set C = conv(A), with A a finite set of extreme atoms, after T
	iterations of Algorithm 11 (RAFW) we have the following linear convergence rate

s∈A r t , s ≥ C 0 }, the event {max s∈Vt r t , s = max s∈A r t , s } implies {max s∈Vt r t , s = max s∈A r t , s | x t , max s∈A r t , s ≥ C 0) P(max s∈Vt r t , s ≥ C 0 | x t , max s∈A r t , s ≥ C 0)

 Case γ max ≥ 1 and γ B t ≤ γ max . (4.46) evaluated on γ = γ B t gives

	where the last inequality is a consequence of Lemma 4.B.1. We write γ B t	gt f 2C A	≥ 0, the
	minimizer of the left hand side of (4.46).		
			.46)
	91		

 |A| where F is defined in (4.57) and where the last inequality follows from (PROB) in Lemma 4.B.3. Recurrence. Consider the property (4.57) when running T -1 iteration. By the tower property of conditional expectations

	with η = p	
	1) ,	(4.60)

 Suppose f has bounded smoothness constant C A f and is μ-generally-strongly convex. Consider the set C = conv(A), with A a finite set of extreme atoms. Then after T iterations of Algorithm 11, with s = |S 0 | and a p parameter of sub-sampling, we have

	T -s 2	} .	(4.71)
	Generalized strongly convex.		
	Theorem 4.3.2 .		

 Probabilistic proofs of approximate Carathéodory rely on a concentration inequality. To prove Theorem 5.2.3 we needed such a result for sampling without replacement with a Bennett or Bernstein upper bound. In what follows, we prove a Bennett-Serfling inequality on Banach spaces (cf. Theorem 5.A.5 below). This concentration inequality allows us to rewrite the upper bound involving the quantity R in Theorem 5.2.3 using a term taking into account a variance-like measure on V . This leads to an approximate Carathéodory version for high sampling ratio and low variance (Theorem 5.2.6). Note that this result is useful in other contexts than approximate Carathéodory, such as approximate Monte Carlo Markov chain algorithms

	Appendices
	5.A Martingale Proof Details

 1(Davis-Kahan). Consider L a graph Laplacian of a R-symmetric-circular Toeplitz matrix A. We add a symmetric perturbation matrix H and denote by à = A + H and L the new similarity matrix and graph Laplacian respectively. Denote by (p i) i=1,...,n and (p i) i=1,...,n the 2-LE coming from L and L respectively. Then there exists a cyclic permutation τ of {1, . . . , n} such thatsup i=1,...,n ||p τ (i) -pi || 2 ≤ 2 3/2 min(√ 2||L H || 2 , ||L H || F) min(|λ 1 |, |λ 2 -λ 1 |) , (A.36)where λ 1 < λ 2 are the first non-zeros eigenvalues of L.Proof. For a matrix V ∈ R n×d , denote byV 2,∞ = sup i=1,...,n V i 2 ,where V i are the columns of V . Because in R n we have || • || ∞ ≤ || • || 2 , it follows that V 2,∞ ≤ ||V i || i=1,...,n 2 =

	n
	i=1

 i=1,...,n ||p i -pτ(i) || 2 ≤ 2 3/2 min(√ 2||L H || 2 , ||L H || F) min(|λ 1 |, |λ 2 -λ 1 |) ,Graph Laplacian involve the diagonal matrix D H . In particular we have thatD H π = Π T D H Π. For the unnormalized Laplacian, it results in L H π = Π T L H Π. We hence have sup i=1,...,n ||p σ(i) -p τ (i) || 2 < 2 3/2 min(√ 2||L H || 2 , ||L H || F) min(|λ 1 |, |λ 2 -λ 1 |) sup i=1,...,n ||p i -p τ •σ -1 (i) || 2 < sin(π/n) .From Theorem A.3.2, p i = cos(2πi/n) for all i. It follows that for any i||p i -cos(2πτ • σ(i)/n)|| 2 < sin(π/n) .

	Algorithm 13 recovers the ordering by sorting the values of
	θ i = tan -1 (p 1 i /p 2 i) + 1[p 1 i < 0]π ,
	where pi = (p 1 i , p2

i). Applying Lemma A.D.2:

|θ i -2π(τ • σ -1)(i)/n| < π/n ∀i ∈ {1, . . . , n}, so that

Robust restarts. Restart schedules often heavily depend on the value of unknown parameters. We show that because the Frank-Wolfe methods naturally produce a stopping criterion in the form of the strong-Wolfe gap, our restart schemes are robust and do not require knowledge of the unobserved strong-Wolfe primal gap bound parameters.

Remerciements

Chapter 5

Approximate Carathéodory using Bernstein-(Sterfling) Bounds

This last chapter steps slightly aside from the analysis or designing of Frank-Wolfe algorithms. Here, we sought to improve results for the approximate Shapley-Folkmann theorem [START_REF] Aspremont | An approximate shapley-folkman theorem[END_REF] which relies on the application of specific versions of the approximate Carathéodory lemma.

Carathéodory's theorem states that if a point x lies in the convex hull of a set C ⊂ R d , then it can be represented as a convex combination of at most d + 1 points in C. Approximate versions of this theorem seek to approach x using a smaller number of points, while minimizing approximation error. Error bounds in this case are typically obtained using a probabilistic argument, depend on the diameter of C, and implicitly assume that the number k of points in the decomposition is much smaller than d. Here, we present several approximate Carathéodory theorems on a polytope Co(V) where V ⊂ R d is a finite set of points. We focus on regimes where the sampling ratio is close to 1, i.e. k is close to d. Our results also better capture the structure of Co(V), using both a diameter and a variance-like measure on V , in a Banach (R d , || • ||). The proofs rely on martingale concentration inequalities for sampling without replacement. In particular we extend the recent work of [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF] and derive a Bennett-Serfling concentration inequality on smooth Banach spaces.

5.A.1 Forward Martingale when Sampling without Replacement

Write V 1 , . . . , V m , the random variables resulting from sampling without replacement of m elements of V . Write v = 1 N N i=1 v i and consider (M k) k∈N the following random process

for k > m (5.12) and M 0 = 0. It is a standard result (when m = N -1) that (M k) k∈N defines a forward martingale [Serfling, 1974, (2.7)], [Bardenet et al., 2015, Lemma 2.1] or [START_REF] Schneider | Probability inequalities for kernel embeddings in sampling without replacement[END_REF] Lemma 1] w.r.t. the filtration (F k) k∈N defined as

(5.13)

In fact the martingale defined in (5.12) for some m 0 is also the stopped martingale at m 0 of the martingale in (5.12) defined for m = N -1 (which corresponds to the martingale studied in [Schneider, 2016, Lemma 1]). Lemma 5.A.1. For m ∈ [N -1], (M k) k∈N as defined in (5.12) is a forward martingale with respect to the filtration (F k) k∈N in (5.13).

Proof. For 1 ≤ k ≤ m, it is exactly the same computations as in [Schneider, 2016, Lemma 1.]. By definition, for k > m

For k ≤ m we also have the two following results [Schneider, 2016, (3) and (5)].

Lemma 5.A.2. (5.15) where I k denotes the martingale's increment and R is such that max i ||v i || ≤ R.

Proof. By definition of (M k)

And exactly as in [Schneider, 2016, (3)], conditionally on the event

which finally leads to

and the desired result.

Appendix A

Reconstructing Latent Orderings by Spectral Clustering

Spectral clustering uses a graph Laplacian spectral embedding to enhance the cluster structure of some data sets. When the embedding is one dimensional, it can be used to sort the items (spectral ordering). A number of empirical results also suggests that a multidimensional Laplacian embedding enhances the latent ordering of the data, if any. This also extends to circular orderings, a case where unidimensional embeddings fail. We tackle the task of retrieving linear and circular orderings in a unifying framework, and show how a latent ordering on the data translates into a filamentary structure on the Laplacian embedding. We propose a method to recover it, illustrated with numerical experiments on synthetic data and real DNA sequencing data.

Contents

A.1 Introduction

The seriation problem seeks to recover a latent ordering from similarity information. We typically observe a matrix measuring pairwise similarity between a set of n elements and assume they have a serial structure, i.e. they can be ordered along a chain where the similarity between elements decreases with their distance within this chain. In practice, we observe a random permutation of this similarity matrix, where the elements are not indexed according to that latent ordering. Seriation then seeks to find that global latent ordering using only (local) pairwise similarity.

Seriation was introduced in archaeology to find the chronological order of a set of graves. Each contained artifacts, assumed to be specific to a given time period. The number of common artifacts between two graves define their similarity, resulting in a chronological ordering where two contiguous graves belong to a same time period. It also has applications in, e.g., envelope reduction [START_REF] Stephen T Barnard | A spectral algorithm for envelope reduction of sparse matrices[END_REF], bioinformatics [START_REF] Atkins | On physical mapping and the consecutive ones property for sparse matrices[END_REF][START_REF] Higgs | Spectral embedding finds meaningful (relevant) structure in image and microarray data[END_REF][START_REF] Cheema | Thread mapper studio: a novel, visual web server for the estimation of genetic linkage maps[END_REF][START_REF] Bradley R Jones | Anges: reconstructing ancestral genomes maps[END_REF] and DNA sequencing [START_REF] Meidanis | On the consecutive ones property[END_REF][START_REF] Garriga | Banded structure in binary matrices[END_REF][START_REF] Recanati | Aspremont. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads[END_REF].

In some applications, the latent ordering is circular. For instance, in de novo genome assembly of bacteria, one has to reorder DNA fragments subsampled from a circular genome.

In biology, a cell evolves according to a cycle: a newborn cell passes through diverse states (growth, DNA-replication, etc.) before dividing itself into two newborn cells, hence closing the loop. Problems of interest then involve collecting cycle-dependent data on a population of cells at various, unknown stages of the cell-cycle, and trying to order the cells according to their cell-cycle stage. Such data include gene-expression [Liu et al., 2017], or DNA 3D conformation data [START_REF] Liu | Unsupervised embedding of single-cell hi-c data[END_REF]. In planar tomographic reconstruction, the shape of an object is inferred from projections taken at unknown angles between 0 and 2π. Reordering the angles then enables to perform the tomography [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF].

The main structural hypothesis on similarity matrices related to seriation is the concept of R-matrix, which we introduce below, together with its circular counterpart.

Definition A.1.1. We say that A ∈ S n is a R-matrix (or Robinson matrix) iff it is symmetric and satisfies A i,j ≤ A i,j+1 and A i+1,j ≤ A i,j in the lower triangle, where 1 ≤ j < i ≤ n.

Definition A.1.2. We say that A ∈ S n is a circular R-matrix iff it is symmetric and satisfies, for all i ∈ [n], (A ij) i j=1 and (A ij) n i=j are unimodal : they are decrease to a minimum and then increase.

Algorithm 13 Circular Spectral Ordering [START_REF] Ronald R Coifman | Graph laplacian tomography from unknown random projections[END_REF]

R , the 2-LE maps the items on a circle, equally spaced by angle 2π/n, following the circular ordering in Π. Hence, Algorithm 13 recovers a permutation Π ∈ P n such that ΠAΠ T ∈ C * R , i.e., it solves Circular Seriation.

A.3.2 Perturbation Analysis

The spectrum is a continuous function of the matrix. Let us bound the deformation of the 2-LE under a perturbation of the matrix A using the Davis-Kahan theorem [START_REF] Davis | The rotation of eigenvectors by a perturbation. iii[END_REF], well introduced in [Von Luxburg, 2007, Theorem 7]. We give more detailed results in Appendix A.D for a subclass of C * R (KMS) defined further.

Proposition A.3.3 (Davis-Kahan). Let L and L = L + δL be the Laplacian matrices of A ∈ C * R and A + δA ∈ S n , respectively, and V, Ṽ ∈ R 2×n be the associated 2-LE of L and L, i.e., the concatenation of the two eigenvectors associated to the two smallest non-zero eigenvalues, written λ 1 ≤ λ 2 for L. Then, there exists an orthonormal rotation matrix O such that

A.3.3 Robinson Toeplitz Matrices

Let us investigate how the latent linear ordering of Toeplitz matrices in L R translates to the d-LE. Remark that from Theorem A.2.1, the 1-LE suffices to solve Linear Seriation. Yet, for perturbed observations of A ∈ L R , the d-LE may be more robust to the perturbation than the 1-LE, as the experiments in §A.5 indicate.

Tridiagonal Toeplitz matrices are defined by b 0 > b 1 > 0 = b 2 = . . . = b p . For m = 0, . . . , n-1, they have eigenvalues ν m with multiplicity 1 associated to eigenvector y (m) [START_REF] William F Trench | On the eigenvalue problem for toeplitz band matrices[END_REF],

thus matching the spectrum of the Laplace operator on a curve with endpoints from §A.2.3 (up to a shift). This type of matrices can indeed be viewed as a limit case with points uniformly sampled on a line with strong similarity decay, leaving only the two nearest neighbors with non-zero similarity. Kac-Murdock-Szegö (KMS) matrices are defined, for α > 0, ρ = e -α , by

Algorithm 14 Ordering Recovery on Filamentary Structure in R K .

Input: A similarity matrix A ∈ Sn, a neighborhood size k ≥ 2, a dimension of the Laplacian Embedding d.

Compute Laplacian Embedding 2: Initialize S = In New similarity matrix 3: for i = 1, . . . , n do 4:

Compute distances on the line 7:

Update similarity 8: end for 9: Compute σ * from the matrix S with Algorithm 12 (resp., Algorithm 13) for a linear (resp., circular) ordering.

Output: A permutation σ * . line 7 we can update the similarity S uv by adding any non-increasing function of the distance D uv , e.g., D -1 uv , exp (-D uv), or -D uv (the latter case requires to add an offset to S afterwards to ensure it has non-negative entries. It is what we implemented in practice.) In line 9, the matrix S needs to be connected in order to use Algorithm 12, which is not always verified in practice (for low values of k, for instance). In that case, we reorder separately each connected component of S with Algorithm 12, and then merge the partial orderings into a global ordering by using the input matrix A, as detailed in Algorithm 15, Appendix A.A.

A.5 Numerical Results

A.5.1 Synthetic Experiments

We performed synthetic experiments with noisy observations of Toeplitz matrices A, either linear (L R) or circular (C * R). We added a uniform noise on all the entries, with an amplitude parameter a varying between 0 and 5, with maximum value of the noise a A F . The matrices A used are either banded (sparse), with linearly decreasing entries when moving away from the diagonal, or dense, with exponentially decreasing entries (KMS matrices). We used n = 500, several values for the parameters k (number of neighbors) and d (dimension of the d-LE), and various scalings of the d-LE (parameter α in (α, d)-LE), yielding similar results (see sensitivity to the number of neighbors k and to the scaling (α, d)-LE in Appendix A.B). In an given experiment, the matrix A is randomly permuted with a ground truth permutation π * . We report the Kendall-Tau scores between π * and the solution of Algorithm 14 for different choices of dimension K, for varying noise amplitude a, in

A.5.2 Genome Assembly Experiments

In de novo genome assembly, a whole DNA strand is reconstructed from randomly sampled sub-fragments (called reads) whose positions within the genome are unknown. The genome is oversampled so that all parts are covered by multiple reads with high probability. Overlap-Layout-Consensus (OLC) is a major assembly paradigm based on three main steps. First, compute the overlaps between all pairs of read. This provides a similarity matrix A, whose entry (i, j) measures how much reads i and j overlap (and is zero if they do not). Then, determine the layout from the overlap information, that is to say find an ordering and positioning of the reads that is consistent with the overlap constraints. This step, akin to solving a one dimensional jigsaw puzzle, is a key step in the assembly process. Finally, given the tiling of the reads obtained in the layout stage, the consensus step aims at determining the most likely DNA sequence that can be explained by this tiling. It essentially consists in performing multi-sequence alignments.

In the true ordering (corresponding to the sorted reads' positions along the genome), a given read overlaps much with the next one, slightly less with the one after it, and so on, until a point where it has no overlap with the reads that are further away. This makes the read similarity matrix Robinson and roughly band-diagonal (with non-zero values confined to a diagonal band). Finding the layout of the reads therefore fits the Linear Seriation framework (or Circular Seriation for circular genomes). In practice however, there are some repeated sequences (called repeats) along the genome that induce false positives in the overlap detection tool [START_REF] Pop | Shotgun sequence assembly[END_REF], resulting in non-zero similarity values outside (and possibly far away) from the diagonal band. The similarity matrix ordered with the ground truth is then the sum of a Robinson band matrix and a sparse "noise" matrix, as in

A.C Proof of Theorem A.3.2

In this Section, we prove Theorem A.3.2. There are many technical details, notably the distinction between the cases n even and odd. The key idea is to compare the sums involved in the eigenvalues of the circulant matrices A ∈ C * R . It is the sum of the b k times values of cosines. For λ 1 , we roughly have a reordering inequality where the ordering of the b k matches those of the cosines. For the following eigenvalues, the set of values taken by the cosines is roughly the same, but it does not match the ordering of the b k . Finally, the eigenvectors of the Laplacian of A are the same than those of A for circulant matrices A, as observed in §A.3.4.

We now introduce a few lemmas that will be useful in the proof.

Notation. In the following we denote z 2 . Also when m and n are not coprime we will note m = dm as well as n = dn with n and m coprime.

A.C.1 Properties of Sum of Cosinus.

The following lemma gives us how the partial sum sequence (S (m) q) behave for q = p or q = p-1 as well as it proves its symmetric behavior in (A.11).

p-q ≥ S (1) q .

(A.11) For n and m ≥ 2 even (n = 2p), we have

q for 1 ≤ q ≤ (p -1)/2 (A.12)

S

(1)

p-1 = 0 and S q , for any m, q ∈ {1, . . . , p}

1-e 2iπm/n = cos π(q + 1)m/n sin(πqm/n) sin(πm/n) .

(A.15)

Let us prove equation (A.10) with the latter expression for q = p. Given that n = 2p + 1 = 2(p + 1/2), we have,

Now, by trigonometric formulas, we have,

It follows that, for any m,

Finally, with x = πm/(2n), this formula simplifies the numerator appearing in equation (A.15) and yields the result in equation (A.10).

Let us now prove equation (A.11) with a similar derivation. Let f (q) cos π(q + 1)/n sin(πq/n), defined for any real q ∈ [1, p/2]. We wish to prove f (p -q) ≥ f (q) for any integer q ∈ {1, . . . , p/2 }. Using n = 2(p + 1/2), we have,

Using cos (π/2 -x) = sin (x) and sin (π/2 -x) = cos (x), we thus have,

To conclude, let us observe that f (q) is non-increasing on [1, p/2]. Informally, the terms {z 1 k } 1≤k≤q appearing in the partial sums S

(1) q are all non-negative for q ≤ p/2. Formally, remark that the derivative of f , df /dq(q) = (π/n) cos (π(2q + 1)/n) is non-negative for q ∈ [1, p/2]. Hence, for q ≤ p/2, f (q -1/2) ≥ f (q), which ends the proof of equation (A.11).

To get the first equality of (A.13), from the exact form in (A.15), we have (n = 2p)

S

(1)

Consider first n = 2p and m even. For m = 1, . . . , p and q = 1, . . . , p -2

(A.17)

Otherwise we have for every (m, q) ∈ {1, . . . , p} 2 S (1) q > S (m) q , (A.18)

with equality when q = p.

Proof. Case m and n coprime. Values of z (m) k k=1,...,p are all distinct. Indeed z

Case m and n not coprime. m = dm and n = dn , with d ≥ 3. In that situation we need to distinguish according to the parity of n.

Case n = 2p + 1. Let's first remark that z

(1) k k=1,...,p takes all values but two (-1 and 1) of the cosinus of multiple of the angle 2π n , e.g. z

(1) k k=1,...,p ⊂ Z n . Also (z

Let's prove (A.18) by distinguishing between the various values of q.

• Consider q = p -(n -1), . . . , p. From (A.10) in lemma (A.C.2), we have S for any q = p -(n -1), . . . , p .

k , (A.19) implies (A.18) for that particular set of q.

• For q = 1, . . . , n -1 it is the same type of argument. Indeed the (z

k) k takes the highest values in Z n in decreasing order, while (z

). This concludes (A.18).

Note that when n ≥ p+1 2 , (A.18) is then true for all q. In the sequel, let's then assume that this is not the case, e.g. n < p+1 2 .

• For q = n -1, . . . , p 2 , the z

(1) q are non-negative. Hence S

(1)

q is non-decreasing and lower bounded by S for k = 1, . . . , n , it is true that for all q in the considered set, S (m) q is upper-bounded by S

(1) n -1 . All in all it shows (A.18) for these values of q.

Observe also that ν n-m = ν m , for m = 1, . . . , n -1, resulting in p + 1 real distinct eigenvalues. ν 0 is singular, whereas for m = 1, . . . , p, ν m has multiplicity 2, with eigenvectors y m and y n-m . This leads to the two following real eigenvectors, y m,cos = 1/2(y m + y n-m) and y m,sin = 1/(2i)(y m -y n-m)

Case n is even, with n = 2p. A derivation similar to (A.26) yields,

√ n (+1, -1, . . . , +1, -1) , and there are p -1 double eigenvalues, for m = 1, . . . , p -1, each associated to the two eigenvectors given in equation (A.22).

The following proposition is a crucial property of the eigenvalues of a circular Toeplitz matrix. It later ensures that when choosing the second eigenvalues of the laplacian, it will corresponds to the eigenvectors with the lowest period. It is paramount to prove that the latent ordering of the data can be recovered from the curve-like embedding. Proof. Since the shape of the eigenvalues changes with the parity of n, let's again distinguish the cases.

For n odd, ν 1 ≥ ν m is equivalent to showing

The last inequality results from the monotonicity of (b k) and is equivalent to (A.30). It concludes the proof.

Recovering Exactly the Order. Here we provide the proof for Theorem A.3.2.

Theorem A.C.6. Consider the seriation problem from an observed matrix ΠSΠ T , where S is a R-circular Toeplitz matrix. Denote by L the associated graph Laplacian. Then the two dimensional laplacian spectral embedding ((Lap-Emb) with d=2) of the items lies ordered and equally spaced on a circle.

Proof. Denote A = ΠSΠ T . The unnormalized Laplacian of A is L diag(A1) -A. The eigenspace associated to its second smallest eigenvalue corresponds to that of µ 1 in A. A and S share the same spectrum. Hence the eigenspace of µ 1 in A is composed of the two vectors Πy 1,sin and Πy 1,cos .

Denote by (p i) i=1,...,n ∈ R 2 the 2-LE. Each point is parametrized by

where σ is the permutation represented matricially by Π.

A.D Perturbation Analysis

The purpose of the following is to provide guarantees of robustness to the noise with respect to quantities that we will not try to explicit. Some in depths perturbation analysis exists in similar but simpler settings [?]. In particular, linking performance of the algorithm while controlling the perturbed embedding is much more challenging than with a one dimensional embedding.

We have performed graph Laplacian re-normalization to make the initial similarity matrix closer to a Toeplitz matrix. Although we cannot hope to obtain exact Toeplitz Matrix. Hence perturbation analysis provide a tool to recollect approximate Toeplitz matrix with guarantees to recover the ordering.

A.D.1 Davis-Kahan

We first characterize how much each point of the new embedding deviate from its corresponding point in the rotated initial set of points. Straightforward application of Davis-Kahan provides a bound on the Frobenius norm that does not grant directly for individual information on the deviation.

A.D.2 Exact Recovery with Noise for Algorithm 13

When all the points remain in a sufficiently small ball around the circle, Algorithm 13 can exactly find the ordering. Let's first start with a geometrical lemma quantifying the radius of the ball around each (cos(θ k), sin(θ k)) so that they do not intersect.

Proof. Let x that satisfies (A.38). Let's assume without loss of generality that θ k = 0 and θ x ≥ 0. Assume also that x = e 1 + sin(π/n)u x where u is a unitary vector. A x for which θ x is maximum over these constrained is such that u x and x are orthonormal. Parametrize u x = (cos(γ), sin(γ)), because u x and x are orthonormal, we have cos(γ) = sin(-π/n). Finally since θ x ≥ 0, it follows that γ = π/2 + π/n and hence with elementary geometrical arguments θ x = π/n.

ABSTRACT

The Frank-Wolfe algorithms, a.k.a. conditional gradient algorithms, solve constrained optimization problems. They break down a non-linear problem into a series of linear minimization on the constraint set. This contributes to their recent revival in many applied domains, in particular those involving large-scale optimization problems. In this dissertation, we design or analyze versions of the Frank-Wolfe algorithms. We notably show that, contrary to other types of algorithms, this family is adaptive to a broad spectrum of structural assumptions, without the need to know and specify the parameters controlling these hypotheses.

KEYWORDS

Frank-Wolfe, Conditional Gradient, Łojasiweciz Inequality, Uniform Convexity, Approximate Carathéodory, convergence rates