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"Chacune de ces machines, d’une manière ou d’une autre, ajoute à la puissance
matérielle de l’homme, c’est-à-dire à sa capacité dans le bien comme dans le mal."

Georges Bernanos, La France contre les robots.
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À ma mère et à mon père pour leur amour.
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Résumé

Les méthodes de Gradient Conditionnel, ou algorithmes de Frank-Wolfe, sont des méthodes
itératives du premier ordre utiles pour résoudre des problèmes d’optimisation sous contraintes.
Elles sont utilisées dans de nombreux domaines comme l’apprentissage statistique, le traite-
ment du signal, l’apprentissage profond, la géométrie algorithmique et bien d’autres encore.
Ces algorithmes décomposent la minimisation d’une fonction non-linéaire en une série de sous
problèmes plus simples. Chacun de ces sous-problèmes revient à minimiser une fonction linéaire
sous les contraintes, l’oracle de minimisation linéaire. De nombreuses variantes de ces algo-
rithmes existent qui cherchent à s’adapter au mieux aux structures particulières des problèmes
d’optimisation sous-jacents. Ainsi de nombreuses directions de recherches restent ouvertes
quant à l’analyse et la conception de nouveaux algorithmes de ce type, notamment pour
l’apprentissage automatique.

Notre première contribution est de proposer et d’analyser de nouveaux schémas algorith-
miques qui s’adaptent à un certain type d’hypothèses génériques. Ces dernières quantifient
le comportement de la fonction près des solutions du problème d’optimisation. L’analyse de
ces schémas d’algorithmes révèle des taux de convergence qui s’interpolent entre les taux clas-
siques sous-linéaires en O(1/T ) et les taux de convergence linéaire. Ces résultats montrent
aussi que les algorithmes de Frank-Wolfe s’adaptent facilement à ce genre d’hypothèse puisque
l’algorithme n’a pas besoin de connaître les paramètres qui contrôlent les hypothèses struc-
turelles supplémentaires pour accélérer.

Notre seconde contribution s’inscrit dans une question de recherche encore ouverte. Les
algorithmes de Frank-Wolfe peuvent accélérer le taux de convergence O(1/T ) quand l’ensemble
de contraintes est un polytope ou un ensemble fortement convexe. Pour quel autre type de
contraintes existe-t-il une version de Frank-Wolfe avec des taux accélérés? Ici nous montrons
que l’uniforme convexité, qui généralise la forte convexité, permet d’accélérer l’algorithme de
Frank-Wolfe, là encore de manière adaptative. Plus généralement, cela signifie que c’est la
courbure des ensembles de contraintes – et pas seulement une quantification spécifique telle
que la forte convexité – qui peut accélérer les algorithmes de Frank-Wolfe.

Pour notre troisième contribution, nous proposons des versions des algorithmes de Frank-
Wolfe où l’oracle de minimisation linéaire est résolu sur des sous-ensembles aléatoires de
l’ensemble de contraintes initial tout en conservant, en espérance, les même taux de convergence
asymptotiques. Bien que ces algorithmes ne conservent pas toutes les propriétés classiques des
algorithmes de Frank-Wolfe, ce résultat étend les résultats de descente par blocs de coordon-
nées qui s’appliquent lorsque l’ensemble de contraintes est le produit cartésien d’ensembles plus
simples.

Finalement notre quatrième contribution vise à raffiner théoriquement les taux dans le
lemme de Carathéodory approximé de sorte à prendre en compte une mesure de la variance,
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dans une norme de Banach, des atomes formant l’enveloppe convexe en question. Ce résultat
repose sur un extension des inégalités de concentration de type Serfling, c’est-à-dire de tirage
avec remplacement. Nous appliquons ce résultat pour des versions approximées du théorème
de Shapley-Folkmann.

En appendice nous relatons des recherches faites en parallèle du sujet principal de recherche.
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Abstract

Conditional gradient algorithms, a.k.a. the Frank-Wolfe algorithms, are first-order iterative
methods designed for solving large-scale constrained optimization problems. These are used in
a variety of modern applied fields such as machine learning, signal processing, deep learning,
computational geometry and many others. They break down non-linear constrained problems
in a series of small subproblems. Each of these requires at worst to minimize a linear function
over the constraint set, the so-called Linear Minimization Oracles (LMO). This framework
encompasses a growing series of algorithms that seek to adapt to particular structures of the
optimization problem. Many open questions remain in the convergence analysis and design of
such algorithms.

Our first contribution is to derive and analyze new Frank-Wolfe algorithms assuming specif-
ically designed Hölderian Error Bounds. Our algorithms exhibit accelerated convergence rates
without knowledge of the error bound parameters, i.e. they are adaptive. Our analysis also
provides the first interpolated convergence rates between standard sublinear rates O(1/T ) and
linear convergence rates.

Our second contribution is focused on finding families of constraint sets for which Frank-
Wolfe algorithms have accelerated convergence rates, outside of the classical scenarios where
the set is either a polytope or a strongly convex set. We prove that the original Frank-Wolfe
algorithm enjoys adaptive accelerated rates when the set is uniformly convex. This struc-
tural assumption subsumes strong-convexity and quantifies the curvature regimes of classical
constraint sets that strong convexity does not capture.

In our third contribution, we design Frank-Wolfe algorithms where the Linear Minimiza-
tion Oracle is only solved on random subsets of the constraints while retaining, in expectation,
classical convergence rates. Although it does not maintain all benefits of Frank-Wolfe algo-
rithms, the method extends block-coordinate type algorithms, which only converge when the
constraint set is the cartesian products of simpler sets.

Our fourth contribution focuses on refining the bounds of the approximate Carathéodory
lemma by taking into account the variance of the convex hull as measured with general Banach
norms. This result relies on an extension of a Serfling concentration inequality type to Banach
spaces. We use this new approximate Carathéodory lemmas to refine approximate versions of
the Shapley-Folkman theorem.

In the appendix, we relate some orthogonal research directions that were developed in
parallel with the principal research subject. The first one stems from a work carried out
with Antoine Recanati where we extend a result of Atkins to a multi-dimensional setting.
The second is also a collective contribution with Louis Thiry and Vivien Cabannes where we
use the pretence of making interactive paintings between artists and machines powered with
what-people-call-artificial-intelligence algorithms to offer a demystifying perspective on these.
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Contributions and thesis outline

This dissertation primarily focuses on designing or analyzing new conditional gradient algorith-
mic schemes, a.k.a. Frank-Wolfe algorithms. We consider the general constrained optimization
problem

minimize
x∈C

f(x), (1)

where C is a compact convex set and f is a differentiable convex function. A crucial feature
our dissertation demonstrates is that Frank-Wolfe algorithms are adaptive to several types of
structural assumptions on the optimization problem.

Chapter 1: This chapter offers a review of Frank-Wolfe algorithms. We survey Frank-Wolfe
algorithm and point to existing convergence results and applications. In this chapter, we do
not provide new results.

Chapter 2: This chapter focuses on designing and analyzing versions of Frank-Wolfe adaptive
to error-bound type conditions. We notably tailor error bounds assumptions for the Frank-
Wolfe algorithms. We then show that restarted versions of Frank-Wolfe enjoy new sublinear
convergence rates without specific knowledge of the error bounds parameters. In other words,
there exist Frank-Wolfe algorithms adaptive to generic structural assumptions on the geometry
of the problem around its optimal solutions.

Chapter 3: In this chapter, we focus on the original Frank-Wolfe algorithm. We show that,
under appropriate assumptions on f , it enjoys accelerated convergence when the constraint
set is uniformly convex. This is a generic quantification of the curvature of a set subsuming
strong-convexity. For instance, the `p balls are uniformly convex for all p > 1, but strongly
convex for p ∈]1, 2] only. Hence, our analysis non-trivially generalizes the various rates under
strong-convexity assumptions. It is the curvature of the constraint sets – not just their strong
convexity – that leads to accelerated convergence rates for Frank-Wolfe. These conclusions
also highlight that the Frank-Wolfe algorithm is adaptive to much more generic constraint
set structures, thus explaining faster empirical convergence. Finally, we also show accelerated
convergence rates when the set is only locally uniformly convex and provide similar results in
online linear optimization.

Chapter 4: Here we propose randomized – or subsampled – variants of the Frank-Wolfe algo-
rithms, which solve linear minimization problems over a small subset of the original domain.
We show that, in expectation, the randomization does not affect the various asymptotic con-
vergence rates. We obtain a O(1/t) sublinear convergence rate for randomized Frank-Wolfe
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and a linear convergence rates for randomized away-step Frank-Wolfe. While subsampling re-
duces the convergence rate by a constant factor, the cost of the linear minimization step can
be a fraction of the deterministic versions, especially when the data is streamed. We illustrate
computational gains on regression problems, involving both `1 and latent group lasso penalties.

Chapter 5: This last chapter steps slightly aside from the analysis or designing of Frank-
Wolfe algorithms. Here, we sought to improve results for the approximate Shapley-Folkmann
[d’Aspremont and Colin, 2017]. The results crucially depend on the application of the approxi-
mate Carathéodory lemma in a regime where the number of atoms to approximate any point of
a convex hull is very close to d+1, where d is the ambient dimension. Because classical proof of
the approximate Carathéodory lemma relies on sampling results, we call it the high-sampling
regime. We hence devise concentration inequalities for that regime, a.k.a. Serfling-type con-
centration inequalities, and for general Banach spaces in order to handle non-Hilbertian norms.
This notably allows stating a version of the approximate Carathéodory lemma using a notion
of variance of the atoms, not just the diameter of the convex hull.

Appendix A: Here we extend a classical result of Atkins et al. [1998] for seriation problems.
These consist in constructing an ordering for a set of objects given the similarity matrix, i.e.
the matrix of their pair-wise measures of similarity. Atkins et al. [1998] recover an ordering
from that of the second eigenvector of the Laplacian of the similarity matrix. In other words,
this consists in retrieving the appearing order from the 1-dimensional embedding stemming
from the Laplacian. Some works eventually considered a similar strategy for the 2-dimensional
Laplacian embedding. Here we show that more generally, increasing the size of the embedding
may maintain a filamentary structure. We provide algorithms to recover the ordering from
these filamentary structures, and we experimentally show that our method is much more
resilient to the noise stemming from the inexact pair-wise measures of similarity. For some
class of matrix typically found in seriation, we also give theoretical guarantees.

Publications related to this manuscript are listed below.

• Chapter 2 is based on the article [Kerdreux et al., 2019]: Thomas Kerdreux, Alexandre
d’Aspremont, and Sebastian Pokutta. "Restarting Frank-Wolfe." The 22nd International
Conference on Artificial Intelligence and Statistics. 2019.

• Chapter 3 is based on the article [Kerdreux et al., 2020a]: Thomas Kerdreux, Alexandre
d’Aspremont, and Sebastian Pokutta. "Projection-Free on Uniformly Convex Sets." 2020.
arXiv preprint arXiv:2004.11053.
This chapter is a generalization and an extension of a partial result given in the last
section of [Kerdreux et al., 2018a]: Thomas Kerdreux, Alexandre d’Aspremont, and Se-
bastian Pokutta. "Restarting Frank-Wolfe: Faster Rates Under Hölderian Error Bounds."
arXiv preprint arXiv:1810.02429v3 2019.

• Chapter 4 is based on the article [Kerdreux et al., 2018b]: Thomas Kerdreux, Fabian
Pedregosa, and Alexandre d’Aspremont. "Frank-Wolfe with Subsampling Oracle." Inter-
national Conference on Machine Learning. 2018.
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• Chapter 5 is partially based on the article [Kerdreux et al., 2017]: Thomas Kerdreux,
Igor Colin, and Alexandre d’Aspremont. "An Approximate Shapley-Folkman Theorem."
arXiv preprint arXiv:1712.08559v3 2017.

• Appendix A is the article [Recanati et al., 2018a]: Antoine Recanati, Thomas Ker-
dreux, Alexandre d’Aspremont. "Reconstructing Latent Orderings by Spectral Cluster-
ing." 2018. arXiv preprint arXiv:1807.07122.

• Appendix B is a link to the following two papers [Cabannes et al., 2019, Kerdreux et al.,
2020b]:
Vivien Cabannes, Thomas Kerdreux, Louis Thiry, Tina Campana, Charly Ferrandes.
"Dialog on a canvas with a machine." 2019. Presented at the workshop of Creativity and
design at NeurIPS 2019.
Thomas Kerdreux, Louis Thiry, Erwan Kerdreux. "Interactive Neural Style Transfer
with Artists." arXiv preprint arXiv:2003.06659 and accepted as an oral presentation at
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Chapter 1

Conditional Gradient Algorithms

A constrained optimization problem seeks to find the extremal values of a function f : Rd → R
when x belongs to a set C ⊂ Rd. Such optimization problems are pervasive in domains like
machine learning, signal processing, economic, computational geometry, deep learning and
many others. The problems we consider all along this dissertation are of the form

min
x∈C

f(x), (1.1)

where f is a convex differentiable function and the constraint set C is a compact convex set.
Since there is usually no analytical formula to describe the solutions of (1.1), numerous al-
gorithmic methods have been designed to find approximate solutions by iteratively refining
a sequence of points (xt). With convexity assumptions, the difficulty is not to build algo-
rithms that converge, but to design ones that best reduce the number of iterations and their
computational cost to obtain an approximate solution to (1.1).

At each iteration, an algorithm exploits some knowledge of f or C that is accessed via
oracles. Most of the algorithms use homogeneous type of oracles at each iteration. As such,
one can typically classify them according to the structural knowledge required by these oracles.
For instance, first-order algorithms involve computations of the gradient of f . There are
also zero-order, second-order, or first-order stochastic algorithms that respectively require the
computation of the function values, the Hessians, or stochastic approximation of the gradients.

In constrained optimization problems, algorithms also need to access a set-related oracle.
For large-scale instance of (1.1), there are typically two commonly used paradigms: proximal
operators or linear minimization oracles (LMO) on C. A proximal operator more or less
requires to minimize a quadratic function over the constraint set C. Each type of oracle has
its realm of efficiency. In this dissertation, we focus on first-order algorithms relying on Linear
Minimization Oracles, known as the Frank-Wolfe algorithms or conditional gradient algorithms.

To avoid confusion, we identify an algorithm to this family when an iteration requires at
worst to solve a linear minimization problem over the original domain, a subset of the domain
or a reasonable modification of the domain, i.e. a change that does not stealthily amount to a
proximal operation.

Analyzing algorithms properties under various structures of the optimization problems
helps to build a practitioner synopsis of the many existing algorithms. Conversely, it is crucial
to design new algorithms that best use the information given by the oracles in order to reduce
the number of inefficient operations.
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A key concept we demonstrate in this dissertation is that the Frank-Wolfe algorithms
are adaptive to various types of structural assumptions. Our contributions show that there
exist Frank-Wolfe variants that exhibit accelerated convergence rates under various parametric
structural assumptions, without requiring knowledge of these parameters.

1.1 Conditional Gradient Framework
Here we present a partial review of the Frank-Wolfe algorithms. We will interchangeably call
these algorithms Frank-Wolfe or conditional gradient algorithms. Our introduction notably
focuses on explaining the known adaptive properties of Frank-Wolfe algorithms.

In this section, we first survey some of the critical features of the original Frank-Wolfe
algorithm and important related notions in convex analysis and geometry. In Section 1.2,
we collect classical convergence results of this algorithm, which we will be referring to during
this dissertation. In Section 1.3, we summarize various corrective versions of the Frank-Wolfe
algorithm and the rich recent literature analyzing various aspects of these methods. Finally,
in Section 1.4, we survey the wealth of Frank-Wolfe algorithms exploring different structural
settings besides the smooth convex minimization over a compact convex set. We also point to
the many domains leveraging Frank-Wolfe algorithms.

Notations. C will always stand for a convex set and we set aside d for the ambient dimension
of C in finite normed spaces. When working in an Hilbertian space we write 〈, 〉 its scalar
product. The polar of a convex set C is defined as C◦ ,

{
y : 〈x, y〉 ≤ 1, ∀x ∈ C

}
. For a matrix

M ∈ Rn×m, its p-Schatten norm is defined as the `p norm of the vector (σi) of its singular

values, ||M ||S(p) ,
(∑max{n,m}

i=1 σpi

)1/p
. For a set C, we note Aff(C) the affine hull of C, Conv(C)

its convex hull and Co(C) its conic hull.

1.1.1 The Frank-Wolfe Algorithm
There are now many different variants of Frank-Wolfe algorithms or conditional gradient meth-
ods [Levitin and Polyak, 1966, §6]. Here, we review the original Frank-Wolfe algorithm [Frank
and Wolfe, 1956] as it captures many of the properties and concepts that will be used all along
this dissertation. It is a first-order iterative method. At each iteration, it finds an element
in the domain C that minimizes the linear approximation of the objective function. It then
performs a convex update between this element and the current iterate.

Each iteration of the Frank-Wolfe algorithm hence relies on the minimization of a linear
function over the domain C, called the Linear Minimization Oracle and defined as follows for
h ∈ Rd.

LMOC(h) ∈ argmin
v∈C

〈h, v〉. (1.2)

The Frank-Wolfe methods are called projection-free as opposed to projected gradient descent
or proximal methods. These other types of algorithms update their iterates along feasible
directions that do not necessarily maintain the iterates in the domain C. As such, they require
some projection oracles, which computational cost is that of minimizing a quadratic function
over the domain C. When the domain C is a polytope, the Frank-Wolfe iterations rely on
Linear Programming (LP) subproblems. In contrast, proximal methods rely on Quadratic
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Programming (QP). Another example is the case of the nuclear norm (the `1 norm of a matrix
singular values). In that case, the Linear Minimization Oracle requires the knowledge of the
leading singular value as opposed to a projection oracle, which relies on the computation of
the full singular value decomposition (SVD).

We now state the Frank-Wolfe algorithm with the three main types of line-search in Algo-
rithm 9.

Algorithm 1 The Frank-Wolfe Algorithm
Input: x0 ∈ C, ε > 0.
1: for t = 0, 1, . . . , T do
2: vt ∈ argmax

v∈C
〈−∇f(xt); v − xt〉 = LMOC(∇f(xt)) . Linear Minimization Oracle

3: if 〈−∇f(xt); vt − xt〉 < ε then
4: return xt
5: end if
6: Variant 1: γt = 1/(t+ 1) . Determinist step-size
7: Variant 2: argminγ∈[0,1] γ〈vt − xt;∇f(xt)〉+ γ2L||vt − xt||2/2 . Short step-size
8: Variant 3: argminγ∈[0,1] f(xt + γ(vt − xt)) . Exact line-search
9: xt+1 = (1− γt)xt + γtvt

10: end for

In (1.2), one can always choose an extreme point of C among the solutions of the linear
minimization. This is particularly important as the iterates of the Frank-Wolfe algorithm are
convex combinations of these outputs. As such, there is a close link between the extremal
structure of C and structural properties of the iterates xt. For instance, if the extreme points
of C are low-rank matrices, then the early algorithm iterates (if properly initialized) will also
be low-rank-matrices.

In line 4 of Algorithm 9, a stopping criterion is a by-product of the Linear Minimization
Oracle. Indeed by optimality of vt and convexity of f , we have

〈−∇f(xt); vt − xt〉 ≥ 〈−∇f(xt);x∗ − xt〉 ≥ f(xt)− f(x∗).

The quantity 〈−∇f(xt); vt − xt〉 is often referred as the Frank-Wolfe gap [Jaggi, 2013] and
denoted g(xt).

1.1.2 Useful Notions of Convex Geometry
Most of the concepts here are classic elements of convex analysis [Rockafellar, 1970b] that
will be useful for this dissertation. Extreme points connect to the structural properties of the
Frank-Wolfe iterates. The faces of the convex domain C and associated cones are related to the
analysis and design of Frank-Wolfe algorithms. We also define two crucial families of convex
domains.

Extreme Points of Convex Sets. A point x of a convex set C is an extreme point of C if and
only if it cannot be written λy + (1− λ)z with x, y ∈ C unless x = y = z [Rockafellar, 1970b,
§18]. We will refer to the extremal structure of C as the properties the extreme points of C
might share. They are particularly important because there is always an extreme point of C
in the solutions of the Linear Minimization Oracle.
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This is a crucial aspect of conditional gradient algorithms as it allows to enforce specific
structures on the iterates that approximate a solution of (1.1). The early iterates are sparse
convex combinations of these extremes points, also called atoms. Each specific extremal struc-
ture of constraint sets C provides a different meaning to the sparsity of the iterates. For
instance, with the `1 balls, the iterates of Frank-Wolfe are sparse in the classical sense, in
terms of non-zero coordinates in the canonical basis. With the trace-norm balls, a.k.a. the
nuclear balls, the matrix iterates are sparse convex combinations of low-rank matrices. Hence
the first iterates are also low-rank matrices. The extremal structure of the convex set C di-
rectly controls the structure of the Frank-Wolfe iterates, a useful mechanism in many practical
scenarios.

Carathéodory lemma states that for a point x in a convex subset of Rd, there exists a
representation of it as a convex combination of at most d + 1 extreme points of C. It means
that, in theory, it is possible to maintain the Frank-Wolfe iterates as a convex combination of
at most d+ 1 extreme points of C.

For the specific case of the Frank-Wolfe algorithm, we can only ensure that after T it-
erations, the iterate will be a convex combination of at most T such extreme points. Most
variants of Frank-Wolfe algorithms share or improve over this property, see corrective variants
in Section 1.3.

Faces of Convex Sets. Extreme points are zero-dimensional faces of convex sets C. A face F
of C is a convex subset of C such that every line segment in C with a relative point in F has
both endpoints in F [Rockafellar, 1970b, §18]. The dimension of the face is the dimension of
its affine hull. While the extremal structure of C, i.e. the zero-dimensional facial structure,
controls the structure of the iterates, the general facial structure of C is more important in the
analysis and design of Frank-Wolfe algorithms.

In many practical applications of Frank-Wolfe in machine learning, the constraint sets
rarely exhibit pathological behaviours. As an arbitrary example, we never encountered a
situation where the set of extreme points was not a closed set, which is however not true
in general. Indeed, most of the examples have relatively simple structures such as polytopes,
strongly-convex sets, uniformly convex sets, intersections of polytopes and strongly-convex sets
or slightly more complex such as nuclear balls or some structured norm balls.

Polytope and Strongly Convex Sets. Polytopes and strongly convex sets are the two families
of set for which there exist a Frank-Wolfe variants with both enhanced theoretical and empirical
properties.

Polytopes are arguably the most common type of convex sets C appearing in practical
applications. Polytopes are bounded sets that can either be represented as the intersection of
several half-spaces, an external representation, or as the convex hull of a finite number of points
(atoms) A, an internal representation. Polytopes admit a finite number of extreme points and
have a homogeneous facial structure, i.e. each face is also a polytope. In Section 1.3, we present
the corrective or away versions of the Frank-Wolfe algorithm that were arguably designed for
this type of structure.

Strongly convex sets is also an important family of structured sets. It is a specific quan-
tification of the curvature of the boundary of some convex sets. In Chapter 3, we show that
more general quantifications of curved sets can be leveraged in the context of the Frank-Wolfe
algorithms.
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Definition 1.1.1 (strongly-convex sets). A compact convex set C is strongly convex with respect
to the norm || · || if and only if there exists α > 0 such that for all (x, y) ∈ C, all γ ∈ [0, 1] and
all z ∈ B||·||(0, 1)

γx+ (1− γ)y + αγ(1− γ)||x− y||2z ∈ C . (1.3)

In euclidean finite-dimension settings, we often say that C is a strongly convex set without
specifying any norm. It is implicitly with respect to the euclidean norm.

Here, any point x ∈ ∂C is extreme, and the faces of a strongly convex set are the set itself
and its extreme points. Others equivalent definitions of the strong convexity of a set exist but
are not useful here [Weber and Reisig, 2013]. Note also that Definition 1.1.1 depends on a
specific norm || · ||, impacting the value of the constant α. In finite dimension, because norms
are equivalent, when a set is strongly convex for a given norm, it is with varying parameters α.
This has an influence on some convergence rate of the Frank-Wolfe algorithm. In particular,
it is not an affine invariant notion.

The strong-convexity of a set is especially interesting as it often brings a quadratic structure
on the optimization problem (1.1) sufficient to accelerate the Frank-Wolfe algorithms, without
additional quadratic structure on the function f (besides smoothness), see Section 1.2.

Convex Cones. A convex cone K, is a set in Rd such that for any tuple x, y ∈ K and any
tuple of non-negative coefficients (α, β), αx + βy ∈ K. Several type of natural convex cone
appears in convex geometry [Rockafellar, 1970b, §2]. The situation is considerably simpler for
practical analyses of Frank-Wolfe algorithms. The normal cone to a point x ∈ ∂C with respect
to C is defined as

KC(x) =
{
h s.t. 〈y − x;h〉 ≤ 0 ∀y ∈ C

}
. (1.4)

At a point x of the boundary of C, KC(x) gathers all the directions that are negatively correlated
with all admissible direction to C at x. Normal Cone is a notion very closely related to Linear
Minimization Oracles as a extreme point v∗ solution of

argmin
v∈C

〈h; v〉,

is such that h ∈ KC(v∗). Normal cones offer simple geometrical understanding of the behavior of
a Frank-Wolfe algorithm, such as the zig-zag phenomenon [Wolfe, 1970, Guélat and Marcotte,
1986] or the improved convergence when the set is curved, see Figure ?? in Chapter 3. The
analyses of Frank-Wolfe algorithms then often seek to summarize this geometrical perspective
into a single algebraical formula. In particular, this is probably the reason why only arguably
homogeneous type of structure of the constraint sets has been studied in the analyses of the
Frank-Wolfe algorithms.

1.1.3 Useful Notions of Convex Analysis
We have just reviewed the important properties of the convex constraint sets that appear
in optimization problem (1.1). Similarly, the convergences of the algorithms also depend on
structural assumptions on the objective functions f in (1.1). Most of our work has been done
in the context of convex differentiable functions which revolve around two main assumptions,
L-smoothness and µ strong convexity. In Section 2.1 of Chapter 2, we review other types of
assumptions which provide a way for convex function to interpolate and localize the convexity
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and strong-convexity behaviors. In Chapter 2, we then define errors bounds for the specific
setting of Frank-Wolfe algorithms and show how they can be leveraged.

Definition 1.1.2 (Convex function). A function is convex if for any distinct (x, y) ∈ C and
γ ∈ [0, 1]

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y) . (1.5)

When (1.5) holds strictly, the function is stricly convex, guaranteeing the unicity of a solu-
tion to (1.1). When the function f is differentiable, convexity implies that the function is lower
bounded by its linear approximations. Strong convexity then strengthens this by requiring the
function to be lower bounded by a quadratic approximation of it. For a differentiable function
f we now state the strong convexity property in Definition 1.1.3.

Definition 1.1.3 (Strongly convex function). A differentiable function f on C is strongly convex
(with respect to || · ||) if there exists µ > 0 such that for any (x, y) ∈ C

f(y) ≥ f(x) + 〈∇f(x); y − x〉+ µ

2 ||x− y||
2. (1.6)

Conversely, the L-smoothness property means that the gradient is a L-Lipschitz function on
C. It then bounds the amplitude of the variations of the function and means that the function
is upper bounded by a quadratic approximation of it, see Definition 1.1.4. For feasible direction
methods, this upper bound directly controls the amount of primal decrease to hope for at each
iteration.

Definition 1.1.4 (Smooth convex function). A differentiable function f on C is smooth (with
respect to || · ||) if there exists L > 0 such that for any (x, y) ∈ C

f(y) ≤ f(x) + 〈∇f(x); y − x〉+ L

2 ||x− y||
2. (1.7)

These properties can be localized. There is also a plethora of conditions and inequality
one can derive from convex functions satisfying these assumptions. For instance, a µ > 0
strong convexity (resp. L smoothness) parameter is a lower-bound (resp. upper-bound) on the
smallest (resp. largest) eigenvalue of the hessian of f . For other classical relations, we refer to
textbooks like [Bertsekas, 1997, Boyd et al., 2004, Nesterov, 2013].

1.1.4 Some Constraint Sets
Frank-Wolfe algorithms break down the minimization of a non-linear function into the multiple
minimization of linear functions. Linear Minimization is an extensively studied paradigm with
many results. Many practical problems come from the relaxation of combinatorial problems
for which efficient linear minimization algorithms are known [Schrijver, 2003]. For example,
the Birkhoff polytope is the convex hull of the permutation matrices and Linear Programming
on that domain is efficiently solved with the Hungarian algorithm [Lovasz, 1986, §1.2.]. The
subject is already extensively studied, and we refer to the prominent work of [Jaggi, 2013]. In
particular, [Jaggi, 2013, Table 1] groups an extensive list of constraint set and associated cost
of their LMO. We now review a few mechanisms.
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Strongly Convex Sets. The `p balls and p-Schatten balls for p ∈ [1, 2[ are examples of strongly
convex sets [Garber and Hazan, 2015]. From these, one can designed group norms which balls
are also strongly convex, see [Garber and Hazan, 2015, §4] for more details. In particular,
these balls admit analytical formula for the Linear Minimization Oracle for any values of the
parameter p. For parameters value p > 2, these norm balls are more generally uniformly
convex. In Chapter 3, we show that this more general property accelerates the Frank-Wolfe
algorithm.

Atomic Sets. In Section 1.1.2, we noted that the extremal structure of the convex set C passes
on to the (early) iterates of Frank-Wolfe algorithms. Alternatively, one can select a set of atoms
(points) A sharing a specific structure and consider their convex hull conv(A) as the constraint
domain in (1.1). The set of extrem points of conv(A) is a subset of A. Hence, provided the
structure of the atoms is stable via sparse convex combination (with is the case for instance
for low-rank atoms), their structure passes on to the (early) iterates of Frank-Wolfe.

This rationale applies also in a regularization perspective, via the gauge function of a convex
set. Loosely speaking, the gauge function allows to construct a measurement associated to the
set C. It is defined as follows (see [Rockafellar, 1970b, §15])

ΩC(x) , inf
{
λ > 0 : x ∈ λC

}
. (1.8)

In particular, when A is bounded, centrally symmetric with zero its interior, the gauge of
conv(A) is a norm [Rockafellar, 1970b, Theorem 15.2.]. The gauge function of the convex hull
of an atomic set A hence defines a regularizer that may induce specific structures in the solution
of penalized optimization problems. This is the basis to some structure inducing norms [Jacob
et al., 2009, Obozinski et al., 2011, Foygel et al., 2012, Liu et al., 2012, Tomioka and Suzuki,
2013, Wimalawarne et al., 2014, Richard et al., 2014].

It is interesting to solve the atomic constraint problem with the Frank-Wolfe algorithm
as the iterates (and not just the solution of (1.1)) may directly capture the atomic structure.
Solving a Linear Minimization Oracle over the convex hull of an atomic domain may also be
considerably cheaper that computing the proximal operator.

We finally remark in [Abernethy et al., 2018, Definition 7], the use of gauge functions as a
way to define an alternative notion of a set strong-convexity. Molinaro [2020] recently prove
that the two notions are equivalent.

1.2 Classic Convergence Results
We now detail known convergence rates of the Frank-Wolfe algorithm for specific structures
of optimization problem (1.1). When the function is L-smooth and the domain C is a gen-
eral compact convex set, there is a tight [Canon and Cullum, 1968, Jaggi, 2013, Lan, 2013]
convergence rate of O(1/T ).

However, accelerated convergence rates hold depending on additional structures on C or on
the position of the solution x∗ of (1.1) with respect to ∂C. In these scenarios, the Frank-Wolfe
algorithm does not require any specific knowledge of the additional structural properties and
adapts to these scenarios. Understanding the full spectrum of structural assumptions that
lead to accelerated convergence rates is thus an important research question. For instance, in
Chapter 2 (resp. Chapter 3) we prove that some non-quadratic structures of the function f
(resp. of the constraint set C) accelerate the Frank-Wolfe algorithm.
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This section groups convergence results that only concern the original Frank-Wolfe algo-
rithm. Of course, it is not the only projection-free algorithm and the underlying open question
remains as follows.

Given a problem structure, what is the best convergence acceleration a projection-free method
(to be designed) can reach?

Understanding for which structures the Frank-Wolfe algorithm accelerate (and is adaptive)
is important to design new projection-free algorithm. In Section 1.3, we review convergence
results for the corrective variants of Frank-Wolfe. These are arguably designed to adapt to
polyhedral domains. In this section, we also discuss results involving approximate Linear
Minimization Oracle or affine invariant quantities.

Affine Invariance. The following constant curvature Cf [Clarkson, 2010a, (9)] is a measure
of the non-linearity of f on the set C.

Cf , sup
x,v∈C γ∈[0,1]
y=x+γ(v−x)

2
γ2

(
f(y)− f(x)− 〈∇f(x); y − x〉

)
. (1.9)

It is a key quantity in the analysis of the Frank-Wolfe algorithm [Clarkson, 2010a, Jaggi, 2013,
Lacoste-Julien and Jaggi, 2013], that summarizes properties of f and the constraint set C.
It mingles together the diameter of C and the L-smoothness parameter. In particular, for a
L-smooth function, we have Cf ≤ L ·maxx,y∈C ||x− y||2 for any norm || · || [Jaggi, 2013]. It also
drives the general convergence result of the Frank-Wolfe algorithm [Jaggi, 2013].

Theorem 1.2.1 (Theorem 1 in [Jaggi, 2013]). When f is a L-smooth convex function and C
a compact convex set, then the iterates of the Frank-Wolfe algorithm (with determinist line-
search) satisfy

f(xT )− f(x∗) ≤ Cf
T + 2 . (1.10)

In [Frank and Wolfe, 1956], the sublinear convergence rate of O(1/T ) is stated with L ·
maxx,y∈C ||x− y||2 in place of Cf . Previous rates where not only less tight, but also depended
on a specific way to measure the geometry of C. Importantly, this affine invariant analysis with
Cf (1.10), echoes to the fact that the Frank-Wolfe algorithmic procedure does not require the
specification of any distance function.

The curvature constant Cf applies to other structural scenarios [Lacoste-Julien and Jaggi,
2013], but is primarily designed for the Frank-Wolfe algorithm. In Section 1.3, we review
another curvature constant CAf [Lacoste-Julien and Jaggi, 2013], that are dedicated to corrective
variants of Frank-Wolfe. Interestingly, in Chapter 2, we also designed quantities (error bounds)
that are an interplay between the properties of the functions, the constraint domains and the
types of Frank-Wolfe algorithms.

Line-Search Rules. There are two main types of line-search rules in the Frank-Wolfe algo-
rithm beside exact line-search. The simplest one uses oblivious (or determinists as they are
decided beforehand) step sizes proportional to 1

k+1 , where k is the number of iterations [Lev-
itin and Polyak, 1966, Dunn and Harshbarger, 1978]. These often fail at capturing theoretical
and empirical accelerated convergence rates. Alternatively, one can minimize the quadratic
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upper-bound given by the L-smoothness of the function. This requires the knowledge of an
upper bound on the Lipschitz constant. We call it the short step-size rule. Pedregosa et al.
[2018] study a versatile adaptive scheme which performs short step sizes by adaptively refining
an estimate of the upper bound on the Lipschitz constant L. They prove the efficiency of the
approach on all known accelerated convergence regimes. Note also that [Freund and Grigas,
2016] studies constant step size accounting for warm starts.

The Frank-Wolfe algorithm enjoys accelerated convergence rates when the optimum x∗ is
in the interior of C or when the set C is strongly convex. In these two cases, with appropriate
structural assumptions on f , the convergence rates are known to be linear. The Frank-Wolfe
algorithm is adaptive to these scenarios as it does not need to be modified to obtain these
improved convergence rates.

Acceleration I: Optimum in the interior. When the optimum is in the interior of C and f is
a L-smooth and µ-strongly convex function, i.e. it enjoys additional quadratic structure, the
convergence rate of the Frank-Wolfe algorithm (with exact line-search or short-step sizes) is
linear [Guélat and Marcotte, 1986, Theorem 2]. It is conditioned by the non-affine invariant
parameters L and µ. Lacoste-Julien and Jaggi [2013] give an affine invariant convergence
result. As defined in (1.9), Cf is an affine invariance version of the L-smoothness relative to a
set C. Lacoste-Julien and Jaggi [2013] also define an affine invariant version of µ relative to C
in the special case where x∗ is in the interior of C, see [Lacoste-Julien and Jaggi, 2013, §2] for
more details.

Theorem 1.2.2 (Theorem 3 of Lacoste-Julien and Jaggi [2013]). When x∗ in the interior of C,
then the iterates of the Frank-Wolfe algorithm (with exact line-search or short-step-size) satisfy

f(xT )− f(x∗) ≤ (1− ρ)T (f(x0)− f(x∗)), (1.11)

with ρ = min
{

1
2 ; µ

FW
f

Cf

}
, where Cf is defined in (1.9) and µFWf in [Lacoste-Julien and Jaggi,

2013, (3)].

Note that these convergence rates depend implicitly on the distance of x∗ (via µFWf ) to
the boundary of C, hence the rate can become arbitrarily bad. It however highlights that the
Frank-Wolfe algorithm is adaptive to the position of the optimal solution and recovers the
asymptotic convergence rate of gradient descent when the optimum is in the interior.

Acceleration II: Strongly Convex Set. When the set C is strongly convex (Definition 1.1.1)
and there exists c > 0 such that ||∇f(x∗)|| > c, the Frank-Wolfe algorithm (with exact line-
search or short step sizes) enjoys a linear convergence rate [Levitin and Polyak, 1966, Demyanov
and Rubinov, 1970]. In particular, the convergence does not require strong-convexity of the
function f . In other words, the additional quadratic structure comes from the constraint set
rather than from the function.

Theorem 1.2.3. Consider C an α-strongly convex set with respect to a norm || · || and f a convex
L-smooth function. Assume there exists c > 0 such that infx∈C ||∇f(x)|| > c. The iterates of
the Frank-Wolfe algorithm (with line-search of short step-sizes) satisfy

f(xT )− f(x∗) ≤
(
1− ρ)T (f(x0)− f(x∗)), (1.12)

9



where ρ = min
{

1
2 ,

αc
8L

}
.

The convergence rate in (1.12) depends on c > 0, a measure of the minimal gradient
magnitude on C, and on the parameter α of strong convexity of the set. Both quantities depend
on a specific norm and are hence are not affine invariant. To our knowledge, there exists no
affine invariant analysis of the Frank-Wolfe algorithm in that setting. Such an analysis would
reflect the fact that the Frank-Wolfe algorithm is adaptive to the scenario, with no specific
input parameter depending on a choice of norm.

The two linear convergence regimes we have surveyed can both become arbitrarily bad as
x∗ closes the frontier of C, and do not apply in the limit case where the unconstrained optimum
lies at the boundary of C. To this end, when the constraint set is strongly convex, Garber and
Hazan [2015] prove a general sublinear rate of O(1/T 2) when f is L-smooth and µ-strongly
convex (or slightly less than that), see [Garber and Hazan, 2015, Theorem 2].

The Analysis of Dunn. In [Dunn, 1979, 1980], Dunn proves accelerated (linear) convergence
rates of the Frank-Wolfe algorithm when the optimization problem has a sufficient quadratic
structure at x∗ ∈ ∂C. In particular, his convergence results non-trivially subsume the cases
where C is globally or locally strongly convex. In Figure 1.1, we illustrate scenarios where the
set is locally not strongly-convex, but the Frank-Wolfe algorithm still enjoys linear convergence.
Geometrically, it is sufficient for the linear convergence of the Frank-Wolfe algorithm that there
exists a tangent hyperball at the solution x∗ ∈ ∂C with the (non-zero) gradient normal to this
hyperball at x∗. Algebraically, for x∗ ∈ ∂C, Dunn [1979] introduces the following quantity

ax∗(σ) = inf
x∈C

||x−x∗||≥σ

〈∇f(x∗);x− x∗〉. (1.13)

In [Dunn, 1979], lower-bounds on a(σ) determine the converge rate of the Frank-Wolfe al-
gorithm. In particular, when there exists A > 0 such that ax∗(σ) ≥ Aσ2, the Frank-Wolfe
algorithm (with exact line-search or short step-sizes) converges linearly.

Approximate LMO. It is also possible to approximatively solve the Linear Minimization Or-
acle (line 2 to Algorithm 9) while maintaining the convergence guarantees. This is for instance
useful in situations where solving the exact Linear Minimization Oracle is an intractable prob-
lem, but efficient approximate solutions exist. There are several ways to quantify the ap-
proximation: multiplicatively (see [Lacoste-Julien et al., 2013, Appendix C]) or additively (see
[Dunn and Harshbarger, 1978, Jaggi, 2013] or [Freund and Grigas, 2016, Section 5]). An addi-
tive δ-approximate solution ṽ to the Linear Minimization Oracle for a convex set C at iterate
xt satisfies

〈−∇f(xt); ṽ〉 ≥ max
v∈C
〈−∇f(xt); v〉 − δ. (1.14)

For ν ∈ [0, 1], a multiplicative ν-approximate solution ṽ to the Linear Minimization Oracle for
a convex set C for d ∈ Rd satisfies

〈−∇f(xt); ṽ − xt〉 ≥ η ·max
v∈C
〈−∇f(xt); v − xt〉. (1.15)

It is then in case-by-case basis that extensions of Frank-Wolfe admit convergence results
when using approximate Linear Minimization Oracles. In Lemma 1.A.1 of Appendix 1.A,
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(a) ax∗ (σ) ≥ A||∇f(x∗)||σ2 (b) ax∗ (σ) ≥ A||∇f(x∗)||σ2

Figure 1.1: In both cases, there exists A > 0 such that ax∗(σ) ≥ A||∇f(x∗)||σ2, and the
analysis of Dunn guarantees linear convergence rate. Note however, that on the right figure, C
is not locally strongly-convex at x∗. The analysis of Dunn goes beyond local strong-convexity.
Note that in the right figure, at x∗, there is a quadratic lower bound on ax∗(σ) as soon as the
negative gradient −∇f(x∗) ∈ KC(x∗) is not orthogonal to the face of C that contains v. The
dashed circled represents C ∩ {x | ||x− x∗|| = σ}.

we provide a proof of the linear convergence of the Frank-Wolfe algorithm when the set in a
strongly convex set and using multiplicative approximate LMO. Note that [Pedregosa et al.,
2018] studied approximate LMO for corrective variants of Frank-Wolfe.

1.3 Corrective Frank-Wolfe Algorithms
We now introduce the corrective or away versions of the Frank-Wolfe algorithm. These are
designed to use projection-free (linear minimization) oracles that maintain the optimization
iterates in the convex feasible region C. They introduce additional type of descent directions
with respect to the original Frank-Wolfe algorithm.

They are called corrective when considering the iterates from an algebraical point of view:
these directions allow to correct carefully chosen weights of the current (sparse) convex com-
bination of the iterate xt. Alternatively, these additional directions are also called away or
in-face directions when considering the algorithm from a geometrical point of view. Indeed,
these directions move the current iterate in the current face it belongs to, or away from some
selected vertices in the iterates convex combination.

There are many such variants that explore different trade-off and algorithmic designs:
various criterions to chose between a classic Frank-Wolfe direction or an away direction; the
type of away direction; designing non-atomic versions and many others. Importantly, these
methods allow to adaptively capture linear convergence rates when the constraint set is a
polytope and the objective function is L-smooth and µ-strongly convex.
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1.3.1 Away or Corrective Mecanisms
Away-steps Frank-Wolfe. It was first proposed in [Wolfe, 1970] and analyzed in [Guélat and
Marcotte, 1986]. Along with the iterates (xt), the algorithm maintains the point set St and the
sequence of weights (αv)v∈St such that xt =

∑
v∈St αvv. The points in St are extreme points

of C. The main insight is that for any v ∈ St, xt− v updates of the form xt+1 = xt + γ(xt− v)
with γ ∈ [0, αv/(1 − αv)] maintains xt+1 ∈ C. These hence define feasible directions that do
not require any projection step.

In line 5, the algorithm then selects the vertex v ∈ St such that xt − v is the best possible
descent direction, i.e. the direction most correlated with the negative gradient. This vertex is
called the away vertex. In line 7, the algorithm then arbitrates between the Frank-Wolfe and
the away direction. It chooses the one most correlated with the negative gradient. Note that
many works later considered different choosing criterion.

Algorithm 2 Away-steps Frank-Wolfe (AFW)

Input: x0 ∈ C, x0 =
∑
v∈S0 α

(0)
v v with |S0| = s.

1:
2: for t = 0, 1 . . . , T do
3: Compute vFWt = LMOC(∇f(xt))
4: Let dFWt = vFWt xt . FW direction
5: Compute vAt = LMOSt(−∇f(xt))
6: Let dAt = xt − vAt . . Away direction
7: if 〈−∇f(xt), dFWt 〉 ≥ 〈−∇f(xt), dAt 〉 then
8: dt = dFWt and γmax = 1 . FW step
9: else

10: dt = dAt and γmax=α
(t)
vt /(1−α

(t)
vt ) . Away step

11: end if
12: Set γt by line-search, with γt = argmaxγ∈[0,γmax] f(xt + γdt)
13: Let xt+1 = xt + γtdt . update α(t+1)

14: Let St+1 = {v ∈ A s.t. α(t+1)
v > 0}

15: end for
Output:

Algorithm 2 is a corrective version of the Frank-Wolfe algorithm because some iterations
explicitly correct one of the weights of the iterate convex combination. This might appear as
a loose statement as any iteration of the original Frank-Wolfe algorithm also multiplicatively
rescales the weights by (1 − γt), where γt is the step-size. The difference is that Frank-Wolfe
iterations correct the representation by adding new weights and rescaling accordingly. Away-
steps certainly only correct the current convex combination of the iterates. Note that some
other versions, like pair-wise Frank-Wolfe (see Section 1.3.3) are designed to modify only two
weights at each iteration.

Fully-Corrective Frank-Wolfe. The away-step Frank-Wolfe focuses primarily on finding a fea-
sible direction that best correlates with the negative gradient. The corrective property of the
away-steps appears only as a by-product of that quest. Other trade-offs between correcting the
iterates convex representations and obtaining the best immediate local primal decrease can be
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considered. In particular, the fully corrective Frank-Wolfe [Von Hohenbalken, 1977, Holloway,
1974, Hearn et al., 1987] can be viewed as being on the other side of the checkboard. Before
seeking for immediate local primal decrease via a Frank-Wolfe direction, it searches for the
best point (in primal decrease) in the convex hull of the points appearing in the decomposition
of the current iterate, a correction of the current iterate, see line 4 in Algorithm 3.

Algorithm 3 Fully-Corrective Frank-Wolfe (FCFW)

Input: x0 ∈ C, x0 =
∑
v∈S0 α

(0)
v v with |S0| = s.

1:
2: for t = 0, 1 . . . , T do
3: Compute vt = LMOC(∇f(xt))
4: (xt+1,St+1) = argminx∈Conv(St

⋃
{vt})f(x)

5: end for
Output:

1.3.2 Linear Convergence on Polytopes
The lower bounds on the Frank-Wolfe algorithm show that in generality, without algorithmic
modification, the algorithm could not converge at a linear rate when the function is smooth,
enjoys quadratic structures (like strong-convexity) and the set is a polytope. In particular,
linear convergence results on the Frank-Wolfe algorithm are known only when the solution
of (1.1) is in the interior, or when the set also has quadratic structure [Levitin and Polyak,
1966, Demyanov and Rubinov, 1970, Dunn, 1979] – see Section 1.2. The corrective versions of
Frank-Wolfe were in particular designed to alleviate these issues.

Recently, two bodies of works [Lacoste-Julien and Jaggi, 2013, Garber and Hazan, 2013a,
Lacoste-Julien and Jaggi, 2015b] showed with different techniques that indeed some versions of
Frank-Wolfe enjoy global linear convergence rate when the set is a polytope – and the function
f has adequate structure. Note also that Beck and Shtern [2017] prove linear convergence under
a quadratic error bound instead of the strong-convexity of f , which is a localized quadratic
structure on f .

Lacoste-Julien and Jaggi [2013, 2015b] give an affine invariant linear convergence result for
corrective variants of Frank-Wolfe. Garber and Hazan [2013a,b] also exhibit a modification of
the Frank-Wolfe algorithm enjoying linear convergence. Their algorithm relies on a modifica-
tion of the Frank-Wolfe algorithm, where Local Linear Minimization Oracles (LLMO) replace
the Linear Minimization Oracles. This new oracle is efficiently performed when the constraint
set is a polytope, although it requires some function parameters. The LLMO is a relaxation of
a stronger oracle that minimizes a linear function over the intersection of the original set C and
a ball resulting from the strong convexity of f . Lan [2013] considers a version of Frank-Wolfe
[Lan, 2013, Algorithm 3] with this (expensive) enhanced LMO that admits linear minimization
oracle. Interestingly, the link between Frank-Wolfe with LLMO and its corrective variants is
not straightforward from the implementation of the LLMO for polytopes.

Under these assumptions, the seek for linear convergence proofs of a modified Frank-Wolfe
algorithm has a long history. [Guélat and Marcotte, 1986] gave the first linear convergence
proof with a strict complementarity assumption, i.e. when the constrained optimum is in the
relative interior of its optimal face, and the unconstrained optimum is away from the boundary.
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Beck and Teboulle [2004] show linear convergence of the Frank-Wolfe algorithm under a slater
condition on their original problem. It is very close to assuming that the optimum is in the
relative interior of the constraint set C. Without restriction on the position of the optimum,
Migdalas [1994], Lan [2013] gave linear convergence (for C polytope and f smooth and strongly-
convex) rates but with much stronger oracles that are akin to projection or proximal steps.
Todd and Yıldırım [2007] prove linear convergence when C is the simplex and with no precise
dimension dependency of the conditioning number; [Damla Ahipasaoglu et al., 2008, Kumar
and Yıldırım, 2011] assume the Robinson Condition [Robinson, 1982].

Affine Invariance. As for the Frank-Wolfe algorithm, Lacoste-Julien and Jaggi [2013] proposes
an affine invariant notion of the L-smoothness that is dedicated to the analysis of corrective
variants of Frank-Wolfe. We recall the definition of away curvature in [Lacoste-Julien and
Jaggi, 2015a, Appendix D], with

CAf , sup
x,s,v∈C
η∈[0,1]

y=x+η(s−v)

2
η2
(
f(y)− f(x)− η〈∇f(x), s− v〉

)
, (1.16)

where f and C are defined in problem (2.4) above.

Convergence Rates Conditioning. Many alternatives to the original Pyramidal Width of
[Lacoste-Julien and Jaggi, 2013], which conditions the linear convergence proof of their analysis,
have been considered. The conditioning in [Garber and Hazan, 2013a, Theorem 2] directly de-
pends on problem parameters such as L-smooth, µ-strongly convex parameters or the ambient
dimension but [Garber and Hazan, 2013a, Algorithm 2] depends on such specific parameters.
This echoes the stronger versions of [Lan, 2013] where the theoretical convergence rates con-
ditioning is also explicit in these parameters. The works of [Garber and Meshi, 2016, Bashiri
and Zhang, 2017] proposed a condition number that depends on the dimension on the optimal
face on which the solution of (1.1) lies, which may be considerably smaller than the ambient
dimension. Beck and Shtern [2017] proposes a vertex-facet distance constant condition num-
ber. Finally, [Pena and Rodriguez, 2018, Gutman and Pena, 2018] studied various interesting
geometrical notions of conditioning relative to a polytope.

1.3.3 Other Corrective Variants
Many other corrective variants of Frank-Wolfe exist. These rely on different ways to choose be-
tween Frank-Wolfe direction and corrective direction or to implement the Fully-Corrective Or-
acle. For instance [Vinyes and Obozinski, 2017] propose an efficient version of Fully-Corrective
Frank-Wolfe dedicated to difficult atomic sets and where the corrective oracle relies on a spe-
cific active-set algorithm. Some also design new possible projection-free corrective directions
or construct non-atomic based algorithmic versions.

Pair-Wise Frank-Wolfe. The Pair-Wise Frank-Wolfe algorithm [Mitchell et al., 1974], was re-
visited in [Lacoste-Julien and Jaggi, 2015a]. Contrary to the AFW (Algorithm 2), it considers
only one type of descent direction, parallel to the line joining the Frank-Wolfe vertex (line 3
of Algorithm 2) and the Away vertex (line 5 of Algorithm 2). Interestingly, at each iteration,
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this algorithm makes a convex update that corrects exactly two weights of the current decom-
position of the iterate. Its main drawback is not practical but theoretical as it becomes much
harder to account for the number of drop steps and hence influence the linear convergence
guarantees, see [Lacoste-Julien and Jaggi, 2015a].

Algorithm 4 Pair-Wise Frank-Wolfe (PFW)

Input: x0 ∈ C, x0 =
∑
v∈S0 α

(0)
v v with |S0| = s.

1:
2: for t = 0, 1 . . . , T do
3: Compute vFWt = LMOC(∇f(xt)) and vAt = LMOSt(−∇f(xt))
4: Let dt = vFWt − vAt . . Pair-wise direction
5: Set γt by line-search, with γt = argmaxγ∈[0,α

vA
t

] f(xt + γdt)

6: Let xt+1 = xt + γtdt . update α(t+1) (see text)
7: Update St+1 = {v ∈ A s.t. α(t+1)

v > 0}
8: end for

Output:

Min-Norm Point. Min-Norm Point (MNP) algorithm [Wolfe, 1976] is also known to be a
corrective variant of Frank-Wolfe algorithms. Note also that [Bach et al., 2013, §9.2.] pointed
out that the min-norm point is a particular instance of the Active-Set Method for QP in
[Nocedal and Wright, 2006, Algorithm 16.3 in Chapter 16.5.] when the hessian equal to the
identity. Min-Norm Point relies on a sequence of affine projections.

Forward-Backward. The forward-backward method of Rao et al. [2015] is a specific way of
performing the fully-corrective step in Algorithm 3, where the forward steps correspond to
Frank-Wolfe steps and the backward steps correspond to corrective steps in Algorithm 3 and 2.

Memory-Less Corrective Versions of Frank-Wolfe. Away or corrective versions of Frank-Wolfe
as detailed in §1.3.1 perform an additional Linear Minimization Oracle than the Frank-Wolfe
algorithm. This LMO requires to store the optimization iterates as convex combinations of
atoms. When these algorithms are used to leverage on the projection-free property of the
Frank-Wolfe framework – and not necessarily on the trade-off between the structure of the
iterates and their approximation quality –, they suffer from a memory overhead, with respect
to the Frank-Wolfe Algorithm. There is also a possible runtime overhead because the selection
of the best away vertex relies on an enumeration strategy.

For a specific class of polytopes – i.e. polytopes with vertices in {0, 1}d and for which we
have access to an algebraic representation –, [Garber and Meshi, 2016] first showed that it is
possible to compute an away-step without relying on a specific decomposition of the current
iterate. They show that their decomposition invariant version of Frank-Wolfe enjoy linear
convergence rates on these polytopes when the function is L-smooth and µ-strongly convex. In
particular, they first exhibit conditioning that depends on the sparsity of the optimal solution
in term of vertices of the polytopes, i.e. on the dimension of the optimal face. Their work was
then extended and refined by [Bashiri and Zhang, 2017] to general polytopes.

15



In-Face Frank-Wolfe. [Freund et al., 2017] propose an In-face version of Frank-Wolfe algo-
rithms with several key features for the specific application of matrix completion. In-Face
refers to the fact that away direction as developped in Section 1.3.1 are directions in the affine
hull of the optimal face the current iterate belongs to. Leveraging on the specific structures
of the nuclear ball [So, 1990], [Freund et al., 2017] hence proposed corrective directions that
depends on the optimal face FC(xt) the current iterate xt belongs to. Hence, similarly to
[Garber and Meshi, 2016, Bashiri and Zhang, 2017], it does not rely on a non-affine invariant
atomic representation of the current iterate.

Moreover, they propose a different choosing criterion between classical Frank-Wolfe direc-
tions and these in-face directions. In particular, these chosen directions are more favourable
to in-face directions which empirically results in a sparser trade-off between accuracy and
structure of the iterate. In the case of matrix completion, this corresponds to the trade-off
between data fidelity and low-rank structure of the solution. One can loosely interpret these
criteria as practical algorithmic schemes between the classic away version of Frank-Wolfe and
fully-corrective versions.

1.4 Applications and Variants
In the previous section, we presented the original Frank-Wolfe algorithm, its corrective variants
and the known scenarios where these algorithms enjoy accelerated convergence rates. We now
present some of the many different mechanisms that can be plugged in these algorithms to
account for the various specificities of practical applications. For instance, there are stochastic,
block-coordinate [Lacoste-Julien et al., 2013, Osokin et al., 2016], second-order [Carderera
and Pokutta, 2020], non-convex [Dunn, 1980, Lacoste-Julien, 2016], non-smooth and many
other different versions of Frank-Wolfe algorithms. In Section 1.4.1, we review some of these
mechanisms and in Section 1.4.2 we point to applications leveraging them.

1.4.1 Other Mechanisms
Stochastic Frank-Wolfe. In many practical scenarios, stochastic versions of the gradient are
easily accessible and computationally cheaper than the exact gradients. This is, for instance,
the case in Empirical Risk Minimization. The function f in (1.1) is the sum of n functions,
where n is the size of the dataset, and computing an exact gradient requires the computation of
the gradient of n function. It is often preferable to compute less expensive stochastic versions
of this gradient over a random batch of these n functions. Algorithms using such stochastic
estimators of the gradient are usually called stochastic. Some effort has been dedicated to
designing stochastic Frank-Wolfe algorithms, with versions increasing the batch-size at each
iteration [Hazan and Luo, 2016, Reddi et al., 2016] and other recently converging with fixed
batch-sizes [Mokhtari et al., 2018, Hassani et al., 2019, Zhang et al., 2019, Lu and Freund,
2020] and enjoying fast convergence rates [Négiar et al., 2020].

Reducing Number of Call to Oracles. Some works focused on producing Frank-Wolfe algo-
rithms with the same asymptotic convergence guarantees as their original counter-part while
requiring less gradient or LMO calls. For instance, some versions leverage on the gradient
sliding mechanism [Lan and Zhou, 2014], where the gradient computation are recycled at
subsequent iterations [Cheung and Lou, 2015, Lan and Zhou, 2016, Qu et al., 2017]. Also,
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Braun et al. [2017b] propose a lazy mechanism to reduce the number of calls to the full Lin-
ear Minimization Oracle. A weak separation oracle (that is much weaker than an approximate
Linear Minimization Oracle) replaces full LMO calls when these are unnecessary (see also their
stochastic version in [Lan et al., 2017].

Affine Spaces and Matching-Pursuit. Recent works have shown the relation between Frank-
Wolfe algorithms and Matching-Pursuit algorithms [Locatello et al., 2017b], which also relies
on linear minimization oracle over affine sets. While previous work also considered affine
directions [Wolfe, 1976], this connection has been particularly fruitful [Locatello et al., 2017c,
Combettes and Pokutta, 2020].

Cone Constrained or Non-Negative Matching-Pursuit. For cone constrained problem (or non-
negative matching-pursuit algorithms), [Locatello et al., 2017c] designed the first projection-
free algorithms with convergence guarantees for general L-smooth convex functions enjoying
sublinear and linear rates. In particular they overcome the difficulty that when the constrained
set in a conic hull of an atomic set, – as opposed to the convex or affine hull of an atomic set
– classical generalization of MP to non-negative constraints do not satisfy the alignement
property, see [Locatello et al., 2017c, §2] and [Pena and Rodriguez, 2018]. This property states
that at any suboptimal iterates, there exists a search direction given by the algorithm that is
non-negatively correlated with the negative gradient. Hence [Locatello et al., 2017c, Algorithm
2] proposes − xt

||xt|| as a possible feasible direction that guarantees that, unless at the optimum,
the algorithm always picks a direction striclty positively correlated with the negative gradient.
Informally, the first algorithm they propose can be seen as the equivalent of plain Frank-Wolfe
algorithm on a cone constrained setting in the sense that it is a first-order projection-free
algorithm that suffers from a general sublinear rate of O(1/T ). Indeed when the algorithm
chooses the direction − xt

||xt|| , it changes all the weights. Hence they propose corrective versions
[Locatello et al., 2017c, Algorithm 3 and 4] that are the analogous of the away or corrective
versions of Frank-Wolfe we reviewed in §1.3. In particular, under appropriate assumption,
these enjoy linear convergence rates with a similar analysis as in [Lacoste-Julien and Jaggi,
2013].

Generalized Frank-Wolfe. In this dissertation, we focus on designing and analyzing versions of
Frank-Wolfe algorithms for constrained optimization problems. However, conditional gradient
methods have also been studied and designed for different minimization problem formulations.
There are generalized Frank-Wolfe algorithms for penalized problems or composite problems
Bredies et al. [2009], Dudik et al. [2012], Harchaoui et al. [2012], Vinyes and Obozinski [2017]
of the form

min
x∈K

f(x) + Φ(x), (1.17)

where K is a cone and Φ a penalty function. These types of Frank-Wolfe algorithms are
arguably called generalized because the optimization iterates are unconstrained. The iterates
do not necessarily evolve in the constrained sets of the equivalent constraint formulation of the
problem. Often, the function Φ is chosen to be the gauge of the convex hull of an atomic set
[Dudik et al., 2012, Harchaoui et al., 2012, Vinyes and Obozinski, 2017] (see Section 1.1.4), or
more generally a gauge-like function [Rockafellar, 1970b, Theorem 15.3.], with an emphasis on
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the composition of a non-decreasing function with an atomic gauge function [Harchaoui et al.,
2015, Sun and Bach, 2020].

These algorithms offer another perspective with respect to the constrained versions and
were studied theoretically in [Harchaoui et al., 2015, Bach, 2015, Yu et al., 2017, Nesterov,
2018]. Interesting connections have been made with other well-known algorithms like iterative
shrinkage method [Bredies et al., 2009], mirror descent [Bach, 2015] or column generation
algorithm [Vinyes and Obozinski, 2017].

Online Learning. There is a strong interplay between projection-free online learning, linear
online learning and Frank-Wolfe algorithms for offline optimization. New algorithms and con-
vergence analysis have emerged from the interplay.

For instance, Hazan and Kale [2012] first propose a projection-free (i.e. one linear min-
imization per iteration) online algorithm that can be seen as a direct transposition of the
Frank-Wolfe algorithm in an online setting. The general O(1/T ) convergence rate for smooth
function translate into a Õ(

√
T ) regret bound of Online Frank-Wolfe [Hazan and Kale, 2012,

Algorithm 1] in the stochastic setting. Similarly Garber and Hazan [2013a] first proposed a
projection-free online algorithm that obtain a logarithmic Õ(log(T )) regret bound when the
decision set is a polytope and the cost functions are smooth and strongly convex. Lafond et al.
[2015] also transpose the away algorithms of [Lacoste-Julien and Jaggi, 2013, 2015b] and their
analysis to the online setting. Previous work to Hazan and Kale [2012] seem to have consider
only online linear optimization [Kalai and Vempala, 2005, Huang et al., 2016a]. The Frank-
Wolfe setting hence provide a principled efficient manner to transform non-linear problems into
a series of linear steps.

Alternatively, the work of [Abernethy and Wang, 2017, Abernethy et al., 2018] explore the
other way around and derive some Frank-Wolfe algorithms by opposing two online algorithms.
They derive new FW algorithms. For instance, [Abernethy et al., 2018, Algorithm 2] has the
same convergence rate of O(1/T 2) when the set and function are strongly convex [Abernethy
et al., 2018, corollary 11].

1.4.2 Examples of Applications of Frank-Wolfe
Frank-Wolfe algorithms appear in a wealth of applications, like SVM [Clarkson et al., 2012,
Ñanculef et al., 2014, Osokin et al., 2016], submodular optimization [Edmonds, 2003, Bach
et al., 2013, Bian et al., 2016, Hassani et al., 2017, Mokhtari et al., 2017], coresets [Kumar
and Yildirim, 2005, Damla Ahipasaoglu et al., 2008, Clarkson, 2010a], neural network pruning
[Ping et al., 2016, Scardapane et al., 2017], optimal control theory [Kelley, 1962, Gilbert, 1966,
Barnes, 1972, Dunn, 1974, Kumar, 1976, Dunn, 1979, 1980], matrix completion [Shalev-Shwartz
et al., 2011, Harchaoui et al., 2012, Dudik et al., 2012, Giesen et al., 2012, Allen-Zhu et al.,
2017, Yurtsever et al., 2017] and many others. Let us now regroup a non-exhaustive list of
applications of the Frank-Wolfe algorithms.

Non-Hilbert Spaces. Frank-Wolfe methods have also been leveraged as an appealing solution
in non-Hilbert spaces. Indeed, each iteration relies on feasible directions that only involve the
current iterate and an extreme point of the constraint set. In particular, it was considered
for measure spaces [Bredies and Pikkarainen, 2013, Boyd et al., 2017, Denoyelle et al., 2019,
Luise et al., 2019]. In that context only non-corrective variants of the Frank-Wolfe method
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are leveraged. Indeed the corrective variants are known to accelerate convergence when the
constraint set is a polytope, which is of limited interest when the underlying space is infinite
dimensional. It was also extensively used in optimal transport applications [Courty et al.,
2016, Vayer et al., 2018, Paty and Cuturi, 2019, Luise et al., 2019].

Herding. [Bach et al., 2012] recently leveraged on the various algorithmic versions and analysis
of conditional gradient algorithms to find good quadratic rules to approximate integrals in
Reproducing Kernel Hilbert Spaces (RKHS) with norm || · ||H, see [Lacoste-Julien et al., 2015,
§2.1.] for a complete introduction. Let X be the data point space, Φ the map from X to the
RKHS and p a fixed distribution on X . Bach et al. [2012] proposed solving with Frank-Wolfe
Algorithms the following problem

argmin
g∈M

∣∣∣∣µp − g∣∣∣∣, (1.18)

where M , Conv
(
Φ(x) | x ∈ X

)
is known as the marginal polytope and µp , Ep

(
Φ(x)

)
is

the mean element, see [Lacoste-Julien et al., 2015, §2.1.] for the rational behind (1.18). Using
various Frank-Wolfe algorithms to solve (1.18) gives differently weighted iterates gt =

∑T
t=1wtet

where et are extreme points of the marginal polytopeM which actually are of the form Φ(x)
under some mild assumptions. Hence gt =

∑T
t=1wtΦ(xt), which can be identified to the

quadratic rule p̃t ,
∑T
i=twtδxt .

This was the basis of improvments for Kernel Herding [Bach et al., 2012], particle filtering
[Lacoste-Julien et al., 2015], MMD [Futami et al., 2019] or Bayesian Inference [Belanger et al.,
2013, Niculae et al., 2018].

Computer-Vision. In structured prediction, the relations between objects are modelled via
hard constraints. Recent computer vision applications involve large scale settings. Frank-
Wolfe methods have been leveraged to deal with constrained discriminative clustering like in
action localization [Bojanowski et al., 2014], text-to-video alignment [Bojanowski et al., 2015,
Alayrac et al., 2016], object co-localization in videos and images [Joulin et al., 2014] or instance-
level segmentation [Seguin et al., 2016]. In these particular cases, the domains are sometimes
products of simpler domains. Hence block-coordinate Frank-Wolfe methods can be used to
scale the problems [Miech et al., 2017, Peyre et al., 2017, Miech et al., 2018].
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Appendices

1.A Proofs
1.A.1 More on Approximate LMO
Here we provide a version of the linear convergence of the Frank-Wolfe algorithm with approx-
imate Linear Minimization Oracle when the set is strongly convex. It is not much different
from the proof with exact Linear Minimization Oracle, but we could not find any reference for
it. Also, the dependence of the bound on the error is not completely favorable as it depends
on the square of the multiplicative approximation error parameter.

Lemma 1.A.1 (FW on Strongly Convex Set with Approximate Oracle). Assume f is a convex
L-smooth function, C an α-strongly convex set and inf x∈C ||∇f(x)|| > c > 0. Assume the
LMO in the Frank-Wolfe algorithm (line 2 in Algorithm 9) is solved with a multiplicative error
η ∈ [0, 1], i.e. the Frank-Wolfe vertex vt satisfies

〈−∇f(xt); vt − xt〉 ≥ η ·max
v∈C
〈−∇f(xt); v − xt〉 .

Then the Frank-Wolfe iterates (with short-step size or exact line-search) satisfies

f(xK)− f(x∗) ≤ ρK(f(x0)− f(x∗)), (1.19)

with x0 ∈ C and ρ , max
{
η
2 ; 1− cη2α

4L

}
.

Proof. By L-smoothness and choice of line search, for any γ ∈ [0, 1], we have

f(xt+1) ≤ f(xt) + γ〈∇f(xt); vt − xt〉+ γ2

2 L||vt − xt||
2 .

By strong convexity of C, ṽt(z) = vt+xt
2 + α

4 ||vt − xt||2z belong to C for any unit vector z.
Because vt is an η-multiplicative approximate LMO, we have (recall ht = f(xt)− f(x∗))

〈∇f(xt); vt − xt〉 ≤ η〈−∇f(xt); ṽt(z)− xt〉
〈∇f(xt); vt − xt〉 ≤

η

2 〈−∇f(xt); vt − xt〉+ ηα

4 ||vt − xt||
2〈−∇f(xt); z〉

〈∇f(xt); vt − xt〉 ≤ −η2ht −
ηα

4 ||vt − xt||
2c

So finally

ht+1 ≤ ht
(
1− ηγ

2
)

+ ||vt − xt||2
(γ2

2 L−
cηαγ

4
)
.

Hence if cηα
2L ≥ 1, we set γ = 1 and we have ht+1 ≤ ht

(
1 − η

2
)
. Otherwise we chose γ = cηα

2L
and we have

ht+1 ≤ ht
(
1− cη2α

4L
)
.

Finally we have,

ht+1 ≤ ht ·max
{η

2 ; 1− cη2α

4L
}
. (1.20)
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Chapter 2

Restarting Frank-Wolfe

In this chapter we consider constrained convex minimization problems of the form

min
x∈C

f(x),

where f is a smooth convex function and C is a compact convex set. Our goal is to adapt
and analyze new versions of the Frank-Wolfe algorithms which enjoy accelerated convergence
rates under specific conditions. The results in this chapter contribute to suggesting that the
Frank-Wolfe algorithms are adaptive to various type of structures of the objective function.

We replace µ-strongly convex assumptions with specially designed error bounds type condi-
tions. We analyze a restarted version of the away-steps Frank-Wolfe when the set is a polytope
and a restarted version of Frank-Wolfe when the optimum is in the interior of C. Our results
fill the gap between the previous linear O(log 1/ε) rate and the sublinear O(1/ε) rate. Our
contributions can be summarized as follows.

1. Strong-Wolfe primal bound. Under generic assumptions, we derive strong-Wolfe primal
gap bounds generalizing those obtained from strong convexity of f . These bounds are
obtained by combining a Łojasiewicz growth condition on f with a scaling inequality
on C, and continuously interpolate between the convex and strongly convex cases. In
particular, they can be considered as a type of first-order error bounds designed for
Frank-Wolfe algorithms.

2. Fractional Frank-Wolfe Algorithms. We then define a new conditional gradients algorithm
that dynamically adapts to the parameters of these strong-Wolfe primal bounds using
a restart scheme. The resulting algorithm achieves either sub-linear (i.e., O(1/εq) with
q ≤ 1) or linear convergence rates depending on the strong-Wolfe primal gap parameters.
The exponent q depends on the growth of the function around the optimum, so the
function is not required to be strongly convex in the traditional sense. In particular,
we obtain linear rates (depending on the parameters) for non-strongly convex functions.
Our rates are satisfied after a mild burn-in phase that does not depend on the target
accuracy.

3. Robust restarts. Restart schedules often heavily depend on the value of unknown pa-
rameters. We show that because the Frank-Wolfe methods naturally produce a stopping
criterion in the form of the strong-Wolfe gap, our restart schemes are robust and do not
require knowledge of the unobserved strong-Wolfe primal gap bound parameters.
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4. We generalize our approach to Hölder smooth functions.

In Section 2.1 we quickly review error bounds conditions and their applications in first-order
optimization algorithms. In Section 2.2 we briefly recall key notions, notations and we then
describe our strong-Wolfe primal bounds. In Section 2.3 we present the Fractional Away-step
Frank-Wolfe algorithm along with the associated restart schemes in Section 2.4. Section 2.5
gives an analysis when the optimum is in the interior of the constraint set (see Section 2.5.2).
For completeness, in Appendix 2.A we state a result of [Xu and Yang, 2018] leveraging the
strong convexity of the set C with error bound type assumptions. Indeed these are known
cases where additional structure on f leads to accelerated convergence rates of the (vanilla)
Frank-Wolfe algorithm (see Section 1.2). Finally, Appendix 2.B generalizes the analysis to
Hölder smooth functions.
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2.1 Introduction to Error Bounds
Error bounds quantify function behaviours near their minimizers. As such, they offer a compre-
hensive framework to capture additional structure in optimization problems. Loosely speaking
then, an error bound is a kind of two-body concept involving the properties of the optimization
problem and the choice of a specific quantification for the error bound itself. It can also become
a three-body concept when accounting for the chosen optimization algorithm (see Section 2.2).

For instance, some works focused on characterizing large classes of functions satisfying
specific types of error bounds; others on designing optimization algorithms that accelerate by
adapting to the error bounds properties, which are often characterized by unknown parameters.
In this chapter specifically, we design specific error bounds in the Frank-Wolfe framework and
we design new Frank-Wolfe algorithms that adapt to these error bounds.

We now provide a partial review of error bounds in Section 2.1.1. We give pointers to
the Kurdika-Łojasiewicz inequality in Section 2.1.2. In Section 2.1.3, we briefly survey works
using these tools to design and analyze first-order optimization methods, and refer the reader
to [Nguyen, 2017] for an in-depth discussion.

2.1.1 Error Bounds
An error bound is an inequality upper bounding the distance from an arbitrary point in a test
set K to the level set of a function in terms of the function values. For an increasing function
φ : R+ → R+ such that Φ(0) = 0, c ∈ R and K ⊂ Rd, an error bound takes the following form

dist
(
x, [f ≤ c]

)
≤ φ(f(x)), ∀x ∈ K . (2.1)

The function φ(·) is known as the residual function and dist() denotes the Euclidean distance.
Hoffman [1952] proved the first type of error bounds, quantifying the distance of a point
to the set of solutions to an ensemble of linear equations, then refined in [Robinson, 1975,
Mangasarian, 1985, Auslender and Crouzeix, 1988] and many others.

Denote X∗ the set of minimizers of f – in this dissertation we will essentially consider
strictly convex functions, so that the set X∗ is a singleton that we write {x∗}. When the
residual φ is a power function and the level set of interest is the set of minimizers X∗, (2.1)
are named Hölderian error bounds (HEB). For a µ > 0 and θ ∈ [0, 1], these take the following
form

dist
(
x,X∗

)
≤ µ

(
f(x)− f(x∗)

)θ
, ∀x ∈ K , (2.2)

where dist
(
x,X∗

)
= min

x∈X∗
||x− x∗||2. This inequality more closely describes the behaviour of a

function around its minimizers. As such, error bounds play an essential role in understanding
and designing optimization algorithms.

The early works of Łojasiewicz are fundamental in this vein. He first showed that in-
equalities (2.2) held generically for large classes of functions, i.e. real analytic or subanalytic
functions in [Łojasiewicz, 1958, Lojasiewicz, 1965, Łojasiewicz, 1963]. After his work, Hölderian
error bounds (2.2) are also named as Łojasiewicz error bounds.

From a geometrical point of view, these inequalities characterize the behavior of functions
around their extrema and are then known under different variants and names, like sharpness
inequalities [Burke and Ferris, 1993, Burke and Deng, 2002] or strict minimum conditions. See
also the Polyak-Łojasiewciz condition [Polyak, 1963, Karimi et al., 2016b].
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We now recall the Kurdyka-Łojasiewicz gradient inequality, a.k.a. the gradient-dominated
inequality, which is a closely related to the error bounds (2.2) [Bolte et al., 2010, 2017, Azé
and Corvellec, 2017] and has emerged as an important tool for first-order algorithms.

2.1.2 Kurdyka-Łojasiewicz Inequality
Definition 2.1.1 (Łojasiewicz Gradient Inequality). Consider a differentiable function f , a crit-
ical point x∗ and a neighborhood K ⊂ Rd. f satisfies a Łojasiewicz gradient inequality in the
neighborhood K or x∗ if there exists c > 0 and θ ∈ [1/2, 1[ such that

|f(x)− f(x∗)|θ ≤ c||∇f(x)|| ∀x ∈ K. (2.3)

Łojasiewicz first showed inequalities of this type for real analytic and subanalytic functions.
See [Lojasiewicz, 1965, §18, Proposition 1] and [Bierstone and Milman, 1988, Proposition 6.8.]
which states the Łojasiewicz gradient inequality with θ ∈]0, 1[. [Kurdyka, 1998, §2 Theorem
ŁI] extended Łojasiewicez Gradient Inequality to C1 functions whose graph belong to an o-
minimal structure. Crucially then Bolte et al. [2007] extended (2.3) to some class of non-
differential functions, replacing ||∇f(x)|| in (2.3) by the non-smooth slope [Bolte et al., 2007,
(4)] ||∂f(x)|| = inf

{
||d|| : d ∈ ∂f(x)

}
. In particular [Bolte et al., 2007, Theorem 3.1] extend

(2.3) to continuous subanalytical functions and [Bolte et al., 2007, Theorem 3.3] to the class
of convex lower semi-continuous subanalytic functions.

For convex functions, the Łojasiewicz inequality can be understood as a local generalization
of strong convexity in the sense that the strong-convexity quadratic lower-bound on f at x∗
implies that (2.3) holds on C with θ = 1/2. Indeed for a convex function and any x ∈ C

||x− x∗|| · ||∇f(x)|| ≥ (x− x∗) · ∇f(x) ≥ f(x)− f(x∗),

and by strong convexity of f at x∗,

f(x)− f(x∗) ≥ (x− x∗) · ∇f(x∗)︸ ︷︷ ︸
≥0

+µ

2 ||x− x
∗||2 ≥ µ

2 ||x− x
∗||2.

Finally for any x ∈ C, combining the two we have

||∇f(x)|| ≥
√
µ

2

√
f(x)− f(x∗) .

Note also that the convexity of f alone, implies that (2.3) is satisfied with θ = 1, the weak
case, with

f(x)− f(x∗) ≤ ||∇f(x)||D, ∀x ∈ C ,

where D is the diameter of C. In particular this hints that (2.3) at least (because it does much
more than that) continuously captures behaviors in between the structure of differentiable
convex function and that of a differentiable strongly convex function.

As explained in [Bolte et al., 2007], with regularity alone (2.3) may fail or holds only in
the weak sense with θ = 1. Bolte et al. [2007] notably provide two examples of C∞ functions.
The other way around, structure alone may not be sufficient for (2.3) to hold, as the results of
[Bolte et al., 2007] seem to require at least lower semi-continuity. (2.3) is an intricate relation
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between structure and regularity.

The parameters (c, θ) are generally unknowns and hard to get. To circumvent the issue,
one can either design adaptive methods, which leverage on the additional structure of the
function given in (2.3) without knowing the specific parameters, see Section 2.1.3. Another
line of work is to find KL exponent (i.e. the value of θ in (2.3)) for various classes of functions
[Luo and Sturm, 2000, Li, 2013, Vui, 2013] and explore how mathematical operations preserve
KL exponents, in other words defining a calculus for KL exponents. For instance, Li and Pong
[2018] deduce the KL exponent of a minimum over a finite number of KL functions or Yu et al.
[2019] study the effect of inf-projection. Another direction is to relate Kurdyka-Łojasiewicz
with others type of error bounds for which explicit quantitative statements may be easier to
get. For instance, Li and Pong [2018] notably shows that Luo-Tseng error bounds plus some
mild assumption on the separation of stationary values give KL exponents of 1

2 .

2.1.3 Error Bounds in Optimization
Kurdyka-Łojasiewicz inequality (2.3) is a local condition that generically holds and generalizes
classical structural assumptions such as strong convexity. Hence, it is a key tool for the anal-
ysis of optimization methods. Bolte et al. [2017] notably shows the use Kurduka-Łojasiewicz
inequality for analyzing a variety of optimization algorithms. Some works also considered
non-convex settings [Attouch and Bolte, 2009, Attouch et al., 2010, 2013, Bolte et al., 2014].
Error bounds have been used for composite problems and for alternating or splitting methods
[Attouch et al., 2010, 2013, Bolte et al., 2014, Frankel et al., 2015, Karimi et al., 2016b, Zhou
and So, 2017].

Roulet and d’Aspremont [2017] importantly shows that sharpness can adaptively result
in accelerated convergence rates for restarts schemes of smooth gradient methods. Restart
was previously shown to be heuristically efficient [Giselsson and Boyd, 2014b, O’donoghue and
Candes, 2015, Su et al., 2016] but without improved computational guarantees. Other works
considered sharpness for restart schemes but dit no study the cost of adaptation [Nemirovskii
and Nesterov, 1985a] or were not adaptive [Liu and Yang, 2017] to the error bounds parameters.
This motivated our work on restarting Frank-Wolfe algorithms.

In the context of Frank-Wolfe algorithms, [Beck and Shtern, 2017] show that, for polytopes,
when replacing the strong-convexity assumption by a quadratic errror bound, i.e. Hölderian
error bound with r = 2, the away-step Frank-Wolfe enjoys linear convergence rates. Our work
below considers any type of Hölderian behavior, not just a localization of strong convexity. In
particular, we specifically design error bounds where the residual function is replaced by Wolfe
gaps. We propose a restart scheme argument that captures the same improved convergence
rates as in [Roulet and d’Aspremont, 2017, Roulet, 2017] but in the setting of Frank-Wolfe
algorithms. A very important consequence of this chapter is that these acceleration results
Frank-Wolfe algorithms are adaptive to error bound parameters.

2.2 Hölderian Error Bounds for Frank-Wolfe
Recall that we consider the following optimization problem

minimize f(x)
subject to x ∈ C (2.4)
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in the variables x ∈ Rn, where C ⊂ Rn is a compact convex set and f : Rn → R is a convex
function. Let X∗ be the set of minimizers of f over C and we will consider strictly convex
convex functions so that X∗ = {x∗}. We assume that the following linear minimization oracle

LPC(x) , argmin
z∈C

xT z (2.5)

can be computed efficiently.

2.2.1 Wolfe Gaps
By assumption here, we have C = Co(Ext(C)) where Co(·) is the convex hull, Ext(·) the set
of extreme points, and Carathéodory’s theorem shows that every point x of C can be written
as a convex combination of at most n + 1 points in Ext(C) although a given representation
can contain more points. We call these points the support of x in C. We say that a support
S is proper when the weights that compose the convex combination of x are all positive. We
now define the strong-Wolfe gap as follows.

Definition 2.2.1 (Strong-Wolfe Gap). Let f be a smooth convex function, C a polytope, and let
x ∈ C be arbitrary. Then the strong-Wolfe gap w(x) over C is defined as

w(x) , min
S∈Sx

max
y∈S,z∈C

∇f(x)T (y − z), (2.6)

where x ∈ Co(S) and Sx = {S | S ⊂ Ext(C), is finite and x a proper combination of the elements of S},
the set of proper supports of x. We also write

w(x, S) , max
y∈S,z∈C

∇f(x)T (y − z)

given S ∈ Sx.

By construction, we have w(x) ≤ w(x, S). Note also that for x ∈ C, the quantity w(x, S)
is the sum of the Frank-Wolfe dual gap with the away dual gap in [Lacoste-Julien and Jaggi,
2015a] as shows the following decomposition

w(x, S) = max
y∈S
∇f(x)T (y − x)︸ ︷︷ ︸

away or Wolfe (dual) gap

+ max
z∈C
∇f(x)T (x− z)︸ ︷︷ ︸

Frank-Wolfe (dual) gap

. (2.7)

Note that only w(x, S) is observed in practice, but we use w(x) to simplify the primal bounds
and the convergence proof. Also we write the Frank-Wolfe (dual) gap as

g(x) = max
z∈C
∇f(x)T (x− z). (2.8)

We first show the following lemma on w(x, S) and w(x).

Lemma 2.2.2. Let x ∈ C. A finite set S = {vi | i ∈ I} with vi ∈ Ext(C) for some finite index
set I, is a proper support of x if

x =
∑
i∈S

λivi, where 1Tλ = 1 and λi > 0 for all i ∈ I.

For such a proper support S of x, we have that w(x, S) = 0 if and only if x is an optimal
solution of problem (2.4). In particular, w(x) = 0 if and only if x is an optimal solution of
problem (2.4).
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Proof. We can split w(x, S) in two parts, with

w(x, S) = max
y∈S
∇f(x)T (y − x) + max

z∈C
∇f(x)T (x− z)

It is easy to see that both summands are nonnegative if x ∈ C. Here g(x) , maxz∈C ∇f(x)(x−
z) is the usual Wolfe gap. When x is an optimal solution of problem (2.4), first order optimality
conditions implies that ∇f(x)T (x − v) ≤ 0 for all v ∈ C. Since this last quantity is exactly
zero when v = x, we have g(x) = 0.

On the other hand let h(x) , maxy∈S ∇f(x)T (y−x), and suppose x is optimal. If ∇f(x) =
0 we immediately get h(x) = 0. Suppose then∇f(x) 6= 0, since x is optimal, ∇f(x)T (x−vi) ≤ 0
for all vi and we can write

x =
∑

{i:∇f(x)T (x−vi)=0}
λivi +

∑
{i:∇f(x)T (x−vi)<0}

λivi

= (1− µ)z1 + µz2

for some 0 ≤ µ ≤ 1, where ∇f(x)T (x−z1) = 0 and ∇f(x)T (x−z2) < 0. Now 0 = ∇f(x)T (x−
x) = µ∇f(x)T (x − z2) implies µ = 0, hence ∇f(x)T (x − vi) = 0 for all i ∈ S, so h(x) = 0.
Thus we obtain, x optimal implies w(x) = 0. Conversely, we have

f(x)− f? ≤ ∇f(x)T (x− x?)
≤ max

z∈C
∇f(x)T (x− z)

≤ max
y∈S,z∈C

∇f(x)T (y − z)

= w(x, S)

by convexity (where x? is any optimal solution), and the fact that x ∈ Co(S). Hence w(x, S) =
0 implies x optimal. The corollary on w(x) immediately follows by construction.

We will use this notion of curvature for analyzing those algorithms utilizing away steps
(Algorithm 5). Note that CAf implicitly considers f to be defined on the Minkowski sum
CA , C+(C−C). Similarly (standard) curvature Cf [Lacoste-Julien and Jaggi, 2015a, Appendix
C] is defined as

Cf , sup
x,v∈C
η∈[0,1]

y=x+η(v−x)

2
η2
(
f(y)− f(x)− η〈∇f(x), v − x〉

)
, (2.9)

and is used to bound the complexity of the classical Frank-Wolfe method (Algorithms 9 and
7).

2.2.2 Wolfe Error Bounds
We now introduce growth conditions used to bound the complexity of our variant of the Frank-
Wolfe algorithm when solving the constrained optimization problem in (2). Let C be a general
compact convex set, the following condition will be at the core of our complexity analysis.
Note that similarly as the Kurdyka-Łojasiewciz inequality (as opposed to the Hölderian error
bounds), the strong-Wolfe gap is formulated as an upper-bound on the primal gap f(x)−f(x∗).
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Definition 2.2.3 (Strong-Wolfe primal bound). Let K be a compact neighborhood of X∗ in C,
where X∗ is the set of solutions of the constrained optimization problem (2). A function f
satisfies a r-strong-Wolfe primal bound on K, if and only if there exists r ≥ 1 and µ > 0 such
that for all x ∈ K

f(x)− f∗ ≤ µw(x)r, (2.10)

and f∗ its optimal value.

In the next section, provided f is a smooth convex function, we will show for instance
that r = 2 above guarantees linear convergence of our variant of the away-steps Frank-Wolfe
algorithm. This 2-strong-Wolfe primal bound holds for example when f is strongly convex over
a polytope, which corresponds to the linear convergence bound in [Lacoste-Julien and Jaggi,
2015a], hence the following observation.

Observation 2.2.4 (f strongly convex and C a polytope). The results in [Lacoste-Julien and
Jaggi, 2015a, Theorem 6 in Eq (28)] show that when f is strongly convex and C is a polytope
then there exists µAf > 0 such that for all x ∈ C

f(x)− f∗ ≤ w(x)2

2µAf
,

hence condition (2.2.3) holds with r = 2 in this case.

The fact that w(x) = 0 if and only if f(x) = f∗ means that, in principle, the Łojasiewicz
factorization lemma [Bolte et al., 2007, §3.2.] could be used to show that condition (2.10) holds
generically but with unobservable parameters. These parameters are inherently hard to infer
because (2.10) combines the properties of f and C, not distinguishing between the contribution
of the function from that of the structure of the constrained set (a polytope for instance).

Hence, although (2.10) has an appealing succinct form, our results will rely on the com-
bination of a more classical Hölderian error bound (in Definition 2.2.7) defined on f , and a
scaling inequality (defined below in Definition 2.2.5), essentially driven by the structure of the
set C. The combination of these two inequalities leads to a r-strong-Wolfe primal bound. We
first state the scaling inequality relative to the strong-Wolfe gap w(x) that we will use in the
context of the the away step variant of the Frank-Wolfe algorithm.

Definition 2.2.5 (δ-scaling). A convex set C satisfies a scaling inequality if there exists δ(C) > 0
such that for all x ∈ C \X∗ and all differentiable convex function f ,

w(x) ≥ δ(C) max
x∗∈X∗

〈
∇f(x); x− x∗

||x− x∗||

〉
. (Scaling)

Here again, the strong-Wolfe gap w(x) is the minimum over all proper supports of x of the
scalar product of the (negative) gradient with the pairwise direction formed by the difference of
the Frank-Wolfe vertex and the away vertex. Hence the δ-scaling inequality compares the worst
pairwise FW direction with the normalization of the direction x∗ − x. Notably this condition
is known to hold when C is a polytope, with Lacoste-Julien and Jaggi [2015a] showing the
following result (see also [Gutman and Pena, 2018, Pena and Rodriguez, 2018] for a simpler
variant).

Lemma 2.2.6 ([Lacoste-Julien and Jaggi, 2015a]). A polytope satisfies the δ-scaling inequality
with δ(C) = PWidth(C), where PWidth(C) is the pyramidal width.
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We now recall the definition of the Hölderian error bound for a function f on problem (2)
[Hoffman, 1952, Lojasiewicz, 1965, Łojasiewicz, 1993, Bolte et al., 2007] (see e.g., [Roulet and
d’Aspremont, 2017] for more detailed references).
Definition 2.2.7 (Hölderian error bound (HEB)). Consider a convex function f and K a com-
pact neighborhood of X∗ in C. For optimization problem (2), f satisfies a (θ, c)-HEB on K if
there exists θ ∈ [0, 1] and c > 0 such that for all x ∈ K

min
x∗∈X∗

||x− x∗|| ≤ c(f(x)− f∗)θ. (HEB)

The Hölderian error bound (HEB) locally quantifies the behavior of f around the con-
strained optimum of problem (2.4). A similar condition was used to show improved convergence
rates for unconstrained optimization in e.g., [Nemirovskii and Nesterov, 1985c, Attouch et al.,
2014, Frankel et al., 2015, Karimi et al., 2016b, Bolte et al., 2017, Roulet and d’Aspremont,
2017, Li and Pong, 2018]. Note, as we reviewed in Section 2.1, that strong convexity implies
θ-HEB with θ = 1/2 so (HEB) can be seen as a generalization of strong convexity. Here θ will
allow us to interpolate between sub-linear and linear convergence rates.

Finally, we show that when Problem (2) satisfies both δ-Scaling and (θ, c)-HEB, the (1 −
θ)−1-Strong-Wolfe primal bound in (2.10) holds.
Lemma 2.2.8. Assume f is a differentiable convex function satisfying (θ, c)-HEB on K, and
that C satisfies δ-Scaling inequality. Then for all x ∈ K

f(x)− f∗ ≤
( c
δ

)r
w(x)r,

with r = 1
1−θ and f∗ the objective value at constrained optima.

Proof. Assume we have (θ, c)-HEB onK. For x ∈ K\X∗, by convexity, with x̃ ∈ argminx∗∈X∗ ||x− x∗||

f(x)− f∗ ≤ 〈∇f(x);x− x̃〉
||x− x̃||

||x− x̃||.

Hence applying (θ, c)-HEB leads to

f(x)− f∗ ≤ c
〈∇f(x);x− x̃〉
||x− x̃||

(
f(x)− f∗

)θ
≤ c max

x∗∈X∗
〈∇f(x);x− x∗〉
||x− x∗||

(
f(x)− f∗

)θ
, (2.11)

from which we obtain

f(x)− f∗ ≤ c
1

1−θ max
x∗∈X∗

(
〈∇f(x);x− x∗〉
||x− x∗||

) 1
1−θ

.

Combining this with the δ-scaling inequality, we have

f(x)− f∗ ≤
( c
δ

) 1
1−θ

w(x)
1

1−θ ,

and the desired result.

In the next section, varying values of r ∈ [1, 2] in (2.10) allow to produce sub-linear complex-
ity bounds of the form O(1/ε1/(2−r)), continuously interpolating between the known sub-linear
O(1/ε) and a linear convergence rate. For simplicity of exposition, we will always pick K = C
in what follows. We also write Int(·) for the interior of a set and ReInt(·) for its relative
interior.
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2.2.3 Discussion
As it will be developed in the following sections, when strong-Wolfe error bounds hold – under a
non-weak form, i.e. with r > 1 – we can accelerate our version of the Frank-Wolfe algorithms.
This suggests a new perspective for determining which structure in the function f or the
constraint set C might lead to the acceleration of Frank-Wolfe algorithms.

However, so far, we derived strong-Wolfe error bound by combining a classical error bound
condition (i.e. involving only functional structure) with a scaling inequality which is available
for polytopes only, and actually stems from the specific analysis of the Frank-Wolfe algorithms
on such constraint sets. It hence remains to explore arguments to derive Wolfe error bounds
directly from sub-analytical arguments in the same vein as the Kurdyka-Łojasiwicz inequality.

In particular, no acceleration result (w.r.t. the general O(1/T ) for compact convex sets) is
known for the Frank-Wolfe algorithms when the constraint set C is not uniformly convex (see
our results in Chapter 3) or a polytope.

Hence many highly structured constraint sets are not known to provide accelerated theo-
retical guarantees besides the convergence rate of O(1/T ) that holds for any compact convex
set. For instance, there is no enhanced asymptotic convergence rates for the intersection of a
`2 ball with a `1 ball nor for group-lasso balls.

Note that the strong-Wolfe gap w(x) combines the algorithm specificity (i.e. the pair-wise
direction), the constraint set C and the function f . As such, it is a structured object that
is hard to analyse with sub-analytical notions. However, for the very same reason (i.e. the
structure), it may provide a good perspective for understanding which algorithmic versions of
the Frank-Wolfe algorithm may accelerate on specific constraint sets structures.

With this type of connection, Beck and Shtern [2017] provide a convergence conditioning
of Away-steps Frank-Wolfe algorithms (under strong-convexity like assumption) that differs
from the geometrical Pyramidal Width. Here we hope that Wolfe error bounds will give new
insights in the interplay between the structure of the constraint set and acceleration of the
Frank-Wolfe algorithms.

2.3 Fractional Away-Step Frank-Wolfe Algorithm
Here, we present a new variant of the Conditional Gradients method using the scaling argu-
ment of the parameter-free Lazy Frank-Wolfe variant in [Braun et al., 2017a, 2018], together
with a restart scheme similar to that used for gradient methods in e.g., [Nemirovskii and Nes-
terov, 1985b, Giselsson and Boyd, 2014a, O’donoghue and Candes, 2015, Fercoq and Qu, 2016,
Roulet and d’Aspremont, 2017]. This yields an algorithm that dynamically adapts to the local
properties of the function and the feasible region around the optimum. The convergence proof
relies on two key conditions. One is a scaling inequality (Definition 2.2.5) used to characterize
the regularity of C in many Frank-Wolfe complexity bounds which holds on e.g., polytopes and
strongly convex sets. The other is a local growth condition which is shown to hold generically
for sub-analytic functions by the Łojasiewicz factorization lemma (see e.g., [Bolte et al., 2007])
and controls for example the impact of restart schemes as in [Roulet and d’Aspremont, 2017].

Earlier work showed that a sharpness condition derived from the Łojasiewicz lemma could
be used to improve convergence rates of gradient methods (see e.g., [Nemirovskii and Nesterov,
1985a, Bolte et al., 2007, Karimi et al., 2016a] for an overview), however these methods required
exact knowledge of the constants appearing in the condition to achieve improved rates. In
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practice however, these constants are typically not observed. In contrast to this, as in [Roulet
and d’Aspremont, 2017, Chen et al., 2018], we show using robust restart schemes that our
algorithm does not require knowledge of these constants, thus making it essentially parameter-
free.

We focus on the case where C is a polytope and f a smooth convex function. This means
in particular that condition (Scaling) holds. We now state the Fractional Away-Step Frank-
Wolfe method as Algorithm 5, a variant of the Away-Step Frank-Wolfe algorithm, tailored for
restarting. It can be seen as the inner loop of [Braun et al., 2018, Algorithm 1], which together
with a restart scheme leads to a simple version of [Braun et al., 2018, Algorithm 1] (without
the cheaper Weak Separation Oracle that replaces Linear Minimization Oracle).

Algorithm 5 Fractional Away-Step Frank-Wolfe Algorithm
Input: A smooth convex function f with curvature CAf . Starting point x0 =

∑
v∈S0 α

v
0v ∈ C

with support S0 ⊂ Ext(C). LP oracle (2.5) and schedule parameter γ > 0.
1: t := 0
2: while w(xt,St) > e−γw(x0,S0) do
3: vt := LPC(∇f(xt)) and dFWt := vt − xt
4: st := LPSt(−∇f(xt)) with St current active set and dAwayt := xt − st
5: if −∇f(xt)TdFWt > e−γw(x0,S0)/2 then
6: dt := dFWt with ηmax := 1
7: else
8: dt := dAwayt with ηmax := α

st
t

1−αstt
9: end if

10: xt+1 := xt + ηtdt with ηt ∈ [0, ηmax] via line-search
11: Update active set St+1 and coefficients {αvt+1}v∈St+1

12: t := t+ 1
13: end while
Output: xt ∈ C such that w(xt,St) ≤ e−γw(x0,S0)

In the following we will call a step a full-progress step if it is a Frank-Wolfe step or an Away
step that is not a drop step, i.e., when ηt < αst/(1− αst). The support St and the weights αt are
updated exactly as in [Lacoste-Julien and Jaggi, 2015a, Away-Steps Frank-Wolfe]. Algorithm
5 depends on a parameter γ > 0 which explicitly controls the number of iterations needed for
the algorithm to stop. In particular, a large value of γ will increase the number of iterations
and when γ converges to infinity, Algorithm 5 tends to behave exactly like the classical Frank-
Wolfe, (i.e., it never chooses the away direction as an update direction, see Appendix 2.C for
a proof).

Proposition 2.3.1 below gives an upper bound on the number of iterations required for Algo-
rithm 5 to reach a given target gap w(xT ,ST ) ≤ w(x0,S0)e−γ . The assumption e−γw(x0,S0)/2 ≤
CAf in this proposition measures the complexity of a burn-in phase whose cost is marginal as
shown in Proposition 2.3.2.

Proposition 2.3.1 (Fractional Away-Step Frank-Wolfe Complexity). Let f be a smooth convex
function with away curvature CAf such that the r-strong-Wolfe primal bound in (2.10) holds on
C (with 1 ≤ r ≤ 2 and µ > 0). Let γ > 0 and assume x0 ∈ C is such that e−γw(x0)/2 ≤ CAf .
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Algorithm 5 outputs an iterate xT ∈ C such that

w(xT ,ST ) ≤ w(x0,S0)e−γ

after at most
T ≤ |S0| − |ST |+ 16e2γCAf µw(x0,S0)r−2

iterations, where S0 and ST are the supports of respectively x0 and xT .

Proof. Because of the test criterion in line 5, the update direction dt satisfies (writing rt ,
−∇f(xt)),

rTt dt > e−γw(x0,S0)/2 .

Indeed, this holds by definition when choosing the FW direction, otherwise (2.7) yields

w(xt,St) = rTt d
FW
t + rTt d

Away
t > e−γw0,

(writing w0 , w(x0,S0) to simplify notations) so that

rTt d
Away
t > e−γw0 − rTt dFWt ≥ e−γw0 − e−γw0/2 = e−γw0/2.

Using curvature in (1.16), we have for dt,

f(xt + ηdt) ≤ f(xt) + η∇f(xt)Tdt + η2

2 C
A
f ,

which implies

f(xt)− f(xt + ηdt) ≥ ηrTt dt −
η2

2 C
A
f .

We can lower bound progress f(xt) − f(xt+1) with xt+1 = xt + ηdt at each iteration for full-
progress steps. For Frank-Wolfe steps,

f(xt)− f(xt+1) ≥ max
η∈[0,1]

{
ηrTt dt −

η2

2 C
A
f

}
≥ max

η∈[0,1]

{
ηe−γw0/2−

η2

2 C
A
f

}
Hence because of exact line-search (in practice many alternatives exist which will not affect
the convergence proofs, see e.g., [Pedregosa et al., 2018]), assuming e−γw0/2 ≤ CAf holds,

f(xt)− f(xt+1) ≥ w2
0

8CAf e2γ . (2.12)

For all away steps, we have

f(xt)− f(xt + ηdt) ≥ max
η∈[0,ηmax]

{
ηe−γw0/2−

η2

2 C
A
f

}
.

Yet for away steps that are not drop steps, assuming e−γw0/2 ≤ CAf again the optimum is
obtained for 0 < η∗ < ηmax, and the same conclusion as in (2.12) for Frank-Wolfe steps follows.
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Write T = Td + Tf the number of iterations for Algorithm 5 to finish. Here Td denotes the
number of drop steps, while Tf stands for the number of full-progress steps. Hence we have,

f(x0)− f(xT ) =
T−1∑
t=0

f(xt)− f(xt+1)

≥ Tf
w2

0
8CAf e2γ .

Because f satisfies a r-Strong-Wolfe primal gap on C we have when x0 ∈ C,

f(x0)− f(xT ) ≤ f(x0)− f∗ ≤ µw(x0)r ≤ µw(x0,S0)r,

by definition of w(x). We then get an upper bound on the number Tf of full-progress steps

Tf ≤ 8CAf e2γµwr−2
0 .

Finally writing |S0| (resp. |ST |) the size of the support of x0 (resp. xT ), and TFW the
number of Frank-Wolfe steps which add a new vertex to an iterate of the Fractional-Away-
Step Frank-Wolfe Algorithm, we get TFW ≤ Tf and the size of the support St of xt satisfies
|S0| − Td + TFW = |ST | hence

|S0| − |ST |+ Tf ≥ Td,

and we finally get T ≤ |S0| − |ST |+ 16CAf e2γµwr−2
0 .

The following observation shows that the assumption e−γw(x0,S0)/2 ≤ CAf in Proposition
2.3.1 has a marginal impact on complexity.

Proposition 2.3.2 (Burn-in phase). After at most

8e
γ

γ
ln w(x0,S0)

2CAf
+ |S0|,

cumulative iterations of Algorithm 5, with constant schedule parameter γ > 0, we obtain a
point x such that e−γw(x,S)/2 ≤ CAf .

Proof. The proof closely follows that of Proposition 2.3.1. Let w0 = w(x0,S0) and suppose
that e−γw0/2 > CAf . Then by curvature, for every full progress step, we would have an optimal
step length ηt ≥ 1, which we cap to 1 as we form convex combinations. Hence with ηt = 1 in
this case we have

f(xt)− f(xt+1) ≥ ηte−γw0/2−
η2
tC

A
f

2 ≥ e−γw0/2−
CAf
2 ≥ e−γw0/4.

Note that Lemma 2.2.2 implies that when the exit condition is not satisfied, xt cannot be
optimal so the left-hand side above cannot be zero. Moreover, via the strong-Wolfe gap we
have

f(x0)− f(x∗) ≤ w0 .

Writing T the number of iterations of the Algorithm 5 before it stopped, with same notation
as in Proposition 2.3.1, combining the equations above yields

Tfe
−γw0/4 ≤ f(x0)− f(xT ) ≤ f(x0)− f(x∗) ≤ w0.
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Hence
Tfe
−γw0/4 ≤ w0,

and Tf ≤ 4eγ . Also
T = Td + Tf ≤ 2Tf + |S0| − |ST |,

so that
T ≤ 8eγ + |S0|.

Because xT is the output of Algorithm 5, we have w(xT ,ST ) < e−γw0. Write N the smallest
integer such that e−Nγw0 ≤ 2CAf eγ and x̂i (for 0 ≤ i ≤ N) the output of the ith call to
Algorithm 5. It is sufficient that N satisfies

N ≥ 1
γ

ln w0
2CAf

− 1.

Similarly write i0 ≤ N the first integer such that w(x̂i0) < 2CAf eγ . If i0 = N , each of the first
N calls to Algorithm 5 runs in less than 8eγ + |Sx̂i | − |Sx̂i+1 | iterations. And we finally need
at most

8e
γ

γ
ln w0

2CAf
+ |S0| iterations.

Otherwise i0 < N and hence e−i0γw0 ≥ CAf eγ from which it follows that

i0 ≤
1
γ

ln w0
2CAf eγ

,

and similarly, each call before the ith0 of Algorithm 5 requires also a bounded number of
iterations 8eγ + |Sx̂i | − |Sx̂i+1 | so that we need at most

8e
γ

γ
ln w(x0,S0)

2CAf eγ
+ |S0| iterations,

which is the desired result.

2.4 Restart Schemes
Consider a point xk−1 with strong-Wolfe gap w(xk−1,Sk−1). Algorithm 5 with parameter
γk > 0, outputs a point xk and we write

xk , F(xk−1, w(xk−1,Sk−1), γk).

Following [Roulet and d’Aspremont, 2017] we define scheduled restarts for Algorithm 5 as
follows.

Algorithm 6 Scheduled restarts for Fractional Away-step Frank-Wolfe
Input: x̃0 ∈ Rn and a sequence γk > 0 and ε > 0.
Burn-in phase: compute x0 via 8 eγγ ln w(x0,S0)

2CA
f

+ |S0| steps of Algorithm 5.
while w(xk−1) > ε do

xk = F(xk−1, w(xk−1,Sk−1), γk)

end while
Output: x̂ := xT
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Note that one overall burn-in phase is sufficient to ensure the condition e−γiw(xi−1,Si−1)/2 ≤
CAf at each restart.

Algorithm 6 is similar to the restart scheme in [Roulet and d’Aspremont, 2017, Section 4]
where a termination criterion is available. In this situation, [Roulet and d’Aspremont, 2017]
show that the convergence rate of restarted gradient methods is robust to a suboptimal choice
of restart scheme parameter γ. Here we also show that our restart scheme is adaptive to the
unknown parameters in (θ, c)-HEB.

Importantly also, Algorithm 6 shares the same structure as the methods in [Lan et al.,
2017, Braun et al., 2018] but these later methods do not tune the γ parameter. We will see
below in Proposition 2.4.3 that tuning γ only has a marginal impact on the complexity bound.
Note also that when θ ∈ [0, 1/2], the condition interpolates between the non-strongly convex
function f and a strongly convex function scenarios. Note also that a linear function satisfies
θ-HEB with θ = 1 and in this case, FW converges in one iteration.

Theorem 2.4.1 (Rate for constant restart schemes). Let f be a smooth convex function with
away curvature CAf . Assume C satisfies δ-Scaling and f is (θ, c)-HEB on C. Let γ > 0 and
assume x0 ∈ C is such that e−γw(x0,S0)/2 ≤ CAf . With γk = γ, the output of Algorithm 6
satisfies (r = 1

1−θ ) 

f(xT )− f∗ ≤ w0
1(

1 + T̃Crγ

) 1
2−r

when 1 ≤ r < 2

f(xT )− f∗ ≤ w0 exp
(
− γ

e2γ
T̃

8CAf µ

)
when r = 2 ,

(2.13)

after T steps, with w0 = w(x0,S0), T̃ , T − (|S0| − |ST |), and

Crγ ,
eγ(2−r) − 1

8e2γCAf µw(x0,S0)r−2 (2.14)

with µ = c
δ .

Proof. Denote by R the number of restarts in Algorithm 5 for T total iterations. By design

w(xR,SR) ≤ w0e
−γR.

Because f is (θ, c)-HEB and C satisfies δ-Scaling, via Lemma 2.2.8, f satisfies the r-strong-
Wolfe primal bound (2.10) with r = 1

1−θ . Using Proposition 2.3.1, the total number T of steps
of Algorithms 5 is upper-bounded by

T ≤ |S0| − |ST |+ 8CAf µe2γwr−2
0

R−1∑
i=0

e−γi(r−2).

Suppose r < 2, we have the following upper bound on T ,

T ≤ |S0| − |ST |+ 8CAf µe2γwr−2
0

eγ(2−r)R − 1
eγ(2−r) − 1

,
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hence
e−γR ≤ 1(

1 + T̃Crγ

) 1
2−r

.

Thus for 1 ≤ r < 2,
w(xR,SR) ≤ w0

1(
1 + T̃Crγ

) 1
2−r

.

The case r = 2 leads to
T ≤ |S0| − |ST |+ 8CAf µe2γR,

and hence
w(xR,SR) ≤ w0 exp

(
−γ T̃

8CAf µe2γ

)
,

which yields the desired result.

Corollary 2.4.2. When C is a polytope and f a smooth convex function satisfying θ-HEB, rates
in Theorem 2.4.1 hold. In particular when f is strongly convex, θ = 1

2 (and hence r = 2)
and Algorithm 6 converges linearly. When f is simply smooth, θ = 0 (and hence r = 1) and
Algorithm 6 converges sub-linearly with a rate of O(1/t).

Note also that for r → 2, we recover the same complexity rates as for r = 2

lim
r→2

1(
1 + T̃Crγ

) 1
2−r

= exp
(
− γ

e2γ
T̃

8CAf µ

)
.

The complexity bounds in Theorem 2.4.1 depend on γ, which controls the convergence rate.
Optimal choices of γ depend on r, a constant that we generally do not know nor observe.
However, in the following we show that simply picking γ = 1/2 leads to optimal complexity
bounds up to a constant factor. In fact, picking a constant gamma (independent of r) we
also recover a simple version of [Braun et al., 2018, Algorithm 1] (without the cheaper Weak
Separation Oracle that replaces the Linear Minimization Oracle).

Proposition 2.4.3 (Robustness in γ). Suppose f satisfies the r-strong-Wolfe primal bound (2.10)
with r > 0. Write γ∗(r) as the optimal choice of γ > 0 in the complexity bounds (2.13) of
Theorem 2.4.1. Consider running Algorithm 6 with γ = 1/2 and the same assumptions as in
Theorem 2.4.1, the output x̂ satisfies

h(x̂) ≤
√

e

4
(√
e− 1

)w0
1(

1 + T̃Crγ∗(r)

) 1
2−r

when 1 ≤ r < 2,

where
Crγ = eγ(2−r) − 1

8e2γCAf µw(x0,S0)r−2 ,

as in (2.14). When r = 2, we have γ∗(r) = 1/2.
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Proof. When 1 ≤ r < 2, from Theorem 2.4.1 we have

f(xT )− f∗ ≤ w0
1(

1 + T̃Crγ

) 1
2−r

. (2.15)

With definition of Crγ in (2.14), minimizing (2.15) is equivalent to maximizing (for γ > 0)

B(γ) =
(eγ(2−r) − 1

e2γ

)
.

Hence the optimum schedule parameter γ∗(r) is

γ∗(r) = ln(2)− ln(r)
2− r when 1 ≤ r < 2.

In particular γ∗(r) ∈]1/2; ln(2)]. Let’s now show that the bound in (2.15) obtained with the
optimal γ∗(r) is comparable to the bound obtained with γ = 1

2 . The function

H(r) =

(
1 + T̃Crγ∗(r)

) 1
2−r

(
1 + T̃Cr1/2

) 1
2−r

is decreasing in r. Write C̃ , 8CAf µw(x0,S0), we have C1
γ∗(1) = 1/(4C̃) and C1

1/2 =
√
e−1
e /C̃

hence

H(1) =

√√√√√ 1 + T̃
C̃

1
4

1 + T̃
C̃

√
e−1
e

≤
√

e

4
(√
e− 1

) .
Hence, with H(1) ≥ H(r), we get for any r ∈ [1, 2[

1(
1 + T̃Cr1/2

) 1
2−r
≤
√

e

4
(√
e− 1

) 1(
1 + T̃Crγ∗(r)

) 1
2−r

.

When r = 2, the optimal choice for γ is 1/2, maximizing the function γ/e2γ .

2.5 Fractional Frank-Wolfe Algorithm
In this section, we describe how Hölderian error bounds coupled with a restart scheme yield
improved convergence bounds for the Frank-Wolfe algorithm.

In Section 2.3, relaxing the strong convexity of f using the (θ, c)-HEB assumption leads to
improved sub-linear rates using a restart scheme for the Away step variant of the Frank-Wolfe
algorithm, when the set of constraints C is a polytope. For these sets, away steps produce
accelerated convergence rates that the (vanilla) Frank-Wolfe algorithm cannot achieve.

However, accelerated convergence holds for the vanilla Frank-Wolfe algorithm in other
scenarios. For instance, when the solution of (2.4) is in the interior of the set and f is strongly
convex, the convergence of the Frank-Wolfe algorithm is linear. In this vein, we define a
fractional version of the Frank-Wolfe algorithm (Algorithm 7) and analyze its restart scheme
(Algorithm 8) under the (θ, c)-HEB condition in Section 2.5.2.
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Note that restart schemes of the Fractional Frank-Wolfe algorithm perform the very same
iterations as the Frank-Wolfe algorithm. However, the restart scheme produces a much simpler
proof of improved convergence bounds. The fractional variant is also the structural basis for
recent competitive versions of the Frank-Wolfe algorithm [Braun et al., 2017a].

Another acceleration scenario for the Frank-Wolfe algorithm is when the set of constraints
C is strongly convex. Under some restrictive assumption on f , the classical analysis [Levitin
and Polyak, 1966, (5) in Theorem 6.1] exhibits a linear convergence rate. Recently [Garber and
Hazan, 2015] have shown a general O(1/T 2) sub-linear rate when f and C are strongly convex.
We will state new rates for the case where f satisfies (θ, c)-HEB and C is strongly convex,
providing a more complete picture. Note that Chapter 3 provides the general extension of this
notion of strong-convexity in the set.

For completeness, we would like to mention that δ-scaling for the away step Frank-Wolfe
algorithm does not apply in the case where C is a strongly convex set. In fact, Lemma 2.2.6
does not hold anymore, and PWidth can tend to zero in this case.

2.5.1 Restart Schemes for Fractional Frank-Wolfe
We now state the fractional version of the (vanilla) Frank-Wolfe algorithm. The Fractional
Frank-Wolfe algorithm 7 is derived from Algorithm 5 by replacing w(x0,S0) with g(x0), as in
(2.8) and dropping the away step update.

Algorithm 7 Fractional Frank-Wolfe Algorithm
Input: A smooth convex function f with curvature Cf . Starting point x0 ∈ C. LP oracle (2.5)

and schedule parameter γ > 0.
1: t := 0
2: while g(xt) > e−γg(x0) do
3: vt := LPC(∇f(xt)) and dFWt := vt − xt
4: xt+1 := xt + ηtd

FW
t with ηt ∈ [0, 1] via line-search

5: t := t+ 1
6: end while

Output: xt ∈ C such that g(xt) ≤ e−γg(x0)

A constant restart scheme using Algorithm 7 for its inner iteration, recovers the Scaling
Frank-Wolfe algorithm [Braun et al., 2017a, Algorithm 7: Parameter-free Lazy Conditional
Gradient] up to a slight reformulation with the additional Φt parameter. The two algorithms
have the same restart structure, but the Scaling Frank-Wolfe algorithm additionally uses a
weaker oracle (a so-called Weak Separation Oracle) than the Linear Optimization Oracle that
we employ here. More precisely, the Scaling Frank-Wolfe algorithm does not necessarily require
vt to be the exact nor an approximate solution of the Linear Minimization Problem, but rather
to satisfy the condition 〈−∇f(xt); vt − xt〉 > Φte

−γ . As a consequence, g(xt) is not computed
and Φt is only an upper bound on g(xt). This explains the difference in line 8 of Algorithm 8.

2.5.2 Optimum in the Interior of the Feasible Set
We first recall that when the optimal solutions of (2) are in the relative interior of C, a version
of the (Scaling) inequality is automatically satisfied. (FW-Scaling) replaces w(x) by g(x) and
can be interpreted as a scaling inequality tailored to the (vanilla) Frank-Wolfe algorithm. Note
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Algorithm 8 Restart Fractional Frank-Wolfe Algorithm
Input: A smooth convex function f with curvature Cf . Starting point x0 ∈ C. ε > 0, LP

oracle (2.5) and schedule parameter γ > 0.
1: t := 0 and Φ0 := g(x0)
2: while g(xt) > ε do
3: vt := LPC(∇f(xt)) and dFWt := vt − xt
4: if 〈−∇f(xt); vt − xt〉 > Φte

−γ then
5: xt+1 := xt + ηtd

FW
t with ηt ∈ [0, 1] via line-search

6: Φt+1 := Φt

7: else
8: Φt+1 := g(xt) (hence Φt+1 < Φte

−γ)
9: end if

10: t := t+ 1
11: end while

that the δ parameter depends on the relative distance of the optimal set X∗ to the boundary
of C. This property has already been extensively used in e.g., [Guélat and Marcotte, 1986,
Garber and Hazan, 2013a, Garber and Meshi, 2016].

Lemma 2.5.1 (FW δ-scaling when optimum is in relative interior [Guélat and Marcotte, 1986]).
Assume C is convex and f convex differentiable. Assume X∗ ⊂ ReInt(C) and choose a z > 0
such that B(x∗, z)∩Aff(C) ⊂ C for all x∗ ∈ X∗. Then for all x ∈ C such that d(x,X∗) ≤ z

2 we
have

g(x) ≥ z

2 ||ProjAff(C)
(
∇f(x)

)
||, (FW-Scaling)

where Aff(C) is the smallest affine set containing C and g(x) is the Frank-Wolfe (dual) gap as
defined in (2.8).

Proof. Let x ∈ B(x∗, z2)∩C. Write d = ProjAff(C)
(
∇f(x)

)
. By assumption B(x∗, z)∩Aff(C) ⊂ C,

hence x − z
2

d
||d|| ∈ C. Denote v the Frank-Wolfe vertex, we have g(x) , 〈−∇f(x); v − x〉. By

optimality of v, we have

g(x) ≥ 〈−∇f(x);x− z

2
d

||d||
− x〉 = z

2 ||ProjAff(C)
(
∇f(x)

)
|| ,

which is the desired result.

When C is full dimensional, its relative interior matches its interior and the projection
operation is the identity. Stating the result in term of the relative interior allows to update the
convex set C. Indeed when an iterate hits a face F of C, the future iterates might then remain
in the convex F .

We now bound the convergence rate of Algorithm 8 in the following proposition.

Proposition 2.5.2 (Convergence Rate of Restart Fractional FW). Let f be a smooth convex
function with curvature Cf as defined in (2.9), satisfying (θ, c)-HEB on C. Assume there
exists z > 0 such that B(x∗, z) ⊂ C for all x∗ ∈ X∗. Let γ > 0 and assume x0 is such
that e−γg(x0) ≤ Cf and f(x0) − f∗ ≤

(
z
2
) 1
θ (burn-in phase). Then the output of Algorithm 6
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satisfies (r = 1
1−θ ) 

f(xT )− f∗ ≤ g0
1(

1 + TCrγ

) 1
2−r

when 1 ≤ r < 2

f(xT )− f∗ ≤ g0 exp
(
− γ

e2γ
T

8Cfµ

)
when r = 2 ,

after T steps, with g0 = g(x0). Also

Crγ ,
eγ(2−r) − 1

2e2γCfµg(x0)r−2

with µ = c
δ .

Proof. First note that for all t, we have d(xt, X∗) ≤ z
2 . Indeed f(xt)−f∗ ≤ f(xt−1)−f∗ ≤

(
z
2
) 1
θ .

Hence by (θ, c)-HEB we have

min
x∗∈X∗

||xt − x∗|| ≤ (f(xt)− f∗)θ ≤
z

2 .

We can now apply lemma 2.5.1 to get for all xt

g(xt) ≥
z

2 ||∇f(xt)||,

and as in Lemma 2.2.8, FW-Scaling and θ-HEB leads to a Wolfe primal gap (with µ =
(cz/2)1/(1−θ) > 0)

f(x)− f∗ ≤ µg(x)r,
where r = 1/(1− θ). The proof then follows exactly that of Fractional Away Frank-Wolfe and
its restart schemes (see Proposition 2.3.1 and Theorem 2.4.1), replacing w(x) with g(x). The
only change comes from the upper bound on T , the number of iterations needed for Fractional
Frank-Wolfe to stop. We recall the key steps to get this bound and update its value. At each
iteration

f(xt)− f(xt+1) ≥ max
η∈[0,1]

{ηe−γg(x0)− η2

2 Cf},

such that because of assumption e−γg(x0) < Cf , we have

f(xt)− f(xt+1) ≥ 1
2
g(x0)2

e2γCf
.

Hence on one side
f(x0)− f(xT ) ≥ T

2
g(x0)2

e2γCf
.

And on the other side, using the r-Wolfe primal bound f(x0)− f(xT ) ≤ µg(x0)r and finally

T ≤ 2µCfe2γg(x0)r−2.

The restart scheme is then controlled exactly as in the proof of 2.4.1.

Assuming that e−γg(x0) ≤ Cf and f(x0) − f∗ ≤
(
z
2
) 1
θ simplify the statements and it is

automatically satisfied after a burn-in phase. However it is fundamental to assume that there
exists z > 0 s.t. B(x∗, z) ⊂ C for all x∗ ∈ X∗. Indeed this ensures that the optimal set is in
the relative interior of C. Note also that a robustness result similar to that of Proposition 2.4.3
holds here.
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Appendices

2.A Strongly Convex Constraint Set
When C is strongly convex, strong convexity of f leads to better convergence rate than the sub-
linear O(1/T ). The original analysis of [Levitin and Polyak, 1966, (5) in Theorem 6.1] assumes
||∇f(x)|| ≥ ε > 0 (irrespective of the strong convexity of f) and hence (θ, c)-HEB cannot be
understood as a relaxation of the assumption. This analysis provides linear convergence rate
when the unconstrained minimum of f is strictly outside of C. §2.5.2 shows linear convergence
when x∗ is in the interior of C. Hence the remaining case is when the unconstrained minimum
of f is in ∂C, the boundary of C (an arguably rare instance).

Recently, the analysis of [Garber and Hazan, 2015] closes this gap by providing a general
convergence rate of O(1/T 2) under a (slightly) weaker assumption than strong convexity of f
[Garber and Hazan, 2015, see (2)]. The asymptotic rate regime of [Garber and Hazan, 2015]
is less appealing than the linear convergence rate in [Levitin and Polyak, 1966]. However,
the bound of [Garber and Hazan, 2015] benefits from much better conditioning and can eas-
ily dominate other bounds when the optimum is near ∂C. In particular the conditioning of
[Levitin and Polyak, 1966] depends on the ε lower bounding the norm of the gradient on the
constraint set which can be arbitrarily small. The analysis of [Garber and Hazan, 2015] adapts
to (θ, c)-HEB, as it was detailed in [Xu and Yang, 2018]. We recall this below for the sake of
completeness.

Theorem 2.A.1. Consider C an α-strongly convex set and f a convex L-smooth function. As-
sume (θ, c)-HEB for f . Then the iterate of the Frank-Wolfe algorithm (with exact line search
or short step sizes) is such that f(xT )− f(x∗) = O

(
1/T 1/(1−θ)) for θ ∈ [0, 1[.

Proof. From [Garber and Hazan, 2015, Lemma 1], L-smoothness of f combines with α-strong
convexity of C gives

ht+1 ≤ ht ·max
{1

2 , 1−
α||∇f(x)||

8L
}
.

On the other hand with (θ, c)-HEB and by convexity of f , (2.11) applies(
f(x)− f(x∗)

)1−θ
≤ c ·min

y∈X∗
〈∇f(x);x− x∗〉
||x− x∗||

≤ c ||∇f(x)|| .

Note that with θ = 1/2, this is the sufficient condition [Garber and Hazan, 2015, (2)] implied
by strong convexity that leads to O(1/T 2) convergence rates. Hence combining both we recover
this recursive inequality for ht = f(xt)− f(x∗)

ht+1 ≤ ht ·max
{1

2 , 1−
α

8Lch
1−θ
t

}
.

When θ = 0 (convexity), this leads to the classical O(1/T ) rate. When θ = 1/2 the above recur-
sion leads to a O(1/T 2) rate as in [Garber and Hazan, 2015, proof of Theorem 2]. Then for any
non-negative constants (k,C), such that 2−2β

2β−1 ≤ k and max{h0k
1/β, 2(

(β−(1−β)(2β−1))M
)1/β } ≤ C

(with M , α
8L), we have

ht ≤
C

(t+ 1)1/(1−θ) .
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and the desired result.

Theorem 2.A.1 interpolates between the general O
(
1/T

)
rate for smooth convex functions

and the O
(
1/T 2) rate for smooth and strongly convex functions.

2.B Analysis under Hölder Smoothness
In the following we generalize our results on convergence rates using a refined regularity as-
sumption on f . A differentiable function f is (L, s)-Hölder smooth on C when

||∇f(x)−∇f(y)||2 ≤ L||x− y||s−1
2 , for x, y ∈ C,

with s ∈]1, 2]. Hölder smoothness interpolates between non-smooth (s = 1) and smooth
(s = 2) assumptions. We write the analog of the away curvature (1.16) for (L, s)-Hölder
smooth functions as

CAf,s , sup
x,u,v∈C
η∈[0,1]

y=x+η(u−v)

s

ηs
(
f(y)− f(x)− η〈∇f(x), u− v〉

)
.

Note that as in (1.16), f needs to be defined on the Minkowski sum CA. Let us now provide
equivalent results for the complexity of Fractional Away-Step Frank-Wolfe algorithm and the
complexity bound of the constant restart scheme with (L, s)-Hölder smooth functions.

Proposition 2.B.1 (Hölder Smooth Complexity). Let f be a (L, s)-Hölder smooth convex func-
tion with away curvature CAf,s such that the r-strong-Wolfe primal bound in (2.10) holds on C
with µ > 0. Let γ > 0 and assume x0 ∈ C is such that e−γw(x0,S0)/2 ≤ CAf,s. Algorithm 5
outputs an iterate xT ∈ C such that

w(xT ,ST ) ≤ w(x0,S0)e−γ

after at most (with r = 1
1−θ )

T ≤ |S0| − |ST |+ 21+ s
s−1

s

s− 1e
s
s−1γµ

(
CAf,s

) 1
s−1w(x0,S0)r−

s
s−1

iterations, where S0 and ST are the supports of respectively x0 and xT .

Proof. The proof is very similar to that required for smooth-functions, so we only detail key
points. The update direction satisfies

rTt dt > e−γw0/2 .

Applying the definition of the Hölder curvature

f(xt)− f(xt + ηdt) ≥ max
η∈[0,ηmax]

{ηe−γw0/2−
ηs

s
CAf,s} = max

η∈[0,ηmax]
g(η) .

The unconstrained maximum of g is reached at η∗ =
(
e−γ w0

2CA
f,s

) 1
s−1 . Hence with the burn-in

phase hypothesis, we guarantee η∗ ≤ 1. With classical arguments, for all non-drop steps, the
progress in the objective function value is lower bounded by

f(xt)− f(xt + ηdt) ≥
1(

CAf,s
) 1
s−1

s− 1
s

2−
s
s−1 e−γ

s
s−1w

s
s−1
0 .
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It finally follows that

T ≤ 2µw
r− s

s−1
0 2

s
s−1

s

s− 1e
γ s
s−1 + |S0| − |ST |

which is the desired bound.

We are ready to establish the convergence rates of our restart scheme in the Hölder smooth
case.

Theorem 2.B.2 (Hölder rate for constant restart schemes). Let f be a (L, s)-Hölder smooth
convex function with Hölder curvature CAf,s, satisfying (θ, c)-HEB on C, and C satisfying a
δ-Scaling inequality. Let γ > 0 and assume x0 ∈ K is such that e−γw(x0,S0)/2 ≤ CAf,s. With
γk = γ, the output of Algorithm 6 satisfies

f(xT )− f∗ ≤ w0
1(

1 + T̃Cτγ

) 1
τ

when 1 ≤ r < s

s− 1

after T steps, with w0 , w(x0,S0), T̃ , T − (|S0| − |ST |), and τ , s
s−1 − r. Also

Cτγ ,
eγτ − 1

Cse
s
s−1γw(x0)τ

,

with Cs , 21+ s
s−1 s

s−1
c
δ

(
CAf,s

) 1
s−1 .

Proof. Denote by R the number of restarts after T total inner iterations. We get

T ≤
R−1∑
i=0
|Si| − |Si+1|+ 21+ s

s−1
s

s− 1e
s
s−1γ

(
CAf,s

) 1
s−1µw(xi,Si)r−

s
s−1 .

Since w(xi,Si) ≤ w0e
−γi, it follows that

T ≤ |S0| − |ST |+ 21+ s
s−1

s

s− 1e
s
s−1γ

(
CAf,s

) 1
s−1µw

r− s
s−1

0

R−1∑
i=0

e−γi(r−
s
s−1 ) .

Write Cs = 21+ s
s−1 s

s−1
(
CAf,s

) 1
s−1µ and τ = s

s−1 − r we have

T ≤ |S0| − |ST |+ Cse
s
s−1γw

r− s
s−1

0
eγRτ − 1
eγτ − 1 ,

it follows that
e−γR ≤ 1(

1 + (T − (|S0| − |ST |)) (eγτ−1)
Cse

s
s−1 γw(x0)τ

) 1
τ

.

which yields the desired result.

Note that r < s
s−1 is always ensured because s ∈]1, 2]. In particular we only get linear

convergence when r = s = 2 as for gradient methods [Roulet and d’Aspremont, 2017]. We
now show, as in Proposition 2.3.2, that the assumption e−γw(x0,S0)/2 ≤ CAf has a marginal
impact on complexity when the function is (L, s)-Hölder smooth.
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Proposition 2.B.3 (Burn-in phase for Hölder smooth functions). After at most

4 s

s− 1
eγ

γ
ln
( w0
2CAf,s

)
+ |S0|

cumulative iterations of Algorithm 5, with constant schedule parameter γ > 0, we get a point
x such that e−γw(x,S)/2 ≤ CAf,s when f is (L, s)-Hölder smooth with s > 1.

Proof. Assume we have e−γw0/2 > CAf,s. Classically, the curvature argument ensures that we
have for non-drop steps

f(xt)− f(xt+1) ≥ ηte
−γw0/2−

ηst
s
CAf,s

≥ e−γw0/2(1− 1/s).

Besides, Tf being the number of full steps and T the number of iterations before Fractional
Away Frank-Wolfe stops,

f(x0)− f(xT ) ≥ Tfe−γw0/2(1− 1/s).

Combining this with f(x0)− f(xT ) ≤ f(x0)− f(x∗) ≤ w0 we get

Tf ≤ 2eγ s

s− 1 .

Finally with the classical counting argument on drop steps, we obtain

T ≤ 4eγ s

s− 1 + |S0| − |ST | .

Denote R the number of calls to Fractional Away Frank-Wolfe before the last output x̂R
satisfies e−γw(x̂,Sx̂)/2 > CAf,s. The strong-Wolfe gap of the N th output of Fractional Away
Frank-Wolfe satisfies by definition

w(x̂N ) ≤ e−Nγw0,

hence we have
R ≤ 1

γ
ln
( w0
2CAf,s

)
.

Finally each round of Fractional Away Frank-Wolfe under the initial assumption that e−γw(x̂i,Sx̂i)/2 >
CAf,s require at most 4eγ s

s−1 + |Sx̂i | − |Sx̂i+1 | iterations. Hence a total Tt of

Tt ≤
R∑
i=1

4eγ s

s− 1 + |Sx̂i | − |Sx̂i+1 |

≤ 4Reγ s

s− 1 + |S0|

≤ 4 s

s− 1
eγ

γ
ln
( w0
2CAf,s

)
+ |S0|

which is the desired result.
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2.C One Shot Application of the Fractional Away-Step Frank-Wolfe
Running once Fractional Away-step Frank-Wolfe with a large value of γ allows to find an
approximate minimizer with the desired precision. The following lemma explains the rate of
convergence. Importantly the rate does not depend on r. Hence there is no hope of observing
linear convergence for the strongly convex case.

Lemma 2.C.1. Let f be a smooth convex function, ε > 0 be a target accuracy, and x0 ∈ C be
an initial point. Then for any γ > ln w(x0)

ε , Algorithm 5 satisfies:

f(xT )− f∗ ≤ ε,

for T ≥ 2CAf
ε .

Proof. We can stop the algorithm as soon as the criterion w(xt) < ε in step 2 is met or we
observe an away step, whichever comes first. In former case we have f(xt)− f∗ ≤ w(t) < ε, in
the latter it holds

f(xt)− f∗ ≤ −∇f(xt)(dFWt ) ≤ ε/2 < ε.

Thus, when the algorithms stops, we have achieved the target accuracy and it suffices to
bound the number of iterations required to achieve that accuracy. Moreover, while running,
the algorithm only executes Frank-Wolfe and we drop the FW superscript in the directions;
otherwise we would have stopped.

From the proof of Proposition 2.3.1, we have each Frank-Wolfe step ensures progress of the
form

f(xt)− f(xt+1) ≥


〈rt;dt〉2

2CA
f

if 〈rt; dt〉 ≤ CAf
〈rt; dt〉 − CAf /2 otherwise.

For convenience, let ht , f(xt) − f∗. By convexity we have ht ≤ 〈rt; dt〉, so that the above
becomes

f(xt)− f(xt+1) ≥


h2
t

2CA
f

if ht ≤ CAf
ht − CAf /2 otherwise.

,

and moreover observe that the second case can only happen in the very first step: h1 ≤
h0 − (h0 − CAf /2) = CAf /2 ≤ 2CAf /t for t = 1 providing the start of the following induction:

we claim ht ≤
2CAf
t .

Suppose we have established the bound for t, then for t+ 1, we have

ht+1 ≤
(

1− ht
2CAf

)
ht ≤

2CAf
t
−

2CAf
t2
≤

2CAf
t+ 1 .

The induction is complete and it follows that the algorithm requires T ≥ 2CAf
ε to reach ε-

accuracy.
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Chapter 3

Frank-Wolfe on Uniformly Convex Sets

In Chapter 2, we investigated how relaxing properties of the objective function modifies the
convergence rates of Frank-Wolfe algorithms. Here we focus on identifying which structures of
the constraint sets C lead to accelerated rates with respect to the general O(1/T ) for compact
convex sets. In particular, we will not seek to relax any assumption related to the objective
function.

In Chapter 1, we recalled that the original Frank-Wolfe method solves smooth constrained
convex optimization problems at a generic sublinear rate of O(1/T ). It enjoys accelerated
convergence rates for two fundamental classes of constraints: polytopes and strongly-convex
sets. Uniformly convex sets non-trivially subsume strongly convex sets and form a large variety
of curved convex sets commonly encountered in machine learning and signal processing. For
instance, the `p balls are uniformly convex for all p > 1, but strongly convex for p ∈]1, 2]
only. In this chapter, we show that these sets induce accelerated convergence rates for the
Frank-Wolfe algorithm, which continuously interpolate between known rates. Our accelerated
convergence rates emphasize that it is the curvature of the constraint sets – not just their
strong convexity – that leads to accelerated convergence rates for the Frank-Wolfe algorithm.
These results also importantly highlight that the Frank-Wolfe algorithm is adaptive to much
more generic constraint set structures, thus explaining faster empirical convergence. Finally,
we also show accelerated convergence rates when the set is only locally uniformly convex and
provide similar results in online linear optimization.
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3.1 Introduction
The Frank-Wolfe method [Frank and Wolfe, 1956] (Algorithm 9) is a projection-free algorithm
designed to solve

argmin
x∈C

f(x), (OPT)

where C is a compact convex set and f a smooth convex function. Many recent algorithmic
developments in this family of methods are motivated by appealing properties already contained
in the original Frank-Wolfe algorithm. Each iteration requires to solve a Linear Minimization
Oracle (see line 2 in Algorithm 9), instead of a projection or proximal operation that is not
computationally competitive in various settings. Also, the Frank-Wolfe iterates are convex
combinations of extreme points of C, the solutions of the Linear Minimization Oracle. Hence,
depending on the extremal structure of C, early iterates may have a specific structure, being,
e.g. , sparse or low rank for instance, that could be traded-off with the iterate approximation
quality of problem (OPT). These fundamental properties are among the main features that
contribute to the recent revival and extensions of the Frank-Wolfe algorithm [Clarkson, 2010b,
Jaggi, 2011] used for instance in large-scale structured prediction [Bojanowski et al., 2014,
2015, Alayrac et al., 2016, Seguin et al., 2016, Miech et al., 2017, Peyre et al., 2017, Miech
et al., 2018], quadrature rules in RKHS [Bach et al., 2012, Lacoste-Julien et al., 2015, Futami
et al., 2019], optimal transport [Courty et al., 2016, Vayer et al., 2018, Paty and Cuturi, 2019,
Luise et al., 2019], and many others.

Algorithm 9 Frank-Wolfe Algorithm
Input: x0 ∈ C, L upper bound on the Lipschitz constant.
1: for t = 0, 1, . . . , T do
2: vt ∈ argmax

v∈C
〈−∇f(xt); v − xt〉 . Linear minimization oracle

3: γt = argmin
γ∈[0,1]

γ〈vt − xt;∇f(xt)〉+ γ2

2 L||vt − xt||
2 . Short step

4: xt+1 = (1− γt)xt + γtvt . Convex update
5: end for

Uniform Convexity. Uniform convexity is a global quantification of the curvature of a convex
set C. There exists several definitions, see for instance, [Goncharov and Ivanov, 2017, Theorem
2.1.] and [Abernethy et al., 2018, Molinaro, 2020] for the strongly convex case. Here, we focus
on the generalization of a classic definition of the strong convexity of a set [Garber and Hazan,
2015].
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Definition 3.1.1 (γ uniform convexity of C). A closed set C ⊂ Rd is γC-uniformly convex with
respect to a norm || · ||, if for any x, y ∈ C, any η ∈ [0, 1] and any z ∈ Rd with ||z|| = 1, we
have

ηx+ (1− η)y + η(1− η)γC(||x− y||)z ∈ C,

where γC(·) ≥ 0 is a non-decreasing function. In particular when there exists α > 0 and q > 0
such that γC(r) ≥ αrq, we say that C is (α, q)-uniformly convex or q-uniformly convex.

The uniform convexity assumption strengthens the convexity property of C that any line
segment between two points is included in C. It requires a scaled unit ball to fit in C and
results in curved sets. Strongly convex sets are uniformly convex sets for which γC(r) ≥ αr2,
i.e. (α, 2)-uniformly convex sets. Two common families of uniformly convex sets are the `p-
balls and p-Schatten balls which are uniformly convex for any p > 1 but strongly convex for
p ∈]1, 2] only, i.e. 2-uniformly convex sets for p ∈]1, 2].

Convergence Rates for Frank-Wolfe. The Frank-Wolfe algorithm admits a tight [Canon and
Cullum, 1968, Jaggi, 2013, Lan, 2013] general sublinear convergence rate of O(1/T ) when C is a
compact convex set and f is a convex L-smooth function. However, when the constraint set C is
strongly-convex and infx∈C ||∇f(x)|| > 0, Algorithm 9 enjoys a linear convergence rate [Levitin
and Polyak, 1966, Demyanov and Rubinov, 1970]. Later on, the work of [Dunn, 1979] showed
that linear rates are maintained when the constraint set satisfies a condition subsuming local
strong-convexity. Interestingly, this linear convergence regime does not require the strong-
convexity of f , i.e. the lower quadratic additional structure comes from the constraint set
rather than from the function. When x∗ is in the interior of C and f is strongly convex,
Algorithm 9 also enjoys a linear convergence rate [Guélat and Marcotte, 1986].

These two linear convergence regimes can both become arbitrarily bad as x∗ gets close to
the border of C, and do not apply in the limit case where the unconstrained optimum of f lies
at the boundary of C. In this scenario, when the constraint set is strongly convex, Garber and
Hazan [2015] prove a general sublinear rate of O(1/T 2) when f is L-smooth and µ-strongly
convex. In early iterations, these convergence rates can beat badly-conditioned linear rates.

Other structural assumptions are known to lead to accelerated convergence rates. However,
these require elaborate algorithmic enhancements of the original Frank-Wolfe algorithm. Poly-
topes received much attention in particular, with corrective or away algorithmic mechanisms
[Guélat and Marcotte, 1986, Hearn et al., 1987] that lead to linear convergence rates under
appropriate structures of the objective function [Garber and Hazan, 2013a, Lacoste-Julien and
Jaggi, 2013, 2015b, Beck and Shtern, 2017, Gutman and Pena, 2018, Pena and Rodriguez,
2018]. Accelerated versions of Frank-Wolfe, when the constraint set is a trace-norm ball (a.k.a.
nuclear balls) – which are neither polyhedral nor strongly convex [So, 1990] – have also received
a lot of attention [Freund et al., 2017, Allen-Zhu et al., 2017, Garber et al., 2018] and are es-
pecially useful in matrix completion [Jaggi et al., 2010, Shalev-Shwartz et al., 2011, Harchaoui
et al., 2012, Dudik et al., 2012].

Contributions. We show accelerated sublinear convergence rates for the Frank-Wolfe algo-
rithm, with appropriate line-search, for smooth constrained optimization problems when the
constraint set is globally or locally uniformly convex. These bounds generalize the rates of
[Polyak, 1966, Demyanov and Rubinov, 1970], [Dunn, 1979], and [Garber and Hazan, 2015]
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in their respective settings and fill the gap between all known convergence rates, i.e. be-
tween O(1/T ) and the linear rate of [Levitin and Polyak, 1966, Demyanov and Rubinov, 1970,
Dunn, 1979], and between O(1/T ) and the O(1/T 2) rate of [Garber and Hazan, 2015] (see
e.g. concluding remarks of [Garber and Hazan, 2015]). We also provide similar arguments
that interpolate between known regret bounds in an example of projection-free online learn-
ing. Overall, we illustrate another key aspect of the Frank-Wolfe algorithms: they are adaptive
to many generic structural assumptions.

Outline. In Section 3.2, we analyze the complexity of the Frank-Wolfe algorithm when the
constraint set is uniformly convex, under various assumptions on f . In Section 3.2.3, we also
establish accelerated convergence rate under weaker assumptions than global or local uniform
convexity of the constraint set. In Section 3.3, we focus on the online optimization setting and
provide analogous results to the previous section in term of regret bounds. In Section 3.4, we
give some examples of uniformly convex sets and relate the uniform convexity notion for sets
with that of spaces and functions.

Notation. We use d for the ambient dimension of the compact convex sets C. We denote the
boundary of C by ∂C and let NC(x) , {d | 〈d; y−x〉 ≤ 0, ∀y ∈ C} denote the normal cone at x
with respect to C. In the following, x∗ is an (optimal) solution to (OPT) and (α, q) denotes the
uniform convexity parameters of a set. p stands for the parameters for the various norm balls
and might differ from q. We sometimes assume strict convexity of f for the sake of exposition
(only). Given a norm || · || we denote by ||d||∗ , max||x||≤1〈x; d〉 its dual norm and we let
ht , f(xt)− f(x∗) denote the primal gap.

3.2 Frank-Wolfe Convergence Analysis with Uniformly Convex Con-
straints

In Theorem 3.2.2, we show accelerated convergence rate of the Frank-Wolfe algorithm when
the constraint set C is (α, q)-uniformly convex (with q ≥ 2) and the smooth convex function
satisfies infx∈C ||∇f(x)|| > 0; this is the interesting case. In Section 3.2.3, we then explore
localized uniform convexity on the set C and provide convergence rates in Theorem 3.2.5. In
Theorem 3.2.10 we show that (α, q)-uniform convexity ensures convergence rates of the Frank-
Wolfe algorithms in between the O(1/T ) and O(1/T 2) [Garber and Hazan, 2015] when the
function is strongly convex (and L-smooth), or satisfies a quadratic error bound at x∗. We
also provide generalized convergence rates assuming Hölderian Error Bounds on f . In all of
these scenarios, when the set is uniformly convex, the Frank-Wolfe algorithm (with short step)
enjoys accelerated convergence rates with respect to O(1/T ).

Proof Sketch. We now provide an informal discussion as to why the uniform convexity of C
leads to accelerated convergence rates under the classical assumptions that infx∈C ||∇f(x)|| > 0
and hence x∗ ∈ ∂C. Formal arguments are developed in the proof of Theorem 3.2.2. The key
point is that if C is curved around x∗ and f is L-smooth, when ||xt−x∗|| converges to zero, the
quantity ||xt − vt|| also converges to zero, which is generally not the case, for instance when
the constraint set is a polytope.
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In Figure 3.1 we show various such behaviors. Applying the L-smoothness of f to the
Frank-Wolfe iterates, the classical iteration inequality is of the form (with γ ∈ [0, 1])

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)− γ〈−∇f(xt); vt − xt〉+ γ2

2 L||xt − vt||
2. (3.1)

The non-negative quantity 〈−∇f(xt); vt − xt〉 participates in guaranteeing the function de-
crease, counter-balanced with ||xt − vt||2. The convergence rate then depends on specific
relative quantification of these various terms, that we call scaling inequalities in Lemma 3.2.1
and 3.2.4.

Figure 3.1: vFWstrong, vFWuni , vFWpoly represent the various FW vertices from the strongly convex set
C0, the uniformly convex set C1 and the polytope C2.

3.2.1 Scaling Inequality on Uniformly Convex Sets
The following lemma outlines that the uniform convexity of C implies an upper bound on the
distance between the current iterate and the Frank-Wolfe vertex as a power of the Frank-Wolfe
gap. Note that the uniform convexity is defined with respect to any norm, and not just in
terms of an Hilbertian structure. To be even more generic, the uniform convexity can be
defined with respect to gauge functions that are not necessarily norms, see, for instance, the
strong-convexity of [Molinaro, 2020].
Lemma 3.2.1. Assume the compact C ⊂ Rd is an (α, q)-uniformly convex set with respect to
a norm || · ||, with α > 0 and q ≥ 2. Consider x ∈ C, φ ∈ Rd and vφ ∈ argmaxv∈C 〈φ; v〉.
Then, we have 〈φ; vφ−x〉 ≥ α

2 ||vφ−x||
q||φ||∗. In particular for an iterate xt and its associated

Frank-Wolfe vertex vt, this yields

〈−∇f(xt); vt − xt〉 ≥
α

2 ||vt − xt||
q||∇f(xt)||∗. (Global-Scaling)

Proof. Because C is (α, q)-uniformly convex, we have that for any z ∈ Rd of unit norm (x +
vφ)/2 + α/4||x− vφ||qz ∈ C. By optimality of vφ, we have 〈φ; vφ〉 ≥ 〈φ; (x+ vφ)/2〉+ α/4||x−
vφ||q〈φ, z〉. Hence, choosing the best z implies 〈φ; vφ − x〉 ≥ α/2||vφ − x||q||φ||∗.

In other words, when C is uniformly convex, (Global-Scaling) quantifies the trade-off be-
tween the Frank-Wolfe gap g(xt) , 〈∇f(xt);xt − vt〉 and the value of ||xt − vt|| under consid-
eration in (3.1).
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3.2.2 Interpolating linear and sublinear rates
To our knowledge, no accelerated convergence rate of the Frank-Wolfe algorithm is known
when the constraint set is uniformly convex but not strongly convex. We fill this gap in
Theorem 3.2.2 below. When q goes to +∞, we recover the classic sublinear convergence rate
of O(1/T ).
Theorem 3.2.2. Consider a convex L-smooth function f and a compact convex set C. As-
sume that C is (α, q)-uniformly convex set with respect to a norm || · ||, with q ≥ 2. Assume
||∇f(x)||∗ ≥ c > 0 for all x ∈ C. Then the iterates of the Frank-Wolfe algorithm, with short
step as in Line 3 of Algorithm 9 or exact line search, satisfy f(xT )− f(x∗) ≤M/(T + k)1/(1−2/q) when q > 2

f(xT )− f(x∗) ≤
(
1− ρ

)T
h0 when q = 2,

(3.2)

with ρ = max
{1

2 , 1− cα/L
}
, k , (2− 2η)/(2η − 1) and M , max{h0k

1/η, 2/((η − (1− η)(2η −
1))C)1/η}, where η , 1− 2/q and C , (cα/2)2/q/(2L).
Proof. By L-smoothness of f and because of the short step, we have for γ ∈ [0, 1]

f(xt+1) ≤ f(xt)− γg(xt) + γ2

2 L||xt − vt||
2,

where g(xt) is the Frank-Wolfe gap. With γ = min
{
1, g(xt)/(L||xt − vt||2)

}
we have

f(xt+1) ≤ f(xt)−
g(xt)

2 ·min
{

1; g(xt)
L||xt − vt||2

}
.

Applying Lemma 3.2.1 with φ = −∇f(xt) gives g(xt) ≥ α/2||xt − vt||q||∇f(xt)||∗. Then

g(xt)
||xt − vt||2

=
(g(xt)q/2−1g(xt)
||xt − vt||q

)2/q
≥
(
α/2||∇f(xt)||∗

)2/q
g(xt)1−2/q. (3.3)

Finally, because g(xt) ≥ f(xt)− f(x∗) = h(xt), we have

h(xt+1) ≤ h(xt)−
h(xt)

2 min
{

1;
(
α/2||∇f(xt)||∗

)2/q
h(xt)1−2/q/L

}
,

and hence

h(xt+1) ≤ h(xt) ·max
{1

2; 1−
(
α/2||∇f(xt)||∗

)2/q
h(xt)1−2/q/(2L)

}
. (3.4)

Then, by assumption, for all x ∈ C, we have ||∇f(x)||∗ > c > 0 and hence (3.4) becomes

h(xt+1) ≤ h(xt) ·max
{1

2; 1−
(
cα/2

)2/q
h(xt)1−2/q/(2L)

}
.

We solve the recursion with Lemma 3.A.1; when q = 2 we recover the linear convergence rate.

Remark 3.2.3. The convergence rates in Theorem 3.2.2 imply convergence rates in term of
distance to optimum by applying Lemma 3.2.1 with φ = −∇f(x∗) and convexity of f . Indeed,
this yields

||xt − x∗||q ≤
2
cα
〈−∇f(x∗);x∗ − xt〉 ≤

2
cα

(
f(xt)− f(x∗)

)
.

Hence, to obtain convergence rates in terms of the distance of the iterates to the optimum, the
uniform convexity of the set supersedes that of the function, which is not needed here.
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3.2.3 Convergence Rates with Local Uniform Convexity
Theorem 3.2.2 relies on the global uniform convexity of the set. Actually, for the strongly
convex case, it is equivalent to the global scaling inequality (Global-Scaling), see [Goncharov
and Ivanov, 2017, Theorem 2.1 (g)]. However, weaker assumptions also lead to accelerated
convergence rates of the Frank-Wolfe algorithm. In Theorem 3.2.5, we show accelerated con-
vergence rates assuming a local scaling inequality at x∗. We then study the sets for which such
an inequality holds. We say that a local scaling inequality holds at x∗ ∈ C, when there exists
an α > 0 and q ≥ 2 such that for all x ∈ C

〈−∇f(x∗);x∗ − x〉 ≥ α/2||∇f(x∗)||∗ · ||x∗ − x||q. (Local-Scaling)

This combines the position of −∇f(x∗) with respect to the normal cone of C at x∗ and the local
geometry of C at x∗, see Remark 3.2.8. When the set C is globally (α, q)-uniformly convex, this
is a direct consequence of Lemma 3.2.1 because −∇f(x∗) ∈ NC(x∗). In the following lemma,
we prove that it is also a consequence of a natural definition of local uniform convexity of C at
x∗.

Lemma 3.2.4. Consider a compact convex set C and x∗ a solution to (OPT). Assume that C
is locally (α, q)-uniformly convex at x∗ with respect to || · || in the sense that, for all x ∈ C,
η ∈ [0, 1] and unit norm z ∈ Rd, we have ηx∗ + (1 − η)x + η(1 − η)α||x∗ − x||qz ∈ C. Then
(Local-Scaling) holds at x∗ with parameters (α, q).

Proof. By definition of local uniform convexity between x∗ and x, we have that for any
z ∈ Rd of unit norm (x∗ + x)/2 + α/4||x∗ − x||qz ∈ C. Then, by optimality of x∗, i.e.
x∗ ∈ argmaxv∈C〈−∇f(x∗); v〉, we have 〈−∇f(x∗);x∗〉 ≥ 〈−∇f(x∗); (x∗ + x)/2〉 + α/4||x∗ −
x||q〈−∇f(x∗), z〉. Choosing the best z and subtracting both sides by 〈−∇f(x∗);x〉, implies

〈−∇f(x∗);x∗ − x〉 ≥ α/2||x∗ − x||q||∇f(x∗)||∗.

We obtain sublinear convergence rates that are systematically better than the O(1/T )
baseline for any q ≥ 2.

Theorem 3.2.5. Consider f an L-smooth convex function and a compact convex set C. Assume
||∇f(x)||∗ > c > 0 for all x ∈ C and write x∗ ∈ ∂C a solution of (OPT). Further, assume
that the convex set C satisfies a local scaling inequality at x∗ with parameters (α, q). Then the
iterates of the Frank-Wolfe algorithm, with short step satisfy f(xT )− f(x∗) ≤M/(T + k)

1
1−2/(q(q−1)) when q > 2

f(xT )− f(x∗) ≤
(
1− ρ

)T
h0 when q = 2,

(3.5)

with ρ = max
{1

2 , 1− cα/L
}
, k , (2− 2η)/(2η − 1) and M , max{h0k

1/η, 2/((η − (1− η)(2η −
1))C)1/η}, where η , 1−2/(q(q−1)) and C , 1/(2LH2). Note that H depends only on C,α, L
and q (see Lemma 3.2.7).

Remark 3.2.6. When the local scaling inequality (Local-Scaling) holds with q = 2, we obtain
the same linear convergence regime as in (3.2). With q > 2, the sublinear convergence rates
are of order O(1/T 1/(1−2/(q(q−1)))) instead of O(1/T 1/(1−2/q)) when the set is (α, q)-uniformly
convex and the global scaling inequality (Global-Scaling) holds. It is an open question to close
this gap in the convergence regime with the local scaling inequality only.
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The local scaling inequality expresses a property between x∗ and any x ∈ C. In the following
lemma, we show that albeit we only have access to a local scaling inequality, it is still possible
to control the variation of the distance of the iterate to its Frank-Wolfe vertex ||xt − vt|| in
terms of a power of the primal gap, see beginning of Section 3.2 for a qualitative explanation.
This is key for the proof of Theorem 3.2.5.
Lemma 3.2.7. Consider f a L-smooth convex function and a compact convex set C. Assume
infx∈C ||∇f(x)||∗ > c > 0 and write x∗ ∈ ∂C the solution of (OPT). Assume that C satisfies a
local scaling inequality at x∗ for problem (OPT) with α > 0 and q ≥ 2, i.e. for all x ∈ C

〈−∇f(x∗);x∗ − x〉 ≥ α/2||∇f(x∗)||∗ · ||x∗ − x||q (3.6)

Write vt , argmaxv∈C〈−∇f(xt); v〉 the Frank-Wolfe vertex. Assume that ht = f(xt)−f(x∗) ≤ 1
(a simple burn-in phase). Then, we have

||xt − vt|| ≤ Hh1/(q(q−1))
t , (3.7)

with H , 2 ·max
{(

2L
cα

)1/(q−1)( 2
cα

)1/(q(q−1))
,
(

2
cα

)1/q}
.

Proof. We apply the local scaling inequality (3.6) with x = vt and x = xt. We obtain two
important inequalities: one that upper bounds ||x− x∗|| in terms of f(x)− f(x∗) and another
that upper bounds ||vt− x∗|| in terms of ||x∗− xt||, where vt is the Frank-Wolfe vertex related
to iterate xt. These two inequalities rely of convexity, L-smoothness and (3.6), but do not rely
on strong convexity of the function f .

By optimality of the Frank-Wolfe vertex vt, we have ∇f(xt)T vt ≤ ∇f(xt)Tx∗. Hence,
combining that with Cauchy-Schwartz, we get

||∇f(x∗)−∇f(xt)|| ||vt − x∗|| ≥ 〈∇f(x∗)−∇f(xt); vt − x∗〉+ 〈∇f(xt); vt − x∗〉︸ ︷︷ ︸
≤0

≥ 〈∇f(x∗); vt − x∗〉 ≥ cα/2||vt − x∗||q.

Then, L-smoothness applied to the left hand side leaves us with

||xt − x∗|| ≥
cα

2L ||vt − x
∗||q−1, (3.8)

and a triangular inequality gives

||xt − vt|| ≤ ||vt − x∗||+ ||x∗ − xt||

||xt − vt|| ≤
(2L
cα

)1/(q−1)
||xt − x∗||1/(q−1) + ||x∗ − xt||.

Finally applying (3.6) with x = xt and using that infx∈C ||∇f(x)||∗ > c > 0, we have ||xt−x∗|| ≤(
2
cα

)1/q
h

1/q
t which leads to

||xt − vt|| ≤
(2L
cα

)1/(q−1)( 2
cα

)1/(q(q−1))
h

1/(q(q−1))
t +

( 2
cα

)1/q
h

1/q
t .

We can simplify this previous expression, and we assumed without loss of generality (i.e. up
to a burning-phase) that ht ≤ 1, which implies for q ≥ 2 that h1/(q(q−1))

t ≥ h
1/q
t . With

H , 2 ·max
{(

2L
cα

)1/(q−1)( 2
cα

)1/(q(q−1))
,
(

2
cα

)1/q}
, we then have

||xt − vt|| ≤ Hh1/(q(q−1))
t .
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We now proceed with the proof of Theorem 3.2.5.

Proof of Theorem 3.2.5. With Lemma 3.2.7, which satisfies the assumption of Theorem 3.2.5,
we have

||xt − vt|| ≤ Hh1/(q(q−1))
t ,

with H , 2 · max
{(

2L
cα

)1/(q−1)( 2
cα

)1/(q(q−1))
,
(

2
cα

)1/q}
. We plug this last expression in the

classical descent guarantee given by L-smoothness

ht+1 ≤ (1− γ)ht + γ2L

2 ||vt − xt||
2

ht+1 ≤ (1− γ)ht + γ2L

2H
2h

2/(q(q−1))
t .

The optimal decrease γ ∈ [0, 1] is γ∗ = min
{
h

1−2/(q(q−1))
t

LH2 , 1
}
. When γ∗ = 1, or equivalently

ht ≥
(
LH2)1−2/(q(q−1)), we have ht+1 ≤ ht/2. In other words, for the very first iterations, there

is a brief linear convergence regime. Otherwise, when γ∗ ≤ 1, we have

ht+1 ≤ ht
(
1− 1

2LH2h
1−2/(q(q−1))
t

)
. (3.9)

When q = 2, this corresponds to the strongly convex case and we recover the classical linear-
convergence regime. We conclude using Lemma 3.A.1 that the rate is O

(
1/T 1/(1−2/(q(q−1)))

)
.

A similar approach appears in [Dunn, 1979] which introduces the following functional

ax∗(σ) , inf
x∈C

||x−x∗||≥σ

〈∇f(x∗);x− x∗〉,

and shows than when there exists A > 0 such that ax∗(σ) ≥ A||x−x∗||2, then the Frank-Wolfe
algorithm converges linearly, under appropriate line-search rules. This result of [Dunn, 1979]
thus subsumes that of [Levitin and Polyak, 1966, Demyanov and Rubinov, 1970]. However, no
analysis was conducted for uniformly (but not strongly) convex set.

In Lemma 3.2.4 we showed that a given quantification of local uniform convexity implies
the local scaling inequality and hence accelerated convergence rates. However, there are many
situations where such a local notion of uniform convexity does not hold but (Local-Scaling)
does. This was the essence of [Dunn, 1979, Remark 3.5.] that we state here.

Corollary 3.2.8. Assume there exists a compact and (α, q)-uniformly convex set Γ such that
C ⊂ Γ and NΓ(x∗) ⊂ NC(x∗), where x∗ is the solution of (OPT). If −∇f(x∗) ∈ NΓ(x∗), then
(Local-Scaling) holds at x∗ with the (α, q) parameters.

Proof. Here, because NΓ(x∗) ⊂ NC(x∗), we have that x∗ ∈ argmaxv∈Γ〈−∇f(x∗); v〉. Also, for
x ∈ C ⊂ Γ, by (α, q)-uniform convexity of Γ, we also have that for any z ∈ Rd of unit norm
that (x∗ + x)/2 + α/4||x∗ − x||qz ∈ Γ. Then, by optimality of x∗, we have 〈−∇f(x∗);x∗〉 ≥
〈−∇f(x∗); (x∗+x)/2〉+α/4||x∗−x||q〈−∇f(x∗), z〉. Choosing the best z and subtracting both
sides by 〈−∇f(x∗);x〉, implies (for any x ∈ C) 〈−∇f(x∗);x∗ − x〉 ≥ α/2||x∗ − x||q||∇f(x∗)||∗.
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There exist numerous notions of local uniform convexity of a set that may imply local
scaling inequalities. See for instance, the local directional strong convexity in [Goncharov and
Ivanov, 2017, §Local Strong Convexity]. Alternatively, in the context of functions, Hölderian
Errors Bounds (HEB) offer a weaker description of localized uniform convexity assumptions
while retaining the same convergence rates [Kerdreux et al., 2019]. And these are known to
hold generically for various classes of function [Lojasiewicz, 1965, Kurdyka, 1998, Bolte et al.,
2007]. Obtaining a similar characterization for set is of interest. In particular, it is natural
to relate enhanced convexity properties of the set gauge function || · ||C [Rockafellar, 1970a,
§15] to convexity properties of the set or directly to local scaling inequalities. For instance,
local uniform convexity of the gauge || · ||C implies a local scaling inequality for C (see Lemma
3.B.1). This suggests that error bounds as guaranteed with Łojasiewicz-type arguments on the
gauge function should imply local scaling inequalities, showing that theses inequalities hold
somewhat generically.

3.2.4 Interpolating Sublinear Rates for Arbitrary x∗

When the function is µ-strongly convex and the set C is α-strongly convex, Garber and Hazan
[2015] show that the Frank-Wolfe algorithm (with short step) enjoys a general O(1/T 2) con-
vergence rate. In particular, this result does not depend on the location of x∗ with respect to
C. We now generalize this result by relaxing the strong convexity of the constraint set C and
the quadratic error bound on f [Garber and Hazan, 2015, (1)].

Hölderian Error Bounds. Let f be a strictly convex L-smooth function and x∗ = argminx∈Cf(x)
where C is a compact convex set; the strict convexity assumption is only required to simplify
exposition and the results hold more generally with the usual generalizations. We say that f
satisfies a (µ, θ)-Hölderian Error Bound when there exists θ ∈ [0, 1/2] such that

||x− x∗|| ≤ µ(f(x)− f(x∗))θ. (HEB)

When the function f is subanalytic, (HEB) is known to hold generically [Lojasiewicz, 1965,
Kurdyka, 1998, Bolte et al., 2007]. For instance, when f is (µ, r)-uniformly convex with r ≥ 2
(see Definition 3.D.1), then it satisfies a ((2/µ)1/r, 1/r)-Hölderian Error Bound, which follows
from

f(xt) ≥ f(x∗) + 〈∇f(x∗);xt − x∗〉︸ ︷︷ ︸
≥0

+µ

2 ||xt − x
∗||r2.

Hence we generalize the convergence result of [Garber and Hazan, 2015] and show that as
soon as the set C is (α, q)-uniformly convex with q ≥ 2 and the function f satisfies a non-trivial
(µ, θ)-HEB, the Frank-Wolfe algorithm (with short step) enjoys an accelerated convergence
rate with respect to O(1/T ). In particular when f is µ-strongly convex, it satisfies a (µ, 1/2)-
HEB and by varying q ≥ 2 we interpolate all sublinear convergence rates between O(1/T ) and
O(1/T 2).

In Lemma 3.2.9, we will show an upper bound on ||xt − vt|| when combining the uniform
convexity of C and a Hölderian Error Bound for f . Lemma 3.2.9 is then the basis for the
convergence analysis and similar to Lemma 3.2.1. Overall, Theorem 3.2.2, Theorem 3.2.5 and
Theorem 3.2.10 give an almost complete picture of all the accelerated convergence regimes one
can expect with the vanilla Frank-Wolfe algorithm.
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Lemma 3.2.9. Consider a compact and (α, q)-uniformly convex set C with respect to || · ||.
Denote f a strictly convex L-smooth function and x∗ = argminx∈Cf(x). Assume that f satisfies
a (µ, θ)-Hölderian Error Bound ||x−x∗|| ≤ µ(f(x)−f(x∗))θ with θ ∈ [0, 1/2]. Then for xt ∈ C
we have α/µ||xt−vt||qh1−θ

t ≤ g(xt), where g(xt) is the Frank-Wolfe gap and vt the Frank-Wolfe
vertex.

Proof. By Lemma 3.2.1 we have g(xt) ≥ α||xt − vt||q||∇f(xt)||∗. Then, by combining the
convexity of f , Cauchy-Schwartz and (µ, θ)-Hölderian Error Bound, we have

f(x)− f(x∗) ≤ 〈∇f(x);x− x∗〉 ≤ ||∇f(x)||∗ · ||x− x∗|| ≤ µ||∇f(x)||∗ ·
(
f(x)− f(x∗)

)θ
,

so that
(
f(x)− f(x∗)

)1−θ ≤ ||∇f(x)||∗ and finally g(xt) ≥ α||xt − vt||qh1−θ
t .

Theorem 3.2.10. Consider a L-smooth convex function f that satisfies a (µ, θ)-HEB with µ > 0
and θ ∈]0, 1/2]. Assume C is a compact and (α, q)-uniformly convex set with respect to ||·|| with
q ≥ 2. Then the iterates of the Frank-Wolfe algorithm, with short step or exact line search,
satisfy

f(xT )− f(x∗) ≤M/(T + k)1/(1−2θ/q), (3.10)

with k , (2 − 2η)/(2η − 1) and M , max{h0k
1/η, 2/((η − (1 − η)(2η − 1))C)1/η}, where η ,

1− 2θ/q and C , (α/µ)2/q/L. In particular for q = 2 and θ = 1/2, we obtain the O(1/T 2) of
[Garber and Hazan, 2015].

Proof. From the proof of Theorem 3.2.2, L-smoothness and the step size decision we have

h(xt+1) ≤ h(xt)−
g(xt)

2 ·min
{

1; g(xt)
L||xt − vt||2

}
.

Then using Lemma 3.2.9, we can rewrite

g(xt)
||xt − vt||2

=
(g(xt)q/2−1g(xt)
||xt − vt||q

)2/q
≥
(
α/µ

)2/q
g(xt)1−2/qh

(1−θ)2/q
t .

And because g(xt) ≥ ht, we have

g(xt)
||xt − vt||2

≥
(
α/µ

)2/q
h

1−2θ/q
t .

We finally end up with the following recursion

h(xt+1) ≤ h(xt) ·max
{1

2; 1−
(
α/µ

)2/q
h

1−2θ/q
t /L

}
,

and we conclude with Lemma 3.A.1.

Overall, Theorem 3.2.2, Theorem 3.2.5 and Theorem 3.2.10 give an (almost) complete
picture of all the accelerated convergence regimes one can expect with the vanilla Frank-Wolfe
algorithm.
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3.3 Online Learning with Linear Oracles and Uniform Convexity
In online convex optimization, the algorithm sequentially decides an action, a point xt in a set C,
and then incurs a (convex smooth) loss lt(xt). Algorithms are designed to reduce the cumulative
incurred losses over time, Ft = 1

t

∑t
τ=1 lτ (xτ ). The comparison to the best action in hindsight

is then defined as the regret of the algorithm, i.e. RT ,
∑T
t=1 lt(xt)−minx∈C

∑T
t=1 lt(x).

Interesting correspondences have been established between the Frank-Wolfe algorithm and
online learning algorithms. For instance, recent works [Abernethy and Wang, 2017, Abernethy
et al., 2018] derive new Frank-Wolfe-like algorithms and analyses via two online learning al-
gorithms playing against each other. Furthermore, a series of work proposed projection-free
online algorithms inspired by their offline counterpart, e.g. Hazan and Kale [2012] design
a Frank-Wolfe online algorithm. In following works, Garber and Hazan [2013b,a] propose
projection-free algorithms for online and offline optimization with optimal convergence guar-
antees where the decision sets are polytopes and the loss functions are strongly-convex. In the
same setting, Lafond et al. [2015] analyze the online equivalent of the away-step Frank-Wolfe
algorithm via a similar analysis to [Lacoste-Julien and Jaggi, 2013, 2015b] in the offline set-
ting. Recently, Hazan and Minasyan [2020] proposed a randomized projection-free algorithm
that has a regret of O(T 2/3) with high probability improving over the deterministic O(T 3/4) of
[Hazan and Kale, 2012] and Levy and Krause [2019] designed a projection-free online algorithm
over smooth decision sets; dual to uniformly convex sets [Vial, 1983].

Online Linear Optimization and Set Curvature. At a high level, when the constraint set is
strongly-convex, the analyses of the simple Follow-The-Leader (FTL) for online linear optimiza-
tion [Huang et al., 2016b] is analogous to the offline convergence analyses of the Frank-Wolfe
algorithm when not assuming strong-convexity of the objective function as in [Polyak, 1966,
Demyanov and Rubinov, 1970, Dunn, 1979]. Indeed, by definition, linear functions do not
enjoy non-linear lower bounds, i.e. uniform convexity-like assumptions.

In the online linear setting, we write the functions lt(x) = 〈ct;x〉 and assume that (ct)
belong to a bounded set W (smoothness). FTL consists in choosing the action xt at time t
that minimizes the cumulative sum of the previously observed losses, i.e. each iteration solves
the minimization of a linear function over C

xT ∈ argmin
x∈C

T−1∑
t=1

lt(x) = 〈
T−1∑
t=1

ct;x〉. (3.11)

In general, FTL incurs a worst-case regret of O(T ) [Shalev-Shwartz et al., 2012]. For
online linear learning, Huang et al. [2016b, 2017] study the conditions under which the strong
convexity of the decision set C leads to improved regret bounds. In particular, when there
exists a c > 0 such that for all T , min1≤t≤T ||1t

∑t
τ=1 cτ ||∗ ≥ c > 0, then FTL enjoys the optimal

regret bound of O(log(T )) [Huang et al., 2017]. This result is the counter part of the offline
geometrical convergence analyses of the Frank-Wolfe algorithm when infx∈C ||∇f(x)||∗ ≥ c > 0
and C is a strongly convex set [Polyak, 1966, Demyanov and Rubinov, 1970, Dunn, 1979]. In
Theorem 3.3.1, we hence further support this analogy between online and offline settings. We
show that FTL enjoys continuously interpolated regret bounds between O(log(T )) and O(T )
for all types of uniform convexity of the decision sets. Again, this covers a much broader
spectrum of curved sets, and is similar to Theorem 3.2.2 in the Frank-Wolfe setting. A proof
is deferred to Appendix 3.C.
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Theorem 3.3.1. Let C be a compact and (α, q)-uniformly convex set with respect to ||·||. Assume
that LT = min1≤t≤T ||1t

∑t
τ=1 cτ ||∗ > 0. Then the regret RT of FTL (3.11) for online linear

optimization satisfies
RT ≤ 2M

( 2M
αLT

)1/(q−1)(q − 1
q − 2

)
T 1−1/(q−1) when q > 2

RT ≤
4M2

αLT
(1 + log(T )) when q = 2,

(3.12)

where M = supc∈W ||c||∗, with the losses lt(x) = 〈ct;x〉 and (ct) belong to the bounded set W.

The following is the generalization of [Huang et al., 2017, (6)] when the set is uniformly
convex (see Definition 3.1.1). Note that in our version C can be uniformly convex with respect
to any norm. The proof is deferred to Appendix 3.C.

Lemma 3.3.2. Assume C ⊂ Rd is a (α, q)-uniformly convex set with respect to || · ||, with
α > 0 and q ≥ 2. Consider the non-zero vectors φ1, φ2 ∈ Rd and vφ1 ∈ argmaxv∈C 〈φ; v〉 and
vφ2 ∈ argmaxv∈C 〈φ; v〉. Then

〈vφ1 − vφ2 ;φ1〉 ≤
( 1
α

)1/(q−1) ||φ1 − φ2||1+1/(q−1)
∗

(max{||φ1||∗, ||φ2||∗})1/(q−1) , (3.13)

where || · ||∗ is the dual norm to || · ||.

Proof of Theorem 3.3.1. The proof follows exactly that of [Huang et al., 2017, Theorem 5].
Write M = supc∈F ||c||, Ft(x) = 1

t

∑t
τ=1 〈ct;x〉 and short cut ∇Ft , 1

t

∑t
τ=1 ct the gradient of

the linear function Ft(x). Recall that with FTL, xt is defined as

xt ∈ argminx∈C〈
t−1∑
τ=1

ct;x〉.

As in [Huang et al., 2017, Theorem 5] we have (for any norm || · ||)

||∇Ft −∇Ft−1|| ≤
2M
t
.

Using [Huang et al., 2017, Proposition 2] and Lemma 3.C.1 we get the following upper bound
on the regret

RT =
T∑
t=1

t〈xt+1 − xt;∇Ft〉 ≤
( 1
α

)1/(q−1) T∑
t=1

t
||∇Ft −∇Ft−1||1+1/(q−1)

∗

(max{||∇Ft||∗, ||∇Ft−1||∗})1/(q−1) .

Hence, with LT = min1≤t≤T ||∇Ft||∗ > 0, we have

RT ≤ 2M
( 2M
αLT

)1/(q−1) T∑
t=1

t−1/(q−1).

Then we have for q > 2

T∑
t=1

t−1/(q−1) = 1 +
T∑
t=2

t−1/(q−1) ≤ 1 +
∫ T−1

x=1
x−1/(q−1)dx = 1 +

[ t1−1/(q−1)

1− 1/(q − 1)
]T−1

1
,
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so that finally
RT ≤ 2M

( 2M
αLT

)1/(q−1)(q − 1
q − 2

)
T 1−1/(q−1).

With the simple FTL, we obtain non-trivial regret bounds, i.e. o(T ), whenever the set
is uniformly convex, without any curvature assumption on the loss functions (because they
are linear). In particular for q ∈ [2, 3], it improves over the general tight regret bound of
O(
√
T ) for smooth convex losses and compact convex decision sets [Shalev-Shwartz et al.,

2012]. Interestingly, with the same assumption on C, Dekel et al. [2017] obtain for online
linear optimization, the same asymptotical regret bounds with a variation of Follow-The-
Leader incorporating hints. It is remarkable that the presence of hints or the assumption
min1≤t≤T ||1t

∑t
τ=1 cτ ||∗ ≥ c > 0 for all T both lead to the same bounds.

3.4 Examples of Uniformly Convex Objects
The uniform convexity assumptions refine the convex properties of several mathematical ob-
jects, such as normed spaces, functions, and sets. In this section, we provide some connection
between these various notions of uniform convexity. In Section 3.4.1, we recall that norm balls
of uniformly convex spaces are uniformly convex sets, and show set uniform convexity of clas-
sic norm balls in Section 3.4.2 and illustrate it with numerical experiments in Section 3.5. In
Appendix 3.D.2, we show that the level sets of some uniformly convex functions are uniformly
convex sets, extending the strong convexity results of [Garber and Hazan, 2015, Section 5].

3.4.1 Uniformly Convex Spaces
The uniform convexity of norm balls (Definition 3.1.1) is closely related to the uniform convex-
ity of normed spaces [Polyak, 1966, Balashov and Repovs, 2011, Lindenstrauss and Tzafriri,
2013, Weber and Reisig, 2013]. Some works establish sharp uniform convexity results for clas-
sical normed spaces such as lp, Lp or Cp. Most of the practical examples of uniformly convex
sets are norm balls and are hence tightly linked with uniformly convex spaces. The property of
these sets has many consequences, e.g. [Donahue et al., 1997b]. It also relates to concentration
inequalities in Banach Spaces [Juditsky and Nemirovski, 2008] and hence implications [Ivanov,
2019] for approximate versions of the Carathéodory theorem [Combettes and Pokutta, 2019].

[Clarkson, 1936, Boas Jr, 1940] define a uniformly convex normed space (X, ||·||) as a normed
space such that, for each ε > 0, there is a δ > 0 such that if x and y are unit vectors in X with
||x− y|| ≥ ε, then (x+ y)/2 has norm lesser or equal to 1− δ. Specific quantification of spaces
satisfying this property is obtained via the modulus of convexity, a measure of non-linearity of
a norm.

Definition 3.4.1 (Modulus of convexity). The modulus of convexity of the space (X, || · ||) is
defined as

δX(ε) = inf
{

1−
∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣ ∣∣∣ ||x|| ≤ 1 , ||y|| ≤ 1 , ||x− y|| ≥ ε
}
. (3.14)

A normed space X is said to be r-uniformly convex in the case δX(ε) ≥ Cεr. These specific
lower bounds on the modulus of convexity imply that the balls stemming for such spaces are
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uniformly convex in the sense of Definition 3.1.1. There exist sharp results for Lp and `p
spaces in [Clarkson, 1936, Hanner, 1956]. Matrix spaces with p-Schatten norm are known as
Cp spaces, and sharp results concerning their uniform convexity can be found in [Dixmier,
1953, Tomczak-Jaegermann, 1974, Simon et al., 1979, Ball et al., 1994]. The following gives a
link between the set γC and space δX modulus of convexity, see proof in Appendix 3.D.1.

Lemma 3.4.2. If a normed space (X, || · ||) is uniformly convex with modulus of convexity δX(·),
then its unit norm ball is δX(·) uniformly convex with respect to || · ||. Note that if the unit ball
B||·||(1) is (α, q)-uniformly convex, then B||·||(r) is (α/rq−1, q)-uniformly convex.

3.4.2 Uniform Convexity of Some Classic Norm Balls
When p ∈]1, 2], `p-balls are strongly convex sets and ((p−1)/2, 2)-uniformly convex with respect
to || · ||p, see for instance [Hanner, 1956, Theorem 2] or [Garber and Hazan, 2015, Lemma 4].
When p > 2, the `p-balls are (1/p, p)-uniformly convex with respect to || · ||p [Hanner, 1956,
Theorem 2]. Uniform convexity also extends the strong convexity of group `s,p-norms (with
1 < p, s ≤ 2) [Garber and Hazan, 2015, §5.3. and 5.4.] to the general case p, s > 1.

[Dixmier, 1953, Tomczak-Jaegermann, 1974, Simon et al., 1979, Ball et al., 1994] focus
of the uniform convexity of the (Cp, || · ||S(p)) spaces, i.e. spaces of matrix where the norm
is the `p-norm of a matrix singular values . Their unit balls are hence the p-Schatten balls.
For p ∈]1, 2], p-Schatten balls are ((p− 1)/2, 2)-uniformly convex with respect to || · ||S(p), see
[Garber and Hazan, 2015, Lemma 6] and the sharp results of [Ball et al., 1994]. For the case
p > 2, [Dixmier, 1953] showed that the p-Schatten balls are (1/p, p)-uniformly convex with
respect to || · ||S(p), see also [Ball et al., 1994, §III].

3.5 Numerical Illustration
Uniform convexity is a global assumption. Hence, in Theorem 3.2.2, we obtain sublinear
convergence that do not depend on the specific location of the solution x∗ ∈ ∂C. However, some
regions of C might be relatively more curved than others and hence exhibit faster convergence
rates. This effect is quantified in Theorem 3.2.5 when a local scaling inequality holds.

In Figure 3.1, in the case of the `p-balls with p > 2, we vary the approximate location of
the optimum x∗ in the boundary of the `p-balls.

Subfigures (3.1a), (3.1b), and (3.1c) are associated to an optimization problem where the
solution x∗ of (OPT) is near the intersection of the `p-balls and the half-line generated by∑d
i=1 ei (where the (ei) is the canonical basis), i.e. in curved regions of the boundaries of the

`p-balls.
Subfigures (3.1d), (3.1e), and (3.1f) corresponds to the same optimization problem where

the solution x∗ to (OPT) is close to the intersection between the half-line generated by e1 and
the boundary of the `p-balls, i.e. in flat regions of the boundaries of the `p-balls.

We observe that when the optimum is at a curved location, the convergence is quickly
linear for p sufficiently close to 2 and appropriate line-search (see Subfigures (3.1b) and (3.1c)).
However, when the optimum is near the flat location, we indeed observe sublinear convergence
rates (see Subfigures (3.1e) and (3.1f)). It still becomes linear for p = 2.1 with exact line-search
in Subfigure (3.1f).

Also, Theorem 3.2.2 gives accelerated rates when using the Frank-Wolfe algorithm with
exact line-search or short step. In Subfigures (3.1a) and (3.1d), we show examples of the
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convergence of the Frank-Wolfe algorithm when using deterministic line-search. The rates are
indeed sublinear in O(1/T ). In other words, deterministic line-search generally do not lead to
accelerated convergence rates when the sets are uniformly convex.

3.6 Conclusion
Our results fill the gap between known convergence rates for the Frank Wolfe algorithm. Qual-
itatively, they also mean that it is the curvature of the constraint set that accelerates the
convergence of the Frank-Wolfe algorithm, not just strong-convexity. This emphasis on curva-
ture echoes works in other settings [Huang et al., 2016b]. For the sake of theory, the results
could be immediately refined by measuring the local curvature of convex bodies with more
sophisticated tools than uniform convexity [Schneider, 2015].

From a more practical perspective, uniform convexity encompasses ubiquitous structures of
constraint sets appearing in machine learning and signal processing. In applications where the
(e.g. regularization) constraints are likely to be active, the assumption that infx∈C ||∇f(x)||∗ >
0 is not restrictive and the value of c quantifies the relevance of the constraints.

Overall our results go back to the basics. They show that the Frank-Wolfe mechanism, i.e.
minimizing the linear approximation of the function and doing the right convex update, leads
to accelerated convergence rates for a large variety of curved sets, the uniformly convex sets,
in a fully-adaptive fashion.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Solving (OPT) with the Frank-Wolfe algorithm where f is a quadratic with con-
dition number 100 and the constraint sets are various `p-balls of radius 5. We vary p so that
all balls are uniformly convex but not strongly-convex. We vary the position of the solution
to (OPT) with respect to the boundaries of the constraints sets. On the first row, we choose
the constrained optimum close to the intersection of the set boundary and the line generated
by

∑
i ei (where the ei form the canonical basis), where `p-balls are typically more curved.

On the second row, we choose the constrained optimum near the intersection between the set
boundary and the line generate by e1, a region where the `p-balls are flat. On a line, each plot
exhibits the behavior of the Frank-Wolfe algorithm iterates with different step size strategy:
deterministic line-search (i.e. 1/(k + 1)), short step and exact line-search. To avoid the os-
cillating behavior of Frank-Wolfe gap, the y-axis represents mink=1,...,T g(xk) where g(·) is the
Frank-Wolfe gap and T the number of iterations.
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Appendices

3.A Recursive Lemma
The proofs of Theorems 3.2.2, 3.2.5, and 3.2.10 involve finding explicit bounds for sequences
(ht) satisfying recursive inequalities of the form,

ht+1 ≤ ht ·max{1/2, 1− Chηt }. (3.15)

with η < 1. An explicit solution with η = 1/2 is given in [Garber and Hazan, 2015] and
corresponds to ht = O(1/T 2), while for η = 1 we recover the classical sublinear Frank-Wolfe
regime of O(1/T ). For a η ∈]0, 1], we have O(1/T 1/η) (see for instance [Temlyakov, 2011] or
[Nguyen and Petrova, 2017, Lemma 4.2.]), which can be guessed via h(t) = (Cη)1/ηt−1/η the
solution of the differential equation h′(t) = −Ch(t)η+1 for t > 0. A quantitative statement is,
for instance, given in [Xu and Yang, 2018, proof of Theorem 1.] that we reproduce here.

Lemma 3.A.1 (Recurrence and sub-linear rates). Consider a sequence (ht)t∈N of non-negative
numbers satisfying (3.15) with 0 < η ≤ 1, then hT = O

(
1/T 1/η). More precisely for all t ≥ 0,

ht ≤
M

(t+ k)1/η

with k , (2− 2η)/(2η − 1) and M , max{h0k
1/η, 2/((η − (1− η)(2η − 1))C)1/η}.

3.B Beyond Local Uniform Convexity
Here we show that additional convexity properties on the gauge function of C imply local
scaling inequalities on C. Note that for ease, we assume that the gauge function is differential
at x∗ which is not necessarily the case case when the set C is uniformly convex.

Lemma 3.B.1. Consider a compact convex set C with 0 in its interior. Assume the gauge
function of C is differentiable and normal cone at the boundary are half-lines. Assume (µ, r)-
uniformly convex at x∗ a solution of (OPT) (where f is a convex L-smooth function and
infx∈C ||x||C > 0), then we have the following scaling inequality for all x ∈ C

〈−∇f(x∗);x− x∗〉 ≥ µ

||g||
||∇f(x∗)||||x− x∗||q,

where g ∈ NC(x∗) and 〈g;x∗〉 = 1.

Proof. We have x∗ ∈ ∂C. Write g = ∇||x||C . Then by (µ, r)-uniformly convex of the gauge
function we have

||x||C ≥ ||x∗||C︸ ︷︷ ︸
=1

+〈g;x− x∗〉+ µ||x− x∗||q.

Hence we have
〈−g;x− x∗〉 ≥ 1− ||x||C︸ ︷︷ ︸

≥0

+µ||x− x∗||q ≥ µ||x− x∗||q.
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When it is differentiable, [Schneider, 2014, (1.39)] show that g satisfies g ∈ NC(x∗) and 〈g;x∗〉 =
1. Here, the normal cone is a half-line and −∇f(x∗) ∈ NC(x∗). In particular then −∇f(x∗) =
||∇f(x∗)||
||g|| g. Finally

〈−∇f(x∗);x− x∗〉 ≥ µ

||g||
||x− x∗||q||∇f(x∗)||.

3.C Proofs in Online Optimization
The following is the generalization of [Huang et al., 2017, (6)] when the set is uniformly convex.
Note that in our version C can be uniformly convex with respect to any norm.

Lemma 3.C.1. Assume C ⊂ Rd is a (α, q)-uniformly convex set with respect to || · ||, with
α > 0 and q ≥ 2. Consider the non-zero vectors φ1, φ2 ∈ Rd and vφ1 ∈ argmaxv∈C 〈φ; v〉 and
vφ2 ∈ argmaxv∈C 〈φ; v〉. Then

〈vφ1 − vφ2 ;φ1〉 ≤
( 1
α

)1/(q−1) ||φ1 − φ2||1+1/(q−1)
∗

(max{||φ1||∗, ||φ2||∗})1/(q−1) , (3.16)

where || · ||∗ is the dual norm to || · ||.

Proof. By definition of uniform convexity, for any z of unit norm, vγ(z) ∈ C where

vγ(z) = γvφ1 + (1− γ)vφ2 + γ(1− γ)α||vφ1 − vφ2 ||qz.

By optimality of vφ1 and vφ2 , we have 〈vγ(z);φ1〉 ≤ 〈v1;φ1〉 and 〈vγ(z);φ2〉 ≤ 〈v2;φ2〉, so that

〈vγ(z); γφ1 + (1− γ)φ2〉 ≤ γ〈v1;φ1〉+ (1− γ)〈v2;φ2〉.

Write φγ = γφ1 + (1− γ)φ2. Then, when developing the left hand side, we get

γ(1− γ)α||vφ1 − vφ2 ||q〈z;φγ〉 ≤ γ(1− γ)〈vφ1 − vφ2 ;φ1 − φ2〉

Choosing the best z of unit norm we get

α||vφ1 − vφ2 ||q||φγ ||∗ ≤ 〈vφ1 − vφ2 ;φ1 − φ2〉

and for γ = 0 and γ = 1 and via generalized Cauchy-Schwartz we get

α||vφ1 − vφ2 ||q ·max{||φ1||∗, ||φ2||∗} ≤ ||vφ1 − vφ2 || · ||φ1 − φ2||∗.

Then,

〈vφ1 − vφ2 ;φ1〉 ≤ ||vφ1 − vφ2 || · ||φ1 − φ2||∗ ≤
( 1
α

)1/(q−1) ||φ1 − φ2||1+1/(q−1)
∗

(max{||φ1||∗, ||φ2||∗})1/(q−1) ,

and we finally obtain (3.16).
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3.D Uniformly Convex Objects
3.D.1 Uniformly Convex Spaces
Proof of Lemma 3.4.2. Assume (X, || · ||) is uniformly convex with modulus of convexity δ(·).
Then for any (x, y, z) ∈ B||·||(1), we have by definition 1− ||x+y||

2 ≥ δ(||x− y||) and then∣∣∣∣∣∣x+ y

2 + δ(||x− y||)z
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣+ δ(||x− y||) ≤ 1 .

Hence, x+y
2 + δ(||x − y||)z ∈ C. Without loss of generality, consider η ∈]0; 1/2]. We need to

show that ηx+ (1− η)y + δ(||x− y||)z ∈ C for any z with norm lesser than 1. First, note that
ηx+ (1− η)y = (1− 2η)y + (2η)(x+ y)/2. Note also that because 1− 2η ∈ [0, 1], we have for
any z of norm lesser than 1

(1− 2η)x+ (2η)
[
(x+ y)/2 + δ(||x− y||)z

]
∈ C.

Hence, for any z of norm lesser than 1, we have

ηx+ (1− η)y + 2ηδ(||x− y||)z ∈ C.

Or equivalently
ηx+ (1− η)y + (1− η)ηδ(||x− y||) 2η

(1− η)η z ∈ C.

Because 2η
(1−η)η ≥ 1, it follows that for any z of norm lesser than 1 we have

ηx+ (1− η)y + (1− η)ηδ(||x− y||)z ∈ C,

which conclude on the uniform convexity of the norm ball.

3.D.2 Uniformly Convex Functions
Uniform convexity is also a property of convex functions and defined as follows.

Definition 3.D.1. A differentiable function f is (µ, r)-uniformly convex on a convex set C if
there exists r ≥ 2 and µ > 0 such that for all (x, y) ∈ C

f(y) ≥ f(x) + 〈∇f(x); y − x〉+ µ

2 ||x− y||
r
2 .

We now state the equivalent of [Journée et al., 2010, Theorem 12] for the level sets of
uniformly convex functions. This was already used in [Garber and Hazan, 2015] in the case of
strongly-convex sets.

Lemma 3.D.2. Let f : Rd → R+ be a non-negative, L-smooth and (µ, r)-uniformly convex
function on Rd, with r ≥ 2. Then for any w > 0, the set

Lw =
{
x | f(x) ≤ w

}
,

is (α, r)-uniformly convex with α = µ√
2wL .
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Proof. The proof follows exactly that of [Journée et al., 2010, Theorem 12], replacing ||x−y||2
with ||x − y||r. We state it for the sake of completeness. Consider w0 > 0, (x, y) ∈ Lw and
γ ∈ [0, 1]. We denote z = γx+ (1− γ)y. For u ∈ Rd, by L-smoothness applied at z and at x∗
(the unconstrained optimum of f), we have

f(z + u) ≤ f(z) + 〈∇f(z);u〉+ L

2 ||u||
2
2

≤ f(z) + ||∇f(z)|| · ||u||+ L

2 ||u||
2
2

≤ f(z) +
√

2Lf(z)||u||+ L

2 ||u||
2
2 =

(√
f(z) +

√
L

2 ||u||
)2

.

Note that uniform convexity of f implies that

f(z) ≤ γf(x) + (1− γ)f(y)− µ

2 γ(1− γ)||x− y||r

In particular then, because x, y ∈ Lw, we have f(z) ≤ w − µ
2γ(1− γ)||x− y||r so that

f(z + u) ≤
(√

w − µ

2 γ(1− γ)||x− y||r +

√
L

2 ||u||
)2

(3.17)

Leveraging on the concavity of the square-root, we get

f(z + u) ≤
(√

w − µ

4
√
w
γ(1− γ)||x− y||r +

√
L

2 ||u||
)2

. (3.18)

Hence for any u such that

||u|| = µ

2
√

2wL
γ(1− γ)||x− y||r ,

we have z + u ∈ Lw. Hence Lw is a ( µ

2
√

2wL , r)-uniformly convex set.

Lemma 3.D.2 restrictively requires smoothness of the uniformly convex function f . Hence
we provide the analogous of [Garber and Hazan, 2015, Lemma 3].

Lemma 3.D.3. Consider a finite dimensional normed vector space (X, || · ||). Assume f(x) =
||x||2 is (µ, s)-uniformly convex function (with r ≥ 2) with respect to || · ||. Then the norm balls
B||·||(r) =

{
x ∈ X | ||x|| ≤ r

}
are ( µ2r , s)-uniformly convex.

Proof. The proof follows exactly that of [Garber and Hazan, 2015, Lemma 3] which itself
follows that of [Journée et al., 2010, Theorem 12], where operations involving L-smoothness
are replaced by an application of the triangular inequality.

Let’s consider s ≥ 2, (x, y) ∈ B||·||(r) and γ ∈ [0, 1]. We denote z = γx + (1 − γ)y. For
u ∈ X, applying successively triangular inequality and (µ, s)-uniform convexity of f(x) = ||x||2,
we get

f(z + u) = ||z + u||2 ≤
(√

f(z) + ||u||
)2

≤
(√

r2 − µ

2 γ(1− γ)||x− y||s + ||u||
)2

.
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We then use concavity of the square root as before to get

||z + u||2 ≤
(
r − µ

4rγ(1− γ)||x− y||s + ||u||
)2

.

In particuler, for u ∈ X such that ||u|| = µ
4rγ(1− γ)||x− y||s, we have z + u ∈ B||·||(r). Hence

B||·||(r) is ( µ2r , s)- uniformly convex with respect to || · ||.

These previous lemmas hence allow to translate functional uniformly convex results into
results for classic balls norms. For instance, [Shalev-Shwartz, 2007, Lemma 17] showed that
for p ∈]1, 2] f(x) = 1/2||x||2p was (p− 1)-uniformly convex with respect to || · ||p.
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Chapter 4

Subsampling Frank-Wolfe

In this chapter we analyze two novel randomized variants of Frank-Wolfe (FW) or conditional
gradient algorithms. While classical FW algorithms require solving a linear minimization
problem over the domain at each iteration, the proposed method only requires to solve a
linear minimization problem over a small subset of the original domain. The first algorithm
that we propose is a randomized variant of the original FW algorithm and achieves a O(1/T )
sublinear convergence rate as in the deterministic counterpart on compact convex domains.
The second algorithm is a randomized variant of the Away-step FW algorithm, and again as
its deterministic counterpart, reaches linear convergence rate on polytopes making it the first
provably convergent randomized variant of Away-step FW. In both cases, while subsampling
reduces the convergence rate by a constant factor, the cost of the linear minimization step can
be a fraction of the deterministic versions, especially when the data is streamed. We illustrate
computational gains on regression problems, involving both `1 and latent group lasso penalties.
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4.1 Introduction
As in previous chapters, the Frank-Wolfe (FW) or conditional gradient algorithm [Frank and
Wolfe, 1956] is applied to solve optimization problems of the form

minimize
x∈C

f(x) , with C = conv(A) , (OPT)

where A is a (possibly infinite) set of vectors which we call atoms, and conv(A) is its convex
hull, see Section 1.1.4. Again, the FW algorithms have seen an impressive revival in recent
years, due to their low memory requirements and projection-free iterations, which make them
particularly appropriate to solve large scale convex problems, for instance convex relaxations
of problems written over combinatorial polytopes [Zaslavskiy et al., 2009, Joulin et al., 2014,
Vogelstein et al., 2015].

Despite these attractive properties, for problems with a large number of variables or with
a very large atomic set (or both), computing the full gradient and LMO at each iteration may
become prohibitive. Designing variants of the FW algorithm which alleviate this computational
burden would have a significant practical impact on performance.

One recent direction to achieve this is to replace the LMO with a randomized linear oracle
in which the linear minimization is performed only over a random sample of the original
atomic domain. This approach has proven to be highly successful on specific problems such
as structured SVMs [Lacoste-Julien et al., 2013] and constrained discriminative clustering
[Miech et al., 2017, Peyre et al., 2017, Miech et al., 2018]. However, little is known in the
general case. Is it possible to design a FW variant with a randomized oracle that achieves the
same convergence rate (up to a constant factor) as the non-randomized variant? Can this be
extended to linearly-convergent FW algorithms [Lacoste-Julien and Jaggi, 2013, 2015b, Garber
and Hazan, 2015, Pena and Rodriguez, 2018]? In this chapter, we give a positive answer to
both questions and explore the trade-offs between subsampling and convergence rate.

Outline and main contribution. The main contribution of this chapter is to develop and
analyze two algorithms that share the projection-free iterations of FW, but in which the LMO
is computed only over a random subset of the original domain. In many cases, this results in
significant gains in computing the LMO which can also speed up the overall FW algorithm.
In practice, the algorithm will run a larger number of cheaper iterations, which is typically
more efficient for huge data sets (e.g. in a streaming model where the data does not fit in core
memory and can only be accessed by chunks). The paper is structured as follows

• §4.2 describes the “Randomized FW” algorithm, proving a sublinear convergence rate.

• §4.3 describes “Randomized Away FW” algorithm, a variant which enjoys a linear conver-
gence rate on polytopes. To the best of our knowledge this is the first provably convergent
randomized version of the Away-steps FW algorithm.

• Finally, in §4.4 we discuss implementation aspects of the proposed algorithms and study
their performance on lasso and latent group lasso problems.

Note that with the proven sub-linear rate of convergence for Randomized FW (RFW),
the cost of the LMO is reduced by the subsampling rate, but this is compensated by the
fact that the number of iterations required by RFW to reach same convergence guarantee
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as FW is itself multiplied by the sampling rate. However, the linear convergence rate in
Randomized AFW does not theoretically show a computational advantage since the number
of iterations is multiplied by the squared sampling rate, in our highly conservative bounds
at least. Nevertheless, our numerical experiments show that randomized versions are often
numerically superior to their deterministic counterparts.

Related work. Several references have focused on reducing the cost of computing the linear
minimization oracle. The analysis of [Jaggi, 2013] allows for an error term in the LMO, and
so a randomized linear oracle could in principle be analyzed under this framework. However,
this is not entirely satisfactory as it requires the approximation error to decrease towards zero
as the algorithm progresses. In our algorithm, the subsampling approximation error does not
need to decrease.

Lacoste-Julien et al. [2013] studied a randomized FW variant named block-coordinate FW
in which at each step the LMO is computed only over a subset (block) of variables. In this
case, the approximation error does not need to decrease to zero, but the method can only
be applied to a restricted class of problems: those with a block-separable domain, leaving
out significant cases such as `1–constrained minimization for instance. Because of the block
separability, a more aggressive step-size strategy can be used in this case, resulting overall in
a different algorithm.

Finally, Frandi et al. [2014] proposed a FW variant which is a particular case of our Algo-
rithm 10 for the Lasso problem, analyzed in Frandi et al. [2016]. Our analysis here brings three
critical improvements to this last result. First, it is provably convergent for arbitrary atomic
domains, not just the `1 ball. Second, it allows a choice of step size that does not require exact
line-search (Variant 2), which is typically only feasible for quadratic loss functions. Third, we
extend our analysis to linearly-convergent FW variants such as the Away-step FW.

A different technique to alleviate the cost of the linear oracle was recently proposed by
Braun et al. [2017b]. In that work, the authors propose a FW variant that replaces the LMO
by a “weak” separation oracle. They showed significant speedups in wall-clock performance on
practical problems. This approach was combined with gradient sliding in Lan et al. [2017], a
technique [Lan and Zhou, 2016] that allows skipping the computation of gradients from time to
time. However, for problems such as Lasso or latent group lasso, a randomized LMO avoids all
full gradient computations, while the lazy weak separation oracle still requires it. Combining
these various techniques is an interesting open question.

Proximal coordinate-descent methods [Richtárik and Takáč, 2014] (not based on FW) have
also been used to solve problems with a huge number of variables. They are particularly
effective when associated with variable screening rules such as [Tibshirani et al., 2012, Fercoq
et al., 2015]. However, for constrained problems, they require evaluating a projection operator,
which on some sets such as the latent group lasso ball can be much more expensive than the
LMO. Furthermore, these methods require that the projection operator is block-separable,
while our method does not.

Notation. We denote sets in calligraphic letter (i.e., A). We use clip[0,1](s) = max{0,min{1, s}}.
Probability is written P and cardinality of a set A is denoted |A|. For x∗ a solution of (OPT),
we write h(x) = f(x) − f(x∗) the primal gap. FW variants with randomness in the LMO
are called randomized and we reserve the name stochastic for FW variants that replace the
gradient with a stochastic approximation, as in [Hazan and Luo, 2016].
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4.2 Randomized Frank-Wolfe
In this section we present our first contribution, the Randomized Frank-Wolfe (RFW) algo-
rithm. The method is detailed in Algorithm 10. Compared to the standard FW algorithm, it
has the following two distinct features.

First, the LMO is computed over a random subset At ⊆ A of the original atomic set in
which each atom is equally likely to appear, i.e., in which P(v ∈ At)=η for all v ∈ A (Line 3).
For discrete sets this can be implemented simply by drawing uniformly at random a fixed
number of elements at each iteration. The sampling parameter η controls the fraction of the
domain that is considered by the LMO at each iteration. If η = 1, the LMO considers the full
domain at each iteration and the algorithm defaults to the classical FW algorithm. However,
for η < 1, the LMO only needs to consider a fraction of the atoms in the original dataset and
can be faster than the FW LMO.

Second, unlike in the FW algorithm, the atom chosen by the LMO is not necessarily a
descent direction and so it is no longer possible to use the “oblivious” (i.e., independent on
the result of the LMO) 2/(2 + t) step-size commonly used in the FW algorithm. We provide
two possible choices for this step-size: the first variant (Line 5) chooses the step-size by exact
line search and requires to solve a 1-dimensional convex optimization problem. This approach
is efficient when this sub-problem has a closed form solution, as it happens for example in the
case of quadratic loss functions. The second variant does not need to solve this sub-problem,
but in exchange requires to have an estimate of the curvature constant Cf (defined in next
subsection). Note that in absence of an estimate of this quantity, one can use the bound
Cf ≤ diam(C)2L, where L is the Lipschitz constant of ∇f and diam(C) is the diameter of the
domain in euclidean norm.

Gradient coordinate subsampling. We note that the gradient of f only enters Algorithm 10
through the computation of the randomized LMO, and so only the dot product between the
gradient and the subsampled atomic set are truly necessary. In some cases the elements of the
atomic set have a specific structure that makes computing dot products particularly effective.
For example, when the atomic elements are sparse, only the coordinates of the gradient that
are in the support of the atomic set need to be evaluated. As a result, for sparse atomic sets
such as the `1 ball, the group lasso ball (also known as `1/`2 ball), or even the latent group
lasso [Obozinski et al., 2011] ball, only a few coordinates of the gradient need to be evaluated
at each iteration. The number of exact gradients that need to be evaluated will depend on
both the sparsity of this atomic set and the subsampling rate. For example, in the case of
the `1 ball, the extreme atoms have a single nonzero coefficient, and so RFW only needs to
compute on average dη gradient coefficients at each iteration, where d denotes the ambient
dimension.

Stopping criterion. A side-effect of subsampling the linear oracle is that 〈−∇f(xt); st − xt〉,
where st is the atom selected by the randomized linear oracle is no longer an upper bound on
f(xt) − f(x∗). This property is a feature of FW algorithms that cannot be retrieved in our
variant. As a replacement, the stopping criteria that we propose is to compute a full LMO
every kb 1

η c iterations, with k ∈ N∗ (k = 2 is a good default value).
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Algorithm 10 Randomized Frank-Wolfe algorithm
Input: x0 ∈ C, sampling ratio 0 < η ≤ 1.
1:
2: for t = 0, 1 . . . , T do
3: Choose At such that P(v∈At)=η for all v ∈ A
4: Compute st = LMO(∇f(xt),At) . subsampled LMO
5: Variant 1: γt = argmaxγ∈[0,1] f((1− γ)xt + γst) . exact line-search
6: Variant 2: γt = clip[0,1](〈−∇f(xt), st − xt〉/Cf ) . short-step size
7: xt+1 = (1− γt)xt + γtst
8: end for

4.2.1 Analysis
In this subsection we prove an O(1/t) convergence rate for the RFW algorithm. As is often the
case for FW-related algorithms, our convergence result will be stated in terms of the curvature
constant Cf , which is defined as follows for a convex and differentiable function f and a convex
and compact domain C:

Cf , sup
x,s∈C,γ∈[0,1]
y=x+γ(s−x)

2
γ2
(
f(y)− f(x)− 〈∇f(x), y − x〉

)
.

It is worth mentioning that a bounded curvature constant Cf corresponds to a Lipschitz
assumption on the gradient of f [Jaggi, 2013].

Theorem 4.2.1. Let f be a function with bounded smoothness constant Cf and subsampling
parameter η ∈ (0, 1]. Then Algorithm 10 (in both variants) converges towards a solution
of (OPT). Furthermore, the following inequality is satisfied:

E[h(xT )] ≤ 2(Cf + f(x0)− f(x∗))
ηT + 2 . (4.1)

Proof. See 4.A.

The rate obtained in the previous theorem is similar to known bounds for FW. For example,
[Jaggi, 2013, Theorem 1] established for FW a bound of the form

h(xT ) ≤ 2Cf
T + 2 . (4.2)

This is similar to the rate of Theorem 4.2.1, except for the factor η in the denominator. Hence,
if our updates are η times as costly as the full FW update (as is the case e.g. for the `1
ball), then the theoretical convergence rate is the same. This bound is likely tight, as in the
worst case one will need to sample the whole atomic set to decrease the objective if there is
only one descent direction. This is however a very pessimistic scenario, and in practice good
descent directions can often be found without sampling the whole atomic set. As we will see
in the experimental section, despite these conservative bounds, the algorithm often exhibits
large computational gains with respect to the deterministic algorithm.
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4.3 Randomized Away-steps Frank-Wolfe
A popular variant of the FW algorithm is the Away-steps FW variant of Guélat and Marcotte
[1986]. This algorithm adds the option to move away from an atom in the current repre-
sentation of the iterate. In the case of a polytope domain, it was recently shown to have
much better convergence properties, such as linear (i.e. exponential) convergence rates for
generally-strongly convex objectives [Garber and Hazan, 2013a, Beck and Tetruashvili, 2013,
Lacoste-Julien and Jaggi, 2015b].

In this section we describe the first provably convergent randomized version of the Away-
steps FW, which we name Randomized Away-steps FW (RAFW). We will assume throughout
this section that the domain is a polytope, i.e. that C = conv(A), where A is a finite set of
atoms. We will make use of the following notation.

• Active set. We denote by St the active set of the current iterate, i.e. xt decomposes as
xt =

∑
v∈St α

(t)
v v, where α(t)

v > 0 are positive weights that are iteratively updated.

• Subsampling parameter. The method depends on a subsampling parameter p. It controls
the amount of computation per iteration of the LMO. In this case, the atomic set is finite
and p denotes an integer 1 ≤ p ≤ |A|. This sampling rate is approximately bη|A|c in the
RFW formulation of §4.2.

The method is described in Algorithm 11 and, as in the Away-steps FW, requires com-
puting two linear minimization oracles at each iteration. Unlike the deterministic version,
the first oracle is computed on the subsampled set St ∪ At (Line 4), where At is a subset of
size min{p, |A\St|}, sampled uniformly at random from A \St. The second LMO (Line 6) is
computed on the active set, which is also typically much smaller than the atomic domain.

As a result of both oracle calls, we obtain two potential descent directions, the RFW
direction dFWt and the Away direction dAt . The chosen direction is the one that correlates the
most with the negative gradient, and a maximum step size is chosen to guarantee that the
iterates remain feasible (Lines 8–11).

Updating the support. Line 14 requires updating the support and the associated α coef-
ficients. For a FW step we have St+1 = {st} if γt = 1 and otherwise St+1 = St ∪ {st}.
The corresponding update of the weights is α(t+1)

v = (1 − γt)α(t)
v when v ∈ St \ {st} and

α
(t+1)
st = (1− γt)α(t)

st + γt otherwise.
For an away step we instead have the following update rule. When γt = γmax (which is

called a drop step), then St+1 = St\{vt}. Combined with γmax < 1 (or equivalently αvt ≤ 1
2) we

call them bad drop step, as it corresponds to a situation in which we are not able to guarantee
a geometrical decrease of the dual gap.

For away steps in which γt < γmax, the away atom is not removed from the current rep-
resentation of the iterate. Hence St+1 = St, α(t+1)

v = (1 + γt)α(t)
v for v ∈ St \ {vt} and

α
(t+1)
vt = (1 + γt)α(t)

vt − γt otherwise.
Note that when choosing Away step in Line 11, it cannot happen that αvt = 1. Indeed this

would imply xt = vt, and so dAt = 0. Since we would have St = {vt} and the LMO of Line 4 is
performed over St ∪ At, we necessarily have 〈−∇f(xt), dFWt 〉 ≥ 0. It thus leads to a choice of
FW step, contradiction.
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Algorithm 11 Randomized Away-steps FW (RAFW)

Input: x0 ∈ C, x0 =
∑
v∈A α

(0)
v v with |S0| = s, a subsampling parameter 1 ≤ p ≤ |A|.

1:
2: for t = 0, 1 . . . , T do
3: Get At by sampling min{p,|A\St|} elements uniformly from A\St.
4: Compute st = LMO(∇f(xt),St ∪ At)
5: Let dFWt = st − xt . RFW direction
6: Compute vt = LMO(−∇f(xt),St)
7: Let dAt = xt − vt. . Away direction
8: if 〈−∇f(xt), dFWt 〉 ≥ 〈−∇f(xt), dAt 〉 then
9: dt = dFWt and γmax = 1 . FW step

10: else
11: dt = dAt and γmax=α

(t)
vt /(1−α

(t)
vt ) . Away step

12: end if
13: Set γt by line-search, with γt = argmaxγ∈[0,γmax] f(xt + γdt)
14: Let xt+1 = xt + γtdt . update α(t+1) (see text)
15: Let St+1 = {v ∈ A s.t. α(t+1)

v > 0}
16: end for
Output:

Per iteration cost. Establishing the per iteration cost of this algorithm is not as straightfor-
ward as for RFW, as the cost of some operations depends on the size of the active set, which
varies throughout the iterations. However, for problems with sparse solutions, we have ob-
served empirically that the size of the active set remains small, making the cost of the second
LMO and the comparison of Line 8 negligible compared to the cost of an LMO over the full
atomic domain. In this regime, and assuming that the atomic domain has a sparse structure
that allows gradient coordinate subsampling, RAFW can achieve a per iteration cost that is,
like RFW, roughly |A|/p times lower than that of its deterministic counterpart.

4.3.1 Analysis
We now provide a convergence analysis of the Randomized Away-steps FW algorithm. These
convergence results are stated in terms of the away curvature constant CAf and the geomet-
ric strong convexity µAf , which are described in 4.B and in [Lacoste-Julien and Jaggi, 2015b].
Throughout this section we assume that f has bounded CAf , which is implied by the usual
assumption of Lipschitz continuity of the gradient, and strictly positive geometric strong con-
vexity constant µAf , which is verified whenever f is strongly convex and the domain is a
polytope.

Theorem 4.3.1. Let C = conv(A), with A a finite set of extreme atoms. Then after T iterations
of Algorithm 11 (RAFW) we have the following linear convergence rate

E
[
h(xT+1)

]
≤
(
1− η2ρf

)max{0,b(T−s)/2c}
h(x0) , (4.3)

with ρf = µAf
4CA

f

, η = p
|A| and s = |S0|.

Proof. See 4.B.
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Proof sketch. Our proof structure roughly follows that of the deterministic case in [Lacoste-
Julien and Jaggi, 2015b, Beck and Tetruashvili, 2013] with some key differences due to the LMO
randomness, and can be decomposed into three parts.

The first part consists in upper bounding ht and is no different from the proof of its
deterministic counterpart [Lacoste-Julien and Jaggi, 2015b, Beck and Tetruashvili, 2013].

The second part consists in lower bounding the progress ht − ht+1. For this algorithm we
can guarantee a decrease of the form

ht+1 ≤ ht
(
1− ρf

(gt
g̃t

)2)zt , (4.4)

where gt = 〈−∇f(xt), st − vt〉 is the partial pair-wise dual gap while g̃t is the pair-wise dual
gap, in which st is replaced by the result of a full (and not subsampled) LMO.

We can guarantee a geometric decrease in expectation on ht at each iteration, except for
bad drop steps, where we can only secure ht+1 ≤ ht. We mark these by setting zt = 0.

One crucial issue is then to quantify gt/g̃t. This can be seen as a measure of the quality of
the subsampled oracle: if it selects the same atom as the non-subsampled oracle the quotient
will be 1, in all other cases it will be ≤ 1.

To ensure a geometrical decrease we further study the probability of events zt = 1 and
g̃t = gt: first, we produce a simple bound on the number of bad drop steps (where zt = 0).
Second, when zt = 1 holds, Lemma 4.B.3 provides a lower bound on the probability of gt = g̃t.

The third and last part of the proof analyzes the expectation of the decrease rate
∏T
t=0 (1− ρf

(gt
g̃t

)2)zt

given the above discussion. We produce a conservative bound assuming the maximum possible
number of bad drop steps. The key element in this part is to make this maximum a function
of the size of the support of the initial iterate and of the number of iteration. The convergence
bound is then proven by induction.

Comparison with deterministic convergence rates. The rate for away Frank-Wolfe in [Lacoste-
Julien and Jaggi, 2015b, Theorem 8], after T iteration is

h(xT+1) ≤
(
1− ρf

)bT/2c
h(x0) . (4.5)

Due to the dependency on η2 of the convergence rate in Theorem 4.3.1, our bound does
not show that RAFW is computationally more efficient than AFW. Indeed we use a very
conservative proof technique in which we measure progress only when the sub-sampling oracle
equals the full one. Also, the cost of both LMOs depends on the support of the iterates which
is unknown a priori except for a coarse upper bound (e.g. the support cannot be more than
the number of iterations). Nevertheless, the numerical results do show speed ups compared to
the deterministic method.

Beyond strong convexity. The strongly convex objective assumption may not hold for many
problem instances. However, the linear rate easily holds for f of the form g(Ax) where g is
strongly convex and A a linear operator. This type of functions are commonly known as a
µ̃-generally strongly convex function Beck and Tetruashvili [2013], Wang and Lin [2014] or
Lacoste-Julien and Jaggi [2015b] (see “Away curvature and geometric strong convexity” in 4.B
for definition). The proof simply adapts that of [Lacoste-Julien and Jaggi, 2015b, Th. 11] to
our setting.
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Theorem 4.3.2. Suppose f has bounded smoothness constant CAf and is µ̃-generally-strongly
convex. Consider the set C = conv(A), with A a finite set of extreme atoms. Then after T
iterations of Algorithm 11, with s = |S0| and a p parameter of sub-sampling, we have

E
[
h(xT+1)

]
≤
(
1− η2ρ̃f

)max{0,bT−s2 c}h(x0) , (4.6)

with ρ̃f = µ̃
4CA

f

and η = p
|A| .

Proof. See end of 4.B.

4.4 Applications
In this section we compare the proposed methods with their deterministic versions. We consider
two regularized least squares problems: one with `1 regularization and another one with latent
group lasso (LGL) regularization. In the first case, the domain is a polytope and the analysis
of AFW and RAFW holds.

Our results show the FW gap versus number of iterations, and also cumulative number
of computed gradient coefficients, which we will label “nbr coefficients of grad”. This allows
to better reflect the true complexity of our experiments since sub-sampling the LMO in the
problems we consider amounts to computing the gradient on a subset of coordinates.

In the case of latent group lasso, we also compared the performance of RFW against FW in
terms of wall-clock time on a large dataset stored in disk and accessed sequentially in chunks
(i.e., in streaming model).

4.4.1 Lasso problem
Synthetic dataset. We generate a synthetic dataset following the setting of Lacoste-Julien
and Jaggi [2015b], with a Gaussian design matrix A of size (200, 500) and noisy measurements
b = Ax∗+ε, with ε a random Gaussian vector and x∗ a vector with 10% of nonzero coefficients
and values in {−1,+1}.

In Figures 4.1 and 4.2, we consider a problem of the form (OPT), where the domain is
an `1 ball, a problem often referred to as Lasso. We compare FW against RFW, and AFW
against RAFW. The `1 ball radius set to 40, so that the unconstrained optimum lies outside
the domain.

RFW experiments. Figure 4.1 shows a comparison between FW and RFW. Each call to the
randomized LMO outputs a direction, likely less aligned with the opposite of the gradient than
the direction proposed by FW, which explains why RFW requires more iterations to converge
on the upper left graph of Figure 4.1. Each call of the randomized LMO is cheaper than the
LMO in terms of number of computed coefficients of the gradient, and the trade-off is beneficial
as can be seen on the bottom left graph, where RFW outperforms its deterministic variant in
terms of nbr coefficients of grad.

Finally, the right panels of Figure 4.1 provide an insight on the evolution of the sparsity
of the iterate, depending on the algorithm. FW and RFW perform similarly in terms of the
fraction of recovered support (bottom right graph). In terms of the sparsity of the iterate,
RFW under-performs FW (upper right graph). This can be explained as follows: because of
the sub-sampling, each atom of the randomized LMO provides a direction less aligned with the
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opposite of the gradient than the one provided by the LMO. Each update in such a direction
may result in putting weight on an atom that would better be off the representation of the
iterate. It impacts the iterate all along the algorithm as vanilla FW removes past atoms from
the representation only by multiplicatively shrinking their weight.

RAFW experiments. Unlike RFW, the RAFW method outperforms AFW in terms on num-
ber of iterations in the upper left graph in Figure 4.2. These graphs also illustrate the linear
rate of convergence of both algorithms. The bottom left graph shows that the gap between
RAFW and AFW is even larger when comparing the cumulative number of computed coeffi-
cients of the gradient required to reach a certain target precision.

This out-performance of RAFW over AFW in term of number of iteration to converge is
not predicted by our convergence analysis. We conjecture that the away mechanism improves
the trade-off between the cost of the LMO and the alignment of the descent direction with
the opposite of the gradient. Indeed, because of the oracle subsampling, the partial FW gap
(e.g. the scalar product of the Randomized FW direction with the opposite of the gradient)
in RAFW is smaller than in the non randomized variant, and so there is a higher likelihood of
performing an away step.

Finally, the away mechanism enables the support of the RAFW to stay close to that of
AFW, which was not the case in the comparison of RFW versus FW. This is illustrated in the
right panels of Figure 4.2.

Real dataset. On figure 4.3, we test the Lasso problem on the E2006-tf-idf data set [Kogan
et al., 2009], which gathers volatility of stock returns from companies with financial reports.
Each financial reports is then represented through its TF-IDF embedding (n = 16087 and
d = 8000 after an initial round of feature selection). The regularizing parameter is chosen to
obtain solution with a fraction of 0.01 nonzero coefficients.

4.4.2 Latent Group-Lasso
Notation. We denote by [d] the set of indices from 1 to d. For g ⊆ [d] and x ∈ Rd, we denote
by x(g) the projection of x onto the coordinates in g. We use the notation ∇(g)f(xt) to denote
the gradient with respect to the variables in group g. Similarly x[g] ∈ Rd is the vector that
equals x in the coordinates of g and 0 elsewhere.

Model. As outlined by Jaggi [2013], FW algorithms are particularly useful when the domain
is a ball of the latent group norm [Obozinski et al., 2011]. Consider a collection G of subsets
of [d] such that

⋃
g∈G g = [d] and denote by || · ||g any norm on R|g|. Frank-Wolfe can be used

to solve (OPT) with C being the ball corresponding to the latent group norm

||x||G
def= min

v(g)∈R|g|

∑
g∈G
||v(g)||g

s.t. x =
∑
v∈G v[g] .

(4.7)

This formulation matches a constrained version of the regularized [Obozinski et al., 2011,
equation (5)] when each || · ||g is proportional to the Euclidean norm. For simplicity we will
consider || · ||g to be the euclidean norm.

When G forms a partition of [d] (i.e., there is no overlap between groups), this norm
coincides with the group lasso norm.
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Figure 4.1: Comparison between FW and RFW with subsampling parameter η = p
|A| = 0.05

(chosen arbitrarily) on the lasso problem. Upper left: progress in FW dual gap versus number
of iterations. Lower left: progress of the FW dual gap versus cumulative number of computed
coefficients of gradient per call to LMO, called nbr coefficients of grad here. Lower right:
recovered coefficients in support of the ground truth versus number of iterations. Upper right:
size of support of iterate versus number of iterations.
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Figure 4.2: Same parameters and setting as in Figure 4.1 but to compare RAFW and AFW.
AFW performed 880 away steps among which 14 were a drop steps while RAFW performed
1242 away steps and 37 drop steps.
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Figure 4.3: Performance of FW and AFW against RFW and RAFW respectively on the lasso
problem with TF-IDF 2006 dataset. The subsampling parameter is η = p

|A| = 0.06 (again
chosen arbitrarily) for RFW and η = 0.25 for RAFW. Right: Comparison of RAFW against
RFW. Left: Comparison of RFW against FW. Upper: progress in FW dual gap versus number
of iterations. Lower: progress of the FW dual gap versus cumulative number of computed
coefficients in gradient per call to LMO.
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Sub-sampling. Given g ∈ G, consider the hyper-disk

Dg(β) =
{
v ∈ Rd | v = v[g], ||v(g)|| ≤ β

}
.

Obozinski et al. [2011, Lemma 8] shows that such constrain set C is the convex hull of A def=⋃
g∈G

Dg.

The RFW can be used to solve this problem, with At
def=

⋃
g∈Gp

Dg and where the random

oracle is performed over a random subset Gp ⊆ G of size p. Denoting by gp =
⋃
g∈Gp

g the LMO

in RFW becomes

LMO(xt,At) ∈ argmax
v∈At

〈v(gp),−∇(gp)f(xt)〉 .

With this formulation we only need to compute the gradient on the gp index. Depending on G
and on the sub-sampling rate, this can be a significant computational benefit.

Experiments. We illustrate the convergence speed-up of using RFW over FW for latent group
lasso regularized least square regression.

For d = 10000 we consider a collection G of groups of size 10 with an overlap of 3 and
the associated atomic set A. We chose the ground truth parameter vector w0 ∈ conv(A)
with a fraction of 0.01 of nonzero coefficients, where on each active group, the coefficients are
generated from a Gaussian distribution. The data is a set of n pairs (yi, wi) ∈ R× Rd, where
wi is generated from a Gaussian distribution and yi = wTi w0 + εi, where εi is again a Guassian
random variable. The regularizing parameter is β = 14, set so that the unconstrained optimum
lies outside of the constrain set.

Large dataset and Streaming Model. The design matrix is stored in disk. We allow both
RFW and FW to access it only through chunks of size n× 500. This streaming model allows
a wall clock comparison of the two methods on very large scale problems.

Computing the gradient when the objective is the least squares loss consists in a matrix
vector product. Computing it on a batch of coordinates then requires same operation with a
smaller matrix. When computing the gradient at each randomized LMO call, the cost of slicing
the design matrix can then compensate the gain in doing a smaller matrix vector product.

With data loaded in memory, which is typically the case for large datasets, both the LMO
and the randomized LMO have this access data cost. Consider also that RFW allows any
scheme of sampling, including one that minimizes the cost of data retrieval.

4.5 Conclusion
We gave theoretical guarantees of convergence of randomized versions of FW that exhibit same
order of convergence as their deterministic counter-parts. As far as we know, for the case of
RAFW, this is the first contribution of the kind. While the theoretical complexity bounds
don’t necessarily imply this, our numerical experiments show that randomized versions often
outperform their deterministic ones on `1-regularized and latent group lasso regularized least
squares. In both cases, randomizing the LMO allows us to compute the gradient only on a
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Figure 4.4: Both panels are in log log scale and show convergence speed up for FW and
RFW on latent group lasso regularized least square regression. The parameter of subsampling
η = 0.1, is chosen arbitrarily. Left: evolution of the precision in FW dual gap versus the wall
clock time. Right: evolution of the precision in FW dual gap versus the cumulative number of
computed coefficients of the gradient.

subset of its coordinates. We used it to speed up the method in a streaming model where
the data is accessed by chunks, but there might be other situations where the structure of the
polytope can be leveraged to make subsampling computationally beneficial.

There are other linearly-convergent variants of FW besides AFW, such as the Pairwise
FW algorithm [Lacoste-Julien and Jaggi, 2015b], for which it might be possible to derive
randomized variants.

Finally, recent results such as [Goldfarb et al., 2016, 2017, Hazan and Luo, 2016] combine
various improvements of FW (away mechanism, sliding, lazy oracles, stochastic FW, etc.).
Randomized oracles add to this toolbox and could further improve its benefits.
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Appendices
Appendix notations. We denote by Et the conditional expectation at iteration t, conditioned
on all the past and by E a full expectation. We denote by a tilde the values that come from the
deterministic analysis of FW. Denote by rt = −∇f(xt). For k ∈ N∗, denote by [k] all integer
between 1 and k.

4.A Proof of Subsampling for Frank-Wolfe

In this section we provide a convergence proof for Algorithm 10. The proof is loosely inspired
by that of [Locatello et al., 2017a, Appendix B.1], with the obvious difference that the result
of the LMO is a random variable in our case.

Theorem 4.2.1′. Let f be a function with bounded curvature constant Cf , Algorithm 10 for
η ∈ (0, 1], (with step-size chosen by either variants) converges towards a solution of (OPT),
satisfying

E(f(xT ))− f(x∗) ≤ 2(Cf + f(x0)− f(x∗))
ηT + 2 . (4.8)

Proof. By definition of the curvature constant, at iteration t we have

f(xt + γ(st − xt)) ≤ f(xt) + γ〈∇f(xt), st − xt〉+ γ2

2 Cf . (4.9)

By minimizing with respect to γ on [0, 1] we obtain

γt = clip[0,1]〈−∇f(xt), st − xt〉/Cf , (4.10)

which is the definition of γt in the algorithm with Variant 2. Hence, we have

f(xt+1) ≤ f(xt) + min
γ∈[0,1]

{
γ〈∇f(xt), st − xt〉+ γ2

2 Cf

}
,

an inequality which is also valid for Variant 1 since by the line search procedure the objective
function at xt+1 is always equal or smaller than that of Variant 1. Denote by ht = f(xt)−f(x∗),

ht+1 ≤ ht + min
γ∈[0,1]

{
γ〈∇f(xt), st − xt〉+ γ2

2 Cf

}
.

We write s̃t the FW atom if we had started the FW algorithm at xt, and Et the expectation
conditionned on all the past until xt, we have

Etht+1 ≤ ht + Et min
γ∈[0,1]

{
γ〈∇f(xt), st − xt〉+ γ2

2 Cf

}
(4.11)

≤ ht + P(st = s̃t) min
γ∈[0,1]

{
γ〈∇f(xt), s̃t − xt〉+ γ2

2 Cf
}

(4.12)

≤ ht + η min
γ∈[0,1]

{
− γh(xt) + γ2

2 Cf
}

(4.13)

≤ ht + η
(
− γh(xt) + γ2

2 Cf
)

(for any γ ∈ [0, 1], by definition of min) , (4.14)
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where the second inequality follows from the definition of expectation and the fact that min-
imum is non-positive since it is zero for γ = 0. The last inequality is a consequence of
uniform sampling as well as it uses that the FW gap is an upper bound on the dual gap, e.g.
〈−∇f(xt), s̃t − xt〉 ≥ h(xt).

Induction. From (4.14) the following is true for any γ ∈ [0, 1]

Et(ht+1) ≤ ht(1− ηγ) + γ2

2 ηCf . (4.15)

Taking unconditional expectation and writing Ht = E(ht), we get for any γ ∈ [0, 1]

Ht+1 ≤ Ht(1− ηγ) + γ2

2 ηCf . (4.16)

With γt = 2
ηt+2 ∈ [0, 1], we get by induction

Ht ≤ 2Cf + ε0
ηt+ 2 = γt(Cf + ε0), (4.17)

where ε0 = f(x0)−f(x∗). Initialization follows the fact that the curvature constant is positive.
For t > 0, from (4.16) and the induction hypothesis

Ht+1 ≤ γt(Cf + ε0)(1− ηγt) + γ2
t

2 ηCf

≤ γt(Cf + ε0)(1− ηγt) + γ2
t

2 η(Cf + ε0)

≤ γt(Cf + ε0)(1− ηγt + γt
2 η)

≤ (Cf + ε0)(1− γt
2 η)γt

≤ (Cf + ε0)γt+1.

The last inequality comes from the fact that (1− γt
2 η)γt ≤ γt+1. Indeed, with γt = 2

ηt+2 , it is
equivalent to

(1− η

ηt+ 2) 2
ηt+ 2 ≤ 2

η(t+ 1) + 2

⇔ (ηt+ 2)− η
ηt+ 2 ≤ ηt+ 2

η(t+ 1) + 2
⇔ (ηt+ 2− η)(η(t+ 1) + 2) ≤ (ηt+ 2)2

⇔ η2t2 + 4ηt+ 4− η2 ≤ η2t2 + 4ηt+ 4.

The last being true, it concludes the proof.

4.B Proof of Subsampling for Away-steps Frank-Wolfe
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Away curvature and geometric strong convexity. The away curvature constant is a modifica-
tion of the curvature constant described in the previous subsection, in which the FW direction
s− x is replaced with an arbitrary direction s− v:

CAf , sup
x,s,v∈C
γ∈[0,1]

y=x+γ(s−v)

2
γ2
(
f(y)− f(x)− γ〈∇f(x), s− v〉

)
.

The geometric strong convexity constant µf depends on both the function and the domain (in
contrast to the standard strong convexity definition) and is defined as (see “An Affine Invariant
Notion of Strong Convexity” in [Lacoste-Julien and Jaggi, 2015b] for more details)

µAf =inf
x∈C

inf
x∗∈C

〈∇f(x),x∗−x〉<0

2
γA(x, x∗)2Bf (x, x∗)

where Bf (x, x∗) = f(x∗)−f(x)−〈∇f(x), x∗−x〉 and γA(x, x∗) the positive step-size quantity:

γA(x, x∗) := 〈−∇f(x), x∗ − x〉
〈−∇f(x), sf (x)− vf (x)〉 .

In particular sf (x) is the Frank Wolfe atom starting from x. vf (x) is the away atom when
considering all possible expansions of x as a convex combinations of atoms in A. Denote by
Sx := {S | S ⊆ A such that x is a proper convex combination of all elements in S} and by
vS(x) := argmaxv∈S〈∇f(x), v〉. vf (x) is finally defined by

vf (x) , argmin
{v=vS |S∈Sx}

〈∇f(x), v〉 .

Following [Lacoste-Julien and Jaggi, 2015b, Lemma 9 in Appendix F], the geometric µ̃-
generally-strongly-convex constant is defined as

µ̃f =inf
x∈C

inf
x∗∈χ∗

〈∇f(x),x∗−x〉<0

1
2γA(x, x∗)2

(
f(x∗)− f(x)− 2〈∇f(x), x∗ − x〉

)
,

where χ∗ represents the solution set of (OPT).

Notations. In the context of RAFW, A denotes the finite set of extremes atoms such that
C = Conv(A). At iteration t, At is a random subset of element of A \ St where St is the
current support of the iterate. The Randomized LMO is performed over Vt = St ∪ At so that
for Algorithm 11, st

def
∈ argmaxv∈Vt〈−∇f(xt), v〉 is the FW atom at iteration t for RAFW.

Note that when |A \ St| ≤ p, Algorithm 11 does exactly the same as AFW. For the sake of
simplicity we will consider that this is not the case. Indeed we would otherwise fall back into
the deterministic setting and the proof would just be that of Lacoste-Julien and Jaggi [2015b].

We use tilde notation for quantities that are specific to the deterministic FW setting. For
instance, s̃t

def
∈ argmaxv∈A〈−∇f(xt), v〉 is the FW atom for AFW starting at xt.

Similarly the Away atom is such that vt
def
∈ argminv∈St〈−∇f(xt), v〉 and it does not depend

on the sub-sampling at iteration t. Here we do not use any tilde because it is a quantity that
appears both in AFW and its Randomized counter-part.
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In AFW, g̃t , 〈−∇f(xt), s̃t − vt〉 = maxs∈A〈−∇f(xt), s − vt〉 is an upper-bound of the
dual gap, named the pair-wise dual gap [Lacoste-Julien and Jaggi, 2015b]. We consider the
corresponding partial pair-wise dual gap g̃t , 〈−∇f(xt), st − vt〉 = max

s∈Vt
〈−∇f(xt), s − vt〉. It

is partial is the sense that the maximum is computed on a subset Vt of A which results in the
fact that it is not guaranteed anymore to be an upper-bound on the dual-gap.

Structure of the proof. The proof is structured around a main part that uses Lemmas 4.B.1
and 4.B.3. Lemma 4.B.2 is only used to prove Lemma 4.B.3.

The main proof follows the scheme of the deterministic one of AFW in [Lacoste-Julien
and Jaggi, 2015b, Theorem 8]. It is divided in three parts. The first part consists in upper
bounding ht

def= f(xt) − f(x∗) with g̃t. It does not depend on the specific construction of the
iterates xt and thus remains the same as that in Lacoste-Julien and Jaggi [2015b]. The second
part provides a lower bound on the progress on the algorithm, namely

ht+1 ≤ (1− ρf
(gt
g̃t

)2)ht, (4.18)

with ρf = µAf
4CA

f

, when it is not doing a bad drop step (defined above). As a proxy for this event,
we use the binary variable zt that equals 0 for bad drop steps and 1 otherwise.

The difficulty lies in the fact that we guarantee a geometrical decrease only when gt = g̃t
and zt = 1. Because of the sub-sampling and unlike in the deterministic setting, zt is a random
variable. Lemma 4.B.3 provides a lower bound on the probability of interest, P(g̃t = gt | zt =
1), for the last part of the main proof.

Finally, the last part of the proof constructs a bound on the number of times we can expect
both zt = 1 and gt = g̃t subject to the constraint that at least half of the iterates satisfy zt = 1.
It is done by recurrence.

4.B.1 Lemmas
This lemma ensures the chosen direction dt in RAFW is a good descent direction, and links it
with gt which may be equal to g̃t.

Lemma 4.B.1. Let st, vt and dt be as defined in Algorithm 11. Then for gt
def= 〈−∇f(xt), st−vt〉,

we have

〈−∇f(xt), dt〉 ≥
1
2gt ≥ 0 . (4.19)

Proof. The first inequality appeared already in the convergence proof of Lacoste-Julien and
Jaggi [2015b, Eq. (6)], which we repeat here for completeness. By the definition of dt we have:

2〈−∇f(xt), dt〉 ≥ 〈−∇f(xt), dAt 〉+ 〈−∇f(xt), dFWt 〉
= 〈−∇f(xt), st − vt〉 = gt (4.20)

We only need to prove that gt is non-negative. In line 4 of algorithm 11, st is the output of
LMO performs of the set of atoms St ∪ At , Vt,

st = argmax
s∈Vt

〈−∇f(xt), s〉 ,

so that we have 〈−∇f(xt), st〉 ≥ 〈−∇f(xt), vt〉. By definition of gt, it implies gt ≥ 0 .
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Lemma 4.B.2 is just a simple combinatorial result needed in Lemma 4.B.3. Consider a
sequence of m numbers, we lower bound the probability for the maximum of a subset of size
greater than p to be equal to the maximum of the sequence.

Lemma 4.B.2. Consider any sequence (ri)i∈I in R with I = {1, · · · ,m}, and a subset Ip ⊆ I
of size p. We have

P(max
i∈Ip

ri = max
i∈I

ri) ≥
p

m
. (4.21)

Proof. Consider M = {i ∈ I | ri = max
j∈I

rj}. We have max
i∈Ip

ri = max
i∈I

ri if and only if at least
one element of Ip belongs to M :

P(max
i∈Ip

ri = max
i∈I

ri) = P(|Ip ∩M | ≥ 1) . (4.22)

By definition M has at least one element i0. Since {i0 ∈ Ip} ⊂ {|Ip ∩M | ≥ 1}

P(|Ip ∩M | ≥ 1) ≥ P({i0 ∈ Ip}) . (4.23)

All subsets are taken uniformly at random, we just have to count the number of subset Ip of
I of size p with i0 ∈ Ip

P({i0 ∈ Ip}) =
(m−1
p−1

)(m
p

) = p

m
(4.24)

P(max
i∈Ip

ri = max
i∈I

ri) ≥
p

m
. (4.25)

In the second part of the main proof we ensure a geometric decrease when both gt = g̃t and
zt = 1, i.e. outside of bad drop steps. The following lemma helps quantifying the probability
of gt = g̃t holding when zt = 1.

Lemma 4.B.3. Consider gt (defined in Lemma 4.B.1) to be the partial pair-wise (PW) dual
gap of RAFW at iteration t with sub-sampling parameter p on the constrained polytope C =
conv(A), where A is a finite set of extremes points of C. g̃t , max

s∈A
〈−∇f(xt), s − vt〉 is the

pairwise dual gap of AFW starting at xt on this same polytope. Denote by zt the binary random
variable that equals 0 when the tth iteration of RAFW makes an away step that is a drop step
with γmax < 1 (a bad drop step), and 1 otherwise. Then we have the following bound

P(gt = g̃t | xt, zt = 1) ≥
( p

|A|

)2
. (PROB)

Proof. Recall that gAt , 〈rt, dAt 〉. By definition {zt = 0} = {gt < gAt , γmax < 1, γ∗t = γmax},
where γ∗t , argminγ∈[0,γmax] f(xt + γdAt ). Its complementary {zt = 1} can thus be expressed
as the partition A1 ∪A2 ∪A3 where the Ai are defined by

A1 = {gt ≥ gAt } (performs a FW step) (4.26)
A2 = {gt < gAt , α(t)

vt /(1− α
(t)
vt ) ≥ 1} (performs away step with γmax ≥ 1) (4.27)

A3 = {gt < gAt , α(t)
vt /(1− α

(t)
vt ) < 1 , γ∗t < α(t)

vt /(1− α
(t)
vt )}. (4.28)
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First note that in the case of A2 and A3, γmax = α
(t)
vt /(1 − α

(t)
vt ). Though the right hand

side formulation highlights that it is entirely determined by xt, recalling that α(t)
vt is the mass

along the atom vt in the decomposition of xt in §4.3.
From a higher level perspective, these cases are those for which we can guarantee a geomet-

rical decrease of ht = f(xt)− f(x∗) (see second part of main proof). By definition, the Ai are
disjoints. A1 represents a choice of a FW step in RAFW contrary to A2 and A3 which stands
for an away step choice in RAFW. A2 is an away step for which there is enough potential mass
(γmax > 1) to move along the away direction and to ensure sufficient objective decreasing. A3
encompasses the situations where there is not a lot of mass along the away direction (γmax < 1)
but which is not a drop step, e.g. the amount of mass is not a limit to the descent.

Our goal is to lower bound P = P(gt = g̃t | xt, zt = 1). The following probabilities will
be with respect to the tth sub-sampling only. Notice that gAt , g̃t and αvt are known given
{xt, zt = 1}. Using Bayes’ rule, and because the Ai are disjoints, we have

P = P(gt = g̃t | xt, {zt = 1})

=
∑3
i=1 P(gt = g̃t | xt, Ai)P(Ai | xt)∑3

i=1 P(Ai | xt)
. (4.29)

By definition of gt and g̃t, gt ≤ g̃t, so that measuring the probability of an event like
{gt = g̃t} conditionally on {gt ≤ gAt } will naturally depend on whether or not, the deterministic
condition g̃t ≥ gAt is satisfied. Hence the following case distinction.

Recall Vt = St ∪ At.
Case g̃t < gAt .

P =
∑3
i=1 P(gt = g̃t | xt, Ai, g̃t < gAt )P(Ai | xt, g̃t < gAt )∑3

i=1 P(Ai | xt, g̃t < gAt )
. (4.30)

Recall that A1 = {gt ≥ gAt }. Since by definition gt ≤ g̃t, conditionally on {g̃t < gAt }, the
probability of A1 is zero. Consequently the above reduces to

P =
∑3
i=2 P(gt = g̃t | xt, Ai, g̃t < gAt )P(Ai | xt, g̃t < gAt )∑3

i=2 P(Ai | xt, g̃t < gAt )

≥ p

|A|

∑3
i=2 P(Ai | xt, g̃t < gAt )∑3
i=2 P(Ai | xt, g̃t ≤ gAt )

= p

|A|
. (4.31)

Where the last inequality is because for i = 2, 3 we have P(gt = g̃t | xt, Ai, g̃t < gAt ) ≥ p
|A| .

Indeed for A3 (case A2 is similar) denote

P1 = P(gt = g̃t | xt, A3, g̃t < gAt ) (4.32)
= P(max

s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉 | xt,max

s∈Vt
〈rt, s〉 < C0,max

s∈A
〈rt, s〉 < C0, α

(t)
vt /(1− α

(t)
vt ) < 1, γ∗t < α(t)

vt /(1− α
(t)
vt )) .

with C0 , gAt + 〈rt, vt〉 and rt = −∇f(xt) not depending on the tth sub-sampling. Also the
event {max

s∈Vt
〈rt, s〉 < C0} is a consequence of {max

s∈A
〈rt, s〉 < C0} so that P1 simplifies to

P1 = P(max
s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉 | xt,max

s∈A
〈rt, s〉 < C0, α

(t)
vt /(1− α

(t)
vt ) < 1, γ∗t < α(t)

vt /(1− α
(t)
vt )).
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By definition

γ∗t ∈ argmin
γ∈[0,

α
(t)
vt

1−α(t)
vt

]

f(xt + γdAt ) ,

so that γ∗t does not depend on the tth sub-sampling. Finally all the conditioning in the prob-
ability P1 do not depend on this tth sub-sampling. Hence we are in the position of using
Lemma 4.B.2 for the sequence (〈rt, s〉)s∈A. Also by definition of Vt = St ∪At, we have |Vt| ≥ p
so that we finally get

P(gt = g̃t | xt, A3, g̃t < gAt ) ≥ p

|A|
. (4.33)

This was what was needed to conclude (4.31).
Case g̃t ≥ gAt . In such a case, P from (4.29) rewrites as

P =
∑3
i=1 P(gt = g̃t | xt, Ai, g̃t ≥ gAt )P(Ai | xt, g̃t ≥ gAt )∑3

i=1 P(Ai | xt, g̃t ≥ gAt )
. (4.34)

Here P(gt = g̃t | xt, Ai, g̃t ≥ gAt ) = 0 for i = 2, 3 because Ai implies gt < gAt . So that when
g̃t ≥ gAt it is then impossible for gt to equal g̃t.

P = P(gt = g̃t | xt, A1, g̃t ≥ gAt )P(A1 | xt, g̃t ≥ gAt )∑3
i=1 P(Ai | xt, g̃t ≥ gAt )

.

Here also we use, and prove later on (see §below the conclusion of the proof of the Lemma),
the lower bound

P(gt = g̃t | xt, A1, g̃t ≥ gAt ) ≥ p

|A|
, (4.35)

that implies

P ≥ p

|A|
P(A1 | xt, g̃t ≥ gAt )∑3
i=1 P(Ai | xt, g̃t ≥ gAt )

.

Because the Ai are disjoint,
∑3
i=1 P(Ai | xt, g̃t ≥ gAt ) ≤ 1 we have

P ≥ p

|A|
P(A1 | xt, g̃t ≥ gAt ) .

Using a similar lower bound as (4.35), namely

P(A1 | xt, g̃t ≥ gAt ) ≥ p

|A|
, (4.36)

we finally get

P ≥
( p

|A|

)2
. (4.37)
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Since it is hard to precisely count the occurrences of {g̃t ≥ gAt } and {g̃t < gAt }, we use a
conservative bound in (4.37)

P(gt = g̃t | xt, zt = 1) ≥
( p

|A|

)2
. (4.38)

This will of course make our bound on the rate of convergence very conservative.
Justification for (4.35) and (4.36).

Lets denote the left hand side of(4.35) by P2. By definition of gt and g̃t, with rt = −∇f(xt),
we have:

P2 = P(max
s∈Vt
〈rt, s− vt〉 = max

s∈A
〈rt, s− vt〉 | xt,max

s∈Vt
〈rt, s− vt〉 ≥ gAt ,max

s∈A
〈rt, s− vt〉 ≥ gAt )

(4.39)
= P(max

s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉 | xt,max

s∈Vt
〈rt, s〉 ≥ C0,max

s∈A
〈rt, s〉 ≥ C0) , (4.40)

where C0 , gAt + 〈rt, vt〉 and rt does not depend on the random sampling at iteration t. Bayes
formula leads to

P2 =
P({max

s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉} ∩ {max

s∈Vt
〈rt, s〉 ≥ C0} | xt,max

s∈A
〈rt, s〉 ≥ C0)

P(max
s∈Vt
〈rt, s〉 ≥ C0 | xt,max

s∈A
〈rt, s〉 ≥ C0) . (4.41)

Conditionally on {max
s∈A
〈rt, s〉 ≥ C0}, the event {max

s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉} implies {max

s∈Vt
〈rt, s〉 ≥

C0} which leads to

P2 =
P(max

s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉 | xt,max

s∈A
〈rt, s〉 ≥ C0)

P(max
s∈Vt
〈rt, s〉 ≥ C0 | xt,max

s∈A
〈rt, s〉 ≥ C0)

≥ P(max
s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉 | xt,max

s∈A
〈rt, s〉 ≥ C0) ≥ p

|A|
,

where the last inequality is a consequence of applying Lemma 2 on the sequence (〈rt, s〉)s∈A
Similarly let’s denote the left hand side of (4.36) by P3. The first inequality is justified

because conditionally on {g̃t ≥ gAt }, {gt = g̃t} ⊂ {gt ≥ gAt }. The last inequality by applying,
similarly as for (4.35), Lemma 4.B.2 on the sequence (〈rt, s〉)s∈A.

P3 = P(gt ≥ gAt | xt, g̃t ≥ gAt )
≥ P(gt = g̃t | xt, g̃t ≥ gAt ),
≥ P(max

s∈Vt
〈rt, s〉 = max

s∈A
〈rt, s〉 | xt,max

s∈A
〈rt, s〉 ≥ C0) ≥ p

|A|
.

4.B.2 Main proof
Theorem 4.3.1′. Consider the set C = conv(A), with A a finite set of extreme atoms, after T
iterations of Algorithm 11 (RAFW) we have the following linear convergence rate

E
[
h(xT+1)

]
≤
(
1− η2ρf

)max{0,b(T−s)/2c}
h(x0) , (4.42)

with ρf = µAf
4CA

f

, η = p
|A| and s = |S0|.
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Proof. The classical curvature constant used in proofs related to non-Away Frank-Wolfe is

Cf := sup
x,s∈C,γ∈[0,1]
y=x+γ(s−v)

2
γ2
(
f(y)− f(x)− 〈∇f(x), y − x〉

)
. (4.43)

It is tailored for algorithms in which the update is of the form xt+1 = (1− γ)xt + γvt, but this
is not the shape of all updates in away versions of FW. In Lacoste-Julien and Jaggi [2015b]
they introduced a modification of the above curvature constant that we also use to analyze
RAFW. It is defined in [Lacoste-Julien and Jaggi, 2015b, equation (26)] as

CAf := sup
x,s,v∈C,γ∈[0,1]
y=x+γ(s−v)

2
γ2
(
f(y)− f(x)− γ〈∇f(x), s− v〉

)
. (4.44)

It differs from Cf (4.43) because it allows to move outside of the domain C. We thus require
L-lipschitz continuous function on any compact set for that quantity to be upper-bounded. We
refer to §curvature constants on [Lacoste-Julien and Jaggi, 2015b, Appendix D] for thorough
details. The first part of the proof reuses the scheme of [Lacoste-Julien and Jaggi, 2015b,
Theorem 8].
First part. Upper bounding ht: Considering an iterate xt that is not optimal (e.g. xt 6= x∗),
from [Lacoste-Julien and Jaggi, 2015b, Eq. (28)], we have

f(xt)− f(x∗) = ht ≤
g̃2
t

2µAf
, (4.45)

where g̃t is the pair-wise dual gap defined by g̃t = 〈s̃t−vt,−∇f(xt)〉. s̃t and vt are respectively
the FW atom and the away atom in the classical Away step algorithm (conditionally on xt,
the away atom of the randomized variant coincides with the away atom of the non-randomized
variant). The result is still valid here as it only uses the definition of the affine invariant version
of the strong convexity parameter and does not depend on the way xt are constructed (see
upper bounding ht in [Lacoste-Julien and Jaggi, 2015b, Proof for AFW in Theorem 8]).

Note that this implicitly assumes the away atom to be defined, e.g. the support of the
iterate xt never to be zero. This is ensured by the algorithm simply because it always does
convex updates.
Second part. Lower bounding progress ht − ht+1. Consider xt a non-optimal iterate. At step
t, the update in Algorithm 11 writes xt+1(γ) = xt + γdt. γ is optimized by line-search in the
segment [0, γmax]. Because in either cases dt is a difference between two elements of C, from
the definition of CAf and because of the exact line search, we have

f(xt+1) ≤ min
γ∈[0,γmax]

(
f(xt) + γ〈∇f(xt), dt〉+ γ2

2 C
A
f

)
,

so that for any γ ∈ [0; γmax]

f(xt+1)− f(xt) ≤ γ〈∇f(xt), dt〉+ γ2

2 C
A
f

or again

γ
gt
2 −

γ2

2 C
A
f ≤ f(xt)− f(xt+1), (4.46)
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where the last inequality is a consequence of Lemma 4.B.1. We write γBt , gt
2CA

f

≥ 0, the
minimizer of the left hand side of (4.46).
Case γmax ≥ 1 and γBt ≤ γmax. (4.46) evaluated on γ = γBt gives

g2
t

4CAf
− g2

t

8CAf
≤ f(xt)− f(xt+1)

=⇒
(gt
g̃t

)2 g̃2
t

8CAf
≤ ht − ht+1. (4.47)

Indeed, xt is assumed not to be optimal, so that g̃t 6= 0. Combining (4.47) with (4.45) gives

ht+1 ≤ ht −
(gt
g̃t

)2 g̃2
t

8CAf
(4.48)

≤ ht −
(gt
g̃t

)2 µAf
4CAf

ht (4.49)

=
(
1− ρf

(gt
g̃t

)2)
ht . (4.50)

Case γmax ≥ 1 and γBt > γmax. γBt = gt
2CA

f

implies gt ≥ 2CAf . (4.46) transforms into

gt
2
(
γ − γ2

2
)
≤ f(xt)− f(xt+1)

gt
g̃t

g̃t
2
(
γ − γ2

2
)
≤ f(xt)− f(xt+1) .

Using g̃t ≥ ht and evaluating at γ = 1, leaves us with

ht+1 ≤
(
1− 1

4
gt
g̃t

)
ht. (4.51)

Because µAf ≤ CAf [Lacoste-Julien and Jaggi, 2015b, Remark 7.] and ρf = µAf
4CA

f

, the two
previous cases resolve in the following inequality

ht+1 ≤
(
1− ρf

(gt
g̃t

)2)
ht . (4.52)

Case γmax < 1 and γ∗t < γmax. By definition

γ∗t = argmin
γ∈[0,γmax]

f(xt + γdt) = F (γ) . (4.53)

f is convex and its minimum on [0; γmax] is not reached at γmax. It is then also a minimum on
the interval [0; +∞], and in particular we have

γ∗t = argmin
γ∈[0,1]

f(xt + γdt) = F (γ) . (4.54)

(4.46) can then be written with γ ∈ [0, 1] which leads to the previous case result (4.52).

92



Case γmax < 1 and γ∗t = γmax. This corresponds to a particular drop step for which we only
guarantee ht+1 ≤ ht (exact line-search). We call this case a bad drop step (indeed γmax > 1
and γ∗t = γmax also corresponds to a drop step, but for which we can prove a bound of the
form ht+1 ≤ ht(1− ρf

(gt
g̃t

)2)).

We use the binary indicator zt to distinguish between the step where (4.52) is guaranteed
or not. Denote by zt = 0 when doing a bad drop step and zt = 1 otherwise. The second part
can be summed-up in

ht+1 ≤ ht(1− ρf
(gt
g̃t

)2)zt . (4.55)

Last part. Consider starting RAFW (Algorithm 11) for T iterations at x0 ∈ conv(V), with
s = |S0| ≥ 0. We will now prove there are at most

⌊
T+s

2

⌋
drop steps. Let DT be the number of

drop steps after iteration T and FT the number of FW step adding a new atom until iteration T .
By definition, a FW step is not a drop step so that DT +FT ≤ T . Also |ST | = |S0|+|FT |−|DT |,
hence |ST | ≤ |S0| − 2|DT | + T so that |DT | ≤ T+s−|ST |

2 . Finally because |ST | ≥ 0, we have
|DT | ≤

⌊
T+s

2

⌋
.

From the first two parts of the main proof, we have that

hT ≤ h0

T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt , (4.56)

where (gt, zt)t∈[0:T−1] are defined along RAFW starting at x0. For i < j, we write Ei:j the
expectation with respect to all sub-sampling between the ith iteration and the jth iteration
included. When taking expectation only over sub-sampling i, we write it Ei.

We will now prove by recurrence on T ∈ N∗ that

E0:T−1(
T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt) ≤ (1− ρfη2)max{0,T−bT+s
2 c} = F (T, s) ∀s ∈ N ∀x0 ∈ Rd with |S0| = s ,(4.57)

where x0 =
∑
v∈A α

(0)
v v and S0 = {v ∈ A s.t. α(0)

v > 0}.
The rate quantity max{0, T −

⌊
T+s

2

⌋
} represents the number of steps (between iteration 0

and T − 1) in which zt = 1, e.g. the steps in which there is a possibility of having geometrical
decrease. Note that the geometrical decrease happens only when gt = g̃t.

The key insight in the global bound is to recall (from section 4.3) that if the support is a
singleton, i.e. |St| = 1, RAFW does a FW step hence zt = 1. We consequently distinguish
whether or not the first iterate has an initial support of size 1. We then use the recurrence
property starting the algorithm at x1 and running T − 1 iterations.
Initialization. We will now prove the recurrence property (4.57) for T = 1. If s ≥ 2, max{0, T−⌊
T+s

2

⌋
} = 0 and (4.57) is true because (1 − ρf

(g0
g̃0

)2) ≤ 1. If s = 1, this implies that the first
step needs to be a Frank-Wolfe step. We necessarily have z0 = 1 and so

E0(
(
1− ρf

(g0
g̃0

)2)z0) = E0(
(
1− ρf

(g0
g̃0

)2) | z0 = 1) (4.58)

≤ 1− ρfP(g0 = g̃0 | z0 = 1) (4.59)
≤ 1− ρfη2 ≤ 1 ≤ F (1, 1) , (4.60)
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with η = p
|A| where F is defined in (4.57) and where the last inequality follows from (PROB)

in Lemma 4.B.3.
Recurrence. Consider the property (4.57) when running T−1 iteration. By the tower property
of conditional expectations

E0:T−1(
T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt) = E0:T−1
[(

1− ρf
(g0
g̃0

)2)z0E1:T−1(
T−1∏
t=1

(
1− ρf

(gt
g̃t

)2)zt)].(4.61)
We can apply the recurrence property with T − 1 iterations and starting point x1 on

E1:T−1(
∏T−1
t=1

(
1− ρf

(gt
g̃t

)2)zt) so that

E0:T−1(
T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt) ≤ E0
[(

1− ρf
(g0
g̃0

)2)z0F (T − 1, |S1|)
]
, (4.62)

where |S1|, the support of x1, depends on z0. Indeed z0 = 0 implies a drop step and as such
it decreases the support of the iterate. Thus we have to distinguish the case according to the
size of the support of x0.

Case |S0| = 1. With x0 = 0, RAFW starts with a FW step and as such z0 = 1 as well as
2 ≥ |S1| ≥ 1 so that

E0:T−1(
T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt) = E0
[(

1− ρf
(g0
g̃0

)2) | z0 = 1
]
F (T − 1, |S1|) (4.63)

≤ (1− ρfη2)F (T − 1, 2) ≤ F (T, 1) , (4.64)

by applying (PROB) in Lemma 4.B.3. The last equality concludes the heredity in that case.
Case |S0| ≥ 2. Here it is possible for z0 to equal 0 or 1. If z0 = 1, then |S1| ≤ |S0| + 1,

while if z0 = 0, it implies a drop step, we have |S1| = |S0|−1. If we decompose the expectation
according to the value of z0 we obtain

E0:T−1(
T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt) ≤ P(z0 = 1)E0
[(

1− ρf
(g0
g̃0

)2) | z0 = 1
]
F (T − 1, |S1|) (4.65)

+P(z0 = 0)F (T − 1, |S0| − 1) (4.66)
≤ P(z0 = 1)

(
1− ρfη2)F (T − 1, |S0|+ 1) + P(z0 = 0)F (T − 1, |S0| − 1)(4.67)

≤ P(z0 = 1)
(
1− ρfη2)F (T − 1, s+ 1) + P(z0 = 0)F (T − 1, s− 1) .(4.68)

We used the fact that F (T, |S1|) ≤ F (T −1, |S0|+1). Since we do not have access to the values
of P(z0 = 0) and P(z0 = 1), we bound it in the following manner

E0:T−1(
T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt) ≤ max
(
(1− ρfη2)F (T − 1, s+ 1), F (T − 1, s− 1)

)
≤ F (T, s) ,(4.69)

where the last inequality is just about writing the definition of F . It concludes the heredity
result.
Conclusion: Starting RAFW at x0, after T iterations, we have

hT ≤ h0

T−1∏
t=0

(
1− ρf

(gt
g̃t

)2)zt . (4.70)
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Applying (4.57) we get

E0:T−1(hT ) ≤ h0(1− ρfη2)max{0,T−bT+s
2 c}

≤ h0(1− ρfη2)max{0,bT−s2 c}. (4.71)

Generalized strongly convex.

Theorem 4.3.2′. Suppose f has bounded smoothness constant CAf and is µ̃-generally-strongly
convex. Consider the set C = conv(A), with A a finite set of extreme atoms. Then after T
iterations of Algorithm 11, with s = |S0| and a p parameter of sub-sampling, we have

E
[
h(xT+1)

]
≤
(
1− η2ρ̃f

)max{0,bT−s2 c}h(x0), (4.72)

with ρ̃f = µ̃
4CA

f

and η = p
|A| .

Proof. The conclusion of proof of [Lacoste-Julien and Jaggi, 2015b, Th. 11] is that we have
similarly as equation (4.45) by:

f(xt)− f(x∗) = ht ≤
g2
t

2µ̃f
, (4.73)

where µ̃f > 0 is a similar measure of the affine invariant strong convexity constant but for
generalized strongly convex function.

We can thus write the twin of equation (4.55)

ht+1 ≤ ht
(
1− ρ̃f

(gt
g̃t

)2)zt , (4.74)

with ρ̃f = µ̃f
4CA

f

. The rest of the proof follows is the same as that of Theorem 4.3.1.
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Chapter 5

Approximate Carathéodory using
Bernstein-(Sterfling) Bounds

This last chapter steps slightly aside from the analysis or designing of Frank-Wolfe algo-
rithms. Here, we sought to improve results for the approximate Shapley-Folkmann theorem
[d’Aspremont and Colin, 2017] which relies on the application of specific versions of the ap-
proximate Carathéodory lemma.

Carathéodory’s theorem states that if a point x lies in the convex hull of a set C ⊂ Rd,
then it can be represented as a convex combination of at most d+ 1 points in C. Approximate
versions of this theorem seek to approach x using a smaller number of points, while minimizing
approximation error. Error bounds in this case are typically obtained using a probabilistic
argument, depend on the diameter of C, and implicitly assume that the number k of points in
the decomposition is much smaller than d. Here, we present several approximate Carathéodory
theorems on a polytope Co(V ) where V ⊂ Rd is a finite set of points. We focus on regimes where
the sampling ratio is close to 1, i.e. k is close to d. Our results also better capture the structure
of Co(V ), using both a diameter and a variance-like measure on V , in a Banach (Rd, || · ||).
The proofs rely on martingale concentration inequalities for sampling without replacement.
In particular we extend the recent work of [Schneider, 2016] and derive a Bennett-Serfling
concentration inequality on smooth Banach spaces.
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5.1 Introduction to Carathéodory Lemma
Carathéodory’s theorem states that if a point x lies in the convex hull of a set C ⊂ Rd,
then it can be represented as a convex combination of at most d+ 1 points in C. Approximate
versions of this theorem seek to approach x using a smaller number of points, while minimizing
approximation error. Recent results in this vein [Donahue et al., 1997a, Vershynin, 2012, Dai
et al., 2014] have focused on producing tight approximation bounds and the following theorem
states, for instance, an upper bound on the number of elements needed to achieve a given level
of precision in `p norm, given a bound on the diameter of the set C.
Theorem 5.1.1 (Approximate Carathéodory). Let V be a finite subset of Rd, x ∈ Co(V ) and
ε > 0. We assume that V is bounded and we write

Dp , sup
v∈V
‖v‖p

with p ≥ 2. Then, there exists some m ≤ 8pD2
p/ε

2 such that∥∥∥∥∥x−
m∑
i=1

λivi

∥∥∥∥∥
p

≤ ε,

for some vi ∈ V and λi > 0 such that 1>λ = 1.
This result is a direct consequence of Maurey’s lemma [Pisier, 1981] and is based on a prob-

abilistic argument which samples vectors vi with replacement, using concentration inequalities
to control the approximation error. It can also be seen as a direct application of a Frank-Wolfe
algorithm [Frank and Wolfe, 1956] to the optimization problem

minimize
v∈Co(V )

‖x− v‖22 , (5.1)

where each iteration adds at most one extreme point in the representation [Clarkson, 2010a].
In the same vein, [Blum et al., 2016, Remark 2.7] notes that Theorem 5.1.1 for p = 2 follows
from the analysis of the perceptron algorithm in [Novikoff, 1963].

Approximate Carathéodory. These types of results appear in functional analysis as a classi-
cal consequence of Maurey’s lemma in e.g. [Pisier, 1981, Carl, 1985, Bourgain et al., 1989].
Donahue et al. [1997b], in particular, study the rates of convex approximation in functional
spaces. See also [Bourgain et al., 2015, Lemma 31] for a very short proof. Mirrokni et al. [2015]
prove that Theorem 5.1.1 is tight for p ≥ 2 and suggest algorithmic applications to submodu-
lar minimization, while Adiprasito et al. [2018] focus on colourful versions of the approximate
Carathéodory Theorem.

Approximating convex combinations via sampling is ubiquituous in many fields and results
similar to approximate Carathéodory appear under many forms and names. For instance,
[Althöfer, 1994] shows a version of Theorem 5.1.1 adapted to case where p = ∞, with appli-
cations to matrix games. More recently, [Barman, 2014] also used Theorem 5.1.1 to compute
approximate Nash equilibria and solve densest bipartite subgraph problems.

These versions do not consider the case where m the number of vectors composing the
convex approximation is close to N , the number of vectors of V in initial convex combination.
Furthermore, these error bounds only use the diameter of Co(V ), hence are somewhat oblivious
to any other kind of structure in this set. These are the main limitations we seek to remedy
in this work.
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Sterfling concentration inequalities Probabilistic proofs of Theorem 5.1.1 rely on a concen-
tration inequality which upper bounds deviations from the original convex combination. The
quantities that control this upper bound establish a crucial link between the structure of V
and approximation quality.

For example, Hoeffding bounds write approximation quality as a function of the diameter of
V while Bennett or Bernstein bounds write it as functions of both the diameter and variance of
V . Serfling bounds incorporate the influence of the sampling ratio, i.e. the number of nonzero
coefficients in the convex approximation divided by the number of nonzero coefficients in the
initial convex decomposition.

In particular, Serfling [1974] derives a Hoeffding-Serfling concentration inequality for real-
valued random variable. Bardenet et al. [2015] extended this result to produce a Bernstein-
Serfling inequality in the same context. Finally, Schneider [2016] shows an Hoeffding-Serfling
bound on smooth Banach spaces, relying on martingale concentration inequalities of Pinelis
[1994].

Contribution Our contribution here is twofold. First, we produce a version of Approximate
Carathéodory with high sampling ratio in smooth Banach spaces. The proofs rely on a classical
sampling argument but we use a Hoeffding-Serfling concentration inequality and sampling
without replacement to account for the high sampling ratio.

Second, we prove a Bennett-Serfling concentration inequality on smooth Banach Spaces in
this context. This produces an approximation bound using both a diameter and a variance
term. The Banach space setting gives us more flexibility in computing of these quantities.

5.2 Approximate Caratheodory via Sampling
We now recall several key results extending Theorem 5.1.1 in our context.

5.2.1 High-Sampling ratio
We now focus on the scenario where the number of terms m in the approximation is close
to N , i.e. when the sampling ratio is high. The classical proof of Theorem 5.1.1 relies on
sampling with replacement which does not provide precise enough bounds. We will use results
from [Serfling, 1974] on real-valued sample sums without replacement to produce a more precise
version of the approximate Carathéodory theorem to handle the case where a high fraction of
the coefficients is sampled.

Theorem 5.2.1 (High-Sampling Ratio in l∞). Let x =
∑N
j=1 λjvj for V ∈ Rd×N and some

λ ∈ RN such that 1Tλ = 1, λ ≥ 0. Let ε > 0 and write R = max{Rv, Rλ} where
Rv = max

i
‖λivi‖∞

Rλ = max
i
|λi| .

Consider m (with γ = 2 log((d+ 1)/d)) s.t.

m ≥ 1 +N
γ(
√
N R/ε)2

1 + γ(
√
N R/ε)2

. (5.2)
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Then, there exists some x̂ =
∑
j∈J µjvj with µ ∈ Rm and µ ≥ 0, where J ⊂ [1, N ] has size m

such that 
‖x− x̂‖∞ ≤ ε∣∣∣ ∑
j∈J

µj − 1
∣∣∣ ≤ ε.

Proof. Here the argument consists in approximating x =
∑N
j=1 λjvj by convex combinations of

the form Sm =
∑
j∈J

N
mλjvj with J a subset of [N ] of size m. We apply several concentration

inequalies to first upper bound the probability that ||x − x̂||∞ ≥ ε and then the probability
that

∣∣∣1−∑i∈J
N
mλj

∣∣∣ ≥ ε, and use an union bound to conclude the proof. Let

S(i)
m =

∑
j∈J

λjv
(i)
j

where J is a random subset of [N ] of size m, then [Serfling, 1974, Cor 1.1] shows

P
(∣∣∣∣NmS(i)

m − x(i)
∣∣∣∣ ≥ ε) ≤ exp

(
−αmε2

2N(1− αm)R2
v

)

where αm = (m−1)/N is the sampling ratio. Consider β ∈ [0, 1]. To ensure P
(∣∣∣NmS(i)

m −x(i)
∣∣∣ ≤

ε
)
≥ β, it is sufficient that αm satisfies (because R ≥ Rv)

αm
1− αm

≥ 2 log(1/(1− β))(R
√
N/ε)2. (5.3)

Hence with αm as in (5.3), for all coordinate P
(∣∣∣NmS(i)

m −x(i)
∣∣∣ ≤ ε) ≥ β. A union bound yields

P(||x− x̂||∞ ≤ ε) ≥ dβ − (d− 1).

An Hoeffding inequality on the coefficients gives

P
(∣∣∣N
m

∑
i∈J

λi − 1
∣∣∣ ≥ ε) ≤ exp(− αmε

2

2N(1− αm)R2 ),

and because αm satisfies (5.3), we have

P
(∣∣∣N
m

∑
i∈J

λi − 1
∣∣∣ ≥ ε) ≤ 1− β .

Write A the event
{∣∣∣∣∣∣x− x̂

∣∣∣∣∣∣
∞
≤ ε

}⋂{∣∣∣Nm∑j∈J λj − 1
∣∣∣ ≤ ε}. An union bound gives

P(A) ≥ (d+ 1)β − d.

Choosing β = d+1/2
d+1 < 1 leads to P(A) > 0 and the desired result.

Here, R (which is bounded by the diameter of the set V ) is the only value accounting for
the geometry of V because we use an Hoeffding type concentration inequality. Note finally
that N can be bounded by d+ 1 using the classical Carathéodory theorem.

99



5.2.2 Banach Spaces
For completeness, we recall the definition of (2, D)- Banach spaces [Schneider, 2016, Definition
3] and refer to [Schneider, 2016, section 3] for more details.

Definition 5.2.2. A Banach space (B, || · ||) is (2, D)-smooth if it a Banach space and there
exists D > 0 such that

||x + y||2 + ||x− y||2 ≤ 2||x||2 + 2D||y||2

for all x,y ∈ B.

A Hilbert space for instance is (2, 1)-smooth [Schneider, 2016, §4]. Using Banach spaces
provides much more versatility and can lead to important gains in measuring the variance or
the diameter.

Theorem 5.2.1 uses Hoeffding-Serfling for real-valued random variables to provide error
bounds in `∞ norm, while Theorem 5.1.1 produces a bound for any norm || · ||p with p ≥ 2.
To add flexibility to the diameter bound Rv = maxi ‖λivi‖∞, we extend Theorem 5.2.1 to
arbitrary norms in (2, D)-smooth Banach spaces (see definition 5.2.2) using a recent result by
[Schneider, 2016]. The concentration inequality they prove allows us to directly handle the
sample Sm as a vector of a Banach, not component-wise as in the proof of Theorem 5.2.1.

Theorem 5.2.3 (High Sampling Ratio in Banach Spaces). Let x =
∑N
j=1 λjvj for V ∈ Rd×N

and some λ ∈ RN such that 1Tλ = 1, λ ≥ 0. Let ε > 0 and write R = max{Rv, Rλ} where
Rv = maxi ‖λivi‖ and Rλ = maxi |λi|, for some norm ‖ ·‖ such that (Rd, ‖ ·‖) is (2, D)-smooth
(Definition 5.2.2). Consider m (with γ = 2 log(2/(1− β)) for some β ∈ [0, 1]) s.t.

m ≥ 1 +N
γ(
√
N DR/ε)2

1 + γ(
√
N DR/ε)2

(5.4)

Then, there exists some x̂ =
∑
j∈J µjvj with µ ∈ Rm and µ ≥ 0, where J ⊂ [1, N ] of size m

such that 
‖x− x̂‖ ≤ ε∣∣∣ ∑

j∈J
µj − 1

∣∣∣ ≤ ε.
Proof. We use [Schneider, 2016, Th. 1] instead of [Serfling, 1974, Cor 1.1] in the proof of The-
orem 5.2.1. We consider (λ1v1, . . . , λNvN ), the N elements of the Banach space. Write
Sm =

∑
i∈J λivi for J a random subset of [N ] of size m. Note that N

mSm is an unbiased
estimate of x. [Schneider, 2016, Th. 1] hence implies

P
(∣∣∣∣∣∣N
m

Sm − x
∣∣∣∣∣∣ ≥ ε) ≤ 2 exp

(
− αmε

2

2D2R2
vN(1− αm)

)
.

Because R > Rv, we can replace Rv above by R. Consider β ∈]0, 1[. To ensure P
(∣∣∣∣∣∣NmSm−x

∣∣∣∣∣∣ ≤
ε
)
≥ β, it is sufficient that αm verifies

αm
1− αm

≥ 2 log(2/(1− β))(DRv
√
N/ε)2.
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This means imposing (with γ = 2 log(2/(1− β)) > 0 for β ∈ [0, 1[)

αm ≥
γ(
√
N RD/ε)2

1 + γ(
√
N RD/ε)2

. (5.5)

Let’s apply again Hoeffding-Serfling to the real-valued (λj) (here consider it as a random
variable). We hence have

P

∣∣∣N
m

∑
j∈J

λj − 1
∣∣∣ ≥ ε

 ≤ 2 exp
(

−αmε2

2N(1− αm)R2
λ

)
.

Again, replace Rλ above by R. Imposing (5.5) implies that

2 exp
(

−αmε2

2N(1− αm)R2
λ

)
≤ 2

(1− β
2

)D2

.

Write A the event
{∣∣∣∣∣∣NmSm − x

∣∣∣∣∣∣ ≤ ε}⋂{∣∣∣Nm∑j∈J λj − 1
∣∣∣ ≤ ε}. A union bound gives that

P(A) ≥ β − 2
(1− β

2
)D2

= f(β),

which is strictly positive for some β ∈]0, 1[ (for instance by the mean-value theorem since
f(0) < 0 and f(1) = 1). This yields the desired result. Note that we need only to choose β
such that P(A) > 0 with γ = 2 log(2/(1 − β)) the lowest possible. Hence the best choice of γ
depends on D only. For instance in Hilbert spaces, D = 1 and the best choice is β = 1/2 and
γ = 2 log(4).

5.2.3 Low Variance
In theorem 5.2.1 and 5.2.3, all that is extracted of the set V , is its diameter measure Rv =
maxi ‖λivi‖∞, because the proof relies again on an Hoeffding concentration inequality.

Recent results by [Bardenet et al., 2015] provide real-valued Bernstein-Serfling type in-
equalities where the bound depends on both the diameter R and a standard deviation.

Proposition 5.2.4 (Real-valued Bernstein-Serfling [Bardenet et al., 2015]). Let V = {v1, . . . , vN}
with vi ∈ R and (V1, . . . , Vm) the random sample without replacement in V . Then, for all ε > 0
and δ ∈ [0, 1], the following concentration inequality holds

P
( 1
m

m∑
i=1

Vi − v̄ ≥ ε
)
≤ exp

(
− mε2/2
γ2 + 2Rε/3

)
+ δ ,

where

γ2 = (1− αm)σ2 + αmσR

√
−2 log(δ)
m− 1 ,

with v̄ = 1
N

∑
i vi and 

R = maxi,j |vi − vj |

σ = 1
N

N∑
i=1

(vi − v̄)2.
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This concentration inequality can lead, using the same proof scheme as in Theorem 5.2.1
to a version of Approximate Carathéodory with high-sampling ratio accounting for both the
variance and diameter of the set, in terms of l∞ norm.

[Schneider, 2016] extended the real-valued Hoeffding-Serfling inequality of [Bardenet et al.,
2015] to smooth Banach spaces and in what follows, we will show an extension of a Bennett-
Serfling inequality to smooth Banach spaces.

5.2.4 High Sampling Ratio and Low Variance
We use Bennett-Serfling inequality to get the following bound.

Lemma 5.2.5. In the setting of Theorem 5.A.5, for any δ0 ∈]0, 1[ and ε0 > 0, if the sampling
ratio αm satisfies

αm ≥
2 ln(2/δ0)

[
2(DσBSm )2 + ε0Rv/3

]
/N

ε20 + 2 ln(2/δ0)
[
2(DσBSm )2]/N , (5.6)

we have
P
(∣∣∣∣∣∣ 1
m

m∑
i=1

Vi − v̄
∣∣∣∣∣∣ ≥ ε0) ≤ δ0 . (5.7)

Proof. Given δ0 ∈]0, 1[ and ε0 > 0, we are looking for a sampling ratio αm = m
N such that

P
(∣∣∣∣∣∣ 1
m

m∑
i=1

Vi − v̄
∣∣∣∣∣∣ ≥ ε0) ≤ δ0 .

With Bennett-Serfling concentration inequality, it is sufficient to find αm such that

2 exp
(
− mε2

2
(
2N−mN (DσBSm )2 + εRv/3

)) ≤ δ0

− Nαmε
2

2(DσBSm )2(1− αm) + εRv/3
≤ 2 ln(δ0/2),

which is equivalent to

αmε
2 ≥ − 2

N
ln(δ0/2)

[
2(DσBSm )2(1− αm) + εRv/3

]
,

αm ≥ −
2
N ln(δ0/2)

[
2(DσBSm )2 + εRv/3

]
ε2 − 4

N ln(δ0/2)(DσBSm )2 .

For (5.7) to be true, it is sufficient that αm satisfies the following,

αm ≥
2 ln(2/δ0)

[
2(DσBSm )2 + ε0Rv/3

]
/N

ε20 + 2 ln(2/δ0)
[
2(DσBSm )2]/N .

which is the desired result.

We now conclude with the following Approximate Carathéodory type result.
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Theorem 5.2.6 (High Sampling Ratio and low variance in Banach). Let x =
∑N
j=1 λjvj for

V ∈ Rd×N and some λ ∈ RN such that 1Tλ = 1, λ ≥ 0. For some norm ‖ · ‖ such that
(Rd, ‖ · ‖) is (2, D)-smooth, write

R = max
i
‖λivi‖

σBSm = 1√∑m
k=1

1
(N−k)2

∣∣∣∣∣∣( m∑
k=1

1
(N − k)2σ

2
k

)1/2∣∣∣∣∣∣
∞
,

with
σk = Ek−1||Vk − Ek−1(Vk)||2,

where (Vk) are obtained via sampling without replacement from the sequence of N vectors (λivi).
Consider m (with γ = 2 log(4)) s.t.

m ≥ 1 +N
γ[2(
√
NσBSm D)2 + εR/3]

ε2 + γ[2(
√
NσBSm D)2]

. (5.8)

Then there exists some x̂ =
∑
j∈J µjvj with µ ∈ Rm and µ ≥ 0, where J ⊂ [1, N ] has size m,

such that 
‖x− x̂‖ ≤ ε∣∣∣ ∑

j∈J
µj − 1

∣∣∣ ≤ ε.
Proof. For clarity we omit that in fact R = max{Rv, Rλ} and Dσ = Dmax{σv, σλ} where σv
and σλ are as in (5.10).

Consider ε > 0 and β ∈ [0, 1]. Applying Lemma 5.2.5 with δ = 1− β we have that for αm
satisfying

αm ≥
2 ln(2/(1− β))

[
2(DσBSm )2 + εR/3

]
/N

ε2 + 2 ln(2/(1− β))
[
2(DσBSm )2]/N . (5.9)

that
P
(∣∣∣∣∣∣ 1
m

m∑
i=1

Vi − x
∣∣∣∣∣∣ ≤ ε) ≥ β .

We use again Bennett-Serfling to the real-valued sequence (Nmλi)i. Because m verify (5.9), for
random sample J of size m we have also

P
(∣∣∣∑

i∈J

N

m
λi − 1

∣∣∣ ≤ ε) ≥ β .
Finally an union bound gives that

P
({
||x− x̂|| ≤ ε

}⋂{∣∣∣∑
i∈J

µj − 1
∣∣∣ ≤ ε}) ≥ 2β − 1.

Choosing β > 1
2 leads to the existence of the subset J .
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Appendices

5.A Martingale Proof Details
Probabilistic proofs of approximate Carathéodory rely on a concentration inequality. To prove
Theorem 5.2.3 we needed such a result for sampling without replacement with a Bennett or
Bernstein upper bound. In what follows, we prove a Bennett-Serfling inequality on Banach
spaces (cf. Theorem 5.A.5 below). This concentration inequality allows us to rewrite the
upper bound involving the quantity R in Theorem 5.2.3 using a term taking into account
a variance-like measure on V . This leads to an approximate Carathéodory version for high
sampling ratio and low variance (Theorem 5.2.6). Note that this result is useful in other
contexts than approximate Carathéodory, such as approximate Monte Carlo Markov chain
algorithms [Bardenet et al., 2015] or Kernel Embeddings [Schneider, 2016].

Consider V = {v1, . . . ,vN}, a set of N vectors in a (2, D)-Banach space with norm || · || and
V1, . . . , Vm, the random variables resulting from sampling without replacement. Rv , supi ||vi||
is the range of V . We introduce a specific notion of standard deviation related to that sampling
scheme as follows

σBSm ,
1√∑m

k=1
1

(N−k)2

∣∣∣∣∣∣( m∑
k=1

1
(N − k)2σ

2
k

)1/2∣∣∣∣∣∣
∞
, (5.10)

where we write || · ||∞ for essential supremum to simplify notations and also

σk = Ek−1||Vk − Ek−1(Vk)||2.

We call σBSm a standard deviation because it is the square-root of the essential supremum of
a convex combination of the terms σ2

k = Ek−1||Vk − Ek−1(Vk)||2. For k = 1, σ2
1 is exactly

the variance of V , while when k = N − 1, σk is better related to the diameter of the set
V . The difference between classical notions of variance is due to sampling without replace-
ment. However, when the index k increases, the weights also do, thus putting more weight on
diameter-like measures rather than on variance-like measures. The notation σBSm is an acronym
for Bernstein-Serfling variance as a function of m. Finally, note that for smaller values of m,
σBSm is closer to a standard deviation term.

Our goal is to upper-bound the following probability

P
(∣∣∣∣∣∣ 1
m

m∑
i=1

Vi −
1
N

N∑
i=1

vi
∣∣∣∣∣∣ ≥ ε), (5.11)

as a function of both σBSm and Rv. We call this bound Serfling because the quality of the
upper-bound depends on the sampling ratio. Schneider [2016] shows an Hoeffding-Serfling
bound (i.e. not depending on σBSm ) on (2, D)-Banach spaces, while Bardenet et al. [2015]
provide a Bernstein-Serfling bound for real-valued random variable. Here we expand the re-
sult of [Schneider, 2016] to get a Bennett-Serfling inequality in (2, D)-Banach spaces. The
proof exploits the forward martingale in [Serfling, 1974, Bardenet et al., 2015, Schneider, 2016]
associated with the sampling without replacement and uses a result from [Pinelis, 1994] to
conclude.
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5.A.1 Forward Martingale when Sampling without Replacement
Write V1, . . . , Vm, the random variables resulting from sampling without replacement of m
elements of V . Write v̄ = 1

N

∑N
i=1 vi and consider (Mk)k∈N the following random process

Mk =
{

1
N−k

∑k
i=1 (Vi − v̄) 1 ≤ k ≤ m

Mm for k > m
(5.12)

and M0 = 0. It is a standard result (when m = N − 1) that (Mk)k∈N defines a forward
martingale [Serfling, 1974, (2.7)], [Bardenet et al., 2015, Lemma 2.1] or [Schneider, 2016,
Lemma 1] w.r.t. the filtration (Fk)k∈N defined as

Fk =
{
σ(V1, . . . , Vk) 1 ≤ k ≤ m
σ(V1, . . . , Vm) for k > m .

(5.13)

In fact the martingale defined in (5.12) for some m0 is also the stopped martingale at m0 of
the martingale in (5.12) defined for m = N − 1 (which corresponds to the martingale studied
in [Schneider, 2016, Lemma 1]).
Lemma 5.A.1. For m ∈ [N − 1], (Mk)k∈N as defined in (5.12) is a forward martingale with
respect to the filtration (Fk)k∈N in (5.13).
Proof. For 1 ≤ k ≤ m, it is exactly the same computations as in [Schneider, 2016, Lemma 1.].
By definition, for k > m

E(Mk | Fk−1) = E(Mm | Fm) = Mm = Mk−1 .

For k ≤ m we also have the two following results [Schneider, 2016, (3) and (5)].
Lemma 5.A.2.

Ik ,Mk −Mk−1 = Vk − Ek−1(Vk)
N − k

(5.14)

||Ik|| ≤
R

N − k
, (5.15)

where Ik denotes the martingale’s increment and R is such that maxi||vi|| ≤ R.
Proof. By definition of (Mk)

Mk = N − k + 1
N − k

Mk−1 + Vk − v̄

N − k
,

hence
Mk −Mk−1 = Vk − (v̄ −Mk−1)

N − k
.

And exactly as in [Schneider, 2016, (3)], conditionally on the event {V1, . . . , Vk−1}, Vk takes
its values uniformly at random from {v1, . . . ,vN} \ {V1, . . . , Vk−1} so that

Ek−1(Vk) = v̄ −Mk−1,

which finally leads to

||Mk −Mk−1|| =
||Vk − Ek−1(Vk)||

N − k
≤ R

N − k
and the desired result.
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5.A.2 Bennett for Martingales in Smooth Banach Spaces
We recall a slightly modified version of [Pinelis, 1994, Theorem 3.4.]. This theorem is analogous,
on martingales defined on Banach spaces, of the Bennett concentration inequality for sums of
real independent random variables.

Theorem 5.A.3 (Pinelis). Suppose (Mk)k∈N is a martingale of a (2, D)-smooth separable Banach
space and that there exists (a, b) ∈ R∗+ such that∣∣∣∣ sup

k
||Mk −Mk−1||

∣∣∣∣
∞ ≤ a

∣∣∣∣( ∞∑
j=1

Ej−1||Mj −Mj−1||2
)1/2∣∣∣∣

∞ ≤ b/D ,

then for all η ≥ 0,

P(sup
k
||Mk|| ≥ η) ≤ 2 exp

(
− η2

2(b2 + ηa/3)
)
.

Proof. Write P = P(supk ||Mk|| ≥ η). In the proof of [Pinelis, 1994, theorem 3.4.], we have

P ≤ 2 exp
(
− λη + exp(λa)− 1− λa

a2 b2
)
.

Besides, [Sridharan, 2002, equation (16)] gives

inf
λ>0

[
− λε+ (e−λ − λ− 1)c2] ≤ − ε2

2(c2 + ε/3) .

We can then rewrite the initial inequality as

P ≤ 2 exp
(
− λaη

a
+ (exp(λa)− 1− λa) b

2

a2
)

≤ 2 exp
(
− η2

2(b2 + ηa/3)
)
.

[Pinelis, 1994] uses the exact minimization on λ which leads to a better but much less convenient
form of the Bennett concentration inequality.

5.A.3 Bennett-Serfling in Smooth Banach Spaces
The following lemma allows to identify the parameters (a, b) appearing in theorem 5.A.3.

Lemma 5.A.4. ∣∣∣∣ sup
k
||Ik||

∣∣∣∣
∞ ≤ R

N −m
(5.16)

∣∣∣∣( ∞∑
j=1

Ej−1||Ij ||2
)1/2∣∣∣∣

∞ ≤ σBSm

√
m

(N −m− 1)N ,

with σBSm as in (5.10) and Ik = Mk −Mk−1.
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Proof. (5.16) directly follows from (5.15). Note that Ik = 0 for k ≥ m. Because of (5.14), we
have ( ∞∑

k=1
Ek−1(||Ik||2)

) 1
2 =

( m∑
k=1

1
(N − k)2σ

2
k

) 1
2
,

with σ2
k = Ek−1(||Vk − Ek−1(Vk)||2). Because of (5.10), we have,

∣∣∣∣∣∣( ∞∑
k=1

Ek−1(||Ik||2)
) 1

2
∣∣∣∣∣∣
∞

= σBSm

√√√√ m∑
k=1

1
(N − k)2 .

For instance, [Serfling, 1974, Lemma 2.1.] gives
m∑
k=1

1
(N − k)2 =

N−1∑
k=N−m−1+1

1
k2

≤ m

N(N −m− 1) .

It leads to ∣∣∣∣∣∣( ∞∑
k=1

Ek−1(||Ik||2)
) 1

2
∣∣∣∣∣∣
∞
≤ σBSm

√
m

N(N −m− 1)
and the desired result.

We finally state our main concentration inequality.
Theorem 5.A.5 (Bennett-Serfling in Banach). Consider V a discrete set of N vectors in a
(2, D)-Banach space and (Vi)i=1,...,m the random variables obtained by sampling without re-
placements m elements of V . For any ε > 0 write Pm(ε) , P

(∣∣∣∣∣∣ 1
m

∑m
i=1 Vi − v̄

∣∣∣∣∣∣ ≥ ε
)
. We

have
Pm(ε) ≤ 2 exp

(
− mε2

2
(
2N−mN (DσBSm )2 + εR/3

)) ,
with v̄ , 1

N

∑N
i=1 vi, R , supv∈V ||v||, and

σBSm ,
1√∑m

k=1
1

(N−k)2

∣∣∣∣∣∣( m∑
k=1

1
(N − k)2σ

2
k

)1/2∣∣∣∣∣∣
∞
.

Proof. Using Theorem 5.A.3 with the forward martingale (5.12), we have for any η > 0,

P(sup
i
||Mi|| ≥ η) ≤ 2 exp

(
− η2

2(b2 + ηa/3)
)
,

and writing P (η) = P
(

1
N−m

∣∣∣∣∣∣∑m
i=1 (Vi − v̄)

∣∣∣∣∣∣ ≥ η), we have P (η) ≤ P(supi ||Mi|| ≥ η). Hence

P
(N −m

m
η
)
≤ 2 exp

(
− η2

2(b2 + ηa/3)
)
.

Because of lemma 5.A.4, a = R
N−m and b = DσBSm

√
m

N(N−m−1) is a good choice and leads to

Pm
(N −m

m
η
)
≤ 2 exp

(
− mε

2
(
2N−mN (DσBSm )2 + εRv/3

)) ,
for any η > 0 with ε = N−m

m η.
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Appendix A

Reconstructing Latent Orderings by
Spectral Clustering

Spectral clustering uses a graph Laplacian spectral embedding to enhance the cluster structure
of some data sets. When the embedding is one dimensional, it can be used to sort the items
(spectral ordering). A number of empirical results also suggests that a multidimensional Lapla-
cian embedding enhances the latent ordering of the data, if any. This also extends to circular
orderings, a case where unidimensional embeddings fail. We tackle the task of retrieving linear
and circular orderings in a unifying framework, and show how a latent ordering on the data
translates into a filamentary structure on the Laplacian embedding. We propose a method to
recover it, illustrated with numerical experiments on synthetic data and real DNA sequencing
data.
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A.1 Introduction
The seriation problem seeks to recover a latent ordering from similarity information. We
typically observe a matrix measuring pairwise similarity between a set of n elements and
assume they have a serial structure, i.e. they can be ordered along a chain where the similarity
between elements decreases with their distance within this chain. In practice, we observe a
random permutation of this similarity matrix, where the elements are not indexed according to
that latent ordering. Seriation then seeks to find that global latent ordering using only (local)
pairwise similarity.

Seriation was introduced in archaeology to find the chronological order of a set of graves.
Each contained artifacts, assumed to be specific to a given time period. The number of common
artifacts between two graves define their similarity, resulting in a chronological ordering where
two contiguous graves belong to a same time period. It also has applications in, e.g., envelope
reduction [Barnard et al., 1995], bioinformatics [Atkins and Middendorf, 1996, Higgs et al.,
2006, Cheema et al., 2010, Jones et al., 2012] and DNA sequencing [Meidanis et al., 1998,
Garriga et al., 2011, Recanati et al., 2016].

In some applications, the latent ordering is circular. For instance, in de novo genome
assembly of bacteria, one has to reorder DNA fragments subsampled from a circular genome.

In biology, a cell evolves according to a cycle: a newborn cell passes through diverse states
(growth, DNA-replication, etc.) before dividing itself into two newborn cells, hence closing
the loop. Problems of interest then involve collecting cycle-dependent data on a population
of cells at various, unknown stages of the cell-cycle, and trying to order the cells according
to their cell-cycle stage. Such data include gene-expression [Liu et al., 2017], or DNA 3D
conformation data [Liu et al., 2018]. In planar tomographic reconstruction, the shape of an
object is inferred from projections taken at unknown angles between 0 and 2π. Reordering the
angles then enables to perform the tomography [Coifman et al., 2008].

The main structural hypothesis on similarity matrices related to seriation is the concept of
R-matrix, which we introduce below, together with its circular counterpart.

Definition A.1.1. We say that A ∈ Sn is a R-matrix (or Robinson matrix) iff it is symmetric
and satisfies Ai,j ≤ Ai,j+1 and Ai+1,j ≤ Ai,j in the lower triangle, where 1 ≤ j < i ≤ n.

Definition A.1.2. We say that A ∈ Sn is a circular R-matrix iff it is symmetric and satisfies,
for all i ∈ [n], (Aij)ij=1 and (Aij)ni=j are unimodal : they are decrease to a minimum and then
increase.
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Here Sn is the set of real symmetric matrices of dimension n. Definition A.1.1 states that
when moving away from the diagonal in a given row or column of A, the entries are non-
increasing, whereas in Def A.1.2, the non-increase is followed by a non-decrease. For instance,
the proximity matrix of points embedded on a circle follows Def A.1.2. Figure A.1 displays
examples of such matrices.

(a) R-matrix (b) circular R-matrix (c) permuted R-matrix

Figure A.1: From left to right, R-matrix, circular R-matrix, and a randomly permuted obser-
vation of a R-matrix. Seriation seeks to recover the R-matrix from its permuted observation,
the permuted R-matrix.

In what follows, we write LnR (resp., CnR) the set of R (resp., circular-R) matrices of size n,
and Pn the set of permutations of n elements. A permutation can be represented by a vector π
(lower case) or a matrix Π ∈ {0, 1}n×n (upper case) defined by Πij = 1 iff π(i) = j, and π = Πe
where e = (1, . . . , n)T . We refer to both representations by Pn and may omit the subscript
n whenever the dimension is clear from the context. We say that A ∈ Sn is pre-LR (resp.,
pre-CR) if there exists a permutation Π ∈ P such that the matrix ΠAΠT (whose entry (i, j) is
Aπ(i),π(j)) is in LR (resp., CR). Given such A, Seriation seeks to recover this permutation Π,

find Π ∈ P such that ΠAΠT ∈ LR (Linear Seriation)
find Π ∈ P such that ΠAΠT ∈ CR (Circular Seriation)

A widely used method for Linear Seriation is a spectral relaxation based on the graph Laplacian
of the similarity matrix. It transposes Spectral Clustering [Von Luxburg, 2007] to the case
where we wish to infer a latent ordering rather than a latent clustering on the data. Roughly
speaking, both methods embed the elements on a line and associate a coordinate fi ∈ R to
each element i ∈ [n]. Spectral clustering addresses a graph-cut problem by grouping these
coordinates into two clusters. Spectral ordering [Atkins et al., 1998] addresses Linear Seriation
by sorting the fi.

Most Spectral Clustering algorithms actually use a Laplacian embedding of dimension
d > 1, denoted d-LE in the following. Latent cluster structure is assumed to be enhanced in
the d-LE, and the k-means algorithm [MacQueen et al., 1967, Hastie et al., 2009] seamlessly
identifies the clusters from the embedding. In contrast, Spectral Ordering is restricted to
d = 1 by the sorting step (there is no total order relation on Rd for d > 1). Still, the latent
linear structure may emerge from the d-LE, if the points are distributed along a curve. Also,
for d = 2, it may capture the circular structure of the data and allow for solving Circular
Seriation. One must then recover a (circular) ordering of points lying in a 1D manifold (a
curve, or filament) embedded in Rd.
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In Section A.2, we review the Spectral Ordering algorithm and the Laplacian Embedding
used in Spectral Clustering. We mention graph-walk perspectives on this embedding and how
this relates to dimensionality reduction techniques. Finally, we recall how these perspectives
relate the discrete Laplacian to continuous Laplacian operators, providing insights about the
curve structure of the Laplacian embedding through the spectrum of the limit operators.
These asymptotic results were used to infer circular orderings in a tomography application
in e.g. Coifman et al. [2008]. In Section A.3, we evidence the filamentary structure of the
Laplacian Embedding, and provide theoretical guarantees about the Laplacian Embedding
based method for Circular Seriation. We then propose a method in Section A.4 to leverage
the multidimensional Laplacian embedding in the context of Linear Seriation and Circular
Seriation. We eventually present numerical experiments to illustrate how the spectral method
gains in robustness by using a multidimensional Laplacian embedding.

A.2 Related Work
A.2.1 Spectral Ordering for Linear Seriation
Linear Seriation can be addressed with a spectral relaxation of the following combinatorial
problem,

minimize
∑n
i,j=1Aij |πi − πj |2 such that π ∈ Pn (2-SUM)

Intuitively, the optimal permutation compensates high Aij values with small |πi − πj |2, thus
laying similar elements nearby. For any f = (f(1), . . . , f(n))T ∈ Rn, the objective of 2-SUM
can be written as a quadratic (with simple algebra using the symmetry of A, see Von Luxburg
[2007]), ∑n

i,j=1Aij |f(i)− f(j)|2 = fTLAf (A.1)

where LA , diag(A1)−A is the graph-Laplacian of A. From (A.1), LA is positive-semi-definite
for A having non-negative entries, and 1 = (1, . . . , 1)T is an eigenvector associated to λ0 = 0.

The spectral method drops the constraint π ∈ Pn in 2-SUM and enforces only norm and
orthogonality constraints, ‖π‖ = 1, πT1 = 0, to avoid the trivial solutions π = 0 and π ∝ 1,
yielding,

minimize fTLAf such that ‖f‖2 = 1 , fT1 = 0. (Relax. 2-SUM)

This is an eigenvalue problem on LA solved by f(1), the eigenvector associated to λ1 ≥ 0
the second smallest eigenvalue of LA. If the graph defined by A is connected (which we assume
further) then λ1 > 0. From f(1), one can recover a permutation by sorting its entries. The
spectral relaxation of 2-SUM is summarized in Algorithm 12. For pre-LR matrices, Linear
Seriation is equivalent to 2-SUM [Fogel et al., 2013], and can be solved with Algorithm 12
[Atkins et al., 1998], as stated in Theorem A.2.1.

Algorithm 12 Spectral ordering [Atkins et al., 1998]
Input: Connected similarity matrix A ∈ Rn×n
1: Compute Laplacian LA = diag(A1)−A
2: Compute second smallest eigenvector of LA, f1
3: Sort the values of f1
Output: Permutation σ : f1(σ(1)) ≤ . . . ≤ f1(σ(n))
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Theorem A.2.1 (Atkins et al. [1998]). If A ∈ Sn is a pre-LR matrix, then Algorithm 12 recovers
a permutation Π ∈ Pn such that ΠAΠT ∈ LnR, i.e., it solves Linear Seriation.

A.2.2 Laplacian Embedding
Let 0 = λ0 < λ1 ≤ . . . ≤ λn−1, Λ , diag (λ0, . . . , λn−1), Φ = (1, f1, . . . , fn−1), be the eigende-
composition of LA = ΦΛΦT . Algorithm 12 embeds the data in 1D through the eigenvector f1
(1-LE). For any d < n, Φ(d) , (f1, . . . , fd) defines a d-dimensional embedding (d-LE)

yi = (f1(i), f2(i), . . . , fd(i))T ∈ Rd, for i = 1, . . . , n. (d-LE)

which solves the following embedding problem,

minimize
∑n
i,j=1Aij‖yi − yj‖22

such that Φ̃ =
(
yT1 , . . . ,y

T
n

)T
∈ Rn×d , Φ̃T Φ̃ = Id , Φ̃T1n = 0d

(Lap-Emb)

Indeed, like in (A.1), the objective of Lap-Emb can be written Tr
(
Φ̃TLAΦ̃

)
(see Belkin and

Niyogi [2003] for a similar derivation). The 2-SUM intuition still holds: the d-LE lays similar
elements nearby, and dissimilar apart, in Rd. Other dimensionality reduction techniques such
as Multidimensional scaling (MDS) [Kruskal and Wish, 1978], kernel PCA [Schölkopf et al.,
1997], or Locally Linear Embedding (LLE) [Roweis and Saul, 2000] could be used as alternatives
to embed the data in a way that intuitively preserves the latent ordering. However, guided by
the generalization of Algorithm 12 and theoretical results that follow, we restrict ourselves to
the Laplacian embedding.

Normalization and Scaling

Given the weighted adjacency matrix W ∈ Sn of a graph, its Laplacian reads L = D −W ,
where D = diag(W1) has diagonal entries di =

∑n
j=1Wij (degree of i). Normalizing Wij by√

didj or di leads to the normalized Laplacians,

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw = D−1L = I−D−1W
(A.2)

They correspond to graph-cut normalization (normalized cut or ratio cut). Moreover, Lrw

has a Markov chain interpretation, where a random walker on edge i jumps to edge j from
time t to t + 1 with transition probability Pij , Wij/di. It has connections with diffusion
processes, governed by the heat equation ∂Ht

∂t = −∆Ht, where ∆ is the Laplacian operator,
Ht the heat kernel, and t is time [Qiu and Hancock, 2007]. These connections lead to diverse
Laplacian embeddings backed by theoretical justifications, where the eigenvectors f rwk of Lrw

are sometimes scaled by decaying weights αk (thus emphasizing the first eigenvectors),

ỹi = (α1f
rw
1 (i), . . . , αd−1f

rw
d (i))T ∈ Rd, for i = 1, . . . , n. ((α, d)-LE)

Laplacian eigenmaps [Belkin and Niyogi, 2003] is a nonlinear dimensionality reduction tech-
nique based on the spectral embedding of Lrw (((α, d)-LE) with αk = 1 for all k). Specif-
ically, given points x1, . . . , xn ∈ Rd , the method computes a heat kernel similarity matrix
Wij = exp−

(
‖xi − xj‖2/t

)
and outputs the first eigenvectors of Lrw as a lower dimensional
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embedding. The choice of the heat kernel is motivated by connections with the heat diffusion
process on a manifold, a partial differential equation involving the Laplacian operator. This
method has been successful in many machine learning applications such as semi-supervised
classification [Belkin and Niyogi, 2004] and search-engine type ranking [Zhou et al., 2004]. No-
tably, it provides a global, nonlinear embedding of the points that preserves the local structure.

The commute time distance CTD(i, j) between two nodes i and j on the graph is the
expected time for a random walker to travel from node i to node j and then return. The
full (α, d)-LE, with αk = (λrwk )−1/2 and d = n − 1, satisfies CTD(i, j) ∝ ‖ỹi − ỹj‖. Given
the decay of αk, the d-LE with d � n approximately preserves the CTD. This embedding
has been successfully applied to vision tasks, e.g., anomaly detection [Albano and Messinger,
2012], image segmentation and motion tracking [Qiu and Hancock, 2007].

Another, closely related dimensionality reduction technique is that of diffusion maps [Coif-
man and Lafon, 2006], where the embedding is derived to preserve diffusion distances, resulting
in the (α, d)-LE, for t ≥ 0, αk(t) = (1− λrwk )t.

Coifman and Lafon [2006], Coifman et al. [2008] also propose a normalization of the similar-
ity matrix W̃ ← D−1WD−1, to extend the convergence of Lrw towards the Laplace-Beltrami
operator on a curve when the similarity is obtained through a heat kernel on points that are
non uniformly sampled along that curve.

Finally, we will use in practice the heuristic scaling αk = 1/
√
k to damp high dimensions.

For a deeper discussion about spectral graph theory and the relations between these methods,
see for instance Qiu and Hancock [2007] and Chung and Yau [2000].

A.2.3 Link with Continuous Operators
In the context of dimensionality reduction, when the data points x1, . . . , xn ∈ RD lie on a
manifold M ⊂ Rd of dimension K � D, the graph Laplacian L of the heat kernel (Wij =
exp

(
−‖xi − xj‖2/t

)
) used in Belkin and Niyogi [2003] is a discrete approximation of ∆M,

the Laplace-Beltrami operator on M (a differential operator akin to the Laplace operator,
adapted to the local geometry ofM). Singer [2006] specify the hypothesis on the data and the
rate of convergence of L towards ∆M when n grows and the heat-kernel bandwidth t shrinks.
Von Luxburg et al. [2005] also explore the spectral asymptotics of the spectrum of L to prove
consistency of spectral clustering.

This connection with continuous operators gives hints about the Laplacian embedding in
some settings of interest for Linear Seriation and Circular Seriation. Indeed, consider n points
distributed along a curve Γ ⊂ RD of length 1, parameterized by a smooth function γ : R→ RD,
Γ = {γ(s) : s ∈ [0, 1]}, say xi = γ(i/n). If their similarity measures their proximity along the
curve, then the similarity matrix is a circular-R matrix if the curve is closed (γ(0) = γ(1)),
and a R matrix otherwise. Coifman et al. [2008] motivate a method for Circular Seriation with
the spectrum of the Laplace-Beltrami operator ∆Γ on Γ when Γ is a closed curve. Indeed, ∆Γ
is simply the second order derivative with respect to the arc-length s, ∆Γf(s) = f ′′(s) (for f
twice continuously differentiable), and its eigenfunctions are given by,

f ′′(s) = −λf(s). (A.3)

With periodic boundary conditions, f(0) = f(1), f ′(0) = f ′(1), and smoothness assump-
tions, the first eigenfunction is constant with eigenvalue λ0 = 0, and the remaining are
{cos (2πms), sin (2πms)}∞m=1, associated to the eigenvalues λm = (2πm)2 of multiplicity 2.
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Hence, the 2-LE, (f1(i), f2(i)) ≈ (cos (2πsi), sin (2πsi)) should approximately lay the points
on a circle, allowing for solving Circular Seriation [Coifman et al., 2008]. More generally, the
2d-LE, (f1(i), . . . , f2d+1(i))T ≈ (cos (2πsi), sin (2πsi), . . . , cos (2dπsi), sin (2dπsi)) is a closed
curve in R2d.

If Γ is not closed, we can also find its eigenfunctions. For instance, with Neumann boundary
conditions (vanishing normal derivative), say, f(0) = 1, f(1) = 0, f ′(0) = f ′(1) = 0, the non-
trivial eigenfunctions of ∆Γ are {cos (πms)}∞m=1, with associated eigenvalues λm = (πm)2 of
multiplicity 1. The 1-LE f1(i) ≈ cos (πsi) respects the monotonicity of i, which is consistent
with Theorem A.2.1. Lafon [2004] invoked this asymptotic argument to solve an instance of
Linear Seriation but seemed unaware of the existence of Atkin’s Algorithm 12. Note that here
too, the d-LE, (f1(i), . . . , fd(i))T ≈ (cos (πsi), . . . , cos (dπsi)) follows a closed curve in Rd, with
endpoints.

These asymptotic results hint that the Laplacian embedding preserves the latent ordering
of data points lying on a curve embedded in RD. However, these results are only asymptotic
and there is no known guarantee for the Circular Seriation problem as there is for Linear Seri-
ation. Also, the curve (sometimes called filamentary structure) stemming from the Laplacian
embedding has been observed in more general cases where no hypothesis on a latent represen-
tation of the data is made, and the input similarity matrix is taken as is (see, e.g., Diaconis
et al. [2008] for a discussion about the horseshoe phenomenon).

A.2.4 Ordering Points Lying on a Curve
Finding the latent ordering of some points lying on (or close to) a curve can also be viewed
as an instance of the travelling salesman problem (TSP), for which a plethora of (heuristic or
approximation) algorithms exist [Reinelt, 1994, Laporte, 1992]. We can think of this setting
as one where the cities to be visited by the salesman are already placed along a single road,
thus these TSP instances are easy and may be solved by simple heuristic algorithms.

Existing approaches for Linear Seriation and Circular Seriation have only used 2D embed-
dings so far, for simplicity. Kuntz et al. [2001] use the 2-LE to find a circular ordering of the
data. They use a somehow exotic TSP heuristic which maps the 2D points onto a pre-defined
“space-filling” curve, and unroll the curve through its closed form inverse to obtain a 1D em-
bedding and sort the points. Friendly [2002] uses the angle between the first two coordinates
of the 2D-MDS embedding and sorts them to perform Linear Seriation. Coifman et al. [2008]
use the 2-LE to perform Circular Seriation in a tomographic reconstruction setting, and use
a simple algorithm that sorts the inverse tangent of the angle between the two components
to reorder the points. Liu et al. [2018] use a similar approach to solve Circular Seriation in a
cell-cycle related problem, but with the 2D embedding given by MDS.

A.3 Spectral properties of some (Circular) Robinson Matrices
We have claimed that the d-LE enhances the latent ordering of the data and we now present
some theoretical evidences. We adopt a point of view similar to Atkins et al. [1998], where the
feasibility of Linear Seriation relies on structural assumptions on the similarity matrix (LR).
For a subclass C∗R of CR (set of circular-R matrices), we show that the d-LE lays the points
on a closed curve, and that for d = 2, the elements are embedded on a circle according to
their latent circular ordering. This is a counterpart of Theorem A.2.1 for Circular Seriation.
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It extends the asymptotic results motivating the approach of Coifman et al. [2008], shifting
the structural assumptions on the elements (data points lying on a curve embedded in RD) to
assumptions on the raw similarity matrix that can be verified in practice. Then, we develop
a perturbation analysis to bound the deformation of the embedding when the input matrix is
in C∗R up to a perturbation. Finally, we discuss the spectral properties of some (non circular)
LR-matrices that shed light on the filamentary structure of their d-LE for d > 1.

For simplicity, we assume n , 2p + 1 odd in the following. The results with n = 2p even
are relegated to the Appendix, together with technical proofs.

A.3.1 Circular Seriation with Symmetric, Circulant Matrices
Let us consider the set C∗R of matrices in CR that are circulant, in order to have a closed form
expression of their spectrum. A matrix A ∈ Rn×n is Toeplitz if its entries are constant on
a given diagonal, Aij = b(i−j) for a vector of values b of size 2n− 1. A symmetric Toeplitz
matrix A satisfies Aij = b|i−j|, with b of size n. In the case of circulant symmetric matrices,
we also have that bk = bn−k, for 1 ≤ k ≤ n, thus symmetric circulant matrices are of the form,

A =



b0 b1 b2 · · · b2 b1
b1 b0 b1 · · · b3 b2
b2 b1 b0 · · · b4 b3
...

...
... . . . ...

...
b2 b3 b4 · · · b0 b1
b1 b2 b3 · · · b1 b0


. (A.4)

Where b is a vector of values of size p+ 1 (recall that n = 2p+ 1). The circular-R assumption
(Def A.1.2) imposes that the sequence (b0, . . . , bp+1) is non-increasing. We thus define the set
C∗R of circulant matrices of CR as follows.

Definition A.3.1. A matrix A ∈ Sn is in C∗R iff it verifies Aij = b|i−j| and bk = bn−k for
1 ≤ k ≤ n with (bk)k=0,...,bn/2c a non-increasing sequence.

The spectrum of symmetric circulant matrices is known [Reichel and Trefethen, 1992, Gray
et al., 2006, Massey et al., 2007], and for a matrix A of size n = 2p+ 1, it is given by,

νm = b0 + 2
∑p
k=1bk cos (2πkm/n)

ym,cos = 1√
n

(1, cos (2πm/n) , . . . , cos (2πm(n− 1)/n))
ym,sin = 1√

n
(1, sin (2πm/n) , . . . , sin (2πm(n− 1)/n)) .

(A.5)

Form = 1, . . . , p, νm is an eigenvalue of multiplicity 2 with associated eigenvectors ym,cos,ym,sin.
For any m, (ym,cos, ym,sin) embeds the points on a circle, but for m > 1, the circle is walked
through m times, hence the ordering of the points on the circle does not follow their latent
ordering. The νm from equations (A.5) are in general not sorted. It is the Robinson property
(monotonicity of (bk)) that guarantees that ν1 ≥ νm, form ≥ 1, and thus that the 2-LE embeds
the points on a circle that follows the latent ordering and allows one to recover it by scanning
through the unit circle. This is formalized in Theorem A.3.2, which is the main result of our
paper, proved in Appendix A.C. It provides guarantees in the same form as in Theorem A.2.1
with the simple Algorithm 13 that sorts the angles, used in Coifman et al. [2008].
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Algorithm 13 Circular Spectral Ordering [Coifman et al., 2008]
Input: Connected similarity matrix A ∈ Rn×n
1: Compute normalized Laplacian Lrw

A = I− (diag(A1))−1A
2: Compute the two first non-trivial eigenvectors of Lrw

A , (f1, f2)
3: Sort the values of θ(i) , tan−1 (f2(i)/f1(i)) + 1[f1(i) < 0]π

Output: Permutation σ : θ(σ(1)) ≤ . . . ≤ θ(σ(n))

Theorem A.3.2. Given a permuted observation ΠAΠT (Π ∈ P) of a matrix A ∈ C∗R, the 2-LE
maps the items on a circle, equally spaced by angle 2π/n, following the circular ordering in
Π. Hence, Algorithm 13 recovers a permutation Π ∈ Pn such that ΠAΠT ∈ C∗R, i.e., it solves
Circular Seriation.

A.3.2 Perturbation Analysis
The spectrum is a continuous function of the matrix. Let us bound the deformation of the
2-LE under a perturbation of the matrix A using the Davis-Kahan theorem [Davis and Kahan,
1970], well introduced in [Von Luxburg, 2007, Theorem 7]. We give more detailed results in
Appendix A.D for a subclass of C∗R (KMS) defined further.

Proposition A.3.3 (Davis-Kahan). Let L and L̃ = L+ δL be the Laplacian matrices of A ∈ C∗R
and A + δA ∈ Sn, respectively, and V, Ṽ ∈ R2×n be the associated 2-LE of L and L̃, i.e.,
the concatenation of the two eigenvectors associated to the two smallest non-zero eigenvalues,
written λ1 ≤ λ2 for L. Then, there exists an orthonormal rotation matrix O such that

‖V1 − Ṽ1O‖F√
n

≤ ‖δA‖F
min(λ1, λ2 − λ1) . (A.6)

A.3.3 Robinson Toeplitz Matrices
Let us investigate how the latent linear ordering of Toeplitz matrices in LR translates to the
d-LE. Remark that from Theorem A.2.1, the 1-LE suffices to solve Linear Seriation. Yet, for
perturbed observations of A ∈ LR, the d-LE may be more robust to the perturbation than the
1-LE, as the experiments in §A.5 indicate.

Tridiagonal Toeplitz matrices are defined by b0 > b1 > 0 = b2 = . . . = bp. For m =
0, . . . , n−1, they have eigenvalues νm with multiplicity 1 associated to eigenvector y(m) [Trench,
1985],

νm = b0 + 2b1 cos (mπ/(n+ 1))
y(m) = (sin (mπ/(n+ 1)), . . . , sin (mnπ/(n+ 1))) , (A.7)

thus matching the spectrum of the Laplace operator on a curve with endpoints from §A.2.3 (up
to a shift). This type of matrices can indeed be viewed as a limit case with points uniformly
sampled on a line with strong similarity decay, leaving only the two nearest neighbors with
non-zero similarity.

Kac-Murdock-Szegö (KMS) matrices are defined, for α > 0, ρ = e−α, by Aij = b|i−j| =
e−α|i−j| = ρ|i−j|. For m = 1, . . . , bn/2c, there exists θm ∈ ((m− 1)π/n,mπ/n), such that νm
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is a double eigenvalue associated to eigenvectors ym,cos,ym,sin,

νm = 1−ρ2

1−2ρ cos θm+ρ2

ym,cos = (cos ((n− 2r + 1)θm/2))nr=1
ym,sin = (sin ((n− 2r + 1)θm/2))nr=1 .

(A.8)

Linearly decreasing Toeplitz matrices defined by Alinij = b|i−j| = n − |i − j| have spectral
properties analog to those of KMS matrices (trigonometric expression, interlacement, low fre-
quency assigned to largest eigenvalue), but with more technical details available in Bünger
[2014]. This goes beyond the asymptotic case modeled by tridiagonal matrices.

Banded Robinson Toeplitz matrices typically include similarity matrices from DNA se-
quencing. Actually, any Robinson Toeplitz matrix becomes banded under a thresholding oper-
ation. Also, fast decaying Robinson matrices such as KMS matrices are almost banded. There
is a rich literature dedicated to the spectrum of generic banded Toeplitz matrices [BoeÓttcher
and Grudsky, 2005, Gray et al., 2006, Böttcher et al., 2017]. However, it mostly provides
asymptotic results on the spectra. Notably, some results indicate that the eigenvectors of some
banded symmetric Toeplitz matrices become, up to a rotation, close to the sinusoidal, almost
equi-spaced eigenvectors observed in equations (A.7) and (A.8) [Böttcher et al., 2010, Ekström
et al., 2017].

A.3.4 Spectral Properties of the Laplacian
For circulant matrices A, LA and A have the same eigenvectors since LA = diag(A1) − A =
cI − A, with c ,

∑n−1
k=0 bk. For general symmetric Toeplitz matrices, this property no longer

holds as ci =
∑n
j=1 b|i−j| varies with i. Yet, for fast decaying Toeplitz matrices, ci is almost

constant except for i at the edges, namely i close to 1 or to n. Therefore, the eigenvectors of
LA resemble those of A except for the “edgy” entries.

A.4 Recovering Ordering on Filamentary Structure
We have seen that (some) similarity matrices A with a latent ordering lead to a filamentary
d-LE. The d-LE integrates local proximity constraints together into a global consistent em-
bedding. We expect isolated (or, uncorrelated) noise on A to be averaged out by the spectral
picture. Therefore, we present Algorithm 14 that redefines the similarity Sij between two
items from their proximity within the d-LE. Basically, it fits the points by a line locally, in
the same spirit as LLE, which makes sense when the data lies on a linear manifold (curve)
embedded in RK . Note that Spectral Ordering (Algorithm 12) projects all points on a given
line (it only looks at the first coordinates f1(i)) to reorder them. Our method does so in a local
neighborhood, allowing for reordering points on a curve with several oscillations. We then run
the basic Algorithms 12 (or 13 for Circular Seriation). Hence, the d-LE is eventually used to
pre-process the similarity matrix.

In Algorithm 14, we compute a d-LE in line 1 and then a 1-LE (resp., a 2-LE) for linear
ordering (resp., a circular ordering) in line 9. For reasonable number of neighbors k in the k-NN
of line 4 (in practice, k = 10), the complexity of computing the d-LE dominates Algorithm 14.
We shall see in Section A.5 that our method, while being almost as computationally cheap as
the base Algorithms 12 and 13 (roughly only a factor 2), yields substantial improvements. In
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Algorithm 14 Ordering Recovery on Filamentary Structure in RK .
Input: A similarity matrix A ∈ Sn, a neighborhood size k ≥ 2, a dimension of the Laplacian Embedding d.
1: Φ =

(
yT1 , . . . ,y

T
n

)T ∈ Rn×d ← d-LE(A) . Compute Laplacian Embedding
2: Initialize S = In . New similarity matrix
3: for i = 1, . . . , n do
4: V ← {j : j ∈ k-NN(yi)} ∪ {i} . find k nearest neighbors of yi ∈ Rd
5: w ← LinearFit(V ) . fit V by a line
6: Duv ← |wT (yu − yv)|, for u, v ∈ V . . Compute distances on the line
7: Suv ← Suv +D−1

uv , for u, v ∈ V . . Update similarity
8: end for
9: Compute σ∗ from the matrix S with Algorithm 12 (resp., Algorithm 13) for a linear (resp., circular) ordering.

Output: A permutation σ∗.

line 7 we can update the similarity Suv by adding any non-increasing function of the distance
Duv, e.g., D−1

uv , exp (−Duv), or −Duv (the latter case requires to add an offset to S afterwards
to ensure it has non-negative entries. It is what we implemented in practice.) In line 9, the
matrix S needs to be connected in order to use Algorithm 12, which is not always verified in
practice (for low values of k, for instance). In that case, we reorder separately each connected
component of S with Algorithm 12, and then merge the partial orderings into a global ordering
by using the input matrix A, as detailed in Algorithm 15, Appendix A.A.

A.5 Numerical Results
A.5.1 Synthetic Experiments
We performed synthetic experiments with noisy observations of Toeplitz matrices A, either
linear (LR) or circular (C∗R). We added a uniform noise on all the entries, with an amplitude
parameter a varying between 0 and 5, with maximum value of the noise a‖A‖F . The ma-
trices A used are either banded (sparse), with linearly decreasing entries when moving away
from the diagonal, or dense, with exponentially decreasing entries (KMS matrices). We used
n = 500, several values for the parameters k (number of neighbors) and d (dimension of the
d-LE), and various scalings of the d-LE (parameter α in (α, d)-LE), yielding similar results
(see sensitivity to the number of neighbors k and to the scaling (α, d)-LE in Appendix A.B).
In an given experiment, the matrix A is randomly permuted with a ground truth permuta-
tion π∗. We report the Kendall-Tau scores between π∗ and the solution of Algorithm 14 for
different choices of dimension K, for varying noise amplitude a, in Figure A.1, for banded
(circular) matrices. For the circular case, the ordering is defined up to a shift. To compute a
Kendall-Tau score from two permutations describing a circular ordering, we computed the best
Kendall-Tau scores between the first permutation and all shifts from the second, as detailed
in Algorithm 16. The analog results for exponentially decaying (KMS) matrices are given in
Appendix A.B, Figure A.B.1. For a given combination of parameters, the scores are averaged
on 100 experiments and the standard-deviation divided by √nexps = 10 (for ease of reading)
is plotted in transparent above and below the curve. The baseline (in blue) corresponds to
the basic spectral method of Algorithm 12 for linear and Algorithm 13 for circular seriation.
Other lines correspond to given choices of the dimension of the d-LE, as written in the legend.

We observe that leveraging the additional dimensions of the d-LE unused by the baseline
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Figure A.1: From left to right, Kendall-Tau scores for Linear and Circular Seriation for noisy
observations of banded, Toeplitz, matrices, displayed for several values of the dimension pa-
rameter of the d-LE(d), for fixed number of neighbors k = 15.

methods Algorithm 12 and 13 substantially improves the robustness of Seriation. For instance,
in Figure A.1, the performance of Algorithm 14 is almost optimal for a noise amplitude going
from 0 to 4, when it falls by a half for Algorithm 12. We illustrate the effect of the pre-
processing of Algorithm 14 in Figures A.B.6 and A.B.7, Appendix A.B.

A.5.2 Genome Assembly Experiments
In de novo genome assembly, a whole DNA strand is reconstructed from randomly sampled
sub-fragments (called reads) whose positions within the genome are unknown. The genome is
oversampled so that all parts are covered by multiple reads with high probability. Overlap-
Layout-Consensus (OLC) is a major assembly paradigm based on three main steps. First,
compute the overlaps between all pairs of read. This provides a similarity matrixA, whose entry
(i, j) measures how much reads i and j overlap (and is zero if they do not). Then, determine
the layout from the overlap information, that is to say find an ordering and positioning of
the reads that is consistent with the overlap constraints. This step, akin to solving a one
dimensional jigsaw puzzle, is a key step in the assembly process. Finally, given the tiling
of the reads obtained in the layout stage, the consensus step aims at determining the most
likely DNA sequence that can be explained by this tiling. It essentially consists in performing
multi-sequence alignments.

In the true ordering (corresponding to the sorted reads’ positions along the genome), a
given read overlaps much with the next one, slightly less with the one after it, and so on,
until a point where it has no overlap with the reads that are further away. This makes the
read similarity matrix Robinson and roughly band-diagonal (with non-zero values confined to
a diagonal band). Finding the layout of the reads therefore fits the Linear Seriation framework
(or Circular Seriation for circular genomes). In practice however, there are some repeated
sequences (called repeats) along the genome that induce false positives in the overlap detection
tool [Pop, 2004], resulting in non-zero similarity values outside (and possibly far away) from
the diagonal band. The similarity matrix ordered with the ground truth is then the sum of a
Robinson band matrix and a sparse “noise” matrix, as in Figure A.2. Because of this sparse
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“noise”, the basic spectral Algorithm 12 fails to find the layout, as the quadratic loss appearing
in 2-SUM is sensitive to outliers. Recanati et al. [2018b] tackle this issue by modifying the
loss in 2-SUM to make it more robust. Instead, we show that the simple multi-dimensional
extension proposed in Algorithm 14 suffices to capture the ordering of the reads despite the
repeats.

(a) similarity matrix
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Figure A.2: From left to right: Overlap-based similarity matrix from E. coli reads, and the
ordering found with Algorithm 14 versus the position of the reads within a reference genome
obtained by mapping to a reference with minimap2; The genome being circular, the ordering
is defined up to a shift, which is why we observe two lines instead of one.

We used our method to perform the layout of a E. coli bacterial genome. We used reads
sequenced with third-generation sequencing data, and computed the overlaps with dedicated
software, as detailed in Appendix A.B. The new similarity matrix S computed from the em-
bedding in Algorithm 14 was disconnected, resulting in several connected component instead of
one global ordering. However, the sub-orderings could be unambiguously merged into one in a
simple way described in Algorithm 15. The Kendall-Tau score between the ordering found and
the one obtained by sorting the position of the reads along the genome (obtained by mapping
the reads to a reference with minimap2 [Li, 2018]) is of 99.5%, using Algorithm 16 to account
for the circularity of the genome.

A.6 Conclusion
Here, we brought together results that shed light on the filamentary structure of the Laplacian
embedding of serial data. It allows for tackling Linear Seriation and Circular Seriation in a
unifying framework. Notably, we provide theoretical guarantees for Circular Seriation analog
to those existing for Linear Seriation. These do not make assumptions about the underlying
generation of the data matrix, and can be verified a posteriori by the practitioner. Then, we
propose a simple method to leverage the filamentary structure of the embedding. It can be
seen as a pre-processing of the similarity matrix. Although the complexity is comparable to
the baseline methods, experiments on synthetic and real data indicate that this pre-processing
substantially improves robustness to noise.
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Appendices
Notation: We will commonly denote σ a permutation of {1, . . . , n} and S the set of all such
permutations. When represented matricially, σ will often be noted Π while cyclic permutation
of {1, . . . , n} will be noted as τ . A will usually denote the matrix of raw pair-wise similarities. S
will denote the similarity matrix resulting from Algorithm 14, and k a neighboring parameter.
Finally we use indexed version ν (resp., λ) to denote eigenvalues of a similarity matrix (resp.
a graph Laplacian).

A.A Additional Algorithms
A.A.1 Merging Connected Components
The new similarity matrix S computed in Algorithm 14 is not necessarily the adjacency matrix
of a connected graph, even when the input matrix A is. For instance, when the number of
nearest neighbors k is low and the points in the embedding are non uniformly sampled along
a curve, S may have several, disjoint connected components (let us say there are C of them
in the following). Still, the baseline Algorithm 12 requires a connected similarity matrix as
input. When S is disconnected, we run 12 separately in each of the C components, yielding C
sub-orderings instead of a global ordering.

However, since A is connected, we can use the edges of A between the connected components
to merge the sub-orderings together. Specifically, given the C ordered subsequences, we build a
meta similarity matrix between them as follows. For each pair of ordered subsequences (ci, cj),
we check whether the elements in one of the two ends of ci have edges with those in one of
the two ends of cj in the graph defined by A. According to that measure of similarity and
to the direction of these meta-edges (i.e., whether it is the beginning or the end of ci and cj
that are similar), we merge together the two subsequences that are the closest to each other.
We repeat this operation with the rest of the subsequences and the sequence formed by the
latter merge step, until there is only one final sequence, or until the meta similarity between
subsequences is zero everywhere. We formalize this procedure in the greedy Algorithm 15,
which is implemented in the package at https://github.com/antrec/mdso.

Given C reordered subsequences (one per connected component of S) (ci)i=1,...,C , that form
a partition of {1, . . . , n}, and a window size h that define the length of the ends we consider (h
must be smaller than half the smallest subsequence), we denote by c−i (resp. c+

i ) the first (resp.
the last) h elements of ci, and a(cεi , cε

′
j ) =

∑
u∈cεi ,v∈c

ε′
j
Auv is the similarity between the ends

cεi and cε
′
j , for any pair ci, cj , i 6= j ∈ {1, . . . , C}, and any combination of ends ε, ε′ ∈ {+,−}.

Also, we define the meta-similarity between ci and cj by,

s(ci, cj) , max(a(c+
i , c

+
j ), a(c+

i , c
−
j ), a(c−i , c

+
j ), a(c−i , c

−
j )) , (A.9)

and (εi, εj) ∈ {+,−}2 the combination of signs where the argmax is realized, i.e., such that
s(ci, cj) = a(cεii , c

εj
j ). Finally, we will use c̄i to denote the ordered subsequence ci read from

the end to the beginning, for instance if c = (1, . . . , n), then c̄ = (n, . . . , 1).
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Algorithm 15 Merging connected components
Input: C ordered subsequences forming a partition P = (c1, . . . , cC) of {1, . . . , n}, an initial

similarity matrix A, a neighborhood parameter h.
1: while C > 1 do
2: Compute meta-similarity S̃ such that S̃ij = s(ci, cj), and meta-orientation (εi, εj), for all

pairs of subsequences with equation A.9.
3: if S̃ = 0 then
4: break
5: end if
6: find (i, j) ∈ argmax S̃, and (εi, εj) the corresponding orientations.
7: if (εi, εj) = (+,−) then
8: cnew ← (ci, cj)
9: else if (εi, εj) = (+,+) then

10: cnew ← (ci, c̄j)
11: else if (εi, εj) = (−,−)) then
12: cnew ← (c̄i, cj)
13: else if (εi, εj) = (−,+)) then
14: cnew ← (c̄i, c̄j)
15: end if
16: Remove ci and cj from P .
17: Add cnew to P .
18: C ← C − 1
19: end while
Output: Total reordered sequence cfinal, which is a permutation if C = 1 or a set of reordered

subsequences if the loop broke at line 5.

A.A.2 Computing Kendall-Tau Score Between Two Permutations Describing a Cir-
cular Ordering

Suppose we have data having a circular structure, i.e., we have n items that can be laid on a
circle such that the higher the similarity between two elements is, the closer they are on the
circle. Then, given an ordering of the points that respects this circular structure (i.e., a solution
to Circular Seriation), we can shift this ordering without affecting the circular structure. For
instance, in Figure A.A.1, the graph has a CR affinity matrix whether we use the indexing
printed in black (outside the circle), or a shifted version printed in purple (inside the circle).
Therefore, we transpose the Kendall-Tau score between two permutations to the case where
we want to compare the two permutations up to a shift with Algorithm 16

Algorithm 16 Comparing two permutation defining a circular ordering
Input: Two permutations vectors of size n, σ = (σ(1), . . . , σ(n)) and π = (π(1), . . . , π(n))
1: for i = 1 to n do
2: KT (i)← Kendall-Tau(σ, (π(i), π(i+ 1), . . . , π(n), π(1), . . . , π(i− 1)))
3: end for
4: best score← maxi=1,...,nKT (i)

Output: best score
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Figure A.A.1: Illustration of the shift-invariance of permutations solution to a Circular Seri-
ation problem.

A.B Additional Numerical Results
Numerical results with KMS matrices In Figure A.B.1 we show the same plots as in Sec-
tion A.5 but with matrices A such that Aij = eα|i−j|, with α = 0.1 and n = 500.
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Figure A.B.1: From left to right: K-T scores for Linear and Circular Seriation for noisy obser-
vations of KMS, Toeplitz, matrices, displayed for several values of the dimension parameter of
the d-LE.

Sensitivity to parameter k (number of neighbors) Here we show how our method performs
when we vary the parameter k (number of neighbors at step 4 of Algorithm 14), for both linearly
decrasing, banded matrices, Aij = max (c− |i− j|, 0, ) (as in Section A.5), in Figure A.B.2 and
with matrices A such that Aij = eα|i−j|, with α = 0.1 (Figure A.B.3.

We observe that the method performs roughly equally well with k in a range from 5 to 20,
and that the performances drop when k gets too large, around k = 30. This can be interpreted
as follows. When k is too large, the assumption that the points in the embedding are locally
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Figure A.B.2: From left to right: K-T scores for Linear and Circular Seriation for noisy
observations of banded, Toeplitz, matrices, displayed for several values of the number of nearest
neighbors k, with a fixed value of the dimension of the d-LE, d = 10.

fitted by a line no longer holds. Note also that in practice, for small values of k, e.g., k = 5, the
new similarity matrix S can be disconnected, and we have to resort to the merging procedure
described in Algorithm 15.

Sensitivity to the normalization of the Laplacian We performed experiments to compare
the performances of the method with the default Laplacian embedding (d-LE) (red curve in
Figure A.B.4 and A.B.5) and with two possible normalized embeddings ((α, d)-LE) (blue and
black curve). We observed that with the default d-LE, the performance first increases with
d, and then collapses when d gets too large. The CTD scaling (blue) has the same issue,
as the first d eigenvalues are roughly of the same magnitude in our settings. The heuristic
scaling (α, d)-LE with αk = 1/

√
k that damps the higher dimensions yields better results

when d increases, with a plateau rather than a collapse when d gets large. We interpret these
results as follows. With the (d-LE), Algorithm 14, line 5 treats equally all dimensions of the
embedding. However, the curvature of the embedding tends to increase with the dimension (for
CR matrix, the period of the cosines increases linearly with the dimension). The filamentary
structure is less smooth and hence more sensitive to noise in high dimensions, which is why
the results are improved by damping the high dimensions (or using a reasonably small value
for d).

Illustration of Algorithm 14 Here we provide some visual illustrations of the method with
a circular banded matrix. Given a matrix A (Figure A.B.6), Algorithm 14 computes the d-
LE. The 2-LE is plotted for visualization in Figure A.B.6. Then, it creates a new matrix
S (Figure A.B.7) from the local alignment of the points in the d-LE. Finally, from the new
matrix S, it computes the 2-LE (Figure A.B.7), on which it runs the simple method from
Algorithm 13.

Figure A.B.6 and A.B.7 give a qualitative illustration of how the method behaves compared
to the basic Algorithm 13.
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Figure A.B.3: From left to right: K-T scores for Linear and Circular Seriation for noisy
observations of KMS, Toeplitz, matrices, displayed for several values of the number of nearest
neighbors k, with a fixed value of the dimension of the d-LE, d = 10.

A.C Proof of Theorem A.3.2
In this Section, we prove Theorem A.3.2. There are many technical details, notably the
distinction between the cases n even and odd. The key idea is to compare the sums involved
in the eigenvalues of the circulant matrices A ∈ C∗R. It is the sum of the bk times values of
cosines. For λ1, we roughly have a reordering inequality where the ordering of the bk matches
those of the cosines. For the following eigenvalues, the set of values taken by the cosines is
roughly the same, but it does not match the ordering of the bk. Finally, the eigenvectors of the
Laplacian of A are the same than those of A for circulant matrices A, as observed in §A.3.4.

We now introduce a few lemmas that will be useful in the proof.
Notation. In the following we denote z(m)

k , cos(2πkm/n) and S
(m)
p ,

∑p
k=1 z

(m)
k . Let’s

define Zn = {cos(2πk/n) | k ∈ N}\{−1; 1}. Depending on the parity of n, we will write n = 2p
or n = 2p + 1. Hence we always have p =

⌊
n
2
⌋
. Also when m and n are not coprime we will

note m = dm′ as well as n = dn′ with n′ and m′ coprime.

A.C.1 Properties of Sum of Cosinus.

The following lemma gives us how the partial sum sequence (S(m)
q ) behave for q = p or q = p−1

as well as it proves its symmetric behavior in (A.11).

Lemma A.C.1. For z(m)
k = cos(2πkm

n ), n = 2p+ 1 and any m = 1, . . . , p

S(m)
p ,

p∑
k=1

z
(m)
k = −1

2 . (A.10)

Also, for 1 ≤ q ≤ p/2,

S
(1)
p−q ≥ S(1)

q . (A.11)

125



0 1 2 3 4 5
noise level

0.75

0.80

0.85

0.90

0.95

1.00
Ke

nd
al

l-t
au

scaled = heuristic
scaled = CTD
scaled = False

(a) Linear Banded

0 1 2 3 4 5
noise level

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ke
nd

al
l-t

au

scaled = heuristic
scaled = CTD
scaled = False

(b) Circular Banded

Figure A.B.4: From left to right: mean of Kendall-Tau for Linear and Circular Seriation for
noisy observations of banded, Toeplitz, matrices, displayed for several scalings of the Laplacian
embedding, with a fixed number of neighbors k = 15 and number of dimensions d = 10 in the
d-LE.

For n and m ≥ 2 even (n = 2p), we have

S
(1)
p−1−q = S(1)

q for 1 ≤ q ≤ (p− 1)/2 (A.12)

S
(1)
p−1 = 0 and S

(m)
p−1 = −1 . (A.13)

Finally for n even and m odd we have

S(m)
p = S(1)

p = −1 . (A.14)

Proof. Let us derive a closed form expression for the cumulative sum S
(m)
q , for any m, q ∈

{1, . . . , p}

S
(m)
q =

∑q
k=1 z

(m)
k = <

(∑q
k=1 e

2iπkm
n

)
= <

(
e2iπm/n 1−e2iπqm/n

1−e2iπm/n

)
= cos

(
π(q + 1)m/n

) sin(πqm/n)
sin(πm/n) .

(A.15)

Let us prove equation (A.10) with the latter expression for q = p. Given that n = 2p+ 1 =
2(p+ 1/2), we have,

π(p+ 1)m
n

= π(p+ 1/2 + 1/2)m
2(p+ 1/2) = πm

2 + πm

2n ,

πpm

n
= π(p+ 1/2− 1/2)m

2(p+ 1/2) = πm

2 − πm

2n .

Now, by trigonometric formulas, we have,

cos
(
πm

2 + x

)
=
{

(−1)m/2 cos (x), if m is even
(−1)(m+1)/2 sin (x), if m is odd
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Figure A.B.5: From left to right: mean of Kendall-Tau for Linear and Circular Seriation for
noisy observations of banded, Toeplitz, matrices, displayed for several scalings of the Laplacian
embedding, with a fixed number of neighbors k = 15 and number of dimensions d = 20 in the
d-LE.

sin
(
πm

2 − x
)

=
{

(−1)(1+m/2) sin (x), if m is even
(−1)(m−1)/2 cos (x), if m is odd

It follows that, for any m,

cos
(
πm

2 + x

)
sin
(
πm

2 − x
)

= − cos (x) sin (x) = −1
2 sin (2x)

Finally, with x = πm/(2n), this formula simplifies the numerator appearing in equation (A.15)
and yields the result in equation (A.10).

Let us now prove equation (A.11) with a similar derivation. Let f(q) , cos
(
π(q +

1)/n
)

sin(πq/n), defined for any real q ∈ [1, p/2]. We wish to prove f(p − q) ≥ f(q) for
any integer q ∈ {1, . . . , bp/2c}. Using n = 2(p+ 1/2), we have,

π(p− q + 1)
n

= π(p+ 1/2− (q − 1/2))
2(p+ 1/2) = π

2 −
π(q − 1/2)

n
,

π(p− q)
n

= π(p+ 1/2− (q + 1/2))
2(p+ 1/2) = π

2 −
π(q + 1/2)

n
.

Using cos (π/2− x) = sin (x) and sin (π/2− x) = cos (x), we thus have,

f(p− q) = cos
(
π(q + 1/2)/n

)
sin(π(q − 1/2)/n) = f(q − 1/2) (A.16)

To conclude, let us observe that f(q) is non-increasing on [1, p/2]. Informally, the terms
{z1
k}1≤k≤q appearing in the partial sums S(1)

q are all non-negative for q ≤ p/2. Formally, remark
that the derivative of f , df/dq(q) = (π/n) cos (π(2q + 1)/n) is non-negative for q ∈ [1, p/2].
Hence, for q ≤ p/2, f(q − 1/2) ≥ f(q), which ends the proof of equation (A.11).

To get the first equality of (A.13), from the exact form in (A.15), we have (n = 2p)

S
(1)
p−1 = cos(πp/(2p))sin(π(p− 1)/n)

sin(π/n) = 0 .
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(a) Noisy circular banded matrix A
f_1
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2

(b) Noisy 2-LE

Figure A.B.6: Noisy Circular Banded matrix and associated 2d Laplacian embedding.

(a) Matrix S from Algorithm 14
f_1

f_
2

(b) New 2-LE

Figure A.B.7: Matrix S created through Algorithm 14, and associated 2d-Laplacian embed-
ding.

For the second equality in (A.13), we have (m = 2q):

Smp−1 = cos(πq)sin(πq − πm/n)
sin(πm/n) = (−1)q−(−1)q sin(πm/n)

sin(πm/n) = −1 .

Finally to get (A.14), let us write (n = 2p and m odd):

S(m)
p = (−1)m+1 cos(π(p+ 1)m/n)

sin(πm/n) = (−1)m+1 cos(πm/2 + πm/n)
sin(πm/n)

= (−1)m sin(πm/2) = −1 .

The following lemma gives an important property of the partial sum of the z(m)
k that is

useful when combined with proposition A.C.3.
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Lemma A.C.2. Denote by z
(m)
k = cos(2πkm/n). Consider first n = 2p and m even. For

m = 1, . . . , p and q = 1, . . . , p− 2

S(1)
q =

q∑
k=1

z
(1)
k ≥

q∑
k=1

z
(m)
k = S(m)

q . (A.17)

Otherwise we have for every (m, q) ∈ {1, . . . , p}2

S(1)
q > S(m)

q , (A.18)

with equality when q = p.

Proof. Case m and n coprime. Values of
(
z

(m)
k

)
k=1,...,p are all distinct. Indeed z

(m)
k = z

(m)
k′

implies that n divides k + k′ or k − k′. It is impossible (the range of k + k′ is [2, 2p]) unless
k = k′.

Case m and n not coprime. m = dm′ and n = dn′, with d ≥ 3. In that situation we need
to distinguish according to the parity of n.

Case n = 2p + 1. Let’s first remark that
(
z

(1)
k

)
k=1,...,p takes all values but two (−1 and

1) of the cosinus of multiple of the angle 2π
n , e.g.

(
z

(1)
k

)
k=1,...,p ⊂ Zn. Also (z(1)

k )k=1,...,p is
non-increasing.

Let’s prove (A.18) by distinguishing between the various values of q.

• Consider q = p − (n′ − 1), . . . , p. From (A.10) in lemma (A.C.2), we have S(1)
p = S

(m)
p .

The
(
z

(1)
k

)
k
are ordered in non-increasing order and the

(
z

(m)
k

)
k=p−n′+1,...,p take value in

Zn ∪ {1} without repetition (it would requires k ± k′ ∼ 0 [n′]). Also the partial sum of
z

(1)
k starting from the ending point p are lower than any other sequence taking the same
or greater value without repetition. Because 1 is largest than any possible value in Zn,
we hence have

p∑
k=q

z
(1)
k ≤

p∑
k=q

z
(m)
k for any q = p− (n′ − 1), . . . , p . (A.19)

Since S(m)
q = S

(m)
p −

∑p
k=q+1 z

(m)
k , (A.19) implies (A.18) for that particular set of q.

• For q = 1, . . . , n′ − 1 it is the same type of argument. Indeed the (z(1)
k )k takes the

highest values in Zn in decreasing order, while (z(m)
k )k takes also its value in Zn (because

z
(m)
q 6= 1). This concludes (A.18).
Note that when n′ ≥ p+1

2 , (A.18) is then true for all q. In the sequel, let’s then assume
that this is not the case, e.g. n′ < p+1

2 .

• For q = n′−1, . . . ,
⌊p

2
⌋
, the z(1)

q are non-negative. Hence S(1)
q is non-decreasing and lower

bounded by S(1)
n′−1. Also because S(m)

n′ = 0 and S(1)
n′−1 ≥ S

(m)
k for k = 1, . . . , n′, it is true

that for all q in the considered set, S(m)
q is upper-bounded by S(1)

n′−1. All in all it shows
(A.18) for these values of q.
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• For q =
⌊p

2
⌋

+ 1, . . . , p − n′, we apply (A.11) with q = n′ (and indeed n′ ≤ p
2) to get

S
(1)
p−n′ ≥ S

(1)
n′ . Because S(m)

q is upper-bounded by S(1)
n′−1, it follows that S(1)

p−n′ ≥ S
(m)
q .

Finally since (S(1)
q ) is non-increasing for the considered sub-sequence of q, (A.18) is true.

Case n = 2p. Here
(
z

(1)
k

)
k=1,...,p takes unique values in Zn ∪ {−1}. We also need to

distinguish according to the parity of m.

•
(
z

(m)
k

)
k=1,...,n′−1 takes also unique value in Zn. We similarly get (A.18) for q = 1, . . . , n′−

1, and for q = n′ because S(m)
n′ = 0.

• Consider m odd, from (A.14), S(m)
p = S

(1)
p = −1 so that we can do the same reasoning

as with n odd to prove (A.18) for q = p− n′ + 1, . . . , p and q = 1, . . . , n′. The remaining
follows from the symmetry property (A.12) of the sequence (S(1)

q )q in Lemma A.C.1.

• m and n even, we have that S(1)
p−1 = 0 and S(m)

p−1 = −1 so that

S
(1)
p−1 ≥ S

(m)
p−1 + 1 .

S
(1)
q ≥ S(m)

q for q < p− 1 follows with same techniques as before.

A.C.2 Properties on R-Toeplitz Circular Matrix.
This proposition is a technical method that will be helpful at proving that the eigenvalues of
a R-circular Toeplitz matrix are such that ν1 > νm.

Proposition A.C.3. Suppose than for any k = 1, . . . , q :

Wk ,
k∑
i=1

wi ≥
k∑
i=1

w̃i , W̃k ,

with (wi) and (w̃i) two sequences of reals. Then, if (bk)k is non increasing and non negative,
we have

q∑
k=1

bkwk ≥
q∑

k=1
bkw̃k . (A.20)

Proof. We have
q∑

k=1
bkwk =

q∑
k=1

bk(Wk −Wk−1)

= bq︸︷︷︸
≥0

Wq +
q−1∑
k=1

(bk − bk+1)︸ ︷︷ ︸
≥0

Wk

≥ bqW̃q +
q−1∑
k=1

(bk − bk+1)W̃k =
q∑

k=1
bkW̃k .
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As soon as there exists k0 ∈ {1, . . . , q} such that

k0∑
i=1

wi >
k0∑
i=1

w̃i ,

then (A.20) holds strictly.
The following proposition gives the usual derivations of eigenvalues in the R-circular Toeplitz

case.

Proposition A.C.4. Consider A, a circular-R Toeplitz matrix of size n.
For n = 2p+ 1

νm , b0 + 2
p∑

k=1
bk cos

(2πkm
n

)
. (A.21)

For m = 1, . . . , p each νm are eigenvalues of A with multiplicity 2 and associated eigenvectors

ym,cos = 1√
n

(1, cos (2πm/n) , . . . , cos (2πm(n− 1)/n))
ym,sin = 1√

n
(1, sin (2πm/n) , . . . , sin (2πm(n− 1)/n)) .

(A.22)

For n = 2p

νm , b0 + 2
∑p−1
k=1 bk cos

(
2πkm
n

)
+ bp cos (πm) , (A.23)

where ν0 is still singular, with y(0) = 1√
n

(1, . . . , 1) . νp also is, with y(p) = 1√
n

(+1,−1, . . . ,+1,−1) ,
and there are p− 1 double eigenvalues, for m = 1, . . . , p− 1, each associated to the two eigen-
vectors given in equation (A.22).

Proof. Let us compute the spectrum of a circular-R, symmetric, circulant Toeplitz matrix.
From Gray et al. [2006], the eigenvalues are

νm =
n−1∑
k=0

bkρ
k
m , (A.24)

with ρm = exp(2iπm
n ), and the corresponding eigenvectors are,

y(m) = 1√
n

(
1, e−2iπm/n, . . . , e−2iπm(n−1)/n

)
, (A.25)

for m = 0, . . . , n− 1.
Case n is odd, with n = 2p + 1. Using the symmetry assumption bk = bn−k, and the fact

that ρn−km = ρnmρ
−k
m = ρ−km , it results in real eigenvalues,

νm = b0 +
∑p
k=1 bkρ

k
m +

∑n−1
k=p+1 bkρ

k
m

= b0 +
∑p
k=1 bkρ

k
m +

∑p
k=1 bn−kρ

n−k
m

= b0 +
∑p
k=1 bk(ρkm + ρ−km )

= b0 + 2
∑p
k=1 bk cos

(
2πkm
n

)
.

(A.26)
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Observe also that νn−m = νm, for m = 1, . . . , n− 1, resulting in p+ 1 real distinct eigenvalues.
ν0 is singular, whereas for m = 1, . . . , p, νm has multiplicity 2, with eigenvectors ym and
yn−m. This leads to the two following real eigenvectors, ym,cos = 1/2(ym + yn−m) and ym,sin =
1/(2i)(ym − yn−m)

ym,cos = 1√
n

(1, cos (2πm/n) , . . . , cos (2πm(n− 1)/n))
ym,sin = 1√

n
(1, sin (2πm/n) , . . . , sin (2πm(n− 1)/n)) (A.27)

Case n is even, with n = 2p. A derivation similar to (A.26) yields,

νm = b0 + 2
∑p−1
k=1 bk cos

(
2πkm
n

)
+ bp cos (πm) (A.28)

ν0 is still singular, with y(0) = 1√
n

(1, . . . , 1) , νp also is, with y(p) = 1√
n

(+1,−1, . . . ,+1,−1) ,
and there are p − 1 double eigenvalues, for m = 1, . . . , p − 1, each associated to the two
eigenvectors given in equation (A.22).

The following proposition is a crucial property of the eigenvalues of a circular Toeplitz
matrix. It later ensures that when choosing the second eigenvalues of the laplacian, it will
corresponds to the eigenvectors with the lowest period. It is paramount to prove that the
latent ordering of the data can be recovered from the curve-like embedding.

Proposition A.C.5. A circular-R, circulant Toeplitz matrix has eigenvalues (νm)m=0,...,p such
that ν1 ≥ νm for all m = 2, . . . , p with n = 2p or n = 2p+ 1.

Proof. Since the shape of the eigenvalues changes with the parity of n, let’s again distinguish
the cases.

For n odd, ν1 ≥ νm is equivalent to showing
p∑

k=1
bk cos(2πk/n) ≥

p∑
k=1

bk cos(2πkm/n) . (A.29)

It is true by combining proposition A.C.3 with lemma A.C.2. The same follows for n even and
m odd.

Consider n and m even. We now need to prove that

2
p−1∑
k=1

bk cos
(2πk

n

)
− bp ≥ 2

p−1∑
k=1

bk cos
(2πkm

n

)
+ bp . (A.30)

From lemma A.C.2, we have that
q∑

k=1
z

(1)
k ≥

q∑
k=1

z
(m)
k for q = 1, . . . , p− 2 (A.31)

p−1∑
k=1

z
(1)
k ≥

p−1∑
k=1

z
(m)
k + 1 . (A.32)
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Applying proposition A.C.3 with wk = z
(1)
k and w̃k = z

(m)
k for k ≤ p− 2 and w̃p−1 = z

(m)
p−1 + 1,

we get

p−1∑
k=1

z
(1)
k bk ≥

p−1∑
k=1

bkz
(m)
k + bp−1 (A.33)

2
p−1∑
k=1

z
(1)
k bk ≥ 2

p−1∑
k=1

bkz
(m)
k + 2bp . (A.34)

The last inequality results from the monotonicity of (bk) and is equivalent to (A.30). It
concludes the proof.

Recovering Exactly the Order. Here we provide the proof for Theorem A.3.2.

Theorem A.C.6. Consider the seriation problem from an observed matrix ΠSΠT , where S
is a R-circular Toeplitz matrix. Denote by L the associated graph Laplacian. Then the two
dimensional laplacian spectral embedding ( (Lap-Emb) with d=2) of the items lies ordered and
equally spaced on a circle.

Proof. Denote A = ΠSΠT . The unnormalized Laplacian of A is L , diag(A1) − A. The
eigenspace associated to its second smallest eigenvalue corresponds to that of µ1 in A. A and
S share the same spectrum. Hence the eigenspace of µ1 in A is composed of the two vectors
Πy1,sin and Πy1,cos.

Denote by (pi)i=1,...,n ∈ R2 the 2-LE. Each point is parametrized by

pi = (cos(2πσ(i)/n), sin(2πσ(i)/n)) , (A.35)

where σ is the permutation represented matricially by Π.

A.D Perturbation Analysis
The purpose of the following is to provide guarantees of robustness to the noise with respect
to quantities that we will not try to explicit. Some in depths perturbation analysis exists
in similar but simpler settings [?]. In particular, linking performance of the algorithm while
controlling the perturbed embedding is much more challenging than with a one dimensional
embedding.

We have performed graph Laplacian re-normalization to make the initial similarity matrix
closer to a Toeplitz matrix. Although we cannot hope to obtain exact Toeplitz Matrix. Hence
perturbation analysis provide a tool to recollect approximate Toeplitz matrix with guarantees
to recover the ordering.

A.D.1 Davis-Kahan
We first characterize how much each point of the new embedding deviate from its corresponding
point in the rotated initial set of points. Straightforward application of Davis-Kahan provides
a bound on the Frobenius norm that does not grant directly for individual information on the
deviation.
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Proposition A.D.1 (Davis-Kahan). Consider L a graph Laplacian of a R-symmetric-circular
Toeplitz matrix A. We add a symmetric perturbation matrix H and denote by Ã = A + H
and L̃ the new similarity matrix and graph Laplacian respectively. Denote by (pi)i=1,...,n and
(p̃i)i=1,...,n the 2-LE coming from L and L̃ respectively. Then there exists a cyclic permutation
τ of {1, . . . , n} such that

sup
i=1,...,n

||pτ(i) − p̃i||2 ≤
23/2 min(

√
2||LH ||2, ||LH ||F )

min(|λ1|, |λ2 − λ1|)
, (A.36)

where λ1 < λ2 are the first non-zeros eigenvalues of L.

Proof. For a matrix V ∈ Rn×d, denote by∣∣∣∣V ∣∣∣∣2,∞ = sup
i=1,...,n

∣∣∣∣Vi∣∣∣∣2 ,
where Vi are the columns of V . Because in Rn we have || · ||∞ ≤ || · ||2, it follows that

∣∣∣∣V ∣∣∣∣2,∞ ≤
∣∣∣∣(||Vi||)i=1,...,n

∣∣∣∣
2 =

√√√√ n∑
i=1
||Vi||22

≤
∣∣∣∣V ∣∣∣∣

F
.

We apply [Yu et al., 2014, Theorem 2] to our perturbed matrix, a simpler version of classical
davis-Kahan theorem [Davis and Kahan, 1970].

Let’s denote by (λ1, λ2) the first non-zeros eigenvalues of L and by V its associated 2-
dimensional eigenspace. Similarly denote by Ṽ the 2-dimensional eigenspace associated to the
first non-zeros eigenvalues of L̃. There exists a rotation matrix O ∈ SO2(R) such that

||Ṽ − V O||F ≤
23/2 min(

√
2||LH ||2, ||LH ||F )

min(|λ1|, |λ2 − λ1|)
. (A.37)

In particular we have∣∣∣∣Ṽ − V O∣∣∣∣2,∞ ≤
∣∣∣∣Ṽ − V O∣∣∣∣

F∣∣∣∣Ṽ − V O∣∣∣∣2,∞ ≤ 23/2 min(
√

2||LH ||2, ||LH ||F )
min(|λ1|, |λ2 − λ1|)

Finally because A is a R-symmetric-circular Toeplitz, from Theorem A.3.2, the row of V
are n ordered points uniformly sampled on the unit circle. Because applying a rotation is
equivalent to translating the angle of these points on the circle. It follows that there exists a
cyclic permutation τ such that

sup
i=1,...,n

||pi − p̃τ(i)||2 ≤
23/2 min(

√
2||LH ||2, ||LH ||F )

min(|λ1|, |λ2 − λ1|)
,
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A.D.2 Exact Recovery with Noise for Algorithm 13
When all the points remain in a sufficiently small ball around the circle, Algorithm 13 can
exactly find the ordering. Let’s first start with a geometrical lemma quantifying the radius of
the ball around each (cos(θk), sin(θk)) so that they do not intersect.

Lemma A.D.2. For x ∈ R2 and θk = 2πk/n for k ∈ N such that

||x− (cos(θk), sin(θk))||2 ≤ sin(π/n) , (A.38)

we have

|θx − θk| ≤ π/n ,

where θx = tan−1(x1/x2) + 1[x1 < 0]π.

Proof. Let x that satisfies (A.38). Let’s assume without loss of generality that θk = 0 and
θx ≥ 0. Assume also that x = e1 + sin(π/n)ux where u is a unitary vector. A x for which θx
is maximum over these constrained is such that ux and x are orthonormal.

Parametrize ux = (cos(γ), sin(γ)), because ux and x are orthonormal, we have cos(γ) =
sin(−π/n). Finally since θx ≥ 0, it follows that γ = π/2 + π/n and hence with elementary
geometrical arguments θx = π/n.

Proposition A.D.3 (Exact circular recovery under noise in Algorithm 13). Consider a matrix
Ã = ΠTAΠ +H with A a R−circular Toeplitz (Π is the matrix associated to the permutation
σ) and H a symmetric matrix such that

min(
√

2||LH ||2, ||LH ||F ) ≤ 2−3/2 sin(π/n) min(|λ1|, |λ2 − λ1|) ,

where λ1 < λ2 are the first non-zeros eigenvalues of the graph Laplacian of ΠTAΠ. Denote by
σ̂ the output of Algorithm 13 when having Ã as input. Then there exists a cyclic permutation
τ such that

σ̂ = σ−1 ◦ τ−1 . (A.39)

Proof. We have

ΠT ÃΠ = A+ ΠTHΠ .

L is the graph Laplacian associated to A and L̃, the one associated to Ã. Denote by (pi)i=1,...,n
and (p̃i)i=1,...,n the 2-LE coming from L and L̃ respectively. (p̃σ−1(i))i=1,...,n is the 2-LE coming
from the graph Laplacian of ΠT ÃΠ.

Applying Proposition A.D.1 with ΠT ÃΠ, there exists a cyclic permutation such that

sup
i=1,...,n

||p̃σ−1(i) − pτ(i)||2 <
23/2 min(

√
2||LHπ ||2, ||LHπ ||F )

min(|λ1|, |λ2 − λ1|)
,

with Hπ = ΠTHΠ, λ1 < λ2 the first non zero eigenvalues of A.
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Graph Laplacian involve the diagonal matrix DH . In particular we have that DHπ =
ΠTDHΠ. For the unnormalized Laplacian, it results in LHπ = ΠTLHΠ. We hence have

sup
i=1,...,n

||p̃σ(i) − pτ(i)||2 <
23/2 min(

√
2||LH ||2, ||LH ||F )

min(|λ1|, |λ2 − λ1|)
sup

i=1,...,n
||p̃i − pτ◦σ−1(i)||2 < sin(π/n) .

From Theorem A.3.2, pi = cos(2πi/n) for all i. It follows that for any i

||p̃i − cos(2πτ ◦ σ(i)/n)||2 < sin(π/n) .

Algorithm 13 recovers the ordering by sorting the values of

θi = tan−1(p̃1
i /p̃

2
i ) + 1[p̃1

i < 0]π ,

where p̃i = (p̃1
i , p̃

2
i ). Applying Lemma A.D.2:

|θi − 2π(τ ◦ σ−1)(i)/n| < π/n ∀i ∈ {1, . . . , n},

so that

θσ−1◦τ−1(1) ≤ · · · ≤ θσ−1◦τ−1(n) . (A.40)

Finally σ̂ = σ−1 ◦ τ−1.
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Appendix B

Interactive painting experiments
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MOTS CLÉS

Frank-Wolfe, Gradient Conditionnel, Inégalité de Łojasiewciz, Convexité Uniforme, Carathéodory Approximé,
Taux de convergence

RÉSUMÉ

Les algorithmes de Frank-Wolfe sont des méthodes d’optimisation de problèmes sous contraintes. Elles décomposent
un problème non-linéaire en une série de problèmes linéaires. Cela en fait des méthodes de choix pour l’optimisation en
grande dimension et notamment explique leur utilisation dans de nombreux domaines appliqués. Ici nous proposons de
nouveaux algorithmes de Frank-Wolfe qui convergent plus rapidement vers la solution du problème d’optimisation sous
certaines hypothèses structurelles assez génériques. Nous montrons en particulier, que contrairement à d’autres types
d’algorithmes, cette famille s’adapte à ces hypothèses sans avoir à spécifier les paramètres qui les contrôlent.

ABSTRACT

The Frank-Wolfe algorithms, a.k.a. conditional gradient algorithms, solve constrained optimization problems. They break
down a non-linear problem into a series of linear minimization on the constraint set. This contributes to their recent revival
in many applied domains, in particular those involving large-scale optimization problems. In this dissertation, we design or
analyze versions of the Frank-Wolfe algorithms. We notably show that, contrary to other types of algorithms, this family is
adaptive to a broad spectrum of structural assumptions, without the need to know and specify the parameters controlling
these hypotheses.

KEYWORDS

Frank-Wolfe, Conditional Gradient, Łojasiweciz Inequality, Uniform Convexity, Approximate Carathéodory,
convergence rates
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