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Abstract 
 

The abundance of genetic mobile elements in our DNA has a critical impact on the 

evolution and function of the human genome. Even if most transposable elements are 

inactive due to the accumulation of mutational events, the Long INterspersed Element-1 

(LINE-1 or L1) retrotransposon continues to diversify and impact our genome, being 

involved in the evolution of modern humans and in the appearance of genetic diseases or 

in tumorigenesis. L1 forms 17% of human DNA. It is autonomously active being 

replicated through an RNA-mediated ‘copy-and-paste’ mechanism. The L1 element 

encodes two proteins, ORF1p and ORF2p, which associate with the L1 mRNA to form 

L1 ribonucleoprotein particles, the core of the retrotransposition machinery. However, 

little is known about the cellular pathways involved in L1 replication. Our laboratory has 

discovered by yeast 2-hybrid screens an interaction between L1 ORF2p and the estrogen-

related receptor α (ERRα), a member of the nuclear receptor family. Here, we confirmed 

and extended this observation to several other members of the steroid receptor 

superfamily using a fluorescent two-hybrid assay (F2H) in human cultured cells. To get 

further insight into the potential role of ERRa in L1 replication cycle, we performed 

ERRa siRNA-mediated knock-down and overexpression experiments, which suggest that 

ERRa is a positive regulator of retrotransposition. Moreover, the artificial tethering and 

concentration of ERRa to a large and repetitive genomic array inhibits retrotransposition. 

Collectively, these data link steroid signaling pathways with the post-translational 

regulation of L1 retrotransposition, suggesting a model by which ERRα, and probably 

several other nuclear receptors, can recruit the L1 RNP to specific chromosomal 

locations, acting as tethering factors. 

Keywords 

transposable element, nuclear receptor, host factor, tethering, integration 
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Résumé 

 

L'abondance d'éléments génétiques mobiles dans le génome humain a un impact critique 

sur son évolution et son fonctionnement. Même si la plupart des éléments transposables 

sont inactifs en raison de l'accumulation de mutations, le rétrotransposon LINE-1 (pour 

Long Interspersed Element-1 ; ou élément L1) continue de se mobiliser et d'influer sur 

notre génome. Il a ainsi contribué à l'évolution de l'homme moderne, mais aussi à 

l'apparition de maladies génétiques et est parfois impliqué au cours de la tumorigénèse. 

Les séquences du rétrotransposon L1 correspondent à 17% de la masse totale de l’ADN 

humain. Une copie active de L1 est capable de se mobiliser de manière autonome par un 

mécanisme de type «copier-coller» qui met en jeu un intermédiaire ARN et une étape de 

transcription inverse. L'élément L1 code deux protéines, ORF1p et ORF2p, qui 

s’associent à l'ARNm de L1 pour former des particules ribonucléoprotéiques, le cœur de 

la machinerie de rétrotransposition. Cependant, peu de choses sont connues sur les voies 

cellulaires impliquées dans la mobilité de L1. Notre laboratoire a découvert, par des 

cribles double-hybride, une interaction entre la protéine ORF2p de L1 et le récepteur α 

associé aux œstrogènes (ERRα), un membre de la famille des récepteurs nucléaires. Ici, 

nous avons confirmé et étendu cette observation à plusieurs autres membres de la 

superfamille des récepteurs de stéroïdes en utilisant un test de double-hybride fluorescent 

(F2H) en culture cellulaire. Pour mieux comprendre le rôle potentiel d’ERRα dans le 

cycle de rétrotransposition de L1, nous avons effectué des expériences de suppression et 

de surexpression qui suggèrent qu’ERRα est un régulateur positif de la rétrotransposition. 

En outre, la liaison et la concentration d'ERRα à un locus répété artificiel (LacO array) 

inhibe la rétrotransposition. Collectivement, ces données relient les voies de signalisation 

des stéroïdes avec la régulation post-traductionnelle de la rétrotransposition de L1, ce qui 

suggère un modèle par lequel ERRα et probablement plusieurs autres récepteurs 

nucléaires peuvent recruter le RNP L1 vers des emplacements chromosomiques 

spécifiques, agissant comme facteurs de liaison et d’adressage. 

 

Mots clés : génome, éléments transposables, rétrotransposon, cribles, récepteurs 

nucléaires, récepteurs de stéroïdes, ERRα, régulation, post-traductionnelle. 
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Overview of the study 
 

With almost half of the human genome derived from (retro)transposition, transposable 

elements are accepted now as an important evolutionary force which shapes our genome. 

Even if most transposable elements are inactive due to a variety of mutation events, the 

Long INterspersed Element-1 (LINE-1 or L1) retrotransposons form 17% of our genome 

and their ongoing activity diversifies and impacts our genome. Through insertional 

mutagenesis, L1s can be agents of both evolution and disease. They can disrupt genes and 

provoke mutations in the germline, but they can also occasionally fulfill positive 

functions for the host. Moreover, the most recent advances in deep-sequencing 

technologies have revealed that L1 is also able to mobilize in somatic cells. Most of 

known somatic retrotransposition occurs in the brain or in epithelial cancers. Disclosing 

the mechanisms that regulate L1 activity is very important to better understand the way 

retrotransposons and their host co-evolved maintaining a balance between retrotransposon 

proliferation and host genome stability.  

 

However, little is known about the mechanisms used by its cellular host to regulate L1 

replication and expression. Thus, one of the goals of the team where I pursue my doctoral 

studies, is to discover cellular factors and pathways involved in the regulation of L1 

retrotransposon mobility and consequently in genome dynamics and instability. In search 

of regulators influencing L1 retrotransposon, our laboratory has performed yeast 2-hybrid 

screens to identify cellular factors interacting with the human L1 retrotransposition 

machinery and identified several potential hits. One of the most robust hit is the estrogen-

related receptor α (ERRα), a member of the nuclear receptor superfamily, which are 

transcription factors controlled by environmental and hormonal signals, and more 

specifically from the steroid receptor family. Our results, show that other steroid nuclear 

receptors can physically interact with L1. These observations and the characterization of 

the interaction, suggest a model by which these cellular factors could regulate 

retrotransposition at a post-transcriptional level, possibly by tethering the L1 machinery 

to specific genomic locations. With this work, we aim to study the involvement of steroid 

nuclear receptors in L1 retrotransposon activity. 

Given the importance of steroid receptors in the physiology of mammals and their 

adaptation to environmental changes, our results raise the intriguing possibility that 
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steroid nuclear receptors could modulate the landscape of L1 integration in the genome 

and link environmental and physiological signals with genomic plasticity. 

 

This dissertation starts with two chapters dedicated to literature synthesis, for 

understanding in details the area of the research project conducted during my PhD 

training. Chapter one gives an overview on the transposable elements field, with 

emphasis on L1 retrotransposons. Chapter two describes the nuclear receptors 

superfamily, underlining the characteristics of the steroid receptors subfamily and 

estrogen-related receptors group in particular. Chapter three contains the goal of this 

study and the results, presented in the form of a research article, in preparation for 

submission. Chapter four comprises a general discussion which integrates the 

implications and conclusions of this study, as well as limitations and perspectives. 
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1.  The world of mobile genetic elements 
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“It might seem unfair, however, to reward a person for having so much pleasure over the 

years, asking the maize plant to solve specific problems and then watching its responses.” 

Barbara McClintock 

 

From the classical PNAS article of Barbara McClintock in 1950 on mutable loci in maize, 

to the complete sequencing of the human genome, it became clearly proved that genomes 

are not static. The first draft of the human genome reference revealed not only that as few 

as 2% of our genome is constituted by protein-coding genes, but also that almost half 

consists of transposable elements (TEs) (Lander et al. 2001). TEs are DNA sequences, 

which have the ability to move from one part of the genome to another. Barbara 

McClintock was the first scientist who proposed the existence of genic unities capable of 

mobility within genomes, (McCLINTOCK 1950). Her landmark work, awarded by the 
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Nobel prize for medicine in 1983, suggested that TEs, “controlling elements” in maize, 

respond to environmental influences and induce genomic changes essential for survival. 

The studies made in maize, showed that transposition induced upon radiation caused 

chromosomal rearrangements in maize which resulted in survival of the cells facing DNA 

damage (McCLINTOCK 1950; Fedoroff 2012). 

Far from being “junk DNA”, TEs are important genome shapers and widespread across 

species, being found in all the domains of cellular life division: archaea, bacteria and 

eukaryote. 

 

 

1.1 Varieties of transposable elements 

Transposable elements can be classified into DNA transposons and retrotransposons 

based on their requirement for a reverse transcription step in their replication cycle. Their 

replicative mechanisms are often compared to the computer command: ‘cut-and-paste’ 

for DNA transposons and ‘copy-and-paste’ for retrotransposons. 

 

 

Figure 1. The composition of the human genome and the distribution of transposable 

elements (adapted from (Rollins 2005)). 
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1.1.1 DNA transposons move by a cut-and-paste mechanism and are 

molecular fossils in the human genome 

DNA transposons, also known as class II elements, are found in almost all eukaryotes and 

are mobilized through a DNA intermediate. Classical examples of such mobile elements 

include the Associator/Dissociator transposons, discovered originally by Barbara 

McClintock (McCLINTOCK 1950). DNA transposons represent 3% of the human 

genome (Lander et al. 2001) and transpose by excision from their original location and re-

insertion into a new one, using their encoded transposase (Craig 2002). In humans, a 

recent activity of DNA transposons cannot be detected and they are considered molecular 

fossils (Pace and Feschotte 2007; Lander et al. 2001). However, this is not true for all 

Mammals, since highly active DNA transposons have colonized the genome of some bat 

species (Mitra et al. 2013). 

These type of TEs do not require a reverse transcription step to replicate. The simplest 

form of DNA transposons contains an open reading frame that encodes the transposase 

protein surrounded by inverted terminal repeat sequences (IR), as seen in Figure 2 (Craig 

2002; Richardson et al. 2015). In order to transpose, the mRNA resulting from the 

transcription of the element is exported to the cytoplasm where its translation leads to the 

synthesis of the transposase, which has nuclear localization signal, DNA binding and 

integrase activities (Ivics et al. 1997). Once in the nucleus, the transposase enzyme 

recognizes and binds near or within the transposon inverted terminal repeats and cuts both 

strands at each end, to promote transposition by a “cut-and-paste” mechanism 

(Richardson et al. 2015). The new inserted DNA transposon is generally flanked by short 

target-site duplications of variable length typical of the type of element (Craig 2002; 

Richardson et al. 2015). 

These TEs can increase their occupancy in the genome by transposing during 

chromosome replication from a position that has already been replicated to another where 

the replication fork has not yet passed or they can exploit gap repair following excision to 

create an extra copy at the donor site (Wicker et al. 2007). 

DNA transposons are used as genetic tools in molecular biology applications and in gene 

therapy, as for Sleeping Beauty, a resurrected fish DNA transposon, or Piggyback, a 

cabbage looper moth transposon (Ivics and Izsvák 2010). 
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Figure 2. The structure of a prototype DNA transposon. 

This type of elements occupies 3% of the human genome. In their simplest form, they contain 

inverted repeats (IR) that surround an open reading frame coding for the transposase, which is 

essential for their mobility (adapted from (Garcia-Perez, Widmann, and Adams 2016)). 

 

 

 

1.1.2 Retrotransposons mobilize by a copy-and-paste mechanism and 

are the predominant class of TEs in most mammalian genomes 

Retrotransposons require an RNA intermediate and the activity of a reverse transcriptase 

(RT) to expand in the genome, by a replicative copy-and-paste mechanism named 

retrotransposition (Boeke et al. 1985; Richardson et al. 2015). The original 

retrotransposon is maintained in situ, while a copy is integrated to a new genetic location. 

This group of TEs, also known as class I mobile elements, represent the predominant 

class of TEs in most mammalian genomes and they vary by their mechanism of 

transposition. Two main classes can be distinguished based on the presence of long 

terminal repeats (LTR) at their extremities: LTR and non-LTR retrotransposons. 

 

 LTR retrotransposons and endogenous retroviruses are inactive in humans 

LTR retrotransposons, and the related endogenous retroviruses (ERVs), are abundant in 

eukaryotes, mostly in plants where they are the dominant type of transposons. In humans, 

they comprise approximately 8% of the genome (Lander et al. 2001). LTR-

retrotransposons and ERVs share a structure similar to exogenous retroviruses, but LTR-

retrotransposons do not possess an envelope gene which obliges them to an intracellular 

life (see Figure 3 ) (Bannert and Kurth 2006).  

The ERVs, which are permanently integrated retroviruses, accumulated in the genomes 

through retroviral infections of the germline from the ancient times, have expended in 

genomes by retrotransposition or reinfection, and are transmitted vertically (Coffin et al. 

1997). 
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It is considered that all human ERVs (HERVs) are inactive due to major deletions and 

nonsense mutations. However, some recent studies showed that the proviruses of 

youngest HERV subfamily, HERV-K (where K is the lysine tRNA needed to prime the 

negative strand cDNA synthesis from an ERV RNA template) can be reanimated using 

recombinant DNA technology and show infectious activity in human cultured cells 

(Dewannieux et al. 2006; Y. N. Lee and Bieniasz 2007; Richardson et al. 2015). A 

possible explanation for this could stand from the trans-complementation of the 

retrovirus-encoded proteins, which would lead to the formation of functional virus-like 

particles from partially defective HERVs, resulting in new retrotransposition events 

(Richardson et al. 2015).  

Several studies identified polymorphic HERV-K presence in human population (Belshaw 

et al. 2005; Macfarlane and Simmonds 2004; Hughes and Coffin 2004; Richardson et al. 

2015) and polymorphic ERVs in chimpanzee and gorilla genomes (Yohn et al. 2005), 

suggesting that ERVs have been active since the divergence of humans and chimpanzees, 

including in ancestral human species (Richardson et al. 2015). 

In contrast with the human genome, the mouse genome contains many active ERV 

subfamilies, which are responsible for ~10% of all spontaneously mutations arising in 

mouse (Maksakova et al. 2006). 

 

 

 

 

 

Figure 3. Schematic representation of LTR-retrotransposons. 

These elements represent 8% of the human genome. Full length ERVs are flanked by LTRs 

necessary for the transcription and maturation of ERV RNAs. They also contain gag and pol 

protein coding genes required for retrotransposition. However, they lack a functional env gene, 

used by retroviruses to exit from and re-enter into cells. The mobility of an active ERV includes 

an RNA intermediate and a copy-and-paste mechanism that is similar to retroviral replication, 

although they can also multiply intracellularly (adapted from (Garcia-Perez, Widmann, and 

Adams 2016)). 
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 Non-LTR retrotransposons can be autonomous and non-autonomous 

Non-LTR retrotransposons do not have LTR sequences and can be divided into two major 

groups, based on their ability to code the proteins necessary for retrotransposition: 

autonomous LINEs (Long interspersed elements) and non-autonomous SINEs (Short 

interspersed elements). 

 

I) LINE-1 is the only active transposable element in humans 

LINEs comprise approximately 22% of our genome. Most transposable elements, 

including retrotransposons, in the human genome are inactive, due to a variety of 

mutations accumulated in the genome during its evolution. With this respect, LINE-1, or 

L1, represents an exception being the only active and autonomous retrotransposon in 

modern humans.  

L1 codes for proteins (ORF1p and ORF2p) required for its replication. ORF1p is a 

homotrimeric RNA-binding protein and ORF2p possesses endonuclease (EN) and reverse 

transcriptase (RT) activities (Figure 4). Altogether, they assemble with the L1 RNA into a 

ribonucleoprotein particle, which forms the core of the retrotransposition complex. 

L1 ORF1p and ORF2p proteins show a strong cis-preference and bind their own encoding 

mRNA (Esnault, Maestre, and Heidmann 2000; Wei et al. 2001). However, they can also 

mobilize in trans non-autonomous non-LTR retrotransposons, as Alu and SVA (Raiz et 

al. 2012; Hancks et al. 2011; Hancks and Kazazian 2012) and other mature cellular 

mRNAs, resulting in  the formation of processed pseudogenes (Esnault, Maestre, and 

Heidmann 2000). The hallmarks of L1-mediated insertions include the presence of target 

site duplications (TSD) that can vary in size and sequence, a 3' poly(dA) tail of variable 

length, an L1 endonuclease recognition sequence related to the TT/AAAA consensus at 

the preintegration locus, possible 5’ truncations or inversions, and the lack of introns 

(Beck et al. 2011; Jurka 1997). 

More details about the L1 element structure and life cycle will be presented in the next 

section, 1.2. 

 

II) SINEs	are	non-coding	retrotransposons	mobilized	by	L1	in	trans	

SINEs represent 25% of our genome, they are represented by Alu and SVA elements and 

require the L1 replicative machinery for their mobilization. 
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i) Alu elements are the most abundant class of non-autonomous 

retrotransposons in human 

Alu elements contribute to 11% of our genome. With more than 1 million copies, they 

form the most abundant class of non-autonomous retrotransposons in humans (Lander et 

al. 2001). Alu elements originate from the cellular 7SL RNA, the RNA moiety of the 

signal recognition particle (Ullu and Tschudi 1984). They are approximately 300 bp long 

(Rubin et al. 1980), with a bipartite structure, being composed of two highly similar left 

and right monomers, separated by a central adenosine-rich region (Figure 4). 

The left monomer (most 5' region of the element) contains conserved A and B box 

sequences needed for RNA polymerase III dependent transcription (Batzer and Deininger 

2002; W. M. Chu, Liu, and Schmid 1995). The right monomer ends in a poly(A) tract of 

variable length and the genomic DNA flanking the 3’ end of an Alu element contains an 

RNA polymerase III terminator sequence which is a stretch of four to six consecutive 

thymidines (Batzer and Deininger 2002; Richardson et al. 2015). The RNA polymerase 

III bypasses the poly(A) tract and continues in the downstream flanking genome sequence 

until it meets a stretch of thymidines (W. M. Chu, Liu, and Schmid 1995). The size of the 

poly (A) tract and that of the downstream genomic sequence will influence its expression 

and retrotransposition potential (Comeaux et al. 2009; Dewannieux and Heidmann 2005; 

Batzer and Deininger 2002; Richardson et al. 2015). 

Alu elements contain three major subfamilies and each of them can be further subdivided: 

Alu J - the oldest lineage with peak activity ~65 million years ago, S - the second oldest 

lineage mostly active 30 million years ago, and Y- the youngest Alu lineage (Batzer and 

Deininger 2002). The active Alu “core elements” in the modern human genome belong to 

the AluY and AluS subfamilies (E. A. Bennett et al. 2008). The most recent AluY 

subfamilies (AluYa5, AluYb5, AluYd8) are sufficiently polymorphic (presence or 

absence in a given locus) within the human population, to be used, together with 

polymorphic L1Hs, as genetic markers in phylogenetic and population genetics studies 

(Witherspoon et al. 2006; Richardson et al. 2015). 

Alu elements do not code for any protein. Instead, they hijack the L1 machinery for their 

mobilization. The poly(A) tail of the Alu RNA competes with L1 RNA for binding 

ORF2p in order to replicate successfully (Doucet, Wilusz, et al. 2015; Dewannieux, 

Esnault, and Heidmann 2003; Mills et al. 2007). In contrast with L1 RNA where the poly 

(A) tail is added through the classical polyadenylation pathway, the Alu poly(A) is 
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genetically encoded in the sequence itself. The poly(A) is the site for reverse transcription 

priming and this is a feature common for all L1-mobilized template RNAs — L1, Alu, 

SVA and cellular mRNAs (Doucet, Wilusz, et al. 2015; Esnault, Maestre, and Heidmann 

2000; Kajikawa and Okada 2002; Monot et al. 2013).  

 

ii) Human SVA elements have a composite structure and are mobilized in trans 

by L1 

SVA elements represent only 0,2% of the human genome, with approximatively 2700 

copies (Lander et al. 2001). They originated 25 million years ago and their 2 kb sequence 

consists of several elements: a hexameric CCCTCT repeat, an inverted Alu-like element 

repeat, a variable number of GC-rich tandem repeats (VNTRs), a SINE-R sequence 

similar to a LTR retrotransposon and a canonical cleavage polyadenylation specificity 

factor (CPSF) binding site, followed by a poly(dA) tract, as seen in Figure 4(Richardson 

et al. 2015). 

The SVA mRNA is an RNA polymerase II transcript, even if no internal RNA pol II 

promoter has been detected so far (Hui Wang et al. 2005). Importantly, SVA integration 

in the genome shows hallmarks of L1-mediated mobility (Hancks and Kazazian 2012; 

Raiz et al. 2012).  

SVA elements can also be divided into subfamilies, based on sequence similarities. As for 

Alu, the youngest SVA subfamilies - SVA-D, SVA-E, SVA-F - show insertional 

polymorphism in the human population, suggesting that they can be mobilized in modern 

humans (Hancks and Kazazian 2012; Richardson et al. 2015). Consistently, SVA 

insertions can cause human genetic diseases (Ostertag et al. 2003), as examplified in 

cases of X-linked Dystonia-Parkinsonism or Fukuyama-type congenital muscular 

dystrophy (Kobayashi et al. 1998). 

 

iii) The L1 machinery can mobilize cellular mRNAs in trans and form processed 

pseudogenes 

The L1 retrotransposition machinery can mobilize its own RNA, the RNAs of non-

autonomous retrotransposons, but also cellular protein coding RNAs (Esnault, Maestre, 

and Heidmann 2000) and small nuclear RNAs, such as U6 (Doucet, Droc, et al. 2015). 

The integrated copies of the mobilized mRNA show the hallmarks of L1-mediated 
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insertions. Since they lack introns and promoter, they are referred as processed 

(retro)pseudogenes (Figure 4) (Vanin 1984; Wei et al. 2001). 

Due to the loss of the promoter in the retrotransposition process, to 5’ truncations and 

other rearrangements, processed pseudogenes are in general non-functional. However, 

some of them can evolve to became functional and support new cellular functions. For 

instance, the integration of the cyclophilinA mRNA inside the TRIM5 results in a 

functional fusion protein which provides a new defense mechanism to restrict HIV 

mobility in owl monkeys (Malfavon-Borja et al. 2013; Nisole et al. 2004; Sayah et al. 

2004). Such genes are referred as retrogenes.  

Analysis of the human reference genome revealed that there are approximatively 8000 to 

17000 pseudogenes, and 70% of them have a retrotranspositional origin (processed), 

while the rest arose by segmental duplication (nonprocessed) (Torrents et al. 2003; Z. 

Zhang 2003). 

Most of the pseudogenes are derived from ribosomal protein and their presence and 

formation continues to contribute to the genomic diversity between individuals (Kazazian 

2014; Ewing et al. 2013). The successful recapitulation of U6/L1 chimeric pseudogene 

formation in cultured human cells, suggests that U6/L1 pseudogene formation is 

continuing in the human genome (Garcia-Perez et al. 2007; Gilbert et al. 2005). 

 

 
 

 

Figure 4. Non-LTR-retrotransposons in the human genome. (legend on the next page) 
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For each non-LTR retrotransposon class is mentioned its name, structure, average size, copy 

number, percentage in the reference genome sequence, and the name of the active subfamilies. 

Human LINE-1 structure is presented again to give an overview on different non-LTR-

retrotransposons and consists of: a 5' untranslated region (UTR) containing sense and antisense 

internal promoters (black arrows); ORF1, which encodes an RNA-binding protein with a coiled-

coil domain (CC), an RNA recognition motif (RRM), and a carboxyl-terminal domain (CTD); an 

inter-ORF spacer (grey box between ORF1 and ORF2); ORF2, which encodes a large protein 

with endonuclease (EN), reverse transcriptase (RT), and cysteine-rich domains (C); a 3' UTR with 

a polyadenylation signal, and a poly(dA) tract (An downstream of 3’ UTR). Alu elements have the 

following structure: 7SL-derived monomers (orange boxes); RNA polymerase III transcription 

start site (black arrow) and conserved cis-acting sequences required for transcription (A and B 

white boxes in left 7SL-derived monomer); adenosine-rich fragment (AAA grey box between left 

and right 7SL-derived monomers); a terminal poly(dA) tract (AAAA grey box); a variable sized 

flanking genomic DNA (interrupted small grey rectangle) followed by the RNA pol III 

termination signal (TTTT). SVA elements are composite elements made of: hexameric CCCTCT 

repeats (CCCTCT)n; inverted Alu-like repeat (green box with backward arrows); a GC-rich 

VNTR; a SINE-R sequence sharing homology with HERVK-10, (envelope (ENV) and long 

terminal repeat (LTR)); a cleavage polyadenylation specific factor (CPSF) binding site; and a 

terminal poly (A) tail (An). The structure of a processed retropseudogene consists of a spliced 

cellular mRNA with its 3' UTR and sometimes a 5' UTR (grey boxes) and coding ORF (red boxes 

for human and purple boxes for mouse, boxes are interrupted by exon-exon junctions (vertical 

black lines) (Richardson et al. 2015). Boundaries of all these elements are defined by the target-

site duplications, which are generated during the integration process (not shown). 
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1.2 In the spotlight: L1, the only active transposable element in 

humans 

L1 retrotransposon represents ~17% of our genome and continues to shape it, being the 

only active and autonomous retrotransposon in humans. Still, the majority of L1s are not 

competent for retrotransposition, because they contain mutations or are 5’ truncated 

(Dombroski et al. 1991; Goodier and Kazazian 2008; Beck et al. 2010). L1 

retrotransposons have been amplifying in mammalian genomes for more than 160 million 

years and in humans since the divergence of the ancestral mouse and human lineages 

approximately 65 to 75 million years ago (Smit et al. 1995; Richardson et al. 2015). 

Analysis of sequence comparison revealed 16 primate-specific L1 subfamilies (from 

L1PA1 to L1PA16, where a high number reflects an older family) (Smit et al. 1995; H. 

Khan, Smit, and Boissinot 2006). Older L1 subfamilies are replaced over evolutionary 

time with new ones, in a process known as subfamily succession which might be driven 

by host proteins that restrict L1 expression (Jacobs et al. 2015; Castro-Diaz et al. 2014; 

Richardson et al. 2015).  

It is estimated that, currently, only 80-100 copies of the human-specific L1 (L1Hs, 

another name for the youngest L1PA1 subfamily), are still retrotransposition-competent 

in our genomes (Brouha et al. 2003). These active elements belong to a small group 

named transcribed active  subset (Ta-subset) (Boissinot, Chevret, and Furano 2000). 

The L1Hs-Ta-subset can be discriminated from older members of the L1Hs family by a 

diagnostic nucleotides in the 3’ untranslated region (UTR), more specifically ACA and G 

at positions 5930-5932 and 6015, respectively, instead of GAG and A in older elements 

(Dombroski et al. 1991; Richardson et al. 2015). Based on additional diagnostic 

nucleotides, the L1 Ta-subset can be further subdivided into Ta-1, Ta-0 and pre-Ta 

(Boissinot, Chevret, and Furano 2000). These lineages reflect the mode of L1 

amplification and the existence of a limited number of highly active progenitor 

sequences. 

 

General overview on L1 structure and life cycle 

An active full length human-specific L1 element is 6kb long and contains a 5’ 

untranslated region (5’ UTR), two open reading frames – ORF1 and ORF2 – separated by 

a short inter-ORF spacer, a 3’UTR and ending with a poly(dA) tail. L1 sequence itself is 
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generally flanked by short target site duplications (rarely longer than 20 bp). Recently, it 

was discovered that L1 5’ UTR contains an additional ORF, named ORF0, in opposite 

orientation relative to L1, which codes for a 70 amino-acid long peptide named ORF0p 

and can form 5' fusion transcripts with nearby genes by splicing. It is not very well 

characterized so far, but its overexpression in trans slightly enhances L1 

retrotransposition in cultured cells (Denli et al. 2015).  

The process of L1 genomic amplification is named retrotransposition (Figure 6). As a 

general overview, it starts by the RNA Pol II-dependent transcription of L1 from its 

internal promoter which is located in the 5’ UTR (Swergold 1990). The resulting mRNA 

is exported in the cytoplasm, translated into two proteins, ORF1p and ORF2p, which 

once synthesized bind their own mRNA, forming a ribonucleoprotein particle (RNP). 

Next, the L1 RNP is imported in the nucleus where it cleaves the target locus and intiates 

reverse transcription in a coordinated process termed target-primed reverse transcription 

(TPRT) (Beck et al. 2011). 

 

 

1.2.1 L1 has a bidirectional promoter in its 5’ UTR 

The 5’ UTR it is ~900 bp long and contains a bidirectional promoter (Figure 5). The first 

155 nt are important for the activity of the sense promoter from which full length L1 

transcription starts, as shown by deletion analysis (Swergold 1990). Initially promoter 

characterization suggested  that sense transcription starts exclusively at position +1 

(Swergold 1990), but a subsequent study showed that transcription initiation can occur at 

variable sites close to the 5' end  (Athanikar, Badge, and Moran 2004; Lavie et al. 2004). 

Moreover, the upstream chromosomal region can also influence negatively or positively 

the activity of the promoter (Lavie et al. 2004). 

Besides this promoter, the 5’UTR houses an antisense promoter (ASP) which can initiate 

transcripts that extend into the sequences upstream of L1. The ASP between nucleotides 

400-600 of the 5’UTR and is not essential for retrotransposition. However, its activity can 

produce chimeric transcripts with neighboring genes or sequences (Speek 2001; 

Nigumann et al. 2002). The combined sense and antisense promoter activities can 

produce double-stranded RNA, which triggers RNA interference (RNAi) mechanisms, 

either by generating small interfering RNAs (siRNAs) which will repress 
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retrotransposition (Nuo Yang and Kazazian 2006), or by the direct cleavage of L1 sense 

RNA by the Microprocessor complex (Heras et al. 2013). 

 

 

1.2.2 L1 5’UTR contains many binding sites for transcription factors 

The 5’UTR of L1 contains cis-acting elements, binding motifs for transcription and other 

cellular factors, able to regulate L1 transcription (Figure 5). 

The ubiquitous nuclear transcription factor YY1 (ying yang 1) binds close to L1 

transcription start site (TSS), at position 13-21 (Minakami et al. 1992; Becker et al. 1993; 

Athanikar, Badge, and Moran 2004). YY1 is known to regulate gene transcription, both 

positively and negatively (Austen, Lüscher, and Lüscher-Firzlaff 1997). Located near the 

5’terminus of L1, YY1 binding is important for the precision of transcription initiation at 

position +1 (Athanikar, Badge, and Moran 2004). 

L1 promoter accommodates also two binding sites for SOX transcription factors, 

members of the SRY family (Tchénio, Casella, and Heidmann 2000). The identified 

consensus sequences in the L1 promoter, are functional, being required for SOX binding 

and SOX-mediated transactivation of a luciferase reporter gene initiated from the L1 

promoter (Tchénio, Casella, and Heidmann 2000). 

RUNX3 (Runt-related transcription factor 3) binds in the 5’ UTR of L1 at position 83-

101, where a consensus Runt-domain core binding sequence was identified (Nuo Yang et 

al. 2003), and can modulate L1 transcription and retrotransposition. The overexpression 

of RUNX3 increases L1 activity. In contrast, its depletion by siRNA, the expression of a 

RUNX3 dominant-negative form, or mutations of the RUNX3 binding site, strongly 

suppress L1 transcription and retrotransposition. An additional RUNX3 motif identified 

at position 526-508 could regulate L1 ASP activity (Nuo Yang et al. 2003). 

The T-cell factor/lymphoid enhancer factor (TCF/LEF) can bind SOX and SOX/LEF 

DNA regulatory elements within the body of L1 sequence. This could regulate cryptic 

bidirectional promoters and the activity of nearby neuronal genes during adult 

neurogenesis (Kuwabara et al. 2009). 

 

Finally, the transcription factor p53 is another DNA-binding protein capable of activating 

or repressing transcription. It is a critical tumor-suppressor, with many target genes and 
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multiple binding sites in the entire genome (Hollstein et al. 1991; Zhao et al. 2000). In 

particular, p53 binding sites have been identified in the promoter of many L1 sequences, 

where this transcription factor can bind a short 15-nt site, as shown by gel shift assay, 

mutational analyses and chromatin immunoprecipitation experiments, leading to p53-

dependent transcriptional activation (C. R. Harris et al. 2009). This might seem 

contradictory, given the role of p53 as guardian of genome stability in somatic cells. p53 

activity and its apoptotic activity are repressed in the germ line when critical 

recombination intermediates appear. This would correspond to the time when L1 is also 

active in the germline and would not trigger any DNA damage response, being able to 

integrate and pass to the next generation. In normal somatic cells, p53 is fully functional 

and protects the genome from double-stranded breaks as those possibly generated by L1 

endonuclease (C. R. Harris et al. 2009). 

But their working model proposes a positive feedback loop for the genome. In this 

scenario, p53 activates L1 transcription which leads to more L1 endonuclease mediated 

dsDNA breaks which in turn will create enough p53 damage response activity to induce 

apoptosis of the cell. This mechanism would decrease L1 retrotransposition in somatic 

cells (C. R. Harris et al. 2009). Consistently, p53 was found to inhibit somatic 

retrotransposition in many different model organisms (Wylie et al. 2016). 

 

 

 

Figure 5. Scheme of L1 structure, promoters and 5’UTR binding sites for transcription 

factors. 

The full-length L1 element consisst of five main components: the 5’UTR, the two open reading 

frames (ORF1 and ORF2), inter-ORF region, the 3’ UTR and poly-A tract (AAA). The 5′ UTR 

contains the self-transcribing promoter (SP) function, antisense promoter (ASP) activity, a CpG 

island that is usually methylated (represented as CH3) and binding sites for transcription factors: 

one RUNX3 (orange), one YY1 (light blue), and two SRY (pink). ORF1 (orange box) has a 

coiled-coil (c-c) domain, an RNA recognition motif (RRM), and a C-terminal domain (CTD). 

ORF2 (red box) contains the endonuclease (EN) and the reverse transcriptase (RT) domains and a 
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cysteine-rich (cys) motif, whose exact role is unknown, but is important for the L1 

retrotransposition. The 3′ UTR contains the poly-A signal (adapted from (Ade et al. 2017). 

 

 

1.2.3 Activities and structure of L1-encoded proteins 

The studies focused on the open reading frames showed that L1 mRNA is bicistronic and 

produces ORF1p and ORF2p, both necessary for retrotransposition. 

ORF1p is a 40 kDa protein (Leibold et al. 1990) which binds RNA (Hohjoh and Singer 

1997) and has nucleic acid chaperone function (Martin and Bushman 2001). ORF1p 

contains three major domains: a coiled coil domain, an RNA recognition motif (RRM 

domain) and a carboxyl terminal domain (CTD). The coiled-coil domain drives the 

trimerization of ORF1p proteins (Martin et al. 2003; Khazina and Weichenrieder 2009). 

This process is mediated by the regular organization of leucines and other hydrophobe 

amino-acids, which leads to the formation of a leucine zipper structure (Holmes, Singer, 

and Swergold 1992; Hohjoh and Singer 1996). The N-terminal region of ORF1p is poorly 

conserved, in contrast with the well-conserved CTD. 

The second reading frame encodes a 150 kDa protein, named ORF2p with both 

endonuclease (EN) (Q. Feng et al. 1996) and reverse transcriptase (RT) activities 

(Mathias et al. 1991), critical for L1 retrotransposition. ORF2p comprises three main 

domains: an N-terminal apurinic/apyrimidic endonuclease like domain (APE), a reverse 

transcriptase domain and a C-terminal cysteine-rich domain of unclear function (Fanning 

and Singer 1987). 

The bicistronic L1 mRNA can be translated to produce large amounts of ORF1p, but very 

limiting quantities of ORF2p (Wei et al. 2000). The translation of ORF1p initiates at the 

first AUG codon (Leibold et al. 1990). ORF2p is translated also from the bicistronic 

mRNA, from the first in-frame AUG codon. ORF2p translation does not need ORF1 

sequence, nor the spacer sequence (Alisch et al. 2006). It was suggested that ORF2p is 

produced by an unconventional termination/reinitiation mechanism, in which the 40S 

ribosomal subunit would stay bound to the L1 RNA after reaching ORF1 stop codon and 

would scan the RNA until finding in the 5' UTR of ORF2 a cis-acting sequence where the 

ribosomes can reassembly and continue translation (Alisch et al. 2006). 
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1.2.4 Mechanism of L1 retrotransposition: from L1 transcription to L1 

integration 

The expansion of L1 in the genome happens through the continuous replication of 

functional progenies. The process of L1 genomic amplification is called retrotransposition 

and consists in three principal steps: L1 transcription, ORF1p and ORF2p translation, 

reverse transcription and integration (Figure 6). 

 

 

 

Figure 6. L1 life cycle.  

The retrotransposition of a L1 replication-competent element starts by the transcription of a 

bicistronic mRNA (A). The L1 RNA is exported to the cytoplasm (B). ORF1p and ORF2p 

proteins are synthesized, bind to their parental L1 RNA and form L1 ribonucleoprotein particles 

(RNP) (C). The L1 RNP is imported into the nucleus (D). Reverse transcription and integration 

occur at the genomic target site. (E). First, the L1 endonuclease (EN) activity nicks the target 

DNA (red arrowhead). (F). Then, the L1 reverse transcriptase (RT) initiates the reverse 

transcription of L1 RNA (black arrowhead) (G). The mechanisms involved in the final steps of 
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this process and the resolution of the integration are unresolved yet. Partial reverse transcription 

can lead to 5′-truncated L1 copies (Viollet, Monot, and Cristofari 2014). 

 

 

1. L1 transcription.  

As previously mentioned, the retrotransposition is initiated from the generation of a full-

length L1 mRNA from its internal promoter located in the 5’UTR. 

 

2. ORF1p and ORF2p translation.  

The L1 mRNA is transported in the cytoplasm and used by the host cellular translational 

machinery to synthesize L1 proteins. Once synthesized, the two ORFp proteins bind their 

own mRNA and form a ribonucleoprotein particle (RNP) which will be the machinery 

used for the generation and integration of a new L1 copy (Kulpa and Moran 2006; Martin 

1991). The association of the L1 proteins with their mRNA is known as cis-preference 

(Wei et al. 2001; Esnault, Maestre, and Heidmann 2000). How the two L1 proteins 

associate with their own mRNA was easier to study for ORF1p, which is most abundant. 

Some studies showed that ORF1p polymerizes at the translation site, facilitating the 

binding to their own mRNA (Callahan et al. 2012; Furano 2000). ORF2p which is present 

at much lower quantities was detectable bound to L1 RNA using an epitope and RNA 

tagging strategy of an engineered human L1 (Doucet et al. 2010). L1 RNPs accumulate in 

cytoplasmic foci closely related to stress granules (Doucet et al. 2010; Goodier et al. 

2007). 

More recently, it was shown that ORF2p preferentially associates with the 3’ poly A tract 

of L1 RNA in cis, but also with the polyA tract of Alu RNA and rarely other cellular 

mRNAs, for trans-mobilization. Moreover, the replacement of the L1 polyA by a triple 

helix from the long-non-coding RNA MALAT1, which substitute the polyA stabilizing 

function at the end of the RNA, abolishes L1 mobilization in cis, but not the trans-

mobilization of Alu sequences, reinforcing the notion that the polyA tract is necessary for 

ORF2p recruitment into the L1 RNP (Doucet, Wilusz, et al. 2015). 

 

3. Reverse transcription and integration 

The last step is taking place in the nucleus. The transport of the L1 RNP in the nucleus is 

not yet understood. In theory, it might require passing the nuclear pore complex (NPC) or 
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might happen during mitosis when the nuclear membrane is disrupted (Görlich and Kutay 

1999). However, two studies showed that L1 retrotransposition can take place 

independently of cell divisions (Kubo et al. 2006; Macia et al. 2017) even if it could be 

more efficient in dividing cells (Y. Xie et al. 2013). 

L1 integration occurs by target-primed reverse transcription (TPRT), a classical 

endonuclease dependent mechanism (Luan et al. 1993; Cost et al. 2002). TPRT is a 

process where the reverse transcription and integration are coupled. The endonuclease 

domain of ORF2p recognizes and cleaves DNA at degenerated consensus genomic 

sequences  5’-TTTT/A-3’, exposing a 3’ hydroxyl end (Luan et al. 1993; Q. Feng et al. 

1996; Jurka 1997; Eickbush and Jamburuthugoda 2008). Then, the 3’OH end serves as a 

primer for ORF2p reverse transcriptase activity, and L1 RNA as a template, to generate 

the first strand cDNA. The second strand, synthesized after a second EN-mediated 

cleavage on the other strand, could be synthesized by L1 RT activity, which also show 

DNA-dependent DNA-polymerase activity, or by a cellular DNA polymerase, completing 

the formation of this additional L1 copy at this new position. Because the two EN 

cleavage sites are staggered, the new L1 copy is flanked by target site duplications, of 

variable size from one insertion to another, but rarely longer than 20 bp. Importantly, 

most L1 insertions are 5’ truncated, being unable to retrotranspose again and only 5-6% 

are full-length (Gilbert, Lutz-Prigge, and Moran 2002; Gilbert et al. 2005). It is not 

known exactly why the new L1 insertions are often truncated. A connection with DNA-

repair mechanisms might be involved (Coufal et al. 2011; J. Suzuki et al. 2009).  

Also, some L1 insertions can exhibit a 5' inversion as a result of a mechanism called twin 

priming (Ostertag and Kazazian 2001). In this situation, one of the two single-strand 

overhangs anneals to the internal part of L1 RNA, while the other hybridizes to its 

poly(A) tail, both being used as primers. The two L1 cDNA are completed through 

microhomology-driven single-strand annealing. 

ORF2p is a critical component of the retrotransposition machinery. Mutations in the 

endonuclease domain invalidates the cleavage in the genomic DNA and consequently 

prevent L1 retrotransposition in most situations (see next paragraph) (Q. Feng et al. 1996; 

Moran et al. 1996). On the same note, mutations in the RT domain abolishes the reverse 

transcriptase activity and retrotransposition. 
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1.2.5 The endonuclease-independent pathway EN(i) provides an 

alternative mechanism of integration 

An alternative mechanism of retrotransposition is the endonuclease-independent pathway 

-EN(i). In this pathway, a 3’OH extremity at a dysfunctional telomere or at genomic 

DNA lesions is directly used as a primer for reverse transcription, without the need for an 

EN cut (Morrish et al. 2002; Morrish et al. 2007; Sen et al. 2007). EN(i) insertions are 

usually 3’truncated and lack TSDs and can be experimentally observed when using EN-

defective L1 elements. Interestingly, EN(i) is only observed in cells defective for NHEJ 

(non-homologous end-joining) and with impaired p53 function  (Morrish et al. 2002; 

Coufal et al. 2011). An important study (Morrish et al. 2007) pointed on similarities 

between the EN(i) and telomerase activity because both use a 3’OH for priming reverse 

transcription at DNA lesion or chromosome ends. It was proposed that EN(i) 

retrotransposition is an old RNA-mediated DNA repair mechanism, which was associated 

with non-LTR retrotransposons before they incorporated their endonuclease domain 

(Morrish et al. 2007). 

 

 

1.2.6 L1 is the main driver of retrotransposition in humans and impacts 

human health 

With almost half of the human genome derived from (retro)transposition, TEs are 

accepted now as an important evolutionary force which shapes our genome. Moreover, 

because they can insert into genes and provoke mutations, some of which can result in 

disease, TEs have the potential to be harmful to their hosts. Consistently, 124 cases of 

human genetic diseases caused by L1-mediated insertions have been reported (Hancks 

and Kazazian 2016), and include L1, Alu, SVA, and even processed pseudogenes 

insertions. The insertions cause a variety of diseases, such as cystic fibrosis, hemophilia, 

muscular dystrophy, autoimmune disorders, neurofibromatosis and occur mainly in 

coding exons, but also in introns and in promoters, disrupting gene function  (Hancks and 

Kazazian 2016). The number of disease-causing insertions is likely underestimated due to 

the inherent limits of the most common approaches currently used to identify causative 

mutations in genetic disease (exome sequencing). Historically, a screen of hemophilia A 

patients for pathogenic mutations in the Factor VIII gene (F8) on chromosome X revealed 
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two de novo germline L1 insertions causing the disease. This discovery, made in 1988, 

was the first evidence for ongoing L1 activity in humans. Most probably, the L1 

insertions in the F8 gene occurred in the gametes or in early embryogenesis, as the 

parents of the patients did not have the insertions (Kazazian et al. 1988). 

L1 retrotransposition takes place mainly in the germline and early embryo, being 

inherited by the next generation (Kano et al. 2009). It was approximated that a new L1 

integration takes place between 1/100  and 1/200 births (Ewing and Kazazian 2010; 

Cordaux and Batzer 2009) and most of these events results from the activity of the highly 

active and polymorphic L1s, named ‘hot L1s’ (Brouha et al. 2003). Each individual has, 

besides some of the reference L1 copies, hundreds of non-reference L1HS-Ta, which 

contribute to the diversity of the human genome (Beck et al. 2010; Mir, Philippe, and 

Cristofari 2015). 

 

The most recent advances in deep-sequencing technologies have revealed that L1HS-Ta 

is also able to mobilize also in somatic cells. The discovery of L1 activity in adult somatic 

tissues, as in brain (Muotri et al. 2010; Coufal et al. 2009; Evrony et al. 2012; Upton et al. 

2015) and epithelial somatic tumors (Miki et al. 1992; Iskow et al. 2010; Tubio et al. 

2014; Ewing et al. 2015; Solyom et al. 2012; Scott and Devine 2017), changed the 

misconception that L1 retrotransposes is silenced in adult somatic cells. Still, the 

detection of somatic insertions remains challenging due to the difficulty to isolate rare 

events within a large population of cells. However, the clonal expansion of tumor cells 

has rendered this search easier.  

 

Through their insertional activity, L1s can be agents of both evolution and disease. They 

can disrupt genes and provoke mutations, but they can also fulfill positive functions for 

the host. For example, when telomere function is disrupted, L1 preferentially inserts into 

the region of telomeres, protecting their function (Morrish et al. 2007). Moreover, 

telomerases likely derive from ancient reverse transcriptases encoded by retrotransposons 

(Belfort, Curcio, and Lue 2011). 
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 Somatic L1 insertions are a characteristic of human epithelial cancers 

The first somatic L1 insertion was identified in colorectal cancer (and by definition was 

absent from the adjacent normal colon tissue), suggesting that it occurred during the 

tumorigenesis (Miki et al. 1992). This insertion disrupted the last exon of the APC tumor 

supressor gene, and constitutes a driver mutation in this context. However, it remained 

difficult to determine the developmental timing of a retrotransposition event (Richardson 

et al. 2015). Since then, next-generation sequencing brought a tremendous contribution to 

L1 discovery, enabling the identification of thousands of somatic L1 insertions in all 

types of human epithelial cancer (Iskow 2010; Helman 2012) (E. Lee et al. 2012; Scott 

and Devine 2017; Solyom et al. 2012; Rodić et al. 2014; Streva et al. 2015). Yet, the 

overall contribution of L1 mutagenic activity, both as a source of driver mutations, and as 

contributor of cancer genome instability, remains to be defined. 

A clear example has been recently described in colon cancer by Scott Devine's laboratory. 

Indeed, they identified an L1 insertion in the same exon of the APC tumor suppressor 

gene in which in 1992 Miki and colleagues found the first somatic L1 insertion (Scott et 

al. 2016). This insertion occurred at a different position in the exon, spanned 1,4 kb and is 

clinically significant, serving as an early driver mutation in the development of the tumor, 

as suggested by promoter methylation and RNA-sequencing analysis which revealed that 

the source element escaped silencing in the adjacent, normal tissue (Scott et al. 2016). 

L1, Alu and SVA insertions are occasionally drivers of genetic diseases, but in cancers 

the mechanisms which keep under control the mobile DNA are dysregulated. This allows 

L1 to be expressed and be a dynamic component of cancer genomes (Burns 2017). 

The silencing of TEs results also from DNA methylation and L1 promoter is typically 

methylated (Yoder, Walsh, and Bestor 1997). Consistently, the promoter of some L1Hs 

copies can become hypomethylated (Alves, Tatro, and Fanning 1996) and this correlates 

with increased expression and retrotransposition (Shukla et al. 2013). 

L1 promoter hypomethylation has been associated with genomic instability (Daskalos et 

al. 2009), poor outcomes in colon cancer (Ogino et al. 2008) and oesophageal squamous 

cell carcinoma, poor prognosis in non-small-cell lung cancer (K. Saito et al. 2010), 

decreased survival and drug resistance in young patients with breast cancer (van Hoesel et 

al. 2012), recurrence of hepatocellular carcinoma after resection and poor survival in 

ovarian cancer (reviewed in (Burns 2017)). 
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 L1 ORF1p overexpression is a hallmark of human cancers 

L1 ORF1p protein is overexpressed in human cancers and constitutes a hallmark, being 

detected by immunohistochemistry in half of all epithelial tumors (Rodić et al. 2014). 

Detection of ORF2p is rendered more difficult due to its very low level of expression and 

the lack of properly validated antibodies. However, immunostaining with a recently 

developed antibody against ORF2p (De Luca et al. 2016) suggests that it could be 

expressed in most intestinal adenomas, colon, lung and prostate adenocarcinomas and 

breast carcinoma (De Luca et al. 2016). Thus, ORF1p and ORF2p could be used as 

biomarkers for screening or predicting clinical outcomes, even if more investigation is 

needed to validate their clinical relevance (Burns 2017). 
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1.3 Host-L1 interaction and cohabitation. Many LINEs of defense 

restrict retrotransposition 

The mutagenic potential of retrotransposons is a threat to genomic stability both in the 

germ line and in somatic cells, and therefore should be limited and strictly controlled. 

Hence the way retrotransposons and their hosts co-evolved reflects their intimate 

relationships. The maintenance of retrotransposon sequences in genomes primarily relies 

on their selfish ability to proliferate. However, retrotransposons derived-sequences are 

sometimes exapted by the host, providing new cellular functions, such as the rewiring of 

host gene regulatory networks. 

 

The classification of L1 regulators can follow diverse styles, from cellular localization, to 

factor function or how it acts on L1 retrotransposition (Figure 7). 

Although, I will give a broad overview of the most studied L1 regulators, I will 

particularly detail the known regulators of retrotransposition acting at the latest stages of 

replication, once the L1 RNP is formed and has entered into the nucleus. 

 

 

Figure 7. Overview of the cellular factors that impact L1 retrotransposition cycle at 

different steps. (legend on the next page) 
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The cellular factors with positive effects on L1 mobility are shown in white, the factors that 

reduce L1 activity are in blue and the factors with dual effect (both positive and negative) are 

shown in white (adapted from (Ade et al. 2017)). 

 

 

1.3.1 L1 self-control 

As mentioned before, most L1s become dead at the moment of insertion, through 5’ 

truncations, inversions and internal deletions. The ones which successfully insert in their 

full-length form, might subsequently suffer mutations and DNA recombinations (Ostertag 

and Kazazian 2001). Parts of ORFs or 5’UTR are prone to elimination by cryptic splice 

sites (Belancio, Hedges, and Deininger 2008). L1 contains a weak polyadenylation tail 

and most L1 transcripts are prematurely truncated due to cryptic polyadenylation signals 

along the A-rich L1 sequence (Perepelitsa-Belancio and Deininger 2003). Also, L1 is 

poorly expressed because of its own inadequate transcription elongation (Han and Boeke 

2004). Post-translational modifications, as the required phosphorylation of ORF1p, add to 

the regulation of retrotransposition (Cook, Jones, and Furano 2015). L1 body contains 

many binding sites for transcription factors as p53, YY1, RUNX3, SOX, as previously 

mentioned and their mutagenesis affects retrotransposition (Minakami et al. 1992; Becker 

et al. 1993; C. R. Harris et al. 2009). 

 

 

1.3.2 Antiviral pathways used against L1 retrotransposon 

To alleviate the effect of L1 insertions on genome, the cell is using diverse lines of 

defense. Many are also antiviral mechanisms, used against both viruses and 

retrotransposons. These act as a first protective barrier for genome safety and the way 

they function is mainly based on metabolizing nucleic acids. Also, most of the times they 

are sensed by the immune system and induced by type I interferons (Goodier 2016). 

 

 MOV10 helicase binds L1 RNA and reduces its accumulation 

Moloney leukemia virus 10 (MOV10) is an ATP-dependent RNA helicase with active 

role in the RNA interference pathway. It was identified as an antiviral protein, preventing 

mice from being infected by the Moloney leukemia virus (Mooslehner et al. 1991). It was 

also shown to reduce infectivity of lentiviruses, such as HIV-1 (Furtak et al. 2010; 
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Xiaojun Wang et al. 2010; Huang et al. 2015). Several studies have also identified 

MOV10 as a negative regulator of non-LTR retrotransposons.  

First, Goodier and colleagues identified MOV10 as being associated with L1 RNPs by 

mass spectrometry analyses, using samples from 293T cells transiently expressing an 

engineered retrotransposition-competent L1 element in which ORF1p was epitope-tagged 

(Goodier, Cheung, and Kazazian 2012). This association is RNA dependent, being lost 

after RNAase treatment of the immunoprecipitate, suggesting that it affects L1 RNA 

metabolism. Moreover, MOV10 and the L1 RNP colocalize in cytoplasmic foci, related 

to stress granules, where L1 RNPs were previously shown to accumulate (Doucet et al. 

2010; Goodier et al. 2010; Goodier, Cheung, and Kazazian 2012). In the proposed 

hypothesis, MOV10 recruits L1 RNPs to the stress granules where they might be 

degraded by small RNA pathways (Goodier, Cheung, and Kazazian 2012). 

Other mechanisms could be involved, as RNAi silencing, given the known association 

between MOV10 and RISC (Meister et al. 2005). Consistent with both possibilities, 

knockdown of endogenous MOV10 increases L1 RNA levels and L1 retrotransposition, 

while its overexpression reduces L1 RNA levels and inhibits retrotransposition, which 

makes MOV10 a potent inhibitor of retrotransposition (Goodier, Cheung, and Kazazian 

2012; X. Li et al. 2013). Similarly, MOV10 depletion strongly  increases SVA and Alu 

retrotransposition, which relies on the L1 machinery. 

 

 Zinc finger Antiviral Protein restricts L1 in cytoplasmic stress granules  

Another antiviral factor restricting L1 is the Zinc finger Antiviral Protein (ZAP) (Goodier 

et al. 2015; J. B. Moldovan and Moran 2015). 

Goodier et al. identified ZAP as a potential LINE-1 inhibitor by screening interferon 

stimulated antiviral proteins for their potential effect in a cellular L1 retrotransposition 

assay (Goodier et al. 2015). In an independent study, published at the same time,  

Moldovan and Moran performed affinity chromatography and  mass spectrometry 

experiments to identify cellular partners of L1 ORF1p, also leading to the identification 

of ZAP (J. B. Moldovan and Moran 2015). Both studies showed that ZAP inhibits human 

L1, but acts on other non-LTR elements as well, such as mouse L1, zebrafish LINE-2 and 

Alu. Making use of biochemical, genetic and fluorescence microscopy approaches, both 

they showed that ZAP colocalizes with ORF1p in stress granules, associates with L1 RNP 

in an RNA-dependent manner, and restricts L1 mobility. 
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 TREX1-mediated L1 repression  

To provide protection against virus, host cells can detect foreign nucleic acids and 

activate type I interferon (IFN) antiviral mechanisms which will stop the infection (Stark 

et al. 1998). Among the factors induced by this antiviral response, three-prime repair 

exonuclease 1 (TREX1) functions in a cytosolic antiviral pathway that detects DNA, 

named IFN-stimulatory DNA (ISD) response (Stetson et al. 2008; Okabe et al. 2005; Ishii 

et al. 2006). TREX1 is one of the most abundant 3’ to 5’ DNA exonucleases in cells and 

it depletes both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) 

(Lindahl, Gally, and Edelman 1969; Höss et al. 1999; Mazur 2001). Releasing digested 

ssDNA/dsDNA from the nucleus might prevent TREX1-mediated immune activation. If 

depletion of the DNA fails, an autoimmune response will be activated (Grieves et al. 

2015). Mutations which affect TREX1 enzymatic activity, as well as mutations in 

SAMHD1 and RNASEH2 genes,  are associated with Aicardi-Goutieres syndrome, a 

neurodegenerative disease present in infancy. This disease is characterized by 

autoimmunity activated by the presence of nucleic acids which typically are eliminated 

from the cells (Crow et al. 2006). The syndrom mimics a congenital viral infection, 

similar with cytomegalovirus or rubella virus (Crow et al. 2003) with no pathogens 

detected in patients. 

In the search of finding TREX1 substrates that could trigger autoimmunity, it was shown 

that in TREX1 deficient heart cells, single-stranded DNA derived from L1 accumulates. 

The detected ssDNA mainly maps to the 3’ end of the consensus L1 sequence, which can 

reflect the abundance of defective, 5’-truncated L1 elements in the genome (Ostertag and 

Kazazian 2001; Stetson et al. 2008). The premise was that TREX1 is using its 

exonuclease activity to inhibit L1 by digesting the reverse-transcribed cDNA, given that 

in TREX1 knockout cells activity of L1 is upregulated (Stetson et al. 2008). 

However, the use of  D200N TREX1 catalytic mutant, but exonucleolytically active, did 

not have an effect on L1 (Stetson et al. 2008). This can suggest that catalytic mutants can 

act as dominant negative and inhibit endogenous TREX1, or can reflect a different 

working model. 

Recently, another study reported an exonuclease-independent implication of TREX1 in 

preventing DNA damage responses generated by L1 retrotransposons (P. Li et al. 2017). 

TREX1 reduces ORF1p levels through a post-translational mechanism: it binds ORF1p 
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and target it to proteasome. Since ORF1p is an essential component of L1 RNPs, TREX1 

could suppress L1 by disrupting RNP formation. 

TREX1 is localized in the endoplasmic reticulum (ER) (Stetson et al. 2008). Thus 

understanding how ORF1p reach TREX1 remains unknown. It was proposed that TREX1 

localized to ER might act as guardian and digest L1 DNA at the nucleus exit before it 

activates cytosolic immune response (P. Li et al. 2017). 

Interestingly, reverse transcriptase inhibitor AZT treatment had no effect on Trex1 

deficient mice. This could be due to the presence in mice of different RT enzymes in the 

genome, not all sensitive to AZT. A combination of different reverse transcriptase 

inhibitors could be more effective. In a different study it was shown how two clinically 

approved RT inhibitors used against HIV, are efficient against MLV and showed 

ameliorated myocarditis in Trex1-knockout mice (Beck-Engeser, Eilat, and Wabl 2011). 

 

 SAMHD1 reduces cellular pool of dNTPs 

As mentioned before, mutations in TREX1, SAMHD1 and RNASEH2 genes are associated 

with the Aicardi-Goutieres syndrome disease. Remarkably, SAMHD1 and TREX1 were 

both found to repress L1 retrotransposition, but this was not explored for RNaseH2 yet. 

Of note, SAMHD1 is a nuclear protein, but because of its antiviral functions and 

association with TREX1 and the Aicardi-Goutieres syndrome disease, will be presented 

in this section and not in the next one, which focuses on cellular factors acting on L1 in 

the nucleus. 

 

SAMHD1, SAM domain and HD domain containing protein 1 (SAMHD1)  is a nuclear 

factor, initially identified as human homologue of mouse IFN-γ induced protein in 

dendritic cells (N. Li, Zhang, and Cao 2000). Its role in immunity was then reconfirmed 

through studies which show that Samhd1 is upregulated in viral infections and can restrict 

retroviruses (Lahouassa et al. 2012). For example, it inhibits HIV and herpes simplex 

virus 1 replication, by interfering with the synthesis of viral DNA by hydrolysis of 

triphosphate deoxynucleoside at the a-phosphate position (Goldstone et al. 2011; Kim et 

al. 2012; Powell et al. 2011). More precisely,  SAMHD1 rapidly and specifically 

hydrolyses dGTP and has no nuclease activity against ssDNA, dsDNA or RNA, being a 

deoxyguanosine triphosphate triphosphohydrolase (Goldstone et al. 2011). As a result of 

hydrolysis, dGTP is converted to guanosine and inorganic triphosphate. Importantly, 
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SAMHD1 can also hydrolyse other deoxynucleotides, but only upon activation by 

hydrolysed dGTP, leading to the global depletion of dNTP cellular pool (Goldstone et al. 

2011). SAMHD1 is localized in the nucleus (Rice et al. 2009), mainly expressed in 

myeloid lineages - dendritic cells, monocytes and macrophages -, but is found at basal 

levels expressed in most tissues (Laguette et al. 2011). 

In their study, Goldstone and colleagues, show that SAMHD1 degrades dNTP pools. 

Together SAMHD1 and TREX1 might cooperate to control synthesis and degrade 

cytosolic nucleic acids derived from endogenous retroelements. The loss of function of 

TREX1 leads to accumulation of ssDNA which might be the cause of the autoimmunity 

observed in AGS (Stetson et al. 2008; Thomas et al. 2017). In a similar way, a functional 

SAMHD1 represses reverse transcription by limiting dNTPs pools, but a loss of function 

will result in accumulation of cytosolic DNA and trigger the inappropriate interferon 

response reported in ASG (Goldstone et al. 2011) . 

 

Zhao 2013 shows for the first time that SAMHD1 represses endogenous retroelements, 

notably L1. SAMHD1 overexpression leads to reduced ORF2p expression and L1 

reverse-transcription in purified L1 RNP is inhibited in presence of SAMHD1, suggesting 

that ORF2p might be the primary target of this host factor. SAMHD1 also affects ORF2p-

dependent trans-mobilization of Alu and SVA  elements. It should be underlined that the 

repression of retroviruses and retrotransposons might use different pathways, because 

SAMHD1 represses HIV only in nondividing cells, but can inhibit L1 in dividing cells.  

 

SAMHD1	is	a	nuclear	protein,	but	triggers	RNP	sequestration	in	cytoplasmic	stress	

granules	

Another study reported an alternative mechanism by which SAMHD1 can inhibit 

retrotransposition (S. Hu et al. 2015). SAMHD1 stimulates stress granules formation 

where L1 RNP will be sequestered. This might indicate that SAMHD1 acts on multiple 

and different cellular compartments and pathways to inhibit as much as possible, many 

pathogens. It is not clearly understood how the development of cytoplasmic stress 

granules could be intensified by SAMHD1, a nuclear protein. One hypothesis proposed 

that fine-tuning the phosphorylation of eIF4a and/or interaction of eIF4G and eIF4A 

could be involved. As mentioned before, L1 was found in other studies associated with 
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cytoplasmic foci colocalizing with stress granules (Goodier et al. 2007; Goodier et al. 

2010; Doucet et al. 2010). Depletion of stress granules components such as TIA1 or 

G3BP1 abrogates the ability of SAMHD1 to inhibit L1 retrotransposition, consistent with 

a role of stress granules in regulating L1 mobilization. 

 

 RNase L cleaves L1 RNA and blocks RNP formation 

RNase L is known for inhibiting viral replication through cleavage of viral RNA, being 

part of an antiviral system, regulated by interferon. OAS (oligoadenylate (2-5A) 

synthetase) genes encode IFN inducible enzymes which act as response to viral dsRNAs 

(Silverman 2007). When activated, OAS will modulate the switch from dormant RNaseL 

to its enzymatically active dimer (Dong and Silverman 1995). Rnase L cuts single-

stranded viral RNA, repressing viral amplification (Silverman 2007).  

The retrotransposon restriction activity of RNaseL was revealed in human cultured cells 

where RNase L can suppress retrotransposition of L1, but also of IAP (A. Zhang et al. 

2014). The catalytically inactive mutant does not have any effect on L1 or IAP, and the 

reduction of endogenous RNase L through siRNA results in almost a 2-fold augmentation 

of L1 retrotransposition. The data suggests that RNase L cleaves L1 RNA post-

transcriptionallly, leading to a decrease in expression of the two L1 proteins. No 

colocalization was observed between RNase L and L1 cytoplasmic foci, which is not 

surprising given that L1 RNA degradation could eliminate L1 RNP (A. Zhang et al. 

2014). 

 

 The APOBEC proteins cytidine-deaminate L1 DNA 

The APOBEC proteins (Apolipoprotein B mRNA editing enzme, catalytic polypeptide-

like) are DNA cytosine deaminases which accomplish diverse roles in immunity. The 

APOBEC3 subfamily encodes seven proteins in humans (A, B, C, DE, F, G and H), 

which inhibit the replication of diverse set of retroviruses (Chiu and Greene 2008; Jarmuz 

et al. 2002; Sheehy et al. 2002; Alce and Popik 2004; Bishop et al. 2008). One way these 

proteins act is by making mutations in their target single-stranded DNA through 

deamination of cytosines and their conversion into uracils by the cytidine deaminase 

(CDA) domains.  
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The discovery of APOBEC3G (A3G) as a specific antagonist of HIV-1 Vif, opened the 

way to a new class of antiviral drugs (Bishop et al. 2008) and several studies focused on 

revealing a possible effect of APOBEC proteins on retrotransposons. 

The ability of A3 proteins to repress L1 was shown by studies of A3 proteins 

overexpression and knockdown in cultured cells. Some studies suggested that L1 

inhibition can be a feature of either some A3 members (H. Chen et al. 2006; Muckenfuss 

et al. 2006; Bogerd et al. 2006) or of the entire subfamily (Niewiadomska et al. 2007; 

Kinomoto et al. 2007). 

So far it was shown that APOBEC3A (A3A), A3B and A3F seem to be the most potent to 

restrict L1 retrotransposition. 

 

• A3A	is	a	nuclear	protein	and	deaminates	L1	RNA	during	TPRT	

It was suggested that deaminase activity is not involved in L1 inhibition by A3A, because 

G to A mutation were not found in L1 sequence to indicate deamination (Muckenfuss et 

al. 2006). However, more recently it appears that A3A inhibits L1 retrotransposition 

through deamination of transiently exposed single-strand L1 DNA intermediates during 

TPRT (Richardson et al. 2014). Still, these mutations can be repaired by the cellular 

apurinic/apyrimidinic endonuclease (APE) and uracil DNA glycosylase (UNG) (Krokan, 

Drabløs, and Slupphaug 2002). Inhibition of UNG restored L1 activity in presence of 

A3A. De novo L1 insertions in presence of A3A and inhibitors of UNG, showed that the 

insertions have mutations generated by A3A deamination. Thus, after A3A deamination, 

the mutations are detected and repaired by UNG and L1 is integrated without containing 

the scars of A3A deamination (Richardson et al. 2014). 

 

• A3B	restricts	L1	in	a	broad	range	of	cell	types	

A3B is also a nuclear protein (Bogerd et al. 2006) and can restrict engineered L1 

retrotransposition. shRNA-mediated knockdown of endogenous A3B increases L1 

retrotransposition efficiency in HeLa, hESCs and iPSCs cells (Wissing et al. 2011; 

Marchetto et al. 2013). Heritable retrotransposition events might be the target of A3B 

retrotransposition restriction, since it is highly expressed in the early embryo where 

heritable integrations can also occur (van den Hurk et al. 2007; Wissing et al. 2011; 

Richardson et al. 2014). 
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• A3C	interaction	with	ORF1p	mediates	L1	restriction	in	a	deaminase-independent	

manner	

A3C is the most abundantly expressed of all A3 proteins in many cell types. Their 

antiviral role against viruses as HIV and HBV involves cytidine deamination function, as 

indicated by the mutations found in these viral genomes (Henry et al. 2009). 

However, as for L1 restriction, A3C does not require a catalytically active CDA domain. 

The CDA domain of A3C contains an RNA-binding pocket, essential for L1 RNA 

binding and L1 repression. Also, A3C dimerization is necessary for L1 inhibition. It was 

suggested that the complex formation between L1 ORF1p and A3C would mediate the 

transport of L1 RNPs into stress granules for degradation. 

 

• A3G	oligomerizases	to	restrict	L1	by	a	different	mechanism	than	cytidine	

deaminase	

Several studies of A3 proteins on L1 retrotransposition, reported that A3G does not 

inhibit L1 (Muckenfuss et al. 2006; Stenglein and Harris 2006; H. Chen et al. 2006). 

However, other studies showed that A3G is also inhibiting L1, but probably by a different 

mechanism than cytidine deamination given that sequence analysis did not show any 

DNA deamination effect of hA3G on de novo L1 insertions (Kinomoto et al. 2007). Or 

maybe the mechanism is the same but the rapid complementary degradation of the 

mutated L1 transcripts by other cellular enzymes makes them undetectable (Kinomoto et 

al. 2007; Bogerd et al. 2006). Moreover, A3G oligomerization and amino acids in 

positions 24–28 are very important for its inhibitory activity against L1 and Alu 

retrotransposons (Koyama et al. 2013). 

 

A3F has a cytoplasmic expression as A3G and it was also reported to act on L1 

repression (Muckenfuss et al. 2006; Stenglein and Harris 2006). A3F is highly expressed 

in testes, a profile which might implicate A3F as a male germ cell-specific barrier for L1 

retrotransposition (Stenglein and Harris 2006). 

A3DE showed very little effect on L1 mobility (Stenglein	and	Harris	2006). 
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The expression pattern of A3 proteins seems to differ from one cell line to another and to 

differentially repress L1 retrotransposition. It is not very clear if the subcellular 

distribution of A3 proteins is playing a role in L1 inhibition, since both cytosolic and 

nuclear A3 can suppress L1 retrotransposition. However, A3 cytoplasmic localization 

might be connected to their antiviral activity (Kinomoto et al. 2007; Lackey et al. 2012; 

Stenglein, Matsuo, and Harris 2008; Pak et al. 2011). A3A, A3C, A3H are small proteins 

at 23kDa, but A3DE A3F A3G are 46 kDA and larger than the limit size to passively 

diffuse into the nucleus (Görlich and Kutay 1999). For the cytoplasmic A3s inhibiting L1 

replication at nuclear steps of its life cycle, the proposed explanation was that A3 would 

associate with the L1 RNA in the cytosol and would be carried with the L1 RNP to the 

nucleus, blocking the action of ORF2p and/or the TPRT process (Bogerd et al. 2006; 

Kinomoto et al. 2007). 

 

 

1.3.3 Cellular factors acting on L1 in the nucleus 

Beside the cellular antiviral factors that also repress L1 mobilization, a number of cellular 

factors function as negative or positive regulators of L1 retrotransposon, in particular in 

the nucleus after L1 RNP entry (Figure 7).  

 

 PCNA binds L1 ORF2p through a canonical PIP box and can modulate L1 

life cycle 

Proliferating cell nuclear antigen (PCNA) is a cofactor of cellular DNA polymerases, and 

is important for genomic stability (G.-L. L. Moldovan, Pfander, and Jentsch 2007). 

PCNA increases the processivity of DNA polymerases and offers in the same time a 

moving platform where diverse factors can act during replication. Proteins interacting 

with PCNA contain a PCNA-interacting peptide (PIP) box (Xu et al. 2001; G.-L. L. 

Moldovan, Pfander, and Jentsch 2007). PCNA is a member of the sliding clamp protein 

family. It forms a ring which encircles DNA and can slide on both directions freely. 

PCNA monomer is made from a helices and b strands forming similar globular domains 

at N terminal and C terminal extremities, linked by an connecting loop. Three molecules 

of PCNA connect their heads and tails to form the ring complex, with positively charged 

a helices facing DNA and external surface made by b sheets (Krishna et al. 1994; G.-L. 
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L. Moldovan, Pfander, and Jentsch 2007). Once PCNA is loaded around DNA, it tethers 

polymerases to DNA, preventing their dissociation from the DNA template. 

Interestingly, PCNA was identified as an interactor of L1 ORF2p in a proteomic study of 

L1 RNPs (Taylor et al. 2013). Moreover a conserved PIP box was found between the EN 

and RT domains of ORF2p. Four amino-acids within the PIP domain are conserved in the 

ORF2p sequence in many species. Co-purification of ORF2p and PCNA is abolished 

when the conserved residues are mutated. The same mutations decrease L1 

retrotransposition efficiency. Consistently, shRNA mediated knockdown of PCNA 

reduces L1 activity. Interestingly, intact EN and RT ORF2p activities are required for the 

association of ORF2p with PCNA, suggesting that this process takes place only after EN 

cleavage and initiation of reverse transcription (Taylor et al. 2013). Collectively, the 

results highlight the importance of the interaction between ORF2p and PCNA through 

PIP box for L1 retrotransposition.  

Beside a possible ORF2p processivity factor, PCNA could help recruiting repair 

enzymes, such as DNA ligases (Ulrich 2011). PCNA also recruits RNase H2 to degrade 

RNA/DNA hybrids formed during DNA replication (RNA primers, misincorporated 

rNTPs) (Bubeck et al. 2011). Noteworthy, mammalian L1 does not code for such RNase 

H activity as many other retroelements (Xiong and Eickbush 1990), although it could be 

important to release the first strand cDNA to allow second strand synthesis. Thus, it is 

tempting to speculate that PCNA could recruit RNase H2 at the site of TPRT to achieve 

this goal. 

 

 UPF1 is a dual regulator of L1 retrotransposon 

UPF1 co-purifies with both ORF1p and ORF2p, but the L1-UPF1 interaction is sensitive 

to RNase treatment. UPF1 is key player of the nonsense-mediated decay (NMD) 

pathway, known to recognize and scan mRNAs with premature termination codons and 

target them for degradation by other factors (Shigeoka et al. 2012). Since the L1 mRNA 

is bicistronic and intronless , it represents a very good potential UPF1 target which could 

recognize the three stop codons in the inter-ORF region (Hogg and Goff 2010). Using 

different parts of L1 ORFs, interORF and 3’UTR, it was showed that the ORF2 sequence 

or protein is required for L1-UPF1 interaction. Interestingly, the silencing of UPF1 

increases L1 mRNA levels, but decreases retrotransposition. This has led to the proposal 

that UPF1 has a dual role in L1 regulation. On the one hand, Upf1 is a positive regulator 
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of L1 activity in RNP function and on the other hand, it acts as a negative regulator 

repressing retrotransposition. 

 

 DNA repair pathways and L1 endonuclease-mediated DNA breaks 

Target-primed reverse transcription (TPRT), the current model of non-LTR 

retrotransposon reverse transcription, involves nicks made by the endonuclease domain of 

ORF2p, in the genomic DNA at the target site of insertion. These cleavages could be 

sensed as DNA lesions or double-strand breaks (DSB) which threaten the stability of the 

genome and activate DNA repair pathways, such as non-homologous end-joining (NHEJ) 

(Gasior et al. 2006). It was reported also that L1 integration process shows to be quite 

inefficient because the DSB induced during TPRT exceeds the final insertions rate 

(Gasior et al. 2006). 

H2AX’s phosphorylated form (γ-H2AX) localizes to chromatin and forms foci as a mark 

for double-strand breaks resulted upon L1 expression and activation of its endonuclease 

which generates the DSB-like intermediate of TPRT. Human L1 overexpression in HeLa 

cells leads to genomic DSBs and ORF2p mutation in its endonuclease domain results in 

loss of H2AX foci, in line with the critical role played by the EN for retrotransposition 

(Moran et al. 1996; Gasior et al. 2006). The γ-H2AX immunolocalization of DSB and 

their dissappereance during a time-course analysis points toward a DNA repair response 

involvement. 

 

The role of NHEJ is to preserve the integrity of the chromosomes and consists in the 

ligation of two broken ends. This process results in DNA junctions with little or no 

homology, often creating small modifications as deletions or insertions (Mehta and Haber 

2014; Chiruvella, Liang, and Wilson 2013).  

The canonical NHEJ mechanism can religate DNA fragments ending with a 3’-overhang 

using mainly Ku proteins (heterodimer of two proteins- Ku70 and Ku80), DNA ligase IV, 

the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and Xrcc4 (Walker, 

Corpina, and Goldberg 2001; Chiruvella, Liang, and Wilson 2013; Spagnolo et al. 2006). 

Ku heterodimer binds to the DNA break where DNA-PKcs is recruited through an 

interaction with Ku80 (Hammel et al. 2010; S. M. Bennett et al. 2012). DNA-PKcs binds 

to the DNA ends and keeps them in proximity (Hammarsten, DeFazio, and Chu 2000). 

The activity of DNA-PK implies self-phosphorylation and phosphorylation and 
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recruitment of other NHEJ proteins (Spagnolo et al. 2006; Douglas et al. 2005; Yu et al. 

2008). DNA ligase IV in a complex with Xrrc4 is responsible for the ligation of the 

broken ends (Grawunder et al. 1998). Several other proteins are implicated in NHEJ, as 

Artemis which will process the incompatible broken ends to make them suitable for 

ligation. Importanly, the DNA breaks are still repaired by alternative NHEJ methods 

when the activity of canonical key components as Ku or DNA Ligase IV is deficient (Yan 

et al. 2007). 

 

The role of DNA repair mechanisms in L1 retrotransposition is not clearly solved, 

different studies reporting contradictory results. DNA repair mediated by 

retrotransposition independent of its endonuclease activity has been reported in Chinese 

Hamster Ovary (CHO) cells deficient in NHEJ pathway (Morrish et al. 2002).  Consistent 

with this, two independent studies brought arguments for ATM (Ataxia-Telangiectasia 

Mutated), a key DNA repair protein in NHEJ, helping the successful integration of L1 

(Gasior et al. 2006; Wallace et al. 2013). ATM is a serine/threonine protein kinase 

activated by dsDNA breaks (Lempiäinen and Halazonetis 2009; Chiruvella, Liang, and 

Wilson 2013).  

ATM KO cells inhibited L1 retrotransposition leading the two possible roles for L1 

dependent of ATM: ATM is part of NHEJ repair pathway and might be involved in the 

microhomology process during L1 DNA synthesis (Gasior et al. 2006; Zingler et al. 

2005) or ATM might play a role in phosphorylation of ORF1p and ORF2p, modification 

needed for DNA cleavage or pre/post L1 insertion (Gasior et al. 2006). 

 

In another study, using systems of knockout for different components of NHEJ (Ku70, 

Artemis, DNA ligase IV)) in chicken cells, Suzuki and colleagues studied the effect on 

retrotransposition of two LINEs: human L1 and Zfl2-2 zebrafish element. The results 

show an opposition between DNA repair and retrotransposition. Zfl2-2 retrotransposition 

is decreasing in a deficient NHEJ system, suggesting an involvement of the canonical 

NHEJ proteins. However, the characterization of Zfl2-2 insertions showed that the 

absence of NHEJ factors allowed more Zfl2-2 full-length insertions to occur compared 

with the restricted full-length insertions in a functional NHEJ system. An explanation 

could be offered by the prior processing of the 5’ overhang (formed by second-strand 

cleavage) by Artemis protein, followed by ligation to the 5’ end of Zfl2-2. Truncated 
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insertions have less potential to undergo subsequent amplification, whereas longer 

insertions are generated by more active retrotransposon  (Farley, Luning Prak, and 

Kazazian 2004).  

In NHEJ deficient cells, Zfl2-2 insertions were found to truncate the target site by 

generation of long chromosomal DNA deletions. Knowing that Ku proteins defend from 

exonucleolytic degradation, they might assure that no genomic information is lost during 

Zfl2-2 retrotransposition (J. Suzuki et al. 2009). 

Also, when NHEJ disrupted, even if Zfl2-2 retrotransposition is decreased, is not 

completely abolished, which might imply the role of an alternative NHEJ pathway. This 

alternative could be used to connect the end of the target genomic DNA and the end of 

the retrotransposon at the 5’ junction, via microhomology, independent of NHEJ 

canonical factors (J. Suzuki et al. 2009; Zingler et al. 2005). 

Regarding Zfl2-2 element, the hypothesis of the study published by Suzuki and 

colleagues, is that NHEJ proteins might be recruited to the retrotransposon integration site 

for the repair of the endonuclease induced DSB, but they are used for the integration of 

Zfl2-2 and to protect the genomic target site when retrotransposons integrate. 

The deficiencies of NHEJ pathway had an effect on human L1 also, by decreasing 

retrotransposition. However, the results show different degrees of retrotransposition, 

which was much more decreased for Zfl2-2 than for human. This suggests that each LINE 

has distinct variations in their mechanism of retrotransposition, depending more or less of 

NHEJ or other repair pathways, host specific L1 (J. Suzuki et al. 2009). 

 

a)	Ataxia	telangiectasia	modulates	L1	retrotransposition	in	the	brain	

Mutations of ATM cause ataxia telangiectasia, a progressive neurodegenerative disease 

associated with a compromised immune system, infertility and predisposition to cancer 

(Shiloh 2001; Barlow et al. 1996). 

ATM showed a supportive function for  retrotransposition when knockout of ATM or 

reduced ATM protein levels by use of human papillomavirus E6 oncoprotein, reduced 

retrotransposition levels (Gasior et al. 2006; Wallace et al. 2013). Also, NHEJ deficient 

chicken cells show decreased retrotransposition of both human L1 and Zfl2-2 element (J. 

Suzuki et al. 2009) . 

Contradictory with these studies, Coufal and colleagues argumented that ATM-deficient  

cells and the brains of Atm KO mice showed consistent two to four fold increased activity 



 

The world of mobile genetic elements 

 

 45 

of an engineered human L1, containing enhanced green fluorescent protein EGFP as 

reporter.  

ATM deficiency effect on L1 retrotransposition was tested in hESC, neuronal precursor 

cells, cancer cells (HCT116) and showed that L1 insertions might be longer in ATM-

deficient than in ATM-proficient cells, consistent with the study of Suzuki in chicken 

cells. 

Moreover post-mortem brain analysis of patients with ataxia telangiectasia showed 

increased L1 copies in AT neurons compared with controls detected by PCR (Coufal et 

al. 2011). However, a recognized caveat of the study is the lack of estimation of changes 

in L1 copy number on other somatic tissues from AT patients. 

It was highlighted that the different experimental approaches in the study of Gasior and 

Coufal might explain the contrast between their results. Gasior used fibroblast cells and 

G418 antibiotic for L1 cellular retrotransposition assay and observed decreased resistant-

foci formation. The low levels of retrotransposition in fibroblast might be also a result of 

the sensitivity of these cells to experimental manipulation, normal decreased 

retrotransposition in this cell type, as well as toxicity caused by G418 antibiotic (Kubo et 

al. 2006; Goodier 2016; Coufal et al. 2011; Gasior et al. 2006; Thomas, Paquola, and 

Muotri 2012). Noteworthy, GFP can also cause cell toxicity and affect the results of the 

experiments (H. S. Liu et al. 1999; Goodier 2016). 

 

b)	ERCC1/XPF	endonuclease	interferes	with	the	integration	of	the	newly	formed	cDNA	

Another DNA repair pathway found to limit L1 retrotratransposition is the ERCC1/XPF 

heterodimer. XPF is known also as ERCC4, and the ERRC1/XPF complex is involved in 

DNA repair, processing 5’ DNA of genomic lesions (Gillet and Schärer 2006; Sijbers et 

al. 1996). 

As already mentioned, L1 TPRT involves one nick in the target DNA to create a primer 

for reverse transcription initiation and DNA synthesis occurs 5’ to 3’ leading to a 3’ flap 

extension. This could be a substrate recognized by the ERCC1/XPF activity and cleaved 

before retrotransposition is completed. Hence, ERCC1/XPF could contribute to limit L1 

retrotransposition frequency by excising newly formed cDNA from the genome before 

the final resolution of the insertion.  
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Collectively, the NER pathway play an important role as guardian of mammalian cells 

and might sense retrotransposition intermediates as dangers potentially affecting the 

fitness of the genome (Gasior, Roy-Engel, and Deininger 2008). 
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2.  Introduction to the world of nuclear receptors 
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The research project presented in this thesis is based on an original discovery made in the 

laboratory, which identified by yeast two hybrid, an interaction between the ORF2 

protein of L1 retrotransposon and ERRa (estrogen related receptor alpha), a member of 

the nuclear receptor family. In this chapter I will present a detailed characterization of 

these particular cellular factors, to better understand L1 interaction partners. 

 

Highlights: 

• Nuclear receptors (NRs) are transcription factors that can regulate gene transcription 

in response to a wide range of internal or external stimuli. 

• Structurally, NRs comprise an N-terminal (NTD) domain, a DNA-binding domain 

(DBD), a hinge, and a ligand-binding domain (LBD). 

• NRs activity depends on the binding of a specific ligand (eg. hormone) to the LBD for 

ligand-dependent NRs, or on a constitutively active conformation.  

• NRs require coregulators to modulate gene transcription. 

• NRs are involved in a myriad of diseases (metabolic diseases, cancer, etc.), thus 

making them therapeutic targets.  
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Nuclear receptors are transcription factors which fulfill important functions in 

development, growth, metabolism and homeostasis (Evans and Mangelsdorf 2014). They 

accomplish this through chromatin modification or by direct interaction with the 

transcription machinery, in response to a wide range of internal and external signals such 

as nutrition and stress (McKenna, Lanz, and O’Malley 1999). They work together with 

coregulators (coactivators and corepressors) to stimulate or inhibit the transcription 

complexes at target genes. The human genome codes for 48 nuclear receptors (NRs) (see 

Figure 8).  

Nuclear receptors are mainly known as ligand-regulated transcription factors which are 

activated by steroid hormones, such as progesterone, estrogen, testosterone, cortisol or 

other small molecules, as retinoic acid, thyroid hormone, oxysterols, vitamin D. The 

binding of the hormone to its receptor generally results in a complex which can bind to 

specific DNA sites and regulate transcription (Mangelsdorf , Evans 1995). Many NRs are 

called orphan nuclear receptors (ONRs). This term regroups two distinct situations: 

(i) receptors that need a ligand, but the latter has not been identified so far; 

(ii) receptors that do not need a ligand, and constitutively adopt an active conformation 

due to the presence of a hydrophobic amino acid from the receptor within the ligand 

binding pocket. The activity of these receptors is generally regulated by classical post-

translational modifications (phosphorylation, sumoylation, etc.).  

 

 

2.1 Nuclear receptor nomenclature: six subfamilies based on sequence 

homology 

The nuclear receptor superfamily is organized in six subfamilies. Nuclear receptors are 

characterized by a conserved DNA-binding domain (DBD) which recognizes and binds to 

specific DNA sequences and by a ligand binding domain (LBD) essential for hormone 

binding and specificity of the physiologic response (Mangelsdorf , Evans 1995). 

The nomenclature presented here is based on the sequence alignment of the conserved 

LBD and DBD domains (Gallastegui et al. 2015). Of note, the groups within a subfamily 

consist of related genes with paralogous relationship in vertebrates (e.g. RARA, RARB, 

RARG).  
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Subfamily 1 (NR1) Thyroid hormone receptor-like 

This subfamily consists of the following transcription factors: the thyroid receptor (TR), 

the retinoic acid receptor (RAR), the peroxisome proliferator-activated receptor (PPAR), 

the liver X receptor (LXR), the farnesoid receptor (FXR), the vitamin D receptor (VDR), 

the RAR-related orphan receptor (ROR), REV-ERB, the pregnane X receptor (PXR), and 

the constitutive androstane receptor (CAR). ROR and REV-ERB are still orphan. 

 

Subfamily 2 (NR2) Retinoid X receptor-like 

Members of this family can function both as homodimers and heterodimers. The family 

comprises retinoid X receptor (RXR), Hepatocyte Nuclear Factor 4 (HNF4), tailless 

homolog (TLX), photoreceptor specific (PNR), testicular receptor 2 and 4 (TR2 and 

TR4), and chicken ovoalbumin upstream promoter (COUP-TF) receptors. With the 

exception of RXR, all the receptors of this family are orphan. 

 

Subfamily 3 (NR3) Estrogen receptor-like 

This subfamily comprises the steroid hormone receptors. These NRs are presented in 

more details in the next section, as they represent the group of interest in the present 

study.  

The ER-like subfamily comprises the estrogen receptors (ERa/NR3A1 and 

ERb/NR3A2), the glucocorticoid receptor (GR/NR3C1), the mineralocorticoid receptor 

(MR/NR3C2), the progesterone receptor (PR/NR3C3) and the androgen receptor 

(AR/NR3C4). The corresponding steroid ligand and the physiological relevance of all 

these receptors are well known and characterized. 

This subfamily includes also the estrogen-related receptors (ERR) with their three 

paralogs ERRa/NR3B1, ERRb/NR3B2, and ERRg/NR3B3. The ERRs are often 

described as orphan receptors since they do not bind estrogen or any known natural 

ligand, but they are actually constitutively active and not regulated by direct ligand 

binding as other steroid receptors. 
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Subfamily 4 (NR4) Nerve growth factor-induced clone B (IB) like 

The NRs of this subfamily includes the nerve growth factor-induced clone B group of 

receptors: Nurr77 (NGFI-B/NR4A1), Nurr1 (NR4A2) and Nor1 (NR4A3). Structural 

studies indicates that Nurr77 and Nurr1 have a constitutive active conformation, due to 

the presence of hydrophobic amino acids in their ligand binding pockets (Zhan et al. 

2012; Zhulun Wang et al. 2003). 

 

Subfamily 5 (NR5) Steroidogenic factor-like  

This is a small subfamily which comprises two constitutively active NRs: steroidogenic 

factor-1 (SF1/NR5A1) and the liver receptor homolog-1 (LRH1/NR5A2). 

 

Subfamily 6 (NR6) 

This subfamily contains only the orphan Germ Cell Nuclear Factor variant 1 (GCNF1) 

receptor. Neither its structure, nor its regulation have been elucidated. 

Subfamily 0. NRs without DBD 

Dax1, NR0B1, known also as DSS-AHC critical region on the X chromosome, protein 1 

(dosage- sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, 

protein 1) (NR0B1) and SHP (small heterodimer partner), NR0B2, were first catalogued 

as co-regulators of other NRs because they contain in their N terminal domain, a 

conserved motif used for interaction with other receptors (LxxLL) (Ehrlund and Treuter 

2012; Gallastegui et al. 2015). But they are actually, two atypical NRs lacking DBD. 

 

  



 

Introduction to the world of nuclear receptors 

 

 51 

 

 

Figure 8. The phylogenetic tree of the 48 human nuclear receptors superfamily.  

Distance tree was created by the neighbor-joining method using the Geneious software. The 

sequence of each NR was downloaded from www.uniprot.org. 
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2.2 Nuclear receptors expression 

NRs modulate a wide variety of physiological pathways, as development, proliferation, 

homeostasis, reproduction, and metabolism (Bookout et al. 2006). Their expression in a 

normal or disease state, governs complex transcriptional programs. The expression and 

activity of NRs was and still is of high importance, given their extensive roles.  

The NRs are broadly expressed in most cell types (see Figure 9) (Bookout et al. 2006). 

However, the most completed spatial and temporal expression profiles of nuclear 

receptors was done for the murine NR superfamily, which consists of 49 receptors 

(Bookout et al. 2006; Xiaoyong Yang et al. 2006). 

 

 

 

 

Figure 9. A summary of tissue-frequency profiles of the nuclear receptor superfamily in 

mice. 

TaqMan-based real-time quantitative RT-PCR (qPCR) was used to measure transcript levels of 49 

known mouse NRs, in 39 different tissues isolated from two strains of mice widely used in 

genetic manipulation. The results showed that 21 NRs were expressed in all tissues, 17 were 

found in more than half of the tissues analyzed and 11 were restricted to only some tissues 

(Bookout et al. 2006). 

 

 

From the same study, it was compiled an atlas of the NR expression in every tissue 

system (Figure 10). The results which show the diversity of NR expression profile within 

an organism, suggest that while each individual receptor plays an important role in 

physiologic processes, the NRs operate also together, in specific groups, as part of a high-

order regulatory network (Bookout et al. 2006). 
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However, the possible discovery of wider organizational rules could indicate us how the 

nuclear receptors superfamily evolved to form the physiology of the body and this would 

serve to better understand diseases and to better adapt the pharmacology (Evans 2005). 

 

 

 

 

Figure 10. Nuclear receptors and the connection between their expression profile, function 

and physiological pathways 

(Bookout et al. 2006). 

  



 

Introduction to the world of nuclear receptors 

 

 54 

2.3 The common domain structure of nuclear receptors 

Nuclear receptors have a common basic structure, consisting of an N-terminal (NTD) 

domain, a DNA-binding domain (DBD), a hinge region, a ligand-binding domain (LBD) 

and a variable F-domain (Brélivet, Rochel, and Moras 2012). 

 

 

 

 

Figure 11. Domain arrangement of nuclear receptors.  

A. Letters from A to F represent the nuclear receptor domains from N- to C-terminus. Details 

relative to the structure and function of each domain are explained in the main text. Nuclear 

receptors consists of a N-terminal domain (NTD), poorly conserved and of variable size which 

contains the ligand-independent transcription activation function-1 (AF-1); a highly conserved 

DNA Binding Domain (DBD) which recognizes and binds the NRs to specific DNA response 

elements, which can be direct repeats, inverted repeats or single half sites of the hexamers 5’-

AGAACA-3’ or 5’-AGGTCA-3; a variable and flexible hinge region; a Ligand Binding Domain 

(LBD) made by 12 helices responsible for ligand binding, recruitment of coregulators and 

transcriptional regulation through the activation function-2 (AF-2). In addition, some NRs, such 

as ERs, contain a variable F-domain positioned at their C-terminus and with a poorly understood 

role.  B. Schematic representation of a dimeric NR, bound to DNA response element, after 

activation by a ligand (white triangle) and conformational changes (Rastinejad et al. 2013). 
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2.3.1 The N-terminal domain, the least conserved domain of NRs, is 

transcriptionally active without a ligand 

The N-terminal domain (NTD) is the least conserved domain of NRs, showing variable 

length and sequence (Kumar and McEwan 2012). However, sequence analysis revealed 

that some residues in the NTD are conserved across species, especially the ones necessary 

for receptor-dependent gene regulation (Kumar and McEwan 2012; Lavery and McEwan 

2005). Due to its high flexibility and intrinsic disorder, this region is difficult to 

characterize biochemically and its tertiary structure has not yet been obtained (Pawlak, 

Lefebvre, and Staels 2012). 

Within the NTD, the region named activator function 1 (AF-1) is important for both 

transcriptional activation and repression. Moreover, AF-1 is ligand independent, as shown 

by studies on steroid receptors in which the deletion of the LBD results in a constitutively 

active receptor in reporter gene assays (Lavery and McEwan 2005). Also, the binding of 

the ligand to PPARg LBD, does not affect the positioning of the NTD in the 3D structure 

(Chandra et al. 2008).  

In the case of AR, the deletion of entire NTD results in a transcriptionally weak receptor, 

highlighting the importance of the NTD in the transactivation function (Jenster et al. 

1995; Simental et al. 1991). Similarly, deletions of different regions within the NTD of 

PR and MR blunts receptor-dependent transactivation (Takimoto et al. 2003; Govindan 

and Warriar 1998; Fischer et al. 2010). 

 

 

 The NTD binds coregulators and is involved in inter-domain 

communication 

The NTD region is also important for binding to coregulatory proteins such as chromatin 

modifiers, transcription factors, coactivators and corepressors. For instance, steroid 

receptor coactivator-1 (SRC-1/NCoA1), steroid receptor coactivator-2 (SRC-

2/TIF2/NCoA2) and p300, allow the collaboration between the AF-1 and AF-2 regions of 

PPARγ and RARs, which results in enhanced transactivation of gene expression 

(Bommer et al. 2002). 

Moreover, the NTD is involved in inter-domain communication, regulating the 

interaction of co-repressors with the LBD in the absence of a ligand (S. Suzuki et al. 
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2010). Similarly, the AF-1 domain of PR necessitates the DBD to be functional, 

highlighting the importance of inter-domain communication (Takimoto et al. 2003). 

 

 NTD is modified by post-translational modifications 

The NTD domain is prone to post-translational modifications such as phosphorylation or 

sumoylation, which modify the transactivation potential of NRs. For instance, 

phosphorylation of the AF-1 domain of GR by p38 MAPK, promotes a stable and active 

conformation of the intrinsically disordered NTD, favoring the interaction between the 

receptor and its coregulatory proteins which are necessary for activation or repression of 

gene expression (Garza, Khan, and Kumar 2010). SUMO-1ylation (sumoylation by 

SUMO1-small ubiquitin-like modifier 1 protein) of the AF-1 domain in the androgen 

receptor inhibits androgen signaling (Poukka et al. 2000). In contrast, a SUMO-1ylated 

NTD in PPARg, stimulates its transactivation capacity (Ohshima, Koga, and Shimotohno 

2004). 

 

 

2.3.2 The DNA Binding Domain recognizes specific genomic template 

and has a highly organized structure 

The DNA binding domain (DBD) is the most conserved domain which recognizes and 

binds to specific DNA response elements (REs) (Rastinejad et al. 1995).  

The DBD has a compact, globular structure and consists of a core region of 

approximately 66 amino acids, a pair of perpendicular α-helices stabilized by two C4 

zinc-binding domains, a short β-sheet, and a few stretches of amino acids (see Figure 

12.A)  (Hard et al. 1990; Claessens and Gewirth 2004). 

The first zinc-finger module contains a proximal box (P-box) which contains three amino 

acids necessary for DNA sequence specificity. The second zinc domain contains a five 

residues sequence, named D-box, involved in dimerization of NRs on DNA (Claessens 

and Gewirth 2004; Smit-McBride 1994). 

The precise nucleotide sequence of a given RE defines the specificity of binding of the 

receptor to its cognate genomic sites, but single nucleotide differences can also determine 

cofactor specificity and thus the mode of transcriptional regulation (Meijsing et al. 2009). 
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Homodimers, heterodimers or monomers of nuclear receptors bind the DNA response 

elements which are arranged as direct repeats (DRs), palindromic (inverted) repeats or 

single half sites of the hexamers 5’-AGAACA-3’ or 5’-AGGTCA-3 (see Figure 12.B). 

Importantly, the orientation and distance between the repeats is essential for receptor 

specificity. After binding to REs, NRs recruit other complexes that lead to repression or 

activation of their target genes (Rastinejad et al. 2013). 

 

 The basis for DNA recognition 

The study of ER and GR homodimers bound to DNA by X-ray crystallography revealed 

that one DBD a-helix inserts directly into the major groove of the conserved hexamers 

present in the DNA response elements (Luisi et al. 1991; Schwabe et al. 1993). There are 

two receptor groups which use one of the two consensus DNA half sites:  5’-AGAACA-

3’ half-element for AR, GR, MR, PR and 5’-AGGTCA-3’ to which ER and most 

receptors bind. Importantly, the two groups of NRs also use different sets of amino acids 

on the exposed face of their DNA recognition α-helices. Exactly three residues of the P-

box differentiate NR that will bind to one of the two DNA half sites (Rastinejad et al. 

1995; Gronemeyer and Moras 1995; Claessens and Gewirth 2004; Rastinejad et al. 2013). 
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Figure 12. Nuclear receptor DNA recognition. 

A) The domain responsible for hexameric DNA half-sites is the core DBD which consists from a 

66 residue region and two zinc binding modules. On the left are shown superimposed, the core 

DBD structures of RXR (in blue) and RAR (in red). The C-terminal extension (CTE) of the DBD, 

can also have a role in DNA binding and spacer recognition. To highlight the divergence of CTE 

sequences compared with the conserved DBDs, on the right is the superposition of the DBD-CTE 

segments of several nuclear receptors: NGFI-B (green), LRH-1 (cyan), VDR (yellow), TR 

(magenta) and Rev-Erb (salmon). Notably, the CTEs can act as discriminators of DNA spacing. 

B) DNA half-site recognition by the DBD of RAR. The interaction between the DBD and the 

DNA hexamer implies several hydrophilic residues positioned on the same face of the DBD 

recognition helix. These residues read the DNA base-pair sequence at the major groove. The 

DNA binding is stabilized by additional basic amino-acids which interact with the phosphate 

backbone of the DNA. Also, the DNA contacts are mediated often by water molecules (shown as 

red or black circles), as shown by crystallographic studies (Rastinejad et al. 2013). 
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However, the recognition of half-site binding is not enough for response element 

selectivity of NR, given the high degree of sequence conservation in the DBD and that 

there are only two main types of consensus DNA binding sites. The geometry of the RE, 

when the two hexamers are arranged in various ways is essential for DNA target 

specificity. Each spacer between the repeats shifts with some degrees the half sites, which 

allows only specific NR pair to efficiently interact (Umesono et al. 1991; Mader et al. 

1993; Rastinejad et al. 2013). 

However, it still remains elusive how the selective binding-site occurs for steroid receptor 

homodimers, as most of them use the same symmetry, spacing, and consensus half-site 

sequences (Luisi et al. 1991; Roemer et al. 2006). 

The crystal structure of PR DBD bound to DNA suggests that other unique sites flanking 

the 3′ or 5′ half sites of these symmetric repeats might influence the selectivity (Roemer 

et al. 2006; Rastinejad et al. 2013; Nelson et al. 1999). In addition, other geometries of 

the hexamers or collaboration with other transcription factors might grant the response 

element selectivity (Rastinejad et al. 2013). 

 

In the figure below (Figure 13), it is represented how the retinoid X receptor (RXR) 

forms heterodimers with several non-steroid receptors, especially with vitamin D3 

receptor (VDR), thyroid hormone receptor (TR) or PPAR (Rastinejad et al. 2013). The 

RXR heterodimers bind to response elements made by direct repeats (DRs) separated by 

distinct half-site spacers. DR elements are named DR1 to DR5. The selectivity is based 

on the spacing of DRs, a property known as the 1-5 rule (Rastinejad et al. 2013; Umesono 

et al. 1991). For example, RXR can form DBD–DBD interaction with TR on DR4, but a 

change in the spacing size would suppress the interaction, which would oblige RXR to 

heterodimerize with a different partner (Rastinejad et al. 2013). Also, RXR can alternate 

its half-site position relative to the heterodimerization partner and this can also influence 

the different responses to ligands and corepressors (Kurokawa et al. 1994; Rastinejad et 

al. 2013). 
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Figure 13. Variety of nuclear receptors dimerization and binding to DNA response 

elements. 

NRs can adopt diverse dimerization states and can bind to a variety of DNA response elements 

consisting of direct repeat (DR) elements, palindromic (inverted) repeats, or extended monomeric 

sites. Some non-steroid receptors which form heterodimers with the common partner retinoid X 

receptor (RXR), as well as many homodimers, bind to direct repeat response elements with 

different hexamer (half sites) spacers. Steroid receptors bind as homodimers to palindromic 

binding sites, where the half sites are in an inverted repeat arrangement. Some NRs do not have 

any partner and bind to DNA as monomers (Rastinejad et al. 2013). 

 

 

 Other functions of DBD 

NRs do not reside long on their DNA response elements. Indeed, studies showed that the 

glucocorticoid receptor (GR) binds to its glucocorticoid response elements no longer than 

10 seconds (McNally et al. 2000; Voss and Hager 2013). 

The DBD of NRs carry out other functions, as nuclear export and interactions with other 

TFs and chaperones. For instance, it was proposed that the export of NRs from the 

nucleus is mediated by a necessary and sufficient 15 residue sequence, localized between 

the two zinc finger domains of the DBD (Black et al. 2001). 
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2.3.3 The hinge region links the DBD and the LBD and assures the 

synergy between them 

The hinge region is a poorly conserved polypeptide linker between DBD and LBD (see  

Figure 11.A).  However, the post-translational modifications of this region are critical for 

translocation to the nucleus, DNA binding and ultimately gene transactivation (Rastinejad 

et al. 2013; Gallastegui et al. 2015). 

Mutagenesis studies made on the hinge domain, affected the synergy between the AF-1 

and AF-2 domains of ER, highlighting its role as link between the two functional domains 

of NRs, DBD and LBD (Zwart et al. 2010). In addition, a mutated hinge sequence of 

farnesoid X receptor (FXR)  determines distinct DNA binding affinities of the receptor 

(Y. Zhang, Kast-Woelbern, and Edwards 2003). 

Post-translational modifications of the hinge region can impact gene transactivation. For 

example, acetylation of the hinge of ERa by p300 can control ligand sensitivity and gene 

transactivation (Chenguang Wang et al. 2001). SUMOylation of the hinge of PPARa 

supports the recruitment of co-repressors and subsequent decreased transcription of the 

target genes (Pourcet et al. 2010). 

 

 

2.3.4 The structure and function of the Ligand Binding Domain 

As the name states, the ligand binding domain (LBD) of a nuclear receptor is responsible 

for the accommodation of the hormones, vitamins or other small molecules acting as 

ligand, but also for the recruitment of transcriptional coregulators and for the 

transcriptional activity of NRs (Brélivet, Rochel, and Moras 2012).  

Ligand dependent NR in particular, are in the center of attraction for pharmacology, 

because their association with several diseases as cancer or metabolic dysfunctions, 

makes them biomedical targets (Gallastegui et al. 2015). 

 

 The global fold of the LBD determines its structure and function 

The ligand binding domain of a nuclear receptor is made of 12 a-helices and a variable 

number of b-turns grouped in a three layer helical sandwich with a cryptic ligand binding 

pocket (LBP) within the middle layer (see Figure 14) (Rastinejad et al. 2013; Gallastegui 

et al. 2015; Bourguet et al. 1995; Renaud et al. 1995). In the absence of the ligand, the 
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LBD has an open structure (Bourguet 1995), while it adopts a compact structure upon 

ligand binding, which will be buried in the hydrophobic interior of the protein 

(Tanenbaum et al. 1998). 

The helix 12 (H12 or AF2 helix) lies across the LBP and is in direct contact with the 

ligand. The orientation of H12 relative to the rest of the LBD will determine changes in 

the volume of the ligand binding pocket, from almost nonexistent to large cavities (see 

Figure 14). This will mark an active conformation or a repressed one (Ingraham and 

Redinbo 2005; Gallastegui et al. 2015). But, the LBP conformation is influenced by the 

global fold of the LBD, due to the presence or absence of specific helices and b-turns, to 

helix repositioning, and to the influence of a ligand, if present (Gallastegui et al. 2015). 

 

 
 

Figure 14. Structure of nuclear receptor ligand binding domain. 

The ligands can induce changes in the LBD conformation, mostly in the positioning of helix-12. 

The movement of H-12 (shown in red) allows the ligand binding pocket to encircle the ligand 

(sometimes described as a trapping mechanism). Additionally, other smaller rearrangements can 

be induced by ligand binding (blue arrows) (Rastinejad et al. 2013). 
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 NRs interact with coregulators through consensus motifs  

For an active LBD, H12, is almost perpendicular to H3 and H5, creating a triangular 

settlement with access to the activation function 2 (AF-2), which is part of H12 

(Darimont et al. 1998). The formed hydrophobic groove, stabilized by helices, permits the 

interaction between LBD and the signature motif present in NR coactivators, called the 

NR box (LxxLL, where L is leucine and X is any amino acid) (Darimont et al. 1998; 

Heery et al. 1997). Studies of isolated LBDs bound to coactivators  showed that the 

LxxLL motif adopts a helical structure when bound to the LBD and makes contact along 

a hydrophobic binding groove created by helices 3,4,5 and 12. Thus, H12 shifts to an 

active conformation on ligand binding and is crucial for coactivator binding (Nagy and 

Schwabe 2004). 

 

If no ligand binds, helix H12 can pose in different repressive conformations, such as 

folding against the LBD to cover H3 and H5, blocking the coactivator assembly, or 

overhanging in solution, letting AF2 incomplete (Ingraham and Redinbo 2005; 

Gallastegui et al. 2015). Notably, only the active LBD allows coactivator binding, while 

the repressed one favors corepressor binding (Gallastegui et al. 2015).  

The recruitment of corepressors to nuclear receptors occurs through the consensus motif 

LxxH/IIxxxI/L (CoRNR box) (X. Hu and Lazar 1999; Perissi et al. 1999; Nagy et al. 

1999). When the LBD binds a corepressor peptide, the CoRNR box adopts helical fold 

and its binding obstructs H12 from seizing an active conformation. Also, crystal 

structures revealed that coactivator and corepressor binding is mutually exclusive because 

both bind to the same surface of the LBD (Xu et al. 2002). 

 

 The flexibility of the LBD and co-regulator binding impact the structure of 

NRs 

The binding of coregulators brings structural adaptations which influence the LBP cavity 

(Togashi et al. 2005). X-ray studies showed that NRs rearrange their LBP structure to 

bind different agonists, compared with unliganded LBDs. Flexibility is a key feature of 

the LBD and important for the selection of agonist and antagonists. For instance, ligands 

of the thyroid hormone receptor have been modified and extensions which should disturb 

H12, are recognized as antagonists, even if they are agonists (Togashi et al. 2005; Webb 
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et al. 2002). For example, replacing the 5′ hydrogen with a bulky isopropyl group, 

transforms an TR agonist ligand to an antagonist (Togashi et al. 2005). 

The above mentioned structural and mechanistic details represent the canonical image of 

how a ligand-dependent NR is functioning (Mangelsdorf et al. 1995). However, the LBP 

of orphan nuclear receptors (ONRs) can be different, and as stated before, nonexistent or 

with a large empty chamber (Mullican, DiSpirito, and Lazar 2013). 

 

 

 
 

Figure 15. Schematic of structural changes induced on the estrogen receptor by agonists and 

antagonists. 

At the left, the binding of the agonist synthetic molecule diethylstilbesterol (DES, shown in blue) 

places helix-12 (H12) in the agonist conformation. At the right, raloxifene (RAL), an antagonist, 

pushes helix-12 out of its active conformation (Rastinejad et al. 2013). 

 

 

2.4 Steroid nuclear receptors 

Steroid receptors are fundamental for the processes regulation of an organism and they 

are highly evolutionarily conserved (Keay and Thornton 2009). Structural domains 

responsible for ligand, DNA and co-regulator binding, receptor dimerization, and 

transactivation are conserved across the family. Hence, this subfamily of NRs responds to 

hormones based on a relatively conserved chemical structure, the steroid scaffold 

(Margolis and Christakos 2010).  

Based on sequence homology and DNA binding specificity, the NR3 subfamily contains 

the classical steroid receptors, including the estrogen receptors a and b (ERa, ERb), the 
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progesterone receptor (PR), the mineralocorticoid receptor (MR), the glucocorticoid 

receptor (GR), the androgen receptor (AR), as well as a structurally related group of three 

orphan receptors: ERRα, ERRβ and ERRγ (see the phylogenetic tree in Figure 16) 

(Nuclear Receptors Nomenclature Committee 1999). 

From all NRs, the steroid receptors have been the most intensively studied, due to their 

critical role in development and adult physiology, their dysfunction in many diseases. 

 

 

 

Figure 16. Phylogenetic tree of steroid nuclear receptors (subfamily 3, NR3). 

Distance tree was created by the neighbor-joining method using the Geneious software. The 

sequence of each NR was downloaded from www.uniprot.org. 

 

 

2.4.1 The signaling pathway of steroid receptors 

Steroid receptors have the same general structure and mode of action, as other NRs. All 

the domains contribute, together with coregulators, to the binding of NRs to specific 

DNA sites in the nucleus and to the subsequent regulation of gene expression. 

The canonical signaling pathway of steroid receptors is based on a simple model in which 

the ligands (endocrine steroids or exogenous molecules) enter into cells through the cell 

membrane through mechanisms which are not yet understood and bind to their cognate 

receptors, either in the cytoplasm or in the nucleus. Thus, the steroid receptors can be 

located in the cytoplasm (as the glucocorticoid and androgen receptor), bound to heat 

shock proteins (HSPs), or already present in the nucleus, even if a part of them can also 
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be found in the cytoplasm, bound to HSPs (estrogen receptora and b). When the steroids 

bind their receptors, the cytoplasmic receptors are released by the HSPs, they dimerize, 

adopt diverse conformations and translocate into the nucleus. All the dimers located in 

the nucleus can bind to their specific DNA response elements and recruit coregulators to 

enhance or suppress gene transcription (Levin and Hammes 2016). 

Besides this canonical mode of action, transcription can be regulated by steroid receptors 

through a tethered model, in which receptors do not bind directly to the DNA response 

elements, but interact with other TFs bound to DNA or coregulators (Barkhem, Nilsson, 

and Gustafsson 2004; Levin and Hammes 2016). 

 

 

 
 

Figure 17. The distinct signaling pathways used in the regulatory actions of estrogen 

receptors. 

For simplicity, it is shown only the estrogen steroid receptor (ER). In the classical (direct) 

pathway, the ligand binding to the receptor will trigger dimerization, binding to their specific 

DNA response elements and possible recruitment of coregulators (not shown) to modulate 

(enhance or suppress) gene transcription. In the tethered signaling model, steroid NRs can affect 
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transcription without direct DNA contact. In contrast, they interact with other transcription factors 

and thereby the gene regulation is regulated by indirect DNA binding. The third model is known 

as nongenomic with rapid effects and is not completely understood as the genomic mechanism, 

but has been noticed in many tissues. In this case the ligand activates a receptor, possibly 

associated with the membrane; either it is a classical ER (ER in green), an ER isoform (ER in 

red), or a distinct receptor (question symbol) or, alternatively, a signal activates a classical ER 

located in the cytoplasm. After this not very clear step, signaling cascades are initiated through 

second messengers (SM) that affect ion channels (++) or increase nitric oxide (NO) levels in the 

cytoplasm, and this leads to a rapid physiological response without gene modulation involvement. 

The ligand-independent pathway consists of activation through other signaling pathways, like 

growth factor signaling. In this model, activated kinases phosphorylate ERs and thereby activate 

them to dimerize, bind DNA, and regulate genes (Heldring et al. 2007). 

 

 

 Steroid signaling outside of the nucleus 

It was observed that steroids also induce responses through rapid signaling which is not 

via transcriptional regulation (Roberts 1950; Levin and Hammes 2016). This can be 

explained by the binding of the steroid hormones at the receptors localized at the plasma 

membrane rather than in cytoplasm or nucleus. Extranuclear signaling by steroid 

receptors was observed first in plants. Even if there are no steroid receptors in the nucleus 

of plants, brassinosteroids localize to the cell membrane and bind tyrosine kinase receptor 

to signal and activate responses needed for plant flowering and fertility (Levin and 

Hammes 2016; Levin 2008; Belkhadir and Chory 2006). Then, work on glucocorticoid 

and estrogen rapid effect revealed a new aspect of steroid signaling (Roberts 1950). 

 

Membrane steroid signaling might have evolved to the nuclear pathway as the genome 

became more complex in some organisms (Levin and Hammes 2016). Steroid receptors 

do not localize only in the nucleus, the cytoplasm or the plasma membrane, but also in the 

mitochondria, endoplasmic reticulum and other organelles (Hammes and Levin 2007). 

These extranuclear receptor pools work independently or together with the classic nuclear 

pools, in a cell-specific manner, to modulate cell functions (Levin and Hammes 2016). 
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2.4.2 Estrogen related receptor (ERR) group 

As mentioned before, the nuclear receptors are a distinctive group of transcription factors 

which mediates the activity of steroid hormones, thyroid hormones, fat-soluble vitamins 

A and D, but the family includes also many orphan nuclear receptors (Evans and 

Mangelsdorf 2014).  

A group of orphan receptors is represented by three estrogen related receptors - ERRα 

(NR3B1, ESRRA gene), ERRβ (NR3B2, ESRRB gene) and ERRγ (NR3B3, ESRRG gene). 

They belong to the NR3 subfamily of steroid receptors which also includes ERs, PR, MR, 

GR, AR (Nuclear Receptors Nomenclature Committee 1999). 

 

ERRα and ERRβ were discovered using the DNA-binding domain of the human ERa 

cDNA as a hybridization probe in the search for gene products related to steroid hormone 

receptors (Giguere et al. 1988). ERRg was discovered first during the investigation of a 

critical genomic locus for Usher’s syndrome locus (Eudy et al. 1998) and subsequently by 

yeast two-hybrid screen (Hong, Yang, and Stallcup 1999). 

ERRs have only 30-40% homology with the LBD of ERa and they do not bind or 

respond to estrogens or their derivatives, their transcriptional activity being constitutive 

(Giguere et al. 1988; Tremblay 2007). 

 

The ERRs have the structure of a typical NR, which includes a NTD, a DNA-binding 

domain (DBD), a hinge region and a ligand-binding domain (LBD) (see Figure 18).  

As in most NRs, the NTD contains the activation function domain AF-1 which provides a 

weak transcriptional activity, independent of the ligand. All three ERRs, have conserved 

motifs in their NTD, susceptible to post-translational modifications, such as 

phosphorylation and sumoylation, which can regulate transcriptional activity (Tremblay 

et al. 2008; Vu, Kraus, and Mertz 2007; Huss, Garbacz, and Xie 2015). 

 

The ERRs paralogs show high sequence identity, especially ERRβ and ERRγ (Figure 18) 

(Hong, Yang, and Stallcup 1999). The highly similar DBD of ERRs recognize a specific 

DNA sequence, named the ERR response element (ERRE), defined as 5’-

TNAAGGTCA-3’, a slightly extended form of the canonical half site 5’-AGGTCA-3’ to 
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which most NRs bind (Sladek, Bader, and Giguere 1997). Thus, many genes are target of 

several ERRs. 

ERRs can bind to their DNA motif as monomers, homodimers or heterodimers of two 

different ERRs (Huppunen, Wohlfahrt, and Aarnisalo 2004; Gearhart et al. 2003). The 

considerable similarity between the DBD of ERRs and ERa does not result in strong 

binding to ER response elements, even if they share common target genes (Giguère 

2002).  

Generally, ERRs occupy half sites of a multi-site module that mediates the response to 

estrogens (Huss, Garbacz, and Xie 2015), where ERRs and ERs can either cooperate or 

antagonize one another (Nengyu Yang et al. 1996; Huss, Garbacz, and Xie 2015). 

For ERRa, the binding to ERREs and thus the control of ERRa transcriptional activity is 

also modulated by the acetylation of four lysine residues residing in the DBD (see Figure 

18.A). The acetylation represses the function of ERRa by altering its DNA-binding 

activity and forms a dynamic acetylation/deacetylation switch for the transcriptional 

activity of ERRa  (Huss, Garbacz, and Xie 2015; B. J. Wilson et al. 2010). 

 

The C-terminal part of the LBD of the ERRs includes a well-conserved AF-2 domain, 

which is essential for co-regulator interactions (Figure 18.A). As stated before, ERRs are 

ligand-independent  and constitutively active due to the conformation of their LBD, 

which allows co-regulator binding (S. Chen et al. 2001). 

The resolved structure of ERRa and ERRg shows that the LBP is occupied by side chains 

of  amino acids which mimics the conformation adopted when the ligand is bound, to 

attract coactivator binding (Huss, Garbacz, and Xie 2015). For example, the crystal 

structure of ERRa, revealed that a part of the LBP is occupied by Phe328. As a 

consequence, the LBD can adopt an agonist-like conformation and can bind peroxisome 

proliferator-activated receptor g (PPARg) coactivator-1a (PGC-1a) (Kallen et al. 2004). 

ERRs activity depends on the presence of co-regulators proteins. Important coactivators 

are PGC1-a and PGC1-b, and members of the steroid receptor activator (SRC) family 

(Huss, Kopp, and Kelly 2002; Gaillard, Dwyer, and McDonnell 2007; W. Xie et al. 1999; 

Hong, Yang, and Stallcup 1999; Deblois and Giguère 2011).  

Regarding the repression of ERRs transcriptional activity, a strong suppressor is the 

nuclear receptor interacting protein 140 (RIP140). The interaction between RIP140 and 
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ERRγ allows conformational constraints on the ERRγ complex, influencing its binding 

pattern and target gene recognition (Castet et al. 2006; Huss, Garbacz, and Xie 2015). A 

genetic controller of ERRa is the homeodomain-containing protein PROX1 inhibits the 

activity of the ERRα/PGC-1α interacting with ERRα solely through its DBD (Charest-

Marcotte et al. 2010). In sum, ERRs can function either as activators or repressors of gene 

expression, depending on the presence of and association with specific coregulators in a 

given cell type or tissue. 

 

 

 

 

 

Figure 18. Structural organization and domain homology of Estrogen Related Receptors 

(ERRs). 

A) The structure of ERRs is similar to that of other nuclear receptors and consists of the following 

regions: a poorly conserved N-terminal domain (NTD) with its activation function-1 (AF-1) 

which regulates transcription in a ligand independent manner and is subject to posttranslational 

modifications; a DNA Binding Domain (DBD), almost identical between the three ERR paralogs, 

which contains two zinc finger domains; a hinge region which links the DBD and LBD, and 

provides protein flexibility; a constitutively active Ligand Binding Domain (LBD) which recruits 

coregulators: coactivators as PGC-1a/b or corepressors as NCoR1, RIP140. B) Amino-acid 

conservation between the different domains of each ERR. The three ERR isoforms present a high 

level of similarity, especially in their DBD (Huss, Garbacz, and Xie 2015). 
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 ERRs are ubiquitously expressed, but at different levels depending on the 

cell type 

Expression profiles obtained in mice, showed that ERRa is found in each cell and tissue 

analyzed and ERRg and ERRb are widely expressed, with some exceptions, as listed 

below (Bookout et al. 2006; Deblois and Giguère 2011; Huss, Garbacz, and Xie 2015).  

ERRa and ERRg present higher expression levels in tissues where the energy demand is 

elevated as heart, intestine, kidney, brown fat, skeletal muscle, and cytokine-activated 

macrophages (Giguere et al. 1988; Sladek, Bader, and Giguere 1997; Deblois and 

Giguère 2011; Huss, Garbacz, and Xie 2015). 

ERRb has a wide distribution, with increased presence in the eye, inner ear, extra-

embryonic ectoderm of the developing placenta and in mouse embryonic stem cells. 

ERRb is absent in the immune system and both ERRa and ERRg did not show detectable 

levels of expression in adult bone and skin (Tremblay 2007; Bookout et al. 2006; 

Pettersson et al. 1996; C.-Q. Xie et al. 2009; Deblois and Giguère 2011). 

ERRg is also wide-spread, with a higher profile in developing heart, the spinal cord and 

some areas of the brain (Alaynick et al. 2007; Bookout et al. 2006). 

 

 Short overview on ERR-driven biological functions 

Several studies of functional genomics, gene expression profiles, location and phenotypic 

analyses, revealed the functions of the ERRs in normal physiology and disease (Deblois 

and Giguère 2011).  

 

NRs have been found to have a role in circadian clock, by linking biological timing to 

metabolic physiology. In particular, the ERRs contribute to the diurnal rhythm in several 

tissues: kidney, bones, liver, skeletal muscle and uterus (Xiaoyong Yang et al. 2006; 

Horard et al. 2004; Tremblay et al. 2010; Deblois and Giguère 2011). 
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Figure 19. A schematic representation of the physiological responses of ERRs. 

External/physiological stimuli induce a response from target tissues. The transcriptional activity 

of ERRs regulate the expression of a wide panel of gene networks. The output signal  is a cell-

type-specific biological response (Deblois and Giguère 2011). 

 

 

 ERRa and ERRg modulate mitochondrial biogenesis and energy 

metabolism 

The interaction between ERRa and ERRg with PGC1-a and PGC1-b, factors important 

in metabolic regulation, and the discovery that genes implicated in mitochondrial b-

oxidation of fatty acids and the control of energy metabolism are ERR target genes, have 

highlighted the role of ERRs in mitochondrial biogenesis and metabolism (Rangwala et 

al. 2007; Sladek, Bader, and Giguere 1997; J. Lin, Handschin, and Spiegelman 2005). 

ChIP studies revealed that ERR paralogs bind mostly to their ERRE motif on genomic 

DNA and have been identified at the promoter regions of approximatively 700 genes 

encoding mitochondrial proteins and at other genes involved in translation, glucosamine 
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pathway, energy sensing and growth factor/insulin signaling (Deblois et al. 2009; 

Fullwood et al. 2009; Sonoda et al. 2007; Deblois and Giguère 2011). 

 

ERRa-deficient mice display an impaired adaptative thermogenesis, being incapable of 

maintaining a normal body temperature when exposed to moderate cold (Villena et al. 

2007). This does not involve ERRa in the induction of thermogenic genes, but ERRa 

absence is connected with a reduced mitochondrial biogenesis and oxidative ability 

needed to generate heat (Deblois and Giguère 2011). 

ERRa null-mice are lean and resistant to high-fat diet-induced obesity. In addition, these 

mice exhibit altered expression of target genes involved in fatty acid oxidation, ATP 

synthesis and translocation. Overall, this phenotype is characteristic of a dysfunctional 

heart and validates ERRa as essential for the functional adaptation of the heart to 

pressure overload, and loss of ERRa function can result in heart failure (Dufour et al. 

2007; Huss et al. 2007). 

Moreover, ERRa nul-mice retain Na+, showing deficiency in the regulation of  Na+ and 

K+ homeostasis. Indeed, ERRa also regulates blood pressure and the renin-angiotensin 

pathway (Deblois and Giguère 2011; Tremblay et al. 2010). 

Notably, ERRa and ERRg have the same metabolic target genes, but accomplish distinct 

functions. In contrast with the mild renal phenotype showed by ERRa null-mice, the 

ERRg null mice die after birth because of cardiac arhythmia, decreased gastric acid and 

high levels of K+ (Alaynick et al. 2010). 

 

 ERRb regulates the body energy balance via ERRg 

The physiologic role of ERRβ is less understood, because the homozygous deletion of the 

ESRRB gene is embryonic lethal due to placental dysfunction (Luo et al. 1997). However, 

the successful generation of  ERRβ −/− mouse models, unveiled a role for ERRβ in 

hypothalamic regulation of feeding behavior, satiety, whole body energy balance (Byerly 

et al. 2013; Huss, Garbacz, and Xie 2015). In these mice, the developing embryos were 

lean and with a high metabolic activity. The mice eat more, have increased insulin 

sensitivity and carbohydrate metabolism, as demonstrated by a higher respiratory 

exchange ratio. These observations suggest that their phenotype originates in the central 

nervous system, consistent with an increased hypothalamic expression of neuropeptide Y 
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(NPY) and agouti-related peptide (Agrp), neuropeptides that control feeding and energy 

consumption (Byerly et al. 2013; Huss, Garbacz, and Xie 2015). 

 

In their study, Byerly and colleagues, observed that ERRg expression was increased in 

ERRβ −/− mice, indicating that ERRg activation can stimulate some of the metabolic 

changes. The pharmacological activation of ERRg with a specific ERRβ/γ agonist, 

DY131, when ERRβ is deleted or not, decreased the satiety ratio. 

The involvement of ERRg in metabolism was confirmed in ERRγ
−/−

 mice, which have 

impaired cardiac activity associated with metabolic changes (ERRg directs and maintains 

the transition to oxidative metabolism in the postnatal heart). However, ERRβ
−/−

  mice do 

not show any heart defects, but their preference for carbohydrate metabolism, suggests 

that ERRβ and ERRγ homodimers could regulate expression of overlapping target genes. 

As heterodimers, ERRβ and ERRγ might differentially regulate their target genes 

depending on their expression levels. Collectively, the two receptors might balance the 

food behavior, regulating satiety and whole-body energy consumption (Huss, Garbacz, 

and Xie 2015). 

ERRβ plays also a role in genetic reprogramming and this will be presented in the 

following section, in the context of functional redundancy between ERRβ and ERRg. 
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2.5 Functional redundancy and cross-talk between nuclear receptors 

In a physiological context, cells are continuously exposed to various combinations of  

hormones, and thus, multiple ligand-dependent nuclear receptors can be activated at once. 

As a consequence, studying the mechanism of action and function of a single factor can 

be challenging. 

There is a high interest on unveiling how the co-activation of different nuclear receptors, 

influence each other’s activity. I will discuss below some important aspects regarding the 

functional redundancy and the cross-talk of nuclear receptors. 

 

 

2.5.1 Functional redundancy of nuclear receptors 

Functional redundancy among genes has frequently been noticed, even if its significance 

is not always obvious (Thomas JH 1993). The observation that single knockouts of 

different nuclear receptors had no effect or a mild one, led to a hypothesis in which 

different NRs could be functionally redundant (Kastner, Mark, Chambon 1995). 

However, the lack of a defect in a single mutant does not mean that the function of that 

gene was not debilitated even at low level, but it highlights that the compensation by 

another receptor is good enough.  

Seen in this way, the functional redundancy might assure the survival in less optimal 

conditions of life. 

 

 Functional redundancy in genetic reprogramming between ERRb and 

ERRg 

ERRb is one of the factors used in genetic reprogramming of differentiated cells into 

induced pluripotent stem cells (X. Chen et al. 2008; B. Feng et al. 2009). This receptor 

can substitute for the original reprogramming factor, KLF4, and can reprogram mouse 

fibroblasts when it is used together with SOX2 and POUF5F1. Consistently, KLF factors 

bind to ERRb genomic binding sites, and approximatively 60% of ERRb binding sites are 

found in NANOG/OCT4/SOX2 multiple transcription factor binding loci (X. Chen et al. 

2008; Deblois and Giguère 2011). 

Moreover, ERRb knock-out mice embryo die at mid-gestation because of placental 

abnormalities (Luo et al. 1997). 



 

Introduction to the world of nuclear receptors 

 

 76 

Importantly, it was shown that besides ERRb, ERRg - but not ERRa - also holds 

reprogramming potential. ERRg-reprogrammed cells have the ability to differentiate into 

cells and tissues of the main embryonic lineages – mesoderm, ectoderm and endoderm. 

Given also the high structural similarities between ERRb and ERRg, ERRg can substitute 

for ERRb in genetic reprogramming of mouse fibroblast. These are proofs of the 

functional redundancy between these two NRs in reprogramming (B. Feng et al. 2009). 

Other studies showed that TFs involved in reprogramming can be substituted by members 

of the same family (Nakagawa et al. 2007; Blelloch et al. 2007; Jiang et al. 2008). 

 

 Example of functional redundancy between the RARs 

Retinoids are non-steroid hormones which contribute to a variety of biological processes 

through two classes of nuclear receptors:  the retinoic acid receptors (RARs) and the 

retinoid X receptors (RXRs), which work as RXR/RAR heterodimers (Mangelsdorf and 

Evans 1995, Kastner 1997). These receptors are activated by binding of retinoic acid 

produced from dietary vitamin A (retinol). Specifically, RARs are activated by all-

trans retinoic acid (tRA) and by 9-cis retinoic acid (9C-RA) and RXRs are activated only 

by 9C-RA only (Hideki Chiba 1997). 

There are multiple RAR and RXR isotypes and isoforms, but each has a particular 

expression pattern, depending on the cell type and developmental stage (Leid 1992 

Chambon 1996). Distinct genes encode RAR (RARα, β, and γ) and RXR (RXRα, β, and 

γ) receptors and additionalthe different N-terminal parts of their isoforms result through 

alternative splicing and differential promoter usage (Hideki Chiba 1997, Bastien 

Rochette-Egly 2003). 

 

The degree of functional redundancy for the RARs was studied in mice deficient for each 

RAR gene. Interestingly the double homozygote mutants show strong or lethal defects 

(RAR
-/-

/RAR
-/-

 and RAR
-/-

RAR
-/-

 mutants die very soon after birth) compared with 

single mutants which show few defects (Lohnes 1993, Lohnes 1994, Philippe Kastner and 

Susan Chan 2001). 

Important studies on delineating the functions of multiple RARs were done using F9 

embryonic teratocarcinoma stem cells which differentiate through the action of RARs and 

RXRs, when treated with retinoic acid RA (Boylan 1993, Boylan 1995). Separated RARa 
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or RARg knockout revealed that the loss of each receptor results in a specific pattern of 

metabolic changes, indicating that each RAR regulates a different subset of genes 

(Boylan 1993, Boylan 1995). 

This reveals and highlights that different NR isoforms are not functionally equivalent, 

even if they can substitute for one another under certain conditions (Kastner, Mark, 

Chambon 1995). 

However, the loss of function of RARg was partially rescued by overexpression of either 

RARa or RARb (Taneja 1995). Thus, the functional redundancy might assure the 

survival in less optimal conditions of life. 

 

 Functional redundancy between Nur77 and Nor-1 orphan steroid receptors 

Another example of functional redundancy comes from Nur77 and Nor-1 orphan steroid 

receptors. Nur77 knockout mice do not show unusual phenotype or dysfunction 

suggesting a possible functional redundancy between NR4A members.  

 

Nur77 is a constitutively active NR with no ligand identified so far (Evans 1988, LEE 

1993). Its expression is highly induced during T-cell receptor (TCR) mediated apoptosis 

in immature thymocytes, T-cell hybridomas and is involved in the hypothalamic-pituitary 

axis signaling (Liu 1994, Woronicz 1994, Cheng 1997).  

Nur77 binds to a NGFI-B DNA responsive element (NBRE), at a consensus sequence 

formed by the half site of the estrogen responsive element extended by two more adenine 

nucleotides at its 5’ end (5’-AAAGGTCA-3’) (Wilson et al. 1991). Nur77 binds to NBRE 

as a monomer or as a heterodimer with retinoid-X receptor in the presence of retinoic acid 

(Wilson et al. 1993b, Forman et al. 1995, Perlmann & Jansson 1995).  

TCR-mediated apoptosis is not disturbed in Nur77 deficient mice (Lee 1995) and Nur77
-/-

 

mice show a normal phenotype (Crawford 1995) implying the presence of a protein with 

redundant function to Nur77 (Chen LE 1997).  

Based on DBD homology, Nur77 has two closely related proteins, Nurr1 and Nor-1 

(Mangelsdorf 1995) which might have similar roles in TCR-mediated apoptosis. This 

hypothesis was explored and the results show that both Nor-1 and Nurr1 can transactivate 

NBRE-containing genes. Interestingly, transactivation activity of all the Nur77 family is 

repressed by the expression of a Nur77 dominant-negative protein. This could explain the 
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different phenotypes observed between Nur77-deficient mice and Nur77 dominant-

negative transgenic mice, since the dominant-negative protein can suppress all the Nur77 

family members, including Nor-1 protein activity.This suggests also that Nur77, Nurr1 

and Nor-1 have similar transactivation activity, even if the efficiency of transactivation is 

different, Nur77 having the highest activity (Chen LE 1997).  

It was observed, that in stimulated thymocytes, Nor-1 expression can be induced at the 

same level as Nur77, while Nurr1 is only transiently induced in T-cell hybridomas, but 

not in thymocytes. This makes Nor-1 a candidate for the redundancy function in 

apoptosis. 

The constitutive expression of Nur77 induces apoptosis in thymocytes (Calnan et al., 

1995; Weih, 1996). To test if Nor-1 or Nurr1 can also induce apoptosis in thymocytes, 

transgenic mice constitutively expressing full-length Nor-1 protein and Nurr1, 

respectively, have been generated, the expression of the protein was targeted to the 

thymocytes and changes in T-cell development and thymocyte number was evaluated. 

Transgenic Nor-1 showed the same level of apoptosis in thymocytes, as Nur77 

expression. In contrast, Nurr1 transgenic mice did not show any significant thymocytes 

reduction, but it can be due to the weak level of Nurr1 expression (Chen LE 1997). 

Collectively, the Nur77 and Nor-1 signaling pathways seem to converge. The 

overexpression of a dominant-negative Nur77 abolishes TCR mediated apoptosis and the 

Nur77 deficient mice lack a phenotype. In this case, Nor-1 function compensates the lack 

of Nur77 highlighting a functional redundancy of two closely related nuclear receptors. 

(Chen LE 1997). 
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2.5.2 Cross-talk between nuclear receptors 

In the canonical mode of action of nuclear receptors, gene regulation is mediated by NR 

binding to their cognate regulatory DNA motif. The transcriptional cross-talk model 

proposes that two NRs can interact on the promoter of target genes with only a binding 

site for one of the two factors. Additional cross-talks can involve nuclear receptors and 

transcription factors from other families. 

 

 A working model for the cross-talk between ERα and ERβ  

The two distinct estrogen receptors, ERa and ERb, mediate the biological effects of the 

steroid hormone 17b-estradiol (E2), with critical functions in differentiation, growth, 

male and female reproductive systems, skeletal and cardiovascular systems, or mammary 

gland. 

ERα and ERβ steroid receptors, are encoded by separated genes, but show high levels of 

amino-acid homology in their DBD and LBD (97% and 60% homology) (Giguere 1998). 

In contrast, their N-terminal domains are less conserved (18% homology) (Giguere 1998, 

Hall Couse Korach 2001).  

ERα and Erβ differ in tissue distribution, but they bind to the same DNA response 

elements and, at least in vitro, show a similar ligand binding affinity for most existent 

estrogenic substances or estrogenic antagonists (Kuiper, Gustafsson 1997). Each receptor 

displays a distinct expression pattern as revealed by tissue localization studies and the 

biological functions of the ERβ may be dependent on the presence of ERα in certain cell 

types and tissues (Couse, Gustafsson, Korach 1997). 

 

The high homology between the two receptors suggests that these receptors could be 

functionally redundant in estrogen signaling. Both receptors transactivate ERE reporter 

constructs in mammalian cells, even if ERa levels are higher (Cowley et al. 1997).  

Importantly, ERβ was shown to compensate for the loss of ERα in some pathways. 

Notably, in ERa KO mice, ERβ sustained ERα-mediated E2 actions, as the induction of 

PR expression.  

ERa and ERβ can bind as heterodimers and ERβ can bind to ERE of target genes also in 

a ligand-independent manner. This will attenuate the ligand-activated transcriptional 

activity of ERα, indicating a point of convergence for the signaling pathways of these two 
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receptors. These observations can explain how the transcriptional activity of ERa can be 

regulated by ERβ in cells where the two NRs are co-expressed (Hall and McDonnell 

1999). 

It was shown that at subsaturated levels of estrogen, inactive ERβ competes with ERa, 

binding first to target response elements and thus impeding ERa binding (Hall and 

McDonnell 1999). ERβ has the ability to modulate cellular response to agonists, by 

switching from a transcriptional repressor to an activator as estradiol levels rise. This 

might control the various sensitivities to estrogens. Therefore, when hormone levels 

increase, activated ERa and ERβ levels also increase, which leads to competition 

between active and inactive, unliganded ERβ and transcription can progress (Hall and 

McDonnell 1999). 

If it would be only about competitive interaction, then increased levels of ERβ would 

decrease the hormone efficiency, as when only ERβ is expressed in cells. Nevertheless, 

the interaction between ERa and ERβ is more complex, given that when the hormone is 

in excess, ERβ overexpression does not lower estradiol efficacy. It was proposed that 

when saturating levels of estradiol are present in the cell, ERa and ERβ can work as 

heterodimers, with a transcriptional activity equal to that of ERa homodimers. In this 

scenario, ERβ regulates ERα transcriptional activity at low hormone levels (Hall and 

McDonnell 1999). 

 

 Functional cross-talks between ERRs and ERs assist cell-type-specific 

estrogenic responses  

Different transcription factors may bind to identical response elements in various cell 

types. Transcriptional crosstalk between nuclear receptors implies also competition for 

binding motifs and coregulators. As mentioned before, the steroid NR subfamily binds 

DNA as dimers to response elements, using one of the two known consensus hexamers: 

the AR, PR, GR, MR  recognize the half-site AGAACA, while ERs bind to the hexamer 

AGGTCA, part of the estrogen response element (ERE). The orphan ERRs can bind both 

to the EREs, or as monomers to the extended consensus hexamer TNAAGGTCA, named 

ERR response element (ERRE) (Giguère 2002; Johnston et al. 1997). Moreover, the 

monomeric steroidogenic factor-1 (SF-1) recognizes also this class of binding sites (T. E. 

Wilson, Fahrner, and Milbrandt 1993). This overlap in binding specificity is complex, 



 

Introduction to the world of nuclear receptors 

 

 81 

given that not only ERR dimers can bind to ERE, but also ERα dimers (and not ERb) can 

recognize ERRE (Vanacker 1999). Moreover, it was shown that, in vitro, ERRα interacts 

with ERα, through protein-protein contacts, even if functional heterodimers were not 

observed (Nengyu Yang et al. 1996). 

For example, the transcription of the human lactoferrin gene is mediated by ERα, through 

an ERE positioned in the promoter of the gene. However, it was demonstrated that this 

transcriptional activity is modulated by ERRα. Mutations made in the promoter of the 

lactoferrin gene, 26 bp upstream from ERE which houses the ERRE, considerably 

reduced the transcriptional activity mediated by ERα (Nengyu Yang et al. 1996; Teng 

1992).  

Coregulators are crucial for the transcriptional activity of the nuclear receptors and 

represent limiting factors within cells. Thus, NRs compete with each other and with other 

transcription factors to associate with coregulators (Meyer et al. 1989; Giguère 2002). 

The ERs recruit several coregulators, but mostly members of the steroid receptor 

coactivator (SRC) group (Moggs and Orphanides 2001). Also, ERRα interacts with SRC1 

and competes with ERα for binding this common coactivator in transfected cells (Z. 

Zhang and Teng 2001). ERRα behaves as a significant modulator in many signaling 

pathways that require the same coactivator and similar DNA response elements(Z. Zhang 

and Teng 2000). 

Yeast two-hybrid and biochemical assays showed that the orphan nuclear receptor small 

heterodimer partner (SHP) physically interacts with all three members of ERR subfamily 

through their AF-2 coactivator-binding site. Moreover, SHP promoter is regulated by 

ERRg, but not ERRα and ERRb (Sanyal et al. 2002). However, SHP inhibits the activity 

of ERR family, suggesting another level of crosstalk between the two NR subfamilies 

(Giguère 2002). Notably, SHP also interacts specifically with estrogen receptor-alpha 

(ERα) and, in transient cotransfection assays, SHP inhibits estradiol-dependent activation 

by ERα (Seol et al. 1998).  

 

Collectively, the ERRs and ERs modulate both common target genes and the overall 

response to estrogen in cell types where they are coexpressed. They are able to interfere 

or collaborate with each other to accomplish their functions (Giguère 2002). 
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3.1 Thesis objectives 

Despite the important role of L1 in generating new insertions in the human genome, how 

retrotransposition is achieved in a chromatin context and coordinated with cellular 

activities remains largely unknown and few host regulators are described. Thus, this study 

started with the aim of discovering cell host factors involved in the regulation of the 

LINE-1 retrotransposon. 

To achieve this goal, the laboratory has performed yeast 2-hybrid screens using a 

collection of L1-derived fragments as baits and identified ERRa, a transcription factor 

belonging to the steroid nuclear receptor subfamily, as a cellular partner of L1 ORF2p, 

essential component of the retrotransposition machinery. 

For my PhD, I focused on finding other possible interaction within the steroid nuclear 

receptors superfamily and on unveiling the consequence of this interaction on L1 activity.  

Considering the existence of several steroid receptors, we explored other possible 

interactions and found that several members interact with ORF2p, highlighting a possible 

functional redundancy between ERRa and other steroid receptors. We evaluated the 

effects of ERRa overexpression and knock-down, as well as the artificial tethering of 

ERRa to a specific locus and the recruitment of the L1 retrotransposition machinery at 

the same locus.  

All the results of this study are shown in the form of a research article, in preparation for 

submission. Our work shows how steroid nuclear receptors can influence L1 activity and 

link environmental and physiological signals with genomic plasticity. 
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3.2 Research article - in preparation for submission: A subset of 

steroid receptors interacts with LINE-1 ORF2p and regulate 

retrotransposition 
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Abstract 

LINE-1 (L1) retrotransposons are major drivers of mammalian genome plasticity and 

evolution. They replicate by a copy-and-paste mechanism through an RNA intermediate 

and a reverse transcription step occurring directly at chromosomal target sites, a process 

termed target-primed reverse transcription. However, how this is achieved in a chromatin 

context and coordinated with cellular activities remains largely unknown. In addition, L1 

replication is tightly controlled by cellular pathways limiting its mutagenic activity. To 

gain insights into the interplay between the L1 machinery and its cellular host, we 

performed yeast 2-hybrid screens using a collection of L1-derived fragments as baits. 

Here, we identify the estrogen-related receptor alpha (ERRa), a transcription factor 

belonging to the nuclear receptor family, as a cellular partner of L1 ORF2p, the catalytic 

component of the L1 replicative complex. SiRNA-mediated ERRa depletion marginally 

affects L1 retrotransposition. However, overexpression of an ERRa dominant-negative 

form inhibits retrotransposition. In addition, we observe that several close paralogs of 
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ERRa, including ERRb and ERRg, and the estrogen and glucocorticoid receptors, also 

interact in vivo with ORF2p, highlighting a high level of redundancy. Interestingly, 

tethering of the ERRa domain interacting with ORF2p to a heterochromatic repeated 

locus specifically inhibits L1 retrotransposition, suggesting that the L1 machinery is 

sequestered in a chromosomal region refractory to L1 integration. Based on these 

observations, we propose that ERRa and several other related nuclear receptors might 

represent tethering factors that promote L1 access to particular genomic region. 

Collectively, these results link hormonal signaling pathways with the regulation of a 

major endogenous mutagen in mammals.  

 

Keywords 

transposable element, nuclear receptor, host factor, tethering, integration 
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Introduction 

Repetitive DNA accounts for at least half of our genome 
1,2

. Most of these repeats are 

retrotransposons, i.e. mobile genetic elements, which proliferate through an RNA-

mediated copy-and-paste mechanism, called retrotransposition. The Long INterspersed 

Element-1 (LINE-1 or L1) is the sole family of retrotransposons able to autonomously 

generate new copies in the genome of modern humans 
3-5

. This activity originates from a 

very limited subset of transcriptionally active L1 loci, among approximately 100 copies, 

which are still replication-competent in our genome 
6-10

. In addition, the L1 

retrotransposon machinery can also mobilize in trans non-autonomous retrotransposons 

(Alu, SVA) or cellular RNAs (U6, mRNA), causing retropseudogene formation (reviewed 

in 
11

). Altogether, L1 elements are directly or indirectly responsible for at least one fourth 

of all structural variants in the human population, contributing to our genetic diversity 

5,12,13
 and occasionally to genetic diseases 

14
. Moreover, L1 is not only able to mobilize in 

the germline or in the early embryo 
15,16

 but it can also transpose in some somatic tissues 

such as brain, and in many cancers contributing to tumor genome dynamics 
17-20

. 

 

A replication-competent L1 element is ∼6.0 kb in length and is transcribed from an 

internal promoter located in the 5'-untranslated region (UTR) (reviewed in 
11

). The full 

length L1 mRNA is a bicistronic polyadenylated RNA, which encodes two proteins, 

ORF1p and ORF2p, both required for L1 retrotransposition 
21-23

. ORF1p is a trimeric 

RNA-binding protein with nucleic acid chaperone properties 
24,25

. ORF2p exhibits 

endonuclease (EN) and reverse transcriptase (RT) activities 
23,26,27

. These proteins 

associate in cis with the L1 mRNA and the poly(A)-binding protein C1 (PABPC1) to 

form a ribonucleoprotein particle (RNP), the presumed replication intermediate of L1 

replication 
28-35

. The incorporation of ORF2p into L1 RNPs requires L1 mRNA poly(A) 

tail 
36

. The L1 RNP is imported into the nucleus where it can catalyze target-site reverse 

transcription (TPRT) 
37

. In this process, DNA cleavage and reverse transcription of the L1 

RNA at genomic target sites are coordinated. TPRT is initiated by an EN-mediated nick 

at degenerate consensus sequences related to 5'-TTTT/A-3', followed by annealing of the 

L1 mRNA poly(A) tail to the T-rich tract of the target sequence, and extension of the free 

3'-hydroxyl group by L1 RT activity using L1 mRNA as a template 
30,38-40

. However, 

many aspects of this reaction remain unsolved. More specifically, we do not know how 
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the L1 RNPs enter into the nucleus and access their target DNA in the context of 

chromatin and nuclear organization, or how second strand synthesis and ligation of the 

final DNA product are achieved. It is likely that these steps involve cellular host factors. 

For example, association of the sliding DNA clamp protein PCNA with ORF2p might 

help recruiting cellular factors involved in TPRT resolution 
35

. Inversely, several cellular 

pathways limit L1 retrotransposition (reviewed in 
41,42

). Many of them function by 

reducing L1 mRNA or RNP accumulation and often involve restriction factors enriched 

in cytoplasmic bodies related to stress granules where L1 RNPs also concentrate 
32,34,43

. 

In the nucleus, APOBEC3A is a potent inhibitor L1 retrotransposition, which can 

deaminate transiently exposed single-stranded DNA intermediates during TPRT 
44

. L1 

replication intermediates can also be sensed and processed by DNA repair pathways, 

competing with TPRT and eventually leading to the insertion 5' truncated L1 copies 
45-48

. 

These defective insertions form the majority of de novo insertions and represent dead-

ends of L1 replication. 

 

To get additional insights into the mechanisms of L1 replication and its interplay with 

cellular host factors, we performed yeast 2-hybrid screens to identify cellular partners of 

L1 proteins. This led us to discover that estrogen-related receptor alpha (ERRa), as well 

as other members of the nuclear receptor (NR) family, interact with ORF2p. The 

functional characterization of this interaction suggest that several NRs might regulate L1 

retrotransposition by tethering the L1 machinery to particular genomic regions. 

 

Results 

Identifying L1 cellular partners by yeast 2-hybrid screens 

To identify potential cellular partners of the L1 retrotransposition machinery, we screened 

mouse and human cDNA libraries by yeast 2-hybrid (Y2H) with a variety of ORF1p or 

ORF2p fragments as baits. These fragments originated either from a natural human L1 

element (L1.3) 
49

 or from a codon-optimized mouse L1 element (mouse ORFeus) 
50

. Most 

L1 fragments recovered very few hits, and these hits were isolated as single clones, and 

therefore were considered as false positives (Supplementary Table 1). However, a 

fragment of mouse ORF2p allowed us to isolate - in two independent screens - several 

overlapping clones corresponding to mouse Estrogen-Related Receptor alpha (ERRa), a 
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transcription factor of the nuclear receptor (NR) family (Fig. 1a). Nuclear receptors have 

a modular organization, with a N-terminal DNA-binding domain (DBD) and a C-terminal 

ligand-binding domain (LBD), which also contains an activation domain, responsible for 

transcriptional coregulator recruitment 
51-53

. Hormone-dependent NR are often 

sequestered in the cytoplasm in the absence of their cognate hormone. In a classical NR-

signaling pathway, ligand binding leads to receptor conformational change, nuclear 

translocation, DNA binding, transcriptional coregulator recruitment and eventually to 

gene activation or repression 
51

. All isolated ERRa clones contain a C-terminal fragment 

spanning the last 232 amino-acids of ERRa, corresponding to its ligand-binding domain 

(LBD, Fig. 1b). ERRa is broadly expressed in human tissues 
52

 and is predominantly 

nuclear 
54

. Of note, ERRa functions as a ligand-independent transcription factor, since its 

ligand-binding pocket is constitutively occupied by one of its own amino-acid, mimicking 

an activated state 
55

. Instead, ERRa activity seems to be mostly regulated by post-

translational modifications, particularly in its N-terminal domain (NTD), which can 

repress ERRa transcriptional activity 
54

. 

 

ERRa interacts with human L1 ORF2p 

Human and mouse ERRa are 98% identical, however human and mouse ORF2p Cter 

domains only share 63% identity. To validate the interaction found by Y2H and to test 

whether it is functionally conserved from mouse to human, we performed co-

immunoprecipitation experiments in human cells, using epitope-tagged human ERRa 

LBD and human L1 ORF2p Cter domain, which confirmed the Y2H results (Fig. 1c). 

Since the ORF2p Cter domain can interact with RNA 
56

, we also examined whether its 

interaction with ERRa might depend on RNA. RNase treatment did not abolish ERRa-

ORF2p interaction (Sup. Fig. 1a-b), although, under similar experimental conditions, 

bulk RNA in cell extracts is completely degraded (Sup. Fig. 1c) and the well-established 

and RNA-dependent interaction between ORF1p and Mov10 is abolished 
57

 (Sup. Fig. 

1d). Finally, we tested the ability of several variants of untagged ERRa to bind ORF2p 

Cter domain. These included full length ERRa, the LBD alone, or a deletion variant, 

missing the N-terminal domain, named DN (Fig. 1d). While the ORF2p Cter domain co-

immunoprecipitates with both LBD and DN ERRa truncations, it barely interacts with 

full length ERRa (Fig. 1e), consistent with a regulatory role of the NTD. Altogether these 
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data indicate that ERRa binds L1 ORF2p Cter domain in human cells through its LBD, 

and independently of RNA, and suggest that this interaction could be modulated by the 

N-terminal domain of ERRa. 

 

ERRa depletion does not affect L1 retrotransposition efficiency 

To explore the possible impact of ERRa on L1 retrotransposition, we performed siRNA-

mediated knock down of ERRa in U2OS cells, followed by transfection of a genetically 

marked L1 element to estimate L1 retrotransposition efficiency (Fig. 2a,d). Two days 

after L1 transfection, ERRa siRNA treatments resulted in an ~70-80% reduction of 

endogenous ERRa protein levels as compared to mock-transfected cells, without 

significantly affecting L1 expression as evidenced by ORF1p immunoblotting, at least for 

siRNA A and B (Fig. 2b-c). The plasmid-borne L1 element is a retrotransposition-

competent L1 clone carrying a blasticidin-resistant marker, which becomes functional 

only after retrotransposition (JJ101/L1.3, Fig. 2d). As a control for cytotoxicity and for 

the capacity to form blasticidin-resistant colonies upon siRNA treatment, we transfected 

cells with pcDNA6, a plasmid containing a blasticidin selection cassette identical to that 

present in JJ101/L1.3 but without the intron. None of the specific siRNAs directed against 

ERRa significantly affects L1 retrotransposition efficiency under these experimental 

conditions. Thus, we conclude that ERRa is not an essential cellular cofactor for L1 

retrotransposition, although we cannot exclude that the remaining ERRa could be 

sufficient to achieve such functions. 

 

ERRa LBD overexpression acts as dominant negative on L1 retrotransposition 

To further explore the potential impact of ERRa on L1 life cycle, we overexpressed 

ERRa and its truncated variants (Fig. 1d) together with a replication-competent L1 

element containing a Luciferase-based retrotransposition marker (pYX14)
58

. This marker 

is similar in principle to that described in Fig. 2d, but contains a Firefly Luciferase 

(FLuc) reporter interrupted with an intron instead of the blasticidin-resistance gene. It 

also contains a regular Renilla Luciferase (RLuc) expression cassette in the plasmid 

backbone which can be used as an internal normalizer in dual-Luciferase assays. Finally, 

L1 expression is only driven by its natural 5' UTR promoter (no CMV promoter). As 

controls, we used a defective L1 element (pYX15). In contrast to the Blast
R
-based assay, 
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the Luc-based assay allows measuring retrotransposition in a short window of time. 

Therefore, we reasoned that it could mitigate possible direct or indirect transcriptional 

effects of ERRa and its variants on the different components of the assay and on cell 

physiology. First, we tested the ability of each ERRa construct to activate the 

transcription of a reporter gene under the control of a minimal SV40 promoter with or 

without estrogen-related receptor responsive elements (ERRE). In contrast to the LBD 

domain alone, both full length ERRa and the DN variant can activate ERRE-dependent 

transcription (Fig. 3a). Surprisingly, they also moderately stimulate transcription in the 

absence of ERRE sites (although not statistically significant), suggesting that they partly 

exert their effect on the SV40 promoter indirectly. Thus, as expected, both FL and DN are 

transcriptionally active, while the LBD, which cannot bind DNA, is not. Then, we tested 

whether these ERRa constructs could impact mobilization of L1 in the Luciferase-based 

retrotransposition assay. Neither full length ERRa, nor its DN truncated form, affect L1 

retrotransposition. In contrast, overexpressing the LBD domain alone reduces L1 

mobilization by ~40% (Fig. 3b). Of note, the reduction of L1 retrotransposition upon 

LBD overexpression, does not coincide with a decreased activity of the L1 promoter or of 

the promoter of the reporter gene (5'UTR and SV40, respectively, Fig. 3c). Altogether, 

these results indicate that the LBD can act as a dominant-negative to suppress L1 

retrotransposition.  

 

Functional redundancy between ERRa and other steroid receptors 

One possible explanation for the lack of effect of ERRa depletion on L1 

retrotransposition is the redundancy of NRs. The NR family contains 48 members in 

humans. ERRa belongs to the steroid receptor superfamily, which includes two other 

close paralogs of ERRa, namely ERRb and ERRg (Fig. 4a). To address the possibility 

that ORF2p interacts with other members of the NR family, we used a fluorescent 2-

hybrid (F2H) experimental scheme (Fig. 4b) 
59

. For this purpose, we took advantage of an 

established U2OS-derived cell line, which contains a large LacO repeat array in the 

euchromatic region of chromosome 1p36 
60

, in which we stably expressed our protein of 

interest, ORF2p-Cter fused to GFP, by retroviral transduction. In this cell line, the 

transfection of mCherry-LacI fused to various baits (X) leads to a nuclear red spot. If the 

protein of interest (Y) interacts with X, the GFP-Y fusion protein also accumulates at the 
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LacO array and forms a green spot co-localizing with the red spot. In the absence of 

interaction, the GFP-Y protein remains diffuse in the nucleus. First, we verified that the 

mCherry-LacI fusion proteins correctly fold by testing their ability to activate 

transcription in a Luciferase assay. Each of the mCherry-LacI fusion constructs were co-

transfected with a plasmid containing a Firefly Luciferase gene under the control of a 

minimal SV40 promoter, with or without 3xLacO repeats, and with a plasmid expressing 

Renilla Luciferase under the control of a constitutive TK promoter, as a normalizer (Fig. 

4c). As expected, none of the LacI fusion activates transcription in the absence of LacO 

repeat (Fig. 4d). However, when LacO repeats are present, all three ERR paralogs 

stimulates transcription ~3 to 10-fold as compared to the mCherry-LacI alone. As a 

positive control for transcriptional activation, mCherry-LacI fused to the strong viral 

VP16 activating domain stimulates transcription >100 fold. These results indicate that all 

these mCherry-LacI fusion proteins correctly fold and are transcriptionally active. 

Strikingly, the LBDs of all three ERR paralogs can interact with ORF2p-Cter by F2H in 

contrast to mCherry-LacI alone or fused to VP16 activation domain (Fig. 4e,f). 

Next, we tested whether other related nuclear receptors belonging to the steroid receptor 

superfamily, could also interact with ORF2p (Fig. 4a). Notably, and in contrast to ERRs, 

the activity of these transcription factors is hormone-dependent. In a first set of control 

experiments, as previously achieved for ERRs, we tested whether the mCherry-LacI 

fusion proteins were transcriptionally active, as an indirect readout of proper folding. The 

fusion proteins with estrogen receptor (ERa and ERb) or glucocorticoid receptor (GR) 

LBDs are transcriptionally active and hormone-dependent (Supplementary Fig. S3a,b). 

Remarkably, they also all interact with ORF2p-Cter, but only in presence of their 

respective ligands (Supplementary Fig. S3f,g). In contrast, androgen-, 

mineralocorticoid-, and progesterone receptor fusion proteins were totally unable to 

stimulate transcription of the reporter gene with the LacO repeats (Supplementary Fig. 

S3c-e), indicating that these constructs do not properly fold in vivo or that their LBD 

regions are not sufficient to stimulate transcription. For this reason, we did not explore 

further the potential interaction of MR and PR with ORF2p. Since a previous report 

suggested that AR and ORF2p might cooperate to cause chromosome fusions 
61

, we 

tested by F2H whether this inactive form of AR was nevertheless able to interact with 

ORF2p-Cter, but this was not the case under our experimental conditions 

(Supplementary Fig. S3f,g). 
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Thus, L1 ORF2p can interact with at least two thirds of the steroid receptors (all ERRs 

and ERs, as well as GR) and we cannot conclude for the remaining third (AR, MR and 

PR). 

 

Tethering ERRa LBD to a heterochromatic repeated array inhibits L1 

retrotransposition 

Dissecting the possible role of ERRa in L1 retrotransposition cycle is rendered difficult 

by the pleiotropic effects of NR signaling pathways on cellular physiology, through their 

direct or indirect transcriptional activity, their high degree of interconnections, and their 

potential functional redundancy, at least with regard to ORF2p interaction. We reasoned 

that we could mitigate some of these issues by testing L1 retrotransposition in a cellular 

context in which ERRa LBD is tethered to a specific locus independently of its DNA-

binding domain. For this purpose, we took advantage of the U2OS cells containing the 

LacO array (U2OS 2-6-3 clone), already used for the F2H experiments (Fig. 4b), in 

which we transfected a replication-competent L1 element containing the blasticidin-

resistance retrotransposition marker or an RT-defective L1 as negative control (Fig. 2d 

and 4a). Parallel experiments were performed in the parental U2OS cell line, which does 

not contain the LacO array, as control. Four days after transfection, L1 expression, 

measured by ORF1p immunoblotting, was unaffected or slightly increased by the 

coexpression of mCherry-LacI-LBD as compared to mCherry-LacI (Fig. 2b,c). Of note, 

the overall levels of L1 overexpression were always less important in the parental cell 

line than in U2OS 2-6-3. For this reason, we only compared conditions within a particular 

cell line rather than between cell lines. In the parental U2OS cells (- LacO), 

overexpressing mCherry-LacI-LBD does not affect L1 retrotransposition as compared to 

mCherry-LacI alone (Fig. 5d,e). In contrast, when the LacO array is present (+ LacO), we 

observed a decreased number of blasticidin-resistant colonies upon L1 transfection when 

mCherry-LacI-LBD is expressed as compared to mCherry-LacI. Notably, mCherry-LacI-

LBD overexpression in U2OS 2-6-3 cells also results in a slight reduction of pCDNA6-

mediated colony formation, suggestive of diminished cell growth or slight cytotoxicity. 

However, quantification of the retrotransposition assay, and normalization by the 

pCDNA6 controls, indicate that tethering ERRa LBD to the LacO array specifically 

inhibits L1 retrotransposition, consistent with a model in which ERRa LBD attracts the 

L1 machinery to the LacO array and potentially prevents efficient retrotransposition. 
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Although the LacO array in U2OS 2-6-3 is inserted in a euchromatic region, the body of 

the array itself is heterochromatic 
60

. Therefore, our observations could also be the 

consequence of the silencing of L1 copies (and blasticidin marker) inserted into the LacO 

array. To test this possibility, we specifically measured the number of copies of the 

spliced blasticidin-resistance gene, which reflects the number of L1 cDNA formed, in 

unselected cells, by a multiplex droplet digital PCR (ddPCR) assay. As expected, the 

spliced product is undetectable in untransfected cells or cells transfected with an RT-

deficient L1, but readily detected in cells transfected with a replication-competent L1 

element, both in blasticidin-selected and unselected cells, demonstrating the specificity of 

the amplification (Supplementary Fig. S4). Strikingly, L1 cDNA formation is strongly 

diminished when ERRa LBD is tethered to the LacO array, but not when the array or the 

LBD is absent (Fig. 5f). Thus, we conclude that tethering the LBD of ERRa to the LacO 

array attracts and sequester the L1 machinery in a region refractory to retrotransposition, 

which reduces its overall efficiency. 

 

Discussion 

In summary, we show here that a subset of NRs, including all three ERRs, the two ER 

paralogs and GR, can physically interact with ORF2p, a key component of the L1 RNP, 

in human cultured cells (Fig. 1 and 4, Supplementary Figures S1 and S3).  NR binding 

to ORF2p is mediated by their LBD. Knocking down a single NR (ERRa) is not 

sufficient to alter retrotransposition efficiency (Fig. 2). However, a truncated form of 

ERRa containing solely the LBD can act as a dominant-negative and inhibits L1 

retrotransposition, indicating that ERRa can functionally impact L1 retrotransposition 

(Fig. 3). Finally, tethering the LBD of ERRa to a repeated heterochromatic array also 

reduces L1 retrotransposition efficiency, likely by sequestering the L1 RNP in a 

chromatin context poorly permissive to L1 integration (Fig. 5). Altogether, our data are 

consistent with a model in which several NR receptors act as cellular partners of L1 

retrotransposition, and cooperate to guide the L1 RNP to particular euchromatic regions 

of the genome (Fig. 6). 

 

Interestingly the integration of transposable elements and retroviruses is often guided by 

tethering factors that promote the integration of these mobile genetic elements into 
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specific chromosomal regions (see 
62

 for review). Tethering factors have been identified 

for many long-terminal repeat (LTR)-containing retroelements. Among others, the BET 

family of proteins favor murine leukemia virus (MLV) integration in promoters and 

enhancers 
63-65

, LEDGF/p75 guides human immunodeficiency virus (HIV) insertions into 

highly spliced and transcribed genes 
66,67

, TFIII and AC40 direct yeast Ty3 and Ty1 

integration close to tRNA genes, respectively 
68,69

, and finally yeast Ty5 preferentially 

targets subtelomeres through an interaction between Ty5 integrase and Sir4p 
70,71

. 

Interestingly, Ty5 targeting to subtelomeres depends on the phosphorylation of Ty5 

integrase. Under metabolic stress conditions, integrase phosphorylation is reduced and 

insertions are relocated throughout the genome, indicating that Ty5-mediated insertional 

mutagenesis is a regulated process 
72

. With regards to non-LTR-retrotransposons, 

evidence of a tethering mechanism is scarce 
62

. The most documented example is TRE5-

A, a non-LTR retrotransposon of the L1 clade found in Dictyostelium discoideum, which 

inserts specifically upstream of tRNA genes through an ORF1p-TFIIIB interaction 
73,74

. 

There is currently no known integration site preference for mammalian L1 elements 

beside the EN target site of ORF2p, a degenerate consensus sequence related to 5'-

TTTT/A-3' 
23,75-77

. Our results suggest that some steroid receptors could function as 

tethering factors for L1 in mammals, by virtue of their interaction with the C-terminal end 

of ORF2p, and raise the intriguing possibility that de novo L1 insertions could disperse 

less randomly in the genome than previously anticipated. Consistently, a previous report 

implicated ORF2p in androgen receptor (AR)-mediated chromosome breaks and fusions 

in prostate cancer cells 
61

, although we could not conclusively test the interaction of 

ORF2p with AR under our experimental conclusions. 

 

We originally identified ERRa as interacting with ORF2p and we extended this 

observation to a number of other steroid receptors. However, we cannot exclude that 

ORF2p interacts with several other NRs, outside of the steroid superfamily. Future 

studies will be necessary to delineate the precise set of NRs which can associate with 

ORF2p and whether some subsets could function predominantly in particular cell-types. 

This will be necessary to systematically test the genomic association between L1 

integration sites and NR binding sites. Of note, several NR agonists or antagonists have 

been identified in reporter assays as regulating positively or negatively L1 promoter 
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activity 
78,79

. Thus, NR might influence the replication cycle of L1 elements both at 

transcriptional and post-transcriptional levels. 

 

In conclusion, given the importance of steroid receptors in the physiology of mammals 

and their adaptation to environmental changes, we speculate that NR-mediated tethering 

of ORF2p might modulate the landscape of L1 integration in the genome and link 

environmental and physiological signals with genomic plasticity. 

 

Methods 

Yeast 2-hybrid screens 

Our yeast two-hybrid (Y2H) protocol was previously described in details 
80

. Briefly, 

fragments from human or mouse L1 coding regions (Supplementary Table S1) were used 

as baits to screen human or mouse prey cDNA libraries, respectively. L1 fragments from 

the human L1.3 element (Genbank Acc No: L19088)
49

 or from the mouse and codon-

optimized ORFeus construct 
50

 were introduced by PCR amplification and in vitro 

recombination (BP cloning, Gateway system, Invitrogen) into pDONR207, a Gateway 

entry vector. After validation by sequencing, these L1 fragments were then transferred by 

recombinational cloning (LR reaction, Gateway system, Invitrogen) from pDONR207 

into the yeast expression vector pPC97-GW (provided by Dr. Marc Vidal) to be 

expressed as fusion proteins with GAL4 DNA-Binding Domain (GAL4-BD) at the N 

terminus. Plasmids were transformed into the AH109 yeast strain (MATa), which 

includes a His3 reporter gene to select for two-hybrid interactions. Then, GAL4-BD bait 

fusion proteins were tested for autonomous transactivation of the His3 reporter gene, but 

none of them showed some self-transactivation activity (no background in the absence of 

interaction). Commercial human spleen and mouse brain cDNA libraries cloned in the 

pPC86 vector backbone (Invitrogen), which contains a GAL4-Activating Domain 

(GAL4-AD), were introduced into the Y187 yeast strain (MATa) using a high-efficiency 

transformation protocol to conserve the clonal diversity of the libraries. We used a mating 

strategy between bait- and prey-containing strains to screen the cDNA libraries, and at 

least 4.10
7
 diploids were generated per bait. After growth for 6-7 days on a selective 

culture medium (–L-W-H + 10 mM 3-aminotriazole), His
+
 colonies were picked. The 

GAL4-AD-cDNA fusions expressed in these clones were amplified by PCR and 
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sequenced to identify interactors by BLAST analysis (Supplementary Table S1). ERRa 

was the only hit found independently in several screens and represented by distinct 

overlapping fragments. 

 

Cell culture and cell transfection 

U2OS osteosarcoma cells (#92022711, ECACC, distributed by Sigma-Aldrich) and their 

derivatives, HeLa cervical cancer cells (CCL-2, ATCC, provided by ENS-Lyon cell 

bank), and HEK-293T human embryonic kidney cells (CRL-11268, ATCC, a kind gift 

from A. Cimarelli, ENS-Lyon) were grown in DMEM medium (Gibco) containing 4.5 

g/L D-Glucose, 110 mg/L Sodium Pyruvate, and 862 mg/mL L-Alanyl-L-Glutamine 

(Glutamax), supplemented with 10% fetal bovine serum (FBS, Gibco), 100 U/mL 

penicillin and 100 µg/mL streptomycin (Gibco). Cell lines were maintained at 37°C with 

5% CO2 in humidified incubators (Sanyo). The U2OS 2-6-3 clone is an U2OS-derived 

clone containing ~200 copies of a plasmid with 256 Lac operator (LacO) repeats 
60

 

(kindly provided by D. Spector). The U2OS-263-ORF2Cter-GFP is a clonal derivative of 

U2OS 2-6-3 transduced with pVan571, a retroviral vector containing ORF2-Cter N-

terminally fused to NLS-GFP in the pLNCX2 backbone (Clonetech) and selected with 

G418, to facilitate F2H screens. The cell cultures were tested negative for mycoplasma 

infection using the MycoAlert Mycoplasma Detection Kit as routine test (Lonza). 

 

Hormonal treatments 

Prior to hormonal treatment, cells were incubated overnight in growth medium containing 

charcoal-treated FBS instead of complete FBS. The day after, we added either ethanol for 

mock-treated cells, or the one of the following ligands dissolved in ethanol at a final 

concentration of 10 nM: b-estradiol (E8875, Sigma), dexamethasone (D1756, Sigma), 

5a-androstan-17b-ol-3-one (also known as dihydrotestosterone, A8380, Sigma), 

progesterone (P0130, Sigma), aldosterone (A9477, Sigma). 

 

Plasmid constructions and preparation 

Plasmid constructs are detailed bellow. Oligonucleotide sequences and cloning strategies 

used are available upon request. When indicated, plasmid constructs were generated by 

SLiCE cloning, a method based on in vitro homologous recombination 
81

. LBD of the 

different NR were amplified by PCR from the Open Biosystems Human Full-Length 
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cDNA Set of Nuclear Receptors (MHS4911, Thermo Scientific) and corrected by PCR. 

All plasmid DNA was prepared with a Midiprep Plasmid DNA Kit (NucleoBond, 

Macherey-Nagel) and verified by Sanger sequencing (GATC Biotech). 

 

pVan327 - pCMV-myc-Gateway/hERRalpha LBD contains a MYC-tag on the ligand 

binding domain of human ERRalpha (obtained through Gateway cloning). 

 

pVan297 - pCI-neo-3xFlag/hORF2p opt C-term contains a triple FLAG tag on the C-

terminal sequence of ORF2p. 

 

pVan 576 - hERRα FL is derived from pF2H vector and contains full length human 

ERRa, cloned from the NR set, gene accesion number BC092470 (Slice cloning). 

 

pVan551 - hERRα DN is identical to pVan576, but contains a deletion variant of human 

ERRa, missing the N-terminal domain (Slice cloning). 

 

pVan552 - hERRα LBD is identical to pVan576, but contains solely the ligand binding 

domain of human ERRa (Slice cloning). 

 

pCEP4 (Life Technologies) is an episomal mammalian expression vector carrying the 

hygromycin B resistance gene.  

 

pJJ101/L1.3 is a pCEP4-based plasmid containing an active human L1 (L1.3) (accession 

no. L19088) 
82

 carrying a mblastI retrotransposition indicator cassette 
83

. L1 expression is 

augmented by a CMV promoter located upstream of the L1 5' UTR and an SV40 

polyadenylation signal that is located downstream of the native L1 polyadenylation 

signal. This vector and the following pJJ105/L1.3 were a generous gift from Dr. J.L. 

Garcia-Perez (Univ. of Edinburgh, UK). 

 

pJJ105/L1.3 is similar to pJJ101/L1.3, but contains a D702A missense mutation in the RT 

active site of L1.3 ORF2 
83

. 

 

pcDNA6 (Life Technologies) is a mammalian expression vector with a blasticidin 

resistance selection cassette. 

 

pJM101/L1.3 is similar to pJJ101/L1.3, but contains a mneoI retrotransposition reporter 

cassette.  

 

pVan571 is a retroviral vector containing ORF2-Cter N-terminally fused to NLS-GFP in 

the pLNCX2 backbone (Clontech), used to transduce the U2OS 2-6-3 cell line, and to 

obtain the U2OS 263-ORF2Cter-GFP clone. 

 

pVan 396 - mCherry-LacI is derived from pF2H vector and contains the fusion protein 

mCherry-LacI (Slice cloning). The F2H plasmids used for cloning were a generous gift 

from H. Leonhardt (Ludwig Maximilians Univ., Munich, Germany). 
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pVan386 - mCherry-LacI-LBD-hERRα is identical to pVan396 and contains the fusion 

protein mCherry-LacI and the ligand binding domain (LBD) of human ERRα. Other 

plasmids are identical to this one, but contain the ligand binding domain of other human 

nuclear receptors - ERRβ, ERRϒ, ERα, ERβ, GR, MR, AR, PR (Slice cloning). 

 

pYX014 is dual luciferase vector that expresses a human L1 (L1RP) equipped with a 

Firefly Luciferase retrotransposition indicator cassette and an intact RLuc expression 

cassette on the vector backbone for normalizing transfection efficiency. L1 expression is 

driven by its own promoter, located in the L1 5' UTR 
58

; this vector and the following 

pYX015, were a generous gift of Wengfen An (South Dakota State Univ., SD, USA). 

 

pYX015 is identical to pYX014 except that it carries two missense mutations in ORF1p 

and is thus retrotransposition-incompetent and used as negative control 
58

. 

 

pGL3prom (FLuc) - commercial vector from Promega, with Firefly Luciferase (FLuc) 

cassette under the control of the SV40 promoter. 

 

LacO-FLuc is identical to pGL3prom (Fluc), except that the SV40 promoter is preceded 

by 3 LacO repeats. 

 

pYX013 (RLuc) expresses Renilla Luciferase (RLuc) from a constitutive TK promoter, 

used for transfection control. 

 

pGL2prom contains a Firefly Luciferase (FLuc) cassette under the control of the SV40 

promoter. 

 

ERRE-luc is identical to pGL2prom vector, but has 3 binding sites for ERR (ERRE) 

upstream of SV40 promoter and Firefly Luciferase (FLuc) cassette. 

 

pVan575 is identical to ERRE-luc, but it lacks ERRE sites. 

 

pVan601 is identical to pGL2prom vector, but it does not contain the SV40 promoter or 

any other promotor. 

 

pVan604 - L1 5’UTR is a pGL2prom vector with FLuc cassette under the control of the 

L1 5'UTR promoter (cloned from JM101/L1.3). 
 

 

Antibodies 

Primary antibodies used for immunoblots were directed against ERRa (C-terminal 

epitope, clone E1G1J, Cell Signaling Technology, 1:3,000); or N-terminal epitope, 

ab137489, 1:1,000), Flag (clone M2, 1:1,000, Sigma-Aldrich), hORF1p (rabbit 

polyclonal antibody, serum SE-6798, 1:1,000) 
6,39

, b-Tubulin (clone BT7R, Pierce 

Biotechnology, 1:10,000), mCherry (ab183628, 1:1000), HA (clone HA.C5, ab18181, 

1:1,000), MOV10 (ab80613, 1:3000) or Myc (clone 9E10, Sigma, 1:2000). As secondary 
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antibodies (LI-COR Biosciences), we used IRDye 680RD Goat anti-Rabbit IgG, IRDye 

800CW Goat anti-Rabbit IgG, IRDye 680RD Goat anti-Mouse IgG or IRDye 800CW 

Goat anti-Mouse IgG, diluted at 1:10,000. 

For IP, antibodies were used as follow: 2 µg of the M2 Flag antibody, 1:50 diluted for the 

ERRa (C-terminal epitope, clone E1G1J, Cell Signaling Technology) or 2 µg of the Myc 

antibody. 

 

Co-immunoprecipitation 

HEK-293T cells were seeded in 6-well plate at 400,000 cells/well, and transfected on the 

next day with 4 µg of total DNA and 10 µl of Lipofectamine 2000. Forty-eight hours 

post-transfection, cell pellets were resuspended in 300 µL of lysis buffer (20 mM Tris-

HCl pH 8, 137mM NaCl, 1% Triton X-100, 2mM EDTA, supplemented with protease 

inhibitor (Complete Mini, EDTA-free, Roche) and phosphatase inhibitor (Sigma) 

cocktails for 30 min at 4 C̊. 

Protein A or Protein G-sepharose beads (Sigma) were blocked in 1 mg/mL BSA for 2h at 

4°C. Cell lysates were precleared with blocked beads for 1h at 4°C. Upon removal of the 

beads, we incubated the precleared lysates with the specific antibody for 1h at 4°C, and 

then we added fresh blocked beads for 1h at 4°C. Bound beads were washed 3 times for 

10 min in lysis buffer (no BSA, no protease and phosphatase inhibitor) and beads were 

boiled in 2x Laemmli Buffer for 10 minutes at 98°C. To test whether interactions where 

RNA-dependent, cell lysates were incubated for with a mixture of RNase A and RNase If 

(New Englands Biolabs) at the indicated concentration for 5 min at 37°C. 

 

Immunoblots 

Cells were trypsinized, counted, and directly boiled for 5 min at 95°C in 2x Laemmli 

Buffer (1x10
6
 cells / 100 µL). Samples were resolved by 10% polyacrylamide gel 

electrophoresis in 1x Tris-glycine, and wet-transferred onto a PVDF FL membrane 

(Millipore). The membranes were hydrated in methanol and incubated in blocking 

solution (Phosphate-buffered saline with 0.1% Tween 20 (PBS-T), containing 5% (w/v) 

fat-free milk) for 1h at room temperature. Then, membranes were incubated with a 

primary antibody diluted in blocking solution overnight at 4°C or for 1h at room 

temperature. After 4 washes in PBS-T, membranes were incubated for 45 min at room 

temperature with a secondary antibody coupled to infrared fluorochromes diluted in 
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Odyssey blocking buffer (LI-COR Biosciences), followed by 4 additional washes in PBS-

T and one last wash in PBS for 5 min. Fluorescent signal was detected and quantified 

with a dual-channel Odyssey infrared imaging system (LI-COR Biosciences). When 

necessary, membranes were stripped for 30 min in stripping buffer (ST010, Euromedex), 

washed 5 times in distilled water, reblocked in blocking buffer and immunoblotting was 

repeated as described above.  

 

Luciferase assays 

HeLa cells were seeded in 12-well plates at 200,000 cells/well. The next day, cells were 

transfected with 3 µL of Lipofectamine 2000 diluted in 100 µL of Opti-MEM (Life 

Technologies) premixed with 0.5 µg of each of the following plasmids diluted in 100 µL 

of Opti-MEM total: (i) pGL3prom or LacO-Fluc; (ii) pYX013 (RLuc); and (iii) a plasmid 

expressing one of the mCherry-LacI fusion proteins (Fig. 3c). Four hours post-

transfection, medium was replaced with fresh growth medium. For ligand-independent 

nuclear receptors, cells were lysed 24h post-transfection. For ligand-dependent nuclear 

receptors, cells were seeded and grown in media containing charcoal-treated FBS, 

transfected with plasmid DNA, treated with the indicated hormone 24h post-transfection, 

and lysed after 24h of hormonal treatment. RLuc and FLuc activities in cell extracts were 

measured with the Dual-Luciferase reporter assay system (Promega) following 

manufacturer’s instructions using a Centro XS3 LB960 plate reader (Berthold 

technologies) and the Microwin 2000 software. 

 

siRNA-mediated depletion 

Pre-designed siRNAs were obtained from Sigma-Aldrich and include two control siRNA 

(SIRNA universal negative control #1- SIC001, SIRNA universal negative control #2- 

SIC002) and three siRNA directed against ERRa (MISSION PDSIRNA5D 

SASI_Hs01_00193458, MISSION PDSIRNA5D SASI_Hs01_00193459, MISSION 

PDSIRNA5D SASI_Hs01_00193460). 2×10
5
 U2OS cells were plated in six-well plates. 

The next day, cells were transfected with 5 nM of each siRNA using the Mission siRNA 

transfection reagent (Sigma-Aldrich). Twenty-four hours after siRNA treatment, cells 

were transfected with L1 retrotransposition assay plasmid (JJ101/L1.3) or the pCDNA6 

control, using 2 µg of plasmid DNA and 6 µL of jetPEI
 
(Ozyme) diluted in 150 mM 

NaCl. Five hours post-transfection, medium was replaced with fresh growth medium. 
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Two days after DNA transfection, cells were collected and counted. A fraction was used 

for immunoblot analysis, and another for colony assay formation. Notably, we 

consistently observed increased colony formation in the retrotransposition assay with the 

control siRNA SIC001, consistent with previous observations reporting unexpected 

effects of some commercial non-targeting control siRNAs on retrotransposition assay 

plasmids 
84

. None of the other targeting or non-targeting siRNAs had similar effects. 

Since the sequences of these controls are not provided by the manufacturers, we could not 

explore further this phenomenon. 

 

Retrotransposition assays in cultured cells 

Blasticidin-based assay. U20S cells were seeded in six-well plates at 2x10
5
 cells per 

well. The next day, cells were transfected with 2 µg of plasmid DNA and 6 µL of jetPEI 

(Ozyme) diluted in 150 mM NaCl. Five hours post-transfection, medium was replaced 

with fresh growth medium. Two or four days post-transfection, cells were trypsinized, 

counted and replated in medium supplemented with Blasticidine (Gibco, Life 

Technologies) at 10ug/ml final concentration. After 10 days of selection, colonies were 

fixed and stained with a solution containing 30% methanol (v/v), 10% acetic acid (v/v) 

and 0.2% Coomassie blue (m/v). The plates were scanned using an Oddyssey imaging 

system (LI-COR Biosciences). The images were analyzed using the Colony Area Image J 

plugin 
85

using the area percentage. 

 

Fluorescent 2-hybrid assay 

U2OS-263-ORF2Cter-GFP cells were seeded in 24-well plates on cover slips at 100,000 

cells/well. The following day, cells were transfected with 0.5 µg of plasmid DNA using 

1µL Lipofectamine 2000 diluted in 100 µL Opti-MEM (Life Technologies), and medium 

was replaced with fresh medium after 4h. For ligand-independent nuclear receptors, 24h 

post-transfection, cells were washed twice with PBS, fixed with 4% formaldehyde diluted 

in PBS, for 10 minutes, washed 3 times for 10 min with PBS, and, finally, mounted with 

DAPI-containing Vectashield (Vector Laboratories). For ligand-dependent nuclear 

receptors, cells were seeded and grown in media containing charcoal-treated FBS, and 

transfected as described above. However, 24h post-transfection, cells were first treated 

with the indicated hormone for 24h, before applying the same protocol of fixation as 

described above. Cells from F2H experiments were imaged using a Zeiss Epi-
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fluorescence Cytogenetic Microscope, using 63x oil immersion objective and Isis 

acquisition software (Metasystems). 

The pictures were analyzed with CellProfiler (available at http://cellprofiler.org/). The 

pipeline to identify red and green spots in the nuclei and to measure their intensities 

modules is illustrated in Supplementary Fig. S2, and is annotated in detail in 

Supplementary Table S3. The script itself is provided as Supplementary file 

(pipeline_F2H-V7.cppipe). 

 

Droplet digital PCR (ddPCR) 

Genomic DNA was extracted using QiaAmp DNA Blood mini kit (Qiagen), following 

manufacturer’s instructions and was quantified by spectrophotometry with a Nanodrop 

2000 (ThermoFisher Scientific). PCR mixes were assembled in 20 µL reactions 

containing 50 ng of genomic DNA in 1x ddPCR Supermix for Probes no dUTP (Bio-Rad) 

supplemented with 0.9 µM of each LOU2258 and LOU2259 primers and 250 nM of the 

CALLI012 FAM-labelled probe to specifically amplifies and detects the spliced Blast
R
 

gene exon-exon junction (Supplementary Fig. S4 and Table S2), as well as 1x premixed 

RNase P-TAMRA assay as an internal reference (Life Technologies). Then, 70 µL of 

droplet generation oil for probes (Bio-Rad) were added to each reaction and droplets were 

generated according to QX200 Droplet generator's instruction manual (Bio-Rad). After 

droplet generation, 40 µL of each reaction were transferred into a clean 96-well plate. 

Amplifications were performed with a C1000 Touch Thermal Cycler (Bio-Rad) under the 

following cycling conditions: 95 ̊C for 10 min; [94°C for 30 s, 60°C for 1 min] x 39 

cycles; 98°C for 10 min; 4°C until analysis. Ramping between each step was 2°C/s. 

Finally, droplets were analyzed using a QX200 Droplet Reader and the QuantaSoft 

software (Bio-Rad). 

 

Supplementary information 

Supplementary information includes 4 figures and 3 tables and can be found with this article 

online. 
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Figures and figure legends 

 

Figure 1. ERRa is a cellular partner of L1 ORF2p. 

(a) Yeast 2-hybrid (Y2H) screens to identify cellular partners of L1 retrotransposition machinery. Several regions of 

human and mouse ORF2p (mORF2p) were used as baits in Y2H screens (Supplementary Table 1). Mouse ERRa 

(mERRa) was the most robust hit, independently identified multiple times as interacting with mORF2p-Cter domain 

(mORF2p-Cter). The table indicates the number of recovered clones in each of the two independent screens performed 

with mORF2p-Cter and for each distinct mERRa overlapping fragment found. (b) Schematic representation of 

mORF2p and mERRa domain structures. The minimal interacting regions identified by Y2H are indicated by a grey 

area. ORF2p: EN, endonuclease; Z, Z-domain; RT, reverse transcriptase; C, Cystein-rich domain. ERRa: NTD, N-

terminal domain; DBD, DNA-binding domain; H, Hinge region; LBD, Ligand-binding domain. (c) Co-

immunoprecipitation (coIP) of Myc-tagged human ERRa LBD domain (Myc-hERRa-LBD) with Flag-tagged ORF2p-

C-terminal domain (Flag-ORF2p-Cter) in HEK293T cells. Immunoprecipitation (IP) was performed with a Flag 

antibody. Left, molecular weight (kDa) markers. Right (bold), antibodies used for immunoblotting. IP, 

immunoprecipitation. The band marked with a star (*) corresponds to the IgG light chain. (d) Structure of deletion 
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variants of hERRa used in this study. FL, full length. Note that hERRa is 98% identical to mERRa and is 1 amino-acid 

longer. (e) CoIP of Flag-tagged ORF2p-C-terminal domain (Flag-ORF2p-Cter) with various deletion variants of 

untagged hERRa in HEK293T cells.  Immunoprecipitation (IP) was performed with an antibody directed against 

hERRa. Left, molecular weight (kDa) markers. Right (bold), antibodies used for immunoblotting. IP, 

immunoprecipitation. The bands marked with a star (*) or two stars (**) correspond to the IgG light and heavy chains, 

respectively. 
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Figure 2. ERRa knock-down does not affect retrotransposition efficiency. 

(a) Flow chart summarizing the experimental procedure. Twenty-four hours after siRNA treatment, U2OS cells were 

transfected with a retrotransposition-competent L1 element carrying a blasticidin-resistant marker, which becomes 

functional only after retrotransposition (JJ101/L1.3, see panel d). Two days after L1 transfection, a fraction of the cells 

was lysed for immunoblot analysis and another fraction was re-plated and selected for 10 days with blasticidin. As a 

control for cytotoxicity and for the capacity to form blasticidin-resistant colonies upon siRNA treatment, we replaced, 

in parallel transfections, the L1-containing plasmid by pcDNA6, a plasmid containing an identical blasticidin selection 

cassette as in JJ101/L1.3 but without the intron. (b-c) siRNA-mediated depletion of ERRa does not impact ORF1p 

protein levels. Representative immunoblot (b) and quantification (c) showing that several siRNA against ERRa (named 

A, B, C) efficiently reduce endogenous ERRa levels, as compared to two scramble siRNA (named 1,2). Under these 

experimental conditions, L1 expression measured through ORF1p protein levels is unchanged or only slightly 

increased. Expression levels were normalized to b-tubulin (b, bottom panel) and then to the mock-treated sample (b, 

lane 2). (b) Left, molecular weight (kDa) markers; right (bold), antibodies used for immunoblotting. (c) bars represent 

the mean ± s.d. of 3 biological replicates. (d) Principle of the retrotransposition cellular assay. The blasticidin-resistance 

(Blast
R
)-based retrotransposition marker inserted in the 3' UTR of L1 becomes functional only upon transcription, 

splicing, reverse transcription and integration into the genome. In contrast, the plasmid-borne version does not express a 



 

Results 

 

 111 

functional gene. (e) Retrotransposition assays in siRNA-treated U2OS cells. For each siRNA condition, the ratio of 

colonies obtained with JJ101/L1.3 and pcDNA6 was normalized by its matching mock-transfected control (arbitrary 

defined as 100%). Bars represent the mean ± s.d. (n=3). Variations between siERRa-treated- and mock-transfected 

samples are not statistically significant (ratio paired t-test). Under each bar of the graph a picture of a representative 

well with stained colonies is displayed for illustrative purposes. 
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Figure 3. ERRa LBD acts as a dominant-negative on L1 retrotransposition. 

(a) ERRE-transcriptional activity of ERRa variant constructs. Relative luciferase activity (RLU) was measured by co-

transfecting in HeLa cells a Firefly Luciferase (FLuc) cassette under the control of a minimal SV40 promoter preceded 

or not by 3 estrogen-related receptor responsive element (ERRE) sequences, a Renilla Luciferase (RLuc) cassette 

expressed from a constitutive TK promoter as a transfection control, and the ERRa expression constructs. RLU was 

calculated by dividing FLuc values by RLuc values, and then normalized by its matching empty vector (e.v.) condition. 

Bars represent mean ± s.d. (n=3, *, p<0.05; **, p<0.01; ratio paired t-test). White bars, FLuc construct with no ERRE; 

black bars, ERRE-containing FLuc construct. (b) Retrotransposition assays in HeLa cells overexpressing ERRa 

variants. For each condition, the FLuc/RLuc ratio was normalized by the empty vector (e.v.) control (arbitrary defined 

as 100%). Bars represent the mean ± s.d. (n=3). Only the LBD condition shows a significant difference with the control 

(* p<0.05, ratio paired t-test). (c) Transcriptional activity of ERRa variant constructs on the L1 and SV40 promoters. 

Legend is as in (a). None of constructs shows a significant difference with the control. 
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Figure 4. ORF2p interacts with all estrogen-related receptor (ERRs) paralogs. 

(a) Position of hERRa among other nuclear receptors. Humans possess 48 nuclear receptor family members. For the 

sake of simplicity, only the steroid receptor superfamily is represented in this tree. (b) Principle of the fluorescent 2-

hybrid (F2H) approach. An U2OS cell line containing ~200 copies of a plasmid with 256 Lac operator (LacO) tandem 

repeats in the chromosomal region 1p36 was transduced with a retroviral vector expressing a green fluorescent protein 

(GFP) N-terminally fused to hORF2p C-terminal domain (GFP-ORF2p-Cter). These cells are then transfected with 

constructs expressing mCherry-LacI fused or not to the LBD domain of each ERR paralog or to VP16 activating 

domain as an additional negative control (shown in panel (c), constructs on the right). mCherry-LacI fusion proteins 

(mCherry-LacI-X) bind to the LacO array and form an intense fluorescent red spot in the nucleus. If the protein of 

interest (Y) interacts with X, the GFP-Y fusion protein also accumulates at the LacO array and forms a green spot co-

localizing with the red spot. In the absence of interaction, the GFP-Y protein remains diffuse in the nucleus. Both 

constructs contain nuclear localization signals. (c-d) Transcriptional activity of mCherry-LacI fusion proteins. Relative 

luciferase activity (RLU) was measured by co-transfecting in HeLa cells a Firefly Luciferase (FLuc) cassette under the 

control of a minimal SV40 promoter preceded or not by 3 LacO repeats, a Renilla Luciferase (RLuc) cassette expressed 

from a constitutive TK promoter as a transfection control, and the mCherry-LacI fusion expression cassettes. RLU was 

calculated by dividing FLuc values by RLuc values, and then normalized by its matching mCherry-LacI condition. Bars 

represent mean ± s.d. (n=3, *, p<0.05; **, p<0.01; ***, p<0.001, multiple t-test). White bars, FLuc construct with no 

LacO; black bars, LacO-containing FLuc construct. Note that only the LBD of each ERR protein was fused to 

mCherry-LacI. The condition labelled (-) corresponds to mCherry-LacI without any additional domain. (e-f) hORF2p 

can interact with ERRa, ERRb and ERRg. Representative fluorescent microscopy images (e) and quantification (f) of 

F2H assays performed with GFP-ORF2p-Cter and varying mCherry-LacI fusion constructs. (e) All three ERR paralogs 
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show a green spot co-localizing with the red spot (plain arrowheads) in contrast to the VP16 activating domain or to 

mCherry-LacI construct alone used as negative control (empty arrowheads). Nuclei were stained with DAPI (Blue, right 

panels). (f) Quantification of F2H assays. The median green fluorescence intensity at the red spot was calculated and 

the local background was subtracted. Local background was defined as the median green fluorescence intensity in a 

donut-shaped region around the red spot (Supplementary Figure 2). Ø indicates no LBD (i.e. mCherry-LacI alone). In 

the graph, dots correspond to individual values of 3 independent experiments pooled together, and blue horizontal lines 

to median values (each condition was compared to the mCherry-LacI-Ø construct; ns, not significant; ****, p<0.0001; 

one-way ANOVA with Tukey’s multiple test correction). 
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Figure 5. Tethering the LBD of ERRa to a LacO array inhibits L1 retrotransposition. 

(a) Flow chart summarizing the experimental procedure. In each experiment, two cell lines are used in parallel: the 

U2OS 2.6.3 clone containing the LacO array (+ LacO) and the parental U2OS cell line without the LacO array (- 

LacO). Cells are co-transfected with JJ101/L1.3 (or its RT-minus derivative JJ105/L1.3) and either mCherry-LacI or 

mCherry-LacI fused to ERRa LBD domain (mCherry-LacI-/+LBD). Four days after transfection, a fraction of the cells 

was subsequently analyzed by immunoblotting and droplet digital PCR (ddPCR), while another fraction was re-plated 

and selected with blasticidin for 10 days. As a control for cytotoxicity and for the capacity to form blasticidin-resistant 

colonies in the different experimental conditions, we transfected cells in parallel with the blasticidin-resistance-

containing plasmid pCDNA6. (b-c) Expression of mCherry-LacI-LBD fusion proteins does not affect L1 expression 

measured by ORF1p immunoblotting. (b) Representative immunoblot. Left, molecular weight (kDa) markers; right 

(bold), antibodies used for immunoblotting. b-tubulin is used as a loading control. (c) Quantification of ORF1p 

expression, normalized by b-tubulin levels and by the mCherry-LacI condition in each cell line. Note that L1 expression 

was always slightly higher in U2OS 2.6.3 cells (+ LacO), but within a particular cell line, ORF1p levels were 

equivalent or slightly increased when comparing mCherry-LacI vs mCherry-LacI-LBD (lanes 4 vs 5, and lanes 10 vs 

11). Bars represent the mean ± s.d. (n=3; ns, not significant, *, p<0.05, ratio paired t-test). (d-e) Retrotransposition 

assays upon ERRa-LBD tethering to a LacO array in U2OS cells. (d) Representative results of retrotransposition assay. 

Blasticidin-resistant foci were stained and pictures of wells corresponding to each construct used for co-transfection are 

displayed. Cells transfected with an L1 RT mutant (pJJ105/L1.3) serve as negative control. (e) Quantification of cellular 

retrotransposition assays. For each experimental condition, the ratio of colonies obtained with JJ101/L1.3 and pcDNA6 

was normalized by its matching mCherry-LacI-transfected control (arbitrary defined as 100%). Bars represent the mean 

± s.d. (n=5; p<0.05, ratio paired t-test). (f) Tethering of ERRa-LBD to the LacO array inhibits L1 RNA reverse 

transcription. Multiplex Taqman ddPCR assay to quantify spliced Blast
R
 DNA in unselected U2OS cells containing or 

not a LacO array and transfected with L1 and either mCherry-LacI or mCherry-LacI-LBD. Values were normalized to 
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the matched mCherry-LacI control of each cell line. Bars indicate the mean ± s.d. (n=4; ***, p<0.001; ns, not 

significant; ratio paired t test). 
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Figure 6. A model for NR-mediated tethering 

of the L1 RNP to chromosomes. 

NR have the required structure for a tethering 

factor, with one domain binding to DNA, while 

another can recruit ORF2p through its C-

terminal region. Note that NRs do not 

necessarily require direct binding to their DNA-

binding site motif to exert their transcriptional 

activity, since they can bind indirectly to 

chromatin through protein-protein interactions 

with other transcription factors (Levin	 and	

Hammes	 2016). For the sake of simplicity, only 

the direct mode of tethering is illustrated. NR, nuclear receptor; NRRE, nuclear receptor responsive element; LBD, 

ligand-binding domain; DBD, DNA-binding domain. 
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Supplementary data 

 

Supplementary Figure 1. The interaction 

between ERRa and ORF2p is RNA-

independent. (a-b) coIP of Flag-tagged ORF2p-C-

terminal domain (Flag-ORF2p-Cter) with Myc-

tagged human ERRa LBD domain (Myc-hERRa-

LBD) in HEK293T cell extracts pre-incubated or 

not for 5 min at 37°C with an RNase A/RNase I 

cocktail. Immunoprecipitation (IP) was performed 

with a Myc (a) or a Flag (b) antibody. Left, 

molecular weight (kDa) markers. Right (bold), 

antibodies used for immunoblotting. IP, 

immunoprecipitation. The bands marked with a 

star (*) correspond to the IgG light chain. (c) 

Activity of the RNase A/RNase I cocktail on total 

RNA present in cell extracts. Cell extracts were 

incubated for 5 min at 4°C or at 37°C with or 

without dilutions of an RNase A (5U/mL) and 

RNase I (200 U/mL) cocktail. RNA was purified 

and analyzed by agarose gel electrophoresis and 

ethidium bromide staining. Lane 3, 1:500; lane 4, 

1:50; lane 5, 1:5; lane 6, undiluted. Conditions 

corresponding to lane 5 (circled) were used for all experiments with an RNase treatment step. (d) Control co-

immunoprecipitation assay showing that under our RNase treatment conditions, the well-established and RNA-

dependent interaction between ORF1p and Mov10 proteins is disrupted. HEK 293T cells were transfected either with a 

complete L1 expressing plasmid (JM101/L1.3) or the empty vector (pCEP4). RNase treatment was performed as in (a-

c). Immunoprecipitation (IP) was performed with an antibody directed against hORF1p. Left, molecular weight (kDa) 

markers. Right (bold), antibodies used for immunoblotting. IP, immunoprecipitation; WCE, whole cell extracts. 

Arrowheads indicate the specific signals. Top, the bands marked with a star (*) are non-specific. Bottom, the cropped 

signal marked with a double star (**) corresponds to the IgG heavy chain. Note that the top and bottom blots 

correspond to the same samples, separated on different gels of 8% and 10% acrylamide for optimal resolution. 
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Supplementary Figure 2. An automated CellProfiler pipeline to process and analyze F2H microscopy images. 

(a) Nuclei are identified with the blue channel (DAPI). (b) Red and green signal intensities are measured in each 

nucleus, and used to classify cells into 4 groups: mCherry
-
/GFP

-
 (dark blue), mCherry

+
/GFP

-
 (yellow), cherry

-
/GFP

+
 

(light blue), and mCherry
+
/GFP

+
 (red). Only mCherry

+
/GFP

+
 cells were considered. (c) Spots are identified in the red 

channel. (d) Median GFP intensity is measured in the spot and in a donut-shaped area around the spot to subtract local 

background (green channel). In all black and white pictures, the spots are circled (single circle for a dismissed 

mCherry
+
/GFP

-
 cell, and double-circled for a measured mCherry

+
/GFP

+
 cell with its local background). 
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Supplementary Figure 3. ORF2p interacts with several hormone-dependent steroid nuclear receptors. 

(a-e) Transcriptional activity of mCherry-LacI fusion proteins. Legend and assays conditions were as described in Fig. 

3c and 3d, except that growth medium was depleted from endogenous steroids by charcoal treatment and supplemented 

either with ethanol (-) or with a specific nuclear receptor agonist: b-estradiol (E2) for estrogen receptors (panel a, ERa 

and ERb), dexamethasone (Dx) for the glucocorticoid receptor (panel b, GR), dihydrotestosterone (DHT) for the 

androgen receptor (panel c, AR), aldosterone for the mineralocorticoid receptor (panel d, MR), and progesterone for the 

progesterone receptor (panel e, PR). Bars represent the mean ± s.d. (n as indicated in each panel; *, p<0.05; **, p<0.01; 

***, p<0.001; multiple t-tests). Ø indicates no LBD (i.e. mCherry-LacI alone). Under our experimental conditions, the 

LBD domains of ERa, ERb, and GR fused to mCherry-LacI are transcriptionally active but their counterparts based on 

AR-, MR- or PR-LBD domains are not. (f) Quantification of F2H assays. Legend is similar to Fig. 3f. In the graph, dots 

correspond to individual values of 2 independent experiments pooled together, and blue horizontal lines represent 

median values. (g) One-way ANOVA analysis of data shown in (f), using Tukey’s multiple test correction. NR, nuclear 

receptor; H, hormone. 
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Supplementary Figure 4. Specificity of the multiplex Taqman-based ddPCR assay to measure spliced Blast
R
 

copy number.  

The multiplex assay contains two sets of primer pairs and Taqman probes, one specific for the Blast
R
 exon-exon 

junction, and the other for a reference chromosomal locus used as normalizer (the RNase P gene, RPPH1). Signal is 

detected only with a retrotransposition-competent L1 (JJ101/L1.3), but neither with an RT-defective L1 (JJ105/L1.3), 

nor in untransfected cells. As a positive control, DNA from blasticidin-selected cells show strong enrichment of Blast
R
 

copy number. Dots represent mean ± Poisson confidence limits reported by QuantaSoft for n=20,000 droplets. 
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Supplementary Table S3. Detailed CellProfiler pipeline to analyze F2H images. 

 

No. Analysis module Module description 

1 Load images  

2 Crop 

Crop the picture to eliminate black borders and annotations included 

by microscope acquisition software 

*** Eventually adjust the left, right, top and bottom positions to your 

specific needs/pictures 

3 Color to gray 
Split the RGB picture into gray-scaled images for each color (Red-

mCherry, Green-GFP, Blue-DAPI) 

4 Soften 
Soften the blue image to facilitate the automatique detection of the 

nuclei. 

5 
Identify primary 

objects 
Nuclei identification step (based on DAPI, ie Blue, picture). 

6 Enhance edges Red spot identification. 

7 
Enhance or 

suppress features 
Association of the found dots to their corresponding nuclei.  

8 
Enhance or 

suppress features 

If there are secondary spots in the nucleus, will be kept only the 

biggest one (Red_Enhanced). 

9 Mask image 
Mask the red channel to keep only nuclear signal before spot 

identification 

10 
Identify primary 

objects 

Spot identification step (based on mCherry, ie Red, picture). Note that 

the lower bound on threshold (0.002) is critical to remove artefactual 

« granular » hits. 

11 Relate objects Associate Spots with their Nucleus. 

12 
Measure Object 

Size Shape 

Measure Area of Spots. This step is needed to keep only the largest 

spot if several spots per nucleus are found. 

13 
Measure Object 

Intensity 
Filter all the nuclei and keep only the GFP+/mCherry+. 

14 Filter objects 
Filter Spots for each Nucleus to keep only the biggest (if several were 

found). 

15 Relate objects Associate biggest spot of each nucleus with their Nucleus. 

16 
Measure Object 

Intensity 
Measure the intensity of GFP in the nucleus (to filter out GFP- cells). 
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17 Classify objects 
Classify each cell to know if it was doubly transfected (mCherry and 

GFP). 

18 Filter objects 
Keep only the co-transfected nuclei, but eliminate the super-bright red 

cells. 

19 Mask objects Keep only the spots from the co-transfected nuclei. 

20 Relate objects Associate filtered spots with their Nucleus. 

21 Color to Gray Create a binary mask with nuclei (1/2) 

22 Apply treshold Create a binary mask with nuclei (2/2) 

23 
Measure Object 

Intensity 
Measure intensity-based values in each Nucleus and associated Spot. 

24 Overlay outlines 

Overlay the Blue (DAPI) original picture with outlines of all Nuclei 

and Spots found (red outlines) and those selected for analysis (green 

outlines). 

For QC purpose (used for SaveImages). 

25 Tile 

Create a picture with all overlays (each color with outlined Nuclei and 

Spots). Only green outlined objects are analyzed. 

For QC purpose (used in SaveImages). 

26 Calculate Math 

For the GFP: Calculate the ratio of the median intensity in the Spot vs 

the median intensity in the Nuclei. This corresponds to the enrichment 

of the GFP signal in the Spot as compared to the Nucleus (taken as 

background). 

27 
Export to 

spreadsheet 
Export quantitative analyses to .csv file that can be imported in Excel. 

28 Save images 

For each analysis, export the overlays of each color with the outlines 

of objects (generated in the Tile module). 

For QC purpose. 
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4.  General discussion and perspectives 
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“We think in generalities, but live in detail.” Alfred North Whitehead 

 

Because L1 retrotransposon encodes the catalytic activities required for DNA cleavage 

and its reverse transcription, it is considered as an 'autonomous' transposable element. 

However, it is clear that host factors contribute to L1 expression, replication and 

regulation, particularly in a cellular context. Thus, to discover cellular pathways and 

factors involved in the regulation of L1 retrotransposon mobility, our laboratory has 

performed yeast 2-hybrid (Y2H) screens to identify cellular partners of the human L1 

retrotransposition machinery and identified several potential hits. Among them, we 

identified ERRα, a steroid nuclear receptor, as a cellular partner of ORF2p, an essential 

component of the L1 machinery. The existence of ERRα paralogs and other steroid 

receptors prompted us to test whether ORF2p could also interact with other members of 

this nuclear receptor subfamily. Our results show that a subset of NRs, including all three 

ERRs, the two ER paralogs and GR, and possibly others, can physically interact with 

ORF2p in human cultured cells, linking retrotransposition with steroid signaling 

pathways.  
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4.1 In the tethering model, the integration of transposable elements is 

guided to specific chromosomal regions by cellular factors 

Chromatin conformation has a significant impact on the integration process by blocking 

or opening the access of the integration machinery to the target DNA. However, the 

preference for nucleosome-free regions in euchromatic or heterochromatic environments, 

or for DNase-sensitive sites or nucleosome-bound DNA, influences target site selection 

locally and cannot explain all the TE insertion in a genome.  

The integration of transposable elements and retroviruses is often also determined by 

tethering factors that guide the integration of these mobile genetic elements into specific 

chromosomal regions (for review see (Sultana et al. 2017)). This mechanism, known as 

the “tethering model”, originally proposed that integration is guided by a cellular protein 

that binds to the site of integration where it can recruits the preintegration complex of 

LTR-retrotransposons and retroviruses (Bushman 2003; Kirchner, Connolly, and 

Sandmeyer 1995).  

 

4.1.1 A broad diversity of tethering factors contributes to the diversity 

of integration site preferences among TEs 

 

Specific tethering factors have been identified mostly for long-terminal repeat (LTR) 

retroelements. For instance, the bromodomain and extra terminal (BET) family of 

proteins interacts with the integrase of murine leukemia virus (MLV) and favors its 

integration in promoters and enhancers (Sharma et al. 2013; De Rijck et al. 2013; Gupta 

et al. 2013). LEDGF/p75 interacts with the IN of human immunodeficiency virus (HIV) 

and guides its activity to highly spliced, active and transcribed genes(Ciuffi et al. 2005; 

Singh et al. 2015). TFIII and AC40 direct yeast Ty3 and Ty1 integration close to tRNA 

genes, respectively (Kirchner, Connolly, and Sandmeyer 1995; Bridier-Nahmias et al. 

2015), and yeast Ty5 preferentially targets subtelomeres through an interaction between 

Ty5 integrase and Sir4p (Zhu et al. 2003; W. Xie et al. 2001). Notably, the 

phosphorylation of Ty5 integrase is a major determinant of Ty5 targeting to subtelomeres. 

The phosphorylation of the IN is reduced under metabolic stress conditions and insertions 

are  relocated throughout the genome, suggesting that Ty5-mediated insertional 

mutagenesis is a controlled process (Dai et al. 2007).  
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For non-LTR-retrotransposons, examples of tethering are less documented (Sultana et al. 

2017). The most detailed report  is TRE5-A, a non-LTR retrotransposon of the L1 clade 

found in Dictyostelium discoideum, which integrates specifically upstream of tRNA genes 

through an ORF1p-TFIIIB interaction (Siol et al. 2006; Chung et al. 2007). 

We hypothesized that some steroid receptors could function as tethering factors for L1 in 

mammals, through their interaction with the C-terminal end of ORF2p. This suggests also 

the intriguing possibility that de novo L1 insertions could disperse less randomly in the 

genome than previously anticipated.  

 

4.1.2 Properties to be considered when evaluating a putative tethering 

factor 

 

To be a tethering factor, a cellular protein should be evaluated taking in consideration the 

following properties (Sultana et al. 2017): 

i) Interaction: To interact with one of the components of the integration 

complex. 

ii) Endogenous distribution: Its distribution should correspond with the 

integration preference of the mobile elements (Sharma et al. 2013; Bridier-

Nahmias et al. 2015; Zou and Voytas 1997; De Rijck et al. 2013; De Rijck et al. 

2010; Qi et al. 2012). 

iii) Relocation: Its artificial genomic relocation should relocate insertions in the 

same genomic sites (Zhu et al. 2003; Ferris et al. 2010; Silvers et al. 2010; Gijsbers 

et al. 2010). 

iv) Loss-of-function: Abolishing the interaction should result in changes in the 

distribution insertion (Bridier-Nahmias et al. 2015). 

 

Here we discuss whether ERRa and other NRs do fulfill these experimental criteria. 

 

(i) Interaction 

We originally identified ERRa as interacting with ORF2p and this observation was 

extended to more members of the steroid nuclear receptors subfamily. However, 48 

nuclear receptors are encoded in the human genome and we cannot exclude that ORF2p 

might interact with other NRs, outside of the steroid group. Thus, we currently do not 
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know which is the complete set of NRs interacting. Additionally, even in one subfamily, 

as the steroid one, the regulatory and signaling pathways depend very much on the cell 

type used for the study. The specificity and level of expression of nuclear receptors in 

different cell lines might reveal that the interaction between a given NR and L1 is specific 

to a certain tissue and regulatory process.  

Future studies will be necessary to precisely define which NRs can associate with 

ORF2p and whether some of them could function in a cell type-dependent manner. This 

will be necessary to systematically test the genomic association between L1 integration 

sites and NR binding sites.  

 

 (ii) Endogenous distribution 

There is currently no known integration site preference for mammalian L1 elements 

beside the endonuclease (EN) target site of ORF2p, a degenerate consensus sequence 

related to 5'-TTTT/A-3' (Khazina et al. 2011; Gilbert, Lutz-Prigge, and Moran 2002; 

Symer et al. 2002; Jurka 1997). No published study has explored how de novo L1 

insertions are distributed in the genome, as it has been achieved for several LTR-

retroelements (Sultana et al. 2017). For possible future directions, the global 

distribution of new L1 insertions could be obtained by next-generation sequencing 

(Philippe et al. 2016). To assess whether L1 preferentially integrates nearby interacting 

NRs, we would need first to precise the full set of interacting NR. Then, we could 

propose to perform ChIP-seq on these factors in the same cell type used for mapping L1 

insertion sites, and to correlate NR peaks with L1 insertions. A previous report implicated 

androgen receptor (AR) binding to DNA in triggering ORF2p-mediated chromosome 

breaks and fusions in prostate cancer cells. This observation is consistent with a 

colocalization of AR with ORF2p at particular genomic locations (C. Lin et al. 2009). 

However, we were not able to demonstrate ORF2p binding to AR LBD under our 

experimental conditions. It is possible that other AR domains are involved. 

 

 (iii) Relocation 

Artificial tethering of ERRa to a specific locus has been chosen to address a possible 

causal link between ERRa DNA binding and the recruitment of the L1 retrotransposition 

machinery at the same locus. The LacO-LacI bacterial system is used in mammalian cells 

and provides a strong tether by virtue of the large number of LacO sequences and to the 
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high affinity of binding of the LacI protein to the LacO sequence (Czapiewski, Robson, 

and Schirmer 2016; Kumaran and Spector 2008). 

The cell line U2OS 2-6-3 used in this study, was created as a cell system to study the 

dynamics of gene expression in vivo (Janicki et al. 2004). The LacO repeats are 

integrated in a single integration site in an euchromatic region of chromosome 1p36. 

However, the integrated LacO array itself forms a heterochromatic structure. Generally, 

heterochromatin is viewed as a highly condensed state, which contributes to the 

repression of transcription by impeding transcription factors from accessing their binding 

elements. 

 

The number of L1 retrotransposition events diminishes upon tethering to the LacO 

array, using a retrotransposition genetic assay, implying that ERRa relocation to the 

LacO array functionally impact L1 retrotransposition. The selection of the insertions by 

blasticidine might prevent detection of insertions occurring in a heterochromatic LacO 

array. However, quantification of insertions in unselected cells by droplet digital PCR 

shows that it actually directly reduces the number of L1 retrotransposition events.  

Thus, a possible explanation for the reduced L1 retrotransposition would be that ERRa 

indeed tethers L1 to the LacO array, but the latter would not be a favorable site of 

integration. Alternatively, tethering could simply limit the number of possible target sites 

in the genome and thus could reduce the overall retrotransposition efficiency.  

An immediate future direction is to investigate the location of L1 insertions upon 

ERRa tethering to the LacO array. We ask if the L1 insertions still occurring in this 

context are enriched in the LacO array or are rather inserted somewhere else in the 

genome. To achieve this, we designed a ChIP experiment in which we pull down 

mCherry-LacI fusion proteins and we quantify the retrotransposed BlastR marker. 

 

We took advantage of the LacO-LacI system to directly tether ERRa LBD independently 

of NR DNA-binding sequence. This allowed us to circumvent the redundancy between 

nuclear receptors. However, even if this tethering system mimics the binding of the NR to 

DNA, the LacO array is not the natural environment where a NR or L1 would act. More 

specifically, the LacO array has some intrinsic limitations due to its heterochromatic and 

repetitive state. Hence, it can behave as a fragile site (Jacome and Fernandez-Capetillo 
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2011), particularly upon LacI binding, since this can promote replication blocks within 

the array (Payne et al. 2006). In spite of these limitations, the LacO system is widely 

used to study the biology of the nucleus and is a powerful tool to bring factors to a fixed 

chromatin location, without disrupting chromosome organization and recruitment of the 

tagged loci to silent nuclear domains (Jacome and Fernandez-Capetillo 2011; Finlan et al. 

2008; Kumaran and Spector 2008; Reddy et al. 2008; Soutoglou and Misteli 2008). 

 

(iv) Loss-of-function 

Abolishing the interaction between a retroelement and its predominant tethering factor 

can result in diverse integration profiles (lost, partially conserved, more random or 

alternative distribution). Often the new distribution is not random. For instance, in the 

case of Ty1, de novo insertions are redistributed from tRNA genes to subtelomeric 

regions, when the interaction between AC40 and IN is disrupted (Bridier-Nahmias et al. 

2015). Predicting the outcome of a loss-of-interaction might be even more challenging 

when several tethering factors are functionally redundant, whether they belong or not to 

the same protein family. The pattern of HIV integration into active genes does not change 

after depletion of LEDGF/p75, because another related protein, HRP2, is compensating. 

Even the concomitant depletion of both LEDGF/p75 and HRP2 does not randomize HIV 

insertions, which remain frequent in active genes (Schrijvers et al. 2012; Hao Wang et al. 

2012). 

In the present study, knocking down a single nuclear receptor (ERRa) is not sufficient 

to alter retrotransposition efficiency. The functional redundancy between nuclear 

receptors could explain such a result. However, we cannot exclude that siRNA-mediated 

knockdown does not completely deplete ERRa from the system, and that even very low 

ERRa levels could be sufficient to tether the L1 machinery. 

As a possible future direction, the RNAi library approach, used for functional gene 

discovery within a predefined protein family, might offer more answers than single 

receptor siRNA-mediated knock-down. Also, ERRa gene could be knockout by 

CRISPR/Cas9 mediated genome editing. 
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In conclusion, ERRa and other NRs interacting with ORF2p fulfil several criteria 

supporting their role as L1 tethering factors. So far, their functional redundancy prevented 

us to conclusively test some of these criteria. Future experiments defining the major set of 

factors in a given cell-type will be necessary to definitely address this question. 

 

 

4.2 Association between steroid receptor and retrotransposon activities   

The steroid receptors are part of an adaptive response important to maintain homeostasis 

when facing environmental and physiological stresses. For example, estrogen and 

glucocorticoid receptors regulate response to oxidative stress (S.-R. Lee et al. 2013; 

Simoes et al. 2012). The role of ERs in glucose metabolism is highlighted in breast cancer 

cells where they support the adaptation to glucose availability. When glucose is abundant, 

membrane ERs, promote glucose uptake and use for glycolysis, which is the main source 

of energy for tumor growth and it keeps glutathione levels low to limit oxidative stress. 

When glucose levels are low, membrane ERs promotes glucose uptake and glycolysis, 

enhancing cell viability under nutrient stress (O'Mahony et al. 2012). The physiological 

consequences of glucocorticoid production are an increased glucose production and 

immunosuppression, which are responses to low blood glucose and inflammation, 

respectively, the most common insults the human body confronts (Revollo and Cidlowski 

2009; Chrousos 1995; Barnes 1998). In C. elegans, nutrient deficiency enhances steroid 

signalling which is necessary for the lifespan extension observed upon caloric restriction 

and TOR signalling, a nutrient-sensing kinase (Thondamal et al. 2014). 

Given the importance of steroid receptors in the physiology of multicellular organisms 

and their adaptation to environmental changes, we speculate that NR-mediated tethering 

of ORF2p might modulate the landscape of L1 integration in the genome and link 

environmental and physiological signals with genomic plasticity. However, additional 

links between steroid receptor and retrotransposon activities have been previously 

highlighted.  

 

L1 promoter contains binding sites for different transcription factors which could 

modulate L1 transcription, depending on the availability of those factors in a specific cell 
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or tissue. Thus, exposure to agents which alter the function or expression of those factors, 

could also influence L1 transcription (Ade et al. 2017).  

Some studies focused directly on testing the influence of various agents or environmental 

factors on the promoter of L1. Notably, a group of researchers used beta galactosidase 

assay and L1  promoter fused to the LacZ reporter gene and observed that treatment with 

steroid hormone-like agents (serum, testotesterone, dihydrotestorone, pesticides) 

increases slightly the activity of the L1Hs promoter in cultured cells (Morales, Snow, and 

Murnane 2002). However, this study lacks measurement of RNA levels to know if the 

influence of those agents on the L1 promoter is indeed affecting transcription. Also, 

controls of cytotoxicity which are a must, are missing, as factors which affect cell 

viability and efficiency to express a certain reporter will distort the results (Ade et al. 

2017).  

 

Terasaki and colleagues tested 95 compounds for their potential to enhance transcription 

of human L1(Terasaki et al. 2013). They used genotoxic agents, commercially available 

drugs and compounds which induce cellular stress. Strikingly, out of 95 compounds, 15 

increased L1 promoter activity, including 8 drugs available on the pharmaceutical market. 

Among these, have been tested agonists or antagonists of nuclear receptors and their 

effect on L1 promoter activity was evaluated by luciferase reporter gene assay. After 6 

and 24 hours of treatment, a mineralocorticoid-receptor antagonist and the estrogen 

hormone (17ß-estradiol or E2) showed no significant change on L1 promoter activity. In 

contrast, the thyroid hormone (triiodothyronine) and the progesterone decreased L1 

promoter activity after 24 hours treatment. An increase in L1 promoter activity was 

observed after exposure to peroxisome proliferator-activated receptor α (PPARα) agonist, 

drug used for the treatment of the metabolic syndrome symptoms, mainly for lowering 

triglycerides and blood sugar. An increased L1 promoter activity was detected also after 

treatment with anti-steroid drugs, which are steroidogenesis inhibitors used in 

adrenocortical carcinoma (Terasaki et al. 2013). 

Similarly, Alu expression can be stimulated at the transcriptional level by glucocorticoids 

(Sun and Frankel 1986). Notably, the highest level of retrotransposition is found in 

steroidogenic organs as brain, placenta and gonads (Dupressoir, Lavialle, and Heidmann 

2012; Hunter, McEwen, and Pfaff 2014; Pillai and Chuma 2012; Ross, Weiner, and Lin 

2014). 
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NR agonists and antagonists form an important class of pharmacological drugs. We can 

cite for example, glucocorticoids in oncology, where they are used for their pro-apoptotic 

action to treat lymphoproliferative disorders and also to relieve the side effects of 

chemotherapy and radiotheraphy (K.-T. Lin and Wang 2016; Gennari et al. 1996). 

Another famous example is mifepristone, known as RU486, a potent antagonist of 

progesterone receptor, used for emergency contraception, termination of pregnancy and 

menstrual regulation (Ho, Yu Ng, and Tang 2002).  

Even if there is not yet a clear image about which compounds have the potential to alter 

L1 retrotransposition and at which doses, a risk assessment of induced retrotransposition 

during drug development and drug administration, should be considered. This is also true 

for other substances, such as the pesticides or herbicides, which are often hormonal 

dysregulators (Ade et al. 2017). 

 

Inversely, transposable elements have significantly contributed to the evolution of our 

genome, by dispersing transcription factor binding sites and ready-made promoter 

elements (Hunter et al. 2015; Rebollo, Romanish, and Mager 2012; Faulkner and 

Carninci 2014), in particular steroid receptor responsive elements (Cotnoir-White, 

Laperrière, and Mader 2011). For example, Alu sequences are rich in responsive elements 

for progesterone, glucocorticoid and vitamin D (Jacobsen et al. 2009; Gombart, Saito, and 

Koeffler 2009). 

 

Recent observations have connected circadian rhythm and L1 retrotransposition (deHaro 

et al. 2014).  Environmental light exposure at night is recognized by World Health 

Organization as a disruptor of the circadian system and as a possible carcinogen, due to 

an increased rate of cancers in shift workers. During light exposure, melatonin secretion 

is suppressed. Interestingly, overexpression of the melatonin receptor (MT1) reduces L1 

retrotransposition in cultured cells, decreasing both the levels of L1 mRNA and ORF1p 

protein. In addition, use of human blood rich in melatonin suppressed endogenous L1 

mRNA expression during in situ perfusion of tissue-isolated xenografts of human cancer 

(deHaro et al. 2014). These experiments suggest a model in which the disruption of 

circadian rhythm activates L1 elements, which might contribute to an increased cancer 
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risk in shift workers. However, causative relationships between these phenomena still 

need to be demonstrated (Ade et al. 2017). 

Interestingly, nuclear receptors have also been linked to the circadian rhythm, given their 

role in metabolic regulation. Several of them (e.g. Rev-erbα, RORα, PPARs) are integral 

components of the molecular clock machinery and regulate downstream target genes in a 

circadian manner, coupling peripheral circadian clocks with metabolic outputs, and 

coordinating biological timing with metabolic physiology (Duez and Staels 2010; 

Xiaoyong Yang et al. 2006; X Yang, Lamia, and Evans 2007). 

 

Collectively, these observations suggest that nuclear receptor signalling pathways can 

regulate L1 retrotransposition at several levels, from transcription to insertion site 

selection. In a broader perspective, they connect environmental, physiological or 

pathological signalling to genome (in)stability, a driving mechanism of cancer and aging. 

 

4.2.1 Possible impact of nuclear receptors on L1 retrotransposon 

The impact transposons have on the function of genomes depends on the position of their 

insertion sites. This work could provide the first evidence that nuclear receptors 

contribute to L1 distribution in the genome by tethering L1 machinery to specific sites. 

These sites could be chosen depending on the different expression of nuclear receptors in 

different cell types or in response to diverse external or internal signals, which impact 

both the nuclear receptors and L1 retrotransposon. 

Moreover, considering the hypothesis of Barbara McClintock, that transposons alter gene 

expression in ways that allow cells to respond to stress and if integration is not only 

random, then the targeting and tethering mechanisms evolved with the role to protect and 

help the host. 

At the environmental level, as mentioned before, stress has been shown to increase L1 

mobilization (Terasaki et al. 2013; deHaro et al. 2014). Also, it is well known that 

stressful events, result in secretion of glucocorticoid hormones which bind and activate 

the glucocorticoid (GR) receptor, considered the main mediator of the stress response, 

maintaining the cell health and wellbeing (Mifsud and Reul 2016).  

In a very speculative manner, we could imagine a scenario where upon stress, L1 

increased mobilization could be controlled, by restriction or insertion site selection, via 

interaction with the glucocorticoid receptor.  
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In addition, recent studies highlight the role of GR in the proliferation, differentiation, 

migration and functional integration of newborn neurons in the hippocampus (Saaltink 

and Vreugdenhil 2014; Mifsud and Reul 2016). Except the epithelial cancers, most of 

known somatic retrotransposition occurs in brain and in particular the hippocampus, a 

neurogenic niche, supports pronounced L1 activity (Coufal et al. 2009; Evrony et al. 

2012; Upton et al. 2015; Macia et al. 2017) . 

 

In cancers, the mechanisms which keep under control the mobile DNA are dysregulated. 

This allows L1 to be expressed and be a dynamic component of cancer genomes (Burns 

2017). L1 ORF1 protein is overexpressed in human cancers and constitutes a hallmark, 

being detected by immunohistochemistry in half of all epithelial tumors (Rodić et al. 

2014). 

Given their involvement in the regulation of many and diverse human developmental and 

physiological functions, nuclear receptors have been implicated also in several disease 

types, as cancer, obesity, diabetes, infertility. 

In this case, steroid nuclear receptors could again play a protective role, by limiting the 

overall efficiency of L1 retrotransposition and by mediating the insertions to specific 

genomic sites, which will not add more mutagenesis to an already destabilized genome. 

Hormonal therapy is used in the treatment of several cancers, contributing to reduced 

recurrence and longer survival rates. The duration and doses of hormonal therapy is not 

very well understood yet. More data is needed to avoid appearance of steroid-resistance 

over time and to develop new steroid-based treatments (Ahmad and Kumar 2011). On the 

same speculative note, it could be possible that the hormones received as therapy for 

specific diseases, would help the overall stabilization of the genome, by regulating also 

L1, the only active retrotransposon in humans. 
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