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École doctorale n◦575 Physique et ingénierie: électrons, photons et
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General Introduction

Context & Motivations

Magnetic Resonance Imaging (MRI) is the key imaging modality for exploring the
most fascinating organ in the human body, namely the brain. With a huge diversity

of contrasts, MRI can leverage multiple information to ease medical diagnosis. Besides
diagnosis, longitudinal studies take advantage of MR non-invasiveness to understand the
brain or predict the outcome of diseases using appropriate biomarkers. In order to improve
accuracy in the diagnosis and help uncover structural abnormalities at an early stage, high
resolution MRI could be beneficial at the expense of scan time. Long scans (> 15 min) are
more sensitive to subject’s motion which impedes the resolution and increases the number
of discarded exams. Although dedicated acquisition strategies combined with motion
correction algorithms may reduce artifacts, the scan time remains too long to fit within
the 20 min dedicated to the whole clinical MRI exam, during which, multiple acquisitions
are performed to collect complementary information on tissues. Consequently, specific
acceleration and encoding strategies (e.g. parallel imaging techniques, navigator echoes,
propeller scheme, Partial Fourier, etc.) have emerged over the last two decades to limit
scan duration and gain in robustness to motion. Yet clinical imaging remains limited to
millimetric resolution.

During the last decade, the Compressed Sensing theory has made a major breakthrough
to accelerate high-resolution scans. This theory combines efficient acquisition schemes and
reconstruction algorithm. Recently, the MR community has seen the emergence of new
efficient sampling patterns, first using Cartesian straight lines drawn pseudo-randomly,
then with simple non-Cartesian sampling such as spiral or radial spokes that allow to
reach higher acceleration factors compared to Cartesian acquisition. Even more recently,
a new mathematically driven and hardware-adaptive sampling framework, called SPARK-
LING, has been proposed. SPARKLING stands for Spreading Projection Algorithm for
Rapid K-space samplING, it is the outcome of 6 years of collaborative research between
mathematicians (P. Weiss and J. Kahn, CNRS/ITAV Toulouse), physicists (A. Vignaud
and F. Mauconduit, CEA/NeuroSpin), a researcher in signal processing for neuroima-
ging (P. Ciuciu, CEA/NeuroSpin) and former PhD students (C. Lazarus and N. Chauffert,

1



2 General Introduction

CEA/NeuroSpin). The collaboration led to an efficient optimization algorithm which takes
into account MR hardware constraints specific to the magnetic field gradients and a tar-
get sampling distribution. The outcome of this algorithm is a set of sampling trajectories
whose temporal derivatives, namely the gradient profiles, can then be injected into a MR
pulse sequence. SPARKLING has been proved to drastically accelerate scan time at 7
Tesla by a factor of 20 in 2D and 60 for 3D acquisitions with a sub-millimetric isotropic
resolution. Despite the tremendous acceleration provided by the latter trajectory, SPARK-
LING acquisition are unsuitable for clinical routines. The very reason is that several issues
related to image reconstruction are still pending in order to deliver reliable MR images
shortly after the end of acquisition.

This PhD thesis has been actually dedicated to bring the SPARKLING acquisition
schemes to the clinical routine. The primary goal of this PhD thesis was to develop an
online reconstruction framework in order to provide MR images by the end of acquisition.
To do so, we need first to accelerate reconstruction algorithms but also to interleave image
acquisition and reconstruction in order to feed the reconstruction part with new data. The
main advantage of the proposed approach is to provide some feedback to the physician
on the MR image quality during data acquisition. In this thesis, we will illustrate all the
developments on T∗2 imaging at 7 Tesla but the corresponding algorithmic contributions
will be soon available on the 3 Tesla scanner at NeuroSpin as SPARKLING has been
deployed on this MR system as well.

Contributions

The fist goal of this thesis was to improve the reconstruction accuracy in the high-resolution
highly accelerated setup – i.e. using multi-channel phased array acquisition and non-
Cartesian encoding schemes. The latter means that the data are no longer collected over
a grid or lattice of samples but instead that the measurements lie on the continuous Fourier
domain, also called k-space in MRI.

While various reliable reconstruction strategies have been successfully developed for
Cartesian acquisitions using different model-based approaches (e.g. parallel imaging, regu-
larization for inverse problems in imaging, etc.) and different kinds of prior knowledge (e.g.
sparsity, low-rank structure), non-Cartesian reconstruction is often addressed using a grid-
ding step, which impedes the final image quality. Based on an inverse problem formulation,
we take into account non-Cartesian multi-channel data with and propose a dedicated re-
construction algorithm that leverages structured sparsity information across the multiple
channels. We also get rid of the complicated and painful calibration step of the sensitivity
maps associated with the multiple channels, which makes our CS reconstruction algorithm
a single-step approach. This approach remains in the convex optimization setting which
guarantees convergence to a stable solution. Our results demonstrate an enhanced image
quality achieved in a more time-efficient manner.

While the scan time has been drastically reduced using non-Cartesian trajectories, the
application of compressed sensing to daily-routine exams remains limited owing to the
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long iterative reconstruction process. Therefore the second objective of this thesis was to
propose a method to speed up this reconstruction. Taking into account the segmented
acquisition properties of k-space data, a novel online framework with interleaved data
acquisition and image reconstruction has been proposed. Mathematically, we used a mini-
batch formulation to adapt existing optimization algorithms to this online reconstruction
setting. The online reconstruction allows one to give partial feedbacks during the scan
time making Compressed Sensing and high-resolution MRI available in clinical routines.

A third significant contribution of this thesis was software development as all pieces of
work have been implemented in an open source package called PySAP (Python Sparse data
Analaysis Package), which is developed at CEA between the NeuroSpin and CosmoStat
teams in the context of the DRF Impulsion COSMIC project led by my main supervisor,
Philippe Ciuciu. On top of that, we interfaced the algorithmic developments done in
PySAP with the client/slave Gadgetron interface system in order to push the online
reconstruction to a remote workstation. Asynchronous communication between the MR
system and the computer dedicated to image reconstruction was thus implemented.

Thesis Outline

This thesis is organized as follows:

Chapter 1: Background in Magnetic Resonance Imaging
In the first chapter, the principles of MR physics that will be needed in the rest of

the manuscript will be summarized. This allows to make the document self-contained.
In particular, we discuss the principles of signal detection, sampling and image forma-
tion using various encoding schemes as they are at the heart of accelerated acquisition
strategies. As the NMR signal is collected on the k-space – i.e. Fourier conjugate space
– we briefly describe tools for image reconstruction when the samples do not fall into a
Cartesian grid. Furthermore, we present specific reception coils that first allow to increase
the signal-to-noise ratio (SNR) and second empower scan acceleration with dedicated ac-
quisition and reconstruction methods, i.e. parallel-imaging. However, the accelerations
achieved by parallel imaging are limited and the goal is to go beyond this acceleration.
Compressed Sensing theory is the right framework to drastically shorten scan time and
will be naturally discussed in the next chapter.

Chapter 2: Compressed Sensing in MRI
In this chapter, we briefly introduce Compressed Sensing theory and its application

to MRI. Therefore, its three main ingredients are discussed in the following order: first,
the way to collect k-space data as incoherent as possible using variable density sampling,
first along Cartesian lines and then using more sophisticated non-Cartesian trajectories.
Second, CS theory relies on the sparsity of the sought object (i.e. MR image) in an
appropriate domain. Although MR images are not sparse in the image domain, they are
at least compressible in a transform domain– i.e. they can be efficiently represented or
approximated by a few non-zeros coefficients in this domain. We review different classes of

https://cosmic.cosmostat.org/
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sparsifying transforms, whether they are orthogonal/complete, overcomplete embedding
redundant information, fixed or data driven. Third, we review the different classes of
optimization problems associated with different assumputions on sparsity (analysis vs
synthesis prior) and present the efficient optimization algorithms. Last but not least, as
this thesis is dedicated to image reconstruction, we will present and choose a suitable
image quality metric to assess the performances of the algorithms proposed along this
manuscript.

Chapter 3: Multi-channel MRI reconstruction
Achieving high-resolution MR imaging requires high-input SNR, which is often ob-

tained using specific phased array coil to collect the data. Phased array coils are composed
of small elementary coils that are combined together to boost the SNR. However this com-
bination at the reconstruction stage is non-trivial, therefore this chapter will cover the way
image reconstruction is performed in the setting of multi-channel array coil acquisition.
In particular, we present a first contribution to this field, namely a simple yet efficient
two-step approach for coil calibration and image reconstruction in the SENSitivity Encod-
ing (SENSE) framework. Also, we will pay attention to the compatibility of the different
algorithms to on-line reconstruction constraints, which are at the heart of this PhD thesis.

Chapter 4: Calibrationless multi-channel reconstruction
Due to the lack of compatibility of two-step SENSE-based approaches with online

constraints and the limited applicability of alternative methods (e.g. LORAKS) to non-
Cartesian sampling schemes, this chapter will explore a different track, called calibra-

tionless reconstruction methods. To avoid the calibration step, these approaches aim to
reconstruct an image per channel. As multiple images of the same object, i.e. organ,
are reconstructed, they share information therefore and in order to handle the redundant
information shared by the coil images, structured sparsity prior knowledge is imposed.
In this field, one key contribution of this thesis is the application of new convex regu-
larization schemes based on mixed norms (e.g. OSCAR, k-support norm) that promote
structured sparsity in a more adapted way than conventional group-LASSO (which re-
quires the explicit knowledge of the group-structure). The set of MR images is thus given
by the minimization of a global nonsmooth objective function and primal-dual algorithm
is used to perform the optimization. The validation – on magnitude ad phase images –
is conducted on prospectively highly accelerated T∗2 2d MR imaging from ex-vivo human
and baboon brain with in-plane resolution of 400µm.
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Chapter 5: Online MR image reconstruction
Finally the online reconstruction framework is introduced in this final contributed

chapter. A general problem proposes a data splitting into mini-batches scheme, and devel-
ops the optimization. Then, we adopt a pedagogical approach to first address the simpler
case of single-channel data acquisition. In this case, a single image is reconstructed, either
from Cartesian and non-Cartesian data. In particular, we explore the optimal way for
tuning the batch size in order to deliver a reliable solution by the end of acquisition. Last,
we extend the online approach to multi-channel acquisition by considering the calibration-
less method we described in Chapter 4. For given computational power, we show how the
cost of the proximity operator associated with structured sparsity may prevent us from
fulfilling the online reconstruction constraints. Therefore we introduced some online trick

in the reconstruction process to remain compatible with these online constraints. Finally,
we validate the proposed method on the same data set as in Chapter 4.
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Chapter 1
Background in Magnetic Resonance

Imaging

Chapter Outline

1.1 Nuclear Magnetic Resonance phenomenon . . . . . . . . . . . . . 10
1.1.1 Magnetization. . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Excitation and Relaxation . . . . . . . . . . . . . . . . . 12

1.2 Image formation. . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Spatial Encoding . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Reception: Detection, Conversion & Demodulation . . . . . . . 17
1.2.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . 18

1.3 Multi-channel receiver coil and Parallel Imaging . . . . . . . . . . . 23
1.3.1 Signal-to-Noise Ratio increase . . . . . . . . . . . . . . . 23
1.3.2 Parallel MRI: first MR accelerations . . . . . . . . . . . . . 28

Magnetic resonance imaging (MRI) is a powerful technique to non-invasively probe
the human body with a vast variety of contrasts. As the underlying phenomenon

of magnetic resonance may be thought of rather complex, the goal of the first part of
this chapter is to give a brief overview of the basic physical principles underlying MRI1.
Importantly, information contained in the pixels of a given MR image is not directly
probed. Instead, the measurements are collected in the k-space, which in its simplest and
ideal (i.e. artifact-free) form corresponds to the spatial frequency domain or Fourier space.
In Section 1.2, we will thus review the spatial encoding principle of MR images in k-space.
In a second step we recall the principle behind the recording of the magnetic signal. As
these two processes of spatial encoding and data recording are at the heart of the complex
nature of MR images, a particular attention will be paid to the demodulation. Next, as
MRI is hampered by the long scan time, accelerating techniques allowing to shorten MRI

1Further details about MR physics can be found in [Haacke 1999, Bernstein 2004, McRobbie 2006].
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exams have been developed for the last two decades. It has actually been a major field
of research with outcomes nowadays available in clinical routine. Based on the use of
multi-channel receiver coils, the parallel imaging method and the acceleration it provides
will be described in the last section.

1.1 Nuclear Magnetic Resonance phenomenon

Magnetic resonance imaging principles are based on Nuclear Magnetic Resonance (NMR)
phenomenon, that was first described in 1938 by Isidor Isaac Rabi [Rabi 1938], work for
which he won the Nobel Pize in 1944. The applications to molecular structure exploration
quickly followed with the independent works of Felix Bloch [Bloch 1946] and Edward
Mills Purcell [Purcell 1946], for which they were jointly awarded the Physics Nobel Prize
in 1952. The principles described by these scientists are briefly explained in Sections 1.1.1
and 1.1.2.

It is only three decades later that the works of Paul Lauterbur [Lauterbur 1973] and
Sir Peter Mansfield [Mansfield 1977a] allowed to encode the Nuclear Magnetic Resonance
(NMR) signal spatially, thus enabling NMR imaging, or MRI. For this, they shared the
Nobel Prize in Medicine and Physiology in 2003. Spatial encoding is the subject of
Section 1.2.

The NMR phenomenon can be observed in any atom that has a non-zero spin, a
quantum-mechanical property conveying an intrinsic form of angular momentum. Atoms
composed of an odd number of nucleons all have a non-zero spin. This is the case for
the naturally abundant isotopes of hydrogen, fluorine, sodium and phosphorus (1H, 19F,
23Na and 31P, respectively) as well as for rarer isotopes of carbon (13C), sodium (15N) or
oxygen (170).

As human body tissues are mostly made of water and fat compartments, they are
extremely rich in hydrogen atoms 1H, whose nucleus consists of a unique proton with a
1
2 -spin. For this reason, most clinical applications of MRI focus on proton imaging. Non-
proton – also called “exotic” or “X”- – nuclei spectroscopy and imaging is a wide and
rich area of research, and their imaging is a dynamic and emerging field with a promising
future for clinical research [Coste 2017], especially at ultra-high magnetic field (7 Tesla).
Indeed, their lower abundance in the human body associated with a low signal-to-noise
ratio (SNR) may be compensated by a strong static magnetic field. However, their analysis
remains beyond the scope of this thesis, which focuses solely on 1H imaging.

1.1.1 Magnetization

The fundamental concept behind nuclear magnetic resonance imaging is the interaction
of a proton spin with an external magnetic field B0. Nuclei with a non-zero spin can be
characterized by their magnetic moment, and behave like microscopic magnets. When the
nuclei is exposed to a static magnetic field B0, its moment aligns with the static field,
either pointing in the same direction (called parallel) or in the opposite direction (called
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Figure 1.1-1: Classical representation of macroscopic net magnetization M0 (hollow vector)
in an isochromat consisting of several adjacent spins immersed in an external static magnetic
field (B0, grey vector). It is induced by the slight excess of magnetic moments (black vectors)
parallel to B0, compared to anti-parallel ones. ω0 is the Larmor angular frequency at which
each spin precesses around B0. From [Tomi-Tricot 2018, ch. 1].

anti-parallel), and start spinning like a gyroscope. This gyroscopic movement is called
precession. The angular frequency of this gyroscopic spinning, also referred as angular
precession frequency or Larmor frequency, is described by the Larmor equation given by:

ω0 = γB0 (1.1)

with γ being a nuclei-specific constant called gyromagnetic ratio. In the case of proton
1H, the constant is equal to γH = 267.5× 106 rad/s/T which corresponds to 1

2πγH =
42.57 MHz/T. At the thermal equilibrium, the spins are distributed over the two existing
parallel and anti-parallel states corresponding respectively to low and high-level energy,
the proportion of which being given by the Boltzmann statistics. The latter depends on
the Boltzmann constant, the temperature, the gyromagnetic ratio and the field strength.
Due to thermal energy the difference between spin populations at low- and high-energy
level is extremely small. This difference, called the spin excess, is about 1 over 100 000 at
1.5 T. Even though the spin excess is a million time smaller than the number of protons,
the NMR experiments consider a mesoscopic scale called isochromat, which consists of
million of billions of protons. In average this isochromat creates a mesoscopic magnetic
moment called net magnetization M also denoted at the equilibrium in a static field B0

by M0. This is particularly convenient as this net magnetization operates under the laws
of classical physics.

At thermal equilibrium, the distribution of low and high-energy spins within the iso-
chromat follows a Maxwell-Boltzmann law. If we denote by N the number of spins con-
sidered, T the temperature, ~ the reduced Planck constant and kB the Boltzmann constant
(see ‘Symbols Used’ section on page xiii), and if we consider that the energy difference is
negligible compared to kBT , then the macroscopic magnetization at equilibrium pictured
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in Figure 1.1-1 can be written as:

M0 ≈ N
γ2~2

4kBT
B0 (1.2)

During NMR experiments the observable variable is the net magnetization M0. In-
terestingly, Eq. (1.2) shows that M0 depends on the strength of B0. This constitutes the
major reason for the development of ultra-high field MR systems as the stronger B0, the
larger the magnetization and so the potential NMR signal.

1.1.2 Excitation and Relaxation

Even in a macroscopic body, spin excess does not guarantee a detectable signal, the mag-
netization vector must be tipped away from the static field direction B0 in order to set
it into precession. This step is performed by applying a Radio Frequency (RF) magnetic
field, B+

1 generated by specific RF coils, for a short period of time also referred as pulse,
the latter step is called “Excitation”. In order to interact with the spins the generated
B+

1 magnetic field must oscillate at the Larmor frequency. On top of this frequency, the
generated field is orthogonal to B0 which creates a transverse component of the net mag-
netization as depicted in Figure 1.1-2. The magnetization vector can then be decomposed
into two components, namely the transverse and longitudinal magnetizations, denoted
respectively by Mxy and Mz and defined as follows:

M = Mxy + Mz with: Mxy =


Mx

My

0

 and Mz =


0
0
Mz

 (1.3)

Once the magnetization has been tilted, the B+
1 field is stopped and the system starts

returning to its initial equilibrium state. This phenomena is called “Relaxation”, the rate
for which the system returns to its equilibrium state defines the relaxation time. On one
hand, the longitudinal rate is characterized by the time needed for the Mz component
to retrieve 63% of its initial value, this time is called T1. Since the T1 is related to
the spin interactions with their surrounding, it is therefore referred to as the spin-lattice

relaxation. On the other hand, the transverse decay is characterized by the time T2 needed
for Mxy to decay to 37% of its initial value. The phenomena emanates from the loss of
phase coherence between spins and is therefore referred to as the spin-spin relaxation (see
Figure 1.1-3). In practice, the B0 field is not uniform and the transverse decay is faster
than expected, hence the accessible time is not directly the T2 but rather T∗2 that is linked
through the following relation:

1
T∗2

= 1
T2

+ 1
T2i

(1.4)

where 1/T2i = γ∆Bi is the relaxation rate contribution attributable to field inhomogen-
eities (∆Bi) across a voxel. Both T1 and T2 are intrinsic tissue properties, however only
T1 depends on the B0 field strength.
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Figure 1.1-2: Effect on macroscopic magnetization of a B+
1 field rotating at the Larmor

frequency ω0 viewed (a) from laboratory frame (XYZ) where B0 is aligned with the Z axis. (b)
It is generally convenient to represent it in a rotating frame of reference (xyz) of frequency ωrf ,
where B+

1 lies along with the x axis. The z axis is aligned with Z. From [Tomi-Tricot 2018].

Figure 1.1-3: Longitudinal (grey) and transverse (black) relaxation of magnetization for a given
T1 and T2. From [McRobbie 2006].

While magnetization relaxes to its equilibrium state, it is possible to measure the
evolution of its transverse component, using either the same coil that was used for trans-
mission (Tx) of B+

1 , or a dedicated receive coil (Rx). Indeed, the rotation of Mxy in
the transverse plane induces a measurable voltage in the coil [Hoult 1997]. The recor-
ded magnetic field – also called B−1 – generates a signal, called free induction decay
(FID) [Hahn 1950]; as shown in Figure 1.1-4, it oscillates at ω0, with an exponential at-
tenuation corresponding to T∗2. Note that the amplitude of FID depends on the initial
longitudinal magnetization M0 that is tipped into the transverse plane: it is therefore
related to Eq. (1.2).

The behavior of magnetization exposed to a magnetic field B was formalized by Felix



14 Background in Magnetic Resonance Imaging

Figure 1.1-4: Free induction decay signal representation, showing the signal that oscillates at
the carrier frequency (128 MHz at 3 T), weighted by a decreasing exponential caused by T∗2
decay. No values are shown on the time axis, as in this simple representation, for the sake of
readability, the frequency is orders of magnitude lower than in reality.

Bloch [Bloch 1946] and written in the laboratory frame (xyz) as:(
dM
dt

)
lab

= γM×B− 1
T2

Mxy −
1

T1
(Mz −M0) (1.5)

As pictured in Figure 1.1-2, it is convenient to describe the evolution of magnetization in
a frame (xyz) rotating according to the rotation vector Ω:

Ω =
[
0 0 ω

]T
(1.6)

Equation (1.5) then becomes:

(
dM
dt

)
rot

= γM×
(

B− Ω
γ

)
−


Mx/T2

My/T2

(Mz −M0)/T1

 (1.7)

For instance, Figure 1.1-2b is obtained, ignoring relaxation, with B = B0 + B+
1 and

ω = ω0 = ωrf : in (xyz), B0 disappears from Eq. (1.7), and B+
1 is fixed.

While the Bloch equations describe the spins dynamics for a large voxel in a homogen-
eous sample, they do not describe how signals generated from different voxels are discrim-
inated. Hence, the following section will explain how these signals can be distinguished
using spatial encoding.

1.2 Image formation

Spatial encoding in MRI is not based on a direct measurement of the pixels values. The
reason for that is rather simple, the maximum achievable spatial resolution is governed by
the Rayleigh criterion. In MRI, the wavelength is in the order of dozens of centimeters
making the direct encoding of the body infeasible in practice. It is only in 1973 that
the works of Paul Lauterbur [Lauterbur 1973] and Sir Peter Mansfield [Mansfield 1977a]
allowed to encode the NMR signal spatially in a clever way. The goal of this section is to
provide tools to understand the concepts underlying spatial encoding.
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Figure 1.2-5: Diagrams of the Bz component of the 3D magnetic field variation of a) Gx-, b)
Gy-, and c) Gz-gradients. The field is aligned with the direction of the arrows. The scale of the
arrows indicates the magnitude of the magnetic field strength at that point. From [Poole 2007].

1.2.1 Spatial Encoding

The signals in MR imaging arise from multiple voxels recorded all at once. These voxels
contain different materials with different spin densities and relaxation times. In order
to discriminate spatial location of the different voxels Lauterbur and Mansfield [Mans-
field 1977b] have proposed to change spatially the magnetic field, making the Larmor
frequency a function of space. The local changes of the magnetic field is due to the use of
three gradients (Gx, , Gy , Gz, one for each spatial dimension as shown in Figure 1.2-5).
For example, when Gx is applied, the magnetic field B(x) will vary with respect to the
position according to B(x) = B0 + Gxx. This variation causes the precession angular
frequency to vary linearly in space as follows:

ω(x) = γ(B0 +Gxx) (1.8)

Since the precession frequency linearly depends on the position, therefore positive
positions (with respect to the iso-center located at the origin) will get higher frequency
than negative ones.

2D Imaging

In 2d MRI, the slice to be imaged is first selectively excited with a slice-selecting gradient
GSlice (usually in the z direction with Gz). The data corresponding to this slice is then
encoded in terms of spatial frequencies along the two other dimensions. Two techniques
are used together to fill the 2d k-space, line by line:

• Applying a frequency-encoding (or readout) gradient GRead changes the precession
frequency of isochromats while signal is acquired, thus allowing to discriminate their
position in that direction. We collect as such a line in the acquisition space (also
called k-space as defined in Section 1.2.3).

• For now on, we have only acquired one line at the center of k-space. To fill the
whole k-space we need to encode spatial frequencies along the remaining dimension,
therefore to cover multiple lines. We thus apply a third gradient, GPhase, called
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Figure 1.2-6: Encoding the k-space line by line. From [Le Ster 2017].

phase-encoding gradient, orthogonal to GRead . It is applied between excitation and
readout and induces a variation of phase along its direction, which will hold during
the signal acquisition (readout) as described above.

To acquire a full 2d k-space, it is necessary to repeat the GPhase→GRead pattern as
many times as there are lines in k-space, changing the intensity of GPhase every time, so as
to explore all needed spatial frequencies in this direction. The relation between a gradient
G – over any combination of axes – applied for a certain duration t and the corresponding
encoded spatial frequency k (in m−1) is:

k(t) = γ

∫ t

0
G(τ) dτ (1.9)

At the end of the 2d imaging process, we have encoded k-space data for one slice,
and we are able to reconstruct the corresponding image (using a 2d transform). We
will study the reconstruction process in detail in Section 1.2.3. In 2d imaging, one can
repeat the process described above several times, selecting different slices, to acquire a
three-dimensional Field Of View (FOV).

However, resolution is limited in the third dimension (slice thickness), because of three
main factors. First, selecting a thinner slice requires higher intensity gradients, which
eventually run into hardware limitations. Secondly, it requires increasingly sharp excita-
tion profiles to avoid overlap between adjacent slices (at a lower slice resolution, we usually
leave a gap between slices to prevent this overlap). Last but not least, when a slice is ex-
cited, the acquired signal comes from all isochromats embodied in it: a lower signal thus
comes from a thinner slice resulting in a loss of image quality. Therefore to overcome those
issues 3D imaging have to be considered.

3D Imaging

All the mentioned factors make high isotropic resolution hard – even impossible – to
achieve with 2d acquisitions. Fortunately, it is possible to excite the whole FOV at once
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and perform 3d imaging by acquiring a three-dimensional k-space. To do, so we apply the
same steps as described earlier and we add a second phase-encoding gradient, GPart , along
which the slice – also called partition – direction is encoded by inducing phase variations
through the partition-encoding gradient. The latter is generally played simultaneously with
GPhase. Hence , to acquire a full 3d k-space, we have to repeat the GPart→GPhase→GRead

patternNPart×NPhase times, with NPart the number of partitions to be encoded andNPhase

the number of lines. As shown later on, the imaged volume will be recovered by applying
an inverse 3d Fourier transform.

One drawback of 3d imaging is its sensitivity to patient motion, as the whole 3d k-
space must be filled – which takes time – before reconstruction. Any spatial information
corrupted by movement occurring during acquisition affects the quality of all slices within
the volume. In comparison, in 2d imaging, each slice is reconstructed separately: motion
during the acquisition of one slice has no effect on the rest of the FOV.

The next section, which explains how the NMR signal is detected and will clarify the
origin of Fourier encoding.

1.2.2 Reception: Detection, Conversion & Demodulation

This step is at heart of MRI as it justifies the complex nature of MR images. In NMR
experiments, we seek to measure the time-varying magnetization of the sample. For this
purpose we rely on Faraday’s law of electromagnetic induction, where a variation of the flux
magnetic field creates an electromotive force which is converted to current in a reception
coil2.

The signal acquired by the coil is first amplified with a low-noise amplifier (LNA). If
we assume that the scanned sample is made up of a single material, i.e. the resonance
frequency is unique, and we apply a gradient varying such that the magnetic field varies
linearly with the position, then the signal acquired by the coil can be expressed as follows:

s(t) ∝ − d
dt

∫
sample

M(r, t) ·B−
1 (r) (1.10)

with B−
1 the magnetic field per unit current that would be produced by the coil at a point

r, the latter field is an example of the reciprocity principle, and M the magnetization
produced by the spin precession and defined as follows [Haacke 1999]:

M(r, t) =


e−t/T2 M⊥(r) cos(γB0t+ ϕ0(r))
e−t/T2 M⊥(r) sin(γB0t+ ϕ0(r))
e−t/T1Mz(r, 0) + (1− e−t/T1)M0

 , (1.11)

with Mxy(r, 0) = M⊥(r)e−ıϕ0(r).
We recall that depending on the tissue γ can be either positive or negative and that

the phase ϕ0 and the magnitude M⊥ are determined by the initial RF pulse conditions.
Hence after interchanging the integral and time derivative operators and neglecting the

2While it is more common to have dedicated coils for transmission (Tx) (excitation) and reception (Rx),
a single coil could ensure both roles, namely excitation and reception (Rx/Tx).
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derivative of the e−t/T1 and e−t/T2 factors compared to that of the e−ω0t factor, the signal
gets proportional to:

s(t) ∝ ω0

∫
Vs
e−t/T2(r) |Mxy(r)| |Bxy(r)| sin (ΦM (r, t)− ΦB(r)) dr (1.12)

where ω0 = γB0 is the Larmor frequency in radians per second; Bxy(r) = B⊥(r)e−ıΦB(r)

is the transverse component of the receive coil B−
1 field; ; B⊥(r) is the magnitude and

ΦB(r) the phase of Bxy in the laboratory frame ΦM (r, t) is the phase of Mxy, i.e. its
angle with the x-axis.

The spectrum of the signal in Eq. (1.12) induced in the reception coil includes two
frequency bands around ω0. For proton imaging (i.e. 1H), these frequencies are located
around 128 and 298 MHz at 3 T and 7 T, respectively. As working with such high frequency
level can be problematic, the first step in the reception chain consists in removing this fast
oscillation – the demodulation step – by multiplying the signal with a cosinusoid and a
sinusoid whose frequency is around the transmit one. Figure 1.2-7 illustrates the reception
chain. After the low-noise amplification, the signal is split into two channels. In the first
one, the signal is multiplied by an signal in-phase (cosinusoid) and in the second one by
a signal in quadrature (sinusoid). The in-phase component leads to the real part of the
MR signal while the in-quadrature component is considered as its imaginary part. Before
being digitally converted the signal is low-pass filtered to get rid of any aliasing artifacts
due to digital conversion. Then each channel is converted separately and recombined as
real and imaginary components of k-space samples.

Figure 1.2-7: Block diagram of the reception chain. The signal from the coil is amplified by
a low-noise amplifier before it gets split into two channels. Each channel will be multiplied
by an in-phase and in quadrature signal generated by a frequency synthesizer, leading to a
complex multiplication of the signal. The low-pass filter corresponds to an anti-aliasing step
which prevents aliasing before the Analog-to-Digital conversion with a frequency being at least
twice the maximal sampling frequency provided by the ADC. Adapted from [Décorps 2012].

1.2.3 Reconstruction

Fourier Transform

After the demodulation step the sampled signal sdem(t) is recombined into a complex
expression that can be read as follows:
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sdem(t) ∝
∫
sample

ρ(r)e−ır·γ
∫ t

0 G(τ)dτ dr (1.13)

with ρ being the spin density proportional to ω0, the transverse magnetization Mxy and
the transverse receptive field B−1 ⊥. The integral γ

∫ t
0 G(τ) dτ is often denoted by:

k(t) = γ

∫ t

0
G(τ) dτ (1.14)

Eq. (1.14) is nothing but the Fourier adjoint variable of the spatial location r. By com-
bining Eqs. (1.13) and (1.14), we get

sdem(k(t)) ∝
∫
sample

ρ(r)e−ır·k(t) dr = F [ρ(r)] (1.15)

which tells us that the k-space measurements3 actually correspond to the spatial Fourier
transform of the spin density ρ(r). The acquisition space is thus called the k-space. Hence
the gradients Gx, Gy and Gz are driving the frequency samples to be collected in the
k-space. The simplest way to acquire an image in MRI is to design gradient such that the
k-space samples are falling into a Cartesian grid (as depicted in Section 1.2.1). The image
is then reconstructed by applying an inverse Fourier transform that can be computed using
the Fast Fourier Transform (FFT) algorithm originally proposed by [Cooley 1965].

Non-Cartesian Fourier Transform

We have previously seen that the gradients are driving the k-space trajectory. Although
it is more common to fill a Cartesian grid and then to apply an inverse Fourier Trans-
form to recover the image, in some cases the k-space trajectory leaves the grid. In such
scenario, the sampling is called non-Cartesian and there are several possibilities to deal
with non-Cartesian acquisitions. First, the data can be interpolated and resampled on a
Cartesian grid before applying a conventional inverse FFT. This technique is referred to
as “gridding” [Pauly 2012], and it is a much faster than computing the Discrete Fourier
Transform (DFT). Alternatively, one can deal with continuous measurements out of the
grid using the Nonuniform or Nonequispaced FFT (NFFT) [Fessler 2003, Keiner 2009].
Hereafter, we present first two categories of gridding methods and then provide details
about the NFFT.

Grid-driven. The idea behind grid-driven approach is to estimate the value at each
grid point based on the neighboring data (i.e. k-space samples). Figure 1.2-8 illustrates
the principle of grid-driven methods. Although they are easy to implement, they are
suboptimal as they do not exploit the whole input data to perform interpolation, especially
in heavily sampled k-space regions, loosing part of the available SNR in those area. To
overcome this issue, the target Cartesian grid can be oversampled leading to a finer grid,
and then the data is interpolated with a simple kernel such as a bilinear interpolator. Using
the finer grid, grid-driven interpolation can yield high-fidelity reconstructions especially
when the sampling density is varying or when the non-Cartesian samples do not fall far
from the finer Cartesian grid.

3In an ideal artifact-free acquisition scenario.
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Figure 1.2-8: Grid-driven interpolation, the value at any Cartesian grid point (+) is computed
as the interpolation (e.g. bilinear) of the four surrounding non-Cartesian points (o). The
interpolation kernel is a user-defined parameter of grid-driven methods, tat can be either
linear, cubic, or based on the nearest neighbor algorithm.

(a) (b)

Figure 1.2-9: (a) Data samples (o) lie on diameters in k-space, each data point is considered
convolved with a small kernel and the value of that convolution is added to the adjacent k-
space grid point (+). (b) Each sampled point (dashed line) is convolved with a gridding kernel
and that convolution is evaluated at the adjacent grid points.

In practice, this approach is seldom if ever used, as the MRI community converges on
the use of data-driven interpolations, which are discussed next.

Data-driven. The idea behind data-driven approach is to add the contribution of
each data point to the neighboring grid points. Figure 1.2-9 illustrates the data-driven
gridding operation. Consequently, each input sample is considered convolved with a grid-
ding kernel [Jackson 1991, O’sullivan 1985]. The latter is chosen wide enough to cover the
neighboring grid points. In this way, each data sample is distributed over adjacent grid
locations. The striking difference between this approach and the grid-driven one lies on
the use of the whole data set in data-driven methods.

However to mitigate the fact that some k-space region (e.g. the center) might be over
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represented, one needs to introduce a density compensation step to correct for potential
bias arising from high concentration of samples in those regions. Akin to grid-data meth-
ods, the reconstruction accuracy is a trade-off between the interpolator complexity and
k-space oversampling. A fair compromise consists in choosing a Kaiser-Bessel kernel with
a limited (e.g. from 1.2 to 1.5-times) oversampled grid, see [Beatty 2005] for details.

The non-uniform Fast Fourier Transform. Others existing data-driven grid-
ding method have been proposed in the literature [Dutt 1993, Fessler 2003, Greengard 2004,
Keiner 2009], hereafter we will only remind the nonequispaced Fast Fourier Transform
(NFFT) introduced by [Keiner 2009].

Let us consider a d-dimensional nonequispaced Discrete Fourier Transform defined by
a set of arbitrary spatial node χ and a frequency bandwidth vector N . Each nodes xj
in the nonequispaced sampling set χ :=

{
xj ∈ Td : j = 0, . . . ,M − 1

}
is drawn from the

d-dimensional taurus Td ∼=
[
−1

2 ,
1
2

)d
with the number of nodes equal to |χ| = M . For each

dimension t = 0, . . . , d− 1, the bandwidth Nt ∈ 2N is defined as a fixed even number. Let
us define the multi-index set IN which is a representation of all possible frequencies in a
transform:

IN := Zd ∩
d−1∏
t=0

[
−Nt

2 ,
Nt

2

)
=
{

k = (kt)t=0,...,d−1 ∈ Zd : −Nt

2 ≤ kt <
Nt

2 , t = 0, . . . , d− 1
}

Given Fourier coefficients f̂k ∈ C,k ∈ IN as input, the nonequispaced Discrete Four-
ier Transform (NDFT) is defined as the evaluation of the corresponding trigonometric
polynomial f ∈ TN at the set of M arbitrary nodes χ, i.e., the calculation of the sums:

fj =
∑

k∈IN

f̂ke−2ıπk·xj , (∀j = 0, . . . ,M − 1) (1.16)

The NDFT can also be represented as a matrix-vector product defined as follows:

f = Af̂ (1.17)

with the columnwise vectors f := (fj)j=0,...,M−1 , f̂ :=
(
f̂k
)
k∈IN

, and the nonequispaced

Fourier matrix A :=
(
e−2πikxj

)k∈IN

j=0,...,M−1
, typically A is not square. The adjoint oper-

ator (or matrix) is then defined by:

ĥ = AHf (1.18)

which is equivalent to the sums:

∀k ∈ IN , ĥk =
M−1∑
j=0

fje
2ıπk·xj . (1.19)

The NFFT C-library is a fast approximation algorithm that computes the sums in
Eqs. (1.16) and (1.19). This library uses only O

(
|IN | log |IN |+ | log ε|dM

)
instead of

O (M |IN |), floating point operations, with ε being the desired computation accuracy of
the approximation. The key idea of the library is to use standard FFTs (more precisely
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the FFTW4 [Frigo 1998]) in combination with an approximation scheme that is based
on a windowing function ϕ. The latter must be mutually well localized in spatial and
frequency domains. Two parameters control the accuracy of the NFFT: the oversampling
factor σ and a truncation parameter m.

Nyquist criterion in k-space sampling

In the field of digital signal processing, the sampling theorem is fundamental as it estab-
lishes a sufficient condition on the sampling rate that allows a discrete sequence of samples
to capture all information contained in a band-limited signal. The Nyquist-Shannon the-
orem states that the spectrum of a discretely sampled signal is replicated in the Fourier
conjugate domain. It provides a prescription for the nominal sampling rate required to
avoid aliasing. It may be stated as follows:

Theorem 1.2.1. A band-limited continuous-time signal can be sampled and perfectly re-

constructed from its discrete samples if the waveform is sampled at least twice as fast as

its highest frequency component.

Spatial encoding in MRI might not deviate from this rule, hence to prevent wrap-
around artifact or aliasing the theorem should be applied to the k-space domain. Let us
consider a 2D Cartesian acquisition with an image field of view of FOVx × FOVy and a
matrix size of Nx × Ny the image resolution is defined by ∆x = FOVx

Nx
and ∆y = FOVy

Ny
.

To comply with the Nyquist-Shannon criterion and get the desired resolution, the k-space
sampling should respect the following relations:

∆kx ≤
1

FOVx
and ∆ky ≤

1
FOVy

(1.20a)

Kmax
x = 1

2∆x
and Kmax

y = 1
2∆y

(1.20b)

where ∆kx (resp. ∆ky) is the frequency interval in the x (resp. y) k-space direction, and
Kmax
x (resp. Kmax

y ) is the maximum frequency along the x (resp. y) k-space direction.

Due to the short lifespan of the NMR signal (few tens of ms) and the requirements
in (1.20) related to the sampling theorem, the acquisition time gets often too long in MRI.
Consequently, reducing this time has become a major issue especially for high resolution
imaging, as the latter means larger Kmax

x and Kmax
y . Therefore, over the last two decades,

many contributions have tried to dramatically reduce the scan time. In the next section,
we will review one of the most widely used techniques to shorten the acquisition time,
which is called parallel imaging or parallel-MRI5. The latter is based on phased array

coils. Consequently, we will first explain the physics principles underlying the way these
coils work and second we will highlight their pros and cons. Last, we will summarize the
acceleration and reconstruction methods in the parallel imaging field.

4which is accelerated for computing FFT for integers that do not read as 2n with n ∈ N?
5Parallel-MRI might be confusing since it can refer to both, the use of multi-channel receiver coil to

acquire the signal and the acceleration.
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1.3 Multi-channel receiver coil and Parallel Imaging

In Section 1.2.2, we only considered a coil with a quadrature design to record the NMR
signal. Since the magnitude of the electric voltage induced in the receiver coil is pretty
small, namely in the order of millivolts, the most important properties of an RF receiver
coil are the maximal achievable signal-to noise ratio (SNR) and a large coverage of the RF
response over the imaged volume. Hereafter, we discuss both aspects.

1.3.1 Signal-to-Noise Ratio increase

Many factors determine the SNR available in a nuclear magnetic resonance experiment.
In the early days of MRI, two somewhat parallel paths towards more efficient MRI ex-
periments were drawn: the first consisted of improving the gradient technology and pulse
sequence design to increase spatial resolution and decrease imaging time, and the second
relied on the development of the hardware RF coil technology. Regardless of the field
strength, the key requirement of any receiver coil is achieving the maximum SNR in order
to obtain the best possible image quality. This section provides tools to understand how
phased array coils maximize the input-SNR.

Noise origin

As it is not straightforward to exhibit a simple relation between the sample scanned
and the noise associated with the RF coil, the discussion hereafter will suppose perfectly
homogenized fields. The expression for the noise in the coil is based upon thermodynamic
principle and is given by [Haacke 1999]:

noise ∝
√

4kTcoil∆fReff (1.21)

where Tcoil refers to the temperature of the coil, ∆f the bandwidth used for the experiment,
and Reff is the effective resistance, which includes contributions from the coil Rcoil, the
electronics Relectronics and the sample being imaged Rsample [Haacke 1999], such that:

Reff = Rcoil +Relectronics +Rsample (1.22)

Although Rcoil ∝ Vcoil, with Vcoil being the coil volume, the latter could be neglected
owing to the recent improvement in electronics. Hence, it is seen that Reff ≈ Rsample,
which is proportional to the volume of the region of the body (Vsensitivity) from which the
signal arises. From the signal expression described in Eq. (1.12) and the noise definition
given in Eq. (1.21), the SNR associated with a particular coil reads as follows6:

SNR ∝ ω7/4B⊥√
Tcoil∆fVsensitivity

(1.23)

From Eq. (1.23) one can deduce that optimal coils are the ones that only cover the
imaging region of interest.

6This relation holds only for small objects compared to the wavelength, in the other cases the expression
of the signal is still debated.
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(a) (b)

Figure 1.3-10: (a): Single channel birdcage coil used on the 7 T scanner at Neurospin. (b) 32-
channel array coil in transparency, the different channels are color-coded (from [Paolini 2015]).

Phased array coil

In MRI, a phased array coil generally refers to a set of receiver coils whose signals are
combined to obtain a uniform image over a region larger than any individual coil could
cover while taking advantage of the high SNR available from the smaller individual coils,
as shown in Eq. (1.21). Figure 1.3-10 shows the single channel birdcage coil available at
Neurospin and an example of multi-channel array head coil, where the small elements
provide a higher input-SNR compared to the single channel coil.

In order to obtain optimal SNR from phased array coil, it is necessary to make sure that
the noise from coil to coil is largely uncorrelated. On top of dedicated electronic circuit
for each coil, minimal electromagnetic interaction should exists between the coils to make
sure that the noise samples remain uncorrelated. The SNR is not the only parameter to
take into account for the design of phased array coils, the penetration depth is as important
as the SNR. The penetration depth refers to the depth at which the coils sensitivity drops
to 37% of that at the coil center. As a rule of thumb, the penetration depth of a circular,
sample noise-dominated loop-coil is approximately equal to its diameter [Haase 2000].
Figure 1.3-11 illustrates the trade-off between penetration depth and sensitivity. While a
large number of channels, e.g. 96, with small diameter provides a significant SNR gain on
the cortical surface, the central SNR shows 20% SNR loss compared to the 32-channel coil
for root-sum-of-square combination (cf Section 1.3.1 for more details on coil combination).

Channel combination: retrieving magnitude and phase information

When multiple receivers are used, a complex-valued image is reconstructed from each
receiver coil using the inverse FFT. However the individual coil images are not really
useful as each image is sensitive to a particular brain region. Instead, one prefers to
combine all of them in order to cover the whole FOV. In the next part, we address the
problem of coil combination for both the phase and magnitude images.
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(a) (b)

Figure 1.3-11: Comparison of 12, 32, and 96-channel phased array coils at 3 T. (a) SNR map
for acquisitions with the different receiver coils. Large number of channels with small diameter
are more sensitive to the region next to the coils. (b) SNR profile along the central line in the
brain for receiver coils with different number of channels, while the SNR gain is less significant
in the middle of the brain. From [Wiggins 2009].

The quest of optimal combination of coil specific images (Ik)1≤k≤L has been a long-
standing issue. It can be optimally tackled by injecting the knowledge of the receiver field
(B−1 `)1≤`≤L associated with the `th-coil in the following relation:

I(x, y) =

L∑
k,`=1

B−1
∗
` (x, y) Σ−1

k,` Ik(x, y)

L∑
k,`=1

B−1
∗
` (x, y) Σ−1

k,` B−1 `(x, y)
(1.24)

where Σ is the noise correlation matrix associated with the coils, and each entry Σk,` is
the correlation between the kth and the `th coil given by:

Σk,` = E [N∗`Nk]− E [N∗` ]E [Nk] (1.25)

with E [·] being the expectation operator, taken over the noise measurement N` during
a short acquisition without gradient or RF pulse and for which the configuration of the
readout bandwidth must be the same as the one used for the “real” scan. The receiver
field B−1 ` is also known as the sensitivity profile of the coil. Figure 1.3-12 illustrates the
sensitivity profile of a 4-channel reception coil. Since the coil sensitivity profiles depend
on the loading of the receiver coils (cf Eq. (1.22)), they need to be estimated for each scan
(Section 3.2 will discuss methods that estimate those maps). In many situations, to avoid
the estimation of the coil sensitivity profile, and potential errors due to this estimation,
a method that combines the data without detailed knowledge of the receiver fields and
that preserves,at the same time, a high SNR for the phased array, is really appealing.
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(a) (b)

Figure 1.3-12: (a) Four coil phased array showing overlapping coils, (b) their associated sensiti-
vity maps. From [Gruber 2018].

In [Roemer 1990], the authors have proposed an approximation for the coil combination
in Eq. (1.24) by proposing to end up with a single image I(x, y) computed as the sum-of
squares (SOS) of coil-specific images Ik(x, y), ∀k = 1, . . . , L:

I(x, y) =

√√√√ L∑
`=1

I∗` (x, y)I`(x, y) . (1.26)

Due to the inconvenience of estimating the receiver fields B−1 `, the sum-of-squares ap-
proximation is more commonly used today. the authors of [Roemer 1990] have also shown
that the SNR loss resulting from this SOS approximation usually ranges around a few per-
cent only. Moreover, it should be noted that the optimal coil combination in (Eq. (1.24))
provides a complex-valued MR image, whereas the SOS method only yields a magnitude
image. This makes its application problematic with methods that requires phase inform-
ation, in applications where phase brings relevant knowledge such as flow/velocity, tem-
perature mapping or shimming. Combining the phase information is therefore an critical
aspect for the mentioned techniques.

Based on the slowly varying phase assumption, [Parker 2014] have proposed to create
a virtual coil reference to which the measurements of each receiver coil are aligned and
then combined to obtain an optimal phase distribution estimate. The method is called
virtual coil reconstruction and defines a virtual coil as follows:

Ivirtual =
L∑
`=1

w`I` =
L∑
`=1
|w`| eıϕref ` |I`|eı(ϑ`+θ+η`) (1.27)

where the weights w` = |p`| e−iϕref`/
∑
k |pk|, I` is the reconstructed image of the `th coil,

ϕref ` is the phase of the weights used to avoid SNR loss, ϑ` is the coil phase, θ is the true
tissue phase and η` is a random component due to the thermal noise in the individual RF
coil measurement. While θ and ϑ` are supposed to be slowly varying, i.e. smooth in space,
the phase noise η` is expected to be uncorrelated from one voxel to another. Because
the coil phase ϕref ` varies slowly in space and in order to reduce measurement errors the
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(a) (b)

(c) (d)

Figure 1.3-13: Top: Coil combination methods on an ex-vivo human brain acquired at 7 T
with a 32-channel head coil: (a) magnitude image associated with the complex summation,
(b) approximate combination proposed by [Roemer 1990] using the square root of the SOS.
Bottom: (c) phase image associated with the complex summation, (d) phase obtained with
the virtual coil method as proposed by [Parker 2014].

averaged phase can be considered instead:

ϕref ` = −angle
( ∑

x,y p`(x, y)∑
x,y |p`(x, y)|

)
(1.28)

where x, y are 2D positions over the entire image. This can be easily extended to 3D
imaging of course. Using the virtual coil image, coil-specific phase images are subtracted
to the virtual phase and low-pass filtered to remove the noise phase. Hence, the virtual
coil is used as phase reference.

Figure 1.3-13 shows the coil-combination of an ex-vivo human brain acquired at 7 T
with a 32-channel head coil, using either a simple complex sum of the coil-specific images or
the SOS [Roemer 1990] to combine the magnitude images and the virtual coil [Parker 2014]
to retrieve phase information. The magnitude images depicted in Figures 1.3-13a and 1.3-
13b demonstrate the good performances of the SOS method while the simple complex-
valued sum yields a strong variation of the SNR across pixels, hence poorer performances.
Also, the virtual coil method shows the benefits for phase combination as the resulting
phase image gets smoother. It should be also noted that the phase is wrapped therefore
variations form −π to π are actually smooth.
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(a) (b)

Figure 1.3-14: (a) Fully sampled Cartesian k-space. (b) Acquired k-space for parallel imaging
with an acceleration factor R = 2. Dashed lines represent the missing samples while solid lines
correspond to the acquired k-space values. Horizontal axis represents the frequency encoding
direction and vertical axis is the phase-encoding one.

1.3.2 Parallel MRI: first MR accelerations

In the early 2000’s, it has been noticed that phased array coils might not only be dedicated
to improve the SNR, but also to accelerate the acquisition [Pruessmann 1999], yielding to
the known parallel imaging techniques. The basis of these methods is that the scan time
is proportional to the number of phase encoding lines in a Cartesian acquisition. Increas-
ing the distance between phase-encoding lines in k-space by a factor of R, while keeping
the maximal spatial resolution fixed, reduces the scan time by the same factor. However
increasing the distance between phase-encoding lines also decreases the FOV (as shown
in Eq. (1.20)), leading to aliasing artifacts. In parallel imaging, dedicated reconstruction
techniques have been proposed to prevent aliasing artifact to occur. These methods are
based on the spatial dependence of the B−1 field on the receiver coils (also called sensit-
ivity maps). Generalised autocalibrating partially parallel acquisition (GRAPPA) [Gris-
wold 2002, Blaimer 2004] and SENsitivity Encoding (SENSE) [Pruessmann 1999] meth-
ods are the most popular parallel imaging reconstruction techniques that will be described
hereafter7. In short, SENSE methods perform image reconstruction in the image space
whereas GRAPPA methods operate in the native k-space domain.

Sensitivity Encoding methods for fast MRI

With parallel imaging the scan time is reduced by a factor of R if we collect one line
every R lines in the phase-encoded direction. The FOV of the reconstructed image gets
therefore reduced by the same factor. Since Nyquist criterion is no longer satisfied, some
pixels will be aliased. For each spatial location of reduced FOV images, the pixel value

7Other complementary acceleration methods exist such as Controlled Aliasing In Parallel Imaging
Results In Higher Acceleration (CAIPIRINHA) [Breuer 2006], however those are only specific to 3D
acquisitions.
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is actually the superposition of the original object and R shifted replicates, the distance
between two replicates being equal to FOVy/R if we assume ky to be the phase encoding
direction.

The key idea to separate the signals lies in the fact that in each single-coil image I`,
the signal superposition occurs with different weights according to local coil sensitivities
S`, with ` ∈ {1, . . . , L}. The forward model in the image domain relating the unfolded
image I to the folded ones (I`)L`=1 thus reads:

∀ = 1, . . . , L, I` = S`I (+N`) (1.29)

where N` stands for some additional noise related to receiver coil `. As matrices S`

are rectangular of dimensions NxNy/R × NxNy, the SENSE solution Îsense, introduced
by [Pruessmann 1999], is thus given by the least squares solution:

Îsense =
(

L∑
`=1

SH
` S`

)−1

SH
` I` . (1.30)

Of course, it is worth mentioning that this method relies on the extraction and prior
knowledge of sensitivity profiles (S`)L`=1. This topic will be discussed in Section 3.2.

Generalized Auto-calibrating Partially Parallel Acquisition

In order to avoid sensitivity profile estimation, methods like GRAPPA [Griswold 2002]
formulate the parallel imaging reconstruction as an interpolation problem in k-space. This
method relies on the acquisition of auto-calibration central lines (ACL) that are used to
calibrate an interpolation kernel in k-space. It is worth mentioning that the acquisition
of those extra-lines slows down the overall scan time. To shortly describe the GRAPPA
method, let us define a set of block operators.

The operator Rr represents the selection a block of k-space samples in the neigh-
borhood of the position r over all coils. GRAPPA was originally developed for Cartesian
under-sampling, so the k-space neighborhood was defined over the grid. Also, the operator
Pr represents the local sampling pattern that selects the collected k-space samples from
a given block. Let y be the multi-coil k-space samples concatenated into a columnwise
vector in which unseen data are zero filled, and let ŷ be the reconstructed k-space. The
product PrRry thus defines a vector containing only the the measurements located in the
k-space neighborhood around position r. The recovery of the missing values in the `th-coil
at position r is given by:

ŷ`(r) = (PrRry)> gr,` (1.31)

where gr,` is the GRAPPA kernel, i.e. a set of reconstruction weights. The full grid is
reconstructed by the evaluation of Eq. (1.31) for all coils at each missing k-space position,
while the GRAPPA kernel gr,` are obtained by solving the same relation at different
position where ŷi is known. Typically this is done from the ACL region in the center of
k-space.
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Figure 1.3-15: Comparison of the image quality of SENSE and GRAPPA reconstructions with
an acceleration factor R = 3. Left: SENSE reconstruction with accurate coil sensitivity
extraction. Right: GRAPPA reconstruction. Visually, no difference can be seen between both
methods. From [Blaimer 2004].

Comparison SENSE vs GRAPPA

In their study, [Blaimer 2004] have proposed an extensive comparison of different recon-
struction methods including SENSE and GRAPPA for several body organs, acquisition
sequences and acceleration factors.

Although both methods provide nearly identical image quality (as illustrated in Fig-
ure 1.3-15), SENSE method gives a better SNR provided that accurate coil sensitivity
maps are estimated. Regarding GRAPPA, the method is more robust to imperfect ker-
nel estimation, which makes this reconstruction technique particularly beneficial in organ
regions where accurate estimation of coil sensitivity maps is difficult to reach. This typic-
ally happens in regions associated with low spin density (e.g. lung imaging or deep brain
structures such as basal ganglia) or for specific fast imaging sequences such as GRE Echo-
Planar-Imaging (EPI) [Mansfield 1977b] which suffers from strong distortion. Yet the
SENSE method is more robust to high acceleration factors as illustrated in Figure 1.3-16,
where no aliasing artifact is reported for SENSE reconstruction. However, local noise
enhancement can be seen in the same reconstruction.

Since its first application in clinics, MRI has always been subject to intensive research
for shortening long scan times. Based on the development of phased array coils and
dedicated image reconstruction methods, the k-space has been under-sampled to speed
up the acquisition with parallel MRI methods. In 2D imaging the typical acceleration
factors used in practice are lower than 4, whereas in 3D imaging acceleration can be
achieved along the phase and partition encoding directions, leading to higher acceleration
factors (e.g. 3×3). Although this scan time reduction may turn out large enough for some
applications, high-resolution imaging (e.g. ' 500 × 500µm) requires further acceleration.
In the next chapter, we investigate a promising alternative based on the Compressed
Sensing (CS) theory [Donoho 2006, Candès 2006a], with the ultimate goal of speeding
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Figure 1.3-16: Comparison of artifacts in SENSE and GRAPPA reconstructions at high accel-
eration factors R (chosen close to the number of coils). In this example, R = 4 leads to a
four-fold acceleration of the scan time for an equal number of coils (L = 4). Left: The SENSE
image shows a local noise enhancement due to non-ideal conditioning for the reconstruction.
Right: The noise enhancement in GRAPPA is distributed more evenly over the FOV. Addi-
tionally, aliasing artifacts can be seen due to inaccurate calculation of missing k-space lines.
From [Blaimer 2004].

up MR acquisition even further at the cost of more complex image reconstruction but with
limited impact on image quality.
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This section introduces some theoretical and practical concepts underlying Compressed
sensing (CS) for MRI.

2.1 Compressed Sensing theory

In this thesis, we consider the case of discrete images, i.e. defined on a grid with finite
number of pixels denoted by x ∈ Cn with n being the total number of pixels. Let y ∈ Cm

be the observed signal and E ∈ Cm×n the encoding matrix which encodes the physical
principles underlying MRI acquisition, either Fourier transform in the easiest case treated
in this thesis or more complex models including off-resonance effects, chemical shift, etc,
see for instance [Doneva 2020] for an extensive review on computational models in MRI.
The relation between x, y and E – also called the forward model – reads as follows:

y = Ex (2.1)

If E is invertible (in particular for m = n) then the reconstruction is performed through
the inversion of matrix E. However, the Compressed Sensing (CS) theory supposes that
m� n. This assumption will hold in the rest of this thesis.

2.1.1 Sparsity and incoherence

In the CS context (i.e. m � n) the number of solutions of Eq. (2.1) is infinite and the
problem is considered ill-posed. To solve Eq. (2.1), prior information must be injected
to guarantee the uniqueness of the solution. CS theory works with sparsity assumptions
on x. We recall here what this means. We define a s-sparse vector on Cn as a vector
with only s � n non-zero entries. If the image x is not naturally sparse then one can
find an orthonormal transform Ψ : Cn → Cp which transforms x 7→ z = Ψx such that
z is s-sparse (or at least compressible), and ΨH being its adjoint i.e. transpose conjugate
which in the case of orthonormal transforms corresponds to its inverse. The choice of the
sparsifying transform will be discussed in Section 2.3.1. Then the following optimization
tells us how to reconstruct the image:

ẑ = arg min
z∈Cp

‖z‖0 subject to y = Az. (2.2)
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where `0 stands for the pseudo-norm corresponding to the number of non-zeros coefficients
and A = EΨH. Once a solution ẑ of Eq. (2.2) is found the image is reconstructed as
follows: x̂ = ΨHẑ. Due to the combinatorial properties of the `0 pseudo-norm and its
non-convexity, problem Eq. (2.2) is NP-complete meaning that, any solution of Eq. (2.2)
can be tested quickly in polynomial time. However the existence of an algorithm that
solves problem (2.2) in a efficient manner (in polynomial time too) has not been demon-
strated yet1. Due to the mentioned impediments of the `0-pseudo norm, problem (2.2) is
often relaxed and its tightest convex envelop [Boyd 2004] is considered instead – i.e. the
tightest convex hull of the `0-pseudo-norm is the `1-norm ‖x‖1 =

∑n
j=1 |xi| – leading to

the following optimization problem:

ẑ = arg min
z∈Cp

‖z‖1 subject to y = Az. (2.3)

Based on the restricted isometry property (RIP), which characterizes matrices nearly or-
thonormal, the first results of the Compressed Sensing theory [Candès 2006b, Donoho 2006,
Candès 2008] guarantee exact recovery of s-sparse signals. The RIP conditions state that
for all s-sparse z vector, it exists δs ≥ 0 such that:

(1− δs)‖z‖2 ≤ ‖Az‖2 ≤ (1 + δs)‖z‖2 . (2.4)

Assuming the noiseless case, [Candès 2008] proved the following results:

Theorem 2.1.1. if δ2s ≤
√

2− 1, then the solution ẑ of Eq. (2.3) is unique.

However, due to the restricted assumptions of the RIP condition only a small subset of
encoding matrices – such as random matrices with identically independently distributed
(i.i.d.) entries – fulfill the RIP conditions and the RIP constant δs cannot be calculated
explicitly.

Over the same period of time, [Rauhut 2010, Candès 2011] have extended the theory
to random linear projections from orthogonal bases. They considered a sensing matrix
A = (a∗i )1≤i≤n ∈ Cm×n to be constructed by randomly drawing rows of an orthogonal
matrix A0 ∈ Cn×n given by:

A0 =


a∗1
...
a∗n

 (2.5)

Then, matrix A can be constructed by randomly drawing rows of A0 as follows:

A =


a∗Ji
...

a∗Jm

 (2.6)

1The“P=NP” problem is one of the seven Millennium Prize Problems, for which the Clay Mathematics
Institute offered a $1 million prize for the first correct solution.
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where {J1, · · · , Jm} are drawn from an independent and identically distributed manner
over the set {1, . . . , n}: this means they are copies of a uniform random variable X such
that P(X = i) = πi = 1/n, ∀1 ≤ i ≤ n. The coherence κ of matrix A0 can be defined by:

κ(A0) = n · max
1≤i≤n

‖ai‖2∞ (2.7)

Then the following theorem holds:

Theorem 2.1.2. Let z be an s-sparse vector. If the number of measurements m satisfies:

m > C · s · κ(A0) · log
(
n

η

)
(2.8)

where C is a universal constant, then z is the unique minimizer of Eq. (2.3) with a

probability exceeding 1− η.

The latter theorem is particularly interesting since it bridges the gap between two
fundamental principles underlying CS theory, namely sparsity and incoherence. First,
from Theorem 2.1.2 it can be noticed that the number of measurements required is pro-
portional to the sparsity level s. Second, the other important value is the coherence κ(A0)
which varies from 1 to n for orthogonal matrices. The coherence measures how a vector
represented in the sparse space spreads in the acquisition space. In the case of discrete
Fourier transform F the coherence is minimal since κ(F ) = 1. However, in MRI (as for
most applications), the sensing matrix A0 = FΨH is coherent (κ(A0) = O(n)), with
Ψ is the sparse representation such as wavelet transform (synthesis operator) and ΨH its
adjoint (conjugate-transpose as defined Page xv) operator that performs image reconstruc-
tion from a set of wavelet coefficients. This is often called the “coherence barrier” [Ad-
cock 2017].

2.1.2 Breaking the coherence barrier

The above mentioned result does not assume any structure – apart from sparsity – on
the signal of interest. Recovering arbitrary sparse vectors is a very demanding property
that precludes the use of CS in many practical settings. If some structure of the sought
signal is assumed, then it can be recovered with fewer measurements than those previously
uncovered, however dedicated sensing matrices such as variable density sampling should
be considered [Chauffert 2014, Adcock 2017]. In that case, the coherence of the matrix
A0 is defined as follows:

κ(A0, π) := max
1≤i≤n

‖ai‖2∞
πi

(2.9)

where π = (π1, · · · , πn) denotes the probability distribution on {1, · · · , n}. It has been
shown that the probability density π minimizing κ(A0, π) (in Eq. (2.9)) and thus that
minimizes the number of measurements m in Eq. (2.8) reads as follows:

πi = ‖ai‖2∞∑n
k=1 ‖ak‖2∞

(2.10)
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The density π defined above, samples more frequently the measurements (i.e. k-space
positions in MRI) associated with larger ‖ai‖2∞ values, which happens in the low frequency
regime. Consequently, the higher frequencies are sparsely sampled compared to the lower
ones. Thus, variable density sampling (VDS) is achieved by drawing m raws (J1, . . . , Jm)
from A0 according to π to build up A. The next theorem thus gives us tighter bounds for
exact recovery [Chauffert 2014]:

Theorem 2.1.3. Let z an s-sparse vector. If the number of measurement m satisfies:

m > C · s ·
(

n∑
k=1
‖ak‖2∞

)
· log

(
n

η

)
(2.11)

where C is a universal constant, then z is the unique minimizer of Eq. (2.3) with a

probability exceeding 1− η.

This theorem is actually more appealing for MRI as one can show that
∑n
k=1 ‖ak‖2∞ =

O(log(n)). Hence the required number of measurements to get an exact reconstruction
in MRI gets closer to O(s log(n)2). Although Theorem 2.1.3 allows to partially break the
coherence barrier, if we look closer at the numerical values for an image size of 356× 256
we get log(n)2 ' 123, which makes the above result less attractive. If we assume on
top that C ≥ 1 and s ' 0.2 · n, then m gets larger than n. However, in practice we may
observe at least on simulations that a number of measurements m ≈ 2 ·s provides excellent
reconstruction results [Adcock 2017]. The reason is related to the underlying structure of
the signal, more precisely its structured sparsity.

Figure 2.1-1 illustrates the structured sparsity pattern of brain images decomposed
within the Symmlet basis with J = 3 decomposition scales, each scale being composed
of four subbands. Normally, the scale is inversely proportional to the spatial frequency.
So, j = 1 refers to the high-frequency details and corresponds to the subbands depicted
in the bottom row and top right corner of Figure 2.1-1, while j = 3 is associated with
low-resolution information and contains both the low-frequency approximation as well as
the three detail sub-bands located both in the top left corner of Figure 2.1-1.

Unfortunately, for many applications – including MRI – the sampling matrices cannot
be constructed at random and the collected measurements are dependent one another.
Therefore, concrete applications of CS are often based on sampling strategies that may
strongly deviate from theory. Despite having no solid theoretical foundation, these heur-
istic strategies work very well in practice. Recently [Boyer 2017], derived CS theoretical
results for structured acquisitions and structured signals (i.e. structured sparsity), with a
recovery probability that explicitly depends on their support. The main contribution can
be formulated informally as follows:

Let x ∈ Cn denote a vector with support S ⊂ {1, . . . , n}, if we consider m-blocks of

measurement drawing with a distribution π ∈ Rmp, with mp being the number of available

blocks. If m ≥ Γ(S, π) ln
(
n
ε

)
, with Γ(S, π) being the maximum value between the inter-

block coherence and the local coherence in the ideal case, i.e. when no block structure is
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Figure 2.1-1: Wavelet decomposition of a brain phantom on 3 scales (J = 3). The low-
frequency or higher scale of decomposition are less sparse than the lower or high-frequency
scales. This illustrates the structured sparsity pattern of brain images. From [Lazarus 2018a].

assumed. Then vector z can then be recovered by the `1 minimization with probability

greater than 1− ε.

Although the latest works by [Boyer 2017, Adcock 2018] derived theorems that guar-
antee exact reconstruction using block sampling sensing matrices in the `1-minimization
and two major properties, i.e. extra and intra block coherence, few major drawbacks can
be identified:

i) the evaluation of the extra and intra coherence can be hard;
ii) only blocks of parallel lines are considered;
iii) the design of the optimal sampling strategy is still an open issue, especially in non-

Cartesian acquisitions;
iv) only the `1 minimization with orthonormal basis have been proposed, whereas we

could expect an improvement of the reconstruction assuming more sophisticated
norms or transforms.

Overall the existing theoretical results only provide some guidelines on the design of
sampling schemes (e.g. variable density with a locally uniform coverage) and regarding
reconstruction (nonlinear reconstructions promoting sparsity). In the following sections
we focus on the application of CS to MRI by first considering the acquisition of k-space
following the aforementioned considerations, before handling the reconstruction.

2.2 MR acquisition consideration

Compressed sensing (CS) theory has been applied to MRI by Lustig [Lustig 2007] shortly
after its invention by Candès group [Candès 2006a] and Donoho [Donoho 2006]. Since
the design of the sensing matrix is at the heart of CS theory, it is crucial to understand the
constraints that govern it. Therefore, the first part of this section will be dedicated to the
hardware constraints involved on magnetic field gradients for data acquisition. Next, we
will review traditional methods to under-sample k-space according to CS recipes, before
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introducing the SPARKLING algorithm to generate physically plausible and maximally
efficient k-space trajectories [Lazarus 2017, Lazarus 2019a].

2.2.1 Gradients constraints

The k-space acquisition is governed by different gradients as it has been described in Sec-
tion 1.2.1. Due to the hardware and physiological constraints – such as peripheral nerve
stimulation – the coils used for the generation of those magnetic fields are bounded by their
maximum current intensity in Eq. (2.12a) and their first-order derivative in Eq. (2.12b),
also called slew-rate which are defined ∀t ∈ [0,Tobs] as follows:

‖G(t)‖ ≤ Gmax (2.12a)∥∥∥∥ dG(t)
dt

∥∥∥∥ ≤ Smax (2.12b)

where Tobs is the readout time. The norm used is either the `2 norm or the `∞ depending
on the electronic configuration of the coil, i.e. if for each coil the current is generated either
by the same generator or not. Since the trajectory is driven by the gradients following the
relation defined in Eq. (1.14), the k-space constraints are derived ∀t ∈ [0,Tobs] as follows:∥∥∥∥dk(t)

dt

∥∥∥∥ ≤ γ Gmax (2.13a)∥∥∥∥∥d2k(t)
dt2

∥∥∥∥∥ ≤ γ Smax (2.13b)

Eq. (2.13a) defines the maximum sampling speed which is given by γ Gmax while Eq. (2.13b)
defines the maximum acceleration bounded by γ Smax. Since these constraints are gradient-
specific, it might explain why most of the widely used trajectories are based on simple
geometrical patterns such as lines (Cartesian or not) or spirals. Also, the more complex
the trajectories, the more likely the actual curves played by the scanner may deviate from
the originally prescribed ones (see [Vannesjo 2013, Vannesjo 2017]). In addition, the rapid
decay of the MR signal (v50 ms) usually prevents the measurement of all the needed data
at once. For these reasons, k-space trajectories are generally composed of multiple seg-
ments, called shots. The latter sequentially fill the considered k-space, either on the grid
for Cartesian acquisitions (spin-warp) or out of the grid (radial, spiral) for non-Cartesian
sampling. Therefore the global acquisition time (TA) in segmented acquisitions is equal
to the product of the number of shots (ns) and the value of TR, the time of repetition:
TA = ns · TR. At each and every TR, a radio-frequency (RF) pulse is used to tip the
global magnetization for a given slice (2D imaging) or volume (3D imaging) and then a
new shot is collected during Tobs [Bernstein 2004, Chap.11 2.2].

It is worth mentioning that single shot trajectories exist too – such as echo planar
imaging (EPI) – however, those trajectories may induce distortions. Therefore their usage
is limited to situations where fast scan is mandatory such as in functional or diffusion-
weighted MRI. Consequently single shot EPI is never used for high-resolution anatomical
imaging.
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2.2.2 State-of-the art on accelerated trajectories

As explained before, owing to the physical constraints over the magnetic field gradients, it
is easier to use simple geometrical patterns such as straight lines than more sophisticated
curves. For that reason, first acceleration methods reduce the number of shots ns. Hence
for 2D imaging, 1D acceleration was achieved by subsampling the collected shots along
the phase encoding direction, for instance using a 1D variable density centered around the
central line (ky = 0). In 3D imaging, shots were drawn on a 2D plane – defined by the
phase and partition encoding directions – following a variable density according to the
Poisson disk-sampling principle2, while the readout (frequency encoding) was performed
along the third orthogonal direction. However, the two major drawbacks of those strategy
are:

i) the sampling efficiency – i.e. the k-space portion covered per unit of time – is not
maximal;

ii) the optimization of the sampling lies on a lower-dimensional subspace, i.e. the 2D
cross-section for 3D imaging. Hence, variable density is not implemented along the
third dimension and consequently redundant information is collected.

Therefore to maximize sampling efficiency, non-Cartesian trajectories need to be con-
sidered. 2D variable density sampling can either be achieved thanks to radial or spiral
patterns, with the maximum sampling efficiency achieved for spiral imaging.

The next paragraph summarizes the most popular approach to perform k-space un-
dersampling, originally introduced in [Lustig 2007] in the MRI field, namely Poisson-disk
sampling.

3D Poisson disk sampling

Poisson disk under-sampling basically consists first in drawing independent random points
from a 2D sampling density typically with a radially decaying profile in order to perform
variable density and promote low frequencies. Second, the k-space measurements are col-
lected over orthogonal lines (readout) whose cross-section is actually given by the drawn
points in 2D [Lustig 2007]. Hence, this strategy can only be implemented on 3D acquisi-
tions as illustrated in Figure 2.2-2. Nonetheless this paradigm has been intensively used
in retrospective 2d CS validations.Its advantage is threefold:

i) Poisson-disk actually achieves locally uniform coverage as the k-space samples stay
far apart from each other, the distance between them being tuned by the disk radius;

ii) it actually fully samples the central region of k-space [Levine 2017, Vasanawala 2011];
iii) it avoids to play with complex sampling trajectories and thus to manipulate non-

uniform or non-equispaced Fourier transforms.
However, Poisson-disk sampling is barely tested in 3D acquisition setups but rather in

2D simulations, i.e. on retrospective under-sampling scenarios. Instead, its performances
are most often demonstrated in 2d imaging regardless of the MR acquisition specification.

2It is actually particular case of SPARKLING trajectories where we no longer activate the projection
constraints over the magnetic field gradients.
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Figure 2.2-2: 3D acquisition with 2d Poisson disk sampling. From [Chauffert 2015]. The
readout is performed along the horizontal lines wih black arrows, namely orthogonally to the
2d cross-section along which isolated points have been drawn.

2D variable density lines

2d acquisitions can also fulfill the requirements of CS theory, by adopting similar idea to
those used in parallel imaging: reducing the number of shots – i.e. TR– therefore consid-
ering fewer lines in the phase encoding direction. However, in contrast to parallel MRI the
lines are not drawn deterministically but rather randomly with a variable density distri-
bution along the phase encoding direction, i.e. in that case only 1D VDS is implemented.
An example of the reconstruction using variable density lines is presented Figure 2.2-3.

However, both 1D VDS on Cartesian lines and 3D Poisson disk sampling are hampered
by the same drawback: they do not exploit the full dimensions of the ambient space. So
their performances are limited in terms of acceleration factor. To go one step further, we
summarize in the next part the non-Cartesian sampling strategies that fully implement
VDS strategies in all dimensions of the native space, 2D or 3D VDS in respectively 2D
and 3D imaging. The major difficulty lies in the ability to be compliant with the gradient
constraints.

Spiral and Radial trajectories

Before the advent of Compressed Sensing theory and besides parallel-imaging, few tra-
jectories were used to under-sample the k-space and thus accelerate scans. Among all
k-space trajectories, radial patterns are the most widely and successfully used in MRI and
bridge the gap with tomographic imaging. Radial sampling has a particular appeal for
compressed sensing since the k-space center is naturally oversampled compared to higher
frequencies. Moreover its repeated sampling of the k-space center results in a signal aver-
aging in the image space making this trajectory robust to motion artifacts. For dynamic
imaging purposes, radial trajectories have been stacked together to form a 3D stack of
stars, which is known to be efficient for dynamic application (e.g. cardiac MRI) as it has
been proved in [Chandarana 2014] for free-breathing abdominopelvic exams.

Under-sampled spiral trajectories were also used to accelerate the scan as they present
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Figure 2.2-3: An example of reconstructions of a 2048×2048 MR image from block of
measurements. (a) Sampling pattern with horizontal lines – i.e. variable density in the phase
encoding direction – with an under-sampling factorm/n ≈8. (b) Corresponding reconstruction
using the `1-minimization. (c) A zoom on a part of the reconstructed image. (d) Image
obtained by using the pseudo-inverse transform. (e) A zoom o a part of the image. From
[Boyer 2017].

non-aliased artifacts and robustness to motion and flow. While spiral trajectories are
known to take full advantage of the gradient hardware capabilities, two regimes are com-
monly defined: a slew-rate-limited and an amplitude-limited one [Delattre 2010]. Near the
center of k-space, the trajectory is only limited by the maximal gradient slew rate Smax,
i.e. the curvature of the trajectory. Then, when moving to the outer part of k-space, the
trajectory gets limited by the maximal gradient amplitude Gmax. Although classical spir-
als are Archimedean and keep constant distance between consecutive revolutions, variable
density spirals are feasible [Lee 2003] to comply with CS theory [Lee 2003]. Radial [Laut-
erbur 1973] and spiral [Ahn 1986] trajectories have been originally proposed separately to
speed up the acquisition, later on they have been elegantly combined yielding the TWist-
ing Radial Lines (TWIRL) [Jackson 1992] sampling scheme. Further, for 3D imaging,
an extension called the Twisted Projection Imaging (TPI) [Boada 1997] has been pushed
forward to combine the advantages of high under-sampling of radial imaging in the center
of k-space while spreading the points in the high-frequencies as spirals do. More recently,
the Fermat Loop ORthogonaly Encoded Trajectory (FLORET) [Pipe 2011] strategy has
been developed to provide more robustness to motion by covering more densely the center
of k-space; see an illustration of these patterns in Figure 2.2-4.

Other optimization based method based on random perturbations have been proposed
[El-Metwally 2008, Lustig 2005] to sample the k-space more efficiently.
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(a) (b)

(c) (d) (e)

Figure 2.2-4: Examples of some non-Cartesian trajectories used within CS theory to accelerate
the scan time(a) Originally proposed by [Lauterbur 1973], Radial trajectory inherently follows
a variable density. (b) Spiral trajectories are one of the most efficient curve as it can be
implemented so as to take fully advantage of the encoding gradients (i.e. saturation of Smax
in the k-space center and Gmax in the periphery). (c) TWIRL: the first combination of radial
and spiral trajectories for 2D acquisitions [Jackson 1991]. (d) TWIST: the 3D extension of
the TWIRL method [Boada 1997]. (e) FLORET: recent advances on the design of 3D non-
Cartesian sampling patterns based on the combination of radial and spiral.

2.2.3 Design of the SPARKLING trajectories

Recently a new method to design sampling patterns, called SPARKLING, has been pro-
posed [Lazarus 2019a]. SPARKLING stands for Spreading Projection Algorithm for Rapid
K-space samplING. Its objective is to yield multi-shot trajectories to efficiently under-
sample the k-space while being compliant with the gradient constraints, implementing 2d
variable density in 2D imaging, performing locally uniform k-space coverage and eventu-
ally manipulating contrast affine constraints by specifying for instance the echo time TE,
i.e. the k-space center crossing time.

The SPARKLING method relies on optimization to automatically generate k-space tra-
jectories k(t)3 under the aforementioned hardware constraints on the gradients as defined
in Eq. (2.12) – which can be expressed in terms of trajectory constraints as defined in
Eq. (2.13) – by minimizing a tailored distance between the sample distribution and any
prescribed density π. The objective becomes fitting the density π over the trajector-

3In 2D we get k(t) = [kx(t), ky(t)].
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Figure 2.2-5: Generated SPARKLING trajectories for different initializations and target dens-
ities. Top tow: The SPARKLING method applied to Cartesian lines with uniform density. Mid
row: The SPARKLING method applied to radial spokes with variable radial density. Bottom
row: The SPARKLING method applied to the centered-out Archimedean spiral initialization
with variable radial density. For each initialization the Point Spread Function (PSF) gives a
rough idea on the artifact structure for the under-sampled factor. From [Lazarus 2018a].

ies. The projection algorithm behind the SPARKLING trajectory has originally been
developed by [Boyer 2016, Chauffert 2017] and further extended in [Lazarus 2017] to
handle echo time constraints. As the objective in SPARKLING is to minimize the dis-
tance between the target density π and the distribution over the trajectories k(t) under
the convex and affine constraints involved on the gradients, the locations of the samples
and the trajectories themselves are found simultaneously. Mathematically speaking, the
following constrained optimization problem is solved:

min
k∈Qp

dist(π, v(k)) = min
k∈Qp

1
2‖h ? (v(k)− π)‖22 (2.14)

where h is an interpolation kernel, v(k) is the probability of measure supported by the
trajectory k and Qp is the set of admissible curves respecting to the constraints defined in
Eq. (2.13). An `2 distance has been chosen for the sake of simplicity. The discretization
of Eq. (2.14) leads to the following formulation:



2.2. MR acquisition consideration 45

min
k∈Qp

1
p2

∑
1≤i,j≤p

‖k[i]− k[j]‖22︸ ︷︷ ︸
Fr(k)

− 1
p

p∑
i=1

∫
Ω
‖x− k[i]‖22π(x)dx︸ ︷︷ ︸

Fa(k)

(2.15)

The latter formulation can be interpreted as the minimization of a potential energy, com-
posed of a repulsive term Fr (to avoid clusters) and an attractive term Fa (to concentrate
the samples according to the target density π). Due to the non-convexity of Eq. (2.15), this
optimization is sensitive to the initialization as there as potentially many local minimizers.
Figure 2.2-5 presents the outputs of SPARKLING algorithm for different initializations,
in particular the Point Spread Function (PSF) gives an idea on the performances of the
different sampling patterns. While for the Cartesian sampling presented in Figure 2.2-5
the spikes in the PSF predict the aliasing artifacts associated with under-sampling, the
SPARKLING output is not affected, i.e. its PSF presents a pure central peak without any
small replica.

Figure 2.2-6: Comparison of different acquisition strategies on an T∗2 ex-vivo human brain
acquired at 7 T for various acceleration factor AF = 10, 15 and 20. From [Lazarus 2018a].

The SPARKLING trajectories have also been implemented at 7 T for prospective ac-
quisition within a gradient recalled echo (GRE) Fast Low Angle SHot (FLASH) sequence.
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The method has been compared to variable density centered-in/out radial – used as ini-
tialization – and spiral [Lee 2003] imaging. The results of this comparison are presented
in Figure 2.2-6. They indicate that SPARKLING trajectories maintain high image quality
even for large acceleration factors, i.e. high similarity to the fully sampled Cartesian refer-
ence4. Due to the good performances of SPARKLING trajectories, the experimental setup
used in the rest of this thesis will be the radially initialized SPARKLING trajectories.

2.3 Reconstruction

Due to the under-determination of the MR image reconstruction inverse problem from
highly under-sampled data, there exists an infinite number of solutions. CS theory has
provided the right framework to compute a unique solution to the inverse problem by
imposing sparsity in the sought image. Originally, in the noise-free context, the image
solution was computed by minimizing the `1 norm subject to the data consistency prob-
lem (see Eq. (2.3)). As we the data is noisy and due to its robustness to perturbation,
the regularized version of reconstruction is often preferred, it reads as follows:

ẑ = argmin
z∈CNΨ

1
2‖y −FΩΨsz‖22︸ ︷︷ ︸

F (z)

+λ‖z‖1︸ ︷︷ ︸
R(z)

(2.16)

where y is a vectorized version of the k-space measurements, z is the sparse representation
in the dictionary Ψs of the image to be estimated, FΩ is the under-sampled Fourier
operator over the binary mask or support Ω that picks up the collected measurements: it
can be a single FFT for Cartesian under-sampling or the NFFT operator for non-Cartesian
acquisitions. Ψs : CNΨ → CN is the synthesis version of the sparsifying transform.
Therefore, the problem formulated in Eq. (2.16) is also called the synthesis formulation
as the estimated image is given by x̂ = Ψsẑ. However, one can also introduce an analysis

formulation that computes the solution directly in the image space as follows:

x̂ = argmin
x∈CN

1
2‖y −FΩx‖22︸ ︷︷ ︸

F (x)

+λ‖Ψax‖1︸ ︷︷ ︸
R(x)

(2.17)

where x corresponds to the image and Ψa : CN → CNΨ the analysis version of the
sparsifying transform. The difference between the synthesis and the analysis formula-
tions (Eq. (2.16) i.e. vs Eq. (2.17)) will be discussed in the following section. Moreover it
should be mentioned that their adjoint operator is defined as the conjugate-transpose ΨH

s

for the synthesis transform and ΨH
a for the analysis one.

Whatever the retained formulation, the reconstruction problem relies on two main
ingredients that will be discussed in depth in this part:

i) the sparsifying transform Ψ, which should be chosen as incoherent as possible with
respect to the acquisition basis;

4An extensive comparison including several image contrasts can be found in [Lazarus 2018a].



2.3. Reconstruction 47

ii) the optimizer – solver – that affects the convergence speed, hence the computation
time.

In what follows, these two points will be discussed in detail while the last subsection will
be dedicated to the definition of quantitative image quality metrics. Indeed, as this work
focuses on image reconstruction, it gets critical to choose an appropriate quantitative
metric to assess the performances of the reconstruction algorithms proposed along this
work.

2.3.1 Sparse decomposition

One of the key tools in CS theory is the incoherence between the sparse representation
and the acquisition basis. However, the natural MR images are not sparse in the canonical
basis and need therefore to be sparsified through a decomposition that can either have
an analytical fixed formulation – such as Wavelet Transform – or learned from the data
itself such as in the Transform or Dictionary Learning (TL vs DL) [Ravishankar 2010,
Ravishankar 2015, Wen 2019] framework. In what follows, we will study the impact of
the synthesis or analysis formulation on fixed dictionaries, as well as the choice of complete
vs over-complete transforms. In a second step we explore the performances of the DL on
the reconstructed images.

Analytical fixed sparsifying dictionaries

A basic known result states that if Ψ is an orthonormal transform – i.e. ΨHΨ = ΨΨH =
IN and ΨaΨs = INψ with necessary Nψ = N – then both analysis and synthesis formu-
lations Eqs. (2.16) and (2.17) are equivalent. The same property holds more generally for
invertible transforms Ψ. However, in other situations, the two formulations provide differ-
ent solutions [Elad 2007]. Noticeably, for over-complete transforms – i.e. a transform that
maps the vectorized image x ∈ CN to a coefficient vector z ∈ CNΨ withN < NΨ – the ana-
lysis formulation is preferred as it has been shown in [Majumdar 2012b, Cherkaoui 2018,
Selesnick 2009]. The choice of an appropriate fixed decomposition has been intensively
studied in the literature [Selesnick 2009, Majumdar 2012b, Cherkaoui 2018]. Import-
antly, it has been proved that over-complete dictionaries such as curvelets [Starck 2002],
shearlets [Guo 2007] or undecimated Bi-orthogonal WT [Starck 2007] combined with the
analysis formulation outperform the standard orthogonal wavelet transform. However ow-
ing to the redundant information manipulated in that case – N < NΨ – optimization is
performed in the image space to save memory usage and limit the computational load,
especially in the high-resolutions context.

Adaptive data driven representations

While analytical over-complete dictionaries already provide good results, one could ex-
pect an improvement on the image quality using learned dictionaries. DL methods [Rav-
ishankar 2010, Ravishankar 2015] extract and learn atoms which represent the image
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Figure 2.3-7: Set of atoms learned from the CamCan database [Taylor 2017b] where only
magnitude information has been learned. From our work published in [Carrié 2018].

to be reconstructed with few non-zero coefficients. Two approaches have been developed
so far: either the dictionary is learned off-line and then injected as a sparsifying trans-
form or it can be directly inferred in a blind bilinear reconstruction problem where both
the reconstruction and the dictionary estimation steps are interleaved [Ravishankar 2010,
Ravishankar 2015].

The two step procedure can be described as follows: first, the dictionary learning step
can be formulated as in Eq. (2.18a) then the reconstruction step Eq. (2.18b) is defined
using the previously learned dictionary.

(D̂, ẑ) = argmin
D∈CN×nc ,z∈Cnc

∀k≤nc, ‖Dk‖2=1

1
2‖x−Dz‖22 + λ‖z‖1 (2.18a)

x̂ = argmin
x∈CN

1
2‖y −FΩx‖22 + λ‖D̂x‖1 (2.18b)

where nc is the number of components used to represent the vectorized image x ∈ Cn

[Ravishankar 2010, Mairal 2010], the learned dictionary D̂ is composed of atoms that
are illustrated in Figure 2.3-7. However these approaches either require a large database
of images for learning atoms or are computationally slow. Another drawback concerns
the reconstruction time [Carrié 2018], since at each iteration, the image needs to be
decomposed in the dictionary, hence for non-Cartesian acquisitions like SPARKLING –
i.e. using NFFT operator in Eq. (2.18b) – and single channel acquisition setting, the
reconstruction takes approximately 30min against 3min with the wavelet decomposition
for N = 512× 512.
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2.3.2 Proximal optimization method

In general CS-based reconstruction – either based on the analysis Eq. (2.17) or synthesis
Eq. (2.16) model – is composed of a sum of data-consistency term – denoted by F (·) – and
regularization – denoted by R(·) – which promotes sparsity through nonsmooth penalty. In
this thesis we mainly considered convex methods as it guarantees convergence to the global
minimizer of a convex but nonsmooth objective function (F + R)(·) [Combettes 2011].
Hereafter we define the notation and the class of algorithms we have used to solve the
reconstruction problem.

Definitions

We denote by CN the usual N -dimensional complex Hilbert space. Standard definitions
and notations from convex analysis will be assumed [Rockafellar 1970]5. The domain
of a function f : CN → ]−∞,+∞] is denoted by domf and defined such as domf ={
x ∈ CN |f(x) < +∞

}
. A convex function is defined as follows:

Definition 2.3.1. A function f : CN → R is convex if domf is a convex set and if

∀x,y,∈ domf and θ ∈ R | 0 ≤ θ ≤ 1, we have

f(θ x + (1− θ)y) ≤ θf(x) + (1− θ)f(y) .

Let Γ0(CN ) be the class of lower semi-continuous convex functions from CN → ]−∞,+∞].
The convex conjugate of the function f denoted by f? ∈ Γ0(CN ), is defined as follows:

f? : CN → ]−∞,+∞ ]

u 7→ sup
x∈CN

{〈x,u〉 − f(x)} (2.19)

The Moreau subdifferential is defined as follows:

Definition 2.3.2. The Moreau subdifferential of a function f : CN → ] − ∞,+∞ [ at

x ∈ CN is defined as :

∂f : CN → 2CN

x 7→
{
u ∈ CN | (∀y ∈ CN ) f(y) > f(x) + 〈y − x,u〉

}
Any vector u in ∂f(x) is called subgradient of f at x.

We define the proximity operator as follows:

Definition 2.3.3. Let f ∈ Γ0(C)N . For every x ∈ CN , the minimization problem:

min
y∈CN

{
f(y) + 1

2‖x− y‖2
}

(2.20)

admits a unique solution called proximity operator of f denoted by proxf (x) : CN → CN .
5On top of the notations defined page xv.
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Moreover the proximity operator of f can be characterized by the following inclusion:(
∀(x,p) ∈ CN × CN

)
p = proxf (x) ⇔ x− p ∈ ∂f(p) (2.21)

We also define a β-Lipschitz gradient of a function f as:

∀(x,y) ∈ CN×N‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2 (2.22)

Since the data-fidelity term (F (·) as defined in Eqs. (2.16) and (2.17)) is smooth and
has a β-Lipschitz gradient and the regularization term (R(·) as defined in Eqs. (2.16)
and (2.17)) is proper (i.e. domR 6= ∅) closed convex function, the reconstruction problem
can be efficiently solved using proximal splitting methods that are described in the next
part.

Proximal majorize minimize method: Forward-Backward Splitting method

A classical approach to solve Eq. (2.16) is to use the Forward-Backward Splitting algorithm
(FBS) [Levitin 1966, Combettes 2011]. It can be seen from the Taylor expansion of F (y)
and simple linear algebra that the iterations sequence to solve Eq. (2.16) takes the form:

zk+1 := proxγkR︸ ︷︷ ︸
backward step

(zk − γk∇F (zk))︸ ︷︷ ︸
forward step

, with γk ∈ ] 0, 2/β [ (2.23)

with z0 ∈ CN . In the particular case where the `1-norm is used for R the algorithm corres-
pond to the Iterative Soft-Thresholding Algorithm (ISTA) [Daubechies 2004]. Moreover,
it is well established that FBS iterates converge as long as γk ∈ ] 0, 2/β [. However the
convergence speed is quite slow (with a rate in the order of O (1/k)). In the literature,
two complementary paths were developed to speed up convergence, namely adaptive re-
start [O’donoghue 2015] and the use of a momentum strategies [Nesterov 1983], both
being discussed hereafter. In order to speed the convergence, many variants of Eq. (2.23)
have been proposed in the literature, most of them rely on the setting of a momentum
term [Nesterov 1983] that can be summarized as follows:

Algorithm 1: Accelerated Forward Backward

1 Set z0 ∈ CNΨ , w0 = z0, θ0 = 1, γk ∈ ] 0, β ] and q ∈ [0, 1];
2 for k = 0, . . . do
3 θk+1 solves θ2

k+1 = (1− θk+1) θ2
k + qθk+1;

4 αk+1 = θk (1− θk) /
(
θ2
k + θk+1

)
;

5 wk+1 = zk+1 + αk+1 (zk+1 − zk);
6 zk+1 := proxγkR (wk+1 − γk∇F (wk+1));
7 end

One of the most popular techniques associated with Nesterov acceleration scheme is the
Fast Iterative Soft-Thresholding Algorithm (FISTA) [Beck 2009] which has a convergence
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rate of O
(
1/k2). The convergence proof of the iterates of FISTA haven’t been demon-

strated yet, however [Chambolle 2015] proposed a variant of FISTA with a convergence
proof of the iterates. On drawback of the Nesterov acceleration schemes is the presence
of ripples in the trace of the objective function which slows down the convergence as illus-
trated in Figure 2.3-8. In [O’donoghue 2015] the authors exhibit two regimes depending
on the value of the momentum and noticed that the ripples arise when the momentum
term was too high. Therefore, by simply restarting the momentum term – i.e. setit-
ing it to zero – they could accelerate the different algorithms. The methods proposed
by [O’donoghue 2015] is a very general and could potentially be applied to different op-
timization algorithms that present the same behavior.

Until now, in Eq. (2.23) we have only considered the synthesis formulation of the
reconstruction problem as defined in Eq. (2.16). The analysis formulation can be handled
similarly when Ψa is an orthogonal sparsifying transform as the proximity operator could
be calculated explicitly [Combettes 2011, Table 10.1-x], for more general decompositions
this is no longer the case. Hence, the proximity operator has to be computed iteratively
which slows down the reconstruction again. In these specific cases, to avoid the iterative
calculation of proximity operators, primal-dual methods have been developed.

Proximal optimization: Primal-Dual algorithm

We have previously seen that the use of over-complete dictionaries could noticeably im-
prove image reconstruction accuracy. However, solving it with one of the FBS variants
is time consuming. Hopefully, the analysis problem Eq. (2.17) can be solved by minimiz-
ing both the primal and dual formulation as suggested by [Komodakis 2015]6. The dual
problem can be formulated as follows:

ẑ ∈ argmin
z∈CNΨ

F ?(−ΨHz) +R?(z) (2.24)

where F ? and R? are the convex conjugate of F and G, respectively. It should be noted
that the primal and dual problems can be reformulated so as to be solved together, hence
the Lagrangian saddle point is found [Bauschke 2011, Chap. 19]:

(x̂, ẑ) ∈ argmin
x∈CN

(
argmax
z∈CNΨ

F (x)−R?(z) + 〈Ψx, z〉
)

(2.25)

Moreover if we suppose that :
i) Eq. (2.17) admits at least one solution
ii) ri(dom R) ∩Ψ dom F 6= ∅, with ri the restricted interior;

then the dual problem admits a solution and at convergence, the dual gap is null meaning
that:

6In this case we only considered the sum of smooth and non-smooth functions however the primal-dual
approaches are more general and could be applied to any problem defined as follow: F (x)+G(x)+R(Ψx),
where F , R and Ψ are defined as before and G is is proper closed convex function.
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F (x̂) +R(Ψx̂) = −F ?(−ΨHẑ)−R?(ẑ) (2.26)

The first approach developed to solve the primal-dual problem was the Alternating
Direction Method of Multiplier (ADMM) [Komodakis 2015, Boyd 2004, Gabay 1975].
Although it has been widely used in various fields, the setting of its parameters may be
tricky. It should also be mentioned that a variant of ADMM in the dual space has been
proposed in [Eckstein 1992].

Another primal-dual algorithm has been developed simultaneously by [Condat 2013]
and [Vũ 2013]. The sequence of its iterates for solving Eq. (2.17) can be summarized as
follows:

Algorithm 2: Primal-Dual Condat-Vũ Algorithm

1 Set z0 ∈ CN , z0 ∈ CNΨ , (σ, τ) ∈ ] 0,+∞ [2, and ∀k ∈ N, λk ∈ ] 0,+∞ [ ;
2 for k = 0, . . . do
3 uk := xk − τ(∇F (xk) + ΨHzk + eF,k);
4 wk := proxσR? (zk + σΨ(2uk − xk)) + eR,k;
5 xk+1 := λkuk + (1− λk)xk;
6 zk+1 := λkwk + (1− λk) zk;
7 end

A symmetric version of the Condat-Vũ algorithm 7 has also been proposed and consists in
switching Lines 2. and 3. in Algorithm 2. Moreover, the convergence proof of the iterates
has been established by the following theorem:

Theorem 2.3.4. [Condat 2013, Theorem 3.1] Let γ > 0, τ > 0 and the sequences

(λk)∀k∈N, (eF,k)∀k∈N and (eR,k)∀k∈N be the parameters of Algorithm 2. Let β > 0 be the

Lipschitz constant of the gradient of F , and suppose that the following holds:

i) 1
τ − σ‖Ψ‖2 ≥

β
2

ii) ∀k ∈ N, λk ∈] 0, δ [ , where we set δ := 2− β
2

(
1
τ − σ‖Ψ‖

2
)−1
∈ [1, 2]

iii)
∑
k∈N λk (δ − λk) = +∞

iv)
∑
k∈N λk ‖eF,k‖ < +∞ and

∑
k∈N λk ‖eR,k‖ < +∞

Then there exists a pair (x̂, ẑ) ∈ CN × CNΨ solution to Eq. (2.25), such that the Al-

gorithm 2 (and its symmetric version), the sequences (xk)∀k∈N and (zk)∀k∈NΨ converge

weakly to respectively x̂ and ẑ.

Recently a benchmark has been proposed by [Ramzi 2019] to assess the performances
of the different algorithms, where Ψ was an orthogonal wavelet transform. The benchmark
included FISTA [Beck 2009] denoted by FISTA-BT, the convergent version of FISTA pro-
posed by [Chambolle 2015] denoted by FISTA-CD, the Restart and Adaptive α-FISTA
(Rada-FISTA) and the greedy-FISTA proposed in [Liang 2019]. Besides all these versions

7When F , and the error terms (eF,k)∀k∈N, (eR,k)∀k∈N is null the Condat-Vũ sequence corresponds to
the Chambolle-Pock algorithm [Chambolle 2011, Boyer 2012].
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(a) (b)

Figure 2.3-8: Comparison of the convergence speed of different proximal algorithms to solve
Eq. (2.17). The Nesterov ripples can be seen from the FISTA-CD proposed by [Cham-
bolle 2015]. From [Ramzi 2019].

of FISTA, the benchmark also comprised other acceleration schemes such as the adapt-
ive restart strategy of Proximal-Optimized Gradient Method (POGM’) [Taylor 2017a,
Kim 2017a, Kim 2018a]. Finally, the comparison included the Condat-Vũ algorithm
too. Figure 2.3-8 (a) presents the evolution of the objective function for the different al-
gorithms while Figure 2.3-8 (a) displays the Structural Similarity index (SSIM) evolution
over iterations. The results of [Ramzi 2019] benchmark show that the greedy-FISTA and
POGM’ were comparable, however the latter was twice more memory demanding which
could potentially be critical for high-resolution 3D reconstruction in the parallel imaging
setup.

2.3.3 Metric for Image comparison

As the quantification of the MR image quality is important for the evaluation of imaging
techniques both at the acquisition and reconstruction levels, this part shortly reviews
some standard metrics to assess image quality when a ground truth or reference image is
available.

Mean Square Error (MSE) and Structural Similarity Index (SSIM) are the most fre-
quently used indices for assessing image quality between a reference and a reconstructed
image. The implicit assumption is that they correlate well with the physicians assessment.
In [Zanforlin 2014], the authors have compared the SSIM score with the mean observation
error (MOS). Interestingly they drew a comparison between the similarity score and the
MOS and proposed a table that summarizes the correlation between SSIM and the visual
perception, see Table 2.1,

However the results stated by [Zanforlin 2014] were considered for natural images
and not for medical ones. Recently, [Mason 2019] has assessed the correlation between
various quality metrics and physician’ views. To do so, the experimental protocol was
defined as follows: nine brain scans selected from hospital images and corrupted versions
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Table 2.1: Correspondence between SSIM score ans Mean Opinion Scores (MOS) between an
image and its reference.

SSIM MOS Quality Impairments

≥ 0.99 5 Excellent Imperceptible
[0.95, 0.99( 4 Good Perceptible but not annoying
[0.88, 0.95( 3 Fair Slightly annoying
[0.5, 0.88( 2 Poor Annoying
≤ 0.5 1 Bad Very annoying

with either Gaussian blurring, wavelet compression, Rician noise [Gudbjartsson 1995] or
motion artifacts were presented to two neuroradiologists who carefully read and rank the
images. The physicians were asked to score overall image quality on a 1-5 Likert scale
that was determined by consensus on a training set before scoring the images included
in the results. Correlations between each image quality metrics and the physician’ scores
were measured using the Pearson linear correlation coefficients(PLCC) and the Spearman
rank order correlation coefficients (SROCC). According to [Mason 2019] the best quality
metric should be linear with respect to the Likert index of the physician. Fortunately, for
the SSIM score above 0.9 this was the case. Hence in the rest of the thesis, we will stick
to the SSIM score on the regime where it fits the physician perception i.e. SSIM > 0.9.

2.3.4 Conclusion

As seen in the previous chapters, MRI is a powerful non-invasive technique that suffers
from long scan time. Although methods such as parallel-imaging permit to shorten this
time, they acceleration power remains too limited for high-resolution MRI. The very reason
for that is twofold: one one hand, under-sampling is performed in a deterministic manner
with a target uniform sampling density. On the other hand, most often the reconstruction
itself is purely linear. To go one step further, the application of CS theory to MRI has
revolutionized the way data can be collected and images are reconstructed. CS provides
higher acceleration factors compared to parallel imaging or partial Fourier techniques
but at the cost of more computationally demanding reconstruction. However, to become
even more efficient regarding the way SNR is preserved, CS has also been combined with
multi-channel acquisition over phased array coils. Then a natural question has emerged
on the optimal manner to combine CS and multi-channel acquisition for making image
reconstruction more efficient and accurate. These issues will be discussed in the next
chapters.
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The method developed in this chapter (Section 3.2.1) was used as reconstruction tech-
nique in the following works :

C. Lazarus, P. Weiss, N. Chauffert, F. Mauconduit, L. El Gueddari, C. Destrieux, I. Zemmoura,
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L. El Gueddari, C. Lazarus, H. Carrié, A. Vignaud and P. Ciuciu. Self-Calibrating Nonlinear

Reconstruction Algorithms for Variable Density Sampling and Parallel Reception MRI. In 2018
IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 415–419,
July 2018.

L. El Gueddari, C. Lazarus, H. Carrié, A. Vignaud and P. Ciuciu. Self-calibrating nonlinear

MR image reconstruction algorithms for variable density sampling and parallel imaging. In
Proceedings of the 27th Annual Meeting of ISMRM, page 3547, Paris, France, 2018.

This chapter introduces and discusses the MR image reconstruction methods based
on multi-channel array coil acquisition. A particular attention will be paid to their

compatibility with non-Cartesian sampling schemes.

3.1 Introduction

Compressed Sensing provides a way to drastically reduce the scan time, however the max-
imum under-sampling factor depends on the available input-SNR and the image resolu-
tion1. An empirical study on the maximum under-sampling factor for T∗2 MR images [Laz-
arus 2018c] illustrates several important results, for a targeted image quality:

• at a given resolution, the under-sampling factor can be increased as the input-SNR
improves until a stationary regime is reached for high input-SNR.

• high resolution images offers the possibility to reach high under-sampling factors as
long as the input-SNR remains sufficient, while the under-sampling ratio is limited
for low-resolution images.

• at each resolution, an optimal point, which combines the minimum requisite input
SNR with the maximum under-sampling factor allowing to maintain the targeted
image quality (e.g. SSIM score of 0.9), can be determined.

Figure 3.1-1 presents those relations in a slightly different way: the 3D map provides the
evolution of the maximum under-sampling factor achievable for a range of image resolution
and input-SNR which preserves a fair image quality, corresponding to an SSIM score above
0.9 according to the mean opinion score (Table 2.1). The highlighted red line corresponds
to the available input-SNR on the Magnetom 7 T scanner (Siemens-Healthineers, Erlangen,
Germany) using the available single-channel coil.

To achieve high acceleration factors in the high resolution setting, the input SNR has
to be boosted. This can be reached using a multi-channel coil array, as demonstrated
in [Roemer 1990] and presented Section 1.3.1. However such reception coil will increase
the reconstruction complexity and raise questions of Compressed Sensing theory in such
a configuration. This chapter will review CS reconstruction methods for multi-channel
acquisitions. We will focus on the non-Cartesian case since the latter permits higher ac-

1or image dimension as we assume the FOV fixed.
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Figure 3.1-1: A view of the maximum under-sampling factor allowing SSIM scores above
0.9 as a function of image size (or resolution as the FOV is fixed) and input SNR. Orange
line: Available input-SNR on the 7 T scanner (Siemens-Healthineers, Erlangen, Germany).
[Lazarus 2018c].

celeration factors. Those reconstruction algorithms can be split in two different categories,
whether they rely on the explicit knowledge of coil sensitivity profiles or not.

Notation

Let us define F the 2D Fourier transform operator, possibly non-uniform, and Ω the
support of the k-space under-sampling scheme, such that FΩ corresponds to the under-
sampled Fourier operator over Ω. We also introduce L the total number of channel used
to acquire the NMR signal and we denote yΩ,` ∈ Cm, with ∀` ∈

{
1, . . . , L

}
, as the under-

sampled k-space measurements collected by the `th-channel. With n the base resolution
and N = n × n is the total number of pixels, the vectorized image is represented by
x ∈ CN . As the k-space is massively under-sampled, we get m � N . The sensitivity
matrix of the `th-coil is denoted by S`, ∀` ∈

{
1, . . . , L

}
, and S` being diagonal.

3.2 Parallel MR image reconstruction based on sensitivity

maps

In the Compressed Sensing (CS) context, sparse multi-coil image reconstruction has first
been applied using a variant of the SENSE formulation (Section 1.3.2) called sparse-SENSE
and originally proposed by [Liang 2009]. The reconstruction problem reads as follows:

x̂ = arg min
x∈CN

1
2

L∑
`=1
‖FΩS`x− yΩ,`‖22 + λ‖Ψx‖1, λ > 0. (3.1)
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with Ψ being a sparsifying transform. Note however that a prior work in the parallel
imaging context – with deterministic under-sampling along the phase encoding direction
– has been proposed by [Chaâri 2008] and further extended in [Chaâri 2011].

In the SENSE formulation, the calibration of the spatial sensitivity profiles associ-
ated with the multiple channels gets critical as they heavily affect the final reconstructed
image. Originally those sensitivity profiles were estimated using a dedicated pre-scan (low-
resolution acquisition). However, this method suffers from two limitations: first it increases
the acquisition time and second it is sensitive to the patient’s motion between the calibra-
tion and accelerated scans. To overcome those issues, many methods have been proposed
to estimate the sensitivity profiles. One sensible approach consists of selecting a calib-
ration region in the k-space domain where the signal has been sampled (at least) at the
Nyquist rate. As these maps are spatially smooth, one can actually extract the center of
k-space (low frequency domain) and then apply the inverse Fourier transform to recover an
estimate. In what follows, we describe the different strategies in detail. Then, we propose
a simple yet efficient extraction method well suited for non-Cartesian sampling patterns.

3.2.1 Coil sensitivity extraction

Direct extraction

First let us consider methods that extract the sensitivity information beforehand and use
it as a prior in the optimization of Eq. (3.1). As originally proposed by [McKenzie 2002],
extra k-space central lines can be added to the accelerated scan and used to extract low-
resolution coil images which are then used as sensitivity profiles. While those lines can eas-
ily be added to Cartesian acquisitions, it is less obvious for non-Cartesian sampling. How-
ever because most of non-Cartesian schemes (such as radial [Spuentrup 2004, Feng 2016],
variable density spiral [Lee 2003], PROPELLER [Pipe 1999], or even SPARKLING [Laz-
arus 2019a] as presented in Figure 3.2-2) are heavily sampled in the k-space center region,
they could be considered as inherently calibrated as it has been mentioned by [Yeh 2005].
Using a gridding operation, low-resolution coil-specific images are then reconstructed using
a zero-filled inverse Fast Fourier transform and used as sensitivity profiles for non-Cartesian
sampling.

In the same context, we have proposed a similar approach to extract the sensitivity
information. First, akin to [Yeh 2005], we selected only a portion θ of the central surface
of k-space and set the other values to zero. Second, instead of using a gridding step, the
NFFT [Keiner 2009] adjoint operator FH was applied to the data ˜yΩ,` = y LF

Ω,` in order
to get the n × n low-resolution images: xLR

` = FH
[Ω|θ%,0] ˜yΩ,` where LR stands for low

resolution. Third, the square root of the Sum of Squares (sSOS) was computed: x̂ LR =√∑L
`=1 ‖xLR

` ‖2. Finally, the sensitivity maps were given by the pixel-wise ratio between
the coil-specific images and the sSOS:

[
s LR
`

]
ij = diag [S`]ij =

[
x LR
`

]
ij /

[
x̂ LR]

ij , ∀` ∈{
1, . . . , L

}
and ∀i, j ∈

{
1, . . . , N

}
. Because of this sSOS operation, our method is less

dependent on the threshold θ compared to [Yeh 2005], who directly exploited the xLR
`

images as sensitivity maps. In order to attenuate the noisy background, one could mask
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the estimated sensitivity maps by a binary mask computed by thresholding x̂ LR, where
the actual threshold value is given by a 2-cluster k-means algorithm. The binary mask is
eventually defined as the largest connected component.

(a) (b) (c)

Figure 3.2-2: Examples of non-Cartesian trajectories: (a) radial sampling, (b) spiral sampling,
(c) PROPELLER sampling. Oversampling the center of k-space brings a gain in robostness to
the patient’s motion.

Indirect extraction

While the sensitivity maps estimation in the previous works relied on a direct k-space
extraction, [Uecker 2014] proposed an indirect approach, based on eigenvector decom-
position called Eigenvalue Self-consistent Parallel Imaging Reconstruction using iTerative
algorithm (ESPIRiT). Because the latter is considered as the state-of-the art in parallel
imaging reconstruction we will explain it hereafter. In the original paper, the proposed
method rests upon a calibration matrix A to extract the sensitivity information (such as
SENSE) but it also enforces self-consistency with respect to the calibrated data (such as
GRAPPA). Hence the authors claim to bridge the gap between SENSE and GRAPPA.

Construction of a calibration matrix. First let us introduce how the calibration
matrix A is built up. Considering a calibration region AC2 with non-missing k-space val-
ues yAC

Ω , the method proposed by [Uecker 2014] constructs a block-Hankel matrix A (also
called calibration matrix). Block-Hankel matrices are known to possess well-defined sub-
spaces [Heinig 1992] which in this case can be used to extract sensitivity information. The
construction of matrix A is based on data concatenation along a 2D sliding window that
moves over the AC region and across all channels as illustrated in Figure 3.2-3.

Extraction of the coil sensitivity profiles. With highly correlated rows, matrix
A is supposed to be low-rank, hence only a small set of vectors span the k-space. To
analyze the calibration matrix, the authors perform its singular value decomposition,
which decomposes A into U , Σ and V H such that A = UΣV H , where the columns
of V are the basis of the rows of A and therefore a basis for the overlapping blocks in
the calibration data. The authors also show that V can be split into V‖ and V⊥ that
respectively span for the row-space and the null-space of A. Similarly to SENSE, the

2AC stands for Auto Calibrated.
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Figure 3.2-3: Left: Set of k-spaces obtained within the multi-coil setting. Right: the calibration
matrix A is obtained by sliding a window (small green frame) on the calibration data yAC

Ω (blue
frame).

authors propose to explicitly identify the sub-space spanned by the coil sensitivities from
the calibration matrix. Given the operator Rr, which extracts and flattens the patches
around the rth k-space position, and ŶΩ =

[
yΩ,1, . . . ,yΩ,L

]
the unknown k-space data,

one can re-write the null space condition thanks to the decomposition of subspace V :
V‖V

H
‖ + V⊥ V H

⊥ = Id. The null space condition reads as follows:

∑
r

RH
r V⊥V

H
⊥ RrŶ = 0(∑

r

RH
r Rr

)−1∑
r

RH
r V‖V

H
‖ RH

r︸ ︷︷ ︸
W

Ŷ = Ŷ

Assume that image x is not null and satisfies the forward model, i.e. FSx = Ŷ , it follows
that the sensitivity matrices are represented by the eigenvectors of FHWF associated with
the eigenvalue 1. Those eigenvectors could be used to compute the sensitivity profiles,
however as reported by the authors this leads to a high computation cost. Consequently,
they have proposed to simplify the eigenvalue decomposition of the operatorW by directly
applying it in the image domain. While the ESPIRiT method represents an elegant way
of extracting the sensitivity matrices, this method remains suited for Cartesian sampling
due to the calibration matrix A. For non-Cartesian sampling, the construction of this
matrix requires a gridding step which might degrade the extraction and thus the final
image quality.

While fast estimation of coil sensitivity profiles could be thought of in the context
of online reconstruction, the Lipschitz constant of the forward model depends on the
estimated sensitivity profiles. Hence, it cannot be computed beforehand. This constitutes
a major bottleneck for online MR image reconstruction.
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3.2.2 Blind bi-linear reconstruction

Although for “calibrated”-Cartesian sampling schemes the extraction of sensitivity matrices
can be efficiently performed using one of the above mentioned methods, their adaptation
to non-Cartesian, random or uncalibrated Cartesian sampling patterns is far less straight-
forward. In these cases, sensitivity matrices cannot be extracted prior to reconstruction.
However to extend the SENSE formulation, a new category of methods, which aims at
recovering both the coil sensitivity profiles and the image solution, has emerged. Such
methods are often referred to as blind bi-linear inverse approaches.

Hereafter we define the general regularized blind bi-linear reconstruction problem as
follows:

(
x̂, Ŝ1, . . . , ŜL

)
= argmin

x∈CN
∀`∈{1,...,L}, S`∈CN

{
L∑
`=1

1
2‖FΩS`x− y`‖22 +Rsens(S`) +Rim(x)

}
(3.2)

with Rsens being the penalty term on the coil sensitivity profiles (S`)`, which promotes
their spatial smoothness, while Rim encodes the regularization term on the image x, which
can enforce sparsity in the CS framework.

The regularized blind bi-linear reconstruction was first introduced by [Uecker 2008].
They originally proposed a Tikhonov regularization [Tikhonov 1943, Tikhonov 1963] as a
prior on x and the Sobolev regularization [Sobolev 1950] for (S`)`∈{1,...,L}. The Sobolev
penalty term is a special case of Tikhonov regularization since it penalizes the weighted
`2-norm of the Fourier coefficients instead of the `2-norm in the original domain (e.g. image
space). The regularization terms proposed by [Uecker 2008] were defined as follows:

∀x ∈ CN , Rim(x) = α

2 ‖x‖
2
2 (3.3a)

∀` ∈ {1, . . . , L}, S` ∈ CN×N , Rsens(S`) = β

2 ‖
(
1 + ‖k‖22

)γ/2
FS`‖22 (3.3b)

with ‖k‖22 being the distance to the origin of k-space, F the fully sampled Fourier transform
and α, β and γ (the polynomial degree) being positive hyper-parameters that need to be
set.

In the original paper [Uecker 2008], the authors have proposed to decrease the value
of α and β parameters over iterations, leading at the end to the minimization to a non-
regularized, ill-conditioned problem. To overcome this issue, [Knoll 2012] have recom-
mended to fix it during the minimization. Based on a previous work [Knoll 2011], they
have also proposed to replace Tikhonnov regularization Rim in the image domain by total
variation (TV) [Rudin 1992], which promotes piece-wise constant images (cf Eq. (3.4a))
or its generalization, namely the total generalized variation (TGV), which assumes non
piece-wise constant images (cf Eq. (3.4b)). This eventually leads to the following penalty
terms:

TV: Rim(x) = α‖∇x‖1 (3.4a)

TGV: Rim(x) = α min
v

(
‖∇x− v‖1 + ‖∇v +∇vH‖1

)
(3.4b)
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with ∇x being the spatial gradient of x i.e. (∇x)i,j = (xi+1,j − xi,j , xi,j+1 − xi,j), hence
∇v is linked to the second order derivative of x. While the overall criterion in Eq. (3.2)
is not jointly convex in

(
x, (S`)`

)
, the authors of both works [Uecker 2008, Knoll 2012]

initialize x and (S`)` to zero-valued vector and matrices and claim that the method was
not sensitive to the initialization.

Besides the Sobolev regularization on the coil sensitivity profiles, [She 2014] has pro-
posed the Sparse BLind Iterative Parallel imaging reconstruction (Sparse-BLIP) method
based on TV regularization of the sensitivity profiles as defined in Eq. (3.5b). On
top of this new regularization, following the seminal paper in sparse MRI reconstruc-
tion [Lustig 2007], they have also regularized the image x by combining its `1-norm in
the wavelet domain (i.e. Ψx) with the TV penalty in the image domain as shown in
Eq. (3.5a):

∀x ∈ CN , Rim(x) = λ‖Ψx‖1 + α‖∇x‖1 (3.5a)

∀` ∈ {1, . . . , L}, S` ∈ CN×N , Rsens(S`) = β‖∇S`‖1 (3.5b)

Contrary to [Knoll 2012, Uecker 2008], [She 2014] set up the image x with zeros and
the sensitivity profiles (S`)` with low resolution coil images. They also studied the impact
of hyper-parameters setting and showed the benefits of `1-regularization.

One of the main limitation of blind-bi-linear methods concerns their computational
cost. For example, in the benchmark presented in [She 2014], the authors considered 2D
Cartesian data collected over a eight-channel coil and reconstructed with a target resolu-
tion of 256× 256, for a FOV of 20.4× 20.4cm2. In this scenario, the computation time for
blind bi-linear methods (i.e. J-SENSE, Sparse-BLIP and IRGN-TV) was between 4.5 and
10 times slower than Sparse-SENSE (see Table 3.1). This constitutes the major drawback
of blind bi-linear methods. In highly accelerated non-Cartesian sampling schemes, we can
anticipate even more demanding computational load and memory usage as:

i) the target base resolution is often larger than the one proposed by [Shin 2014] for
the same FOV;

ii) the FFT is replaced by the NUFFT wich has a higher numerical complexity (Sec-
tion 1.2.3);

iii) a larger number of receivers is used in multi-channel coil acquisition to boost the
SNR.

Table 3.1: Reported computation time for 2D-Cartesian reconstruction (acquired with an 8-
channel coil) with a target image resolution equal to 256× 256 and an under-sampling factor
of 2.78, for different methods including: Sparse-BLIP [She 2014], J-SENSE [Ying 2007],
Sparse-SENSE [Liang 2009] and IRGN-TV [Knoll 2012]. Originally presented in [Shin 2014].

Sparse-BLIP J-SENSE Sparse-SENSE IRGN-TV

113 s 172 s 25 s 213 s

While most recent blind methods rely on the regularization of sensitivity profiles, their
dependency on the initial guess, the hard setting of hyper-parameters and the slow conver-
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gence of algorithms make them less appealing for online image reconstruction purposes.

3.3 Coil-by-coil MR image reconstruction

While multi-channel MR image reconstruction methods based on coil sensitivity profiles
are well suited for non-Cartesian acquisition, the extraction of sensitivity profiles is a
critical step with a severe impact on the final reconstructed image. In some cases, such as
the Cartesian scan with calibration lines, the estimation problem is easier. However, it gets
harder when no-calibration data is available or for non-Cartesian acquisitions. In the last
case, blind reconstruction methods have been proposed to estimate both the final image
and the coil sensitivity profiles, using priors such as sparsity for the combined image
and smoothness for the sensitivity profiles. However, due to the non-convexity of the
underlying objective function, blind bi-linear methods might have unexpected artifacts
depending for instance on the initial estimate of the coil sensitivity profiles. In what
follows, we introduce coil-by-coil MR image reconstruction methods. The latter can be
split in two different categories depending on the considered optimization domain either
the optimization lies in the k-space or in the image or sparse transform domain. Since
those methods reconstruct one image per coil, for comparison purposes we will use the
square root of the sum-of squares to combine all coil-specific images.

3.3.1 K-space driven methods promoting data low-rankness

K-space methods were originally motivated by the good performances of GRAPPA [Gris-
wold 2002] reconstruction (presented in Section 1.3.2). While early methods are based
on the robust extraction of an interpolation kernel, k-space driven reconstructions have
met a shift in their principle. In fact, instead of finding an explicit interpolation kernel to
generate the missing samples, state-of-the-art methods enforce the low-rankness of k-space
data. This was made possible due to the following assumptions:

i) All the sensitivity maps are band-limited hence they can be represented by a small
number of Fourier coefficients. Because of the forward model (element wise multi-
plication in the image domain) this corresponds to a convolution in the k-space with
a small kernel.

ii) K-space sampling is locally uniform and the parallel MRI reconstruction problem is
in fact over-determined due to the redundancy between channels.

In particular, [Zhang 2011] were the first to exploit Assumption i) and proposed a
reconstruction method called Parallel Reconstruction Using Null-Operations (PRUNO)
that exploits a k-space low-rank constraint. We explain it in detail hereafter.

Let us consider a Cartesian acquisition scenario. If we denote by ya the k-space
measurements concatenated over the channels and ym the missing ones over all channels,

then y =
[
ya

ym

]
corresponds to the concatenation of the measured and missing samples.

The missing k-space samples are supposed to be estimated using an interpolation kernel
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C that is calibrated from the calibration region in k-space (usually around its center).
This convolution can be written as follows:

ym = Cya (3.6)[
Id −C

] [ym
ya

]
= 0 (3.7)

The optimization algorithm alternates between a conjugate gradient step to solve Eq. (3.6)
and a regularization step that enforces the low-rankness of

[
Id C

]
.

While the previously mentioned method requires a calibration region to extract the
kernel C, recent reconstruction algorithms such as SAKE [Shin 2014] or p-LORAKS [Hal-
dar 2016]3, have relaxed this assumption and proposed to use a low-rank constraint over
a constructed block-Hankel matrix. For the sake of simplicity, we will rely on the SAKE
formalism. The construction of this matrix is based on the vectorization of a sliding win-
dow that spans the whole k-space. This matrix is actually constructed like the ESPIRiT
calibration matrix (presented in Figure 3.2-3) however the sliding window is not restric-
ted to the calibration data (blue frame in Figure 3.2-3) but covers the entire k-space.
If we denote by H the linear operator that generates the block-Hankel matrix A from
the k-space Y , and HH its adjoint, then the reconstruction problem solved by SAKE (or
p-LORAKS) is defined as:

arg min
W∈Cm×L

rank(A)

subject to
{

W = HHA,

ΩW = Y
(3.8)

with W the estimated k-space and Ω the sampling mask, hence, ΩW = Y is a consis-
tency term with respect to the collected k-space measurements. To solve Eq. (3.8), the
authors rely on a projected gradient descent algorithm. Recently, [Lobos 2019] has studied
the optimal window shape (green frame in Figure 3.2-3) and proved that circular shapes
maximize the reconstruction quality. Although these methods can be easily applied to any
Cartesian sampling (phase-encoded variable density sampling or 3D Cartesian Poisson disk
sampling etc...), their application to non-Cartesian readouts is less trivial, mainly because
of the H operator, which is more complex to calculate in that case. This limitation could
be relaxed using a gridding procedure such as GROG [Seiberlich 2007], however the latter
may dramatically impair the reconstruction.

3The two methods are identical, yet they have been derived independently and are based on different
theoretical assumptions. While SAKE [Shin 2014] is based on multi-channel k-space relationships, p-
LORAKS [Haldar 2016] was originally motivated by the k-space support modeling and phase assumptions
of the images.
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3.3.2 Domain based methods

While k-space based methods are efficient for calibrationless image reconstruction from
Cartesian data, they are prone to artifacts for non-Cartesian readouts as they require a
gridding step. Hence, for non-Cartesian acquisitions an inverse problem formulation is
beneficial for maximizing image quality. However as seen in Section 3.2.1, those recon-
struction methods require the explicit knowledge of coil sensitivity profiles. In some cases,
the extraction of the latter can be either computationally demanding, unstable or inaccur-
ate (depending on the initialization), leading to unexpected artifacts on the magnitude or
phase images. Some alternatives have proposed to reconstruct channel-by-channel images
using an inverse problem formulation, which basically consists of minimizing a variational
form that regularize the reconstruction of multiple images through a joint sparsity pen-
alization over the channels. Consequently, we focus here on methods that formulate the
problem as follows:

X̂ = arg min
X∈CN×L

{1
2

L∑
`=1
‖FΩx` − yΩ,`‖22 +R(Z)

}
. (3.9)

with X =
[
x1, . . . ,xL

]
, Z =

[
Ψx1, . . .ΨxL

]
and R the regularization term that promotes

the joint-sparsity. Dictionary Ψ can be either the identity matrix, a fixed sparsifying de-
composition (e.g. wavelet transform) or any data-driven dictionary. In their work, [Trza-
sko 2011] have proposed to use a locally low-rank formulation for image reconstruction
called Calibration-free locally Low-rank EncourAging Reconstruction (CLEAR). They
have introduced the use of a patch-based nuclear norm in the image domain to solve
the multi-channel reconstruction problem. The nuclear norm ‖A‖∗ of a matrix A corres-
ponds to the `1-norm of the singular value of A. The CLEAR method actually defines
Ψ as the image patch selection operator Ps,p requiring two other hyper-parameters to
be set: the stride s and the patch size p, hence the regularization reads as follows:
R (ΨX) = λ‖Ps,pX‖∗. The operator Ps,p is illustrated in Figure 3.3-4. In the ori-
ginal work, [Trzasko 2011] have proposed to use a stride equal to the patch size (i.e.
non-overlapping patches), however to avoid the well-know patching artifact this work can
be easily extended to overlapping patches where s < p.

This method has two major drawbacks: the large number of hyper-parameters to be
tuned (λ, s and p) and the computational load that depends on the stride setting. While
small strides prevent patching artifacts they increase the computational cost.

The group-sparsity regularization has also been used for MR reconstruction by [Majum-
dar 2012a]. In the latter work, the authors have used a constraint optimization method
leading to solving the following problem:

X̂ = argmin
X∈CN×L

‖ΨX‖2,1, such that ‖FΩX − Y ‖2 ≤ ε

Using similar ideas, we have relaxed the constraint to adopt a penalized formulation
and derive more sophisticated norms that will be extensively described in Chapter 4 for
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Figure 3.3-4: Illustration of the Ps,pX operation performed by the CLEAR method, imple-
mented on our ex vivo human brain data set.

calibrationless domain based multi-channel MR image reconstruction. In what follows,
we describe how we implemented the above described methods and in particular our
contribution presented in Section 3.2.1. The objective is to perform a benchmark of these
competing methods in the non-Cartesian acquisition setting.

3.4 Experiments & Results

3.4.1 Experimental setup

Acquisition

For validation purposes, we acquired 5 different brain (ex- and in-vivo) anatomical MR
images on a Magnetom 7 T scanner (Siemens Healthineers, Erlangen, Germany) equipped
with L = 32-channels receiver coil (Nova Medical Inc., Wilmington, MA, USA). A modified
2D T2*-weighted GRE sequence was implemented to perform prospective CS based on
the multi-shot Sparkling trajectories [Lazarus 2019a]. The acquisition parameters were
set as follows: TR = 550 ms, TE = 30 ms and FA = 25◦ with in-plane resolution
of 400 × 400µm2 corresponding to an image matrix size of N = 512 × 512. Sparkling
shots were generated all together using the algorithm proposed in [Boyer 2016] to draw
samples according to a variable density with a polynomial decay of 2 (i.e., h(k) = 1/‖k‖2

with k = (kx, ky)). A Cartesian reference scan composed of 512 shots of 512 samples
each has also been acquired using the same coil. For comparison purposes, we used the
square root of the sum-of-squares. The acceleration factor in time AF , corresponding
to the time ratio between the accelerated acquisition and the Cartesian reference, the
slice thickness and the object under investigation are reported in Table 3.2. While ex-
vivo acquisitions are relevant for quantitative comparisons, quantitative comparisons for
in-vivo acquisitions should be considered carefully due to possible motion artifacts or mis-
registration between the Cartesian reference scan and the accelerated one. Hence, the
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latter will be only compared visually for illustration purposes. The reader is referred to
Appendix A for in-vivo comparison.

Table 3.2: Ex-vivo baboon and in-vivo human brain data collected using various slice thickness
and acceleration factors A.

Object Slice thickness AF

1.
Baboon brain (ex-vivo)

3 mm 15 (34 shots)
2. 2 mm 15 (34 shots)
3. 1 mm 15 (34 shots)
4. Human brain (in-vivo) 3 mm 8 (64 shots)
5. 15 (34 shots)

Reconstruction

In this benchmark we considered:

1. Sparse-SENSE formulation with the proposed extraction [El Gueddari 2018b];
2. `1-ESPIRiT [Uecker 2014] implemented within BART toolbox [Uecker 2015];
3. p-LORAKS [Haldar 2016] implementation provided by the authors of [Kim 2018b]

using a gridding step before the reconstruction;
4. CLEAR method [Trzasko 2011] with various patch shape with overlaps.

We omitted blind-bi-linear reconstruction since the reported computation time (see Table 3.1)
was considered excessively long for relatively simple cases, i.e. Cartesian sampling, 8-
channel coil, and 256 × 256 image size. The CALM method was also omitted since
Chapter 4 proposes an extensive comparison with this method and its variants. All
the regularization parameters were tuned using a grid-search procedure to maximize the
Structural Similarity Index (SSIM) score [Wang 2004]. For channel-by-channel MR recon-
struction the coil combination was performed using the SOS. We considered the Symmlet
basis as sparsifying transform when needed. All experiments were run on a machine with
128 GB of RAM and an 8-core (2.40 GHz) Intel Xeon E5-2630 v3 Processor.

3.4.2 Results

To study the impact of different reconstruction methods on prospectively accelerated non-
Cartesian acquisitions, we proceeded in two steps. First, we considered the SENSE-like
reconstruction to evaluate the impact of sensitivity profiles on the reconstructed image. As
no ground-truth exists for these sensitivity maps, in a second step we validated the results
on the reconstructed images where we compared the SSIM scores for the different tech-
niques (i.e., Sparse-SENSE with the developed sensitivity profile extraction, `1-ESPIRiT,
p-LORAKS and CLEAR methods).
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Sensitivity matrix impact on the reconstructed images

First, we studied the impact of the sensitivity profiles over the reconstructed image using
a SENSE-like prior, with the extraction method proposed [El Gueddari 2018b]. Using
our method, we investigated the impact of the k-space portion used to extract sensitivity
information. The results are presented in Figure 3.4-5, where we reported the SSIM
score of the reconstructed image for different values of θ ∈ {1%, 5%, 25%, 50%, 100%}. As
regards the setting of parameter λ, we performed a grid-search to find its optimal value.
This figure suggests that for an optimal λ value –' 5×10−6– small k-space portions – i.e.

θ < 25% – The SSIM score is maximized. However, images reconstructed with sensitivity
profiles extracted from small k-space portion are more sensitive to the tuning of λ. In fact
when parameter λ is underestimated (e.g. λ < 10−6), medium to large k-space coverage –
θ > 25% – provide better reconstruction. In contrast, a slight overestimation of λ impacts
less image quality after reconstruction.

Figure 3.4-5: Impact of sensitivity profiles estimation on the final reconstructed image quality.
The last two settings (θ ∈ {0.5, 1}) yield superimposed traces indicating that there is no gain
in collecting high-frequency information for the recovery of sensitivity profiles.

Visually, examples of the extracted sensitivity profiles, estimated with `1-ESPIRiT and
our approach are presented in Figure 3.4-6 for the 2 mm slice-thickness baboon brain ac-
quisition (cf Table 3.2 (2.)). The striking difference between the two approaches lies in the
patterns of S` images (see Figure 3.4-6): because of the SVD decomposition involved in `1-
ESPIRiT, the corresponding sensitivity profiles are less structured and smoother than the
maps yielded by our approach. The latter appear sharper and clearly show the sensitivity
area of each channel. Moreover, our approach is much more efficient in terms of computing
time since the average cost is about 1 min using a Matlab R2017a-based implementation
as compared to 10 min for `1-ESPIRiT on the same hardware configuration.
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Proposed extraction `1-ESPIRiT
7th sensitivity map 17th sensitivity map 7th sensitivity map 17th sensitivity map

Figure 3.4-6: 2 out of 32 sensitivity maps extracted using our method (left) and `1-ESPIRiT
(right).

Reconstructed images

Table 3.3 presents the quantitative comparison with respect to the ground truth based on
the SSIM score. According to the SSIM score, the Sparse-SENSE reconstruction provides
the best results for the three data sets under study. A visual illustration is provided in
Figure 3.4-7 on the 2mm ex-vivo baboon brain which confirms these quantitative results.

Table 3.3: SSIM values within the (0, 1) range computed over three data sets. The larger the
SSIM score the better the image quality. Bold font indicates the best score.

Dataset `1-ESPIRiT Sparse-SENSE p-LORAKS CLEAR

1. 0.873 0.880 0.854 0.872
2. 0.897 0.908 0.860 0.894
3. 0.848 0.890 0.793 0.834

The reconstruction proposed by the Sparse-SENSE is very similar to the Cartesian
reference scan, while the `1-ESPIRiT method presents a smooth background with vertical
lines, particularly visible on the zoom depicted in Figure 3.4-7 (h). Regarding the coil-
by-coil p-LORAKS reconstruction method the results seems affected by high frequency
noise, although no blurring effect is visible. The reconstruction method is hampered by
the gridding step required to build the calibration matrix A. This can be seen when
comparing the output result of p-LORAKS with the SOS of the gridded k-space displayed
in Figure 3.4-8. Both figures present the same noise pattern and p-LORAKS does not
improve the reconstruction. During this experiment two major impediments were reported
regarding p-LORAKS: the first one reflects its poor performance on non-Cartesian acquis-
itions while the second one concerns the construction of matrix A for high-resolution data
collected over a large number of coils (e.g. L = 32) which requires a huge memory load.
Hence given our experimental set-up and the code provided by the authors [Kim 2017b],
we could only consider a sliding window of size 3 and 5 (Figure 3.2-3 green frame), since
we were running out of memory on a 128 GB RAM workstation for larger window sizes.
Last, CLEAR results presents very similar results compared to `1-ESPIRIT in term of
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(a) Reference (b) Sparse-SENSE (c) `1-ESPIRiT (d) p-LORAKS (e) CLEAR

(f) (g) (h) (i) (j)

Figure 3.4-7: Comparison of different parallel MRI reconstruction methods on a prospectively
15-fold accelerated Sparkling acquisition on the ev-vivo baboon brain (2mm slice thickness).
(a) Cartesian reference, (b) Sparse-SENSE reconstruction with the proposed sensitivity maps
extraction method, (c) `1-ESPIRiT reconstruction (d) p-LORAKS solution after the gridding
step and (e) CLEAR reconstruction and (f-j) their respective zoom over the red frames.

(a) (b)

Figure 3.4-8: (a) Square root of the Sum-Of-Squares (sSOS) of the gridded k-space recon-
struction, (corresponding to the result before p-LORAKS reconstruction), (b) zoom in the red
frame.

SSIM score, however the reconstruction is more affected by the noise. Figure 3.4-9 presents
the hyper-parameter setting for CLEAR. The optimal parameter values were obtained with
high overlapping factor of = 4 – corresponding to a stride s of 8 – and a patch size p of
32 × 32. Also, large values of p provide a significant gain in robustness with respect to
the setting of parameter λ irrespective of the overlapping factor: a high SSIM score is
maintained overs almost five orders of magnitudes (λ ∈

[
10−6, 10−2]). Importantly, while

large overlapping factors prevent from patching artifact, they are more computationally
demanding although they can be parallelized.

Moreover when we visually investigated the results of CLEAR method, we found some
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(a) (b)

Figure 3.4-9: SSIM score of the sSOS results for the CLEAR method (a) for of = 2 (corres-
ponding to a stride s of 8× 8 and a patch size p of 16× 16) and (b) for of = 4 (corresponding
to a stride s of 4× 4 and a patch size p of 16× 16).

inconsistency between the reported SSIM score and the visual perception. For instance,
Figure 3.4-10(a) provides the highest SSIM score while Figure 3.4-10(b) gives the best
visual perception.

(a) SSIM: 0.8943 (b) SSIM: 0.8862

(c) (d)

Figure 3.4-10: (a-b): CLEAR results for two settings of hyper-parameters. (a): provides the
reconstruction with highest SSIM score (0.8943) and (b) yields the best visual perception but
with a lower SSIM score (0.8862). (c-d): their respective zooms.
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3.5 Conclusion

For high-resolution MR images, the input-SNR is a crucial issue as it allows to increase
both the spatial resolution and the acceleration factor. As getting higher input-SNR often
means collecting the signal with a multi-channel receiver coil, the input data set dimension
increases and the reconstruction problem becomes harder. Multi-channel reconstruction
algorithms can be split in two categories: either they deliver a single image from all the
coils or one image per coil.

The first category relies on the knowledge of the coil sensitivity profiles that need to be
estimated for each scan since they are scan-dependent. The estimation of coil sensitivity
profiles is often based on a heavily sampled k-space region (also termed a calibration re-
gion) where much data have been acquired. Direct calibration methods use the coil-specific
images as sensitivity maps (see e.g. [El Gueddari 2018b]) whereas indirect approaches es-
timate the sensitivity maps using eigenvalue decomposition (cf ESPIRiT [Uecker 2014]
and its `1 extension), still the direct approaches are more efficient in terms of compu-
tational time and memory footprint. As an alternative, the blind bi-linear method also
relies on SENSE reconstruction but jointly reconstructs the coil sensitivity profiles and
a combined image. However, due to the non-convexity of the overall objective function
and the underlying numerical complexity, the computation time often remains the major
bottleneck.

The second category performs coil-by-coil reconstruction and implements regulariza-
tion in the k-space or image space. While k-space regularization provides good performan-
ces for Cartesian sampling, its application to non-Cartesian acquisitions often requires a
gridding procedure which degrades the final image quality as shown in this chapter. Al-
ternative image space coil-by-coil reconstruction (such as CLEAR or CALM), relies on
joint sparsity promotion over the multiple channels. Image based coil-coil reconstruction
presents three main advantages:

i) Efficiency for non-Cartesian k-space acquisition as image reconstruction is solved
using an inverse problem formulation.

ii) Independence with respect to the coil sensitivity profiles, no need to be extrac-
ted/estimated prior to reconstruction.

iii) Reliability as this formulation relies on the minimization of a convex criterion: any
reached local minimum is global.

In terms of contribution, in this chapter we presented a new method to extract sensit-
ivity maps and used a Sparse-SENSE formulation leading to a new self-calibrated method
for non-Cartesian variable density sampling schemes. Compared to the state-of-the-art,
our approach is much more efficient and the sensitivity profiles are easier to interpret.
We demonstrated on several anatomical T∗2 data collected at 7 T that our global self-
calibrated method is both more accurate and efficient than the competing alternatives
such as `1-ESPIRiT, p-LORAKS and CLEAR. The proposed method has also been exten-
ded to various other contrast such as T1-weighting [Lazarus 2018a, Chapter 3.6] and also
to 3D imaging with a direct application to susceptibility weighted imaging (SWI) [Laz-
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arus 2018a, Chapter 4.4].

3.6 Outlook

In the context of this thesis, i.e. non-Cartesian high-resolution imaging, SENSE-like me-
thods and coil-by-coil image reconstructions are the only potential competitors. However,
owing to the presence of coil sensitivity profiles in SENSE-like formulation, this kind of
reconstruction methods is hardly online compliant. A potential alternative could be the
coil-by-coil image reconstruction promoting joint sparsity across the different channels,
such as CLEAR. In this thesis we have not addressed the choice of regularization para-
meters which may be a tricky problem in various scientific fields (such as data-science,
statistical inference, and image restoration or reconstruction) depending on the overall
similarity/global cost addressed. Instead, we chose to maximize the SSIM score, however
sometimes we found some inconsistencies between visual perception of reconstruction im-
ages and the corresponding SSIM scores. Since no artifact related to the sampling scheme
was present on the coil-specific images, one can wonder whether sensitivity information
really matters for non-Cartesian reconstruction. In the rest of this thesis we review, pro-
pose and evaluate new regularization schemes based on structured sparsity for coil-by-coil
high-resolution non-Cartesian MR image reconstruction.
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reconstruction for compressed sensing and parallel MR imaging. In Proceedings of the 27th
Annual Meeting of ISMRM, page 4766, Montreal, QC, Canada, 2019.
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The purposes of this chapter is to assess the impact of regularization on the image
quality in a calibration-less reconstruction framework. We emphasize the importance

of promoting structured sparsity across the multiple receivers to improve the overall image
quality.

4.1 Introduction

Multi-channel image reconstruction becomes challenging when it has to comply with tim-
ing constraints such as the ones involved for online reconstruction: basically, the SENSE
formulation is no longer the most convenient as the sensitivity maps cannot be extracted
from incomplete data, which does not cover a wide portion of the center of k-space. Hence,
the self-calibrating methods presented in Chapter 3 are no longer suitable to extract the
sensitivity maps associated with the multiple receivers. Also, a second bottleneck exposed
in Section 3.2.1 is due to the dependence of the Lipschitz constant to those maps. In
contrast, calibration-less methods do not require this prior knowledge to perform image
reconstruction in the parallel imaging setting. This makes them more appealing for on-
line reconstruction purposes. Calibration-less methods may operate either in the k-space
domain or in the image or any transform (e.g. wavelet) domain. In the context of non-
Cartesian acquisition, the existing k-space calibration-less methods in the literature do
not perform as well as the self-calibrating ones mainly owing to the gridding step which is
usually applied to perform regularization in the k-space. For this reason, we will invest-
igate domain-based calibration-less methods and look at their advantages for imposing
some structured sparsity across channels. Then we will evaluate the impact of those regu-
larization terms on the final image quality and propose an extended comparison to other
domain-based reconstruction methods, mainly, CALM [Majumdar 2012a] as it has been
discussed in Chapter 3.

4.2 Calibration-less reconstruction: general problem statement

4.2.1 General problem statement

Let us first define the general calibration-less multi-channel coil image reconstruction prob-
lem. We recall n being the resolution of the sought image per channel and N = nd the
image size where d is the dimension1, L the number of channels used to acquire the NMR

1In 2D imaging d = 2, whereas in 3D imaging d = 3.
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signal and M the number of k-space measurements per channel, with M � N . For the
sake of compactness, we denote the complete data set Y = [y1, . . . , yL] ∈ CM×L which
stacks all vectors y` ∈ CM , the latter gathering the k-space samples collected in the `th

channel.
From the noisy under-sampled data (y`)1≤`≤L, the goal is to retrive L MR images

stacked in X = [x1, . . . , xL] ∈ CN×L such that each x` ∈ CN is associated with the `th

channel of the phased array coil.

X̂ = arg min
X∈CN×L

{ L∑
`=1

1
2σ2

`

‖FMx` − y`‖22 +R(ΨX)
}
. (4.1)

Hereabove, R ∈ Γ0(CNΨ×L) is a regularization function composed with a linear operator
Ψ ∈ CNΨ×N , with the aim to enforce sparsity of the solution within a given multiscale
decomposition (e.g., wavelet transform). In the following we suppose that R have a closed
form proximity operator. This formulation enables the use of over-complete dictionar-
ies [Elad 2007]. We will assume that Ψ decomposes the stack of L images X ∈ CN×L

into a stack of coefficients ΨX ∈ CNΨ×L with C scales. Each scale c ∈ {1, . . . , C} is
composed of Sc sub-bands. Each sub-band s ∈ {1, . . . , Sc} has Ks(c) coefficients, so that
finally NΨ =

∑C
c=1

∑Sc
s=1Ks(c). We also introduce Z as the sparsifying decomposition

Z = ΨX = [z1 . . . z`] ∈ CNΨ×L of the muti-channel image X = [x1 . . .x`] ∈ CN×L.
The resolution of Problem (4.1) delivers L channel images (x̂`)1≤`≤L, stacked in X̂. To
retrieve the magnitude and phase information many methods exist as discussed in Sec-
tion 1.3, in this work we will use the square-root of the sum-of-squares (sSOS) [Roe-
mer 1990], x̂sSOS =

√∑L
`=1 ‖x̂`‖22, to form a single magnitude image and the virtual coil

method [Parker 2014] for phase image.

4.2.2 Optimization algorithm

In order to solve Problem (4.1) we adapted a primal-dual algorithm proposed in [Condat 2013,
Vũ 2013] and recalled Section 2.3, leading to the Algorithm 3

Algorithm 3: Condat-Vú algorithm

1 Set τ > 0, κ > 0, X0 ∈ CN×L, Z0 ∈ CNΨ×L;
2 for k = 0, . . . , T do
3 Xk+1 := Xk − τ (∇f(Xk) + Ψ∗Zk);
4 Wk+1 := Zk + κΨ (2Xk+1 −Xk);
5 Zk+1 := Wk+1 − κ proxR/κ

(
Wk+1
κ

)
;

6 end

According to [Condat 2013, Theorem 3.1], the sequence (Xk)k∈N generated by Al-
gorithm 3 weakly converges to a solution of Eq. (4.1) as soon as 1

τ − κ|||Ψ|||
2 ≥ β

2 , with
β =

∑L
l=1(σ2

` )−1|||FM |||2 the Lipschitz constant of the gradient of the data consistency
term. In practice, the hyper-parameters of this algorithm are set as follows: τ := 1

β ,
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κ := β
2|||Ψ||| . Note that when Ψ defines a basis, we get |||Ψ||| = 1. The main advantage

of Algorithm 3 is that it does not involve the computation of proxR◦Ψ. The latter does not
usually have closed form, in particular when Ψ is overcomplete (e.g. undecimated wavelet
transform), and would require the use of an inner iterative solver [Combettes 2011].

4.3 From group-sparsity

4.3.1 Least Absolute Shrinkage and Selection Operator

The `1-norm has been successfully used for promoting sparsity of the solution in many dif-
ferent fields such as generalized linear models, Bayesian statistics and dictionary learning.
The success of such norm in the regression/regularization domain is mainly due to its good
properties as variable selection operator and regularization term as it has been shown [Tib-
shirani 1996] via the Least Absolute Shrinkage and Selection Operator (LASSO). In the
context of Compressed Sensing the usage of such norm has often been justified as being the
tightest convex envelope of the cardinality function (i.e. the `0 pseudo-norm) [Lustig 2007,
Donoho 2006, Candès 2008]. When the sampling pattern presents large incoherence
with respect to the sparsifying dictionary (as it is the case of Sparkling trajectories), the
`1-norm can be perfectly applied to multi-channel image reconstruction. Hence, in the
calibration-less setting the regularization term involvoing the Wavelet coefficients Z can
be summarized as follows:

∀Z ∈ CNΨ×L, λ ∈ R+, RLASSO(Z) = λ‖Z‖1 = λ
NΨ∑
n=1

L∑
`=1
|zn,`| (4.2)

with λ being a positive hyper-parameter that needs to be set. We recall that the proximity
operator of the LASSO corresponds to a soft-thresholding step [Bertsekas 2015]:

(
proxRLASSO(Z)

)
n,`

=

zn,`
(
1− λ

|zn,`|

)
, if |zn,`| ≥ λ

0 , otherwise
(4.3)

Although the good performances of the LASSO have been demonstrated in many domain,
such as dictionnary learning [Mairal 2010], this regularization also has some well known
drawbacks such as its poor behavior in the case of highly correlated variables [Zhao 2006,
Zou 2005, Argyriou 2012]. In this setup, the regularization tends to select one of those
variables and discard the others, whereas one can expect to treat all the correlated variables
the same way. To overcome this issue many regularization terms have been proposed, such
as Elastic-Net [Zou 2005], group-LASSO [Yuan 2006], or based on clustering methods such
as octagonal shrinkage and clustering algorithm for regression (OSCAR) [Bondell 2008].
In the context of multi-channel acquisition, the k-space seen by the different channels is
actually highly correlated due to the coil configuration. Therefore in the following we will
describe alternatives to LASSO regularization and their application to the multi-channel
reconstruction.
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4.3.2 Elastic-Net

The first alternative that has been proposed is the Elastic-net regularization [Zou 2005].
[Zou 2005] presented Elastic-net as the right counterpart to the LASSO penalty when
variables are highly correlated. Elastic-net regularization performs a linear interpolation
between `1 (LASSO) and `2 (Ridge regression [Hoerl 1970] or Tikhonov regularization [Tik-
honov 1943]) norms and is defined as follows:

∀Z ∈ RNΨ×L, (λ1, λ2) ∈ R2
+, RElastic-net(Z) = λ1‖Z‖1 + λ2

2 ‖Z‖
2
2 (4.4)

The proximity operator of such norm is easy to compute, although the authors [Zou 2005]
noticed that the naive version of Elastic net causes a double amount of shrinkage which
led to poor predictions. Hence they proposed to rescale the thresholded coefficients by a
factor of (1 + λ2/2) and thus the proximity operator is reduced to:

(
proxRElastic-net(Z)

)
n,l

=

zn,`
(
1− λ1

(1+λ2)|zn,`|

)
×
(
1 + λ2

2

)
, if |zn,`| ≥ λ1

1+λ2

0 , otherwise
(4.5)

Although the LASSO and Elastic-net regularization terms do not explicitly exploit
redundant information provided by the different coils, in the following we will explore
various extensions that handle the structural information and redundancy across channels.
To begin with, we study the group-LASSO penalty.

4.3.3 Group-LASSO

Definition and application to image reconstruction

In order to overcome the above mentioned drawbacks associated with LASSO regulariz-
ation and select a group of variables, the group-LASSO [Yuan 2006] has been proposed.
Given a set of groups G the group-lasso ΩGgroup is basically defined as a `2,1 mixed-norm:

∀w ∈ Cp, ΩGgroup(wg) =
∑
g ∈G
‖wg‖2 (4.6)

with G being the non-overlapping groups that need to be specified a priori. In the con-
text of MR image reconstruction, a group gathers the same wavelet coefficients over all
channels [Majumdar 2012a], the regularization can thus be defined as:

∀ Z ∈ CNΨ×L, λ ∈ R+ RgLASSO(Z) = λ‖Z‖2,1 = λ
NΨ∑
n=1

√√√√ L∑
`=1
|Zn,`|2 (4.7)

The proximity operator of the `2,1 mixed-norm is explicit and equal to:
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(
proxRgLASSO(Z)

)
n,`

=


zn,`

1− λ√∑L

`=1 |zn,`|
2

 , if
√∑L

`=1 |zn,`|2 ≥ λ

0 , otherwise

(4.8)

Mixed norm in other fields. The group penalty has arisen a strong interest in
the inverse problem community as it has been used in many applications such as spatio-
temporal MEG/EEG source reconstruction [Strohmeier 2016, Bekhti 2018], where the
authors proposed an iterative scheme to approach the `2,0.5-pseudo norm.

Overlapping Group-LASSO. An overlapping version of the group-LASSO also
has been introduced by [Jacob 2009]. The regularization term is formulated as follow:

w ∈ Cp, ΩGoverlapp(w) =

∑
g∈G
‖wg‖2 : supp(wg) ⊆ g,w =

∑
g∈G

wg

 (4.9)

with G the set of all groups. The major bottleneck of the use of such norm is related to
the definition of the groups as the latter need to be defined a priori.

Expected improvement for multi-channel image reconstruction

The theory behind multi-channel sparse recovery problems has been extensively studied
by the CS community as multiple-measurement vector (MMV) [Chen 2006, Eldar 2009a,
Eldar 2009b, Duarte 2011, Cotter 2005] and uses the multi-channel basis pursuit:

∀Y ∈ Cp×L, min
Z∈CN×L

‖Z‖2,1 s.t. Y = AZ (4.10)

Although in the worst case scenario [Chen 2006] the use of the group-sparsity norm may
not be beneficial in terms of recovery guarantees, [Eldar 2009b] has proposed an average
case study and shown the potential benefit of adding the group structure with a probability
of recovery failure decaying exponentially with the number of channels.

In the MRI context, [Chun 2015] has developed similar results. The authors have
shown that for the case of disjoint sensitivity matrices the recovery guarantees of the
multi-channel basis pursuit can be divided by a factor of L, with L the total number of
channels. However those results were given for the case of disjoint sensitivity matrices, i.e.
when the sensitivity profiles do not overlap and thus bring complementary information,
which is not true in the real life Section 1.3. Therefore the benefits of such norms must
be mitigated for real case applications.

4.4 To structured sparsity

In order to exploit the redundant information provided by each coil, the group-LASSO
regularization requires a prior definition of the group-structure. While a straight-forward
prior for calibrationless reconstruction consist of defining a group by the same coefficients
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for all the channels, a more appropriate approach would be to consider different group-
structure that leverages the group definition to maximize the final image quality. The
following section will be dedicated to more sophisticated regularization terms that infer
the structure of the groups. In particular we focus on two competitors, the first one
presented in Section 4.4.1 is based on a Clustering algorithm, and finds the structure
promoting a pairwise `∞-norm, while the second one in Section 4.4.2 based on the `2-
norm defines the sets of all possible overlapping groups with a cardinality at most equal
to k.

4.4.1 Octagonal Shrinkage and Clustering Algorithm for Regression

In the context of highly correlated variables, the first method one could think of consist
of clustering those variables before the selection/shrinkage operation. This idea has been
exploited in a new regularization called Octagonal Shrinkage and Clustering Algorithm
for Regression (OSCAR) [Bondell 2008]. In [Argyriou 2012] the authors proved a link
between the OSCAR norm and the Ordered Weighted `1 (OWL) norm [Zeng 2014b,
Bogdan 2015]. Appendix B recalls the derivation of this link and the computation of its
proximity operator.

In what follows, we propose four choices for function R in Problem (4.1) relying on
OSCAR norm, with the aim to perform efficient calibration-less MR image reconstruction.
The main difference between these formulations lies in the way the OSCAR norm is applied
to the sparsifying decomposition Z of the muti-channel image X.

General definition

Let z ∈ Cp with p ≥ 1. We introduce the magnitude sorting operator Sp : Cp → Cp such
that vector Sp(z) = (Sp(z)j)1≤j≤p contains the p entries of z sorted in decreasing order
in magnitude, i.e. such that

|Sp(z)1| ≥ |Sp(z)2| ≥ · · · ≥ |Sp(z)p|. (4.11)

Then, OSCAR norm is defined as follows:

Ωλ,γ(z) = λ‖z‖1 + γ
∑

1≤j<k≤p
max(|zj |, |zk|). (4.12)

with λ, γ two positive hyper-parameters. The `1-norm term in Ωλ,γ promotes the sparsity
of z while the second term, corresponding to a pairwise `∞-norm, encourages the equality
of each pair of entries in z. As pointed out in [Zeng 2014a, Sec. II. A.], OSCAR norm has
a closed relation with the OWL norm defined below:

Θw(z) =
p∑
j=1

wj |Sp(z)j |. (4.13)

with w ∈ Rp+ a vector of hyper-parameters such that w1 ≥ · · · ≥ wp ≥ 0. More precisely,
OWL and OSCAR become equivalent if one sets the OWL weights as follows: wj =
λ+ γ(p− j) for j = 1, . . . , p.
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Figure 4.4-1: `1, Elastic net,
Ridge and OSCAR ball in
R2.

Figure 4.4-2: OSCAR ball
in R2 for various pairs of
(λ, γ).

Figure 4.4-1 compares the unit ball of the `1, Elastic-net and OSCAR norms. When
γ is small, the OSCAR norm corresponds to the `1 norm. In contrast when λ → 0 the
OSCAR norm tends to the pair-wise `∞ norm, Figure 4.4-2 depicts the unit-balls for
different pairs of (λ, γ) hyper-parameters. Note: in the 2D case the pair-wise `∞-norm
correspond to the global `∞ norm.

Proximity operator

The proximity operator of z ∈ Cp can be efficiently computed thanks to the following
algorithm as shown in [Zeng 2014a, Sec.III A]:

Algorithm 4: Proximity operator of the OWL norm.

1 Input: z ∈ Cp/{0}, w ∈ Rp ;
2 n = |z|/z;
3 Let P ∈ Rp×p s.t. Sp(n) = Pn;
4 Return: proxΘw

(z) = n� P>PAV(Sp(n)−w);

Hereabove, PAV refers to the Pool Adjacent Violator Algorithm [Mair 2009]. For z is
equal to zero, then the proximity operator of the OWL norm at z is also equal to zero.
The proximity operator of OSCAR can thus be easily deduced by setting the appropriate
value for w mentioned above, so that OSCAR and OWL match together.

In the following we apply different versions of OSCAR regularization to the multi-
channel wavelet coefficients Z ∈ CNΨ×L.

Global-OSCAR regularization

The most straightforward way to implement OSCAR-based regularization consists of flat-
tening all wavelet coefficients and thus discarding the multiscale and multi-channel struc-
ture (e.g. in scales, sub-bands, coefficients and channels) of Z. For that reason, we call this
version global OSCAR (g-OSCAR) regularization. The wavelet coefficients are stacked to-
gether, leading to a single but large vector with entries (zj)1≤j≤LNΨ , where we remind that
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NΨ = S
∑C
c=1Kc and NΨ = N when Ψ is orthogonal. The g-OSCAR regularizer then

reads:

Rg-OSCAR(Z) = Ωλ,γ(Z)

=
LNΨ∑
j=1

λ|zj |+ γ
∑

1≤j<k≤LNΨ

max{|zj |, |zk|}

=
LNΨ∑
j=1

(λ+ γ(LNΨ − j)) |SLNΨ(z)j | . (4.14)

with SLNΨ , the magnitude decreasing sorting operator of dimension LNΨ.

Scale-wise OSCAR regularization

We now propose a scalewise formulation, where OSCAR norm is applied to each specific
scale c of the wavelet decomposition, hence to each vector zc,: separately where zc,: gathers
the LSKc wavelet coefficients across all channels in a specific scale c ∈ {1, . . . , C}. This
leads to the so-called s-OSCAR regularizer:

Rs-OSCAR(Z)=
C∑
c=1

Ωλ,γ(zc,:)

=
C∑
c=1

LSKc∑
j=1

(λ+ γ(LSKc − j)) |SLSKc(zc,:)j | , (4.15)

with SLSKc , the LSKc-dimensional magnitude decreasing sorting operator. In that way,
the wavelet coefficients can be clustered together regardless the subband they belong to,
their position and their channel dependence. Thus, C sorting operations are required,
each of them involving LSKc parameters. As the s-OSCAR regularization is separable
by scales, the computation of its proximity operator can be performed efficiently using
parallelization over scales.

Band-wise OSCAR regularization

The present formulation applies OSCAR regularization to each specific subband of the
wavelet decomposition, hence to each vector zcs,: separately where zcs,: gathers the KcL

wavelet coefficients across all channels in a given subband s of scale c. The band-wise (b-
OSCAR) regularization thus reads:

Rb-OSCAR(Z) =
C∑
c=1

S∑
s=1

Ωλ,γ(zcs,:) (4.16)

=
C∑
c=1

S∑
s=1

KcL∑
j=1

(λ+γ(KcL− j)) |SLKc(zcs,:)j | ,

with SLKc , the LKc-dimensional magnitude decreasing sorting operator. Here again, the
separability of the regularizer can be exploited for an efficient implementation of the
proximity operator.
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Coefficient-wise OSCAR regularization

Finally we propose to apply OSCAR norm to each wavelet coefficient separately and thus
to each vector zcsk,:, where zcsk,: gathers the L wavelet coefficients across all channels for
coefficient k in subband s of scale c. The coefficient-wise (c-OSCAR) regularization thus
reads:

Rc-OSCAR(Z) =
C∑
c=1

S∑
s=1

Kc∑
k=1

Ωλ,γ(zcsk,:) (4.17)

=
C∑
c=1

S∑
s=1

Kc∑
k=1

L∑
`=1

(λ+ γ(L− `)) |SL(zcsk,:)`| ,

with SL, the L-dimensional magnitude decreasing sorting operator. This formulation is the
closest to the usual application of the group-LASSO penalty [Chun 2015, Majumdar 2012a]
as it operates separately on each pixel in the transform domain. However, instead of
implicitly assuming constant noise level over all receivers by taking the `2-norm, the c-
OSCAR regularization allows one to weight these receivers differently thanks to the sorting
step and to adapt regularization to stay robust to a space varying noise.

4.4.2 k-support norm

The `1 norm has been intensively and successfully used for solving sparse estimation
problems. Its usage has often been justified as being the tightest convex envelope of
the `0 pseudo-norm. However this holds only in the case of vectors with upper bounded
entries by 1 as it is easy to show that ∀z ∈ Cp, ‖z‖1 ≤ ‖z‖∞‖z‖0. [Argyriou 2012]
claims that exploiting this relation between the `1-norm and the `∞ norm might be sub-
optimal (the relation with the `∞ norm has been studied in Section 4.4.1 with OSCAR).
Instead of exploiting the `∞-norm they define a new surrogate based on the `2-norm such
as: ‖z‖1 ≤ ‖z‖2

√
‖z‖0 and studied the Gauge function2 associated with the following

convex hull:

Ck := conv(Sk) = conv(z, ‖z‖0 ≤ k, ‖z‖2 ≤ 1). (4.18)

General definition

Although the formulation 4.18 could be difficult to solve [Argyriou 2012] proposed a vari-
ational formulation defined as follows:

∀z ∈ Cp, ‖z‖spk := min{
∑
I∈Gk

‖vI‖2 : supp(vI) ⊆ I,
∑
I∈Gk

vI = z} (4.19)

where Gk denotes the set of all subsets of {1, · · · , p} of cardinality at most k3 . To compute
the k-support norm the authors proposed an algorithm with a complexity of O(p log p).
We recall the proposition hereafter:

2The Gauge function γCk associated with a convex set Ck is defined as γCk (x) = inf{λ ∈ R+ : x ∈ λCk}
3The k-support norm is therefore defined as the norm whose unit-ball is the convex-hull of the set of

vectors of cardinality at most equal to k and with an `2-norm not greater than 1.
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Proposition 4.4.1. For z ∈ Cp, and k ∈ N, k ≤ p,

‖z‖spk =

k−q−1∑
j=1

(Sp(|z|)j)2 + 1
q + 1

 p∑
j=k−q

Sp(|z|)j

2


1
2

, (4.20)

with: Sp the magnitude sorting operator, Sp : Cp → Cp such that vector Sp(z) = (Sp(z)j)1≤j≤p

contains the p entries of z sorted in decreasing order in magnitude and q being the unique

integer in {0, · · · , k − 1}, and z0 =∞, that satisfies:

Sp(|z|)k−q−1 ≥
1

q + 1

p∑
j=k−q

Sp(|z|)j ≥ Sp(|z|)k−q (4.21)

when k = 1 then q = 0 and the remaining term is the second one wich correspond to the
`1-norm, in a similar way when k = p then q should be equal to 0 to verify the following
inequality: Sp(|z|)p−1 ≥ Sp(|z|)p ≥ Sp(|z|)p leading to the definition of the `2 norm.

[McDonald 2016] generalized the k-support norm using the box norm, and derived
the same computation for the norm. Using the variational formulation 4.4.1, one can
notice that the k-support norm for k = 1 is equivalent to the `1-norm (unit ball with
p = 3 is presented Figure 4.4-3a), and for k = p it is equivalent to the `2-norm (unit
ball with p = 3 is presented Figure 4.4-3c). When k /∈ {1, p}, its unit ball differs from a
linear combination between the `1 and `2 norm, i.e. elastic-net regularization. Taking for
instance p = 3, Figure 4.4-3(a)-(c) present the unit balls for k = 1, 2, 3 Figure 4.4-3(d)-(e)
depicts elastic-net and OSCAR norms. A comparison with Elastic-net unit ball shows
that the 2-support norm has more rounded corners.

Relation to elastic-net. [Argyriou 2012] shows that the k-support norm provides
tighter relaxation bound compared to elastic-net by exactly a factor of

√
2. For predic-

tion purposes, [Gkirtzou 2013] demonstrated good performances of the k-support norm
compared to the elastic-net regularization in functional MRI data analysis (supervised
learning task).

Relation to the overlapping group-LASSO. Interestingly the variational defini-
tion of the k-support norm in Eq. (4.19) shows similarities to the overlapping group-LASSO
in Eq. (4.9) when the sets of groups are chosen to be

(p
k

)
. Since the potential number of

groups is exponential this makes the overlapping group-LASSO untractable in the case of
all the possible subsets of cardinality at least k. On the other hand, the k-support norm
can be efficiently computed with a complexity of O(p log(p)).

Dual norm. Although the variational formulation in Eq. (4.19) seems complex,
the dual of the k-support norm is surprisingly easy to compute and corresponds to the
`2-norm of the k largest entries:

‖u‖sp
?

k := max{〈z,u〉 : ‖z‖spk ≤ 1} = max{(
∑
i∈I
|u|2i )

1
2 : I ∈ Gk} =

(
k∑
i=1

Sp(|u|)2
i

) 1
2

(4.22)



88 Calibrationless multi-channel reconstruction

(a) 1-support norm (`1-
norm) (b) 2-support norm (c) 3-support norm (`2-

norm)

(d) Elastic-net (e) OSCAR

Figure 4.4-3: Top row: Unit balls of the k-support norm in R3 for different k values. (a)
presentq the unit ball of the 1-support norm in R3, which corresponds to the LASSO regular-
ization, (b) represents the unit ball of the 2-support norm, (c) shows the 3-support unit ball
which correspond to the ridge regularization. Bottom row: Elastic-net regularization and unit
ball of OSCAR norm in R3 .

The dual of the the k-support norm could be seen as an interpolation between the `∞ and
`2 since for k = p we get the dual of the `2 norm and for k = 1 the dual takes the largest
entries of the u vector which corresponds to the `∞ norm (i.e. the dual of the `1 norm).

Proximity Operator

[Argyriou 2012, McDonald 2016] proposed to use the k-support norm as a sparse reg-
ularization for a learning task4, in particular they consider the square of the k-support
norm, which led to the following regularizer:

∀z ∈ Cp, Rλ
2 ‖·‖

sp
k

2(z) = λ

2min{
∑
I∈Gk

‖vI‖22 : supp(vI) ⊆ I,
∑
I∈Gk

vI = z} (4.23)

where Gk denotes the set of all subsets of {1, · · · , p} of cardinality at most k. According
to [McDonald 2016, Corollary 16] the proximity operator of the k-support norm is defined(

proxλ
2 ‖·‖

sp
k

2(z)
)
i

= θizi
θi + λ

(4.24)

θi =


1, if α|zi| > λ+ 1

α|zi| − λ, if λ+ 1 ≥ α|zi| ≥ λ

0, if λ > α|zi|

4The k-support norm encourages z to be a sum of limited number of vectors with small support.
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where α is chosen such that
∑p
i=1 θi(α) = k. Even though the computation of this prox-

imity operator is complicated it can be done efficiently using Algorithm 5.

Algorithm 5: Proximity operator of λ2‖ · ‖
sp
k

2.

1 Input: z ∈ Cp/{0}, λ ∈ R ;
2 Output: x = proxλ

2 ‖·‖
sp
k

2(z) ;

3 Compute
{
α2i, α2i+1}p

i=1 =
{

λ
|zi| ,

λ+1
|zi|

}p
i=1

;

4 Sort αi such that αi ≤ αi+1;
5 Find i such that:∑p

j=1 θj(αi) ≤ k and
∑p
j=1 θj(αi+1) ≥ k ;

6 Interpolate α∗ between αi and αi+1 such that∑p
j=1 θj = k;

7 θi(α∗) =


1, if α∗|zi| > λ+ 1

α∗|zi| − λ, if λ+ 1 ≥ α∗|zi| ≥ λ

0, if λ > α∗|zi|

8 xi =
(
proxλ

2 ‖·‖
sp
k

2(z)
)
i

= θizi
θi+λ ;

Application to MR image reconstruction

We implemented the straightforward version of the k-support norm regularization, that
consists of flattening all wavelet coefficients and thus discarding the multi-scale and multi-
channel structure (e.g. in scales, sub-bands, coefficients and channels) of Z. Following the
wording used for OSCAR-norm regularization, this implementation corresponds to the
global version of k-support norm and it models the signal as the g-OSCAR regularization
(cf Section 4.4.1). The wavelet coefficients are stacked together, leading to a single but
large vector with entries (zj)1≤j≤LNΨ , where we remind thatNΨ = S

∑C
c=1Kc andNΨ = N

when Ψ is orthogonal. The k-support regularization then reads:

Rλ
2 ‖·‖

sp
k

2(Z) = λ

2min{
∑
I∈Gk

‖vI‖22 : supp(vI) ⊆ I,
∑
I∈Gk

vI = Z} (4.25)

4.5 Experimental setting & Results

To assess the performances of the different regularization penalties in terms on MR image
quality, we used prospectively accelerated non-Cartesian real acquisitions and proceed
in four steps. First, we compared the global regularization regardless of the wavelet
decomposition structure, in particular we compared the LASSO Section 4.3.1, Elastic-
net Section 4.3.2, the global version of OSCAR (g-OSCAR) and the k-support norm
regularization. A particular attention was paid to the performances of the `∞ vs `2
norm assumptions behind respectively OSCAR and k-support norm. Second, we made
some comparisons between the coefficient formulation of OSCAR (c-OSCAR) and group-
LASSO (i.e. CALM method [Majumdar 2012a]), since both rely on the same assumptions
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in terms of structured sparsity. Third, we compared the four OSCAR-based formulations,
described in Section 4.4.1. Finally, an overall comparison was conducted between self-
calibrating and calibration-less state-of-the-art methods, such as `1-ESPIRiT [Uecker 2014]
and AC-LORAKS [Haldar 2016, Kim 2017b].
Hereafter, we describe the experimental setup used for validation purposes.

4.5.1 Experimental setup

All numerical experiments were conducted on 2D k-space data even though the proposed
framework could be extended to 3D imaging (i.e. 3D k-space data) directly. Hence, we
only report results on slices.

Prospective non-Cartesian acquisition

We consider the reconstruction of an ex vivo human brain with an in plane resolution
of 0.39 × 0.39mm2 and a slice thickness of 3mm for different acquisition scenarios pro-
spectively accelerated on the same 7T MR system and with a L = 32-channel coil (Nova
Medical). Ex vivo imaging offers the best imaging conditions to remain insensitive to
motion when validation is performed on truly accelerated acquisitions. In the literature,
for the sake of simplicity, most of reconstruction algorithms are usually validated on retro-
spectively under-sampled k-space in vivo data. However in this context their robustness to
actual acquisition set ups is overlooked. Spiral trajectories [Lee 2003] were generated for
different under-sampling factors as detailed in Tab. 4.1. More advanced sampling schemes
were also designed using Sparkling (Spreading Projection Algorithm for Rapid K-space
samplING) [Lazarus 2019a, Boyer 2016]. Sparkling method generates physically plausible
trajectories with improved sampling efficiency and robustness to gradient imperfections
and lower sensitivity to off-resonance artifacts as demonstrated in [Lazarus 2019a]. The
resulting sampling schemes are known to reach higher image quality for a given scan time,
compared to state-of-the art trajectories (e.g. spiral or radial in 2D imaging). We explain
hereafter while in Tab. 4.1 we specifically achieve in the non-Cartesian setting an higher
acceleration in time as compared to the under-sampling factor expressed in the number of
measurements over the number of image pixels. We recall the difference between accelera-
tion factor (AF) in time and under-sampling factor (UF) in the number of measurements:
AF = n/nc where nc is the number of shots. For instance, we used n = 512 and varied nc
between 64 down to 26 corresponding to acceleration in time from 8 to 20, as reported
in Tab. 4.1. In the same time, an oversampling (with a factor of 6) along each shot was
performed (ns = 3, 072 samples per shot) as usually done in non-radial non-Cartesian
trajectories, hence the under-sampling factor defined as UF = N/M with M = nc × ns
varied in a more limited range from 1.3 to 3.3.

The other acquisition parameters were set as follows: FOV = 200 × 200 mm2, TR =
550 ms (for 11 slices), TE = 30 ms, BW = 100 kHz, Tobs = 30.72ms (long readout, i.e.
each shot is traversed in Tobs) and FA=25◦. In Tab. 4.1), we summarized the different data
sets we considered by varying the under-sampling or acceleration factor for both Sparkling
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Table 4.1: Acquisition parameters used for prospective CS ex vivo T∗2 acquisition on the same
human brain.

Idx Sampling
scheme

Acceleration
Factor

Undersampling
Factor

1.

Sparkling, cf Fig. 4.5-4(a)

8 1.3
2. 10 1.7
3. 12 2
4. 15 2.5
5. 20 3.3

6.

Spiral, cf Fig. 4.5-4(b)

8 1.3
7. 10 1.7
8. 12 2
9. 15 2.5
10. 20 3.3

and Spiral readouts (trajectories are displayed Figure 4.5-4). A fully sampled Cartesian
dataset was acquired and the corresponding image was reconstructed using inverse FFT
for each receiver coil and the square root of the sum of squares was eventually computed
over all channels to form a single image Figure 4.5-5 (a) which will serve as ground truth
using the same sequence parameters (matrix size: N = 512× 512 or n = 512).

(a) Sparkling trajectory (b) Spiral trajectory

Figure 4.5-4: Non-Cartesian in-out variable density sampling schemes used in prospective
CS at 7 Tesla. (a): 20-fold accelerated-in-time Sparkling trajectories (26 shots). (b): 20-
fold accelerated-in-time spiral trajectories with the same number of shots and measurements as
Sparkling. For details about their generation, see [Lazarus 2019a] for Sparkling and [Lee 2003]
for spiral imaging. The trace of a single in-out shot is highlighted.
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Reconstruction parameters

Algorithm 3 was run until the maximum number of iterations (T = 150) or a toler-
ance threshold on the image solution was reached, which appears sufficient to converge.
Moreover, we used for Ψ a Daubechies 4 orthogonal wavelet transform (OWT) with C = 4
decomposition scales (i.e., NΨ = N). Note that MR image quality could probably be im-
proved using redundant multiscale transforms such as undecimated bi-orthogonal wavelet
transforms or curvelets as shown in [Cherkaoui 2018, Ma 2017] but those transforms
may increase the time and memory requirements of the overall algorithm. The hyper-
parameters were set using a grid-search procedure such that the SSIM [Wang 2004] score
was maximized. In the next section we also report the peak Signal to Noise Ratio (p-SNR)
and the normalized root mean square error (NRMSE) scores.

4.5.2 Results

Before presenting in more details the results corresponding to the different regularization
schemes, we first computed the zero-order solution (iFT). Since we used non-Cartesian
trajectories, the forward model relies on the non-Uniform or Non-equispaced Fast Fourier
Transform (NUFFT or NFFT) [Fessler 2003, Keiner 2009], which is not invertible, a
conjugate gradient descent was performed on the data-fidelity term Eq. (4.1). In what
follows, we call the corresponding estimator the least squares solution. Although not
perfect, those results presented in Table 4.2 will be taken as a baseline for comparison
purposes.

Table 4.2: Performances of the least squares (LS) solution (zero-order reconstruction) on the
dataset Table 4.1. The results in red box are displayed in Figure 4.5-5 .

Idx 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

iF
T

SSIM 0.908 0.906 0.902 0.894 0.884 0.927 0.925 0.922 0.916 0.911
p-SNR 30.57 29.19 28.89 28.39 28.25 31.55 31.64 31.47 29.86 29.79
NRMSE 0.1463 0.1715 0.1774 0.1880 0.1911 0.1307 0.1297 0.1391 0.1588 0.1599

The similarity scores (SSIM and p-SNR) decreases as the under-sampling factor in-
creases for both Sparkling and Spiral reconstructions, which is not surprising as the prob-
lem gets harder with fewer measurement. We illustrate the results provided by the least
square solution on the 20-fold accelerated scans for both Sparkling and spiral acquisition
on Figure 4.5-5. Despite the high image quality metrics for Spirals compared to Spark-
ling (for same acceleration factor), Spiral MR reconstructions are contaminated by severe
off-resonance artifacts (cortical ribbon highlighted with red arrow in Figure 4.5-5 (c))
whereas Sparkling ones are not. These results illustrate the much better point spread
function (PSF) associated with Sparkling sampling schemes as shown in [Lazarus 2019a]
and highlighted Figure 4.5-5.
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(a) Reference (b) Sparkling (c) Spiral

Figure 4.5-5: Top: (a) Cartesian reference image. Zero-order Fourier reconstructions based on
the minimization of the least square data consistency term for 20-fold accelerated-in-time (26
shots) (b) Sparkling (26 shots) and (c) spiral trajectories. Bottom: Respective zoom over
the red frame. Red arrows show the presence of gradient-related artifacts.

Comparison of global regularization schemes

Table 4.3 summarizes the performances of different global regularization terms (regardless
of the structure of the wavelet decomposition), it includes the LASSO (Eq. (4.2)), Elastic
net (Eq. (4.4)), global version of OSCAR (g-OSCAR) (Eq. (4.14)) and the k-support
norm (Eq. (4.25)). The k-support norm achieves the highest SSIM score for the entire
dataset, as well as the best results in terms of p-SNR (with up to 2dB above its com-
petitors) and NRMSE. Those results are confirmed visually as shown in Figure 4.5-6 for
both spiral and Sparkling images. They also support the claim of [Argyriou 2012] in Sec-
tion 4.4.2 i.e. that the relation between the `1-norm and the `∞ is actually sub-optimal
when it comes to finding the tightest convex envelope of the `0-norm.

Despite the optimization of hyper-parameters for all the regularization schemes, the
Elastic-net and the LASSO present the lowest similarity scores. In particular, when com-
paring the LASSO and Elastic-net solutions, while both show the same SSIM score the
p-SNR value is actually lower for Elastic-net. This confirms that these two metrics capture
complementary information on the image quality. Visually, the Elastic-net reconstruction
appears to be smoother. The potential reason is the high value of the ridge parameter,
however Figure 4.5-7 presents the evolution of the SSIM score as a function of the two
hyper-parameters for Elastic-net regularization, where the selected one is depicted with a
black cross on Figure 4.5-7. The latest figure illustrate the compromise between the `1
and `2 regularization performed by the Elastic-net regularization.
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Table 4.3: Reconstruction of 20-fold accelerated scans acquired with sparkling and spiral
trajectories. Comparison of global regularization functions (LASSO, Elastic-net, g-OSCAR
and k-support norm) with hyper-parameters chosen to as to maximize the SSIM score. Best
values appear in bold font. The images associated with the scores highlighted in red boxes
are displayed in Figure 4.5-6.

Idx LASSO Elastic-Net g-OSCAR k-support norm
SSIM p-SNR NRMSE SSIM p-SNR NRMSE SSIM p-SNR NRMSE SSIM p-SNR NRMSE

1. 0.923 30.34 0.1501 0.923 30.25 0.1517 0.923 30.52 0.1471 0.923 31.23 0.1356

2. 0.920 29.27 0.1699 0.920 29.20 0.1712 0.920 29.21 0.1711 0.922 31.03 0.1386

3. 0.916 28.81 0.1790 0.916 28.75 0.1803 0.916 28.81 0.1792 0.919 30.89 0.1410

4. 0.899 29.09 0.1686 0.900 28.75 0.1840 0.912 29.28 0.1700 0.913 30.46 0.1486

5. 0.899 29.09 0.1734 0.899 28.99 0.1757 0.899 29.12 0.1728 0.900 30.29 0.1510

6. 0.932 30.52 0.1470 0.932 30.08 0.1548 0.932 30.12 0.1540 0.933 31.58 0.1302

7. 0.927 29.66 0.1624 0.928 29.44 0.1667 0.928 29.76 0.1606 0.928 30.82 0.1420

8. 0.922 31.46 0.1320 0.923 30.94 0.1402 0.922 29.35 0.1683 0.924 31.16 0.1366

9. 0.919 29.06 0.1751 0.920 28.81 0.1790 0.920 29.18 0.1715 0.922 30.83 0.1420

10. 0.916 29.69 0.1619 0.916 29.60 0.1635 0.916 29.72 0.1614 0.917 30.85 0.1416

Figure 4.5-7: Evolution of the SSIM score computed between the reconstructed image from 20-
fold accelerated Sparkling trajectory using Elastic-net regularization and the reference image.
The black cross displays the hyper-parameters that maximize the SSIM score.

Comparison of coefficient-based regularization schemes

Additionally, we compare the group-LASSO and the c-OSCAR regularization as both
impose a group-structure on the same wavelet coefficient across channels. Table 4.4 sum-
marizes the results of the magnitude image obtained using the square root of the sum of
square. Once again the hyper-parameters were optimized such that the SSIM index was
set to its maximal value, however we also reported the p-SNR and NRMSE scores. Al-
though for all tested sampling patterns the best results were obtained using the c-OSCAR
regularization, the difference is not significant enough to notice a notable impact on the
final images as presented in Figure 4.5-8.
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Figure 4.5-8: Reconstructed MR images (square-root of the sum-of-squares) from 20-fold ac-
celerated Sparkling (first two rows) and spiral acquisitions (last two rows) using different regu-
larization. (a) Cartesian reference. (b) inverse Fourier Transform. Reconstruction based on
(c) group-LASSO regularization Rgroup-LASSO. (d) coefficient version of OSCAR Rc-OSCAR.
Second and Forth rows: Sparkling and Spiral respective zooms in the red frame .

Comparison of OSCAR-norm regularization schemes

As regards the different versions of OSCAR-based regularization, Table 4.5 summarizes
their respective performances.

For the five Sparkling data sets, the best scores were achieved with the b- and c-
OSCAR versions, where each subband and each wavelet coefficient are treated separately,
respectively. This is not really surprising as the other versions mix up different orientation
or scale details together. The fact that the coefficient-wise version performs slightly better
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Table 4.4: Quantitative comparison of coefficient based regularization schemes (c-OSCAR and
group-LASSO) with hyper-parameters set to maximize the SSIM score. Best values appear in
bold font.

Idx group-LASSO c-OSCAR
SSIM p-SNR NRMSE SSIM p-SNR NRMSE

1. 0.924 30.51 0.1473 0.924 30.96 0.1398

2. 0.921 29.54 0.1647 0.922 29.59 0.1636

3. 0.917 29.05 0.1741 0.918 29.33 0.1688

4. 0.912 28.87 0.1778 0.913 29.66 0.1624

5. 0.897 28.59 0.1836 0.901 29.77 0.1604

6. 0.932 30.95 0.1400 0.933 30.66 0.1447

7. 0.928 29.87 0.1585 0.928 29.92 0.1577

8. 0.922 29.55 0.1645 0.922 31.50 0.1319

9. 0.920 29.21 0.1711 0.921 29.72 0.1613

10. 0.915 29.52 0.1650 0.916 29.66 0.1623

Table 4.5: Quantitative comparison of OSCAR-norm regularization schemes with hyper-
parameters set to maximize the SSIM score. Best values appear in bold font.

Idx g-OSCAR s-OSCAR b-OSCAR c-OSCAR
SSIM p-SNR NRMSE SSIM p-SNR NRMSE SSIM p-SNR NRMSE SSIM p-SNR NRMSE

1. 0.923 30.52 0.1471 0.925 31.66 0.1290 0.926 31.68 0.1287 0.924 30.96 0.1398

2. 0.920 29.21 0.1711 0.921 29.62 0.1632 0.922 30.28 0.1512 0.922 29.59 0.1636

3. 0.916 28.81 0.1792 0.918 28.40 0.1878 0.918 29.78 0.1602 0.918 29.33 0.1688

4. 0.912 29.28 0.1700 0.912 29.05 0.1742 0.913 29.52 0.1650 0.913 29.66 0.1624

5. 0.899 29.12 0.1728 0.896 28.35 0.1889 0.899 29.52 0.1650 0.901 29.77 0.1604

6. 0.932 30.12 0.1540 0.931 30.70 0.1440 0.933 30.36 0.1498 0.933 30.66 0.1447

7. 0.928 29.76 0.1606 0.927 30.50 0.1474 0.928 29.92 0.1576 0.928 29.92 0.1577

8. 0.922 29.35 0.1683 0.923 29.74 0.1609 0.921 31.22 0.1358 0.922 31.50 0.1319

9. 0.920 29.18 0.1715 0.920 29.89 0.1581 0.919 30.22 0.1522 0.921 29.72 0.1613

10. 0.916 29.72 0.1614 0.914 29.40 0.1673 0.915 29.84 0.1592 0.916 29.66 0.1623

than the subband-wise one suggests that localized regularization in space preserves much
better details as the acceleration factor increases. Similar findings were replicated on an
ex-vivo baboon brain (results not shown). For the five spiral data sets, the best SSIM
scores were yielded in the vast majority of cases by the b- and c-OSCAR regularization
schemes illustrating the consistency between the two readout scenarios.
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Comparison with other reconstruction methods

Tab. 4.6 summarizes the quantitative performances (SSIM, p-SNR and NRMSE) of com-
peting reconstruction approaches, computed over the magnitude images. These compet-
itors embed i) zero-order inverse NFFT (no regularization, i.e. LS solution), ii) CALM
solution which implements a group-LASSO regularization and self-calibrating techniques,
namely `1-ESPIRiT as well as k-space based calibration-less method AC-LORAKS. As in
sparkling and spiral imaging, the k-space center is heavily sampled, `1-ESPIRiT performs
well for extracting the sensitivity maps (i.e. low resolution information) which are then
used for solving the `1-norm regularized CS-SENSE reconstruction problem. The bottle-
neck in LORAKS method lies in the gridding step required to project the non-Cartesian
sampling pattern onto a binary Cartesian mask. This step degrades the image quality
in the end and demonstrates that AC-LORAKS may not be really compliant with non-
Cartesian sampling.

Table 4.6: Quantitative comparison of state-of-the-art methods for non-Cartesian PI-CS recon-
struction using either a calibration-less or self-calibrating approach. The sparkling and spiral
solutions on the red frame are shown in Figure 4.5-9 and Figure 4.5-10, respectively.

Idx No regularization CALM `1-ESPIRiT AC-LORAKS
SSIM p-SNR NRMSE SSIM p-SNR NRMSE SSIM p-SNR NRMSE SSIM p-SNR NRMSE

1. 0.908 30.57 0.1463 0.924 30.51 0.1473 0.911 27.82 0.1946 0.894 26.09 0.2375

2. 0.906 29.19 0.1715 0.921 29.54 0.1647 0.906 26.58 0.2246 0.897 26.23 0.2340

3. 0.902 28.89 0.1774 0.917 29.05 0.1741 0.904 27.17 0.2099 0.893 26.25 0.2333

4. 0.894 28.39 0.1880 0.912 28.87 0.1778 0.900 26.29 0.2323 0.884 25.94 0.2418

5. 0.884 28.25 0.1911 0.897 28.59 0.1836 0.885 26.48 0.2272 0.753 25.52 0.2536

6. 0.927 31.55 0.1307 0.932 30.95 0.1400 0.927 26.37 0.2300 0.921 27.55 0.2008

7. 0.925 31.64 0.1293 0.928 29.87 0.1585 0.925 26.07 0.2382 0.921 27.54 0.2010

8. 0.922 31.47 0.1391 0.922 29.55 0.1645 0.922 26.27 0.2328 0.919 27.23 0.2084

9. 0.916 29.86 0.1588 0.920 29.21 0.1711 0.916 26.33 0.2311 0.911 26.67 0.2221

10. 0.911 29.79 0.1599 0.915 29.52 0.1650 0.910 25.86 0.2439 0.902 26.23 0.2338

In terms of SSIM and p-SNR scores, CALM regularization outperforms all other tech-
niques. However, CALM performances remain below those of OSCAR, whether it is
the subband- or coefficient-wise version. This confirms that extending the group-LASSO
penalization using a pairwise `∞-norm between channels instead of the global the `2-
norm brings more flexibility to account for varying SNR across channels. Last but not
least, in Figs. 4.5-9-4.5-10 we show that calibration-less reconstruction techniques such as
OSCAR and CALM better preserve phase information in comparison with `1-ESPIRiT,
AC-LORAKS. In this comparison we also provide the phase information related to each
reconstructions. As there is neither sensitivity map extraction nor gridding step in domain-
based calibration-less approaches, any phase-related error (e.g. phase shift or wrapping) in
those steps does not propagate in the image reconstruction itself. Such artifacts are par-
ticularly visible in `1-ESPIRiT for spiral imaging (see red arrows in Fig. 4.5-10). Phase
images based on AC-LORAKS are also corrupted by artifacts that may be due to the
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gridding operation, especially for Sparkling imaging (see red arrows in Fig. 4.5-9).

4.6 Conclusion

Non-Cartesian trajectories have been used for many different applications and have re-
cently met a renew of interest to accelerate scan time. However, in the multi-receiver
coil context most of reconstruction methods are more suited for Cartesian acquisitions
than for non-Cartesian ones. This is especially the case of k-space based calibration-less
techniques.

Indeed, we formulated CS-PI image reconstruction as an inverse ill-posed problem
and made use of NFFT for dealing with non-Cartesian trajectories and structured sparse
induced norm for regularization purposes. We instantiated different versions of struc-
tured sparse norm regularization to exploit the redundant information provided by each
coil. Then, we relied on state-of-the-art convex nonsmooth optimization tools, namely the
Condat-Vù algorithm with sound convergence properties to compute the global minim-
izer of the derived cost function. The main advantages of this algorithm are first that it
can efficiently deal with analysis-based regularization which is known to provide better
results than synthesis-based priors. Second, this algorithm is highly flexible, as it can be
used the same way for a large range of penalty terms and the parameters that control its
convergence speed are easier to tune than those involved in ADMM (aka, split Bregman)
methods [Ghadimi 2014], and the poor convergence rate [Deng 2016].

The experimental validation was made on prospectively collected ex vivo human brain
data at 7 Tesla using different acquisition setups, i.e. various sampling patterns and ac-
celeration factors. Image quality reaches a maximum for two regularization schemes,
namely c-OSCAR and k-support norm regularization schemes. A comparison with self-
calibrating (`1-ESPIRiT) and calibration-less (K-space based AC-LORAKS and wavelet
based CALM) methods was conducted. Quantitative structural similarity scores show
that OSCAR-based approaches improved the overall image quality with Sparkling and
Spiral trajectories compared to their competitors. However, the visual impression show
that the k-support norm outperformed the c-OSCAR regularization. On top of the im-
provement in magnitude images, phase information was better preserved for sparsity-based
calibration-less reconstruction methods. Interestingly, the use of a gridding step in AC-
LORAKS reconstruction constitutes the major bottleneck of k-space based calibration-less
reconstruction methods when applied to non-Cartesian acquisitions.

In this work, both parameters have been set by maximizing an image quality score –
here the SSIM – between a ground truth image reconstructed from a non-accelerated
Cartesian acquisition and the image solution of Eq. (4.1).
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4.7 Discussion

In the future, we will explore alternative automatic hyper-parameters settings either based
on (generalized) cross-validation [Hastie 2005] across slices for instance as a larger data
set is necessary to implement this strategy, or on statistical inference (e.g. SURE estim-
ator [Stein 1981]), which requires the knowledge of noise statistics. The overall SSIM scores
may also be improved using redundant wavelet transforms either considering undecimated
multiscale decompositions or more sophisticated transforms such as curvelet or shearlet
transforms [Cherkaoui 2018, Ma 2017]. Although the aforementioned approaches might
improve MR image quality for each reconstruction, it could also increase the computa-
tion time and the memory loading that can be critical especially for 3D high-resolution
multi-channel reconstruction.

This work did not address the case of accelerated Cartesian acquisition and reconstruc-
tion. In this setup, the proposed approach can be useful as far as low acceleration factors
are considered. However when the acceleration is pushed further and the sampling is kept
over the Cartesian grid, the proposed calibration-less methodology – including CALM and
CLEAR methods – may perform worse than state-of-the-art self-calibrating methods (`1-
ESPIRiT) or domain based calibration-less (P-LORAKS). Nevertheless one could think
of a self-calibrating approach with a more sophisticated regularization (e.g. OSCAR norm
or group-LASSO) as done in [Chun 2015].

In order to speed-up reconstruction, many different method have been proposed by the
Deep-Learning community, in particular unrolled optimization [Kamilov 2016, Yang 2016,
Adler 2018] methods seems the most promising one. With this perspective, [Wen 2016]
generalizes the structured sparsity norm to use it on deep neural network. However deep-
learning methods requires a large database of raw data (i.e. high resolution multi-channel
complex k-spaces unavailable until recently [Zbontar 2018]), whereas traditional methods
such as the one proposed are not. Importantly the proposed method has theoretical
guarantees of convergence and is made of fully interpretive steps which make it more
reliable and robust to small perturbations than recent deep learning approaches (such
as [Zhu 2018, Mardani 2018]) proposed for medical image reconstruction as it has been
shown by [Antun 2019].

In terms of applications, the proposed method can be easily extended to 3D imaging
and used as such in isotropic high-resolution susceptibility weighted imaging (SWI). In this
context, the scan time is lengthy and in the clinical realm SWI acquisitions will benefit
from highly accelerated non-Cartesian encoding schemes to reach 800 µm in a scan time
of 1-2 min. Noticeably, in SWI imaging, post-processing is applied to phase information
in order to reveal potential alteration of the microvascular brain network. The fact that
our calibration-less regularized reconstruction better preserves phase information is thus
an asset for its utilization in SWI application for diagnostic purposes.

] ] ]

] ]

]
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This chapter propose a new way for accelerating MR image reconstruction in the
context of CS-accelerated acquisitions.

5.1 Introduction

Instead of performing offline image reconstruction by minimizing a sparsity promoting reg-
ularized objective function as most of existing works [Lustig 2007, Guerquin-Kern 2011,
Chaâri 2011] do, we introduce an online image reconstruction approach so that acquis-
ition and reconstruction processes become interleaved. This method is well-suited for
high-resolution MR acquisition. Indeed, the short lifespan of the MR signal makes the
spatial encoding in large k-spaces (i.e. high-resolution setting) necessarily segmented. The
ultimate goal is actually to reduce the cumulative time of acquisition and reconstruction.
To this end, we adopt a mini-batch formalism, that consist of stacking together collec-
ted k-space samples to form a so-called mini-batch. Once a mini-batch is available, the
reconstruction algorithm is run from an incomplete k-space data set for a few iterations.
Hereafter, the current image solution is then used as a warm restart for the next mini-batch
processing. This new framework allows us to reach a decent image quality by the end of
acquisition and can be implemented throughout the Gadgetron [Hansen 2013] project. It
thus enables us to display the resulting images directly to the MR system console, making
online CS implementations available beyond any vendor solution.

The rest of the Chapter is organized as follows. We first recall the link between
previous work related to online image reconstruction in the context of dynamic MRI.
Then we derive the problem for anatomical imaging in a simplified setup, when then data
is collected over a single channel receiver coil. The proposed method is evaluated on a
retrospective Cartesian acquisition as well as on prospective non-Cartesian k-space data,
we scanned on a Magnetom 7 T scanner (Siemens Healthineers , Erlangen, Germany) an
ex-vivo baboon brain using a 2D high-resolution (400µm and 3mm slice thickness) T∗2-
weighted imaging with single channel birdcage coil. Although of pedagogical interest,
the practical application of this preliminary study remains limited for high-resolution
imaging as we need multiple receivers coil to boost the input SNR in this context. For
that reason, the online formalism is then extended to deal with multiple-channel or multi-
receiver coil. To this end, we actually rely on the calibrationless image reconstruction
approach presented in Chapter 4. The proposed online reconstruction method is evaluated
on prospective non-Cartesian k-space data collected with acceleration factor up to 15 in
time, where an ex-vivo human brain was scanned using Sparkling trajectories at 7T for 2D
high-resolution (400µm in plane and 1.5mm slice thickness) T∗2-weighted imaging using a
multi-receiver phased array.

Related works in dynamic MRI

Nowadays, real time MR image reconstruction is mainly implemented for dynamic imaging
and more precisely for cardiac MRI. Indeed, the idea of real-time MR image reconstruc-
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tion is not new and has raised a huge interest in the dynamic MRI community. Espe-
cially [Majumdar 2012c] has proposed a real-time dynamic reconstruction based on the
reconstruction of the difference between two consecutive frames. Yet the authors men-
tioned a reduction of the accuracy compared to the offline methods. Over the last years,
dynamic MR image reconstruction has been solved by applying a sparse prior to the images
and a low-rank one on the temporal variations from one scan to the next [Otazo 2015].
Using the same ideas [Dietz 2017] has proposed an online approach combining CS and
Principal Component Analysis, in particular they have demonstrated the benefit of this
method for tracking lung cancer.

However this work does not rely on the same assumption as for dynamic MR recon-
struction. In the case of dynamic MRI, there is a trade-off between spatial and temporal
resolution, whereas in high-resolution anatomical imaging the only one that matters is
spatial resolution. Moreover due to the resolution and in order to improve the signal to
noise ratio acquisition is necessary segmented which makes the acquisition even lengthier.
The purpose of this chapter is to take advantage of this time to start the reconstruction
and to deliver a decent image as fast as possible while maintaining the same image quality
compared to the offline reconstruction.

5.2 Extension to anatomical imaging: general online problem

statement

To take advantage of the sequential aspect of segmented acquisition, the reconstruction
process starts during acquisitions’ dead times associated with the time intervals separating
consecutive shots (i.e. TR when the magnetization grows back). The acquired shots are
stacked to form a mini-batch and the reconstruction starts from this incomplete data
set. Hence, the two processes get interleaved and partial feedback may be delivered to
the MR technician along the exam with the aim to provide a nearly optimal image by
the end of acquisition1 . Two acquisition setups will be studied hereafter. First, we will
consider the case of a single-channel receiver coil. Though simpler, this case is rarely met
in the high resolution context since multi-channel receiver coils are traditionally used to
boost the input SNR. The second setup corresponds to online reconstruction from data
collected over a multi-channel receiver coil. While state-of-the art methods often rely on
the coil sensitivity information that requires an estimation step for each scan as described
in Chapter 3, we will rely on a calibration-less method proposed in Chapter 4 that tackles
the image reconstruction problem with the great advantage of not requiring the prior
knowledge of sensitivity matrices.

1In the sense that the recovered image at this stage is close to the final one obtained from the whole
data set after complete convergence of the reconstruction algorithm.
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5.2.1 Acquisition considerations

Let us first recall some acquisition considerations presented in Chapter 1. In segmented
acquisition, multiple radio-frequency (RF) pulses are used to tip the global magnetization
of a given volume. More precisely, at each repetition time (TR), a new RF pulse is
delivered and a “new shot is collected” [Bernstein 2004, Chap.11 2.2].

In the following, S represents the number of shots used to fill the k-space hence,
the total scan time is equal to S×TR. For each i ∈ {1, . . . , S}, we refer to the k-space
support of the ith-shot as Γi and yΓi ∈ CC gathers C samples measured over this shot.
Next, let k ∈ {1, . . . , S}, we define Ωk as the concatenation of the k first collected shots.
Hence Ωk = ∪ki=1Γi, and the k-space measurements associated with Ωk read yΩk ∈ CkC .
Using the aforementioned notation, we recall the definition of the acceleration and under-
sampling factors (AF and UF, respectively) with respect to the Cartesian reference as
respectively the ratios n/S and N/(SC). Note that in the CS context, we get both S < n

and SC < N . Although AF and UF usually evolve similarly (i.e. AF = UF), the Sparkling
sampling scheme [Lazarus 2019a] introduced in Section 2.2.3 breaks down this relation as
AF > UF.

5.2.2 Variational formulation of image reconstruction

In standard offline approaches, image reconstruction from the k-space data is performed by
minimizing an objective function that sums a data consistency term fΩS (depending on the
trajectory support ΩS) and a regularization term g, which usually promotes sparsity in a
given multiscale decomposition Ψ ∈ CNΨ×N such as a wavelet transform [Pustelnik 1999].
The general offline image reconstruction problem aims at finding:

x̂ ∈ arg min
x∈CN

fΩS (x) + g(Ψx), (5.1)

where the following standard assumptions are made: (i) g ∈ Γ0(CNΨ) with a closed form
proximity operator, and (ii) fΩS is convex, differentiable on CN and its gradient ∇fΩS is
βS-Lipschitz i.e.:

(∀(x,x′) ∈ CN ) ‖∇fΩS (x)−∇fΩS (x′)‖ ≤ βS‖x− x′‖. (5.2)

Problem (5.1) can be efficiently solved using iterative solvers as presented in Sec-
tion 2.3.2 Note that for over-complete dictionaries [Elad 2007] the use of primal-dual
approaches is more efficient in terms of computation time since these methods do not
require the use of an inner iterative solver [Combettes 2011] to compute the proximity
operator of g ◦Ψ.

For online reconstruction, the data consistency term is progressively filled during the
scan and reconstruction starts with incomplete data. Concretely, incomplete versions of
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Problem (5.1) are solved in order to compute:

x̂k ∈ arg min
x∈CN

fΩk(x) + g(Ψx), (5.3)

with k and x̂k being respectively the number of available shots so far and x̂k the resulting
solution. For the processing of the next shot (i.e. k+ 1), x̂k will be used as initialization.
In an ideal case, the shots are processed one by one (i.e., k is incremented by one at each
step), however, such strategy is only feasible in practice if TR is longer than the time T it

needed to solve SubProblem (5.3), which is rarely met in the non-Cartesian multi-channel
acquisition. Therefore to adapt online reconstruction to this specific case, we adopt a
mini-batch formulation presented in Algorithm 6 where bs consecutive spokes are stacked
together to form a mini-batch. Then, a warm restart strategy is implemented once an
complete mini-batch is available, i.e. SubProblem (5.3) is not solved for any integer k but
only for multiples of bs. In this setting, to comply with the online timing requirements,
the maximum number of allowed iterations nb per subproblem in Algorithm 6 is given by:

nb × Tit ≈ bs × TR. (5.4)

In Algorithm 6, the result of nb iterations of the chosen proximal algorithm for solving
SubProblem (5.3), initialized with z0, is denoted by Ak,nb(z0). The variable zk usually
includes an approximation xk to x̂k, but it may also embody additional information e.g. a
dual variable delivered by the optimization algorithm. Note that when the last mini-batch
is acquired (k = S), nb must be relaxed and set large enough to ensure convergence. The
basic online formulation is recovered for a batch size bs = 1.

Algorithm 6: Online mini-batch reconstruction algorithm for
solving Problem 5.3.

1 initialize k = bs, z0;
2 while k ≤ S do
3 zk = Ak,nb(zk−bs);
4 k ← k + bs;
5 end

It is worth noting that, since SubProblem (5.3) is convex, any good optimization al-
gorithm is guaranteed to converge to a global solution whatever its initialization. However,
the time to converge to the solution may be very sensitive to the initial guess. Therefore
the warm restart procedure is beneficial to reduce the overall reconstruction time. To solve
Subproblem (5.3), we propose to make use of the primal-dual Condat-Vù [Condat 2013,
Vũ 2013, Combettes 2016] approach summarized in Algorithm 7. This choice was origin-
ally motivated by the usage in Eq. (5.3) of an analysis-based regularization term, which
allows us to consider overcomplete dictionaries for Ψ such as undecimated wavelet trans-
forms [Cherkaoui 2018]. If a synthesis-based prior had been chosen instead, one would have
probably considered a fast proximal gradient method such as the POGM [Taylor 2017a] or
greedy FISTA algorithms [Liang 2019] as improved convergence rates can be reached by
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those algorithms. Note that βk denotes here the Lipschitz constant of ∇fΩk . According
to [Condat 2013, Theorem 3.1], Algorithm 7 converges to a solution of SubProblem (5.3).

Algorithm 7: Condat-Vù algorithm Ak,nb(xk,0,vk,0) for solving
SubProblem (5.3).

1 initialize k ≤ S, (xk,0,vk,0);
2 κk = βk

2|||Ψ|||2 ;
3 τk = 1

βk
;

4 for t = 1, 2, . . . , nb do
5 xk,t = xk,t−1 − τk (∇fΩk(xk,t−1) + Ψ∗vk,t−1);
6 wk,t = vk,t−1 + κkΨ (2xk,t − xk,t−1);
7 vk,t = wk,t − κk proxg/κk

(
wk,t
κk

)
;

8 end
9 return (xk,nb ,vk,nb);

In Sections 5.3.3 and 5.4.3 we will discuss the choice of the mini-batch size bs and
the setting of hyper-parameters for respectively single and multi-channel receiver coils.
Hereafter, we first derive the reconstruction problem for the single channel coil acquisition
before analyzing the more challenging one, namely the multi-channel acquisition setup.

5.3 Single-channel receiver coil

5.3.1 Problem statement

In the single-channel context, Algorithm 7 is applied to the following mini-batch formula-
tion of SubProblems (5.3):

(∀k ∈ {1, . . . , S}), x̂k = arg min
x∈CN

S

2k‖FΩkx− yΩk‖
2
F + λ‖Ψx‖1, (5.5)

where λ is the positive hyper-parameter that controls the sparsity level and can be effi-
ciently set in an offline manner. In the case of Cartesian acquisition, the following relation
describes the operator FΩk = ΩkF where Ωk is the under-sampling binary mask and F
the fast Fourier transform (FFT). In the case of non-Cartesian acquisition, FΩk refers to
non-equispaced or non-uniform FFT [Keiner 2009, Fessler 2003]. While the Lipschitz
constant is βk = S/k for Cartesian acquisition, its value has to be estimated for each value
of k when dealing with the non-Cartesian case. This can be performed offline – i.e. prior
to the acquisition – using the power iterative method [Press 2007]. Importantly, all these
computations can be done offline and prior to running the acquisition on the scanner.

Note that when Ψ defines an orthonormal basis, we get |||Ψ||| = 1. Nevertheless,
SubProblem (5.5) makes use of an analysis-based prior which enables the use of over-
complete dictionaries and guarantees enhanced image quality at reconstruction at the cost
of longer reconstruction times [Florescu 2014, Cherkaoui 2018].
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5.3.2 Parameters setting

Acquisition parameters

An ex-vivo baboon brain was scanned on a 7 Tesla MR system (Siemens Healthineers,
Erlangen, Germany) using a birdcage 1Tx/1Rx coil. All animal studies were conducted
in accordance with the European convention for animal care and the NIHs Guide for the
Care and Use of Laboratory Animals. The acquisition parameters were set as follows:
TR=550 ms (for collecting 11 slices), TE=30 ms and flip angle FA=25◦ with an in-plane
resolution of 400 µm for a field of view (FOV) of 20.4 cm which leads to a matrix size
of N = 512× 512, to maintain a high SNR, we considered a slice thickness of 3 mm and
20 excitation have been averaged. A fully sampled Cartesian reference scan composed
of 11 slices, each slice consisting of 512 lines with 512 samples each, was collected in an
acquisition time of 281.6 s2. In what follows, we will restrict our numerical experiments
to the central slice, i.e. to 2D imaging. The image was reconstructed using an FFT
and used as reference for computing image quality scores (e.g.. SSIM metric). Fig. 5.3-1
shows (a) the Cartesian reference, (b) the retrospective Cartesian variable density sampling
mask and (c) the prospective 15-fold accelerated non-Cartesian Sparkling [Lazarus 2019a]
pattern. While the prospective reconstruction is more challenging due to potential B0

inhomogeneities and real artifacts, the retrospective reconstruction is not affected, hence
the retrospective validation is addressed first and the prospective one, which is more
challenging, is presented afterwards.

(a) Reference (b) Cartesian mask (c) Sparkling

Figure 5.3-1: Single-channel coil acquisition: (a) ex vivo baboon brain Cartesian reference
image, (b) retrospective Cartesian under-sampling scheme (AF = UF = 2.9), (c) prospective
non-Cartesian Sparkling sampling scheme (implemented with a golden-angle ordering, two
consecutive shots are highlighted in black) (AF = 15,UF = 2.5), the first collected being the
horizontal one and the rotation being counterclockwise.

The Cartesian mask (Fig. 5.3-1(b)) was composed of S = 176 lines of C = 512 samples
each, leading to UF = AF = 2.9 and an acquisition time of 97 s for the 11 slices. The
segmented acquisition was ordered in time by considering that central lines of k-space
were collected first and then that others were acquired in a pseudo-random order. The

2Strictly speaking, in 2D imaging we cannot divide the global acquisition time of multiple slices by
the number of slices to get that of a single slice because the usage of a large TR enable to concatenate
multiple slices and shortening the TR would change the imaging contrast.
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Sparkling sampling pattern (Fig. 5.3-1(c)) was generated with S = 34 shots from a radial
initialization, each shot being composed of C = 3072 samples leading to UF = 2.5 and
AF = 15. The total scan time for the 11 slices using Sparkling was reduced to 18.7 s. The
acquisition was segmented in time according to the golden-angle ordering scheme, as it
was proven [Winkelmann 2006] to increase the maximize the k-space coverage during the
scan. Hence, between two consecutive shots a rotation of 137◦ was applied as highlighted
in Figure 5.3-1(c).

Reconstruction parameters

The decimated Symmlet 8 Wavelet Transform with 4 decomposition scales was used as
sparsifying transform. Regarding hyper-parameter λ in Eq. (5.5) it has been set retro-
spectively so as to maximize the structural similarity score (SSIM) [Wang 2004] to the
reference image once all data are available (i.e. offline scenario). Note that in a more clinic-
ally plausible setting, the value of λ needs either to be estimated using the noise statistical
properties [Stein 1981] based on a pre-calibration scan or set using cross-validation across
slices in 2D imaging [Hastie 2005]. For non-Cartesian acquisition, the GPU [Lin 2018]
implementation of the NUFFT [Fessler 2003] was used. In Section 5.3.3, we compare the
performances of several batch sizes with a given number of iterations defined by Eq. (5.4).
Once all shots are considered in Algorithm 6, i.e. k = S, then the number of iterations is
set to nb = 200 to guarantee that convergence was reached.

Computing parameters setting

All experiments were run on a machine with 128 GB of RAM and an 8-core (2.40 GHz)
Intel Xeon E5-2630 v3 Processor. All the codes have been developed in Python us-
ing the PySAP package3. The values of computing times have been obtained using 5
epochs of 10 Condat-Vú iterations each, the mean and standard deviation being summar-
ized in Table 5.1. Using multiple epochs permits to account for potential variability in
computing times due to concomitant processes running on the machine. Although the
NUFFT is usually slower than the FFT, here we observed the converse as we used the
GPU implementation of the NUFFT and the CPU implementation of the FFT. A more fair
comparison might be achieved using the GPU version of FFT but this was not mandatory
for the present online study as the FFT was not the computational bottleneck.

Table 5.1: Computing time for one iteration estimated on 5 epochs of 10 iterations each using
timeit..

Cartesian single-channel acquisition Non-Cartesian single-channel acquisition

93.9 ms ± 14.4 ms 78.2 ms ± 8.9 ms

3https://github.com/CEA-COSMIC/pysap



5.3. Single-channel receiver coil 111

5.3.3 Results

Retrospective Cartesian sampling

First we implemented the online reconstruction pipeline on single-channel acquisition using
the retrospectively under-sampled Cartesian k-space mask shown in Fig. 5.3-1(b). Mini-
batches of increasing size (bs ∈ {1, 4, 16, 22, 44, 88}) were tested against the offline
reconstruction scenario (bs = 176). In Fig. 5.3-2(a)-(b), we show the evolution over
time of the global cost function and the SSIM score. The time origin corresponds to the
beginning of the scan. All settings eventually converge to the same value both in terms of
cost function and SSIM score. This confirms that the final image is the same. Moreover
Fig. 5.3-3(top-row) depicts partial reconstructions for the tested mini-batch sizes by the
end of acquisition (i.e. before taking into account the last mini-batch). While large mini-
batches show aliasing artifacts (see Fig. 5.3-3 for bs = 44, and bs = 88), the small batches
deliver pretty accurate images, which tends to demonstrate the benefits of using small
batch sizes for online reconstruction purposes. The reason for which we observed aliasing
artifacts in large batch sizes is the varying amount of available k-space data in the top
row of Fig. 5.3-3. Indeed, by the end of the acquisition (i.e. before the process of the last
mini-batch i.e. at T = TR− ε) only a single shot is missing for bs = 1 while for larger bs
(such as for bs = 88) a large number of shots are missing in the data-fidelity term (when
bs = 88 half of the spoke are not processed).

(a) Evolution of the cost function (5.5) over time (b) Evolution of the SSIM score over time

Figure 5.3-2: Single-channel retrospective Cartesian reconstruction: (a) evolution over time
of cost function in Eq. (5.5) and (b) of the SSIM score for different batch sizes bs. The dark
dashed line marks the end of acquisition.

Prospective Non-Cartesian acquisition

The non-Cartesian case was also tested using 15-fold accelerated Sparkling trajectories
as shown in Fig. 5.3-1(c). As this sampling pattern comprises S = 34 shots, the only
possible tunings of the mini-batch size bs are its factors 1, 2, 17. In that context, the GPU
implementation of the NUFFT was really helpful to comply with online reconstruction
constraints and maintain a short time per iteration. The GPU-NUFFT actually enable
to iterate over a sufficiently large number of iterations in each subproblem and to explore
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bs = 1 bs = 4 bs = 16 bs = 22 bs = 44 bs = 88

Figure 5.3-3: Online reconstruction of 15-fold (S = 34 shots) retrospectively accelerated
Cartesian scan of ex vivo baboon brain in a single-channel coil acquisition setup. Images
reconstructed for increasing values of mini-batch size bs at the end of acquisition (top) and
at convergence (bottom).

small batch sizes too. We respectively used nb = 8, 16, 24 for increasing batch sizes
bs = 1, 2, 17. Fig. 5.3-4 demonstrates even more clearly than in Cartesian sampling that
the evolution over time of both the global cost function and the SSIM score benefit from
small batch sizes to reach almost convergence by the end of acquisition (depicted in dotted
black line). The fastest converging online scenario corresponds to bs = 1 (black dashed
trace in Fig. 5.3-4) as nb = 8 are sufficient to significantly decrease the cost function. This
is confirmed by the partial solutions obtained by the end of acquisition (see Fig. 5.3-5).
The reconstructed images for bs = 1 or bs = 2 are already very close to the Cartesian
reference as compared to the one obtained for the larger batch size bs = 17. Once again,
the aliasing artifacts shown in Fig. 5.3-5(top-row) for bs = 17 are due to a larger part of
missing data (half in this case).

These results confirm the feasibility of online MR image reconstruction from non-
Cartesian k-space data in a single-channel coil acquisition scenario.
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(a) Evolution of the cost function (5.5) over time (b) Evolution of the SSIM score over time

Figure 5.3-4: Online reconstruction of 15-fold (S = 34 shots) prospectively accelerated Spark-
ling scan of ex vivo baboon brain in a single-channel coil acquisition setup. Evolution over
time of (a) the cost function in Eq. (5.5), and of the SSIM score in (b) for batch sizes bs
corresponding to the primary factors of S. The dark dashed line marks the end of acquisition.

bs = 1 bs = 2 bs = 17

Figure 5.3-5: Online reconstruction of 15-fold (S = 34 shots) prospectively accelerated Spark-
ling scan of ex vivo baboon brain in a single-channel coil acquisition setup. Images recon-
structed for increasing values of mini-batch size bs by the end of acquisition (top) and at
convergence (bottom).

5.4 Multi-channel receiver coil

5.4.1 Problem statement

As shown Section 1.3.1 the use of the multi-channel array coil allows an increase of the
input SNR. In what follows, we denote by L the number of channels in this kind of
coils. In this context, the k-space measurements associated with Ωk collected by the
` th channel are defined as yΩk,` ∈ CkC . All collected k-space data are then stacked in
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YΩk = [yΩk,1, . . . ,yΩk,L] ∈ CkC×L.
As described in Chapter 3, the multi-channel reconstruction methods can be split

in two classes. The first one models the coil sensitivity maps (S`)1≤`≤L where S` ∈
CN×N represents the `th channel sensitivity profile. In these techniques, a single image
is recovered from the combination of all channels [Chaâri 2011, Florescu 2014]. The
reconstruction problem is often formulated as follows:

x̂ = arg min
x∈CN

1
2

L∑
`=1
‖FΩSS`x− yΩS ,`‖

2
2 + λ‖Ψx‖1, λ > 0. (5.6)

However, the coil sensitivities depend on the scanned subject, therefore they have to be
calibrated for each subject. The calibration step can be performed beforehand [Uecker 2014,
El Gueddari 2018b] and then some estimates (Ŝ`)1≤`≤L can be injected in Eq. (5.6). Al-
ternatively, the reconstruction can be viewed as a blind bilinear inverse problem [She 2014]
where the optimization alternates between sensitivity profile estimation and image recov-
ery steps. While the second approach is more computationally demanding, the first one
does not really fit the constraints of online reconstruction. Indeed, as any shot is able to
entirely cover the center of k-space, low frequency information associated with spatially
smooth sensitivity profiles cannot be extracted in a straight manner. Moreover, a second
weakness of this formalism lies in the fact that the gradient Lipschitz constant βk de-
pends on the coil sensitivities and cannot be computed in advance if we assume that no
calibration scan has been run beforehand.

The second set of approaches falls in the class of calibrationless methods, which by
definition do not require any prior knowledge on the sensitivity profiles. As a consequence,
these methods try to reconstruct an image per channel with some regularizing constraints
across channels to impose consistency. Either the regularization is performed in the k-space
domain where a low-rank penalty is applied to a Hankel matrix [Haldar 2014, Shin 2014,
Lee 2016], or it is imposed in a sparse transformed domain for instance in order to promote
group sparsity [Majumdar 2012a, Trzasko 2011, El Gueddari 2019b]. While k-space-based
methods demonstrate good image recovery for Cartesian sampling [Haldar 2014] , their
application to non-Cartesian trajectories implies a gridding step such as GROG [Seiber-
lich 2007] that strongly degrades the final image quality. For that reason, domain-based
calibrationless reconstruction seems better suited to online processing of multi-channel
non-Cartesian k-space data.

For the aforementioned reasons, we will use a domain-based calibrationless formulation
that reads as follows:

X̂ = arg min
X∈CN×L

1
2‖FΩSX − YΩS‖

2
2 +R(ΨX). (5.7)

In Eq. (5.7), R refers to a structured sparsity promoting term. As shown in Section 4.4,
this formulation is able to recover images with a quality competitive with state-of-the art
methods [She 2014], especially for non-Cartesian sampling schemes. Subsequently, the Oc-
tagonal Shrinkage and Clustering Algorithm for Regression (OSCAR) [El Gueddari 2019b]
based calibrationless reconstruction method is implemented, where the wavelet transform
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Ψ decomposes the stack of images into a stack of coefficients C = ΨX =
[
c1, . . . , cL

]
=[

Ψx1, . . . ,ΨxL
]
∈ CNΨ×L. Each vector of wavelet coefficients c` with ` ∈ {1, . . . , L} is

made up of B bands. The b ∈ {1, . . . , B} band contains Pb coefficients (c`,b,j)1≤j≤Pb . The
OSCAR penalty is expressed as follows:

Rb-OSCAR(C) =
B∑
b=1

Pb∑
j=1

( L∑
`=1

λ|c`,b,j |+ γ
∑
`′<`

max{|c`,b,j |, |c`′,b,j |
)
, λ > 0, γ > 0. (5.8)

Here, we can introduce the straightforward extension of our online formulation to the
matrix case. The online calibrationless reconstruction Subproblem (5.3) thus reads:

(∀k ∈ {1, . . . , S}), X̂k = arg min
X∈CN×L

S

2k‖FΩkX − YΩk‖
2
2 +Rb-OSCAR(ΨX). (5.9)

On the one hand, the gradient Lipschitz constant βk only depends on the sampling scheme
Ωk, hence it can be computed offline and loaded at the beginning of each scan. On
the other hand, the proximity operator of Rb-OSCAR is explicit and can be computed
efficiently [Zeng 2014a, Eq. 24].

The performance of this new multi-channel image reconstruction formulation and its
ability to comply with online processing constraints will be discussed hereafter.

5.4.2 Parameters setting

Acquisition parameters

An ex vivo human brain was scanned using a 1Tx/32Rx (Nova Medical Inc., Wilmington,
MA, USA), i.e. L = 32 with 4000µm2 in-plane resolution and a slice thickness of 1.5 mm.
The donor gave his written consent before death to the donation program of University of
Tours, France. The reference slice is displayed in Fig. 5.4-6(a). Prospectively accelerated
Sparkling acquisitions were considered with AF = 8 and AF = 15 corresponding to S = 64
and S = 34 shots, respectively and to acquisition times of 35.2 s and 18.7 s for the 11
slices as compared to 281.6 s for the Cartesian reference. Both are shown in Fig. 5.4-
6(b)-(c). The 15-fold accelerated sampling pattern was the same as the one used in
single-channel acquisition. We also investigated less accelerated acquisition (AF=8) using
radially-initialized Sparkling trajectories to see to what extent this may impact online
reconstruction. A larger number of shots actually offers more degrees of freedom to define
the mini-batch size bs in online reconstruction.

Reconstruction parameters.

The decimated Symmlet 8 Wavelet Transform with 4 decomposition scales was used as
sparsifying transform. As mentioned previously, the hyper-parameters (λ, γ) in Eq. (5.9)
have been set retrospectively so as to maximize the SSIM score [Wang 2004] to the refer-
ence image once all data are available (i.e. offline scenario). Note that in a more clinically
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(a) (b) (c)

Figure 5.4-6: Multi-channel coil acquisition: (a) ex vivo human brain Cartesian reference
image, (b) prospective Sparkling sampling pattern with S = 64 spokes (i.e. AF = 8) and
C = 3072 points (i.e. UF = 1.3), (c) prospective Sparkling sampling pattern with S = 34
spokes (i.e. AF = 15), each one being composed of C =3072 points (i.e. UF = 2.5).

plausible setting, at least hyper-parameter λ needs either to be estimated using the noise
statistical properties [Stein 1981] or set using cross-validation across slices in 2D ima-
ging [Hastie 2005]. For non-Cartesian acquisition the GPU [Lin 2018] implementation of
the NUFFT [Fessler 2003] was used. In Section 5.4.3, we compare the performances of
several batch sizes with a given number of iterations defined by Eq. (5.4). Once all shots
are considered in Algorithm 6, i.e. k = S, then the number of iterations is set to nb = 200
to guarantee that convergence was reached.

Computing parameters setting

All experiments were run on a machine with 128 GB of RAM and an 8-core (2.40 GHz)
Intel Xeon E5-2630 v3 Processor. All the codes have been developed in Python using
the PySAP package4. The values of computing times have been obtained using 5 epochs
of 10 Condat-Vú iterations each, the mean and standard deviation being summarized
in Table 5.2. Using multiple epochs permits to account for potential variability in com-
puting times due to concomitant processes running on the workstation.

Table 5.2: Computing time for one iteration estimated on 5 epochs of 10 iterations each using
timeit for Sparkling with, first row: S = 34 (presented Fig. 5.4-6(b)) and second row S = 64
(presented Fig. 5.4-6(c)).

Gradient step Proximity op. step Linear Operator Total time per iteration
direct adjoint

S = 34 750 ms ± 32.2 ms 847 ms ± 17.9 ms 998 ms ± 15.8 ms 667 ms ± 16.2 ms 4.29 s ± 111 ms
S = 64 1.11 s ± 18.5 ms 4.92 s ± 102 ms

4For more details on the PySAP package please refer to Section C.2.



5.4. Multi-channel receiver coil 117

5.4.3 Results

As multi-channel online reconstruction is more demanding from a computational view-
point, the way constraint (5.4) can be satisfied requires a larger number of shots. Because
Algorithm 6 assumes uniform batch sizes over iterations, we decided to explore a drastic-
ally less accelerated (i.e. 8-fold) Sparkling acquisition in which S = 64 are collected. This
allows us to get more flexibility in the setting of the batch size bs as compared to the
15-fold accelerated Sparkling sampling scheme where S = 34 can be split only in bs = 2
or bs = 17.

Fig. 5.4-7 shows that there is only a little advantage for small batch sizes (i.e. bs = 8
and bs = 16) in the context of multi-channel receiver coils. This results from the fact
that the overall computing time per iteration and constraint (5.4) allow to perform only
nb = 1 (nb = 2, respectively) iteration(s) when sb = 8 (sb = 16, respectively). The zoom
in the curve of SSIM score in Fig. 5.4-7(b) confirms this tiny advantage for small batch
sizes. Stronger evidence in favor of small values of bs is shown in Fig. 5.4-8(top) where
the ventricles (especially the right one) appear darker in bs = 8 as compared to bs = 32.
Images obtained at convergence (Fig. 5.4-8(bottom)), i.e. once nb = 200 iterations have
been run from k = S mini-batches, confirm the convergence to the Cartesian reference.

Overall, in this multi-channel acquisition scenario the main bottleneck remains the
computation cost per iteration. With a diminished cost, we could perform a larger number
of iterations in particular for small batch sizes (for instance nb = 4 for bs = 8) and get
better MR images by the end of acquisition.

(a) (b)

Figure 5.4-7: Online reconstruction of 8-fold (S = 64 shots) prospectively accelerated Spark-
ling scan of ex vivo human brain in a multi-channel coil acquisition setup. Evolution over time
of (a) the cost function in Eq. (5.9) and of (b) the SSIM score for increasing values of batch
size bs. The dark dashed line marks the end of acquisition.

Last, we investigated a Sparkling acquisition scenario corresponding to the same sampling
pattern (Fig. 5.4-6(c)) as the one studied in the single-channel setup (S = 34, 15-fold ac-
celeration). In this setup, the online reconstruction approach is not really viable as shown
first in Fig. 5.4-9: a single mini-batch configuration (bs = 17) was explored given the
timing constraint and it does not converge by the end of acquisition both in terms of cost
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bs = 8 bs = 16 bs = 32

Figure 5.4-8: Online reconstruction of 8-fold (S = 64 shots) prospectively accelerated Spark-
ling scan of ex vivo human brain in a multi-channel coil acquisition setup. Images recon-
structed for increasing values of mini-batch size bs by the end of acquisition (top) and at
convergence (bottom).

function and SSIM score as only nb = 2 iterations were carried out. This observation is
then confirmed on the reconstructed MR image reported in Fig. 5.4-10(a), which is severely
corrupted by aliasing artifacts. Nevertheless, the final solution at convergence (Fig. 5.4-
10(b)) exactly matches the Cartesian reference.

(a) (b)

Figure 5.4-9: Online reconstruction of 15-fold (S = 34 shots) prospectively accelerated Spark-
ling scan of ex vivo human brain in a multi-channel coil acquisition setup. Evolution over time
of (a) the cost function in Eq. (5.9) and of (b) the SSIM score for batch sizes bs = 17 and
bs = 34. The dark dashed line marks the end of acquisition.
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(a) (b)

Figure 5.4-10: Online reconstruction of 15-fold (S = 34 shots) prospectively accelerated
Sparkling scan of ex vivo human brain in a multi-channel coil acquisition setup using bs = 17.
(a) Partial solution obtained by the end of acquisition and (b) at convergence.

5.4.4 Online multi-channel reconstruction: improvements

Although the single-channel online reconstruction provides a reliable image by the end of
the acquisition, the multi-channel results are partly disappointing for the given computa-
tional power. Instead of picking up a more powerful machine to reach good results under
the online timing constraints, we investigated another reconstruction scheme. In fact when
analyzing the contribution of the different terms to the global cost function for offline re-
construction (see Figure 5.4-11), we realized that the weight of the data consistency term
was predominant in the global cost function over the first iterations.

(a) (b)

Figure 5.4-11: Split of the contributions to the global cost function (a) for offline reconstruction
using the 15-fold accelerated Sparkling acquisition, and (b) evolution of the contributions ratio
over iterations.

While the main bottleneck is the computation of the proximity operator and since the
largest contribution corresponds to the data consistency term during the first iterations,
we logically propose to solve the least squares calibrationless problem during the scan time,
and then to switch to the complete regularized formulation. The reduction of the comput-
ing time per iteration has two main advantages: first, it enables to reach larger numbers of
iterations and second, it enables the batch size reduction as shown in Section 5.3.3 where
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small batches provide better image quality by the end of scan as the number of k-space
samples not already taken into account in the reconstruction gets smaller. Consequently,
during the exact acquisition time we considered solving the following problem:

(∀k ∈ {1, . . . , S − bs}), X̂k = arg min
X∈CN×L

S

2k‖FΩkX − YΩk‖
2
2. (5.10)

In this formulation, the computation time is dedicated to the evaluation of the gradient
step as presented Table 5.2. This permits the batch size deflation down to 2 spokes for
the acquisition schemes under consideration.

Figures 5.4-12 and 5.4-13, show the improvement of this new approach on the re-
construction of the 8-fold accelerated Sparkling trajectory (depicted in Figure 5.4-6 (a)).
Compared to Figure 5.4-8, the partial solutions show an improvement in terms of image
quality especially for smaller batch sizes (bs = 2, 4). The same results hold of course for
15-fold accelerated scans, i.e. with Sparkling S = 34 (illustrated in Figure 5.4-6 (b)).

(a) (b)

Figure 5.4-12: Fast online reconstruction of 8-fold (S = 64 shots) prospectively accelerated
Sparkling scan of ex vivo human brain in a multi-channel coil acquisition setup. Evolution over
time of (a) the cost function in Eq. (5.9) and of (b) the SSIM score for increasing values of
batch size bs. The dark dashed line marks the end of acquisition.

(a) (b)

Figure 5.4-13: Fast online reconstruction of 15-fold (S = 34 shots) prospectively accelerated
Sparkling scan of ex vivo human brain in a multi-channel coil acquisition setup. Evolution over
time of (a) the cost function in Eq. (5.9) and of (b) the SSIM score for batch sizes bs = 2
bs = 17 and bs = 34. The dark dashed line marks the end of acquisition.
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bs = 2 bs = 4 bs = 8 bs = 16 bs = 32

Figure 5.4-14: Fast-online reconstruction of 8-fold (S = 64 shots) prospectively accelerated
Sparkling scan of ex vivo human brain in a multi-channel coil acquisition setup. Images
reconstructed for increasing values of mini-batch size bs by the end of acquisition (top) and
at convergence (bottom). There is a clear advantage for short batch sizes..

5.5 Conclusion

Acceleration of MRI acquisition has been a major area of research for the last decade,
especially in the high-resolution context where motion becomes critical. In this context,
k-space data is collected in a segmented manner through multiple consecutive shots sep-
arated by times of repetition. Among the different acceleration strategies proposed in the
literature (e.g. partial Fourier, parallel imaging, etc.), Compressed Sensing has been the
most appealing as it enables larger acceleration factors without degrading the image qual-
ity at the reconstruction step. However, the price to pay lies in a long iterative process
for image reconstruction.

Our online reconstruction approach relies on a mini-batch formulation which consists
of aggregating the acquired shots in multiple subsets over time on mini-batches processing.
We take advantage of the period of time between the mini-batches acquisitions to launch
the reconstruction from incomplete data. The use of a warm-restart mechanism to set up
new (primal and dual) variables in a given mini-batch reconstruction from the solution
obtained at the previous iteration allowed time savings and faster convergence. Still in this
context, CS reconstruction was formulated as the minimization of a regularized criterion
that combines a data consistency term and a sparsity promoting penalization. Although
the `1-norm term is the most straightforward in CS reconstruction, it only properly ad-
dresses the single-channel reconstruction scenario as it performances on multi-channel
acquisition are limited (Section 4.5). A second contribution of this chapter was thus to
extend the online framework to parallel imaging reconstruction in which k-space data
are collected over multiple channels. For this purpose we made use of the calibrationless

method [El Gueddari 2019b] developed in Chapter 4 and promoted group sparsity across
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bs = 2 bs = 17

Figure 5.4-15: Fast-online reconstruction of 15-fold (S = 34 shots) prospectively accelerated
Sparkling scan of ex vivo human brain in a multi-channel coil acquisition setup. Images
reconstructed for increasing values (only 2 possible values here as 34 is only divisible by 2 and
17) of mini-batch size bs by the end of acquisition (top) and at convergence (bottom).

channels using OSCAR-norm regularization. This calibrationless formulation presents the
advantage of being well-suited to non-Cartesian sampling and does not require prior know-
ledge on the sensitivity profiles associated with the multiple channels. Importantly, the
proposed online approach relies on convex optimization and its convergence to the global
solution is guaranteed once all the spokes have been acquired.

The proposed framework was validated on single and multi-channel acquisitions at
7 T. We considered ex vivo imaging to avoid any motion-related concern. In the single-
channel acquisition setup, a retrospective Cartesian sampling was implemented using vari-
able density over phase encoding lines with an acceleration factor of 2.9. When the shots
are split in small batches, the online reconstruction showed a significant gain in terms of
speedup as the SSIM score of the image solution computed by the end of acquisition was
very close to that of the final image delivered by offline reconstruction. This finding also
holds for non-Cartesian acquisitions performed with a single-channel coil.

In the multi–channel acquisition setup, online reconstruction gets more challenging
as both the computing time per iteration and memory usage increase. Hence, it gets
harder to comply with the timing constraints using small batch sizes without significantly
decreasing the number of iterations per mini-batch processing. We still observed some
advantages for MR online reconstruction in 8-fold accelerated Sparkling acquisitions using
a 32-receiver coil. In contrast, in highly accelerated acquisitions (i.e. 15-fold Sparkling) we
showed that the current approach was not able to recover artifact-free images by the end
of acquisition as only large batch sizes can be managed in this acquisition scenario. This
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intermediate conclusion calls for exploring new directions to overcome this difficulty. We
already investigated an imperfect solution that is based on solving the data-fidelity term
as the non-Cartesian Fourier transform involved in the gradient step is poorly conditioned
and hence requires several iterations to converge to a descent image quality. Then the
regularization term is added to the reconstruction as the problem is ill-posed thus needs
regularization.

5.6 Outlook

A first attempt for improving numerical efficiency of online reconstruction would consist of
improving the initialization x0 using a density compensated regridded solution [Fessler 2007].
A second direction that could be relevant to explore is related to coil compression. With the
current trend of enlarging the number of channels in reception coils in order to continuously
improve the input SNR (e.g. 64 channel Nova coil now available on 3 Tesla systems), coil
compression could drastically limit memory usage and computing time [Buehrer 2007].
However, the question of optimal combination of coil compression with calibrationless
reconstruction is still an open issue and there is no contribution in the literature that
addresses this point. A third direction would be to consider stochastic implementa-
tion [Combettes 2016], where the global gradient is approximated by the sum of a subset
of partial gradients.

Overall, the proposed framework enables to reduce the reconstruction times in CS MRI
applications. Importantly, for practical implementation, it is compatible with the Gadget-
ron system [Hansen 2013] that provides the right interface to make those reconstruction
techniques available to the scanner. A description of the Gadgetron system is provided
Section C.1. This may be really helpful to guide the physician for selecting further pulse
MR sequences in order to sharpen his/her medical diagnosis.

Future work will be devoted to the adaptation of this framework to other imaging
contrasts (e.g., T2-weighted imaging) and pulse sequences (e.g., turbo spin echo) for which
larger times of repetition (e.g. 5 s) give us the opportunity to successfully apply the
proposed approach in the multi-channel acquisition setting. A pending challenge remains
how we can extend this approach to 3D imaging in a time-efficient way. A nice feature
we have recently implemented in PySAP to deal with 3D imaging applies to the situation
when the k-space data are collected along parallel and uniformly-spaced planes, as done in
z-variable density SPARKLING [Lazarus 2019b]. In this case, we can restrict the usage of
the NFFT to 2D only and make use of the FFT along the third dimension. This typically
allow us to decrease the memory usage by a factor of 50 and the computation time by a
factor of 5.

] ] ]
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General Conclusions and

Perspectives

At the end of these three years, we hope we gave a boost to the clinical application of
Compressed Sensing for high-resolution MRI. The aim of this thesis was not merely to
propose an efficient reconstruction method for highly accelerated non-Cartesian acquisition
particularly suited for high-resolution imaging, but also to speed up the reconstruction in
order to bring those trajectories into clinical practice.

Context

Improving the spatial resolution in MRI while limiting the acquisition time has been a
crucial challenge for the MRI community over the last two decades. Therefore, a major re-
search field has emerged with multiple contributions dedicated to scan time accelerations.
In the early 2000s parallel imaging has been proposed as a key step and first results were
obtained using dedicated phased array receiver coils and deterministic undersampling,
while the reconstruction relying on the spatial discrimination of the coil sensitivity pro-
files. However the maximum accelerations factor was fairly low. Over the last 10 years,
the development of compressed sensing theory and more specifically, the gain in acquis-
ition times and the recovery guarantees on the reconstruction made a breakthrough in
the MRI field. Although the practical implementation slightly departs from theory, the
resulting acceleration factors exceeded the ambition, up to 20 in 2D imaging and 70 in 3D
imaging for the SPARKLING trajectories proposed by [Lazarus 2019a]. Despite this ac-
celeration, the high-resolution imaging context remains unsuited for clinical purposes, the
reason for that is rather simple: the long acquisition time was transferred to an expensive
reconstruction and thus the gain in acquisition provided by CS theory was not converted
into a global acceleration in the whole acquisition/reconstruction pipeline. The purpose
of this PhD thesis was thus to reduce this reconstruction time and therefore to bring the
high-resolution MRI to the clinical practice. For this purpose, we have developed a new
approach that interleaves acquisition and reconstruction called online reconstruction.
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Contributions & Limitations

High-resolution imaging requires a certain level of input signal to noise ratio (SNR), hence
the acquisition is often performed with multi-channel receiver coils, to ensure the signal
quality. Before the beginning of this work none of the reconstruction algorithm in the
laboratory was considered for the multi-channel case, and the SPARKLING acquisitions
were hampered by the lack of SNR. Therefore the first step was to implement a simple yet
efficient method to estimate the coil sensitivity profiles involved in the SENSE-like multi-
channel reconstruction problem. The proposed method has been used for many contrasts
and multiple sampling strategies, additionally it has been extended to the 3d imaging case
and has been used as the reference reconstruction technique involved in the 2d and 3d
SPARKLING papers [Lazarus 2019a, Lazarus 2019b]. However the sensitivity estimation
constitutes the major limitation for the application to online reconstruction. Hence, after
a deep review of the literature on image reconstruction for non-Cartesian sampling and
multiple trials, calibrationless reconstruction appeared as the most appealing technique.
Calibrationless methods have been preferred since they do not require any prior knowledge
on the coil sensitivity profiles and do not involve any gridding step – which are known to
deteriorate the final image quality. Consequently, the quest was to design a new regulariz-
ation scheme that achieves at least the same results as the self-calibrating methods. The
outcomes were beyond our expectations since calibrationless reconstruction, with a ded-
icated structured sparsity norms, outperforms the self-calibration techniques, both with
respect to the image magnitude and more importantly regarding the recovery of phase
information. The proposed calibrationless reconstruction method constitutes the second
contribution of this thesis. Finally, the ultimate goal was to extend this calibrationless
method to the online framework. However due to the computational load, the first online
results were disappointing, consequently we investigated a faster solution for which only
the data-fidelity term was considered and optimized over the scan time. Using this new
strategy, we improved the image quality of the estimate obtained by the end of acquisition.
Online reconstruction methods definitely constitutes the last contribution of this thesis.

Besides those scientific contributions, the goal was also to propose a new package for
image reconstruction. Hence with the help of CosmoStat laboratory, we have developed a
new python package dedicated to the reconstruction named pySAP. The pySAP package
was also adapted to be included within the Gadgetron project and thus enable the recon-
struction to be performed in the scanner room and the results sent back to the scanner
console.

Although the results of our calibrationless method seem promising, the set-up of hyper-
parameters remains an open question, constituting one of the main limitations of these
methods. On top of these considerations, the major limitation remains the heavy compu-
tation load associated with the non-Cartesian Fourier operator. Although we used GPU
accelerations for Non-Cartesian Fourier operations in 2d imaging we did not fully imple-
ment the whole algorithm in GPU. This might be helpful in the future, especially for 3d
imaging combined with multiple receiver phased arrays, for which the increasing number
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of channels directly affects the computation cost.

Perspectives

Many more developments could be thought of using the calibrationless approaches pro-
posed in this PhD thesis. For instance, structured sparsity norms could be adapted to deal
with multi-contrast or dynamic MRI. Moreover, susceptibility weighting imaging (SWI)
could also benefit from the good performances of calibrationless reconstruction, especially
owing to the well preservation of phase information involved in the post-processing of
SWI images. This work is currently addressed in the MANIAC project where patients
and healthy volunteers are scanned on a 3 T MR system using SPARKLING acquisitions
and the proposed calibrationless reconstruction method.

Regarding the computational aspects, the non-Cartesian Fourier transform could be-
nefit from a faster implementation on GPUs. Also to avoid the time loss during the
communication between the GPU and CPU, our calibrationless method could be made
scalable by implementing it in a pure GPU framework such as the CuPy module.

Last, the reconstruction methods proposed in this thesis are inherently slow due to
their iterative nature, therefore to speed up reconstruction, a promising avenue lies in
the usage of Deep Learning (DL) approaches instead. In particular unrolled model-
based optimization methods [Kamilov 2016, Yang 2016, Adler 2018] seem the most
promising. The reason for this is rather simple, they are less mysterious than data-
driven counterparts.However DL methods may require a large database of raw data (i.e.
high resolution multi-channel complex-valued k-space measurements unavailable until re-
cently [Zbontar 2018]). Although the application of these methods are promising, it is
worth mentioning that they are sensitive to small perturbations or adversarial attacks as
it has been proved in [Antun 2019].

All in all, we have proposed a new framework to adapt MR image reconstruction
algorithms to the context of high-resolution highly accelerated non-Cartesian and parallel
imaging, and deploy them in a clinical environment.

] ] ]
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https://cupy.chainer.org/
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Appendix A

Additional images Chapter 3

In vivo acquisitions

(a) (b) (c)

(d) (e) (f)

Figure A.1: (a) Cartesian reference, (b) Sparse-SENSE reconstruction with the proposed
sensitivity extraction method and (c) `1-ESPIRiT reconstructions from 8-fold accelerated
prospective CS based on Sparkling trajectories. (d)-(f) respective zooms in the red square.
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(a) (b) (c)

(d) (e) (f)

Figure A.2: (a) Cartesian reference, (b) Sparse-SENSE reconstruction with the proposed
sensitivity extraction method and (c) `1-ESPIRiT reconstructions from 15-fold accelerated
prospective CS based on Sparkling trajectories. (d)-(f) respective zooms in the red square.



Appendix B

Proximity Operator details of the

Ordered Weighted `1 norm

Let z ∈ Cp with p ≥ 1. We introduce the magnitude sorting operator Sp : Cp → Cp such
that vector Sp(z) = (Sp(z)j)1≤j≤p contains the p entries of z sorted in decreasing order
in magnitude, i.e. such that

|Sp(z)1| ≥ |Sp(z)2| ≥ · · · ≥ |Sp(z)p|. (B.1)

For the sake of compactness, we renamed the sorting operator Sp as the permutation
matrix P↓, by definition, matrix P↓ is orthogonal. We recall the definition of the OSCAR
norm:

Ωλ,γ(z) = λ‖z‖1 + γ
∑

1≤j<k≤p
max(|zj |, |zk|). (B.2)

with λ, γ two positive hyper-parameters. As pointed out in [Zeng 2014a, Sec. II. A.],
OSCAR norm has a closed relation with the OWL norm defined below:

Θw(z) =
p∑
j=1

wj |(P↓z)j |. (B.3)

with w ∈ Rp+ a vector of hyper-parameters such that w1 ≥ · · · ≥ wp ≥ 0. More precisely,
OWL and OSCAR become equivalent if one sets the OWL weights as follows: wj =
λ+ γ(p− j) for j = 1, . . . , p.

Proposition B.0.1. The OSCAR norm defined in Eq. (B.2) is equivalent to the OWL

norm in Eq. (B.3) with weights wj = λ+ γ(p− j) for j = 1, . . . , p.

Proof. Set z ∈ Cp. First, let us remark that, for any permutation matrix P ∈ Rp×p,
Ωλ,γ(z) = Ωλ,γ(Pz). Let us consider now the particular permutation matrix P↓ such that
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P↓z = z↓. Then, Ωλ,γ(P↓z) = Ωλ,γ(z↓) and we get:

Ωλ,γ(z↓) = λ
p∑
j=1
|(z↓)j |+ γ

∑
1≤j<k≤p

max(|(z↓)j |, |(z↓)k|) (B.4)

= λ
p∑
j=1
|(z↓)j |+ γ

p∑
j=1

(p− j)|(z↓)j |

=
p∑
j=1

(λ+ γ(p− j))|(z↓)j | = Θw(z)

with the above mentioned definition of (wj)1≤j≤p.

Proximity operator

By definition, the proximity operator of the OSCAR norm at z reads:

proxΩλ,γ (z) = arg min
v∈Cp

{1
2‖z − v‖2 + λ‖v‖1 (B.5)

+γ
∑

1≤j<k≤p
max (|vj |, |vk|)

}
.

Since the P↓ operator is orthogonal and using the property of composition with semi-
orthogonal linear transform as defined in [Combettes 2011, Table 10.1], and Proposi-
tion B.0.1 it allows to deduce:

Proposition B.0.2. For any permutation matrix P the following equality holds:

proxΩλ,γ (z) = P>proxΩλ,γ (Pz) (B.6)

Proof. By definition, matrix P is orthogonal, i.e. P>P = PP> = Ip, the p-dimensional
identity matrix. Moreover Ωλ,γ(z) = Ωλ,γ(Pz). Using the property of composition
with semi-orthogonal linear transform as defined in [Combettes 2011, Table 10.1] we get
proxΩλ,γ (z) = z + P>(proxΩλ,γ (Pz)− Pz) and finally the result as P is orthogonal.

proxΩλ,γ (z) = P>↓ proxΘw
(P↓z) (B.7)

with w defined as Proposition B.0.1. The proximity operator of OWL norm can be solved
efficiently using the following proposition.

Proposition B.0.3. Let z in Cp and the OWL norm defined in Eq. (B.3). Then, the

following equality holds:

proxΘw
(z↓) = sign(z↓)� PAV(|z↓| −w) (B.8)

with � being the Hadamard product ( i.e. element-wise), sign(v) = v
|v| ,∀v ∈ C∗ and

sign(0) = 0.
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Proof. Let w ∈ Rp+ being a vector of coefficients sorted in non-increasing order,

proxΘw
(z↓) = arg min

v∈Cp

{1
2‖v − z↓‖22 + Θw(v)

}
= arg min

v∈Cp

{1
2‖sign(z↓)�(sign(z↓)� v−|z↓|)‖22 + Θw(sign(z↓)v)

}
= sign(z↓)� arg min

v∈Rp

{1
2‖v−|z↓|‖

2
2 + Θw(v)

}
= sign(z↓)� arg min

v∈[0,+∞)p
v1≥...vp≥0

{1
2‖v−|z↓|‖

2
2 + w>v

}

= sign(z↓)� arg min
v∈[0,+∞)p
v1≥...vp≥0

{1
2‖v−|z↓|‖

2
2

+ w>(v − |z↓|) + 1
2‖w‖

2
2

}
= sign(z↓)� arg min

v∈[0,+∞)p
v1≥...vp≥0

{1
2‖v + w − |z↓|‖22

}
︸ ︷︷ ︸

Pool Adjacent Violator

.

Combining Propositions B.0.2 and B.0.3, it allows to deduce the proximity operator
of the OSCAR norm.

] ] ]
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Appendix C

Softwares

C.1 Gadgetron

The Gadgetron is an open source framework for medical image reconstruction developed
at the National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA and at the
Department of Computer Science and Department of Clinical Medicine, Aarhus University,
Denmark. It is made freely available to the medical image reconstruction community. It
has originally been proposed for reconstruction purposes and offers many advantages listed
hereafter:

• Facilitate cross platform Development: The platform is operating-system independ-
ent such that the users can then deploy it on their platform of choice, which may be
dictated by the medical imaging device or their local computing environment.

• Flexibility: The project has been designed to be compatible over several vendors,
and is not only restricted to one modality. It can be used either for CT, PET or
MRI modality.

• Modular: Different modules are common to all the modalities and can then be shared
across vendors.

• Facilitate deployment: Once the communication between the Gadgetron host and the
scanner is set the deployment of the new algorithm can be easily performed and since
the framework is used directly in the scanner loop, it allows online reconstruction
but also online post-processing to be completely transparent to the user view point.

• Various programming languages: One of the key strengths of such method is its
independence with respect to the development language hence C++, Matlab or
even Python code can be run during the same pipeline.

• Free: The platform is freely available to all researchers.

Software architecture

In order to optimize the development of new reconstruction algorithms the idea of the
Gadgetron project is to pool common functions. Each of these functions or modules
(called Gadget) has an input fed with data and an output. Multiple Gadgets are wired
together (connected) to assemble a reconstruction process (a Gadget stream). The Gadget
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stream is configured dynamically at runtime using a plugin architecture. More specifically,
the Gadgets of a particular reconstruction stream can reside in multiple independently
compiled binaries (shared libraries) and are loaded at runtime based on a Gadget stream
configuration in an extensible markup language (XML) file. Data are passed from a
given client into the Gadgetron streaming architecture through a Transmission Control
Protocol/Internet Protocol (TCP/IP) connection through which the resulting images are
eventually returned to the client application.

Figure C.1-1: Gadgetron communicates with the client through a TCP/IP protocol. The client
application sends data to the Gadgetron and associated with each data package is a Message
ID. Based on the Message ID, control of the socket is handed over to a specific Reader, which is
capable of deserializing the incoming data package. The data package is converted to message
blocks that are added to the first Gadget’s queue. Data are then passed down the Gadget
stream where each Gadget can modify and transform the data. Any Gadget can return images
(or partially processed data) to the Gadgetron framework. Based on the MessageID of this
return data package, the control of the socket and the data are handed to a particular Writer,
which is responsible for writing the return message to the client. From [Hansen 2013].

In general the Gadgetron reconstruction process (Gadget stream) consists of three main
components: “Readers”, “Writers”, and “Gadgets”. These components are assembled and
controlled by a GadgetStreamController, which is also responsible for maintaining the
connection with the client. The role of the Reader is to receive and deserialize data from
the client, and the Writer serves the (opposite) role of serializing and returning data to
the client. Once the data has been received, it is passed down the chain of Gadgets. Each
Gadget can modify or transform the data before passing it on to the subsequent Gadget.

Adding Python modules

To make the transition from prototyping to deployment easier, the Gadgetron is designed
so that the functionality of individual Gadgets can be implemented using Python as a
scripting language. The Python scripting functionality can be accessed by the user through
a PythonGadget, and the framework provides certain hooks so that the user can implement
callback functions for in a Python module. The user specifies which Python module
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Figure C.1-2: Schematic view of the Gadgetron installation at the 7T scanner.

the Gadget should load and which functions in the Python module should be called in
response to which events. It is possible to have an arbitrary number of PythonGadgets in
the reconstruction pipeline. Moreover, the PythonGadgets can be mixed with standard
Gadgets implemented purely in C/C++. This enables the user to reuse existing, efficient
implementations of reconstruction steps while maintaining the capability of prototyping
in Python.

Communication with the 7T scanner

In order to send the reconstruction proposed during this thesis directly on the scanner
console, we rely on the Gadgetron framework as the latter allows rapid prototyping. But
the first step consists in making the communication between the scanner and the Gadget-
ron host. The schematic Figure C.1-2 view presents the network architecture set-up on
the 7T scanner.
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C.2 PySAP: Python Sparse data Analysis Package

R eproducibility is among the main objectives of the modern scientific approach and
relies nowadays on open source software development. The latter guarantees the user

trust in new approaches, facilitates their spread, helps benchmark different competing
methods to solve the same problem and eventually provides educational tools through
legible source code. In this context, the Compressed Sensing for Magnetic Resonance
Imaging and Cosmology (COSMIC) project1 was funded by the Fundamental Research
Division (DRF) at the French Alternative Energies and Atomic Energy Commission (CEA)
in 2016. This project is a collaboration between two computer scientist CEA teams,
namely CosmoStat2 (cosmologist) and NeuroSpin (MR specialist), working together to
develop and implement new statistical signal processing methods to recover artifact-free
high-resolution images from under-sampled, potentially blurred and noisy data. To this
end, they have shared efforts to provide a reliable open-source python package called
PySAP3, which stands for Python Sparse data Analysis Package.

General Architecture

The PySAP project is organized around a core architecture and plugins for end-user ap-
plications. The front-end provides a framework for combining modules, managing IO files,
displaying images and handling exceptions. Two modules compose the core of PySAP,
namely Sparse2D and ModOpt. Figure C.2-3 depicts the schematic view of the function-
alities in PySAP.

On one hand, Sparse2D proposes many sparsifying multi-scale image transforms such
as decimated and undecimated wavelets but also more uncommon ones such as Curvelets,
Shearlets or Starlets transforms [Starck 2007]. On the other hand, ModOpt provides a
Modular Optimization module that gathers algorithms for nonsmooth convex optimization
such as the ones exposed in Section 2.3.2 (e.g.proximal gradient methods and primal-dual
algorithms), with corresponding proximity operators (cf the ones proposed in Chapter 4).
Currently, the existing plugins combine the features provided by Sparse2D and ModOpt
for a given application, hence, pysap-MRI and pysap-astro are respectively dedicated to
MR image reconstruction and astronomical image processing.

Over the last three years, my contributions were essentially on the MR-related plugins
namely PySAP-MRI and PySAP-Gadgetron.

PySAP-MRI

PySAP-MRI 4 is an MR related Python plugin, which aims at reconstructing complex-
valued MR images from under-sampled k-space data. This module provides reconstruction
algorithms for Cartesian and non-Cartesian data by embedding the NFFT [Keiner 2009]

1http://cosmic.cosmostat.org/
2http://www.cosmostat.org/
3http://github.com/cea-cosmic/pysap/
4https://github.com/CEA-COSMIC/pysap-mri
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Figure C.2-3: Schematic view of the PySAP architecture.

operator, but also multi-channel data collected over phased array coils in parallel imaging.
In this context, both two-step self-calibrating and one-step calibrationless reconstruction
methods have been developed in this plugin. For the sake of conciceness, we remind here
that the former perform sensitivity matrix extraction prior to the reconstruction of a single
full FOV image while the latter reconstructs as many images as receiver channels. Among
all available features, a key aspect is to guarantee the reliability of the proposed classes
and methods. Hence unit-tested have been written for each and every proposed operator
as well as for the overall reconstruction methods. This makes continuous integration with
Travis and CircleCI smoother. For instance, the non-uniform Fourier operator and its
adjoint have been tested so as to check that the adjoint relation Eq. (C.1) is fulfilled.
Also, in the simpler case when the collected k-space samples lie on the Cartesian grid, we
guarantee that the output of NFFT and FFT operators provide the same result.

∀x,y ∈ H, 〈Ax ,y〉 = 〈x ,AHy〉 (C.1)

Concerning the optimization part, we have tested the gradient descent of all optimizers
for the smooth part in the cost functions. We have also checked that the value of the
results should be equal to the inverse Fourier transform for Cartesian sampling regardless
of the Fourier operator used. Last, The presence of unit-test permits to increase the code
reliability and provide use-case to end-users.

https://github.com/marketplace/travis-ci
https://circleci.com/
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PySAP-gadgetron

The PySAP-gadgetron plugin 5 proposes an interface between the MR scanner and the
Python reconstruction code. It has been implemented through the Gadgetron project (see
Appendix C.1 for details on the Gadgetron).

] ] ]

] ]

]

5https://github.com/CEA-COSMIC/pysap-gadgetron
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Résumé en français

Abstract in French

Sujet : Reconstruction d’images haute résolution acquises par échantillonnage com-
pressif et régularisé à l’aide d’opérateurs de parcimonie structurée.

Nous résumons ici les différents aspects abordés au travers de cette thèse. Après avoir décrit
les enjeux et motivations qui nous ont poussé au développement des méthodes abordées
dans ce travail, nous résumerons chacune des contributions.

Motivations et contextes

L’imagerie par résonance magnétique (IRM) est une technique qui a révolutionné, de par
son caractère non-ionisant, l’imagerie des tissues mous et en particulier celle du cerveau.
Malgré une bonne résolution spatiale, la résolution temporelle en IRM reste probléma-
tique lorsque l’on considère l’acquisition d’images très haute résolution (<400µm). Afin
de pallier à ce problème, la théorie de l’échantillonnage compressif propose une solution
élégante pour raccourcir le temps d’acquisition. En effet, elle allie l’incohérence du schéma
de sous-échantillonnage à la structure de parcimonie du signal pour garantir des preuves de
reconstruction exacte de ce dernier. Bien que les premiers schémas de sous-échantillonnage
aient prouvé leur efficacité, ces derniers reposent principalement sur des structures simples,
comme un sous-échantillonnage cartésien, radial ou encore spiral. Récemment l’équipe dans
laquelle j’effectue ma thèse a développé une méthode d’optimisation du schéma de sous-
échantillonnage prometteuse appelée SPARKLING. Cette méthode d’optimisation permet
de déplacer les points en entrée de manière à générer des trajectoires physiquement plau-
sibles – i.e. qui répondent aux contraintes des gradients et donc implémentables sur le
scanner – tout en respectant une densité de distribution cible. La méthode a originelle-
ment été proposée par [Boyer 2016] et adaptée par la suite par [Lazarus 2019a] afin de
prendre en compte les contraintes liées au contraste souhaité – e.g. T1w, T∗2... – c’est-à-dire
les contraintes liées au temps d’écho. Bien que les temps d’acquisition furent raccourcis,
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l’application de cette théorie dans le monde clinique reste problématique. La raison en est
toute simple : les temps de reconstructions restent rédhibitoires. L’objectif de ce travail est
donc de proposer des méthodes efficaces de reconstruction. Pour cela nous nous appuie-
rons sur la reconstruction en-ligne, c’est-à-dire, lorsque celle-ci débute durant l’acquisition
à partir de données incomplètes.

Introduction à l’IRM

Un scanner IRM est organisé autour d’un puissant aimant caractérisé par la puissance de
son champ magnétique. Lorsqu’un volume est placé dans un champ magnétique statique
noté B0, les spins de protons d’hydrogène composant le volume s’alignent ou s’anti-alignent
le long du champ, laissant néanmoins une légère propension pour l’état de plus faible
énergie, créant ainsi à l’échelle macroscopique un moment magnétique, appelé M0. Afin
d’obtenir un signal variant dans le temps, l’aimantation M0 est basculée grâce à un champ
radio-fréquence (RF), noté B+

1 transverse au champ statiques B0, c’est le phénomène
d’excitation. Une fois l’aimantation basculée, l’impulsion RF le champs B+

1 est arrêtée
et l’aimantation revient à son état d’équilibre en tournant autour de B0 (phénomènes de
relaxation et de précession). La fréquence de rotation – aussi appelée fréquence de Larmor
– dépend de la composition du tissu mais également de l’intensité du champ magnétique
généré. Durant la relaxation un signal appelé FID est mesuré. Celui-ci peut-être caractérisé
par deux constantes de temps :

– T1, correspondant à la constante de temps décrivant le retour à l’état d’équilibre de
la composante longitudinale ;

– T2, correspondant à la constante de temps décrivant la disparition de la composante
transverse.

Ces deux constantes sont caractéristiques du tissu sondé. Afin de discriminer spatialement
le signal acquis, il est important d’encoder spatialement celui-ci. Pour cela, des gradients
d’encodage, permettent de faire changer localement la fréquence et phase encodant ainsi
le domaine conjugué de l’espace de Fourier aussi appelé espace k. Afin de reconstruire
l’image à partir du signal magnétique électrique, la transformée de Fourier y est appli-
quée. Ainsi pour acquérir une image, il est d’usage de répéter l’excitation pour différentes
valeurs de fréquence et de phase. De ce fait l’IRM est une modalité lente car les constantes
de temps impliquées sont à minima de l’ordre de la dizaine de millisecondes. Pour accélérer
les acquisitions, l’imagerie parallèle a été créée. En effet en sous-échantillonnant l’espace
k de manière à acquérir une ligne sur deux, le temps d’acquisition peut se voir en effet
réduit. Cependant, lors de la reconstruction le théorème de Shannon-Nyquist n’étant plus
vérifié, du repliement est observé sur l’image. Pour s’affranchir de ce repliement, l’idée est
de se baser sur l’information spatiale apportée par les canaux de réception de l’antenne
en résolvant un système linéaire. Bien que les premières méthodes d’accélération dévelop-
pés fassent maintenant parti des séquences utilisées en clinique, les facteurs d’accélération
correspondant restent faibles. Pour réduire d’avantage ces temps, l’échantillonnage com-
pressif permet d’accélérer l’acquisition tout en garantissant des preuves de reconstruction
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exactes faisant de cette nouvelle théorie un candidat potentiel pour massivement accélérer
les examens IRM.

L’échantillonnage compressif : quand l’incohérence rencontre la

parcimonie

Contrairement à la théorie de Shannon-Nyquist qui modélise un signal à bande limitée,
l’échantillonnage compressif peut s’exprimer comme suit :

« Il est possible de sous-échantillonner des signaux compressibles, c’est-à-dire
parcimonieux dans une représentation donnée et de les reconstruire exactement. »

Cette théorie ne s’applique que dans certaines conditions résumées ci-dessous :
i) il existe une transformée dans laquelle on peut représenter le signal ou l’image de

manière parcimonieuse (ou compressible) ;
ii) le schéma de sous-échantillonnage est incohérent avec la cette transformée ;
iii) la reconstruction doit promouvoir la parcimonie du signal.

En IRM, le signal acquis n’est pas nécessairement parcimonieux dans son espace d’origine,
par conséquent le premier point consiste à trouver une représentation parcimonieuse du
signal. La transformée en ondelette sera utilisée tout au long de cette thèse pour remplir
cette fonction. Le deuxième point concerne les schémas de sous échantillonnage. Afin que
l’acquisition soit physiquement implémentable sur le scanner, il est nécessaire de prendre
en compte les contraintes liées à celui-ci. Ainsi l’objectif est de concevoir des trajectoires qui
allient à la fois les contraintes des gradients ainsi qu’une bonne incohérence. De précédents
sujets de thèse ont proposé un algorithme – appelé SPARKLING – permettant de générer
des trajectoires efficaces pour l’accélération en IRM. A partir d’un schéma d’échantillon-
nage en entrée, l’algorithme SPARKLING génère une trajectoire physiquement plausible,
à densité d’échantillonnage variable tout en évitant les amas ou les trous de points dans
l’espace k. La méthode proposée a été appliquée à des acquisitions en pondération T∗2 avec
succès, atteignant des facteurs d’accélération jusqu’à 20 en 2D et 60 en 3D.

Afin d’accélérer l’acquisition en IRM nous nous reposerons sur cette théorie. Nous
utiliserons en particulier la méthode SPARKLING afin de générer des trajectoires implé-
mentables sur le scanner tout en respectant les préceptes de l’échantillonnage compressif.
Cependant, pour de l’imagerie haute résolution il est nécessaire d’avoir un bon rapport si-
gnal à bruit en entrée. De ce fait l’acquisition doit se faire à l’aide d’un réseaux d’antenne.
La partie suivante explique comment combiner échantillonnage compressif avec utilisation
d’un réseau d’antennes.

Reconstruction de données multi-canaux : approches classiques

Pour reconstruire les images acquises à l’aide d’un réseau d’antennes, les algorithmes
de reconstruction d’images peuvent être classer en deux catégories, la première estime
le résultat dans le domaine image, contrairement à la deuxième catégorie qui estime la
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(a) Référence (b) Sparse-SENSE (c) `1-ESPIRiT (d) p-LORAKS

(e) (f) (g) (h)

Figure D-1 : Comparaison des différentes méthodes de reconstructions d’images acquises à
l’aide d’une trajectoire SPARKLING – dont le facteur d’accélération est de 15 en temps – et
d’antenne multicanaux. (a) La référence Cartésienne, (b) reconstruction Sparse-SENSE avec
notre méthode d’extraction des matrices de sensibilité, (c) la reconstruction `1-ESPIRiT, (d)
La solution p-LORAKS après la projection sur la grille cartésienne. (e-h) leurs zooms respectifs.

solution dans l’espace k. Alors que les estimations dans l’espace k – e.g. p-LORAKS
[Haldar 2016] – requièrent une étape de projection sur la grille détériorant ainsi la qualité
finale de l’image, les estimations dans l’espace image – e.g. `1-ESPIRiT – reposent sur
l’extraction de matrices de sensibilité, i.e. la connaissance à priori du profil de sensibilité de
chacun des canaux. C’est dans ce but que nous proposons une méthode rapide d’estimation
de ces matrices basée sur l’extraction du centre de cet espace, puis normalisées à l’aide de
la somme des carrés. Cette méthode a été testée à 7 T sur un cerveau de babouin (à une
résolution de 400µm2 sur le plan) et dont les résultats sont présentés Figure D-1. Dans
cette figure on peut apercevoir le gain en terme de qualité images de l’approche proposée
– correspondant au (b) – durant cette thèse.

Étant donnée la dépendance aux matrices de sensibilité, l’application de tels algo-
rithmes à la reconstruction en-ligne nécessite l’estimation conjointe de l’image et des ma-
trices de sensibilité rendant la reconstruction lente voire inefficace. Un moyen simple de
contourner ce problème consiste à faire abstraction de cette information. Ce dernier point
est discuté dans la prochaine section.

Reconstruction de données multi-canaux : approches sans

calibration

Afin de s’affranchir de l’étape d’estimation des matrices de sensibilité, il est possible d’in-
férer une parcimonie de groupe à l’aide d’une régularisation promouvant une parcimonie
structurée. L’objectif de ces nouvelles normes étant de sélectionner tout un ensemble de
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(a) Norme à 1-support (b) Norme à 2-support (c) Norme à 3-support

(d) Elastic-net (e) OSCAR

Figure D-2 : Première ligne : Boule unitaire de la norme à k-support en 3D pour les différentes
valeurs de k. (a) présente la boule unitaire pour k=1 – correspondant à la régularization `1, (b)
présente la boule unitaire pour k=2, (c) présente la boule unitaire pour k=2 – correspondant
à la régularisation `2. Seconde ligne : Régularisation Elastic-net – combinaison linéaire entre
la norm `1 et `2 – et la boule unitaire d’OSCAR en 3D.

coefficients partageant le même degré de parcimonie. La parcimonie structurée permet
ainsi de palier à l’inconvénient de la norme `1 lors de la présence de variables fortement
corrélées, comme c’est le cas en IRM parallèle. En particulier, l’impact des normes OS-
CAR [Bondell 2008] a été étudié ainsi que de la norme à k-support [Argyriou 2012] – les
boules unitaires sont représentées Figure D-2, l’effet de regroupement se manifeste par les
sommets plats de leurs boules unitaires. Les différentes normes de parcimonie structurée
sont alors adaptées, implémentées et testées sur des données haute résolution (400µm
isotrope et 1.5 mm d’épaisseur de coupe) acquises à l’aide d’une trajectoire SPARKLING
dont le facteur d’accélération est fixé à 20. Les résultats de ces reconstructions sont visibles
sur le Figure D-3. En se basant sur les résultats illustrés Figure D-3, il est aisé de constater
qu’avec une régularisation à k-support, la qualité de l’image – magnitude et phase – est
préservée. Ainsi grâce à la combinaison de la trajectoire et de la reconstruction proposée,
nous pouvons en déduire que l’information des matrices de sensibilité est facultative.
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Reconstruction en ligne

Dans la section précédente, nous avons proposé un algorithme de reconstruction d’images
acquises par échantillonnage compressif à l’aide d’un réseau d’antennes. Il est maintenant
temps de s’intéresser à la reconstruction en-ligne. Afin de se conformer aux constantes de
temps impliquées dans l’acquisition, les différents segments sont concaténés par lots. Une
fois un lot complet acquis, la reconstruction peut commencer. Dès lors qu’un nouveau lot
est acquis, le résultat de la reconstruction précédente sert d’initialisation au traitement
des nouvelles données entrantes. Un exemple des résultats obtenus à la fin de l’acquisition
– c’est-à-dire avant le traitement du dernier lot – est présenté Figure. D-4. Lorsque tous les
paquets ont été acquis et traités, la solution converge vers l’unique solution du problème
qui correspond aux résultats hors-ligne. Ce dernier point constitue le principal avantage
de cette méthode. De plus, en analysant les résultats de la reconstruction en ligne, nous
pouvons clairement apercevoir l’impact de la taille des paquets. En effet avec des paquets
plus petits l’image reconstruite à la fin de l’acquisition est de meilleure qualité.

Taille de lot : 2 Taille de lot : 17

Figure D-4 : Reconstruction rapide en ligne de données SPARKLING accélérées 15 fois (S=34
segments) d’un cerveau humain ex vivo acquise par un réseau d’antennes. Première ligne :
Les images reconstruites à la fin de l’acquisition, pour de tailles de paquets différentes (2 et
17 segments par paquets). Seconde ligne : Les images obtenues à convergence.

Conclusion

Au terme de ces trois années, nous espérons avoir amélioré l’application clinique de l’ac-
quisition comprimé pour l’IRM haute résolution. L’objectif de cette thèse n’était pas seule-
ment de proposer une méthode de reconstruction efficace pour une acquisition non carté-
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sienne hautement accélérée, particulièrement adaptée à l’imagerie haute résolution, mais
aussi d’accélérer la reconstruction afin de mettre ces trajectoires en pratique clinique.

L’imagerie à haute résolution nécessite un certain niveau de rapport signal à bruit en
entrée (RSB), c’est pourquoi l’acquisition est souvent effectuée à l’aide d’un réseau d’an-
tennes. Avant le début de ces travaux, aucun algorithme de reconstruction n’était dispo-
nible au sein du laboratoire pour ce cas là. De ce fait les acquisitions SPARKLING étaient
entravées par le manque de RSB. Par conséquent, la première étape a consisté à mettre
en œuvre une méthode simple mais efficace pour estimer les profils de sensibilité des an-
tennes impliquées dans le problème de reconstruction multicanal de type SENSE [Pruess-
mann 1999]. La méthode proposée a été utilisée pour de nombreux contrastes et de mul-
tiples stratégies d’échantillonnage. Elle a ensuite été étendue au cas de l’imagerie 3D et a
été utilisée comme technique de reconstruction de référence pour les articles scientifiques
de SPARKLING 2D et 3D [Lazarus 2019a, Lazarus 2019b].

Cependant, l’estimation de la sensibilité constitue la principale limite pour la recons-
truction en ligne. Ainsi, après un examen approfondi de la littérature sur la reconstruction
d’image pour l’échantillonnage non cartésien et de multiples essais, la reconstruction sans
calibration est apparue comme la technique la plus intéressante. Par conséquent, l’objectif
était de concevoir de nouvelles régularisations ayant à minima les mêmes résultats que
ceux obtenus avec les méthodes d’autocalibration. Les résultats ont été au-delà de nos
espérances puisque la reconstruction sans calibration, se basant sur des normes de parci-
monie structurée, surpasse les techniques d’autocalibration, aussi bien en termes d’images
d’amplitude que de récupération de l’information de phase. Ces méthodes de reconstruc-
tion constituent la deuxième contribution de cette thèse.

Enfin, le but principal était d’étendre cette méthode sans calibration au framework en
ligne, et grâce à cette nouvelle stratégie, nous avons amélioré la qualité de l’image estimée
obtenue à la fin de l’acquisition. Les méthodes de reconstruction en ligne constituent
finalement la dernière contribution de cette thèse.

Outre ces contributions scientifiques, l’objectif était également de proposer un nouveau
package pour la reconstruction d’image. Ainsi, avec l’aide du laboratoire CosmoStat, nous
avons développé un package python dédié à la reconstruction nommé pySAP. Le package
pySAP a également été adapté pour être inclus dans le projet Gadgetron et permettre ainsi
d’effectuer la reconstruction dans la salle du scanner et de renvoyer les résultats directe-
ment à la console du scanner, pour traitement supplémentaire, visualisation et archivage.

Dans l’ensemble, nous avons proposé un nouveau cadre algorithmique permettant l’ap-
plication clinique de l’échantillonnage compressif et l’avons appliqué avec succès à la re-
construction de l’image IRM.
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Titre : Algorithmes de structures parcimonieuses pour la reconstruction en-ligne d’image haute résolution en IRM.

Mots clés : Echantillonnage compressif, reconstruction en-ligne, parcimonie structurée, IRM, acquisition multi-canal

Résumé :
L’imagerie par résonance magnétique (IRM) est la technique
d’imagerie médicale de référence pour sonder in vivo et non in-
vasivement les tissus mous du corps humain, en particulier le
cerveau. L’amélioration de la résolution de l’IRM en un temps
d’acquisition standard (e.g.400µm isotrope en 15 minutes)
permettrait aux médecins d’améliorer considérablement leur
diagnostic et le suivi des patients. Cependant, le temps d’ac-
quisition en IRM reste long. Pour réduire ce temps, la récente
théorie de l’échantillonnage comprimée (EC) a révolutionné
la façon d’acquérir des données dans plusieurs domaines
dont l’IRM en surmontant le théorème de Shannon-Nyquist.
Avec l’EC, les données peuvent alors être massivement sous-
échantillonnées tout en assurant des conditions optimales de
reconstruction des images.
Dans ce contexte, les thèses de doctorat précédemment sou-
tenue au sein du laboratoire ont été consacrées à la concep-
tion et à la mise en œuvre de scénarios d’acquisition phy-
siquement plausibles pour accélérer l’acquisitions. Un nou-
vel algorithme d’optimisation pour la conception de trajectoire
non cartésienne avancée appelée SPARKLING pour Sprea-
ding Projection Algorithm for Rapid K-space samplING en est
né. Les trajectoires SPARKLING générées ont conduit à des
facteurs d’accélération allant jusqu’à 20 en 2D et 70 pour les
acquisitions 3D sur des images à haute résolution pondérées
en T∗

2 acquises à 7 Tesla. Ces accélérations n’étaient acces-
sibles que grâce au rapport signal/bruit d’entrée élevé fourni
par l’utilisation de bobines de réception multi-canaux (IRMp).

Cependant, ces résultats ont été obtenus au détriment d’une
reconstruction longue et complexe. Dans cette thèse, l’objec-
tif est de proposer une nouvelle approche de reconstruction
en-ligne d’images acquises par IRMp non Cartésienne. Pour
atteindre cet objectif, nous nous appuyons sur une approche
en ligne où reconstruction et acquisition s’entremèlent. Par
conséquent, la reconstruction débute avant la fin de l’acquisi-
tion et un résultat partiel est délivré au cours de l’examen. L’en-
semble du pipeline est compatible avec une implémentation
réelle à travers l’interface Gadgetron pour produire les images
reconstruites à la console du scanner.
Ainsi, après avoir exposé la théorie de l’échantillonage com-
primé, nous présentons l’état de l’art de la méthode dédiée
à la reconstruction en imagerie multi-canaux. En particu-
lier, nous nous concentrerons d’abord sur les méthodes
d’autocalibration qui présentent l’avantage d’être adaptées
à l’échantillonnage non cartésien et nous proposons une
méthode simple mais efficace pour estimer le profil de sen-
sibilité des différents cannaux. Cependant, en raison de leur
dépendance au profil de sensibilité, ces méthodes ne sont pas
adapatable à la reconstruction en ligne. Par conséquent, la
deuxième partie se concentre sur la suppression des ces pro-
fils et celà grâce à l’utilisation de normes mixtes promouvant
une parcimonie structurée. Ensuite, nous adaptons différentes
régularizations basées sur la parcimonie structurée pour re-
construire ces images fortement corrélées. Enfin, la méthode
retenue sera appliquée à l’imagerie en ligne.
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Abstract : Magnetic resonance imaging (MRI) is the refe-
rence medical imaging technique for probing in vivo and non-
invasively soft tissues in the human body, notably the brain.
MR image resolution improvement in a standard scanning time
(e.g., 400µm isotropic in 15 min) would allow medical doc-
tors to significantly improve both their diagnosis and patients’
follow-up. However the scanning time in MRI remains long,
especially in the high resolution context. To reduce this time,
the recent Compressed Sensing (CS) theory has revolutioni-
zed the way of acquiring data in several fields including MRI
by overcoming the Shannon-Nyquist theorem. Using CS, data
can then be massively under-sampled while ensuring condi-
tions for optimal image recovery.
In this context, previous Ph.D. thesis in the laboratory were
dedicated to the design and the implementation of physically
plausible acquisition scenarios to accelerate the scan. Those
projects delivered a new optimization algorithm for the design
of advanced non-Cartesian trajectory called Spreading Pro-
jection Algorithm for Rapid K-space sampling (SPARKLING).
The generated trajectories led to acceleration factor up to 20
in 2D and 60 for 3D-acquisitions on highly resolved T∗

2 weigh-
ted images acquired at 7 Tesla. Those accelerations were only
accessible thanks to the high input Signal-to-Noise Ratio deli-
vered by the usage of multi-channel reception coils. However,
such high under-sampling factors were coming at a price of
long and complex reconstruction. In this thesis the objective is
to propose an online approach for non-Cartesian multi-channel
MR image reconstruction. To achieve this goal we rely on a

progressive online approach where the reconstruction starts
from incomplete data. Hence acquisition and reconstruction
are interleaved, and a partial feedback is given during the
scan. After exposing the CS theory, we present state-of the art
methods dedicated to multi-channel coil reconstruction. In par-
ticular we first focus on self-calibrating methods that present
the advantage to be adapted to non-Cartesian sampling and
we propose a simple yet efficient method to estimate the coil
sensitivity profiles based on the data itself, i.e. without any pre-
calibration scan. However, owing to its dependence to user-
defined parameters, this two-step approach (extraction of sen-
sitivity maps and then image reconstruction) is not compatible
with the timing constraints associated with online reconstruc-
tion. Then we study the case of calibration-free reconstruction
methods and splits them into two categories, the k-space ba-
sed and the domain-based. While the k-space calibration-free
methods are sub-optimal for non-Cartesian reconstruction,
due to the gridding procedure, we retain the domain-based
reconstruction and prove their interests and performances for
online purposes. Hence in the second part, we first prove the
advantage of mixed norm to improve the recovery guarantee
in the parallel MRI setting. Then we investigate the impact of
structured sparse induced norm on the reconstruction multi-
channel purposes, where we adapt different penalty to handle
those highly correlated images. Finally, the retained method is
applied to online purposes. The entire pipeline, is compatible
with an implementation through the Gadgetron pipeline to de-
liver the reconstruction at the scanner console.
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