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Recent advances in artificial intelligence have seen limited adoption
in systematic reviews, and much of the systematic review process re-
mains manual, time-consuming, and expensive. Authors conducting
systematic reviews face issues throughout the systematic review pro-
cess. It is difficult and time-consuming to search and retrieve, collect
data, write manuscripts, and perform statistical analyses. Screening
automation has been suggested as a way to reduce the workload, but
uptake has been limited due to a number of issues, including licensing,
steep learning curves, lack of support, and mismatches to workflow.
There is a need to better align current methods to the need of the
systematic review community.
Diagnostic test accuracy studies are seldom indexed in an easily re-
trievable way, and suffer from variable terminology andmissing or in-
consistently applied database labels. Methodological search queries
to identify diagnostic studies therefore tend to have low accuracy,
and are discouraged for use in systematic reviews. Consequently,
there is a particular need for alternative methods to reduce the work-
load in systematic reviews of diagnostic test accuracy.
In this thesis we have explored the hypothesis that automation meth-
ods can offer an efficient way to make the systematic review process
quicker and less expensive, provided we can identify and overcome
barriers to their adoption. Automated methods have the opportu-
nity to make the process cheaper as well as more transparent, ac-
countable, and reproducible.
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1
INTRODUCTION

AA
t the time of writing, the Epistemonikos database lists 290,604
systematic reviews, and PubMed alone is indexing over 17,000 new
systematic reviews every year (section 2·3·1). While the number of
annually produced systematic reviews is staggering, the cost of pro-
ducing these is also growing, and the cost to produce a single sys-

tematic review today may reach as high as $300,000 usd (Lau, 2019). Furthermore,
methodologically rigorous systematic reviews typically take years to complete. Sys-
tematic reviews are thus difficult to complete in response to urgent policy needs
– such as the recent Ebola outbreak (Schünemann and Moja, 2015) – and may no
longer be up-to-date by the time they are completed (Shojania et al., 2007). Con-
sequently, there is a need to evaluate alternative methods to cope with the cost,
workload, and delay between inception and completion of the review.
Artificial intelligence has seen huge advances over the last few decades, and many
tasks which once required human intelligence can today be automated. However,
these advances have so far seen little to no adoption in systematic reviews (Thomas,
2013), andmuch of the systematic review process remainsmanual, time-consuming,
and expensive. Authors conducting systematic reviews face issues throughout the
systematic review process. It is difficult and time-consuming to search and retrieve,
collect data, write manuscripts, and perform statistical analyses (Allen and Olkin,
1999; Pham et al., 2018). Dozens of studies have been published since 2006 argu-
ing that screening automation can reduce the workload (O’Mara-Eves et al., 2015),
but due to issues including licensing, steep learning curves, lack of support, and
mismatches to workflow (Van Altena et al., 2019), uptake by the systematic review
community has been limited (Thomas, 2013). There is a need to better align current
methods to the need of the systematic review community.
Diagnostic tests are any kind of procedures performed to assist clinicians with
the diagnosis of specific health conditions. Diagnostic tests can be invasive (e.g.
amniocentesis), minimally invasive (e.g. blood test) or non-invasive (e.g. urine
analysis). It is crucial to weigh the benefits of more accurate tests against the
financial and psychological burden associatedwith specific tests and their resulting
follow-up. However, accurate information on the utility and accuracy of diagnostic
tests are commonly buried in free text articles. Single diagnostic test accuracy
studies seldom definitely resolve their utility (Davidoff et al., 1995a, quoted by Cook
et al., 1997), and systematic reviews are typically necessary to combine the results
from multiple studies.

1
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One of the main challenges for identifying diagnostic test accuracy studies is that
such studies are often not indexed in any easily retrievable way, with variable ter-
minology and missing or inconsistently applied database labels. Methodological
search queries to identify diagnostic studies therefore tend to have low accuracy
(Beynon et al., 2013; Leeflang et al., 2008, 2006), and are discouraged for use in sys-
tematic reviews (De Vet et al., 2008, in Deeks et al., 2013a). Consequently, a typical
search strategy for diagnostic test accuracy will retrieve around 5,000 initial hits,
of which a couple of hundred will have to be read as full-text and only around 10
to 20 will be included in the review.
In this thesis we have explored the hypothesis that automation methods can offer
an efficient way to make the systematic review process quicker and less expensive,
provided we can identify and overcome barriers to their adoption. At the same
time, there is also a need to document and monitor the information trail of diag-
nostic tests through the evidence synthesis workflow, on the one hand to inform
clinicians and patients, but also to gather data to train automated methods. Auto-
mated methods have the opportunity to make the process cheaper as well as more
transparent, accountable, and reproducible.

1·1 Objectives

As outlined in the project description,1 written before the start of this project, this
project aimed to:

1. Develop natural language processing (nlp) techniques to:

a) Automatically identify diagnostic test accuracy publications among candidate
references; and

b) Automatically determine study characteristics necessary to perform diagnostic
test accuracy systematic reviews from article text

2. Implement recommendation systems that will retrieve diagnostic test studies for
inclusion in systematic reviews, as well as identify specific study characteristics

3. Populate a knowledge base with comprehensive information about diagnostic tests
which will inform researchers and clinicians.

4. Update automatic predictions over time using the supervised data obtained through
interactive annotation

1 http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/http://miror-ejd.eu/individual-research-projects/
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1·2 Research Questions

When this project was started, there were no datasets available to train screening
automation for dta systematic reviews. Furthermore, there were unresolved ques-
tions regarding how such datasets should be constructed and used. Should gold
standard decisions be based on inclusion decisions based on abstract and title, or
only on inclusion decisions based on full-text? Do we need training data from the
same topic, or can we use similar topics for training? How much data do we need?
How do screening automationmethods cope in a reviewwhere there are very small
numbers of included studies?
Thus, before implementing machine learning methods we must first address the
following question:

rq 1 What kind of data should we use to train screening automation methods?

A number of machine learning algorithms, approaches, and parameter settings
exist for screening automation, and it is not clear which would work best for sys-
tematic reviews of diagnostic test accuracy reviews. Thus we also address:

rq 2 How do different screening automation approaches compare with each other for dta
screening?

One of the main aims of this project is to develop functional tools that can be used
in live systematic reviews. These should be as performant as possible. Thus:

rq 3 Are the screening automation methods we develop competitive with the current state-
of-the-art?

At the same time, it is also important that the way we use these methods do not
invalidate the findings of the systematic review. An automated systematic review
should be just as rigorous as a review using conventional methods. The straight-
forward way to accomplish this is to adhere as closely as possible to the accepted
practice:

rq 4 Can we use screening automation in a live systematic review while keeping the same
rigorous methodology?

However, it has previously simply been assumed that any divergence from ac-
cepted practice will result in an inherently flawed process. It has never been in-
vestigated whether, to what extent, and under what conditions this is true:
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rq 5 What are the minimum conditions for a systematic review to guarantee the same re-
sults and conclusions using screening prioritization as with the conventional process?

In particular, we will seek to determine if there are any elements of current practice
that can be safely discarded.
There is also a need tomore fully understand the current, manual process, including
its strengths and shortcomings. Previous work to this end has primarily focused
on screening methodology, and less on the later stages in the process:

rq 6 How are the current data extraction, data synthesis, and meta-analysis stages of dta
systematic reviews performed by human authors?

And lastly, it would also aid if we could automate not just the screening process,
but also other resource-intensive stages of the process. In particular:

rq 7 Can we extract important study characteristics automatically from primary dta stud-
ies?

1·3 Contributions

In this project, we have introduced

☙ A screening prioritization and screening reduction system. The system is empirically
validated to perform well across a range of systematic review approaches and top-
ics, including systematic reviews of diagnostic test accuracy.

☙ An empirical prospective validation of screening reduction, where we evaluate the
use of the screening reduction to faciliate the Comet Core Outcome Set systematic
review update in 2019.

☙ A retrospective validation of the impact of screening reduction in diagnostic test accu-
racy systematic reviews. To our knowledge, this is the first attempt to investigate
whether screening reduction methods leads to a loss of accuracy of the results and
conclusions of the review. We also evaluate the impact of the commonly used 95%
recall requirement in systematic reviews. This has to our knowledge never been
done.

☙ A dataset describing the data flow from individual studies to individual meta-analyses.

☙ An empirical study of the current meta-analysis process, where we investigate the
current process as performed by human reviewers to investigate potential short-
comings in the process.

4



1. Introduction

☙ A pilot study to extract study characteristics from dta primary studies. We here
attempt to extract the target condition, reference standard, and index test, which
have not been attempted by previous literature.

1·4 Outline

This thesis is multi-disciplinary, and concerns a very specific cross-section of nat-
ural language processing, machine learning, information retrieval, meta-research,
life science, and evidence based medicine. Reading the entire thesis from cover to
cover therefore only makes sense for readers whose interests align precisely with
the scope of this thesis. Most readers are better served by choosing a selection –
and order – of chapters to suit their interests. This section will attempt to guide
readers in this endeavor.
The thesis is divided into five parts, starting with the background and context, and
ending with a summary of the entire thesis work in English, Dutch, and French.
Parts II–IV lists the seven studies included in this thesis. Each part is preceded by
an introduction that sets the context of the studies in the section, and is succeeded
by a summary of the main results of the studies. Both the introductions and sum-
maries have been written to be standalone, as well as easier to read by non-experts
than the individual studies. Readers who want to have an overview of the stud-
ies may therefore want to read these before – or instead of – reading the actual
material.

1·4·1 Background & Context

In part I we will briefly go through the background necessary to understand the
remainder of the thesis, as well as set the context in which the thesis work was
performed. This thesis is multidisciplinary, and is intended for audiences ranging
from computer science to the life sciences. The background is therefore intended
to be exhaustive, and cover any background material that may not be known to
some part of the audience. Conversely, it will necessarily cover some amount of
material familiar to most readers.
Part I is in turn broken up into three chapters.
In chapter 2 we will introduce systematic reviews. In section 2·1 will introduce
the background of evidence based medicine and the role systematic reviews play
in current evidence based policy. We will then in section 2·3 introduce the issues
faced in systematic review production that have prompted the work in this thesis.
In chapter 3 we will introduce the systematic review process. Readers unfamiliar
with systematic reviews are invited to read through this chapter, and make note of
the relevant background material. The intricacies of the review process will shape
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the later work of this thesis, and particular the design concerns necessary to make
screening automation viable in practice. In particular, readers who are uncertain
about the differences between literature reviews and systematic reviews are invited
to read this chapter in detail.
In chapter 4wewill give an overview of previous research on screening automation.
We will first (section 4·1) give a brief overview of relevant text mining methods. In
section 4·3 we will summarize the relevant literature and the types of approaches
and methods that have been addressed by previous researchers. In section 4·4
we will summarize the metrics and evaluation methods that have been used by
previous literature. In section 4·5 we will summarize the publicly available datasets
that have previously been used by multiple authors. In the final section (4·6), we
will list the identified studies, with a brief summary of each study.

1·4·2 Screening Automation Systems

In part II, we will examine how screening automation methods can be used to
reduce the workload in systematic reviews. We will look at how these methods
can be made to work, and how the performance of these methods compare with
each other. All performance comparisons will concern intrinsic performance. In
other words, we here seek to evaluate the performance of the component models
in reproducible laboratory settings. We will examine the extrinsic performance of
the methods – i.e. how the methods influence the systematic review process – in
part III. We will however start thinking about how different approaches fit into
different systematic review contexts and settings.
These inquiries and the evaluations will be predominantly technical. Readers not
interested in the technical details of the screening methods can safely skip to the
summary.

1·4·3 The Impact of Screening Automation

In part III we seek to put the performance of the screening automation into per-
spective. Instead of measuring numbers, we will attempt to ask how screening
automation impacts the systematic review. The main purpose of this part of the
thesis is to establish criteria to automatically exclude records with screening reduc-
tion methods, while still resulting in the ‘same’ systematic review. In order to do
this however, we also need to formalize what it means for two reviews to be the
‘same.’ A systematic review that uses screening automation should not be method-
ologically inferior to one conducted according to the established systematic review
process. The systematic review should remain reproducible, transparent, and free
of bias.
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Thefirst study in this part (chapter 11) documents the screening automation used in
the 2019 update of the Comet Core Outcome Set database (Gargon et al., 2019). We
here attempted to adhere as closely as possible to the conventional process, down
to screening in randomized order in EndNote. Since the process is fundamentally
unaltered we argue that is as unbiased as the conventional process.
In the second paper in this part (chapter 12) we replaced the conventional process
with one using screening prioritization, and demonstrated that this results in neg-
ligible changes to the results and conclusions of the meta-analyses.

1·4·4 Data Extraction & Synthesis

In part IV we will look at how software can be used in the later stages of the sys-
tematic review process.
Previous work on systematic review automation in dta systematic reviews have fo-
cused exclusively on screening automation (Kanoulas et al., 2017b, 2018). Datasets
are thus available for training screening automation methods, but no such datasets
are available describing any other review stage. One of the purposes of this part
of the thesis is to partially fill these gaps.
In chapter 15 we therefore present a dataset documenting the data extraction, data
synthesis, and meta-analysis stages of systematic reviews of diagnostic test accu-
racy. This dataset is to our knowledge the first of its kind. We hope it will be of
aid for better understanding how the process is undetaken by human reviewers, as
well as for modelling the process with automated methods.
We will use this in order to perform cumulative meta-analyses to measure the im-
pact screening automation methods have on the results of the systematic review
(see chapter 12).
This dataset was also used for the data extraction work performed in chapter 16,
where we explored methods to extract data automatically from dta reports. Al-
most all relevant extracted data elements in diagnostic studies have been over-
looked by previous work on automated data extraction. We identified the target
condition, index test and reference standard as the primary data elements to extract,
since these were felt to be those that would lead to the largest work savings.

1·4·5 Quick Guide to the Thesis Contents

☙ Readers interested in an overview of why systematic reviews are important are
invited to read chapter 2

☙ Readers interested in the current practice for performing systematic reviews are
invited to read chapter 3
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☙ Readers interested in an overview of text mining methods are invited to read sec-
tion 4·1

☙ Readers interested in an overview of previous screening automation methods are
invited to read sections 4·3–4·5

☙ Researchers interested in the technical aspects of screening automation are invited
to read chapter 4 and part II. Chapter 4 furthermore serves as reference material
for the concepts encountered in part II. A brief familiarity with chapter 3 will be
expected.

☙ Systematic reviewers interested in adopting screening automation methods are in-
vited to read the introduction and summary of part II, and the entire part III. The
reader will be expected to be familiar with the contents of chapter 2 and 3

☙ Researchers with an interest in how screening automation impacts systematic re-
views are invited to read part III and particularly chapter 12. A brief familiarity
with the subject of chapter 2 and 3 will be expected

☙ Researchers with an interest in how the data extraction, data synthesis, and meta-
analyses are performed in current Cochrane dta systematic reviews are invited to
read chapter 15 and the summary of part IV. Background material is provided in
section 3·3·1–3·3·5.

☙ Researchers with an interest in data extraction methods for systematic reviews
are invited to read the introduction and summary of part IV, as well as chapter 16.
Additional background material is also available in section 3·3·1.
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WHAT IS A SYSTEMATIC REVIEW?

OO
ne early systematic review has been made iconic
by being enshrined in the Cochrane logotype.
The graphics in the logo depict the combined
results of eight1randomized control trials
(rcts) of the use of corticosteroids, a sim-

ple, inexpensive, and very effective treatment improv-
ing lung development in fetuses. Administered to
women about to give preterm birth, the treatment sub-
stantially improves the chances of survival for the
newborn, and reduces complications.
The first such studywas published in 1972, but it would
take until 1990 – and the publication of a literature re-
view combining the evidence – for the effectiveness of
the treatment to become widely known to obstetricians.
Before then, corticosteroids were not widely administered
for preterm birth. By 1996, six years after the publication of
the review, the use of antenatal corticosteroids in relevant cases
had risen from 20% to 65%, with a substantial decrease in infant mor-
tality.
Why was the evidence overlooked? Not due to lack of dissemination – the studies
were in fact known to the obstetrics community. However, as can be seen in the
logo itself (Figure 2) the confidence intervals of all but two of the studies cross
the line of no effect. In other words, the results were – considered in isolation –
not significant. The results are significant when combined over all eight studies,
denoted by the diamond below the bars, which sits well apart from the vertical line
(Figure 2).
This literature review has subsequently been expanded and improved in method-
ological quality. The most recent version, published in 2017, includes 22 random-
ized control trials measuring the relative risk of neonatal mortality. These subse-
quent results are confirming the effectiveness of the treatment, but fail to reach
significance individually. Out of 22 randomized control trials of neonatal mortal-
ity, only 4 are statistically significant by themselves (figure 2). Furthermore, the
trials report quite heterogeneous results, with a single study reporting an almost
five-fold average increase in mortality after corticosteroid treatment.

Figure 2.1 – The Coc-
hrane logotype. The
logo depicts seven stu-
dies examining cortico-
steroids administered
before preterm birth.
Five of the studies
(red bars) are non-sig-
nificant on their own,
two (green bars) are
significant. The comb-
ined results of all stu-
dies are significant
(green diamond).
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Figure 2.2 – The
cochrane logotype
with subseq-
uent trials added.
Adapted from
Roberts et al. (2017).
Out of 22 included
trials, only four are
significant on their
own (green bars). The
combined results of all
trials are significant
(green diamond).

Why do the different trials report such different results? Scientific studies are
generally subject to two sources of error: random errors due to chance variation,
and systemic errors, also known as bias.
Systemic errors, or bias, are generally due to methodological flaws. The study

could for instance use flawed methods of recruitment or inclusion, yielding sam-
ples of patients not representative of the actual population targeted by the treat-
ment or diagnostic procedure. For instance, it is generally easier to diagnose

patients in the more advanced stages of a disease. A diagnostic study
that includes a larger number of such patients are therefore likely

to overestimate diagnostic performance compared to a study
that includes patient representative of the patient spectrum
the diagnostic procedure would normally be used on. Bias
can arise due to methodological flaws in the way experi-
ments are carried out, or in the way the results are col-
lected and analyzed.
Variation may be an inherent characteristic of the sub-
ject of interest. There could for instance be an element
of chance in how well any individual responds to a cer-
tain treatment. However, one of the main reasons we
observe variation in studies is small sample sizes. An

experiment with small sample size will necessarily have
larger variation than an experiment with large sample size.

Variation due to this kind of random effects can therefore be
reduced simply by increasing the size of the experiment, but for

many research questions in biomedicine it may not be feasible to re-
cruit a large number of patients.

Any individual research study may thus be be fallible, due to chance, or due to
methodological problems. Although rare, there are also cases of reports being
fabricated (Gough et al., 2017). Consequently, it is unusual for individual studies
to provide definite answers to clinical questions (Davidoff et al., 1995a, quoted
by Cook et al., 1997). To achieve definite answer, it is often necessary to com-
bine the evidence from several small studies, in a so called meta-analysis.

2·1 Evidence Based Medicine

Perhaps surprisingly, the idea that medicine should be grounded firmly – and pri-
marily – in evidence is fairly recent (Chalmers, 2003; Eddy, 2011). While decision
making in general medical practice emphasized science and evidence in the sixties,
it also valued the experience and expertise of the doctor. Treatments were recom-
mended if physicians believed them to be effective, rather than based on evidence,
and healthcare decisions were frequently made based on simple rules-of-thumb
– under the guise of accepted practice – without scientific backing (Eddy, 2011).
These empirical observations may be explained by the complexity of medical de-
cision making – medical decision making is too complex and involves too many
variables for anyone to accurately process all the information in their heads for a
complex medical decision (Eddy, 2005).
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2·1·1 The Issues with Opinion

By the late sixties, the effect of biases on experts’ decision making process became
more apparent with the publication of Alvan Feinstein’s Clinical Judgment in 1967.
In 1972, Archie Cochrane published Effectiveness and Efficiency, where he described
several common practices not supported by clinical trials, and called for the British
National Health Services (Nhs) to base its practices on randomized control trials
(rcts) rather than expert opinion (Cochrane et al., 1972). In 1973, Wennberg et
al. documented wide variations in practice patterns among clinics (Eddy, 2011;
Wennberg and Gittelsohn, 1973), and by the 1980s it became apparent that a large
proportion of the procedures being performed by physicians were considered in-
appropriate even by the standards of their own experts (Chassin et al., 1987; Eddy,
2011).
However, inconsistencies between experts do not mean that expert opinion should
be discarded outright. Expert opinion can cover issues that may be difficult to ad-
dress by trials, and may be more up-to-date than the best synthesized evidence
(Booth, 2016a; Sackett et al., 1996). Experts often have knowledge, practical expe-
rience, insight, and implicit knowledge difficult to formalize in research. Unfortu-
nately, such expertise is often subject to biases, and the lack of transparency means
that it is difficult or impossible to determine what sources an expert opinion is
based on (Gough et al., 2017):

☙ The opinion of the experts may be affected by their ideological and theoretical
perspectives, which may not be explicitly stated. The perspectives of the experts
may be influenced by personal interests.

☙ The boundaries of the experts’ knowledge may not be transparent

☙ The experts may know some studies better than others, so not all research has
equal representation in the conclusions they draw

☙ It may not be clear to what extent experts’ conclusions are based on practice wis-
dom rather than evidence

☙ It may be difficult to assess expertise in a field, and to what extent the credibility of
the expert is based on research. The credibility of an expert may for instance stem
from their esteem as a practitioner, rather than as a researcher

To some extent, the dangers of expert opinion or expert panels are the same as
those of an unsystematic review. The conclusions may be based on great insight,
but due to the lack of transparency, it is difficult or impossible to determine to what
extent the conclusions are drawn from evidence, preconceptions, personal beliefs,
or accepted practices in the field (Gough et al., 2017).
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2·1·2 The Need for Evidence in Medicine

In 1978, the Office of Technology Assessment of the Us Congress estimated that
only 10–20% of all procedures then used in medical practice were based on con-
trolled trials (Banta et al., 1978). The Office’s followup report in 1983 repeated the
same estimate (Gelband, 1983) These estimates were independently confirmed in
1979, with 10% of common medical practices for three subspecialties of internal
medicine lacking any foundation in published research (Williamson et al., 1979,
cited by Sackett et al., 1995) In 1990, 21% of treatments and diagnostic procedures
were firmly based on scientific evidence (Dubinsky and Ferguson, 1990, cited by Sack-
ett et al., 1995). The view that less than 20% of general practice was not based on
rcts was common through the 1970s and 1980s, and quoted repeatedly by leading
physicians and laymen alike (Eddy, 2005; Sackett et al., 1995).
Simultaneously, the US Food and Drug Administration (Fda) had been requiring
proof of efficacy of new drugs since 1962, and many other countries soon after
(Bastian et al., 2010).

Treatment Effect Diagnosis Prognosis

i Systematic review of randomized
trials or n-of-1 trials

Systematic review of cross sec-
tional studies with consistently ap-
plied reference standard and blind-
ing

Systematic review of inception co-
hort studies

ii Randomized trial or observational
study with dramatic effect

Individual cross sectional studies
with consistently applied reference
standard and blinding

Inception cohort studies

iii Non-randomized controlled
cohort/follow-up study

Non-consecutive studies, or studies
without consistently applied refer-
ence standards

Cohort study or control arm of ran-
domized trial

iv Case-series, case-control studies,
or historically controlled studies

Case-control studies, or poor
or non-independent reference
standard

Case-series or case-control studies,
or poor quality prognostic cohort
study

v Mechanism-based reasoning Mechanism-based reasoning

Table 2.1 – Levels of evidence according to the Oxford Centre for Evidence-BasedMedicine
(The Oxford Centre for Evidence-Based Medicine, 2016). The boundaries between the lev-
els are undulated to indicate that the order of the ranking is not absolute.
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Even if good scientific evidence for treatment was hard to come by, healthcare pol-
icy in the 1980s had started to call for solid evidence, rather than informed opinion
(Eddy, 2011). For instance, in its new recommendations published in 1980, the Amer-
ican Cancer Society insisted that ‘there must be good evidence that each test or
procedure recommended is medically effective in reducing morbidity or mortality’
(Eddy, 1980). Over the next two decades, a number of organizations adopted guide-
lines based on evidence, including the American College of Physicians (Acp) in
1985, the Council of Medical Specialty Societies (Cmss) in 1987, the American Med-
ical Association (Ama) in 1987, the US Preventive Services Task Force (Uspstf)
(The US Preventive Services Task Force, 1989) in 1989, the Agency for Healthcare
Research and Quality (Ahrq, then known as the Agency for Health Care Policy
and Research, Ahcpr) in 1993, the Bmj Publishing Group in 1995, and the Amer-
ican Association of Health Plans (now America’s Health Insurance Plans) in 1997
(Eddy, 2005).
The philosophical roots of evidence based medicine go back to mid 19th century
Paris (Sackett et al., 1996), but the term was first used in 1990, in the context of
guidelines (Eddy, 1990). It calls for a ‘conscientious, explicit, and judicious use of
current best evidence’ and ‘integrating individual clinical expertise with the best
available external clinical evidence from systematic research.’ (Sackett et al., 1996).
In the mid-1990s evidence based medicine had received widespread endorsement,
as well as the publicational outlet of its own journal (Davidoff et al., 1995a,b; Fe-
instein and Horwitz, 1997). By 1995, 82% of treatment given in general practice
was evidence based, if not supported by rcts (53%), at least by convincing non-
experimental evidence (27%) (Sackett et al., 1995).

2·1·3 Hierarchies of Evidence

Evidence based medicine calls for guidelines to preferentially use evidence of ideal
methodological quality, and if such evidence is not available, to use the best evi-
dence at hand (Sackett et al., 1996). The gold standard evidence for interventions is
the randomized controlled trials (Cochrane et al., 1972; Hariton and Locascio, 2018),
which has become a cornerstone of judging the effectiveness of treatments (Sack-
ett et al., 1996). Nonrandomized trials, cohort studies, or case studies can provide
evidence, but are more susceptible to bias and random variation.
The idea of a hierarchy of evidence of this kind was first made explicit in the guide-
lines published by the Canadian Task Force on the Periodic Health Examination in
1979 (Canadian Medical Association, 1979). Its purpose was to develop recommen-
dations on the periodic health exam based on evidence from the medical literature
(Burns et al., 2011; Canadian Medical Association, 1979). Such hierarchies are in-
tended as rules-of-thumb for quickly assessing the available evidence.
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Hierarchies of evidence have been inflexibly used, and criticized for decades (The
Oxford Centre for Evidence-Based Medicine, 2016). The relative strength of differ-
ent levels of evidence is not cut in stone. In practice, the methodological quality of
the study and the consistency of the results should be critically assessed whether
the evidence should be graded up or down. For instance, an observational study
with very dramatic effects – cf. the original discovery of penicillin – may be con-
vincing even in the absence of higher level evidence, such as rcts or systematic
reviews (Cochrane et al., 1972). Conversely, a systematic review may provide weak
evidence, for instance if it has identified too few studies (The Oxford Centre for
Evidence-Based Medicine, 2016), or if the identified studies report conflicting re-
sults (Deeks et al., 2019, in Higgins et al., 2019). Similarly, while rcts are commonly
considered among the gold standard for interventions, in practice many rcts suf-
fer from methodological problems, and their evidence may need to graded down
due to poor randomization or blinding, large numbers of withdrawals, or wide
confidence intervals (Burns et al., 2011).
However, all else being equal, systematic reviews are consistently placed at the
top of evidence hierarchies (e.g. see table 2·1). Systematic reviews are better at
assessing strength of evidence than single studies and are recommended over sin-
gle studies if available (Chalmers, 2007; The Oxford Centre for Evidence-Based
Medicine, 2016). Systematic reviews allow for results with narrower confidence
intervals than most single studies (Leeflang et al., 2008), are more likely to give
conclusive answers to research questions (Chalmers, 2007), and stronger general-
izability than individual studies (Leeflang et al., 2008). Furthermore, systematic
reviews can address research questions that are difficult to address by single stud-
ies, and can better assess to what extent the findings of the included studies have
been affected by methodological issues and bias.

2·1·4 Systematic Reviews & Evidence Based Medicine

A systematic review is a meta-research study type that attempts to answer research
questions by identifying and analyzing all published empirical evidence relevant to
the question. Unlike e.g. narrative reviews, the systematic review uses controlled,
systematicmethods in order tominimize bias. This results in generally very reliable
evidence, and is typically placed at the top of evidence hierarchies.1 For instance,
systematic reviews of randomized controlled trials are often considered the gold
standard for intervention research.

1 It is sometimes held that systematic reviews produce the strongest evidence, but this is a simplifica-
tion, and will depend on the evidence included in the review. For instance, a large, well-conducted
rct is likely more reliable than a systematic review of case studies.
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This systematic and controlled procedure is what distinguishes a systematic review
from the traditional literature review. A traditional literature review summarizes
what is known on a topic, and the studies that have been published addressing
it, but do not explicitly specify the criteria used to identify and include studies.
Relevant studies may not have been included because the review authors were
unaware of them, or have been excluded for reasons known only to the author.
Unless the identification process is explicit, it is not possible to judge whether the
inclusion of studies is appropriate, or whether the inclusion has been consistent
(Gough et al., 2017). The review is typically performed by domain experts, whose
expertise guides the selection of studies and analysis of them, and their expertise
may in turn have been shaped by the studies they are aware of.

2·1·5 Systematic Reviews Answer Research Questions

A systematic review is a scientific project in its own right (Chalmers, 2003), and can
be used to answer any question that can be answered by primary research (Thomas
et al., 2019, in Higgins et al., 2019). Like other types of research, it requires a sys-
tematic and methodological approach to adequately address its research question,
without being mislead by systematic biases or random chance (Chalmers, 2003;
Gough et al., 2017).
Roughly 50 years ago, Sir Austin Bradford Hill summarized the structure of a scien-
tific study as four questions: Why did you start? What did you do? What answer
did you get? And what does it mean anyway? (Hill, 1965) These questions are
reflected in the ubiquitous structure of scientific reports: the introduction, method,
results, and discussion (sometimes called IMRaD) (Clarke et al., 2002).
Scientific methods must be systematic and rigorous, and their reporting explicit
and transparent so that the results can be interpreted and assessed in the light of
how the results were produced. We should rightly be suspicious of results pro-
duced by flawed or poorly reported methods (Altman, 1994; Chalmers, 2003). The
same applies to reviews of research (Gough et al., 2017). The systematic review con-
sequently involves the same basic steps as any other scientific inquiry (Chalmers,
2003):

☙ Defining the objectives of the research

☙ Defining the methodology to gather data and perform analyses

☙ Analyzing the data, using prespecified statistical methods if appropriate

☙ Interpreting the findings and preparing a structured report of the research
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As outlined in the Cochrane handbook for interventions, the key characteristics of
systematic reviews are:

☙ A clearly stated set of objectives with pre-defined eligibility criteria for studies

☙ An explicit, reproducible methodology

☙ A systematic search that attempts to identify all studies that meet the eligibility
criteria

☙ An assessment of the validity of the findings of the included studies, for example
through the assessment of risk of bias

☙ A systematic presentation, and synthesis, of the characteristics and findings of the
included studies

The crucial difference between a systematic review and primary research is the
unit of interest in the study – in e.g. an intervention or diagnostic study the unit
is a patient, in a systematic review the unit is a primary study (Schünemann and
Moja, 2015).
Literature searches are performed for a number of reasons, including traditional
literature reviews, but can also be performed to populate literature databases, or
identify relevant work or prior art. However, the systematic review as a study
design shares all methodological qualities of an observational study, while having
fewmethodological similarities with traditional literature reviews, and the compar-
ison to literature reviews may therefore ultimately be unhelpful. The systematic re-
viewmay be better understood as an observational study, where the data collection
takes the form of a (systematic) literature search (Cook et al., 1997; Schünemann
andMoja, 2015). Consequently, the samemethodological requirements of planning,
rigour, and transparency apply in a systematic review, as in any research endeavor
(Chalmers et al., 2013).

2·2 Systematic Reviews of Diagnostic Test Accuracy

Diagnostic test accuracy studies measure how accurate tests are in detecting the
presence or absence of a medical conditions. Such medical conditions may com-
monly be a disease, but can also be non-malign conditions, such as twin pregnancy
(Monni et al., 2014). Tests may be conventional laboratory procedures, such as bio-
chemical, immunological, omic technologies, or imaging tests such as ultrasound
or mri scans. The tests may also comprise other measurements that may help
in distinguishing the healthy from the diseased, such as signs and symptoms from

18



2. What is a Systematic Review?

patient history and examination, questionnaires, scores and decision rules, or phys-
iological measurements (Chandler and Hopewell, 2013).
The accuracy of a diagnostic test, measurement, or procedure is one of the key
criteria for recommending the test for use in clinical practice, but not the only
one. The accuracy of a procedure must also be balanced against for instance its
intrusiveness, its safety, its cost, and whether it is practical to adopt in clinical
practice. For instance, biopsy is a highly accurate procedure to diagnose many
diseases, but is highly invasive, and its detrimental effects on the well-being of
patients is limiting its clinical use.
Diagnostic studies are often reported in studies with small sample sizes, and the
accuracy measurements are therefore often imprecise, with wide confidence inter-
vals (Bachmann et al., 2006). Systematic reviews are typically necessary to achieve
precise accuracy measurements (Leeflang et al., 2008). Systematic reviews are also
useful for analyzing the variability of the results across subgroup, identify risks of
bias in individual studies, and address questions not covered by the original stud-
ies, such as the differences between different tests (Bachmann et al., 2006; Leeflang
et al., 2008).
Unlike randomized control trials, which typically report results as a single measure
of effect (e.g. as a relative risk ratio), diagnostic test accuracy necessarily involves
a trade-off between sensitivity and specificity depending on the threshold for posi-
tivity for the test (Leeflang et al., 2008; Macaskill et al., 2010, in Deeks et al., 2013a).
Diagnostic test accuracy studies therefore usually report results as two or more
statistics: e.g. sensitivity and specificity, negative and positive predictive value, or
the Receiver Operating Characteristic (roc) curve.
Meta-analyses of diagnostic test accuracy pool the 2 ×2 tables reported in multiple
dta studies together to form a summary estimate of the diagnostic test perfor-
mance. The results of dta studies are expected to be heterogeneous, and the meta-
analysis thus needs to account for both inter- and intra-study variance (Macaskill
et al., 2010, in Deeks et al., 2013a). This is commonly accomplished using hierar-
chical random effects models, such as the bivariate method, or the hierarchical
summary roc model (Reitsma et al., 2005; Rutter and Gatsonis, 2001). Pooling
sensitivity and specificity separately to calculate separate summary values is dis-
couraged, as it may give an erroneous estimate, e.g. a sensitivity/specificity pair
not lying on the roc curve (Leeflang et al., 2008).
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2·3 Issues in Systematic Review Production

2·3·1 The Publication of Systematic Reviews is Growing

A large number of systematic reviews is being published every year, and the num-
ber is rising steadily.
An examination of records indexed in PubMed between Jan 1, 2000–Dec 31, 2018
shows 122,979 records tagged as systematic reviews (figure 2·3).1 PubMed indexed
17,254 new systematic reviews in 2018 alone, compared to 3,336 in 2008 – more
than a five-fold increase over 10 years (figure 2·3).
The publications of systematic review may be increasing rapidly, but it is being out-
paced by the growing number of annual registrations in Prospero. There were
15,667 new registrations in Prospero in 2018 – almost as many as the number of
new systematic reviews in PubMed. The rapidly increasing number of registration
is likely partly due to the growing rate of publication of systematic reviews. At the
same time, there is also a growing awareness of the need for prospective registra-
tions of systematic reviews, and funding organizations increasingly require new
systematic reviews to be registered as a precondition for funding.
Why is the number of systematic reviews increasing? On the one hand the produc-
tion of more and more systematic reviews is a response to their increased reliance
by guidelines and policy-makers. Furthermore, not only systematic reviews are be-
ing produced in ever larger quantities. The same trends are true for most of science,
including the primary studies systematic reviews are based on. Coping with the in-
creasing number of primary studies is an often cited reason to perform systematic
reviews in the first place.
However, there may be less benign reasons behind the increase. Like elsewhere
in science, researchers performing systematic reviews are subject to the same in-
centives of publish-or-perish. Systematic reviews may increasingly be pursued in
order to advance the careers of the researchers, rather than the state of the science
(Ioannidis, 2016). Meanwhile, publishers and journals are incentivized to publish
systematic reviews, since these are often more highly cited than other types of lit-
erature (Bastian et al., 2010). Multiple independent systematic reviews have been

1 PubMed publications were collected using the query ‘systematic [sb]’ in accordance with the US
National Library of Medicine recommendations:
https://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.htmlhttps://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.html
These numbers are less than half of what has previously been reported by Ioannidis (2016), who re-
ported 28,959 PubMed systematic reviews in 2014 alone. The likely explanation for the discrepancy
is that the Us National Library of Medicine has since updated its criteria for tagging systematic
reviews to be more consistent, including introducing a dedicated publication type tag in February
2019 (Collins, 2019). Prospero registrations were collected using the Prospero search function
with a date limit set to Jan 1–Dec 31 for each year.
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identified for a number of topics, including gastric ulcer prophylaxis, dosing of
aminoglycosides, selective decontamination of the digestive tract, orthopedic pro-
cedures, and wound healing (Ioannidis, 2016). Independent replication is useful in
any field of research (Siontis et al., 2013), but is also a potential for research waste
and usually discouraged (Ioannidis, 2016; Lasserson et al., 2019, in Higgins et al.,
2019).
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Figure 2.3 – The number of annual systematic reviews indexed in PubMed, and the num-
ber of annual registrations of started systematic reviews in the Prospero database. The
searches were performed in August 2019.

2·3·2 The Workload in Systematic Reviews is Growing

While the demand for systematic reviews is rapidly increasing, the workload in-
volved in their production is also growing. Part of the reason is simply that an
increasing number of studies is being published each year. In 2010, 75 trials were
being published per day, compared to 14 trials per day in 1979 (Bastian et al., 2010).
Consequently, systematic reviews now need to consider a much larger body of
published literature.
At the same time, the scope and methodological rigour of systematic reviews have
increased since the 1970s, in response to increasing awareness of risks of bias.
Systematic reviews are more complex than previously, and have stricter expecta-
tions of screening methodology and explicit quality assessment of included stud-
ies. Early systematic reviews were typically 10–20 pages long, even when they
included several studies. Today it is not unusual for a review by a health technol-
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ogy agency to be several hundred pages long. Systematic reviews are now often
longer than the combined length of their included reports (Bastian et al., 2010).
There is also an increasing expectation that systematic reviews include study types
other than rcts (Bastian et al., 2010), and other sources than published literature.
For instance, case studies are often necessary to detect adverse effects (Bastian et al.,
2010). In addition, systematic reviews are increasingly expected to consider gray
literature and unpublished trials to mitigate publication bias, further increasing the
workload.

1 year 2 years 3 years 4 years 5 years 6 years 7 years 8 years

0%

50%

100%

Figure 2.4 – Cumulative plot of the delays between the publication of the protocol and
the first publication of the review for the systematic reviews in the ‘Diagnosis’ section of
the Cochrane Library. Out of the 120 publications in this section (August 2019), this data
includes the 90 for which the publication dates were recorded in the published article. One
article was excluded due to being a systematic review of dta systematic review methods.

2·3·3 Systematic Reviews Take a Long Time to Complete

Most systematic reviews take years to complete, and require considerable expense.
Systematic reviews from the Agency for Healthcare Research and Quality (Ahrq)
addressing comparative effectiveness with five key questions and the need to re-
view about 10,000 citations are reported to cost upward of $300,000 (Lau, 2019).
There are however large variations between reviews. Extreme examples can take
as little as 16 weeks, and as much as 12 years (Schünemann and Moja, 2015). The
systematic review process is reported to take an average of 67 weeks to complete
for systematic reviews of interventions (Borah et al., 2017). Typical timeframes
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for systematic reviews in general have been reported to fall within 12–24 month
(Tsafnat et al., 2018), within 6–24 months (Beller et al., 2018; Khangura et al., 2012,
quoting Tsertsvadze et al., 2015), or within 6 months to several years (Tsertsvadze
et al., 2015). Systematic reviews in different fields and topics may vary in time, but
there can also be large variations within the same area depending e.g. on how
many references need to be considered in each stage through the review process
(Allen and Olkin, 1999; Pham et al., 2018).
Cochrane systematic reviews account for an estimated 20% of the annual output of
systematic reviews (Moher et al., 2007), but are known for uniformly high method-
ological quality (Jadad et al., 1998). Due to the stricter methodology, commonly
cited estimates of the time taken to perform a review have been based on general
systematic review, and may therefore not be representative for Cochrane system-
atic reviews. The median delay between publication of protocol and publication
of review for dta systematic reviews in the Cochrane Library is 904 days (2.47
years) with the longest taking 2,715 days (7.44 years) (figure 2·4). The same delay
for Cochrane intervention reviews has previous been reported as 2.24 years (range:
0.25–7.75 years) (Tricco et al., 2008). Since writing and publishing the protocol of-
ten takes months (Lasserson et al., 2019, in Higgins et al., 2019), the total timeframe
of the review, from start to finish, will be even longer.
The long production times of systematic reviews has several implications. First,
much of the work is performed by human reviewers, and the process is therefore
costly. Second, the delaymeans that many reviewswill not be up to date at the time
of publication, with a median delay between the time of the last database search
and publication of 5.1 months (Beller et al., 2013). Any more recent publications
will not have been considered in the systematic review. A somewhat older study
by Shojania et al. (2007) found that due to this delay, 7% of systematic reviews were
outdated at the time of publication, and would have reached different conclusions
had they included all studies available at the time of publication.
The conventional countermeasure to the combination of short review half-life and
slow review turnover is to perform an abridged database search just before publica-
tion to identify studies published after the initial search. For instance, Cochrane sys-
tematic reviews are required to rerun searches if the initial search was performed
more than 12 months (preferably 6 months) before the intended publication date
of the review (Lefebvre et al., 2019, in Higgins et al., 2019). Prevention is better
than cure however, and rerunning searches would be unnecessary if the screening
could be completed quicker.

23

2



Background & Context

Summary

Systematic reviews are a meta-research study type that address
research questions by analyzing all published relevant studies. Systematic re-
views often produce higher quality evidence than individual studies

Systematic reviews are important for evidence based medicine, and
are today the main sources of evidence for clinical guidelines

Systematic reviews are expensive to produce, and the cost is rising. The
long delays involved in their productionmean that they are difficult to produce
in response to urgent policy needs
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GG
iven their center-stage role in evidence based medicine, sys-
tematic reviews are today important to a range of stake-holders. They
are important to investigators to summarize existing data, refine
hypotheses, estimate sample sizes, and define future research agen-
das (Cook et al., 1997). Without systematic reviews researchers may

chase thewrong leads, study questions that have already been adequately addressed,
or fail to interpret findings in the light of available evidence (Clarke et al., 2002;
Ioannidis, 2016; Lasserson et al., 2019, in Higgins et al., 2019). They are important
to policy-makers to optimize outcomes with available resources (Cook et al., 1997).
They are important to law-makers and regulators to guide public policy (Lasser-
son et al., 2019, in Higgins et al., 2019). Not least, they are important for patients
– healthcare decisions affecting individual patients are increasingly taken based
on conclusions drawn from systematic reviews, and may directly influence what
treatment and healthcare patients receive.
For these reasons it is imperative that systematic reviews are as high-quality, rel-
evant, unbiased, and up-to-date as possible. To ensure this, reviews follow a sys-
tematic and highly controlled procedure to minimize sources of bias (Cook et al.,
1997), resulting in a robust but cumbersome and time-consuming process (figure
3·1). This process takes on average 67 weeks to complete for systematic reviews
of interventions, but there are large variations (Borah et al., 2017). It is not uncom-
mon for a review to take years to complete, with extreme examples needing 12
years (Schünemann and Moja, 2015).
Most steps in the process require manual processing, but the majority of the time
and work is required in a few of the stages. According to Allen and Olkin (1999),
on average 52% of the time is spent on search and extraction, 18% is spent on statis-
tical analysis, 18% is spent on administrative tasks, and 13% is spent on manuscript
writing. A newer study by Pham et al. (2018) found similar numbers by studying
event logs from systematic reviews: 26% was spent on search and retrieval, 24% on
data collection, 23% on manuscript writing, and 17% on statistical analysis. In both
accounts, over half the workload was spent searching, screening, and extracting.
Unsurprisingly, the steps associated with the largest workload may be those that
involve the most mechanical and repetitive components of the work, those most
amenable to automation.
In this work we will focus on the process of a Cochrane systematic review. Cochr-
ane systematic reviews typically follow a more rigorous procedure, and is often
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seen as a gold standard for systematic reviews (Chandler and Hopewell, 2013; Jadad
et al., 1998). However, Cochrane systematic reviews only make up approximately
20% of all published systematic reviews (Moher et al., 2007). Other systematic
reviews may skip some of the steps, or relax part of the procedure. For instance,
while all Cochrane systematic reviews are required to report the assessed quality of
all included studies, this is omitted in about a third of published systematic reviews
(Moher et al., 2007).
Conceptually, the individual steps are performed independently and sequentially.
This rigid compartmentalization is considered a feature intended to minimize bias
(Kellermeyer et al., 2018). In practice the distinction between some of the steps
may be blurred, and the process is may be backtracked to correct for issues encoun-
tered in later stages (Page et al., 2019a, in Higgins et al., 2019). Changes may be
appropriate, for instance if the search filters are determined to be inadequate after
known relevant references are not returned by the database search (Higgins and
Deeks, 2011). Such post-hoc changes should be avoided and – when unavoidable –
described and justified in the final report (Lasserson et al., 2019; Page et al., 2019a,
in Higgins et al., 2019).
To the greatest extent possible, all judgements should be made during the planning
stage, and before the available studies are known. Consequently, the review ques-
tions, the inclusion and exclusion criteria as well as the statistical methods used for
analysis are specified before starting the review. Post-hoc decisions – made after
seeing the evidence – to include or exclude studies, or to change statistical methods,
are highly susceptible to bias, and therefore to be avoided (Lasserson et al., 2019, in
Higgins et al., 2019).
Due to a lack of alternatives meeting the high recall requirements, as well the
high stakes associated with errors, virtually all of the work is performed manually.
Specialized software is used to support much of the process, as well as to assist
in documenting the decisions and conduct and to distribute the tasks among the
authors, who may be in different countries.
Dedicated systematic reviewmanagers are software that aims to streamline a broad
range of tasks within the systematic review process. This may include preparation
of the protocol, assistance in writing the protocol and review manuscripts, keep-
ing track of study characteristics and study data, performing meta-analyzes, and
presenting graphical results.
The use of dedicated software for preparing systematic reviews is not just to fa-
cilitate the work, but also to document the decisions to ensure transparency and
reproducibility (Lasserson et al., 2019, in Higgins et al., 2019). Examples of re-
view managers include RevMan, Rayyan, Covidence, and DistillerSR (Cochrane,
2014; Evidence Partners, 2019; Ouzzani et al., 2016; Veritas Health Innovation, 2019).
RevMan is required for preparing, writing, and maintaining Cochrane systematic
reviews.
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Figure 3.1 – The systematic review process, adapted
from (Deeks et al., 2019; Lasserson et al., 2019; Lefeb-
vre et al., 2019; Li et al., 2019;McKenzie et al., 2019a,b;
Thomas et al., 2019, in Higgins et al., 2019)).

Reference managers are soft-
ware used to store and man-
age bibliographic records. Ded-
icated reference managers for
use in systematic reviews in-
clude EndNote, RefWorks, F1000
Workspace, and Zotero, as well
as legacy reference managers
such as ProCite and Reference
Manager (Center for History
and New Media, George Mason
University., 2019; Clarivate An-
alytics, 2019; F1000, 2019; Pro-
Quest, 2019; Thomson Reuters,
1999, 2008). EndNote appears
to have been the most domi-
nant reference manager in 2013
(Lorenzetti and Ghali, 2013), and
is frequently used in system-
atic reviews. It is difficult to
get an accurate and up-to-date
view of the current relative mar-
ket share however, since cur-
rent reporting guidelines such
as Prisma do not require explic-
itly reporting software usage. In
practice, only 4.8% of reference
manager usage in systematic
reviews is reported (Lorenzetti
and Ghali, 2013). Spreadsheet
software, such as Microsoft Ex-
cel, is occasionally used to han-
dle references, but – due to its

lack of specialized features – typically only in a limited capacity, for instance to
keep track of screening decisions (Lorenzetti and Ghali, 2013; Roth et al., 2018).
Meta-analyzes in systematic reviews typically rely on general statistical software,
such as Stata or Sas.
However, while these software tools are helpful in streamlining and documenting
the process, they are better described as tools rather than automation. By automa-
tion we mean that the software is performing tasks normally performed by review
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authors, and which involves some kind of non-trivial decision-making (Van Altena
et al., 2019). The main exception where software is ‘making decisions’ is the dedu-
plication process, which is often performed using heuristic or machine learning
methods, for example the find duplicates feature in EndNote. Even this process is
typically only semi-automated, and the review authors still have to arbitrate un-
clear cases.
Why is the systematic review process not automated to a greater degree? Not
because of a lack of methods. Automation tools have in fact been developed since
at least 2005, targeting several aspects of the review process. According to a 2018
survey, licensing, steep learning curves, lack of support, andmismatch to workflow
were cited as the main reasons review authors have not used automated tools (Van
Altena et al., 2019)

3·1 Writing the Protocol

Both registration of systematic reviews in databases like Prospero and the publica-
tion of protocols in journals avoid duplication, by allowing researching to search
for ongoing systematic reviews (Rombey et al., 2019; Stewart et al., 2012). Publi-
cation also allows the review methodology to be peer reviewed prior to starting
the review, and increases the chance that methodological problems are corrected
(Rombey et al., 2019).
The protocol writing process in a systematic review is complex and may undergo
several rounds of peer review and revisions before publication. Peer reviewed pub-
lication of the protocol is mandatory in systematic reviews by Cochrane (Deeks
et al., 2013b, in Deeks et al., 2013a), the Campbell Collaboration (Campbell Collab-
oration, 2019), and the Joanna Briggs Institute (Aromataris and Munn, 2017). For
other systematic reviews, peer review and publication of the protocol is typically
optional (Rombey et al., 2019).
Publishing the protocol involves substantial effort, but is important to avoid mak-
ing judgements based on the findings of the review. Publishing the protocol of the
review mitigates review authors’ bias, promotes transparency of methods and pro-
cesses, and avoid duplicate reviews (Rombey et al., 2019). Systematic reviews with
published protocols are associated with higher standards of reporting and method-
ological quality than systematic reviews without published protocols (Allers et al.,
2018). Even for systematic reviewswhere the protocol is not published, it is strongly
recommended that a protocol is prepared before the systematic review is started
(Lasserson et al., 2019, in Higgins et al., 2019).
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3·1·1 Formulate Review Question

A systematic reviews can address any research question that can be addressed by
primary studies (Thomas et al., 2019, in Higgins et al., 2019). Just like for primary
studies, a well-formulated research question is key to a properly conducted review,
and is integral to ensure the relevance and novelty of the results, as well for reduc-
ing and mitigating biases.
High quality systematic reviews have a purpose statement detailing the question
of the systematic review (Jackson and Kuriyama, 2018). To avoid ad-hoc decisions
made after seeing the evidence, and associated bias, the question should be speci-
fied a priori (Lasserson et al., 2019, in Higgins et al., 2019). Review authors’ prior
knowledge of the evidence may influence the definition of the research question,
eligibility criteria, or the analysis (Lasserson et al., 2019, in Higgins et al., 2019).
Novel systematic reviews address research gaps. To avoid duplicate reviews, au-
thors should search for previous systematic reviews in published literature, and
check the Prospero register of systematic reviews before starting the review
(Thomas et al., 2019, in Higgins et al., 2019).

3·1·2 Determine Eligibility Criteria

The review question in a systematic review must clearly delineate its scope and
what studies are eligible for inclusion (Higgins et al., 2019; Lasserson et al., 2019,
in Higgins et al., 2019). This is one feature that distinguishes a systematic review
from narrative reviews and scoping reviews, and serves to mitigate bias (McKenzie
et al., 2019b). The review question needs to specify what the authors are willing
to accept as evidence, i.e. what populations, what clinical settings, which tests or
treatments, and which study designs are eligible for the review.
For systematic reviews of interventions, eligibility criteria are often expressed in
terms of pico elements. The participants, intervention, and comparison often trans-
late directly into eligibility criteria for a review (McKenzie et al., 2019b, in Higgins
et al., 2019). Eligible studies should match the target population, intervention, and
comparison specified by the review question. Some reviews of interventions may
restrict eligibility to specific outcomes, but determining the range of potential out-
comes is typically part of the aim of an intervention review (McKenzie et al., 2019b,
in Higgins et al., 2019).
Systematic reviews of diagnostic test accuracy do not have an equivalent formaliza-
tion, but the index test, target condition (population), and reference standard are
often used as eligibility criteria, similarly to pico for interventions (Norman et al.,
2019e).
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3·1·3 Determine Target Databases

Systematic reviews require a thorough, objective, and reproducible search (Lefeb-
vre et al., 2019, in Higgins et al., 2019).
Searching a single database is generally inadequate to identify all relevant studies,
andmaymiss up to 40% of relevant studies (Bahaadinbeigy et al., 2010; Betrán et al.,
2005; Egger et al., 2003; Halladay et al., 2015; Lemeshow et al., 2005; Lorenzetti
et al., 2014; Marshall et al., 2019; Nussbaumer-Streit et al., 2018; Parkhill et al., 2011;
Royle and Milne, 2003; Royle and Waugh, 2005; Royle et al., 2005; Sampson et al.,
2003; Slobogean et al., 2009; Stevinson and Lawlor, 2004; Subirana et al., 2005). In
practice, most or all studies relevant to a given systematic review may be indexed
in a single database1 (Booth, 2016b; Halladay et al., 2015), but there is no way to tell
whether this is true without searching all appropriate databases.
A number of literature databases are available, including PubMed (Medline), Em-
base, Cinahl, Ieee Xplore, the Acm Digital Library, Isi Web of Knowledge, Sco-
pus, Citeseer, arXiv, Dblp, and Google Scholar. The archival of literature is balka-
nized, with little overlap between databases (figure 3·2) (Hull et al., 2008). Different
databases cover different subject areas, and database selection is therefore often
guided by the review topic (Lorenzetti and Ghali, 2013).
Failure to search multiple databases may influence the quality of the review, and
is a known source of potential bias (Marshall et al., 2019; Nussbaumer-Streit et al.,
2018; Royle et al., 2005). Different databases often index studies with different
characteristics, and missing studies showing e.g. negative findings may skew the
results of the systematic review (Sterne et al., 2001).
For instance, studies with small sample sizes are more likely to be published in
lower impact journals. Negative results are more likely to take longer to publish,
be published as gray literature, be published in other languages than English, or
not be published at all (Chalmers, 2003; Dickersin et al., 1992; Easterbrook et al.,
1991; Egger et al., 1997; Stern and Simes, 1997; Sterne et al., 2001). A systematic
reviews that only include studies from high impact journals is therefore at risk
of overestimating treatment effects or diagnostic performance. It is important to
search multiple databases so that the set of references that are identified are not
systematically different from those that would have been identified by a more com-
prehensive search (Sterne et al., 2001).
Google Scholar provides almost complete coverage of the published literature (Geh-
anno et al., 2013; Hull et al., 2008). Unfortunately, Google Scholar does not provide
a search interface allowing boolean queries, nor bulk download of its database

1 Including the iconic systematic review of corticosteroid treatment for pre-term birth, where all
studies were indexed in Medline (Booth, 2016b).
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(Martín-Martín et al., 2018). Consequently, while all relevant studies are usually
indexed in Google Scholar, there are no methods to systematically and comprehen-
sively identify these through Google Scholar in a systematic review.
Removing language restrictions from searches in English language databases is
not a good substitute for searching non-English language journals and databases
(Lefebvre et al., 2019, in Higgins et al., 2019).

3·1·4 Construct Search Queries

Search strategies should be planned in ad-
vance, and should be motivated by the el-
igibility criteria of the review, such that
all studies meeting the eligibility criteria
are identified. This includes tailoring the
search to relevant pico criteria, as well as
to publication status and language of pub-
lication (Lefebvre et al., 2019, in Higgins
et al., 2019).
In a Cochrane systematic review, search
query development is a complicated process
that may involve several rounds of revisions.
Cochrane guidelines strongly recommend that
search strategies are ‘peer reviewed by a suitably
qualified and experienced medical / healthcare librarian
or information specialist’ (Lefebvre et al.,
2019, in Higgins et al., 2019). The final
search strategies including search queries
are published as part of the protocol to
promote transparency. While peer re-
view and publication of search strategies
or search queries is required by Cochrane reviews (Lefebvre et al., 2019, in Higgins
et al., 2019), this is uncommon for non-Cochrane systematic reviews (Rombey et al.,
2019).

Google Scholar

ACM

DBLP

ISI WOK

IEEE

PubMed

PMC

arXiv

Scopus

Figure 3.2 – The overlap in several litera-
ture databases, adapted from Hull et al.
(2008). The size of the regions are not
proportional to the number of references
indexed by each database or their relative
overlap.

Where applicable, systematic reviews are recommended to use published, validated
search queries (Cochrane Community, 2019), which have been validated empiri-
cally and demonstrated to yield acceptable sensitivity guarantees (Lefebvre et al.,
2019, in Higgins et al., 2019). Such filters are available to identify rcts, quasi-rcts,
and ccts in Medline, Embase, and Cinahl. No similar filters are known for
identifying dta studies with acceptable sensitivity (Beynon et al., 2013).
Database search queries used in systematic reviews are typically designed for high
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sensitivity rather the specificity (Lefebvre et al., 2019, in Higgins et al., 2019; Loren-
zetti et al., 2014). For instance, published validated search filters to identify rcts
and ccts may yield 100% recall (sensitivity) for 4.3% precision (Eisinga et al., 2007).
For some topics – notably diagnostics – it may not be possible to construct study
type search filters that are both sensitive and specific at the same time (Beynon
et al., 2013; Leeflang et al., 2008, 2006). Consequently, dta systematic reviews
omit study type filters entirely, searching only by target condition (De Vet et al.,
2008, in Deeks et al., 2013a). While this keeps sensitivity high, precision may be
as low as 0.42% (Kanoulas et al., 2018; Norman et al., 2018b).

3·2 Searching and Screening

3·2·1 Run Search Queries

To ensure a comprehensive and unbiased search, systematic reviewsmust systemat-
ically search several sources (Greenhalgh and Peacock, 2005; Lefebvre et al., 2019,
in Higgins et al., 2019), including dedicated literature databases (e.g. Medline,
Embase, and Cinahl), databases of gray literature (e.g. databases of dissertations
and conference abstracts), trial registries (e.g. ClinicalTrials.gov (The US National
Library of Medicine, 2019), the Who’s International Clinical Trials Registration
Platform (Ictrp) (The World Health Organization, 2019), and the Eu Clinical Tri-
als Register (The European Medicines Agency, 2019)), as well as hand searching
relevant journals not covered by the literature databases.
Less than half of all trials are published (Chalmers et al., 2013), and negative re-
sults are more likely to remain unpublished, or published as gray literature (Sterne
et al., 2001). Failure to search sources beyond standard databases may therefore
be at the mercy of publication bias, and may cause a systematic review to overesti-
mate treatments effects (Lefebvre et al., 2019, in Higgins et al., 2019) or diagnostic
performance (De Vet et al., 2008, in Deeks et al., 2013a).
For these reasons, a systematic review may need to consider dozens of databases,
each with its own search engine, metadata, vocabulary, and query syntax (Tsafnat
et al., 2014). Different databases generally use different syntax to specify logical op-
erators such as or, and, and not, different syntax to specify fields such as authors,
year, title, abstract, et c., and different controlled vocabularies, such as the Medical
Subject Headings (MeSH) for Medline (PubMed), or Emtree for Embase (Tsaf-
nat et al., 2014).
Interoperability between databases is rare (Hull et al., 2008; Tsafnat et al., 2014).
Running search queries for a systematic review therefore require specialized exper-
tise in a number of database systems, and is recommended to be performed by –
or with the assistance of – dedicated information specialists (Lefebvre et al., 2019,
in Higgins et al., 2019).
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3·2·2 Deduplicate

When retrieving records from multiple databases, the same records may be re-
trieved from more than one database. To avoid wasting time and resources con-
sidering the same reports multiple times, duplicates are conventionally removed,
a process known as deduplication. However, unless the databases have substan-
tial overlap, the number of duplicate reference may be small, and the gains from
deduplication may vary. If the screening stages were substantially automated the
benefit would largely disappear and deduplication could be performed later in the
process, or omitted entirely.
Deduplication is one of the few steps of the systematic review process where the
use of automation methods is widespread.
Obstacles for deduplication include variant spellings and formatting of titles or
author names, as well as inconsistently indexed meta-data across databases. Dedu-
plicationmethods typically use fuzzymatchingwith heuristic methods, ormachine
learning, and are available in common reference managers such as EndNote (Clar-
ivate Analytics, 2019).
Current systems – based on heuristics or machine learning – perform sufficiently
well that deduplication is ubiquitous in Cochrane systematic reviews (De Vet et al.,
2008, in Deeks et al., 2013a). The cost associated with false negatives (i.e. screening
duplicate records) is typically small. While deduplication has room for future im-
provements, benefits of better deduplication methods may therefore be relatively
minor for systematic reviews.

3·2·3 Screen Abstracts

Deciding which of the candidate references ought to be included in the review is
done manually, according to a pre-specified set of inclusion criteria. To ensure
that the results are reproducible and consistent, and that relevant studies are not
overlooked, it is recommended that the screening is performed in parallel by at
least two screeners (Edwards et al., 2002; Higgins and Deeks, 2011). In the case
that screening in parallel is not feasible (or not useful due to very high agreement),
it is most important that the final decision as to whether to include studies is un-
dertaken by at least two authors (Higgins and Deeks, 2011).
Screening is performed in two steps, first preliminarily based on title and abstract,
then based on full-text. The reason for dividing screening into two stages is due
to the often considerable difficulty inherent in locating full-texts for articles. It is
typically not feasible to retrieve full-text articles for thousands of candidate refer-
ences, but often the vast majority of references can be discarded simply by reading
the titles and abstracts.
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Screening a single study at the title and abstract level takes on average 30 seconds
to one minute for an experienced screener, but may take substantially longer for
inexperienced screeners (Wallace et al., 2010c). Screening a single full-text for inclu-
sion may take around 10 minutes (Norman et al., 2019f). For a systematic review
with a large number of candidate references, the screening stage may therefore
take several months, or even years, to complete.

3·2·4 Retrieve Full Text

Retrieving the full texts of articles is generally burdensome, and difficult to auto-
mate. Obstacles include restrictions imposed by publishers, such as restrictions on
access and subscription models that prohibit automated access to articles, as well
as limited archival of and electronic access to articles. Many of the references in-
cluded in a systematic review may lack identifiers (including doi). In many cases,
the full-texts are only possible to retrieve by contacting the authors.
Even if links to literature is available from journal webpages, journal typically
do not provide standardized application programmable interfaces (api) allowing
scripted access. Downloading full-texts often requires following several links, whi-
ch is difficult to automate. Furthermore, scripted retrieval of literature is often
against journals’ terms of service, and may lead to journals blacklisting ip ad-
dresses if attempted (Elsevier, 2019).
This is also the case for Google Scholar, which includes full-text links for 54.6% of
its indexed articles (Martín-Martín et al., 2018). However, Google Scholar disallows
scripted access, and provides no public api as of 2019 (Martín-Martín et al., 2018).
Some databases provide public apis for scripted access, such as the cross-ref api
for general articles, and the Entrez api for articles in Pubmed Central. These api
provide fair coverage of full-texts for general use. Unfortunately, systematic re-
views need to consider a wide range of literature, including literature from e.g.
small publishers, which are less well covered by these api. The average coverage
for studies in Cochrane dta systematic reviews is less than 10% (Norman et al.,
2018a, 2019e).
Some reference managers, such as EndNote have full-text retrieval functions and
can retrieve articles from several databases semi-automatedly. This retrieval still
requires manual input, and is rate-limited, but is able to retrieve up to 38% of refer-
ences, or 58% of the references with doi or pmids. While low, we are not aware
of more reliable automated methods for full-text retrieval.
While journal and publisher imposed restrictions present barriers to automated re-
trieval of full-text articles, these generally provide alternative access mechanisms
that can be used by e.g. EndNote. Articles from obscure sources may provide a
more formidable obstacle, since there generally is no alternative access route not in-
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volving detective work. Fully automating this process would require autonomous
agents able to contact authors independently (Tsafnat et al., 2014).

3·2·5 Screen Full Text

In the conventional systematic review screening process, references are first in-
cluded based on titles and abstracts only. Abstracts often omit crucial information
necessary to make final decisions, and this initial screening therefore often consists
of removing obviously non-relevant studies. This generally results in the initial
screening being over-inclusive (O’Mara-Eves et al., 2015).
This separation of the screening into two stages is however merely a result of the
human screening process, and the difficulty of performing full-text retrieval. If the
full-text retrieval was adequately automated, we would be better off performing
automated screening directly on the full-texts.
For the most part, screening automation for full-texts is conceptually identical to
screening based on abstracts and titles, except that full-texts often includes addi-
tional information not available in abstracts, such as figures, tables, and references.
There are however a few important addition differences:
First, abstracts are virtually never encumbered by copyright or other restrictions
for public distribution. Full-texts, by contrast, are usually copyrighted. Conse-
quently, there are several datasets available to train models for title/abstract screen-
ing across a range of domains (Alharbi and Stevenson, 2019; Cohen et al., 2006;
Kanoulas et al., 2017a, 2018; Norman et al., 2018c). We are aware of no publicly
available datasets for full-text screening. While we could envision such a dataset
made publicly available if restricted to only open access articles with permissive
licences, such a dataset may not represent the range of studies encountered in a
real systematic review, and would therefore be biased.
Second, full-text articles include sufficient information, and sufficient details to
enable data extraction. The extracted data items are typically the final arbiter for
inclusion in the review, Consequently, if it were possible to extract data automat-
ically from the articles, this could simplify, and possibly trivialize the automated
screening process. Screening would simply consist of a filter selecting those arti-
cles that, e.g. evaluated the relevant index test against appropriate reference stan-
dards. Unfortunately, to make this approach realistic we would need to not only
automate the data extraction to a high degree of accuracy, but also the full-text
retrieval stage. This is not realistic at present.
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Arnold 2001a
Study characteristics
Patient sampling Sample size: 61

Females: Not stated
Age: Not stated

Patient characteristics
and setting

Patients with potentially resectable pancreatic adenocarci-
noma (after scan)

Setting: Germany (setting not clear)
Index tests Diagnostic laparoscopy

Criteria for positive diag-
nosis:

Biopsies of lesions suspicious of
metastases

Target condition and ref-
erence standard(s) Target condition: Unresectability

Reference standard:

Laparotomy for patients with
no evidence of metastases on
laparoscopy; biopsy with his-
tolopathological confirmation of
spread for patients with sus-
pected metastases

Criteria for positive diag-
nosis: Not stated

Flow and timing

Number of indetermi-
nates for whom the
results of reference
standard were available:

Not stated

Number of patients who
were excluded from the
analysis:

Not stated

Comparative
Notes

Table 3.1 – Example of the extracted data from one of the included studies in one systematic
review on ‘accuracy of laparoscopy following computed tomography scanning for assessing
the resectability with curative intent in pancreatic and periampullary cancer’ (Allen et al.,
2013).

3·2·6 Search Reference Lists

This step involves screening the references that have been cited by the included
studies (backward search), or references that cite the included studies (forward
search) (Lefebvre et al., 2019, in Higgins et al., 2019; Tsafnat et al., 2014). The for-
ward citation search may be complemented with database alerts (also called litera-
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ture surveillance services, push services or selective dissemination of information
(sdi) to identify future candidate references that cite records included in the system-
atic review (Greenhalgh and Peacock, 2005; Lefebvre et al., 2019, in Higgins et al.,
2019). This is sometimes called ‘snowballing’ (Greenhalgh and Peacock, 2005).
Searching reference lists has been demonstrated to retrieve references not retrieved
by database searches (Horsley et al., 2011), and have been reported to be useful
for identifying high quality sources in obscure locations (Greenhalgh and Peacock,
2005). For e.g. complex interventions where relevant databases are difficult to
determine at the protocol stage, following reference lists may retrieve as much as
51% of all relevant studies (Greenhalgh and Peacock, 2005).
Searching reference lists is generally recommended for systematic reviews (Green-
halgh and Peacock, 2005) and required in Cochrane systematic reviews (Lefebvre
et al., 2019, in Higgins et al., 2019). In practice, an estimated 92.2% of Cochrane re-
views, and 64.3% of non-Cochrane reviews report following reference lists (Horsley
et al., 2011).

3·3 Writing the Systematic Review

3·3·1 Extract Data

Data extraction in systematic reviews refers to the identification of key character-
istics of included primary studies, such as the methods used to perform the study,
and the condition or population targeted (Li et al., 2019, in Higgins et al., 2019), but
also involves producing assessments of the methodological quality of the included
studies (Reitsma et al., 2008, in Deeks et al., 2013a). The data extraction stage is one
of the more time-consuming stages of the systematic review process (Pham et al.,
2018).
After a set of potentially included studies have been identified, systematic review-
ers complete a so-called data extraction form for each study. These forms comprise
a semi-structured summary of the studies, identifying and extracting a consistent,
pre-specified set of data items from abstracts or full-text articles in a coherent for-
mat (tables 3·1 and 3·3). The coherent format allows the data from the studies to be
synthesized qualitatively or quantitatively to address the research question of the
review.

Quality Assessment

In the preface of his landmark review on scurvy, James Lind pointed out that ‘before
this subject could be set in a clear and proper light, it was necessary to remove a
great deal of rubbish’ (Lind, 1753). This is truemore than 250 years later, and current
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publishing trends in academia seem to only acerbate the problem.
One example comes from genomics. Until the early 2000s, most studies of hu-
man genome epidemiology addressed a single or few genes at a time, and were
performed by single teams, with small sample size (Chalmers et al., 2014; Ioanni-
dis, 2016). This resulted in widespread publication bias, spurious conclusions, and
lack of subsequent replication by consortia-based, genome-wide efforts (Chalmers
et al., 2014). Meta-analyses collating such results almost always give statistically
significant results, but this is simply due to the selective reporting of the included
primary studies (Ioannidis, 2016). Such misleading results have been perpetuated
in systematic reviews with insufficient quality control, many of which are still be-
ing published, and increasing in number (Chalmers et al., 2014; Ioannidis, 2016).
The systematic review results in (typically) more reliable results than individual
primary studies. Part of the reason is the greater amount of data available for anal-
ysis, which usually gives more reliable results with smaller confidence intervals.
However, simply accumulating large amounts of data is not sufficient – if there is
a consistent bias in the way results have been produced, the results of the meta-
analysis may also be misleading.
This problem may be illustrated by the opposite conclusions of two systematic
reviews comparing low molecular weight heparins and standard heparin in the
prevention of thrombosis after surgery. One systematic review concluded that
low molecular weight heparins were more effective than standard, while the other
systematic review concluded no convincing evidence of a difference. The main
difference between the two systematic reviews is that the former included all stud-
ies, whereas the latter only included studies of high quality (Egger and Smith, 1998;
Leizorovicz et al., 1992; Nurmohamed et al., 1992).
It may be possible to mitigate the effects of low quality studies by excluding these,
but even if all studies are included in the analysis and conclusions it is still rec-
ommended practice to summarize the quality appraisal of the included studies, to
offer a general impression of the reliability of the available evidence (Leeflang et al.,
2008). Overall scores are discouraged since different biases may generate different
magnitudes, or directions of bias.

3·3·2 Homogenize Data

Studies included in a systematic reviewmay exhibit large variations in terminology
and reporting.
In some areas, language may be standardized with studies using consistent and
widely understood terminology, allowing different studies to be easily compared
using the labels and descriptions used in the study reports (McKenzie et al., 2019a,
in Higgins et al., 2019). In many areas however, terminology may be variable, and
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Ahmed 2008 – + ? – + + +

Arnold 1999 – + ? – + + +

Arnold 2001a ? + ? ? + + +

Beenen 2014 – + ? – – + +

Brooks 2002 ? + ? ? + + +

Contreras 2009 – + ? – + + +

Fernandez-Castillo 1995 – + ? – + + +

John 1995 ? + ? ? + + +

Kishiwada 2002 – + ? – – + +

Lawy 2012 + + ? ? + + +

Menack 2001 ? + ? ? + + +

Merchant 1998 – + ? ? + + +

Reddy 1999 – + ? – + + +

Reed 1997 ? + ? ? + + +

Shah 2008 – + ? – + + +

Warshaw 1986 ? + ? – + + +

– High risk ? Unclear risk + Low risk

Risk of Bias Applicability Concerns
Patient Selection

Index Test
Reference Standard

Flow & Timing

Figure 3.3 – Risk of bias assessments for the included studies in one systematic review
on ‘accuracy of laparoscopy following computed tomography scanning for assessing the
resectability with curative intent in pancreatic and periampullary cancer’ (Allen et al., 2013).
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it may be necessary to standardize the description of study characteristics across
included studies to facilitate comparisons (McKenzie et al., 2019a, in Higgins et al.,
2019).
Conventions in reporting of measurements may also differ in metrics, units, or
formats and comparisons may therefore be facilitated by converting measures into
canonical formats (Tsafnat et al., 2014).

3·3·3 Synthesize Data

Synthesis refers to the process of bringing together data sets of included studies
with the aim of drawing conclusions about the body of evidence (Page et al., 2019b,
in Higgins et al., 2019). Systematic reviews are also useful for investigating how
scientific findings vary by particular subgroups (Leeflang et al., 2008), and there-
fore commonly perform several analysis, one for each group of interest (McKenzie
et al., 2019a, in Higgins et al., 2019).
Included analyses should be reasonable in number, but should include all meaning-
ful analyses. Systematic reviews of interventions should include both adverse and
beneficial outcomes (McKenzie et al., 2019a, in Higgins et al., 2019).
Determining which studies are similar enough to be grouped into separate anal-
yses is based on the data extraction in the previous stage. Groups in systematic
reviews of interventions often consist of similar population groups, specific inter-
ventions, different control groups, or different outcomes (pico). For instance, dif-
ferent groups of analysis could examine the effectiveness of an intervention at
different time points or for different outcome measures. Groups in systematic re-
views of diagnostic tests often consist of similar populations groups, index tests
or reference standards. For instance, different groups of analysis could examine
the diagnostic performance of a diagnostic at different thresholds (Leeflang et al.,
2008).
How different studies will be grouped into individual analyses should to the great-
est extent possible be specified in the protocol (McKenzie et al., 2019b, in Higgins
et al., 2019). In practice, criteria may need to be adapted based on the evidence en-
countered, particularly for e.g. systematic reviews of complex interventions, where
it may not be possible to define groups in the protocol (Greenhalgh and Peacock,
2005). Changes to the specifications of the groups could occur because methods
for dealing with particular issues had not been identified at the time of writing the
protocol, the literature search uncovered insufficient data for the analysis meth-
ods to be viable, or because preferable alternatives or more recent guidance were
identified during the review (Page et al., 2019b, in Higgins et al., 2019). Planning
contingencies for anticipated scenarios is however preferable to post-hoc decision
making (McKenzie et al., 2019a, in Higgins et al., 2019). For transparency, any
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changes between the protocol and the review must be described and justified in
the review (Page et al., 2019b, in Higgins et al., 2019).

3·3·4 Re-check Literature

A systematic review of interventions takes on average 67months to complete, from
publication of protocol to publication of the final review, and the vast majority of
this time is spent on the stages prior to the meta-analysis (Allen and Olkin, 1999;
Borah et al., 2017). Additional relevant studies are therefore likely to have been
published after the initial database search were performed. A second search may
therefore be necessary to identify these additional references.
This second search is however entirely caused by the necessarily slow manual
screening process, and would be entirely unnecessary if the screening process was
automated.

3·3·5 Meta-Analyze

When the results of the individual primary studies are summarized, but not com-
bined statistically, this is called a qualitative systematic review (Cook et al., 1997).
In a quantitative systematic review the statistical data is combined in a so-called
meta-analysis. The meta-analysis process is not unique to systematic reviews –
some of the first known meta-analysis work was done by Karl Pearson in 1904 to
combine data of the effectiveness of enteric fever inoculations from multiple mili-
tary bases in South Africa and India (Simpson and Pearson, 1904). The data from
the multiple studies were provided – not by the published literature – but by the
British Army. Neither is the term ‘meta-analysis’ of medical origin – it was coined
by American social scientist Gene Glass in 1976 (Glass, 1976).1
A systematic review seeks to answer a research question. How it will do this will
depend entirely on the nature of the question. Broadly speaking, we can divide the
methodology into quantitative and qualitative analyses.
A qualitative analysis is often undertaken if the included studies are heterogeneous.
For instance, if the included studies report differentmeasures it may not be possible
to compare the studies any other way than listing their individual findings and
discuss them.
A quantitative analysis, more commonly called a meta-analysis is usually under-
taken if the studies report the same or similar outcomes, using the same measures,
have been conducted in the same settings, et c..

1 In fact, research synthesis methods were pioneered by American social scientists – Glass one of
them – in the 1970s, with the medical field only starting to take significant interest in the late 1980s
(Chalmers, 2003)
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The meta-analysis requires systematic reviewers to make two judgements, choice
of method, and choice of data. Once it has been decidedwhat data should be synthe-
sized, the remainder of the process is entirely deterministic. For systematic reviews
of interventions, calculating analyses using the mixed random effects model can
be performed entirely within RevMan. For systematic reviews of diagnostic test
acuuracy, the equivalent functionality is not available within RevMan, but only in
external statistics software.

3·3·6 Write Review

A systematic review follows the same procedures as any scientific inquiry, and
the publication of results largely mirror the publication of any scientific findings
(Chalmers, 2003). Structured and transparent reporting is essential for any system-
atic review (Page et al., 2019a, in Higgins et al., 2019).
The target audience for a systematic review are a range of decision makers, includ-
ing healthcare professionals, consumers, and policy and guideline developers. Thus
systematic reviews are frequently read by stakeholders with a basic sense of the
topic, who may not necessarily be experts in the area (Page et al., 2019a, in Higgins
et al., 2019). Systematic review report usually aim for the same style and language
as primary research in their topic, but Cochrane systematic reviews commonly
include layman’s summaries to make the findings available for non-experts.

Summary

Systematic reviews follow a systematic process with rigorous checks
and balanced to minimize errors and sources of bias

The systematic review process is almost entirely manual, with
most steps involving substantial human input and oversight. Several steps are
performed in parallel by multiple review authors to reduce bias

Several stages have very high workload, and commonly take months
or years to complete. Particularly the screening and data extraction stages
involves substantial human effort
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TT
he large and growing number of studies published every year
is making it ever harder to identify studies meeting the inclusion
criteria in systematic reviews in an unbiased way. The median delay
between the publication of the protocol and the final review for a
Cochrane systematic review is two and a half year, with some taking

over seven years. There is both a need to decrease the workload, as well as to
improve the timeliness of published systematic reviews.
Screening automation has been proposed as a potential solution. By usingmethods
from natural language processing, information retrieval, or related fields, it may
be possible to decrease the amount of work that needs to be performed manually.
Automated screening systemsmay automatically exclude some of the candidate ref-
erences or decrease the amount of time that need to be spent manually reviewing
each reference. Automated data extraction systems may automatically extract in-
formation from published articles or aid extractors in finding relevant information
in the text.
The purpose of this section is to give an overview of the previous literature of
screening automation. This overview of the literature is largely based on the litera-
ture identified in the 2015 systematic review byO’Mara-Eves et al., wherewe repeat
the search queries to identify additional studies published between 2015–June 2019.
Additional studies were also identified by searching reference lists. Some studies
became known to us through the course of this project.
We will first (section 4·1) give a brief overview of relevant text mining methods. In
section 4·3 we will summarize the identified literature and the types of approaches
andmethods that have been addressed by previous literature. In section 4·4 wewill
summarize the metrics and evaluation methods that have been used by previous
literature. In section 4·5 we will summarize the publicly available datasets that
have been used by multiple authors previously. In the final section (4·6), we will
list the identified studies, with a brief summary of each study.
Several of the studies presented in this thesis (Norman et al., 2017b, 2018b,c, 2019f)
are elegible for inclusion in this overview, but were omitted from this list. These
will be presented in parts II and III. One of our earlier studies (Norman et al., 2017c)
was omitted from this thesis, but is listed in the list of publications (appendix a).
In particular, with this overview we attempt to address the following questions:

1. What approaches and methods have been used by previous literature?
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2. How have different approaches andmethods been evaluated by previous literature?

3. What datasets are available for performance comparisons?

4·1 Text Mining Methods

Broadly, machine learning attempts to make predictions about future data by iden-
tifying structure in past data. Information retrieval seek to retrieve information
relevant to a query posed by a user. Collectively, these approaches are sometimes
referred to as text mining.

Supervised learning is amachine learning approach that attempts to construct
mathematical models from sets of data composed of the desired input and output
pairs. For instance, a spam filter can be trained by showing example spam emails
labeled as ‘spam’, and non-spam emails labeled as ‘non-spam’. The model should
then be able to independently distinguish between spam and non-spam in future
emails, even if these new emails use different language.

Classification is a form of supervised learning where the desired output are
discrete classes, e.g. spam / non-spam emails, relevant / non-relevant documents,
or positive / neutral / negative sentiments.
Examples of classification methods include support vector machines (svm), naive
Bayes, voting perceptrons, decision trees, evolutional svm, waode, Rocchia, gener-
alized linearmModels, neural networks, gradient boosting machines, and random
forests.
Many of these methods are available in publicly available software packages, in-
cluding LibSVM,1 svmlight ,2 scikit-learn (Pedregosa et al., 2011), or Weka.3

Regression is a form of supervised learning where the desired output are contin-
uous values in a range, e.g. temperature, length, or probability. Examples include
support vector regression (svr), logistic regression, and neural networks.

Unsupervised learning is a machine learning approach where no examples of
desired output are provided, and the model will seek to discover structure in the
input data autonomously. Clustering is one of the primary types of unsupervised
learning, where machine learning model attempts to identify groups or clusters
of objects that share similarities. For instance, clustering could be used in market

1 https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/https://www.csie.ntu.edu.tw/ cjlin/libsvm/
2 http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/http://svmlight.joachims.org/
3 https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/https://www.cs.waikato.ac.nz/ml/weka/
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research to group similar customers into market segments. Examples of clustering
methods include kNN and latent Dirichlet allocation (lda).

Semi-supervised learning is a related approach that used both labeled and
unlabeled training data. The approach is typically used when a large amount of
relevant unlabeled training is available but labeling large amounts of these exam-
ples is expensive. Semi-supervised learning can then learn the target concept from
the labeled training data, while simultaneously learning from the structure in the
unlabeled data.

Transfer learning is an approach that is commonly used where labeled train-
ing data is scarce, but where labeled data for a related concept is abundant. A
model can then be trained to recognize the related concept in order to apply this
knowledge to the target concept. The model can then be fine-tuned with training
examples of the target concept. For instance, if we want to construct a model to rec-
ognize hand-written characters but lack appropriate training data, we could first
try a model trained using printed characters.

Ranking is a data science problem which seek to produce and ordering of items
according to some criterion. Thus the model is provided a list of items, and should
produce and ordering of the items. Ranking is central to information retrieval,
where this is used to obtain items (commonly documents) relevant to an informa-
tion need, but it also central to machine learning, where it can be used e.g. for job
scheduling to prioritize high-priority tasks over low priority ones.
Information retrieval approaches to ranking commonly use unsupervised models
of document similarity to retrieve documents similar to a provided search query.
Conceptually, both the candidate documents and the query are converted into vec-
tors (often using term or word count statistics) and a similarity score is then calcu-
lated between the query and each candidate document. The candidates can then be
ranked by the similarity score. Examples of document similarity measures include
cosine similarity and bm25.
Ranking models can also be learned with supervised learning, i.e. by providing a
machine learning model with training examples of desired orderings (Fuhr, 1992).
This is called learning-to-rank.
In the most straightforward approach to learning-to-rank, a model is trained to
estimate the relevance of each candidate reference (pointwise learning). This is
thus a form of probability regression. The objects can then be sorted based on the
assigned scores.
It is possible to train models to produce rankings without explicitly assigning a
score to each object. The goal of the training in this is case is to minimize the
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number of inversions: the number of pairs that appear in the wrong order. This is
known as ordinal regression, and can be done using machine learning methods by
training on pairs of references (pairwise training) or on an entire list of references
(listwise training) (Burges, 2010). Examples include RankNet, LambdaRank, and
LambdaMart.

Active learning is an iterative approach which is commonly used where unla-
beled data is abundant, but manual labeling is expensive. The model then incre-
mentally queries a human teacher for additional labels, often with a strategy to
prioritize new training examples that would be the most informative. By prefer-
entially querying for labels to data items that are the most important to learn the
target concept, active learning often uses much fewer training examples than nor-
mal supervised learning.

4·1·1 Feature Representations

Machine learning models are mathematical, and assume numerical inputs. Most of
the real-world objects wewant to identify structure in are not inherently numerical.
Our first step is therefore to convert the objects – images, sound files, text, et c.–
into mathematical representations. The components of these representations are
conventionally called features in machine learning (or variables in the related field
of statistics).
Text data is commonly converted into numerical representations by replacing each
word with a number, with the same number for the same word. Commonly, words
are first replaced with their lemmata,1 the canonical dictionary form of the word.
In this way do, did, does will each be turned into do before being turned into num-
bers, and will therefore have the same numerical representation. A simpler and
less expensive alternative to lemmatization is stemming, where the ending of the
word is truncated using simple rules. Stemming may give different results from
lemmatization, in particular for morphologically rich languages. For instance the
word meeting has the the stem meet-, but the lemmata meet or meeting depending
onwhether it is used as a verb gerund or a noun. Stemming and lemmatization also
give different results for a small number of homographs with different lemmata.2
Stemming is often sufficient, and typically produces similar results to lemmatiza-
tion.
One of the simplest and most common feature representations for textual data is
the bag-of-words (bow) model. In natural languages word order matters: a ma-

1 Singular: lemma, plural: lemmata
2 I.e. words which happen to be written the sameway but have different dictionary forms. The author

is aware of five such homographs in English: bustier, does, evening, moped, and number
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chine learning model is mathematical has a different meaning than model is learn-
ing a mathematical machine. The bag-of-word model takes sentences and simply
notes whichword occur in the sentence or document, and – optionally – howmany
times. The two examples sentences above would therefore have the same bag-of-
word representation. The bag-of-word representation thus ignores finer nuances
of meaning, but it is often sufficient for ranking or classification.
If the bag-of-word representation simply records the presence or absence of indi-
vidual words, we call it a binary representation. If the bag-of-word representa-
tion records the frequency of the word in the text snippet, we call it a frequency
representation. Often, frequency representations are normalized to give greater
weight to words that are infrequent in the language, under the assumption that
such words are more likely to be salient. One common such normalization is called
tf ·idf, which is defined as the term frequency in the sentence (tf ) divided by the
logarithm of the inverse document frequency (idf ), the number of text snippets it
does not appear in.

An n-gram is a continuous sequence of n words in a sentence.1 Lower order n-
grams are commonly referred to by latin prefixes, i.e. unigram for 1-gram, bigram
for 2-gram, and trigram for 3-gram. The bag-of-words representation may contain
individual words, i.e. unigrams, but higher order n-grams are commonly used in
order to capture more complex semantics, such as technical terms, expressions, or
limited forms of word order.

4·2 An overview of Screening Automation Methods

4·2·1 Database Searches

To perform this overview, we attempted to repeat the systematic review performed
by O’Mara-Eves et al. (2015). O’Mara-Eves et al. searched 19 databases for candi-
date references. Searching 19 databases is however outside the scope of this review,
and we therefore focused on searching PubMed, the Acm Digital Library, and Ieee.
We attempted to use the same database query as O’Mara-Eves, without modifica-
tions if possible. However, the query syntax used in Acm Digital Library has been
updated since 2014, and currently does not support searching all fields. As a com-
promise, we search in abstracts only.
O’Mara-Eves et al. limited inclusion to studies published between 2005 and Febru-
ary 2014. The earlier limit was chosen because the first proposed application of nat-
ural language processing in systematic reviews was reportedly published in 2005.

1 Or more generally, a continuous subsequence of items in a sequence. Character n-grams, i.e. se-
quences of n strings of characters in a word are also commonly used in natural language processing.
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We similarly limited the search to studies published between January 2005 and
June 2019, dividing the references into references published before and after De-
cember 31, 2013. We used this date as the pivot, rather than February 28, because
we do not have the exact date of publication for all references, only the year. The
database search was performed in June 2019. Unlike O’Mara-Eves et al., who used
two reviewers to screen titles and abstracts, and one reviewer to screen full-texts,
we let a single reviewer sceeen both stages (cn).
To limit the number of references to screen, we used a screening reduction model
(Norman et al., 2019a). As training data we used all references identified through
the database search that were published between January 1, 2005 and December 31,
2013, i.e. those that would have been eligible for inclusion in the Systematic review
by O’Mara-Eves et al. We manually added the 43 studies included by O’Mara-Eves
et al. as positive training data. Three studies included by O’Mara-Eves et al. were
published in 2014 and were included in the training set. We removed duplicates,
and labelled all other studies in in the training set as negative.
To evaluate the performance of the method, and to establish an acceptable cut-off,
we first measure the simulated performance using cross-validation on the training
set. To evaluate whether abstracts are necessary for judgments, we repeated the
evaluation with and without abstracts.

4·2·2 Inclusion Criteria

We included studies meeting the same inclusion criteria as used by O’Mara-Eves
et al., divided into a two stage screening process as follows. References were first
included based on titles and abstracts using the following criteria:

1. Must be published after 2004

2. Must be relevant to natural language processing

3. Must be relevant to the screening (document selection) stage of a systematic re-
view (or a review of the evidence that follows systematic principles, such as health
technology assessment (hta) or guidelines development)

The following criteria were used for full-text screening:

1. Must be relevant to natural language processing methods or metrics

2. Must be relevant to the screening stage of a systematic review (or similar evidence
review)
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3. Must not be a general discussion of the use of natural language processing in sys-
tematic reviewing screening. That is, the record must present a detailed method or
evaluation of a method.

4·2·3 Results

A total of 1,265 references remained after deduplication, with 770 references pub-
lished between 2005–2014, which should have been included in the systematic re-
view by O’Mara-Eves et al., and 493 references published in 2015 or later. Based
on the cross-validated results, we screened the first 100 references. This overview
identified 73 individual publications, of which 33 were included in the 2015 O’Mara-
Eves et al. review.

4·3 Summary of Screening Automation Approaches

Screening automation is an umbrella term for several disparate approaches with
the common goal of reducing the workload during the screening stage in system-
atic reviews (O’Mara-Eves et al., 2015). These include using classification or rank-
ing methods to automatically exclude non-relevant records (screening reduction),
using natural language processingmethods to aid judgements and thereby increase
the rate of screening (visual text mining (vtm)), using classification or ranking
methods instead of a second screener (automation as a second screener), or using
screening prioritization to identify relevant records earlier in the process (screen-
ing prioritization) (O’Mara-Eves et al., 2015). Methods have been used from a range
of fields, including natural language processing, machine learning, information re-
trieval and statistics (Beller et al., 2018; O’Mara-Eves et al., 2015; Tsafnat et al., 2014).
Of these, screening prioritization is the only approach that does not automatically
exclude references, and is therefore the only approach considered safe for use in
systematic reviews.

Screening reduction methods work by using automated methods to reduce
the number of studies that need to be manually screened. The workload reduction
in this approach comes from the reduction in number, not the order in which ref-
erences are screened. Once the number is reduced, screening may proceed in any
order.
The first screening reduction approach is to use a classification algorithm, where
the algorithm is trained to explicitly model binary include/exclude decisions.
The second screening reduction approach is to use a ranking algorithm, where a
regressor is trained to model the probability of inclusion/exclusion (Fuhr, 1992). All
items falling below some threshold are then excluded from consideration (O’Mara-

49

4



Background & Context

Eves et al., 2015).
The main difference between a classifier and a regressor with a cut-off is how the
two are trained: the classifier is typically trained to minimize the number of mis-
classifications, i.e. the optimal placement of the classification boundary, whereas
the regressor is trained to model the scores of each item in the list. The two may
therefore give slightly different results. The classifier does not need to care about
the ordering of items on each side of the classification boundary. Conversely, the
regressor may produce a ranking with a sub-optimal classification boundary if this
gives a better overall ordering of items.

Screening prioritization similarly uses ranking to reduce the workload, but
the primary intent is to change the order of screening, so that relevant records
are screened before non-relevant ones. The number of records to screen can be
reduced by combining screening prioritization with a cut-off threshold. The main
difference compared to screening reduction is that screening prioritization does not
add an extra filtering step before the screening commences, but rather modifies the
screening process to screen in descending order of likelihood of relevance.

Automation as a second screener does not attempt to reduce the number
of references that need to be screened, but rather to avoid having each reference
screened by multiple screeners. In the conventional process, each reference is
screened by at least two screeners (cf. section 3·2·3). This is to ensure the repro-
ducibility and consistency of the results, as well as to avoid relevant studies ‘slip-
ping through the net’. A single screener could introduce bias to the process due
to their interpretation of the inclusion criteria or their understanding of the titles
and abstracts (O’Mara-Eves et al., 2015). It is believed that if at least two screen-
ers apply inclusion criteria consistently, then the process is unlikely to be biased
(O’Mara-Eves et al., 2015).
Seven papers have advocated partially replacing one of the screeners with an au-
tomated system (Bekhuis and Demner-Fushman, 2010, 2012; Bekhuis et al., 2015,
2014; Frunza et al., 2010, 2011; García Adeva et al., 2014). In this approach, a single
human reviewer screens all references, and an automated system works as a check
that the included studies are consistent and no studies have been overlooked.
All systems evaluated in terms of recall and precision of included studies. In other
words, all the system attempted to classification methods to identify relevant stud-
ies, rather than attempt to identify misclassifications by the first screener.

Automated identification of trial registrations has been proposed by
one study (Martin et al., 2019; Surian et al., 2018). The authors used matrix factoriza-
tion combined with pca and lda to identify trial registrations in ClinicalTrials.gov.
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They report a 60.9% recall at 100 screened, and propose that the method may pro-
vide an inexpensive and useful test to identify when a sufficient number of new
studies have been planned to warrant updating a review.
However, the authors reported optimal wss@95 scores of 99.4% which was worse
than the tf ·idf similarity baseline (99.5%), and it is unclearwhat benefits themethod
provide over standard similarity measures.
The same group of authors (Dunn et al., 2018) similarly used machine learning
to identify trial registration at ClinicalTrials.gov where such links were missing,
reporting 86% recall at 50 references screened. Approximately 45% of published
trials had unreported links.

Visual text mining methods attempt to present a graph of the connections be-
tween documents, with connections between similar documents (e.g. by document
similarity or author connections). Hypothetically, this approach may allow screen-
ers to more quickly locate similar documents, and conversely, to more quickly ex-
clude documents dissimilar from clusters of relevant studies. All candidate refer-
ences are screened – the goal of the approach is to be able to make judgements
more quickly based on the visual locations of the studies in the graph in addition
to abstract and title information.
Five papers have advocated this approach, all in software engineering (Felizardo
et al., 2012a,b, 2011, 2013; Malheiros et al., 2007). These results suggest that review-
ers can screen more quickly using this approach as with randomized order with
similar accuracy (O’Mara-Eves et al., 2015).

Other automated approaches have also been proposed to improve the screen-
ing process. Wallace et al. (2010a) proposed efficient citation assignment, where an
active learning model will model both relevance to the research question as well as
the expected time it will take to screen individual references. By purposefully as-
signing easier references to junior screeners, andmore difficult references to senior
screeners, the authors report that more references could be screened in the same
amount of time compared to conventional active learning approaches. Bannach-
Brown et al. (2019) proposed to use machine learning models for error analysis of
screened references. They applied the machine learning models on the references
screened by human experts in order to identify instance where references had been
inadvertently included or excluded. In this way, they identified 11 records that had
been wrongly included, and 36 records that had been wrongly excluded.
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4·4 Metrics Used in Previous Literature

Recall, sensitivity or true positive rate (tpr) is the percentage of rele-
vant items identified by the model:

tp
tp+ fn

Precision is the percentage of relevant items among the retrieved items:
tp

tp+ fp

Specificity or true negative rate (tnr) is the percentage of non-relevant
items correctly excluded:

tn
tn+ fp

Accuracy is the percentage of correctly classified items (both relevant and non-
relevant):

tp+ tn
tp+ tn+ fp+ fn

F measure is also known as the f score or the f1 measure, and is defined as the
harmonic mean of recall and precision:

2 · precision × recall
precision + recall

This metric place equal importance on precision and recall, and is therefore of lim-
ited usefulness in systematic reviews, where recall is much more important than
precision. Alternatives have been proposed that give more weight to recall, includ-
ing the f3 score which gives recall three times the weights of precision (Bekhuis
and Demner-Fushman, 2010).

Roc (auc) is the area under the curve tracing the sensitivity against the specificity.
A auc equal to 1 is a perfect ordering, 0.5 a random ordering, and 0 is a perfect
reverse ordering.

52



4. Systematic Review Automation

Work saved over sampling is the percentage of references not needed to screen
to retrieve 100-α% of the included, compared to simply sampling 100-α% of the can-
didate references:

wss@α =
tn+ fn

tp+ tn+ fp+ fn − α

wss@95 was proposed by Cohen et al. in the earliest known example of screening
automation (Cohen et al., 2006). The measure was later abandoned by the same
author in favor of auc since it fails to capture different recall requirements in
different reviews.
Wss is relatively easy to interpret in terms of systematic review impact. Unfor-
tunately, since the measure depends on the position of a single included study at
the end of the ranking, the measure is strongly influenced by random effects, and
therefore tend to have large variance.
A number of other performance metrics have been used in previous literature, in-
cluding time, burden, yield, utility, baseline inclusion rate, performance, coverage,
unit cost, classification error, error, absolute screening reduction, prioritized inclu-
sion rate, average precision (ap), cumulative gain (cg), discounted cumulative gain
(dcg), normalized discounted cumulative gain (ndcg), reciprocal rank, lossR, lossE ,
and reliability (Kanoulas et al., 2017a; O’Mara-Eves et al., 2015). Many of these have
been used infrequently, and can therefore not be used for comparisons, or are un-
suitable to measure performance of screening automation, and we will therefore
not cover them in this section.
In particular, many metrics make assumptions about utility that are wrong or detri-
mental when used for systematic review screening. In a systematic review, false
positives and false negatives are not associated with the same cost (Wallace et al.,
2010b). Including an extra study typically leads to 30–60 seconds higher workload
for the screeners, whereas missing a relevant study runs the risk of invalidating the
results of the review and potentially recommending diagnostic tests or treatments
that are poor or harmful to patients.
Several commonly used metrics, including the f1 measure and auc, give equal
weight to false positives and false negatives, and are therefore poorly suited to eval-
uate screening automation methods. Alternatives have been proposed to counter
this, including the f3 score which gives recall three times the weights of precision
(Bekhuis and Demner-Fushman, 2010), and the u19 score which gives recall 19 times
the weight of the workload (Wallace et al., 2010b,c).
Similarly, the majority of conventional information retrieval metrics (ap, cdg with
variants, reciprocal rank, loss, reliability) are predominantly ‘top-heavy.’ That is
to say, they try to measure the ability of the retrieval methods to fill the top of
the list with relevant items, rather than its ability to find all relevant items. This
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typically works well for web searches, where users are unlikely to examine the
retrieved results beyond the first few pages, but may be disastrous in the context
of screening automation, where perfect recall is expected.

4·5 Available datasets

In one of the earlier papers on the subject, Cohen et al. (2006) constructed the
Drug Effectiveness Review Project dataset (Derp) from 15 reviews on drug efficacy.
This dataset was later extended to 18 (Cohen et al., 2010), and then to 24 reviews
(Cohen et al., 2009). The smaller dataset comprising 15 reviews has been made
available (Cohen et al., 2006)1. Several methods have been tested on this dataset
(table 4·1), and this dataset therefore constitute among the closest things we have
to a standard dataset for comparison of performance.
There are a few inconsistencies in the dataset that are not explained:

1. Over 1,000 references are included in more than one review topic. Some of these
have different labels in different topics. Consequently, the dataset has a non-trivial
amount of topical overlap, which might help intertopic training, since some of the
references will be included in both the training and test sets.

2. In the dataset, 2,150 references have no abstracts in PubMed. It is unclear whether
these should be treated the same way as the other references.

3. One reference is not be indexed in PubMed (pmid 12168612).

The second broadly used dataset is the Clef eHealth dataset of dta systematic
reviews. This data was distributed as part of Clef eHealth Task 2: Technology
Assisted Reviews in EmpiricalMedicine, and has therefore been used for evaluation
by a number of studies. Note that the task formulation changed between 2017 and
2018. Only the studies included in the second stage were considered relevant in
the first iteration of the Clef shared task (Kanoulas et al., 2017a). In the second
iteration this decision was inverted, and instead all studies included in the first
stage were considered relevant (Kanoulas et al., 2018).
A shared task is a community challenge where participating systems are trained
on the same training data, and evaluated blindly using pre-decided metrics (Chap-
man et al., 2011; Huang and Lu, 2015). The shared task model removes many of the
problems inherent in performance comparisons, and normally serves to safe-guard
against cheating, mistakes, the cherry-picking of metrics or data, as well as publi-
cation bias. The Clef task diverged from standard practice for shared tasks by

1 The old link has however expired. The data can now be found at
https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
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Dataset Study
Drug Class Efficacy Project (Derp) [1] Cohen et al., 2006

Topic: [6] Martinez et al., 2008
Interventions (drugs), various topics [4] Cohen, 2008

[9] Cohen et al., 2009
[17] Matwin et al., 2010

[15] Bekhuis and Demner-Fushman, 2010
[2] Cohen et al., 2010
[26] Choi et al., 2012

[33] Jonnalagadda and Petitti, 2013
[48] Khabsa et al., 2016
[47] Howard et al., 2016

[50] Ji et al., 2017
[73] Olorisade et al., 2019

TrialStat [10] Kouznetsov et al., 2009
(Kouznetsov et al., 2009; Razavi et al., 2009) [8] Razavi et al., 2009

Topic: [11] Kouznetsov and Japkowicz, 2010
The dissemination strategy of health care services for [13] Frunza et al., 2010

elderly people of age 65 and over [23] Frunza et al., 2011
Chronic Obstructive Pulmonary Disease (Copd) [25] Wallace et al., 2011

(Castaldi et al., 2009; Wallace et al., 2011) [14] Wallace et al., 2010c
Topic: [25] Wallace et al., 2011

Genetic associations with copd [39] Miwa et al., 2014
Proton Beam [14] Wallace et al., 2010c

(Terasawa et al., 2009; Wallace et al., 2010c) [12] Wallace et al., 2010b
Topic: [20] Wallace et al., 2010a

Charged particle radiation therapy for cancer [39] Miwa et al., 2014
Micro Nutrients [14] Wallace et al., 2010c

(Chung et al., 2009; Wallace et al., 2010c) [12] Wallace et al., 2010b
Topic: Associations of micronutrients and disease [39] Miwa et al., 2014

Clef eHealth [37] Cormack and Grossman, 2017
(Kanoulas et al., 2017b, 2018) [52] Van Altena and Olabarriaga, 2017

Topic: Dta studies, various topics [53] Chen et al., 2017
[61] Anagnostou et al., 2017

[54] Lee, 2017
[55] Di Nunzio et al., 2017

[57] Scells et al., 2017
[58] Alharbi and Stevenson, 2017

[59] Kalphov et al., 2017
[60] Singh et al., 2017

[38] Cormack and Grossman, 2018
[63] Minas et al., 2018
[68] Wu et al., 2018

[69] Cohen and Smalheiser, 2018
[56] Di Nunzio et al., 2018
[70] Alharbi et al., 2018

Table 4.1 – List of publicly available datasets used by more than one study. Adapted from
Olorisade et al. (2016), with subsequent studies added.
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not blinding participants to the gold standard data used for evaluation (see section
7·5·5). This may have been a cause of biases in the reported results, and the results
should be interpreted with this in mind. Even so, the Clef dataset is still useful to
compare results across different methods and implementations
In addition to the Derp and Clef datasets, several studies have used the TriaStat,
Copd, Proton Beam, and Micro Nutrient datasets, although many of these studies
have been conducted by the same groups of people, using similar methods (see
table 4·1).

4·6 List of Individual Studies

1 (Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006)(Cohen et al., 2006): Cohen, A. M., Hersh, W. R., Peterson, K., and Yen, P.-Y.
(2006). Reducing workload in systematic review preparation using automated

citation classification. Journal of the American Medical Informatics Association,
13(2):206–219

2 (Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010)(Cohen et al., 2010): Cohen, A. M., Ambert, K., and McDonagh, M. (2010). A
Prospective Evaluation of an Automated Classification System to Support Evi-

dence-based Medicine and Systematic Review. Amia Annual Symposium Proceed-
ings, 2010:121–125

The first known use of machine learning for screening automation was done by
Cohen et al. in 2006. The authors constructed a dataset from 15 systematic reviews
of drug class efficacy, later to be called theDrug Evaluation Review Project (Derp).1
The same paper also introduce the wss metric.
The authors applied a standard machine learning classifier (voting perceptron) in
order to retrieve references that are topically relevant and high quality. Reported
wss@95 ranged from 0% to 67.95%.
This paper appears to be earliest mention of the common assumption that 95%
recall is sufficient for systematic reviews, with the rationale: ‘For this study, we
assumed that a recall of 0.95 or greater was required for the system to identify an
adequate fraction of the positive papers. Precision should be as high as possible,
as long as recall is at least 0.95.’
In a followup study [2], Cohen et al. used the same dataset extended to 18 reviews.
This extended data does not appear to have been published. Apart from the larger
dataset, this study uses the same method as in the previous study [1].

1 https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
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3 (Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007)(Ma, 2007): Ma, Y. (2007). Text classification on imbalanced data: Applica-
tion to systematic reviews automation. Master’s thesis, University of Ottawa

(Canada)

The first known use of active learning for systematic reviews was done in the
2007 master thesis by Ma. Ma used 14,276 references from previous systematic re-
views of nutrition and diet interventions for heart disease and stroke. The author
used Complement Naive Bayes with Bi-Normal Separation for feature selection,
and clustering based sample selection to deal with class imbalance, and reported a
wss@100 of 53.4% on the dataset.

4 (Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008)(Cohen, 2008): Cohen, A. M. (2008). Optimizing feature representation for
automated systematic review work prioritization. Amia Annual Symposium

proceedings, pages 121–5

5 (Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011): Cohen, A. M. (2011). Performance of support-vector-machine-
based classification on 15 systematic review topics evaluated with theWSS@95

measure. Journal of the American Medical Informatics Association : Jamia, 18(1):au-
thor reply 104

In these studies, Cohen, evaluated the use of svm with n-grams (n < 5), MeSH
terms, and Umls. All features were found to be useful for the classifier, except the
Umls features.
The authors also reported that intratopic classification yielded better results than
intertopic classification, and the author conclude that topic specific training data
is necessary for high performance.
The results from the paper was later used as comparisons by Matwin and Sazonova
[19] and Khabsa et al. [48].

6 (Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008)(Martinez et al., 2008): Martinez, D., Karimi, S., Cavedon, L., and Baldwin, T.
(2008). Facilitating biomedical systematic reviews using ranked text retrieval

and classification. In Australasian Document Computing Symposium (Adcs), pages
53–60

In this study, the authors used svms (Weka) to rank references from 17 unspecified
Ahrq systematic reviews to screen for relevant and high quality studies. They
report a wss@95 around 30%. The authors also reported that the searches in some
systematic reviewswere not reproducible, and either were not syntactically correct,
or did not yield the same results as those reported in the systematic reviews.
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7 (Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008)(Yu et al., 2008): Yu, W., Clyne, M., Dolan, S. M., Yesupriya, A., Wulf, A., Liu,
T., Khoury, M. J., and Gwinn, M. (2008). GAPscreener: An automatic tool for

screening human genetic association literature in PubMed using the support vector
machine technique. Bmc Bioinformatics, 9:205

In this study Yu et al. used svms (LibSVM) with standard bag-of-word features.
They reported 97.5% recall, 98.3% specificity, and 31.9% precision. The training set
was constructed artificially by selecting 10,000 known positive references from a
bibliographic database (HuGENavigator), and 10,000 random articles fromPubMed.
The test set was constructed prospectively from references indexed in PubMed over
5+4 consecutive weeks, and manually screened for inclusion in the database.
Features were constructed using the ‘z-score’ method, which uses bag-of-word rep-
resentations of reference data, with each termweighted according to its normalized
z-score, calculated by comparing 10,000 positive references against 10,000 random
articles in PubMed. The authors reported that the two-way method improves over-
all performance.

8 (Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009)(Razavi et al., 2009): Razavi, A. H., Matwin, S., Inkpen, D., and Kouznetsov, A.
(2009). Parameterized contrast in second order soft co-occurrences: a novel

text representation technique in text mining and knowledge extraction. In 2009
Ieee International Conference on Data Mining Workshops, pages 471–476. Ieee

In this study, Razavi et al. constructed two models to rank candidate references in
the TrialStat dataset. The first model used common bag-of-word representations,
while the second used second-order soft co-occurrence. The method used to rank
references is not clear from the paper.
They used a bag-of-word representation model to identify the 700 references most
likely to be positive and find that this set included 590 true positives. They used the
second-order soft co-occurrence model to exclude the 8000 least likely candidates,
and found that this set included 54 false negatives. In practice only the second
model would be relevant in an automated screening scenario to exclude references
automatically.
Their results would hence have resulted in a 37.7% workload reduction for ~97.4%
recall.

9 (Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009)(Cohen et al., 2009): Cohen, A. M., Ambert, K., and McDonagh, M. (2009).
Cross-Topic Learning for Work Prioritization in Systematic Review Creation

and Update. Journal of the American Medical Informatics Association, 16(5):690–704

58



4. Systematic Review Automation

In this study, Cohen et al. extended the dataset used previously [1] to 24 review
topics. The authors reported auc scores using random stratified intratopic cross-
validation (table 2, diagonals) and intertopic cross-validation (table 2, non-diago-
nals).
The authors used svms and trained in two steps. First the classifier was trained
using intertopic training data. Then the support vectors from the first step are
used as training data in the second stage, with intratopical training data added.
The method is reported to improve on a baseline svm when intratopical training
data is scarce, and seems to achieve similar performance as training on intratopical
data.

10 (Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009)(Kouznetsov et al., 2009): Kouznetsov, A., Matwin, S., Inkpen, D., Razavi,
A. H., Frunza, O., Sehatkar, M., Seaward, L., and O’Blenis, P. (2009). Clas-

sifying biomedical abstracts using committees of classifiers and collective ranking
techniques. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 5549 Lnai:224–228

11 (Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010)(Kouznetsov and Japkowicz, 2010): Kouznetsov, A. and Japkowicz, N. (2010).
Using classifier performance visualization to improve collective ranking tech-

niques for biomedical abstracts classification. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 6085 Lnai:299–303

In these studies, Kouznetsov et al. evaluated screening prioritization on the Trial-
Stat dataset. The authors of this study ostensibly tried to rank in terms of query
relevance, but actually seems to have done final selection of references for the sys-
tematic review.
The authors describe a method to fuse multiple rankers into a single ranking de-
cision, i.e. sensor fusion. They used Complement Naive Bayes, Discriminative
Multinomial Naive Bayes, Alternating Decision Trees, AdaBoost with Logistic Re-
gression, and AdaBoost with j48.
The authors reported 91.6% and 84.3% versus a reported 90-95% recall and 80-85%
precision by human screeners. The authors for some reason do not report the
results of the individual classifiers, and it therefore not at all clear from the paper
how much the proposed methods adds over simply using any single classifier on
its own.
The author also state that the committee performs ‘with a confidence level similar
to human experts.’ However, the goal of screening automation is generally not to
beat any one human screener, but to perform similarly to the human ensemble, and
the human ensemble in the study achieved over 95% recall.
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12 (Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b)(Wallace et al., 2010b): Wallace, B. C., Small, K., Brodley, C. E., and Trikali-
nos, T. A. (2010b). Active learning for biomedical citation screening. In

Proceedings of the 16th Acm Sigkdd international conference on Knowledge discovery
and data mining, pages 173–182. Acm

In this study, Wallace et al. (2010b) used active learning with svm (LibSVM) and
compared random sampling with uncertainty sampling to select candidate refer-
ences for the review authors to screen on the Copd, Micro nutrients, and the
Proton beam datasets. They also introduce labeled features to let review authors
suggest features indicative of the target class in order to better leverage expert
knowledge.
The authors demonstrate improved u19 curves for the labelled features over random
sampling an uncertainty sampling, but do not measure the resulting performance
using point metrics.

13 (Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010)(Frunza et al., 2010): Frunza, O., Inkpen, D., and Matwin, S. (2010). Building
systematic reviews using automatic text classification techniques. In Proceed-

ings of the 23rd International Conference on Computational Linguistics: Posters, pages
303–311. Association for Computational Linguistics

Frunza et al. (2010) used complement naive bayes using Weka to simulate replac-
ing one of the human screeners with an automated system on the TrialStat dataset
[10, 8]. The authors report an optimal 17.1% precision for 92.7% recall using this
human-machine ensemble.

14 (Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c)(Wallace et al., 2010c): Wallace, B. C., Trikalinos, T. A., Lau, J., Brodley, C.,
and Schmid, C. H. (2010c). Semi-automated screening of biomedical cita-

tions for systematic reviews. Bmc bioinformatics, 11(1):55

In this study, Wallace et al. used active learning with aggressive undersampling to
mitigate the class imbalance on three datasets: Copd, Proton Beam, and Micronu-
trients.
This study appears to contain the first mention of the subsequently often quoted
estimate of the time it takes for a screener to screen a single abstract (30s on aver-
age).
The active learning uses something the authors call patient active learning as an
initial sampling protocol, where the protocol initially tries to retrieve a representa-
tive selection of the reference space. Only when a representative sample has been
labelled by the human reviewers will the system switch to uncertainty sampling.
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The authors simulate the algorithm on three datasets, and report a decrease in
burden of ~40%.

15 (Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010)(Bekhuis and Demner-Fushman, 2010): Bekhuis, T. and Demner-Fushman,
D. (2010). Towards automating the initial screening phase of a systematic

review. Studies in Health Technology and Informatics, 160(part 1):146–150

In this study, Bekhuis and Demner-Fushman evaluated a number of machine learn-
ing approaches to automate the second screening. They evaluated in terms of recall,
precision, and f1 measure with included studies as the positive class.
The authors use search filters for relevance to topic and study design, and the
method described in the study therefore assumes that methodological search fil-
ter work for the research question of the review. The authors tried to use naive
Bayes and svms but report that their implementations failed. They instead evalu-
ated decision trees, evolutional svms, and waode.
The evaluated dataset consists of 400 references, where 13% are positive. The data
was selected prospectively for one review and results were cross-validated in that
one review. The authors report lackluster scores for the Decision Trees andwaode.
For the evolutional svm, the authors report 100% recall for ~40–48% average pre-
cision for rbf kernels and 4th degree Epanechnikov kernels. The authors report
~67% recall and precision for lower degree polynomial kernels. The general trend
in the results is that more complex kernels (i.e. with higher vc dimension) results
in higher recall, and lower precision.
For unclear reasons, the recall dropped to 76.92% for both radial and Epanechnikov
kernel when evaluated on a held-out test set.

16 (Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010)(Fiszman et al., 2010): Fiszman, M., Bray, B., Shin, D., Kilicoglu, H., Bennett,
G., Bodenreider, O., and Rindflesch, T. (2010). Combining Relevance Assign-

ment withQuality of the Evidence to Support Guideline Development. Stud Health
Technol Inform, 160(1):709—-713

Similarly to [26], which this paper predates, Fiszman et al. distinguished between
query relevance and article quality. Labelings are consequently encoded as a tuple
consisting of relevance and quality judgments. Final decisions for inclusion in
the review are taken to be those both relevant and high-quality. When training
the classifier to recognize both labelings, the authors report 56% recall and 91%
precision. When only considering relevance, the results are reported to ‘drop’ to
62% recall, 79% precision.
Details of the method are given in an earlier paper (Rindflesch and Fiszman, 2003).
The method uses Hearst patterns to construct an ontology of hypernymic relations,
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and then using these to find relevant and high quality articles.

17 (Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010)(Matwin et al., 2010): Matwin, S., Kouznetsov, A., Inkpen, D., Frunza, O., and
O’Blenis, P. (2010). A new algorithm for reducing the workload of experts

in performing systematic reviews. Journal of the American Medical Informatics
Association : Jamia, 17(4):446–53

18 (Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011)(Matwin et al., 2011): Matwin, S., Kouznetsov, A., Inkpen, D., and O’Blenis,
P. (2011). Performance of support-vector-machine-based classification on

15 systematic review topics evaluated with the WSS@95 measure. Journal of the
American Medical Informatics Association : Jamia, 1(18):author reply 105

19 (Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012)(Matwin and Sazonova, 2012): Matwin, S. and Sazonova, V. (2012). Direct
comparison between support vector machine and multinomial naive Bayes

algorithms for medical abstract classification. Journal of the American Medical In-
formatics Association, 19(5):917–917

In this study, Matwin et al. used Factorized Complement Naive Bayes (fcnb) on
the Derp dataset, and compared against Cohen et al.’s previously reported results
[1]. Fcnb is a modification of cnb, that introduces a multiplication factor Fc that
is multiplied to the non-constant term in the cnb expression. They also describe a
process they call ‘weight engineering’ where the cnb expression for each feature
is further multiplied by another multiplicative factor learned by the model.
The reported wss@95 scores ranged from 8.5% to 62.2%, and the authors reported
a 15% average absolute improvement over the baseline [1].

20 (Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a)(Wallace et al., 2010a): Wallace, B. C., Small, K., Brodley, C. E., Lau, J., and
Trikalinos, T. a. (2010a). Modeling Annotation Time to Reduce Workload

in Comparative Effectiveness Reviews Categories and Subject Descriptors Active
Learning to Mitigate Workload. Proceedings of the 1st Acm International Health
Informatics Symposium. Acm,, pages 28–35

21 (Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b)(Wallace et al., 2012b): Wallace, B. C., Small, K., Brodley, C. E., Lau, J., and
Trikalinos, T. a. (2012b). Deploying an interactive machine learning system

in an evidence-based practice center. Proceedings of the 2nd Acm Sighit symposium
on International health informatics - IHI ’12, page 819

22 (Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015)(Rathbone et al., 2015): Rathbone, J., Hoffmann, T., and Glasziou, P. (2015).
Faster title and abstract screening? evaluating abstrackr, a semi-automated

online screening program for systematic reviewers. Systematic reviews, 4(1):80

These studies introduce the publicly available Abstrackr screening tool. The au-
thors focused on modeling how long it would take for humans to screen references,
with the intent of using predictions about screening difficulty for assigning refer-
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ences to screeners. The authors hypothesized that the total amount of time it would
take to screen all references might be reduced if such assignments were done sen-
sibly.
The authors found that screeners take longer to screen references early in the pro-
cess, but found only a weak correlation between time to screen and distance to
the svm separating hyperplane. To put it more simply, the references the learned
svm model is uncertain about are not the same references a human screener will
be uncertain about.
They argue that active learning can be improved by using the predicted time to
screen as a further parameter for sampling the next references to screen. Intuitively,
we are best served to select references that improve the decision boundary but are
also easy for human screeners to judge. This also allows the system to assign easy
cases to novice screeners, and ambiguous cases to the more experienced [21].
Rathbone et al. retrospectively evaluated the use of Abstrackr on three system-
atic reviews of interventions: dietary fibre interventions for colorectal cancer, ritux-
imab and adjunctive chemotherapy interventions for non-Hodgkin’s lymphoma, and
eculizumab for atypical hemolytic uremic syndrome, as well as one dta systematic
review on echocardiography for stroke.
They reported workload reductions between 9%–80% while missing one reference
in each of two reviews.

23 (Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011)(Frunza et al., 2011): Frunza, O., Inkpen, D., Matwin, S., Klement, W., and
O’Blenis, P. (2011). Exploiting the systematic review protocol for classifica-

tion of medical abstracts. Artificial Intelligence in Medicine, 51(1):17–25

In this study, the authors used the TrialStat dataset [10, 8]. The authors used com-
plement naive Bayes, with development and evaluation on the same review topic.
The authors divide the task into two distinct versions. In the first they simply
apply the method on the whole dataset (using train/test splits), which they call the
globalmethod. In the second they partition the task into a separate subtask for each
question in the inclusion criteria. They report a maximum recall of 67.8%, and a
maximum precision of 37.9% on the global method, and a maximum recall of 99.7%
and a maximum precision of 63.0% on the per-question method. The results seems
to suggest that we can expect better performance if we treat individual inclusion
criteria as distinct in the screening process.

24 (Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011)(Tomassetti et al., 2011): Tomassetti, F., Rizzo, G., Vetro, A., Ardito, L., Torch-
iano, M., andMorisio, M. (2011). Linked data approach for selection process

automation in systematic reviews. 15th Annual Conference on Evaluation & Assess-
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ment in Software Engineering (EASE 2011), pages 31–35

In this study, Tomassetti et al. used a fairly straightforward active learning pro-
cess based on Naive Bayes to retrieve articles relevant to software cost estimation.
The evaluation set consists of 106 articles retrieved by the search term ”Software
Cost Evaluation” from the journal the authors pre-specified as having the highest
percentage of relevant articles. The authors note that generally some articles are
known to the reviewers at the beginning of the review, which can be used as a seed
set.
The authors reported a 20% workload decrease for 100% recall.

25 (Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011)(Wallace et al., 2011): Wallace, B. C., Small, K., Brodley, C. E., and Trikalinos,
T. A. (2011). Who should label what? instance allocation in multiple expert

active learning. In Proceedings of the 2011 Siam International Conference on Data
Mining, pages 176–187. Siam

In this studyWallace et al. investigated the effects of assigning different references
to different screeners, with easier tasks going to junior screeners, andmore difficult
tasks going to senior screeners. They used svms with standard nlp features on
the copd dataset, and report improvements over the baseline, but it is difficult to
interpret the results intuitively.

26 (Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012)(Choi et al., 2012): Choi, S., Ryu, B., Yoo, S., and Choi, J. (2012). Combining
relevancy and methodological quality into a single ranking for evidence-

based medicine. Information Sciences, 214:76–90

In this study Choi et al. distinguished between query relevance and article quality
and used sensor fusion to arbitrate between the two.
Article relevance was determined by Okapi bm25. Quality classification was done
using Naive Bayes and svms. The authors reported that svms yielded the best
results.

27 (Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012)(Shekelle et al., 2012): Shekelle, P. G., Dalal, S. R., and Shetty, K. D. (2012). A
Pilot Study Using Machine Learning and Domain Knowledge To Facilitate

Comparative Effectiveness Review Updating. AHRQ

In this study, Shekelle et al. used generalized linear models and gradient boosting
machines for retrospective use in one systematic review of interventions to prevent
fractures in persons with low bone density, and one systematic review of atypical
antipsychotic drugs. The models were trained on 1) 46 binary features based on
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whether the target intervention and outcome terms were present in the citations
and linked to particular subheadings; and 2) 29 binary features related to broader
characteristics from the MeSH terms and publication type terms (e.g. demographic
group, treatment target, and publication type). The authors reported 99% and 100%
recall, for 55.4% and 63.2% workload reduction respectively for the two reviews.

28 (Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012)(Sun et al., 2012): Sun, Y. B., Yang, Y., Zhang, H., Zhang, W., and Wang, Q.
(2012). Towards evidence-based ontology for supporting systematic litera-

ture review. Evaluation and Assessment in Software Engineering, 2012(1):171–175

In this study, Sun et al. reportedly constructed an ontology of the target paper
structure, and populate this ontology automatically for each reference based on
the structured abstracts. Rather than semi-automation, the author appear to in-
tend to replace the human reviewers entirely in systematic reviews in computer
science. The authors do not report traditional metrics such as precision/recall of
found references. They report that in their test, their system retrieves the same 11
references as four students, although the students seem to each have found differ-
ent sets of papers. The results are overall not very convincing since the competence
of the students doing the review does not appear to be representative of reviewers
in an actual review, and the size of the evaluation is small.
Details of the implementation are unclear from the paper.

29 (Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012)(Bekhuis and Demner-Fushman, 2012): Bekhuis, T. and Demner-Fushman,
D. (2012). Screening nonrandomized studies for medical systematic reviews:

a comparative study of classifiers. Artificial intelligence in medicine, 55(3):197–207

In this study, Bekhuis and Demner-Fushman used screening automation as a sec-
ond screener on one systematic review of surgical interventions for treating amelo-
blastomas of the jaws, and one systematic review of vaccines for preventing influenza
in the elderly. The objective of the study was to determine the relative performance
of different machine learning methods.
The authors compared kNN, naive Bayes, complement naive Bayes, and evolution-
ary svm using tf ·idf weighted bag-of-word features and MeSH/Emtree terms.
The authors evaluated in terms of recall, precision, and f3 using 10-fold cross-
validation.
The authors report 46% second screener workload reduction for 95.5% recall using
the evolutionary svm, and 35% reduction for 96.7% recall using complement naive
Bayes. Evolutionary svm and complement naive Bayes were significantly better
than kNN, but no single classifier setting was consistently optimal.
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30 (Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a)(Wallace et al., 2012a): Wallace, B. C., Small, K., Brodley, C. E., Lau, J., Schm-
id, C. H., Bertram, L., Lill, C. M., Cohen, J. T., and Trikalinos, T. A. (2012a).

Toward modernizing the systematic review pipeline in genetics: efficient updating
via data mining. Genetics in Medicine, 14(7):663–669

In this study, Wallace et al. retrospectively evaluated the use of svms in updating
four reviews, and reported recall (sensitivity) scores of 100% for three reviews and
99% for one, with associated specificity scores of 90, 93, 90, 73% respectively. The
associated reductions in workload are reported as 89, 82, 87, and 67% respectively.
The svms are modified to deal with class imbalance by reweighting and undersam-
pling. The authors use the randomness caused by the undersampling to train an
emsemble of 11 classifiers, of which the majority vote is used as the final decision.

31 (Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012)(Kim and Choi, 2012): Kim, S. and Choi, J. (2012). Improving the perfor-
mance of text categorization models used for the selection of high quality

articles. Healthcare informatics research, 18(1):18–28

32 (Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014)(Kim and Choi, 2014): Kim, S. andChoi, J. (2014). An svm-based high-quality
article classifier for systematic reviews. Journal of biomedical informatics,

47:153–159

In this study, Kim and Choi (2012) used standard bag-of-word features and MeSH
terms to train a svm (svmlight ) with default settings and a linear kernel.
The authors used 19 procedural systematic reviews each including at least 10 stud-
ies, as well as four topics from the Derp drug class efficacy dataset. They reported
maximum auc scores of 0.95 on the first dataset, and 0.84 on the second when us-
ing intra-topic classification [31]. They reported 88.32% accuracy using inter-topic
classification over 75.38% accuracy using intra-topic classification [32].1

33 (Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013)(Jonnalagadda and Petitti, 2013): Jonnalagadda, S. and Petitti, D. (2013). A
new iterative method to reduce workload in systematic review process. In-

ternational journal of computational biology and drug design, 6(1-2):5–17

In this study, Jonnalagadda and Petitti (2013) used active learning with random
indexing. The authors simulated the system on the Derp dataset [1], and reported
a wss@95 ranging from 6%–30%.

1 Note that a baseline which excludes all references would achieve 95.48% accuracy on the Derp
dataset
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34 (Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014)(Shemilt et al., 2014): Shemilt, I., Simon, A., Hollands, G. J., Marteau, T. M.,
Ogilvie, D., O’Mara-Eves, A., Kelly, M. P., and Thomas, J. (2014). Pinpoint-

ing needles in giant haystacks: use of text mining to reduce impractical screening
workload in extremely large scoping reviews. Research Synthesis Methods, 5(1):31–
49

In this study Shemilt et al. evaluated the use of machine learning to reduce screen-
ing effort in two extremely large scoping reviews (> 800k references and > 1m
references).
The authors used svm (LibSVM) with radial basis kernels and undersampling, with
bagging over three classifiers. The authors report 88% and 90% workload reduc-
tions, but due to the prospective nature of the trial, no recall values were reported.

35 (Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014)(Cormack and Grossman, 2014): Cormack, G. and Grossman, M. (2014). Ev-
aluation of machine-learning protocols for technology-assisted review in

electronic discovery. Sigir, pages 153–162

36 (Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015)(Cormack and Grossman, 2015): Cormack, G. V. andGrossman,M. R. (2015).
Autonomy and reliability of continuous active learning for technology-as-

sisted review. arXiv preprint arXiv:1504.06868

37 (Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017)(Cormack and Grossman, 2017): Cormack, G. V. andGrossman,M. R. (2017).
Technology-assisted review in empirical medicine: Waterloo participation

in Clef eHealth 2017. In Clef (Working Notes)

38 (Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018)(Cormack and Grossman, 2018): Cormack, G. V. andGrossman,M. R. (2018).
Technology-assisted review in empirical medicine: Waterloo participation

in Clef eHealth 2018. In Clef (Working Notes)

Conventional active learning use uncertainty sampling to query new labels from
the human trainer, where examples are chosen to learn the target concept as quickly
as possible. Examples are thus chosen based on how uncertain the model is about
them, or conversely, how informative they would be to the model.
In this series of studies, Cormack and Grossman introduce continuous active learn-
ing (cal). In cal, new candidates are chosen greedily, prioritizing the examples
that are the most likely to be positive. Cal therefore show positive examples ear-
lier in the process, and achieve better recall/effort curves and average precision
than uncertainty sampling (which Cormack and Grossman call simple active learn-
ing).
The authors use learning-to-rank approaches using svm and logistic regression
using standard unigram features. The method – while simple – achieved the best
performance on most metrics in all iterations of the Trec Total Recall Track, and
all iterations of Clef eHealth task 2. In Clef 2017, they achieved a 0.701 wss@95
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to retrieve references included by abstract and title, compared to 0.400 for the
bm25 baseline. In Clef 2018, they achieved a 0.841 wss@95 to retrieve references
included by full-text.

39 (Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014)(Miwa et al., 2014): Miwa, M.,Thomas, J., O’Mara-Eves, A., and Ananiadou,
S. (2014). Reducing systematic review workload through certainty-based

screening. Journal of biomedical informatics, 51:242–253

In this study, Miwa et al. used an active learning approach, which starts by us-
ing lda to sample initial candidates across different clusters before the user has
classified any articles.
The authors compare uncertainty samplingwith certainty sampling and shows that
certainty sampling is useful for retrieving relevant articles, similarly to Cormack
and Grossman [35].
They report that agressive undersampling combined with uncertainty sampling,
and patient active learning combinedwith uncertainty sampling yield better results
for the first 20-30%, after which it yields worse results. The authors report their
results in terms of utility and coverage, and the results are therefore difficult to
interpret intuitively.

40 (Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014)(Bekhuis et al., 2014): Bekhuis, T., Tseytlin, E., Mitchell, K. J., and Demner-
Fushman, D. (2014). Feature engineering and a proposed decision-support

system for systematic reviewers of medical evidence. PLoS one, 9(1):1–10

41 (Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015)(Bekhuis et al., 2015): Bekhuis, T., Tseytlin, E., and Mitchell, K. J. (2015). A
prototype for a hybrid system to support systematic review teams: A case

study of organ transplantation. In 2015 Ieee International Conference on Bioinfor-
matics and Biomedicine (Bibm), pages 940–947. Ieee

In a series of studies, Bekhuis et al. applied machine learning as a second screener.
Bekhuis et al. constructed a dataset from 5 systematic reviews of interventions,
where reviewers reported that nonrandomized or observational studies were eli-
gible for inclusion. The dataset was constructed by replicating the original search
queries and using the included references as positive labels. They then develop and
test a cnb classifier on the data, using standard bag-of-word features, index terms,
concept defined in a predefined ontology, and features extracted using lda. The
authors report a reduction in screening burden of 88-98% in the second screening
iteration, and 38-48% overall. However, the recall reported ranges from 60-97%,
making it difficult to assess the feasibility of the method in the context of a system-
atic review.
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In a later study [41], the authors complemented the machine learning model with
a rule-based approach (Jess Rule Engine), where the authors applied 9 domain spe-
cific rules to exclude negative references (restricting by publication type, study de-
sign, species, organ transplantation, cell transplantation, mycophenolic acid, blood,
physiological monitoring, and outcome). However, since the authors report a 55%
recall, it is unclear whether the method is feasible for use in a systematic review.

42 (García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014)(García Adeva et al., 2014): García Adeva, J. J., Pikatza Atxa, J. M., Ubeda
Carrillo, M., and Ansuategi Zengotitabengoa, E. (2014). Automatic text

classification to support systematic reviews in medicine. Expert Systems with Ap-
plications, 41(4 part 1):1498–1508

In this study, García Adeva et al. used nb, kNN, svm, and Rocchio to automate sec-
ond screening in one systematic review of internet-based rcts. The data appears
to have been collected retrospectively. Implementation details are unspecified, sug-
gesting that the methods were used with default settings.
The authors do not appear to maximize recall, and achieves an optimal recall of
86%. The results may therefore be ill-suited for systematic reviews. The discussion
in the paper focuses on the f1 measure, and the authors reported an ‘optimal’ f1 of
70%.
The machine learning methods appear to be well implemented, but the unfortu-
nate disconnect with the problem domain mean the results may not be useful for
screening automation.

43 (Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015)(Timsina et al., 2015): Timsina, P., El-Gayar, O. F., and Liu, J. (2015). Lever-
aging advanced analytics techniques for medical systematic review update.

In 2015 48th Hawaii International Conference on System Sciences, pages 976–985.
Ieee

44 (Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b)(Timsina et al., 2016b): Timsina, P., Liu, J., El-Gayar, O., and Shang, Y. (2016b).
Using semi-supervised learning for the creation of medical systematic re-

view: An exploratory analysis. In 2016 49th Hawaii International Conference on
System Sciences (HICSS), pages 1195–1203. Ieee

45 (Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018)(Liu et al., 2018): Liu, J., Timsina, P., and El-Gayar, O. (2018). A compara-
tive analysis of semi-supervised learning: the case of article selection for

medical systematic reviews. Information Systems Frontiers, 20(2):195–207

In this study Timsina et al. evaluated the use of a semi-supervised algorithms (the
label spreading algorithm rbf kernels) on four topics in Derp (Ace Inhibitors,
Atypical Antipsychotics, Estrogens, and Nsaids).
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They reported substantial workload reductions, but the reported recall values range
from 82%–90%, and the resultsmay therefore not be relevant for systematic reviews.
The authors report that the recall values were better than supervised svm with
50%/50% training splits, but the reported recall values are much lower than what
has been reported by Cohen using the same method [5].

46 (Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a)(Timsina et al., 2016a): Timsina, P., Liu, J., and El-Gayar, O. (2016a). Ad-
vanced analytics for the automation of medical systematic reviews. Infor-

mation Systems Frontiers, 18(2):237–252

In this study, Timsina et al., compared linear svms, (soft-margin) polynomial svms,
EvoSVMs, Voting Perceptrons, and Naive Bayes. The linear svms are reported to
yield no results in several of the tests. It is unclear from the report why the authors
used hard margins for the linear kernel svms and soft margins for the polynomial
svms.

47 (Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016)(Howard et al., 2016): Howard, B. E., Phillips, J., Miller, K., Tandon, A., Mav,
D., Shah, M. R., Holmgren, S., Pelch, K. E., Walker, V., Rooney, A. A., et al.

(2016). Swift-review: a text-mining workbench for systematic review. Systematic
reviews, 5(1):87

In this paper, Howard et al. present swift-review, a publicly available screening
prioritization tool. Their system uses bag-of-word representations of documents
as well as MeSH terms and lda clusters. They use the system to simulate an active
learning approach on each systematic review, starting from a seed set of annotated
articles from the dataset.
They evaluated the model on 5 systematic reviews of exposures, reporting a mean
wss@95 of 0.766. They also evaluated on the Derp dataset, reporting a mean
wss@95 of 0.488.
The authors compared the results on the Derp dataset against the previous base-
lines [5, 17]. However, due to the differences in approaches, this may not be a fair
comparison.

48 (Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016)(Khabsa et al., 2016): Khabsa, M., Elmagarmid, A., Ilyas, I., Hammady, H.,
and Ouzzani, M. (2016). Learning to identify relevant studies for system-

atic reviews using random forest and external information. Machine Learning,
102(3):465–482

49 (Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017)(Olofsson et al., 2017): Olofsson, H., Brolund, A., Hellberg, C., Silverstein,
R., Stenström, K., Österberg, M., and Dagerhamn, J. (2017). Can abstract

screening workload be reduced using text mining? user experiences of the tool
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Rayyan. Research synthesis methods, 8(3):275–280

In this study, Khabsa et al. used random forests on the Derp dataset. Besides bag-
of-word features the authors also use co-citation information and Brown clusters.
These additional features are shown to improve performance over the baseline. The
system is shown to outperform cnb and Voting Perceptron, but the results appear
similar to Cohen’s svm results. It is not clear whether the performance gains are
due to the extra features, or due the use of random forests, and whether the svm
results would also have been improved with the addition of these features.
This system is available for use with the Rayyan reference manager. The extrin-
sic performance of the system has subsequently been independently evaluated by
Olofsson et al., who reported that the system achieved between 85%–99% recall for
a 50% workload reduction on an unspecified set of systematic reviews.

50 (Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017)(Ji et al., 2017): Ji, X., Ritter, A., and Yen, P.-Y. (2017). Using ontology-based
semantic similarity to facilitate the article screening process for systematic

reviews. Journal of biomedical informatics, 69:33–42

In this study, Ji et al. [50] evaluated the use of screening reduction on the Derp
dataset, and compare with Cohen et al.’s results using voting perceptrons [1], and
Khabsa et al.’s results using random forests [48].
Ji et al. proposed to use ontology based features and evaluate three differentmodels,
using Snomed-ct, MeSH terms, or both. They report an optimal average wss@95
of 0.409 using the combined model.

51 (Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017)(Shekelle et al., 2017): Shekelle, P. G., Shetty, K., Newberry, S., Maglione, M.,
and Motala, A. (2017). Machine learning versus standard techniques for up-

dating searches for systematic reviews: a diagnostic accuracy study. Annals of
internal medicine, 167(3):213–215

In this study, Shekelle et al. used Svms on 3 intervention reviews on low bone
density, gout and osteoarthritis. They reported a workload reduction of 67%–83%
while missing 1 reference in each of 2 reviews.

52 (Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017)(Van Altena and Olabarriaga, 2017): Van Altena, A. and Olabarriaga, S. D.
(2017). Predicting publication inclusion for diagnostic accuracy test reviews

using random forests and topic modelling. In Clef (Working Notes)

For their participation in Clef, Van Altena and Olabarriaga used random forests
over a 75-topic lda representation, and achieved a 0.333 wss@95 compared to
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0.400 for the bm25 baseline.

53 (Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017)(Chen et al., 2017): Chen, J., Chen, S., Song, Y., Liu, H., Wang, Y., Hu, Q., He,
L., and Yang, Y. (2017). Ecnu at 2017 eHealth task 2: Technologically assisted

reviews in empirical medicine. In Clef (Working Notes)

For their participation in Clef, Chen et al. used learning-to-rank with bm25, pl2,
and bb2 as features. They combined their model with a vector space model. They
achieved a 0.121 wss@95 compared to 0.400 for the bm25 baseline.

54 (Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017)(Lee, 2017): Lee, G. E. (2017). A study of convolutional neural networks for
clinical document classification in systematic reviews: sysreview at Clef

eHealth 2017. In Clef (Working Notes)

For their participation in Clef, Lee used convolutional neural networks and ach-
ieved a 0.131 wss@95 compared to 0.400 for the bm25 baseline.

55 (Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017)(Di Nunzio et al., 2017): Di Nunzio, G. M., Beghini, F., Vezzani, F., and Hen-
rot, G. (2017). An interactive two-dimensional approach to query aspects

rewriting in systematic reviews. ims unipd at Clef eHealth task 2. In Clef (Work-
ing Notes)

56 (Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018)(Di Nunzio et al., 2018): Di Nunzio, G. M., Ciuffreda, G., and Vezzani, F.
(2018). Interactive sampling for systematic reviews. ims unipd at Clef 2018

eHealth task 2. In Clef (Working Notes)

For their participation in Clef, Di Nunzio et al. used a two-dimensional proba-
bilistic version of bm25 to rank articles. The top abstract returned by bm25 was
provided to two non-experts who generated one additional query each. The three
queries were then used to re-rank articles. They achieved 0.517 wss@95 compared
to 0.400 for the bm25 baseline. In 2018 [56] they complemented the approach with
active learning using naive Bayes, achieving 0.792 wss@95 to retrieve relevant
studies included by full-text.

57 (Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017)(Scells et al., 2017): Scells, H., Zuccon, G., Deacon, A., andKoopman, B. (2017).
Qut ielab at Clef 2017 technology assisted reviews track: Initial experi-

ments with learning to rank. In Clef (Working Notes)

For their participation in Clef, Scells et al. trained a learning-to-rank model using
pico annotations as features (Population, Intervention, Control, Outcome). The
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features were extracted automatically from articles andmanually from the Boolean
queries. They achieved 0.294 wss@95 compared to 0.400 for the bm25 baseline.

58 (Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017)(Alharbi and Stevenson, 2017): Alharbi, A. and Stevenson, M. (2017). Rank-
ing abstracts to identify relevant evidence for systematic reviews: The uni-

versity of sheffield’s approach to Clef eHealth 2017 task 2. In Clef (Working Notes)

For their participation in Clef, Alharbi and Stevenson automatically parsed the
Boolean queries to extract terms and MeSH headings and used tf ·idf cosine simi-
larity to to rank references. They achieved 0.493 wss@95 compared to 0.400 for
the bm25 baseline.

59 (Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017)(Kalphov et al., 2017): Kalphov, V., Georgiadis, G., and Azzopardi, L. (2017).
Sis at clef 2017 ehealth tar task. In Ceur Workshop Proceedings, volume 1866,

pages 1–5

For their participation in Clef, Kalphov et al. used 1) lda clusters to identify the
topics most likely relevant to the search queries, 2) active learning using Rocchio;
and 3) a combination of the both approaches. They achieved 0.530 wss@95 com-
pared to 0.400 for the bm25 baseline.

60 (Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017)(Singh et al., 2017): Singh, G.,Marshall, I.,Thomas, J., andWallace, B. (2017).
Identifying diagnostic test accuracy publications using a deep model. In

Ceur Workshop Proceedings, volume 1866. Ceur Workshop Proceedings

For their participation in Clef, Singh et al. trained a deep convolutional model
achieved 0.076 wss@95 compared to 0.400 for the bm25 baseline.

61 (Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017)(Anagnostou et al., 2017): Anagnostou, A., Lagopoulos, A., Tsoumakas, G.,
and Vlahavas, I. P. (2017). Combining inter-review learning-to-rank and

intra-review incremental training for title and abstract screening in systematic re-
views. In Clef (Working Notes)

62 (Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018)(Tsoumakas, 2018): Tsoumakas, G. (2018). Learning-to-rank and relevance
feedback for literature appraisal in empirical medicine. In Experimental IR

MeetsMultilinguality,Multimodality, and Interaction: 9th International Conference of
the Clef Association, Clef 2018, Avignon, France, September 10-14, 2018, Proceedings,
volume 11018, page 52. Springer

63 (Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018)(Minas et al., 2018): Minas, A., Lagopoulos, A., and Tsoumakas, G. (2018).
Aristotle university’s approach to the technologically assisted reviews in
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empirical medicine task of the 2018 Clef eHealth lab. In Clef (Working Notes)

For their participation in Clef, Anagnostou et al. used a combination of inter-
topic static learning trained on the development corpus, and and active learning
iteratively trained on the target topic. The intertopic model used XGBoost trained
on 24 topic/document features computed over the title, abstract and mesh terms of
the articles and the query. In Clef 2017, they achieved a 0.697 wss@95 to retrieve
references included by abstract and title, compared to 0.400 for the bm25 baseline
[61]. In Clef 2018, they achieved a 0.848 wss@95 to retrieve references included
by full-text [63].

64 (Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018)(Cheng et al., 2018): Cheng, S., Augustin, C., Bethel, A., Gill, D., Anzaroot,
S., Brun, J., DeWilde, B., Minnich, R., Garside, R., Masuda, Y., et al. (2018).

Using machine learning to advance synthesis and use of conservation and environ-
mental evidence. Conservation biology: the journal of the Society for Conservation
Biology, 32(4):762

In this study, Cheng et al. reported usingword2vec for article screening, and GloVE
for automated data extraction, but no implementation details are given. The topic
and nature of the systematic reviews are not specified. The risk of bias is likely high,
since the evaluation scores appear to have been cherry-picked for each review.

65 (Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018)(Donoso-Guzmán and Parra, 2018): Donoso-Guzmán, I. and Parra, D. (2018).
An interactive relevance feedback interface for evidence-based health care.

In 23rd International Conference on Intelligent User Interfaces, pages 103–114. Acm

In this study, Donoso-Guzmán and Parra (2018) construct an interactive interface
for an active learning system based on Rocchio and bm25 with standard nlp fea-
tures. The authors reported an optimal 23% recall on the dataset, but the perfor-
mance and workload reduction of the system is unclear from the report.
The authors created the dataset from the Epistemonikos database of primary stud-
ies previously included in systematic reviews, and the data is therefore not repre-
sentative of candidate references normally considered in a screening scenario. The
test user were not experienced reviewers, and only 86% reported being able to read
English without problems. Overall, since the study methodology is unrepresenta-
tive of the screening methodology normally encountered in systematic reviews, it
is not clear whether the results are applicable to systematic review screening.
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66 (Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018)(Tsafnat et al., 2018): Tsafnat, G., Glasziou, P., Karystianis, G., and Coiera,
E. (2018). Automated screening of research studies for systematic reviews

using study characteristics. Systematic reviews, 7(1):64

In this study, Tsafnat et al. [66] used mentions of exposure and outcome in ab-
stracts for prospective screening reduction in three systematic reviews of outdoor
particulate matter exposure and lung cancer, pfoa effects on fetal growth, and Bisphe-
nol a (bpa) exposure and obesity. They reported a mean 93.7% workload reduction
for 98% overall recall.
The risk of bias in the study is likely high, due to the small sample size and the use
in systematic reviews with apparently consistent terminology.

67 (Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018)(Przybyła et al., 2018): Przybyła, P., Brockmeier, A. J., Kontonatsios, G., Le-
Pogam,M.-A.,McNaught, J., von Elm, E., Nolan, K., andAnaniadou, S. (2018).

Prioritising references for systematic reviews with robotanalyst: A user study. Re-
search synthesis methods, 9(3):470–488

In this study, Przybyła et al. [67] used svm with l2 regularization to simulate
screening reduction in ‘several reference collections […] related to public health
topics.’ They reported wss@95 ranging from -3.62%–66.17%
The authors evaluated on 17 topics, but the largest is only 4,964 references. Most
topics with good wss@95 are small, which may suggest chance is influencing the
results.
Themethod also uses preprocessing, with identification of terms using the C-value
algorithm, as well as clustering with lda/spectral clustering.

68 (Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018)(Wu et al., 2018): Wu, H., Wang, T., Chen, J., Chen, S., Hu, Q., and He, L.
(2018). Ecnu at 2018 ehealth task 2: Technologically assisted reviews in

empirical medicine. Methods, 4(5):7

For their participation in Clef, Wu et al. used vector similarity using Paragraph2-
Vector and achieved 0.147 wss@95 to retrieve relevant studies included by full-text.

69 (Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018)(Cohen and Smalheiser, 2018): Cohen, A. M. and Smalheiser, N. R. (2018).
Uic/Ohsu Clef 2018 task 2 diagnostic test accuracy ranking using publica-

tion type cluster similarity measures. In Ceur Workshop Proceedings, volume 2125

For their participation in Clef, Cohen and Smalheiser used clustering on PubMed
data to identify 6 publication types, including dta studies. They then used a svm to
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classify candidate references by similarity to each of the 6 cluster centroids. They
achieved 0.486 wss@95 to retrieve relevant studies included by full-text.

70 (Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018)(Alharbi et al., 2018): Alharbi, A., Briggs, W., and Stevenson, M. (2018). Re-
trieving and ranking studies for systematic reviews: The university of shef-

field’s approach to Clef eHealth 2018 task 2. In Ceur Workshop Proceedings, vol-
ume 2125. Ceur Workshop Proceedings

For their participation in Clef, Alharbi et al. attempted to enrich queries with
terms designed to identify diagnostic test accuracy studies used active learning
using Rocchio. They achieved 0.681 wss@95 to retrieve relevant studies included
by full-text.

71 (Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019)(Lerner et al., 2019): Lerner, I., Créquit, P., Ravaud, P., and Atal, I. (2019).
Automatic screening using word embeddings achieved high sensitivity and

workload reduction for updating living network meta-analyses. Journal of clinical
epidemiology, 108:86–94

In this study, Lerner et al. [71] used logistic regression (sgd) using l2 regularization
with word embeddings and oversampling to simulate screening reduction in net-
work meta-analyses in pneumonology, urology, oncology, and psychiatry. They
reported 53% wss@100.

72 (Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019)(Bannach-Brown et al., 2019): Bannach-Brown, A., Przybyła, P.,Thomas, J.,
Rice, A. S., Ananiadou, S., Liao, J., and Macleod, M. R. (2019). Machine learn-

ing algorithms for systematic review: reducing workload in a preclinical review of
animal studies and reducing human screening error. Systematic reviews, 8(1):23

In this study, Bannach-Brown et al. [72] used svm (sgd), with and without lda
clustering for prospective screening reduction in two systematic reviews of animal
studies: animal models of neuropathic pain and animal models of depression. They
reported 70.5% and 69.3% wss@95 for the two systematic reviews respectively.
The author also used machine learning to identify 11 false positives and 36 false
negatives in the training set.

73 (Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019)(Olorisade et al., 2019): Olorisade, B. K., Brereton, P., and Andras, P. (2019).
The use of bibliography enriched features for automatic citation screening.

Journal of biomedical informatics, 94:103202
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In this study, Olorisade et al. [73 ] evaluated the use of screening reduction on the
Derp dataset, and compare with Cohen et al.’s results using voting perceptrons
[1], and Khabsa et al.’s results using random forests [48]. They cite Matwin and
Sazonova [19], but do not compare against their results.
Olorisade et al. proposed to use MeSH terms, and a combination of MeSH terms
and reference lists from articles to improve training. They report an optimal aver-
age wss@95 of 0.408 on average.

Summary

Several automation approaches exist, and have been developed since
2006. Few have seen consistent or repeated use in real systematic reviews,
and there are few prospective use-cases of the methods

Existing methods are often mismatched to the existing workflow, or
have not been evaluated under the same conditions as would be encountered
in a systematic review.

Few existing methods have been compared to each other. Except for
the studies participating in Clef, fewhave been evaluated on common datasets
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PART II

SCREENINGAUTOMATIONSYSTEMS

This part of the thesis is based on the following conference papers:

(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c): Norman, C., Leeflang, M., Zweigenbaum, P., and Névéol,
A. (2018c). Automating document discovery in the systematic review process:
How to use chaff to extract wheat. In Calzolari, N. et al., editors, Proceedings
of the Eleventh International Conference on Language Resources and Evaluation
(Lrec 2018), Paris, France. European Language Resources Association (Elra)

(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b)(Norman et al., 2017b): Norman, C., Leeflang,M., andNévéol, A. (2017b). Limsi@Clef
eHealth 2017 task 2: Logistic regression for automatic article ranking. Working
Notes of Clef

(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b)(Norman et al., 2018b): Norman, C., Leeflang,M., andNévéol, A. (2018b). Limsi@Clef
eHealth 2018 task 2: Technology assisted reviews by stacking active and static
learning. Working Notes of Clef, pages 10–14

The work has also been described in the following conference paper, omitted from
this thesis:

(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c)(Norman et al., 2017c): Norman, C., Leeflang, M., Zweigenbaum, P., and Névéol,
A. (2017c). Tri automatique de la littérature pour les revues systématiques. 24e
Conférence sur le Traitement Automatique des Langues Naturelles (Taln), pages
234–41

The work has been presented as the following system demonstration:

(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a)(Norman et al., 2017a): Norman, C., Grouin, C., Lavergne, T., Zweigenbaum, P.,
and Névéol, A. (2017a). Traitement de la langue biomédicale au Limsi. 24e Con-
férence sur le Traitement Automatique des Langues Naturelles (Taln), page 33
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QQ
uestions in healthcare are increasingly resolved by systematic
reviews, and the production of systematic reviews is consequently
increasing at a rapid pace. PubMed indexed 17,254 new systematic
reviews in 2018 alone, and this number has increased more than five-
fold over the last decade (see chapter 2). While the demand for sys-

tematic reviews is growing, the number of publications that systematic reviews
need to sift through is also increasing at a similarly break-neck pace. Despite the
technological progresses seen over the last few decades, systematic reviews take
longer to produce, and cost more than 35 years ago (Lau, 2019). We today spend
more time and money producing new systematic reviews than we ever have, and
the amount will surely increase further.
Search queries to identify diagnostic studies tend to have low accuracy (Beynon
et al., 2013), and are discouraged for use in systematic reviews (Leeflang et al., 2006).
Systematic reviews of diagnostic test accuracy may therefore be in particular need
of alternative approaches to cope with the rapidly increasing workloads. Further-
more, since dta systematic reviews are considered more difficult to automate than
e.g. systematic reviews of interventions a breakthrough in this domain may lead to
breakthroughs for several other types of systematic reviews (Kanoulas et al., 2017b,
2018; Petersen et al., 2014).
In this part of the thesis we will examine how screening automation methods can
be used to reduce the workload. We will look at how these methods can be made to
work, and how the performance of these methods compare with each other. The fo-
cus in this section will be technical, and all performance comparisons will concern
intrinsic performance. In other words, we here seek to evaluate the performance
of the component models in reproducible laboratory settings. We will examine
the extrinsic performance of the methods – i.e. how the methods influence the
systematic review process – in part III. We will however start thinking about how
different approaches fit into different systematic review contexts and settings.
Readers not interested in the gritty technical details of the algorithms can safely
skip to the chapter 9, which summarizes the main points of the papers.

5·1 Screening Automation Methods

Screening automation is an umbrella term for several disparate approaches with
the common goal of reducing the workload during the screening stage in system-
atic reviews (O’Mara-Eves et al., 2015). We will concern ourselves with the two
main approaches that lend themselves to intrinsic evaluations: screening reduc-
tion and screening prioritization (see chapter 4).
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Screening reduction methods work by using automated methods to reduce
the number of studies that need to be manually screened. The workload reduction
in this approach comes from the reduction in number, not the order in which ref-
erences are screened. Once the number is reduced, screening may proceed in any
order.
The first screening reduction approach is to use a classification algorithm, where
the algorithm is trained to explicitly model binary include/exclude decisions.
The second screening reduction approach is to use a ranking algorithm, where a
regressor is trained to model the probability of inclusion/exclusion (Fuhr, 1992). All
items falling below some threshold are then excluded from consideration (O’Mara-
Eves et al., 2015).
The main difference between a classifier and a regressor with a cut-off is how the
two are trained – the classifier is typically trained to minimize the number of mis-
classifications, the regressor is typically trained to minimize the number of inver-
sions, i.e. cases where non-relevant items are ranked higher than relevant ones.
For the purposes of the systematic review, there is little difference between classifi-
cation and probability regression with a threshold, and screening automation pro-
cess can in either case simply be added as an additional stage between the database
search (after records have been deduplicated, and meta-data have been retrieved)
and the title and abstract screening. The remainder of the process can proceed en-
tirely unaltered. This kind of screening automation therefore conceptually works
as a second search filter to further exclude non-relevant references, with finer gran-
ularity than is possible with a boolean search filter alone.

Screening prioritization similarly uses ranking to reduce the workload, but
the primary intent is to change the order of screening, so that relevant records
are screened before non-relevant ones. The number of records to screen can be
reduced by combining screening prioritization with a cut-off threshold. The main
difference compared to screening reduction is that screening prioritization does not
add an extra filtering step before the screening commences, but rather modifies the
screening process to screen in descending order of likelihood of relevance.

5·2 Designing a Screening Automation Model

Screening automation can be performed using a number of different approaches.
To some degree the choice of approach will decided by their relative expected per-
formance – some approaches are clearly better than others. However, the choice
will also necessarily be constrained by the context of the systematic review. Dif-
ferent automation approaches make different assumptions regarding what train-
ing data is available, and how the screening process is to be performed. Some
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approaches may be impossible or infeasible to use, depending on 1) what training
data is available, 2) whether it is logistically feasible for the screeners to adopt the
software and process mandated by the screening automation method, and impor-
tantly, 3) to what degree the altered screening process can be expected to ensure
the integrity of the systematic review and its results (table 5·1).
The last two constraints are seldom mentioned or acknowledged by previous liter-
ature, but have been cited as one of the most frequent reasons to eschew screening
automation (Van Altena et al., 2019). Cavalier attitudes to these concerns are un-
likely to aid adoption of screening automation methods.

Static Active
Intratopic Intertopic Learning

Can be used de novo? No Maybe Yes
Unchanged workflow? Yes Yes No

Unchanged results? Yes Yes Unclear

Table 5.1 – The implications of different design decisions on a systematic review. The
intertopic static approach can be used if and only if relevant data is available from similar
systematic reviews. Active learning will necessarily result in a systematic review that ‘does
not look like’ a systematic review. We take a closer look at what the implication are for the
reviews results and conclusions in chapter 12.

Training data used to train screening automation models consist of examples of
included and excluded references. What automation approaches are possible will
depend on several factors. First, whether such training examples will address the
same research question as the systematic review to be conducted and use the same
inclusion criteria (so-called intratopic training), or from systematic reviews on sim-
ilar questions (so-called intertopic training). Second, whether such training exam-
ples will be gathered from already existing sources (static learning), or gathered
continuously as part of the screening effort (active learning)

Static Approaches

The static approach is the most straightforward. In this approach, training data is
collected from some already existing source and is then used to train a ranking or
classification model. This model is then applied prospectively in ongoing system-
atic reviews. The model is not updated using training examples gathered during
screening.
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The intratopic static approach is likely to be the best choice if the screening
automation is intended to be used in a systematic review update, and if there is an
ample number of included references collected in previous review updates (includ-
ing the original review). The trained model can be combined with a cut-off thresh-
old for exclusion, and remaining references can be randomized. The subsequent
screening process therefore does not need to differ from the conventional screen-
ing process, and is therefore fundamentally compatible with the conventional pro-
cess provided the automation method is accurate and unbiased. Active learning
could further refine the model, but such improvements are subject to diminishing
returns, and if sufficient amounts of training data are available from the start, then
the performance improvements gained from active learning may be limited.
This straightforward approach can however only be used in systematic review up-
dates. If the screening automation is intended to be used in a new systematic re-
view (conducted de novo), then training data is unlikely to be available from the
same topic.

The intertopic static approach can be used in new systematic reviews (con-
ducted de novo). In this case, training data is unlikely to be available from the
same topic (i.e. screened using the same inclusion criteria), but there may be train-
ing data from similar topics (i.e. similar inclusion criteria for a different target
condition).
If themodel is trained on data from one such similar review themodel will learn the
inclusion criteria for this particular review, and the screening automation model
may thus be of limited usefulness. However, if the model is trained on data from
several similar reviews, the model may learn to generalize the common denomi-
nator of the inclusion criteria used across the different reviews. For instance, by
training a model on the studies included in a range of systematic reviews of di-
agnostic test accuracy, the model may learn to recognize general diagnostic test
accuracy studies of sufficient quality and clarity to be included in a systematic re-
view, and learn to disregard the particular target condition addressed by different
systematic reviews.
Unlike active learning, the intertopic static approach requires no targeted training
data. Furthermore, the intertopic static approach may also be combined with a
prespecified cut-off and randomization, and is therefore compatible with the con-
ventional systematic review process.

Active Learning

The active learning approach has few technical constraints, and can be used
in any systematic review where screening logistics and methodology constraints
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allows its use. Since the training data is gathered as part of the ongoing screening
effort, the active learning approach will by definition always use intratopic train-
ing. Active learning does not require training data when screening is started. The
process may then be bootstrapped (‘seeded’) by sampling the references randomly
or by using unsupervised models such as clustering or topic modelling to find an
initial sample of relevant items for training. However, if some form of training data
is already available, this can be used to kick-start the process. It may for instance
be possible to use information retrieval methods with the database query or review
protocol as input (Cormack and Grossman, 2017).
The main constraints of the active learning approach is that it requires the screen-
ing process to be fundamentally altered.
First, screening must be performed in specialized software that can continuously
retrain the model, and present candidate references to the screener. This requires
the systematic review authors to acquire and install such software, a hurdle that
frequently make systematic reviewers eschew automation (Van Altena et al., 2019).
Second, and importantly, active learning neccessarily changes the order in which
references are screened, with more likely candidates presented first. This could in-
troduce so called rank-order bias, where screeners are influenced by the relevance
scores given by the model. Screeners may in such cases be more likely to include
top-ranked references, and less likely to include lower ranked references.
Third, with active learning the order of the references will change and adapt accord-
ing to the screening decisions taken during screening. This may make it difficult
to reproduce the screening process, and systematic review authors therefore need
to confirm that active learning remains compatible with the purpose of the review.

5·3 Using training data from different stages of screening

Screening in systematic reviews is performed in two stages, first by title and ab-
stract, then by full-text. This separation into two stages is largely a product of
the difficulty in retrieving full-text of large number of records, a process that is
hindered by restrictions imposed by publishers, as well as limited archival of and
electronic access to articles (see chapter 3). In many cases, full-texts can only be
retrieved by contacting the authors. Many records can however be excluded based
only on titles and abstracts, and it usually makes sense to reduce the number of
full-texts that need to be retrieved.
It is not clear whether screening automation systems should attempt to learn to
recognize studies included in the first or second stage of screening. Reasonable
arguments can be made either way. On the one hand, trying to mimic the human
screening process would use decisions from the first stage. At the same time, stud-
ies included in the first stage but excluded in the second ultimately do not matter
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to the review, and there is little value in the screening automation to identify these.
Either way, unless full-texts are available, there will necessarily be some number
of records that cannot be judged based on the available information.
As a practical example of the varying opinion on this matter, only the studies in-
cluded in the second stage were considered relevant in the first iteration of the
Clef shared task (Kanoulas et al., 2017a). In the second iteration this decision was
inverted, and instead all studies included in the first stage were considered relevant
(Kanoulas et al., 2018).
Similarly, it is not clear whether studies in both stages of screening are equally
representative of the studies the screening automation should try to identify. Judg-
ments made in the first screening stage are preliminary, and often over-inclusive
to avoid missing relevant studies. These may therefore be less representative and
therefore inferior examples for training.

5·4 Evaluation of Performance

Comparing the relative performance of different methods is difficult since most
previous work have been evaluated on different datasets, under different settings,
and often using different performance measures. A number of public datasets
are available to compare performance, but usage is fragmented and relative per-
formance comparisons therefore difficult. Comparisons are often hindered by sci-
ence’s search for novelty. The ‘pseudo‐innovative masquerade in the quest for mak-
ing a questionable case for novelty’ (Ioannidis, 2016) frequently compel authors to
make small incremental changes to existing methods – not enough to make the
work meaningfully novel, but enough to preclude comparisons to previous work
(Olorisade et al., 2016; O’Mara-Eves et al., 2015).
There have been attempts to compare previous methods by replicating reported
methods on the same datasets, but the replication of published methods is often
difficult or impossible due to insufficient reporting (Olorisade et al., 2016).
Another way to compare the relative performance of methods is through the use of
a shared task, a community challenge where participating systems are trained on
the same training data, and evaluated blindly using pre-decided metrics (Chapman
et al., 2011; Huang and Lu, 2015). The shared task model removes many of the
problems of replication studies, and also safe-guards against cheating, mistakes,
the cherry-picking of metrics or data, as well as publication bias.
The only shared task for screening prioritizationwe are aware of is the Clef Shared
Task on Technology Assisted Reviews in Empirical Medicine, focusing on diagnos-
tic test accuracy reviews (Kanoulas et al., 2017a, 2018). The Clef shared task di-
verged from standard practice for shared tasks by not blinding participants to the
gold standard data used for evaluation (see section 7·5·5). This may have been a
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cause of biases in the reported results, and the results should be interpreted accord-
ingly. Even so, the results of the Clef campaign serves as an important venue to
compare results across different methods and implementations
The Clef shared task assumed the context of a new systematic review. Thus, all
models evaluated in Clef used either intertopic training or active learning. To
date, and to our knowledge, there are no shared tasks addressing evaluation of
intratopic static approaches.

5·5 Objective

In this section we present three conference papers published during 2017-2018
where we attempt to address the following research questions:

rq 1 What kind of data should we use to train screening automation methods?

rq 2 How do different screening automation approaches compare with each other for dta
screening?

rq 3 Are the screening automation methods we develop competitive with the current state-
of-the-art?
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The material in chapter 6 has been published as:

(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c)(Norman et al., 2018c): Norman, C., Leeflang, M., Zweigenbaum, P., and Névéol,
A. (2018c). Automating document discovery in the systematic review process:
How to use chaff to extract wheat. In Calzolari, N. et al., editors, Proceedings
of the Eleventh International Conference on Language Resources and Evaluation
(Lrec 2018), Paris, France. European Language Resources Association (Elra)

This is a computer science conference article. Conferences are the main venue for
publication in computer science. The article has undergone peer review and has
been published in its entirety in the conference proceedings.
In this article we tried to address the following question:

rq 1 What kind of data should we use to train screening automation methods?

We set out to do this by breaking the question into the following sub-questions:

rq 1 a) Can we separate screening into two stages?
b) Do we need examples from all stages of screening?
c) Should the positive labels match the decisions in the first or second stage of screen-

ing?

The results of this study was used as the basis for our participation in the Clef
eHealth task 2 described in chapter 7 and 8. This study was published after the
study presented in chapter 7, but the two studies were conducted concurrently.

Author’s contributions

Cn wrote the first draft and conducted the experiments. All authors
conceived and designed the study. All authors read and approved the final

manuscript.
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HOW TO USE TRAINING DATA EFFECTIVELY

Automating Document Discovery in the Systematic Review
Process: How to Use Chaff to Extract Wheat

Christopher R. Norman, Mariska M.G. Leeflang,
Pierre Zweigenbaum, &Aurélie Névéol

Language Resources and Evaluation Conference (Lrec), 2018

Abstract

Systematic reviews in e.g. empirical medicine address research questions by
comprehensively examining the entire published literature. Conventionally,
manual literature surveys decide inclusion in two steps, first based on abstracts
and title, then by full text, yet current methods to automate the process make
no distinction between gold data from these two stages. In this work we com-
pare the impact different schemes for choosing positive and negative examples
from the different screening stages have on the training of automated systems.
We train a ranker using logistic regression and evaluate it on a new gold stan-
dard dataset for clinical nlp, and on an existing gold standard dataset for drug
class efficacy. The classification and ranking achieves an average auc of 0.803
and 0.768 when relying on gold standard decisions based on title and abstracts
of articles, and an auc of 0.625 and 0.839 when relying on gold standard de-
cisions based on full text. Our results suggest that it makes little difference
which screening stage the gold standard decisions are drawn from, and that
the decisions need not be based on the full text. The results further suggest that
common-off-the-shelf algorithms can reduce the amount of work required to
retrieve relevant literature.

6·1 Introduction

Systematic reviews seek to systematically gather all published evidence addressing
a given research question and analyze the aggregate results. Systematic reviews
constitute some of the strongest forms of scientific evidence, are an integral part
of evidence based medicine, and serve a key role in informing and guiding public
and institutional decision-making (Wright et al., 2007).
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Figure 6.1 – Overview of the data flow during the
screening process in systematic reviews.

One limiting factor of system-
atic reviews is that they tend
to be prohibitively costly to
produce.1 The number of ref-
erences needed to be manu-
ally screened in order to sat-
isfy the requirement that virtu-
ally all relevant articles have
been identified can number in
the tens of thousands. Often
only some dozens of these ref-
erences are selected for the fi-
nal meta-analysis, and the se-
lection process may require
months of work for several
reviewers (O’Mara-Eves et al.,
2015).
The screening process starts
with identifying an initial set
of candidate references, typi-
cally by searching databases

using boolean queries handcrafted by experts. From this initial set of references,
reviewers first screen for inclusion based on titles and abstracts, and then based
on the full text (O’Mara-Eves et al., 2015) as illustrated in figure 6·1. In this paper
we will call the references excluded in the first screening stage No (‘n’), references
excluded in the second screening stage Maybe (‘m’), and references included in the
final analysis Yes (‘y’).
This selection is divided into two stages because while final decisions can only be
based on the full text of articles, many references can be rejected based only on
title and abstract. Retrieving the full text articles, which often needs to be done
manually, is generally only feasible for a fraction of the articles in large systematic
reviews (Tsafnat et al., 2014). However, even though humans approach screening
as a two-step process, automation methods to date have generally approached the
problem as a one-step process to find the relevant articles.
In this paper we ask if there is value in recognizing the distinction between each
successive stage of the process. Our contribution is two-fold: First, we conduct
experiments to inform methodology choices for automating the literature screen-
ing, and to find ways to improve the quality of constructing datasets used to train

1 Although primary clinical research is often more expensive.

90



6. How to Use Training Data Effectively

such retrieval methods. Second, we experiment on an existing reference dataset
and introduce a new, complementary dataset.

6·1·1 Related Work

Methods for automation have been attempted with varying degrees of success in
technology assisted review in several topics in biomedicine (O’Mara-Eves et al.,
2015). Technology assisted review has also been implemented in other fields with
similarly stringent recall requirements, such as patent search (Stein et al., 2012),
and electronic discovery (Cormack and Grossman, 2014). Automated document
discovery is typically cast as a ranking or classification problem (O’Mara-Eves et al.,
2015).
Common methods for automation include Support Vector Machines and variants
of Naive Bayes, including Complement Naive Bayes (Matwin et al., 2010), andMulti-
nomial Naive Bayes (Matwin and Sazonova, 2012). Other methods have been tried,
including Voting Perceptrons (Cohen et al., 2006), Decision Trees (Bekhuis and
Demner-Fushman, 2010), Evolutional Svm (Bekhuis and Demner-Fushman, 2010),
Waode (Bekhuis and Demner-Fushman, 2010), knn (García Adeva et al., 2014),
Rocchia (García Adeva et al., 2014), hypernym relations (Sun et al., 2012), Gener-
alized Linear Models (Shekelle et al., 2012), Gradient Boosting Machines (Shekelle
et al., 2012), Random Indexing (Jonnalagadda and Petitti, 2014), and Random Forests
(Khabsa et al., 2016). Few of themethods proposed have been evaluated on common
datasets however, and it is therefore difficult to draw conclusions about relative
performance (O’Mara-Eves et al., 2015).
Recently, Khabsa et al. (2016) proposed using random forests, and compared the
performance of their system with the reported performance of earlier systems on
Cohen’s 15 reviews (see section 6·2). Other methods have also been evaluated on
the same dataset (Jonnalagadda and Petitti, 2014). For these reasons, and because
the dataset is publicly available we will use this dataset as our baseline.
However, even though humans approach screening as a series of filters of increas-
ingly fine granularity, all methods we have reviewed in previous literature ap-
proach the problem as a one stage process.

6·1·2 Objective

We construct an automatic screening system using a standard, off-the-shelf clas-
sifier. We describe our implementation and compare it with the state of the art
to show that it functions as intended. We then apply our implementation on two
datasets for systematic reviews, one of which is novel, in order to answer the fol-
lowing questions:
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Dataset Topic Y M N
Yearbook ClinicalNLP (2017) 11 70 244 (177)

ClinicalNLP (2016) 23 60 267 (191)
Cohen CalciumChannelBlockers 100 180 938

ACEInhibitors 41 142 2361
BetaBlockers 42 260 1770
Opiods 15 33 1867
OralHypoglycemics 136 3 364
Statins 85 88 3292
SkeletalMuscleRelaxants 9 25 1609
Antihistamines 16 76 218
ProtonPumpInhibitors 51 187 1095
Triptans 24 194 453
Nsaids 41 47 305
Adhd 20 64 767
AtypicalAntipsychotics 146 218 756
UrinaryIncontinence 40 38 249
Estrogens 80 0 288

Table 6.1 – The distribution of class labels in each dataset. The Yearbook makes an addi-
tional separation of n into references that are off-topic and those that are on-topic but
does not fit the research question of the review. The number of off-topic references is
given in parentheses.

1. Can we separate the screening into two stages?

2. Do we need examples from all stages of screening (y, m, n)?

3. Should the positive labels match the decisions in the first or second stage of the
screening?

To our knowledge, these questions have not yet been considered by existing litera-
ture.
Note that the aim of this study is not to improve upon the state of the art, but to
investigate how different labeling schemes affect datasets for literature screening.

6·2 Datasets

To address our research questions, we use two datasets that label not only y and n
judgments, but explicitly mark the m subset.
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Intertopic Intratopic

Topic
Measure wss@95 auc wss@95 auc

(Cohen) (Khabsa) (Khabsa)
CalciumChannelBlockers .129 .759 .712 .398 .287 (rf) .825 .873 (svm)

ACEInhibitors .566 .817 .806 .629 .523 (cnb) .917 .951 (rf)
BetaBlockers .400 .837 .801 .511 .367 (cnb) .863 .893 (rf)

Opiods .301 .885 .856 .590 .554 (cnb) .905 .913 (rf)
OralHypoglycemics .072 .657 .573 .111 .080 (cnb) .568 .781 (svm)

Statins .266 .826 .773 .436 .400 (rf) .873 .915 (rf)
SkeletalMuscleRelaxants .241 .828 .836 .429 .371 (rf) .740 .794 (rf)

Antihistamines .073 .652 .620 .149 .148 (cnb) .650 .722 (svm)
ProtonPumpInhibitors .377 .823 .793 .307 .288 (rf) .826 .880 (rf)

Triptans .464 .819 .823 .303 .312 (rf) .792 .909 (svm)
Nsaids .671 .912 .899 .537 .528 (cnb) .861 .951 (svm)
Adhd .128 .591 .469 .616 .668 (vp) .908 .951 (rf)

AtypicalAntipsychotics .162 .759 .653 .210 .206 (cnb) .779 .835 (rf)
UrinaryIncontinence .374 .887 .851 .422 .411 (rf) .784 .890 (svm)

Estrogens .176 .693 .588 .292 .375 (cnb) .689 .887 (svm)

Table 6.2 – Results comparing our implementation to the state of the art. Intertopic
results report the average over 5 runs. Intratopic results report the average over 10 runs (5
× 2 cross validation). Both cases use (y | | mn). Intertopic state of the art results are taken
from Cohen (2008). Intratopic state of the art results are taken from Khabsa et al. (2016),
who also report results on Complement Naive Bayes (cnb) by Matwin et al. (2010), Voting
Perceptrons (vp) by Cohen et al. (2006), and Support Vector Machines (svm) by Cohen
(2008). Exact intertopic auc scores are not explicitly reported by Cohen (2008) and have
instead been extracted from Figure 1 in his paper.

The datasets each consist of references in the form of PubMed identifiers (pmid)
with corresponding inclusion labels (i.e. y, m, or n) and topic labels. Article meta-
data, as well as titles and abstracts, are not included in either dataset, but can be
downloaded from Medline using the Entrez api.1 The distribution of references
from each review stage is reported in Table 6·1. Like in the majority of previous
literature, we assume that labeled training data is available, which is generally not
true for new reviews. Training data might however exist from past reviews on the
same or similar topics. We call such cases where the training data is drawn from
similar, but not exactly the same topic, inter-topic training.
It may also be possible to have reviewers label small batches of references, and use
these as training data for the remainder of the process. Furthermore, systematic
reviews sometimes need to be updated, in which case we can use the data from

1 https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/https://www.ncbi.nlm.nih.gov/home/develop/api/
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previous iterations for training. We call such caseswhere the training data is drawn
from exactly the same topic intra-topic training.

6·2·1 The Yearbook Dataset

We construct this dataset by using the references that were considered on topic in
the review on clinical nlp done by Névéol and Zweigenbaum (2017); Névéol et al.
(2016) for the Imia Yearbook of Medical Informatics.
This review is updated annually, and the resulting dataset illustrates systematic
reviews updates. In each iteration, previous data can be leveraged to train an intra-
topic classifier.
This dataset is made available in csv and json format,1 and is planned to be up-
dated to incorporate future iterations of the review.

6·2·2 The Cohen Dataset

In one of the early papers on screening automation, Cohen et al. (2006) constructed
a dataset from 15 systematic reviews on drug efficacy. This dataset was later ex-
tended to 18 (Cohen et al., 2010), then to 24 reviews (Cohen et al., 2009). The smaller
dataset comprising 15 reviews has been made available (Cohen et al., 2006).2 Sev-
eralmethods, includingVoting Perceptrons (Cohen et al., 2006), ComplementNaive
Bayes (Matwin and Sazonova, 2012), svm (Cohen, 2006, 2008; Cohen et al., 2009),
Random Indexing (Jonnalagadda and Petitti, 2014), and Random Forests (Khabsa
et al., 2016) have been tested on this dataset, and we can therefore use this dataset
to compare our performance against previous work.
This dataset illustrates leveraging training data from similar topics. For each subtopic,
data from the other subtopics may be leveraged to build an inter-topic classifier.

6·3 Document Ranking Method

We construct a ranker by extracting bag-of-n-grams (n ≤ 3) over words in the titles
and abstracts. We use both tf ·idf scores and binary features, and both stemmed
and unstemmed versions. The n-grams from the background, method, results, and
conclusion of the abstract are also each considered in separation. We also extract
article metadata, namely author-assigned keywords, journal names, and publica-
tion types. For Cohen we also extract MeSH terms, but omit these for Yearbook
since MeSH terms are generally not yet available when reviews are updated.

1 Available from doi: doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076doi10.5281/zenodo.1173076
2 The old link has however expired. The data can now be found at

https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
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We use a ranking approach only. In practice we ignore the decision boundary used
by the logistic regression, and instead leave the decision as to where to stop the
search entirely to the reviewer(s). Point measures, such as recall, can therefore
only be computed as a function of the position in the ranked list.
We use the implementation of logistic regression in sklearn (Pedregosa et al., 2011)
trained using stochastic gradient descent, i.e. the SGDClassifier trained using log
loss. We train the ranker for a maximum of 100,000 iterations.
We generally follow the setup of Cohen et al. (2006), and Khabsa et al. (2016). For
intra-topic cross validation we use 2-fold cross validation on each topic and repeat
this 5 times. For intertopic training we report the average of 5 repetitions. In
each experiment we report the average and standard deviation over all folds and
repetitions. All hyperparameters remain constant throughout each experiment.
Unless otherwise stated, we use the default settings for all parameters. We train
the ranker and calculate the auc similarly to Cohen (2008); Cohen et al. (2009).
Cross validation was done both inter-topic and intra-topic similarly to the later
work of Cohen et al. (2009), and results are reported for each case. We also report
the wss@95 scores (Cohen et al., 2006) in order to compare our results against
the naive bayes methods of Matwin et al. (2011). We handle class imbalance by
(pseudo)randomly undersampling the majority class to have the same number of
instances as the minority class. We however observe that this yields poor results
when the number of examples in the majority class is low, and therefore include a
minimum of 500 majority class examples.
We increase the weights on the relevant references to 80 to emulate differing costs
of misclassification. We also chose α = 10–4 as a reasonable value for the regular-
ization term for the Cohen dataset, and α = 0.05 for Yearbook. We selected these
values through experimentation on one of the topics in Cohen (CalciumChannel-
Blockers), and the first iteration of the Yearbook dataset (2016).

6·3·1 Experimental Setup

We perform two types of experiments; First, we run our implementation on the Co-
hen dataset and compare it with the reported performance of previous work. We
do this in order to verify the correctness of our algorithm. Second, we perform ex-
periments where we enumerate different ways to treat y, m, and n labels as positive
and negative examples.
We test if it is feasible to emulate the way humans conduct systematic reviews by
considering a two-stage approach where we first separate ym from n, and then y
from m.
We test whether treating the m subset as positive or negative labels impacts the
performance by comparing the performance when separating ym from n with the
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(y||mn) (ym||n) (y|m|n) (y||m) (y||n) (m||n)
wss auc wss auc wss auc wss auc wss auc wss auc

Yearbook .003 .625 .229 .803 .189 .808 .012 .481 .020 .738 .256 .785
Cohen .449 .839 .265 .768 .472 .814 .163 .557 .423 .832 .239 .714

(a) Intra-topic results averaged over 10 runs (5 × 2 cross validation) for different dataset composi-
tions. The averages were computed using weights proportional to the number of articles in each topic
(y+m+n, y+m, y+n, or m+n).

(y||mn) (ym||n) (y|m|n)
wss@95 auc wss@95 auc wss@95 auc

Topic avg std avg std avg std avg std avg std avg std
ClinicalNLP (Yearbook) .003 .000 .625 .005 .229 .011 .803 .001 .189 .008 .808 .002

CalciumChannelBlockers .398 .098 .825 .024 .218 .056 .764 .030 .338 .073 .790 .012
ACEInhibitors .629 .158 .917 .020 .277 .050 .800 .021 .598 .126 .879 .027
BetaBlockers .511 .157 .863 .030 .187 .047 .730 .025 .476 .210 .831 .021

Opiods .590 .193 .905 .052 .366 .096 .817 .033 .705 .063 .881 .035
OralHypoglycemics .111 .048 .568 .026 .138 .068 .579 .036 .089 .020 .583 .026

Statins .436 .176 .873 .021 .254 .094 .779 .025 .421 .101 .864 .015
SkeletalMuscleRelaxants .429 .221 .740 .113 .264 .180 .826 .064 .445 .116 .746 .057

Antihistamines .149 .089 .650 .089 .126 .038 .566 .026 .239 .092 .596 .013
ProtonPumpInhibitors .307 .191 .826 .044 .167 .043 .731 .023 .378 .058 .770 .037

Triptans .303 .237 .792 .075 .300 .039 .746 .030 .412 .067 .691 .026
Nsaids .537 .184 .861 .022 .402 .072 .755 .042 .458 .057 .727 .024
Adhd .616 .148 .908 .026 .697 .096 .910 .017 .828 .057 .906 .011

AtypicalAntipsychotics .210 .044 .779 .012 .123 .024 .714 .027 .284 .057 .803 .022
UrinaryIncontinence .422 .144 .784 .032 .207 .089 .660 .040 .475 .072 .750 .038

Estrogens .292 .089 .689 .026 .266 .093 .715 .040 .319 .056 .693 .026

(b) Intratopic results averaged over 10 runs (5× 2 cross validation) for different dataset compositions.
(y||m) (y||n) (m||n)

wss@95 auc wss@95 auc wss@95 auc
Topic avg std avg std avg std avg std avg std avg std

ClinicalNLP (Yearbook) .012 .000 .481 .005 .020 .002 .738 .003 .256 .004 .785 .001
CalciumChannelBlockers .141 .039 .590 .030 .421 .106 .852 .024 .208 .069 .743 .032

ACEInhibitors .165 .083 .631 .059 .410 .370 .918 .032 .256 .063 .771 .020
BetaBlockers .383 .096 .737 .021 .515 .135 .870 .034 .190 .031 .713 .018

Opiods .131 .096 .526 .006 .592 .205 .906 .064 .249 .177 .762 .045
OralHypoglycemics .058 .000 .387 .167 .105 .039 .579 .030 .754 .194 .826 .112

Statins .125 .052 .560 .037 .439 .184 .879 .047 .240 .086 .708 .028
SkeletalMuscleRelaxants .240 .143 .547 .017 .297 .149 .668 .078 .226 .163 .800 .067

Antihistamines .204 .165 .554 .062 .161 .090 .700 .033 .128 .073 .583 .036
ProtonPumpInhibitors .159 .052 .584 .022 .421 .168 .852 .026 .122 .046 .694 .032

Triptans .199 .130 .695 .072 .437 .244 .880 .042 .272 .064 .746 .028
Nsaids .129 .050 .576 .056 .479 .185 .851 .017 .316 .094 .723 .027
Adhd .193 .138 .588 .093 .707 .169 .938 .021 .639 .170 .916 .013

AtypicalAntipsychotics .112 .023 .548 .017 .259 .114 .792 .030 .113 025 .629 .031
UrinaryIncontinence .090 .038 .550 .024 .433 .159 .792 .033 .121 .103 .591 046

Estrogens - - - - .233 .034 .686 .038 - - - -

(c) Intratopic results averaged over 10 runs (5× 2 cross validation) for different dataset compositions.

Table 6.3 – (y||mn) denotes results using y as the positive class. (ym||n) denotes results
using y and m as the positive class. (y|m|n) denotes results using y and m as the positive
class in training, and y as the positive class in evaluation. (y||m) denotes results using y
as the positive, and m as the negative class. (y||n) denotes results using y as the positive,
and n as the negative class. (m||n) denotes results using m as the positive, and n as the
negative class. Estrogens has no m, and is consequently excluded from the calculations of
the results for (y||m) and (m||n).
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performance when separating y from mn.
And finally, we evaluate models where we treat the m subset as positive examples
during training but negative during testing in order to test whether classification
in earlier stages generalize to classification in later stages.
We report the work saved over sampling at 95% recall (wss@95) (Cohen et al.,
2006) and the area under the receiver operator characteristic curve (auc) (Cohen,
2008) in order to bring our results in line with previous literature (Khabsa et al.,
2016). The wss@95 metric measures the theoretical work saved when using the
model to retrieve 95% of the relevant articles.

6·4 Results

We present our comparisonwith the state of the art in Table 6·2. In Tables 6.3a–6.3c
we present the results of our experiments using data with different compositions
of examples in terms of y, m, and n.

6·5 Discussion

In this section we discuss the results, in order to verify that our system works as
intended, and to address the questions we set out in Section 6·1·2 Objective.

6·5·1 Performance of Our System

Intuitively: based on the wss@95 scores (Tables 6.3a, 6.3b), our method could save
the reviewers from having to look at 46 (Antihistamines) to 1058 (BetaBlockers)
references depending on the topic, or about 605 references on average.
The results of our implementation are comparable to state of the art results across
the board (Table 6·2). Our implementation exhibits equal or better results for in-
tertopic training (Table 6·2). For intratopic training, our implementation exhibit
worse results in terms of auc, but better scores in terms of wss@95. Our imple-
mentation seems to perform worse than the state of the art mainly on the topics
where there are no or very few m (OralHypoGlycemics, Estrogens). It is also possi-
ble that the additional features used by Khabsa et al. (references cited) can explain
some of the difference in results.

6·5·2 Can We Separate the Screening into Two Stages?

Separating the screening into two stages would entail first screening in terms of
(ym||n) followed by (y||m). However, from Tables 6.3a–6.3c it is clear that while
(y||mn) is feasible, (y||m) is considerably more difficult than (y||n) or (y||mn) (Ta-
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bles 6.3a–6.3c). The ranker is however doing a slightly better job on BetaBlockers
and Triptans (Tables 6.3b and 6.3c).
In particular, when separating y from m, the ranker is not performing much better
than chance on many of the topics. This is to be expected, since m represent those
references the human annotators required the full text to judge, and it would be
unreasonable to expect the ranker to be able to judge these based only on title and
abstract.
Consequently, we can certainly perform (ym||n) as an initial step, but (y||m) would
at the very least require ranking the full text articles.

6·5·3 Do We Need Examples from All Stages of Screening (y, m, n)?

We observe similar results for (y|m|n) and (y||mn) on Cohen, i.e. we can train a
ranker using positive examples that were included based on title and abstract (y+m),
even if these were to turn out to be non-relevant upon inspecting the full text (m).
On the Yearbook dataset we observe better scores for (y|m|n) than (y||mn), likely
due to the number of y available for training (23) being much smaller. In Table 6.3b
we can generally observe similar results for (y|m|n) and (y||mn), the exceptions
being Triptans and Nsaids where we observe better results for (y||mn). We also
observe similar results for (y|m|n) and (y||mn) on the Yearbook data. On some
topics we observe better results for (y|m|n), but the difference is small.
Furthermore, both (y||n) and (m||n) seem to give reasonable results, although these
results are not directly comparable to the results for (y|m|n). We can also observe
that (y||n) is generally easier than (m||n). This could be due to y containing fewer
borderline cases.
Consequently, we do need positive examples drawn from y or m, as well as negative
examples drawn from n. It seems to make less difference whether we consider m
to be positive or negative examples and we may be able to exclude either y or m in
training.
Interestingly it seems from Table 6.3a that it is more difficult to classify in terms
of (ym||n) than (y||mn) on Cohen, but the inverse is true on Yearbook. This might
be explained by the small number of y on Yearbook (11), and we can observe the
same on the topics in Cohen with few y (SkeletalMuscleRelaxants, Adhd). Oral-
Hypoglycemics have only 3 m and Estrogens no m at all, and we therefore exclude
these topics from the results.

6·5·4 Can We Use m as Positive Examples for Training?

Cohen et al. previously discovered that while intratopic data is generally better
than intertopic data (Cohen et al., 2006), the less targeted intertopic data can com-
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plement the intratopic data if the intratopic data is scarce (Cohen et al., 2009, 2006).
Our results suggest the same (Table 6·2), but also that we can generally use m as
training examples to complement the y. The intuition behind these ideas is simi-
lar: while it is generally important to have training data targeted for the particular
problem, it is also important to have sufficient amounts of data, and less targeted
training data can provide a supplement if only scarce amounts of data is available.
We can further compare the results for intratopic (y|m|n) versus the results for in-
tertopic (y||mn) in Tables 6.3b and 6·2 to get a sense of whether complementing our
training data by using m as positive examples works better than complementing
our training data with less targeted data from similar topics.
We observe better results for intertopic (y||mn) for OralHypoglycemics, SkeletalMu-
scleRelaxants, Antihistamines, Triptans, Nsaids, and UrinaryIncontinence. This
might in part be explained by OralHypoglycemics, SkeletalMuscleRelaxants and
Antihistamines having few y. We observe better results for intratopic (y|m|n) on
ACEInhibitors, ProtonPumpInhibitors, and Adhd. It is not clear why we observe
this difference on these topics.

6·5·5 Strategies for Ranking Articles

From Tables 6.3a–6.3c it seems that there is no single approach that is clearly better
for any kind of data. Which approachworks best depends on the number of articles
in each class, as well as the exact nature of articles in each stage. What parts of the
data to e.g. use for training must therefore be decided based on the characteristics
of the dataset, or by testing multiple approaches.
The results and conclusions of this study guided the strategic choices we made for
the system submitted to the Clef eHealth shared task Technology Assisted Reviews
in Empirical Medicine (Kanoulas et al., 2017a; Norman et al., 2017b). We submit-
ted four runs using different machine learning methods: 1) the (ym||n) approach
described here 2) an (ym||n) approach using standard logistic regression (i.e. not
trained using sgd), and 3) two variations of logistic regression with active learning,
where the system starts using the (y|m|n) approach and later switches to using the
(y||mn) approach once a sufficient number of Y have been discovered.
On the Cohen dataset approach 2 worked better than approach 1 for intratopic
training and vice-versa, and we could reliably see improvements over either of
these by using active learning. On the Clef data however, approach 1 achieved
much better results than either approach 2 or 3. We believe that this was at least
partly due to the small number of relevant articles per topic in the Clef dataset
(Norman et al., 2017b).
Our participation placed third to fifth in the evaluation overall, depending on met-
ric used, and placed first among the systems not using active learning.
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6·5·6 Limitations

This work relied on two datasets and a ranker developed in-house. It is not clear
how the results generalize to other domains and datasets, or to other machine learn-
ing methods.
We observe fairly large variance for many of the runs (Tables 6.3b, 6.3c), and on
many topics. This is particularly problematic for the wss metric, but it also affects
the auc metric even averaged over ten repetitions. For instance, Estrogens has no
m, and we should therefore expect the same results for (y||mn) and (ym||n), yet we
observe differences roughly equal to the standard deviation for the auc. Previous
literature generally do not report their variance, which complicates the comparison
with previous results.

6·5·7 Future work

We are working on extending the system to use additional machine learning meth-
ods, including deep artificial neural networks, and to complement the system with
information retrieval methods.

6·6 Conclusion

We find that in order to train rankers to automate the screening process we need
to use 1) examples of excluded references (n), and 2) references included in either
the first (m) or second stage of the screening (y). In the systematic reviews, the
m are those articles that were excluded after reading the full text, and so are in
reality negative examples. However, our results suggest that these can still be
used as positive examples for training. It may well be possible to construct an
accurate ranker using only the m as the positive examples, without any real positive
examples (i.e. y) at all.
Our best results are achieved with (y||mn) on the Cohen dataset, whereas our best
results are achieved with (y|m|n) on the Yearbook dataset. Given that the distribu-
tion of the labels is similar in both datasets it is likely that greater contribution of
the m on the Yearbook dataset is due to its smaller size. For any new systematic
review we only have whatever training data we label ourselves, and data scarcity
is therefore one of the major issues we need to overcome. Even for systematic
review updates the amount of positive training data available is typically modest
since the number of included articles in any systematic review tends to be small
(the y column in Table 6·1).
Since the number of references that are provisionally included based on title and
abstract (y+m) can outnumber the final includes (y) by almost ten to one (Table 6·1),
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using examples of m in addition to y suggests a straightforwardway to increase the
amount of training data available (i.e. the y|m|n approach), and thus potentially
overcome the data scarcity problem, particularly if we do not have access to inter-
topic training data. This does not seem to have been considered in previous work.
Our results also agree with the state of the art and suggest that common-off-the-
shelf machine learning algorithms can accurately predict topical relevance of can-
didate articles for inclusion in systematic reviews.
In light of the results, we recommend that future datasets intended to be used ei-
ther for training or for evaluation of document screening should include a tripartite
labeling reflecting the two filtering stages in manual systematic reviews. Strictly,
only the distinction between ym and n is necessary for training, but we still likely
want to only treat y as positive during evaluation, since only these would be con-
sidered relevant for the purposes of the systematic review.
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Limsi@clef eHealth 2017 Task 2: Logistic Regression for
Automatic Article Ranking

Christopher R. Norman, Mariska M.G. Leeflang, &Aurélie Névéol

Abstract

This paper describes the participation of the Limsi-Miror team at Clef eHea-
lth 2017, task 2. The task addresses the automatic ranking of articles in order
to assist with the screening process of Diagnostic Test Accuracy (dta) System-
atic Reviews. We used a logistic regression classifier and handled class imbal-
ance using a combination of class reweighting and undersampling. We also ex-
perimented with two strategies for relevance feedback. Our best run obtained
an overall Average Precision of 0.179 and Work Saved over Sampling @95%
Recall of 0.650. This run uses stochastic gradient descent for training but no
feature selection or relevance feedback. We observe high performance varia-
tion within the queries in the test set. Nonetheless, our results suggest that
automatic assistance is promising for ranking the dta literature as it could
reduce the screening workload for review writer by 65% on average.

7·1 Introduction

Systematic reviews seek to gather all available published evidence for a given topic
and provide an informed analysis of the results. This work constitutes some of the
strongest forms of scientific evidence. Systematic reviews are an integral part of
evidence based medicine in particular, and serve a key role in informing and guid-
ing public and institutional decision-making. Systematic reviews for Diagnostic
Test Accuracy (dta) studies have been shown particularly challenging compared
to other types of reviews because of the difficulty in defining search strategies of-
fering adequate levels of sensitivity and specificity (Petersen et al., 2014). For this
reason, there is a need to particularly investigate automation strategies to assist
dta systematic review writers in the time-consuming screening process.
Methods for automating the screening process in systematic reviews have been
actively researched over the years (O’Mara-Eves et al., 2015), with promising results
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obtained using a range of machine learning methods. However, previous work has
not addressed dta studies.
This paper describes the work underlying our participation in the Clef 2017 eHea-
lth Task 2 (Goeuriot et al., 2017; Kanoulas et al., 2017a). This work is part of an
ongoing effort on providing automatic assistance for the screening process in sys-
tematic reviews addressing a variety of topics, including dta studies.
The remainder of this paper is organized as follows; subsection 2 presents the
datasets used for system development. subsection 3 provides an overview of our
system and describes each component. Finally, subsection 4 reports our results
and subsection 5 provides an analysis of our methods and participation in the task.

7·2 Datasets

The task relied on a corpus comprising 50 dta systematic review topics associated
with the full list of articles retrieved by an expert query and assessed for inclusion
based on title and abstract or full text. The corpus was split into a development
dataset comprising 20 topics and a test set comprising the remaining 30 topics.
Our classifier was trained on the development dataset and evaluated on the test
dataset. We have also used a dataset of systematic reviews on drug class efficacy
due to Cohen et al. (Cohen et al., 2006) to develop the methods applied in this
task. Several groups have been using this dataset in the past (Cohen et al., 2006;
Khabsa et al., 2016), which gives us a way to compare our results with previous
work, although we can of course only do by using the same evaluation metrics and
training modes as previous work.
For both the Clef and Cohen datasets we know the inclusion decisions based on
the abstracts, as well as the inclusion decisions based on the full text. We thus have
two definitions of positive examples, depending on whether we use the abstract
decisions or full text decisions as the gold standard.
We use a tripartite labeling to reflect this:

☙ No (n) is the set of articles that were excluded based on the abstract

☙ Maybe (m) is the set of articles that were preliminarily included based on the
abstract, but later excluded based on the full text

☙ Yes (y) is the set of articles that were included based on both the abstract and the
full text, and later used in the meta-analysis

Table 7·1 shows a breakdown of the distribution of examples for each class the Clef
and Cohen datasets used in our work.
Following the work of Cohen (2008), we also distinguish between two modes of
training:
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Absolute number Relative number
Dataset Topic Y M N Y M N
Cohen CalciumChannelBlockers 100 180 938 8.21% 14.78% 77.01%

ACEInhibitors 41 142 2361 1.61% 5.58% 92.81%
BetaBlockers 42 260 1770 2.03% 12.55% 85.42%
Opiods 15 33 1867 0.78% 1.72% 97.49%
OralHypoglycemics 136 3 364 27.04% 0.60% 72.37%
Statins 85 88 3292 2.45% 2.54% 95.01%
SkeletalMuscleRelaxants 9 25 1609 0.55% 1.52% 97.93%
Antihistamines 16 76 218 5.16% 24.52% 70.32%
ProtonPumpInhibitors 51 187 1095 3.83% 14.03% 82.15%
Triptans 24 194 453 3.58% 28.91% 67.51%
Nsaids 41 47 305 10.43% 11.96% 77.61%
Adhd 20 64 767 2.35% 7.52% 90.13%
AtypicalAntipsychotics 146 218 756 13.04% 19.46% 67.50%
UrinaryIncontinence 40 38 249 12.23% 11.63% 77.61%
Estrogens 80 0 288 21.74% 0.00% 78.26%
Total 846 1555 16333 4.52% 8.30% 87.18%

Clef (train) cd007394 47 48 2450 1.85% 1.89% 96.27%
cd007427 17 106 1398 1.12% 6.97% 91.91%
cd008054 41 233 2940 1.28% 7.25% 91.47%
cd008643 7 4 15065 0.05% 0.03% 99.93%
cd008686 5 2 3946 0.13% 0.05% 99.82%
cd008691 20 53 1243 1.52% 4.03% 94.45%
cd009020 12 150 1422 0.76% 9.47% 89.77%
cd009323 9 113 3757 0.23% 2.91% 96.85%
cd009591 41 103 7847 0.51% 1.29% 98.20%
cd009593 24 54 14844 0.16% 0.36% 99.48%
cd009944 64 53 1064 5.42% 4.49% 90.09%
cd010409 41 35 43287 0.09% 0.08% 99.82%
cd010438 3 36 3211 0.09% 1.11% 98.80%
cd010632 14 18 1472 0.93% 1.20% 97.87%
cd010771 1 47 274 0.31% 14.60% 85.09%
cd011134 49 166 1738 2.51% 8.50% 88.99%
cd011548 1 108 12591 0.01% 0.85% 99.14%
cd011549 1 1 12699 0.01% 0.01% 99.98%
cd011975 60 559 7582 0.73% 6.82% 92.45%
cd011984 28 426 7738 0.34% 5.20% 94.46%
Total 485 2315 146568 0.32% 1.55% 98.13%

Clef (test) cd007431 47 9 2050 2.23% 0.43% 97.34%
cd008081 10 16 944 1.03% 1.65% 97.32%
cd008760 9 3 52 14.06% 4.69% 81.25%
cd008782 34 11 10460 0.32% 0.10% 99.57%
cd008803 99 0 5121 1.90% 0.00% 98.10%
cd009135 19 58 714 2.40% 7.33% 90.27%
cd009185 23 69 1523 1.42% 4.27% 94.30%
cd009372 10 15 2223 0.44% 0.67% 98.89%
cd009519 46 58 5867 0.77% 0.97% 98.26%
cd009551 16 30 1865 0.84% 1.57% 97.59%
cd009579 79 59 6317 1.22% 0.91% 97.86%
cd009647 17 39 2729 0.61% 1.40% 97.99%
cd009786 6 4 2055 0.29% 0.19% 99.52%
cd009925 55 405 6071 0.84% 6.20% 92.96%
cd010023 14 38 929 1.43% 3.87% 84.70%
cd010173 10 13 5472 0.18% 0.24% 99.58%
cd010276 24 30 5441 0.44% 0.55% 99.02%
cd010339 9 105 12689 0.07% 0.82% 99.11%
cd010386 1 1 623 0.16% 0.16% 99.68%
cd010542 8 12 328 2.30% 3.45% 94.25%
cd010633 3 1 1569 0.19% 0.06% 99.75%
cd010653 0 45 7957 0.00% 0.56% 99.44%
cd010705 18 5 91 15.79% 4.39% 79.82%
cd010772 11 36 269 3.48% 11.39% 85.13%
cd010775 4 7 230 1.66% 2.90% 95.44%
cd010783 11 19 10875 0.10% 0.17% 99.72%
cd010860 4 3 87 4.26% 3.19% 92.55%
cd010896 3 3 163 1.78% 1.78% 96.45%
cd011145 48 154 10670 0.44% 1.42% 98.14%
cd012019 1 2 10314 0.01% 0.02% 99.97%
Total 639 1250 115698 0.54% 1.06% 98.39%
Total (train + test) 1124 3565 262266 0.42% 1.34% 98.24%

Table 7.1 – The distribution of class labels in each dataset.
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Screening Automation Systems

☙ Intertopic training uses articles from a different topic (systematic review) for
training

☙ Intratopic training uses articles from the current topic (systematic review) for
training

7·3 Method

We first give an overview of our system, which relies on logistic regression, in
subsection 7·3·1. Further details about the system are given in sections 7·3·2–7·3·5,
including features, strategies to handle class imbalance and implement relevance
feedback.

7·3·1 Overview

We have tried the following two classifiers:

☙ Classifier 1 uses logistic regression trained using stochastic gradient descent on
all features

☙ Classifier 2 uses standard logistic regression trained using standard methods on
a subset of the features, and with additional preprocessing to improve the through-
put

We have tried three approaches to relevance feedback:

☙ no relevance feedback

☙ abrupt uses intertopic ranking until a sufficient number of relevant and non-
relevant articles have been identified, and then switches to using intratopic ranking
based on the identified articles

☙ gradual initially uses intertopic ranking, and gradually improves themodel using
both y and m identified through relevance feedback

In total, we have submitted the following four runs to the Clef evaluation:

☙ no · af · full uses classifier 1 with no relevance feedback

☙ no · af uses classifier 2 with no relevance feedback

☙ abrupt uses classifier 2 with abrupt relevance feedback

☙ gradual uses classifier 2 with gradual relevance feedback
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7. Ranking Performance for dta Reviews (2017)

7·3·2 Classification Approach

We are currently using two classification systems. Both use logistic regression
but differ in how the model is optimized and the amounts and types of pre- and
postprocessing that is performed. Both methods use implementations provided by
sklearn (Pedregosa et al., 2011).
Our first method, which is used in no · af · full tends to work well for intertopic
classification on previous datasets (see table 7·3), presumably because it general-
izes better. This system uses logistic regression trained using stochastic gradient
descent. The only preprocessing done is the normalization of numerals.
Our secondmethod, which is used in no · af, abrupt, and gradual uses standard
methods for training (liblinear). This version tends to work well on intratopic clas-
sification on previous datasets (see table 7·3), but does not scale as well with data
volume. We therefore need to do additional preprocessing to reduce the number
of features and keep running times down. We thus remove features with variance
less than a predefined threshold, we only consider n-grams with high mutual in-
formation with the target class in the training set, we normalize numerals, and we
extract the principal components from the resulting data.
Principal component analysis tends to reduce overfitting in our experiments, and
it also drastically reduces the time it takes to train and apply the classifier, which
is mostly important when we use relevance feedback.

7·3·3 Features

For all classifiers we extract n-grams (n ≤ 5) from the titles and abstracts. We also
extract publication type, journal names, author assigned keywords, MeSH terms,
and backward references, where these are available. The backward references are
only available for references pointing to articles available in PubMed Central, and
this feature set is therefore fairly sparse.
Not all feature sets are useful for identifying dta studies, but the current model has
been constructed such that irrelevant features should not adversely affect the per-
formance. All the feature sets have been shown to be useful on some domain. For
instance MeSH terms might not be useful for dta studies, but we have previously
found them to be useful in identifying topics related to drug efficacy.

7·3·4 Class Imbalance

Class imbalance can be handled using undersampling, or by class reweighting. We
are currently using a combination of both these approaches.

107
7



Screening Automation Systems

Topic no · af · full no · af vp cnb rf
CalciumChannelBlockers .398 .408 <.100 .234 .287

ACEInhibitors .629 .517 .318 .523 .447
BetaBlockers .511 .427 .284 .367 .361

Opiods .590 .641 <.190 .554 .455
OralHypoglycemics .111 .153 <.050 .080 .074

Statins .436 .573 .242 .315 .400
SkeletalMuscleRelaxants .429 .179 -.050 .265 .371

Antihistamines .149 .157 .080 .148 .030
ProtonPumpInhibitors .307 .320 <.180 .229 .288

Triptans .303 .312 .030 .279 .312
Nsaids .537 .600 .352 .528 .404
Adhd .616 .530 .668 .622 .447

AtypicalAntipsychotics .210 .234 .140 .206 .199
UrinaryIncontinence .422 .365 .260 .290 .411

Estrogens .292 .475 .140 .375 .180

Table 7.2 – Comparison in terms of wss@95% with previous literature using Voting Percep-
trons, Complement Naive Bayes, and Random Forests, as reported by Khabsa et al. (2016).
We here only have state of the art metrics for the intratopic case.

Class weights We set the weight for the positive class to 80 for the initial inter-
topic classifier. We have determined this to be a reasonable weight experimentally
using the Cohen dataset.
For the gradual relevance feedback we also attached higher weights to the in-
tratopic training examples identified through relevance feedback.

Undersampling In order to reduce the effects of the class imbalance we under-
sample the training set to include an equal number of y, m, and n. However, by
doing so we end up with only around 1500 training samples. pca yields at most
the same number of principal components as we have input samples, and 1500
is generally too few principal components to build an accurate classifier. For the
second model we therefore perform undersampling in two steps; We first select a
maximum of 500 y, 1000 m, and 1500 n that we feed into the feature extraction
pipeline, which thus determines the number of features in our model. We then
select a smaller undersample to use for training.
We take a new undersample in each iteration of relevance feedback.
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Intertopic rf Intratopic
no · af no · af

Topic full Cohen gradual full Cohen Khabsa
CalciumChannelBlockers .759 .773 .712 .862 .825 .868 .873 .870

ACEInhibitors .817 .782 .806 .899 .917 .925 .946 .951
BetaBlockers .837 .832 .801 .860 .863 .871 .891 .893

Opiods .885 .902 .856 .936 .905 .893 .897 .913
OralHypoglycemics .657 .581 .573 .753 .568 .768 .781 .734

Statins .826 .798 .773 .797 .873 .922 .900 .915
SkeletalMuscleRelaxants .826 .823 .836 .812 .740 .527 .738 .794

Antihistamines .652 .600 .620 .752 .650 .655 .722 .701
ProtonPumpInhibitors .823 .790 .793 .886 .826 .860 .860 .880

Triptans .819 .796 .823 .804 .792 .808 .909 .894
Nsaids .912 .828 .899 .922 .861 .935 .951 .933
Adhd .591 .606 .469 .740 .908 .897 .924 .951

AtypicalAntipsychotics .759 .645 .653 .855 .779 .803 .835 .818
UrinaryIncontinence .887 .875 .851 .888 .784 .885 .890 .862

Estrogens .693 .649 .588 .879 .689 .912 .887 .840

Table 7.3 – Comparison in terms of auc with previous literature using Support Vector
Machines (Cohen) and Random Forests (Khabsa), as reported by Khabsa et al. (Khabsa
et al., 2016), and Cohen et al. (Cohen, 2008). Exact intertopic auc scores are not explicitly
reported by Cohen et al. and have instead been extracted from Figure 1 in their paper.

7·3·5 Relevance Feedback

We use two schemes for relevance feedback. For both schemes we retrain the
classifier each time we retrieve relevance feedback.

abrupt trains an initial intertopic classifier on the training dataset and ranks the
test dataset in descending order of confidence. The system then iteratively asks for
feedback for the top ranked results. When enough positive and negative examples
have been identified, the system switches to using a classifier trained on the ex-
amples identified from relevance feedback. Additional examples are added to the
intratopic classifier as they are discovered.
The idea behind this system is that on some topics in Cohen we can train highly
performing intratopic classifiers using very small amounts of data, and we have
observed that even trained on small amounts of data these sometimes outperform
intertopic classifiers by a largemargin. In these cases it might make sense to switch
to intratopic classification as soon as we can.
We set the minimum number of positive examples to 4, and the minimum number
of negative examples to 10.
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Table 7.4 – Average precision score for all topics in the Clef dataset.
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Table 7.5 – Normalized average precision score for all topics in the Clef dataset.
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Table 7.6 – Work saved over sampling at 95% recall for all topics in the Clef dataset.
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gradual trains an initial intertopic classifier using the training set and ranks the
test set in descending order of confidence. The system then iteratively asks for
feedback for the top ranked result. Articles queried for relevance feedback are then
added to the model as they are queried, but with higher weights than the intertopic
examples. The model thus starts out as an intertopic classifier, but gradually turns
into an intratopic classifier as more targeted data is added to the model. Since
the intratopic examples identified through relevance feedback are given higher
weights, these will eventually drown out the original classifier, provided enough
examples exist to be discovered.
Besides using y and n, we also use intratopic m as positive examples, with lower
weights than intratopic y, but higher than intertopic y. The reasoning behind this
is that we often encounter m earlier than y, and in greater numbers, in particular
on topics with very few y. We have observed on other datasets that we can some-
times improve performance by using both y and m as positive examples, when the
number of y is very low.
after the number of y found is larger than 40, we stop using m as positive examples.
Reasonable parameter settingswere identified experimentally on the Cohen dataset.

7·3·6 Use of the Clef Development Dataset

We do not split the training data into separate training and validation splits, since
we do not have the necessary number of y to do this without hurting the perfor-
mance of the classifier. We do however use a small set of samples that overlaps
with the training set for validation. The performance we observe on this validation
suffers from severe overfitting, but we can observe when the model fails to build
a classifier on the current undersample. In such cases we can observe an auroc
< 0.5 even on the training set. In these cases we simply discard the classifier and
try again with a new undersample. We observe that this improves performance
dramatically when we have a very small amount of training data (approximately
four or less positive examples).

7·4 Results

We present a comparison with previous work on the Cohen dataset for wss@95
in table 7·2 and for auc in table 7·3. Results from previous literature are taken
from Khabsa et al. (Khabsa et al., 2016), and Cohen et al. (Cohen, 2008). Exact
intertopic auc scores are not explicitly reported by Cohen et al. and have instead
been extracted from Figure 1 in their paper The majority of these results, with the
exception of one result by Cohenet al. (Cohen, 2008) use intratopic classification.
We present our results on the Clef dataset for average precision in table 7·4, nor-
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malized average precision in table 7·5, wss@95 in table 7·6, and in aggregate in
table 7·7. The results in these tables correspond to those submitted as official runs.
For comparison, we also calculate a baseline by evaluating each metric on the data
ordered randomly. This has been repeated 1000 times and we report the average
and standard deviation.
We also report the mean, standard deviation, minimum and maximum wss@95
and auc over ten runs for a selection of topics in the Clef dataset in table 7·8.

7·5 Discussion

7·5·1 Datasets

One of the topics in the Clef dataset, cd010653, has no y. While we can still
calculate performance scores relative to m, this topic might arguably have been
omitted from the test data. One of the topics, cd008803, similarly has no m. This
also happens to be the topic with the largest number of y.
As a general tendency, we can observe that the relative number of y / m / n in the
Clef dataset varies dramatically across topics. At the one end we have one topic
consisting of 14.06% y (cd008760), and one topic consisting of 15.79% y (cd010705).
At the other end we have three topics with a mere 0.01% y (cd011548, cd011549,
and cd012019). Most topics in the Clef dataset have a very small number of y
compared to Cohen, both in terms of relative and absolute numbers. Several topics
have a large number of m however (cd007427, cd008054, cd009020, cd009323,
cd009591, 011134, cd011548, cd0011975, cd011984, cd009925, cd10339, cd011145).
Curiously, more topics in the training set have a large number of m than in the test
set, despite this comprising a smaller number of topics.
The number of n also varies wildly, from 52 up to 43287. Compared to the Cohen
dataset we also have a smaller minimum number of n, as well as much larger
maximum number.
If we compare the training and test sets, the training set contains almost double
the absolute number of m, many more n, but fewer y.

7·5·2 Performance

While relevance feedback sometimes gives an improvement in performance, rel-
evance feedback often seems to only confuse the system (tables 7·4–7·7). This
should be contrasted with our experiments on the Cohen dataset, where the same
implementation reliably yields an improvement (table 7·3), and generally yields
performance intermediate between intertopic and intratopic classification, as one
would expect. There are perhaps better approaches to relevance feedback than
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ours, which can reliably improve upon the baseline, but it might also be that there
is simply little to gain from relevance feedback on several of the topics. Of partic-
ular note, we should not expect any improvements by using rf on topics such as
cd010386, cd010633, cd010860, cd010896, and cd012019, that have a low absolute
number of y and m. It is also worth pointing out that our abrupt scheme requires
at least 4 y before switching to the intratopic model, and any differences between
no · af and abrupt on these topics can thus only be due to chance.
We can see an improvement on the topic cd010705 when using relevance feedback
(tables 7·4–7·7). This topics is also the topic with the highest percentage of y at
15.79%. We do not see any improvement for cd008760, the other topic with a high
percentage of y (14.06%), but this may be due to the initial classifier having much
higher performance.
We can observe that gradual outperforms abrupt on topic cd008760, despite
this topic having only 3 m, which is probably too low a numbe for gradual to
have an advantage. The simplest explanation for this is likely random chance.
It is however easy to see that relevance feedback does not appear to lead to an
improvement for our system. For instance abrupt outperforms no · af 15 times
out of 30, and gradual outperforms no · af only 10 times out of 30 (tables 7·4).
Of course, it seems unlikely for relevance feedback to be useful for those topics
where the number of positives is extremely low, even in theory. In particular, if
there is only one relevant article, as is the case for cd012019 and cd010386, then
relevance feedback cannot really add any value to the classification. Any successful
use of relevance feedback on such topics would necessarily have to use the negative
examples.
We get better performance for no · af · full than no · af. We have however gener-
ally observed that this difference is generally reversed for intratopic classification,
which is what we should end up with when we after relevance feedback, but it is
possible that we would get better performance if we were to use no · af · full as
a base for our relevance feedback experiments, since we would start with a much
better initial classifier.
Ordinarily, screeners would be free to choose the order in which they screen each
article, and may proceed for instance in alphabetical or chronological order. For
the purposes of our baseline, we assume that any such order ordinarily available
to screeners would be indistinguishable from random order on average.
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7·5·3 Metrics

Average Precision has been selected as the main metric for this task as it was previ-
ously found particularly adapted to evaluate retrieval performance for highly imbal-
anced datasets (Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015). However,
these studies rely on common assumptions that we value high precision at the top
of the ranking, whereas for systematic review screening we value recall almost ex-
clusively. Of particular note, average precision heavily penalizes rankings where
the top few results are non-relevant, even if the ranking manages to place all rele-
vant articles in the upper percentiles of the ranking.
Furthermore, average precision is strongly correlated with the number of positives
in the topic, with most of the cases where we achieve ap > 0.2 are for topics with
high prevalence. While this is to be expected, it means that average precision
makes it difficult to compare performance across topics, since we can see a strong
correlation with the prevalence of relevant articles in the topic (tables 7·1, 7·4–
7·7). Similarly, Mean Average Precision will likely be dominated by the results on
the topics with many relevant articles and a small number of total candidates, i.e.
arguably the topics which are the least representative systematic reviews of dta
studies, and where automated methods are likely the least useful.

7·5·4 Reliability of the Experiments

Our classification method is stochastic, and thus does not produce deterministic
results that are always the same every time we run on the same input data. To
gauge the reliability of the experiment we repeat it ten times for a subset of the
topics and calculate the standard deviations, as well as examine the minimum and
maximum values (table 7·8).
We can generally observe a fairly large variability for topics with a small total
number of candidates, such as cd008760 and cd010705, and for topics with a com-
parably smaller proportion of y, such as cd010339. When we consider topics with
a large number of candidates we can observe a large variability for the cd012019,
but small variability for cd010386. We might speculate that small topic size and a
small relative number of y is correlated with larger variability, but it is clear that
the variability for some topics is quite large, regardless of the underlying causes
and mechanisms. The standard deviation can be as large as .139, which is large
enough that it casts doubts about the reliability of the results. Furthermore, the
minimum and maximum values are much more skewed towards extreme values
than we should expect from the standard deviations were the values normally dis-
tributed, suggesting that the distribution is heavy-tailed and skewed towards out-
liers.
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Considering the above, we might suspect that the differences in performance in
tables 7·4–7·7 are not significant. For instance abrupt outperforms gradual 17
times out of 30, but we do not know whether this means that abrupt is a bet-
ter method, or if this is simply due to random chance. We might speculate that
our gradual implementation works better for the cases where we have a suffi-
cient number of m, but the experiment is ultimately too low-powered to draw con-
clusions. Future iterations of the campaign could consider whether performance
should be computed as an average over multiple runs, in order to get more precise
results for stochastic systems such as ours.
We can however see smaller variability in the mean performance across all topics,
which might suggest that these are more reliable estimates. However, these give
little indication as to how the performance depends on topic composition.

7·5·5 General Remarks on the Shared Task Model

The Shared TaskModel is typically implemented in evaluation campaigns that seek
to perform a community-wide technical evaluation of systems addressing a partic-
ular task. A Shared Task thus offers an evaluation paradigm that includes: 1) a
specific definition of the task and evaluation metrics 2) an implementation through
the dissemination of datasets and evaluation tools and 3) the execution of the eval-
uation in a controlled setting where participants have access to data at the same
time and are evaluated blindly by an independent third party. As outlined below,
this year the tar task was not conducted according to the Shared Task Model.
In this iteration of the evaluation campaign, the final set of evaluation metrics was
decided only shortly before participants were required to freeze their systems. One
of the expected outcomes of evaluation campaigns such as this is indeed the discus-
sion of the relative merits of the various metrics to be used. However, changing the
target metric close to the submission deadline means that some participants may
have optimized for different metrics than those ultimately used for evaluation.
The gold standard labeled test data was distributed directly to the participants at
the begining of the test phase. This is explained by the lack of an assessor through
which participants could receive relevance feedback as has been the case in e.g.
Trec Total Recall. While common labeled test collections are routinely used for
research, this procedure is unusual in a shared task setting where participants are
typically asked to process a test dataset while being blind to the gold standard
associated with the dataset. This could alternatively have been accomplished in
part by requiring the submission of runs without relevance feedback before the
distribution of the gold standard labels.
Another feature of the shared task model is the computation of performance met-
rics for all participants by a common, independent party which ensures that all par-
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ticipations are evaluated using the exact same conditions. This confers a stronger
reliability in the comparability and reproducibility of results. At the time of writ-
ing, while a common evaluation tool has been released, the performance reported
by participants has been self-computed without validation from the task organiz-
ers. In addition to result validation, it would also have been useful to receive an
indication of the overall performance of the participants prior to the deadline for
the submission of the working notes. This would have enabled a discussion about
the relative performance of the system that is currently difficult to do without com-
paring with previous literature using external datasets.

7·6 Conclusions

Our best system is the one using logistic regression trained using stochastic gradi-
ent descent, using a minimum of preprocessing, and no relevance feedback. This
system achieves a workload reduction of 64.0% on average, with a minimum work-
load reduction of 19.3%, and a maximum workload reduction of 92.0%. On average,
we would have to screen 1,678 articles per topic to retrieve all relevant articles.
Overall there is a large variation in performance across topics however.
We do not generally see an improvement when using relevance feedback. For the
topics where relevance feedback is hypothetically feasible we sometimes see an
improvement, although the effect does not appear very reliable, and the low power
of the experiment means that the results are unlikely to be significant.
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Limsi@clef eHealth 2018 Task 2: Technology Assisted
Reviews by Stacking Active and Static Learning

Christopher R. Norman, Mariska M.G. Leeflang, &Aurélie Névéol

Abstract

This paper describes the participation of the Limsi-Miror team at Clef eHe-
alth 2018, task 2. The task addresses the automatic ranking of articles in order
to assist with the screening process of Diagnostic Test Accuracy (dta) System-
atic Reviews. We ranked articles by stacking two models, one linear regressor
trained on untargeted training data, and one model using active learning. The
workload reduction to retrieve 95% of the relevant articles was estimated at
82.4%, and we observe a workload reduction less than 70% in only two top-
ics. The results suggest that automatic assistance is promising for ranking the
dta literature. Keywords: Evidence Based Medicine, Information Storage and
Retrieval, Review Literature as Topic, Supervised Machine Learning

8·1 Introduction

Systematic reviews seek to gather all available published evidence for a given topic
and provide an informed analysis of the results. This work constitutes some of the
strongest forms of scientific evidence. Systematic reviews are an integral part of
evidence based medicine in particular, and serve a key role in informing and guid-
ing public and institutional decision-making. Systematic reviews for Diagnostic
Test Accuracy (dta) studies have been shown particularly challenging compared
to other types of reviews because of the difficulty in defining search strategies of-
fering acceptable recall (Petersen et al., 2014). For this reason, there is a need to
investigate automation strategies to assist dta systematic review writers, particu-
larly in the time-consuming screening process.
Methods for automating the screening process in systematic reviews have been
actively researched over the years (O’Mara-Eves et al., 2015), with promising results
obtained using a range of machine learning methods. However, previous work has
not addressed dta studies.
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This paper describes the work underlying our participation in the Clef 2018 eHe-
alth Task 2 (Kanoulas et al., 2018; Suominen et al., 2018). This work is part of an
ongoing effort to provide automated assistance in the screening process in system-
atic reviews addressing a variety of topics, including dta studies.
The remainder of this paper is organized as follows; Section 2 presents the dataset
used for system development. Section 3 provides an overview of our system and
describes each component. Finally, section 4 reports our results and section 5 pro-
vides an analysis of our methods and participation in the task.

8·2 Material

In this work we have used the Clef dataset (Kanoulas et al., 2017a) as the gold
standard for evaluation. The first iteration (2017) of the Clef dataset (Kanoulas
et al., 2017a) comprised 50 dta systematic review topics (20 for training, 30 for
testing) associated with the full list of articles retrieved by an expert query and
assessed for inclusion based on title and abstract or full text. The second iteration
(2018) uses the previous 50 topics for training, and supplies an additional 30 topics
for testing.
For each of the datasets we know the inclusion decisions based on the abstracts, as
well as the inclusion decisions based on the full text. We thus have two definitions
of positive examples, depending on whether we use the abstract decisions or full
text decisions as the gold standard.
We use a tripartite labeling to reflect this:

☙ No (n) is the set of articles that were excluded based on the abstract

☙ Maybe (m) is the set of articles that were preliminarily included based on the
abstract, but later excluded based on the full text

☙ Yes (y) is the set of articles that were included based on both the abstract and the
full text, and later used in the meta-analysis

Table 8·1 shows a breakdown of the distribution of examples for each class in the
Clef dataset.

8·3 Methods

To rank candidate articles we construct three machine learning models:
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Absolute number Relative number
Split Topic y m n y m n

train split 1 (2017 train split) cd008643 4 7 15065 0.0% 0.0% 99.9%
cd009593 24 54 14844 0.2% 0.4% 99.5%
cd011549 1 1 12699 0.0% 0.0% 100.0%
cd010771 1 47 274 0.3% 14.6% 85.1%
cd010438 3 36 3211 0.1% 1.1% 98.8%
cd007427 17 106 1398 1.1% 7.0% 91.9%
cd008686 5 2 3946 0.1% 0.1% 99.8%
cd011548 5 108 12591 0.0% 0.9% 99.1%
cd007394 47 48 2450 1.8% 1.9% 96.3%
cd009323 9 113 3757 0.2% 2.9% 96.9%
cd010632 14 18 1472 0.9% 1.2% 97.9%
cd011975 60 559 7582 0.7% 6.8% 92.5%
cd009944 64 53 1064 5.4% 4.5% 90.1%
cd009591 41 103 7847 0.5% 1.3% 98.2%
cd011134 49 166 1738 2.5% 8.5% 89.0%
cd009020 12 150 1422 0.8% 9.5% 89.8%
cd010409 41 35 43287 0.1% 0.1% 99.8%
cd008691 20 53 1243 1.5% 4.0% 94.5%
cd011984 28 426 7738 0.3% 5.2% 94.5%
cd008054 41 233 2940 1.3% 7.2% 91.5%

train split 2 (2017 test split) cd010783 11 19 10875 0.1% 0.2% 99.7%
cd009135 19 58 714 2.4% 7.3% 90.3%
cd009185 23 69 1523 1.4% 4.3% 94.3%
cd010023 14 38 929 1.4% 3.9% 94.7%
cd010653 0 45 7957 0.0% 0.6% 99.4%
cd009647 17 39 2729 0.6% 1.4% 98.0%
cd011145 48 154 10670 0.4% 1.4% 98.1%
cd008760 9 3 52 14.1% 4.7% 81.2%
cd010775 4 7 230 1.7% 2.9% 95.4%
cd009925 55 405 6071 0.8% 6.2% 93.0%
cd009372 10 15 2223 0.4% 0.7% 98.9%
cd010896 3 3 163 1.8% 1.8% 96.4%
cd010542 8 12 328 2.3% 3.4% 94.3%
cd008803 99 0 5121 1.9% 0.0% 98.1%
cd009519 46 58 5867 0.8% 1.0% 98.3%
cd010386 1 1 623 0.2% 0.2% 99.7%
cd008782 34 11 10462 0.3% 0.1% 99.6%
cd009579 79 59 6317 1.2% 0.9% 97.9%
cd010772 11 36 269 3.5% 11.4% 85.1%
cd009551 16 30 1865 0.8% 1.6% 97.6%
cd010173 10 13 5472 0.2% 0.2% 99.6%
cd010339 9 105 12689 0.1% 0.8% 99.1%
cd010633 3 1 1569 0.2% 0.1% 99.7%
cd010705 18 5 91 15.8% 4.4% 79.8%
cd012019 1 2 10314 0.0% 0.0% 100.0%
cd007431 15 9 2050 0.7% 0.4% 98.8%
cd010276 24 30 5441 0.4% 0.5% 99.0%
cd009786 6 4 2055 0.3% 0.2% 99.5%
cd008081 10 16 944 1.0% 1.6% 97.3%
cd010860 4 3 87 4.3% 3.2% 92.6%

test split (2018 test split) cd011602 1 7 6149 0.0% 0.1% 99.9%
cd011515 1 126 7117 0.0% 1.7% 98.2%
cd010864 3 41 2461 0.1% 1.6% 98.2%
cd012083 5 6 311 1.6% 1.9% 96.6%
cd010680 0 26 8379 0.0% 0.3% 99.7%
cd011431 26 271 885 2.2% 22.9% 74.9%
cd012216 1 10 206 0.5% 4.6% 94.9%
cd012281 9 14 9853 0.1% 0.1% 99.8%
cd011686 2 53 9388 0.0% 0.6% 99.4%
cd009175 7 58 5579 0.1% 1.0% 98.8%
cd010213 33 566 14599 0.2% 3.7% 96.1%
cd010657 35 104 1720 1.9% 5.6% 92.5%
cd012599 19 556 7473 0.2% 6.9% 92.9%
cd011420 5 37 209 2.0% 14.7% 83.3%
cd012009 4 33 499 0.7% 6.2% 93.1%
cd009263 10 114 78679 0.0% 0.1% 99.8%
cd011926 29 11 4010 0.7% 0.3% 99.0%
cd008122 57 215 1639 3.0% 11.3% 85.8%
cd008587 35 44 9073 0.4% 0.5% 99.1%
cd011912 18 18 1370 1.3% 1.3% 97.4%
cd009694 9 7 145 5.6% 4.3% 90.1%
cd010296 38 15 4549 0.8% 0.3% 98.8%
cd012165 47 261 9914 0.5% 2.6% 97.0%
cd008759 42 18 872 4.5% 1.9% 93.6%
cd012179 117 187 9528 1.2% 1.9% 96.9%
cd010502 71 158 2756 2.4% 5.3% 92.3%
cd008892 30 39 1430 2.0% 2.6% 95.4%
cd012010 8 282 6540 0.1% 4.1% 95.8%
cd011053 7 5 2223 0.3% 0.2% 99.5%
cd011126 9 4 5987 0.1% 0.1% 99.8%

Table 8.1 – The distribution of class labels in the dataset.
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8·3·1 Overview

cnrs static Our static ranker uses logistic regression trained on a large number (> 500,000)
of features. This model is trained once on train split 1 (Table 8·1), and can then be
used to rank candidate articles in any unseen dta systematic review, without a
provided search query or topic description. This model is intended to capture diag-
nostic test accuracy studies without considering whether the articles are topically
relevant.

cnrs rf (uni-/bigram)We construct two relevance feedback (active learning) models
uses logistic regression on a smaller number (~2,000) of features. These models
are trained using relevance feedback on the target topic, starting with the topic
description as an artificial seed document. The unigram model is a reimplementa-
tion of the cal model by Cormack and Grossman (Cormack and Grossman, 2015,
2017). We also experiment on a model which uses bigrams in addition to unigrams.
These models are intended to capture topicality, and to incrementally improve per-
formance through the screening process.

cnrs combined Our stacked metaclassifier uses a three-layer feedforward dense neural net-
work to estimate the optimal ranking based on the output of the static model and
the rf · bigram model.

We describe each system in detail in the remainder of this section.

8·3·2 Static Ranking Model

We here use a machine learning approach and train a classifier on the training
split, largely identical to the implementation of our static model submitted in 2017
(Norman et al., 2017b). The decision function of the classifier can then be used to
calculate probability scores for unseen candidate articles. This is a static model,
intended to capture diagnostic test accuracy studies without considering whether
the articles are topically relevant.
We use logistic regression trained using stochastic gradient descent (sklearn) on
a sparse feature matrix consisting of a large number (> 500,000) of features. We
have tried using other classifiers, including svms, random forests, feed-forward
neural networks, convolution networks and lstms, but logistic regression yields
consistently better performance in our experiments with a fraction of the training
time.
We handle class imbalance by class reweighting. We have implemented undersam-
pling mechanisms, but these tend to decrease performance. We set the weight for
the positive class to 80 for the initial intertopic classifier. We have determined
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this to be a reasonable weight experimentally in previous experiments on another
dataset (Norman et al., 2017b).
This model was trained on the 2017 training split.

8·3·3 Active Learning

We here use an active learning approach, where we at each timestep train a clas-
sifier (ranker) on the relevant articles screened so far. We start the process using
the topic description as an artificial seed document. The model is intended to cap-
ture topical relevance, and to use the data collected through the screening process,
which is generally more targeted than the data we have available in the training
split.
The model largely follows the continuous active learning approach of Cormack
and Grossman (Cormack and Grossman, 2015, 2017), except for using bigrams in
addition to unigrams. We repeat the procedure for clarity.
At each timestep we rank the candidate articles and show the top B articles to the
oracle, and the oracle labels these as y, m, or n. The number of articles B is initially
set to 1 and is incremented by ⌊B⌋ at each timestep.
We use the following process to construct positive training data:

if y have been encountered:

Then we use all encountered y as positive training data. The synthetic seed docu-
ment and any encountered m are discarded.

else if m have been encountered, but no y:

Then we use all encountered m as positive training data. The synthetic seed docu-
ment is discarded.

else (no y or m have been encountered):

We use the synthetic seed document as positive training data.

To construct negative training data we sample 100 articles (or as many as remains)
from the unseen candidates and temporarily label these n, irrespective of their
true labels. Any articles already shown to the oracle are not considered for use as
negative data.
We train our model using the above positive and negative data to re-rank the candi-
date articles and repeat the process until all articles have been shown to the oracle.
This model only uses the candidate articles and the topic description as training
data, and thus do not depend on other training data, such as the topics in the
training split.
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y||mn ym||n
rf rf

Topic static uni. bi. comb. baseline static uni. bi. comb. baseline
all .169 .176 .124 .203 .014 ± 0 .313 .314 .218 .337 .053 ± 0

cd008122 .331 .274 .327 .344 .042 ± .013 .744 .706 .652 .748 .146 ± .001
cd008587 .045 .033 .043 .094 .004 ± 0 .076 .063 .062 .109 .009 ± .001
cd008759 .477 .543 .283 .549 .047 ± .001 .562 .620 .326 .609 .101 ± .010
cd008892 .278 .342 .329 .511 .022 ± .001 .323 .376 .361 .462 .043 ± .002
cd009175 .085 .095 .003 .059 .002 ± .001 .206 .156 .025 .130 .013 ± .002
cd009263 .060 .022 .000 .103 .000 ± .000 .116 .104 .003 .038 .002 ± .001
cd009694 .435 .447 .494 .843 .084 ± .014 .734 .774 .411 .694 .102 ± .018
cd010213 .040 .061 .018 .053 .002 ± .000 .260 .250 .195 .226 .042 ± .003
cd010296 .450 .535 .074 .541 .011 ± .002 .512 .563 .082 .568 .017 ± .005
cd010502 .209 .254 .186 .334 .028 ± .003 .339 .409 .323 .467 .080 ± .007
cd010657 .176 .206 .070 .196 .028 ± .001 .386 .406 .213 .421 .079 ± .003
cd010864 .079 .054 .013 .020 .002 ± .001 .084 .082 .113 .133 .023 ± .000
cd011053 .065 .063 .019 .048 .007 ± .005 .105 .105 .035 .080 .011 ± .005
cd011126 .111 .107 .018 .042 .003 ± .001 .145 .141 .027 .070 .003 ± .001
cd011420 .062 .056 .263 .215 .021 ± .000 .341 .336 .644 .742 .178 ± .000
cd011431 .216 .166 .167 .231 .026 ± .004 .649 .626 .662 .669 .262 ± .018
cd011515 .050 .028 .071 .042 .001 ± .001 .298 .369 .302 .360 .017 ± .001
cd011602 .002 .002 .002 .003 .001 ± .000 .018 .014 .021 .037 .004 ± .002
cd011686 .015 .012 .005 .047 .002 ± .001 .289 .201 .111 .162 .005 ± .001
cd011912 .212 .195 .453 .266 .013 ± .001 .374 .365 .447 .481 .031 ± .007
cd011926 .428 .540 .028 .129 .008 ± .000 .479 .569 .037 .165 .013 ± .002
cd012009 .051 .149 .027 .041 .009 ± .002 .387 .317 .192 .455 .085 ± .010
cd012010 .090 .125 .102 .106 .002 ± .001 .253 .295 .272 .354 .050 ± .001
cd012083 .612 .436 .335 .602 .022 ± .003 .373 .313 .243 .378 .040 ± .004
cd012165 .072 .075 .013 .073 .005 ± .001 .347 .348 .046 .291 .031 ± .002
cd012179 .183 .193 .075 .201 .015 ± .002 .374 .343 .123 .356 .033 ± .002
cd012216 .016 .016 .013 .012 .014 ± .008 .268 .246 .222 .285 .089 ± .023
cd012281 .012 .024 .091 .155 .001 ± .000 .026 .027 .080 .210 .003 ± .001
cd012599 .054 .059 .080 .042 .002 ± .000 .266 .266 .260 .253 .074 ± .004

Table 8.2 – Average precision score for each topic, evaluated using either inclusion decisions
based on full text (y||mn), or based on abstract and title (ym||n). The combined model
uses the static and rf · bigram models as subcomponents.

8·3·4 Stacked Model

We use a three-layer dense neural network as a function approximator to estimate
the joint score for a candidate document given the scores from our static and active
models. We use 16 nodes in each layer, apply 30% dropout after each layer and use
softmax activation on the final layer to simulate two-class logistic regression.
The model is trained by sampling training data uniformly from recorded active
learning output. We have tried using uncertainty sampling, but this has yielded
inferior results.
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y||mn ym||n
rf rf

Topic static uni. bi. comb. baseline static uni. bi. comb. baseline
all .741 .815 .668 .824 .104 ± .024 .513 .617 .519 .657 .028 ± .009

cd008122 .800 .794 .772 .788 .018 ± .033 .403 .455 .415 .453 .005 ± .013
cd008587 .839 .838 .836 .896 .034 ± .047 .772 .746 .696 .759 .012 ± .026
cd008759 .746 .764 .612 .736 .019 ± .037 .685 .703 .612 .668 .015 ± .030
cd008892 .891 .884 .788 .883 .048 ± .052 .040 .534 .694 .486 .006 ± .027
cd009175 .936 .916 .546 .915 .073 ± .111 .027 .532 .285 .532 .011 ± .029
cd009263 .465 .920 .117 .861 .041 ± .084 .418 .408 .122 .557 .006 ± .020
cd009694 .826 .832 .678 .813 .045 ± .091 .521 .795 .320 .683 .061 ± .073
cd010213 .278 .834 .647 .825 .038 ± .049 .065 .590 .556 .341 .002 ± .009
cd010296 .928 .924 .723 .924 .028 ± .042 .906 .909 .588 .918 .022 ± .034
cd010502 .346 .617 .757 .646 .019 ± .030 .298 .587 .405 .609 .002 ± .014
cd010657 .739 .741 .345 .757 .034 ± .044 .473 .453 .404 .503 .006 ± .018
cd010864 .914 .885 .837 .854 .197 ± .193 .215 .506 .571 .619 .017 ± .036
cd011053 .909 .913 .537 .903 .076 ± .112 .913 .913 .766 .906 .105 ± .095
cd011126 .921 .929 .819 .910 .048 ± .091 .933 .935 .860 .917 .096 ± .094
cd011420 .719 .715 .831 .823 .114 ± .144 .572 .575 .585 .627 .015 ± .034
cd011431 .763 .733 .696 .703 .025 ± .048 .017 .162 .275 .173 .003 ± .011
cd011515 .947 .945 .948 .947 .459 ± .290 .398 .178 .679 .721 .005 ± .020
cd011602 .879 .864 .877 .890 .448 ± .283 .750 .786 .806 .870 .059 ± .098
cd011686 .937 .910 .844 .875 .284 ± .231 .584 .285 .457 .811 .022 ± .034
cd011912 .871 .874 .854 .883 .053 ± .067 .843 .850 .654 .841 .032 ± .044
cd011926 .933 .933 .483 .916 .017 ± .047 .928 .926 .483 .909 .024 ± .041
cd012009 .713 .734 .362 .476 .150 ± .158 .584 .592 .362 .476 .026 ± .042
cd012010 .020 .671 .579 .744 .064 ± .105 .004 .534 .261 .581 .001 ± .013
cd012083 .925 .900 .835 .897 .122 ± .144 .180 .512 .727 .605 .117 ± .102
cd012165 .818 .824 .308 .828 .013 ± .035 .779 .769 .234 .774 .002 ± .012
cd012179 .804 .790 .403 .819 .010 ± .022 .750 .723 .363 .769 .002 ± .012
cd012216 .669 .655 .597 .577 .444 ± .289 .669 .655 .583 .581 .112 ± .103
cd012281 .880 .886 .931 .923 .054 ± .095 .716 .745 .622 .762 .031 ± .054
cd012599 .080 .413 .807 .877 .053 ± .067 .154 .384 .422 .476 .001 ± .009

Table 8.3 –wss@95 score for all topics in the Clef dataset, evaluated using either inclusion
decisions based on full text (y||mn), or based on abstract and title (ym||n). The combined
model uses the static and rf · bigram models as subcomponents.

As input to the model we use the score values we get from the static and active
learning models, along with meta-level features. The full set of features is as fol-
lows:

1. Static model document score (static)

2. Active model document score (rf · bigram)

3. Number of y found

4. Amount of relevance feedback (absolute number)
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y||mn ym||n
rf rf

Topic static uni. bi. comb. baseline static uni. bi. comb. baseline
all .640 .762 .633 .779 .130 ± .024 .349 .460 .339 .510 .027 ± .007

cd008122 .459 .496 .378 .481 .016 ± .015 .289 .320 .040 .332 .003 ± .003
cd008587 .782 .848 .769 .845 .029 ± .028 .419 .475 .393 .412 .012 ± .012
cd008759 .031 .276 .325 .368 .021 ± .020 .031 .276 .325 .368 .016 ± .016
cd008892 .828 .887 .576 .875 .031 ± .031 .072 .358 .576 .390 .014 ± .014
cd009175 .986 .966 .596 .965 .123 ± .111 .010 .381 .264 .269 .015 ± .015
cd009263 .515 .970 .167 .911 .091 ± .084 .018 .061 .047 .218 .008 ± .008
cd009694 .876 .882 .728 .863 .095 ± .091 .565 .720 .228 .708 .051 ± .051
cd010213 .019 .520 .582 .727 .029 ± .029 .001 .043 .274 .061 .001 ± .002
cd010296 .918 .914 .638 .917 .026 ± .026 .918 .914 .418 .917 .019 ± .018
cd010502 .335 .629 .626 .684 .014 ± .014 .324 .581 .163 .585 .004 ± .004
cd010657 .550 .526 .331 .553 .028 ± .028 .057 .058 .103 .047 .007 ± .007
cd010864 .964 .935 .887 .904 .247 ± .193 .254 .423 .383 .351 .021 ± .022
cd011053 .959 .963 .587 .953 .126 ± .112 .959 .957 .587 .953 .078 ± .070
cd011126 .971 .979 .869 .960 .098 ± .091 .971 .979 .869 .960 .073 ± .070
cd011420 .769 .765 .881 .873 .164 ± .144 .343 .530 .575 .534 .020 ± .020
cd011431 .707 .665 .724 .695 .036 ± .034 .019 .029 .033 .064 .003 ± .003
cd011515 .997 .995 .998 .997 .509 ± .290 .171 .012 .386 .575 .007 ± .008
cd011602 .929 .914 .927 .940 .498 ± .283 .800 .836 .856 .920 .109 ± .098
cd011686 .987 .960 .894 .925 .334 ± .231 .069 .051 .198 .798 .018 ± .017
cd011912 .886 .902 .704 .897 .051 ± .048 .877 .866 .460 .877 .027 ± .026
cd011926 .302 .871 .383 .867 .033 ± .034 .302 .871 .383 .867 .025 ± .024
cd012009 .763 .784 .412 .526 .200 ± .158 .437 .457 .270 .285 .024 ± .024
cd012010 .070 .721 .629 .794 .114 ± .105 .027 .180 .067 .226 .003 ± .003
cd012083 .975 .950 .885 .947 .172 ± .144 .168 .540 .294 .618 .084 ± .075
cd012165 .072 .362 .179 .442 .020 ± .019 .039 .347 .087 .367 .003 ± .003
cd012179 .141 .482 .205 .464 .008 ± .008 .141 .367 .200 .401 .003 ± .003
cd012216 .719 .705 .647 .627 .494 ± .289 .576 .599 .303 .627 .078 ± .075
cd012281 .930 .936 .981 .973 .104 ± .095 .724 .726 .453 .730 .040 ± .038
cd012599 .129 .301 .857 .619 .051 ± .048 .092 .089 .109 .067 .001 ± .002

Table 8.4 – wss@100 score for all topics in the Clef dataset, evaluated using either in-
clusion decisions based on full text (y||mn), or based on abstract and title (ym||n). The
combined model uses the static and rf · bigram models as subcomponents.

5 Amount of relevance feedback (percentage)

6 Relevance feedback stage (whether using seed, m or y as positive training data)

Features 3 and 4 are normalized using the following log transform

sgn(x)×
log2(1 + |x|)

8
to keep numbers in mainly in the range [0, 1]. We do not truncate large numbers.
Feature 6 take discrete values in {–1, 0, 1}

128



8. Ranking Performance for dta Reviews (2018)

However, we observe that features 5 and 6 decrease model performance and we
therefore excluded these in the model used in our officially submitted runs.
This model is trained on data generated from training split 2 (Table 8·1) to avoid
overfitting. We generate the training data for the stacked model by letting the
active model run on the training data, and at each step in the process we record
the score generated by the active learning model, as well as the above features. We
do this 100 times for each topic. One data point thus consists of the score from the
static model (feature 1), and features 2–6 from this pre-generated data.
We train the stackedmodel on data sampled randomly from this pool of data points,
by sampling 50 runs in each iteration, and sampling an equal number of positive
and negative training examples from each run (with a minimum of 20 total). The
model is trained on a batch of size 32. The training data is resampled every training
iteration.

8·4 Results

We present our results for average precision in table 8·2, wss@95 in table 8·3,
wss@100 in table 8·4, Last Rel in table 8·6, as well as the aggregate scores in table
8·5. For comparison, we also calculate a baseline by evaluating each metric on the
data ordered randomly. The baseline values are calculated using the average and
the standard deviation of 1000 repetitions. The rf · unigram, and rf · bigram,
and the combined model were submitted as our official runs. The results omit
one topic with no y (cd010680).

8·5 Discussion

8·5·1 Datasets

One of the topics in the Clef dataset, cd010653, has no y. While we can still
calculate performance scores relative to m, this topic might arguably have been
omitted from the test data. One of the topics, cd008803, similarly has no m. This
also happens to be the topic with the second largest number of y.
As a general tendency, we can observe that the relative number of y / m / n in the
Clef dataset varies dramatically across topics. At the one end we have one topic
consisting of 14.06% y (cd008760), and one topic consisting of 15.79% y (cd010705).
At the other end we have five topics with less than 0.1% y (cd011548, cd011549,
cd012019, cd011515, and cd009263). The number of n also varies wildly, from 52
up to 78,679.
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Table 8.6 – Last rel score for all topics in the Clef dataset, evaluated using either inclusion
decisions based on full text (y||mn), or based on abstract and title (ym||n). The combined
model uses the static and rf · bigram models as subcomponents.
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y||mn
rf

Metric static uni. bi. comb. baseline
ap .169 .176 .124 .203 .014 ± .000

wss@95 .741 .815 .668 .824 .104 ± .024
wss@100 .640 .762 .633 .779 .130 ± .024
Last Rel 3349.448 1305.034 3798.000 1224.655 6405.696 ± 272.238

ym||n
ap .313 .314 .218 .337 .053 ± .000

wss@95 .513 .617 .519 .657 .028 ± .009
wss@100 .349 .460 .339 .510 .027 ± .007
Last Rel 5708.400 5173.467 550.600 4378.900 7131.769 ± 36.629

Table 8.5 – Aggregate scores, evaluated using either inclusion decisions based on full text
(y||mn), or based on abstract and title (ym||n). The combined model uses the static
and rf · bigram models as subcomponents.

8·5·2 Performance

No single model performs best on all topics. Generally however, rf · unigram
consistently outperforms the static model, and the combined model (static +
rf · bigram) outperforms the other three models.
Surprisingly, the rf · unigram model consistently outperforms the rf · bigram
model, despite using a subset of the features of the rf · bigram model. For this
reason it seems likely that a stacked model consisting of the static model and the
rf · unigram model would have achieved better performance than the stacked
model submitted as our official run.
The rf · unigram model is particularly adept at finding all relevant articles, result-
ing in better last rel score than the static model for 19 topics out of 29, and a
better last rel score than the rf · bigram model for 24 out of 29. This also results
in a wss@100 score of 76.2% for the rf · unigram, versus 64.0% for the static
model, and 63.3% for rf · bigram.
Note however that last rel generates scores of wildly varying scale, and the large
last rel scores for static and rf · bigram are therefore almost entirely due to
a few large outliers. In particular, 59% of the information contained in the last
rel score for rf · bigram is due to a single topic with a large number of candidate
articles (cd009263). The metric may thus be useful when interpreted on individual
topics, but not when averaged. The wss@100 metric, which is equivalent to last
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rel on individual topics, produces scores on the same scale and therefore makes
sense also when averaged.

8·6 Conclusions

Our best system combines a static model and a relevance feedback model using
stacking. The workload reduction to retrieve 95% of relevant articles is estimated
at 82.4% on average, with aminimumworkload reduction of 47.6%, and amaximum
workload reduction of 94.7%. The workload reduction is consistent across topics,
and we note a workload reduction less than 70% in only two topics. Due to the
highly variable number of candidate articles in different topics, however, we may
still need to screen several thousands of articles to find all relevant articles in any
given systematic review.
Our remarks on the implementation of the shared taskmodel and task organization
from last year (Norman et al., 2017b) remain valid for this edition of the tar task.
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9. Discussion & Conclusions

AA
s we have seen in this part, screening automation methods need to
cope with several technical constraints, many of which are well at-
tested for general systematic reviews (O’Mara-Eves et al., 2015). For
instance, systematic review screening is subject to extreme class im-
balance – one included study for every thousand excluded is not

uncommon in dta systematic reviews (Norman et al., 2017b, 2018b,c). As a com-
parison, the Cohen dataset of drug class efficacy includes 4.52% of the candidate ref-
erences by full-text and 8.30% studies provisionally by abstract, whereas the same
numbers for the Clef dataset were 0.42% and 1.34% respectively (Norman et al.,
2018b). This confirms findings from previous methodological studies that the rel-
ative screening burden is higher in systematic reviews of dignostic test accuracy
compared to systematic reviews of interventions (Petersen et al., 2014). However,
while class imbalance is an obstacle for training, there are a number of solutions
to overcome this challenge, including under- and oversampling methods (He and
Garcia, 2009).
Among the 50 systematic reviews used in the Clef shared task, themedian number
of included studies was 14 (range: 0 to 99) (Norman et al., 2018b). Eleven of the
reviews included four studies or less. The training data that we can be expect from
many systematic reviews are therefore far below the numbers necessary to reach
data-saturation in machine learning models. It is unclear how to effectively train
screening automation model on such limited data, particularly to reach the close
to perfect recall commonly required by systematic reviews. This may be a problem
particular to screening automation in diagnostic systematic reviews. The reviews
in the Cohen dataset included a median of 41 studies (range: 9 to 146) and thus do
not present the same problem (Norman et al., 2018b).
Coping with extremely small amounts of training data is therefore likely to be the
main concerns for screening automation in systematic reviews of dta.

9·1·1 Differences Between Studies Included by Abstract and Full-Text

As we have seen in the first study in this section, references included in the system-
atic review (y) and references provisionally included in the systematic review but
excluded based on full-text (m) are not sufficiently different in terms of language or
word choice that general machine learning algorithms such as logistic regression
can distinguish the two based only on title and abstract. This is unsurprising, since
by definition the m are precisely those references where human screeners were
unable to assess inclusion by title and abstract, and it would be unreasonable to
expect automated methods to fare better.
However, there are observable differences between y and m. It is generally easier
to distinguish y from n than m from n. This may be due to m including more
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borderline cases than y. In particular, human screeners tend to be overinclusive
during the initial screening – preferring to reserve judgement until the full-text
is available, and as a consequence, the m may include references that are little
different from those that should be excluded (Bekhuis et al., 2014; Frunza et al.,
2011; O’Mara-Eves et al., 2015). Overall, the performance may degrade when only
m are used as positive examples for training, although the differences appear to be
minor.

9·1·2 Using Training Data from Both Screening Stages

When training an automation model, we preferably want high quality data. As we
have seen in this part, the y are usually more representative of included studies
than the m, although the differences are often minor. Similarly, intratopic training
data will – by definition – always be better examples than intertopic training data.
Thus the optimal training scheme uses only intratopic y as positive examples. How-
ever, we also want as much data as possible to use for training, and the best quality
positive examples is seldom available in large quantities from previous systematic
reviews. Out of the 50 systematic reviews distributed in Clef, only 19 included at
least 20 studies. Furthermore, five reviews only included a single study, and one
review included no studies at all. It is not clear how it would be possible to train
screening automation systems in these cases. In practice, the want for quality and
the want for quantity will frequently be at loggerheads – if we increase the quality
by being more restrictive we will necessarily reduce the quantity and vice versa.
To use automation effectively in many systematic reviews, we thus need to develop
strategies for complementing the best training examples – intratopic y – with sub-
optimal training examples – intertopic y or intratopic m, or possibly intertopic m as
a last resort. Other approaches may be possible, including e.g. pre-trained models
or few-shot learning, but these too work similarly by leveraging untargeted train-
ing data. Combining and weighting these different kinds of variously untargeted
training data is not straightforward. The stacked model introduced in chapter 8 for
our participation in Clef in 2018 was our attempt to use meta-regression to learn
to balance inter- and intratopic training data, and to balance y and m using active
learning.

9·1·3 Screening Approaches

During this project we have investigated three different models, for slightly differ-
ent systematic review contexts.
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The static model is trained on the inclusion/exclusion decisions of references
screened in previous systematic reviews. This model thus requires training data to
be available at the time the screening is started. This typically limits the applicabil-
ity of this model to systematic review updates, or to use intertopic training to train
general models, e.g. to identify general dta studies.

The active model uses active learning to improve its performance throughout
screening. This model does not require training data at the time the screening is
started, and can therefore be used also in systematic reviews conducted de novo,
where training data is not available. This process can be started from scratch, with
no training data at all, but if some quantity of training data is available – some
relevant studies are often knownwhen a systematic review is started – or if training
data can be constructed artificially, such data can be used as a starting point.

The stacked model combines the static and active models to achieve the best of
both. It uses a static (intertopic) model as a base and then uses the more targeted in-
tratopic data collected through the screening process to improve the model further,
using active learning.

Current Systematic Review

Static Ranking (Logistic Regression)

Active Learning (Logistic Regression)

Stacked Model (Dense Neural Network)

Past Systematic Review Annotations

Systematic Review Writer (Annotator)

Systematic Review Writer (Annotator)

Figure 9.1 – Overview of the stacked model, integrating judgments from an intertopic
model trained on previous systematic reviews, and an intratopic active learning model.

135

9



Screening Automation Systems

9·2 Screening Performance

Evaluating screening performance relative to previous literature is difficult, since
most previous work is evaluated using different measures, with different settings,
and usually on different datasets. Comparisons are therefore only possible relative
to a small subset of competing approaches.
In this project we have relied on two datasets for state-of-the-art comparisons: the
Cohen dataset of drug class efficacy to assess the performance of the static model
with inter- and intratopic training, and the Clef dataset to assess the performance
of the active learning models, as well as the static model with intertopic training.
The Clef shared task has been conducted three times, in 2017, 2018, and 2019. We
participated in the first two iterations. In each iteration of the shared task, the best
performing method has been the Waterloo Continuous Active Learning approach
by Cormack and Grossman (2016), which has remained unchanged through the
Clef campaign. The same approach (using svm rather than logistic regression for
training) was previously used in the Trec Total Recall shared task, where it has
also remained undefeated in all iterations of the shared task.

9·2·1 Static Model (Intratopic)

In one of the earlier papers on the subject, Cohen et al. (Cohen et al., 2006) con-
structed a dataset from 15 reviews on drug efficacy. This dataset was later extended
to 18 (Cohen et al., 2010), and then to 24 reviews (Cohen et al., 2009). The smaller
dataset comprising 15 reviews has been made available (Cohen et al., 2006)1. When
the first study in this section was conducted, several approaches had been evalu-
ated on the Cohen dataset, including Voting Perceptrons (Cohen et al., 2006), Com-
plement Naive Bayes (Matwin and Sazonova, 2012), svm (Cohen, 2006, 2008; Co-
hen et al., 2009), Random Indexing (Jonnalagadda and Petitti, 2014), and Random
Forests (Khabsa et al., 2016), and this dataset therefore constitutes the closest thing
we had to a standard dataset for comparison of performance for intratopic static
approaches. At the time, there was no clearly superior state-of-the-art, and the
best previous results was complement Naive Bayes (Matwin and Sazonova, 2012)
on 8 topics, random forests (Khabsa et al., 2016) on 6 topics, and voting percep-
trons (Cohen et al., 2006) on one topic. Our intratopic results were better than the
then state-of-the-art in terms of wss@95 (0.392 on average), but worse in terms
of auc. This suggests that our model works well for finding all relevant studies,
whereas the competing approaches are better at finding the first relevant studies,
but struggles to find the last ones.

1 The data can be found at
https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.htmlhttps://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
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After we performed this work, two more studies have been published evaluated
on this dataset, which have since pushed the state-of-the-art further (Ji et al., 2017;
Olorisade et al., 2019). Ji et al. (2017) do not cite any previous studies other than
Cohen’s original work on voting perceptrons (Cohen et al., 2006), and the work
on random forests by Khabsa et al. (2016). Olorisade et al. (2019) also cite Matwin
and Sazonova (2012) but do not compare against their results. The two studies thus
give an obsolete and incomplete view of the state-of-the-art, and underestimates
the best previous performance.
Ji et al. (2017) proposed to use ontology based features and evaluate three different
models. Their first model uses Snomed-ct and achieves a wss@95 of 0.392 on
average, with better results than our model on 8/15 topics. Their second model
uses MeSH terms and achieves a wss@95 of 0.347 on average, with better results
than our model on 6/15 topics. Their third model uses both Snomed-ct and MeSH
terms and achieves a wss@95 of 0.409 on average, with better results than our
model on 9/15 topics.
Olorisade et al. (2019) proposed to use MeSH terms and reference lists from arti-
cles to improve training. Their first model uses MeSH terms only and achieves a
wss@95 of 0.408 on average, with better results than our model on 10/15 topics.
Their second model uses MeSH terms and reference lists and achieves a wss@95
of 0.301 on average, with better results than our model on 5/15 topics.
Thus, new methods have improved the state-of-the-art further since we first eval-
uated our method. Still, the performance of our model is still almost the same as
the new state-of-the-art, and consistently performs better on several topics. Fur-
thermore, our model does not require Umls-based ontological features, which are
often comparatively slow to use and require large amounts of memory.

9·2·2 Static Model (Intertopic)

For intertopic static learning, our results on the Cohen dataset were better than
the state-of-the-art across the board. Subsequent studies evaluating on the Cohen
dataset only evaluated in terms of intratopic training, and thus do not allow any
comparisons (Ji et al., 2017; Olorisade et al., 2019).
Despite the simplicity of the approach, the intertopic static approach frequently
gives performance comparable to the current state-of-the-art active learning mod-
els in the Clef evaluation. There may be two reasons. First, the static intertopic
model used in Clef was trained on approximately 250,000 titles and abstracts,
whereas the Waterloo active learning approach starts training on 100, and never
uses more than a few thousand training examples. Second, the candidate refer-
ences in the Clef dataset – like in a conventional systematic review – are based
on a database query that is typically already restricted by condition. Search queries
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are typically more accurate when limiting to specific diseases than when limiting
to dta studies, and it is likely more important that the screening automation is
accurate where the search query is inaccurate, rather than where the query is ac-
curate.

Active Learning Combined
Metric Static unigram bigram static + bigram baseline

Last Rel 3349.448 1305.034 3798.000 1224.655 6405.696 ± 272.238
wss@100 0.640 0.762 0.633 0.779 0.130 ± 0.024
wss@95 0.741 0.815 0.668 0.824 0.104 ± 0.024

ap 0.169 0.176 0.124 0.203 0.014 ± 0.000

Table 9.1 – Results of each ranking model on the 2018 Clef gold standard dataset.
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Figure 9.2 – Comparison between the learning modes of 1) intertopic static, 2) intratopic
active, and 3) a stacked model combining intertopic static and intratopic active. The points
on the curve correspond to the timesteps when the active learning is retrained using the
Waterloo continuous active learning method (Cormack and Grossman, 2016; Norman et al.,
2018b).

9·2·3 Active Learning

We submitted two variations of the active learning approach in the 2018 Clef itera-
tion, one based on unigrams, and one based on bigrams. Surprisingly, the unigram
model consistently outperformed the bigram model (table 9·1).
The active learning approach using unigrams consistently outperformed the inter-
topic static approach in both iterations of Clef (table 9·1).
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9·2·4 Stacked Model

While the active learning approach outperformed the static intertopic approach in
the final results in Clef, the static model tends to do better initially (figure 9·2).
This is to be expected, since the active learning has to kickstart the process from
nothing, and it is not going to do very well until starts finding relevant records to
train the model. The active learning tend to overtake the static model after about
four relevant records have been identified.
The stacked model is a hybrid approach that attempts to combine the benefit of
the intertopic approach – the high initial performance – with the benefit of the
intratopic active learning approach – improvement over time. Using the stacked
model, both approaches are run concurrently, and the relevance score produced
by both are combined in a neural network, along with data describing the current
progress of screening (Norman et al., 2018b). The purpose of the neural network
is to intelligently combine the output of the models, to produce a relevance score
that is better than either. The stacking model should put more weight on the score
from the static model initially – when the static model performs better – and then
gradually switch over to put more weight on the active learning model – as the
active learning model becomes more reliable.
The result of the stacking is illustrated in figure 9·2. The active learning approach
again improves the performance of the model once a few relevant records have
been identified. The stacked model starts with an initially better ranking, allowing
it to get a headstart compared to the active learning approach, and consequently
also a better final performance.
While the output of the static intertopic submodel may improve the performance
by supplying additional information to the combined ranking algorithm, the main
reason for the improved performance is likely that the initially better ranking given
by the static intertopicmodel allows the active learning approach to gain a foothold
and start improving earlier.

9·3 Conclusions

We have presented a screening automation system that can be used in a variety of
systematic review contexts – ranging from review updates to reviews conducted
de novo. The system is general in purpose, and performs well on reference screen-
ing datasets on clnical nlp, drug class efficacy (intervention studies), dta studies,
and core outcome set development. The system is furthermore highly customizable,
and the underlying preprocessing pipeline and classification or ranking algorithms
can be changed to finetune the system for specific systematic review topics or con-
texts.
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PART III

THE IMPACTOF SCREENINGAUTOMA-
TION

This part of the thesis is based on the following publications:

(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f): Norman, C. R., Gargon, E., Leeflang, M. M. G., Névéol, A.,
and Williamson, P. R. (2019f). Evaluation of an automatic article selection
method for timelier updates of the Comet core outcome set database. Database.
Oxford University Press

(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c)(Norman et al., 2019c): Norman, C., Leeflang,M., Porcher, R., andNévéol, A. (2019c).
Measuring the impact of screening automation onmeta-analyses of diagnostic
test accuracy. Bmc Systematic Reviews. Springer Nature

The contents in this section is also based on material presented at the following
conference:

(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d): Norman, C., Leeflang,M., Porcher, R., andNévéol, A. (2019d).
Measuring the impact of screening automation onmeta-analyses of diagnostic
test accuracy. In Amia Annual Symposium Proceedings

Thecontents in this section is also based onmaterial accepted and originally planned
to be presented at the following conference:

(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b)(Norman et al., 2019b): Norman, C., Leeflang,M., Porcher, R., andNévéol, A. (2019b).
Does screening automation negatively impact meta-analyses in systematic re-
views of diagnostic test accuracy? In Cochrane Colloquium

Unfortunately, this 2019 Cochrane Colloquium was cancelled due to the October
2019 civil unrest in Santiago, Chile. The presentation was instead presented virtu-
ally.



The Impact of Screening Automation

FF
or the performance evaluations in part II, we used screening
prioritization to order candidate references during screening in or-
der of likelihood of being relevant. In other words, we simulated
screeners being presented with references more likely to be relevant
before being presented with references less likely to be relevant. Us-

ing this approach, we only change the order in which we screen references, not
which references will be screened. The screening process still examine each and
every reference, but will accumulate relevant studies earlier and quicker thanwhen
screened in random or quasi-random order.
The advantage of this approach is that we do not run the risk of missing relevant
studies. This makes this approach ‘safe’ to use in live systematic reviews (O’Mara-
Eves et al., 2015). Presenting the most likely candidates for inclusion as early as
possible could theoretically improve the screening process. It may for instance be
possible to start the analysis process earlier if relevant studies are identified earlier
(Cohen et al., 2009; Thomas, 2013). There are however no published evaluations
demonstrating reductions in overall workload (Thomas, 2013). Crucially, it may be
difficult to justify the added complexity and risk of bias in exchange for workload
reductions that have yet to be measured or demonstrated. To truly take advantage
of screening automation methods, it may therefore be necessary to forego screen-
ing prioritization in favor of screening reduction methods.
The main purpose of this part of the thesis is to establish criteria to automatically
exclude recordswith screening reductionmethods, while still resulting in the ‘same’
systematic review. In order to do this however, we also need to formalize what it
means for two reviews to be the ‘same.’
Such sameness involves two aspects. The first aspect is procedural: an automated
review process is compatible with the established process if it does not fundamen-
tally alter it, and if steps are taken to reduce any sources of bias that may arise from
the parts of the process that are altered. The second aspect if observational: an au-
tomated review process may be compatible with the conventional process even if it
is different, provided we can show convincing evidence that the new process does
not increase the risk of bias.

10·1 How Can We Measure Review Integrity?

A number of performance metrics for screening prioritization have been used in
previous literature, including recall (sensitivity), precision, specificity, accuracy, f
measure (f1), area under the receiver operator curve (auroc/auc), work saved un-
der sampling (wss@r), average precision (ap), cumulative gain (cg), discounted
cumulative gain (dcg), normalized discounted cumulative gain (ndcg), reciprocal
rank, lossR, lossE , and reliability (Kanoulas et al., 2017a; O’Mara-Eves et al., 2015).
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With the exception of sensitivity, specificity, and auc, many of these metrics orig-
inate from machine learning or information retrieval. These are metrics expected
in machine learning and information retrieval conferences and journals, and many
are thus likely chosen because they are familiar to reviewers and readers in these
venues.
Unfortunately, many of the metrics used to evaluate automation methods are sel-
dom used in fields outside of computer science, and are unlikely to be familiar to
systematic reviewers. Furthermore, they are almost invariably difficult or impossi-
ble to translate into systematic review integrity or impact. As an example, the auc
score can be interpreted as the probability that an arbitrary relevant item is ranked
before an arbitrary non-relevant item in the list. There is no obvious way to set
a threshold for this probability that distinguishes between the systematic review
drawing correct or wrong conclusions.
These metrics may still be useful in comparing different algorithms with each other,
or between different choices of training features (i.e. what data is fed into the
model). This is how they are often used (e.g. see part II). When comparing al-
gorithms or the impact of different technical choices, metrics do not need to be
interpretable, they only need to be consistent in distinguishing better performing
algorithms from worse performing ones.
Unfortunately, many metrics make assumptions about utility that are wrong or
detrimental when used for systematic review screening. Systematic reviews al-
most always require disproportionally high recall (search sensitivity), whereas com-
monly used information retrieval metrics assume that both recall and precision are
equally important.
In a systematic review, false positives and false negatives are not associated with
the same cost (Wallace et al., 2010b). Including an extra study typically leads to
30–60 seconds higher workload for the screeners. In contrast, missing a relevant
study runs the risk of invalidating the results of the review and potentially recom-
mending diagnostic tests or treatments that are poor or harmful to patients.
Several commonly used metrics, including the f1 measure and auc, give equal
weight to false positives and false negatives, and are therefore poorly suited to eval-
uate screening automation methods. Alternatives have been proposed to counter
this, including the f3 score which gives recall three times the weights of precision
(Bekhuis andDemner-Fushman, 2010), and the u19 scorewhich gives recall 19 times
the weight of the workload (Wallace et al., 2010b,c).
Similarly, the majority of conventional information retrieval metrics (ap, cdg with
variants, reciprocal rank, loss, reliability) are predominantly ‘top-heavy.’ That is
to say, they try to measure the ability of the retrieval methods to fill the top of
the list with relevant items, rather than its ability to find all relevant items. This
typically works well for web searches, where users are unlikely to examine the
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retrieved results beyond the first few pages, but may be disastrous in the context
of screening automation, where perfect recall is expected.
Among the metrics commonly used, only the recall and the work saved under
sampling (wss) can readily be interpreted in terms of the impact the screening
automation has on the systematic review. Even so, recall may be a poor measure
of systematic review integrity on its own. On the one hand, a systematic review
could potentially miss only a single study, but this could still be unacceptable if the
missed study is disproportionally large and would change the conclusions of the
review. Conversely, it may be acceptable even if the screening missed several stud-
ies, if the missed studies are not important for the review. Conventional screening
metrics make no such distinction. Furthermore, there may be diminishing returns
for identifying a large number of studies – once a sufficient number of studies
have been found, finding more studies may not yield any new information, and
only limited improvements in confidence. We may see substantial further work-
load reductions by only retrieving as much evidence as is necessary to perform the
systematic review.
We need metrics that allow us to know how screening reduction methods would
impact the systematic review. Such metrics should at a minimum give some guar-
antee that the screening reduction will not influence the results or conclusions of
the review.

10·2 Measuring Integrity Prospectively

Previous work on screening automation often report substantial workload reduc-
tions – ranging between 30–70% – but much of this is evaluated retrospectively,
and more importantly, speculatively. For instance, the commonly used wss@95%
metric means intuitively that there was a point during (the retrospectively simu-
lated) screening procedure where at least 95% of all relevant references had been
identified, and the screening could have been interrupted at this point for a substan-
tial workload reduction, if this had somehow been known during screening. Since
we cannot know the number of outstanding references in a prospective systematic
review, there is no way to know when 95% of references have been identified.
This is not just the case for the wss metric, in fact all metrics mentioned above
are retrospective – these are all evaluated based on gold standard inclusion and
exclusion decisions from previous data.

10·3 Reducing Bias

Conventionally, the screening order in systematic reviews is randomized, or quasi-
randomized by ordering e.g. by author name. This ensures that the decisions to
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include or exclude studies are not affected by the order in which references are
screened, and serves to reduce potential bias.
The prospective application of the cut-off is particularly important, because this
allows the stopping criterion to be decided and specified at the time the protocol
is written, which in turn ensures that the decision to stop screening is not made
ad-hoc, and do not depend on the results of the screening.
Randomization is fundamentally incompatible with screening prioritization, which
work by ordering the studies by their likelihood of being relevant. Screening priori-
tization could thus potentially introduce so-called rank-order bias, where screeners
are influenced by the ranking, and be more likely to include non-relevant studies
at the top of the list, and more likely to exclude relevant studies at the bottom (Gar-
gon et al., 2019). While the ranked approach thus produces shorter turnaround for
the review, the process may no longer be compatible with the expected qualities
of a systematic review (Thomas, 2013).
Screening prioritization is still rarely used in systematic reviews however, and
there are consequently no trials estimating biases due to automation. To what ex-
tent rank order bias affect systematic reviews thus remain to be seen. Proponents
of screening prioritization point to the beneficial effects (O’Mara-Eves et al., 2015).
For instance, screeners may get ‘up to speed on the current developments’ more
quickly (Cohen, 2008), screeners may gain a better understanding of the inclusion
criteria earlier (O’Mara-Eves et al., 2015), or lower ranked studies may be screened
by less experienced screeners (Cohen et al., 2009).
At the same time, changing inclusion criteria after seeing the evidence are a known
cause of bias in systematic reviews (Lasserson et al., 2019, in Higgins et al., 2019)
and there are concerns that screening prioritization could introduce bias (Gargon
et al., 2019). Letting screeners with less expertise screen lower ranked studies may
only serve to acerbate such biases.
For the time being, the only way to blind screeners to the ranking and avoid the
potential for bias is by using predetermined thresholds and subsequently random-
ize the remaining references, foregoing screening prioritization altogether. Screen-
ing reduction, coupled with subsequent randomization is conceptually similar to
a boolean search filter, which is already used for the database search, and is there-
fore largely compatible with the established systematic review process. All other
requirements of the systematic review process can – with proper care – be fulfilled
by a static model, including reproducibility. Machine learning methods are not
normally transparent however, and in a systematic review where transparency is
important additional work may be necessary to ensure transparency.
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10·4 Determining Safe Screening Thresholds

To use screening reduction methods in a live systematic review, we must be able to
determine thresholds for the automated methods that ensures that the systematic
review is not adversely affected, and which ensures that the process still fulfil all
requirements of transparency and reproducibility. In this part we will look at two
studies in different review contexts, and with consequently different approaches
to determining such a threshold.

10·5 Objectives

In this part we present two journal papers, both published in 2019, where we at-
tempt to address the following research questions:

rq 4 Can we use screening automation in live systematic review while keeping the same
rigorous methodology?

rq 5 What are the minimum conditions for a systematic review to guarantee the same re-
sults and conclusions using screening prioritization as with the conventional process?
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The material in chapter 11 has been published as:

(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f)(Norman et al., 2019f): Norman, C. R., Gargon, E., Leeflang, M. M. G., Névéol, A.,
and Williamson, P. R. (2019f). Evaluation of an automatic article selection
method for timelier updates of the Comet core outcome set database. Database.
Oxford University Press

This article documents the use of the screening automation for the Comet core
outcome set systematic review in 2019. The study was conducted to confirm that
the screening automation method used for the database update performs within
acceptable parameters for the Comet review (Gargon et al., 2019).
The underlying research question in this study was:

rq 4 Can we use screening automation in live systematic review while keeping the same
rigorous methodology?
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Evaluation of an automatic article selection method for timelier
updates of the Comet Core Outcome Set database

Christopher R. Norman, Mariska M.G. Leeflang, Elizabeth Gargon,
Aurélie Névéol, &Paula R. Williamson

Database, 2019

Abstract

Curated databases of scientific literature play an important role in helping re-
searchers find relevant literature, but populating such databases is a labour
intensive and time-consuming process. One such database is the freely ac-
cessible Comet Core Outcome Set database, which was originally populated
using manual screening in an annually updated systematic review. In order to
reduce the workload and facilitate more timely updates we are evaluating ma-
chine learning methods to reduce the number of references needed to screen.
In this study we have evaluated a machine learning approach based on logistic
regression to automatically rank the candidate articles. Data from the origi-
nal systematic review and its four first review updates were used to train the
model and evaluate performance. We estimated that using automatic screen-
ing would yield a workload reduction of at least 75% while keeping the num-
ber of missed references around 2%. The results suggest that machine learning
methods can reduce the workload required to select Core Outcome Set articles,
and the method is now being used for the next round of the Comet database
update.
Database: http://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.orghttp://www.comet-initiative.org

11·1 Introduction

A wealth of biomedical information is buried in the free text of scientific publica-
tions. Curated databases play a major role in helping researchers and clinicians
access this data, by selecting articles and specific facts of interest in the subfield of
biomedicine they address (Dowell et al., 2009; Krallinger et al., 2011).
One such database is maintained by the Core Outcome Measures in Effectiveness
Trials (Comet) Initiative, which aims to improve the usefulness of outcomes in re-
search and help tackle problems such as outcome reporting bias, inconsistency and
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lack of importance or relevance of outcomes to patients. These problems are being
addressed through the development and use of core outcome sets (COS). A COS is
an agreed standardised set of outcomes that should be measured and reported, as
a minimum, in all trials for a specific clinical area (Williamson et al., 2017). Comet
facilitates the development and application of COS, by bringing relevant material
together and thus making it more accessible. Since 2011, Comet has maintained
a public repository of studies relevant to the development of COS (The Comet
database, http://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/searchhttp://www.comet-initiative.org/studies/search). The database was orig-
inally populated through completion of a systematic review (Gargon et al., 2014),
which is annually updated to include all published COS, currently up to and includ-
ing December 2017 (Davis et al., 2018; Gargon et al., 2018; Gorst et al., 2016a,b).
The database is an integral resource not only to the development of COS, but also
to the uptake of COS in research and in the avoidance of unnecessary duplication
and waste of scarce resources (Gargon et al., 2018). Relevant studies are added to
the database as they are found, but the annual update to the systematic review is
necessary to ensure completeness. We encounter challenges in undertaking this
comprehensive approach, such as the variability in free text terms and index terms
used for COS development, further confounded by the absence of a specific index
term orMedical Subject Heading (MeSH) main heading for this study type (Gargon
et al., 2015). A direct consequence of these challenges is the work involved in
manually screening a large number of records on an annual basis. The latest update
(Gargon et al., 2018) took seven months from running the searches in March 2018
to submission of the manuscript in early October 2018, and involved five reviewers.
It is a labour intensive review and therefore costly to keep this up to date. With the
need to update this annually, a balance needs to be struck between managing this
workload and the likelihood that all eligible studies will be identified. The addition
of a new index term or MeSH heading to identify COS is unlikely at this time, so
it is imperative that we explore alternative routes in an attempt to streamline this
process.

11·1·1 Screening Automation in Systematic Reviews

Automation has great potential to make systematic reviews quicker and cheaper
(Beller et al., 2018; Tsafnat et al., 2014). Recent advances in text mining, natural lan-
guage processing and machine learning have demonstrated that tasks within the
systematic review process can be automated or assisted by automation. Possible
tasks include screening of titles and abstracts, sourcing full texts and data extrac-
tion. Automation to assist the screening process is of particular interest in these
systematic review updates due to the high number of hits retrieved in the annual
searches.
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Using automated methods to prioritise the order in which references are screened
is considered safe for use in prospective systematic reviews, but using cut-off val-
ues to eliminate studies automatically is not recommended practice (O’Mara-Eves
et al., 2015). A wide range of methods have been proposed for this kind of screen-
ing prioritisation, including Support Vector Machines, Naive Bayes, Voting Per-
ceptrons, Lambda-Mart, Decision Trees, EvolutionalSVM, Waode, kNN, Rocchia,
hypernym relations, ontologies, Generalized Linear Models, Convolutional Neural
Networks, Gradient Boosting Machines, Random Indexing, and Random Forests
(Kanoulas et al., 2017a; Khabsa et al., 2016; O’Mara-Eves et al., 2015; Suominen
et al., 2018). Several screening prioritisation systems are publicly available, includ-
ing Eppi-Reviewer, Abstrackr, Swift-Review, Rayyan, Colandr, and RobotAna-
lyst (Howard et al., 2016; Khabsa et al., 2016; Przybyła et al., 2018; Thomas and
Brunton, 2007; Wallace et al., 2012b).
Comparing the relative performance of different methods is difficult since most
methods have been evaluated on different datasets, under different settings, and
with different metrics. There have been attempts to compare previous methods by
replicating reported methods on the same datasets, but the replication of published
methods is often difficult or impossible due to insufficient reporting Olorisade et al.
(2016). Performance varies depending on included study type (e.g. randomized con-
trol trial, diagnostic study), clinical setting, research question, number of candidate
references, et c, and it is therefore seldom possible to extrapolate performance on
new, untested systematic reviews from previous experiments.
Conventional screening automation is based on learning-to-rank, an information
retrieval approach that uses machine learning or statistics to learn a ranking model
from existing training data (Fuhr, 1992). In the original formulation, a model is
trained to estimate the relevance of each candidate reference (pointwise learning),
and the references can then be presented to the screeners in descending order of
estimated relevance. This is a form of probability regression and has been imple-
mented using amultitude of methods frommachine learning and statistics (O’Mara-
Eves et al., 2015). However, in a ranking scenario it may be better to minimise the
number of inversions, the number of pairs such that a relevant reference occurs af-
ter a non-relevant one, rather than the estimated probability score. This is known
as ordinal regression, and can be done using machine learning methods by training
on pairs of references (pairwise training) or on an entire list of references (listwise
training) (Burges, 2010).

11·2 Material and Methods

To develop and evaluate our method, we used the results from the manual screen-
ing conducted in the systematic review, and its four annual updates (fig. 11·1) (Davis
et al., 2018; Gargon et al., 2018, 2014; Gorst et al., 2016a,b).
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Original Review Update
Systematic Review 1 2 3 4

All (A) 24,384 27,375 28,371 4,587 4,226 4,980 3,785 3,984 4,090 4,043 4,226 4,406 4,963 5,140 5,140
Maybe (M) 2,220 2,290 2,346 297 414 429 187 238 248 370 492 519 455 514 514

Yes (Y) 195 217 220 29 30 31 22 24 24 12 15 16 68 70 70

(a) The number of references considered in each stage of the screening process.
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(b) Visual diagram of the flow of references during the manual screening process in the systematic
review and the four review updates, The width of each bar corresponds to their respective numbers
in (a).

All references considered for screening

Deduplicated references (cf. sec. 3.2.1)

Deduplicated references with abstracts

Figure 11.1 – Description of the data used in this study, resulting from the original system-
atic review (Gargon et al., 2014), and its review updates (Davis et al., 2018; Gargon et al.,
2018; Gorst et al., 2016a,b). ‘All references considered for screening’ refers to the refer-
ences retrieved from the database search in the systematic review, and includes references
without abstracts, as well as duplicates across review updates. ‘Deduplicated references’
and ‘Deduplicated references with abstracts’ refer to the data after preprocessing (cf. sec.
11·2·1). We use the following shorthand for the different stages of the screening process: All
(a): References initially identified through the database search. Maybe (m): References
provisionally included based on title and abstract, but not yet screened based on full-text.
Yes (y): References judged relevant based on full-text and included in the Comet database.
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11·2·1 Data Preprocessing

Before experimenting on the data we preprocessed it to ensure that it conforms to
a few standard constraints necessary for the experiments to work as intended. In
particular, training and evaluating on the same data points would overestimate the
performance, and we therefore preprocess the data so that the training and evalua-
tion sets do not overlap. Furthermore, removing duplicate data points means that
each data point is counted only once in the evaluation of the results.
References may have two publication dates in their bibliographic records, once
when they are published online (ahead of print), and once when they appear in
the printed journal. When duplicate publication dates span review iterations, ref-
erences may therefore occasionally be considered in two consecutive review iter-
ations. In the manual screening for the Comet systematic review such duplicate
references were screened in both updates they appeared in. Removing these would
have required more work than simply screening them, and screening the same ref-
erences twice will only provide an extra check and will not be detrimental to the
review.
For this reason, 1,026 references in the original systematic reviewwere re-screened
in update 1, 103 references in update 1 were re-screened in update 2, 95 references
in update 2 were re-screened in update 3, and 180 references in update 3 were re-
screened in update 4. In total, 5 out of 354 included references were considered in
at least two review updates (see set y, fig. 11·1).
We opted to remove these duplicate references from the training set, rather than the
test set, to mirror how these were handled in the systematic review. In practical
terms, this means the model will always judge re-examined references without
being biased by (or simply repeating) the judgment shown in the previous review
update.

11·2·2 Document Ranking Method

To rank references, we used a static ranking method that we have described previ-
ously (Norman et al., 2018c) and which performed in the top tier of methods eval-
uated in the Clef eHealth international challenge dedicated to Technologically
Assisted Reviews in Empirical Medicine (Kanoulas et al., 2017a, 2018), and which
compared particularly favourably to other models not relying on active learning
(similarly to the setup used in this study).
We evaluated the model on each review update by examining how early it would
have ranked the included references (set y deduplicated in fig. 11·1).
We performed two sets of experiments. First, we performed a simulated prospec-
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Training/Evaluation Repetitions

1
Combined

2 3 4

Data not used
in training

Training data

Evaluation data

Original

Systematic

Review

Update

1

2

3

4

Prospective

Evaluation

Cross-validation (Retrospective) Evaluation

Figure 11.2 – Illustration of our prospective and retrospective (cross-validation) experimen-
tal setups when evaluating the performance of the model on update 2. For simplicity we
illustrate using four folds instead of ten. This setup allows us to also use update 2 as train-
ing data when evaluating on update 2, while avoid training and evaluating on the the same
individual references.

tive evaluation1 on each of the four review updates. In each of these four experi-
ments, we trained amodel on the deduplicated data from the prior review iterations.
Thus, we for instance trained the model on the data from the original systematic
review and updates 1 and 2 when we evaluated the model on the update 3. Second,
we evaluated on the original systematic review and on each of the four review up-
dates by adding cross-validated data to the data from previous review data (see fig.
11·2). For instance, for update 2 we split the references into ten random sets. For
each of these ten sets we trained a model on the data from other nine sets in addi-
tion to the original review and update 1, and let the model calculate scores for each
reference in the set held out from training. We then constructed a single ranking
by merging the ten sets and ranking this set by the score assigned to each reference.
We performed these experiments because we suspected that we might get better
performance when adding data from the same review update, either because of con-
ceptual drift (Cohen et al., 2004) or simply because of the increase in the amount
of training data. This setup also allowed us to evaluate the performance on the
original systematic review update, which contains more data than the four review
updates combined.

1 The evaluation is prospective for the model, since it is not allowed to see the future data in the
experiments. This study as a whole is still retrospective since the ‘future’ data already existed when
we performed the experiments.
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Figure 11.3 – Effort-recall curves evaluating the system performance on the
references with abstracts in each review update. The total number of data
points are given in the leftmost column for each update in fig. 11·1. The marks denote
the positions in the ranking at which the included references would have been identified
with screening prioritisation, evaluated prospectively (blue circles) or retrospectively us-
ing cross-validation (red squares). The y-axes denote the percentage of identified included
references (recall) throughout the screening process. The dashed lines denote the mean ex-
pected curve when screening in random order (equivalent to standard practice). We mark
three hypothetical cut-offs at 20%, 25%, and 30%. For scale, we give an estimate of the work-
load required by an experienced screener (1 abstract in 1 minute). Inexperienced screeners
may take longer, and we estimate fulltext screening to take approximately ten times longer
than screening titles and abstracts.
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Figure 11.4 – Effort-recall curves evaluating the system performance on ti-
tles only. Themarks denote the positions in the ranking at which the included references
would have been identified with screening prioritisation, trained and evaluated only on ti-
tles (blue circles) or trained on titles and abstract and evaluated on titles (green triangles).
The y-axes denote the percentage of identified included references (recall) throughout the
screening process. The dashed lines denote the mean expected curve when screening in
random order (equivalent to standard practice). We mark three hypothetical cut-offs at
20%, 25%, and 30%. For scale, we give an estimate of the workload required by an experi-
enced screener (1 title in 1 minute). We estimate that the time required to screen titles is
on average the same as screening abstracts.
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Abstracts were not available for all references, and we therefore performed two
sets of experiments to determine to what extent abstracts are necessary for judg-
ment. First, we performed one set of experiments where we trained and evaluated
a model using information from the titles and abstracts. In this setup we excluded
references for which abstracts were missing. Second, we performed one set of ex-
periments where we evaluated the model using information only from the titles.
We used the same model as in previously, trained on titles and abstracts from all
references in the training sets, as well as a model trained only on titles.

11·3 Implementation

We constructed a ranker by extracting bag-of-n-grams (n ≤ 5) over words in the ti-
tles and abstracts. We used both tf-idf scores and binary features, in both stemmed
and unstemmed form. In previous experiments, 4-grams and 5-grams have yielded
consistent but very minor performance improvements, and could have been omit-
ted without substantially decreasing performance. However, the stochastic gradi-
ent descent training does not take substantially longer to train on higher order
n-grams, and we prefer that unhelpful features be discarded by the training, based
on the data. We did not use feature selection, or dimension reduction.
We used the implementation of logistic regression in sklearn (Pedregosa et al., 2011)
using version 0.20.2 trained using stochastic gradient descent, i.e. the SGDClassi-
fier trained using log loss. We trained the ranker for 50 iterations.
We have also tested logistic regression optimised using liblinear, Long Short-Term
Memories, Neural Networks, Passive Agressive classifiers, Random Forests, as well
as Support Vector Machines with linear, polynomial, and Radial Basis Function
kernels. Logistic regression trained using Stochastic Gradient Descent is fast to
train, does not require feature selection or dimension reduction, and performs as
well as or better than all other methods we have tested. We have observed no
performance gains by using pairwise training over pointwise training.
To compensate for the imbalance between the number of positive and negative
references we increased the training weight for the positive examples to 80. Fur-
thermore, we performed logistic regression with L2 regularization using α = 10-4.
Each of these parameter settings was chosen as good default values in experiments
on systematic reviews of drug class efficacy, and has proved to generalize well to
systematic reviews of diagnostic test accuracy. Unlike in our previous work, we
did not use under- or oversampling to compensate for the imbalance, because our
previous experiments suggest this has limited benefit when used in addition to
adjusting the training weights, and that the amount of under- or oversampling is
often difficult to tune. We used default settings for all other parameters.
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11·3·1 Evaluation

We evaluate in terms of observed trade-off between effort and recall (sensitivity).
We define effort as the absolute number of articles screenedmanually by the human
screeners:

effort = tp+ fp

where tp denotes the true positives, and fp denotes the false positives.
We define recall as the proportion of positives (relevant articles) that are correctly
identified:

recall = sensitivity =
tp

tp+ fn
where tp denotes the true positives, and fn denotes the false negatives.
The effort and recall are positively correlated, and vary as the cut-off value is varied.
Similarly to e.g. roc curves, we will plot pairs of effort/recall value pairs over all
possible cut-offs to simplify the selection of an appropriate trade-off between effort
and recall.

11·4 Results

We report the results of our experiments as effort-recall curves in fig. 11·3 and fig.
11·4.
In the simulated prospective evaluation, we would have found the last included
reference at position 870/4,587 in update 1 (19.0%), position 1,723/3,785 in update
2 (45.5%), position 131/4,043 in update 3 (3.4%), and position 3,038/4,963 in update
4 (61.2%) (fig. 11·3). Accepting some losses in update 4, we could have identified
67/68 references (98.5%) at position 1,758 (35.4%), 66/68 references (97%) at position
1,748 (35.2%), or 65/68 references (95.6%) at position 1,020 (20.6%). The last two
references in update 2 appear to be outliers, and we would have identified 21/22
references (95.5%) at position 926 (18.7%), or 20/22 references (90.1%) at position
447 (9.0%).
If we had used this system and had stopped after screening 25% of the candidate
references, we would have identified 126 out of the 129 deduplicated references
with abstracts in the four review updates (97.7%) (fig. 11·3).
In the simulated retrospective evaluation (using cross-validation), we would have
found the last included reference at position 7,102/24,384 in the original review
(29.1%), position 843/4,587 in update 1 (18.4%), position 2,125/3,785 in update 2 (56.1%),
position 125/4,043 in update 3 (3.1%), and position 3,521/4,963 in update 4 (70.9%) (fig.
11·3). Accepting some losses in update 4, we could have identified 67/68 references
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(98.5%) at position 1,921 (38.7%), 66/68 references (97%) at position 902 (18.2%). Sim-
ilarly to the prospective evaluation results, the last reference in update 2 appears
to be an outlier, and we would have identified 21/22 references (95.5%) at position
446 (9.0%).
Overall, there was only a small difference between the prospective and the ret-
rospective results, and the retrospective results were consistently better only in
update 2 (fig. 11·3). Stopping after screening 25% of the candidate references in
the retrospective evaluation would have identified 317 out of the 324 deduplicated
references with abstracts in the four review updates (97.7%) (fig. 11·3).
The model performed substantially worse when evaluating on only titles (fig. 11·4).
A model trained using all prior references, but trained and evaluated only on titles
would on average have identified 86% of the relevant references after screening
25% of the candidates (fig. 11·4, bottom). A model trained on titles and abstracts
from all prior references, but evaluated only on titles would on average have iden-
tified 90% of the relevant references after screening 25% of the candidates (fig. 11·4,
bottom). Using a more conservative threshold would not have helped – several of
the relevant references were identified only at the end of the simulated screening.
However, only 3,840 out of 45,602 references in the dataset lacked abstracts (8.4%).
These references constitute less than 300 references in each review, corresponding
to a workload of less than 5 hours of screening per reviewer.

11·5 Discussion

We used a logistic regression model for automatic article ranking to assess the suit-
ability of automated screening for future updates to an annual systematic review
of COS. We estimate that this model of automatic ranking can decrease the num-
ber of references that needs to be screened by 75% while identifying approximately
98% of all relevant references on average.
The results of this study are encouraging, and suggest that automated screening
can be used to reduce the workload and therefore time and cost associated with
this annual update. While we anticipate a reduction of workload by 75% and 62.5
hours per screener in the abstract screening stage, a balance needs to be struckwith
the prospect of identifying all eligible studies. With the last included reference
identified at position 3,038 in the previous update, it is realistic to accept that all
studies might not be identified using this ranking method if a reduction in time and
workload is desired. However, 97.8% of articles (317/324) could still be identified
retrospectively and 97.7% of articles (126/129) could be identified prospectively if a
different position was selected for the cut-off point for screening. Other methods
of identifying relevant studies are employed in the update of the systematic review
of COS, such as hand-searching, reference checking, relevant database alerts for
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key words and references, as well as checking with known experts. These other
methods of identifying relevant papers increase the likelihood that all eligible stud-
ies will continue to be identified, and mean that a balance can be struck between
managing the workload and identifying all eligible studies.
The results of this study showed that the screening automation can be reliable, pro-
vided both titles and abstracts are available, but that the automated ranking cannot
reliably identify included references based only on titles. However, the number of
references without abstracts is relatively low and we estimate that screening these
manually would only take 2–4 hours per screener. We therefore recommend these
be screened manually also in future updates of the systematic review of COS.

11·6 Conclusions

Based on the results in this study we determined that stopping after screening
the first 25% of the candidate studies would result in a loss of roughly 2% of the
relevant studies, whichwe deemed an acceptable trade-off in this systematic review.
However, the same stopping criterion would have resulted in a loss of over 10%
of the relevant studies without abstracts. Balancing the risk of missing relevant
references against the limited number of such references, we opted to screen all
references without abstracts manually.
We are currently using this system based on logistic regression to identify Core
Outcome Sets published in 2018 for the fifth update of the Comet database. The
database searches were performed in March 2019 and the screening is currently on-
going. The prospective use of these methods will further validate these results and
this model of automated screening. This study has demonstrated that automation
has great potential to make the annual updates of this systematic review quicker
and cheaper.
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This studywas performed to address long-standing unresolved questions regarding
the minimum requirement for a systematic review to be complete. In particular,
systematic reviews require the identification of all relevant studies, in contrast to
the majority of primary research, which requires unbiased samples of sufficient
power. We suspected that for sufficiently large meta-analyses a sufficiently large
and unbiased sample would yield the same results.
Furthermore, there have long been a disconnect between the way screening au-
tomation methods have been evaluated, and the goals and purposes of the sys-
tematic review. Fundamentally, no previous study had stopped to consider what
screening automation means for the systematic review. In particular, will the use
of screening automation change the results and conclusions of the review?
Conversely, the answers to these question would also arm us with better methods
to interrupt screening. After all, if we have determined that the meta-analyses will
not change further, then we can be content to stop added more studies to them.
We envisioned this as a Bayesian approach, which would stop once the value of
additional studies would be less than the cost involved in identifying them.
The underlying research question in this study was:

rq 5 What are the minimum conditions for a systematic review to guarantee the same re-
sults and conclusions using screening prioritization as with the conventional process?

We set out to do this by breaking the question into the following sub-questions:

rq 5 a) Can we measure the impact of the screening on the meta-analyses prospectively?
b) Does perfect (or 95%) recall make sense as a target?
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Measuring the impact of screening automation on meta-analyses
of diagnostic test accuracy
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Bmc Systematic Reviews

Abstract

Background The large and increasing number of new studies published each
year is making literature identification in systematic reviews ever more time-
consuming and costly. Technological assistance has been suggested as an al-
ternative to the conventional, manual study identification to mitigate the cost,
but previous literature has mainly evaluated methods in terms of recall (search
sensitivity) and workload reduction. There is a need to also evaluate whether
screening prioritization methods leads to the same results and conclusions as
exhaustive manual screening. In this study we examined the impact of one
screening prioritization method based on active learning on sensitivity and
specificity estimates in systematic reviews of diagnostic test accuracy.
Methods We simulated the screening process in 48 Cochrane reviews of di-
agnostic test accuracy, and re-run 400 meta-analyses based on a least 3 stud-
ies. We compared screening prioritization (with technological assistance) and
screening in randomized order (standard practice without technology assis-
tance). We examined if the screening could have been stopped before identify-
ing all relevant studies while still producing reliable summary estimates. For
all meta-analyses, we also examined the relationship between the number of
relevant studies and the reliability of the final estimates.
Results The main meta-analysis in each systematic review could have been
performed after screening an average of 30% of the candidate articles (range:
0.07% to 100%). No systematic review would have required screening more
than 2,308 studies, whereas manual screening would have required screening
up to 43,363 studies. Despite an average 70% recall, the estimation error would
have been 1.3% on average, compared to an average 2% estimation error ex-
pected when replicating summary estimate calculations.
Conclusion Screening prioritization coupled with stopping criteria in diag-
nostic test accuracy reviews can reliably detect when the screening process
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has identified a sufficient number of studies to perform themainmeta-analysis
with an accuracy within pre-specified tolerance limits. However, many of the
systematic reviews did not identify a sufficient number of studies that the
meta-analyses were accurate within a 2% limit even with exhaustive manual
screening, i.e. using current practice.

12·1 Background

The increasing reliance on evidence provided by systematic reviews, coupled with
rapidly increasing publishing rates is leading to an increasing need to automate the
more labor-intensive parts of the systematic review process (Elliott et al., 2014). Be-
yond simply reducing the cost involved in producing systematic reviews, automa-
tion technologies, used judiciously, could also help producemore timely systematic
reviews. For systematic reviews of diagnostic test accuracy (dta), no sensitive
and specific methodological search filters are known, and their use is therefore
discouraged (Beynon et al., 2013; De Vet et al., 2008; Leeflang et al., 2006). Conse-
quently, the number of citations to screen in a systematic review of diagnostic test
accuracy is often several times higher than for systematic reviews of interventions,
and the need for automation may therefore be particularly urgent (Kanoulas et al.,
2017a, 2018; Petersen et al., 2014).
Methods for automating the screening process have been developed since at least
2006 (Cohen et al., 2006; O’Mara-Eves et al., 2015), but have so far seen limited adop-
tion by the systematic review community. While there are examples of past and
ongoing systematic reviews using automation, many more use manual screening.
Thomas noted in 2013 that in order for widespread adoption to occur screening
automation must confer a relative advantage (time saved), but must also ensure
compatibility with the old paradigm, i.e. ensuring that screening automation is
equivalent to manual screening (Thomas, 2013). There has been a large number
of studies measuring the amount of time saved by automated screening, which
may suggest that automation methods are maturing in terms of relative advantage.
We are however not aware of any studies focusing on the compatibility aspect:
whether automated screening results in the ‘same’ systematic review, and much
of the literature to date have implicitly assumed that recall values over 95% are both
necessary and sufficient to ensure an unchanged systematic review (O’Mara-Eves
et al., 2015). In this study we aim to revisit this hypothesis, which to our knowledge
has never been tested.
Among possible automation approaches, only screening prioritization is currently
considered safe for use in systematic reviews (O’Mara-Eves et al., 2015). In this
approach, systematic review authors screen all candidate studies, but in descending
order of likelihood of being relevant. It is often assumed that we can achieve some
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amount of reduction in workload by using screening prioritization (O’Mara-Eves
et al., 2015), but the extent to which this is true has not been evaluated (Thomas,
2013). Screening prioritization can be combined with a cut-off (stopping criterion)
to reduce theworkload, for example by stopping screeningwhen the priority scores
assigned to remainder of the retrieved studies falls below some threshold. Using cut-
offs is generally discouraged since it is not possible to guarantee that no relevant
studies remain after the cut-off point and would thus be falsely discarded (O’Mara-
Eves et al., 2015). However, using cut-offs would likely reduce the workload down
to a fraction compared to using screening prioritization alone, and may therefore
be necessary to fully benefit from screening prioritization.

12·1·1 Meta-analyses of Diagnostic Test Accuracy

Systematic reviews of diagnostic test accuracy may yield estimates of diagnostic
performance with higher accuracy and stronger generalizability than individual
studies, and are also useful for establishing whether and how the results vary by
subgroup (Leeflang et al., 2008). Systematic reviews of diagnostic test accuracy
are critical for establishing what tests to recommend in guidelines, as well as for
establishing how to interpret test results.
Unlike randomized control trials, which typically report results as a single mea-
sure of effect (e.g. as a relative risk ratio), diagnostic test accuracy necessarily
involves a trade-off between sensitivity and specificity depending on the threshold
for positivity for the test (Leeflang et al., 2008; Macaskill et al., 2010). Diagnostic
test accuracy studies therefore usually report results as two or more statistics: e.g.
sensitivity and specificity, negative and positive predictive value, or the Receiver
Operating Characteristic (roc) curve. The raw data underlying these statistics is
called a 2×2 table, consisting of the true positives, the false positives, the true neg-
atives, and the false negatives for a diagnostic test evaluation.
Meta-analyses of diagnostic test accuracy pool the 2×2 tables reported in multiple
dta studies together to form a summary estimate of the diagnostic test perfor-
mance. The results of dta studies are expected to be heterogeneous, and the meta-
analysis thus needs to account for both inter- and intra-study variance (Macaskill
et al., 2010). This is commonly accomplished using hierarchical random effects
models, such as the bivariate method, or the hierarchical summary roc model (Re-
itsma et al., 2005; Rutter and Gatsonis, 2001). Pooling sensitivity and specificity
separately to calculate separate summary values is discouraged, as it may give an
erroneous estimate, e.g. a sensitivity/specificity pair not lying on the roc curve
(Leeflang et al., 2008).
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12·1·2 Systematic Reviews Require Perfect Recall

Systematic reviews are typically expected to identify all relevant literature. In the
Cochrane Handbook for dta Reviews (De Vet et al., 2008) we can read:

‘Identifying as many relevant studies as possible and documenting the
search for studies with sufficient detail so that it can be reproduced is
largely what distinguishes a systematic review from a traditional nar-
rative review and should help to minimize bias and assist in achieving
more reliable estimates of diagnostic accuracy’.

Thus, the requirement to retrieve all relevant literature may just be a means to
achieve unbiased and reliable estimates in the face of e.g. publication bias, rather
than an end in itself. In this context, ‘as many relevant studies as possible’ may
be better understood as searching multiple sources, including gray literature, in or-
der to mitigate biases in different databases (De Vet et al., 2008). Missing a single
study in a systematic review could result in the systematic review drawing differ-
ent conclusions, and recall can therefore, in general, only guarantee an unchanged
systematic review if it is 100%. For some systematic reviews, finding all relevant
literature may be the purpose of the review, i.e. when the review is conducted to
populate literature databases (Gargon et al., 2014). On the other hand, for system-
atic reviews addressing diagnostic accuracy or treatment effects, the review may
be better helped by identifying an unbiased sample of the literature, sufficiently
large to answer the review question (Booth, 2010). In systematic reviews of inter-
ventions, such a sample is often substantially larger than can be identified with the
systematic review process (Wetterslev et al., 2017), but we hypothesize that it can
also be substantially smaller.
Of course, many systematic reviews aim not just to produce an accurate estimate of
the mean and confidence intervals, but also estimate prevalence, as well as identify
and produce estimates for subgroups. Thus, to ensure an unchanged systematic re-
view we would really need to ensure that the unbiased sample is sufficient to prop-
erly answer all aspects of the research question of the review. For instance, an un-
changed systematic review of diagnostic test accuracy could require unchanged es-
timates of summary values, confidence intervals, the identification of all subgroups,
and unchanged estimates of prevalence. We will in this study restrict ourselves to
measuring the accuracy of the meta-analyses in systematic reviews of diagnostic
test accuracy, i.e. the means and confidence intervals of the sensitivity and speci-
ficity.
There are multiple potential sources of bias that can affect a systematic review,
including publication bias, language bias, citation bias, multiple publication bias,
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database bias, and inclusion bias (Egger and Smith, 1998; Kung et al., 2010; Shea
et al., 2009). While some sources of bias, such as publication bias, mainly occur
across databases, others, such as language bias or citation bias may be present
within a single database.
However, bias (i.e. only finding studies of a certain kind) is often conflated with the
exhaustiveness of the search (i.e. finding all studies). While an exhaustive search
implies no bias, a non-exhaustive search may be just as unbiased, provided the
sample of the existing literature it identifies is essentially random. If the goal of
the systematic review is to estimate the summary diagnostic accuracy of a test, the
recall (the sensitivity of the screening procedure) may therefore be less important
than the number of studies or total number of participants identified, provided the
search process does not systematically find e.g. English language literature over
literature in other languages. However, previous evaluations of automation tech-
nologies usually measure only recall, or use metrics developed primarily for web
searches (Kanoulas et al., 2017a, 2018) while side-stepping the (harder to measure)
reproducibility, bias, and reliability of the parameter estimation process.

12·1·3 The Impact of Rapid Reviews on Meta-Analysis Accuracy

Screening prioritization aims to decrease theworkload in systematic reviews, while
incurring some (presumably acceptable) decrease in accuracy. Similarly to screen-
ing prioritization, rapid reviews also seek to reduce the workload in systematic
reviews and produce timelier reviews by taking shortcuts during the review pro-
cess, and is sometimes used as an alternative to a full systematic review when a
review needs to be completed on a tight schedule (Tricco et al., 2015). Examples
of rapid approaches include limiting the literature search by database, publication
date, or language (Marshall et al., 2019).
Unlike screening prioritization, the impact of some rapid review approaches on
meta-analyses have been evaluated (Egger et al., 2003; Halladay et al., 2015; Hartling
et al., 2017; Marshall et al., 2019; Nussbaumer-Streit et al., 2018; Sampson et al.,
2003). However, a 2015 review identified 50 unique rapid review approaches, and
only a few of these have been rigorously evaluated or used consistently (Tricco
et al., 2015). Limiting inclusion by publication date, excluding smaller trials, or only
using the largest found trial have been reported to increase risk of changing meta-
analysis results (Marshall et al., 2019). By contrast, removing non-English language
literature, unpublished studies, or grey literature rarely change meta-analysis re-
sults (Egger et al., 2003; Hartling et al., 2017).
The percentage of included studies in systematic reviews that are indexed in Pub-
Med has been estimated between 84–90%, and restricting the literature search
to PubMed has been reported to be relatively safer than other rapid review ap-
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proaches (Booth, 2016b; Halladay et al., 2015; Marshall et al., 2019). However, Nuss-
baumer-Streit et al. have reported 36% changed conclusions for randomly sampled
reviews, and 11% changed conclusions for review with at least 10 included studies
(Nussbaumer-Streit et al., 2018). The most common change was a decrease in con-
fidence. Marshall et al. also evaluated a PubMed only search for meta-analyses of
interventions, and demonstrated changes in result estimates of 5% or more in 19%
of meta-analyses, but observed changes were equally likely to favor controls as
interventions (Marshall et al., 2019). Thus, a PubMed only search appears to be as-
sociated with lower confidence, but not with consistent bias. Halladay et al. have
reported significant differences between PubMed indexed studies and non-Pubmed
indexed studies in 1 out of 50 meta-analyses including at least 10 studies (Halladay
et al., 2015). While pooled estimates from different database searches may not be
biased to favor either interventions or controls, Sampson et al. have reported that
studies indexed in Embase but not in PubMed exhibit consistently smaller effect
sizes, but also reasoned that the prevalence of such studies is low enough that this
source of bias is unlikely to be observable in meta-analyses (Sampson et al., 2003).

12·1·4 Related Methods for Screening Prioritization

The earliest known screening prioritization methods were published in 2006, and
a number of methods have been developed since then (Cohen et al., 2006). Similar
work on screening the literature for database curation have been published since
2005 (Aphinyanaphongs et al., 2005; Dobrokhotov et al., 2005). A wide range
of methods (generally from machine learning) have been used to prioritize refer-
ences for screening, including Support Vector Machines, Naive Bayes, Voting Per-
ceptrons, Lambda-Mart, Decision Trees, EvolutionalSVM, Waode, kNN, Rocchia,
hypernym relations, ontologies, Generalized Linear Models, Convolutional Neural
Networks, Gradient Boosting Machines, Random Indexing, and Random Forests
(Kanoulas et al., 2017a, 2018; Khabsa et al., 2016; O’Mara-Eves et al., 2015). Several
screening prioritization systems are publicly available, including Eppi-Reviewer,
Abstrackr, Swift-Review, Rayyan, Colandr, and RobotAnalyst (Howard et al., 2016;
Khabsa et al., 2016; Przybyła et al., 2018; Thomas and Brunton, 2007; Wallace et al.,
2012b).
The most straightforward screening prioritization approach trains a machine learn-
ing model on the included and excluded references from previous iterations of the
systematic review, and then uses this model to reduce the workload in future re-
view updates (O’Mara-Eves et al., 2015). For natural reasons, this approach can
only be used in review updates, and not in new systematic reviews. By contrast,
in the active learning approach the model is continuously retrained as more and
more references are screened. In a new systematic review, active learning starts
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with no training data, and the process is typically bootstrapped (”seeded”) by sam-
pling the references randomly, by using unsupervised models such as clustering
or topic modelling, or by using information retrieval methods with the database
query or review protocol as the query (Cormack and Grossman, 2017).
Comparing the relative performance of different methods is difficult since most are
evaluated on different datasets, under different settings, and often report different
measures. There have been attempts to compare previous methods by replicating
reported methods on the same datasets, but the replication of published methods
is often difficult or impossible due to insufficient reporting (Olorisade et al., 2016).
Another way to compare the relative performance of methods is through the use of
a shared task, a community challenge where participating systems are trained on
the same training data, and evaluated blindly using pre-decided metrics (Chapman
et al., 2011; Huang and Lu, 2015). The shared task model removes many of the prob-
lems of replication studies, and also safe-guards against cheating, mistakes, the
cherry-picking of metrics or data, as well as publication bias. The only shared task
for screening prioritization we are aware of is the Clef Shared Task on Technol-
ogy Assisted Reviews in Empirical Medicine, focusing on diagnostic test accuracy
reviews (Kanoulas et al., 2017a, 2018).
The purpose of this study is not to compare the relative performance of different
methods, and we will focus on a single method (Waterloo Cal) that ranked highest
on most metrics in the Clef shared task both 2017 and 2018 (Kanoulas et al., 2017a,
2018). As far as we can determine, Waterloo Cal represents the state-of-the-art for
new systematic reviews of diagnostic test accuracy (i.e. performed de novo). The
training done in Waterloo Cal is also similar to methods currently used prospec-
tively in recent systematic reviews, and mainly differs in terms of preprocessing
(Bannach-Brown et al., 2019; Lerner et al., 2019; Przybyła et al., 2018).

12·1·5 Objectives

Our objectives in this study are twofold:

☙ We aim to retrospectively and prospectively measure the impact of screening au-
tomation on meta-analysis accuracy. We will use one single method for analysis in
this study, but the criteria should be usable with any screening automation method.
We will pay special attention to prospective criteria, since these can also be calcu-
lated while the screening is ongoing, and we will examine cut-offs for the prospec-
tive criteria that could be used in a prospective setting to bound the loss in accuracy
within prespecified tolerance limits.

☙ We aim to evaluate the (retrospective) 95% recall criterion, which has long been the
target to strive for in screening automation, and will test whether this criterion is
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necessary and sufficient to guarantee an unchanged systematic review. In the case
the criterion is not necessary or sufficient, we aim to develop criteria that could be
used instead.

12·2 Methods

12·2·1 Data Used in the Study

The Limsi-Cochrane dataset This dataset consists of 1,939meta-analyses from
63 systematic reviews of diagnostic test accuracy from the Cochrane Library (the
full dataset is available online: doi: 10.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.1303259) (Norman et al., 2018a).
The dataset comprises all studies that were included in the systematic reviews, from
any database or from gray literature, as well as the 2×2 tables (the number of true
positives, false positives, true negatives, and false negatives) extracted from each
included study by the systematic review authors, grouped by meta-analysis. This
dataset can be used to replicate the meta-analyses in these systematic reviews, in
full or over subsets of the data, for instance to evaluate heterogeneity or bias of
subgroups.

The Clef dataset This dataset consists of all references from PubMed consid-
ered for inclusion – both those included in the systematic review and those ulti-
mately judged not relevant to the systematic review – in 80 systematic reviews
of diagnostic test accuracy also from the Cochrane Library (Kanoulas et al., 2017a,
2018).1 Due to the way the data was collected, this dataset only contains references
from PubMed, but not from other databases or gray literature. The dataset only
includes the PubMed identifiers for each reference, and whether the studies were
included in the reviews.

Combined dataset For our experiments we combined the two datasets by col-
lecting the reviews, meta-analyses and references common to both. In total, this
intersection comprises 48 systematic reviews and 1,354 meta-analyses of diagnostic
tests. All analyses in this study will be based on this intersection unless otherwise
specified.
Since the Clef dataset only includes references from PubMed, the meta-analyses
performed in this study will only be based on studies from PubMed. Some meta-
analyses may therefore be smaller than they were in the original reviews. The
exclusion of studies from other sources than PubMed has been demonstrated to
have moderate impact, and no bias on meta-analyses of interventions, and we will

1 The full dataset is available online: https://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tarhttps://github.com/CLEF-TAR/tar
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make the explicit assumption that the same is true for systematic reviews of diag-
nostic test accuracy (we are not aware of studies measuring this directly) (Halladay
et al., 2015; Marshall et al., 2019).
Cochrane guidelines for systematic reviews of diagnostic test accuracy discourage
drawing conclusions from small meta-analyses, but do not offer a specific mini-
mum number of studies required for a meta-analysis (Macaskill et al., 2010). In
this study, we will only consider meta-analyses based on three or more studies,
because the R package we use (mada) issues a warning when users attempt to cal-
culate summary estimates based on fewer studies (Doebler and Holling, 2015). This
minimum likely errs on the side of leniency.
We considered as meta-analysis any summary estimate reported individually in
the ‘summary of findings’ section of the systematic reviews, regardless of how the
estimates were calculated. Thus we considered meta-analyses of subgroups to con-
stitute distinct meta-analyses, in addition to anymeta-analyses of the entire groups
of participants. We further considered meta-analyses distinct for the same diagnos-
tic test evaluated with e.g. multiple cut-off values, whenever these are reported
separately in the systematic reviews.

12·2·2 Automated Screening Method

We used a previously developed active learning approach to rank all candidate
references for each systematic review in descending order of likelihood of being
relevant (Norman et al., 2018b). The method was selected since it was the best per-
forming method for new systematic reviews (performed de novo) in the 2017–2018
Shared Task on Technology Assisted Reviews of Empirical Medicine (Kanoulas
et al., 2017a, 2018).
We used this ranking to simulate the literature screening process in each system-
atic review, and for those meta-analyses where at least 3 diagnostic studies were
included we simulated the meta-analysis continuously throughout the screening
process. As a control, we performed the same simulation with references screened
in randomized order. We assumed that screeners will only stop if prompted to do
so by the system. If not prompted to stop, the screeners will continue screening
until all candidate studies have been screened.
We use a variant of active learning that has demonstrated good performance in
systematic reviews of diagnostic test accuracy as well as in article discovery in
the legal domain (Cormack and Grossman, 2016). In this method we start with
an artificial training set, where we use the protocol of the review as an single ini-
tial positive training example (seed document). This artificial seed document is
discarded as soon as real positive examples are found. We select 100 references
randomly from the evaluation set and use these as negative examples, regardless
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of whether they are really positive or negative. In each iteration, new “negative”
examples are randomly selected in this way such that the total number of negative
examples is always at least 100. Following Cormack and Grossman, we show B
references to the screener in each iteration, where B is initially set to 1, then in-
creased by ⌈B/10⌉ in each subsequent iteration (Cormack and Grossman, 2015).
To train, we use logistic regression with stochastic gradient descent on bigrams
and unigrams extracted from the text in titles and abstracts.
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Figure 12.1 – Example of effort/loss curve for a single meta-analysis using
screening prioritization. The evolution of the sensitivity and specificity estimates
for one diagnostic test ’cd008803 1 gdx: Inferior average’ (n = 48), where the candidate
studies are screened using screening prioritization. The x axis measures the number of
screened studies (effort) and the the y axis measures the summary estimates at the 25%,
50%, and 75% percentiles over 20 simulated screenings using screening prioritization. We
also plot the difference to the ‘true’ values (bottom).
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Figure 12.2 – Example of effort/loss curve for a single meta-analysis using
randomized order. The evolution of the sensitivity and specificity estimates for one
diagnostic test ’cd008803 1 gdx: Inferior average’ (n = 48), where the candidate studies are
screened in arbitrary order. The x axis measures the number of screened studies (effort)
and the the y axis measures the summary estimates at the 25%, 50%, and 75% percentiles
over 400 simulated screenings using arbitrary (pseudorandom) order. We also plot the
difference to the ‘true’ values (bottom).

12·2·3 Evolution of a Summary Estimate

We define the effort in a screening process as the number of candidate studies
screened so far. Thus we will for simplicity assume that screening a single article
will always incur the same cost.
To measure the reliability of a summary estimate, we define the loss at each
timestep as the absolute distance to its ‘true’ value, similarly to previous work on
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the evolution of heterogeneity estimates by Thorlund et al. (Thorlund et al., 2012).
To obtain a scalar loss score for a sensitivity/specificity pair we use the euclidean
L2 distance to the true value. That is, given a true sensitivity/specificity (µ, ν),
then for any estimate (µ̂, ν̂) we define its L2 loss as

L2(µ̂, ν̂) =
√
(µ − µ̂)2 + (ν − ν̂)2

Similarly to Thorlund et al., we used the final estimate over all relevant studies as
a good approximation of the ‘truth’ (Thorlund et al., 2012). This however assumes
that the number of relevant studies is sufficiently large that the final summary
estimates have converged and are stable.
Conventionally, the screening process first identifies all relevant studies, and the
summary estimates are only estimated after the screening process has finished.
However, nothing prevents systematic review authors from calculating an estimate
as soon as someminimum number of studies have been identified, and then recalcu-
late this estimate every time a relevant article is discovered (see Figures 12·1–12·2).
Continuously updated, we should expect the estimate to be unreliable at first, but
converge to its true value, and equivalently, the loss to approach zero.

12·2·4 Finding a Balance Between Loss and Effort

To search for an optimal balance between loss and effort we consider two types of
stopping criteria, retrospective and prospective.

Retrospective stopping criteria (cut-offs) are evaluated on the effort/loss
curve (Figures 12·1–12·2) or using other information only available after screening
has finished, and these criteria can therefore only be applied retrospectively. While
we cannot use these criteria to decide when to stop the screening, we can use
them for evaluation, i.e. to retrospectively see where we could theoretically have
interrupted screening without impacting the accuracy of the summary estimate.

Prospective stopping criteria can be evaluated without knowing the final
estimates or the total number of relevant studies among the candidates, and can
therefore be used for decision support in a live systematic review.

Retrospective stopping criteria

Recall (R) The recall, or the sensitivity of the screening procedure, measures
what fraction of the relevant studies were identified by the screening procedure.
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Commonly, only very high values are con-
sidered acceptable (r=95%, and r=100%),
but values as low as r=55% have been con-
sidered (Cohen et al., 2012).
This is one of the only measures com-
monly used in previous literature
(O’Mara-Eves et al., 2015), and forms the
basis for evaluation measures such as
wss@95 (Cohen et al., 2006). Common
performance metrics such as wss@95
evaluates the theoretical workload re-
duction if screening were somehow to
be interrupted after identifying 95% of
all relevant studies. However, it is not
possible to know when this point has been reached during a systematic review,
since it is not possible to know the number of relevant studies before screening all
references.

Loss

Effort

Elbow

∆loss
∆effort > − Λ

E

Figure 12.3 – The elbow algorithm and
the slope criterion.

Knee/elbow method We here stop at the ‘elbow’ point on the effort/loss curve
(Figure 12·3). This is a point on the curve corresponding to the optimal point in
terms of balance between effort and estimated precision.
Multiple definitions of the elbow point exist. We here use the definition due to
Satopää et al. (Satopää et al., 2011), which is easy to implement and robust against
noise. Under this definition, the knee point on the effort/gain curve is the one
furthest from a straight line drawn from the first and last points on the curve.

Loss/effort We here stop at the point on the effort/loss curve where we would
have needed to screen at least E references to further reduce the L2 loss by at least
Λ (Figure 12·3).
This corresponds to the first consecutive pair of points (et−1, λt−1), (et, λt) on the
convex hull of the effort/loss curve such that

∆losst

∆effortt
=

∆λt

∆et
=

λt − λt−1

et − et−1
> −Λ

E

Since we can only calculate the loss after the screening has finished we can only
apply the criterion retrospectively in this study.
The same stopping criterion has been used in similar applications, for instance for
determining when all themes have been identified in ecological surveys (Tran et al.,
2017). However, the effort/loss curve does not move in only one direction, since
adding a single study frequently shifts the estimate away from the truth. When-
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ever this happens ∆λt
∆et

will change signs and immediately trigger the condition. To
prevent this from happening, we take the convex hull of the curve, which makes
the curve monotonously decreasing.

Prospective stopping criteria

Number of relevant studies retrieved We here stop as soon as we have
identified n relevant studies.

Found/effort This criterion is conceptually similar to the loss/effort criterion,
except that we use the number of relevant studies found instead of the loss. We
here stop at the point where we have to screen at least E references to find F
additional relevant studies (Tran et al., 2017).
This corresponds to the first consecutive pair of points (et−1, ft−1), (et, ft) on the
the found/effort curve such that

∆foundt
∆effortt

=
∆ ft

∆et
=

ft − ft−1

et − et−1
<

F
E

Unlike the loss/effort, the number of found relevant studies is monotonously in-
creasing and we therefore do not need to take the convex hull of the found/effort
curve.
This criterion is equivalent to stopping when we have not encountered a new rele-
vant study among the last E/F candidate studies screened, and the criterion will
therefore always incur a constant effort penalty equal to E/F.

Displacement Every time we identify an additional relevant study we calculate
how much the sensitivity and specificity estimates change when the study is in-
cluded in themeta-analysis. That is, if two consecutively identified relevant studies
were identified at time steps t and t − 1, and st = (µt, νt) and st−1 = (µt−1, νt−1)
are the summary estimates of sensitivity and specificity at these time points, then
we define the displacement at time t as

∆λt =
√
(µt − µt−1)2 + (νt − νt−1)2

To make the results less sensitive to noise, we will mainly consider the moving
average (ma) of the displacement with window size 2 (abbreviated ma2).
This criterion can only be calculated if a summary estimate can be calculated, and
is therefore undefined until at least three relevant studies have been found.
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Displacement (loocv) For any set of of references, we calculate the Leave-One-
Out Cross-Validated (loocv) (Molinaro et al., 2005) displacement as the median
displacement when excluding each reference from the summary estimate calcula-
tions.
That is, consider that a set of studies S has been identified at some point in the
screening process, where (µ, ν) is the summary estimate that would result when
calculated based on all studies in S. Further, let (µs, νs) be the summary estimate
that would result from excluding a single study s ∈ S. Then we define the loocv
displacement as

∆λS = median
s∈S

[√
(µ − µs)2 + (ν − νs)2

]
This criterion can only be calculated if a summary estimate can be calculated, and
is therefore undefined until at least three relevant studies have been found.

12·2·5 Calculation of Summary Statistics

To calculate the summary estimates we used the reitsma function from the mada
R package (Doebler and Holling, 2015), which implements the Reitsma bivariate
random effects model (Reitsma et al., 2005).

12·3 Results

12·3·1 Characteristics of the Systematic Reviews

In the 63 systematic reviews in the Limsi-Cochrane dataset, the minimum number
of meta-analyses was 1 (3 reviews), the mode was 2 (11 reviews), the median was 6,
and the maximum was 170.
We used the combined dataset for all analyses. This dataset comprises 48 system-
atic reviews and 1,354 meta-analyses of diagnostic test accuracy, but only 400 of
the meta-analyses were based on at least 3 primary studies in PubMed, and thus
included in our analysis. Ninety-six of the meta-analyses were based on ten or
more studies in PubMed. While we only consider studies from PubMed in this
study, which decreases the number of studies per meta-analysis, the large major-
ity of meta-analyses in the original systematic reviews were based on only one or
two studies collected from multiple databases (Norman et al., 2018a).
The small size of the meta-analyses were reflected in the number of times the
stopping criteria triggered. With cutoff set to 1 relevant per 500 screened, the
found/effort criterion would have triggered for 277/400 meta-analyses, and for all
meta-analyses in 30/48 systematic reviews (Ranked, found/effort (1/500) in Table
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Table 12.1 – Average measured loss for each criterion, measured for all tests
where the criteria triggered. Triggered signifies the number of meta-analyses (ma,
maximum 400) for which the criterion triggered, and the number of systematic reviews
(sr, maximum 48) where the criterion triggered for all meta-analyses. Effort signifies the
absolute and relative number of references needed to be screened before triggering the
stopping criteria. Recall signifies the percentage of relevant studies identified when the
stopping criterion triggered. The loss in sensitivity and specificity are measured as the dif-
ference to the final estimates at the criterion threshold. We also include the the difference
between the measured lower and upper bounds of the 95% confidence intervals and their
final estimated values (lb, ub).
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12·1). With cutoff set to 1 relevant per 2,000 screened, it would have triggered
for 174/400 meta-analyses, and for all meta-analyses in 17/48 systematic reviews
(Ranked, found/effort (1/2,000) in Table 12·1). With cutoff set to 0.02, the displace-
ment criterion would have triggered for 91/400 meta-analyses, or for all meta-
analyses in 4/48 systematic reviews (Ranked, displacement ma2 (0.02) in Table 12·1).
With cutoff set to 0.005, it would have triggered for 35/400 meta-analyses, and for
all meta-analyses in no systematic review (Ranked, displacement ma2 (0.005) in
Table 12·1).

12·3·2 How Many Studies Does it Take to Make a Meta-analysis?

The displacement when including the last relevant study in the meta-analyses de-
creases with the total number n of studies included in the meta-analysis (Figure
12·4). The last primary study added to the summary estimate calculations displace
the estimates by 16 percentage points or less for n ≥ 5, by 4 points or less for n ≥ 10,
by 2 points or less for n ≥ 20, by 1 points or less for n ≥ 50.
There is a moderately strong correlation (Pearson r = 0.54) between the last dis-
placement and the L2 loss at each summary estimate update. The correlation can
be made somewhat stronger by taking the moving average over the last few succes-
sive summary estimate updates to cancel out some of the spurious values (ma2: r =
0.59, ma3: r = 0.60, ma4: r = 0.59, ma5: r = 0.58). Averaging the displacement us-
ing leave-one-out cross-validation (Molinaro et al., 2005) gives similar correlation
to ma3 (r = 0.60).

12·3·3 Contribution of Screening Prioritization

Screening prioritization requires screening a much smaller number of candidate
references to reach the cut-off point for all criteria, particularly for prospective
criteria. For instance, identification of at least 10 relevant primary studies for each
applicablemeta-analysis would be reached after screening an average of 4.4% of the
candidate studies, while we would have needed to screen an average of 53.7% of the
candidate studies in randomized order to achieve the same (Relevant Found (n = 10)
in Table 12·1). To identify 20 relevant studies for each meta-analysis, it would have
been necessary to screen an average of 57.4% of the references in random order, but
only 5.0% using screening prioritization (Relevant Found (n = 20) in Table 12·1).
For all criteria except the found/effort the estimation error is similar at the cut-off
point for prioritized screening and screening in random order.
On average, the displacement threshold criterion and the number of relevant found
exhibit roughly similar behavior in terms of accuracy and efficiency. In Table 12·1
we see that if we stop after finding 10 relevant studies (Criterion: ’Relevant Found
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Figure 12.4 – Displacement versus number of relevant primary studies The x-
axis denotes how much the estimate changed when the last relevant primary study was
included (L2 distance between successive sensitivity/specificity pairs). The y-axis denotes
the total number of relevant primary studies found for the diagnostic test.
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Figure 12.5 – Comparison between stopping criteria Effort (y-axis) versus L2 dis-
tance to final summary estimate (x-axis) for each stopping criteria in the meta-analyses.
We only included meta-analyses based on at least 20 studies, so that the criteria were ap-
plicable to all meta-analyses, and consequently that all data points occur in all scatterplots.
This is limited by the relevant found criterion, which only makes sense for meta-analyses
based on at least 20 studies.
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(n = 10)’) we would mis-estimate the mean sensitivity by approximately 2.4 percent-
age point and the mean specificity by approximately 1.3 percentage point. If we
stop after observing a mean 0.02 displacement over the last two updates (Criterion:
’Displacement ma2 (0.02)’) we would also have needed to screen 4.4% of the can-
didate studies on average, and we would have mis-estimated the mean sensitivity
by approximately 2.4 percentage point and the mean specificity by 1.0 percentage
point.
Stricter thresholds allow trading a higher screening workload for lower estimation
error. For instance, stopping after finding 20 relevant studies (Criterion: ’Relevant
Found (n = 20)’) leads to screening 5.0% of the candidate studies on average, and
mis-estimates the mean sensitivity by approximately 2.0 percentage point and the
mean specificity by approximately 0.7 percentage point. Similarly, stopping after
observing a mean 0.005 displacement over the last two updates (Criterion: ’Dis-
placement ma2 (0.005)’) leads to screening 8.6% of the candidate studies on aver-
age, and mis-estimates the mean sensitivity by approximately 1.2 percentage point
and the mean specificity by approximately 0.7 percentage point.
However, while the average discrepancy is only 2 percentage point, the results vary
greatly between meta-analyses, and the discrepancy for a given meta-analysis may
be as high as 8 percentage point, even with a conservative threshold (Figure 12·5).

12·4 Discussion

By monitoring the moving average of the displacement we were able to estimate
the current precision of the diagnostic test accuracy estimates through the screen-
ing process. However, the meta-analyses of diagnostic test accuracy were accurate
within 2% only for meta-analyses including at least 20 studies (Figure 12·4). A cri-
terion to interrupt screening once the displacement falls below 2% would conse-
quently have triggered in 91/400 meta-analyses (Table 12·1). Many meta-analyses
had poor accuracy even when based on all relevant studies (Figure 12·4).

12·4·1 Estimates Converge Faster Using Screening Prioritization

Screening prioritization identifies most or all relevant primary studies much earlier
in the screening process compared to randomized order (Figure 12·5). The rate of
identification of relevant studies will generally be high initially, before dropping
down to a trickle. This rate can be used either to estimate how many relevant
studies exist among the candidates (Cormack and Grossman, 2016), or directly as
a stopping criteria (cf. found/effort in Table 12·1). When screening in randomized
order the gaps between successive relevant studies is likely to be large, with highly
variable size, which makes it more difficult to estimate the identification rate, or
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the total number of relevant studies. Consequently the found/effort criterion inter-
rupts too prematurely in randomized order leading to higher loss for sensitivity,
specificity, and their associated confidence intervals, for all evaluated cut-offs (Ta-
ble 12·1, bottom section).
We can also observe that the summary estimates converge to their final values
much more quickly and reliably than when screening in arbitrary order (Figures
12·1 and 12·2). In other words, screening prioritization allows producing almost
the same estimates with reduced effort – the problem is knowing whether it is
safe to interrupt the screening prematurely. However, screening prioritization may
allow meta-analyses to be started after screening a few percent of the candidate
references. Even if the authors of the systematic review decide that all references
need to be screened to ensure that nothing is missed, the meta-analysis may be
conducted in parallel with screening the remaining references, and can later be
updated to account for any additional studies found.

12·4·2 Sufficiently Large Meta-analyses Can be Stopped Prematurely

For any individual summary estimate, we can have two outcomes:

1. The systematic review fails to identify sufficient evidence, and the estimates pro-
duced by the published systematic review may in fact be biased or unreliable due
to the insufficient amount of evidence.

2. The estimate is unbiased and reliable at some point in the screening process. Con-
tinuing the screening process is unlikely to change the precision of the estimate
(cf. Figure 12·1), and the effort could arguably be spent elsewhere.

The systematic review process implicitly assumes the borderline case between these
two, where the estimate becomes unbiased and reliable only and exactly at the end
of the screening. Our results suggest this may not be an unreasonable assumption
when screening in random order – the displacement fell below a tolerance of 0.1
only during the last 10% of the screened references for 10 out of 41 meta-analyses
based on at least 10 studies (Random, Displacement threshold (0.01) in Figure 12·5).
However, the same was only true for 1 out of 41 meta-analyses when using ranked
order (Ranked, Displacement threshold (0.01) in Figure 12·5).
In case 1, we could arguably stop screening (and possibly refine the database search)
as soon as it becomes clear that a sufficient number of relevant studies cannot be
retrieved. We cannot know with absolute certainty how many remaining studies
exist for us to find. However, the found/effort curve will typically be convex when
the candidate list is ranked, and extrapolating from its current slope therefore pro-
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vides a probabilistic upper bound of the number of remaining studies (Cormack
and Grossman, 2016).
Case 2 assumes a sufficiently large amount of evidence to base the summary esti-
mates upon. Then, as additional evidence is accumulated, the summary estimate
will converge to its true value. The value of additional evidence will drop accord-
ingly as the estimate becomes increasingly stable.
We previously estimated the average discrepancy when replicating summary es-
timates in the systematic reviews at approximately 2 percentage point (Norman
et al., 2018a), and we can take this as a minimum requirement for estimation ac-
curacy. On average, we can achieve the same or better estimation accuracy with
the displacement criterion with a cut-off of 0.01 or lower, or with the found/effort
criterion with a cut-off of 1/500 or lower.

12·4·3 Data Saturation is Seldom Reached in dta Systematic Reviews

We observe a consistent positive relationship between meta-analysis size and the
accuracy of the estimates (Figure 12·4). The least accurate diagnostic test accuracy
estimates occurred for meta-analyses of three included studies and were accurate
only within roughly 50% of their final values (Figure 12·4). The vast majority of
estimates were not accurate within 2% at the end of the screening process. These
results mirror the work of Wetterslev et al, who have previously observed that
most Cochrane systematic reviews of interventions are insufficiently powered to
even detect or reject large intervention effects (Wetterslev et al., 2017)
Our stopping criteria based on displacement will only interrupt the screening pro-
cess once the estimates have stabilized due to data saturation. If data saturation
fails to occur because too few studies exist to find the screening will not be in-
terrupted. We can however also interrupt screening if it becomes clear that no
further studies will be uncovered by the screening process, i.e. by using a stopping
criterion like found vs effort.
For instance, using a combination of stopping criteria (Displacement (0.01) or Rele-
vant (n = 15) or Found/Effort (1/1,000)) would have reduced the screening effort by
21.5–99.9285% (mean: 81.7%, median: 90.56%) for the main meta-analysis in 33 out
of 38 systematic reviews with an average 1.2% estimation error (Figure 12·6). The 5
systematic reviews where the effort would not have been reduced were among the
smallest with a total number of candidate studies ranging from 64 to 981. Ten sys-
tematic reviews performed no meta-analysis with at least three studies in PubMed
and were therefore excluded from this analysis.
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Figure 12.6 – The impact of screening prioritization and stopping criteria on
meta-analyses. Difference in meta-analysis results for the largest meta-analysis in each
systematic review using a combination of stopping criteria (Displacement (0.01) or Rele-
vant (n = 15) or Found/Effort (1/1,000)). Ten systematic reviews did not include any meta-
analysis based on three or more studies (in PubMed) and were therefore excluded from
the results. Effort denotes the fraction of candidate references screened. Recall denotes
the fraction of identified relevant studies. Blue data points correspond to the simulated
results using early stopping. Red data points correspond to results without early stopping,
i.e. equivalent to current practice (which would have 100% effort and 100% recall).
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12·4·4 External validity

We have presented 7 criteria and have evaluated how these perform when using
logistic regression for ranking, and when using random order. We expect these
criteria to generalize differently if used with other methods.
The L2 loss guarantees presented for the recall, the relevant found, and the displace-
ment (either with ma2 or loocv) only depend on the relative order of the relevant
studies, and is otherwise independent of where in the ranking the relevant studies
occur. In other words, whether our results for these criteria extend to other meth-
ods only depends on how the method orders the relevant studies. In this study we
demonstrate that using these criteria with logistic regression results in the same L2
loss compared to random order, and thus that logistic regression does not bias the
meta-analyses compared to random order. In light of this, we expect these criteria
to yield similar L2 loss for any ranking method that is similarly unbiased.
The knee/elbow criterion, the loss/effort criterion, and the found/effort criterion
all depend on the relative order of all studies, both relevant and non-relevant, and
can therefore be expected to give different results depending on the strength of
the ranking method. We can observe this in Figure 12·5, where the knee/elbow
criterion and the loss/effort criterion result in larger and more frequent L2 losses
for random order than for ranked order. The found/effort criterion breaks down
entirely for random order and yields unacceptably large L2 losses (see Randomized:
Found/effort in Table 12·6). In light of this, the parameters we use for these criteria
thus cannot be assumed to yield the same L2 losses for other ranking methods, and
would need to be recalibrated when used with other methods.
In this study we have only considered meta-analyses with at least three included
studies. However, the prospective criteria are conservative and will simply not
trigger when used in a systematic review where there are only two or less studies
to find. The only exception is the found/effort criterion, but this criterion can easily
be modified so that it is ignored before at least three relevant studies have been
found.

12·4·5 Recommendations

We explicitly refrain from recommending specific stopping criteria or specific cut-
off values, since there is no one size that fits all systematic reviews – the criteria and
their parameters need to be decided to suit the purposes of the review. If automa-
tion is adopted in a systematic review, acceptable tolerances should be decided as
part of the protocol, and the protocol should include a strategy to ensure that the
tolerance criteria will be satisfied.
We recommend that several stopping criteria be monitored in parallel, and that
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screening is interrupted only once criteria for all necessary aspects of the system-
atic review are satisfied. In this study we focus on the accuracy of the main meta-
analysis – similar criteria should also be specified for all other aspects deemed
necessary for the review, such as the identification of all subgroups, or estimates
of prevalence of the diagnosed condition.
Specifically, to monitor the accuracy of the sensitivity and specificity estimates, we
recommend the use of:

☙ The displacement ma2 criterion, set to half the required tolerance

☙ The displacement loocv criterion, set to half the required tolerance

☙ The relevant found criterion, set conservatively (15 at a minimum)

The ma2 and loocv displacement yield similar information and do not need to
be monitored simultaneously. The loocv variant underestimated the loss in our
experiments more than the ma2, and triggered more often with larger average L2
loss, and we therefore recommend the ma2 variant over loocv. On average, both
variants overestimated the final L2 loss and we recommend the displacement be
interpreted with this in mind.
These criteria triggering mean that the current estimate is accurate within a given
tolerance, and that further studies are unlikely to change the estimates, even if a
large number of relevant studies still exist to find. These criteria can also be used
with randomized screening, and likely also for any screening prioritizationmethod
that does not bias the order of the relevant studies. If the displacement criterion
is infeasible to calculate, the relevant found criterion can be used alone, but it may
be difficult to infer meta-analysis accuracy from the number of relevant studies
included.

☙ The loss/effort criterion with a conservative parameter setting (1/1,000 or stricter)

This criterion triggering is an indication that no further studies exist to find. This
criterion should be treated with more caution than the other criteria. In particular,
the criterion depends on the strength of the screening prioritization method, and
can trigger prematurely e.g. if the method struggles to find some subset of the
relevant studies, or if the screening prioritization method is generally poor.
The found/effort criterion is also more likely to trigger prematurely if the total
number of relevant studies is low. Therefore we also recommend not using this
criterion until someminimumnumber of studies have been identified (three appear
to be a safe choice for the current setting and the current method).

187

12



The Impact of Screening Automation

12·4·6 Limitations of this Study

This study focused on systematic reviews of diagnostic test accuracy studies. There-
fore, we do not know what the implications are for other types of systematic re-
views. However, the methods in this study are applicable to systematic reviews
estimating numerical values, and our results may therefore be applicable also to
systematic reviews of interventions.
Due to the nature of the datasets we could only recalculate meta-analyses using
data from studies indexed in PubMed. Previous studies examining the impact of
only searching PubMed on meta-analyses of interventions demonstrated moderate
changes in estimates, and observed changes were equally likely to favor controls as
interventions (Halladay et al., 2015; Marshall et al., 2019). In this study we assume
that searching only PubMed is similarly unbiased for diagnostic test accuracy, but
we are aware of no studies examining this directly. Limiting the meta-analyses
to PubMed does however reduce the number of studies available for analysis, and
may therefore mean that we are underestimating the applicability of these stop-
ping criteria, and that we may be observing greater variance than we would in a
prospective setting.
This study focused on Cochrane systematic reviews, which are known to have
higher consistency and lower bias than other systematic reviews (Jadad et al., 1998).
It is not clear what the implications are for systematic reviews conducted with less
stringency than Cochrane systematic reviews.
The definition of loss we use for evaluation (L2) makes the simplifying assumption
that sensitivity and specificity are equally important. Specificity values of diagnos-
tic tests tend towards values close to one, and thus often exhibit smaller variance
than the sensitivity. As a result, the L2 loss is often dominated by the sensitivity
loss (Table 12·1). We also report loss separately for sensitivity and specificity in our
analysis.

12·4·7 Future Work

Future work will evaluate the validity of these results in prospective settings. We
also plan to use Bayesian methods to estimate final meta-analysis accuracy from
the study data accumulated through the screening process. Furthermore, we will
also aim to extend this approach to other study types beyond diagnostic test accu-
racy, such as intervention studies.
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12·5 Conclusions

Our results suggest that diagnostic summary sensitivity and specificity can be esti-
mated within an accuracy of 2 percentage points while deliberately missing over
40% of the relevant studies within a single database. This is contrary to current
guidelines which assume that an exhaustive search is necessary to produce reliable
estimates with low bias. On the other hand, we find a clear relationship between
the absolute size of the meta-analysis and the reliability and precision of the es-
timates. In other words, a reliable meta-analysis requires identifying a sufficient
number of studies, but how large a fraction of relevant studies is identified is less
important.
In the simulations, a combination of stopping criteria reduced the screening ef-
fort by 71.2% on average (median: 86.8%, range: 0% to 99.93%) for the main meta-
analysis in each systematic review, and triggered in every systematic review with
more than 1,000 candidate studies. No systematic review required screening more
than 2,308 studies, whereas exhaustive manual screening required screening up
to 43,363 studies. Despite an average 70% recall the estimation error was 1.3% on
average, much less than the estimation error expected when replicating summary
estimate calculations.
The (retrospective) 95% recall criterion yielded an average 0.1% error when ranking
with logistic regression, and an average 0.2% error when using random order. Thus,
we confirm the hypothesis that 95% recall is sufficient to accurately estimate the
main meta-analysis in systematic reviews of diagnostic test accuracy, provided the
ranking method is unbiased. On the other hand, we observe almost unchanged
estimates (within 2% tolerance) for recall as low as 30%, and 95% recall is thus not
necessary to reach accurate estimates.

List of abbreviations

clef Conference and Labs of the Evaluation Forum, formerly known as the Cross-
Language Evaluation Forum

dta Diagnostic test accuracy
loocv Leave-one-out cross-validation

ma Moving average. We further denotemoving averagewith different window
sizes by ma2, ma3, ma4, et c.
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13. Discussion & Conclusions

TT
he two studies presented in this section have similar aims. They
both seek to ensure that using screening automation in the system-
atic review does not fundamentally change the integrity of the sys-
tematic review. A systematic review that uses screening automation
should not be methodologically inferior to one conducted according

to the established systematic review process. The systematic review should remain
reproducible, transparent, and free of bias.
However, the approach used to ensure this integrity are markedly different in the
two papers. In the first paper we attempted to adhere as closely as possible to the
conventional process, down to screening in randomized order in EndNote. Since
the process is fundamentally unaltered we argue that is as unbiased as the conven-
tional process. In the second paper we replace the conventional process with one
using screening prioritization, and demonstrate that this results in almost exactly
the same results and conclusions for the meta-analyses.

13·1 Screening Reduction Compatible with Current Practice

The first study in this part is prospective, and details the use of the static intratopic
method (described in part II) in the 2019 update of the Comet database. In this
study the cut-off was determined retrospectively on previous review updates. In
other words, we identified a threshold that would have resulted in an acceptable
balance between workload reduction and screening exhaustiveness in previous re-
view updates, and applied this criterion in the screening for the 2019 review update.
Consequently, the approaches work by assuming that the results would be practi-
cally similar for each update, and that we can therefore extrapolate from historical
data to future updates.
We judged that missing 2% of the references was an acceptable trade-off for a 75%
workload reduction. This particular review is intended to populate a literature
database, and recall is therefore a direct measure of the impact the screening au-
tomation has on the review.
References where meta-data did not include any abstract could not be ranked with
acceptable performance guarantees, and were therefore ineligible for screening
automation. There were however only a small number of such references, corre-
sponding to a workload of approximately 2–4 hours per screener.
Recall can only be calculated retrospectively, which means that the 2% loss in re-
call is just an estimate. Relevant studies for inclusion in the Comet database are
identified from multiple sources, and time will tell whether the estimated number
of missed articles match reality. Screening was done on a small sample (1%) of the
excluded references to verify the results however, and all of these references were
found to be correctly excluded.
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The application of screening automation was done to adhere to the established pro-
cess as closely as possible. First we use a screening reduction approach where the
inclusion threshold could be determined as part of the protocol. We applied the
model before starting the screening, and the set of remaining references were ex-
ported in EndNote format. The records were randomized to avoid rank order bias
prior to screening. The screening was then performed as normal using EndNote.
Unlike previous years, the 2019 update only involved two screeners, but the remain-
der of the process was unchanged – apart for the use of screening reduction. No
specialized software was required by the screeners.
Neither transparency or reproducibility were hard requirements for this review.
The screening reduction method used (logistics regression with stochastic gradi-
ent descent) is stochastic, and repeated applications will result in slightly different
output. Even so, the screening model and the resulting ranked list have been kept,
and the systematic review screening process is therefore traceable.

Figure 13.1 – The order in which records are screened in the conventional screening process
and with the cumulative meta-analysis process.

13·2 Better Metrics for Screening Automation

In the second study in this section we have tried to measure ‘information loss’
directly for systematic reviews of diagnostic test accuracy. In simple terms, we
have tried to ask the question: what does it mean for an abridged method to yield
the ‘same’ systematic review as with exhaustive screening?
Such a measure should optimally satisfy three criteria:
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☙ The measure should be possible to calculate cumulatively through the screening
process

☙ It should be possible to stop screening once we are confident that further screening
will not change the conclusions of the review; and

☙ It should be possible to determine criteria for stopping as part of the review proto-
col to avoid bias

If screening automation methods are to be used in systematic reviews, reviewers
need to judge what amount of loss is acceptable for the current review. But more
importantly, reviewers need to judge what kind of loss is acceptable, likely across
multiple dimensions. A loss in rigor or bias is unlikely to be acceptable. On the
other hand, a loss in recall or exhaustiveness may yield a review that does not
‘look like’ a systematic review, but may not meaningfully impact the results and
conclusions of the review – provided a sufficient selection of studies are identified
to address all review questions, and provided the selection of studies is essentially
random. To avoid reviewer bias and ad-hoc decisions during the screening process
there should be a clear, pre-specified protocol for judging when the screening is
complete.
In the second study in this section, we have looked at using the meta-analysis ac-
curacy as a performance metric during screening by performing cumulative meta-
analyses through the screening process. This accuracy can be estimated prospec-
tively and thresholds can be decided as part of the protocol. This however requires
the screening process to be performed in parallel with the data extraction, syn-
thesis and meta-analysis stages of the systematic review process, and would thus
result in an unconventional systematic review process (see figure 13·1).
The benefit of this measure is that it is conservative and reliable, and interrupting
screening once the accuracy falls within prespecified limits is unlikely to lead to
wrong results or conclusions in the systematic review. Furthermore, this allows the
screening to be interrupted much earlier in the process and reduce the workload
by orders of magnitude more than with conventional stopping criteria.
Performing full-text retrieval, data extraction, and cumulative meta-analyses on
each additional identified relevant study could introduce bias by influencing what
studies will be including in the remainder of the screening. However, this kind
of bias is only relevant to humans seeing cumulative results – and if the full-text
retrieval and data extraction stages could be sufficiently automated, the screeners
could be blinded from the full-texts and extracted data.
In practice, a simpler way to achieve the same blinding – and one that is possible to-
day – would be to let different authors perform screening and data extraction. This
may not be an option for small reviews involving a small number of authors, but

193

13



The Impact of Screening Automation

may be practical for reviews with very large numbers of candidate records, where
additional authors would otherwise have been set to screen references. Generally,
it is these large reviews that are in the greatest need of automation.

13·3 Conclusions

Systematic review automation method can be used in systematic reviews without
fundamentally altering the process. Screening reduction method can be used as
an extra search filter, leaving the remainder of the review process identical to the
conventional process, including screening in random order, and the use of standard
reference managers like EndNote.
The accuracy of the screening process, and the impact it has on the results and
conclusions of the review can be measured prospectively through the screening
process using cumulative meta-analyses. This does however require modifying
the systematic review process to perform data extraction and meta-analyses con-
currently.
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PART IV

DATA EXTRACTION& SYNTHESIS

This part of the thesis is based on the following publications:

(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a): Norman, C., Leeflang, M., and Névéol, A. (2018a). Data
extraction and synthesis in systematic reviews of diagnostic test accuracy: A
corpus for automating and evaluating the process. InAmia Annual Symposium
Proceedings, volume 2018, page 817. AmericanMedical Informatics Association

(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e)(Norman et al., 2019e): Norman, C., Spijker, R., Kanoulas, E., Leeflang, M., and
Névéol, A. (2019e). A distantly supervised dataset for automated data extrac-
tion from diagnostic studies. Acl BioNLP)

The contents in this section has also been presented at the following venue:

(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d)(Norman et al., 2019d): Norman, C., Leeflang,M., Porcher, R., andNévéol, A. (2019d).
Measuring the impact of screening automation onmeta-analyses of diagnostic
test accuracy. In Amia Annual Symposium Proceedings

Thecontents in this section is also based onmaterial accepted and originally planned
to be presented at the following conference:

(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a)(Norman et al., 2019a): Norman, C., Leeflang, M., and Névéol, A. (2019a). Auto-
mated checking for human errors in meta-analyses of diagnostic test accuracy.
In Cochrane Colloquium

Unfortunately, this 2019 Cochrane Colloquium was cancelled due to the October
2019 civil unrest in Santiago, Chile. The presentation was instead presented virtu-
ally.
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OO
nce the selection of included studies is finished, the results of
the studies will be synthesized and analyzed, and the review will
be written up for publication. This involves several steps. Some
of these steps – such as drawing conclusions based on the data –
require human judgement and are not time-consuming. These are

therefore difficult to automate, and would result in only limited benefits. However,
other steps, such as extracting data from articles and calculating statistical analy-
ses, are repetitive, mechanical, and time-consuming, and thus prime candidates for
automation.
In this part of the thesis we will look at the later stages of the systematic review pro-
cess, after relevant studies have been identified, until the results of the review are
written up for publication, with a particular focus on what parts may be possible
to automate using current methods.
We will focus on the data extraction, data synthesis and the analysis stages. In the
conventional systematic review process, systematic reviewers may perform other
actions besides these, such as snowballing and re-checking the literature, but these
actions conceptually belong to the article selection process, rather than the synthe-
sis process. Furthermore, the main reason these action are done during the last
stages of the review is largely an artifact of the manual nature of the review. Snow-
balling is performed after full-text screening because this requires the reference
lists from the included studies. Re-checking the literature is only necessary be-
cause of the delay between starting and finishing the review, and would therefore
be unnecessary if the remainder of the review process could be performed quicker.
Most previous work have focused on screening automation, and almost exclusively
on automating the title and abstract screening. There is comparatively less previ-
ous work on automating the later stages of the review process, including the article
retrieval, article screening, data extraction, data synthesis, and the analysis stages.
Furthermore, the work that does exist have largely focused on systematic reviews
of interventions, with no previous work on diagnostic systematic reviews.
Previous work on systematic review automation in dta systematic reviews have fo-
cused exclusively on screening automation (Kanoulas et al., 2017b, 2018). Datasets
are thus available for training screening automation methods, but no such datasets
are available describing any other review stage. The purpose of this part of the the-
sis is on the one hand to partially fill some of these gaps, by creating a dataset
describing the data that passes through the data extraction and synthesis stages
in dta systematic reviews taken from Cochrane Library. We will also experiment
with automating those parts of the process that are amenable to automation.
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Data Item Published Method
Total number of participants [33; 82; 87; 140; 141; 144; 153; 154; 169; 174; 191; 312; 330; 332]

Age [169; 191; 332; 333]
Sex [169; 332; 333]

Country [191; 332]
Co-morbidity [255]

Spectrum of presenting symptoms, [87; 169; 255; 330; 332; 333]current treatments, recruitment centers
Ethnicity [333]

Date of study [191]
Total number of intervention groups [287; 288]

Specific intervention [33; 34; 51; 82; 87; 144; 153; 154; 174; 191; 287; 312; 332]
Intervention description and details [175]

Outcomes and time points (collected and reported) [33; 34; 82; 87; 144; 151; 153; 154; 174; 175; 287; 288; 312; 332]
Comparison [33; 51; 82; 141]
Sample size [34; 175]

Overall evidence [81; 280]
Generalizability/external validity [151]

Research questions and hypotheses [151; 332]
Study design [144; 174; 312; 332]

Total study duration [34; 82; 169]
Sequence generation [201]

Allocation sequence concealment [201]
Blinding [201]

Random sequence allocation [151]
Participant flow [34; 175; 252]

Key conclusions of the study authors [280]

Table 14.1 – List of previous methods for automated or semi-automated data extraction.
Adapted from Jonnalagadda et al. (2015)

14·1 Automated Data Extraction

Data extraction in the context of a systematic review refers to the identification of
key characteristics of included primary studies, such as the methods used to per-
form the study, and the condition or population targeted (Li et al., 2019, in Higgins
et al., 2019), but also involves producing assessments of the methodological quality
of the included studies (Reitsma et al., 2008, in Deeks et al., 2013a). ‘Data extraction’
may be amisnomer – identifying these characteristics may be amatter of judgment,
and may require domain knowledge and data from external sources. The data ex-
traction stage is one of the more time-consuming stages of the systematic review
process (Pham et al., 2018).
Prior to our publication of the first paper in this section (Norman et al., 2019e), there
had been no previous work on data extraction systems applicable to diagnostic test
accuracy studies or systematic reviews, and no published datasets.
There are a number of systems for automated data extraction, but these have fo-
cused almost exclusively on systematic reviews of interventions. Unfortunately,
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Sentence
‘A total of 59 patients were included in the study. […] Thirty-seven
patients underwent staging laparoscopy while 22 proceeded directly to laparo-
tomy.’
‘ 89 patients with primary solid abdominal tumors were eligible for evaluation;
of those 49 patients had a gastric cancer, 33 patients a pancreatic cancer and
seven an adenocarcinoma of the esophagus.’
‘ 127 patients with primary solid abdominal tumors were eligible for evaluation;
of those 66 patients had a gastric cancer and 61 a pancreatic cancer. ’
‘ The inclusion criteria were met by 205 patients. Of these 131 patients under-
went a staging laparoscopy detecting metastases in 21 patients.’

‘ One hundred forty-four patients with radiologically resectable nonpan-
creatic adenocarcinoma, periampullary tumors were identified from a prospec-
tive database between August 1993 and December 2000.’
‘Over a 4‐year period, 25 patients with potentially resectable tumors and 33
patients with lapc were staged with laparoscopy, with an equivalent prevalence
of occult metastases found at laparoscopy (28% potentially resectable vs. 33% lapc,
P = 0.8).’
‘A total of 114 patients with pancreatic cancer and no evidence of metastatic
disease by computed tomography underwent laparoscopy. ’
‘A cohort of 40 consecutive patients referred to a tertiary referral center and
with a diagnosis of potentially resectable pancreatic or periampullary cancer
underwent staging laparoscopy with laparoscopic ultrasonography.’

‘ Staging laparoscopy was performed in 16 of the patients, and 2-ica was
used to treat three of 16 because they were found to have small liver metastases
during staging laparoscopy.’

Table 14.2 – Example sentences describing the number of participants in nine studies ex-
amining the diagnostic accuracy of laparoscopy following computed tomography scanning
for assessing the resectability with curative intent in pancreatic and periampullary cancer
(Allen et al., 2013).
data extraction methods trained on rcts are unlikely to be relevant for dta stud-
ies. First, rcts and dta studies typically need to extract different data items. Sec-
ond, even where the same data is ostensibly extracted in both, the ‘same’ data may
mean different things, or there may be marked differences in the language used to
describe the data in the primary studies.
A small number of the items extracted in a systematic review of diagnostic test
accuracy are not domain specific.
Determining article language can be done using standard language identification
methods, and does not require methods specialized for diagnostic test accuracy
studies. Standard language identification methods achieve close to perfect accu-
racy for large text samples and are available for several hundred languages (Jauhi-
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‘A total of 82 patients (19–23/group) were recruited. ’
‘ Between Jan 2, 2013, and Nov 27, 2014, we enrolled 81 participants.’
‘ 104 individuals who had low density parasitaemia at screening
were randomized and treated during the dry season.’

‘ We randomly allocated 468 participants to receive artemether-lumefantrine
combined with placebo (119 children) or with 0·1 mg/kg (116), 0·4 mg/kg (116), or
0·75 mg/kg (117) primaquine base.’
‘ In a randomized, partial blind study, 90 hospitalized adults with Plasmod-
ium falciparum malaria that was blood schizonticide-responsive and a gameto-
cytemia of > 55/μl within 3 days of diagnosis were randomized to receive single
doses of either pq 45 mg or bq 75 mg on day 4.’
‘A total of 93 male patients were enrolled.’
‘ In this randomised, double-blind, placebo-controlled trial, 360 asymptom-
atic parasitaemic children aged 2-15 years were enrolled and assigned to receive:
artemether-lumefantrine (al) and a dose of placebo; al and a 0.25 mg/kg pri-
maquine dose; or al and a 0.40 mg/kg primaquine dose.’
‘ Sixty-nine of these g6pd-deficient patients were randomly allocated to
one of three treatment regimes with (a) chloroquine, (b) chloroquine and pri-
maquine or (c) sulfadoxine-pyrimethamine (Fansidar).’
‘Among 124 parasitaemic persons identified during mass blood
screening and passive case detection from outpatient clinics,

117 were enrolled and randomized to one of the 4 treatment regimens.’
‘Prior to trial halt for poor dhp treatment efficacy,

101 participants were randomized and 50 received primaquine.’

Table 14.3 – Example sentences describing the number of participants in ten studies examin-
ing the effectiveness of different 8-aminoquinolines for reducing Plasmodium falciparum
transmission (Graves et al., 2018)

ainen et al., 2017).
The key conclusions of the primary studies are commonly extracted duringCochrane
dta systematic reviews. This has been addressed by Song et al. (2013), who auto-
matically extracted study-type agnostic data including the key conclusions by the
authors. Since they appear to have used diagnostic studies among its training data,
their system may be relevant in dta systematic reviews.
A number of data items are ostensibly extracted both for intervention reviews and
for diagnostics, i.e. blinding, number of participants, country, age, gender, and se-
lection criteria. These have been addressed by previous literature for systematic
reviews of interventions. Unfortunately, the ‘same’ data items in interventions
and diagnostics often refer to different things. Furthermore, even where the data
may mean the same thing conceptually, the data may be expressed using different
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language.
For instance, both intervention studies and a diagnostic studies have target condi-
tions, but while the intervention study seeks to treat the condition, the diagnostic
study seeks to diagnose it. Thus, the two are semantically different, and they will be
expressed using different language. In an intervention study the target condition
may be the name of the disease, while in a diagnostic study the target condition
may be a description of the symptoms or the presence of pathogens rather than
the name of the disease.
Similarly, in an rct, the participants are often described as being ‘recruited’, ‘en-
rolled’, or ‘randomized’ to ‘receive’ the relevant interventions. In a diagnostic test
accuracy study the participants are instead described as ‘undergoing’ the relevant
index test or on whom the index test was ‘performed’. Furthermore, the patient
flow is in the vast majority of cases different in rcts and dta studies. An rct
has (at least) two treatment arms, one being the control group. In a dta study,
all participants (optimally) undergo the same reference standard, and there is no
equivalent to the control group. Consequently, the structure of the language used
to describe the populations in rcts and dta studies will be markedly different
(tables 14·2 and 14·3).
Some data items, such as study country, patient age, and patient gender may use
more similar language in different study types. In the absence of evaluations per-
formed on data from different systematic review types however, the extent to
which this is true remains unclear.

14·2 Automated Data Homogenization

In practice, even if individual studies report the same data items, they are likely
to report these using different metrics, units, or formats. For instance, the ratio
of male and female patients enrolled in a study can either be stated in absolute
numbers (e.g. ‘14 female; 11 male’) or as a percentage (e.g. ‘56% female’).
In order to compare and analyze multiple studies, the extracted data needs to be
homogenized into a consistent format. There are multiple hurdles. One is that it
may not be possible to use canonical formats for all data items. For instance, a 2×2
table can always be translated into sensitivity and specificity, but the reverse may
not be possible.
However, systematic reviews typically report only the data after being synthesized,
not the raw data that was reported in each primary study. Thus, by looking at sys-
tematic reviews, we can only learn what the preferred formats for data collection
are, not how the data items are actually reported in primary studies.
We will not attempt to automate on this step in this thesis, since it is not a natural
language processing problem. This step must however be adequately automated be-
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fore a fully automated data extraction system can be integrated with an automated
meta analysis system.

14·3 Automated Data Synthesis

Once data have been converted to a common format, the data from the different
studies will be pooled together. However, first the studies will be compared to
determine which are similar enough to be grouped into a separate comparison.
It has been suggested that this grouping could be performed using clustering. How-
ever, determining the subgroup for meta analyses should be decided at the pro-
tocol stage of the review, rather than after data have been extracted (McKenzie
et al., 2019a,b; Thomas et al., 2019, in Higgins et al., 2019) Furthermore, determin-
ing which 2×2 table is included in which analysis is neither associated with a sub-
stantial workload nor is it repetitive and mechanical work amenable to automation.
Thus there are likely limited gains from automating the procedure, even if cluster-
ing were to perform similar to human screeners and such post-hoc decisions would
not introduce additional bias.
This does not mean that software tools cannot assist the process. Such tools could
help tabulated and compare data across studies, or partition the data based on cri-
teria determined by the reviewers. However, the actual decision making is likely
better left solely to the review authors for the forseeable future.

14·4 Automated Meta-Analysis

Using statistical methods to quantitatively combine data from multiple studies is
known as a meta-analysis. A meta-analysis gives the ability to improve the pre-
cision, answer questions not posed by individual studies, and to settle conflicting
findings in different studies (Deeks et al., 2019, in Higgins et al., 2019). In system-
atic reviewswhere ameta-analysis is not appropriate, themeta-analysis is typically
replaced by a qualitative analysis of the included studies.
There are a number of statistical methods to perform meta-analysis, both for sys-
tematic reviews of interventions (Deeks et al., 2019, in Higgins et al., 2019), as well
as for diagnostics (Macaskill et al., 2010, in Deeks et al., 2013a). The design and im-
plementation of statistical methods are complicated – and sometimes a matter of
debate – beyond the scope of this thesis (Deeks et al., 2019, in Higgins et al., 2019).
Either the hierarchical summary roc (hsroc) method (Rutter and Gatsonis, 2001)
or the Bivariate method (Reitsma et al., 2005) are recommended for dta system-
atic reviews (Deeks et al., 2019, in Higgins et al., 2019; Leeflang et al., 2008). These
methods model both variation due to random effects within the studies, as well as
heterogeneity between different studies (Leeflang et al., 2008).
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Specialized software to calculate meta-analysis results are available in a number of
software packages, several of which are in widespread use (Tsafnat et al., 2014).
For systematic reviews of interventions, meta-analyses can be performed within
RevMan using a number of different methods (Deeks et al., 2019, in Higgins et al.,
2019). For dta systematic reviews, both the hsroc and the Bivariate method must
be performed using external software, since fitting these models requires methods
too complex to implement within RevMan (Macaskill et al., 2010, in Deeks et al.,
2013a). Several software packages are available, including the Sas NLMixed proce-
dure,1 the Stata xtmelogit or meqrlogit routines,2 or the reitsma function from
the mada R package (Doebler and Holling, 2015). The meta-analysis process thus
requires some amount of manual work – exporting the data from RevMan to this
external software, and then importing the meta-analysis results back into RevMan.
Transferring data between software packages is generally not the most time-con-
suming parts of the systematic review process. However, the process may still
involve considerable work in some reviews, and process may be error prone (Tsaf-
nat et al., 2014). Better integration between review tools and statistical software
therefore have to potential to save time and reduce errors (Tsafnat et al., 2014).

14·5 Objectives

In this section we present two conference papers, published 2018–2019, where we
attempt to address the following research questions:

rq 6 How are the current data extraction, data synthesis, and meta-analysis stages of dta
systematic reviews performed by human authors?

rq 7 Can we extract important study characteristics automatically from primary dta stud-
ies?

1 https://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdf
2 https://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogit
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The material in chapter 15 has been published as:

(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a)(Norman et al., 2018a): Norman, C., Leeflang, M., and Névéol, A. (2018a). Data
extraction and synthesis in systematic reviews of diagnostic test accuracy: A
corpus for automating and evaluating the process. InAmia Annual Symposium
Proceedings, volume 2018, page 817. AmericanMedical Informatics Association

In this study we attempted to document the current process in the later stages of
dta systematic reviews. Our previous aim was to collect training data for us to
be able to perform the (later) studies presented in chapters 12 and 16. We were
also interested in formalizing the human process, so that our meta-analysis and
extraction methods would conform to the accepted practice.
Identifying errors in the human process was not one of the aims of the study.
The underlying research question in this study was:

rq 6 How are the current data extraction, data synthesis, and meta-analysis stages of dta
systematic reviews performed by human authors?

Author’s contributions

Cn wrote the first draft annotated the data and conducted the experiments.
All authors conceived and designed the study. All authors read and approved

the final manuscript.



15
DATA EXTRACTION AND SYNTHESIS IN DTA

SYSTEMATIC REVIEWS

Data Extraction and Synthesis Systematic Reviews of
Diagnostic Test Accuracy: A Corpus for Automating

and Evaluating the Process

Christopher R. Norman, Mariska M.G. Leeflang, &Aurélie Névéol

Proceedings of the American Medical Informatics Association’s Annual
Symposium 2018

Abstract

Background: Systematic reviews are critical for obtaining accurate estimates
of diagnostic test accuracy, yet these require extracting information buried in
free text articles, an often laborious process.
Objective: We create a dataset describing the data extraction and synthesis
processes in 63 dta systematic reviews, and demonstrate its utility by using
it to replicate the data synthesis in the original reviews.
Method: We construct our dataset using a custom automated extraction
pipeline complemented with manual extraction, verification, and post-editing.
We evaluate using manual assessment by two annotators and by comparing
against data extracted from source files.
Results: The constructed dataset contains 5,848 test results for 1,354 diagnos-
tic tests from 1,738 diagnostic studies. We observe an extraction error rate of
0.06–0.3%.
Conclusions: This constitutes the first dataset describing the later stages of
the dta systematic review process, and is intended to be useful for automating
or evaluating the process.

15·1 Introduction

Accurate estimates of diagnostic test accuracy (dta) are critical for deciding what
tests to recommend or use, as well as for interpreting test results, and is therefore
important to clinicians and policy makers, as well as to individual patients. Di-
agnostic test accuracy results are usually reported independently in several small
studies. In order to achieve accurate and generalizable estimates, we typically need
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to perform a systematic review, i.e., identify all studies
evaluating the diagnostic test of interest, and pool the
results of these together (Leeflang et al., 2008).

Article screening

Data Extraction

Synthesis

Analysis

Article retrieval

Abstract screening

2
3

4
5

6
7

Database Search 1

Figure 15.1 – Overview of
the systematic review pro-
cess. Simplified from Tsaf-
nat et al. (Tsafnat et al.,
2014).

However, the process of producing systematic reviews
is almost entirely manual and therefore costly. Reduc-
ing the cost would not only serve to reduce public spend-
ing on research, but might also make systematic re-
views feasible that would today require too much time
or resources (O’Mara-Eves et al., 2015). This is particu-
larly true for systematic reviews of diagnostic test ac-
curacy, in which the workload may be considerably
higher than for other kinds of systematic reviews (Pe-
tersen et al., 2014).
In this work we present a novel dataset describing the
work done by systematic review authors during the
data extraction and synthesis stages in past systematic
reviews. In the long term, we hope that this dataset
will prove to be useful in automating the process, or
in evaluating such automated systems. In the short
term however, the data can also be used to evaluate the
work done by human systematic review authors, and

we demonstrate this by independently replicating the pooled results reported in
the systematic reviews in the dataset.

15·1·1 Automated Data Extraction and Synthesis

Systematic reviews are conducted in a multistep process as illustrated in Figure
15·1, each step following a systematic and highly controlled procedure to ensure
close to perfect recall, and a minimum of mistakes. The data extracted from the
identified studies is pooled and synthesized, and the conclusions of the review are
based on this synthesis. In a dta systematic review, these results typically come
in the form of a summary score, the mean sensitivity and specificity1 estimated
from the synthesized data. The high recall requirements, as well the high stakes
associated with errors means that all of the stages are conventionally performed
manually.
Most steps in the process are costly and could benefit from assistance through
technical means, (Tsafnat et al., 2014) but previous work has focused on reducing
the workload mainly in the article selection process (O’Mara-Eves et al., 2015), i.e.

1 Defined as the number of true positives divided by the total number of positives and the number of
true negatives divided by the total number of negatives respectively.

206



15. Data Extraction and Synthesis in Dta Systematic Reviews

in stage 2 in Fig. 15·1. Less work has been done towards reducing the workload
in the article retrieval, article screening, data extraction, data synthesis, and the
analysis steps (3–7 in figure 15·1), even though these too are laborious and still
entirely manual processes.
Consequently, datasets exist describing the abstract screening stage in dta system-
atic review, or describing the data extraction in other domains, and these have been
used for work towards automating these processes. We are aware of no datasets de-
scribing stages 3–7 for dta systematic reviews. In this paper we aim to partially fill
this gap, by presenting a corpus describing the processes performed by human au-
thors in the data extraction and synthesis stages in dta systematic reviews. This is
intended to be useful for eventually automating the process, but also for reasoning
about the work done by human systematic review authors.

15·1·2 Systematic Review Reproducibility

Multiple levels of reproducibility of research have been proposed (Cohen et al.,
2018; Goodman et al., 2016), and exact definitions may differ. Here we use the
following definitions: we reproduce research by redoing experiments in the same
setting, we replicate research by redoing the analysis on the reported data, and we
repeat research by retracing exactly the steps of published results.
Research reproducibility has been receiving increasing amount of attention by the
research community in the last few decades (Baker, 2016; Collberg and Proebsting,
2016). In practice however, it is often difficult to even replicate the results of a
paper, that is to say, to use the data presented to redo the analysis. In the setting of
a systematic review on diagnostic test accuracy, provided the data used to calculate
the summary scores are reported, we should be able to redo the calculations to yield
the same results. To demonstrate the usefulness of our newly created dataset, we
will test to what extent this is possible for the systematic reviews in the Cochrane
Library, by replicating the calculation of the key summary scores reported in each
systematic review.

15·1·3 Related Work

Datasets Describing the Systematic Review Process

Datasets have been published describing the database search and abstract screen-
ing steps in the systematic review process, both for dta systematic reviews and
for other topics. For instance, the included studies as well as the database search
queries from 50 of the systematic reviews on dta in the Cochrane Library have
previously been published in one of the Clef eHealth shared tasks (Kanoulas et al.,
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2017b, 2018), thus addressing stages 1 and 2 in Figure 15·1. Similarly, Cohen has
previous published a dataset describing the included and excluded studies in 15 sys-
tematic reviews on drug class efficacy (Cohen et al., 2006), thus addressing stage 2
in Figure 15·1, albeit in a different domain.
Datasets addressing the data extraction stage do not exist for diagnostic test accu-
racy, but exist for other domains, such as the piboso corpus (Kim et al., 2011). Work
has also been done on automatically extracting pico1 statements (Kiritchenko et al.,
2010; Wallace et al., 2016), as well as other clinical trial information from article full
text (Kiritchenko et al., 2010).
In order to extract data from dta studies automatically using supervised machine
learning, we need labeled gold standard datasets describing what data was ex-
tracted from each primary study, i.e. the data extraction forms in each systematic
review. Such a dataset targeting systematic reviews of diagnostic test accuracy
should include data extraction forms for the data necessary to perform the system-
atic review analysis, such as the index test, reference standard, target condition,
and the 2 × 2 tables,2 preferable with an emphasis on those items most difficult to
extract manually. We are aware of no such datasets in current literature.

Systematic Review Replication

Replication in science has been the focus of an increasing amount of discussion re-
cently (Baker, 2016). However, we are not aware of work on replicating systematic
reviews.

15·2 Objectives

We extract and reconstruct the reported data from each open-access or free system-
atic review in the diagnostic test accuracy section in the Cochrane Library,3 with
the following goals in mind:

1. Data extraction form corpus for dta systematic reviews: We create
a dataset by collecting the data extraction forms, the summary scores, and the in-
cluded and excluded articles from each systematic review in the Cochrane Library.
The dataset is intended to describe the work being done by human screeners in the
data extraction and synthesis stages of a dta systematic review, by documenting
the input and output of these stages in past reviews.

1 Population, intervention, control group, and outcome.
2 The true/false positives and the true/false negatives for the test results, roughly equivalent to a

confusion matrix in computer science.
3 https://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topicshttps://www.cochranelibrary.com/cdsr/reviews/topics

208

https://www.cochranelibrary.com/cdsr/reviews/topics


15. Data Extraction and Synthesis in Dta Systematic Reviews

2. Summary score replication: We demonstrate the usefulness of our corpus
by replicating the summary scores reported for the main tests in each systematic
review. Our aim is to identify obstacles to replication, and to measure the discrep-
ancies between our calculated summary scores and those reported.

15·3 Material and Methods

Our raw data consists of the systematic reviews on diagnostic test accuracy pub-
lished in the Cochrane Library.1 The Cochrane Library is the repository for the
systematic reviews conducted under the auspices of Cochrane, one of the lead-
ing organizations for systematic reviews worldwide, which imposes more rigorous
standards on systematic reviews than do paper-based journals (Jadad et al., 1998).
We downloaded a snapshot of the systematic reviews on dta in October 2017 to
keep the data consistent during processing. For four of the reviews, we were able
to obtain the xml source files used to compile the published systematic reviews
from the authors, and we use these to evaluate the extraction quality. We do not
have access to the source files for the other 59 systematic reviews, and for these
we need to extract the data from the published articles.

15·3·1 The Cochrane dta Data Form Corpus

We construct our dataset from the published review articles, which come in a mix-
ture of free text, formatted as html, and data tables, formatted as png images. Our
contribution consists not only of extracting these elements piecemeal, but also in
linking the elements together. We use automated extraction methods where possi-
ble, and complement these with manual extraction, verification and post-editing.
Figure 15.2a presents the results of text extraction for a sample systematic review
(Wijedoru et al., 2017): the list of included studies (left column), the list of diagnostic
tests (right column) and which study evaluated which tests (links). Figure 15.2b
presents a sample 2 × 2 image table from the same review. Each row in the table
describe the results on the same test (test 5) performed independently in six studies,
and so each row corresponds to a link in Figure 15.2a.
Two annotators (cn and an) manually post-edited the data from one systematic
review sampled randomly. Based on this evaluation, we decided which parts of
the automated extraction requires manual verification and post-editing, and which
parts can be extracted automatically.
To assess the output quality, we also compare the post-edited data against the
source files where available.

1 www.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.comwww.cochranelibrary.com

209

15

www.cochranelibrary.com


Data Extraction & Synthesis

Html processing The html contents are processed using the lxml Python pack-
age.1 Our system parses the html articles, and locates each section in the article
using html id and class attributes, as well as headers, and extracts the text con-
tents.
Image processing The diagnostic test results are only presented in images, and
therefore requires optical character recognition (ocr) for extraction. In our extrac-
tion system, the images are first passed through a preprocessing stage where the
images are scaled to roughly double the original size and antialised. The data is
then extracted using Tesseract.2 We also use domain knowledge to correct mis-
takes, and flag possible errors for manual verification.
For each systematic review, we collect references to the included and excluded stud-
ies, i.e. the output of stage 4 in the systematic review process (Fig. 15·1). We collect
these automatically using html processing.
For each primary study we collect the data extraction forms reported in the sys-
tematic review, i.e. the data extracted from each included primary study. We also
collect the data tables, documenting the test results for each test, i.e. the 2 × 2 tables,
sensitivity and specificity along with their 95% confidence intervals (see Fig. 15.2b).
Together, these constitute the output of stage 5 in the systematic review process
(Fig. 15·1) for diagnostic test accuracy. We do this using html processing to locate
the data tables, and image processing to extract the table contents.
For each systematic review we collect the reported summary scores for each diag-
nostic test, i.e. the means estimated from the pooled test results. This constitutes
the output of stage 6 in the systematic review process (Fig. 15·1) for diagnostic test
accuracy. We do this manually by reading the summary of findings and locating
the relevant data table matching the description in the text.
We also keep track of which test was performed by which study, which studies
were included in which systematic review and which test results were used in
which summary score calculation. These relations are not simple one-to-one rela-
tions, and in practice systematic reviews include sets of studies which may overlap
with the included or excluded studies in other systematic reviews. The diagnostic
tests performed by the studies within a systematic review generally overlap3 (see
Fig. 15.2a and 15.2b). A summary score pair should normally be connected to a sin-
gle diagnostic test (but several test results), or two tests if it measures the relative
performance of contrasted pairs of tests, but the summary scores are usually not
reported for all diagnostic tests.

1 https://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxmlhttps://pypi.python.org/pypi/lxml
2 https://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseracthttps://github.com/tesseract-ocr/tesseract
3 One of the primary objectives of a dta systematic review is to pool the results of diagnostic tests

performed bymultiple primary studies together so this overlap is expected in a successful systematic
review.
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DTA Study Diagnostic Test

Maude 2015

Sanjeev 2013

Ismail 2002

Hosamani 2013

Gasem 2002

Jesudason 2006

House 2001

Dutta 2006

Gopalakrishnan 2002

Olsen 2004

Khan 2002

Hatta 2002a

Beig 2010

Hatta 2002b

Fadeel 2011

Ley 2011
Limpitikul 2014

Tarupiwa 2015

Khoharo 2011

Islam 2016

Rahman 2007

Abdoel 2007

Pastoor 2008

Mehmood 2015

Anagha 2012

Moore 2014

Khanna 2015

Keddy 2011

Begum 2009

Bhutta 1999

Kawano 2007

Dong 2007

Naheed 2008

Siba 2012

Prasad 2015

Jesudason 2002

Anusha 2011

16 Kit latex agglutination. Threshold > 1+

2 Typhidot. Antibody: IgM or as reported. Reference: bc

14 Kit ict. Reference:bc. Threshold > 1+
15 Kit ict. Reference: bc & pcr. Threshold > 1+

21 Enterocheck WB

13 Tubex 1 result per study

7 Typhidot-M. Antibody: IgM

5 Typhidot. Antibody: IgM or as reported. Indeterminates reported

17 Kit Dipstick. Threshold > 1+
18 Kit ict. Threshold > 1+

29 Enteroscreen

12 Tubex. Reference: bc & pcr
11 Tubex. Reference:bc

9 Typhi rapid Tr-02. Reference: bc & pcr. Antibody: IgM

1 Typhidot. Antibody: IgM or as reported. 1 result per study

4 Typhidot. Antibody: IgM or as reported. Reference: bc and pcr

28 Multi-Test Dip-S-Tick

23 Sd Bioline. Antibody: IgG

10 Typhidot all tests 1 result per study

30 Onsite Typhoid Combo ctk Biotech

25 Sd Bioline Antibody: IgM and IgG
24 Sd Bioline. Antibody: IgM

26 Mega Salmonella. Antibody: IgG

19 Kit all tests. Threshold > 1+. One result per study.

8 Typhi rapid Tr-02. Reference: bc. Antibody: IgM

22 PanBio

6 Typhidot. Antibody: IgM or as reported. Indeterminates not reported

3 Typhidot. Antibody: IgM or as reported. Reference: bc and BM

20 Kit all tests. Threshold > 2+ studies only

27 Mega Salmonella. Antibody: IgM

(a) The relations between the diagnostic tests and the studies included in the systematic review. Most
of the tests are evaluated by several studies, and so are connected by several edges in the graph.

(b) The diagnostic test results, as reported in the systematic review, for test 5 in the graph above. Each
row describes the test results reported in one study corresponds to a single edge in the graph above.

Figure 15.2 – Example of parts of the data in a systematic review on diagnostic test accu-
racy of Salmonella infection(Wijedoru et al., 2017), showing the relations between the data
elements (a), and the source data from which the relations were extracted (b).
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15·3·2 Summary Score Replication

We attempt to replicate the summary scores reported in each systematic review.
We take note of which summary scores were reported with sufficient clarity that it
would be possible to exactly repeat the original summary score calculations. How-
ever, in this work we do not attempt exact repetition, only replication using equiv-
alent methods following Cochrane guidelines.
Summary scores should be calculated to account for the inter- and intrastudy vari-
ance (Macaskill et al., 2010, in (Deeks et al., 2013a)). There are multiple software
packages available to perform these calculations, such as the SAS NLMixed proce-
dure,1 the Stata xtmelogit or meqrlogit routines,2 or the reitsma function from
the mada R package (Doebler and Holling, 2015). Cochrane guidelines give no rec-
ommendation as to which software package to use (Macaskill et al., 2010, in (Deeks
et al., 2013a)), and the choice consequently differs from review to review, as does
the exact software version. Any of these choices is however considered valid, and
should produce equivalent, albeit not necessarily identical results.
While the choice of software package and version is often reported in systematic
reviews, it would be infeasible to repeat all systematic reviews using the exact
same software package and version. Our intent is not however exactly repeating
the original calculations, but replicating them using equivalent software, and we
therefore use the same software package (mada) for all our trials.

15·4 Results

From the 63 systematic reviews we extracted 5,848 test results together evaluating
1,354 unique diagnostic tests in 1,738 dta studies (Table 15·1). We also extracted
589 reported summary score pairs, of which we replicate 103 and compare with
the values reported in the systematic reviews.

15·4·1 Dataset Construction

Table 15·1 presents statistics of the dataset contents, which are publicly available.3

Evaluation by manual annotation by two annotators Two independent
annotators (an and cn) manually verified and post-edited the included and ex-
cluded studies, the data tables, and the data forms automatically extracted from
one systematic review. During the annotation, we highlighted the data elements

1 https://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdf
2 https://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogit
3 doi: 10.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.1303259
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https://doi.org/10.5281/zenodo.1303259
https://doi.org/10.5281/zenodo.1303259
https://doi.org/10.5281/zenodo.1303259
https://doi.org/10.5281/zenodo.1303259
https://doi.org/10.5281/zenodo.1303259
https://doi.org/10.5281/zenodo.1303259
https://doi.org/10.5281/zenodo.1303259
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Evaluated
Extracted Auto-corrected Manually Against source

Data perc. perc. perc.
Systematic reviews 63 – – 1 1.6% 4 6.3%

Included studies 1,738 – – 49 2.8% 203 11.7%
Data forms 1,356 – – 49 3.6% 145 10.7%

Text entries 29,201 – – 1,176 4.0% 3,281 11.2%
Excluded studies 6,699 – – 132 2.0% 337 5.0%
Diagnostic tests 1,354 796 58.8% 43 3.2% 28 2.1%

Test results 5,848 1,981 33.9% 144 2.5% 330 5.6%
Study ids 5,848 1,706 29.2% 144 2.5% 330 5.6%
Numerical 58,480 1,018 1.7% 1,440 2.5% 3,300 5.6%

Summary scores 589 – – – – – –

Table 15.1 – The nature and amount of extracted data of the each type, along with the
portions of auto-corrected and evaluated elements. We consider test results to be auto-
corrected if they contain at least one auto-corrected value. We consider diagnostic tests
to be auto-corrected if they contain at least one auto-corrected test result.

flagged by the automatic validation. We observed a 100% inter-annotator agree-
ment on the corrected data. No errors were found in the extraction of the included
and excluded studies, the data forms, or the numerical values from the tables. We
did however find 3 errors among the study ids extracted from the data tables. As
these errors were all flagged by the automatic validation process, we decided that
validation in subsequent reviews would be performed by one annotator (cn) focus-
ing on the flagged data.

Evaluation by comparing with the source files We compared our ex-
tracted data after post-editing against ground truth data from four source files.
We observed 4 errors out of 330 study ids (1.2%), of which 3 could be spotted by
either checking whether the study ids were in the list of included references, or by
checking that the study ids for each table appeared in alphabetical order. We thus
observed 1 error out of 330 (0.3%) after sanity checking.
We observed 2 errors out of 3,300 numerical values (0.06%), both of which could
be spotted by sanity checking that the 2 by 2 table matches the sensitivity and
specificity for each table row.

15·4·2 Summary Score Replication

Figure 15·3 presents the flow of reviews in the dataset according to replicability
status. For the 103 of the 589 summary score pairs that could be meaningfully

213

15



Data Extraction & Synthesis

A
ll 

(5
8
9
)

Replicated in fig. 4 (103)

In
co

m
p
a
ra

b
le

 r
e
su

lt
s

n < 3 (276)

Different score (60)

Mismatched data (49)

No corresponding data (76)

Empty data table (25)

Data

discrepancies

M
a
tc

h
in

g 
d
a
ta

The score reported is not the mean with 95% confidence interval

The systematic review did not include a data section

The numbers of included studies and/or participants in the data table

did not match those reported in the systematic review

The scores were calculated based on data

from less than three primary studies

No data table could be found matching the description,

or the description was ambiguous

Figure 15.3 – Flow of the summary scores in the replication, describing howmany summary
scores were excluded for each reason in our replication attempt.

replicated, we plot the distribution of discrepancies in Figure 15·4, and we list the
larger discrepancies in Table 15·2 (top section).
Twenty-five of the summary score pairs occurred in reviews with no data section.
A further 76 of the summary scores descriptions did not clearly match any of the
data tables in the data section. For 49 of the summary scores the number of stud-
ies or participants differed between the data tables and what was reported in the
summary score description.
We excluded 60 summary scores from our replication attempts because they used
measures other than the mean, such as the median, or the range. We also excluded
276 scores because they were based on less than three primary studies, and there-
fore can not be used to calculate reliable estimates (Macaskill et al., 2010, in (Deeks
et al., 2013a)).
We replicated the remaining 103 summary scores pairs and plotted the difference
in Fig 15·4. Of the 603 scalar values in the 103 summary scores,1 we observed a 5
point difference in 79 / 603 (13%) of the scalars, and a 10 point difference in 25 / 603
(4%) scalars. In Table 15·2 (top section), we list the summary scores with at least
one 10 point difference, roughly corresponding to the outliers in Fig. 15·4. We also
list all the replicated summary scores for the summary scores where the number
of studies or participants differ and had at least a 10 point difference in Table 15·2
(bottom section).

1 A summary score is composed of 3 or 6 scalar values depending on whether both sensitivity and
specificity are reported.
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Table 15.2 – Replicated vs reported summary score pairs differing from the reported sum-
mary scores by at least 10 point on one of the six scalar values (one cell per row in the table).
Larger differences are highlighted.
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Figure 15.4 – Distribution of differences between reported and replicated summary scores
for each of the six scalar values in the summary scores. All differences are in absolute point
difference.

15·5 Discussion

In this section, we discuss the data extraction and provide insight on the growth
and possible uses of the dataset. We then discuss the findings and implications of
our replication study in Section 15·5·2

15·5·1 Dataset Construction

Our manual extraction by two annotators on the automatically extracted parts of
the data had a 100% inter-annotator agreement. Furthermore, we only observe
errors for data extracted from the data tables, using ocr, and all of the errors were
flagged for inspection by the automated extraction. In light of this, we content
ourselves with letting a single annotator check and post-edit the extracted data
tables for the remainder of the dataset, and do not verify the extraction of the lists
of included and excluded studies or the data extraction forms.
Manual post-editing still lets the occasional error through, as we can see from the
results in Section 15·4·1, but these can generally be spotted by automatic sanity
checking.
The amount of manual effort required for to process a single review varies, from a
fewminutes to several hours for a single review. The effort required for verification
and post-editing chiefly depends on the success rate of the automated extraction
of the data tables, and the effort required to manually extract the summary scores
chiefly depends the clarity of presentation in the systematic review. The amount of
data in the review also plays a role, but only in the presence of automatic extraction
failures, and unclear presentation.

15·5·2 Summary Score Replication

As we can see in Figure 15·4, our replicated summary scores are generally close
to the summary scores reported in the original systematic reviews, but we also
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observe a large number of discrepancies. The discrepancies tend to be larger and
more common for the lower bound of the confidence intervals (Figure 15·4).
When there is a mismatch in terms of number of studies or participants between
the summary scores and the data tables, this is typically deliberate, and the authors
often state the reason why some of the studies or participants were excluded from
the calculations. In order to replicate such summary scores, it may be necessary to
modify the data tables manually. Simply using the original unmodified tables can
obviously give different summary scores, although this varies (Table 15·2, bottom
section).
In some cases the reason for the mismatch is not stated, but may be due to different
definitions of number of studies or participants in different parts of the systematic
review.1
The mismatch for ‘cd011975 Total hCG’ in Figure 15·2 (bottom section) appears to
be due to a copy-paste error however, and the results presented is identical to the
results for ‘cd011975 Inhibin.’ The summary scores are apparently calculated from
data table 11 rather than from data table 5. This summary score is not mentioned
in the systematic review body however, and so does not appear to have influenced
the findings of the review.
A large part of the manual work required to connect summary scores to data tables
were due to their order often being different in the two sections. We therefore
recommend that data tables and summary scores presentation be aligned in future
systematic reviews to make it easier to verify the results, as well as catch errors.
We also note that this would go far towards automating the synthesis step in the
systematic review process for diagnostic test accuracy.
The frequency of genuine errors in the systematic reviews is low (1 in 63 reviews).
However, the one error we did find could be spotted simply by verifying the num-
bers of studies and participants. Such verification could potentially be performed
automatically, provided the summary of findings and the data tables are organized
consistently, and a standard definition of number of included studies and partici-
pants are used throughout the systematic review.

15·5·3 Dataset Applications and Future Work

This data is intended to be used to 1) train and evaluate methods for automating
the data extraction and data synthesis stages in dta systematic reviews, 2) perform
replication studies, like the onewe describe here, and 3) perform robustness studies
by e.g. evaluating how the results of the analysis would differ on different subsets
of the data (subset analysis or ablation studies).

1 A paper can contain multiple studies, and for instance a diagnostic test for glaucoma may count
individual eyes as participants.
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In particular, this dataset contains all the information that needs to be extracted
from the included studies in a systematic review on diagnostic test accuracy, and
can therefore be used towards training supervised machine learning models to au-
tomate this process in future reviews.

15·6 Conclusion

In this paper, we presented a dataset describing the input and output of the data
extraction and synthesis stages in systematic reviews on diagnostic test accuracy.
The data extraction was manually validated and found successful with an error rate
of 6 in 10,000 for the numerical values, 0.3% for the study ids, and no observed
errors on the other data types. This is the first dataset to provide material for
addressing automation of the later stages of the dta systematic review process,
including the data extraction and synthesis.
We demonstrate the value of this dataset by conducting a replication study of 103
summary scores from the data synthesis in 27 of the systematic reviews. Overall,
we were able to replicate the results reported in the systematic reviews with less
than 5 point difference for 87% of the values. We did not try to replicate the inter-
pretation of the results to test whether these differences would have affected the
general conclusions reached in the reviews. Our findings mirror insights gained in
other fields: it is often not straightforward to replicate reported results, even when
these are reported clearly.
We believe that the availability of material presented here (data and tools) can be
helpful for the community to leverage the information contained in systematic
reviews to a fuller extent, for instance to make it easier to replicate or update the
data synthesis and analysis in systematic reviews.
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AUTOMATED DATA EXTRACTION FOR SYSTEMATIC

REVIEWS OF DIAGNOSTIC ACCURACY

A distantly supervised dataset for automated data extraction
from diagnostic studies

Christopher R. Norman, Mariska M.G. Leeflang,
René Spijker, Evangelos Kanoulas, &Aurélie Névéol

Acl BioNLP, 2019

Abstract

Systematic reviews are important in evidence based medicine, but are expen-
sive to produce. Automating or semi-automating the data extraction of index
test, target condition, and reference standard from articles has the potential to
decrease the cost of conducting systematic reviews of diagnostic test accuracy,
but relevant training data is not available. We create a distantly supervised
dataset of approximately 90,000 sentences, and let two experts manually an-
notate a small subset of around 1,000 sentences for evaluation. We evaluate
the performance of BioBert and logistic regression for ranking the sentences,
and compare the performance for distant and direct supervision. Our results
suggest that distant supervision can work as well as, or better than direct su-
pervision on this problem, and that distantly trained models can perform as
well as, or better than human annotators.

16·1 Background

Evidence based medicine is founded on systematic reviews, which synthesize all
published evidence addressing a given research question. By examining multiple
studies, a systematic review can examine the variation between different studies,
the discrepancies between them, as well as look at the quality of evidence across
studies in a way that is difficult in a single trial. Since a systematic review needs to
consider the entire body of published literature, producing a systematic review is
an expensive and labor-intensive process, often requiring months of manual work
(O’Mara-Eves et al., 2015).
To ensure that the results of a systematic review are as comprehensive and unbi-
ased as possible, their production follows a strict and systematic procedure. To
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catch and resolve disagreements, all steps of the process are performed in dupli-
cate by at least two reviewers. There have recently been examples of systematic
reviews using automation in a limited capacity (Bannach-Brown et al., 2019; Lerner
et al., 2019; Przybyła et al., 2018), but the impact of automation on the reliability of
systematic reviews is not yet fully understood. Automation is not part of accepted
practice in current guidelines (De Vet et al., 2008).
After a set of potentially included studies have been identified, systematic review-
ers complete a so-called data extraction form for each study. These forms comprise
a semi-structured summary of the studies, identifying and extracting a consistent,
pre-specified set of data items from abstracts or full-text articles in a coherent for-
mat (see the left part of Table 16·1 for sample exerpts). The coherent format allows
the data from the studies to be synthesized qualitatively or quantitatively to address
the research question of the review.
In this study we will focus on systematic reviews of diagnostic test accuracy (dta),
which examine the accuracy of tests and procedures for diagnosing medical con-
ditions, and which have seen little attention in previous literature on automated
data extraction. To compare and synthesize results across studies, reviewers ex-
tract diagnostic accuracy from each study, but also determine the index test (the
specific diagnostic test or procedure that is being tested), what target condition the
test seeks to diagnose, and the reference standard (the diagnostic test or procedure
that is being used as the gold standard) (see Fig 16·1 for an example). These data
must be determined for each study to know if the diagnostic accuracy in different
studies can be compared.

16·1·1 Bert

Bert (Bidirectional Encoder Representations from Transformers) is a deep learn-
ing model that is unsupervisedly pretrained on a large general language corpus,
then supervisedly fine-tuned on natural language processing tasks (Devlin et al.,
2018). Despite being a general approach, with almost no task-specificmodifications,
Bert achieves state-of-the-art performance across a number of natural language
processing tasks, including text classification, question answering, inference, and
named entity recognition.
Pretrained models like Bert can be used directly for screening automation or au-
tomated data extraction. However, by default Bert is trained on a general lan-
guage corpus, which differs radically in word choice and grammar from the spe-
cial language found in biomedicine and related fields (Sager et al., 1980). Pretrain-
ing on biomedical corpora, rather than general corpora, has been demonstrated
to improve performance on several biomedical natural language processing tasks
(Beltagy et al., 2019; Lee et al., 2019; Si et al., 2019).
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Original Cleaned

Review: cd008892, study: Dutta 2006
Index tests: TUBEX Typhidot Index test: TUBEX

Index test: Typhidot
Target condition
and reference
standard(s):

Target condition Salmonella Typhi Reference standard: pe-
ripheral blood culture

Target condition: Salmonella Typhi
Target condition: Typhoid fever

Reference standard: Peripheral blood culture
Note: These are the data items corresponding to the example text in Fig. 16·1

Review: cd010502, study: Schwartz 1997b
Index tests: Throat swab: not reported Commercial name of the RADT:

QuickVue In-Line Strep A (Quidel) Type of RADT: EIA Index test: QuickVue In-Line Strep A
Index test: EIA
Index test: ELISA Immunoassays

Target condition
and reference
standard(s):

See Schwartz 1997a Target condition: Group A streptococcus

Target condition: Group A streptococcal infection
Reference standard: Microbial culture
Reference standard: Bacterial culture

Note: Neither the target condition nor the reference standard were mentioned in the table for Schwartz 1997a, but
assumed the same for all studies included in this systematic review (they were presumably considered obvious by the
authors).

Review: cd011145, study: ADAMS Study 2007
Index tests: MMSE, non-validated Spanish versions where necessary. Index test: MMSE

Index test: Minimental state evaluation

Target condition
and reference
standard(s):

Dementia diagnosed according to DSM-IV Participants con-
sented to a 3-4 h structured assessment conducted in-home,
including a medical examination with a nurse and a neuropsy-
chological battery with a trained psychometrician A panel of
3 expert scientists, including a neurologist, cognitive neurosci-
entist, and geropsychiatrist determined the participants’ ini-
tial DSM-IV cognitive status based on the in-home diagnos-
tic evaluation, which assessed several cognitive domains The
final cognitive status was made by a consensus panel of ex-
perts based on a review of the information collected through
the neuropsychological, medical, and neurological assessment
measures We assess this as meaning that not all 701 partici-
pants were clinically evaluated by a specialist

Target condition: Dementia

Reference standard: DSM-IV
Reference standard: DSM IV
Reference standard: Consensus evaluation

Note: DSM-IV is the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders published by the
APA. The non-abbreviated form is almost never used and would just give false positives.

Table 16.1 – Examples of raw data from three data extractions forms in unstructured format
(left) and a structured summary of the data intended for distant supervision by pattern
matching (right).

16·1·2 Objectives

In this study we seek to:

1. Construct a dataset for training machine learning models to identify and extract
data from full-text articles on diagnostic test accuracy. We focus on the target
condition, index test, and reference standard.

2. Train models to identify specific data items in full-text articles on diagnostic test
accuracy

One of the main aims of our study is to determine how such a dataset should be
constructed to allow for training well performingmodels. In particular, do we need
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Although typhoid fever is confirmed by culture of Salmonella enterica serotype
Typhi , rapid and simple diagnostic serologic tests would be useful in developing
countries. We examined the performance of Widal test in a community field site
and compared it with Typhidot and Tubex tests for diagnosis of typhoid fever
. Blood samples were collected from 6697 patients with fever for <or =3 days for mi-
croscopy, culture, and serologic testing and from randomly selected 172 consenting
healthy individuals to assess the baseline Widal anti-Typhi O lipopolysaccharide
antibody (anti-TO) and anti-Typhi H flagellar antibody (anti-TH) titers. Sensitiv-
ity, specificity, positive predictive value (PPV), and negative predictive value (NPV)
of the 3 serologic tests were calculated using culture-confirmed typhoid fever
cases as ”true positives” and paratyphoid fever and malaria cases as ”true nega-
tives”. Comparing cutoff values for the Widal test, an anti-TO titer of 1/80 was
optimal with 58% sensitivity, 85% specificity, 69% PPV, and 77% NPV. Sensitivity
was increased to 67% when the Widal test was done on the 5th day of illness and
thereafter. The sensitivity, specificity, PPV, and NPV of Typhidot and Tubex
were not better than Widal test. There is a need for more efficient rapid diagnos-
tic test for typhoid fever especially during the acute stage of the disease. Until
then, culture remains the method of choice.

Legend: Target condition Index Test Reference standard

Figure 16.1 – Examples of data items highlighted in text, with supporting context underlined.
Based on the manual annotation by one expert (ml) on a study by Dutta et al. (2006).

directly supervised data, or can we build reliable models with distantly supervised
data? If we do need directly supervised data, how much is necessary?

16·1·3 Related Work

There have been attempts to extract several types of data relevant to systematic re-
views, most notably extracting pico1 statements from article text (Kim et al., 2011;
Kiritchenko et al., 2010; Nye et al., 2018; Wallace et al., 2016). Other data items
include background and study design (Kim et al., 2011), as well as automatically
performing risk of bias assessments (Marshall et al., 2014). There is also a recent
tac track for data extraction in systematic reviews of environmental agents.2 Simi-
larly, previous work by Kiritchenko et al. (2010) aimed to extract 21 different kinds
of data from articles, including treatment name, sample size, as well as the pri-
mary and secondary outcome from article text. Furthermore, the key criterion for

1 Population, intervention, control group, and outcome.
2 https://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.htmlhttps://tac.nist.gov/2018/srie/index.html
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extraction in a systematic review is not the actual data, but the context it appears
in. For instance, both intervention studies and a diagnostic studies have target
conditions, but these refer to different things: the intervention study seek to treat
the condition while the diagnostic study seeks to diagnose it. As a consequence,
in an intervention study the inclusion criterion often mentions the disease, while
in a diagnostic study inclusion criteria may mention symptoms rather than the
actual disease. This means that a data extraction system trained on interventions
may not work as well (or at all) for systematic reviews of diagnostic test accuracy,
even though it may seem that the same data is extracted in both. Furthermore,
unlike the data required in diagnostic reviews, many previously considered data
items are mentioned once in articles, often using formulaic expressions (e.g. sex,
blinding, randomization).
Conventional methods for automated
data extraction split articles into sen-
tences and classify these individually us-
ing conventional machine learning meth-
ods (e.g. Svm, Naive Bayes) (Jonnala-
gadda et al., 2015), or label spans in the
text and classify these using sequence tag-
ging (e.g. Crf, Lstm) (Nye et al., 2018).
Despite the body of previous work on
automation, many data items relevant to
systematic reviews have been overlooked.
A 2015 systematic review of data extrac-
tion found 26 articles describing the at-
tempted extraction of 52 different data
items, but almost all focused on interven-
tions (Jonnalagadda et al., 2015). No study
considered any data item specific to di-
agnostic studies, except for general data
items common to both interventions and
diagnostic studies, such as age, sex, blind-
ing, or the generation of random alloca-
tion sequences. The likely reason for this
is that traditional data extraction systems
require bespoke training data for each par-
ticular data item to extract, which is gen-
erally only available through expensive, manual annotation by experts.

Target Condition
pos neg total

Distant train 11,336 63,204 74,540
test 2,884 13,572 16,456
total 14,220 77,776 90,996

Annotated by ml 92 889 981
Annotated by rs 48 983 1,031

Index Test
pos neg total

Distant train 14,280 63,343 77,623
test 2,675 13,992 16,667
total 16,955 77,335 94,290

Annotated by ml 93 888 981
Annotated by rs 87 944 1,031

Reference Standard
pos neg total

Distant train 7,006 56,638 63,644
test 1,258 14,602 15,860
total 8,264 71,240 79,504

Annotated by ml 26 955 981
Annotated by rs 26 1,005 1,031

Table 16.2 – The number of sentences in our
dataset, broken into distantly annotated
training and test sets, as well as a manu-
ally annotated subset. Distant annotations
for each data type were not available for all
studies, and the total number of labelled
sentences are therefore different for each
data type.

A cheaper way to construct datasets for data extraction is to use distant supervision,
where the dataset is annotated per article or per review, rather than per sentence or

225

16



Data Extraction & Synthesis

per text span. Supervised methods are then trained on fuzzy annotations derived
heuristically for each sentence. For instance, Wallace et al. (2016) used supervised
distant supervision to learn to identify pico statements in full text, and Marshall
et al. (2014) used supervised distant learning with Svms to identify risk of bias
assessments.
There is likely a trade-off between quality and data size. All else being equal, direct
supervision is generally better than distant supervision (distantly supervised train-
ing data adds a source of noise not present for direct supervision). At the same
time, it may not be feasible for experts to annotate large amounts of data. Crowd-
sourcing is sometimes used as an alternative to a group of known experts, but if
a high degree of expertise is necessary to annotate, crowd-sourcing may not give
sufficient guarantees about the expertise of the annotators.

16·2 Material

We used data from a previous dataset, the Limsi-Cochrane dataset (Norman et al.,
2018a),1 to identify references included in previous systematic reviews of diagnos-
tic test accuracy. The Limsi-Cochrane dataset comprises 1,738 references to dta
studies from 63 dta systematic reviews. The dataset includes the data extraction
forms for each study completed by the systematic review authors.
The dataset itself does not contain abstracts or full-texts, but include identifiers
in the form of PubMed ids and dois which can be used to retrieve abstracts or
full-texts.
We used the reference identifiers (pmid and/or doi) taken from the Limsi-Cochrane
dataset to construct a collection of pdf articles. We used EndNote’s ‘find full text’
feature, which retrieves pdf articles from a range of publishers.2 The pdf articles
were then converted into xml format using Grobid (Lopez, 2009).
We randomly split the dataset into dedicated training and evaluation sets, where
we used 48 of the systematic reviews as the training set, and we kept the remaining
15 systematic reviews for evaluation. For each of the 15 systematic reviews in the
evaluation set, we randomly selected one article to be annotated manually. The
remaining articles in the evaluation set were not used for training, since training
and testing on the same systematic review is known to overestimate classification
performance (Cohen, 2008). The goal of this work is to learn the semantics of the
context, rather than the semantics of particular terms, and these contexts should
be consistent across reviews.

1 doi: 10.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.130325910.5281/zenodo.1303259
2 https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/https://endnote.com/
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16. Automated data extraction for systematic reviews of diagnostic accuracy

Distant annotation

The data forms from the systematic reviews were intended to be read by and be
useful to the human systematic review authors. The contents are therefore usually
semi-structured rather than structured, and will include different kinds of data de-
pending on what is relevant to the systematic review (see Table 16·1).
We create a dataset of distant annotations from the Limsi-Cochrane dataset by
manually converting the semi-structured data into structured data items, and by
ensuring that these items can be found in the corresponding article using pattern
matching (see Table 16·1).
We split each of the xml documents into sentences using the nltk sentence splitter.1
The sentences are then divided into positive and negative depending on whether
the relevant data items occur as a partial match in the sentence. Partial matches
were calculated using tf·idf cosine similarity between the data item and the sen-
tence, where we took the 20 top ranking sentences for each pair of data item and
article, with a similarity score of 0.1 or higher. We chose 20 as a target number
of sentences since we felt this was a reasonable upper limit on the number of rel-
evant sentences in a single article. We added an absolute threshold of 0.1 to keep
the system from annotating obviously non-relevant sentences (scores close to zero)
when no matches could be found in the article. For articles that have multiple
data items we used the concatenation of all data items. For example, in Table 16·1,
the data items for ‘Schwartz 1997b’ would be: target condition: ‘Group A strepto-
coccus; Group A streptococcal infection’, index test: ‘QuickVue In-Line Strep A;
Eia; Elisa Immunoassays’, and reference standard ‘Microbial culture; Bacterial
culture’.
We excluded all articles where the data items were not provided in the data form
(because the reviewers did not extract this data), or where data forms were missing
from the systematic review. Since we do not know which sentences were relevant
or not in these articles we did not use these articles as either positive or negative
data. As a consequence the total amount of sentences differ for the target condition,
index test and reference standard.
We repeated the matching precedure for the target condition, the index test and
the reference standard, resulting in three distinct datasets.

Expert annotation

We randomly split the evaluation set into three sets of five systematic reviews. Two
experts (ml and rs) on systematic reviews of diagnostic test accuracy manually an-

1 https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/https://www.nltk.org/
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Target condition
Auto ml rs

Auto 1.00 0.07 0.04
ml 0.90 1.00 0.38
rs 1.00 0.62 1.00

Index test
Auto ml rs

Auto 1.00 0.09 0.07
ml 1.00 1.00 0.61
rs 0.93 0.70 1.00

Reference standard
Auto ml rs

Auto 1.00 0.01 0.03
ml 1.00 1.00 0.86
rs 1.00 0.40 1.00

Table 16.3 – Agreement in terms of recall where columns are considered ground truth, e.g.
annotator rs chose 62% of ml’s annotations for the target condition.

notated the 15 articles by highlighting all sentences in the text that 1) mentions the
target condition, index test, and reference standard 2) makes it clear that these are
the target condition, index test and reference standard, and 3) do not simply men-
tion these same items in an unrelated context. The annotation instructions were
written and adjusted twice to remove ambiguity, and the reasons for disagreement
were discussed and resolved after two rounds of annotation. As a compromise
between getting more data and being able to use the agreement between the ex-
perts as baseline for the performance, one expert annotated the first five studies,
the second expert annotated the next five studies, and both annotated the last five
studies.

16·3 Method

We construct three pipelines, one for each of the target condition, index test, and
reference standard, and we train and evaluate these separately.
We varied our experiments in three dimensions: We tried a) two machine learning
algorithms, b) two levels of preprocessing, and c) distantly supervised training
data versus directly supervised training data. The directly and distantly supervised
models were evaluated on the same data.

a1: BioBert We here used a pointwise learning-to-rank approach, where we
trained a sentence ranking model by using BioBert, a version of Bert pretrained
on PubMed and Pmc (Lee et al., 2019), and fine-tuned the model by training it to
regress probability scores. This model was thus trained to map sentences to rele-
vance scores.
To train and evaluate, we used the default Bert setup for the Glue datasets,1
modified to output a relevance score rather than a binary value. We used default
parameters.

1 https://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/berthttps://github.com/google-research/bert
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a2: Logistic Regression We here used a pairwise learning-to-rank approach,
where we trained a logistic regression model using stochastic gradient descent
(sklearn). As features we used 1) lowercased, tf·idf weighted word n-grams, 2)
lowercased, binary word n-grams, 3) lowercased, tf·idf weighted, stemmed word
n-grams, 4) lowercased, stemmed, binary word n-grams, as well as i) lowercased,
tf·idf weighted character n-grams, and ii) non-lowercased, tf·idf weighted charac-
ter n-grams. We used word n-grams up to length 3, and character n-grams up to
length 6. The first set of features is intended to capture contextual information
(’for the diagnosis of …’); the second set of features is intended to capture medical
technical terms, which are often distinctive at the morpheme level (e.g. ‘ischemia’,
‘anemia’). We deliberately did not use stop-words, since doing so would discard al-
most all the contextual information. This results in a sparse feature matrix consist-
ing of approximately 1.8 million features for the distantly supervised experiments,
and approximately 300,000 features for the directly supervised experiments.
We handled class imbalance by setting the weight for the positive class to 80. This
was previously determined to be a reasonable weight in experiments on screening
automation in diagnostic test accuracy systematic reviews, a problem with similar
class imbalance.

b1: Raw Sentences Here we used the sentences as they appear in the articles.

b2: Sentences with Umls Concepts In this setup we used theUnifiedMedical
Language System, a large ontology of medical concepts maintained by the National
Library of Medicine (Bodenreider, 2004; Lindberg et al., 1993). We used MetaMap1
to locate concept mentions in the sentences, and to replace these with their corre-
sponding Umls semantic types. For instance the sentence ‘Typhoid fever is a febrile
and often serious systemic illness caused by Salmonella enterica serotype Typhi’ was
transformed into ‘dsyn is a fndg and tmco serious dsyn caused by bact enterica
bact’.

c1: Directly Supervised Training We here trained and evaluated on the ar-
ticles manually annotated by our two experts (ml and rs), using leave-one-out
cross-validation. In other words, to evaluate on each of the ten articles annotated
by each annotator we used the remaining 9 articles annotated by the same expert
as training data. This was done separately for each expert, and the annotations
from the other expert was not used.

1 https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/https://metamap.nlm.nih.gov/
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Target condition
BioBert Logistic Regression As ranked

n pos Distant Supervised Distant Supervised by the other
Raw Umls Raw Umls Raw Umls Raw Umls expert (rs)

cd007394 1 1.000 0.500 0.143 0.250 1.000 0.500 1.000 0.500 0.500
cd007427 14 0.228 0.267 0.500 0.588 0.423 0.573 0.462 0.509 —
cd008054 10 0.197 0.353 0.060 0.182 0.167 0.118 0.170 0.148 —
cd008782 2 1.000 1.000 0.283 0.567 0.500 0.417 0.500 0.583 0.700
cd008892 29 0.182 0.274 0.384 0.247 0.368 0.439 0.290 0.333 0.338
cd009372 29 0.110 0.117 0.461 0.543 0.328 0.250 0.378 0.276 —
cd010173 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd010339 16 0.192 0.179 0.642 0.513 0.537 0.432 0.482 0.495 0.154
cd010653 2 0.053 0.035 0.023 0.015 0.107 0.112 0.062 0.086 —
cd011420 6 0.070 0.074 0.239 0.175 0.189 0.138 0.254 0.157 0.190

mean: 0.336 0.311 0.304 0.342 0.402 0.331 0.400 0.343 0.376

Index test
BioBert Logistic Regression As ranked

n pos Distant Supervised Distant Supervised by the other
Raw Umls Raw Umls Raw Umls Raw Umls expert (rs)

cd007394 2 1.000 1.000 0.643 0.361 0.750 0.500 0.583 0.583 1.000
cd007427 17 0.354 0.225 0.580 0.568 0.551 0.526 0.534 0.484 —
cd008054 10 0.388 0.305 0.449 0.281 0.170 0.161 0.195 0.218 —
cd008782 2 0.833 1.000 0.079 0.523 0.750 0.750 0.750 0.750 0.700
cd008892 34 0.342 0.473 0.458 0.391 0.471 0.484 0.496 0.529 0.524
cd009372 8 0.269 0.351 0.194 0.225 0.261 0.270 0.303 0.390 —
cd010173 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd010339 1 0.167 0.050 0.067 0.067 0.071 0.100 0.013 0.017 0.010
cd010653 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A —
cd011420 19 0.251 0.342 0.284 0.218 0.288 0.266 0.280 0.256 0.391

mean: 0.450 0.468 0.344 0.329 0.414 0.382 0.394 0.403 0.525

Reference standard
BioBert Logistic Regression As ranked

n pos Distant Supervised Distant Supervised by the other
Raw Umls Raw Umls Raw Umls Raw Umls expert (rs)

cd007394 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd007427 2 0.145 0.032 0.081 0.034 0.052 0.037 0.035 0.041 —
cd008054 6 0.215 0.108 0.239 0.076 0.635 0.619 0.525 0.515 —
cd008782 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd008892 13 0.112 0.097 0.152 0.154 0.408 0.351 0.264 0.255 0.201
cd009372 3 0.052 0.095 0.253 0.414 0.681 0.692 0.679 0.729 —
cd010173 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd010339 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd010653 1 0.020 0.016 0.020 0.059 0.029 0.034 0.067 0.067 —
cd011420 1 0.034 0.100 1.000 0.014 1.000 1.000 0.500 0.500 0.333

mean: 0.097 0.075 0.291 0.125 0.467 0.455 0.345 0.351 0.267

Table 16.4 – Average precision results for the 8 different machine learning models on the
data annotated by the first annotator (ml), compared to the performance of an indepen-
dent human expert (annotator rs). The ‘Raw’ columns denote results for models trained
and evaluated on raw sentences. The ‘Umls’ columns denote results for models trained
and evaluated on sentences where the concept mentions have been replaced with their
corresponding Umls semantic types. The ‘n pos’ column denotes the number of positive
sentences labeled by ml for each article. Cells are marked ‘N ⁄A’ if no result could be com-
puted because no sentences were labeled positive. In the baseline results, cells are marked
‘—’ if the article was not annotated by the other expert (rs).
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Target condition
BioBert Logistic Regression As ranked

n pos Distant Supervised Distant Supervised by the other
Raw Umls Raw Umls Raw Umls Raw Umls expert (ml)

cd007394 2 0.750 0.500 0.667 0.040 0.833 0.500 1.000 0.833 0.667
cd008081 8 0.136 0.198 0.213 0.371 0.504 0.380 0.394 0.388 —
cd008760 5 0.200 0.144 0.283 0.163 0.252 0.300 0.481 0.300 —
cd008782 1 1.000 1.000 0.500 1.000 0.500 0.333 1.000 0.500 0.500
cd008892 15 0.170 0.270 0.088 0.342 0.440 0.505 0.667 0.542 0.564
cd009647 2 0.036 0.021 0.021 0.047 0.020 0.026 0.012 0.023 —
cd010339 2 0.061 0.040 0.066 0.062 0.044 0.029 0.063 0.023 0.019
cd010360 2 0.089 0.080 0.093 0.261 0.181 0.083 0.244 0.064 —
cd010705 7 0.189 0.269 0.127 0.341 0.382 0.359 0.254 0.402 —
cd010420 4 0.036 0.044 0.209 0.097 0.210 0.214 0.302 0.132 0.178

mean: 0.267 0.257 0.227 0.273 0.337 0.273 0.412 0.321 0.386

Index test
BioBert Logistic Regression As ranked

n pos Distant Supervised Distant Supervised by the other
Raw Umls Raw Umls Raw Umls Raw Umls expert (ml)

cd007394 2 1.000 1.000 0.417 0.393 0.750 0.500 0.700 0.750 1.000
cd008081 11 0.464 0.229 0.463 0.454 0.431 0.412 0.394 0.447 —
cd008760 9 0.357 0.411 0.512 0.475 0.457 0.470 0.481 0.476 —
cd008782 1 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000 0.500
cd008892 27 0.499 0.539 0.717 0.758 0.740 0.666 0.667 0.474 0.692
cd009647 1 0.053 0.015 0.020 0.006 0.006 0.009 0.012 0.040 —
cd010339 6 0.085 0.054 0.040 0.047 0.053 0.041 0.063 0.047 0.058
cd010360 8 0.154 0.119 0.233 0.278 0.222 0.202 0.244 0.242 —
cd010705 14 0.599 0.533 0.292 0.270 0.352 0.327 0.254 0.327 —
cd010420 8 0.234 0.296 0.280 0.251 0.259 0.235 0.302 0.257 0.328

mean: 0.444 0.420 0.397 0.343 0.427 0.386 0.412 0.406 0.516

Reference standard
BioBert Logistic Regression As ranked

n pos Distant Supervised Distant Supervised by the other
Raw Umls Raw Umls Raw Umls Raw Umls expert (ml)

cd007394 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd008081 3 0.254 0.132 0.134 0.177 0.867 0.698 1.000 1.000 —
cd008760 2 0.101 0.553 0.529 0.013 0.667 0.833 0.667 0.833 —
cd008782 0 N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A N ⁄A
cd008892 11 0.110 0.212 0.283 0.108 0.356 0.286 0.334 0.225 0.417
cd009647 0 N ⁄A N ⁄A N ⁄A N ⁄A 0.036 N ⁄A N ⁄A N ⁄A —
cd010339 1 0.012 0.010 0.029 0.009 0.224 0.031 0.071 0.028 N ⁄A
cd010360 1 0.200 0.037 0.111 0.038 0.810 0.023 0.167 0.143 —
cd010705 5 0.150 0.152 0.194 0.086 0.224 0.122 0.172 0.125 —
cd010420 3 0.167 0.347 0.358 0.019 0.810 0.806 0.692 0.694 0.345

mean: 0.142 0.206 0.234 0.064 0.428 0.400 0.443 0.435 0.381

Table 16.5 – Average precision results for the 8 different machine learning models on the
data annotated by the second annotator (rs), compared to the performance of an indepen-
dent human expert (annotator ml). The ’Raw’ columns denote results for models trained
and evaluated on raw sentences. The ’Umls’ columns denote results for models trained
and evaluated on sentences where the concept mentions have been replaced with their
corresponding Umls semantic types. The ’n pos’ column denotes the number of positive
sentences labeled by rs for each article. Cells are marked ’N ⁄A’ if no result could be com-
puted because no sentences were labeled positive. In the baseline results, cells are marked
’—’ if the article was not annotated by the other expert (ml).
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c2: Distantly Supervised Training We here trained on the distant annota-
tions from the 48 systematic reviews in the training set, and evaluated on the 15
manually annotated articles in the evaluation set, where each annotator provided
annotation data for 10 articles (with a 5 article overlap). The articles used for eval-
uation were the same as in c1.

16·3·1 Evaluation

Since our model output ranked sentences, rather than a binary classification, we
evaluated all experiments in terms of average precision.
As a comparison, we also evaluated the average precision using the ranking given
by the other annotator. In plain language, we tried to evaluate how useful it would
have been for the expert to highlight sentences for each other. The expert anno-
tations were binary (Yes/No), rather than a ranking score, so we calculated the
average precision by interpolating ties in the ranking.

16·4 Results

Out of the 1,738 references in the Limsi-Cochrane dataset, 1152 had either a pmid or
doi assigned. EndNote was able to retrieve pdf articles for 666 of these references.
A total of 90,996 sentences were distantly labeled for target condition, 94,290 sen-
tences were distantly labeled for index test, and 79,504 sentences were distantly
labeled for reference standard. The first annotator (ml) annotated 981 sentences
and the second annotator (rs) annotated 1,031 sentences (Table 16·2).
We present the results of our algorithm evaluated on the annotations by ml in
Table 16·4, and evaluated on the annotations by rs in Table 16·5.
The ranking performance exhibited large variations. Neither BioBert or logistic
regression were consistently better than the other, neither distant supervision or
direct supervision were consistently better than the other, and neither raw sen-
tence nor sentences augmented with Umls concepts were consistently better than
the other. For the target condition, the best performance was achieved by logis-
tic regression on raw sentences using either distant or direct supervision, with
a maximum at 0.412 compared to human performance at 0.376 and 0.386 respec-
tively. For the index test, the performance fell within the range 0.344–0.468 com-
pared to human performance at 0.525 and 0.516 respectively. For the reference
standard, BioBert exhibited substantially inferior results on the reference stan-
dard compared to logistic regression, while logistic regression performance fell
within the range 0.345–0.467, compared to human performance at 0.267 and 0.381
respectively.
The performance also varied between systematic reviews, with consistently close
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to perfect performance on a few reviews (cd007394 and cd0008782), and consis-
tently very low performance on a few (cd009647 and cd010339). These also corre-
spond to the articles with the highest and lowest inter-annotator agreement. The
consensus of the two experts is that cd010339 is not a diagnostic test accuracy
study.

16·5 Discussion

Raw sentences worked consistently better for logistic regression on the target con-
dition (8/8), and worked better than umls concepts as a general trend (20/24).
While general concepts could theoretically improve performance by helping the
models generalize, this may also remove important semantic information from the
sentences, keeping themodels from ranking accurately. We also note that BioBert
already encodes a language model (similar to word embeddings), and concepts may
therefore be unhelpful for the model.
BioBert performed consistently better than logistic regression on the index test
when using distant supervision (4/4), but not when using direct supervision (0/4).
Logistic regression performed consistently better than BioBert on both the tar-
get condition and the reference standard (16/16). On the reference standard the
difference in performance is substantial, with BioBert scoring very poorly, and lo-
gistic regression performing much better than human performance. The reason for
BioBert’s poor performance on the reference standard may be due to the relative
sparsity of the annotations for this subtask (see Table 16·2).
Distant supervision was consistently on par with or better than direct supervision.
The top performing models also outperformed the human annotators on the target
condition and the reference standard, and came comparatively close on the index
test (0.468 versus 0.525 and 0.444 versus 0.516).

16·5·1 Limitations

We only manually annotated a small sample of the dataset. The small size is fur-
ther compounded by problems with converting pdf to text, which may also bias
the training and evaluation in favor of articles where the conversion works better
(mainly articles from big publishers).
The dataset was constructed from articles included in previous systematic reviews
of diagnostic test accuracy. These include articles that contain diagnostic results,
while not being diagnostic test accuracy studies. Arguably, these should be ex-
cluded from training or evaluation, and possibly even from the dataset.
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16·6 Conclusions

Our results suggest that distant supervision is sufficient to train models to iden-
tify target condition, index test, and reference standard in diagnostic articles. Our
results also suggest that such models can perform on par with human annotators.
We constructed a dataset of full-text articles of diagnostic test accuracy studies,
with distant annotations for target condition, index test and reference standard,
that can be used to train machine learning models. We also provide a subset of the
data manually annotated by experts for evaluation. Our dataset cannot be publicly
distributed due to copyright restrictions, but will be available upon request. We
also plan to distribute the code for the distant annotations and data preprocessing,
as well as the cleaned data extraction forms.

16·6·1 Future Work

The dataset is being updated, and we plan to increase the amount of manually
annotated data to improve the statistical reliability of the experiments. We also
plan to let all experts annotate the same articles to simplify the comparisons.
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17. Discussion & Conclusions

TT
hrough this section we have presented a dataset document-
ing the data extraction, data synthesis, and meta-analysis stages of
systematic reviews of diagnostic test accuracy, encompassing 63 sys-
tematic reviews of 1,738 dta studies. In total, it encompasses 589
meta-analyses of 5,848 diagnostic test evaluations. This dataset is to

our knowledge the first of its kind. We hope it will be of aid for better understand-
ing how the process is undetaken by human reviewers, as well as for modelling
the process with automated methods.
As remarked in the introduction of this part, comparing studies to determinewhich
are similar enough to be group in each comparison could be assisted by graphing
and tabulation tools. The homogenization could similarly likely be automated (Tsaf-
nat et al., 2014). Only the data extraction is an nlp problem however, and will be
treated in this thesis.
Wewill however build a pipeline for automatically performingmeta-analyses, even
though this is not an nlp problem. The reason we do this is because this allows
us to later perform cumulative meta-analyses to measure the impact screening au-
tomation methods have on the results of the systematic review (see chapter 12).

17·1 Automated Data Extraction from Dta Studies

To make any data extraction system relevant and useful, it must target items that
are necessary or useful in the review process. There are to our knowledge no defi-
nite lists of items that must be extracted in a dta systematic review. A systematic
review by Jonnalagadda et al. (2015) determined relevance and usefulness by two
published guidelines
The first of these guidelines is the checklist of items available from the Cochrane
Handbook of Systematic Reviews of Interventions (Jonnalagadda et al., 2015; Li
et al., 2019, in Higgins et al., 2019). No similar checklist is available in the Cochrane
Handbook of Dta Reviews (Deeks et al., 2013a). Due to the differences in design
and purpose of rcts and dta studies however, few data items are relevant to both
rcts and dta studies. Additionally, due to differences in study aims and design
of primary studies, a dta systematic review will extract different data items than
a systematic review of interventions.
The second guidelines is the Stard checklist of items that should be reported by
dta studies (Cohen et al., 2016; Jonnalagadda et al., 2015). However, Stard is
intended as an aid to human authors to improve reporting standards, not as a laun-
dry list of items to be extracted in systematic reviews. In practice, several items
that should be mentioned in a dta study are not routinely extracted in systematic
reviews, and vice versa. Furthermore, Stard bundles several items commonly ex-
tracted into the flow diagrams. While the flow diagram includes all data necessary
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Published Methods Stard Cochrane
Conflict of interest No No Yes

Key conclusions by the authors Yes [280] 21 Yes

Fl
ow

an
d
tim

in
g Flow and timing No 19, 22 No

Diagnosis at baseline No 192 No
Diagnosis at follow up No 192 No

Loss to follow-up No 192 No
Time interval between index test and reference stan-
dard

No 22 No
Withdrawals No 192 For rtcs

In
de

x
te
st
s

Index test description and parameters No 10a No
Threshold for positive result No 12a No

Examiners No No No
Blinding of examiners For rcts [201] 13a For rtcs

Interobserver variability No No No
Sequence of tests No 192 No

Ta
rg

et
co

nd
iti
on

an
d
re
f.
st
an

da
rd Target condition No No No

Reference standard description and parameters No 10b No
Blinding of examiners For rcts [201] 13b For rtcs

Positive case definition by reference standard No 12b No
Examiners No No No

Prevalence of target condition in the sample No No No

Pa
tie

nt
ch

ar
ac

te
ris

tic
sa

nd
se
tti

ng
/P

at
ie
nt

Sa
m
pl
in
g Number of participants

For rcts [33; 82; 87; 140;
141; 144; 153; 154; 169;
174; 191; 312; 330; 332]

203 No

Number of participants available for analysis No 19 For rtcs
Country/Place of Study/Location For rcts [191; 332] No For rtcs
Sources of recruitment/referral No 8 No

Age For rcts [169; 191; 332;
333] 203 For rtcs

Gender For rcts [169; 332; 333] 203 For rtcs
Ethnicity For rcts [333] 203 For rtcs
Education No 203 For rtcs

Clinical presentation No 21a, 21b No
Clinical setting No 8 For rtcs
Selection criteria For rcts [34; 175; 252] 7 No
Inclusion criteria No 7 No
Exclusion criteria No 7 No

Language Yes4 No No
Period of study No No For rtcs

Primary objective No 4 No
Study design No 2 For rtcs

Table 17.1 – Structure of the entries in the data extraction forms in the Limsi-Cochrane
dataset. Only entries found in two or more systematic review have been included. ‘Pub-
lished methods’ denote whether each data item has been addressed by previous literature.
‘Stard’ denote whether each data item is required by the Stard checklist (Cohen et al.,
2016). ‘Cochrane’ denote whether each data item is required by the Cochrane ‘Checklist of
items to consider in data collection’ (Li et al., 2019, in Higgins et al., 2019). We do not list
Quadas items.

1 In abstract
2 As part of the diagram of flow
3 Stard item 20 does not specify specific characteristics to extract
4 Language detection does not require methods tailored for scientific articles
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to extract, it does so at a different level of granularity, along with data that may
not be necessary for the systematic review (table 17·1). Also, ironically, the target
condition does not appear as a separate item in the Stard list, presumably because
authors are unlikely to fail to report this.
To give a clearer and more relevant overview of the data items that are routinely
extracted in systematic reviews of diagnostic test accuracy, we therefore list all
data items that were extracted at least twice in the 63 systematic reviews currently
in the Limsi-Cochrane dataset (Norman et al., 2018a) (table 17·1). We excluded all
data items that are only relevant to specific target conditions or index tests, such
as ‘history of tb’ or ‘apoe ε4 carrier’. Many data extraction forms included a ‘note’
field which is not relevant for automated extraction and therefore omitted. Most
of data extraction forms also included a ‘comparative’ field, which was not filled
for any of the primary studies.
Out of the 38 data item identified as common in the Limsi-Cochrane dataset, only
14 are mentioned by the Cochrane checklist, and only 29 by Stard (table 17·1).
Eight of the data items have been addressed by previousmethods for rcts, one (key
conclusions) by previousmethods for systematic reviews of several types including
dta, and one (article language) by methods not specific to systematic reviews.
Since the majority of previous methods have focused on interventions, there is a
lack of relevant methods for dta systematic reviews. Among previous methods,
only one study is directly applicable to extract key conclusions from dta studies
(Song et al., 2013). Article language can also easily be determined using standard
methods, and does not require specialized methods for dta studies.
A number of data items have been addressed by previous literature for data extrac-
tion in systematic reviews of interventions. A few of these – age, gender, ethnicity
– may be described by similar language in dta studies and rcts. Others, such as
the number of participants use markedly different language, and it is not clear how
well models trained on rcts will perform on dta studies.
In the second study in this section, we have attempted to automatically extract the
index test, target condition, and reference standard from dta studies. These items
have not been previously considered. These items are also important to extract in
systematic reviews, since they are necessary for determining whether the record
should be included in the review, as well as for determining what meta-analyses
the studies will be included in.
We implemented models using both logistic regression, and deep learning using
BioBert. We have also compared the use of data preprocessing by replacing med-
ical terms with their corresponding Umls semantic types. No single method was
consistently better than the other ones.
The results were on par with the inter-annotator performance among human an-
notators. In other words, the labeling method was approximately as useful as high-
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Distant BioBERT
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Direct LogReg

Figure 17.1 – Summary average precision results for automated data extraction, compared
to inter-annotator performance. Tc denote the target condition, it denote the index test,
and rs denote the reference standard.

lighting done by another expert.
Distant supervision performed roughly as well as direct supervision, presumably
due to the much larger amounts of data available through this method.
At the same time, inter-annotator agreement was consistently low, even after sev-
eral rounds of adjustments to the annotation instructions. Part of the reason appear
to be that it is difficult to clearly delineate which sentence unmbiguously specify
or do not specify study characteristics. Often this is a judgement call with a large
degree of subjectivity. Furthermore, the exhaustiveness of the systematic review
process leads to systematic reviews often including studies of highly variable report-
ing quality. For instance, one of the included studies in the manually annotated
sample was not a diagnostic test accuracy study according to the annotators.

17·2 Automated Meta-Analyses for Dta systematic reviews

The purpose of this subsection of the thesis is to construct a pipeline where tabu-
lated data from dta studies can be used to perform meta-analyses without human
intervention. The primary purpose of this pipeline was to be able to integrate meta-
analysis software in the screening automation process, so that the meta-analysis
results can be calculated cumulatively, and ultimately to use these cumulative meta-
analyses to measure the impact of screening automation. This was one of the main
purposes of part III.
Software to perform meta-analyses from tabulated data exist in several packages,
such as the Sas NLMixed procedure,1 the Stata xtmelogit or meqrlogit routines,2
or the reitsma function from the mada R package (Doebler and Holling, 2015). Sas
and Stata are widely used by the systematic review community, but are primarily

1 https://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdfhttps://support.sas.com/documentation/onlinedoc/stat/141/nlmixed.pdf
2 https://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogithttps://www.stata.com/help.cgi?xtmelogit
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Reported results
Test Strategy Studies Women (cases) Sensitivity (95% ci) Specificity (95% ci) Threshold
Inhibin 3 2098 (184) 19 (4 to 58) 95 5% fpr
Total hCG 3 2098 (184) 19 (4 to 58) 95 5% fpr

Correct results
Test Strategy Studies Women (cases) Sensitivity (95% ci) Specificity (95% ci) Threshold
Inhibin 3 2,098 (184) 19 (4 to 58) 95 5% fpr
Total hCG 2 2,482 (109) 7 (3 to 18) 95 5% fpr

Table 17.2 – Comparison between the replicated summary scores for ‘Total hCG’ in review
cd011975 and the reported summary scores. Top: Results reported in the summary of find-
ings for ‘Total hCG’ and ‘Inhibin.’ Bottom: Expected results based on the reported data
tables.

0% 50% 100%

Sensitivity

50% 100%

Specificity

Figure 17.2 – Forest plot of the reported (top) versus the replicated scores (bottom) for
‘Total hCG’ in review cd011975.

intended for use with an interactive gui. Their support for automated integration
with other software remain relatively limited. Furthermore, both are proprietary
software, which prohibited their use in this project. In contrast, mada is an open
source R package, and is straightforward to call from the command line or inter-
faced directly from several programming languages, including python, which was
used in this project.
Meta-analysis models for dta systematic reviews are considered too complex to
be implemented in RevMan, and there is consequently no pipeline to perform
meta-analyses automatically from within RevMan (Macaskill et al., 2010). As a
consequence, review authors need to perform meta-analyses in external software.
Beyond increasing the workload, this has been hypothesized to lead to mistakes
(Tsafnat et al., 2014).
To test this, we used the automated meta-analysis pipeline to recalculate the re-
ported meta-analyses in the 63 systematic reviews. Since none of the original re-
views used mada, but Sas or Stata, we cannot expect to achieve exactly the same
numerical results. In practice, minor implementation details may influence the re-
sults. However, mada is still methodologically sound, and should give results that
are methodologically equivalent to those reported.
On average, we observed approximately 2% discrepancies from the reported results,
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Reported results
Test / subgroup Sensitivity (95% ci) Specificity (95% ci) No. of participants (studies)
Diagnosis of schizophrenia… 58.0 (50.3, 65.3) 74.7 (85.2, 82.3) 4070 (16)

Correct results
Test / subgroup Sensitivity (95% ci) Specificity (95% ci) No. of participants (studies)
Diagnosis of schizophrenia… 58.0 (50.3, 65.3) 74.7 (65.2, 82.3) 4070 (16)

Table 17.3 – Comparison between the replicated summary scores for ‘Diagnosis of
schizophrenia from other types of psychosis’ in review cd010653 and the reported sum-
mary scores. Top: Results reported in the summary of findings. Bottom: Expected results
based on the reported data tables.

0% 50% 100%

Sensitivity

50% 100%

Specificity

Figure 17.3 – Forest plot of the reported (top) versus the replicated scores (bottom) for
‘Diagnosis of schizophrenia from other types of psychosis’ in review cd010653.

and we have used this as an indication of the lower bound on the accuracy that
can be expected by automated screening methods in one of our studies (chapter 12)
(Norman et al., 2019c). Second, large discrepancies may be an indication that there
may be an error in either of the calculations. In this way we identified two errors
in the original summary of findings tables.
One of the errors (cd011975 Total hCG in table 15·2) was apparently due to a copy-
paste error, where the authors of the review copied the same meta-analysis results
for two different diagnostic tests (table 17·2, figure 17·2). This error could have been
spotted in several ways: 1) our replicated score was off by more than 10 point, 2)
two rows in the summary of findings were identical, 3) the summary of findings
table in the review described a different number of included studies than what was
reported in ‘data and analyses’, and 4) the summary of findings table in the review
described a different number of participants than what was reported in ‘data and
analyses’.
The second error (cd010653 Diagnosis of Schizophrenia from other types of psy-
chosis in table 15·2), also appears to be a typo: ‘74.7 [85.2, 82.3]’ instead of ‘74.7
[65.2, 82.3]’ (table 17·3, figure 17·3). This error could also have been spotted in sev-
eral ways: 1) our replicated score was again off bymore than 10 point, 2) [85.2, 82.3]
is not a legal confidence interval, and 3) the mean 74.7 lies outside the interval [82.3,
85.2]. As a further irony, we also overlooked this second error in our paper – which
is present unremarked upon in table 15·2 – and only noticed it after the paper was
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published (Norman et al., 2018a).
All considered, such errors were rare in the summary of findings tables (2 in 63 re-
views), but both could have been spotted automatically using very simple methods.
Alternatively, automatically populating summary of findings tables from the data
would also have avoided these errors.

17·3 Conclusions

Automated data extraction can perform as well as human experts, even with heuris-
tically annotated training data. At the same time, inter-annotator agreement among
experts was low, and the results of the automated extraction was less than perfect.
The major reason for the low performance of both humans and machines appears
to be that highlighting sentences describing e.g. a target condition is a much more
contextual and subjective task than highlighting non-contextual, non-subjective
elements such as diseases.
Arguably, it does not make sense to try to automate a labelling task where experts
cannot agree on a gold standard. Future research for extracting these items from
text therefore may need to forsake sentence highlighting – or at least keep in mind
that sentence highlighting will necessarily be hit and miss – in favor of direct ex-
traction of the target items, where experts largely agree.
Major obstacles to automated extraction include variable quality of reporting, and
the relatively high number of references from non-mainstream journals and pub-
lishers, including gray literature. Better and more consistent reporting in primary
studies would likely increase inter-annotator agreement as well as data extraction
performance. These obstacles do not just hinder the use of data extraction meth-
ods, but severely degrade the performance of existing automated full-text retrieval
methods and pdf to text converters like Grobid.
Manual handling of data when performing meta-analyses and limited integration
between review managers like RevMan and external software have been hypoth-
esized to cause errors in systematic reviews. We found only 2 instances of such
errors. However, both of these could have been avoided or spotted using very
simple data consistency checks.
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TT
he demand and production of systematic reviews is increasing
rapidly. PubMed indexed 17,254 new systematic reviews in 2018
alone, and this number has increased more than five-fold since 2009.
While the demand for systematic reviews is growing, the number
of publications that systematic reviews need to sift through is also

increasing at a similarly break-neck pace. We today spend more time and money
producing new systematic reviews than we ever have.
Authors conducting systematic reviews face issues throughout the systematic re-
view process. It is difficult and time-consuming to search and retrieve, collect data,
write manuscripts, and perform statistical analyses.
The thesis included seven articles (chapters 6–8, 11, 12, 15, and 16) published between
2017–2019. In these papers we have attempted to explore methods for performing
systematic reviews quicker, cheaper, and more efficiently. At the same time, sys-
tematic reviews still require a thorough, objective, and reproducible methodology
to avoid bias. While we are attempting to make the process more expedient, we
are also striving to uphold the same methodological rigor of the process.
Most previous work have focused on screening automation in the title and abstract
screening stage. Comparatively less work have been done automating the other
parts of the review process, including the article retrieval, article screening, data
extraction, data synthesis, and the analysis stages. Furthermore, the work that
does exist have largely focused on systematic reviews of interventions, with little
previous work on systematic reviews of diagnostic test accuracy.
Search queries to identify diagnostic studies tend to have low accuracy, and are
discouraged for use in systematic reviews. This results in relatively larger numbers
of candidate references to screen. Systematic reviews of diagnostic test accuracy
may therefore be a prime target for alternative approaches to cope with the rapidly
increasing workloads.
In this thesis we have examined how machine learning methods can be used to
reduce this workload, how such methods can be made to work, and how they can
fit into different systematic review contexts and settings.

18·1 Screening Automation

In chapter 6–8 we presented three papers on screening automation methods for
systematic reviews, with a particular focus on systematic reviews of diagnostic
test accuracy.
Screening automation methods need to cope with several technical constraints, in-
cluding extreme class imbalance. Diagnostic test accuracy systematic reviews may
include only one per thousand studies retrieved from the database search.
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Furthermore, among the 50 systematic reviews, the median number of included
studies was 14 (range: 0 to 99). Eleven of the reviews included four studies or
less. The training data that we can be expect from many systematic reviews are
therefore far below the numbers necessary to reach data-saturation in machine
learningmodels. It is unclear how to effectively train screening automationmodels
on such limited data, particularly to reach the close to perfect recall commonly
required by systematic reviews.

18·1·1 Differences Between Studies Included by Abstract and Full-Text

References included in the systematic review and references provisionally included
in the systematic review but excluded based on full-text were not sufficiently differ-
ent in terms of language or word choice that general machine learning algorithms
such as logistic regression could distinguish the two based on title and abstract.
However, training data where gold standard labels were based on titles, abstracts,
and full-text appear to lead to slight performance improvements over training data
where gold standard labels were based only on titles and abstracts. The differences
appeared to be minor, however.

18·1·2 Using Training Data from Both Screening Stages

Training data should preferentially use gold standard labels based on full-text if
such labels are available. However, out of the 50 systematic reviews examined, only
19 included at least 20 studies, and in practice the best quality examples of included
studies may be too few to use effectively. To construct well performing screening
automation methods for diagnostic test accuracy systematic reviews it may there-
fore be necessary to complement the data with gold standard labels based only on
titles and abstracts. We have also observed performance improvements when com-
plementing training data with training data from similar systematic review topics
(i.e. by using transfer learning).
To take advantage of gold standard labels from both stages of screening as well as
transfer learning from similar topics, we have presented a stacked model, which
uses meta-regression to combined decisions from multiple models.

18·1·3 Screening Approaches

We have presented three different models, for slightly different systematic review
contexts.
We have presented a static model, trained on the inclusion/exclusion decisions
of references screened in previous systematic reviews. This model thus requires
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training data to be available at the time the screening is started. This typically limits
the applicability of this model to systematic review updates, or to train general
models, e.g. to identify general diagnostic test accuracy studies.
We have presented an active model, which uses active learning to improve its per-
formance throughout screening. This model does not require training data at the
time the screening is started, and can therefore be used also in systematic reviews
conducted de novo, where training data is not available. This process can be started
from scratch, with no training data at all, but if some quantity of training data is
available, or if training data can be constructed artificially, such data can be used
as a starting point.
We have presented a stacked model, which combines the static and active models
to achieve the best of both. It uses a static (intertopic) model as a base and then
uses the more targeted intratopic data collected through the screening process to
improve the model further, using active learning.

18·2 Screening Performance

In chapters 6–8 we compared the performance of our models with the current state
of the art.

18·2·1 Static Model (Intratopic)

When we constructed our static model, the results were better than the then state-
of-the-art in terms of wss@95 (0.392 on average), but worse in terms of auc. This
suggests that our model works well for finding all relevant studies, whereas the
competing approaches are better at finding the first relevant studies, but struggles
to find the last ones.
Two more studies have been published evaluating five new models on this dataset,
and have since pushed the state-of-the-art further. The two studies report average
wss@95 ranging from 0.347 to 0.408. Our model performed better than the re-
ported results on 5, 6, 8, 9, and 10 out of 15 topics. Consequently, the performance
of our model still compares favorably with the current state of the art.

18·2·2 Static Model (Intertopic)

The results of our static model performed better than the state-of-the-art across
all topics for transfer learning. We are not aware of subsequent studies examining
transfer learning, and this model thus appear to remain the current state-of-the-art.
Despite the simplicity of the approach, the static approach combined with transfer
learning frequently gave performance comparable to current state-of-the-art active
learning models.
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18·2·3 Active Learning

The best active learning approach consistently outperformed the transfer learning
approach, although the differences were modest.

18·2·4 Stacked Model

The stacked model combines the high initial performance of the transfer learning
approach with the performance improvements that can be gained over time using
active learning. In our experiments, the stacked model was the best performing
model for systematic reviews conducted de novo, with slight performance improve-
ments over the static intertopic model and standard active learning.

18·3 Screening Reduction Compatible with Current Practice

In chapter 11, we presented a prospective study where we documented the use of
the static method in the 2019 update of the Comet database. In this study the
cut-off was determined retrospectively on previous review updates. We identified
a threshold that would have resulted in an acceptable balance between workload
reduction and screening exhaustiveness in previous review updates, and applied
this criterion in the screening for the 2019 review update.
We judged that missing 2% of the references was an acceptable trade-off for a 75%
workload reduction. This particular review is intended to populate a literature
database, and recall is therefore a direct and appropriate measure of the impact
screening automation had on the review.
References without abstracts could not be ranked with acceptable performance
guarantees, and were therefore ineligible for screening automation. There were
however only a small number of such references, corresponding to a workload of
approximately 2–4 hours per screener.
Since we applied the model prospectively, we could only estimate the loss in recall.
Relevant studies for inclusion in the Comet database are however identified from
multiple sources, and timewill tell whether the estimated number ofmissed articles
matches the number of studies that were actually missed. Screening was done on
a small sample (1%) of the excluded references to verify the results, and all of these
references were found to be correctly excluded.
The application of screening automation was done to adhere to the established
process as closely as possible. We used a screening reduction approach where the
inclusion threshold could be determined as part of the protocol. We applied the
model before starting the screening, and the records were randomized to avoid
rank order bias prior to screening. The screening was then performed as normal
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in EndNote. Unlike previous years, the 2019 update only involved two screeners,
but the remainder of the process was unchanged apart for the use of screening
reduction. No specialized software was required by the screeners.

18·3·1 Better Metrics for Screening Automation

In chapter 12, we tried to measure ‘information loss’ directly for systematic reviews
of diagnostic test accuracy. We tried to address what it means for an abridged
method to yield the ‘same’ systematic review as with exhaustive screening.
We tried to satisfy three criteria with the measure:

☙ The measure should be possible to calculate cumulatively through the screening
process

☙ It should be possible to stop screening once we are confident that further screening
will not change the conclusions of the review; and

☙ It should be possible to determine criteria for stopping as part of the review proto-
col to avoid bias

If screening automation methods are to be used in systematic reviews, reviewers
need to judge what amount and kind of loss are acceptable. A loss in recall or ex-
haustiveness may yield a review that does not ‘look like’ a systematic review, but
may not meaningfully impact the results and conclusions of the review – provided
a sufficient selection of studies are identified to address all review questions, and
provided the selection of studies is unbiased. To avoid reviewer bias and ad-hoc de-
cisions during the screening process there should be a clear, pre-specified protocol
for judging when the screening is complete.
To this end, we have attempted to usemeta-analysis accuracy as a performancemet-
ric during screening, by performing cumulative meta-analyses through the screen-
ing process. This accuracy can be estimated prospectively and thresholds can be
decided as part of the protocol. This however requires the screening process to be
performed in parallel with the data extraction, synthesis and meta-analysis stages
of the systematic review process, and would thus result in an unconventional sys-
tematic review process.
The benefit of the measure is that it is conservative and reliable, and interrupting
screening once the accuracy falls within prespecified limits is unlikely to lead to
wrong results or conclusions in the systematic review. Furthermore, this allows the
screening to be interrupted much earlier in the process and reduce the workload
by orders of magnitude more than with conventional stopping criteria.
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18·4 Data Extraction & Synthesis

In part IV we presented a dataset documenting the data extraction, data synthesis,
and meta-analysis stages of systematic reviews of diagnostic test accuracy, encom-
passing 63 systematic reviews of 1,738 diagnostic test accuracy studies. In total, it
encompasses 589 meta-analyses of 5,848 diagnostic test evaluations. This dataset is
to our knowledge the first of its kind. We hope it will be of aid for better understand-
ing how the process is performed by human reviewers, as well as for modelling the
process with automated methods.
While several parts of the process could conceivably be automated, only the data
extraction is a natural language processing problem, and was treated in this thesis.

18·4·1 Automated Data Extraction from diagnostic test accuracy Studies

Since the majority of previous methods have focused on interventions, there is a
lack of relevant methods for diagnostic test accuracy systematic reviews. The only
directly applicable previous methods extract key conclusions and study language.
In chapter 16 we have attempted to automatically extract the index test, target
condition, and reference standard from diagnostic test accuracy studies. These
items have not been previously considered by data extraction methods, and are
important to extract in systematic reviews, since they often take a similar role
as pico for randomized controlled trials. They are therefore often necessary for
determining whether the record should be included in the review, as well as for
determining what meta-analyses the studies will be included in.
We implemented models using both logistic regression, and deep learning using
BioBert. We have also compared the use of data preprocessing by replacing med-
ical terms with their corresponding Umls semantic types. No single method was
consistently better than the other ones.
The results were on par with the inter-annotator performance among human an-
notators. In other words, the labeling method was approximately as useful as high-
lighting done by another expert.
Distant supervision performed roughly as well as direct supervision, presumably
due to the much larger amounts of data available through this method.
Inter-annotator agreement was consistently low, even after several rounds of ad-
justments to the annotation instructions. Part of the reason appear to be that it is
difficult to clearly delineate which sentence unambiguously specify or do not spec-
ify study characteristics. Often this is a judgement call with a large degree of sub-
jectivity. Furthermore, the exhaustiveness of the systematic review process leads
to systematic reviews often including studies of highly variable reporting quality.
For instance, one of the included studies in the manually annotated sample was
not a diagnostic test accuracy study according to the annotators.
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18·4·2 Automated Meta-Analyses for diagnostic test accuracy systematic reviews

In chapter 15, we presentedwork constructing a pipeline where tabulated data from
diagnostic test accuracy studies can be used to perform meta-analyses without
human intervention.
Meta-analysis models for diagnostic test accuracy systematic reviews are consid-
ered too complex to be implemented in RevMan, and there is consequently no
pipeline to perform meta-analyses automatically from within RevMan. As a conse-
quence, review authors need to perform meta-analyses in external software. This
increases the workload, and has been hypothesized to lead to mistakes.
To test whether calculating meta-analyses in external software lead to mistakes,
we used the automated meta-analysis pipeline to recalculate the reported meta-
analyses in the 63 systematic reviews.
On average, we observed approximately 2% discrepancies from the reported results,
and we have used this as an indication of the lower bound on the accuracy that can
be expected by automated screening methods in one of our studies (chapter 12).
Furthermore, we used large discrepancies to screen for potential errors in the sum-
mary of findings tables in the systematic reviews. We identified two errors in 103
eligible meta-analyses.
One of the errors appears to be due to a copy-paste error, where the authors of
the review copied the same meta-analysis results for two different diagnostic tests.
This error could have been spotted in several ways: 1) our replicated score was
off by more than 10 point, 2) two rows in the summary of findings were identical,
3) the summary of findings table in the review described a different number of
included studies thanwhat was reported in ‘data and analyses’, and 4) the summary
of findings table in the review described a different number of participants than
what was reported in ‘data and analyses’.
The second error also appears to be a typo: ‘74.7 [85.2, 82.3]’ instead of ‘74.7 [65.2,
82.3]’. This error could also have been spotted in several ways: 1) our replicated
score was again off by more than 10 point, 2) [85.2, 82.3] is not a legal confidence
interval, and 3) the mean 74.7 lies outside the interval [82.3, 85.2].
All considered, such errors were rare in the summary of findings tables (2 in 103 eli-
gible meta-analyses in 63 reviews), but both could have been spotted automatically
using very simple methods. Alternatively, automatically populating summary of
findings tables from the data would also have avoided these errors.

18·5 Conclusions

We have presented a screening automation system that can be used in a variety of
systematic review contexts – ranging from review updates to reviews conducted
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de novo. The system is general in purpose, and performs well on several types
of systematic reviews, including diagnostic test accuracy reviews. The system is
furthermore highly customizable, and the underlying preprocessing pipeline and
classification or ranking algorithms can be changed to fine-tune the system for
specific systematic review topics or contexts.
Systematic review automation method can be used in systematic reviews without
fundamentally altering the process. Screening reduction method can be used as
an extra search filter, leaving the remainder of the review process identical to the
conventional process, including screening in random order, and the use of standard
reference managers like EndNote.
The accuracy of the screening process, and the impact it has on the results and
conclusions of the review can be measured prospectively through the screening
process using cumulative meta-analyses. This requires modifying the systematic
review process to perform data extraction and meta-analyses concurrently, but can
lead to substantial improvements over traditional stopping criteria for screening
automation.
Automated data extraction can perform as well as human experts, even with heuris-
tically annotated training data.
Manual handling of data when performing meta-analyses and limited integration
between review managers like RevMan and external software have been hypoth-
esized to cause errors in systematic reviews. We found only 2 instances of such
errors. However, both of these could have been avoided or spotted using very
simple data consistency checks.
Major obstacles in systematic review automation include variable quality of report-
ing, and the relatively high number of references from non-mainstream journals
and publishers, as well as gray literature. Better and more consistent reporting in
primary studies would likely increase inter-annotator agreement as well as data
extraction performance with automated methods. These obstacles do not just hin-
der the use of screening automation and automated data extraction, but severely
degrade the performance of existing automated full-text retrieval methods and pdf
to text converters like Grobid.
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De vraag naar en productie van systematische reviews neemt snel toe. PubMed
heeft alleen al in 2018 17.254 nieuwe systematische reviews geïndexeerd, en dit
aantal is sinds 2009 meer dan vervijfvoudigd. Terwijl de vraag naar systematische
reviews toeneemt, neemt ook het aantal publicaties dat auteurs van systematische
reviews moeten lezen toe. We besteden vandaag de dag meer tijd en geld aan het
produceren van nieuwe systematische reviews dan ooit tevoren.
Auteurs die systematische reviews uitvoeren, worden gedurende het hele systema-
tische reviewproces geconfronteerd met problemen. Het is moeilijk en tijdrovend
om te zoeken en op te halen, gegevens te verzamelen, manuscripten te schrijven
en statistische analyses uit te voeren.
Dit proefschrift bevat zeven artikelen (hoofdstukken 6–8, 11, 12, 15, en 16), gepubli-
ceerd tussen 2017 en 2019. In deze artikelen hebben we methoden onderzocht om
systematische reviews sneller, goedkoper en efficiënter uit te voeren. Tegelijker-
tijd vereisen systematische reviews nog steeds een grondige, objectieve en repro-
duceerbare methodologie om vertekening te voorkomen. Terwijl we probeerden
het proces doelmatiger te maken, streefden we er naar om dezelfde methodologi-
sche striktheid van het proces te handhaven.
Eerder onderzoek was meestal gericht op de automatisering van de screening op
basis van titel en samenvatting van de referenties. Er is relatief minder onderzoek
gedaan naar het automatiseren van de andere onderdelen van het reviewproces,
waaronder het ophalen van referenties, het screenen van fulltext referenties, het
extraheren van gegevens, gegevenssynthese, en de analysefase. Bovendien is het
eerdere onderzoek grotendeels gericht op systematische reviews van interventies
en slechts weinig op systematische reviews van diagnostische accuratesse.
Zoekstrategieën om diagnostische onderzoeken te identificeren, hebben vaak een
lage nauwkeurigheid en hun gebruik in systematische reviews wordt ontmoedigd.
Dit resulteert in relatief grote aantallen referenties die op basis van titel en samen-
vatting in eerste instantie geselecteerd zullen worden voor verdere beoordeling.
Systematische reviews van diagnostische accuratesse zijn daarom een belangrijk
doelwit voor de ontwikkeling van alternatieve benaderingen om de snel toene-
mende werklast het hoofd te bieden.
In dit proefschrift hebben we onderzocht hoe geautomatiseerde leermethoden kun-
nen worden gebruikt om deze werklast te verminderen, hoe dergelijke methoden
kunnen werken en hoe ze kunnen worden ingepast in verschillende systematische
reviewcontexten en -instellingen.

This section was translated by a non-native speaker (cn) with computer assisted translation using a
semi-automated deep neural machine translator (https://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translator). The text was
subsequently post-edited by a native speaker (ml).
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19·1 Automatisering van screening

In hoofdstuk 6–8 presenteerden we drie onderzoeken over methoden om het scree-
ningsproces in systematische reviews te automatiseren, met bijzondere aandacht
voor systematische reviews van diagnostische accurratesse.
Van alle referenties die zijn gevondenmet het de initiële zoektocht in elektronische
databases, kan het zo zijn dat slechts één op de duizend in het systematische review
wordt opgenomen. Dit betekent dat er een extreme onbalans is tussen de aantallen
relevante en niet-relevante referenties, hetgeen één van de technische uitdagingen
is waarmee rekening gehouden moet worden wanneer we het screeningsproces
van diagnostische reviews automatiseren.
Onder de 50 systematische reviews die wij hebben geanalyseerd, was het mediane
aantal opgenomen onderzoeken 14 (bereik: 0 tot 99). Elf van de reviews omvat-
ten vier onderzoeken of minder. De trainingsgegevens die we kunnen verwachten
van veel systematische reviews liggen dan ook ver onder de aantallen die nodig
zijn om de dataverzadiging in automatische leermodellen te bereiken. Het is on-
duidelijk hoe we deze modellen effectief kunnen trainen op dergelijke beperkte
gegevens, met name om (bijna) alle beschikbare relevante atikelen teru te vinden,
zoals gewoonlijk vereist is bij systematische reviews.

19·1·1 Verschillen tussen referenties geselecteerd op basis van de samenvatting en op basis
van de volledige tekst

Artikelen die in de uiteindelijke review zijn opgenomen en referenties die op ba-
sis van de titel en samenvatting waren meegenomen, maar later op basis van de
volledige tekst waren uitgesloten, verschilden onvoldoende in termen van taal of
woordkeuze om door algemene algoritmen voor machinaal leren, zoals logistieke
regressie, op basis van titel en samenvatting van elkaar te onderscheiden. Trai-
ningsgegevens waarbij gouden standaardlabels gebaseerd waren op titels, samen-
vattingen en volledige tekst lijken echter te leiden tot lichte resultatverbeteringen
ten opzichte van opleidingsgegevens waarbij gouden standaardlabels alleen op ti-
tels en samenvattingen gebaseerd waren. De verschillen bleken echter gering te
zijn.

19·1·2 Gebruik van trainingsgegevens uit beide screeningsfasen

Voor trainingsgegevens moet bij voorkeur gebruik worden gemaakt van labels op
basis van volledige tekst, die - indien dergelijke labels beschikbaar zijn – kunnen
fungeren als gouden standaard. Van de 50 onderzochte systematische reviews om-
vatten er echter slechts 19 ten minste 20 onderzoeken en in de praktijk zijn de beste
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kwaliteitsvoorbeelden van opgenomen onderzoekenwellicht te weinig om effectief
te gebruiken. Om goed presterende automatiseringsmethoden voor het screenings-
proces van diagnostische systematische reviews te ontwikkelen, kan het daarom
nodig zijn om de gegevens aan te vullen met gouden standaardlabels die alleen
op titels en samenvattingen zijn gebaseerd. We hebben ook resultatverbeteringen
waargenomen bij het aanvullen van trainingsgegevens met trainingsgegevens uit
soortgelijke systematische review-onderwerpen (d.w.z. door gebruik te maken van
transductieleren).
Om te profiteren van de gouden standaardlabels uit beide screeningfasen en om
het leren van soortgelijke onderwerpen over te dragen, hebben we een stacking-
model gepresenteerd, dat gebruik maakt van meta-regressie naar gecombineerde
beslissingen van meerdere modellen.

19·1·3 Screening benaderingen

We hebben drie verschillende modellen gepresenteerd, voor verschillende contex-
ten.
We hebben een statisch model gepresenteerd, getraind in de inclusie/exclusiebeslis-
singen van referenties die in eerdere systematische reviews zijn gescreend. Dit
model vereist dus dat de trainingsgegevens beschikbaar zijn op het moment dat
de screening wordt gestart. Dit beperkt de toepasbaarheid van dit model tot syste-
matische review updates, of om algemene modellen te trainen, bv. om algemene
diagnostische onderzoeken te identificeren.
We hebben een actief model voorgesteld, dat gebruik maakt van actief leren om de
resultaten tijdens de screening te verbeteren. Dit model vereist geen trainingsge-
gevens op het moment dat de screening wordt gestart en kan daarom ook worden
gebruikt in systematische reviews die de novo worden uitgevoerd, waar geen trai-
ningsgegevens beschikbaar zijn. Dit proces kan van nul af aan worden gestart,
zonder enige trainingsgegevens, maar als er een bepaalde hoeveelheid trainings-
gegevens beschikbaar is, of als de trainingsgegevens kunstmatig kunnen worden
geconstrueerd, kunnen deze gegevens als uitgangspunt worden gebruikt.
We hebben een stackingmodel gepresenteerd, dat de statische en actieve modellen
combineert om het beste van beide te bereiken. Het gebruikt een statisch (interthe-
matisch: over meerdere reviews heen) model als basis en gebruikt vervolgens de
meer gerichte intrathematische (binnen het review waaraan gewerkt wordt) gege-
vens die tijdens het screeningproces zijn verzameld om het model verder te verbe-
teren door actief te leren.

254



19. Nederlandse Samenvatting

19·2 Resultaten

In de hoofdstukken 6–8 hebben we de resultaten van onze modellen vergeleken
met de huidige state-of-the-art.

19·2·1 Statisch model (intrathematisch)

Ons statische model presteerde beter dan de toenmalige state-of-the-art op het ge-
bied van wss@95 (gemiddeld 0,392), maar slechter op het gebied van auc. Dit
suggereert dat ons model goed werkt voor het vinden van alle relevante onderzoe-
ken, terwijl de concurrerende benaderingen beter zijn in het vinden van de eerste
relevante onderzoeken, maar moeite hebben om de laatste te vinden.
Er zijn nog twee onderzoeken gepubliceerd waarin vijf nieuwe modellen op deze
dataset worden geëvalueerd, en die sindsdien de state-of-the-art verder hebben
ontwikkeld. De twee onderzoeken rapporteren gemiddeldewss@95 variërend van
0,347 tot 0,408. Ons model presteerde beter dan de gerapporteerde resultaten op
5, 6, 8, 9 en 10 van de 15 onderwerpen. Bijgevolg zijn de resultaten van ons model
nog steeds gunstig in vergelijking met de huidige state-of-the-art.

19·2·2 Statisch model (interthematisch)

Ons statische model presteerde beter dan het state-of-the-art model over alle onder-
werpen voor transductieleren. We zijn niet op de hoogte van latere onderzoeken
die het transductieleren onderzoeken, en dit model lijkt dus het huidige state-of-
the-art model te blijven.
Ondanks de eenvoud van de aanpak, leverde de statische benadering in combinatie
met transductieleren vaak resultaten op die vergelijkbaar zijn met de huidige state-
of-the-art actieve leermodellen.

19·2·3 Actief leren

De beste actieve leerbenadering presteerde consequent beter dan de transductie-
leerbenadering, hoewel de verschillen bescheiden waren.

19·2·4 Stackingmodel

Het stackingmodel combineert de hoge initiële resultaten van de transductieleerbe-
nadering met de resultatverbeteringen die in de loop van de tijd kunnen worden
bereikt door actief leren. In onze experimenten was het stackingmodel het best
presterendemodel voor systematische reviews die de novowerden uitgevoerd, met
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kleine resultatverbeteringen ten opzichte van het statische interthematische model
en het standaard actieve leren.

19·3 Screeningreductie compatibel met de huidige praktijk

In hoofdstuk 11 hebben we een verkennend onderzoek gepresenteerd waarin we
het gebruik van de statische methode hebben gedocumenteerd in de update van
2019 van de Comet-database. In dit onderzoek hebben we de cut-off met terug-
werkende kracht bepaald op basis van eerdere review-updates. We hebben een
drempel vastgesteld die zou hebben geleid tot een aanvaardbaar evenwicht tus-
sen vermindering van de werklast en de volledigheid van de screening in eerdere
review-updates, en we hebben dit criterium toegepast in de screening voor de
review-update van 2019.
Wij waren van mening dat het ontbreken van 2% van de potentieel relevante re-
ferenties een aanvaardbare afweging was voor een vermindering van de werklast
met 75%. Dit specifieke review is bedoeld om een literatuurdatabank te vullen,
en het fangst is daarom een directe en passende metriek voor de impact die de
screeningautomatisering had op het review.
Als een artikel in de databases alleen is opgenomen met titel en niet met samenvat-
ting, dan kan deze niet worden gerangschikt met aanvaardbare resultatgaranties.
Daarom kwamen referenties zonder samenvatting niet in aanmerking voor auto-
matisering van de screening. Er was echter slechts een klein aantal van dergelijke
referenties, wat overeenkomt met een werklast van ongeveer 2-4 uur per screener
als deze handmatig gescreend moeten worden.
Omdat we het model prospectief toepasten, konden we het verlies in fangst alleen
maar schatten. Relevante onderzoeken voor opname in de Comet-database wor-
den echter uit meerdere bronnen geïdentificeerd en de tijd zal uitwijzen of het
geschatte aantal gemiste referenties overeenkomt met het aantal onderzoeken dat
daadwerkelijk gemist werd. Een kleine steekproef (1%) van de uitgesloten referen-
ties werd gescreend om de resultaten te verifiëren, en al deze referenties bleken
correct te zijn uitgesloten.
We hebben geprobeerd ons zoveel mogelijk aan het vastgestelde proces te houden.
We gebruikten een screening reductie aanpak waarbij de inclusiedrempel kon wor-
den bepaald als onderdeel van het protocol. We pasten het model toe voordat we
met de screening begonnen, en de gegevens werden gerandomiseerd om te voor-
komen dat de rangorde vooringenomenheid voor de screening zou optreden. De
handmatige screening werd vervolgens uitgevoerd zoals gewoonlijk in EndNote.
In tegenstelling tot voorgaande jaren waren er bij de update van 2019 slechts twee
screeners betrokken, maar de rest van het proces was ongewijzigd voor het gebruik
van screeningreductie. De screeners hadden geen gespecialiseerde software nodig.
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19·3·1 Betere metrieken voor screeningautomatisering

In hoofdstuk 12 hebben we geprobeerd om het ‘informatieverlies’ direct te meten
voor systematische reviews van de diagnostische accuratesse. We hebben gepro-
beerd om te onderzoekenwat het betekent voor een verkorte methode om ‘dezelfde’
systematische review te krijgen als bij een uitgebreide screening.
We probeerden met de metriek aan drie criteria te voldoen:

☙ De metriek moet via het screeningproces cumulatief kunnen worden berekend

☙ Het zou mogelijk moeten zijn om met de screening te stoppen zodra we er ver-
trouwen in hebben dat verdere screening de conclusies van de evaluatie niet zal
veranderen; en

☙ Het moet mogelijk zijn om in het kader van het reviewprotocol criteria voor stop-
zetting vast te stellen om vertekening te voorkomen

Als methoden voor het automatiseren van het screeningsproces worden gebruikt
bij systematische reviews, moeten beoordelaars inschatten hoeveel en wat voor
soort verlies aanvaardbaar is. Een verlies in fangst of volledigheid kan de indruk
wekken dat niet aan de criteria van een systematische review is voldaan, maar
hoeft geen significante invloed te hebben op de resultaten en conclusies van het re-
view – op voorwaarde dat een voldoende selectie van onderzoekenwordt geïdentifi-
ceerd om alle evaluatievragen aan te pakken, en op voorwaarde dat de selectie van
onderzoeken onbevooroordeeld is. Om te voorkomen dat de beoordelaar voorin-
genomenheid en ad-hocbeslissingen tijdens het screeningproces meeneemt, moet
er een duidelijk, vooraf gespecificeerd protocol zijn om te beoordelen wanneer de
screening is voltooid.
Hiertoe hebben we getracht de nauwkeurigheid van de meta-analyse te gebruiken
als resultatmetriek tijdens de screening, door cumulatieve meta-analyses uit te voe-
ren via het screeningsproces. Deze nauwkeurigheid kan prospectief worden inge-
schat en drempels kunnen worden bepaald als onderdeel van het protocol. Dit
vereist echter dat het screeningsproces parallel met de dataextractie, synthese en
meta-analyse van het systematische reviewproces wordt uitgevoerd, en zou dus
resulteren in een onconventioneel systematisch reviewproces.
Het voordeel van de metriek is dat deze conservatief en betrouwbaar is, en het
onderbreken van de screening zodra de nauwkeurigheid binnen de vooraf vastge-
stelde grenzen valt, zal waarschijnlijk niet leiden tot verkeerde resultaten of con-
clusies in de systematische review. Bovendien kan het onderzoek daardoor veel
eerder in het proces worden onderbroken en kan de werkbelasting veel eerder wor-
den verminderd dan bij conventionele stopcriteria.
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19·4 Gegevensextractie & synthese

In deel IV presenteerden wij een dataset die de gegevensextractie, de gegevenssyn-
these, en de meta-analysestadia van de systematische reviews van diagnostische
accuratesse van de test documenteert, die 63 systematische reviews van 1.738 dia-
gnostische accuratesseonderzoeken omvat. In totaal, omvat het 589 meta-analyses
van 5.848 diagnostische testevaluaties. Wij hopen het van hulp voor beter begrip
zal zijn voor hoe het proces door menselijke reviewers, evenals voor het modelle-
ren van het proces met geautomatiseerde methodes wordt uitgevoerd.
Hoewel verschillende onderdelen van het proces denkbaar geautomatiseerd kun-
nenworden, is alleen de gegevensextractie een natuurlijk taalverwerkingsprobleem,
dat in deze dissertatie aan de orde is gekomen.

19·4·1 Geautomatiseerde gegevensextractie van diagnostische onderzoeken

Aangezien de meeste eerdere methoden zich hebben gericht op interventies, is er
een gebrek aan relevante methoden voor systematische reviews van de diagnosti-
sche accuratesse. De enige direct toepasbare eerdere methoden halen de belang-
rijkste conclusies en taal.
In hoofdstuk 16 hebben we geprobeerd om automatisch de index test, aandoening
en referentiestandaard te extraheren uit diagnostische accuratesseonderzoeken. De-
ze items zijn niet eerder overwogen door gegevensextractiemethoden, en zijn be-
langrijk om te extraheren in systematische reviews, omdat ze de kern van een ac-
curatessestudie vormen. Ze zijn daarom vaak nodig om te bepalen of het onder-
zoek/artikel/referentie? moet worden opgenomen in de evaluatie, maar ook om te
bepalen in welke meta-analyses de onderzoeken zullen worden opgenomen.
We hebben modellen geïmplementeerd die gebruik maken van zowel logistische
regressie als deep learning met BioBert. Ook hebben we het gebruik van data pre-
processing vergeleken door medische termen te vervangen door de bijbehorende
semantische Umls-typen. Geen enkele methode was steeds beter dan de andere
methoden.
De verschillen in annotaties tussen de modellen en menselijke annotators waren
vergelijkbaar met de verschillen tussen de menselijke annotators onderling. Met
andere woorden, de geautomatiseerde methode was ongeveer net zo nuttig als het
labelen? van de resultaten door een tweede expert.
Toezicht op afstand gaf ruwweg dezelfde resultatenals direct toezicht, vermoedelijk
als gevolg van de veel grotere hoeveelheden gegevens die beschikbaar zijn via deze
methode.
De overeenstemming tussen de menselijke annotators was constant laag, zelfs na
verschillende rondes van aanpassingen aan de annotatie-instructies. Een deel van
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de reden lijkt te zijn dat het moeilijk is om duidelijk af te bakenen welke zin een-
duidig de kenmerken (index test, aandoening, referentiestandaard) specificeert of
niet specificeert. Vaak is dit een oordeelsvorming met een grote mate van subjec-
tiviteit. Bovendien leidt de volledigheid van het systematische reviewproces tot
systematische reviews die vaak ook onderzoeken met een zeer wisselende kwali-
teit van de verslaglegging omvatten. Eén van de referenties die in de handmatig
geannoteerde steekproef zijn opgenomen, was volgens de annotators bijvoorbeeld
geen diagnostisch accuratessestudie.

19·4·2 Geautomatiseerde meta-analyses voor systematische reviews van diagnostische accu-
ratesse

In hoofdstuk 15 ontwikkelden we een pijplijn waarin de gegevens uit diagnostische
accuratesseonderzoeken in tabelvorm kunnen worden gebruikt voor het uitvoeren
van meta-analyses, zonder menselijke tussenkomst.
Meta-analysemodellen voor diagnostische accuratesse worden te complex geacht
om in RevMan te implementeren en er is dan ook geen pijplijn om automatisch
meta-analyses uit te voeren vanuit RevMan. Als gevolg hiervan moeten review
auteurs meta-analyses uitvoeren in externe software. Dit verhoogt de werklast en
kan tot fouten leiden.
Om te testen of het berekenen van meta-analyses in externe software tot fouten
leidt, hebben we onze geautomatiseerde meta-analyse pijplijn gebruikt om de ge-
rapporteerde meta-analyses in de 63 systematische reviews opnieuw te berekenen.
Gemiddeld hebben we ongeveer 2% afwijkingen waargenomen ten opzichte van
de gerapporteerde resultaten, en dit hebben we gebruikt als indicatie van de on-
dergrens van de nauwkeurigheid die mag worden verwacht van geautomatiseerde
screeningmethoden in een van onze onderzoeken (hoofdstuk 12).
Verder hebben we mogelijke fouten in de summary-of-findingstabellen in de sys-
tematische reviews opgespoord. Over 103 in aanmerking komende meta-analyses
hebben we in totaal twee fouten geïdentificeerd.
Een van de fouten lijkt te wijten te zijn aan een copy-paste fout, waarbij de auteurs
van de review dezelfde meta-analyseresultaten hebben gekopieerd voor twee ver-
schillende diagnostische tests. Deze fout had op verschillende manieren kunnen
worden gesignaleerd: 1) onze gerepliceerde score verschilde met meer dan 10 pro-
centpunten, 2) twee rijen in de summary-of-findings waren identiek, 3) in de tabel
met de summary-of-findings in het review beschreven een ander aantal opgeno-
men onderzoeken dan wat werd gerapporteerd in ‘data and analyses’, en 4) in de
summary-of-findingstabel in de evaluatie werd een ander aantal deelnemers be-
schreven dan werd gerapporteerd in de ‘data and analyses’.
De tweede fout blijkt ook een copy-paste fout te zijn: ‘74,7 [85,2; 82,3]’ in plaats van
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‘74,7 [65,2; 82,3]’. Deze fout kan ook op verschillende manieren zijn gesignaleerd:
1) onze gerepliceerde samenvattende schatter verschilde opnieuw met meer dan 10
procentpunten, 2) [85,2; 82,3] is geen geldig betrouwbaarheidsinterval: de lagere
grens is hoger dan de hogere grens, en 3) het gemiddelde 74,7 ligt buiten het interval
[82,3; 85,2].
Al met al komen deze fouten zelden voor in de summary-of-findingstabellen (2 op
103 in aanmerking komende meta-analyses in 63 reviews), maar beide fouten had-
den automatisch kunnen worden gesignaleerd met behulp van zeer eenvoudige
methoden. Een andere mogelijkheid zou zijn geweest om deze fouten te voorko-
men door automatisch summary-of-findingstabellen uit de gegevens in te vullen.

19·5 Conclusies

We hebben een geautomatiseerd screeningsysteem gepresenteerd dat kan worden
gebruikt in een verscheidenheid van systematische reviewcontexten – variërend
van review-updates tot reviews die de novo worden uitgevoerd. Het systeem is
algemeen in doel, en presteert goed op verscheidene types van systematische re-
views, met inbegrip van systematische reviews van diagnostische accuratesse. Het
systeem is bovendien zeer aanpasbaar, en de onderliggende voorbewerking pijplijn
en classificatie- of rangschikkingsalgoritmen kunnen worden gewijzigd om het sys-
teem te verfijnen voor specifieke systematische review-onderwerpen of contexten.
Methoden die het proces van systematische reviews automatiseren kunnenworden
gebruikt zonder het proces fundamenteel te veranderen. De screeningsreductieme-
thoden kunnen gebruikt worden als een extra zoekfilter, waardoor de rest van het
reviewproces identiek blijft aan het conventionele proces, met inbegrip van scree-
ning in willekeurige volgorde, en het gebruik van standaard referentiemanagers
zoals EndNote.
De nauwkeurigheid van het screeningsproces en de impact ervan op de resultaten
en conclusies van de review kan prospectief gemeten worden via het screenings-
proces met behulp van cumulatieve meta-analyses. Dit vereist een aanpassing van
het systematische reviewproces om gegevensextractie en meta-analyses gelijktij-
dig uit te voeren, maar kan leiden tot aanzienlijke verbeteringen ten opzichte van
de traditionele stopcriteria voor screeningautomatisering.
Geautomatiseerde gegevensextractie kan net zo goed presteren als menselijke des-
kundigen, zelfs met heuristisch geannoteerde trainingsgegevens.
De handmatige verwerking van gegevens bij het uitvoeren van meta-analyses en
de beperkte integratie tussen review managers zoals RevMan en externe software
zijn verondersteld fouten te veroorzaken in systematische reviews. We vonden
slechts 2 gevallen van dergelijke fouten. Beide fouten hadden echter voorkomen
of ontdekt kunnen worden met behulp van zeer eenvoudige controles van de gege-
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vensconsistentie.
Belangrijke obstakels in de systematische reviewautomatisering zijn ondermeer de
wisselende kwaliteit van de rapportage en het relatief hoge aantal referenties uit
niet-mainstreamtijdschriften en uitgevers, alsook grijze literatuur. Betere en con-
sistentere rapportage in primaire onderzoeken zou waarschijnlijk leiden tot een
betere overeenkomsten tussen de beoordelaars en tot betere resultaten op het ge-
bied van gegevensextractiemet geautomatiseerdemethoden. Deze obstakels belem-
meren niet alleen het gebruik van screeningautomatisering en geautomatiseerde
gegevensextractie, maar tasten ook de resultaten van bestaande geautomatiseerde
full-text retrieval-methoden en tekstconverters zoals Grobid sterk aan. 261
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La demande et la production de revues systématiques augmentent rapidement. 17
254 nouvelles revues systématiques ont été indexées dans PubMed en 2018 seule-
ment, et ce nombre a plus que quintuplé depuis 2009. Bien que la demande en
revues systématiques augmente, le nombre de publications que les revues systéma-
tiques doivent prendre en compte augmente également à un rythme effréné. Nous
consacrons aujourd’hui plus de temps et d’argent que jamais à la production de
nouvelles revues systématiques.
Les auteurs de revues systématiques font face à des problèmes tout au long du
processus production des revues. Il est difficile et fastidieux d’identifier les articles
pertinents, d’en récupérer le texte intégral, de recueillir les données, d’effectuer les
analyses statistiques afférentes, et de rédiger le manuscrit final.
Cette thèse a donné lieu à sept articles (chapitres 6–8, 11, 12, 15, et 16) publiés entre
2017 et 2019. Dans ces documents, nous avons tenté d’explorer des méthodes per-
mettant d’effectuer les revues systématiques plus rapidement, à moindre coût et
plus efficacement. En même temps, les revues systématiques exigent toujours une
méthodologie consciencieuse, objective et reproductible pour éviter tout biais. Tout
en essayant d’accélérer le processus, nous nous efforçons également de maintenir
la même rigueur méthodologique du processus. La plupart des travaux antérieurs
ont porté sur l’automatisation de la présélection à l’étape de la présélection des
titres et des résumés.
Comparativement, peu de travaux ont porté sur l’automatisation des autres parties
du processus de production des revues systématiques, y compris l’extraction des ar-
ticles, la sélection des articles, l’extraction des données, la synthèse des données et
les étapes de l’analyse. De plus, les travaux existant se sont focalisés sur les revues
systématiques consacrées aux interventions, et peu de travaux antérieurs ont porté
sur les revues systématiques consacrées à l’exactitude des tests diagnostiques.
Les requêtes soumises à des moteurs de recherche pour identifier les études diag-
nostiques ont tendance à être peu précises et leur utilisation est découragée dans
le cadre de revues systématiques. Il en résulte un nombre relativement plus élevé
de références d’articles candidats à la présélection. Les revues systématiques consa-
crées à l’exactitude des tests diagnostiques peuvent donc être une cible de choix
pour des approches alternatives permettant de faire face à l’augmentation rapide
de la charge de travail.
Dans cette thèse, nous avons examiné comment les méthodes d’apprentissage au-
tomatique peuvent être utilisées pour réduire cette charge de travail, comment ces

This section was translated by a non-native speaker (cn) with computer assisted translation using a
semi-automated deep neural machine translator (https://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translatorhttps://www.deepl.com/translator). The text was
subsequently post-edited by a native speaker (an).
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méthodes peuvent fonctionner et comment elles peuvent s’intégrer dans différents
contextes et paramètres des revues systématiques.

20·1 Automatisation de la sélection d’articles

Dans les chapitres 6–8, nous avons présenté trois articles sur les méthodes d’auto-
matisation de la sélection d’articles pour les revues systématiques, avec un accent
particulier sur les revues systématiques consacrées à l’exactitude des tests diagnos-
tiques.
Les méthodes d’automatisation de la sélection doivent faire face à plusieurs contrai-
ntes techniques, dont un déséquilibre de classe extrême. Les revues systématiques
consacrées à l’exactitude des tests diagnostiques peuvent inclure un seul article sur
mille initialement issus de la recherche par requête dans les bases de données.
De plus, parmi les 50 revues systématiques de notre étude, le nombre médian d’ar-
ticles inclus était de 14 (intervalle : 0 à 99). Onze des revues systématiques compre-
naient quatre articles inclus ou moins. Les données d’entraînement que l’on peut
tirer de nombreuses revues systématiques sont donc bien en deçà des volumes né-
cessaires pour atteindre la saturation des données dans les modèles d’apprentissage.
On ne sait pas très bien comment entraîner efficacement les modèles d’automatisa-
tion de la sélection sur des données aussi limitées, en particulier pour atteindre le
rappel presque parfait généralement requis par les revues systématiques.

20·1·1 Différences entre les articles inclus d’après le résumé et le texte intégral

Les articles inclus dans une revue systématique et les articles provisoirement in-
clus sur la base du résumé mais exclus sur la base du texte intégral ne sont pas suf-
fisamment différents en termes de contenu linguistique ou de choix de mots pour
que des algorithmes génériques d’apprentissage tels que la régression logistique
puissent distinguer les deux catégories en fonction du titre et du résumé. Toutefois,
les données d’entraînement pour lesquelles le gold-standard était fondées sur les
titres, les résumés et le texte intégral semblent offrir de meilleures performances
par rapport aux données pour lesquelles le gold-standard était fondées uniquement
sur les titres et les résumés. Les différences semblaient cependant mineures.

20·1·2 Utilisation des données d’entraînement des deux étapes de sélection

Les données d’entraînement devraient reposer de préférence sur un gold standard
issu du texte intégral, si cette information est disponibles. Toutefois, sur les 50 re-
vues systématiques utilisées dans notre étude, seulement 19 comprenaient aumoins
20 articles inclus. Dans la pratique, les exemples d’articles inclus de la meilleure
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qualité peuvent s’avérer trop rares pour être utilisés efficacement. Pour élaborer
des méthodes d’automatisation de la sélection performantes pour les revues sys-
tématiques consacrées à l’exactitude des tests diagnostiques, il peut donc être né-
cessaire de compléter les données par un gold standard fondé uniquement sur les
titres et les résumés des articles. Nous avons également observé des améliorations
de performance en complétant les données d’entraînement sur une thématique par
des données d’entraînement issues de revues systématiques consacrées à une thé-
matique similaire (c.-à-d. en utilisant l’apprentissage par transfert).
Pour tirer parti du gold standard issus des deux étapes de sélection préliminaire
ainsi que de l’apprentissage par transfert sur des sujets similaires, nous avons pré-
senté un modèle de stacking, qui utilise la méta-régression à des décisions combi-
nées à partir de modèles multiples.

20·1·3 Approches de sélection d’articles

Nous avons présenté trois modèles différents, pour des contextes de revues systé-
matiques légèrement différents.
Nous avons présenté un modèle statique, fondé sur les décisions d’inclusion/exclu-
sion d’articles sélectionnés lors d’éditions précédentes d’une même revue systéma-
tique. Ce modèle nécessite donc que les données d’entraînement soient disponibles
au moment où le processus de sélection est amorcé. Cela limite généralement l’ap-
plicabilité de ce modèle à la mise à jour des revues systématiques ou à l’entraîne-
ment de modèles génériques, par exemple pour identifier des articles sur l’exacti-
tude des tests diagnostiques.
Nous avons présenté un modèle dynamique, qui utilise l’apprentissage actif pour
améliorer ses performances tout au long du tri. Ce modèle ne nécessite pas de
données d’entraînement disponibles au début de la sélection et peut donc être
utilisé également dans des revues systématiques portant sur de nouvelles théma-
tiques pour lesquelles aucune donnée d’entraînement ad-hoc ne sont disponibles.
Ce processus peut être commencé sans aucune donnée d’entraînement. Cependant,
si des donnée d’entraînement sont disponibles ou peuvent être construites artifi-
ciellement, ces données peuvent être utilisées comme point de départ.
Nous avons présenté un modèle de stacking, qui combine les modèles statique
et dynamique pour tirer parti de leur complémentarité. Le modèle statique (inter-
thématique) est utilisé comme base et les données intra-thématiques plus ciblées
recueillies dans le cadre du processus de sélection sont ensuite utilisées pour amé-
liorer le modèle grâce à l’apprentissage actif.
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20·2 Performance de la sélection automatiqe

Dans les chapitres 6 à 8, nous avons comparé la performance de nos modèles avec
l’état de l’art actuel.

20·2·1 Modèle statique (intra-thématique)

Lorsque nous avons construit notre modèle statique, il offrait de meilleures per-
formances que l’état de l’art en termes de « Worked Saved Under Sampling » au
niveau de rappel de 0,95 : wss@95 (0,392 en moyenne), mais se positionnait en des-
sous de l’état de l’art en termes d’auc. Cela suggère que notre modèle fonctionne
bien pour identifier toutes les études pertinentes, alors que les approches concur-
rentes sont meilleures pour trouver les premières études pertinentes, mais peinent
à identifier les dernières.
Deux autres études ont été publiées pour évaluer cinq nouveaux modèles de cet en-
semble de données et ont depuis amélioré l’état de l’art. Ces deux nouvelles études
font état d’un wss@95 compris entre 0,347 et 0,408 en moyenne. Notre modèle a
donné de meilleurs résultats que les résultats rapportés sur 5, 6, 8, 9 et 10 des 15
sujets. Ainsi, la performance de notre modèle se compare toujours favorablement
à l’état actuel de l’art.

20·2·2 Modèle statique (inter-thématique)

Les résultats de notre modèle statique ont été meilleurs que l’état de l’art dans
tous les domaines de l’apprentissage par transfert. Nous n’avons pas connaissance
d’autres études portant sur l’apprentissage par transfert, et ce modèle semble donc
demeurer à la pointe de la technologie.
Malgré sa simplicité, l’approche statique combinée à l’apprentissage par transfert
a souvent donné des performances comparables aux modèles d’apprentissage actif
les plus performants.

20·2·3 Apprentissage actif

La meilleure approche d’apprentissage actif a constamment surpassé l’approche
d’apprentissage par transfert, bien que les différences soient modestes.

20·2·4 Modèle de Stacking

Le modèle de stacking combine les performances élevées de l’approche d’apprentis-
sage par transfert et les améliorations de performance qui peuvent être obtenues
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au fil du temps grâce à l’apprentissage actif. Dans nos expériences, le modèle de sta-
cking était le modèle le plus performant pour les revues systématiques effectuées
de novo, avec de légères améliorations de performance par rapport au modèle inter-
thématique statique et l’apprentissage actif standard.

20·3 Réduction de la charge de travail associée à la sélection d’articles
compatible avec la pratiqe

Le chapitre chapter :database présente une étude prospective dans laquelle nous
avons documenté l’utilisation de la méthode statique dans la mise à jour 2019 de
la base de données Comet, via une revue systématique sur les Core Outcome Sets.
Dans cette étude, le seuil de sélection du modèle a été déterminé rétrospectivement
d’après les mises à jour antérieures de la revue. Nous avons choisi un seuil qui
aurait permis d’atteindre un équilibre acceptable entre la réduction de la charge de
travail et l’exhaustivité de la sélection dans les mises à jour précédentes et nous
avons appliqué ce critère dans l’examen des articles pour la mise à jour de 2019.
Nous avons estimé que la perte de 2 % des articles constituait un compromis accep-
table pour une réduction de 75 % de la charge de travail. Cette revue vise à alimenter
une base de données documentaire, et le rappel est donc une mesure directe et ap-
propriée de l’impact de l’automatisation de la sélection des articles inclus dans la
revue – et donc dans la base de données.
Les articles sans résumés ne pouvaient être classés avec une garantie de perfor-
mance acceptable et n’étaient donc pas candidats à la sélection automatique. Ils
ont été examinés entièrement manuellement. Il n’y avait cependant qu’un petit
nombre de ces articles, ce qui correspond à une charge de travail d’environ 2 à 4
heures par examinateur.
Comme nous avons appliqué lemodèle de façon prospective, nous n’avons pu qu’es-
timer la perte de rappel. Les études pertinentes à inclure dans la base de données
COMET sont toutefois identifiées à partir de sources multiples, et le temps nous
dira si le nombre estimé d’articles manqués correspond au nombre d’études qui
ont été effectivement manquées. Un petit échantillon (1 %) des articles exclus a été
examiné manuellement pour vérifier les prédictions du modèle, et tous ces articles
ont été correctement exclues.
L’application de l’automatisation de la sélection a été faite de manière à respecter
le plus fidèlement possible le processus établi. Nous avons utilisé une approche
de réduction de la sélection où le seuil d’inclusion pouvait être déterminé dans le
cadre du protocole. Nous avons appliqué le modèle avant de commencer la sélec-
tion, et l’ordre des articles a été randomisé pour éviter tout biais d’inclusion. La
sélection a ensuite été effectuée dans EndNote conformément à la pratique habi-
tuelle. Contrairement aux années précédentes, la mise à jour de 2019 a été faite
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par seulement deux examinateurs. Le reste du processus est demeuré inchangé, à
l’exception de l’utilisation de la sélection automatique. Aucun logiciel spécialisé
n’était requis pour les examinateurs.

20·3·1 Meilleures mesures pour l’automatisation de la sélection

Le chapitre 12 présente une étude dans laquelle nous avons essayé de mesurer direc-
tement la « perte d’information » pour les revues systématiques portant sur l’exac-
titude des tests diagnostiques. Nous avons essayé d’examiner ce que cela signifie
pour une méthode de sélection automatique d’articles produire la «même » revue
systématique qu’un examen exhaustif de l’ensemble des articles.
Nous avons essayé de satisfaire trois critères avec cette mesure :

☙ La mesure devrait pouvoir faire l’objet d’un calcul cumulatif dans le cadre du pro-
cessus de tri

☙ Il devrait être possible d’arrêter la sélection dès que nous serons convaincus que la
poursuite ne modifiera pas les conclusions de la revue ; et

☙ Il devrait être possible de définir un critère d’arrêt dans le cadre du protocole de
revue afin d’éviter tout biais.

Pour qu’il soit possible d’utiliser des méthodes d’automatisation de sélection d’ar-
ticles dans des revues systématiques, les examinateurs doivent juger quel volume
et quel type de perte sont acceptables.
Une perte de rappel ou d’exhaustivité peut donner lieu à une revue qui ne « ressem-
ble » pas à une revue systématique, mais peut ne pas avoir d’incidence significative
sur les résultats et les conclusions de la revue, pourvu que la sélection d’études soit
suffisante pour permettre de répondre à toutes les questions de la revue et que le
choix des études soit impartial. Afin d’éviter tout parti pris de la part des examina-
teurs et des décisions ad hoc pendant le processus de sélection, il devrait y avoir
un protocole clair et préétabli pour juger quand la revue préalable est terminée.
À cette fin, nous avons tenté d’utiliser l’exactitude des méta-analyses comme me-
sure de performance de la présélection, en effectuant des méta-analyses cumula-
tives au cours du processus de sélection. Cette mesure peut être estimée prospecti-
vement et des seuils peuvent être fixés dans le cadre du protocole. Cela demande
toutefois que le processus de sélection soit effectué parallèlement aux étapes d’ex-
traction, de synthèse et de méta-analyse des données, ce qui donnerait lieu à un
processus de revue systématique non conventionnel.
L’avantage de la mesure est qu’elle est fiable, et l’interruption de la sélection dès
que l’exactitude se situe dans les limites prescrites est peu susceptible d’entraîner
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des résultats ou des conclusions erronés dans la revue systématique. De plus, cela
permet d’interrompre la sélection beaucoup plus tôt dans le processus et de réduire
la charge de travail de plusieurs ordres de grandeur de plus qu’avec les critères
d’arrêt conventionnels.

20·4 Extraction & synthèse de données

Dans la partie IV, nous présentons un corpus documentant les étapes d’extraction
de données, de synthèse de données et de méta-analyse pour les revues systéma-
tiques portant sur l’exactitude des tests diagnostiques, comprenant 63 revues systé-
matiques sur 1 738 études portant sur l’exactitude des tests diagnostiques. Au total,
le corpus comprend 589 méta-analyses de 5 848 évaluations de tests diagnostiques.
A notre connaissance, il s’agit du premier corpus partageant ce genre de données
avec la communauté scientifique. Nous espérons qu’il aidera à mieux comprendre
les étapes mises en œuvre dans l’élaboration des revues systématiques par leur
auteurs, ainsi qu’à modéliser le processus à l’aide de méthodes automatisées.
Bien que plusieurs parties du processus puissent être automatisées, l’extraction des
données est un problème particulièrement intéressant du point du traitement du
langage naturel, que nous avons traité dans cette thèse.

20·4·1 Extraction de données des études portant sur l’exactitude des tests diagnostiques

La majorité des travaux antérieurs en extraction d’information pour les revues sys-
tématiques portaient sur les interventions. Ainsi, aucuneméthodes disponible n’est
directement applicable pour les revues systématiques portant sur l’exactitude des
tests diagnostiques. Les seuls éléments présents dans les études de test diagnos-
tiques ayant fait l’objet d’extraction automatique sont les conclusions clés et le
langage d’étude.
Dans le chapitre 16, nous avons tenté d’extraire automatiquement le test de réfé-
rence, la maladie et le gold standard des études portant sur l’exactitude des tests
diagnostiques. L’extraction automatique de ces éléments n’a pas été étudiée aupa-
ravant. Il est important d’être en mesure de les extraire car ils jouent souvent un
rôle similaire aux éléments « pico » (Patient, Intervention, Comparator, Outcome)
dans les essais contrôlés randomisés. Ils sont donc souvent nécessaires pour déter-
miner si l’article doit être inclus dans la revue systématique, ainsi que pour déter-
miner dans quelles méta-analyses les études doivent être incluses.
Nous avons mis en œuvre deux modèles utilisant la régression logistique, et l’ap-
prentissage profond utilisant BioBert. Nous avons également comparé l’utilisa-
tion du prétraitement des données en remplaçant les termes médicaux par leurs
types sémantiques Dans l’Umls. Aucune méthode ne s’est montré meilleure que
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les autres dans toutes les configurations. Les résultats obtenus étaient néanmoins
comparables à l’accord inter-annotateur humain. En d’autres termes, la méthode
d’annotation automatique des test de référence, maladie et gold standard est à peu
près aussi utile que les annotations faites par un expert humain.
L’apprentissage distant offre des performances équivalentes à celles de l’apprentis-
sage direct, probablement en raison de la quantité beaucoup plus importante de
données disponibles grâce à cette méthode.
L’accord inter-annotateur est globalement faible, même après plusieurs cycles d’aj-
ustement du guide d’annotation. Cela s’explique en partie par le fait qu’il est diffi-
cile de délimiter clairement les phrases qui précisent sans ambiguïté ou ne précisent
pas les caractéristiques de l’étude. Il s’agit souvent d’une question de jugement avec
un grand degré de subjectivité. En outre, l’exhaustivité du processus de revue sys-
tématique conduit à des revues systématiques incluant souvent des études dont la
qualité des rapports est très variable. Par exemple, l’une des études incluses dans
l’échantillon annoté manuellement n’était pas une étude portant sur l’exactitude
d’un test diagnostique, selon les experts humains.

20·4·2 Méta-analyses automatisées pour les revues systématiques portant sur l’exactitude des
tests diagnostiques.

Au chapitre 15, nous avons présenté les travaux de construction d’une chaîne de
traitement dans laquelle les données tabulées des études portant sur l’exactitude
des tests diagnostiques peuvent être utilisées pour effectuer des méta-analyses sans
intervention humaine.
Lesmodèles deméta-analyse pour les revues systématiques portant sur l’exactitude
des tests diagnostiques sont considérés comme trop complexes pour être implémen-
tés dans l’outil RevMan (utilisé par le centre Cochrane pour la mise en forme de
revues systématiques), et il n’y a donc pas de chaîne de traitement pour effectuer au-
tomatiquement des méta-analyses à partir de RevMan. Par conséquent, les auteurs
de la revue doivent effectuer des méta-analyses dans des logiciels externes. Cela
augmente la charge de travail et on a émis l’hypothèse qu’il pourrait en résulter
des erreurs.
Pour vérifier si le calcul des méta-analyses dans un logiciel externe entraîne des
erreurs, nous avons utilisé la chaîne de traitement automatisée de méta-analyses
pour recalculer les méta-analyses rapportées dans les 63 revues systématiques.
En moyenne, nous avons observé des écarts d’environ 2 % par rapport aux résultats
originaux, ce qui nous a permis d’établir la limite inférieure de la précision que
l’on peut attendre des méthodes de sélection automatique dans une de nos études
(chapitre 12).
De plus, nous avons utilisé d’importantes divergences pour déceler les erreurs po-
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tentielles dans les tableaux du « summary of findings » des revues systématiques.
Nous avons relevé deux erreurs dans 103 méta-analyses admissibles.
L’une des erreurs semble être due à une erreur de copier-coller, où les auteurs de la
revue ont copié les mêmes résultats de méta-analyse pour deux tests diagnostiques
différents. Cette erreur aurait pu être décelée de plusieurs façons : 1) notre score
répliqué était décalé de plus de 10 points, 2) deux lignes du « summary of findings »
étaient identiques, 3) le tableau du « summary of findings » de la revue décrit un
nombre différent d’études incluses que ce qui a été rapporté dans « data and ana-
lyses », et 4) le tableau du « summary of findings » de la revue décrit un nombre
de participants différent de celui qui a été rapporté dans « data and analyses ».
La deuxième erreur semble également être une faute de frappe : « 74,7 [85,2 ; 82,3] »
au lieu de « 74,7 [65,2 ; 82,3] ». Cette erreur aurait également pu être décelée de
plusieurs façons : 1) notre score répliqué était encore une fois décalé de plus de
plus de 10 points, 2) [85,2 ; 82,3] n’est pas un intervalle de confiance légal, et 3) la
moyenne 74,7 se situe en dehors de l’intervalle [82,3 ; 85,2].
Toutes proportions gardées, de telles erreurs étaient rares dans les tableaux de
synthèse des résultats (2 sur 103 méta-analyses admissibles dans 63 revues), mais
les deux auraient pu être repérées automatiquement au moyen de méthodes très
simples. Par ailleurs, le fait de remplir automatiquement les tableaux de synthèse
des résultats à partir des données aurait également permis d’éviter ces erreurs.

20·5 Conclusions

Nous avons présenté un système d’automatisation de la sélection d’articles qui peut
être utilisé dans divers contextes de revue systématique, allant de la mise à jour des
revues à la mise en œuvre de revues effectuées de novo. Le système est générique
et donne de bons résultats pour plusieurs types de revues systématiques, y compris
les revues portant sur l’exactitude des tests diagnostiques. De plus, le système est
hautement configurable et peux être adossé à des algorithmes de prétraitement
et de classification afin d’adapter le système à des sujets ou contextes de revues
systématiques précis. La méthode de tri automatique d’articles peut être utilisée
dans les revues systématiques sans en modifier fondamentalement le processus.
Le filtrage automatique d’articles peut être utilisée comme un filtre de recherche
supplémentaire, laissant le reste du processus d’examen identique au processus
conventionnel, y compris la présélection dans un ordre aléatoire, et l’utilisation de
gestionnaires de référence standard comme EndNote.
L’exactitude du processus de sélection et l’impact qu’il a sur les résultats et les
conclusions de la revue peuvent être mesurés de façon prospective au moyen de
méta-analyses cumulatives dans le cadre du processus de sélection. Pour ce faire,
il faut modifier le processus de revue systématique afin d’effectuer l’extraction des
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données et les méta-analyses simultanément, mais cela peut mener à des amélio-
rations substantielles par rapport aux critères d’arrêt traditionnels pour l’automa-
tisation de la sélection. L’extraction automatisée des données peut fonctionner à
niveau comparable à celui d’ experts humains, même avec des données d’entraîne-
ment annotées automatiquement à l’aide d’heuristiques.
Des hypothèses ont indiqué que le traitement manuel des données lors des méta-
analyses et l’intégration limitée entre les gestionnaires de revue comme RevMan
et les logiciels externes pourraient être à l’origine d’erreurs dans les revues systé-
matiques. Nous n’avons trouvé que deux cas d’erreurs de ce genre. Cependant, ces
deux erreurs auraient pu être évitées ou repérées à l’aide de contrôles de cohérence
des données très simples.
Les principaux obstacles à l’automatisation de la revue systématique sont la qua-
lité variable des rapports et le nombre relativement élevé d’articles provenant de
revues et d’éditeurs non traditionnels, ainsi que la littérature grise. Des rapports
de meilleure qualité et plus cohérents dans les études primaires permettraient pro-
bablement d’accroître l’accord inter-annotateurs ainsi que les performances de l’ex-
traction des données grâce à des méthodes automatisées. Ces obstacles ont un
impact négatif sur l’utilisation de l’automatisation pour la sélection d’articles et
l’extraction de données, ainsi que sur la performance des méthodes existantes de
récupération automatisée du texte intégral à l’aide de convertisseurs pdf en texte
comme Grobid.
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Titre : Méthodes d'automatisation des revues systématiques 

Mots clés : Traitement automatique des langues, apprentissage automatique, revues systématiques 

Résumé : Les récentes avancées en matière 

d'intelligence artificielle ont vu une adoption limitée 

dans la communauté des auteurs de revues 

systématiques, et une grande partie du processus 

d'élaboration des revues systématiques est toujours 

manuelle, longue et coûteuse. Les auteurs de revues 

systématiques rencontrent des défis tout au long du 

processus d'élaboration d'une revue. Il est long et 

difficile de chercher, d'extraire, de collecter des 

données, de rédiger des manuscrits et d'effectuer 

des analyses statistiques. L'automatisation de la 

sélection d'articles a été proposé comme un moyen 

de réduire la charge de travail, mais son adoption a 

été limitée en raison de différents facteurs, 

notamment l'investissement important de prise en 

main, le manque d'accompagnement et les 

décalages par rapport au flux de travail. Il est 

nécessaire de mieux harmoniser les méthodes 

actuelles avec les besoins de la communauté des 

revues systématiques. 

Les études sur l'exactitude des tests diagnostiques 

sont rarement indexées de façon à pouvoir être 

facilement retrouvées dans les bases de données  

bibliographiques. La variabilité terminologique et 

l'indexation lacunaire ou incohérente des ces études 

sont autant de facteurs augmentant le niveau de 

difficulté de réalisation des revues systématiques 

qui s'y intéressent. Les requêtes de recherche 

méthodologique visant à repérer les études 

diagnostiques ont donc tendance à être peu 

précises, et leur utilisation dans les études 

méthodiques est déconseillée. Par conséquent, il est 

particulièrement nécessaire d'avoir recours à 

d'autres méthodes pour réduire la charge de travail 

dans les études méthodiques sur l'exactitude des 

tests diagnostiques. 

Dans la présente thèse, nous avons examiné 

l'hypothèse selon laquelle les méthodes 

d'automatisation peuvent offrir un moyen efficace 

de rendre le processus d'élaboration des revues 

systématique plus rapide et moins coûteux, à 

condition de pouvoir cerner et surmonter les 

obstacles à leur adoption. Les travaux réalisés 

montrent que les méthodes automatisées offrent un 

potentiel de diminution des coûts tout en 

améliorant la transparence et la reproductibilité du 

processus. 
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Title : Systematic Review Automation Methods 
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Abstract : Recent advances in artificial intelligence 

have seen limited adoption in systematic reviews, 

and much of the systematic review process remains 

manual, time-consuming, and expensive. Authors 

conducting systematic reviews face issues 

throughout the systematic review process. It is 

difficult and time-consuming to search and retrieve, 

collect data, write manuscripts, and perform 

statistical analyses. Screening automation has been 

suggested as a way to reduce the workload, but 

uptake has been limited due to a number of issues, 

including licensing, steep learning curves, lack of 

support, and mismatches to workflow. There is a 

need to better align current methods to the need of 

the systematic review community. 

Diagnostic test accuracy studies are seldom indexed 

in an easily retrievable way, and suffer from variable 

terminology and missing or inconsistently applied 

database labels. Methodological search queries to 

identify diagnostic studies therefore tend to have 

low accuracy, and are discouraged for use in 

systematic reviews. Consequently, there is a 

particular need for alternative methods to reduce 

the workload in systematic reviews of diagnostic test 

accuracy. 

In this thesis we have explored the hypothesis that 

automation methods can offer an efficient way to 

make the systematic review process quicker and less 

expensive, provided we can identify and overcome 

barriers to their adoption. Automated methods have 

the opportunity to make the process cheaper as well 

as more transparent, accountable, and reproducible. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


