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Introduction générale

Il est bien connu qu’il n’est pas possible d’envisager la théorie des équations aux dérivées
partielles sans l’analyse fonctionnelle et ses méthodes. En même temps, tout problème décrit
par une équation aux dérivées partielles modélise plus ou moins étroitement un processus
ou des phénomènes réels de la nature. Il est également bien connu que la même EDP
peut être appliquée pour modéliser plusieurs problèmes de natures absolument différentes,
car, par exemple, l’équation de la chaleur peut être utile pour modéliser la diffusion de
la chaleur, pour modéliser des processus de mathématiques financières, pour l’évolution
de la population de lapins et etc. Cependant, ces différentes applications utilisent les
mêmes propriétés principales des solutions de cette équation, son irréversibilité en temps
et la diffusion avec la décroissance exponentielle. Ainsi, il est important de présenter des
propriétés mathématiques des solutions de différents modèles pour pouvoir les utiliser dans
le cadre le plus adapté et aussi pouvoir choisir quand un modèle est meilleur que l’autre.

Cette philosophie de développer des résultats abstraits pour pouvoir comprendre les prob-
lèmes physiques concrets ou les préciser va à travers toutes mes recherches mathématiques
et m’a permis de considérer, pour un regard rapide, des problèmes mathématiques très
différents, mais tous sont fondamentalement liés entre eux. Donc, ma première tâche est
d’expliquer leurs connexions.

Par exemple, pour la propagation des ultrasons, il existe différents modèles non linéaires
comme les équations de Kuznetsov, Westervelt, Khokhlov-Zabolotskaya-Kuznetsov (KZK)
et l’équation des ondes progressives non linéaires (NPE) (voir le chapitre 1). Mais dans le
même temps pour les modèles de propagation des ondes non linéaires, il existe également
des équations de Korteweg-de Vries (KdV), Kadomtsev-Petviashvili (KP), Benjamin-Ono
et d’autres généralisations et d’autres équations d’ordre supérieur par rapport au temps. La
principale propriété commune des équations KdV et KP est leur déscription des phénomènes
de dispersion, mais, par exemple, l’équation de Kuznetsov, Westervelt et KZK sont des mod-
èles dissipatifs pour un milieu visqueux. C’est en fait la principale raison pour laquelle les
propriétés des solutions entre les modèles dispersifs et dissipatifs sont très différentes, ainsi
que l’analyse mathématique permettant de montrer que les problèmes pour ces équations
sont bien-posés. Il est intéressant de remarquer qu’en modifiant la signification physique
des variables et des axes de l’équation KZK, il en résulte l’équation NPE qui est un modèle
dispersif de propagation des ultrasons dans l’océan.

Par conséquent, je présente dans le chapitre 1 le contexte physique qui permet de systéma-
tiser la dérivation physique des modèles dissipatifs cités, et donc, de relier tous les modèles
entre eux et surtout de considérer la question de l’estimation du temps pendant lequel deux
solutions de modèles différents restent proches entre eux [ARP-2], [ARP-3], [ARP-12].
Nous obtenons ces résultats de stabilité une fois que nous connaissons l’existence et la
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régularité des solutions des problèmes de Cauchy correspondants [ARP-5], [ARP-13],
en prenant en compte dans le temps deux différences physiques principales: les cas de la
propagation d’onde dans des milieux visqueux et non visqueux. L’absence ou la présence
des termes de viscosité est connue pour être cruciale, à commencer par les résultats math-
ématiques sur les systèmes d’Euler et de Navier-Stokes.

Pour la validité de la dérivation des équations de Kuznetsov, Westervelt, KZK et NPE d’un
système compressible de Navier-Stokes ou d’Euler, il est important de supposer l’absence
de toute influence d’un bord sur le mouvement des ondes. Ainsi nous travaillons dans tout
espace et considérons notamment les problèmes de Cauchy [ARP-2], [ARP-3], [ARP-5],
[ARP-13], [ARP-14], [ARPproc-15].

Mais il y a une question sur la façon dont une onde interagit avec un bord ou une interface,
surtout si elle est irrégulière ou fractale.

Pour considérer le cadre abstrait de l’analyse fonctionnelle permettant de considérer les
équations différentielles partielles dans de tels domaines irréguliers, j’introduis dans le
chapitre 2 un concept général des domaines Sobolev admissibles, contenant par exem-
ple des domaines avec un bord donnée par un d-ensemble et (ǫ,∞)-domaines [ARP-4],
[BookChap], et je montre les résultats cruciaux de compacité pour l’opérateur de trace et
pour les inclusions des espaces de Sobolev par une généralisation du théorème de Rellich-
Kondrachov sur les domaines Sobolev admissibles. Une fois que je sais comment intégrer par
parties et comment traiter les problèmes elliptiques sur les domaines Sobolev admissibles,
je donne deux exemples d’application de la théorie abstraite développée:

1. la définition de l’opérateur de Dirichlet-à-Neumann sur un d-ensemble et la justifica-
tion des articles numériques physiques de D. Grebenkov et ses co-auteurs en utilisant
les propriétés de son spectre dans le cadre du transport du laplacien [ARP-4];

2. le caractère bien-posé (faiblement) d’un problème aux limites mixtes pour l’équation
de Westervelt compte tenu des difficultés résultant de l’irrégularité de la frontière,
sachant que dans de tels domaines il est impossible de s’assurer que la solution faible
a la régularité de H2[PrepWestMixed], [PrepWestDir].

Dans le chapitre 3, je poursuis une question générale: comment l’irrégularité et la forme de
la frontière modifient la propagation des ondes ou de la chaleur? En particulier, j’étudie
l’influence sur la vitesse de propagation de la chaleur (dans le cadre de l’hypothèse de Gènes
[ARP-6], [ARP-8]) ainsi que sur la dissipation des ondes (dans le cadre de l’optimisation
de forme [ARP-1], [PrepShape2]). Je considère également la question d’approximation
d’une onde ultrasonore décrite par l’équation de Westervelt dans un domaine avec un bord
fractal (pour les conditions aux limites mixtes [PrepWestMixed]) ou même avec une
frontière arbitraire (pour des conditions aux limites de Dirichlet homogènes [PrepWest-
Dir]) par une autre onde ultrasonore dans un domaine avec un bord, disons, préfractal, qui
approxime le bord fractal dans le cadre de la convergence de Mosco.

Dans chaque chapitre, je discute également des différentes manières possibles d’obtenir
de nouveaux résultats, des améliorations possibles, des généralisations et des problèmes
ouverts.

Je n’ai pas inclus dans ce manuscrit la description de la thématique des problèmes in-
verses [ARP-9], [ARP-10], [ARP-11], [ARP-16], [ARP-17], que je développe encore
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en préparant plusieurs publications, et qui présente un autre exemple d’application de la
théorie des EDPs.

La liste des publications est donnée au début du mémoire.

[ARP-2], [ARP-3], [ARP-5], [PrepWestDir], [PrepWestMixed] sont des publica-
tions de résultats obtenus avec mon doctorant A. Dekkers:

A. Dekkers, “Analyse mathématique de l’équation de Kuznetsov: problème de Cauchy,
questions d’approximations et problèmes aux bords fractals. ”, Thèse de doctorat, 22 mars
2019. Mathématiques appliquées, CentraleSupélec, Université Paris Saclay. Dirécteur de
thèse F. Abergel.
https://tel.archives-ouvertes.fr/tel-02110279/document
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General introduction

It is well-known that it is not possible to consider the theory of partial differential equations
without the functional analysis and its methods. In the same time any problem described
by a partial differential equation models more or less closely a real process or a phenomena
of nature. It is also well known that the same PDE can be applied for modeling several
problems of absolutely different natures, as for instance the heat equation can be useful
for the heat diffusion, for the financial mathematics, for the evolution of the population of
rabbits and ctr. However, these different applications use the same main properties of the
solutions of this equation, its irrevertivity in time and the diffusion with the exponential
decay. Thus, it is important to now the mathematical properties of solutions of different
models to be able to use them in the most suitable framework and also to be able to chose
when one model is better than other.

This philosophy to develop abstract results to be able to understand the concrete physical
problems or to precise them goes through all my mathematical research and allowed me
to consider, for a rapid look, very different mathematical problems, but all of them are
fundamentally related together. So, my first task is to explain their connections.

For instance for the propagation of the ultrasounds there are different non-linear models as
the Kuznetsov, Westervelt, Khokhlov-Zabolotskaya-Kuznetsov (KZK) equations and the
Nonlinear Progressive wave Equation (NPE) (see Chapter 1). But in the same time for
nonlinear wave propagation models there are also Korteweg–de Vries (KdV), Kadomtsev-
Petviashvili (KP), Benjamin-Ono equations and other generalizations and other equations
of higher order in time. The main common property of KdV and KP equations that they
describe the dispersive phenomena, but, for instance, the Kuznetsov, the Westervelt and the
KZK equation are dissipative models for a viscous medium. It is actually the main reason
why the properties of solutions between dispersive and dissipative models are very different
also as the mathematical analysis allowing to show their well-posedness. It is interesting to
notice that by changing the physical meaning of variables and axis of the KZK equation it
results in the NPE equation which is a dispersive model of ultrasound propagation in the
ocean.

Therefore, I present in Chapter 1 the physical context which allows to systematize the
physical derivation of the cited dissipative models and thus, relate all models together and
especially to consider the question how long two solutions of different models stay closed
to each other [ARP-2], [ARP-3], [ARP-12]. We obtain these stability results once
we know the existence and the regularity of considered solutions of corresponding Cauchy
problems [ARP-5], [ARP-13], taking all time into account two main physical differences:
the viscous and inviscid media of the wave propagation. The absence or the presence of the
viscosity terms are known to be crucial, starting by the mathematical results on the Euler
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and Navier-Stokes systems.

For the validity of the derivation of the Kuznetsov, Westervelt, KZK and NPE equations
from a compressible Navier-Stokes or Euler systems it is important to suppose the absence of
any boundary influence on the wave motion. Thus we are working in all space and especially
consider the Cauchy problems [ARP-2], [ARP-3], [ARP-5], [ARP-13], [ARP-14],
[ARPproc-15].

But there is a question about how a wave interact with a boundary, especially if it is
irregular or fractal.

To consider the abstract framework of the functional analysis allowing to consider the partial
differential equations in such irregular domains, I introduce in Chapter 2 a general concept
of Sobolev admissible domains, containing for instance domains with a d-set boundary and
(ǫ,∞)-domains [ARP-4], [BookChap], and show the crucial compactness results for the
trace operator and for Sobolev embedding by a generalization of the Rellich-Kondrachov
theorem on the introduced Sobolev admissible domains. Once I know how to integrate by
parts and how to treat elliptic problems on the Sobolev admissible domains, I give two
examples of the application of the developed abstract theory:

1. the definition of the Dirichlet-to-Neumann operator on a d-set and the justification of
physical numerical articles of D. Grebenkov and his co-authors using the properties
of its spectrum in the framework of the Laplacian transport [ARP-4];

2. the proof of the weak well-posedness for a mixed boundary valued problem for the
Westervelt equation taking into account the difficulties coming from the irregularity
of the boundary, as soon as in such domains it is impossible to ensure that the weak
solution has the regularity of H2 [PrepWestMixed], [PrepWestDir].

In Chapter 3 I follow a general question: how the irregularity and the shape of the bound-
ary change the wave or heat propagation? In particular, I study the influence on the speed
of the heat propagation (in the framework of de Gennes’ hypothesis [ARP-6], [ARP-8])
and also on the wave dissipation (in the framework of the shape optimization [ARP-1],
[PrepShape2]). I also consider the approximation question of an ultrasound wave describ-
ing by the Westervelt equation in a domain with a fractal (for mixed boundary conditions
[PrepWestMixed]) or even arbitrary boundary (for homogeneous Dirichlet boundary con-
ditions [PrepWestDir]) by an other ultrasound wave in, let us say, a prefractal domain
approximating the fractal one in the framework of the Mosco convergence.

In each Chapter I also discuss the different possible ways for further results, possible im-
provements, generalizations and open problems.

I did not included in this thesis the description of the thematic of the inverse problems
[ARP-9], [ARP-10], [ARP-11], [ARP-16], [ARP-17], which I still develop preparing
several publications in the future, and which presents an other applicative example of the
theory of PDEs.
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Models of nonlinear acoustics





Chapter 1

Relations between different models of
nonlinear acoustics

Introduction

My interest in the models of nonlinear acoustics comes from the beginning of my Ph.D.
with Claude Bardos, whom the first day of my Ph.D. has taken me to a physical conference
on ultrasound waves organized by one of the famous specialists of waves Mathias Fink.
In this conference, we discovered the equation named the KZK (Khokhlov-Zabolotsaya-
Kuznetsov) equation, well-known for physicists but unknown in mathematics. My other
participation in physical conferences in nonlinear acoustics allowed me to discover that
physicists use a lot of different, very complicated nonlinear models, almost all unknown (or
few known) in the mathematical world. Hence I have also realized the difference between
the mathematical and the physical studies of a model. As said me Zabolotskaya at the
Congress of Acoustics 2008, by Khokhlov, his Ph.D. adviser, a physicist needs to find an
exact solution to its new model be able to validate and publish it. However, it is not a
priority from the mathematical point of view.

Hence, I am interested in how the models, as the KZK equation, the NPE, the Kuznetsov,
and the Westervelt equations, are related to each other, how they can be obtained, and if
there is a possibility to know in some kind the accuracy of the approximation fulfilled by the
solutions of these models. Sure, the mentioned equations take part of “the simplest models”
(see, for instance, for higher-order models as the nonlinear Jordan-Moore-Gibson-Thompson
(JMGT) equation [103, 110, 108], containing the Kuznetsov equation as a particular or a
limit case, or other variants [78]). Hence, my results on the chosen “simplest models”
[ARP-2], [ARP-3], [ARP-12], using [ARP-5], [ARP-13], [ARP-14], [ARPproc-
15], can be viewed as the first step to the understanding the relations between existing
models of nonlinear acoustics, in complement to [112] and also to dispersive models of
KP-type [121].

We give this introductive description of this chapter in French before proceeding to its
content.



4 Chapter 1. Relations between different models of nonlinear acoustics

Introduction en français

Mon intérêt pour les modèles d’acoustique non linéaire vient du début de ma thèse que j’ai
effectué avec Claude Bardos, qui le premier jour de ma thèse m’a emmené à une conférence
physique sur les ondes ultrasonores organisée par l’un des célèbres spécialistes des ondes
Mathias Fink. Dans cette conférence, nous avons appris l’existence d’une équation nommée
l’équation de KZK (Khokhlov-Zabolotsaya-Kuznetsov), bien connue des physiciens mais
inconnue en mathématiques. Mes autres participations à des conférences physiques en
acoustique non linéaire m’ont permis de découvrir que les physiciens utilisent beaucoup
de modèles non linéaires très compliqués presque tous inconnus (ou peu connus) dans le
monde mathématique. Par conséquent, j’ai également réalisé la différence entre les études
mathématiques et physiques d’un modèle. Comme me l’a dit Zabolotskaya au Congrès
d’Acoustique 2008, d’après son dirécteur de thèse Khokhlov, un physicien doit trouver une
solution exacte de son nouveau modèle pour pouvoir le valider et le publier. Mais ce n’est
pas une priorité du point de vue mathématique.

Par conséquent, je me suis intéressée à comprendre comment les modèles comme l’équation
de KZK, le NPE, les équations de Kuznetsov et de Westervelt sont liées les uns aux autres,
comment ils peuvent être obtenus et s’il est possible de connaître en quelque sorte la pré-
cision de l’approximation remplies par les solutions de ces modèles. Bien sûr, les équations
mentionnées font partie des “ modèles les plus simples ” (voir par exemple pour les mod-
èles d’ordre supérieur comme l’équation non linéaire de Jordan-Moore-Gibson-Thompson
(JMGT) [103, 110, 108], contenant l’équation de Kuznetsov comme cas particulier ou lim-
ite, ou d’autres variantes [78]). Mes résultats sur ces “ modèles les plus simples ” [ARP-2],
[ARP-3], [ARP-12], en utilisant [ARP-5], [ARP -12], [ARP-14], [ARPproc-15],
peuvent être considérés comme la première étape vers la compréhension des relations en-
tre les modèles existants d’acoustique non linéaire, en complément de [112] et aussi aux
modèles dispersives de type KP [121].

1.1 Introduction and derivation of the models

There is a renewed interest in the study of nonlinear wave propagation, in particular be-
cause of recent applications to ultrasound imaging (e.g. HIFU) or technical and medical
applications such as lithotripsy or thermotherapy. Such new techniques rely heavily on the
ability to model accurately the nonlinear propagation of a finite-amplitude sound pulse in
thermo-viscous elastic media.

One of the most general model to describe an acoustic wave propagation in an homogeneous
thermo-elastic medium is the compressible Navier-Stokes system in Rn

∂tρ+ div(ρv) = 0, (1.1)

ρ[∂tv + (v.∇)v] = −∇p+ η∆v +
(

ζ +
η

3

)

∇. div(v), (1.2)

ρT [∂tS + (v.∇)S] = κ∆T + ζ(div v)2

+
η

2

(

∂xk
vi + ∂xi

vk − 2
3
δik∂xi

vi

)2

, (1.3)

where the pressure p is given by the state law p = p(ρ, S). The density ρ, the velocity v,
the temperature T and the entropy S are unknown functions in system (1.1)–(1.3). The
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coefficients ζ, κ and η are constant viscosity coefficients. For the acoustical framework the
wave motion is supposed to be potential and the viscosity coefficients are supposed to be
small in terms of a dimensionless small parameter ǫ > 0, which also characterizes the size
of the perturbations near the constant state (ρ0, 0, S0, T0). Here the velocity v0 is taken
equal to 0 just using a Galilean transformation.

Actually, ǫ is the Mach number, which is supposed to be small [21] (ǫ = 10−5 for the
propagation in water with an initial power of the order of 0.3 W/cm2):

ρ− ρ0

ρ0
∼ T − T0

T0
∼ |v|

c
∼ ǫ,

where c =
√

p′(ρ0) is the speed of sound in the unperturbed media. In addition,

S(x, t) = S0 + ε2S̃(x, t),

where the perturbation of the entropy is of order O(ǫ2), since it is the smallest size on ǫ of
right hand terms in Eq (1.3), due to the smallness of the viscosities. Hence as in [ARPproc-
7], [ARP-2], system (1.1)–(1.3) becomes an isentropic Navier-Stokes system

∂tρε + div(ρεvε) = 0 , (1.4)

ρε[∂tvε + (vε · ∇) vε] = −∇p(ρε) + εν∆vε , (1.5)

with the approximate state equation p(ρ, S) = p(ρǫ) +O(ǫ3):

p(ρε) = p0 + c2(ρε − ρ0) +
(γ − 1)c2

2ρ0
(ρε − ρ0)2, (1.6)

where γ = Cp/CV denotes the ratio of the heat capacities at constant pressure and at
constant volume respectively and with a small enough and positive viscosity coefficient:

εν = β + κ

(

1
CV

− 1
Cp

)

.

If we go on physical assumptions of the wave motion [21, 82, 116, 173] for the perturbations
of the density or of the velocity or of the pressure, the isentropic system (1.4)–(1.5) gives

1. the Westervelt equation for the potential of the velocity, derived initially by Wester-
velt [173] and later by other authors [1, 163]:

∂2
t Π − c2∆Π = ε∂t

(

ν

ρ0
∆Π +

γ + 1
2c2

(∂tΠ)2

)

(1.7)

with the same constants introduced for the Navier-Stokes system.

2. the Kuznetsov equation also for the potential of the velocity, firstly introduced by
Kuznetsov [116] for the velocity potential, see also Refs. [82, 104, 112, 123] for other
different methods of its derivation:

∂2
t u− c2△u = ε∂t

(

(∇u)2 +
γ − 1
2c2

(∂tu)2 +
ν

ρ0

∆u

)

. (1.8)
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3. the Khokhlov-Zabolotskaya-Kuznetsov (KZK) [21], [ARPproc-7] for the density:

c∂2
τzI − (γ + 1)

4ρ0

∂2
τ I

2 − ν

2c2ρ0

∂3
τ I − c2

2
∆yI = 0. (1.9)

4. the Nonlinear Progressive wave Equation (NPE) derived in Ref. [131] also for the
density:

∂2
τzξ +

(γ + 1)c
4ρ0

∂2
z [(ξ)2] − ν

2ρ0
∂3

zξ +
c

2
∆yξ = 0. (1.10)

All these models were derived from a compressible nonlinear isentropic Navier-Stokes (for
viscous media) and Euler (for the inviscid case) systems up to some small negligible terms.
But all cited physical derivations of these models don’t allow to say that their solutions
approximate the solution of the Navier-Stokes or Euler system. The first work explaining
it for the KZK equation is [ARP-12].

We consider system (1.4)–(1.6) as the exact model. The state law (1.6) is a Taylor expansion
of the pressure up to the terms of the third order on ǫ. Therefore an approximation of
system (1.4)–(1.6) for vε and ρǫ up to terms O(ǫ3) would be optimal. We systematize in
[ARP-2] the derivation of all these models using the ideas of [ARP-12], consisting to use
correctors in the Hilbert type expansions of corresponding physical ansatzs.

More precisely, we show that all these models are approximations of the isentropic Navier-
Stokes or Euler system up to third order terms of a small dimensionless parameter ǫ > 0
measuring the size of the perturbations of the pressure, the density and the velocity to
compare to their constant state (p0, ρ0, 0) (see Fig. 1.1). In addition we show that

• the Kuznetsov equation can be obtained up toO(ǫ3) terms from the Navier-Stokes/Euler
systems just by small perturbations of the medium;

• the Westervelt equation is a nonlinear approximation of the Kuznetsov equation up
to O(ǫ2)-terms;

• the KZK and NPE equations can be obtained up to O(ǫ3) terms by two steps from
the Navier-Stokes/Euler systems:

1. by small perturbations firstly obtain the Kuznetsov equation

2. by performing a paraxial change of variables for the Kuznetsov equation,

and alternatively, by performing the small perturbations with a paraxial change of
variables at the same time for Navier-Stokes/Euler systems.

The last point allows considering the approximation between the solutions of the KZK/NPE
equations and the solutions of the Kuznetsov equation separately of the approximation
between these models and the Navier-Stokes/Euler systems.

It is easy to understand working, for instance, only on the linear part of the KZK equa-
tion (1.45) (see Subsection 1.1.3 for a complete derivation). Let x = (x1, x2, . . . , xn) ∈ Rn.
In the aim to describe the propagation of ultrasound beams, it is assumed that the variation
of beam’s propagation in the direction

x′ = (x2, x3, . . . , xn)
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P

P : small perturbations (1.19)–(1.20)

AKZK

Navier-Stokes/Euler systems

Kuznetsov equation

AKZK: KZK-paraxial approximation (Fig. 1.2)

ANP E: NPE-paraxial approximations (Fig. 1.3)

ANP E

NPE equation KZK equation
B

B: bijection (1.56)

P&AKZK
P&ANP E

Figure 1.1 – Schema of derivation of the models of the nonlinear acoustics. All models, the Kuznetsov,
the KZK and the NPE equations are approximations up to terms of the order of ǫ3 of
the isentropic Navier-Stokes or Euler system.

perpendicular to the x1-axis is much larger than its variation along the x1-axis, i.e. we
suppose that the beam has the form U(t − x1/c, ǫx1,

√
ǫx′). The first argument t − x1/c

describes the wave propagation in time along the x1-axis with the sound speed c, two last
arguments ǫx1 and

√
ǫx′ describe respectively the speed of the deformation of the wave

along the x1-axis and along the x′-axis. We remark that ǫ ≪ 1 and consequently, ǫ ≪ √
ǫ.

For instance for the linear wave equation in Rn (n > 1):

1
c2
∂2

t u− ∆u = 0 , (1.11)

the following ansatz
uǫ = U(t− x1

c
, ǫx1,

√
ǫx′) (1.12)

containing a “profile” U(τ, z, y) (with small ǫ) leads to the formula:

∂2
τ,zU − c

2
∆yU = O(ǫ), (1.13)

or for functions U(τ, z, y) = A(z, y)eiωτ , to the equation

iω∂zA− c

2
∆yA = O(ǫ). (1.14)

We observe that with ǫ = 0 Eqs. (1.13) and (1.14) are two variants of the classical paraxial
approximation and that Eq. (1.13) contains the linear non-diffusive terms of the KZK
equation which usually has the following form for some positive constants β and γ:

∂2
τ,zU − 1

2
∂2

τU
2 − β∂3

τU − γ∆yU = 0.
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Conversely, the isentropic evolution of the thermo-elastic non-viscous media is given by the
following Euler system:

∂tρ+ div(ρv) = 0 , ρ(∂tv + v · ∇v) = −∇p(ρ) . (1.15)

Any constant state (ρ0, v0) is a stationary solution of system (1.15). Linearization near this
state introduces the variables

ρ = ρ0 + ǫρ̃ , v = v0 + ǫṽ

and for v0 = 0 the acoustic system:

∂tρ̃+ ρ0∇.ṽ = 0 , ρ0∂tṽ + p′(ρ0)∇ρ̃ = 0. (1.16)

System (1.16) is equivalent to the wave equation:

1
c2
∂2

t ρ̃− ∆ρ̃ = 0 , ∂tṽ = −p′(ρ0)
ρ0

∇ρ̃, (1.17)

where c =
√

p′(ρ0) is the speed of sound in the unperturbed media.

We observe that Eq. (1.13), which is the linearized and inviscid part of the KZK equation,
can be obtained in two steps. First, we consider small perturbations around a constant
state of the isentropic Euler system, which are solutions to the acoustic equation and then
we consider a paraxial approximation of such solutions.

The derivation of the complete KZK equation follows almost the same line. It considers
the viscosity and the size of the nonlinear terms and is given in Subsection 1.1.3.

1.1.1 Kuznetsov equation

The Kuznetsov equation models a propagation of nonlinear acoustic waves in thermo-
viscous elastic media and describes the evolution of the velocity potential. Initially the
Kuznetsov equation was derived by Kuznetsov [116] from the isentropic Navier-Stokes sys-
tem (1.4)–(1.6) for the small velocity potential vε(x, t) = −∇ũ(x, t), x ∈ Rn, t ∈ R+:

∂2
t ũ− c2△ũ = ∂t

(

(∇ũ)2 +
γ − 1
2c2

(∂tũ)2 +
εν

ρ0

∆ũ

)

. (1.18)

The derivation was latter discussed by a lot of authors [82, 104, 123].

Unlike in these physical derivations we introduce a Hilbert expansion type construction
with a corrector ε2ρ2(x, t) for the density perturbation, considering the following ansatz

ρε(x, t) = ρ0 + ερ1(x, t) + ε2ρ2(x, t), (1.19)

vε(x, t) = −ε∇u(x, t). (1.20)

The use of the second order corrector in (1.19) allows to ensure the approximation of (1.5)
up to terms of order ǫ3 and to open the question about the approximation between the exact
solution of the isentropic Navier-Stokes system (1.4)–(1.6) and its approximation given by
the solution of the Kuznetsov equation (see Section 1.3).
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Putting expressions for the density and velocity (1.19)–(1.20) into the isentropic Navier-
Stokes system (1.4)–(1.6), we obtain for the momentum conservation (1.5)

ρε[∂tvε + (vε · ∇) vε] + ∇p(ρε) − εν∆vε = ε∇(−ρ0∂tu+ c2ρ1)

+ ε2

[

−ρ1∇(∂tu) +
ρ0

2
∇((∇u)2) + c2∇ρ2 +

(γ − 1)c2

2ρ0

∇(ρ2
1) + ν∇∆u

]

+O(ε3). (1.21)

In order to have an approximation up to the terms O(ε3) we put the terms of order one
and two in ε equal to 0, what allows us to find the expressions for the density correctors:

ρ1(x, t) =
ρ0

c2
∂tu(x, t), (1.22)

ρ2(x, t) = − ρ0(γ − 2)
2c4

(∂tu)2 − ρ0

2c2
(∇u)2 − ν

c2
∆u. (1.23)

Indeed, we start by making ε∇(−ρ0∂tu + c2ρ1) = 0 and find the first order perturbation
of the density ρ1 given by Eq. (1.22). Consequently, if ρ1 satisfies (1.22), then Eq. (1.21)
becomes

ρε[∂tvε + (vε · ∇) vε] + ∇p(ρε) − εν∆vε = ε∇(−ρ0∂tu+ c2ρ1)

ε2∇
[

− ρ0

2c2
(∂tu)2 +

ρ0

2
(∇u)2 + c2ρ2 +

(γ − 1)ρ0

2c2
(∂tu)2 + ν∆u

]

+O(ε3). (1.24)

Thus, taking the corrector ρ2 by formula (1.23), we ensure that

ρε[∂tvε + (vε · ∇) vε] + ∇p(ρε) − εν∆vε = O(ε3). (1.25)

Now we put these expressions of ρ1 from (1.22) and ρ2 from (1.23) with ansatz (1.19)–(1.20)
in Eq. (1.4) of the mass conservation to obtain

∂tρε + div(ρεvε) = ε
ρ0

c2

[

∂2
t u− c2∆u−

ε∂t

(

(∇u)2 +
γ − 2
2c2

(∂tu)2 +
ν

ρ0

∆u

)

− εut∆u

]

+O(ε3). (1.26)

Then we notice that the right hand term of the order ǫ in Eq. (1.26) is actually the linear
wave equation up to smaller on ǫ therms:

∂2
t u− c2∆u = O(ε).

Hence, we express

εut∆u = ε
1
c2
ututt +O(ε2) = ε

1
2c2

∂t((ut)2) +O(ε2),

and putting it in Eq. (1.26), we finally have

∂tρε + div(ρεvε) = ε
ρ0

c2

[

∂2
t u− c2∆u−

ε∂t

(

(∇u)2 +
γ − 1
2c2

(∂tu)2 +
ν

ρ0

∆u

)]

+O(ε3). (1.27)
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The right hand side of Eq. (1.27) gives us the Kuznetsov equation

∂2
t u− c2∆u = ε∂t

(

(∇u)2 +
γ − 1
2c2

(∂tu)2 +
ν

ρ0
∆u

)

, (1.28)

which is the first order approximation of the isentropic Navier-Stokes system up to the
terms O(ε3). Moreover, if u is a solution of the Kuznetsov equation, then with the relations
for the density perturbations (1.22) and (1.23) and with ansatz (1.19)–(1.20) we have

∂tρε + div(ρεvε) = O(ǫ3) , (1.29)

ρε[∂tvε + (vε · ∇) vε] + ∇p(ρε) − εν∆vε = O(ǫ3). (1.30)

Hence, it is clear that the standard physical perturbative approach without the corrector
ρ2 (it is sufficient to take ρ2 = 0 in our calculus) can’t ensure (1.29)–(1.30).

Let us also notice, as it was originally mentioned by Kuznetsov, that the Kuznetsov equa-
tion (1.28) contains terms of different orders, and hence, it is a wave equation with small
size nonlinear perturbations ∂t(∇u)2, ∂t(∂tu)2 and the viscosity term ∂t∆u.

1.1.2 Westervelt equation

In the physical notations the Westervelt equation, historically derived [173] for the acoustic
pressure fluctuation, has the following form

ptt − c2∆p − νε∆pt =
γ + 1
c2

εptptt, (1.31)

and can also be seen as an approximation of an isentropic Navier-Stokes system. Moreover,
the Westervelt equation can be viewed as an approximation of the Kuznetsov equation by
a nonlinear perturbation. Actually the only difference between these two models is that
the Westervelt equation keeps only one of two nonlinear terms of the Kuznetsov equation,
producing cumulative effects in a progressive wave propagation [1]. Let u be a solution of
the Kuznetsov equation (1.18). Similarly as in Ref. [1] we set

Π = u+
1

2c2
ε∂t[u2] (1.32)

and obtain

∂2
t Π − c2∆Π = ε∂t

(

ν

ρ0

∆u+
γ + 1
2c2

(∂tu)2 +
1
c2
u(∂2

t − c2∆u)

)

.

By definition (1.32) of Π we have

∂2
t Π − c2∆Π = ε∂t

(

ν

ρ0

∆Π +
γ + 1
2c2

(∂tΠ)2

)

+O(ε2). (1.33)

We recognize the Westervelt equation (1.7) obtained up to remainder terms of order ǫ2.
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1.1.3 KZK equation

The Khoklov-Zabolotskaya-Kuznetsov equation (KZK) equation typically models the ul-
trasonic propagation with strong diffraction phenomena, combining with finite amplitude
effects (see Ref. [21], [ARP-12], [ARPproc-7] and the references therein). In [ARP-12]
there is a review of different ways to obtain the KZK equation: it can be found in the
framework of geometrical optic taking the O(1)-oscillation of the order zero [47, 162] and
in the framework of electromagnetic waves in a saturated ferromagnetic media [150].

Let us focus on the nonlinear acoustic framework. To be able to derive the KZK equa-
tion from the isentropic Navier-Stokes system or the Kuznetsov equation, we assume the
following additional properties of beam’s propagation:

1. the beams are concentrated near the x1-axis ;

2. the beams propagate along the x1-direction;

3. the beams are generated either by an initial condition or by a forcing term on the
boundary x1 = 0.

Derivation from the Navier-Stokes system

In [ARP-12] the considered ansatz allows to obtain the KZK equation only up O(ǫ
5
2 )-

terms. I have improved it for the approximation up to O(ǫ3)-terms in [ARPproc-7] which
is optimal on the order of ǫ and was later used in [ARP-2]. Thus let us follow [ARP-2].

We perform the derivation in two steps:

1. Firstly we introduce small perturbations around a constant state of the compressible
isentropic Navier-Stokes system according to the Kuznetsov ansatz (1.19)–(1.20):

∂tρε + ∇.(ρεvε) =ε[∂tρ1 − ρ0∆u]

+ ε2[∂tρ2 − ∇ρ1∇u− ρ1∆u] +O(ε3), (1.34)

and we have again (1.21) for the conservation of momentum.

2. Secondly, we perform the paraxial change of variables (see Fig. 1.2):

τ = t− x1

c
, z = εx1, y =

√
εx′. (1.35)

x1

x′

t

Navier-Stokes/

Euler (x1, x′, t)

z = ǫx1

y =
√
ǫx′

τ = t− x1

c

KZK(τ, z, y)

Figure 1.2 – Paraxial change of variables for the profiles U(t − x1/c, ǫx1,
√

ǫx′).
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We notice that z becomes the propagation variable, τ is retarded time and there is rescaling
transversal variables y. The paraxial change of variables (1.35) defines the axis of the prop-
agation x1 along which the wave changes its profile much slower than along the transversal
axis x′. This is typical for the propagation of ultrasound waves. Since the gradient ∇ in
the coordinates (τ, z, y) becomes depending on ǫ

∇̃ =
(

ε∂z − 1
c
∂τ ,

√
ε∇y

)t

,

if we denote
u(x1,x

′, t) = Φ(t− x1/c, ǫx1,
√
ǫx′) = Φ(τ, z,y), (1.36)

we need to take attention to have the paraxial correctors of the order O(1):

ρ1(x1,x
′, t) = I(τ, z,y), ρ2(x1,x

′, t) = H(τ, z,y) = J(τ, z,y) +O(ǫ),

where actually H(τ, z,y) is the profile function obtained from ρ2 (see Appendix A [ARP-
2]) containing not only the terms of the order O(1) but also terms up to ǫ2. Hence, we
denote by J all terms of H of order 0 on ǫ, which are significant in order to have an
approximation up to the terms O(ε3).

The assumption to work directly with the velocity potential (1.36) immediately implies the
following velocity expansion

vε(x, t) = − ε
(

−1
c
∂τ Φ + ε∂zΦ;

√
ε∇yΦ

)

(τ, z,y). (1.37)

In new variables (τ, z, y) Eq. (1.21) becomes

ρε[∂tvε + (vε.∇)vε] + ∇p(ρε) − εν∆vε = ε∇̃[−ρ0∂τ Φ + c2I] (1.38)

+ ε2
[

−I∇̃(∂τ Φ) +
ρ0

2
∇̃
( 1
c2

(∂τ Φ)2
)

+c2∇̃J +
γ − 1
2ρ0

c2∇̃(I2) + ν∇̃
( 1
c2
∂2

τ Φ
)

]

+O(ε3).

Consequently, we find the correctors of the density as functions of Φ:

I(τ, z, y) =
ρ0

c2
∂τ Φ(τ, z,y), (1.39)

J(τ, z, y) = − ρ0(γ − 1)
2c4

(∂τ Φ)2 − ν

c4
∂2

τ Φ. (1.40)

Indeed, we start by making
ε∇̃[−ρ0∂τ Φ + c2I] = 0

and find the first order perturbation of the density I given by Eq. (1.39). Moreover, if ρ1

satisfies (1.39), then Eq. (1.38) becomes

ρε[∂tvε + (vε · ∇) vε] + ∇p(ρε) − εν∆vε = ε∇̃[−ρ0∂τ Φ + c2I]

ε2∇̃
[

− ρ0

2c2
(∂τ Φ)2 +

ρ0

2c2
(∂τ Φ)2 + c2J +

(γ − 1)ρ0

2c2
(∂τ Φ)2 +

ν

c2
∂2

τ Φ

]

+O(ε3). (1.41)
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Thus, taking the corrector J in the expansion of ρǫ

ρε(x1,x
′, t) = ρ0 + εI(t− x1/c, ǫx1,

√
ǫx′) + ε2J(t− x1/c, ǫx1,

√
ǫx′), , (1.42)

by formula (1.40), we ensure that

ρε[∂tvε + (vε · ∇) vε] + ∇p(ρε) − εν∆vε = O(ε3). (1.43)

Now we put these expressions of I from (1.39) and J from (1.40) with the paraxial approx-
imation in Eq. (1.34) of the mass conservation to obtain

∂tρε + ∇.(ρεvε) =ε2
[

ρ0

c2
(2c∂2

zτ Φ − c2∆yΦ) − ρ0

2c4
(γ + 1)∂τ [(∂τ Φ)2] − ν

c4
∂3

τ Φ
]

+O(ε3). (1.44)

All terms of the second order on ǫ in relation (1.44) give us the equation for Φ, which is
the KZK equation. If we use relation (1.39), we obtain the usual form of the KZK equation
often written [21] and [ARP-2], [ARP-3], [ARPproc-7], [ARP-12], [ARP-13] for the
first perturbation I of the density ρǫ:

c∂2
τzI − (γ + 1)

4ρ0
∂2

τ I
2 − ν

2c2ρ0
∂3

τ I − c2

2
∆yI = 0. (1.45)

We notice that, as the Kuznetsov equation, this model still contains terms describing the
wave propagation ∂2

τzI, the nonlinearity ∂2
τ I

2 and the viscosity effects ∂3
τ I of the medium

but also adds a diffraction effects by the traversal Laplacian ∆yI. This corresponds to the
description of the quasi-one-dimensional propagation of a signal in a homogeneous nonlinear
isentropic medium. In addition, thanks to the paraxial approximation, this time all terms
in the equation are of the same size in contrast with the Kuznetsov equation.

By our derivation we obtain that the KZK equation is the second-order approximation
of the isentropic Navier-Stokes system up to terms of O(ε3) by the introduced previously
ansatz (1.36)–(1.42). In this sense, since the entropy and the pressure of the compressible
Navier-Stokes system (1.1)–(1.3) are approximated up to terms of the order of ε3, the KZK
equation ansatz (1.36)–(1.42) is optimal, as it also gives the approximation of the equations
of the isentropic Navier-Stokes system up to O(ε3)-terms.

Derivation from the Kuznetsov equation

If the velocity potential is given [116] by Eq. (1.36), then we directly obtain from the
Kuznetsov equation (1.18) via the paraxial change of variables (1.35) that

∂2
t u− c2∆u− ε∂t

(

(∇u)2 +
γ − 1
2c2

(∂tu)2 +
ν

ρ0

∆u

)

= ε

[

2c∂2
τzΦ − γ + 1

2c2
∂τ (∂τ Φ)2 − ν

ρ0c2
∂3

τ Φ − c2∆yΦ

]

+O(ε2). (1.46)

Therefore, we find that the right-hand side ǫ-order terms in Eq. (1.46) is precisely the KZK
equation (1.45).
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1.1.4 NPE equation

In the difference to the KZK equation, the NPE (Nonlinear Progressive wave Equation)
equation is usually used to describe short-time pulses and long-range propagation, for in-
stance, in an ocean waveguide, where the refraction phenomena are important [26, 132].

The NPE equation, initially derived by McDonald and Kuperman [131], is an example of a
paraxial approximation aiming to describe short-time pulses and long-range propagation,
for instance, in an ocean waveguide, where the refraction phenomena are important. To
compare to the KZK equation we use the following paraxial change of variables

u(t, x1, x
′) = Ψ(εt, x1 − ct,

√
εx′) = Ψ(τ, z, y), (1.47)

with
τ = εt, z = x1 − ct, y =

√
εx′. (1.48)

To compare to the KZK equation, the propagation follows the rescaled time variable τ and
z take the role of τ from the KZK ansatz. For the velocity we have

x1

x′

t

Navier-Stokes/

Euler (x1, x′, t)

z = x1 − ct

y =
√
ǫx′

τ = ǫt

NPE (τ, z, y)

Figure 1.3 – Paraxial change of variables for the profiles U(ǫt, x1 − ct,
√

ǫx′).

vε(t, x1, x
′) = −ε∇u(t, x1, x

′) = −ε(∂zΨ,
√
ε∇yΨ)(τ, z, y). (1.49)

Derivation from the Navier-Stokes system

If we compare the NPE equation to the isentropic Navier-Stokes system this method of
approximation does not allow to keep the Kuznetsov ansatz of perturbations (1.19)–(1.20)
imposing (1.22)–(1.23), just by introducing the new paraxial profiles Ψ for u, ξ for ρ1

and χ for ρ2 and taking the term of order 0 in ε as it was done in the case of the KZK-
approximation. This time the paraxial change of variables (1.48) for ρ1 and ρ2, defined in
Eqs. (1.22)–(1.23), gives

ρ1 = − ρ0

c
∂zΨ + ε

ρ0

c2
∂τ Ψ,

ρ2 = − ρ0(γ − 2)
2c2

(∂zΨ)2 − ρ0

2c2
(∂zΨ)2 − ν

ρ0
∂2

z Ψ

+ ε

[

ρ0(γ − 2)
2c3

∂zΨ∂τ Ψ − ρ0

2c2
(∇yΨ)2 − ν

c2
∆yΨ

]

+ ε2

(

−ρ0(γ − 2)
2c4

)

(∂τ Ψ)2.
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Thus, one of the terms in the ρ1-extension takes part of the second order corrector of ρε:

ρε(t, x1, x
′) = ρ0 + εξ(τ, z, y) + ε2χ(τ, z, y), (1.50)

with

ξ(τ, z, y) = − ρ0

c
∂zΨ, (1.51)

χ(τ, z, y) =
ρ0

c2
∂τ Ψ − ρ0(γ − 1)

2c2
(∂zΨ)2 − ν

c2
∂2

z Ψ. (1.52)

The obtained ansatz (1.49)–(1.50), applied to the Navier-Stokes system, gives

∂tρε + div(ρεvε) =ε2(−2ρ0

c
)

(

∂2
τzΨ − (γ + 1)

4
∂z(∂zΨ)2 − ν

2ρ0
∂3

z Ψ +
c

2
∆yΨ

)

+O(ε3),

and

ρε[∂tvε + (vε.∇)vε] + ∇p(ρε) − εν∆vε = ε∇
(

ξ +
ρ0

c
∂zΨ

)

+ c2ε2∇
[

χ − ρ0

c2
∂τ Ψ +

ρ0(γ − 1)
2c2

(∂zΨ)2 +
ν

c2
∂2

z Ψ
]

+O(ε3).

As all previous models, for this ansatz, the NPE equation

∂2
τzΨ − (γ + 1)

4
∂z(∂zΨ)2 − ν

2ρ0
∂3

z Ψ +
c

2
∆yΨ = 0 (1.53)

appears as the second order approximation of the isentropic Navier-Stokes system up to
the terms of the order of O(ε3). In the sequel we work with

ξ(τ, z, y) = − ρ0

c
∂zΨ, (1.54)

which satisfies the NPE equation

∂2
τzξ +

(γ + 1)c
4ρ0

∂2
z [(ξ)2] − ν

2ρ0

∂3
zξ +

c

2
∆yξ = 0. (1.55)

Looking at Figs 1.2 and 1.3 together with Eqs. (1.45) and (1.53), we see that there is a
bijection between the variables of the KZK and NPE equations defined by the relations

zNP E = −cτKZK and τNP E = ετKZK +
zKZK

c
, (1.56)

which implies for the derivatives

∂τNP E
= c∂zKZK

and ∂zNP E
= −1

c
∂τKZK

.

Thus, as it was mentioned in Introduction, the known mathematical results for the KZK
equation can be directly applied for the NPE equation.
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Derivation from the Kuznetsov equation

If we start with the Kuznetsov equation (1.18), putting inside the velocity potential (1.47)
we directly obtain according the paraxial change of variable (1.48) that

∂2
t u− c2∆u− ε∂t

(

(∇u)2 +
γ − 1
2c2

(∂tu)2 +
ν

ρ0
∆u

)

= ε

(

−2c∂2
τzΨ − c2∆yΨ +

ν

ρ0
c∂3

z Ψ +
γ + 1

2
c∂z(∂zΨ)2

)

+O(ε2).

We obtain the NPE equation satisfying by ∂zΨ modulo a multiplicative constant:

∂2
τzΨ − γ + 1

4
∂z(∂zΨ)2 − ν

2ρ0

∂3
z Ψ +

c

2
∆yΨ = 0.

1.2 Strong well posedness of the Cauchy problems

To explain the main techniques to study the well posedness of the nonlinear dissipative
models, I start this section with the simplest case of the KZK or the NPE equation [ARP-
13]. I finish by mention the main ideas which we use for establish the well posedness of
the Cauchy problem for the Kuznetsov equation [ARP-5].

1.2.1 KZK and NPE equations

Although the physical context and the physical using of the KZK and the NPE equations
are different, there is a bijection (see Eq. (1.56)) between the variables of these two models
and they can be presented by the same type differential operator with constant positive
coefficients:

Lu = 0, L = ∂2
tx − c1∂x(∂x·)2 − c2∂

3
x ± c3∆y, for t ∈ R+, x ∈ R, y ∈ Rn−1.

Therefore, the results on the solutions of the KZK equation from [ARP-13] are valid for
the NPE equation. See also [92] for analogous results in R2 for these models in the viscous
case.

We study the well posedness of the following Cauchy problem:
{

c∂2
τzI − (γ+1)

4ρ0
∂2

τ I
2 − ν

2c2ρ0
∂3

τ I − c2

2
∆yI = 0 on Tτ × R+ × Rn−1,

I(τ, 0, y) = I0(τ, y) on Tτ × Rn−1
(1.57)

in the class of L−periodic functions with respect to the variable τ and with mean value
zero

∫ L

0
I(τ, z, y)dτ = 0. (1.58)

The introduction of the operator ∂−1
τ , defined by formula

∂−1
τ I(τ, z, y) :=

∫ τ

0
I(s, z, y)ds+

∫ L

0

s

L
I(s, z, y)ds, (1.59)

allows us to consider instead of Eq. (1.45) the following equivalent equation

c∂zI − (γ + 1)
4ρ0

∂τI
2 − ν

2c2ρ0
∂2

τ I − c2

2
∂−1

τ ∆yI = 0 on Tτ × R+ × Rn−1, (1.60)
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which for all initial data in Hs (s >
[

n
2

]

+ 1) is at least locally well-posed [ARP-13] with
I ∈ C([0, T ∗[, Hs(Tτ × Rn−1)). Here by T ∗ is denoted the maximal value for the interval
[0, T [ of z on which a such solution exists.

As it was mentioned in [120, 121, 137] for the KP type equations in R2, the introduced
operator ∂−1

τ is singular in the sense that its Fourier transform gives a division [ARP-13]
by a discrete variable m:

F(∂−1
τ ∆yI) =

Lξ2

i2πm
F(I)(m, ξ) m ∈ Z, ξ ∈ R.

If we suppose that I has the mean value zero in τ , it implies that F(I)(0, ξ) = 0 for
all ξ, which makes disappear the singularity for m = 0. For the same reason this re-
quires Lemma 5.2 [ARP-13] the additional constraint for the initial data ∂−1

τ △yI0 = φ0 ∈
Hs−2 to be able to ensure that the solution I ∈ C([0, T [, Hs(Tτ × Rn−1)) can be also
considered in C1([0, T [, Hs−2(Tτ × Rn−1)) (see also a similar situation for the KP type
equations explained in [137]). In the same time as it is discussed in [120, 121, 137] in the
non-periodic case this regularity constraint is not physical. However, if we work in the class
of periodic functions with the mean value zero this condition can be omitted. Indeed, by
definition (1.59) of the operator ∂−1

τ , it preserves the property of a periodic function to
have the mean value zero. Thus, if I0 is a periodic function with the mean value zero on τ ,
the solution I also belongs in this class, where we find the equivalence between the Cauchy
problem (1.57) and the analogous problem considered for Eq. (1.60). Formula (1.59), as it
is noticed in [ARP-13] p. 796, allows to establish an analogue of the Poincaré inequality
(which is false in the non periodic case of Rn):

‖I‖Hs(]0,L[×Rn−1
y ) ≤ C‖∂τI‖Hs(]0,L[×Rn−1

y ) , (1.61)

coming from the following relation

I = ∂−1
τ ∂τI =

∫ τ

0
∂τI(s, y)ds+

∫ L

0

s

L
∂τI(s, y)ds.

As, by (1.59), ∂−1
τ I is L-periodic in τ and of mean value zero, this also gives us the following

estimate
‖∂−1

τ I‖Hs(Ω1) ≤ C‖∂τ∂
−1
τ I‖Hs(Ω1) = C‖I‖Hs(Ω1). (1.62)

This means that in the class of periodic and of mean value zero functions as soon as I0 ∈
Hs(Ω1), it implies that ∂−1

τ I0 is also in Hs(Ω1) and in the same class. Hence the condition
∂−1

τ ∆yI0 ∈ Hs−2(Ω1) required in Theorem. 1.2, Point 4 [ARP-13] is automatically verified
for I0 from Hs which are periodic and of mean value zero in t (τ = t for z = 0).

To treat this kind of equations a priori estimates are still crucial as for the Kuznetsov and
Westervelt equations. They are in particular a consequence of the following relation taking
place in the class of periodic functions with the mean value zero:

∫ L

0

∫

Rn−1
y

∂−1
τ (∆yI)Idτdy = −

∫ L

0

∫

Rn−1
y

∂−1
τ (∇yI)∇yIdτdy

=
∫ L

0

∫

Rn−1
y

∂−1
τ (∇yI)∂τ (∂−1

τ (∇yI))dτdy = 0. (1.63)
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To simplify the notations we rewrite Eq. (1.60) in the following form

∂zw − w∂τw − β∂2
τw − γ∂−1

τ ∆yw = 0, (1.64)

where for instance β represents the viscosity ν multiplied by (c5ρ0(γ + 1))− 1
2 . Thus it

sufficient to multiply (1.64) by w and integrate by parts to obtain

1
2
d

dz
‖w‖2

L2
+ β‖∂τw‖2

L2
= 0 .

The estimate with some strictly positive constants C1(L) and C2(s)

1
2
d

dz
‖w‖2

s + βC1(L)‖w‖2
s ≤ C2(s)‖w‖3

s (1.65)

holds only in the periodic case and not on the whole space. In this latter case the Hs norm
of ∂τw does not control the Hs norm of w. Nevertheless, it is crucial in the well-posedness
result for the KZK equation. It can be observed that periodic solutions with mean value
zero satisfy, for z small enough, the estimate:

1
2
d

dz
‖w‖2

s + ‖w‖2
s(βC1(L) − C2(s)‖w‖s) ≤ 0. (1.66)

Therefore, if β > 0 for z = 0

βC1(L) − C2(s)‖w(0, ·)‖s ≥ 0 i.e., ‖u(0, ·)‖s ≤ βC1(L)
C2(s)

,

the quantity ‖w(z, ·)‖2
s decays for z > 0, and, therefore, satisfies the same estimate on

all the interval [0, T ∗[, which can thus be extended after any finite value T ∗. Hence, for
β > 0 the maximum existence interval is R+ with T ∗ = +∞. In addition, we are able
to determinate the exponential decay if the function y(z) = ‖w‖Hs is defined such that
y(0) = ‖w0‖Hs , thus, it satisfies the equation

d

dz
(y2) = C2(s)y3 − βC1(L)y2.

Solving it, we find that

y(z) =

(

C2(s)
βC1(L)

−
(

C2(s)
βC1(L)

− 1
‖w0‖

)

e
βC1(L)

2
z

)−1

,

from where, imposing ‖w0‖Hs ≤ βC1(L)
C2(s)

, it follows as soon as β > 0 there exists a constant
C > 0 depending only on β, ‖w0‖, C1(L) and C2(s) such that

‖w(z)‖Hs ≤ y(z) ≤ Ce− βC1(L)
2

z ∀z ∈ [0,+∞[.

For β = 0, or equivalently ν = 0 in the inviscid case, the power 3 in the right hand side of
estimate (1.65) gives the influence on the possibility to have blow-up formations, since this
time the problem is described by

d

dz
y = Cy

3
2 , y(0) = ‖w0‖Hs,
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which solution is explicit and given by the formula:

y(z) =
‖w0‖Hs

(1 − 1
2
Cz
√

‖w0‖Hs)2
.

In particular we have a simple estimation of the maximal existence interval

T ∗ ≥ 2

C
√

‖w0‖Hs

. (1.67)

This kind of argument is useful to establish the local existence result for instance using the
fractional step method or by the general operator theory of Kato (see [ARP-13]).

To prove the unicity, we also can apply the stability estimate between a regular solution of
the KZK equation I ∈ L∞([0, T [, Hs) with the initial data I0 ∈ Hs and a less regular (a
weak) solution J ∈ L2([0, T [, L2) with the initial data J0 ∈ L2:

|I(·, z) − J(·, z)|L2 ≤ e
∫ z

0
supτ,y|∂τ I(τ,y,s)|ds|I0 − J0|L2. (1.68)

This kind of estimates can be easily obtained by writing the resulting equation for the
difference I − J and taking the inner product of it with I − J in L2 and finally performing
integration by parts. The second interest of this estimate, that it contains exactly the
expression which can become infinite for a finite point (T ∗, τ ∗, y∗), corresponding to the
geometrical blow-up [7] (see Theorem 1.3 [ARP-13]):

∫ T ∗

0
sup
τ,y

(|∂τI(τ, y, z)|dz = ∞.

To prove rigorously for the inviscid case for suitable initial data the existence of a point
(τ ∗, y∗, T ∗) at which ∂τI becomes infinite

lim
z→T ∗

(T ∗ − z) sup
τ,y

∂τI(τ, y, z) > 0,

we use a generalization of the method of characteristics for Burgers’ equation adapted to the
multidimensional case with an application of the Nash-Moser theorem following Alinhac’s
method of working with so called “blow-up” system [8, 7]. From geometrical point of
view, the first derivative of τ blow-up when the profile of the wave become vertical as it
schematically presented in Fig. 1.4.

0

pr
ofi

le

sup
τ,y

∂τI(T ⋆) = +∞

Figure 1.4 – The profile of the beam which provides the blow-up formation at final T ⋆ < +∞.
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1.2.2 Kuznetsov and Westervelt equations

The Cauchy problem for the Kuznetsov equation reads for α = γ−1
c2 , β = 2 and ν = δ

ρ0
as

utt − c2∆u− νε∆ut = αεututt + βε∇u ∇ut, x ∈ Rn, (1.69)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn, (1.70)

where c, ρ0, γ, δ are the velocity of the sound, the density, the ratio of the specific heats
and the viscosity of the medium respectively. In what follows, we just suppose that α and
β are some positive constants. Eq. (1.69) is a weakly quasi-linear damped wave equation
that describes the propagation of a high amplitude wave in fluids. As we have seen, the
Kuznetsov equation is one of the models derived from the Navier-Stokes system, and it is
well suited for the plane, cylindrical and spherical waves in a fluid [82]. Most of the works
on the Kuznetsov equation (1.69) are treated in the one space dimension [104] or a bounded
spatial domain of Rn [106, 107, 135]. For the viscous case, Kaltenbacher and Lasiecka [107]
have considered the Dirichlet boundary valued problem and proved for sufficiently small
initial data the global well-posedness for n ≤ 3. Meyer and Wilke [135] have proved it
for all n. In [106] it was proven a local well-posedness of the Neumann boundary valued
problem for n ≤ 3.

In the inviscid case for ν = 0, the Cauchy problem for the Kuznetsov equation is a particular
case of a general quasi-linear hyperbolic system of the second-order considered by Hughes,
Kato, and Marsden [90]. The local well posedness result, proved in [90], does not use a
priori estimate techniques and is based on the semi-group theory. Hence, thanks to [90],
we have the well posedness of (1.69)–(1.70) in the Sobolev spaces Hs with a real s > n

2
+ 1:

Theorem 1.2.1 Let ν = 0, n ∈ N∗ and s > n
2

+1. For all u0 ∈ Hs+1(Rn) and u1 ∈ Hs(Rn)
such that ‖u1‖L∞(Rn) <

1
2αε

, ‖u0‖L∞(Rn) < M1, ‖∇u0‖L∞(Rn) < M2, with M1 and M2 in R∗
+

the following results hold:

1. For all T > 0, there exists T ′ > 0, T ′ ≤ T , such that there exists a unique solution u
of (1.69)–(1.70) with the following regularity

u ∈ Cr([0, T ′];Hs+1−r(Rn)) for 0 ≤ r ≤ s, (1.71)

∀t ∈ [0, T ′], ‖ut(t)‖L∞(Rn) <
1

2αε
, ‖u‖L∞(Rn) < M1, ‖∇u‖L∞(Rn) < M2. (1.72)

2. The map (u0, u1) 7→ (u(t, .), ∂tu(t, .)) is continuous in the topology of Hs+1 × Hs

uniformly in t ∈ [0, T ′].

The condition ‖ut(t)‖L∞(Rn) <
1

2αε
in Eq. (1.72) ensures that the Kuznetsov equation stays

hyperbolic and hence is crucial for its well posedness.

Therefore, actually, to extend the local well-posedness to a global one (for n ≥ 4) and to
estimate the maximal time interval on which there exists a regular solution, John [94] has
developed a priori estimates for the Cauchy problem for a general quasi-linear wave equa-
tion. This time, due to the nonlinearities ututt and ∇u ∇ut including the time derivatives,
to have an a priori estimate for the Kuznetsov equation, we need to work with Sobolev
spaces with a natural s, thus denoted in what follows by m.

Let us consider the structure of the Kuznetsov equation working just in L2 and considering
its simplified versions. This gives us the base for a priori estimates involving a high order
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energies in the Sobolev spaces and also gives the ideas about the principal properties and
difficulties in the mathematical analysis of this equation.

We notice that Eq. (1.69) is a wave equation containing a dissipative term ∆ut and two
nonlinear terms: ∇u∇ut describing local nonlinear effects and ututt describing global or
cumulative effects. Actually, the linear wave equation appears from Eq. (1.69) if we consider
only the terms of the zero order on ε:

utt − c2∆u = 0. (1.73)

The semi-group theory allows in the usual way to show that for u0 ∈ H1(Rn) and u1 ∈
L2(Rn) there exists a unique solution of the Cauchy problem (1.73), (1.70)

u ∈ C0(R+;H1(Rn)) ∩ C1(R+;L2(Rn)).

So, the energy of the wave equation (1.73)

E(t) =
∫

Rn
[(ut)2 + c2(∇u)2](t, x)dx, (1.74)

is well defined and conserved
d

dt
E(t) = 0.

For ν > 0 and without nonlinear terms, the Kuznetsov equation (1.69) becomes the known
strongly damped wave equation:

utt − c2∆u− νε∆ut = 0, (1.75)

which is well-posed [91]: for m ∈ N, u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) there exists a unique
solution of the Cauchy problem (1.75), (1.70)

u ∈ C0(R+;Hm+1(Rn)) ∩ C1(R+;Hm(Rn)).

Multiplying Eq. (1.75) by ut in L2(Rn), we obtain for the energy of the wave equation (1.74)

d

dt
E(t) = −2νε

∫

Rn
(∇ut)2(t, x)dx ≤ 0,

what means that the energy E(t) decreases in time, thanks to the viscosity term with
ν > 0. The decrease rate is found for more regular energies in [152] in accordance with the
regularity of the initial conditions. Without the term ∇u∇ut (local nonlinear effects), the
Kuznetsov equation becomes similar to the Westervelt equation (1.31), initially derived by
Westervelt [173] before Kuznetsov. Denoting conveniently p by u in (1.31), we multiply
Eq. (1.31) by ut and integrate over Rn to obtain

1
2
d

dt

(∫

Rn
[(ut)2 + c2(∇u)2] dx

)

+ νε
∫

Rn
(∇ut)2 dx =

1
3
γ + 1
c2

ε
d

dt

(∫

Rn
(ut)3 dx

)

.

Then we have

1
2
d

dt

(∫

Rn

[(

1 − 2
3
γ + 1
c2

εut

)

(ut)2 + c2(∇u)2
]

dx
)

+ νε
∫

Rn
(∇ut)2 dx = 0.
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For α = 2
3

γ+1
c2 we consider the energy

Enonl(t) =
∫

Rn

[

(1 − αεut) (ut)2 + c2(∇u)2
]

dx, (1.76)

which is monotonous decreasing for ν > 0 and is conserved for ν = 0. Let us also notice
that, taking the same initial data for ν = 0 and ν > 0, we have:

for all ν > 0 and t > 0 Enonl(t, ν = 0) > Enonl(t, ν) ≥ 0,

in the assumption that 1 − αεut ≥ 0 almost everywhere.

While 1
2

≤ 1 − αεut ≤ 3
2
, that is to say ‖ut(t)‖L∞(Rn) remains small enough in time, then

we can compare Enonl to the energy of the wave equation

1
2
E(t) ≤ Enonl(t) ≤ 3

2
E(t).

Then a sufficiently regular solution of the Cauchy problem for the Westervelt equation has
the energy E controlled by a decreasing in time function:

E(t) ≤ 3E(0) − 4νε
∫ t

0

∫

Rn
(∇ut(τ, x))2dx dl.

Now, let us consider the Kuznetsov equation (1.69). We multiply it by ut and integrate on
Rn to obtain

1
2
d

dt
Enonl(t) + νε

∫

Rn
(∇ut)2 dx = 2ε

∫

Rn
∇u ∇ut ut dx,

where Enonl(t) is given by Eq. (1.76) with α = 2
3

γ−1
c2 . As

2ǫ
∫

Rn
∇u ∇ut ut dx = ǫ

d

dt

∫

Rn
ut(∇u)2 dx− ǫ

∫

Rn
utt(∇u)2 dx,

we find

1
2
d

dt

(∫

Rn

[(

1 − 2
3
γ − 1
c2

εut

)

(ut)2 + (c2 − 2ǫut)(∇u)2
]

dx

+ 2ǫ
∫ t

0

∫

Rn
utt|∇u|2 dx dl

)

+ νε
∫

Rn
(∇ut)2 dx = 0. (1.77)

Thus, for α = 2
3

γ−1
c2 , the function

Fν(t) =
∫

Rn

[

(1 − αεut) (ut)2 + (c2 − 2ǫut)(∇u)2
]

dx+ 2ǫ
∫ t

0

∫

Rn
utt|∇u|2 dx dl

is constant if ν = 0 and decreases if ν > 0. Let us notice that while 1
2

≤ 1 − αεut ≤ 3
2
, the

coefficient c2 − 2ǫut is always positive (since c is the sound speed in the chosen medium,
c2 ≫ 1), hence the first integral in Fν(t) is positive, but we a priori don’t know the sign of
the second integral, i.e. the sign of utt. However, for ν = 0, Fν=0(t) is positive, as soon as
0 ≤ 1 − αεu1:

Fν=0(t) = Fν=0(0) =
∫

Rn

[

(1 − αεu1) (u1)2 + (c2 − 2ǫu1)(∇u0)2
]

dx ≥ 0,
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and, if we take the same initial data for the Cauchy problems with ν = 0 and ν > 0, for all
t > 0 (for all time where Fν=0 exists) it holds Fν=0(t) = Fν=0(0) > Fν>0(t).

For n ≥ 3, we can control the term 2ε
∫

Rn ∇u∇utut dx using the Hölder inequality and the
Sobolev embeddings (which fails in R2):

∣

∣

∣

∣

∫

Rn
∇u ∇ut ut dx

∣

∣

∣

∣

≤‖∇u‖Ln‖∇ut‖L2‖ut‖
L

2n
n−2

≤ C‖∇u‖Ln‖∇ut‖2
L2.

Indeed, in R2 we don’t have any estimates of the form

‖u‖Lp(R2) ≤ ‖∇u‖L2(R2),

with p > 2. But such an estimate is essential to control the nonlinear term. Then, instead
of Eq. (1.77) for Fν , we have the relation for Enonl:

1
2
d

dt
Enonl(t) + ε(ν − 2C‖∇u‖Ln)

∫

Rn
(∇ut)2 dx ≤ 0.

So, if a solution of the Kuznetsov equation u is such that ‖∇u(t)‖Ln and ‖ut(t)‖L∞ stay
small enough for all time, then Enonl decreases in time and, as previously for the Wester-
velt equation, thanks to 1

2
E(t) ≤ Enonl(t) ≤ 3

2
E(t), the energy E has for upper bound a

decreasing function. This fact leads especially to look for global well posedness results for
the Cauchy problem for the Kuznetsov equation in the viscous case.

If we directly apply general results of Ref. [94] to our case of the Kuznetsov equation, we
obtain a well posedness result with a high regularity of the initial data. We improve it in
[ARP-5] and show John’s results for the Kuznetsov equation with the minimal regularity on
the initial data corresponding to the regularity obtained by Hughes, Kato and Marsden [90].
For instance, we prove the analogous energy estimates in Hm with m ≥ [n

2
+ 2] instead

of John’s m ≥ 3
2
n + 4 and its slight modified version in Hm with m ≥ [n

2
+ 3] instead of

m ≥ 3
2
n+ 7. The energy estimates, this time for the energy

Em[u](t) = ‖∇u(t)‖2
Hm(Rn) +

m+1
∑

i=1

‖∂i
tu(t)‖2

Hm+1−i(Rn), (1.78)

where however we can recognize the influence of the L2-wave energy, allow us to evaluate
the maximal existence time interval [0, T ∗[. In the form of one of the main a priori estimates
we recognize the same structure of a priori estimate for the KZK equation coming from the
common second order of the nonlinearity for the Kuznetsov and the KZK equations:

Em[u](t) ≤ B Em[u](0) + εCm

∫ t

0
(Em[u](τ))

3
2 dτ, (1.79)

with constants B > 0, depending only on c, and Cm > 0, depending only on α, β, m, on
the dimension n and eventually on c if c2 < 0.5. In R2 and R3 the optimality of obtained
estimations for the maximal existence time is ensured by the results of Alinhac [8]. In
Ref. [8] a geometric blow-up for small data is proved for ∂2

t u and ∆u at a finite time of the
same order as predicted by our a priori estimates (our estimates of the minimum existence
time correspond to Alinhac’s maximum existence time results). The principle to obtain the
estimations for the maximal existence time is the same as in the case of the KZK or NPE
equations in Eq. (1.67). But this time we need to use as John in [94] the group of linear
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transformations preserving the linear wave equation utt − ∆u = 0. The generators of this
group (the derivatives with respect to group parameters taken at the identity) are called
generalized derivatives. Thus, using the Klainerman estimate [115], we develop an a priori
estimate for a new energy involving the generalized derivatives (see Section 3.2 [ARP-5]),
which allows us to obtain the estimations of T ∗. More precisely, in the inviscid case with
s = m ≥ n+ 2 and for sufficiently small initial data we have the following estimates of the
maximum existence time T ∗:

1. lim infε→0 ε
2T ∗ > 0 for n = 2,

2. lim infε→0 ε log(T ∗) > 0 for n = 3,

3. T ∗ = +∞ for n ≥ 4.

From the other hand, the blow-up of ∂2
t u and ∆u is also confirmed by the stability estimate

of the same nature as for the KZK equation case (1.68) which evaluates the difference
between of a regular solution u and less regular solution v of the Kuznetsov equation for
ν = 0 defined on [0, T ∗[: there exist constants C1 > 0 and C2 > 0, independent on time,
such that

(‖(u− v)t‖2
L2 + ‖∇(u− v)‖2

L2)(t) ≤ C1 exp
(

C2ε
∫ t

0
sup(‖utt‖L∞(Rn), ‖∆u‖L∞(Rn))dτ

)

.(‖u1 − v1‖2
L2 + ‖∇(u0 − v0)‖2

L2). (1.80)

Consequently, if the maximal existence time interval is finite and limited by T ∗, by Eq. (1.80),
we have the divergence

∫ T ∗

0

(

‖utt‖L∞(Rn) + ‖∆u‖L∞(Rn)

)

dτ = +∞. (1.81)

For n ≥ 4 and ν = 0, we also improve the results of John [94] and show the global existence
for sufficiently small initial data u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) with m ≥ n+ 2 instead
of m ≥ 3

2
n + 7. The smallness of the initial data here directly ensures the hyperbolicity

of the Kuznetsov equation for all time, i.e. it ensures that 1 − αεut is strictly positive
and bounded for all time. The proof uses the generalized derivatives for the wave type
equations [94] and a priori estimate of Klainerman [114, 115].

In the presence of the term ∆ut for the viscous case ν > 0, the regularity of the higher-order
time derivatives of u is different (to compare to the inviscid case), and the way to control
the nonlinearities in the a priori estimates becomes different. As it was shown in [152], this
dissipative term changes a finite speed of propagation of the wave equation to the infinite
one. Indeed, the linear part of Eq. (1.69) can be viewed as two compositions of the heat
operator ∂t − ∆ in the following way:

utt − c2∆u− νε∆ut = ∂t(∂tu− ǫν∆u) − c2∆u.

For the viscous case we prove the global in time well posedness results in Rn for small
enough initial data, the size of which we specify according to the theorem of abstract
nonlinear analysis due to M.F. Sukhinin [158, 1.5 Cor., p. 368]:

Theorem 1.2.2 Let ν > 0, n ∈ N∗, s > n
2

and R+ = [0,+∞[.
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Let
X := H2(R+;Hs(Rn)) ∩H1(R+;Hs+2(Rn)),

the initial data
u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn)

and C1 = O(1) be the minimal constant such that the solution u∗ of the corresponding linear
Cauchy problem (i.e. with α = β = 0) satisfies

‖u∗‖X ≤ C1√
νǫ

(‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn)).

Then there exists a strictly positive constant r∗ = O(1) (for the definition see Eq. (38)
[ARP-5]) such that for all r ∈ [0, r∗[ and all initial data satisfying

‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn) ≤
√
νǫ

C1
r, (1.82)

there exists the unique solution u ∈ X of the Cauchy problem for the Kuznetsov equa-
tion (1.69)–(1.70) and ‖u‖X ≤ 2r.

To be able to apply [158, 1.5 Cor., p. 368] we need to have an isomorphism between the space
of source terms and the solutions of the linear problem, which holds thanks to L2-maximal
regularity (see [37] Definition 2.1) on R+ of the strongly damped wave equation [63].

Knowing the existence of a solution u of the Kuznetsov equation in X, it follows that

u ∈ C(R+;Hs+2(Rn)) and ut ∈ H1(R+;Hs(Rn)) ∩ L2(R+;Hs+2(Rn)).

By Theorem III.4.10.2 in [10], it implies that ut ∈ C(R+;Hs+1(Rn)), which gives that

u ∈ C1(R+;Hs+1(Rn)) ∩ C(R+;Hs+2(Rn))

and, this time with the help of the Kuznetsov equation, utt ∈ C(R+;Hs−1(Rn)). Conse-
quently, in the viscous case the regularity of the time derivatives of the order greater than
two of the solutions differs from the regularity, obtained for the inviscid case. Thus we have
to consider estimates with different energies: the energy Em

2
[u](t), defined by

Em
2

[u](t) = ‖∇u(t)‖2
Hm(Rn) +

m
2

+1
∑

i=1

‖∂i
tu(t)‖2

Hm−2(i−1)(Rn), (1.83)

and the energy

Sm
2

[u](t) =

m
2

+1
∑

i=1

‖∇∂i
tu(t)‖2

Hm−2(i−1)(Rn),

defined, as Em
2

[u](t), for m ∈ N and m even, which respect to the obtained regularity of u
and its derivatives. For n ≥ 3 we establish an a priori estimate which gives also a sufficient
condition of the existence of a global solution for a sufficiently small initial energy of the
same order on ǫ as in Theorem 1.2.2. More precisely, for n ≥ 3, s = m ∈ N be even and
m ≥ [n

2
+ 3] we show that there exists a constant C = O(1) > 0, independent on time, such

that for all initial data u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rm) satisfying

Em
2

[u](0) < ǫC,
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there exists a unique u ∈ C0(R+;Hm+1(Rn)) ∩ Ci(R+;Hm+2−2i(Rn)), for i = 1, .., m
2

+ 1
with the bounded energy

∀t ∈ R+, Em
2

[u](t) ≤ O
(1
ǫ

)

Em
2

[u](0) = O(1).

Remark 1.2.1 If we take such u, we can show the sharp character of Theorem 1.2.2 by
the following direct energy estimation approach (see also Appendix [ARP-5]). It is impor-
tant to take attention that this time all physical coefficients of the Cauchy problem for the
Kuznetsov equation are expressed to compare to the powers of ǫ, which for instance, means
that c2 = O(1

ǫ
). If we take it into account we obtain the same types of smallness of the

initial energy for the inviscid case:
√

Em0 [u](0) ≤ O(
√
ǫ).

So, for n ≥ 3, m ≥
[

n
2

+ 3
]

if

√

Em
2

[u](0) =

√

√

√

√

√‖∇u(0)‖2
Hm(Rn) +

m
2

+1
∑

i=1

‖∂i
tu(0)‖2

Hm−2(i−1)(Rn)
≤ O(

√
ǫ),

then it follows in a sufficient way that for u0 ∈ Hm+1(Rn) and for u1 ∈ Hm(Rn) it holds

‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn) ≤ O(
√
ǫm+1), (1.84)

which implies the existence of a unique global solution u ∈ C0(R+;Hm+1(Rn))∩C1(R+;Hm(Rn))
of problem (1.69)–(1.70) such that for all t ∈ R+

Em
2

[u](t) ≤ O
(1
ǫ

)

Em
2

[u](0) = O(1).

Thus we see that by this approach the sufficient condition to have for all t ≥ 0 Em
2

[u](t)
bounded by a constant of order zero on ǫ is given by Eq. (1.84) and depends on the smooth
properties of the initial data (more they are regular, more they should be small). Hence, it
is much more restrictive to compare to (1.82).

Moreover, (see Theorem 4.4 [ARP-5]) we also have an analogue of Eq. (1.66) as for solu-
tions of the KZK equation:

d

dt
E(t) +

√
2εSm

2
[u](t)

(√
2ν − Cm max(α, β)

√

E(t)
)

≤ 0,

where by V is denoted the set of all multi-indexes A = (A0, A1, ..., An) with |A| − A0 ≤
m− 2A0 and

E(t) =
∑

A∈V

∫

Rn
(1 − αεut)(DAut)2 + c2(∇DAu)2)(t, x) dx.

The same well posedness results hold in (R/LZ) × Rn−1 for n ≥ 2 (with a periodicity and
mean value zero on one variable) thanks to the Poincaré inequality (1.61).

We finish by noticing that the hyperbolicity condition (1.72) is automatically satisfied if we
require conditions (1.82) and (1.2.2).
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1.3 Approximation results

Once we know the well-posedness properties of all introduced models, we can validate
the approximations of the compressible isentropic Navier-Stokes system [ARP-2] by the
different models: by the Kuznetsov, the KZK, and the NPE equations. We also do the
same for the Euler system in the inviscid case and justify the approximations between the
Kuznetsov equation [ARP-3] and the Westervelt, the KZK and the NPE equations.

As we have seen previously, the main difference between the viscous and the inviscid cases
is the time existence and regularity of the solutions. Typically in the inviscid case, the
solutions of the models and also of the Euler system itself (actually strong solutions), due
to the nonlinearity, can provide shock front formations at a finite time [7, 153, 176], [ARP-
5], [ARP-13]. Thus, they are only locally well-posed, while in the viscous media, all ap-
proximative models are globally well-posed for small enough initial data [ARP-5], [ARP-
13]. These existence properties of solutions for the viscous and the inviscid cases may also
imply the difference in the definition of the domain where the approximations hold: for ex-
ample [ARP-12], for the approximation between the KZK equation and the Navier-Stokes
system, the approximation domain is a half-space, but for the analogous inviscid case of
the KZK and the Euler system, it is a cone (see the summarizing Table 1.1).

To keep a physical sense of the approximation problems, we consider especially the two or
three-dimensional cases, i.e. Rn with n = 2 or 3.

1.3.1 Approximations of the Navier-Stokes and Euler systems [ARP-2]

In what follows we denote by Uε a solution of the “exact” system - the Navier-Stokes/Euler
system -

Exact(Uε) = 0

and by Uε an approximate solution, constructed by the derivation ansatz from a regular
solution of one of the approximate models (typically of the Kuznetsov, the KZK or the
NPE equations). In this case, the approximate solution Uε is a function which solves the
Navier-Stokes/Euler system up to ǫ3 terms, denoted by ǫ3R:

Approx(Uε) = Exact(Uε) − ǫ3R = 0.

To have the remainder term R ∈ C([0, T ], L2(Ω)) we ensure that

Exact(Uε) ∈ C([0, T ], L2(Ω)),

i.e. we need a sufficiently regular solution Uε. The minimal regularity of the initial data to
have a such Uε is given in the last line of Table 1.1.

Choosing for the exact system the same initial-boundary data found by the ansatz for Uε

(the regular case) or the initial data taken in their small L2-neighborhood, i.e.

‖Uε(0) − Uε(0)‖L2(Ω) ≤ δ ≤ ǫ, (1.85)

with Uε(0) not necessarily smooth, we prove the existence of constants C > 0 and K > 0
independent of ε, δ and the time t such that

for all 0 ≤ t ≤ C

ε
‖(Uε − Uε)(t)‖2

L2(Ω) ≤ K(ǫ3t+ δ2)eKεt ≤ 9ε2 (1.86)
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with Ω a domain where the both solutions Uε and Uε exist.

To define the minimal regularity property of Uε for which stability estimate (1.86) holds,
we introduce admissible weak solutions of a bounded energy using the entropy η(Uε) of the
Euler system which is known [43] to be convex with η′′(Uε) strictly positive defined. More
precisely, we introduce

Definition 1.3.1 The function Uǫ = (ρǫ, ρǫvǫ) is called an admissible weak solution of a
bounded energy of the Cauchy problem for the Navier-Stokes system (1.4)–(1.6) if it satisfies
the following properties:

1. The pair (ρǫ,vǫ) is a weak solution of the Cauchy problem for the Navier-Stokes
system (1.4)–(1.6) (in the distributional sense).

2. The function Uǫ satisfies in the sense of distributions (see Ref. [43, p.52])

∂tη(Uǫ) + ∇.q(Uǫ) − ǫνvǫ△vǫ ≤ 0, where q(Uǫ) = vǫ(η(Uǫ) + p(ρǫ)), (1.87)

or equivalently, for any positive test function ψ in D(Rn × [0,∞[) the function Uǫ

satisfies
∫ T

0

∫

Rn

(

∂tψη(Uǫ) + ∇ψ.q(Uǫ) + ǫν|∇.vǫ|2ψ + ǫνvǫ.[∇.vǫ∇ψ]
)

dxdt

+
∫

Rn
ψ(x, 0)η(Uǫ(0))dx ≥ 0.

3. The function Uǫ satisfies the equality (with the notation vǫ = (v1, . . . , vn))

−
∫

Rn

U2
ǫ(t)
2

dx+
∫ t

0

∫

Rn

(

n
∑

i=1

Gi(Uε)∂xi
Uǫ − ǫν∇(ρǫvi).∇vi

)

dxds

+
∫

Rn

U2
ǫ (0)
2

dx = 0,

where with the notation ei for the vector number i of the canonical basis of Rn

Gi(Uε) =

[

ρεvi

ρεvivε + p(ρε)ei

]

.

Let us notice that any classical solution of (1.4)– (1.6) satisfies the entropy condition (1.87)
by the equality and obviously it is sufficient regular to perform the integration by parts
resulting in the relation of point 3. For existence results of global weak solutions of the
Cauchy problem for the Navier-Stokes system (1.4)– (1.6) with sufficiently small initial data
around the constant state (ρ0, 0) (actually, ρ0 − ρ(0) is small in L∞, v(0) is small in L2

and bounded in L2n

) and with the pressure p(ρ) = Kργ with γ ≥ 1, we refer to results of
D. Hoff [87, 88]. Therefore, from [87] it follows that a weak solution of the isentropic com-
pressible Navier-Stokes system (1.4)–(1.6) is also an admissible weak solution of bounded
energy in the sense of Definition 1.3.1. But in [ARP-2] we only consider the question
of the validity of the stability estimate (1.86) for initial data closed to Uε(0) in L2 norm
(thus for initial data not necessarily satisfying Hoff’s assumptions). We do not consider
the existence question of an admissible weak solution of bounded energy of the Cauchy
problem for the Navier-Stokes system. Following the ideas of [ARP-12] we prove (1.86)
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for different approximations: the Navier-Stokes system by the Kuznetsov equation, by the
KZK equation, and by the NPE equation.

As we have mentioned, in the viscous case all approximative models have a global unique
classical solution for small enough initial data in their corresponding approximative domains
(Ω varies for different models, see Table 1.1: it is equal to Rn, Tx1 × Rn−1 and R+ × Rn−1

for the Kuznetsov equation, the NPE equation and the KZK equation respectively). If we
take regular initial data Uε(0) = Uε(0), the same thing is true for the Navier-Stokes system
with the same regularity for the solutions [130]. But in the case of the half-space for the
approximation between the Navier-Stokes system and the KZK equation, firstly considered
in [ARP-12], when, due to the periodic in time boundary conditions, coming from the
initial conditions for the KZK equation, we prove the well-posedness for all finite time. To
obtain it we use [ARP-12] Theorem 5.5 and improve its proof for the new ansatz.

For the inviscid case, we verify that the existence time of (strong) solutions of all models is
not less than O(1

ǫ
) and estimate (1.86) still holds. We use here the known blow-up results

for the Euler system [7, 153, 154, 155, 156, 176]. Once again, to obtain estimate (1.86)
we don’t need the regularity of the classical solution of the Euler system, it can be one of
solutions in the sense of Luo and al. [127] for the Euler system satisfying the admissible
conditions given in Definition 1.3.1 (see also Ref. [43] p.52 and [ARP-12] Definition 5.9).
But this time there exist infinitely many weak solutions of the Euler system, so there is no
any sense to consider an regular approximation of one of them.

1.3.2 Approximations of the Kuznetsov equation [ARP-3]

For the approximation framework for the solutions of the Kuznetsov and the KZK equations
we study two cases. The first case considers the purely time periodic boundary problem in
the ansatz variables (z, τ, y) moving with the wave. In this case the only viscous medium
can be considered as the condition to be periodic in time is not compatible with shock
formations providing the loss of the regularity which may occur in the inviscid medium (see
Thm. 1.3 [ARP-13]). To be able to consider this approximation we prove the well posed-
ness of the periodic in time Dirichlet boundary valued problem for the Kuznetsov equation
in the half space R+ × Rn−1 for small enough boundary data. In this case the boundary
condition is considered as the initial condition of the corresponding Cauchy problem in
Rn. The proof is based as previously in [ARP-5] on the maximal regularity result for the
corresponding linear problem and on the application of a result of the nonlinear functional
analysis from [158, 1.5. Cor., p. 368]. We also applied it to prove the well posedness needed
for the second approximation case described by the initial boundary valued problem for
the Kuznetsov equation in the half space, once again combining with the maximal regu-
larity result for the linear problem. The second case approximation case studies the initial
boundary-value problem for the Kuznetsov equation in the initial variables (t, x1, x

′) with
data coming from the solution of the KZK equation. This time we have the approximation
results for the viscous and inviscid cases, as in the approximations by the solutions of the
NPE and the Westervelt equations.

Denoting by u a solution of the “exact” problem for the Kuznetsov equation Exact(u) = 0
and by u an approximate solution, constructed by the derivation ansatz from a regular so-
lution of one of the approximate models (for instance of the KZK or of the NPE equations),
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Table 1.1 – Approximation results for models derived from Navier-Stokes and Euler systems

Kuznetsov KZK NPE
Navier-Stokes Euler Navier-Stokes Euler Navier-Stokes Euler

Ansatz

ρε = ρ0 + ερ1 + ε2ρ2,
vε = −ε∇u,
ρ1 = ρ0

c2 ∂tu,

ρ2 from (1.23)

paraxial approximation
u = Φ(t− x1

c
, εx1,

√
εx′)

ρε = ρ0 + εI + ε2J,
vε from (1.37), I = ρ0

c2 ∂τ Φ,
J from (1.40)

paraxial approximation
u = Ψ(εt, x1 − ct,

√
εx′)

ρε = ρ0 + εξ + ε2χ,
vε from (1.49), ξ = −ρ0

c
∂zΨ,

χ from (1.52)

Models

∂2
t u− c2∆u =

ε∂t

(

(∇u)2 + γ−1
2c2 (∂tu)2

+ ν
ρ0

∆u
)

c∂2
τzI − (γ+1)

4ρ0
∂2

τ I
2

− ν
2c2ρ0

∂3
τ I − c2

2
∆yI = 0

∂2
τzξ + (γ+1)c

4ρ0
∂2

z (ξ2)

− ν
2ρ0
∂3

zξ + c
2
∆yξ = 0

Approxi-
mation
Order O(ε3)

Domain Ω R3

the half space
{x1 > 0, x′ ∈ Rn−1}

the cone
{|x1| < R

ǫ
− ct}

×Rn−1
x′ Tx1 × R2

Approxi-
mation ‖Uε − U ε‖L2 ≤ ε for t ≤ T

ε
Initial
data

regularity
u0 ∈ H5(Ω)
u1 ∈ H4(Ω)

u0 ∈ H4(Ω)
u1 ∈ H3(Ω) I0 ∈ H10(Ω) I0 ∈ H10(Ω) ξ0 ∈ H5(Ω) ξ0 ∈ H5(Ω)

Data
regularity

for remainder
boundness

u0 ∈ Hs+2(Ω)
u1 ∈ Hs+1(Ω)

s > n
2

u0 ∈ Hs+2(Ω)
u1 ∈ Hs+1(Ω)

s > n
2

I0 ∈ H8(Ω) I0 ∈ H6(Ω) ξ0 ∈ H4(Ω) ξ0 ∈ H4(Ω)
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i.e. u is a function which solves the Kuznetsov equation up to ǫ terms, denoted by ǫR:

Approx(u) = Exact(u) − ǫR = 0.

In the approximation between the solutions of the Kuznetsov equation and of the Westervelt
equation the remainder term appears with the size ǫ2 (it is natural since both models contain
terms of order ǫ0 and ǫ).

We can summarize the obtained approximation results of the Kuznetsov equation in the
following way: if, once again, u is a solution of the Kuznetsov equation and u is a solution
of the NPE or of the KZK (for the initial boundary value problem) or of the Westervelt
equations found for rather closed initial data

‖∇t,x(u(0) − u(0))‖L2(Ω) ≤ δ ≤ ǫ,

then there exist constants K, C1, C2, C > 0 independent of ǫ, δ and on time, such that for
all t ≤ C

ǫ
it holds

‖∇t,x(u− u)‖L2(Ω) ≤ C1(ǫ2t+ δ)eC2ǫt ≤ Kǫ.

To obtain the last estimate we use stability estimate (1.80). For a more detailed comparison
between different models we include the main points of our results to the comparative
Table 1.2.

In Table 1.2 the line named “Initial data regularity” gives the information about the reg-
ularity of the initial data for the approximate model, which ensure the same regularity of
the solutions of an approximate model and of the solution of the Kuznetsov equation, taken
with the same initial data u(0) = u(0), coming from the corresponding ansatz.

As in the case of the approximations of the Navier-Stokes/Euler system, to have the re-
mainder term R ∈ C([0, T ], L2(Ω)) we ensure that Exact(u) ∈ C([0, T ], L2(Ω)), i.e. we need
a sufficiently regular solution u. The minimal regularity of the initial data to have a such
u is given in Table 1.2 in the last line named “Data regularity for remainder boundness”.

1.4 Further developments

It is obvious that the list of nonlinear models studied in this Chapter is not at all complete.
For instance there are higher order in time equations and other more complicated models
to describe the wave propagation in a fluid with bubbles [78]. So we can ask the same
questions for them.

A first simple generalization of the well posedness results for the Kuznetsov equation is to
consider it with non constant, for instance bounded, piecewise discontinuous coefficients.
This kind of generalization could be very useful in order to develop the inverse problems for
this equation, i.e. for the problem of reconstructing one of its coefficients, for example the
nonlinearity coefficients α and β, since usually in the ultrasound imaging the properties of
the media are not really known.

Going closer to the physics of the wave propagation there are a lot of possibilities to take
into account different parameters. For instance, as it was mentioned, the models of the
Kuznetsov, the KZK and the NPE equations are derived in the assumption that a contact
with the boundary has no influence. So there is a question to study how models could be
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Table 1.2 – Approximation results for models derived from the Kuznetsov equation

KZK NPE Westervelt
periodic

boundary condition
problem

initial
boundary value

problem

viscous
and inviscid

case viscous case inviscid case

Derivation
paraxial approximation
u = Φ(t− x1

c
, εx1,

√
εx′)

paraxial approximation
u = Ψ(εt, x1 − ct,

√
εx′) Π = u+ 1

c2εu∂tu
Approxi-
mation
domain

the half space
{x1 > 0, x′ ∈ Rn−1} Tx1 × R2 Rn

Approxi-
mation
order O(ε) O(ε) O(ε2)

Estimation
‖I − Iaprox‖L2(Tt×Rn−1) ≤ ε

z ≤ K

‖(u− u)t(t)‖L2

+‖∇(u− u)(t)‖L2

≤ Kε.
t < T

ε

‖(u− u)t(t)‖L2

+‖∇(u− u)(t)‖L2

≤ Kε
t < T

ε

‖(u− u)t(t)‖L2

+‖∇(u− u)(t)‖L2

≤ Kε
t < T

ε

Initial
data

regularity
I0 ∈ Hs+ 3

2 (Tt × Rn−1
x′ )

for s > max(n
2
, 2)

I0 ∈ Hs(Tt × Rn−1
x′ )

for
[

s
2

]

> n
2

+ 2
ξ0 ∈ Hs+2(Tx1 × Rn−1

x′ )
for s > n

2
+ 1

u0 ∈ Hs+3(Rn)
u1 ∈ Hs+3(R3)

for s > n
2

u0 ∈ Hs+3(Rn)
u1 ∈ Hs+2(R3)

for s > n
2

Data
regularity

for remainder
boundness

I0 ∈ Hs+ 3
2 (Tt × Rn−1

x′ )
for s > max(n

2
, 2)

I0 ∈ H6(Tt × Rn−1
x′ )

for n = 2, 3,
I0 ∈ Hs(Tt × Rn−1

x′ )

for
[

s
2

]

> n
2

+ 1, n ≥ 4

ξ0 ∈ H4(Tx1 × Rn−1
x′ )

for n = 2, 3.
ξ0 ∈ Hs(Tx1 × Rn−1

x′ )
for s > n

2
+ 2, n ≥ 4.

u0 ∈ Hs+3(Rn)
u1 ∈ Hs+3(Rn)

for s > n
2

u0 ∈ Hs+3(Rn)
u1 ∈ Hs+2(Rn)

for s > n
2
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modified by the boundary effects (see for instance [42] for the Blackstock-Lesser-Seebass-
Crighton equation).

Let us also mention that in general the viscosity coefficient in our models should depend
on a frequency ω of a wave [1, 51]. Formally, when a wave propagates through a medium,
its amplitude exponentially decreases while the distance grows, proportionally to the law
e−ωγatt z with 0 ≤ γatt ≤ 2 [34, 35]. In this Chapter we have considered only the cases γatt = 0
when there is no dissipation and the limit case γatt = 2. Indeed, the KZK equation with
ν > 0 corresponds to the quadratic case γatt = 2 with the dissipative term equal to ∂γatt+1

τ I.
The Kuznetsov and Westervelt equations involve the dissipative term ∂t(−∆)

γatt
2 u, which

for 0 < γatt < 2 becomes a term with a fractional Laplacian. Experimentally, it is known
that the dissipation with γatt = 2 corresponds to the wave propagation in pure homogeneous
liquids and gases, but [34] not for example to the propagation in the blood (as one of the
liquids in the HIFU technique) which is a suspension in which it takes a fractional value
0 < γatt < 2. Thus it would be more realistic in the medical applications to consider the
Kuznetsov, the Westervelt and the KZK equations for the fractional values of γatt. For
instance, by [159, 143] the fractional Westervelt equation with 1 ≤ γatt ≤ 1.7 is appropriate
for the ultrasound propagation in human tissues. Therefore, this makes of interest the
questions about the systematic derivation and the approximation of the fractional Navier-
Stokes system by all other fractional models, as well as concerning their well posedness,
by starting to analyze the existing preliminary results [89, 134]. However, this kind of
improvement does not seem to be important in the case of the NPE equation which is
considered for the ultrasound propagation in the ocean, knowing that the viscosity of the
water has an exceptionally wide diapason of frequencies where it is almost constant [144].

Another possible generalization for the wave propagation in the human body where there
are a lot of flow motion, for example of the blood, can come from works considering the
moving media [19, 38]. In this case we could try the following type of ansatz

ρ(x, t) = ρ0 + ǫρ1,a(x, t) + ǫ2ρ2,a(x, t) + Mρ1,m(x) + M2ρ2,m(x),

~u(x, t) = −ǫ∇φa(x1, x
′, t) − Mℓ∇φm(x1, x

′).

Here subscripts a and m denote acoustic and medium components respectively, ℓ is an
unknown integer power to be defined.





Part II

Treatment of PDEs on domains with
fractals boundaries





Chapter 2

Functional analysis for the weak
well-posedness of PDEs on domains
with irregular boundaries

Introduction

My interest in fractals has started thanks to my post-doctoral collaboration with Bernard
Sapoval, Marcel Filoche, and Denis Grebenkov, the physicists working in the area of frac-
tal interfaces for the wave or the heat propagation and the Laplacian transport. I have
found a lot of interesting empirical, in my opinion, ideas on different phenomena due to
the irregularity of the boundary or an interface between two media. For instance, the fa-
mous observation of the localization of the eigenfunctions of the −∆ in some zones near
the Neumann boundary of an irregular or prefractal boundary. In particular, in Section 2.3
we define the operator Dirichlet-to-Neumann on d-set boundaries according to [ARP-4],
the work which primary motivation was to justify the physical articles [60, 72, 73, 74]. I
give more examples in Chapter 3. Therefore, up to now, my general goal is to justify and
to study the physical problems from the mathematical point of view. But, as mentioned
in the introduction, it is not possible to consider the theoretical questions for the PDEs on
the domains with irregular and fractal boundaries without developing a suitable framework
of the functional analysis. Hence, I develop it in this chapter in Sections 2.1 and 2.2 using
[ARP-4], [ARP-6], [BookChap], [PrepWestMixed] and show its application for the
weak well-posedness of the mixed boundary problem for the Westervelt equation in Sec-
tion 2.4. The consideration of this example also allows discussing the main differences in
the regularity properties of solutions found in domains with regular and irregular bound-
aries. I finish with a brief comment of the results for the Dirichlet boundary and the Robin
boundary problems for the Westervelt equation considered in [PrepWestDir] and in the
Ph.D. thesis of A. Dekkers.

We give this introductive description of this chapter in French before proceeding to its
content.
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Introduction en français

Mon intérêt pour les fractales a commencé grâce à ma collaboration post-doctorale avec
Bernard Sapoval, Marcel Filoche et Denis Grebenkov, les physiciens travaillant dans le
domaine des interfaces fractales pour la propagation des ondes ou de la chaleur et pour
le transport du laplacien. J’ai trouvé beaucoup d’idées intéressantes, empiriques à mon
avis, sur les différents phénomènes dus à l’irrégularité de la frontière ou d’une interface
entre deux milieux. Par exemple, la fameuse observation de la localisation des fonctions
propres du −∆ dans certaines zones proches de la frontière de Neumann d’une forme ir-
régulière ou préfractale. En particulier, dans la section 2.3 nous définissons l’opérateur
Dirichlet-to-Neumann sur des bords qui sont d-ensembles selon [ARP-4], le travail dont
la motivation principale était de justifier les articles physiques [60, 72, 73, 74]. Je donne
plus d’exemples au chapitre 3. Par conséquent, jusqu’à présent, mon objectif général est
de justifier et d’étudier les problèmes physiques d’un point de vue mathématique. Mais,
comme cela a été mentionné dans l’introduction générale, il n’est pas possible de considérer
les questions théoriques pour les EDPs sur les domaines à frontières irrégulières et fractales
sans le développement d’un cadre adapté de l’analyse fonctionnelle. Par conséquent, je le
développe dans ce chapitre dans les sections 2.1 et 2.2 en utilisant [ARP-4], [ARP-6],
[BookChap], [PrepWestMixed] et montre son application pour l’étude du caractère
bien-posé (faiblement) du problème aux limites mixtes pour l’équation de Westervelt dans
la section 2.4. La prise en compte de cet exemple permet également de discuter des princi-
pales différences dans les propriétés de régularité des solutions trouvées dans les domaines à
frontières régulières et irrégulières. Je termine par un bref commentaire des résultats pour
les cas d’une condition de Dirichlet et également de Robin sur tout le bord toujours dans le
cadre de l’équation de Westervelt considérés dans [PrepWestDir] issues de la thèse d’A.
Dekkers.

2.1 Framework of Sobolev admissible domains

2.1.1 Introduction and Lipschitz boundary framework

From the theory of the partial differential equations, it is known that the irregularity of
the boundary of the considered domain can be a serious obstacle even for the proof of the
existence of a weak solution. In this chapter, we are interested in the question which is the
worst boundary (the most irregular) or a class of boundaries for which we still have the
weak well-posedness firstly of the elliptic problems and secondly of the Westervelt equation
introduced in the previous chapter.

In the past, mathematics has been concerned largely with regular domains. Firstly domains
with fractal boundaries like, for example, the Von Koch snowflake have mainly been consid-
ered as "pathological" and used only to produce counterexamples. Nevertheless, there has
been a change of attitude as mathematicians and physicists have discovered that such Von
Koch-like structures appear in nature as in the famous example [128] of the coast of Britain.
There are many other appearances of fractal domains in mathematics and physics, including
the following papers most relevant to my work: [151, 53, 85, 122, 166, 79, 31, 30, 86, 85].
To be able to solve mixed boundary valued problems of partial differential equations in
domains with nonsmooth or fractal boundaries, it is important to describe a functional
framework in which it is possible to consider the weak-well posedness of elliptic equations,
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in particular of the simplest one, the Poisson equation:



















−∆u = f in Ω,
u = 0 on ΓD,Ω,
∂u
∂n

= 0 on ΓN,Ω,
∂u
∂n

+ au = 0 on ΓR,Ω,

(2.1)

with ∂Ω = ΓD,Ω ∪ ΓN,Ω ∪ ΓR,Ω.

Thus the general approach is to start to find the weak formulation of this problem. Hence,
it is important to be able to integrate by parts and to work with the trace operator on ∂Ω.
For at least Lipschitz ∂Ω it is classical and well-known (for sufficiently smooth boundary
see Raviart-Thomas [149], for the Lipschitz case, see Marschall [129] and [75, 141]).

If ∂Ω is Lipschitz, then the normal unit vector ν to the boundary ∂Ω exists almost ev-
erywhere, the trace operator Tr : H1(Ω) → H

1
2 (∂Ω) is linear continuous and surjec-

tive [125, 129, 75, 141] with a linear continuous right inverse, i.e. the extension operator

E : H
1
2 (∂Ω) → H1(Ω) is such that Tr(E(u)) = u.

Moreover, for u, v ∈ H1(Ω) with ∆u ∈ L2(Ω) it holds the usual Green formula in the
following sense

∫

Ω
∇uvdx = 〈∂u

∂ν
,Trv〉

((H
1
2 (∂Ω))′,H

1
2 (∂Ω))

−
∫

Ω
∇v∇udx. (2.2)

This formula understands the existence of the normal derivative of u on ∂Ω as the existence
of a linear continuous form on H

1
2 (∂Ω), where H

1
2 (∂Ω) is the image of H1(Ω) for a Lipschitz

domain Ω by the trace operator. The dual space (H
1
2 (∂Ω))′ is usually denoted by H− 1

2 (∂Ω).

In this weak way for Lipschitz domains it is also possible to define the operator of divergence
for vector valued functions (see for instance Theorem 2.5 § 2 [66]) or simply the usual
integration by parts for all u and v from H1(Ω) in the following weak sense

〈uνi, v〉
(H− 1

2 (∂Ω),H
1
2 (∂Ω))

:=
∫

Ω

∂u

∂xi

vdx+
∫

Ω
u
∂v

∂xi

dx i = 1, . . . , n, (2.3)

where by uνi is denoted the linear continuous functional on H
1
2 (∂Ω).

2.1.2 Sobolev extension domains

Thanks to the classical results of Calderon-Stein [27, 157] it is known that every Lipschitz
domain Ω is an extension domain for the Sobolev space W k

p (Ω) with 1 ≤ p ≤ ∞, k ∈ N∗,
which means

Definition 2.1.1 (W k
p -extension domains) A domain Ω ⊂ Rn is called a W k

p -extension
domain (k ∈ N∗) if there exists a bounded linear extension operator E : W k

p (Ω) → W k
p (Rn).

This means that for all u ∈ W k
p (Ω) there exists a v = Eu ∈ W k

p (Rn) with v|Ω = u and it
holds

‖v‖W k
p (Rn) ≤ C‖u‖W k

p (Ω) with a constant C > 0.
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It is known [96] that the results of Calderon and Stein [27, 157] about Sobolev extension
domains for domains with Lipschitz boundaries can be improved by the class of (ǫ, δ)-
domains, or locally uniform domains, which in the bounded case are simply called uniform
domains [84].

Definition 2.1.2 ((ǫ, δ)-domain [96]) An open connected subset Ω of Rn is an (ǫ, δ)-
domain, ǫ > 0, 0 < δ ≤ ∞, if whenever (x, y) ∈ Ω2 and |x − y| < δ, there is a rectifiable
arc γ ⊂ Ω with length ℓ(γ) joining x to y and satisfying

1. ℓ(γ) ≤ |x−y|
ǫ

and

2. d(z, ∂Ω) ≥ ǫ|x− z| |y−z|
|x−y| for z ∈ γ.

The (ǫ, δ)-domains give the optimal class of Sobolev extension domains in R2 (see [96]
Theorem 3), but not in R3, where there exist Sobolev extension domains which are not
(ǫ, δ)-domains. Recently, this question was solved in terms of n-sets by [80] for W k,p-
extension domains with 1 < p < ∞ and k ∈ N for domains in Rn. To be able to use it as
in [ARP-4] we need to introduce the notion of d-sets:

Definition 2.1.3 (Ahlfors d-regular set or d-set [100, 101, 172, 164]) Let F be a Borel
non-empty subset of Rn. The set F is is called a d-set (0 < d ≤ n) if there exists a d-
measure µ on F , i.e. a positive Borel measure with support F (suppµ = F ) such that there
exist constants c1, c2 > 0,

c1r
d ≤ µ(F ∩ Br(x)) ≤ c2r

d, for ∀ x ∈ F, 0 < r ≤ 1,

where Br(x) ⊂ Rn denotes the Euclidean ball centered at x and of radius r.

As [100, Prop. 1, p. 30] all d-measures on a fixed d-set F are equivalent, it is also possible
to define a d-set by the d-dimensional Hausdorff measure md, which in particular implies
that F has Hausdorff dimension d in the neighborhood of each point of F [100, p.33].
The definition (2.1.3) includes the case d = n, i.e. n-sets. In Rn Lipschitz domains and
domains with more regular boundaries are n−sets and their boundaries are (n − 1)−sets.
Using [100, 172], the (ε, δ) domains in Rn are n−sets:

∃c > 0 ∀x ∈ Ω, ∀r ∈]0, δ[∩]0, 1] λ(Br(x) ∩ Ω) ≥ Cλ(Br(x)) = crn,

where λ(A) denotes the n-dimensional Lebesgue measure of a set A. This property is also
called the measure density condition [80]. Let us notice that an n-set Ω cannot be “thin”
close to its boundary ∂Ω. At the same time [172], if Ω is an (ǫ, δ)-domain and ∂Ω is a d-set
(d < n), then Ω = Ω ∪ ∂Ω is an n-set. A typical example of a d-set boundary it is the
self-similar fractals as the Von Koch fractals.

In what follows we will use one of main results of [80]:

Theorem 2.1.1 (Sobolev extension [80]) For 1 < p < ∞, k = 1, 2, ... a domain Ω ⊂
Rn is a W k

p -extension domain if and only if Ω is an n-set and W k,p(Ω) = Ck
p (Ω) (in the

sense of equivalent norms).

In Theorem 2.1.1 the spaces Ck
p (Ω), 1 < p < +∞, k = 1, 2, ... are the spaces of fractional
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sharp maximal functions,

Ck
p (Ω) = {f ∈ Lp(Ω)|

f ♯
k,Ω(x) = sup

r>0
r−k inf

P ∈Pk−1

1
λ(Br(x))

∫

Br(x)∩Ω
|f − P |dy ∈ Lp(Ω)}

with the norm ‖f‖Ck
p (Ω) = ‖f‖Lp(Ω) + ‖f ♯

k,Ω‖Lp(Ω) and with the notation Pk−1 for the space
of polynomials on Rn of degree less or equal k − 1.

From [96] and [80] we directly have [ARP-4]

Corollary 2.1.1 Let Ω be a bounded finitely connected domain in R2 and 1 < p < ∞,
k ∈ N∗. The domain Ω is a 2-set with W k

p (Ω) = Ck
p (Ω) (with norms’ equivalence) if and

only if Ω is an (ǫ, δ)-domain and its boundary ∂Ω consists of a finite number of points and
quasi-circles.

Once we know the optimal class of the Sobolev extension domains, we need to define the
trace operator on the boundaries of these domains.

2.1.3 Generalization of the trace on the boundary

Thanks to works [172, 102, 117] [ARP-4], [ARP-6] it is possible to generalize the trace
operator for more irregular boundaries, as for instance the d-sets or even on sets without
a fixed dimension [98], [BookChap]. By the way, the d-sets are called “Ahlfors d-regular
sets”, which finally gives an impression that in mathematics the fractals are regular sets.

Thus we define the trace for a regular distribution:

Definition 2.1.4 (Trace [100]) For an arbitrary open set Ω of Rn the trace operator Tr
is defined for u ∈ L1

loc(Ω) by

Tru(x) = lim
r→0

1
λ(Ω ∩Br(x))

∫

Ω∩Br(x)
u(y) dλ.

The trace operator Tr is considered for all x ∈ Ω for which the limit exists.

By [172, 100] it is known that, if ∂Ω is a d-set with a positive Borel d-measure µ with
supp µ = ∂Ω, the limit in Definition 2.1.4 exists µ-a.e. for x ∈ ∂Ω. In addition it is possible
to define the trace operator as a linear continuous operator from a Sobolev space on Ω to
a Besov space on ∂Ω which is its image, i.e. there exists the right inverse extension E∂Ω→Ω

operator and Tr(E∂Ω→Ωu) = u ∈ Im(Tr). The image of Tr(H1(Ω)) in this case is the Besov
space B2,2

α (∂Ω) with α = 1 − n−d
2
> 0 [172, 100]. From where we obtain the restriction on

the dimension of the boundary: n − 2 < d < n. By the way, for a connected boundary
of a bounded domain the case n − 2 < d < n − 1 is impossible, so it is more realistic to
impose n − 1 ≤ d < n. Let us notice that if the image of the trace is a Besov space with
α < 1 then we don’t need to have any additional geometrical restrictions on the boundary
to have the continuity and the surjective property of the trace. But if α ≥ 1 we need to
ensure [171, 2.1] that there exists a bounded linear extension operator Ê of the Hölder space
Ck−1,α−k+1(∂Ω) to the Hölder space Ck−1,α−k+1(Rn), where for k ∈ N∗ k − 1 < α ≤ k (see
also [100, p. 2]). This extension of Hölder spaces allows to show the existence of a linear
continuous extension of the Besov space Bp,p

α (∂Ω) on ∂Ω to the Sobolev space W k
p (Rn) with
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α = k− (n−d)
p

≥ 1 and k ≥ 2 [102]. To be able to ensure it, we need additionally to assume
that the boundary ∂Ω preserves the Markov local inequality [100] p.39 (see [BookChap]
for a detailed discussion). The geometrical characterization of sets preserving Markov’s
local inequality was initially given in [99] (see Theorem 1.3) and can be simply interpreted
as sets which are not too flat anywhere. Smooth manifolds in Rn of dimension less than n,
as for instance a sphere, are examples of “flat” sets not preserving Markov’s local inequality,
but any d-set with d > n − 1 preserves it, as all Rn. In the case α < 1 (hence k = 1) the
local Markov inequality is trivially satisfied on all closed sets of Rn, and hence we do not
need to impose it [102, p. 198]. Moreover, we able to consider more general boundaries if
we modify the definition of the image of the trace [BookChap] thanks to [97].

Let us apply the general results of Jonsson [97] to the trace of W 1
p (Ω), 1 < p < ∞ as soon

as only this Sobolev space is useful in the further considered applications. So, as detailed
in [97, 98] (see also [BookChap]) we can consider Borel positive measures µ with a support
supp µ = ∂Ω which satisfies

1. the Ds-condition for an exponent 0 < s ≤ n ensuring that there is a constant cs > 0
such that

µ(Bkr(x)) ≤ csk
sµ(Br(x)), x ∈ ∂Ω, r > 0, k ≥ 1, 0 < kr ≤ 1. (2.4)

2. the Ld-condition for an exponent 0 ≤ d ≤ n ensuring that for some constant c > 0 it
holds

µ(Bkr(x)) ≥ cdk
dµ(Br(x)), x ∈ ∂Ω, r > 0, k ≥ 1, 0 < kr ≤ 1. (2.5)

3. the normalization condition

c1 ≤ µ(B1(x)) ≤ c2, x ∈ ∂Ω, (2.6)

where c1 > 0 and c2 > 0 are constants independent of x.

Here Br(x) ⊂ Rn denotes the Euclidean ball centered at x and of radius r. The Ds-
condition (2.4) implies the doubling condition

µ(B2r(x)) ≤ c µ(Br(x)), x ∈ ∂Ω, 0 < r ≤ 1/2,

where c > 0 is a situable constant, [97, Section 1]. Moreover, combining (2.4) and (2.5)
with (2.6) respectively, for some constants c > 0 and c′ > 0 the measure µ also satisfies

c rs ≤ µ(Br(x)) ≤ c′ rd, x ∈ ∂Ω, 0 < r ≤ 1.

We see that for d = s, the measure µ is a d-measure. For this general measure µ supported
on a closed subset ∂Ω ⊂ Rn, which is actually a boundary of a domain Ω and hence at least
n− 1-dimensional, it is possible thanks to [97] to define the corresponding Lebesgue spaces
Lp(∂Ω, µ) and Besov spaces Bp,p

1 (∂Ω) in a such way that we have the following theorem (to
compare with Theorem 6 [BookChap]):

Theorem 2.1.2 Let 0 < n−1 ≤ d ≤ s < n, 1 ≤ p ≤ +∞, and let Ω ⊂ Rn be a domain with
a closed boundary ∂Ω ⊂ Rn which is the support of a Borel measure µ satisfying (2.4), (2.5)
and (2.6).
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Then, considering the Besov space Bp,p
1 (∂Ω) on ∂Ω, defined as the space of µ-classes of

real-valued functions f on ∂Ω such that the norm

‖f‖Bp,p
1 (∂Ω,µ) :=

‖f‖Lp(∂Ω,µ) +

( ∞
∑

ν=0

2ν(1− n
p

)
∫ ∫

|x−y|<2−ν

|f(x) − f(y)|p
µ(B(x, 2−ν))µ(B(y, 2−ν))

µ(dy)µ(dx)

)1/p

(2.7)

is finite, the following statements hold:

(i) Tr∂Ω is a continuous linear operator from W 1,p(Rn) onto Bp,p
1 (∂Ω), and

‖Tr∂Ω f‖Bp,p
1 (∂Ω) ≤ ĉ ‖f‖W 1,p(Rn) , f ∈ W 1,p(Rn), (2.8)

with a constant ĉ > 0 depending only on s, d, n, cs, cd, c1, c2.

(ii) There is a continuous linear extension operator E∂Ω : Bp,p
1 (∂Ω) → W 1,p(Rn) such that

Tr∂Ω(E∂Ωf) = f for f ∈ Bp,p
1 (∂Ω).

Theorem 2.1.2 is a particular case of [97, Theorem 1].

The spaces Bp,p
1 (∂Ω) are Banach spaces, while B2,2

1 (∂Ω) are Hilbert spaces, and their cor-
responding scalar product is denoted by 〈·, ·〉B2,2

1 (∂Ω). In addition, the spaces Bp,p
1 (∂Ω) does

not depend on µ (if there are two measures µ1 and µ2 with the support ∂Ω satisfying the
conditions of the Theorem 2.1.2, then the norms (2.7) constructed on them are equivalent
[97, Section 3.5]). It is important to notice that for a d-set boundary ∂Ω the space B̂p,p

1 (∂Ω)
is equivalent to the Besov space Bp,p

α (∂Ω) with 0 < α = 1 − n−d
p
< 1 (see Ref. [97] and for

the spaces Bp,p
α (∂Ω) see Ref. [100]). In addition if d = s = n− 1, the trace space of H1(Ω),

as it also mentioned in [ARP-6], is given by the Besov space with α = 1
2

which coincides
with H

1
2 (∂Ω):

B2,2
1 (∂Ω) = B2,2

1
2

(∂Ω) = H
1
2 (∂Ω)

as usual in the case of the classical results [125, 129] for Lipschitz boundaries.

Therefore, thanks to Theorem 2.1.2, it is sufficient to replace H
1
2 (∂Ω) in the Green for-

mula (2.2) and the formula of the integration by parts (2.3) by the Besov space B2,2
1 (∂Ω)

to obtain linear continuous functionals and hence to be able to apply these formulas for
domains with boundaries defined by a measure µ as in Theorem 2.1.2.

2.1.4 Sobolev admissible domains [ARP-4], [BookChap]

Once the trace theorem is obtained, it gives us the class of domains

T = {Ω ⊂ Rn| ∃µ on ∂Ω satisfying Theorem 2.1.2},

which we intersect with the optimal class of the Sobolev extension domains, defined by The-
orem 2.1.1, to obtain the class of the Sobolev admissible domains [ARP-4], [BookChap]:

Definition 2.1.5 (Sobolev admissible domain) Let 1 < p < ∞ and k ∈ N∗ be fixed.
A domain Ω ⊂ Rn is called a Sobolev admissible domain if it is an n-set, such that
W k

p (Ω) = Ck
p (Ω) as sets with equivalent norms (hence, Ω is a W k

p -extension domain), with
a closed boundary ∂Ω which is the support of a Borel measure µ satisfying the conditions
of Theorem 2.1.2.
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In other words, we introduce the class of all Sobolev extension domains with boundaries
on which it is possible to define a surjective linear continuous trace operator with linear
continuous right inverse. To insist on their extension nature, we thus called these domains
Sobolev admissible domains (see Definition 2.1.5).

Example 2.1.1 An example of a Sobolev admissible domain could be a bounded domain
of Rn with a boundary ∂Ω equal to a finite disjoint union of parts Γj which are dj-sets
respectively for n − 1 ≤ dj < n (j = 1, . . . , m). For instance it is the case of a three-
dimensional cylindrical domain constructed on a base of two-dimensional domain with a
d-set boundary as considered for the Koch snowflake base in [118, 41].

Example 2.1.2 The fractal trees [3] and the domains with outgoing cusps are examples of
domains which are not Sobolev admissible, as they are not Sobolev extension domains.

Thus we summarize useful in what follows results (initially developed in the framework of
d-set boundaries in [ARP-4]) on Sobolev admissible domains in the following trace theorem

Theorem 2.1.3 (Traces and extensions) Let Ω be a Sobolev admissible domain in Rn,
1 < p < +∞, k ∈ N∗ be fixed. Then the following trace operators (see Definition 2.1.4)

1. Tr : W 1,p(Rn) → Bp,p
1 (∂Ω),

2. TrΩ : W k,p(Rn) → W k,p(Ω),

3. Tr∂Ω : W 1,p(Ω) → Bp,p
1 (∂Ω)

are linear continuous and surjective with linear bounded right inverse, i.e. extension, oper-
ators E : Bp,p

1 (∂Ω) → W 1,p(Rn), EΩ : W k,p(Ω) → W k,p(Rn), E∂Ω : Bp,p
1 (∂Ω) → W 1,p(Ω).

2.2 Compactness of the trace operator

To be able to ensure the weak well-posedness of problem (2.1) and also for the associated
spectral problem of −∆, we need to have in addition the compactness of the inclusion H1(Ω)
in L2(Ω) and the compactness of the trace operator this time considered as an operator
from H1(Ω) to L2(∂Ω). Thanks to [50] Theorem V.4.17, it is known that if a domain Ω
has a continuous boundary (in the sense of graphs, see [50] Definition V.4.1) then H1(Ω) is
compactly embedded in L2(Ω). The general d-set boundaries with d > n−1, as for instance,
a von Koch curve, does not satisfy the assumption to have a continuous boundary. In our
article [ARP-4] this fact was proven in the framework of Sobolev admissible domains with
a d-set boundary. In [BookChap], [PrepWestMixed] we prove it also for more general
boundaries described by Theorem 2.1.2 as in [97, 98].

The generalization of the Kondrachov-Rellich theorem in the framework of Sobolev ad-
missible domains allows to extend the compactness studies of the trace from [15] and to
update the results of [ARP-4]: for a Sobolev admissible domain with a compact bound-
ary, the trace operator considered from H1(Ω) to L2(∂Ω) is compact. To have a compact
embedding, the domain Ω must be a Sobolev extension domain. Hence, a trace operator
H1(Ω) → L2(∂Ω) mapping the functions defined on a domain Ω to their values on the
boundary ∂Ω (or on any part D of Ω, H1(Ω) → L2(D)) is compact if and only if the
boundary ∂Ω (or the part D) is compact.

Thus, as for the usual Lipschitz bounded case, the problem (2.1) is weakly well-posed. The
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corresponding spectral problem has a countable number of eigenvalues going to +∞ with
the eigenfunctions forming an orthogonal basis in H1(Ω), which becomes an orthonormal
basis in L2(Ω) by the classical Hilbert-Schmidt theorem for compact auto-adjoint operators
on a Hilbert space.

More precisely we have the following generalization of the classical Rellich-Kondrachov
theorem (see for instance Adams [5] p.144 Theorem 6.2):

Theorem 2.2.1 (Compact Sobolev embeddings for n-sets, [ARP-4]) Let Ω ⊂ Rn

be a bounded n-set with W k
p (Ω) = Ck

p (Ω), 1 < p < ∞, k, ℓ ∈ N∗. Then there hold the
following compact embeddings:

1. W k+ℓ
p (Ω) ⊂⊂ W ℓ

q (Ω),

2. W k
p (Ω) ⊂⊂ Lq(Ω),

with q ∈ [1,+∞[ if kp = n, q ∈ [1,+∞] if kp > n, and with q ∈ [1, pn
n−kp

[ if kp < n.

We also prove [ARP-4], [BookChap] the compactness of embeddings for the Besov spaces
on fractals. In particular we obtain that if F ⊂ Rn be a bounded closed set satisfying con-
ditions of Theorem 2.1.2, then for 1 ≤ q ≤ p the embedding Bp,p

1 (F ) ⊂⊂ Lq(F ) is compact
(in the case when F is not bounded, we only have the compactness of the embedding
Bp,p

1 (F ) ⊂⊂ Lq
loc(F )). The compactness of this embedding actually follows from the com-

pactness of the trace Tr : W 1,p(Ω) → Lp(∂Ω) for a compact boundary ∂Ω.

2.3 Application example: Dirichlet-to-Neumann operator

on d-sets [ARP-4]

We introduce the Dirichlet-to-Neumann operator on d-sets in the framework of the Lapla-
cian transports. Laplacian transports to and across irregular and fractal interfaces are
ubiquitous in nature and industry: properties of rough electrodes in electrochemistry, het-
erogeneous catalysis, steady-state transfer across biological membranes (see [60, 72, 73, 74]
and references therein).

To model it, there is a usual interest in considering truncated domains as an approximation
of the exterior unbounded domain case.

Let Ω0 and Ω1 be two bounded domains in Rn with disjoint boundaries ∂Ω0 ∩ ∂Ω1 = ∅,
denoted by Γ and S respectively, such that Ω0 ⊂ Ω1. Thus, we consider two types of
domains constructed on Ω0:

1. the unbounded exterior domain to Ω0, denoted by Ω = Rn \ Ω0;

2. a bounded, truncated by a boundary S, truncated domain ΩS = (Rn \ Ω0) ∩ Ω1.

Let us notice that Γ ∪ S = ∂ΩS (for the unbounded case S = ∅ and ∂Ω = Γ), see Fig. 2.1.
As Ω0 is bounded, its boundary Γ is supposed compact. Therefore, by the previous section,
the trace operator H1(Ω) → L2(Γ) is compact. The phenomenon of Laplacian transport to
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Figure 2.1 – Example of the considered domains: Ω0 (the von Koch snowflake) is the bounded
domain, bounded by a compact boundary Γ, which is a d-set (see Definition ??) with
d = log 4/ log 3 > n − 1 = 1. The truncated domain ΩS is between the boundary Γ
and the boundary S (presented by the same von Koch fractal as Γ). The boundaries Γ
and S have no an intersection and here are separated by the boundary of a ball Br of
a radius r > 0. The domain, bounded by S, is called Ω1 = Ω0 ∪ ΩS, and the exterior
domain is Ω = Rn \ Ω0.

Γ can be described by the following boundary value problem:

− ∆u = 0, x ∈ ΩS or Ω,

λu+ ∂νu = ψ on Γ,

u = 0 on S,

(2.9)

where ∂νu denotes the normal derivative of u, in some appropriate sense, λ ∈ [0,∞[ is the
resistivity of the boundary and ψ ∈ L2(Γ). For S = ∅, we impose Dirichlet boundary
conditions at infinity. The boundary Γ is supposed to be a d-set, and S can be another
d̂-set boundary. We also notice that, thanks to [BookChap], the boundaries Γ and S
finally also can be described by Theorem 2.1.2. The generalization is trivial by replacing
the d-Hausdorff measure on Γ (or S) by the measure µ on Γ (or on S) and taking into
account that the image of the trace operator of H1(Ω) on Γ is equal to B2,2

1 (Γ).

The main difficulty when we work in the exterior domain Ω is the invalidity of the Poincaré
inequality. For n ≥ 3 it can be replaced by

∥

∥

∥

∥

∥

u− lim
r→∞

1
|Br|

∫

Br

udx

∥

∥

∥

∥

∥

L 2n
n−2

(Rn)

≤ c‖∇u‖L2(Rn).

Here Br is a non trivial ball of Rn. Thus, to work in the exterior domain Ω we need to
introduce the functional space WD(Ω) defined by the closure of the space

{ u|Ω : u ∈ D(Rn), n ≥ 3}

with respect to the norm u 7→ (
∫

Ω |∇u|2dx)1/2. Therefore, for the inner product (u, v)W D(Ω) =
∫

Ω ∇ u.∇ vdx, the space (WD(Ω), (., .)W D(Ω)) is a Hilbert space (see a discussion about it
on p. 8 of Ref. [126]). If in the same time

W (Ω) := {u ∈ H1
loc(Ω),

∫

Ω
|∇u|2dx < ∞},
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then for n ≥ 3, H1(Ω) ⊂ W (Ω) ∩ L 2n
n−2

(Ω) = WD(Ω), which is false for n = 2.

As WD(Ω) is larger then H1(Ω) we update the trace and extension results for this space
staying analogous to the results for H1(Ω) and give, following [17], the new sense to the
Green formula, defining the normal derivative of u ∈ WD(Ω) with ∆u ∈ L2(Ω) in the
distributional sense in L2(Γ, µ), denoting ∂νu = ψ, if ψ ∈ L2(Γ) exists:

∀v ∈ D(Rn)
∫

Ω
(∆u)vdx+

∫

Ω
∇u · ∇vdx =

∫

Γ
ψTr vdµ. (2.10)

For all ψ ∈ L2(Γ) and λ ≥ 0 we say that u is a weak solution of (2.9)

on Ω if u ∈ WD(Ω) (n ≥ 3) and for all v ∈ WD(Ω)
∫

Ω
∇u∇vdx+ λ

∫

Γ
TrΓuTrΓvdµ =

∫

Γ
ψTrΓvdµ; (2.11)

on ΩS if u ∈ H̃1(ΩS) := {u ∈ H1(ΩS) : TrSu = 0} and for all v ∈ H̃1(ΩS) it holds the
variational formulation (2.11) with Ω = ΩS;

on Ω0 if u ∈ H1(Ω0) and for all v ∈ H1(Ω0) it holds (2.11) with Ω = Ω0.

As Γ (and S) is compact, hence, by Section 2.1 and by [ARP-4], the trace H1(Ω) → L2(Γ)
is compact (the same is true for WD(Ω) → L2(Γ)), which each time implies the equivalence
of the usual norm of H1(Ω) (respectively of WD(Ω)) to the trace norm

‖u‖2
Tr = ‖∇u‖2

L2(Ω) + ‖ Tru‖2
L2(Γ,µ). (2.12)

Consequently, if (·, ·)Tr is the corresponding inner product, we can rewrite (2.11) in the
form

(u, v)Tr = (ψ,TrΓv)L2(Γ) (2.13)

and obtain the well-posedness by the Riesz representation theorem.

The case of a truncated domain ΩS corresponds to an approximation of the exterior problem
in the sense of Theorem 3.8 [ARP-4].

The Poincaré-Steklov operator, also named the Dirichlet-to-Neumann operator, was initially
introduced by V.A. Steklov and usually defined by a map

A : u|Γ 7→ ∂u

∂ν

∣

∣

∣

∣

∣

Γ

for a solution u of the elliptic Dirichlet problem: −∆u = 0 in a domain Ω and u|Γ = f
(with ∂Ω = Γ).

It is well-known that if Ω is a bounded domain with a C∞-regular boundary (a regular
manifold with boundary), then the operator A : C∞(Γ) → C∞(Γ) is an elliptic self-adjoint
pseudo-differential operator of the first order (see [161] §11 and 12 of Chapter 7) with a
discrete spectrum

0 = λ0 < λ1 ≤ λ2 ≤ . . . , with λk → +∞ k → +∞.
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If A is considered as an operator H1(Γ) → L2(Γ), then its eigenfunctions form a basis in
L2(Γ). For any Lipschitz boundary Γ of a bounded domain Ω, the Dirichlet-to-Neumann
operator

A : H
1
2 (Γ) → H− 1

2 (Γ)

is well-defined and it is a linear continuous self-adjoint operator. By the analogy, in [ARP-
4] we define for a bounded domain Ω0 with a d-set boundary Γ the Dirichlet-to-Neumann
operator

A : B2,2

1− n−d
2

(Γ) → B2,2

−(1− n−d
2

)
(Γ)

also as a linear continuous self-adjoint operator.

Thanks to [14], we also know that the Dirichlet-to-Neumann operator A has a compact
resolvent. Hence, it has a discrete spectrum, as long as the trace operator Tr : H1(Ω) →
L2(Γ) is compact (see also [15] and [164] for an abstract definition of the elliptic operators
on a d-set). Thus, thanks to the compactness of the trace operator, the property of the
compact resolvent also holds for an Sobolev admissible domain Ω with a compact boundary
Γ.

Since Γ (see Fig. 2.1) can be viewed not only as the boundary of Ω0, but also as the
boundary of the exterior domain Ω and its truncated domain ΩS, we also introduce the
Poincaré-Steklov operator A on Γ for the exterior and truncated cases and relate their
spectral properties. In all cases, the Poincaré-Steklov operator A can be defined as a
positive self-adjoint operator on L2(Γ), and A has a discrete spectrum if and only if the
boundary Γ is compact.

The main idea is to use Theorem 3.4 from [15], which is a kind of generalization of the Riesz
representation theorem and the Lax-Milgram theorem [15, 14, 13] ensuring the existence of
the linear continuous positive self-adjoint operator Aint : L2(Γ) → L2(Γ) associated to the
bilinear form

a(u, v) =
∫

Ω0

∇u∇vdx : D(a) ×D(a) → R

for D(a) = H1(Ω0) ∩ C(Ω0) dense in H1(Ω0) (see the discussion of Ref. [15]), and the
compact trace operator Tr : D(a) → L2(Γ) with the dense image Tr(D(a)) in L2(Γ). Thus,
the operator Aint is defined for all φ ∈ L2(Γ) in the following way

φ ∈ D(Aint) and there exists an element ψ = Aintφ of L2(Γ) ⇐⇒
∃u ∈ H1(Ω0) such that Tru = φ and ∀v ∈ H1(Ω0)

∫

Ω0

∇u∇vdx =
∫

Γ
ψTrvdmd.

From [24], we also have that KerAint 6= {0}, since 0 is the eigenvalue of the Neumann
eigenvalue problem for the Laplacian. In the same way we define Aext:

Definition 2.3.1 (Dirichlet-to-Neumann operator for an exterior domain n ≥
3) Let Ω ⊂ Rn, n ≥ 3, be a Sobolev admissible exterior domain with a compact boundary
Γ. The operator Aext : L2(Γ) → L2(Γ), associated with the bilinear form aD : WD(Ω) ×
WD(Ω) → R given by

aD(u, v) =
∫

Ω
∇u∇vdx = 〈u, v〉W D(Ω),

and the trace operator Tr : WD(Ω) → L2(Γ), is called the Dirichlet-to-Neumann operator
with the Dirichlet boundary condition at infinity.
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Remark 2.3.1 Theorem 3.3 in Ref. [15] does not require to D(a) the completeness, i.e.
a(·, ·) can be equivalent to a semi-norm on D(a), what is the case of WD(Ω) with a(u, u) =
∫

Ω |∇u|2dx for n = 2. Therefore, it allows us to define the Dirichlet-to-Neumann operator
Aext of the exterior problem in R2, which can be understood as the limit case for r → +∞
of the problem for a truncated domain well-posed in H̃1(ΩSr) (we suppose that ΩSr ↑ Ω for
r → +∞). In the case of WD(Ω) in Rn with n ≥ 3, we have that D(a) = WD(Ω) is the
Hilbert space corresponding to the inner product a(·, ·).
The two dimensional case differs from the case of Rn with n ≥ 3 by the functional reason and
gives different properties of the point spectrum of Aext. Actually, for n = 2 the definition
of Aext is based on the bilinear form defined on D(a) = H1(Ω) and for n ≥ 3, as it was
mentioned, on D(a) = WD(Ω). In particular, in the exterior case for a compact d-set
boundary Γ the Dirichlet-to-Neumann operator Aext for n = 2 and n ≥ 3 has different
domains of definition:

• for Aint and for Aext in the case n = 2

D(Aint) = D(Aext) = B2,2
d
2

(Γ),

• for Atruncated with n ≥ 2 and for Aext in the case n ≥ 3

D(Atruncated) = D(Aext) = L2(Γ).

Let us denote the sets of all eigenvalues of Aint and Aext, mapping L2(Γ) to L2(Γ), re-
spectively by σint and σext, which are subsets of R+. For the Weil asymptotic formulas
for the distribution of the eigenvalues of the Dirichlet-to-Neumann operator Aint, there are
results for bounded smooth, compact Riemannian manifolds with C∞ boundaries [68], for
polygons [69] and more general class of plane domains [67] and also for a bounded domain
with a fractal boundary [146]. In Theorem 4.1 in [ARP-4] we relate these spectral results,
obtained for the Dirichlet-to-Neumann operator for a bounded domain, with the case of
the exterior domain:

• For n = 2
σint = σext ⊂ R+ and 0 ∈ σext.

• For n ≥ 3
σint = {0} ∪ σext with σext ⊂]0,+∞[,

i.e. the Dirichlet-to-Neumann operator of the exterior problem, also as of the trun-
cated problem, is an injective operator with the compact inverse.

We also show that the eigenvalues of the Dirichlet-to-Neumann operator for the truncated
problem expanding with r → +∞ to the exterior domain converge to the eigenvalues of the
exterior problem.

Specially, for the case of a d-set Γ or also more generally with a measure µ satisfying
Theorem 2.1.2, we justify the method, developed in [73], true for smooth boundaries, to
find the total flux Φ across the interface Γ using the spectral decomposition of 1Γ (belonging
to the domain of A) on the basis of eigenfunctions of the Dirichlet-to-Neumann operator
(Vk)k∈N in L2(Γ) and its eigenvalues (λk)k∈N:

Φ ∝
∑

k

λk(1Γ, Vk)2
L2(Γ)

1 + λk

λ

. (2.14)
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2.4 Regularity problems and weak solutions of the West-

ervelt equation [PrepWestMixed], [PrepWestDir]

2.4.1 Regularity of the weak solution of the Poisson equation

To consider the weak solutions of the Poisson equation (2.1) let us start by discussing
the Dirichlet homogeneous boundary condition, hence taking ΓN = ΓR = ∅. Let Ω be a
bounded domain of Rn. In the framework of weak solutions, the Dirichlet boundary valued
problem for the Poisson equation is understood in the following variational form

∀v ∈ H1
0 (Ω)

∫

Ω
∇u∇vdx =

∫

Ω
fvdx, (2.15)

in which there is no more any boundary influence (to compare with (2.13)). Therefore, the
unique weak solution u ∈ H1

0 (Ω) exists for an arbitrary bounded domain Ω by a simple
application of the Riesz representation theorem. Moreover, thanks to Evans [52] Theorem 2
p. 304 and Theorem 3 p. 316, we have (even for solutions in H1(Ω) and thus for different
boundary conditions) the interior regularity of the weak solution, i.e., the fact that for
a subset V compactly included in Ω, V ⊂⊂ Ω, the solution on Ω has on V the same
regularity as for a domain with regular boundaries. For instance, if f ∈ C∞(Ω) then
u ∈ C∞(Ω) ∩ H1

0 (Ω). So, for any boundary of Ω, even worse than a fractal or than a
fractal tree and a domain with cusps, the weak solution of (2.15) is in C∞(Ω) for the same
regularity of f . The key point here that Ω is open.

The property to be in C(Ω) is much more restrictive, since the continuity on a compact
requires from u to be bounded and equicontinuous, and does not hold for arbitrary shapes
of ∂Ω [50]. By very technical results of Nyström [142] the necessary condition for Ω is to
be a non-tangentially accessible domain (a NTA domain):

Definition 2.4.1 (NTA domain) [93] A bounded domain Ω ⊂ Rn is called NTA when
there exists constants M and r0 such that:

1. Corkscrew condition: For any point Q ∈ ∂Ω, r < r0, there exists a point A = Ar(Q) ∈
Ω such that M−1r < |A−Q| < r and d(A, ∂Ω) > M−1r.

2. Rn \ Ω satisfies the Corkscrew condition.

3. Harnack chain condition: If ǫ > 0 and points P1 and P2 belongs to Ω, d(Pj; ∂Ω) > ǫ
and |P1 − P2| < Cǫ, then there exists a Harnack chain from P1 to P2 whose length
depends on C and not on ǫ.

For P1, P2 in Ω, a Harnack chain from P1 to P2 in Ω is a sequence of M non-tangential
balls such that the first ball contains P1, the last contains P2, and such that consecutive
balls have non empty intersections. Finally, a M non-tangential ball in a domain Ω is a
ball B(A, r) in Ω whose distance from ∂Ω is comparable to its radius:

Mr > d(B(A, r), ∂Ω) > M−1r.

Thanks to [142], if Ω is a bounded NTA domain characterized by M and r0, then Ω is an
(ε, δ)-domain with ε and δ characterized by M and r0 only. Thus, by [95] if Ω ⊂ R2 is
a bounded simply connected set, it is a NTA domain if and only if it is a quasidisc (i.e.
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there exists a quasiconformal map mapping the domain to a disc). Moreover, by [96] and
Definition 2.1.5, we continue this statement by noticing that if Ω is a Sobolev admissible
domain then it is a NTA domain. Obviously, it is not anymore the case if Ω ⊂ R3. A
typical irregular example of a NTA domain in R2 is the von Koch snowflake.

For C2 boundaries it is also known the H2-regularity [52, Thm. 4, p. 317] of the weak
solutions: if f ∈ L2(Ω) and ∂Ω ∈ C2, then the weak solution of (2.15) u ∈ H2(Ω) ∩H1

0 (Ω)
(see also Theorem 5 p. 323 [52] for higher boundary regularity). But it is no more true in the
general class of NTA domains. It is important to cite here the theorem of Nyström [142]:

Theorem 2.4.1 Let Ω ⊂ R2 be von Koch’s snowflake. Let f ∈ D(Ω) be non negative
and non identically zero. Let u ∈ H1

0 (Ω) be the weak solution of the Poisson problem with
homogeneous Dirichlet boundary condition. Then

u ∈ H1
0 (Ω) ∩ C∞(Ω) and u ∈ C(Ω),

but
u /∈ H2(Ω).

However, it holds for the convex polygonal domains [76]. The convexity condition does not
allow the incoming angles, which create the singularities.

Another important question is whether the solutions of the Poisson problem belong to
C(Ω) ∩ L∞(Ω) (a weaker condition than to be continuous up to the boundary) with an
estimate of the form:

‖u‖L∞(Ω) ≤ C‖f‖L2(Ω). (2.16)

By Nyström [142] for ∂Ω = ΓD the answer is positive in dimension n = 2 in the class of
the NTA domains, and hence Sobolev admissible domains. By Xie [175] it is also positive
for the three-dimensional case considering the solutions of (2.15) in arbitrary domains. If
∂Ω = ΓR, using Daners [44], we obtain that it is also possible to have for n = 2 or 3 if Ω
is Sobolev admissible. Furthermore, we show the same result for the weak solutions of the
mixed boundary valued problem.

Without the access to the H2-regularity for the general case of Sobolev admissible domains,
we however able to improve the regularity of the weak solutions working in the domain of the
Laplacian. In the framework of the mixed boundary condition for the Poisson problem (2.1),
it is natural to consider an analogue of the space H̃1(ΩSr) introduced in Section 2.3

V (Ω) = {u ∈ H1(Ω)| Tr u|ΓD
= 0}, (2.17)

endowed with the norm of the trace (2.12) equivalent to the usual norm of H1(Ω).

Thanks to the compactness (see Section 2.2 and [ARP-4]) of the trace Tr : V (Ω) → L2(∂Ω)
and of the inclusion V (Ω) → L2(Ω) and by the assumption that a > 0 is real (thus −∆
is auto-adjoint positive operator), we have the usual properties of the spectral problem
associated with (2.1). It means that if Ω is a bounded Sobolev admissible domain, then
the point spectrum is discrete, all eigenvalues are strictly positive, form an unbounded
sequence, and the corresponding eigenfunctions form an orthonormal basis of L2(Ω). If
ΓR = ∅ it is still important to work in the class of Sobolev admissible domains to ensure
the compactness of the embedding of V (Ω) into L2(Ω). Nevertheless, in the case ∂Ω = ΓD,
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it is possible to consider arbitrary domains since H1
0 (Ω) → L2(Ω) is compact independently

on the regularity of ∂Ω.

As Ω is a bounded domain, we have Lp(Ω) →֒ L2(Ω) if p ≥ 2, and consequently it is also
possible to take f ∈ Lp(Ω) and consider the weak solutions in V (Ω) in the sense of (2.13).
Therefore, there is the following generalization of the domain of the Laplacian in the Lp

framework:

Definition 2.4.2 (Laplacian domain in Lp) Let Ω be a Sobolev admissible domain and
p ≥ 2. We define

−∆ : D(−∆) ⊂ V (Ω) → Lp(Ω)

u 7→ −∆u

with the domain

D(−∆) = {u ∈ V (Ω)| − ∆u ∈ Lp(Ω), i.e. ∃f ∈ Lp(Ω) such that it holds (2.13)}.

Then the operator −∆ is linear self-adjoint and coercive in the sense that

∀u ∈ D(−∆) (−∆u, u)L2(Ω) = (u, u)V (Ω),

and we use the notation ‖u‖D(−∆) = ‖∆u‖Lp(Ω) for u ∈ D(−∆).

The Lp-framework for the Poisson problem (2.1) is in particular important for the study of
the continuity of its solution [44]. But also it is useful to use the maximal regularity results
for the linear part of the Westervelt equation and to control its nonlinear terms in the study
of its weak well posedness in the Sobolev admissible domains (see for instance [PrepWest-
Mixed]).

2.4.2 Weak solutions of the Westervelt equation on a bounded domain

To study the weak well-posedness of different boundary valued problems for the Westervelt
equation in the most possible large class of domains, we modify a little bit our model: we
derive Eq. (1.7) once on time and pose u = ∂tΠ. Thus we obtain for u a modified version
of the Westervelt equation with the following nonlinear terms:































∂2
t u− c2∆u− ν∆∂tu = αu∂2

t u+ α(∂tu)2 + f on [0, T ] × Ω,
u = 0 on ΓD × [0, T ],
∂

∂n
u = 0 on ΓN × [0, T ],

∂
∂n
u+ au = 0 on ΓR × [0, T ],

u(0) = u0, ∂tu(0) = u1.

(2.18)

The regularity of the solutions of the Westervelt equation on regular domains, typically with
a C2 boundary, is well known. Besides, the solutions become more regular up to the bound-
ary if the initial data are more regular. We can cite Evans [52] for the linear wave equation
and Refs. [105, 106, 107, 109, 135] and the references therein for the strongly damped wave
equation and the Westervelt equation with the Dirichlet boundary conditions. However, it
is possible [PrepWestDir] to have the same results as in [105] and [109], developed for C2

regular boundaries, for the Westervelt problem for the Dirichlet nonhomogeneous bound-
ary condition in the class of admissible domains in the sense of [ARP-4]: the Sobolev
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extension domains with a d-set boundary preserving Markov’s local inequality. This time
we need to impose this geometrical restriction on ∂Ω to be able to work with the traces
of H2(Ω): the trace Tr : H2(Ω) → B2,2

2− n−d
2

(∂Ω) is linear continuous with the linear right

inverse extension operator [172]. Thus it is possible to develop the analogous estimates to
those used in Ref. [105] and [109] for a regular domain, with the Besov spaces replacing
H3/2(∂Ω) and H1/2(Ω). Nevertheless by [142] Main Theorem p. 337 we do not have in a
general NTA domain or Lipschitz domain the estimate

‖∇w‖L6(Ω) ≤ C(‖∆w‖L2(Ω) + ‖Tr∂Ωw‖B2,2

2− n−d
2

(∂Ω)), (2.19)

and hence we need to make a sly modification in the proof of Ref. [109]. In the dimension
n = 2 this estimate stays true for convex polygonal domains by the work of Ref. [76] which
allows to extend directly the results of well-posedness in Refs. [105, 106, 107, 109] found
initially for a regular C2 boundary. Instead of estimate (2.19), this time for admissible
domains in R2 for fixed p1 > 2 and p′

1 > 2 such that 2 < p1 < q0 + ǫ (see by [142] Main
Theorem p. 337) and 1

p1
+ 1

p′
1

= 1
2

there exist Cp1, Cp′
1
> 0 such that [PrepWestDir]

‖∇w‖Lp1(Ω) ≤ Cp1(‖∆w‖L2(Ω) + ‖Tr∂Ωw‖B2,2

2− 2−d
2

(∂Ω)), (2.20)

‖w‖
L

p′
1(Ω)

≤ Cp′
1
(‖∇w‖L2(Ω) + ‖Tr∂Ωw‖B2,2

1− 2−d
2

(∂Ω)). (2.21)

Going back to the C2 regularity of the boundary, it is a natural assumption for equations
involving the spatial derivatives of the order less or equal to 2, as it is possible to define
these derivatives in the classical way on the boundary. The same approach is obviously
impossible for any less regular boundary case. Hence we work only with weak solutions
taken the most possible regular in the sense that for the space variables they belong to the
domain of the Laplacian D(−∆) (see Definition 2.4.2).

For different homogeneous boundary value problems, we prove the well-posed results in the
following class of domains

Domain Ω Linear equation Nonlinear equation

∂Ω = ΓD in R2 arbitrary NTA or limit of uniform NTA domains

∂Ω = ΓD in R3 arbitrary arbitrary

ΓR 6= ∅ in R2 or R3 Sobolev admissible Sobolev admissible

As it was mentioned in Subsection 2.4.1 if we work in H1
0 (Ω) we do not have an influence

of the shape of the boundary in the variational formulation, and thus, it is possible to work
in the arbitrary domains studying the linear strong damping equation, since the results are
based only on the properties of −∆. However, to control the nonlinearity of the Westervelt
equation, we need to control the L∞-norm of the weak solution. In R3, it is possible to do
with the help of (2.16) holding thanks to [175] for the weak solutions of (2.15) in arbitrary
domains. For two dimensional case, we use [142] and consequently estimate (2.16) holds
only for the NTA domains, corresponding in R2 to the Sobolev admissible case. However,
we improve this result, using Mosco convergence techniques, for all domains which can be
obtained as a limit of a sequence of the NTA domains with uniform geometrical constants
M and r0 (see Definition 2.4.1). When the Robin boundary condition is posed on a part of
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boundary or all boundary, the variational formulation contains the trace of a solution on
this part of the boundary (see (2.12). Thus the trace operator must be well-defined, which
excludes for us the possibility to work in arbitrary domains.

We start by prove the Lp-maximal regularity result giving the weak well-posedness for the
linear strong damped wave equation for p ≥ 2 in the space

Xp := W 1,p([0, T ]; D(−∆)) ∩W 2,p([0, T ];Lp(Ω)), (2.22)

taking the initial data (u0, u1) ∈ Lp(Ω) × Lp(Ω) and the source term f ∈ Lp([0, T ];Lp(Ω)).
We notice that for p = 2 it is possible to consider directly the time spaces on [0,+∞[, but
for p > 2 the time interval can be arbitrary large but finite (see [63] for more details).

Remark 2.4.1 As −∆ is a sectorial operator on Lp(Ω) [16, Thm. 5.6] admitting a bounded
RH∞ functional calculus of angle β with 0 < β < π

2
, then by Theorem 4.1 in Ref. [37] the

boundary problems for the strong damped wave equation considered with the homogeneous
initial data has Lp-maximal regularity.

For the nonlinear problem (2.18) its weak solution u ∈ Xp is understood in the following
sense: for all φ ∈ L2([0, T ];Y (Ω))

∫ T

0
(∂2

t u, φ)L2(Ω) + c2(u, φ)Y (Ω) + ν(∂tu, φ)Y (Ω)ds

=
∫ T

0
α(u∂2

t u+ (∂tu)2 + f, φ)L2(Ω)ds, (2.23)

with u(0) = u0 and ∂tu(0) = u1. For ∂Ω = ΓD (u, φ)Y (Ω) := (∇u,∇φ)L2(Ω), but for the
mixed or pure Robin boundary cases

(u, φ)Y (Ω) := (u, φ)Tr = (∇u,∇φ)L2(Ω) + a(u, φ)L2(ΓR).

Thus, thanks to [PrepWestDir], [PrepWestMixed], our main result states that there
exists r∗ > 0 such that for all data (u0, u1, f), taken in a ball Br(0) of D(−∆) × D(−∆) ×
Lp(R+;Lp(Ω)) for p > 2 or of D(−∆) × Y (Ω) × Lp(R+;Lp(Ω)) for p = 2 with r ∈ [0, r∗[,
there exists the unique weak solution u ∈ Xp of the nonlinear boundary problem (2.23)
which stays in the ball Br(0) of Xp: i.e. ‖u‖Xp ≤ r.

As in Chapter 1, the main idea for the proof is the application of the abstract theorem
of Sukhinin [158], based on the maximal regularity properties of the corresponding linear
model.

In the case of a plane domain for which there is a sequence of uniform NTA domains
converging to it (for the definition of the convergence see Chapter 3 Section 3.2 Defini-
tion 3.2.2 and Definition 7.1 in [PrepWestDir]) instead of u ∈ X2 we obtain a weaker
solution u ∈ H1([0,+∞[;H1

0(Ω)) ∩H2([0,+∞[;L2(Ω)).

2.5 Comments and possible further developments

The interest of Eq. (2.14) is that all the relevant information on the geometry of the system
is entirely represented via the eigenvalues (λk)k∈N and the coefficients ((1Γ, Vk)2

L2(Γ))k∈N.
Similarly, the dependency of Φ concerning the physical characteristics is explicitly given in
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terms of the constant λ and some multiplying factors (see [73] section III.D for details).
Thus it allows posing the inverse problem of reconstruction of the geometry of Γ by Φ. It
is of cause an ill-posed problem. Inspiring of a famous analogous question of Mark Kac
“Can one hear the shape of a drum?” in the framework of the spectrum of the Dirichlet-
to-Neumann operator [68, 70, 71], we do not have the uniqueness of the shape Γ, since
different shapes can have the same spectrum.

The next step in the area of the inverse problems in the framework of the imagery should
be the generalization for the irregular boundaries the techniques of H. Ammari and al. [11].
The main question is to define the operators of the single and double layer potentials in
the most possibly large class of boundaries. The first result in this area is given in [20],
where the boundary is not supposed to be regular. Another possibility of an application of
these operators is the theory of irregular obstacle problems, started in the fractal framework
in [174].

Jonsson [98] gives the trace and extensions theorems by means of atomic decomposition
and in particular write that for a set describing as the support of a measure satisfying only
the upper bound condition

µ(Br(x)) ≤ Crd, 0 < r ≤ 1, x ∈ Rn, 0 ≤ d ≤ n.

In this case, the obtained extension operators are nonlinear (but the trace operator on the
boundary stays linear). This opens many questions as is it possible to introduce these kinds
of boundaries as admissible (see Section 2.1), and which kind of differences come from this
fact for the solutions of the PDEs, starting by the Poisson equation.

In Subsection 2.4.2 we give the weak well-posedness of the Westervelt equation on the
Sobolev admissible domains, but the analogous result for the Kuznetsov equation is an open
problem. The main difficulty is the control of the nonlinear term ∇u∇ut in the absence of
the H2-regularity. The well-posedness of the KZK equation on the fractal domains is also
an open question since the weak framework completely changes the developed techniques
of the proof for strong solutions in Hs with s > [n

2
] + 1 presented in Chapter 1.





Chapter 3

Approximations questions related
with the boundary shape

Introduction

I apply the functional analysis obtained in Chapter 2 to the three types of problems related
to the same question: how we can approximate a solution on a domain with a fractal or even
arbitrary boundary, or how to characterize the class of boundaries on which it is possible
to obtain the existence of an optimal shape in some sense.

I start in Section 3.1 with the asymptotic approximation of the speed of the propagation
of the heat content for small times [ARP-6], [ARP-8], the approximation by the volume
of the interior Minkowski sausage proposed by de Gennes [46] for any type of boundary
on which we know the dimension. Then I introduce the Mosco convergence results for the
Westervelt equation with different types of boundary conditions [PrepWestDir], [Prep-
WestMixed] in Section 3.2. These Mosco convergence results are not only helpful in R2 for
a generalization of the well-posedness result for the Westervelt equation with homogeneous
Dirichlet condition for any domain which is a limit of uniform NTA domains, but they also
can be used in the framework of the shape optimization, considered for linear acoustical
waves [ARP-1], [PrepShape2] in Section 3.3. Finally, in Section 3.4 I give some main
ideas of my several other papers recently accepted and in preparation.

Introduction en français

J’applique l’analyse fonctionnelle obtenue au chapitre 2 aux trois types de problèmes liés à
la même question: comment approcher une solution sur un domaine avec un bord fractal
ou même arbitraire ou comment caractériser la classe des bords sur laquelle il se trouve
possible d’obtenir une forme optimale dans un certain sens.

Je commence dans la section 3.1 par l’approximation asymptotique de la vitesse de prop-
agation du contenu calorifique pour les temps petits [ARP-6], [ARP-8], l’approximation
par le volume de la saucisse Minkowski intérieure proposée par de Gennes [46] pour tout
type de frontière dont nous connaissons la dimension. J’introduis ensuite les résultats de
convergence Mosco pour l’équation de Westervelt avec différents types de conditions aux
limites [PrepWestDir], [PrepWestMixed] dans la section 3.2, qui ne sont pas seulement
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utiles dans R2 pour une généralisation du résultat du caractère bien posé de l’équation
de Westervelt avec une condition aux limites de Dirichlet homogène pour tout domaine
qui est une limite de domaines NTA uniformes, mais peut également être utilisé dans le
cadre de l’optimisation de forme, considérée pour les ondes acoustiques linéaires [ARP-1],
[PrepShape2] dans la section 3.3. Enfin, dans la section 3.4, je donne quelques idées
principales de mes autres articles en préparation.

3.1 Heat content and de Gennes’ hypothesis [ARP-6], [ARP-

8]

As mentioned in [ARP-8], the radiator’s shape is significant for the speed of diffusive heat
transfer. If we consider numerically (numerical calculus made with COMSOL Multyphysics
for the model described by the linear heat equation) a cavity composed at the initial time
with a hot and a cold medium (see Fig. 3.1 on the bottom) separated by an interface of
different length, then we can notice that the speed of the heat propagation is an increasing
function of the length of the interface for any fixed (rather small) time. We can compare the
bottom pictures with the up pictures on Fig. 3.1, presenting the propagation of the heat by
a boundary in a cold medium. In a cavity with two media, we can notice two propagations:
heat propagation (from the hot to cold) and coldness propagation (from the cold to hot).
We do not have this phenomenon in the up figures since the hot boundary has for all times
the same constant temperature equal to 1. From a theoretical and practical point of view,
the case of the two media is more interesting.

Once again, the beneficial interest is to make hot/cold the medium with the opposite
temperature (cold/hot) the most rapidly possible. Hence, the aim is to study the behavior
of the diffusion for short times. In addition, if we denote the mean heat content by N(t),
equal to the integral over the domain of the heat propagation of the solution of the heat
equation in this domain with a thermal isolated exterior boundary, then we can observe on
Fig. 3.2 that for the long times, t → +∞ there are no any influence of the geometry since
the heat content converges to the constant state (the constant temperature of two media).
However, the geometrical influence is very important in the regime of small times (t → +0).
Besides, we can see in Fig. 3.2 the existence of three times regions characterizing different
speeds of the heat propagation following different asymptotes (the blue and red dotted
lines). Thus these different speeds are asymptotically characterized by different powers of
t. Exactly this dependence was pointed by de Gennes [46]. In the case when there are no
resistivity of the boundary to the heat propagation, de Gennes [46] argued that as t → +0,
N(t) is proportional to the volume µ(∂Ω,

√
D+t) of the interior Minkowski sausage of ∂Ω

of the width equal to the diffusion length
√
D+t:

µ(∂Ω, ℓ) = Vol
(

{x ∈ Ω| dist(x, ∂Ω) < ℓ}
)

(see also Ref. [124]). In particular,

• for a regular boundary ∂Ω, N(t) is proportional to Vol(∂Ω)
√
D+t;

• for a fractal boundary ∂Ω of the Hausdorff dimension d, N(t) is proportional to
(D+t)

n−d
2 .

The de Gennes scaling argument was further investigated in [ARP-8], both experimentally
and numerically. It was shown that irregularly shaped passive coolers rapidly dissipate at
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Figure 3.1 – Influence of geometry on heat propagation at the time moment t = 0.1. Red colors are
hot, and blue colors are cold. On the top: the Dirichlet condition, equal to 1, is imposed
on the bottom boundary. On the bottom: the propagation between a hot and a cold
media in a thermo-isolated cavity.

short times, but their efficiency decreases with time. The de Gennes scaling argument
was shown to be only a large scale approximation, which is not sufficient to describe the
temperature distribution close to the irregular frontier adequately. See also Fig. 3.3 for the
case of one cold medium with a hot boundary.

Thus the main goal of [ARP-6] is to develop the preliminary study gave in [ARP-8] and
especially to formalize the seminal approach by de Gennes [46].

But the case of a bounded domain separated into two subdomains by an interface between
two media is a too complicated case from the theoretical point of view as soon as there are
two boundary points that belong at the same time to the interior and the exterior boundary.
This means that in these points, we have formally everything discontinuous: the diffusion
coefficients and the type of the boundary condition. To avoid this complicated situation,
instead of a divided into two media cavity, we consider all space Rn divided into two media
by a bounded domain, homeomorphic to a ball, and by its exterior domain.

More precisely in [ARP-6], we consider a bounded domain Ω ⊂ Rn with boundary ∂Ω
that splits Rn into “hot” and “cold” media, Ω+ = Ω and Ω− = Rn \ Ω, characterized by
(distinct) heat diffusion coefficients D+ and D− (Fig. 3.4). On the boundary ∂Ω is also
defined a function 0 ≤ λ(x) ≤ ∞ which describes the resistivity to heat exchange through
the boundary.
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Figure 3.2 – Two dimensional propagation in time for two symmetric media of the volume equal to
the volume of [0, l] × [0, b] with l = 1, b = 3 for four pre-fractal cavities given in the
bottom on Fig. 3.1. At t = 0 one of the media is hot, and the other is cold (the diffusion
coefficients of the cold and hot medium respectively are D− = 1 and D+ = 1/100).

Asymptotes: 2i
√

D+t

b with i = 0, 1, 2, 3 (fractal generation).

We are interested in propagation of the heat content associated with the following problem:

∂tu± −D±∆u± = 0 x ∈ Ω±, t > 0, (3.1)

u+|t=0 = 1, u−|t=0 = 0, (3.2)

D−
∂u−
∂n

|∂Ω = λ(x)(u− − u+)|∂Ω, (3.3)

D+
∂u+

∂n
|∂Ω = D−

∂u−
∂n

|∂Ω, (3.4)

where ∂/∂n is the normal derivative directed outside the domain Ω.

We develop a rigorous analysis of problem (3.1)–(3.4) for irregular boundaries given by
d-sets, which requires its variational formulation in appropriate functional spaces. The
variational problem is shown to have a unique weak solution with the desired trace prop-
erties on the boundary ∂Ω.

Once a unique solution u± of the problem (3.1)–(3.4) is established, we study the asymptotic
expansion of the heat content as t → 0

N(t) =
∫

Rn\Ω
u−(x, t)dx = Vol(Ω) −

∫

Ω
u+(x, t)dx. (3.5)

Eqs. (3.1)–(3.4) describe heat exchange between two media prepared initially at different
temperatures and separated by a partially isolating boundary [32, 40]. In fact, u(x, t)
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Figure 3.3 – The interior Minkowski sausages the width equal to ℓD =
√

D+t0 (on the left) and to
ℓD =

√
4D+t0 (on the right) compared to the isolines u(x, t0) = 0.1 of the temperature

at t0 = 0.1 (the solution of the heat equation with the constant Dirichlet condition equal
to 1 and homogeneous initial data). On the left, the border of the interior Minkowski
sausage is the black line, the limit between the red and blue media is the isoline. On the
right, the border of the interior Minkowski sausage is the blue line, the limit between the
yellow and white media is the isoline.

Ω+ = Ω “hot”

Ω− = Rn \ Ω “cold”

∂Ω

Figure 3.4 – Illustration of the heat content problem for a planar domain Ω with pre-fractal boundary
∂Ω presented by the third generation of the Minkowski fractal (of fractal dimension 3/2).
This boundary splits the plane into two complementary regions. At time t = 0, the inner
region Ω+ = Ω is “hot” (functions on Ω+ are denoted with subscript +), while the outer
region Ω− = Rn \ Ω is “cold” (functions on Ω− are denoted with subscript −).

can describe how the distribution of (normalized) temperature evolves with time. The
transmission boundary conditions (3.3), (3.4) impose the continuity of the temperature flux
across the boundary, and relate this flux to the temperature drop at the boundary due to
thermal isolation. The growth rate of the heat content with time characterizes the efficiency
of thermal isolation. Understanding this problem is relevant to improve heat exchanges,
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e.g., cooling of metallic radiators or thermal isolation of pipes and buildings. Depending
on application, cooling rate has to be either enhanced (e.g., in the case of microprocessors
or nuclear reactors), or slowed down (e.g., in the case of pipes and buildings). For these
purposes, one can either modify the thermal isolation (i.e., the resistivity λ), or the shape of
the exchange boundary. It is therefore crucial to understand how the shape of the boundary
influences heat exchange. In particular, would an irregular (e.g., fractal) boundary with a
very large exchange area significantly speed up cooling?

Similar equations can describe molecular diffusion between two media across semi-permeable
membranes [160, 148]. In that case, u(x, t) represents the (normalized) concentration of
molecules, while Eqs. (3.1)–(3.4) can model the leakage of molecules from a cell (Ω+) to the
extracellular space (Ω−) or, more generally, the diffusive exchange between two compart-
ments (e.g., oxygen or carbon dioxide exchange between air and blood across the alveolar
membrane in the lungs). The resistance λ is related to the cellular membrane permeability.
As for heat exchange, one may need to enhance or slow down the molecular leakage, and
the shape of the boundary may play an important role.

The discontinuity of the initial condition, of the diffusion coefficient, and the solution u(x, t)
across the boundary between two domains constitutes one of the mathematical difficulties
to be treated. From a physical point of view, such discontinuities might appear unrealistic.
For instance, the diffusive flux at the boundary at time t = 0 is infinite. There would be
an intermediate layer between two media in which the material properties would change
rapidly but continuously for any physical setting of heat or molecular diffusion. When
the thickness of this intermediate layer is much smaller than the size of the domain, the
physical problem with continuously varying parameters can be approximated by the heat
problem (3.1)–(3.4). Such an approximation is applicable starting from a small cut-off time
while understanding the heat exchange at smaller time scales would need either restituting
an intermediate layer, or introducing nonlinear terms into the heat equation. But let us,
as in [ARP-6], focus on the mathematical problem (3.1)–(3.4).

The physical properties of the two media Ω+ and Ω− are supposed to be different: D+ 6=
D−. This implies the discontinuity of the metric on ∂Ω. The case of continuous metric
(g−|∂Ω = g+|∂Ω) on smooth compact n-dimensional Riemannian manifolds with a smooth
boundary ∂Ω was considered in Ref. [64]. The case of continuous transmission boundary
conditions for the expansion of the heat kernel on the diagonal was treated in Ref. [147]
(see also Ref. [170] for a survey of results on the asymptotic expansion of the heat kernel
for different boundary conditions). The heat content asymptotic expansion with Dirichlet
boundary condition was found

• up to the third-order term for a compact connected domain Ω ⊂ Rn with a regular
boundary ∂Ω ∈ C3 (Refs. [169, 167]);

• up to an exponentially small error for a compact connected domain Ω ⊂ R2 with a
polygonal ∂Ω (Ref. [168]) and for Ω ⊂ R2 with ∂Ω given by the triadic Von Koch
snowflake (Ref. [61]);

• up to the second-order term for the general case of self-similar fractal compact con-
nected domains in Rn (Ref. [124]).

In general, the boundary between two media can have some resistance to heat exchange,
described by the function λ(x) ≥ 0 (x ∈ ∂Ω) that may account for partial thermal isolation.
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We outline three cases of boundary conditions according to λ:

1. If 0 < λ(x) < ∞ for all x ∈ ∂Ω, u is discontinuous on ∂Ω and we have:
(

λ(x)u− −D−
∂u−
∂n

)

|∂Ω = λ(x)u+|∂Ω, D+
∂u+

∂n
|∂Ω = D−

∂u−
∂n

|∂Ω.

2. If λ = +∞ for all x ∈ ∂Ω, u is continuous on ∂Ω due to the transmission condition
and in this case

u+|∂Ω = u−|∂Ω, D+
∂u+

∂n
|∂Ω = D−

∂u−
∂n

|∂Ω.

3. If λ = 0 for all x ∈ ∂Ω, we have the Neumann boundary condition

∂u−
∂n

|∂Ω =
∂u+

∂n
|∂Ω = 0

that models the complete thermal isolation of ∂Ω and implies the trivial solution
given by u−(x, t) = 0 and u+(x, t) = 1 for all time t ≥ 0.

We provide a mathematical foundation and further understanding for the de Gennes ap-
proach. In [ARP-6] we obtain three results valid for all bounded (ǫ, δ)-domains Ω in Rn

with connected boundary ∂Ω, presented by a closed d-set (see Chapter 2 for the definitions
of (ǫ, δ)-domains and d-sets):

1. the well-posedness of the problem (3.1)–(3.4),

2. the continuity of the solution on λ,

3. the asymptotic expansion of the heat content (3.5).

For the well-posedness results, which finally, thanks to [BookChap] and [PrepWest-
Mixed], it is possible for all bounded Sobolev admissible domains Ω = Ω+ with connected
boundary ∂Ω (see Definition 2.1.5), we need to introduce the space

V = {f ∈ L2(Rn)| f+ = f |Ω+ ∈ H1(Ω+), and f− = f |Ω− ∈ H1(Ω−)}
of functions f = f+1Ω+ + f−1Ω− defined on Ω+ ∪ Ω− such that their restrictions f+ = f |Ω+

and f− = f |Ω− belong to H1. We equip V with the norm:

‖u‖2
V = D+

∫

Ω+

|∇u+|2dx+D−

∫

Ω−

|∇u−|2dx+
∫

Ω+∪Ω−

|u|2dx.

Therefore, V is a Hilbert space, V ⊂ L2(Ω), and V is dense in L2(Ω). In addition, V ⊂
L2(Rn) ⊂ V ′, where V ′ is the dual space to V . Finally, since ∂Ω is not less irregular as in
Theorem 2.1.2 defined by the support of a measure µ, the inclusion V ⊂ L2(Rn) is compact.
Thus, in the usual way using the continuous and coercive bilinear form on V × V with the
notation µ for the measure on ∂Ω

a(u, v) = D+

∫

Ω+

∇u+∇v+ + D−

∫

Ω−

∇u−∇v− +
∫

∂Ω
λ(x)(u+ − u−)(v+ − v−)dµ, (3.6)

we obtain the weak well-posedness of problem (3.1)–(3.4) for a positive continuous function
λ ∈ C(∂Ω) in the following sense: there exists a unique solution u ∈ C(R+

t , L
2(Rn)) ∩

L2(R+
t , V ) of the variational problem

∀v ∈ V
d

dt
〈u, v〉L2(Rn) + a(u, v) = 0, u(x, 0) = u0 ∈ L2(Rn). (3.7)
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When λ = +∞ on ∂Ω then the boundary term in Eq. (3.6) desapears and hence V =
H1(Rn). For the continuous dependence of u on λ see Theorem 2.2 [ARP-6].

Once we know the well-posedness results, for d-set boundaries with n − 1 ≤ d < n we
show that the heat content N(t) is approximated by the volume of the interior Minkowski
sausage of ∂Ω of the radius

√
4D+t:

N(t) = τλ

[

Cλ(∂Ω)µ
(

∂Ω,
√

4D+t
)

+O
(

µ2
(

∂Ω,
√

4D+t
))]

, (3.8)

where τλ is equal to 1 if λ = ∞ and
√
t if λ > 0 is finite. Here Cλ(∂Ω) is a constant depending

only on the shape of ∂Ω and finiteness of λ. Formula (3.8) is the first approximation, which
allows to find N(t) up to terms of the order τλO

(√
t µ

(

∂Ω,
√

4D+t
))

.

Moreover, the asymptotic relation (3.8) remains valid even for mixed boundary conditions
for three disjoint boundary parts, i.e. when λ = ∞ on one part of the boundary, λ = 0 on
another part, and 0 < λ < ∞ on the remaining boundary. However, changes of the type of
the boundary condition should be continuous such that u remains a continuous function of
λ. In this more general case, for 0 < λ < ∞ the coefficient Cλ(∂Ω) in Eq. (3.8) is given by

N(t) =
2
√
t µ(∂Ω,

√
4D+t)√

D+ Vol(∂Ω)

[∫

∂Ω
dσλ(σ)

∫ 2

1
dzf(σ, z, t)

−
∫ 2

1
dz(z − 1)n−d

∫

∂Ω
dσλ(σ)f(σ, z, t)

−
∫ 1

0
dzzn−d

∫

∂Ω
dσλ(σ)f(σ, z, t)

]

+O(
√
t µ(∂Ω,

√
t)2), (3.9)

where dσ is understood in the sense of the d dimensional Hausdorff measure (see Ref. [113,
65]) on ∂Ω, α = 1√

D−
+ 1√

D+
and

f(σ, z, t) = exp
(

2λ(σ)α
√
tz + λ(σ)2α2t

)

Erfc(z + λ(σ)α
√
t). (3.10)

In the case λ = ∞ it is defined by

Cλ(∂Ω) =
2
√
D− βn−d√

D− +
√
D+

(3.11)

with the prefactor

βx ≡
∫ 2

0

zxe−z2

√
π

dz =
1

2
√
π
γ
(

x+ 1
2

, 4
)

(3.12)

expressed through the incomplete Gamma function. Or again, it is equal to 0 for λ = 0
(the boundary with λ = 0 does not contribute to the short-time asymptotics of the heat
content). Finding the asymptotics for mixed boundary conditions with a discontinuous
jump from a finite λ to λ = ∞ is still an open problem.

As expected, the resistivity of the boundary to heat transfer makes heat diffusion slower
due to the presence of the coefficient τλ =

√
t.

The comparison between the asymptotic formula (3.8) and a numerical solution of prob-
lem (3.1)–(3.4) for the unit square and a pre-fractal domain is shown in Fig. 3.5 for a finite
λ and in Fig. 3.6 for λ = +∞. The numerical solution was obtained in FreeFem++ by a
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Figure 3.5 – Comparison between the asymptotic formula (3.8) (solid line) and a FreeFem++ numer-
ical solution of the problem (3.1)–(3.4) (circles) for two domains: (a) the unit square
(Vol(∂Ω) = 4) and (b) the third generation of the Minkowski fractal (Vol(∂Ω) = 23 ·4),
with D+ = 1/100, D− = 1, and λ = 17. Since the Hausdorff dimension of the
boundaries of these domains is 1 (even for the pre-fractal case), Eq. (3.8) for a con-

stant λ is reduced to N(t) = 2
√

tC0λµ(∂Ω,
√

4D+t) + O(t
3
2 ) with µ(∂Ω,

√
4D+t) ≃√

4D+t Vol(∂Ω) and C0 = 1 + 3
2 erf(1) − 9

4 erf(2) + 1√
π

(

1
e − 1

e4

)

≈ 0.2218. For plot

(b), dashed line shows the fractal asymptotic (that would be exact for the infinite gen-
eration of the fractal) with de Gennes approximation of µ

(

∂Ω,
√

4D+t
)

in Eq. (3.8) by

(4D+t)
1
4 . This approximation is valid for intermediate times.
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Figure 3.6 – Comparison between the asymptotic formula (3.8) (solid line) and a FreeFem++ numer-
ical solution of the problem (3.1)–(3.4) (circles) for two domains: (a) the unit square
(Vol(∂Ω) = 4), and (b) the third generation of the Minkowski fractal (Vol(∂Ω) = 23 ·4),
with D+ = 0.4, D− = 1, and λ = ∞. Since the pre-fractal boundary ∂Ω has the Haus-
dorff dimension 1, Eq. (3.8) is reduced to (3.13), i.e., N(t) ∝

√
t. In turn, dashed

line shows the fractal asymptotic (that would be exact for the infinite generation of the

fractal) with de Gennes approximation of µ
(

∂Ω,
√

4D+t
)

in Eq. (3.8) by 2.5(4D+t)
1
4 .

This approximation is valid for intermediate times.

finite element method with the implicit θ-schema, also known as Crank-Nicolson schema,
for the time discretization with θ = 1

2
and ∆t = 10−6. The domain Ω was centered in a

ball B of diameter (at least) twice bigger than the diameter of Ω. The Neumann boundary
condition was imposed on the boundary of the ball. According to the principle “not feeling
the boundary” [61], the heat content propagation in R2 with a prescribed boundary ∂Ω can
be very accurately approximated at short times by the heat content propagation computed
in B. The accuracy of this approximation can also be checked by changing the diameter
of the ball. In the case of the square domain Ω, the ball was replaced by a square with
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four times bigger edge. Each pre-fractal edge was discretized with 27 space points while 57
points were used in the external boundary of the ball. The mesh size was varied to check the
accuracy of the presented numerical solutions. For the case of the discontinuous solution on
the boundary (when 0 < λ < ∞) we apply the domain decomposition method and match
the boundary values of the respective solutions on ∂Ω by a Picard fixed point method.
Therefore, we consider the numerical solution of heat propagation for small times as a
reference, to which asymptotic formulas are compared. In particular, deviations between
the numerical solution and the asymptotic formulas observed at longer times illustrate the
range of validity of the short-time expansion.

For the regular case ∂Ω ∈ C3, we obtain the heat content approximation up to the third-
order term. The formulas are given in Theorem 7.1 [ARP-6]. For the case λ < ∞, the
coefficient in front of the second-order term (t

3
2 ) in the asymptotic expansion depends on

the mean curvature. In turn, for λ = ∞, the second-order term (here, t) in the asymptotic
expansion vanishes:

N(t) = 2
1 − e−4

√
π

√
D−D+√

D+ +
√
D−

Vol(∂Ω)
√
t+O(t

3
2 ). (3.13)

The proof of these asymptotic expansion formulas is very technical. In several words, we
need to calculate explicitly the Green function of the constant coefficient problem in the
half space. We start by proving that the problem to find N(t) can be replaced by a heat
problem localized in O(

√
t)-interior Minkowski sausage of the boundary Ωǫ by a variant of

the principle “not feeling the boundary” [61] in the general case in Rn. This allows, due to
the continuity of u on λ, to establish for a constant δ > 0

N(t) =
∫

Ω
(1 − u(x, t))dx =

∫

Ωǫ

(1 − u(x, t))dx+O(e− 1

tδ ),

can be found as a sum of two heat contents according to the finiteness or not of λ (including
the value zero) in the boundary conditions (i.e. for ∂Ω = Γ∞ ∪ Γλ ∪ Γ0):

N(t) =
∫

Ω
Γλ
ǫ

(1 − u(x, t))dx+
∫

ΩΓ∞
ǫ

(1 − u(x, t))dx+O(e− 1

tδ ).

In order to prove Eq. (3.8) for a large class of (ǫ, δ)-bounded connected domains Ω in Rn,
we first prove it for the case of domains with regular boundary ∂Ω ∈ C∞ or at least in C3.
As Ω is bounded, for all types of connected ∂Ω, the volume of Ω is finite and, therefore,
the volume of the ǫ-neighborhood of ∂Ω in Ω is also finite and can be approximated by a
sequence of volumes of Minkowski sausages with regular boundaries (the same argument
was used in Ref. [61] p. 378). Considering a regular ∂Ω (at least in C3) and using the
localization properties of the heat propagation, we rewrite the formula for N(t) in terms
of the local coordinates. We firstly give the approximation of the heat problem solution
through the solution of one-dimensional constant-coefficient problem. The key point is that,
according to Ref. [133] p. 48–49, due to Varadhan’s bound property of Green functions,
locally the difference between the Green function of the problem in the local coordinates
with “frozen” coefficients in one boundary point and the analogous Green function of the
constant coefficient problem in the half space in Rn is exponentially small. Therefore,
following the ideas of McKean and Singer [133] (p. 49), we approximate the Green function
of the problem in the local coordinates by the Green function with the frozen coefficients
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on one boundary point, whose replacement by the known explicitly the Green function
of the constant coefficient problem in the half space yields only an exponentially small
error. Thus we approximate locally the solution using Duhamel formula, constructing a
parametrix [133]. To relate the heat content expansion with the interior Minkowski sausage,
roughly speaking, we follow the strategy of the construction of the Riemann integral: we
construct an elementary sum or a discretization and pass to the limit applying at the same
time the mean value theorem. In addition, we also use the relation

µ(∂Ω, ǫz) = zn−dµ(∂Ω, ǫ) +O(ǫ2(n−d)),

which, for a fixed z and ǫ → +0, is evident for the regular case and can be proved by
approximating the fractal volume by a converging sequence of the volumes for smooth
boundaries.

3.2 Mosco-type convergence for the Westervelt initial-

boundary value problems [PrepWestMixed], [PrepWest-

Dir]

As we could see in the previous section, for the numerics, it is not possible to have a von
Koch or other type fractal boundary, but only its a finite pre-fractal generation. In the most
common case, the third generation is already rather complex and needs much attention to
a correct meshing [33]. Hence there is a question about the approximation of a solution on
the fractal domain by a solution in a pre-fractal domain. A typical method to treat this
kind of questions is to consider the Mosco convergence, or M-convergence, of the energies
or weak formulations (thus functionals) of the considered PDE problem. There are at least
three possible types of this convergence: for quadratic forms, functionals, and spaces. In
addition [83, p.113] M-convergence is related with γ-convergence.

In the aim to approximate the solutions of the Westervelt equation we use the notion of
M − convergence of functionals introduced in Ref. [138].

Definition 3.2.1 A sequence of functionals Gm : H → (−∞,+∞] is said to M-converge
to a functional G : H → (−∞,+∞] in a Hilbert space H, if

1. (lim sup condition) For every u ∈ H there exists um converging strongly in H such
that

limGm[um] ≤ G[u], as m → +∞. (3.14)

2. (lim inf condition) For every vm converging weakly to u in H

limGm[vm] ≥ G[u], as m → +∞. (3.15)

M-convergence of functionals can be used to obtain a the well-posedness of the correspond-
ing problem on the limit domain. Let us give the main ideas.

Let (Ωm)m∈N converge to Ω in some sense (for example, a pre-fractal sequence of boundaries
converging to the fractal one). The interest of the construction could be in the assump-
tion that the boundaries of (Ωm)m∈N are more regular than the boundary of their limit
∂Ω [57, Lemma 7.1]. Therefore, let us suppose that it is possible for a regular boundary
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to have a weak well-posedness result for a boundary-valued problem. Taking then Gm[um]
as their weak formulations, the M-convergence implies that if (um)m∈N the sequence of the
weak-solutions on (Ωm)m∈N uniformly bounded on m (i.e., independently on the shape of
∂Ωm) then there exists u, the weak limit of their extensions (or of a subsequence of their
extensions) on a unique large domain, and 0 = Gm[um] → G[u] for m → +∞ as a numerical
sequence. Consequently, G[u] = 0 becomes the variational formulation of the limit domain,
and hence u is its weak solution, unique by the uniqueness of the weak limit of extensions
of um.

The main difficulty in applying this method is to ensure that the operators of the extension
are uniform on the shape of Ωm and the sequence of the weak solutions (um)m∈N are uni-
formly bounded on m too. These two questions partially define the class of limit domains Ω
and the approximate sequence (Ωm)m∈N and very related with the framework of the shape
optimization considered in the next section. For instance it is not the case of the solutions
of the Poisson for the homogeneous Robin boundary condition

∂um

∂n
+

a

λ(∂Ωm)
um = 0

on a pre-fractal sequence of boundaries converging to a fractal one, i.e. the lengths λ(∂Ωm) →
+∞ for m → +∞, since the constant in Eq. (2.16) depends on V ol(∂Ωm)

a
by [44]. Neverthe-

less, if there is a part of the boundary with the homogeneous Dirichlet condition, we have
Eq. (2.16) with a constant independent on m by the Poincaré inequality (see Theorem 3.2
[PrepWestMixed]). In the homogeneous Dirichlet case the class of validity of Eq. (2.16)
defines the class of the approximation domains Ωm: arbitrary domains for n = 3 and NTA
domains with the same geometrical constants M and r0 for n = 2 [PrepWestDir] (see
Definition 2.4.1 for the definition of these constants). In the case of arbitrary domains in
R3, we approximate Ω by a sequence of arbitrary domains (Ωm)m∈N∗ which converges to Ω
in the following sense:

Definition 3.2.2 We say that a sequence of domains (Ωm)m∈N∗ converges to Ω, Ωm → Ω
if the following two conditions are satisfied

1. for any compact K ⊂ Ω there is m = m(K) ≥ 0 such that

K ⊂ Ωm for all m ≥ m(K),

2. the sets Ωm \ Ω are bounded and for m → +∞

λ((Ω \ Ωm) ∪ (Ωm \ Ω)) → 0.

In R3 we can take arbitrary domains for (Ωm)m∈N∗ and Ω, since we have obtained the well-
posedness of the Westervelt equation on them in R3. This kind of arbitrary approximation
or the approximation in the same class of domains is common to the shape optimization
techniques [56], [ARP-1]. In the two dimensional case, we approximate arbitrary domains
by sequences of NTA domains with the same geometrical constants M and r0. More-
over, thanks to Mosco convergence of the weak formulation functionals, we prove the well-
posedness of the Westervelt equation with homogeneous Dirichlet boundary conditions on
an arbitrary domain Ω, for which there exists a convergent (in the sense of Definition 3.2.2)
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to Ω sequence of NTA domains with the same geometrical constants M and r0. The ob-
tained solution is a little bit less regular because we cannot ensure that it belongs to the
Laplacian domain, but only to H1

0 (Ω). However, it belongs to the domain of the Laplacian
in the case of an NTA domain Ω (see also Chapter 2).

If we work with Robin boundary conditions or non-homogeneous Dirichlet boundary con-
ditions, the trace and extension theorems discussed in Chapter 2 are essential. The first
known results on the uniform bound of the extension operators are due to Chenais [36] in
the class of uniformly Lipschitz domains satisfying the same property of ǫ-cone (see also
next section). But the results of Jones [96] allow considering all (ǫ,∞)-domains with the
same ǫ. It is the reason why the pre-fractal approximation of the von Koch mixtures con-
sidered in R2 enjoys this uniform bound property [31, 30]. Thus, we extend the von Koch
mixtures’ two-dimensional case to the case of self-similar fractal boundaries in Rn satisfying
a “strong open set condition” [PrepWestMixed].

More precisely, working in the class of (ǫ,∞) or uniform domains in Rn, we start in [Prep-
WestMixed] by defining the conditions on Ω and Ωm so that they are all (ǫ,∞)-domains
with a fixed ǫ independent on m. In particular it is the case of Ω with a self-similar fractal
boundary and a polyhedral approximation Ωm satisfying a strong open set condition:

Assumption 3.2.1 (Fractal Self-Similar Face) We assume that each Km is a polygonal
surface with (n − 2)-dimensional hypersurface boundary that is the same as the (n − 2)-
dimensional hypersurface boundary of K0.

Assumption 3.2.2 (A Strong Open Set Condition) We assume the Open Set Condi-
tion for the sequence Φm is satisfied with two different convex open polygons O $ O′, not
depending on m, such that

∂O ∩K0 = ∂O′ ∩K0 = ∂O ∩ ∂O′ = ∂(n−2)K0.

This property to be (ǫ,∞)-domain with the same ǫ is crucial to have the extension operators
from Ωm to Rn with norms independent on m (see also [30, Thm 3.4]), what is important
to be able to pass to the limit for m → +∞ in the Mosco convergence of the functionals
corresponding to the weak formulations of the Westervelt mixed problem. In this way,
we prove for a fixed self-similar boundary of a domain in Rn the existence of a polyhedral
boundary sequence of domains with the same ǫ as Ω itself. This result generalizes the known
two-dimensional approximation results for von Koch mixtures of Refs. [31, 30]. Thus, we
introduce the trace and extension properties for the fixed Ω and (Ωm)m∈N∗ . The main result
allowing to pass to the limit in the boundary integrals is the following: for any function
g ∈ H1(Rn)

1
λ(Km)

∫

Km

TrKmgds →
∫

K
TrKg dµ for m → +∞, (3.16)

where by λ(Km) is denoted the length of the boundary Km by the Lebesgue measure. It is
a corollary of the weak∗ limit of measures having supports equal to Km intersected with K
to the measure µ on K (i.e. all measures are supposed to be on K).

Considering the mixed boundary valued problem for the Westervelt equation, we introduce
the space

H(Ω) := H1([0,+∞[;H1(Ω))∩H2([0,+∞[;L2(Ω)) (3.17)



70 Chapter 3. Approximations questions related with the boundary shape

and let us consider Ω∗ a Sobolev admissible domain such that Ω ⊂ Ω∗ for all m ∈ N∗

Ωm ⊂ Ω∗.

For u ∈ H(Ω∗) and φ ∈ L2([0,+∞[, H1(Ω∗)) we define the following functional coming
from the variational formulation for the Westervelt equation

Fm[u, φ] :=
∫ +∞

0

∫

Ωm

∂2
t uφ+ c2∇u∇φ+ ν∇∂tu∇φ dλdt

+
∫ +∞

0

∫

Km

c2amTr∂Ωmu Tr∂Ωmφ+ νamTr∂Ωm∂tu Tr∂Ωmφdt (3.18)
∫ +∞

0

∫

Ωm

−α(u∂2
t u)φ− α(∂tu)2φ+ fφ dλdt

and also

F [u, φ] :=
∫ +∞

0

∫

Ω
∂2

t uφ+ c2∇u∇φ+ ν∇∂tu∇φ dλdt

+
∫ +∞

0

∫

K
c2aTr∂Ωu Tr∂Ωφ+ νaTr∂Ω∂tu Tr∂Ωφdµdt (3.19)

∫ +∞

0

∫

Ω
−α(u∂2

t u)φ− α(∂tu)2φ+ fφ dλdt.

Thus we introduce for u ∈ L2([0,+∞[;L2(Ω∗))

Fm[u, φ] =

{

Fm[u, φ] if u ∈ H(Ω∗),
+∞ otherwise

(3.20)

and

F [u, φ] =

{

F [u, φ] if u ∈ H(Ω∗),
+∞ otherwise.

(3.21)

We establish that the Mosco convergence for the functionals, coming from the variational
formulation for the Westervelt equation, holds only in R2 or R3, which once again is due
to the impossibility to control nonlinear terms in a higher dimension. Thus, taking Ω as a
fractal domain of R2 or R3 with its approximation (Ωm)m∈N∗ as the pre-fractal polyhedral
sequence satisfying two Assumptions 3.2.1 and 3.2.2 (hence, by the fractal approximation,
converging to Ω in the sense of the characteristic functions: ‖1Ωm − 1Ω‖L1(Ω∗) → 0 for
m → +∞), we ensure (see Theorem 6.1 [PrepWestMixed]) that they belong to the
same class of (ǫ,∞)-domains as Ω. For φ ∈ L2([0,+∞[;H1(Ω∗)) and am = a

V ol(∂Ωm)
, we

establish the Mosco convergence for the functionals u 7→ Fm[u, φ], defined in (3.20) in
L2([0,+∞[;L2(Ω∗)) to the functional u 7→ F [u, φ] defined in (3.21) as m → +∞.

Moreover, we prove (see Theorem 6.5 [PrepWestMixed]) that for all φ ∈ L2([0,+∞[;H1(Ω∗))
if vm ⇀ u in H(Ω∗), then

Fm[vm, φ] −→
m→+∞

F [u, φ].

The result holds only in R2 and in R3 because of the control of the nonlinear terms. But
the Mosco convergence of the linear part holds in Rn for all n ≥ 2.

Finally, we end up proving that the weak solutions um on the pre-fractal approximate do-
mains Ωm converge weakly to the weak solution u on the fractal domain (see Theorem 6.6
[PrepWestMixed]), a method often used in the case of shape optimization [ARP-1]. We
notice that since our proof does not require any monotone assumption on Ωm our approxi-
mation result works in particular for so-called Minkowski fractal domain [151, 53], [ARP-8]
and their 3-dimensional analog.
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3.3 Shape optimization for the wave absorption [ARP-1],

[PrepShape2]

The diffraction and absorption of waves by a system with both absorbing properties and
irregular geometry is an open physical problem. This problem must be solved to understand
why anechoic chambers (electromagnetic or acoustic) do work better with irregular absorb-
ing walls. The first studies relating to irregular geometry and absorption are performed
in [58] numerically. The problem of the efficient boundary dissipation was considered nu-
merically in [58], where the authors show the importance of the shape of the boundary,
modeling very small absorption by the homogeneous Neumann boundary condition. It
was also shown that the energy decay is related to the localization of eigenmodes on the
boundary [58] and these localization phenomena are purely geometrical, i.e. created by
the ("irregular" or multiscale) geometry of the boundary. In the same direction, the local-
ized modes on the boundary between the air and a dissipative wall, giving the phenomena
of astride localization [59], make bigger the wave interaction with the dissipative media
and thus imply a more rapid decay of the acoustical energy. These ideas of creation of
a bigger interaction of the wave with the absorbent media by a multiscale geometry fa-
vored the eigenmodes localization phenomena were successfully applied in the construction
of the anti-noise barrier named Fractal Wall1, the most efficient wall in the absorption of
low-frequency traffic of auto-roads.

Therefore there is a question, treated numerically in [PrepShape2], about the existence
of an optimal shape of an absorbent wall (for a fixed absorbing material), optimal in the
sense that it is mostly dissipative for a large range of frequencies. At the same time, it is
crucial to ensure that such a wall could effectively be constructed. In the framework of the
propagation of acoustic waves, the wall’s acoustic absorbent material is a porous medium.
In [ARP-1], for a fixed frequency of the sound wave, we prove the existence of an optimal
shape minimizing the acoustic energy for the Helmholtz frequency model with damping on
the boundary.

To optimize acoustic performances of non-absorbing walls, Duhamel [48, 49] studies sound
propagation in a two-dimensional vertical cut of a wall and uses genetic algorithms to obtain
optimal shapes (some of them are, however, not connected and thus could not be easily
manufactured). The author also uses a branch and bound (combinatorial optimization)
type linear programming in order to optimize the sensors’ positions that allow an active
noise control, following former work introduced by Lueg [77] in 1934. Abe et al. [2] consider
boundary elements based on the shape optimization of a non-absorbing two-dimensional
wall in the framework of a two-dimensional sound scattering problem for a fixed frequency
(for the Helmholtz equation), using a topological derivative with the principle that a new
shape or topology is obtained by nucleating small scattering bodies. Also, for the Helmholtz
equation for a fixed frequency, using the shape derivative of a functional representing the
acoustical energy, Cao and Stanescu [28] consider a two-dimensional shape design problem
for a non-absorbing part of the boundary to reduce the amount of noise radiated from
aircraft turbofan engines. For the same problem, Farhadinia [55] developed a method
based on measure theory, which does not require any information about gradients and the
differentiability of the cost function.

1product of Colas Inc., French patent N0-203404; U.S. patent 10" 508,119.
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On the other hand, for shape optimization problems, there are theoretical results, reviewed
in Refs. [9, 136], which rely on the topological derivatives of the cost functional to be
minimized, with a numerical application of the gradient method in both two and three-
dimensional cases (in the framework of solid mechanics). In particular, Achdou and Piron-
neau [4] considered the problem of optimization of a photocell, using a complex-valued
Helmholtz problem with periodic boundary conditions to maximize the solar energy in a
dissipative region. For acoustic waves in the two-dimensional case, optimization of the
shape of an absorbing inclusion placed in a lossless acoustic medium was considered in
Refs. [139, 140]. The considered model is the linear damped wave equation [39, 18]. Using
the topology derivative approach, M "unch and al. consider in [139, 140] the minimization
of the acoustic energy of the solution of the damped wave equation at a given time T > 0
without any geometric restrictions and the purpose of the design of an absorbent wall. See
also [12] for the shape optimization of shell structure acoustics.

In the absorbing acoustical wall framework, we first define our model to relate the energy
damping with a fixed porous medium.

To describe the acoustic wave absorption by a porous medium, there are two possibilities.
The first one is to consider wave propagation in two media, typically air and a wall, which
corresponds to damping in the volume. The most common mathematical model for this is
the damped wave equation [18]. The second one is to consider only one lossless medium,
air, and to model energy dissipation by a damping condition on the boundary. In both
cases, we need to ensure the same order of energy damping corresponding to the chosen
porous medium’s physical characteristics as its porosity φ, tortuosity αh and resistivity to
the passage of air σ [81].

Thanks to Ref. [81], we can define the coefficients in the damped wave equation (damping
in volume) as functions of the characteristics mentioned above. More precisely, for a regular
bounded domain Ω ⊂ R2 (for instance ∂Ω ∈ C1) composed of two disjoint parts Ω = Ω0∪Ω1

of two homogeneous media, the air in Ω0 and a porous material in Ω1, separated by an
internal boundary Γ, we consider the following boundary value problem (for the pressure
of the wave)











ξ(x)∂2
t u+ a(x)∂tu− ∇ · (η(x)∇u) = 0 in Ω,

∂u
∂n

|Rt×∂Ω ≡ 0, [u]Γ = [η∇u · n]Γ = 0,
u|t=0 = u01Ω0 , ∂tu|t=0 = u11Ω0 ,

(3.22)

with ξ(x) = 1
c2

0
, a(x) = 0, η(x) = 1 in air, i.e., in Ω0, and

ξ(x) =
φγp

c2
0

, a(x) = σ
φ2γp

c2
0ρ0αh

, η(x) =
φ

αh

in the porous medium, i.e., in Ω1. The external boundary ∂Ω is supposed to be rigid,
i.e., Neumann boundary condition are applied, and on the internal boundary Γ we have
no-jump conditions on u and η∇u · n, where n denotes the normal unit vector to Γ. Here,
c0 and ρ0 denote the sound velocity and the density of air, respectively, whereas γp = 7/5
denotes the ratio of specific heats. But instead of energy absorption in volume, we can also
consider the following frequency model of damping by the boundary.

We suppose that the boundary ∂Ω is divided into three parts ∂Ω = ΓD ∪ΓN ∪Γ (see Fig. 3.8
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for an example of Ω, chosen for the numerical calculations) and consider






△u+ ω2u = f(x), x ∈ Ω,

u = g(x) on ΓD,
∂u

∂n
= 0 on ΓN ,

∂u

∂n
+ α(x)u = Trh(x) on Γ,

(3.23)

where α(x) is a complex-valued regular function with a strictly positive real part (Re(α) >
0) and a strictly negative imaginary part (Im(α) < 0). This particular choice of the signs
of the real and the imaginary parts of α are needed for the well-posedness properties [62]
and the energy decay of the corresponding time-dependent problem [23].

We find α from a minimization problem, minimizing the difference of H1 norm between
the solution of the damped wave equation in the frequency regime and the solution of the
Helmholtz problem for the case of a straight line boundary Γ. The numerical values of α
calculated for a porous material named ISOREL, frequently used in building insulation, are
given in Fig. 3.7.
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Figure 3.7 – The real (top left) and imaginary (top right) parts of α and the sum of the errors e∆x

(in the bottom) as function of frequencies ω ∈ [600, 30000] calculated for the ISOREL
porous material.

Thus we generalize the existing well-posedness results for the Helmholtz problem in domains
with Lipschitz boundaries [62] to all admissible domains with d-set boundaries using [ARP-
4]. Actually, it is also well-posed on Sobolev admissible domains (see Definition 2.1.5
and [BookChap]), since we work only on H1(Ω).

Moreover, we stress that once a measure µ is fixed on the boundary ∂Ω, it modifies the
meaning of the Green formula in the following sense: for all u and v from H1(Ω) with
∆u ∈ L2(Ω) the normal derivative of u is understood as the linear continuous functional
on the Besov space B2,2

1 (∂Ω) constructed by µ according to the definition

〈∂u
∂ν
,Trv〉((B2,2

1 (∂Ω))′,B2,2
1 (∂Ω)) :=

∫

Ω
v∆udx+

∫

Ω
∇v · ∇udx.

However, only the Lipschitz boundary case in [ARP-1] is considered for the shape opti-
mization problem.

We consider the two-dimensional shape design problem, which consists of optimizing the
shape of Γ with the Robin dissipative condition in order to minimize the acoustic energy of
system 3.23. The boundaries with the Neumann and Dirichlet conditions ΓD and ΓN are
supposed to be fixed.
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We also define a fixed open set D with a Lipschitz boundary that contains all domains Ω.
Actually, as only a part of the boundary (precisely Γ) changes its shape, we also impose
that the changing part always lies inside the closure of a fixed open set G with a Lipschitz
boundary: Γ ⊂ G. The set G forbids Γ to be too close to ΓD, making the idea of an

Ω

G

D

ΓN

ΓN

ΓD Γ

Figure 3.8 – Example of a domain Ω in R2 with three types of boundaries: ΓD and ΓN are fixed and
Γ can be changed in the restricted area G. Here Ω ∪ G = D and obviously Ω ⊂ D.

acoustical wall more realistic.

To introduce the class of admissible domains, on which we minimize the acoustical energy
of system 3.23, we define Lip as the class of all domains Ω ⊂ D for which

1. there exists a fixed ǫ > 0 such that all domains Ω ∈ Lip satisfy the ǫ-cone property [6,
36]: for all x ∈ ∂Ω, there exists ξx ∈ R2 with ‖ξx‖ = 1 such that for all y ∈ Ω ∩Bǫ(x)

C(y, ξx, ǫ) = {z ∈ R2|(z − y, ξx) ≥ cos(ǫ)‖z − y‖ and 0 < ‖z − y‖ < ǫ} ⊂ Ω.

2. there exists a fixed ĉ > 0 such that for any Ω ∈ Lip and for all x ∈ Γ we have
∫

Γ∩Br(x)
dλ ≤ ĉr, (3.24)

where Br(x) is the open Euclidean ball centered in x with radius r and λ is the usual
one-dimensional Lebesgue measure on Γ.

The uniform ǫ-cone property implies, by Remark 2.4.8 [83, p. 55] and Theorem 2.4.7, that
all boundaries of Ω ∈ Lip are uniformly Lipschitz.

Let us notice that, by the boundness of D containing all Ω, condition (3.24) implies that
all Γ for Ω ∈ Lip have uniform length: there exists M > 0 depending on the chosen ĉ > 0
such that for all Ω ∈ Lip it holds Vol(∂Ω) =

∫

∂Ω dλ ≤ M .

The constant M (and hence initially ĉ) can be chosen arbitrary large but finite. We denote
by Ω0 ∈ Lip and Γ0 ⊂ G the “reference” domain and the “reference” boundary respectively
(actually ∂Ω0 = ΓD ∪ ΓN ∪ Γ0) corresponding to the initial shape before optimization.

Thus, the admissible class of domains can be defined as

Uad(Ω0, ǫ, ĉ, G) =

{Ω ∈ Lip | ΓD ∪ ΓN ⊂ ∂Ω, Γ ⊂ G, M0 ≤
∫

Γ
dλ ≤ M(ĉ),

∫

Ω
dx = Vol(Ω0)}, (3.25)

where ĉ is given sufficiently large in the aim to have a sufficiently large constant M > 0 in
the sense that it is not less than M0 > 0, which is the length of the straight line boundary.
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Moreover the case when M is equal to the length of the plane boundary M0 is the trivial
case when Uad(Ω0, ǫ, ĉ, G) contains only one unique domain with the plane boundary, which
hence is trivially optimal. Therefore the problem becomes interesting for a sufficiently large
M .

We show that the class of admissible domains Uad(Ω0, ǫ, ĉ, G) is closed and compact by three
types of convergence: in the sense of Hausdorff, of characteristic functions and compacts.

In what follows we denote by λ the 1-dimensional Lebesgue measure on the Lipschitz
boundary Γ, by m1 the 1-dimensional Hausdorff measure (which is equal to λ on Γ) and
we denote by u(Ω, µ) the weak solution of the Helmholtz problem on Ω satisfying for all
v ∈ V (Ω) (see Eq. (2.17))

∫

Ω
∇u · ∇v̄dx− ω2

∫

Ω
uv̄dx+

∫

Γ
αTr uTr v̄ dµ = −

∫

Ω
f v̄dx+

∫

Γ
Tr hTr v̄ dµ

with 1-dimensional Radon measure µ.

We define

J(Ω, u(Ω, µ), λ) = A
∫

Ω
|u(Ω, µ)|2dx+B

∫

Ω
|∇u(Ω, µ)|2dx+ C

∫

Γ
|u(Ω, µ)|2dλ (3.26)

for given µ and λ and with A ≥ 0, B ≥ 0, C ≥ 0 positive constants for any fixed ω > 0.

Ideally we would like to minimize J(Ω, u(Ω, λ), λ) on Uad(Ω0, ǫ, ĉ, G), however we are able
to prove [ARP-1] the existence of Ωopt in Uad(Ω0, ǫ, ĉ, G) with a 1-measure µ∗, equivalent
to λ, satisfying µ∗(Γopt) ≥ λ(Γopt) on its boundary Γopt, such that J(Ω, u(Ω, µ∗), λ) realizes
the infinum of J(Ω, u(Ω, λ), λ) on Uad(Ω0, ǫ, ĉ, G). So, if µ∗(Γopt) = λ(Γopt), i.e. µ∗ = λ (this
depends on the properties of the minimizing sequence which we don’t know in advance),
then Ωopt realizes the minimum of J(Ω, u(Ω, λ), λ).

The assumption to have a uniform upper bound for the boundary lengths inside non-
trivial balls is crucial to prove the regularity of the measure µ∗, obtained as a weak∗ limit of
Hausdorff measures of the boundaries of the minimizing sequence for J . The relation µ∗ ≥ λ
follows from the lower semicontinuity of the perimeters. The measure µ∗ is not necessarily
equal to the Lebesgue measure of Γ, because µ∗(Γ) can be bigger than λ(Γ). For instance, if
Γn are oscillating boundaries with a constant length around a plane segment with a length
two times smaller and such that Γn → Γ in the sense of Hausdorff, it easy to see that it is an
example when λ(Γn) → µ∗(Γ) = 2λ(Γ) > λ(Γ). Obviously, in the numerical framework, we
don’t have at all this kind of problem, we only have a finite number of possible boundaries
Γn, and hence we can always choose the most efficient with all times µ∗ = λ.

As on the part of boundary ΓD we impose the Dirichlet boundary condition, thanks also to
the boundness of the global domain D, it is possible to control the solution of the Helmholtz
problem with a constant independent of the shape of the domain, but only depending on
its volume by the Poincaré inequality:

‖u‖H1(Ω) ≤ C(α, ω,Vol(Ω))
(

‖f‖L2(Ω) + ‖g‖B2,2
1 (ΓD) + ‖h‖V (Ω,λ)

)

. (3.27)

Space V (Ω, λ) is the same as defined in (2.17). It allows to take a sequence of solutions of the
Helmholtz problem on the minimizing sequence of domains and deduce that it is bounded
in H1(D). Using the uniform continuity of the extension operators on a closed class of do-
mains satisfying the same property of ǫ-cone [36] and the same type of Sobolev embeddings
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as in Mosco convergence framework of the previous section (see [PrepWestDir], [Prep-
WestMixed] and [29]), we show that the functional weak formulation defined with the
Lebesgue boundary measure for the Helmholtz problem considered on the minimizing se-
quence of admissible domains converges to the analogous weak formulation defined with µ∗

measure on the limit boundary Γ. From where follows our main optimal shape existence re-
sult. Moreover, we notice that in order to have the existence of an optimal shape in a higher
dimensional case (for instance, in R3 or simply in RN), it is sufficient to replace everywhere
the N − 1-dimensional Lebesgue measure of the boundary by the N − 1-dimensional Haus-
dorff measure since in that case the Lebesgue measure of the N − 1-dimensional boundary
is not equal to the Hausdorff measure as for one-dimensional curves, but proportional to it
(see [54, Thm. 1.12, p. 13], for the optimization in R3 the Lebesgue measure of the bound-
ary is equal to π/4 times the Hausdorff measure). See also Ref. [25] for a free discontinuity
approach to a class of shape optimization problems involving a Robin condition on a free
boundary.

In [PrepShape2] for the case of a regular boundary (at least C3) we provide the shape
derivative of the objective functional (3.26). Using the gradient descent method for the
shape derivative, combined with the finite volume and level set methods introduced in [145],
we find numerically optimal shapes for a fixed frequency in the two-dimensional case. We
also show the stability of the numerical algorithm and the non-uniqueness of the optimal
shape, which can be explained by the non-uniqueness of the geometry providing the same
spectral properties (see [68, 71, 70]). Numerically, we show that for efficiency in the energy
absorption, the wall’s shape must be related to the half wavelength of the wave created
by the source. Thus, it is not pertinent to add much smaller geometric variations, which
finally confirms the possibility to create "not too complicated but most efficient" walls.
Simultaneously, the multiscale nature of the wall geometry is necessary for an efficient
absorption in a large band of frequencies. This shape is multiscale (see Ωopt on Fig. 3.9). We

(a) Ωopt (b) Ωsimplified

Figure 3.9 – The optimal shape Ωopt is obtained by the shape optimization algorithm process, and
the domain Ωsimplified is generated manually with the aim to simplify the shape of Ωopt

which is initially multiscale.

show that if we keep only the largest scale, the new shape (see Ωsimplified on Fig. 3.9) has the
same good dissipation properties as the optimal one in the low frequencies corresponding
to the chosen scale length. Nevertheless, the new shape is no more efficient in higher
frequencies, for which the deleted geometry scales were important (see Fig. 3.10).

We can try to justify the efficiency of the half-wavelength scales in the following way.

Let us consider the penetration of the plane wave with the normal incidence to a porous
medium with a plane shape. The Robin boundary problem for the Helmholtz equation
can be viewed [ARP-1] as a reformulation of the frequency variant damped wave equation
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Figure 3.10 – Comparison of the dissipative properties of the flat shape Ωflat, the optimal Ωopt := Ω6

and of its simplification Ωsimplified := Ω7. The values of J(Ωflat), of J(Ω6) and of
J(Ω7) (A = 1, B = 0, C = 0) as functions of ω ∈ [3000, 6000] are given by the lines
with circles, squares and stars respectively.

providing the same solutions with the same energy damping. For more simplicity, let us
consider the one dimensional case: the wave

p(|x|, t) = eiωte−ik(ω)|x|e− |x|
Λ(ω)

solves the damped wave equation with constant coefficients (c > 0, a > 0)

1
c2
∂2

t p− ∂2
xp+ a∂tp = 0, (3.28)

if

k(ω) =
ω√
2c



1 +

√

1 +
a2c4

4ω2





1
2

, and Λ(ω) =
2k(ω)
aω

=

√
2

ac



1 +

√

1 +
a2c4

4ω2





1
2

.

Here, Λ(ω) is the attenuation length of the wave, i.e. all longer lengths than Λ(ω) of the
path traveled by the wave in the absorbing medium ensure its exponential damping.

Now, let consider the dissipative medium of a length ℓ: a(x) = 10<x<ℓ, and suppose that
the end x = ℓ is reflective, i.e. if the wave reaches the end of the absorbent wall, it changes
its propagation in the opposite direction. If, as previously, γ(ω) is the length of the path
traveled by the wave in the wall, we can parametrize it with r ∈ [0, γ(ω)] and deduce that if
γ(ω) ≥ 2ℓ > Λ(λ) with 2ℓ ≥ λ, the wave is exponentially damped by the wall i.e. to damp
a wave with a wavelength λ we need a wall of minimal length λ

2
.

If ℓ < λ
2

and Λ < 2ℓ there is a part of the wave which is not exponentially absorbed, but
when ℓ <≪ λ

2
known the properties of the porous material, the most common case is Λ > 2ℓ

corresponding to a non-efficient wave damping.
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3.4 Examples of further developments

One of possible open problems in the way to develop the results of [ARP-6] is to ask
the same questions for the small time asymptotic developments of the heat content of the
Venttsel problem [118, 119]. The main difficulty in the Venttsel problem is to find a Green
function of an elementary half space problem with the same boundary condition:

∂tu− c0∆∂Ωu =

[

∂u

∂n

]

on ∂Ω.

3.4.1 Optimal fractal shapes in acoustics

Knowing from [ARP-1] the existence of an optimal shape for a fixed frequency of a two-
dimensional shape optimization problem for a Helmholtz equation with damping on the
boundary, the further step is to consider the same question for a frequency range.

The idea is to relate the question about the existence of the most simple and the most effi-
cient in energy absorption shapes for a band of frequencies with their multiscale geometries
which must correspond to the wavelengths of the noise to be dissipated. The key point
is to use the following physical principle: a wave with a wavelength λ0 does not fit into a
shape of characteristic scale much smaller than λ0. It is actually a direct corollary of the
continuity of the acoustical energy 3.26 corresponding to the domain. Naturally, bigger the
length of the path traveled by the wave in the absorbing wall, more the wave is absorbed,
and its energy is dissipated. In addition, here we are in the framework of the case when
the wavelength of the source λ0 is supposed to be much bigger than the added geometrical
fragments. Therefore, this situation is opposite to the case when it is possible to capture
the wave by the geometry of wall fragments following [22] and the wave propagation can
be treated as just propagation of raises following the rules of the geometric optic.

Besides, more significant wave interaction with the dissipative media decreases the acous-
tical energy. This statement on the decreasing energy property for a fixed frequency fol-
lows from the fact that the adding of smaller scales to Γλ0 (a boundary with geometrical
parts of the size λ0/2) means to make its length (perimeter) bigger. A bigger perimeter
can increase the interaction of the wave with the absorbing medium, giving the relation
J(Ωλ)(ω0) ≤ J(Ωλ0)(ω0) for a domain Ωλ obtained from Ωλ0 by adding a geometrical scale
of the order of λ/2 (λ ≪ λ0). Following [58], it can also be viewed as a creation of localized
eigenmodes taking their maximal values on the dissipative boundary. The presence of such
eigenmodes increases energy dissipation. To finish, we notice that on Uad anyway the acous-
tic energy takes its minimum or infinium on a Ωo

λ0
∈ Uad and hence J(Ωo

λ0
)(ω0) ≤ J(Ωλ)(ω0).

We can add here the hypothesis discussed at the end of Section 3.3 for the one-dimensional
case that any optimal shape on Uad for a fixed frequency ω0 have the geometrical scale λ0/2.

Knowing empirically that for the efficient energy dissipation of an acoustic wave, its wave-
length λ must be related with a geometric scale of the wall, we can confirm this fact by
one-dimensional examples and also numerically, by calculating the impact of different geo-
metric scales on the energy dissipation in time. These partial results would contribute to
a partial proof of the guess that the wall length scale ℓ must be of the order of λ/2. For
instance, we can give the following illustration2.

2F. Magoulès, P.T.K. Ngyuen, P. Omnes, A. Rozanova-Pierrat, Fractal boundaries in acoustic energy

wave absorption, in preparation.



3.4. Examples of further developments 79

We consider the three cavities Ω = Ω0⊔Ω1 =]0, 1[×]−2, 2[, partially shown on Fig. 3.11 with
two homogeneous media, air (lower part) and a porous material (upper part), separated
by an internal boundary Γi, i = 0, 1, 2. To preserve the volume of each medium and to
model the increasing irregularity of the interface, as compared to the plane Γ0 (at y = 0),
we choose Γ1 and Γ2 as the first two fractal generations of a symmetric element. The
external boundary ∂Ω is supposed to be perfectly rigid (Neumann boundary condition).
Air is considered as a loss-less medium, and the porous medium (ISOREL) is considered
as a dissipative homogeneous medium. Thus we solve numerically by finite volume method
the damped wave equation (3.22) with an initial data chosen as a Gaussian, centered in a
fixed point x0 = (0.75,−1.5) of Ω0.
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Figure 3.11 – Pressure contours at t = 0.01 in cavities with an internal boundary of different
Minkowski fractal generations (from left to right and top to bottom: Γ0 (flat), Γ1

and Γ2) and the corresponding energy damping. The size of the mesh is 128 × 512.

Fig. 3.11 shows that an irregular shape of the internal boundary can significantly increase
the dissipation properties of the porous medium (Γ1,2 as compared to Γ0). The energy
damping by Γ1, compared to the damping performances of Γ0, is much better, and we
notice that the wavelength λ of the wave, created by the initial data, is comparable (twice
bigger) to the characteristic length scale size of the geometry Γ1. At the same time, the
small difference in the energy decays corresponding to the internal boundaries Γ1, and Γ2

confirms the physical hypothesis: the wave does not penetrate in the smallest geometry
parts of size λ/8, but the wave still keeps a good penetration for the scales of the order λ/2
as for Γ1. This finally implies that the internal boundary’s shape does not need to be "too
complicated" for being an efficient acoustic absorbent for a fixed frequency.

The optimization algorithm developed in [PrepShape2] also confirms that the optimal
shape has its largest scale length of the order of λ/2 (see Fig. 3.12 where the optimal shape
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Ω̂10 keeps the largest characteristic geometrical size of order λ
2

and deletes the smaller scales
of the initial shape).

(a) |u(Ω̂0)|2 (b) iter = 10

 

 

0

0.2

0.4

Figure 3.12 – The values of |u|2 on the domains (from the left to right) Ω̂0, which is the initial shape
and Ω̂10, which is the optimal shape for ω = 3170, respectively with the same scale of
colors.

Let us make attention that the general proof of this fact is an open "cross over" problem. At
the same time, the cases of λ ≪ ℓ, corresponding to the wave propagation following lows of
geometrical optic [22], and of λ ≫ ℓ, corresponding to the phenomena of homogenization,
are much more understood.

The decreasing property of the energy of system (3.23) for ω → +∞ is crucial. Fortunately,
it is possible to find conditions on the source terms when the decay holds:

Proposition 3.4.1 Let f , h and α be smooth functions of ω (of the class C1), such that
in the high frequency limit verify for ω → +∞

f

ω2
→ 0 in L2(Ω),

h

ω2
⇀ 0 in V (Ω), Reα → cr ≥ 0, |Imα| → ci, (3.29)

where ci is either a strictly positive constant or +∞.

Then the acoustical energy ‖u‖L2(Ω) → 0 for ω → +∞.

Therefore, the main result which we prove3 in this framework is that for a finite frequency
interval [ω0, ω1] with ω1 ≥ 2kω0, k ≥ 1, the “most simple” and efficient geometry must be
pre-fractal with k characteristic scales equal to λ

2k with a wavelength λ ∈ [ 2π
ω1
, 2π

ω0
]. Con-

sequently, in the infinite case [ω0,+∞[ the "most simple" and efficient geometry must be
fractal.

As a fractal shape could be "almost optimal" to dissipate the acoustical energy, there is
a sense to consider the shape optimization framework for the Helmholtz system (3.23)
in the class of admissible shapes allowing to have fractal boundaries. More precisely, it
is possible to prove [ARP-New] that the class of the admissible domains defined by all
(ε,∞)-domains, included all in a bounded domain D ⊂ Rn, with a boundary ∂Ω defined
by the support of a Borel probability measure µ satisfying Theorem 2.1.2 and (2.4), (2.5)
and (2.6) with uniform geometrical constants as ǫ, s, d, n, cs, cd, c1, c2, is closed and
compact corresponding the usual three types of convergence: the Hausdorff, in the sense of
compacts and characteristic functions. We also provide for this class of shape admissible
domains (which is a subset of Sobolev admissible domains) the Mosco convergence of the

3F. Magoulès, P.T.K. Ngyuen, P. Omnes, A. Rozanova-Pierrat, Fractal boundaries in acoustic energy

wave absorption, in preparation.
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weak formulations for the Helmholtz problem (3.23). Moreover, since the minimization
problem is understood in the sense of each time changing boundary measure, defining
the absorbing part of the boundary denoted by Γ, the weak∗ limit measure µ∗, defining
the optimal shape, provides all time the minimum of the considered shape minimization
problem. Hence, this result could be viewed as a kind of relaxation of the optimization
on (3.25).

Another problem of optimal perforated dissipative acoustic walls4, which can be formulated
in the framework of the parametric or topological optimization. The holes in the non-
absorbent material allow the wave to interact with the absorbent one. Therefore, let χ : Γ →
{0; 1} be the density of absorbent materials (actually, χ(x) is the characteristic function,
which is equal to 1, if there is an absorption on x ∈ Γ, or is equal to 0, otherwise). In this
case our previous model (3.23) is considered with the following boundary condition on Γ:

∂u

∂n
+ αχu = 0 on Γ; (3.30)

The parameter to be optimized is χ. For solutions u(χ) of (3.23) with the boundary
condition (3.30), we still want to minimize the energy functional (3.26), which this time is
a function of χ with a constant Ω and Γ satisfying Theorem 2.1.2 on

Uad = {χ ∈ L∞(Γ) : ∀x ∈ Γ, χ(x) ∈ {0; 1},
∫

Γ
χdµ = β},

where β corresponds to the volume of absorbent materials. We only consider cases where
0 < β ≤ µ(Γ). Indeed, the opposite case gives a solution where the wall is entirely made
of absorbent. Knowing that the set of characteristic functions is not closed for the weak∗

convergence in L∞, we use the relaxation method [9] consisting to take [83] the convex
closure of Uad for the weak∗-topology on L∞

U∗
ad = {χ ∈ L∞(Γ) : ∀x ∈ Γ, χ(x) ∈ [0, 1],

∫

Γ
χdµ = β},

which ensures Uad ⊂ U∗
ad and

inf
χ∈Uad

J (χ) = min
χ∈U∗

ad

J ∗(χ)

with J ∗ an extension of J on U∗
ad. Thus the relaxed optimization problem is

to find χ∗ ∈ U∗
ad : J ∗(χ∗) = min

χ∈U∗
ad

J ∗(χ).

We prove the existence of an optimal χ∗ and use the numerical algorithm given in [9] to
simulate it numerically. Going back to our discussion about the geometrical size of wall’s
fragments to compare to the half wavelength of the wave, the found numerical size of
absorbing holes is also equal to λ/2 as we can see from Fig. 3.13. To finalize the theoretical
part of subject for the topological approach, we are developing the results of [165] to the
Helmholtz equation.

4M. Boschat, F. Magoulès, E. Savin, A. Rozanova-Pierrat, Parametric and topological shape optimization

in linear acoustics, in preparation.
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(a) ω = 18400rad.s−1
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(b) ω = 10200rad.s−1
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(c) ω = 2700rad.s−1

Figure 3.13 – The volume of absorbent is of 50%. The width of the peaks is close to λ/2.

3.4.2 Existence results for other optimal shape problems: in the non-
linear acoustics for the Westervelt equation and the architecture

for the linear elasticity system

Thanks to the results of [ARP-1] we can apply this method of the proof for other situa-
tions as the shape optimization for the Westervelt equation posed with homogeneous Robin
boundary condition5 with the help of results on the Mosco convergence from [PrepWest-
Mixed] or to give the existence of the optimal shape for the architecture problem [New-
Prep2] posed and then solved numerically in [45]. In two situations, we use the close and
compact properties of Uad given in (3.25) and the existence of an equivalent measure µ∗ on
the changing part of the boundary.

For instance, it is impossible to obtain the Mosco convergence of the weak formulations
of the Westervelt equation on a pre-fractal domain sequence to the same kind of weak
formulation on a domain with a fractal boundary if on all boundary (fractal and prefractal)
are only imposed the homogeneous Robin type boundary conditions without any Dirichlet
homogeneous part. It is due to the facts that am = a

λ(∂Ωm)
in the Robin boundary conditions

∂um

∂n
+amum|∂Ωm = 0 with λ(∂Ωm) → +∞ while estimate (2.16) thanks to [44] holds with a

constant proportional to max
(

1, 1
am

)

. Hence, in this case it does not possible to prove the
a uniform boundness of the sequence of pre-fractal solutions. But if we stay in the closed
class of shape admissible domains (3.25), taking only ∂um

∂n
+ aum|∂Ωm = 0 as the boundary

condition with a positive constant a > 0 for all m ∈ N∗, we obtain the existence of an
optimal shape which minimizes or gives the infinum of ‖u‖H1([0,+∞[,H1(Ω) on Uad, defined
in (3.25), with Γ = ∂Ω and ΓD = ΓN = ∅ in the sense of an equivalent measure µ∗ ≤ λ of
∂Ω. To obtain the result we just need to add that ‖ Tr um‖2

L2(∂Ωm,λ) → ‖ Tr u‖2
L2(∂Ω,µ∗) and

‖ Tr ∂tum‖2
L2(∂Ωm,λ) → ‖ Tr ∂tu‖2

L2(∂Ω,µ∗) for m → +∞ following the same proof as in [30].

Therefore, it is also possible to show the optimal shape existence for the Westervelt equation
and of the linear elasticity system [45] in the uniform class of (ǫ,∞)-domains.

The shape derivative for the Westervelt shape optimization problem was found in [111] for
regular domains.

5A. Dekkers, A. Rozanova-Pierrat Optimal absorption of ultrasound waves by a partial reflective bound-

ary, in preparation.
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