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Preface

This manuscript has been prepared with the aim of obtaining the degree of "Habilitation à Diriger des Recherches" (Authorization to Supervise Research) or "HDR". The HDR sanctions recognition of a candidate's high scientific level, the original nature of their approach in a field of science, their ability to master a research strategy in a su iciently broad scientific or technological field and their ability to supervise young researchers. 1As such, this manuscript is divided into two parts. The first part is a detailed summary of my research activities since my Ph.D thesis, with many references to the various publications which resulted from these works. As a large proportion of my activity has also been dedicated to so ware development and maintenance for the INDRA and FAZIA collaborations, there is also a short chapter on this work, not documented elsewhere.

The second part concerns two new as-yet unpublished studies which I have conducted over the last two years. The first, currently being prepared for publication by the INDRA collaboration, concerns a new method for the quantitative determination of impact parameter distributions for any experimental selection of data in the Fermi energy range. The second, more recent, and more exploratory work, presents an entirely new method for carefully selecting the most isotropic events produced by collisions, allowing at last for a correct study of the dependence of nuclear transparency with bombarding energy. Those who came before me Lived through their vocations From the past until completion They'll turn away no more [START_REF] Order | Blue Monday[END_REF] Chapter 1

John

Introduction

My research activities are concerned with the dynamics and thermodynamics of nuclear ma er. Nuclear ma er is a theoretical idealization of the same quantum fluid which can be found microscopically at the heart of all atomic nuclei or macroscopically in the collapsing core of massive stars called supernovae, in the structure (or even in the collisions) of neutron stars [START_REF] La | Nuclear ma er and its role in supernovae, neutron stars and compact object binary mergers[END_REF][START_REF] Raduta | Clusterized nuclear ma er in the (proto-)neutron star crust and the symmetry energy[END_REF][START_REF] Margueron | Equation of state for dense nucleonic ma er from metamodeling. II. Predictions for neutron star properties[END_REF]. On Earth the study of nuclear ma er in extreme conditions of density, temperature or neutron-proton ratio is possible only through collisions between heavy ions (atomic nuclei) at bombarding energies from the Coulomb barrier (a few MeV per nucleon) up to a few 100s of MeV per nucleon. In the course of these reactions the nuclear "liquid drops" which are the projectile and target collide, deform, heat and disintegrate in many di erent ways depending on their mass and charge, the bombarding energy and the impact parameter of each collision. The experimental challenge of these studies lies in the exploitation of complex multi-detector systems capable of reconstructing each collision from the multi-parametric data on the dozens of nuclei which can be produced in each event.

A er my Ph.D at IPN Orsay1 supervised by Bernard Borderie and a short post-doctoral sojourn at IPN Lyon 2 , I was recruited by the CNRS in 1999 and posted to GANIL 3 in October of that year as a "Chargé de recherches". Ever since my Ph.D most of my research activity has taken place within the INDRA collaboration which unites the main laboratories responsible for building and running the detector 4 . My principal areas of research are the dynamics of heavy-ion collisions in the nucleonic regime and thermodynamic properties of nuclear ma er. These two lines of research are complementary: the dynamics of the collisions allows to explore thermodynamic aspects such as the equation of state or phase transitions. Most of my work has concentrated on the study of nuclear multifragmentation and the characterization of this process as a manifestation of a phase transition of nuclear ma er in a finite system. All of this work features in a review article of the state of the art of the subject which I recently co-authored with Bernard Borderie [START_REF] Borderie | Liquid-Gas phase transition in nuclei[END_REF]. In parallel I have also led studies on reaction mechanisms at lower energies, below the multifragmentation threshold, for example by trying to establish upper limits to the fusion between heavy nuclei and studying their decay by sequential fission [6,[START_REF] Gruyer | Coulomb chronometry to probe the decay mechanism of hot nuclei[END_REF][START_REF] Frankland | Reaction mechanisms leading to 3body exit channels in central collisions of 129 Xe+ nat Sn at 12 MeV/u[END_REF].

To be er understand heavy-ion reactions in this energy range, I have carried out many comparisons of data with di erent dynamical models of nuclear collisions, or with statistical models concerning the more thermodynamic aspects, in collaboration with many theorists of the field in France and across the world. I have also participated in the organization of many workshops and international conferences, most notably IWM (International Workshop on Multifragmentation, to use the original -and less complicated -title) organized by the INDRA and CHIMERA collaborations conjointly in Catania or Caen, and of which I was part of the Scientific Commi ee in 2007*, 2009, 2011* and 2018 (*and local organizer at GANIL).

Throughout my career at GANIL I have supervised students from the University of Caen (now part of Normandy University), ENSICAEN (the Engineering School -considered to be a "cut above" the University in the French educational system) or elsewhere, either during internships as part of the first or second year of their Master's degree, or by co-supervising Ph.D and postdoctoral students. The last Ph.D I co-supervised, Diego Gruyer, was recruited by the CNRS in 2018 and is now working at LPC Caen. My current Ph.D student, Julien Lemarié, is working on the analysis of the first INDRA-FAZIA experiment, in which he participated during his 2 nd year Master's internship in 2019.

I have dedicated most of the last twenty years to obtaining and analysing the best data possible on heavy-ion collisions (HIC) in the GANIL bombarding energy range (from ∼ 5 to 95 MeV/u) with the charged particle multidetector INDRA [START_REF] Pouthas | INDRA, a 4π charged product detection array at GANIL[END_REF][START_REF] Pouthas | The electronics of the INDRA 4π detection array[END_REF]. This work concerns not only the physics analysis which I will present in the following, but also the maintenance and development of the so ware used to pilot and monitor the detector as well as for data acquisition, which I took charge of on taking up my position at GANIL. Due to this commitment, besides the experiments directly connected to my research programme, I have also taken an important part in many experiments using or all or a part of INDRA, for example, to study giant resonances [START_REF] Fallot | Evidence for a three-phonon giant resonance state in Ca40 nuclei[END_REF] or the limits of existence of super-heavy elements [START_REF] Morjean | Fission time measurements: A new probe into superheavy element stability[END_REF]. I have also participated in many other experiments either at GANIL using di erent instruments (ORION, VAMOS, SPEG), or outside GANIL, for example at GSI Darmstadt (INDRA, ALADIN) or at LNS Catania (CHIMERA, FAZIA).

In the early 2000s I also managed to convince the whole INDRA collaboration to undergo a paradigm shi concerning the so ware environment for data analysis, which up till then had been based on the Fortran computer language. Thus began the development of a new analysis environment based on the ROOT framework [START_REF] Brun | ROOT: An object oriented data analysis framework[END_REF][START_REF]ROOT Data Analysis Framework[END_REF] wri en in C++: KaliVeda [START_REF]KaliVeda Heavy-Ion Analysis Toolkit[END_REF]. Since 2005, I, along with several collaborators, have ensured the evolution of this environment in order to integrate new data with new challenges such as the coupling of INDRA & VAMOS in 2007, experiments with FAZIA since 2014 (see below), and most recently of all the data from the INDRA-FAZIA array. The expertise I gained in this adventure was put to another use, in collaboration with Daniel Cussol (LPC Caen), creating and supervising a ROOT/C++ training course for French-speaking nuclear physicists. Between 2003 and 2014, we trained (converted) a whole generation (or even several) of nuclear physicists (and more) at GANIL, at LPC, at LPNHE (Paris), at the CEA centres of Saclay, Bruyères-Le-Châtel, or Cadarache, at INSTN (Saclay), at IRMM Geel (Belgium), ... Since 2011 I have been involved in the development of a new multidetector, FAZIA [START_REF] Bougault | The FAZIA project in Europe: R&D phase[END_REF][START_REF] Valdré | The FAZIA setup: A review on the electronics and the mechanical mounting[END_REF], in the framework of a European collaboration, in order to improve experimental data on heavy-ion collisions thanks to a simultaneous identification of the Z and A of all reaction products up to Z ∼ 25 over a wide angular range. Between 2014 and 2018 there were many experiments at LNS Catania, first for commissioning the first prototype FAZIA blocks and the associated control systems for piloting and monitoring the detectors, and online analysis (which we developed in collaboration with Eric Bonnet and Diego Gruyer), and then for the first physics experiments using FAZIA [START_REF] Piantelli | Dynamical fission of the quasiprojectile and isospin equilibration for the system Kr 80 + Ca 48 at 35 MeV/nucleon[END_REF]. In 2019 the first experiment coupling INDRA and FAZIA took place at GANIL, opening a new era in the study of hot, dilute, nuclear ma er with a strong neutron-proton asymmetry. Currently we are involved in a project to replace the existing 30-year old VXI/CAMAC electronics and acquisition system of INDRA with a new, far more compact and lightweight, digital electronics system. Although the old warhorse has served us well and far beyond its expected lifespan, the last available spare modules (liberated by the detectors removed for the INDRA-FAZIA coupling) have all been used up and it is time to move on if INDRA is to survive another 10 (or more) years.

In the following I present a detailed summary of my research activities, concerning the studies I was most personally involved in, on multifragmentation, the nuclear ma er equation of state and associated phase transitions, and reaction mechanisms at lower energies.

Chapter 2

Multifragmentation, Equation of State (EoS) and Phase Transitions of Nuclear Ma er

Introduction

Nuclear ma er is an idealized macroscopic system composed of neutrons and protons interacting solely via short range nuclear forces with a spatially uniform density ρ. The nucleon-nucleon interaction is comprised of two components according to their radial inter-distance: a very shortrange repulsive part which takes into account the incompressibility of the medium and a longer range a ractive part. Apart from the five orders of magnitude di erence in energy and distance scales, the nuclear interaction is very similar to van der Waals' forces acting in everyday fluids, and indeed calculations using realistic e ective nuclear interactions [START_REF] Sauer | Thermal properties of nuclei[END_REF][START_REF] Bertsch | Nuclear fragmentation[END_REF] predict an analogy of the liquid-gas phase transition between normal-and low-density nuclear ma er ("normal" density is the saturation density, ρ 0 , which is currently estimated as 0.155 ± 0.005 nucleons fm -3 [START_REF] Margueron | Equation of state for dense nucleonic ma er from metamodeling. I. Foundational aspects[END_REF]). As many recent works on the composition of low-density nuclear (stellar) ma er have shown [START_REF] Typel | Composition and thermodynamics of nuclear ma er with light clusters[END_REF][START_REF] Röpke | Nuclear ma er equation of state including two-, three-, and four-nucleon correlations[END_REF][START_REF] Pais | Full distribution of clusters with universal couplings and in-medium e ects[END_REF], the "gas" phase is predicted to be composed not only of nucleons but also of a wide range of nuclear clusters (including but far from limited to 4 He). In some sense, strictly speaking, one should speak of a liquid-vapour phase transition for nuclear ma er; in any case, the predicted phase transition is expected to be first order, i.e. proceeding through phase coexistence.

A schematic illustration of the phase diagram of dense ma er is shown in Figure 2.1.1: the rather small portion of this diagram concerning nuclei, nuclear ma er and the liquid-gas phase transition is limited to temperatures up to T ∼ 25 MeV, and densities ρ not exceeding ∼ 2ρ 0 and mostly exploring sub-saturation densities, where the expected phase coexistence region is situated. The coexistence zone terminates at a critical point, indicated by a black star in the figure, which is predicted by di erent models to be situated somewhere around ρ ∼ 0.4ρ 0 , T ∼ 16 MeV.

The inset of Figure 2.1.1 show a typical prediction of an equation of state (EoS) for nuclear ma er, which in this case is represented by isotherms in the pressure-density plane. All such predicted EoS for nuclear ma er with a coexistence region also predict a region of mechanical instability in the phase diagram inside the coexistence region where ∂p/∂ρ < 0 (shown by the [START_REF] Mcintosh | Interplay of neutron-proton equilibration and nuclear dynamics[END_REF]. (inset): Typical equation of state for symmetric nuclear ma er (isotherms in pressure-density plane) [START_REF] Chomaz | Nuclear spinodal fragmentation[END_REF]. The spinodal boundary (dashed) and the coexistence curve (solid) are indicated.

dashed lines in the inset of Figure 2.1.1). This is called the spinodal region, and the instability is known as spinodal instability. True first-order phase transitions are slow processes which require the establishment of an equilibrium across a phase boundary; Bertsch and Siemens [START_REF] Bertsch | Nuclear fragmentation[END_REF] were the first to propose that the phase transition may manifest itself in collisions between finite nuclei through the exponentially rapid growth of density fluctuations due to spinodal instability, leading to the production of multiple fragments [START_REF] Chomaz | Nuclear spinodal fragmentation[END_REF]: multifragmentation.

The experimental study of such reactions which occur in heavy-ion collisions (HIC) at 20 -150A MeV requires powerful multi-detector arrays with high granularity and 4π angular coverage capable of impact parameter estimation and event sorting. Whether this sorting is based on the multiplicity or (transverse) energy of reaction products, the charge, mass or velocity of the largest product of each event, the event 'shape' (in momentum space), etc., whatever observable(s) is(are) used need(s) to be measured by the array with as li le bias as possible for the widest possible range of impact parameters. The DAQ dead-time must be kept low and the triggering system also has to bias as li le as possible the sample of collisions recorded during the experiment.

Among the first generation of devices with these capabilities were the MSU 4π [START_REF] Westfall | A logarithmic detection system suitable for a 4π array[END_REF] and Miniball [START_REF] De Souza | The MSU Miniball 4π fragment detection array[END_REF] arrays, and the combined Mur/Tonneau/DELF/XYZT arrays (commonly known as NAUTILUS) [START_REF] Bizard | A plastic multidetector for light nuclei identification at GANIL[END_REF][START_REF] Bougault | DELF, a large solid angle detection system for heavy fragments[END_REF] at GANIL, and indeed most of the pioneering works on impact parameter filtering in this energy range were made using these devices in the early 1990s [START_REF] Péter | Global variables and impact parameter determination in nucleusnucleus collisions below 100 MeV/u[END_REF][START_REF] Phair | Impact-parameter filters for 36Ar+197Au collisions at[END_REF][START_REF] Phair | Azimuthal correlations as a test for centrality in heavy-ion collisions[END_REF].

INDRA [START_REF] Pouthas | INDRA, a 4π charged product detection array at GANIL[END_REF][START_REF] Pouthas | The electronics of the INDRA 4π detection array[END_REF] is one of a second generation of 4π multidetector arrays, in continued use for the study of HIC at GANIL in Caen (and briefly at GSI, Darmstadt) since 1993. Its 336 multi-layer detection modules covering 90% of the solid angle around the target, low detection and identification thresholds, and minimum-bias trigger logic based on the number of fired modules make it ideally suited for studies of multifragmentation in the Fermi energy range and beyond. What follows is a presentation of my small contributions to the advances made in the understanding of nuclear multifragmentation and its link to the nuclear liquid-gas phase transition by the INDRA collaboration over the last 25 years. For a much wider review of the subject, including of course many important results from di erent groups and collaborations throughout the world, see the recent review article by Borderie and Frankland [START_REF] Borderie | Liquid-Gas phase transition in nuclei[END_REF].

Multifragmentation and spinodal instabilities

My Ph.D. thesis [START_REF] Frankland | Study of very heavy systems observed with INDRA: first evidence for a bulk e ect in the nuclear multifragmentation process[END_REF] concerned a detailed study of multifragmentation reactions for the very heavy system 155 Gd+ 238 U at 36A MeV, one of the reactions measured during the first INDRA campaign in 1993. The goal was to link multifragmentation to the nuclear liquid-gas phase transition by demonstrating that the spinodal instability mechanism proposed in [START_REF] Bertsch | Nuclear fragmentation[END_REF] was indeed a plausible origin for the break up of the system into many di erent fragments, using the recentlydeveloped Stochastic Mean Field approaches pioneered by, among others, Jørgen Randrup, Phil-ippe Chomaz and Maria Colonna [START_REF] Chomaz | Nuclear spinodal fragmentation[END_REF].

Selection of "single source" or quasi-fused (QF) events

First of all this required to isolate a sample of events as compatible as possible with the multifragmentation of a single source formed in central collisions from the majority of the projectile and target nucleons. The reliability of the event selection for heavy-ion collisions is a sine qua non for the quality of the subsequent analyses, especially regarding thermodynamic aspects. In order to find the most appropriate method, several di erent approaches were considered based on estimating either the collision centrality or the isotropy of the fragment momentum distributions event by event [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (I): Selection of single-source events[END_REF].

Selections based on the "centrality" of the collisions are not well adapted in this context, as, due to the large fluctuations occurring in collisions at Fermi energies, many di erent outcomes may coexist in the same range of impact parameter, and the "single source" events are expected to form a subset over a large range of impact parameters among the "most central" collisions. It is only very recently that it has become possible to quantify such e ects and reconstruct the impact parameter distributions from experimental data without reference to a model of collisions: see Part II, Chapter 6. This recent work demonstrates even more clearly than before the impossibility of a meaningful event-by-event selection based on the impact parameter for central collisions.

Another expected characteristic of the "single-source" events is a high degree of isotropy of the fragments' momentum distributions in the centre of mass frame. Unfortunately, the low multiplicity of intermediate mass fragments produced in the reactions, which for reasons of mass and charge conservation is typically less than 15, makes the event by event determination of the isotropy extremely unreliable [START_REF] Danielewicz | Jacobian free global event analysis[END_REF][START_REF] Bondorf | Finiteness e ects in the analysis of multifragmentation events in the sphericity-coplanarity plane[END_REF] (see Part II, 7.1.1). The response of global variables used to measure this isotropy is skewed by the low multiplicity, mean values for highly isotropic events resemble those of far less isotropic events, and fluctuations from one event to the next are very large [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (I): Selection of single-source events[END_REF].

On the other hand, the symmetric tensor

S αβ = M f ∑ i=1 ω i p α (i)p β (i) (2.2.1)
built from the c.m. momentum components of the M f fragments in each event can be used to represent the event in momentum or kinetic energy space (depending on the chosen weight ω i ) as an ellipsoid defined by the three eigenvectors and eigenvalues of the tensor [START_REF] Gyulassy | Do nuclei flow at high energies?[END_REF][START_REF] Cugnon | Global variables and the dynamics of relativistic nucleus-nucleus collisions[END_REF]. This ellipsoid (or any other shape variable) is only representative of the real event shape if all or at least most of the (charged) reaction products of each event are detected, reconstructed and identified: this is why a prerequisite for such analyses is the selection of "complete" or "well-detected" events by cuts on the total reconstructed charge

Z tot = N C ∑ i=1 Z i (2.2.2)
and/or the total reconstructed momentum, which, as fragment masses are not identified by IN- DRA, is o en approximated by the total pseudo-momentum,

ZV tot = N C ∑ i=1 Z i v i,
where the sums run over the total number of reconstructed charged products, N C , and Z i and v i, are respectively the atomic number and the longitudinal velocity (parallel to the beam direction) of the i th nucleus of the event.

Although the "shape" variables derived from the eigenvalues su er from the same Jacobian e ects due to low multiplicity as any other, there is another information to be derived from this tensor which is independent of such e ects. The eigenvector with the largest eigenvalue gives the direction of the largest flow of momentum or kinetic energy in the event, indicated by the polar angle θ f it makes with the beam direction. Small flow angles then represent collisions with li le change of the nucleon momentum distributions compared to the entrance channel, while larger and larger θ f represent increasing violent and dissipative reactions. If fragments are produced by a single source in the centre of mass frame this angle should be isotropically distributed, even if the number of fragments is small: in this case θ f is mostly determined by random fluctuations. Hence single source events, if present in the data, should be best isolated by a cut on θ f corresponding to the value above which the distribution becomes approximately isotropic.

Selection of very heavy, compact, multifragmenting systems using the flow angle was first achieved by the Nautilus collaboration, but with a slightly di erent justification: Lecolley et al. [START_REF] Lecolley | Reaction mechanism in highly fragmented Pb + Au collisions at 29 MeV/u[END_REF] related the θ f angle to the orbiting time of the dinuclear system undergoing a deep-inelastic collision à la Wilczynski [START_REF] Wilczyński | Nuclear molecules and nuclear friction[END_REF], with the largest angles supposed to correspond to infinite times, i.e. fusion. Although the validity of such reaction mechanisms to describe collisions at Fermi energies and above is far from certain, both interpretations lead to the same selection method. Figure 2.2.1(le ) shows a pseudo-Wilczynski diagram (kinetic energy versus orbiting angle) constructed for well-measured (charge completeness criterion) 155 Gd+ 238 U collisions at 36A MeV, where the total centre of mass kinetic energy of all detected reaction products is plo ed as a function of the flow angle calculated from the fragment (Z ≥ 5) momentum tensor. It can be seen that most of the dissipation (decrease of total kinetic energy) takes place for forward-peaked events, θ f ≈ 10 o , in zones 1 and 2 of this diagram, which the corresponding Z-V diagrams in Figure 2.2.1(right) show are the result of predominantly binary collisions with recognisable projectile-and target-like fragments and decay products. The remaining evolution towards the most compact events in the last zone (here for θ f > 70 o ) takes place with hardly any further change in the degree of dissipation.

The flow angle selection for compact multifragmenting systems was first applied by the IN-DRA collaboration in [START_REF] Marie | A hot expanding source in 50 A MeV Xe + Sn central reactions[END_REF] for collisions of 129 Xe+ nat Sn at 50A MeV. Then it was used in my Ph.D thesis as well as the accompanying and subsequent papers [START_REF] Rivet | Independence of fragment charge distributions of the size of heavy multifragmenting sources[END_REF][START_REF] Frankland | Multifragmentation of a very heavy nuclear system (I): Selection of single-source events[END_REF][START_REF] Frankland | Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition[END_REF][START_REF] Tabacaru | Multifragmentation of very heavy nuclear systems (III): Fragment velocity correlations and event topology at freeze-out[END_REF] in order to select homogeneous samples of quasi-isotropic events for 155 Gd+ 238 U collisions at 36A MeV and 129 Xe+ nat Sn collisions at 32A MeV. Such events, originally termed "single source" events are nowadays more commonly referred to as events with quasi-fused or QF sources [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF]. It is to event samples selected in this way (especially for 129 Xe+ nat Sn collisions) that the analyses of the collaboration demonstrating the occurrence of several of the expected signals of a first-order phase transition in a finite system were performed: spinodal decomposition [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition[END_REF][START_REF] Tabacaru | Multifragmentation of very heavy nuclear systems (III): Fragment velocity correlations and event topology at freeze-out[END_REF][START_REF] Borderie | Phase transition dynamics for hot nuclei[END_REF] (see below), negative heat capacity [START_REF] Agostino | On the reliability of negative heat capacity measurements[END_REF][START_REF] Le Neindre | Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei[END_REF][START_REF] Borderie | Negative heat capacity for hot nuclei using formulation from the microcanonical ensemble[END_REF], and back-bending constrained caloric curves [START_REF] Borderie | Constrained caloric curves and phase transition for hot nuclei[END_REF]. The selection method was later validated a posteriori, at least for the 129 Xe+ nat Sn reactions, by Stochastic Mean Field (SMF) transport model calculations, published in Bonnet et al. [START_REF] Bonnet | Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies[END_REF]. I will try to shed some new light on the question of selecting homogeneous event samples corresponding to highly compact multifragmenting systems, and the significance of the large-θ f events, in Part II, Chapter 7.

Spinodal decomposition & stochastic mean field calculations

The first evidence for a bulk e ect, i.e. linking multifragmentation to bulk nuclear ma er properties came from the comparison of the QF events for the two reactions 155 Gd+ 238 U at 36A MeV and 129 Xe+ nat Sn at 32A MeV, both of which lead to very similar available energies in the centre of mass frame, E CM =8 ∼ 8.5A MeV [START_REF] Rivet | Independence of fragment charge distributions of the size of heavy multifragmenting sources[END_REF]. Although the 155 Gd+ 238 U system contains ∼ 50% more protons than 129 Xe+ nat Sn, the fragment atomic number distributions P(Z) (shown in Figure 2.2.2) for the two systems are nearly identical (note that here "fragments" are defined as products with Z ≥ 5). The di erence in size of the two systems can be found in the mean multiplicity of fragments produced in each case, which increases exactly in the same ratio as the total charge of projectile and target: M Gd+U f / M Xe+Sn f = 6.3/4.3 ≈ 1.5. Therefore we have here two nuclear systems prepared in similar conditions (similar excitation energy, similar temperature) which break up in the same way independently of their size; only the number of fragments produced depends on the amount of (nuclear) ma er to be partitioned. This behaviour is predicted by the hypothesis of multifragmentation due to spinodal instabil- ities. The dispersion relation for density fluctuations in unstable nuclear ma er show that in case of spinodal instability there is always a "mode" of instability which develops faster than all others, and this mode is associated with a given wavelength [START_REF] Colonna | Study of multifragmentation pa erns induced by spinodal instabilities[END_REF][START_REF] Jacquot | RPA instabilities in finite nuclei at low density[END_REF]. As the fragments form from the density fluctuations, they therefore have similar sizes/atomic numbers determined by this favoured wavelength, which at the typical temperatures reached in Fermi energy reactions (T ∼ 4 -5 MeV) corresponds to atomic numbers Z ∼ 10. This prediction was the origin of a empts to demonstrate the presence of favoured partitions in multifragmentation initiated (unsuccessfully) by More o [START_REF] More O | Charge correlations and dynamical instabilities in the multifragment emission process[END_REF], and finally achieved thanks to the very high statistics of the 5th INDRA campaign data [START_REF] Borderie | Phase transition dynamics for hot nuclei[END_REF]. The next step was to perform a full dynamical simulation of the reactions using the (at the time) recently-developed stochastic mean field approaches [START_REF] Chomaz | Brownian One-Body Dynamics in Nuclei[END_REF]. Such approaches, based on the nuclear Boltzmann-Langevin equation [START_REF] Ayik | The Boltzmann-Langevin model for nuclear collisions[END_REF], restore the fluctuations around the mean one-body evolution which are averaged out in approaches based on the nuclear Boltzmann equation [START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF] and so in case of the onset of instabilities in the reaction dynamics such an approach allows to explore the ensemble of possible exit channels e.g. in which the system undergoes multifragmentation (see Appendix A, A.1.3).

We used the BOB (Brownian One-Body dynamics model [START_REF] Chomaz | Brownian One-Body Dynamics in Nuclei[END_REF][START_REF] Guarnera | Multifragmentation with Brownian one-body dynamics[END_REF]; see Appendix A, A.1.3.1) approximation to the full stochastic mean field dynamics for the simulation. In this model fluctuations are introduced via a stochastic force whose strength is tuned to correctly describe the growth rate of the most unstable modes in nuclear ma er at a given temperature and density inside the spinodal region [START_REF] Jacquot | RPA instabilities in finite nuclei at low density[END_REF][START_REF] Colonna | Study of multifragmentation pa erns induced by spinodal instabilities[END_REF]. As it was not possible to adjust the force during the dynamical evolution according to local equilibrium conditions, an initial calculation of the "source" conditions was performed for an impact parameter b = 0 using a standard BNV transport model (Boltzmann-Nordheim-Vlasov [START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF]; see Appendix A, A.1.2) employing a Skyrme interaction with an incompressibility parameter K ∞ = 200 MeV (see Appendix A, A.1.4). The predictions of these calculations for both reactions is that, a er a gentle compression phase (ρ max ≈ 1.2ρ 0 ), an isotropically expanding system is formed which enters the region of spinodal instability a er 80 ∼ 100 fm/c at an average density ρ ≈ 0.4ρ 0 and a temperature T ≈ 4 MeV [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition[END_REF]. The total proton and neutron numbers, average density, temperature and expansion velocity of the "sources" calculated by BNV were then used as initial conditions for the BOB calculations with the appropriately-tuned stochastic force strength. Le ing each expanding system evolve under the action of the mean field plus fluctuations, fragments form from the amplification of the unstable modes in the spinodal region, as shown in Figure 2.2.3. The resulting fragments are wellseparated a er ≈ 240 fm/c and have an average excitation of ∼ 3.2A MeV. They were therefore used as input to an "a er-burner" code (SIMON, [START_REF] Durand | An event generator for the study of nuclear collisions in the Fermi energy domain (I). Formalism and first applications[END_REF]) capable of calculating their subsequent evaporative decay and Coulomb trajectories up to the detectors.

The results of the calculations [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition[END_REF] give an excellent reproduction of the experimental QF event characteristics such as the multiplicities and atomic number distributions of the fragments for the two systems, and therefore reproduce the initial experimental observation of the scaling of these observables with the system size (charge), confirming that such a bulk e ect is linked to the origin of the observed multifragmentation in the spinodal instability of low density nuclear ma er. This agreement extends to more detailed characteristics, such as the total charge bound in fragments, Z bound , or the event-by-event distributions of the Z-ranked fragments, shown in Figure 2.2.4 for the 129 Xe+ nat Sn data. The "shape" of the events in momentum space, i.e. their degree of isotropy was also well accounted for by the simulations. Later analyses of fragmentfragment velocity correlations [START_REF] Tabacaru | Multifragmentation of very heavy nuclear systems (III): Fragment velocity correlations and event topology at freeze-out[END_REF] showed an excellent agreement concerning the topology of the system at freeze-out.

One aspect of the data which was not well reproduced, however, are the mean kinetic energies of the fragments for the 129 Xe+ nat Sn system, which were underestimated by ≈ 20%. The 155 Gd+ 238 U system was not a ected by this problem, presumably due to the much larger Coulomb repulsion in this case. This underestimation is a well-known drawback of a empts to include fluctuations of the correct amplitude in semi-classical mean-field approaches. In later calculations using the SMF model (see Appendix A, A.1.3.1) to calculate the full reaction dynamics beginning from t = 0 and at di erent impact parameters, the lack of radial flow for 129 Xe+ nat Sn at 32A MeV was such that this system did not even multi-fragment, as an abortive spinodal decomposition re-collapses to a compound nuclear state [START_REF] Moisan | New isospin e ects in central heavy-ion collisions at Fermi energies[END_REF][START_REF] Bonnet | Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies[END_REF]. Only more recently, with the inclusion of fluctuations in the full phase space, has the BLOB (Boltzmann-Langevin One-Body) model [START_REF] Napolitani | Bifurcations in Boltzmann-Langevin one body dynamics for fermionic systems[END_REF] reproduced the onset of multifragmentation through spinodal decomposition for 129 Xe+ nat Sn below 32A MeV. This work was the first strong evidence that multifragmentation in central collisions is due to the onset of spinodal instability in finite systems composed of warm, dilute nuclear ma er, as predicted by finite-temperature mean-field approaches employing e ective nuclear interactions which lead to an Equation of State with a first-order liquid-gas phase transition at sub-saturation densities [START_REF] Sauer | Thermal properties of nuclei[END_REF][START_REF] Jaqaman | Nuclear condensation[END_REF][START_REF] Jaqaman | Liquid-gas phase transitions in finite nuclear matter[END_REF]. It provides a strong basis for the scenario of a compression-expansion cycle in central collisions which we will come back to later.

Let us mention in passing that calculations for the same two systems were made recently using the QMD model ( [START_REF] Aichelin | antum" molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions[END_REF]; see Appendix A, A.1.3.2) and compared to both the data and the BNV-BOB calculations [START_REF] Kumar | Using experimental data to test an n-body dynamical model coupled with an energy-based clusterization algorithm at low incident energies[END_REF]. The calculations, again performed for b = 0 collisions only, give a reasonable agreement with the fragment multiplicity and charge distributions, including the distributions of the first three Z-ranked fragments, although the Z bound distribution for 155 Gd+ 238 U is not well reproduced. Unfortunately the authors of [START_REF] Kumar | Using experimental data to test an n-body dynamical model coupled with an energy-based clusterization algorithm at low incident energies[END_REF] gave no information on the kinematic properties of the simulated fragments. The interesting point about these calculations is that the fragments were reconstructed only 60-90 fm/c a er the beginning of the reactions, when (accord- ing to BNV) the system is compressed and/or expanding towards the spinodal density. However, the reconstructed fragments are found to be in their ground states, which is probably an artefact of the fragment reconstruction algorithm, and do not therefore undergo any evaporative decay, on the contrary to the experimental results of [START_REF] Hudan | Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32A to 50A MeV[END_REF], presented in the next section.

Freeze-out properties and AMD calculations for 129 Xe+ nat Sn reactions

This study was part of the Ph.D. thesis of Sylvie Hudan [START_REF] Hudan | Experimental and theoretical study of the fragment production in the Xe+Sn collisions from 25 to 150 A.MeV[END_REF], whose first aim was to extend the systematic study of 129 Xe+ nat Sn reactions begun during the 1st INDRA campaign at GANIL up to 150A MeV using new data from the recently completed 4th campaign performed at the GSI laboratory. In addition, a detailed study of the multifragmentation reactions from 32 to 50A MeV was used to quantify the statistical decay of the primary fragments, allowing to reconstruct for the first time experimentally the charge and excitation energy of the fragments at freeze-out [START_REF] Hudan | Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32A to 50A MeV[END_REF].

It showed that the mean excitation energies of the primary fragments increases only slowly with the bombarding or available energy of the reactions, reaching an apparent maximum around 3A MeV.

This is an important result as di erent models can give very di erent predictions for the excitation energies of primary fragments, while being equally good at describing the same data such as charge distributions, mean energies, and angular distributions. In both antum Molecular Dynamics (QMD: Appendix A, A.1.3.2) or Microcanonical Metropolis Monte Carlo (MMMC: Section §A.2) calculations, the primary fragments are rather cold, i.e. they are almost una ected by subsequent secondary decays and arrive unchanged in the detectors. In the former case, the lack of excitation energy in the nascent fragments is determined by the collision dynamics, whereas in the la er case, it is an assumption of the model when calculating the statistical weights of the partitions. On the other hand, Antisymmetrized Molecular Dynamics (AMD: Appendix A, A.1.3.2) , as well as the stochastic mean field simulations presented in the previous section 2.2, both predict moderately "hot" primary fragments in reactions around the Fermi energy, with excitation energies 2 ∼ 3A MeV.

Experimental results for primary fragment excitation energies are compared to calculations made with the Statistical Multifragmentation Model (SMM: Section §A.2, A.2.1) in Figure 2.3.1. The SMM parameters (source charge, mass, excitation energy, freeze-out volume and radial flow) were fixed in order to well reproduce the experimental multiplicities, charge distributions and kinetic energies of fragments at each of the four bombarding energies from 32 to 50A MeV, with a fixed freeze-out volume equal to three times the volume of the source nucleus at normal nuclear density.

Over all, a satisfactory agreement is observed concerning the excitation energies of individual fragments (at least for Z pr ≤ 20). On the other hand, the average excitation energy of fragments in SMM calculations, although of the same order as the experimental values, is over-estimated and continues to increase with the incident energy. The saturation of primary fragment excitation energies was later confirmed using a di erent approach in the works of Piantelli et al [START_REF] Piantelli | Estimate of average freeze-out volume in multifragmentation events[END_REF][START_REF] Piantelli | Freeze-out properties of multifragmentation events[END_REF], where a vanishing level-density at high excitation energies of primary fragments was implemented following [START_REF] Koonin | Microcanonical simulation of nuclear disassembly[END_REF] by the introduction of a limiting temperature for the fragments; as a result, the temperatures associated to thermal motion of the fragments at freeze-out are no longer assumed to be the same as their intrinsic temperature (as in SMM), in agreement with the microcanonical treatment of [START_REF] Raduta | Break-up fragments excitation and the freeze-out volume[END_REF].

The Ph.D. work of Sylvie Hudan also included the first comparisons of INDRA data with calculations performed with the AMD transport model. As far as 129 Xe+ nat Sn collisions at 50A MeV are concerned, it was the first time that AMD was used for such a heavy system, and at relatively low bombarding energies. The reactions were simulated for central impact parameters (b < 4 fm) and, a er statistical decay using an a erburner and simulation of detection e ects, compared to data for the 10% most central collisions selected with the total transverse energy of light charged particles (see Part II, Chapter 6). Using the geometric prescription of [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] these collisions were estimated to correspond to impact parameters b < 0.3b max ; for 50A MeV collisions a value of b max = 9.8 fm was deduced from the measured reaction cross-section [START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF]. The time evolution of a typical collision is shown in Figure 2.3.3.

A very satisfactory agreement with the data concerning fragment multiplicities, Z distributions and kinetic energies was achieved [START_REF] Frankland | XLth Int. Wint. Meet. on Nuclear Physics[END_REF] at both energies, and especially at the lower energy of 50A MeV this was due to a significant improvement of the model made specifically in order to reproduce these data. The improvement concerns the treatment of the mean-field propagation of the wave packets used to represent each nucleon [START_REF] Ono | Compatibility of localized wave packets and unrestricted single particle dynamics for cluster formation in nuclear collisions[END_REF]. In previous versions of AMD (referred to as 'AMD/D' in Figure 2.3.2), wave packet di usion during the propagation was implemented as a stochastic branching process, which could not consistently reproduce the one-body dynamics as predicted by mean field models.

The new version (referred to as 'AMD/DS'), incorporating wave packet shrinking as well as di usion in order to have a coherent mean-field evolution, modified the dynamics so as to lower the expansion velocity of the fragmenting systems formed in central collisions, which is why the yields of the heavier fragments are much be er reproduced by AMD/DS than by AMD/D (see Figure 2.3.2). The resulting AMD is a transport model incorporating many-body correlations (essential to describe cluster/fragment formation) while respecting the correct mean-field dynamics, as shown by later comparisons with Stochastic Mean Field calculations [START_REF] Colonna | Fragmentation paths in dynamical models[END_REF]. The need for a correct treatment of the mean-field and one-body dynamics in order to reproduce the data at 50A MeV also underlines the fact that the nuclear mean field still plays an important role at these energies.

Multifragmentation and universal fluctuations

Identifying the nature of the phase transition

A new approach to the study of critical phenomena in finite systems was developed in the early 2000s by Marek Ploszajczak1 and Robert Botet2 : the theory of universal order parameter fluctuations [START_REF] Botet | Universal features of the order-parameter fluctuations : reversible and irreversible aggregation[END_REF]. Initially conceived in the framework of continuous phase transitions 3 , the theory describes the fluctuations of the order parameter in a finite system as

σ 2 m ∼ m 2∆ (2.4.1)
where the parameter ∆ can take values in the range 1 /2 ≤ ∆ ≤ 1, the two extremes being associated with sub-or supercritical behaviour, respectively. This relationship provides a valuable tool for multifragmentation data analysis when looking for evidence of an underlying phase transition: in order to identify critical behaviour and the associated order parameter, it is su icient to find an observable whose fluctuations change amplitude depending on an appropriate control parameter. Such behaviour was first demonstrated experimentally for the QF multifragmentation events from 129 Xe+ nat Sn reactions studied with INDRA, where, with m =Z max (the largest atomic number Z measured in each event), ∆ was shown to switch from 1 /2 to 1 between the bombarding energies of 32A MeV and 39A MeV (see Figure 2.4.1), whereas the fluctuations of the total multiplicity scale with ∆ = 1 /2 at all energies [START_REF] Botet | Universal fluctuations in heavy-ion collisions in the Fermi energy domain[END_REF]. This means that Z max , or the size (charge) of the largest fragment of each event, is closely related to the order parameter of a phase transition, whereas the number of fragments is not.

This result is far from trivial, as all generic models of critical clusterization phenomena can be classed into two groups, each with a characteristic order parameter: for fragmentation models (breaking a large cluster into smaller pieces) it is the number (multiplicity) of clusters, whereas for aggregation models (small clusters group together into larger ones) it is the size of the largest cluster.

Therefore just the simple observation that the reduced fluctuations σ 2 / Z max change scaling behaviour with increasing energy answers two of the oldest questions concerning multifragmentation. The first, asked ever since Finn et al. observed a power law mass distribution for fragments [START_REF] Finn | Nuclear Fragment Mass Yields from High-Energy Proton-Nucleus Interactions[END_REF], is: is multifragmentation linked to a phase transition? The definitive answer from the universal fluctuations analysis is yes, because we can identify an order parameter associated with multifragmentation which exhibits "critical" behaviour, Z max . The second comes from the title of a paper from 1984 by Jörg Aichelin and Joerg Huefner [START_REF] Aichelin | Fragmentation reactions on nuclei: Condensation of vapour or sha ering of glass?[END_REF]: condensation of vapour or shattering of glass? The identification of Z max as the order parameter of the transition clearly shows that we are dealing with a phenomenon much closer to the former than to the la er.

Form of the scaling function and pseudo-criticality

In reality, the scaling of an observable's fluctuations as in Equation (2.4.1) is not a su icient condition for it to be considered an order parameter: the observable's probability distributions P(m) must also collapse to a unique scaling function when expressed in terms of the scaling variable z

(∆) = (m -m )/ m ∆ , Φ(z (∆) ) = m ∆ P(m) (2.4.2)
as was indeed shown in [START_REF] Botet | Universal fluctuations in heavy-ion collisions in the Fermi energy domain[END_REF] for Z max . However the theory tells us next to nothing about the functional form of Φ(z (∆) ), except that close to a critical point the tail of the distribution for large z (∆) should fall o faster than exp -z 2 (∆) , which is never observed in data. In [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF] we extended the analysis to the full set of data for symmetric collisions studied up to that point with INDRA (from Ar+KCl to Au+Au). For nearly all data, at low energy when ∆ ∼ 1 /2 the scaling function is approximately Gaussian (but see 2.5.2 below). On the other hand, for all systems which exhibit the ∆ ∼ 1 scaling, the scaling function has a very particular form known from extremal statistics: to a good approximation it can be described by the Gumbel distribution [START_REF] Gumbel | Statistics of Extremes[END_REF] 

φ k (s k ) = k k (k -1)! 1 b M e -k(s k +e -s k ) (2.4.3) 
with s k = (Z ka M )/b M , which is one of the limiting forms for the probability distribution of the k-largest value Z k among a set of (uncorrelated) random variables. For k = 1 we have Z 1 ≡ Z max and the asymmetric distribution with an exponential tail seen in Figure 2.4.2 is given by

P(Z max ) ∼ exp -(Z max -e -Z max ) (2.4.4)
The Gumbel distribution is the equivalent, for extremal statistics, of the Gaussian distribution for the central limit theorem: the Gaussian is the asymptotic distribution of the sum of a set of (uncorrelated) random variables, whereas Gumbel is the asymptotic distribution of the extremum (maximum or minimum) of the set. Note that in both cases, the random variables are assumed to follow the same underlying probability law. It was noted in [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF] that the P(Z max ) data tend to resemble more and more the Gumbel distribution the higher the bombarding energy, but also the higher the considered system mass (or charge). For the heaviest system studied in [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF], the agreement can in fact be extended beyond Z max using Equation (2.4.3). Fig. 2.4.3 presents the distributions for the first three Zranked fragments, with Z 1 > Z 2 > Z 3 , produced in each central collision4 of 197 Au+ 197 Au at bombarding energies 40, 60, 80 and 100A MeV. It can be seen that each of these distributions is very well-fi ed by Equation (2.4.3) using the appropriate value of k=1, 2 or 3.

This was first time that the presence and importance of the Gumbel distribution, and therefore of extremal statistics, had been recognized in multifragmentation data. Asymptotically, the large-Z max tail of the Gumbel distribution is exponential, therefore in the universal fluctuations framework the observation of this form of P(Z max ) in the ∆ = 1 scaling regime means that although fluctuations become very large, systems never approach a critical point. This is consistent with [START_REF] Gulminelli | Critical Behavior in the Coexistence Region of Finite Systems[END_REF], where it was shown that a critical behaviour in fragment observables can be consistent with phase coexistence and the occurrence of a low freeze-out density due to finite size e ects. Indeed, for finite (small) systems it is su icient for fluctuations (or, equivalently, the correlation length) to be of the same order as the size of the system to mimic critical fluctuations on all length scales which would be induced by a divergence of the correlation length in an "infinite" system, i.e. in the thermodynamic limit. There is no contradiction between the scenario of nuclear fragmentation inside the coexistence or the spinodal region associated with a first order phase transition and the observation of various scaling laws and other pseudo-critical behaviour [START_REF] Le Neindre | Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei[END_REF]. For more on these aspects, see Sec. 6.2 of [START_REF] Borderie | Liquid-Gas phase transition in nuclei[END_REF].

An example of such pseudo-criticality can be derived from the Gumbel fits with Equation (2.4.3) shown in Figure 2.4.3. As mentioned above, the underlying statistical law governing the "random variables" Z is assumed to be the same, in which case the parameters b k of Equation (2.4.3) should be the same for all k (i.e. for fits to Z 1 , Z 2 and Z 3 ) at a given energy. This is approximately satisfied by the fits shown here, and the mean value of b = ∑ 3 k=1 b k /3 exhibits a bombarding energy E b dependence which is highly reminiscent of the behaviour of critical exponents near a critical point [START_REF] Gilkes | Determination of Critical Exponents from the Multifragmentation of Gold Nuclei[END_REF]

: b ∼ |E b -24.4| -ν
with ν = 0.5. Needless to say, there are currently no plans to search for evidence of this "critical" point for multifragmentation by performing 197 Au+ 197 Au collisions at 24.4A MeV.

Multifragmentation and radial flow

One of the most important contributions of the INDRA collaboration since 1993 has been to demonstrate, through many di erent works (some of which are presented here; for the rest, see [START_REF] Borderie | Liquid-Gas phase transition in nuclei[END_REF]), that the origin of multifragmentation lies in the clusterization of excited nuclear ma er at sub-saturation densities, as described in the Introduction of this chapter. In central heavy-ion collisions, such densities are reached through a compression-expansion cycle: during the approach and stopping phase of the collision, ma er is compressed and heated; a combination of Coulomb repulsion, thermal pressure and the incompressibility of nuclear ma er then provokes a "rebound" and the system begins to expand towards low densities, where fragments form through spinodal instability. This is the typical scenario long predicted by semi-classical mean field models such as [START_REF] Bauer | Fluctuations and clustering in heavy-ion collisions[END_REF][START_REF] Suraud | Explosions in Landau Vlasov dynamics[END_REF][START_REF] Colonna | Equilibrium features and dynamical instabilities in nuclear fragmentation[END_REF]. Traces of this expansion can be found in the kinetic energies of the fragments, which exceed the values expected solely from thermal and Coulomb contributions [START_REF] Barz | Flow e ects in intermediate-energy nuclear collisions[END_REF][START_REF] Bauer | Large radial flow in nucleus-nucleus collisions[END_REF][START_REF] Jeong | Collective motion in selected central collisions of Au on Au at 150 A MeV[END_REF][START_REF] Kunde | Fragment Flow and the Multifragmentation Phase Space[END_REF] which can be calculated using statistical multifragmentation models (see Section §A.2). For example, the Microcanonical Multifragmentation Model (MMM: see A.2.2) was successfully used to reproduce the data for the QF events of 129 Xe+ nat Sn 32A MeV and 155 Gd+ 238 U 36A MeV in [START_REF] Raduta | Searching for the statistically equilibrated systems formed in heavy ion collisions[END_REF], not only the fragment partition properties but also mean kinetic energies and fragment-fragment velocity correlations. The best agreement was achieved for freeze-out volumes V ≈ 8.5V 0 and a non-Hubbleian radial flow of ≈ 1.8A MeV for both systems. Nevertheless, without an independent experimental measurement of the freeze-out volume this method can only give a model- f rag , as a function of excitation energy per nucleon E * . Symbols as for le panel. From [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF]. dependent estimate of the expansion energy: the larger the assumed volume, the lower the interfragment repulsion due to Coulomb, and the larger our estimate of the radial flow energy.

During the Ph.D thesis of Diego Gruyer (2011[START_REF] Gruyer | Dynamic aspects of the nuclear decay : from the fission to the multifragmentation[END_REF], new evidence of the important role played by collective radial expansion in the multifragmentation of excited nuclear systems was brought to light in two original works presented in this section.

Multifragmentation for di erent entrance channel asymmetries

Estimates of radial expansion energy from experimental data on multifragmentation have mostly been obtained from comparisons of kinetic properties of fragments with statistical model calculations or any other method of reconstructing the system at freeze-out, which can provide an estimate of the part of the fragment kinetic energies which can be a ributed to thermal motion and Coulomb repulsion; any extra radial motion of the fragments can then be a ributed to expansion energy (for the best example of an application of this method, see [START_REF] Piantelli | Freeze-out properties of multifragmentation events[END_REF]).

Nevertheless any such reconstruction necessarily involves a large amount of hypotheses and resulting ambiguities, therefore a new method of estimating the expansion energy was developed by Eric Bonnet during his Ph.D (2003)(2004)(2005)(2006) which is far less model-dependent. Based on the Coulomb-corrected mean relative velocities between fragments in each event, it was used to measure and compare the radial flow for multifragmenting sources with the same excitation energies produced in di erent reactions [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF]. at 80A MeV and 100A MeV5 . The large di erences in E R which are observed beginning from E * =6A MeV demonstrate the importance of the compression-expansion cycle in the QF reactions, absent in the case of semi-peripheral collisions producing an excited QP fragment. For comparison, radial flow energies for hadron-induced multifragmentation reactions at similar excitation energies, measured by the ISIS collaboration [START_REF] Beaulieu | Thermal excitation-energy deposition in 5-15 GeV/c hadron-induced reactions with 197Au. II. Relation between excitation energy and reaction variables[END_REF], are also shown in the figure: in such a reaction (π -+ 197 Au) there can be no doubt that only thermal pressure and Coulomb repulsion contribute to the expansion. This shows that radial collective energy is essentially produced by thermal pressure in semi-peripheral heavy-ion collisions while for QF sources produced in central collisions the contribution from the compression-expansion cycle becomes more and more important as the incident energy increases.

For similar-sized systems produced by the two reaction mechanisms at the same E * , quantities such as the total charge bound in fragments (Z ≥ 5) normalized to the total charge of the source, the mean charge of the largest fragment Z max , or the normalized multiplicity of light charged particles are the same. However, thermal excitation energy alone does not determine the way in which nuclear systems undergo multifragmentation. f rag , is greater for QF multifragmentation than for QP sources, and in [START_REF] Bonnet | New Scalings in Nuclear Fragmentation[END_REF] it was shown that at a given total excitation energy per nucleon the amount of radial collective energy, E R , fixes M (N) f rag , which in turn fixes the properties of the fragment partitions, which are in general more symmetric in the presence of larger collective expansion.

We decided to put this new understanding of the link between radial flow and fragment partitions to the test with a new experiment. To make the simplest comparison possible between multifragmentation reactions induced with di erent amounts of radial flow, we decided to reproduce the 129 Xe+ nat Sn QF sources using a di erent entrance channel: 181 Ta+ 66 Zn. By using an asymmetric entrance channel, we can trigger multifragmentation in systems of the same size/charge, at the same excitation energy per nucleon, using the same reaction mechanism of central collisions, but with a smaller compression-expansion cycle as the reduced overlap volume for the asymmetric system limits the amount of stopping and hence the maximum densities achieved.

The bombarding energies used in the experiment, 31.8 and 39.4A MeV, were fixed to give the same available centre of mass energies as for the existing 129 Xe+ nat Sn data at 25 and 32A MeV, i.e. E cm ∼6A MeV and E cm ∼8A MeV respectively. A higher maximum energy would have been possible with a lighter projectile i.e. using direct kinematics; however in that case the reduced velocity of the centre of mass frame makes complete detection and identification of the reaction products less likely, as was already seen for the 58 Ni+ 197 Au system (which is indeed approximately an asymmetric version of 129 Xe+ nat Sn) measured during the 2nd INDRA campaign [START_REF] Bellaize | Multifragmentation process for di erent mass asymmetry in the entrance channel around the Fermi energy[END_REF]. The experiment, numbered E613, presented to the GANIL PAC in 2010, was accepted and scheduled for October 2011, which coincided perfectly with the beginning of Diego Gruyer's Ph.D thesis.

Figure 2.5.2 shows atomic number-longitudinal velocity correlations for the two reactions with the highest available energy in the centre of mass (E cm ∼8A MeV). In the top row, these correlations concern only the most well-detected ("complete") events (see Sec. 2.2.1). The bo om row presents the same correlations for QF events selected with a flow angle cut θ f > 70 o . The e ectiveness of the cut in isolating compact events is clear from the comparison between these figures, especially for the asymmetric 181 Ta+ 66 Zn system which shows a strong contribution from heavy quasi-projectile nuclei without the θ f cut. Another result can also be seen in the correlations for the QF events: the fragments for the asymmetric entrance channel have slightly larger Z than for 129 Xe+ nat Sn.

As shown in Figure 2.5.3(le ), this is not solely due to the largest fragment of each event: even when Z max is excluded, the distribution of all the remaining fragments still extends further in Z for the QF sources produced by the asymmetric 181 Ta+ 66 Zn reaction. The mean total charge bound in fragments is the same within 3% for each pair of reactions, therefore unsurprisingly the reason for the heavier fragments in the asymmetric reaction is the fragment multiplicity which is 20% larger on average for the symmetric 129 Xe+ nat Sn reaction at both energies.

The expected e ects on the fragment partitions are therefore observed, but are they due to a di erence of radial expansion energy? A first answer to this question can be obtained by looking at mean fragment kinetic energies in the centre of mass frame as a function of their atomic number (Fig. 2.5.3(right)). Sorting the mean energies according to Z means that at least to a first order approximation we can consider that the Coulomb contribution to E for each of the two reactions is the same (especially as the overall total charge is the same in both cases). As can be clearly seen, the mean kinetic energies of all fragments (again, excluding the largest fragment of each event) are significantly higher for the 129 Xe+ nat Sn data than for 181 Ta+ 66 Zn, although fragments in the 129 Xe+ nat Sn case are on average smaller in Z, as expected if collective flow is more important for the symmetric reaction. This is confirmed by the Coulomb-corrected mean relative velocity between fragments in In both cases, the largest Z fragment of each event is excluded. From [99].

each event, which is 23% higher for the 129 Xe+ nat Sn data at E cm ∼8A MeV (bombarding energy 32A MeV). Using the calibration curve given in Fig. 8 of [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF] we can estimate that there is a di erence of 1A MeV in the radial expansion energy E R produced in 129 Xe+ nat Sn central collisions at 32A MeV compared to 181 Ta+ 66 Zn reactions at 39.4A MeV. These results are therefore the strongest confirmation to date that for a given excitation energy per nucleon and source size it is the amount of radial flow which determines the fragment multiplicity and partition properties, as first proposed in [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF]. It should be recalled that in all statistical models of multifragmentation [START_REF] Bondorf | Statistical multifragmentation of nuclei[END_REF][START_REF] Raduta | Simulation of statistical ensembles suitable for the description of nuclear multifragmentation[END_REF] collective flow is not included in the calculation of the statistical weights. For a further, final, surprising confirmation of the di erence in radial flow between the two reactions, however, we will have to wait until the end of the next section.

Multifragmentation timescale and Z max fluctuations

In 2004, even before publication of our article [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF] extending the universal fluctuations analysis to cover most of the INDRA dataset, Abdou Chbihi suggested that, rather than separating the data into two distinct classes of order parameter distributions, Gaussian at low energies and Gumbellian at high energies, we should fit the Z max distribution for each bombarding energy with a weighted sum of the two distributions,

P(Z max ) = ηP Gauss (Z max ) + (1 -η)P Gumbel (Z max ) (2.5.1)
with 0 ≤ η ≤ 1. As Figure 2.5.4 shows, the shapes of the experimental P(Z max ) distributions are very well fi ed by this admixture of the two asymptotic distributions, and far be er than by one or the other distribution alone (according to the comparison of χ 2 values for fits, see [START_REF] Gruyer | Nuclear Multifragmentation Time Scale and Fluctuations of the Largest Fragment Size[END_REF]). However, until 2011 we had no way to interpret the meaning of this result, until Robert Botet made some new calculations with an irreversible aggregation model applied to finite (small) systems.

The irreversible sol-gel transition can be modelled using the coupled non-linear di erential equations in cluster concentrations c s (the Smoluchowski equations [START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen (A empt for a mathematical theory of kinetic coagulation of colloid solutions)[END_REF])

dc s dt = 1 2 ∑ i+j=s K i,j c i c j -∑ j K s,j c s c j (2.5.2)
where s is cluster size and the concentrations are given by

c s = lim N→∞ n s N
with n s the number of clusters of size s in a system of size N = ∑ s n s s. Coe icients K i,j (aggregation kernels) represent the probability of aggregation per unit time between clusters of mass i and j. The sol-gel transition in this model, as in percolation [START_REF] Stau Er | Introduction To Percolation Theory[END_REF], corresponds to the appearance of an "infinite" cluster which contains a finite fraction of the total mass of the system. The transition occurs when the order parameter, which is the gel fraction

m G = lim N→∞ 1 N s max (2.5.3)
where s max is the size of the largest cluster, becomes non-zero. The size of the largest cluster can therefore be treated as an order parameter of the model, as for percolation. In the specific case with K i,j = ij the gel fraction m G = 0 for times t < t c , where the critical time t c = 1, and m G → 1 for t > t c6 . Botet and Ploszajczak had already shown in 2000 that the distribution P(s max ) of the largest cluster could have two distinct forms, Gaussian for t t c in the gel phase, where the distributions scale with ∆ = 1 /2, whereas for t = t c and the ∆ = 1 scaling, Figure 5 of [START_REF] Botet | Universal features of the order-parameter fluctuations : reversible and irreversible aggregation[END_REF] presents a characteristically asymmetric distribution with a long large-s max tail: although not identified as such at the time (that did not occur until our paper [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF] of 2005), it appears very close to a Gumbel distribution. These calculations were made for quasi-infinite systems with N = 2 10 -2 14 : what Robert did now was to repeat the model calculations with N = 216, comparable to nuclear system "sizes".

What the new calculations showed (see Figure 2.5.5) was a continuous evolution of P(s max ) from the Gumbel form at early times before t c , with a Gaussian component appearing at large s max for t ∼ t c and becoming dominant for t t c . What this also means is that the order parameter s max changes nature over time: from extremal (largest among a random set of clusters) to additive (largest because of successive addition i.e. aggregation of random clusters).

Of course, the physical picture of clusters being built-up over time by agglomeration described by the Smoluchowski equations recalls microscopic approaches in which fragments result from the spinodal decomposition of hot, expanding nuclear ma er. In order to make the link between the Smoluchowski result (Fig. 2.5.5) and that for data (Fig. 2.5.4) requires to make a link between bombarding energy and the timescale of fragment formation, for which a determining factor is the amount of collective radial expansion: then the similarity between Fig. 2.5.5 and 2.5.4 can be understood in terms of fragment size distributions being determined on shorter and shorter time scales due to increasing radial flow with increasing bombarding energy (see Figure 2.5.1(le ), t > t c , not only at the critical threshold. The whole distribution of finite-size clusters evolves self-similarly, and the appearance of a power-law behaviour is not a sign of a critical behaviour but a specific characteristic of the gelation phase [START_REF] Botet | Universal features of the order-parameter fluctuations : reversible and irreversible aggregation[END_REF]. Sec. 2.5.1). A similar scenario was earlier proposed by the FOPI collaboration of nuclear droplets forming in hot expanding nuclear ma er, where radial expansion provides a local cooling mechanism allowing the survival of clusters heavier than α particles [START_REF] Reisdorf | Droplet formation in expanding nuclear ma er: A system-size dependent study[END_REF]: however, in their case, the reactions studied were at 400A MeV so the surviving fragments remained quite small (Z < 10) compared to the data presented here.

Furthermore, this interpretation of the results allowed us to finally understand the ∆-scaling "phase map" for the four systems 36 Ar+KCl, 58 Ni+ 58 Ni, 58 Ni+ 58 Ni and 197 Au+ 197 Au, shown in Figure 2.5.6, that was the main result of [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF]. This figure captures the essential results of the universal fluctuations analysis applied to central collisions for these 4 systems, concerning the bombarding energy at which the scaling of the Z max fluctuations changes from ∆ = 1 /2 to ∆ = 1, and the distributions P(Z max ) change from (dominantly) Gaussian to (dominantly) Gumbellian form. In fact, the actual change of regime is only observed for 58 Ni+ 58 Ni and 129 Xe+ nat Sn reactions, whereas the lightest system, 36 Ar+KCl, exhibits only ∆ = 1 /2 scaling with Gaussian P(Z max ) distributions and the heaviest, 197 Au+ 197 Au, only ∆ = 1 scaling and Gumbellian P(Z max ) distributions (see Figure 2

.4.3).

Radial expansion in central heavy-ion collisions occurs a er significant compression of the incoming nuclear fluid, and as such depends not only on static nuclear ma er properties such as incompressibility, but also on transport properties such as the degree of stopping achieved in the collision, shown to increase with system mass above the Fermi energy for the same data in [START_REF] Lehaut | Study of Nuclear Stopping in Central Collisions at Intermediate Energies[END_REF], and linked to the energy dependence of the in-medium nucleon-nucleon cross-section or mean free path in [START_REF] Lopez | In-medium e ects for nuclear ma er in the Fermienergy domain[END_REF]. Thus for light systems, such as 36 Ar+KCl or 58 Ni+ 58 Ni, the bombarding energy required to achieve su icient initial compression for there to be significant radial expansion is higher than for heavier systems like 129 Xe+ nat Sn or 197 Au+ 197 Au. In this way we can understand why the ∆-scaling and P(Z max ) transition occurs at higher bombarding energies for 58 Ni+ 58 Ni than for 129 Xe+ nat Sn. For the very light 36 Ar+KCl system we must assume that the threshold is higher than the maximum measured bombarding energy of 74A MeV, whereas for 197 Au+ 197 Au perhaps both the greater degree of stopping and far larger Coulomb repulsion contribute to increase radial flow and reduce the fragment formation timescale even at the lowest measured bombarding energy of 40A MeV. Since publication of [START_REF] Gruyer | Nuclear Multifragmentation Time Scale and Fluctuations of the Largest Fragment Size[END_REF] analysis of data for the virtually identical 208 Pb+ 197 Au system measured during the 5th INDRA campaign has partially confirmed this conclusion: the P(Z max ) distribution for central collisions is also Gumbellian at the even lower bombarding energy of 29A MeV.

Finally let us now come back to the question of the di erence of radial flow for the QF sources produced by the two reactions 129 Xe+ nat Sn and 181 Ta+ 66 Zn. As we showed in 2.5.1, these two reactions with the same total mass and charge at the same centre of mass energy lead to significantly di erent fragment partitions, with some evidence that the collective flow for the asymmetric reaction 181 Ta+ 66 Zn is smaller than that for 129 Xe+ nat Sn. Now, as shown above, we have a new tool to compare the importance of flow for di erent reactions: the decomposition of the P(Z max ) distributions into Gaussian and Gumbellian components. Figure 2.5.7 presents the different components deduced from fits to the four P(Z max ) distributions using Equation (2.5.1). Figures 2.5.7(a),(b) compare the results at E cm ∼6A MeV while Figures 2.5.7(d),(e) compare the results at E cm ∼8A MeV. The overall fits to each distribution are of excellent quality, especially in Figure 2. 5.7(d) where the distribution has a very particular form. It is clear from these figures that in both cases the asymmetric 181 Ta+ 66 Zn reaction has a much more predominant Gaussian component in its P(Z max ) distribution than the equivalent symmetric reaction, which confirms once more that the radial collective flow is smaller for 181 Ta+ 66 Zn than for 129 Xe+ nat Sn.

Summary

To summarize this long chapter which concerns the major part of my research activities, the work that I have participated in and/or led since my Ph.D has contributed to the following important cornerstones of current understanding of multifragmentation in central heavy-ion collisions around the Fermi energy and the nuclear liquid-gas phase transition [START_REF] Borderie | Liquid-Gas phase transition in nuclei[END_REF]:

Spinodal decomposition In the 129 Xe+ nat Sn 32A MeV and 155 Gd+ 238 U 36A MeV reactions two systems with similar excitation energy per nucleon and similar importance of radial flow (see Section §2.5) were shown to lead to very similar multifragmentation pa erns, with the same Z partitions and a mean multiplicity of fragments which increases with the total charge of the system [START_REF] Rivet | Independence of fragment charge distributions of the size of heavy multifragmenting sources[END_REF]. This was a first evidence for multifragmentation as a bulk process, linked to the properties of the low density excited nuclear ma er formed in both reactions.

Confrontation of these results with calculations using a stochastic transport model in which spinodal decomposition occurs in the course of both reactions brought further evidence that such a mechanism is responsible for nuclear multifragmentation [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition[END_REF][START_REF] Tabacaru | Multifragmentation of very heavy nuclear systems (III): Fragment velocity correlations and event topology at freeze-out[END_REF]. Later studies with very high statistics data revealed the fossil signal of the spinodal decomposition in the fragment partitions, which is a "smoking gun" for this mechanism [START_REF] Borderie | Phase transition dynamics for hot nuclei[END_REF].

Freeze-out properties of fragments The experimental reconstruction of the primary fragments at freeze-out for multifragmentation events in 129 Xe+ nat Sn from 32A MeV to 50A MeV showed that with increasing bombarding/available energy of the reactions the mean excitation energies per nucleon of the primary fragments do not increase continuously, but rather "saturate" at a maximum value of ≈ 3A MeV [START_REF] Hudan | Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32A to 50A MeV[END_REF]. This is partly due to the onset and increase of collective flow [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF], but can also be ascribed to a vanishing level-density of nuclei at high excitation energies [START_REF] Piantelli | Freeze-out properties of multifragmentation events[END_REF]. In this case the temperatures associated with thermal kinetic motion of the fragments can be much higher than those associated with their intrinsic excitation energy [START_REF] Borderie | Constrained caloric curves and phase transition for hot nuclei[END_REF]: then the back-bending of the "true" caloric curve associated with the liquid-gas phase transition in a finite system [START_REF] Gross | Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space[END_REF][START_REF] Chomaz | Caloric Curves and Energy Fluctuations in the Microcanonical {Liquid-Gas} Phase Transition[END_REF] is revealed in the kinetic temperatures at freeze-out.

Order parameter for multifragmentation The application of the universal fluctuations theory [START_REF] Botet | Universal features of the order-parameter fluctuations : reversible and irreversible aggregation[END_REF] to multifragmentation data first for the 129 Xe+ nat Sn reactions [START_REF] Botet | Universal fluctuations in heavy-ion collisions in the Fermi energy domain[END_REF] and then for a wide range of colliding systems and bombarding energies [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF] showed in the simplest and most modelindependent way possible that the largest-Z fragment of each event, Z max , behaves like the order parameter of a critical phenomenon, i.e. a phase transition. All generic models of cluster/fragment production by a process of aggregation have the largest cluster as their order parameter, therefore the phase transition associated with multifragmentation is necessarily of this type.

Although the observed change of scaling behaviour of the order parameter fluctuations is predicted near the critical point of a continuous phase transition, this and other pseudo-critical behaviours [START_REF] Le Neindre | Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei[END_REF] are fully consistent with the fact that Z max was also shown to exhibit the expected bimodal behaviour associated with the order parameter of a first order phase transition in a finite system [START_REF] Chomaz | Topology of event distributions as a generalized definition of phase transitions in finite systems[END_REF][START_REF] Bonnet | Bimodal behavior of the heaviest fragment distribution in projectile fragmentation[END_REF].

Flow and multifragmentation Evidence that multifragmenting systems with the same excitation energy per nucleon formed by di erent reaction mechanisms leading to very di erent amounts of collective expansion have di erent partition properties was presented in [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF]: at a given total excitation energy per nucleon the amount of radial collective energy decides the mean normalised fragment multiplicity which in turn fixes the properties of the fragment partitions [START_REF] Bonnet | New Scalings in Nuclear Fragmentation[END_REF]. Our new data have shown that multifragmenting systems with the same excitation energy per nucleon formed by the same reaction mechanism but using symmetric (asymmetric) collisions to maximise (minimise) the radial flow also have di erent partition properties [START_REF] Gruyer | Dynamic aspects of the nuclear decay : from the fission to the multifragmentation[END_REF]99], confirming the conclusions of [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF][START_REF] Bonnet | New Scalings in Nuclear Fragmentation[END_REF].

In addition it was shown in [START_REF] Gruyer | Nuclear Multifragmentation Time Scale and Fluctuations of the Largest Fragment Size[END_REF] that the relative importance of collective flow determines the probability distribution (and hence the fluctuations) of the Z max order parameter, as in a generic model of the irreversible aggregation process. The observed continuous evolution of P(Z max ) from that of an additive to an extremal order parameter with bombarding energy is further evidence that multifragmentation in central collisions occurs at low densities during the expansion of an initially hot and compressed finite blob of nuclear ma er.

Chapter 3 Reaction mechanisms at sub-Fermi energies 3.1 Introduction

It is a truth universally acknowledged that heavy nuclei are very di icult to fuse together [START_REF] Austen | It is a truth universally acknowledged, that a single man in possession of a good fortune must be in want of a wife[END_REF], which makes synthesis of potential superheavy elements a very laborious process with small cross-sections that decrease by factors of 10 for every increase of Z (see Figure 3.1.1(le )). Writing the evaporation residue production cross-section as [START_REF] Back | Recent developments in heavy-ion fusion reactions[END_REF] 

σ ER = πλ 2 ∞ ∑ =0
(2 + 1)T P CN ( )P surv with T the -dependent transmission coe icient for the interaction potential, and λ the wavelength of the colliding system in the centre of mass frame,

λ = h 2µE CM
we can identify the two main limiting factors which are the probability to form a compound nucleus for a given partial wave, P CN ( ), and the probability that the compound will leave an evaporation residue, P surv . The la er is drastically reduced because of the propensity of moderately excited heavy compound nuclei to decay by fission, rather than particle and γ emission. We will be more concerned with the probability to form a compound nucleus, P CN .

There are two factors which a ect P CN , as illustrated in the figure. In order to form a compound nucleus, the two nuclei of the entrance channel must first of all "stick" together, i.e. there has to be a pocket in the internuclear potential where they can be trapped. An example of an internuclear potential, V(R), for 129 Xe+ nat Sn is shown in Figure 3.1.1(right). This potential is given by

V(R) = V BSS (R) + V prox (R) + ( + 1)h 2 2µR
where V BSS is the Bondorf-Sobel-Sperber modified Coulomb potential [START_REF] Bondorf | Classical dynamical theory of heavy ion fusion and sca ering[END_REF], V prox is the nuclear proximity potential of [START_REF] Błocki | Proximity forces[END_REF], and the last term is simply the centrifugal repulsion due to the angular momentum. It can be seen that in the case of 129 Xe+ nat Sn there is only a very shallow pocket in the potential, due to the largely repulsive Coulomb potential which is maximised for this quasi-symmetric system (for an asymmetric entrance channel with approximately the same total mass and charge such as 181 Ta+ 66 Zn or 58 Ni+ 197 Au, the repulsion is reduced, making the pocket slightly deeper). Figure 3.1.1(right) also shows that with increasing angular momentum, the pocket rapidly disappears, somewhere between = 50h and = 100h.

Even if the two nuclei do stick together, they still have to evolve towards a compact compound nuclear configuration. This process is described theoretically as a di usion process in the potential energy landscape of the shape of the system [START_REF] Adamian | Model of competition between fusion and quasifission in reactions with heavy nuclei[END_REF][START_REF] Adamian | Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei[END_REF], which is why the combined probability for capture and formation of a compound nucleus is labelled "STICK x DIFFUSE" in Figure 3.1.1(le ). As shown in the figure, it is the evolution towards the compound nucleus which is the most penalising factor limiting the probability P CN . For very heavy and superheavy nuclei the fission barrier of the compound, if one exists, is small and disappears for moderate angular momenta [START_REF] Itkis | Fission barriers of superheavy nuclei[END_REF][START_REF] Kowal | Fission barriers for even-even superheavy nuclei[END_REF]; even if the barrier is su iciently large, very heavy nuclei have compact fission saddle shapes, and it is quite probable that the dinuclear system of captured projectile and target is more deformed than the CN saddle point. In both cases, the system rapidly disintegrates into two fragments without ever forming a fully-equilibrated compound nucleus: this is called quasi-fission [START_REF] Lefort | Nuclear fusion between heavy ions[END_REF][START_REF] Toke | asi-fission -The mass-dri mode in heavy-ion reactions[END_REF][START_REF] Ngô | Fusion dynamics in heavy ion collisions[END_REF].

From the preceding discussion, it should be clear that we do not expect fusion reactions to occur with any sizeable cross-section for sub-Fermi energy collisions of 129 Xe+ nat Sn, both from the point of view of the unfavourably symmetric (Z p * Z t ) entrance channel and the fact that the compound nucleus would be a (neutron-deficient) superheavy isotope of 248 104 Rf, with an = 0 fission barrier of at most 4 ∼ 6 MeV [START_REF] Itkis | Fission barriers of superheavy nuclei[END_REF][START_REF] Kowal | Fission barriers for even-even superheavy nuclei[END_REF]. Ngô et al [START_REF] Ngô | Fusion dynamics in heavy ion collisions[END_REF] gave a handy rule of thumb in order to know if fusion can or cannot occur for collisions between two nuclei, using the e ective 129 Xe+ nat Sn at sub-Fermi energies, both figures from [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF]. The total transverse energy of light charged particles, E t12 , is here used as an impact parameter sorter. fissility

Z 2 A eff = 4Z p Z t A 1/3 p A 1/3 t (A 1/3 p + A 1/3 t ) (3.1.1)
In their approach, based only on static potential energy arguments, if (Z 2 /A) e f f ≥ 48, fusion is not possible (dynamical e ects can reduce the possibilities for fusion event further). For 129 Xe+ nat Sn we find (Z 2 /A) eff ≈ 44, therefore we are really at the limits. 129 Xe+ nat Sn collisions below the Fermi energy However, evidence that "something else happens" in central collisions of 129 Xe+ nat Sn below Fermi energies is not hard to find. Figure 3.2.1a presents contours of double di erential crosssection for the atomic number of the largest-Z fragment of each event, Z max , as a function of the total transverse energy of light charged particles, E t12 , normalised to the available centre of mass energy, E avail , for the 25A MeV reactions. E t12 is here used, as in the rest of [START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF], in order to sort events according to impact parameter (see Part II, Chapter 6). This map of the reactions is dominated by peripheral (low E t12 ) collisions with (Z max ≈ 50) or without (Z max ≈ 2) a detected projectile-like fragment, and mid-peripheral collisions where the excited PLF appears to have undergone fission (Z max ≈ 30), probably a er significant angular momentum transfer. Nevertheless, in the upper right-hand corner of this map there appears a definite contribution from events with a heavy residue, with atomic numbers Z up to that of the projectile, which seem to occur for central collisions (large E t12 ) 1 . Indeed, for the heaviest observed residues (Z max ≥ 48) a clear separation of their measured energy spectra at forward angles (θ lab < 15 o ) into two components is observed, corresponding to high energy projectile-like fragments and lowenergy fusion-like residues with very small centre of mass velocities, while Galilean-invariant velocity diagrams for coincident light charged particles (LCP) also show well-defined Coulomb rings centred on the c.m. velocity [START_REF] Frankland | XLth Int. Wint. Meet. on Nuclear Physics[END_REF].

Heavy residue production in

Figure 3.2.1b shows the evolution of this "heavy residue" production with bombarding energy and centrality. The mean charge of the largest-Z fragment of each event, Z max , is here presented as a function of E t12 (collision centrality), but now only considering complete events where at least 80% of the total charge of the projectile and target nuclei were measured. This is to ensure that the largest detected fragment is most probably the largest produced fragment of each event. For the 25A MeV reactions, there is a very clear increase of Z max going towards what we assume to be more central collisions. The same e ect, but weaker, can also be observed at 32A MeV; for bombarding energies ≥ 39A MeV, i.e. from the Fermi energy upwards, Z max decreases monotonously with increasing violence of the collisions.

As 25A MeV was the lowest bombarding energy measured for this system in the first INDRA campaign in 1993, and as the heavy residue production clearly increases with decreasing beam energy, A. Chbihi and I proposed an experiment as part of the fi h INDRA campaign in 2001, to study 129 Xe+ nat Sn collisions below 25A MeV. actions measured in 2001. The 1-fragment "heavy residue" events (with probabilities < 5% at all energies [6]) are not included here; these were exclusively studied in [START_REF] Manduci | Reaction and fusion cross sections for the near-symmetric system 129 Xe+ nat Sn from 8A to 35A MeV[END_REF]. As o en happens, the original motivation for the experiments was not in the end the most interesting subject thrown up by this new data. Rather, we will concentrate in the following on the 3-fragment events, which, as shown in Figure 3.3.1a, become increasingly likely exit channels above 8A MeV bombarding energy, and are even more probable than binary reactions for E b ≥ 20A MeV. The question of the origin of such events, and their eventual link to the threshold/onset of the multifragmentation process observed in central 129 Xe+ nat Sn collisions for ≥ 32A MeV (see Chapter 2), became one of the subjects of the Ph.D thesis of Diego Gruyer [START_REF] Gruyer | Dynamic aspects of the nuclear decay : from the fission to the multifragmentation[END_REF].

3-fragment exit channels at ≤ 20A MeV

In Figure 3.3.1b are the measured cross-sections as a function of total detected charge, Z tot , and the cosine of the flow angle, θ f low , calculated from the c.m. momentum tensor (Equation (2.2.1)) for the 3 heavy fragments (Z > 10) of each event, for two bombarding energies. What is clear from these correlations is that there are two distinct contributions to these reactions: one strongly forward-peaked and less well-measured (Z tot < 80) mechanism, highly suggestive of deep inelastic collisions followed by fission of projectile-like and/or target-like fragments 3 , and another which is very nearly kinematically complete (Z tot ≥ 90) with a near-isotropic θ f low distribution, indicating that the 3 fragments were produced by a highly relaxed, possibly composite, system. 

Sequential fission chronology

By considering the relative velocity of each pair among the 3 fragments in these events, and comparing with systematics for symmetric or asymmetric fission [START_REF] Viola | Systematics of fission fragment total kinetic energy release[END_REF][START_REF] Hinde | Mass-split dependence of the pre-and post-scission neutron multiplicities for fission of 251Es[END_REF], it can be shown that they result from a sequence of spli ings, using a method developed by Bizard et al. [START_REF] Bizard | Three fragment sequential decay of heavy nuclei around 3 MeV/u excitation energy[END_REF]: for each event, we calculate the quantities

P i = ∆v 2 i,(jk) + ∆v 2 j,k (3.4.1) ∆v α,β = v exp α,β -v sys α,β (3.4.2)
with i = 1, 2, 3 representing each of the 3 possible sequences of spli ing of the initial composite made of the sum of all 3 fragments, (ijk):

(ijk) → i + (jk) (3.4.3) (jk) → j + k (3.4.4) In Equation (3.4.2), v exp(sys) α,β
is the experimental (systematic) relative velocity between the fragments with indices α and β.

Plo ing the 3 values {P i } in a pseudo-Dalitz plot where the distances of each point (event) from the sides of the triangle are given by

a i = P i ∑ 3 i=1 P i
allows to easily visualize the evolution of the sequentiality of the spli ings (Figure 3.4.1). Events with a clear sequential spli ing then cluster on branches parallel to the sides of the triangle (P i P j , P k ) or in the corners (P i , P j P k ), while for quasi-simultaneous break-up ("democratic decay") they lie close to the centre (P i ≈ P j ≈ P j ). The sequential decay is then clear to see for 12A MeV, while the sequential nature gradually disappears with increasing bombarding energy. The sequence of spli ings was then identified event by event by finding the pair of fragments {j, k} with the smallest value of ∆v 2 j,k i.e. with the most fission-like relative velocity. The remaining fragment, i, is then trivially deduced to result from the first spli ing, and the three fragments can be sorted according to their order of production, with reconstruction of the intermediate (jk) system.

Figure 3.4.2a presents the results of this reconstruction. Z (ijk) is the mean atomic number of the initial composite system i.e. the sum of the 3 fragments' charges in each event 4 . It decreases from ≈ 95 to ≈ 78 with increasing bombarding energy, which shows that very heavy composite systems can be formed in these reactions, from platinum to americium. As the total detected charge for all events is constrained by the selection Z tot > 90, this decrease reflects the increasing multiplicity of emi ed light charged particles with bombarding energy (see Figure 3 of [START_REF] Gruyer | Coulomb chronometry to probe the decay mechanism of hot nuclei[END_REF]). Asym 1 is the charge asymmetry of the first spli ing, defined as

Asym 1 = Z (jk) -Z i Z (ijk) (3.4.5)
i.e. the di erence between the charges of the two fragments resulting from the first spli ing (the light fragment Z i detected in the final event, and the intermediate composite nucleus Z (jk) reconstructed from the charges of the two fragments Z j and Z k resulting from the second splitting), normalised to the charge of the initial composite system. In the figure Asym 1 is given as a percentage: the first spli ing is on average highly asymmetric, the value ≈ 40% corresponding to a ratio of 1:2.3 between the charges of the fission fragments. It is interesting to note that this asymmetry is practically constant for all bombarding energies. One may then speculate whether 3-fragment events are observed only when the initial fission is asymmetric enough to produce an intermediate system which is su iciently heavy to fission again; the probability for a second scission will be further increased if in addition this intermediate system has high angular momentum (spin). Z (jk) and Asym 2 in Figure 3.4.2a are, respectively, the mean charge of the intermediate heavy fragment produced by the first spli ing, and the charge asymmetry of the second splitting, defined as in Equation (3.4.5). The intermediate fragment's mean atomic number decreases slightly less than that of the composite system, from ≈ 66 (dysprosium) to ≈ 54 (xenon) with increasing bombarding energy, while the mean asymmetry of the second spli ing Asym 2 is very di erent: it is virtually zero for all bombarding energies, meaning that the second spli ing is on average a symmetric fission.

Sequential fission chronometry

The timescale of the process was subsequently deduced using a new Coulomb chronometry method based on proximity e ects between the di erent fragments in the exit channel. These e ects can introduce a modulation of the relative velocity between the fragments coming from the second fission step depending on the orientation of this fission axis with respect to that of the The proximity e ects can be seen in Figure 3.5.1b,c which shows distributions of the cosine of the proximity angle cos θ for two bombarding energies. For data at 15A MeV the distribution has a U-shape symmetric with respect to 90 o which is characteristic of statistical fission of an equilibrated hot nucleus. For 18A MeV and above, on the other hand, the distribution becomes more and more peaked at 90 o , showing the increasing importance of the proximity e ects. Indeed, such large final-state interactions requires the second spli ing to take place at a distance from the first emi ed fragment of the same order of magnitude as the distance between the centres of the fissioning fragments at scission. Also shown in Figure 3.5.1f,g is the e ect of increasing proximity between first and second spli ing on relative velocity of the fission fragments of the second scission. A clear modulation of v s 12 with θ is evident, the relative velocity is highest when the second fission occurs perpendicular to the first scission axis, due to the Coulomb repulsion. It is this modulation which can be used in order to deduce the inter-spli ing time between the first and second fissions. To do so, Coulomb trajectory calculations were performed simulating sequential breakups using the mean charges of the di erent fragments extracted from the data, and with initial conditions tuned to reproduce the systematics of asymmetric fission [START_REF] Hinde | Mass-split dependence of the pre-and post-scission neutron multiplicities for fission of 251Es[END_REF].

The results are shown in Figure 3.4.2b, where the deduced inter-spli ing time δt is plo ed as a function of bombarding energy. For the lowest energy, a mean fission time of δt ≈ 900 fm/c (3 × 10 -21 sec., or 3 zeptoseconds [START_REF] Jedele | Characterizing Neutron-Proton Equilibration in Nuclear Reactions with Subzeptosecond Resolution[END_REF][START_REF] Williams | Exploring Zeptosecond antum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in Ni58+Ni60 Reactions[END_REF]) is found. This is already a short time compared to typical lifetimes for fission of excited nuclei formed in fusion-fission reactions, typically t FF ≥ 10 -20 seconds [START_REF] Hinde | Fission timescales of excited nuclei[END_REF]. With increasing beam energy, the inter-spli ing time decreases gradually until at 20A MeV it reaches the limit of δt = 100 fm/c (0.33 zs) below which the simulation shows that the two nuclei resulting from the first spli ing do not have su icient time to move beyond the range of their mutual nuclear interaction before the second spli ing occurs. This is therefore the sensitivity limit of the method, and it means that to all intents and purposes from 20A MeV upwards 3-fragment emission is quasi-simultaneous. In this sense, the beam energy 20A MeV can be considered as the threshold of multi-fragment emission 5 .

Comparisons with theoretical models

Although the preceding analysis clearly established the mechanism responsible for the observed 3-fragment events as sequential spli ings of an assumed very heavy composite system, there remains much doubt over the formation of such a system given the high value of the pseudofissility parameter Equation (3.1.1) for the 129 Xe+ nat Sn reactions. In such a case fusion is certain to be hindered to such an extent that quasi-fission must surely dominate even the most central collisions of this system [START_REF] Toke | asi-fission -The mass-dri mode in heavy-ion reactions[END_REF][START_REF] Ngô | Fusion dynamics in heavy ion collisions[END_REF][START_REF] Adamian | Model of competition between fusion and quasifission in reactions with heavy nuclei[END_REF][START_REF] Back | Recent developments in heavy-ion fusion reactions[END_REF]. Another possibility would be fully-relaxed deeplyinelastic reactions. For either quasi-fission or deeply-inelastic reactions the "first spli ing" in the scenario above would not be the first step in the decay of an excited composite system, but rather the last step of the entrance channel dynamics.

In order to try to clarify the origin of the sequential fission, calculations were performed with the Deep Inelastic Transfers model (DIT) of Tassan-Got and Stéphan [START_REF] Tassan-Got | Deep inelastic transfers[END_REF] for the reactions at 12A MeV [START_REF] Frankland | Reaction mechanisms leading to 3body exit channels in central collisions of 129 Xe+ nat Sn at 12 MeV/u[END_REF]. As this model of binary dissipative collisions does not handle non-binary exit channels, for a small cross-section of 92 mb among the most central simulated reactions we used one of two ansatz: either complete fusion 6 , or a pseudo-quasi-fission event. In all cases, the primary excited fragments resulting from the entrance channel calculation were then used as inputs to the statistical decay code GEMINI++ [START_REF] Charity | Systematic description of evaporation spectra for light and heavy compound nuclei[END_REF][START_REF] Mancusi | Unified description of fission in fusion and spallation reactions[END_REF] and detection of all final charged reaction products in INDRA was then simulated using KaliVeda ( [START_REF]KaliVeda Heavy-Ion Analysis Toolkit[END_REF] and see Chapter 4).

The model calculations vastly underestimate the measured cross-section for 3-fragment events, which was found for data to be ≈ 40 mb, whereas DIT+GEMINI leads to only 8 mb for this exit channel 7 . Moreover, in the DIT model, 90% of the observed 3-fragment events result from PLF or TLF fission following a mid-peripheral deep-inelastic collision (Figure 3.6.1a), for which the angular momentum (spin) transferred to the primary fragments reaches a maximum (Figure 3.6.1b). These are exactly the type of ternary events which were observed and studied by Glässel et al. in [START_REF] Glässel | Direct Observation of Nonequilibrium E ects in Sequential Fission[END_REF][START_REF] Harrach | Direct Observation of Proximity E ects in Ternary Heavy-Ion Reactions[END_REF][START_REF] Glässel | Observation of proximity-and nonequilibrium e ects in ternary heavy ion reactions[END_REF]. Such an origin for the experimentally observed 3-fragment events in our data can be excluded thanks to the measured coincident light charged particle multiplicities (Figure 3.6.1c): mid-peripheral collisions produce far smaller LCP multiplicities, reflecting the much lower excitation energies of the primary fragments in this case ( E * ≈0.9A MeV). Statistical decay of the compound nucleus formed by complete fusion, with excitation energies up to 1.9A MeV (for = 0), on the other hand produces on average 6.9 LCP in coincidence with the 3 fragments. Although the width of the experimental distribution for M LCP is not reproduced, it can be remarked that the most probable/mean value are very closely matched by the simulations.

The M LCP distribution for simulated quasi-fission events (not shown in Figure 3.6.1c) is very similar to the one for fusion. The simulation of these events (see [START_REF] Frankland | Reaction mechanisms leading to 3body exit channels in central collisions of 129 Xe+ nat Sn at 12 MeV/u[END_REF] for details) included a hypothesis on the amount of entrance channel angular momentum transferred into the fragment spins, using the sticking limit [START_REF] More | Deep inelastic reactions: a probe of the collective properties of nuclear ma er[END_REF]. With this hypothesis, the simulated quasi-fission reactions only produce 0.4 mb of 3-fragment events, i.e. 50% of the cross-section obtained with the complete fusion hypothesis. It is possible to increase the cross-section to 4 mb with the assumption that all entrance channel angular momentum is converted into fragment spin. Although this assumption is physically unrealistic, an interesting result in this case is that the primary fragments for the 3-fragment exit channel are those with the largest spin for a given Z (Figure 3.6.1d), while their Z distribution becomes asymmetric, as observed for the "first spli ing" in the experimental data.

The question of the possibility to observe sequential fission due to part of primary fission fragments possessing su icient residual excitation energy and angular momentum is the subject of an ongoing collaboration with Katarzyna Mazurek8 , using the 4D Langevin fission model of [START_REF] Nadtochy | Four-dimensional Langevin dynamics of heavy-ion-induced fission[END_REF][START_REF] Mazurek | Examining fine potential energy e ects in high-energy fission dynamics[END_REF]. In this model the evolution of an excited nucleus towards fission is obtained by solving the coupled Langevin classical equations of motion in a four-dimensional deformation space, where the combined action of the driving potential, friction, and di usion forces determines the trajectory of the nucleus on a three-dimensional potential energy surface (PES) here calculated using the Finite Range Liquid Drop (FRLDM) model [START_REF] Möller | Five-Dimensional Fission-Barrier Calculations from Se70 to Cf252[END_REF]. An example PES, for the 248 Rf compound nucleus with spin = 70h is shown in Figure 3.6.2a. During its path to fission the system can de-excite by evaporating light particles (with A ≤ 3) and γ-rays using a Monte Carlo approach.

In our calculations [START_REF] Gruyer | Sequential fission of highly excited compound nuclei in a 4D Langevin approach[END_REF] the reactions 129 Xe+ nat Sn at 8, 12, and 15A MeV were simulated by following the evolution of 248 Rf compound nuclei with excitation energies E * = 223, 471 and 656 MeV, respectively, and angular momenta sampled from a triangular distribution up to max = 130h. In this original application of the model, either fragment resulting from fission is itself used as the starting point for a new Langevin calculation, thus allowing for sequential fission in a self-consistent way. A preliminary result is shown in Figure 3.6.2b. As can be seen, we recover the behaviour observed experimentally: by considering 3-fragment events, we select the most asymmetric primary fission, independently of the global charge distribution. However, in this model the lowering of the fission barrier is mainly due to the residual angular momentum. In such a case, the heavy fragments could undergo secondary fission if the angular momentum is high enough to lower the fission barrier. Since residual angular momentum increases with the charge/mass of the primary fission fragments, only the most asymmetric primary fission leads to 3-fragment events, thus confirming the interpretation we proposed above. The fragments coming from the symmetric division of the compound nucleus have mass around A = 120 and angular momenta around 10 -20h which provide high fission barriers. These nuclei de-excite by particle evaporation and their secondary fission probability is very low.

Chapter 4

KaliVeda, or The Tao of Collaborative So ware Development "All men dream: but not equally. Those who dream by night in the dusty recesses of their minds wake in the day to find that it was vanity: but the dreamers of the day are dangerous men, for they may act their dream with open eyes, to make it possible." [142]

Origins

From the very beginning of the INDRA project, given the large number of detectors to calibrate (628 originally, 640 by the 4th campaign) and identification matrices to treat (864 originally, 876 by the 4th campaign), it was decided that all the data should be centralised at the IN2P3 Computing Centre (Centre de Calcul) near Lyon, and that the responsibility for reduction of all the data of each campaign would be shared among the di erent teams of the collaboration, with the resulting so ware for reading and analysing the data being equally centralised at CC-IN2P3. This was handled by two FORTRAN 1 programmes, kali.f (for calibration, identification, and preparation of data for analysis) and veda.f (for analysis of the reduced data), which were responsible for uniting all the di erent subroutines wri en by di erent members of the collaboration into a coherent whole. Or rather, there were two programmes for the 1st campaign data, two for the 2nd campaign (kali2.f, veda2.f), two for the 3rd, etc. etc. In addition, many of the "utility" subroutines which could and should have been wri en once and for all, compiled into a standard library and reused, were copy-pasted from one version to another, or between di erent laboratories' versions of the data reduction so ware, o en with "minor" tweaks that could be user-specific.

Although the initial design was modular and quite well conceived for the time and the limits of the programming language, the cumulated e ects of time, increasing amounts of data to treat, pressure to obtain results, and the generally low awareness of so ware engineering "best 1 FORTRAN77 to be precise, not the modular variety introduced in Fortran 90.
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practices" of the average physicist had led to a situation a er the 4th campaign in 1998/9 which would soon become unmanageable:

• although the data reduction so ware for each campaign shared a common architecture, and many of the component parts (particle identification routines, calibration functions, etc.) were basically the same from campaign to campaign, each campaign had an entirely independent code base, in which many thousands of lines of code were replicated: code re-use was virtually non-existent;

• similarly, the data analysis so ware for each campaign, although performing essentially the same functions, was rewri en each time, either from scratch or starting from a copy of the entire code base of the previous campaign;

• on the plus side, in order to analyse the final data, physicists needed only code a few subroutines which would then be compiled and linked with the main analysis program; however, due to subtle but important di erences between the so ware for each campaign, physicists would also have to remember to add or remove small pieces of code at certain key places in the subroutines depending on the campaign being analysed: failure to do so could result in her analysis being (undetectably) false;

• in addition, due to the lack of a shared code base, each member of the collaboration would be le to implement her own version of whatever analysis tools were required, o en even re-implementing the same tools from one analysis to another (no code re-use). This was, at best, a waste of time; at worst, astonishing new results could turn out to be the result of avoidable programming errors.

Many of the above-listed problems can be traced back to the fact that all so ware development for INDRA was (and, indeed, still is) carried out by the physicists of the collaboration. At the time, not only in the INDRA collaboration, but in the (French) nuclear physics community as a whole, there were precious few physicists with any computer science culture, apart from a thorough mastery of Fortran2 . Generations of Ph.D students who had been introduced to programming using C++ at university would have to abandon modern so ware development practices and adopt F77 in order to prepare their thesis: not the best way to make their CV a ractive to potential employers. In 2001, the 5th INDRA campaign took place at GANIL and I volunteered to take over the so ware for data reduction and analysis for this campaign 3 . Being the one who had to manage the unmanageable, I decided it was time to change everything.

During the 4th campaign of data-taking, which took place at GSI Darmstadt, I had had a glimpse of the future, as the Ph.D. students (and some senior physicists) had started using the ROOT framework [START_REF] Brun | ROOT: An object oriented data analysis framework[END_REF][START_REF]ROOT Data Analysis Framework[END_REF] in order to perform some data reduction tasks, using custom-built graphical user interfaces (GUI) which made the whole job look terribly easy. There was no comparison with the existing FORTRAN-and KUMAC 4 -based solutions based on PAW (Physics Ana- lysis Workstation, the direct ancestor of ROOT and coordinated by the same René Brun of CERN), which had already seemed a li le old-fashioned when I began my Ph.D. in 1995, but by 2000 was simply antiquated. Of course, one major obstacle to changing framework was that ROOT was wri en in C++, which hardly anybody in the collaboration knew at the time having been exclusively reared on FORTRAN since university. However it was clear to me from the example of ROOT itself how the possibilities o ered by the C++ language could be leveraged in order to handle in a structured way the evolutive nature of the so ware for data reduction and analysis. Therefore a proposal for the future environment was wri en and submi ed to the collaboration, it was accepted and the first presentation of the new so ware took place in July 2003 (see Figure 4.1.1).

Mission statement & current status

The proposal 5 set out the problems we had identified in the context of the beginnings of the modernisation of the CC-IN2P3 computing environment (to prepare for the LHC) and also that of GANIL, where DEC VMS workstations were beginning to be phased out in favour of, first, DEC Unix and, later, Linux-based solutions. The initial aim of KaliVeda was to propose solutions to these problems, by:

• ensuring durability of the data from di erent previous (and all future) campaigns at CC-IN2P3 by storing them in a platform-independent and future-proof file format; • ensuring a single "o icial" version of the data for each campaign, centralising and making fully traceable all steps of the data reduction process;

• providing a single environment for data reduction and analysis;

• making large-scale analyses of data from di erent campaigns feasible by harmonising the so ware environment used for all data;

• centralising all additional information required for data analysis, such as target thickness, ionisation chamber gas pressure, dead time and other scaler information run by run, etc.;

• providing a standardised and fully documented set of libraries containing a toolkit of tried and tested versions of all support so ware needed for data analysis;

• providing an accurate so ware "filter" for each dataset almost as a by-product of the data reduction process, without need for further so ware development.

Of all these aims, it is only the last which has still not been fully realized, although partial solutions exist and the goal has not been abandoned. The toolkit has a dedicated website (see Fig. 4.2.1) which provides links to download the toolkit and instructions on how to build and install it, an on-line and frequently updated Users Guide, and links to the documentation of all classes in the toolkit.

Initially conceived solely in the framework of the INDRA collaboration and INDRA data, the toolkit has been extended successfully to manage data from the INDRA-VAMOS campaign of 2007, data taken with FAZIA [START_REF] Bougault | The FAZIA project in Europe: R&D phase[END_REF][START_REF] Valdré | The FAZIA setup: A review on the electronics and the mechanical mounting[END_REF] starting from 2014 (KaliVeda was adopted as so ware environment by the FAZIA collaboration from the outset), and most recently the data from the first campaign coupling INDRA and 12 FAZIA blocks at GANIL in 2019.

DAQ Slow Control so ware

Although not listed above, another of the initial aims of KaliVeda was to replace the existing graphical user interfaces developed by the collaboration (mostly Daniel Cussol) for the se ing and control of the DAQ electronics, high voltage supplies, and on-line data controls. Not because they didn't work (they did, very well), but because they were so strongly dependent on the DEC VMS system that trying to extend their life beyond that of VMS was far too di icult to envisage. Thus solutions based on the ROOT GUI back-end and KaliVeda were promised. However it took a lot longer than planned, and the first replacement GUI (for se ing the parameters of the electronics) wasn't ready until 2011, with the high voltage and VXI signal inspection interfaces following in 2014, until which we had to artificially prolong the life of the last remaining DEC VMS workstations at GANIL in order to continue using INDRA.

As noted above, the FAZIA collaboration adopted KaliVeda as standard, and so it was natural that the task of creating the so ware to handle the parameter se ing for this new detector would fall to GANIL. With Eric Bonnet we began development on the new interfaces in 2011, and they were ready long before the first experiments with prototype FAZIA blocks in 2014. During his Ph.D (2011-2014) and continuing during his post-doc in Florence (2015-2017), Diego Gruyer also made many major contributions to the on-line so ware for FAZIA, going far beyond what we initially imagined, including a real-time oscilloscope capable of visualising the signals produced by the FAZIA detectors.

Architecture

At the core of KaliVeda is a set of C++ class libraries which are extensions to the ROOT framework. The essential functionalities of ROOT which are leveraged at the heart of KaliVeda are:

• inheritance of classes from TObject allowing data storage in platform-independent ROOT files;

• interactive use of the toolkit classes on the ROOT command line;

• building graphical user interfaces using the ROOT widgets and GUI base classes;

• toolkit extension using "plug-in" derived classes defined in a plain text configuration file while existing code is unchanged;

• TTree class for data storage and TSelector class for data analysis;

• xrootd for reading & analysing data provided by a remote server; • ROOT geometry package for description of array geometries, deduction of particle trajectories, and tracking.

KaliVeda is built on 10 main pillars 6 which are:

Geometry Description of detector array geometries, including deduction of geometrical relationships between detectors of the array, possible trajectories of particles through the detectors and the resulting possibilities for identification by ∆E -E (or other) methods;

Stopping Calculation of energy losses and ranges of charged particles in ma er, both for calibration purposes and array response to simulated data ("filtering");

Nuclei Description of atomic nuclei, including databases of binding energies, charge radii, lifetimes, level schemes and excited states;

Kinematics Handling of relativistic kinematics for multi-particle events, providing simple handling of transformations between di erent reference frames;

Data Management Manage large catalogues of data from di erent experiments, providing transparent access to data whether it is stored locally or remotely (interfaces to IRODS data management system used at CC-IN2P3, and access through XROOTD remote file server). Moreover, each dataset has an associated database containing full details of the experimental conditions of each run (beam energy, gas pressures, DAQ trigger, etc.);

Reconstruction Reconstruction of multi-particle events beginning from raw data i.e. DAQ recorded signals in detectors, using the knowledge of the geometry of the array;

Calibration Object-oriented approach to detector calibration based on successive transformations of the raw detector signals;

Identification A large range of tools for implementing ∆E -E (or other) identification of nuclei from data, including many graphical user interfaces for drawing, adjusting and testing identification grids;

Analysis Sophisticated environment for analysis of data, thanks to which the user's only direct concern is the implementation of the required analysis, for which many tools are provided such as semi-automatic calculation of commonly-used or user-defined global variables (multiplicities, total charge/momentum/energy, flow tensor, etc.). The same user analysis code and graphical user interface can be used to launch either large-scale batch analysis at CC-IN2P3 or for parallel processing on the user's multi-core PC;

Simulation Tools for both generating simulated events (including an interface to the statistical decay code Gemini++ [START_REF] Charity | Systematic description of evaporation spectra for light and heavy compound nuclei[END_REF][START_REF] Mancusi | Unified description of fission in fusion and spallation reactions[END_REF]) and for importing the results of calculations using di erent models (HIPSE, ELIE, MMM, SMF, INC++, ...), and a graphical user interface dedicated to "filtering" the simulated events with di erent experimental set-ups and analysing the results.

Technologies

Language

Obviously, the bedrock of KaliVeda is the C++ programming language along with the ROOT framework. As was the case with ROOT before version 6 (first released in May 2014) KaliVeda is mostly wri en using C++03, heavily reliant on run-time polymorphism (inheritance), with li le use of templates or the Standard Library containers and algorithms. As ROOT6 has matured and compiler support for C++11/C++14 has become more widespread, KaliVeda has begun to exploit more and more possibilities of the new standard, following the evolution of ROOT, but in all cases backwards compatibility is ensured (a C++03 alternative is provided for those poor souls still stuck with a very old compiler). Thus, it is now possible to loop over all nuclei in an event and print their atomic number by simply writing for(auto nuc : event) { std::cout << nuc.GetZ() << std::endl; } or select nuclei to be included in the calculation of global variables using lambda expressions: glob _ var.SetSelection("Z<3", [](const KVNucleus * nuc){ return nuc->GetZ()<3; });

Build system

Over the years, the environment has grown to currently include over 600 classes which are compiled into 30-40 shared object libraries. Correct compilation without errors on as many di erent systems (di erent Linux distributions of di ering ages, such as Ubuntu, Debian, CentOS, but also MacOS) with di erent compilers and as many versions of ROOT as possible was one of the initial mission statements of KaliVeda. This has to be ensured by the build system, which must also check the availability and suitability of various 3rd-party packages that can alter which classes can/should be compiled. Until version 1.10 in March 2015, this was handled (more-or-less well) by a home-made build system based on GNU Makefiles. However, rather like the original FORTRAN environment for IN-DRA, the project had outgrown this approach and maintenance or further expansion had become unfeasible. In parallel to the "o icial" version, a empts were made to transition to the successor of make, automake, partly out of a desire to provide pre-compiled packages for Ubuntu Linux 7 . Then ROOT changed build system as part of the evolution towards ROOT6, choosing the cmake build system, which has now become a standard for open source so ware projects. Compared to make and automake, writing and maintaining a flexible build system with many complicated dependencies with cmake is remarkably easy. In addition, it makes it easy for users to write and compile their own code using KaliVeda. The following is an example CMakeLists.txt file (taken from the KaliVeda User's Guide) for generating an executable from some code MyCode.cpp using KaliVeda and ROOT frameworks: 

Version Control

An essential part of any so ware project is a decent version control system (VCS), but it is surprising how many physicists (and not only...) are still either unaware of the existence of VCS or He mentioned that all the source code was stored in a "CVS server" which allowed to keep track of all the changes to the code and even to get back to a previously working version if someone hacked the wrong way. It all seemed a bit too much, and I think I can remember saying a er the meeting "We won't need that". Luckily before ge ing far with the KaliVeda project, I had time to think and the first versions of the code were stored in a centralised CVS repository on a server at CC-IN2P3 8 .

By 2008 however, KaliVeda was ge ing harder and harder to manage with CVS, which provides limited support for example for renaming or moving directories around in the project, unless you find clever tricks to hack the system (and I did). In addition, in order to maximize e iciency and exchange with the "users" it was becoming more and more clear that some kind of website with bug-tracker, discussion forum, code history and development planning tools would be of great use. Such tools had recently become available in an integrated package called Trac which was based on a new, modern version control system, SVN, which had been developed as a successor to and major improvement on CVS, and which had recently been adopted by the ROOT development team instead of CVS. Along with François Mauger and Daniel Cussol of LPC Caen, we therefore asked CC-IN2P3 if they would consider hosting a Trac server for so ware development in IN2P3 laboratories. This was refused (I think on the grounds of security), and so I started looking around and playing with various solutions (see Figure 4.4.1).

For a long time I had been using Ubuntu Linux on my laptops, and it turned out that the company behind Ubuntu, Canonical Ltd., hosted a website for so ware projects with exactly the features I was looking for: Launchpad (in fact, the principal role of the Launchpad site is to host all of the projects which are included in Ubuntu). In May 2009, all code-hosting, bug-reporting, etc. for KaliVeda was migrated to Launchpad, which also meant migrating to a new VCS, bzr (pronounced "bazaar"), which was a breath of fresh air compared to CVS, making it far easier for di erent people to contribute to the code. Indeed it was from this point on that di erent contributors 9 really began to take part in developing and maintaining the so ware.

Since early 2015 we have again changed VCS, and are currently using the standard tool for open source so ware projects, git. This has again been a major improvement compared to bzr (I admit, not all of my fellow contributors agree), and the code is now hosted on the ubiquitous github. Once again, we have thus realigned ourselves with the development path taken by ROOT, now also hosted on github. In the meantime, somewhere between 2015 and 2018, the CC-IN2P3 finally began hosting the necessary tools for modern so ware development, most notably in the form of a gitlab platform, entirely equivalent to github and also to what we had requested in 2007. Some time in the near future, KaliVeda's code repositories will migrate to this platform.

Part II

Present & Future: "What price to get out of going through all these things twice?" 69 It all seems so well timed An' here I sit so patiently Waiting to find out what price You have to pay to get out of Going through all these things twice [START_REF] Dylan | Stuck Inside of Mobile with the Memphis Blues Again[END_REF] Chapter 5

Introduction

A er having presented a detailed summary of my past scientific and so ware development activities over the last twenty-five years in Part I, I will now present some more recent works and look towards the future. The first new work has been a focus of my activity for the last two years and is currently under discussion within the INDRA collaboration for publication. It concerns the quantification of the rather nebulous concept of "centrality" in heavy-ion collisions, through the reconstruction of impact parameter distributions for experimental event samples. As a by-product, this work confirms (and quantifies) the long-held suspicion that the "most central" collisions we can select using experimental observables are in fact not as central as one might hope.

The second new work, begun just before the Covid-19 lock-down this spring, will bring us full circle back to not only one of the main preoccupations of my Ph.D but also the subject of the Masters' 1 internship which immediately preceded it: how best to isolate homogeneous event samples corresponding to compact multifragmenting systems? This began from a long-standing regret that we (the INDRA collaboration, or indeed anybody else) have never found a be er method for the selection of the single-source (QF) events, on which so much of our understanding of the links between multifragmentation and the liquid-gas phase transition of nuclear ma er is based (see Borderie and Frankland [START_REF] Borderie | Liquid-Gas phase transition in nuclei[END_REF]), than an arbitrary cut restricting to large flow angles θ f , where the distribution becomes supposedly isotropic.

I will show here that it is possible to extract, in a non-arbitrary way, an homogeneous subset of events from a given set of data which are more isotropic than the others, and that the properties of these events are those of the QF events: indeed the large-θ f events make up the majority of these "most isotropic" events, which therefore justifies a posteriori this selection method. Having isolated the most isotropic events, I will then show how to extract from them an unambiguous measurement of the degree of anisotropy of the underlying momentum distributions, which could be used, knowing the associated impact parameter distributions, in conjunction with transport model calculations in order to deduce the energy dependence of nuclear transparency in this energy range.

Chapter 6

How central are the most central collisions in Fermi energy heavy-ion collisions ?

Introduction

For the last thirty years, there has only ever been one way to estimate the centrality of a sample of experimental events: the geometrical prescription of Cavata et al. [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF]. This simple method for determining the impact parameter was first proposed for relativistic nucleus-nucleus collisions, for which the total reaction cross-section is well approximated by the geometrical cross-section σ = π(R p + R t ) 2 calculated from the equivalent hard-sphere radii of the projectile and target nuclei, respectively. At these energies the essential features of the reaction dynamics are fixed by the size of the participant zone which is determined by the geometrical overlap of two spheres separated by impact parameter b [START_REF] Gupta | The thermodynamic model for relativistic heavy ion collisions[END_REF].

Although the geometrical prescription which consists of transforming the measured crosssection for collisions assumed to be the most central into an upper limit of impact parameter was not new (see for example [START_REF] Danielewicz | Transverse momentum analysis of collective motion in relativistic nuclear collisions[END_REF]), Cavata et al. extended this sharp cut-o approximation (SCA) over the whole range of centrality and it is always [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] which is cited when one or the other is used.

The well-known method is illustrated in Figure 6.1.1, taken from their paper. Given an observable X which is expected to increase with the number of participant nucleons, and therefore have a monotonic dependence on b, it is assumed that the largest measured value of X (i.e. the last occupied bin in the histogram in the le panel of Figure 6.1.1) occurs for collisions with b = 0. Then the total measured cross-section for X ≥ X, where X is any smaller value of the observable, can be transformed into a value of impact parameter b > 0 using the SCA. In this way a one-to-one correspondence between observable X and impact parameter b can be constructed and used to provide an impact parameter scale for the experimental data.

To directly quote Cavata et al., "[t]his procedure is rigorous if there is no dispersion in the correlation between [the observable] and impact parameter. In practice, there will always be a finite dispersion, but the method should remain valid as long as the correlation is large enough in comparison to the dispersion [...]". In the Fermi energy domain, of course, fluctuations ("dis- persion") dominate the dynamics of reactions, especially for more central collisions where, as we saw in Part I, Chapter 2, instabilities may lead to bifurcations and multifragmentation. The essential features of the reaction dynamics are not necessarily uniquely fixed by the geometrical overlap between projectile and target (participant-spectator scenario), as the nuclear mean field may still play an important role at these energies. Therefore in our case the dispersion in the correlation between the observable and the impact parameter is unlikely to be negligible.

This was of course realised right from the start when the Cavata prescription was used in the Fermi energy range [START_REF] Péter | Global variables and impact parameter determination in nucleusnucleus collisions below 100 MeV/u[END_REF][START_REF] Phair | Impact-parameter filters for 36Ar+197Au collisions at[END_REF]. Figure 6.1.2 shows, for simulated events, the e ect of fluctuations in the relationship between observable and impact parameter 1 [START_REF] Péter | Global variables and impact parameter determination in nucleusnucleus collisions below 100 MeV/u[END_REF]. The thick curve in the figure represents the impact-parameter-integrated, inclusive distribution of an observable ν which decreases on average monotonically with b, such as the total multiplicity. The upper impact parameter limits (in fm) corresponding to various values of ν deduced from the inclusive distribution using the method of [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] are represented by the figures presented along this curve.

As this is a model calculation, it is also possible to decompose the inclusive distribution into the contributions from di erent impact parameter ranges. This is what is represented by the individual distributions shown under the main curve and labelled with an upper impact parameter (in fm) x: each of these are the ν distributions for (x - fm) the distributions for di erent impact parameter bins overlap more and more due to a combination of decreasing cross section and increasing relative fluctuation of the observable ν. Therefore whereas the Cavata prescription implies that higher cuts in ν select more and more exclusively central collisions, in reality above a certain limit (here somewhere between ν = 10 and ν = 15) the actual mix of impact parameters which are retained by higher and higher cuts evolves far less than the decreasing statistics retained for analysis.

This was the status quo for nearly thirty years, until, once again, a new approach arrived from higher energies, although this time it came from the ultra-relativistic regime of collisions at the LHC. Two papers published in 2018, [START_REF] Das | Relating centrality to impact parameter in nucleus-nucleus collisions[END_REF] and especially [START_REF] Rogly | Reconstructing the impact parameter of protonnucleus and nucleus-nucleus collisions[END_REF], proposed to explicitly take into account the fluctuations in the relationship between any observable X and b (even at such energies where fluctuations could have been thought to be negligible) in order to deduce the evolution of the mean value of the observable with centrality by fi ing the inclusive measured distributions P(X). In the following I will show how the same method can be applied to collisions in the Fermi energy range and as a result give quantitative answers to the question "how central are the most central collisions in intermediate energy heavy-ion collisions?"

antifying the centrality of collisions

The impact parameter of a nucleus-nucleus collision is classically defined by the distance between the straight-line trajectories of the centres of the two nuclei before their interaction. The cent-rality, c (also called b-centrality or c b in [START_REF] Das | Relating centrality to impact parameter in nucleus-nucleus collisions[END_REF]), is defined as the cumulative distribution function of the impact parameter distribution of collisions,

c b ≡ b 0 P(b ) db = Pr(b ≤ b) (6.2.1)
which varies between 0 (most central collisions) and 1 (most peripheral collisions). By definition we have

dc b db = P(b) (6.2.2)
The impact parameter probability distribution for collisions leading to inelastic reactions can be wri en as

P(b) = 2π σ R b • P R (b) (6.2.3)
where the first part is the purely geometrical semi-classical approximation of interaction between hard spheres corresponding to the short-range nuclear interaction, and σ R is the total reaction cross-section. P R (b) is the probability for an inelastic reaction to occur at a given b, taking into account all e ects due to the physics of the collisions, such as surface di usivity and nuclear transparency; when considering experimental data P R includes also acceptance and other detection e ects, and should be considered the probability for an inelastic reaction to occur and be detected at a given impact parameter.

The sharp cut-o approximation (SCA) assumes a simple form for P R (b),

P R (b) = 1 b ≤ b max 0 b > b max (6.2.4)
In this case, the impact parameter distribution Equation (6.2.3) is triangular up to a maximum impact parameter b max given by σ R = πb 2 max (6.2.5) and the relationship between impact parameter and centrality is given by

c SCA b = πb 2 σ R = b b max 2 = b2 (6.2.6)
where in the last equality we have defined the reduced impact parameter, b.

Experimental centrality can be quantified as in [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] using an observable X expected to have a monotonic relationship with b, typically because it measures the violence or the degree of energy dissipation of the collisions: examples are the total number of reaction products per event, or the total kinetic energy in directions transverse to the beam axis [START_REF] Phair | Impact-parameter filters for 36Ar+197Au collisions at[END_REF][START_REF] Frankland | Multifragmentation of a very heavy nuclear system (I): Selection of single-source events[END_REF]. The experimental (or apparent) centrality c X of an event sample S selected with a cut X ≥ X is then defined as the cumulative distribution c X ≡ X≥X P(X) dX = Pr(X ≥ X) (6.2.7)

where P(X) is the probability distribution of X for all recorded collisions, and we have assumed that, as in most cases, X increases as b → 0. It should be noted that c X is quite simply the fraction of all measured events retained by the cut.

Experimental selections of "central" collisions are usually defined using the quantile function associated with Equation (6.2.7) in order to find a cut which gives a value of c X deemed small enough for the required selectivity (typically c X = 1 -10%), while retaining a statistically significant number of events for the analysis. Up to now, in order to estimate the impact parameter range associated with such a selection of data, the prescription of Cavata et al [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] has been used. This consists in equating the apparent centrality c X of Equation (6.2.7) with the sample's true centrality calculated in the sharp cut-o approximation, Equation (6.2.6); equating with c X defined by the cut X ≥ X, the upper limit of reduced impact parameters bX corresponding to the cut is deduced to be

b ≤ bX , bX = √ c X (6.2.8)
which is the main result of [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] and has been used in every analysis aiming to study impact parameter dependence of heavy ion collisions at intermediate energies ever since.

Reconstructing impact parameter distributions for experimental data

The method of [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] can give no information on the actual impact parameter distribution P(b|S) associated with an event sample S: the triangular distribution of the sharp cut-o approximation (SCA) is simply assumed, and the fluctuations in the relationship between X and b are ignored.

The new method proposed in [START_REF] Das | Relating centrality to impact parameter in nucleus-nucleus collisions[END_REF][START_REF] Rogly | Reconstructing the impact parameter of protonnucleus and nucleus-nucleus collisions[END_REF] on the other hand makes no a priori assumption about the form of P(b|S) but rather allows to reconstruct this impact parameter distribution from the data, as will now be demonstrated. For any observable X whose functional dependence on the impact parameter can be wri en in terms of a conditional probability distribution P(X|b), the inclusive distribution of X resulting from all collisions with an impact parameter distribution P(b) is given by

P(X) = ∞ 0 P(b) P(X|b) db (6.2.9)
Let us assume for the moment that we know P(X|b). The impact parameter distribution corresponding to a finite range of X values can be calculated from

P(b|X 1 < X ≤ X 2 ) = X 2 X 1 P(b|X)P(X)dX X 2 X 1 P(X)dX = 1 c X 1 -c X 2 X 2 X 1

P(b|X)P(X)dX

where we have used Equation (6.2.7) for the integral in the denominator. Using Bayes' theorem, P(b|X)P(X) = P(X|b)P(b) (6.2.10) we can rewrite this as

P(b|X 1 < X < X 2 ) = P(b) c X 1 -c X 2 X 2 X 1 P(X|b) dX (6.2.11)
or, for a sample S : X ≥ X, P(b|S : X ≥ X) = P(b) c X X≥X P(X|b) dX (6.2.12)

More generally, we may wish to obtain impact parameter distributions for any sample of events, not necessarily using a cut on the observable X: such selections may be e ected using several cuts on di erent observables, or using an observable whose relationship with b is not so evident or monotonic. In this case we can generalise Equation (6.2.12) for any sample S to give P(b|S) = P(b) P(X|b) P(X|S) P(X) dX P(X|S) dX (6.2. [START_REF] Brun | ROOT: An object oriented data analysis framework[END_REF] where P(X|S) is the sample distribution of X (i.e. a histogram of X filled from the events in the sample), and the integrals are over the full domain of X. This is an extension of the method proposed in [START_REF] Das | Relating centrality to impact parameter in nucleus-nucleus collisions[END_REF][START_REF] Rogly | Reconstructing the impact parameter of protonnucleus and nucleus-nucleus collisions[END_REF].

From Equations (6.2.11)-(6.2.13) we can therefore calculate impact parameter distributions for experimental data samples if we can deduce the conditional probability distribution P(X|b) by fi ing the experimentally measured P(X) distribution using Equation (6.2.9). In order to do this, however, we need to deal with the unknown distribution of impact parameters for all events, P(b).

Removing the uncertainty on the overall impact parameter distribution

In Equations (6.2.9)-(6.2.13) P(b) is the impact parameter distribution of all collisions recorded by the experiment (those responsible for P(X)) and is in principle unknown: although in an ideal case it would simply be the sharp cut-o approximation of Equation (6.2.4), it will be a ected by any experimental bias due to detection (in)e iciency and triggering conditions, etc., which could be simulated but would then be model-dependent.

However, by a change of variable using the b-centrality c b of Equation (6.2.1) the uncertainty on the distribution of recorded impact parameters disappears, as by definition the cumulative distribution function for any distribution P(b) is uniformly distributed between 0 and 1 and P(c b ) = 1. We then find for the distribution of X P(X) = Therefore if we can deduce the form of P(X|c b ) by fi ing the experimental P(X) distributions using Equation (6.2.14) and a suitable parametrization of P(X|c b ) (see 6.2.2 below), we can calculate centrality distributions P(c b |S) for experimental event samples using Equation (6.2.18). Then the impact parameter distribution for S is given by a change of variables as

P(c b |X 1 < X < X 2 ) = 1 c X 1 -c X 2 X 2 X 1 P(X|c b ) dX (6.2.16) P(c b |S : X ≥ X) = 1 c X X≥X P(X|c b ) dX (6.2.
P(b|S) = P(b)P(c b (b)|S) (6.2.19)
where we have used Equation (6.2.2).

Parametrizing the relationship between X and c b

The ansatz for P(X|c b ) employed in [START_REF] Rogly | Reconstructing the impact parameter of protonnucleus and nucleus-nucleus collisions[END_REF] consists in separating the problem into two parts: (i) the centrality dependence of the mean value of the observable, X(c b ), and (ii) the fluctuations of X around this mean. Concerning part (ii), the advantages of using a gamma distribution

P(X|c b ) = 1 Γ(k)θ k X k-1 e -X/θ (6.2.20)
for the observable rather than a Gaussian or other symmetric distribution were demonstrated in [START_REF] Rogly | Reconstructing the impact parameter of protonnucleus and nucleus-nucleus collisions[END_REF]. The mean and standard deviation of this distribution are given by

X(c b ) = k(c b )θ (6.2.21) σ X = k(c b )θ (6.2.22)
where the parameter θ = σ2 X /X determines the relative importance of fluctuations of the observable, and is assumed to be independent of centrality.

Concerning the parametrization of k(c b ), the authors of [START_REF] Rogly | Reconstructing the impact parameter of protonnucleus and nucleus-nucleus collisions[END_REF] proposed a very general polynomial form for a monotonically decreasing function of centrality. However, we have found that when the order of the polynomial is su icient to correctly describe the evolution of X by fi ing P(X) (typically order 3 or 4), the monotonicity of their function is no longer guaranteed without imposing several non-trivial constraints on the parameters of the fit. Therefore we have sought a simpler functional form which guarantees monotonicity while being su iciently general to describe the typical shapes of X(b) curves as predicted by various transport model simulations in this energy range (see for example [START_REF] Nebauer | Multifragmentation in Xe(50 AMeV) + Sn: Confrontation of theory and data[END_REF][START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF][START_REF] Zbiri | Transition from participant to spectator fragmentation in Au+Au reactions between 60A and 150A MeV[END_REF][START_REF] Le Fèvre | Bimodality: A general feature of heavy ion reactions[END_REF][START_REF] Bonnet | Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies[END_REF]).

We have found that the following monotonically decreasing function of centrality

k(c b ) = k max [1 -c α b ] γ + k min (6.2.23)
can perform this role quite satisfactorily, with only 4 free parameters 2 . In addition, the values of α and γ can be directly linked to the shape of k(c b ), making interpretation of fit results more 

immediate. Examples of k(c b )

for di erent values of α, γ are presented in Figure 6.2.1. The value of α determines whether or not the observable's evolution with b presents a plateau for the most central collisions, i.e. when α ≥ 1 there exists a range of small impact parameters for which the derivative dk/db ≈ 0 which implies a lower limit to the observable's sensitivity to variations of b; the larger the value of α, the larger the range. The γ-parameter determines the concavity of the curve: values of γ > 1 lead to S-shaped curves with an asymptotically zero derivative at c b = 1.

The shapes of these curves can be related (but are not limited) to the participant-spectator scenario [START_REF] Gupta | The thermodynamic model for relativistic heavy ion collisions[END_REF]: Equation (6.2.23) with α ≈ 0.5 and γ ≈ 2 gives a perfect fit to the geometrical overlap volume between two equal-radii spheres whose centres are separated by a distance b. The overlap volume between unequal spheres (which reaches its maximum and presents a plateau for b < R proj -R targ ) can be approximated by α > 1 and γ values in the range 2-10.

k max and k min determine the maximum mean value of the observable achieved in head-on collisions:

X max = X(b = 0) = θ(k max + k min ) (6.2.24)
The 'o set' parameter k min is important because we cannot make the approximation that X min = θk min is zero for the most peripheral recorded collisions. This is especially clear when considering X = N C , the total multiplicity of charged products. All INDRA data analysed in the following were obtained with an online acquisition trigger corresponding to a minimum number of fired telescopes of between 3 and 5 depending on the system studied. For the lightest systems considered in our study, the maximum charged particle multiplicity can be as small as 20; in this case the role of k min is far from negligible.

Procedure for reconstruction of impact parameter distributions

For each dataset, we fit the inclusive probability distributions P(X) of each observable considered using a numerical implementation of Equations (6.2.14), (6.2.20) and (6.2.23), using the latest version of the ROOT so ware toolkit [START_REF] Brun | ROOT: An object oriented data analysis framework[END_REF][START_REF]ROOT Data Analysis Framework[END_REF] in order to benefit from its built-in multithreading capabilities which considerably speed up calculations. The 5 parameters α, γ, θ, k min and k max were allowed to vary freely within reasonable limits and were adjusted using the MINUIT fi ing algorithm. The range of X considered for each fit was varied in order to optimize the reduced χ 2 for each distribution: in all cases the largest values (most central collisions) were included, and in general only the smallest X (most peripheral collisions) needed to be excluded in order to achieve convergence of the fi ing procedure. Fits to each distribution typically required a few seconds of processing time on a laptop with an Intel Core i7 processor.

For the validation of the method, see Appendix B, Section §B.1.

Reconstruction of impact parameter distributions for experimental data

In the following we will present the results of applying the methods presented above to data for a wide range of di erent colliding systems measured with INDRA, which are summarized in Table 6.1. The data concern the two observables which are most commonly used with INDRA for centrality estimation and/or selection, namely the total multiplicity of charged reaction products, N C , and the total transverse energy of light charged particles (LCP, isotopes of Z = 1, 2 nuclei), E t12 . N C is the most commonly-used impact parameter filter by many di erent groups in the intermediate energy range, while E t12 has been especially used by the INDRA collaboration as it exploits the very high, angle-independent e iciency of the array for detection of LCP. In Table 6.1, as well as the mass asymmetry, projectile energy and number of recorded events, are given also the trigger multiplicity (corresponding to the minimum number of fired modules which may include γ-ray, electron, pion or neutron detection in the CsI scintillators) for each reaction. In the o line analysis the same condition was applied to the reconstructed events (corresponding to a minimum number of correctly identified charged products, thus excluding γ-rays etc.).

From simulations with many di erent reaction models and di erent so ware "filters" to simulate the acceptance of the INDRA array we expect that minimum bias data (i.e. with no selection other than trigger multiplicity) has an unbiased geometrical distribution for all but the most peripheral collisions (see for example Figure 2(a) of [START_REF] Vient | Validation of a new 3D calorimetry of hot nuclei with the HIPSE event generator[END_REF]) and can be well described by Equation (6.2.3) with an inelastic reaction probability distribution of the form

P R (b) = 1 1 + exp b-b 0 ∆b (6.3.1)
with typical ∆b values of 0. When comparing data it is important to remember that not only will the upper limit for recorded impact parameters depend on the trigger conditions, but also on the colliding nuclei and beam energy. As events are only recorded/analysed for collisions producing at least a minimum number of charged products, the full reaction cross-section is not recorded. Very peripheral reactions, leading for example only to evaporation of neutrons, are excluded (unless projectile-or target-like fragments are detected, which is unlikely for such peripheral reactions where the projectile is hardly deviated from the beam direction and the recoil of the target is insu icient to overcome detection thresholds). For each colliding system and an on-line trigger M ≥ m T , b 0 will to a great extent be determined by the most peripheral reactions which produce at least m T charged products, which at the threshold are most likely to be m T light charged particles (LCP, Z = 1, 2) for reasons of detection e iciency.

Even for the same projectile-target combination, it is evident that the upper limit for impact parameters will depend on the beam energy, as shown in [START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF] for 129 Xe+ nat Sn collisions with a multiplicity trigger M ≥ 4: in this case where the cross-section was measured during the experiment, the deduced sharp cut-o b max was found to increase by 15% in the limited energy range 25 -50A MeV. On the other hand, if no cross-section measurement is available we cannot talk of absolute but only reduced impact parameters, b = b/b max . Without an estimation of the experimental b max for each reaction, it is far from guaranteed that collisions with similar b have equivalent geometry even for the same projectile and target at di erent energies, let alone when comparing di erent systems or even data from di erent experiments. This is o en overlooked.

Finally, let us note that for most of the studied reactions a small fraction of the beam time was dedicated to an absolute minimum bias trigger of M ≥ 1, for normalization purposes. Although these data should contain the largest possible unbiased range of impact parameters, closer to the full reaction cross-section (once elastic sca ering events are suppressed by o -line analysis), they obviously have very low statistics for central collisions and so were not used in the analysis. It has been shown that the higher multiplicity triggers do not bias the event distribution for higher multiplicities compared to the M ≥ 1 data [START_REF] Bougault | Light charged clusters emi ed in 32 MeV/nucleon 136,124 Xe+ 124,112 Sn reactions: Chemical equilibrium and production of 3 He and 6 He[END_REF].

Results of fits to data

Examples of fits to the inclusive distributions of the observables N C and E t12 are presented in Figure 6.3.1, for the M ≥ 4 129 Xe+ nat Sn data. Using the published measured cross-sections for this data [START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF] 3 , the P(X) distributions are presented here as di erential cross-sections. To be er appreciate the quality of the fits, for both low and high statistics regions of the distributions, each is presented with both linear (le panels) and logarithmic (right panels) y-axes. Apart from the lowest N C or E t12 the shapes of the experimental distributions are extremely well-reproduced by each fit, including the exponential tails for the highest multiplicities/energies. Reduced χ 2 values for each fit are reported in Tables B.1 and B.2. For E t12 this goodness-of-fit parameter is generally excellent (χ 2 ∼ 1), whereas for N C the values are far from satisfactory, despite the visual impression of adequate fits. This may in part be due to the necessarily finite binning used with this integer variable compared to a continuous variable like E t12 ; the upper le panel of Figure 6.3.1 also shows that the fit generally fails to reproduce the distribution for small N C (close to the DAQ trigger), decreasing sharply for small N C instead of increasing as in the experimental data, and it is this discrepancy which dominates the χ 2 values. Nevertheless, the X min values for N C follow remarkably well the minimum multiplicity imposed by the trigger, including the increase from M ≥ 3 to M ≥ 4 for the 36 Ar+ 58 Ni data at 74A MeV (see Table B.1). Fits of similar quality for both observables were obtained for all data in this study.

The shapes of the P(X) distributions for both N C and E t12 show a marked evolution with bombarding energy, which is especially clear in the le panels of Figure 6.3.1, with the linear scale of dσ/dX4 . At the lowest energies there is a pronounced shoulder at the upper end of the distributions which disappears for higher energies, as if to signal a change of weight between central and the more peripheral collisions. Obviously no such change can occur in the relative (geometrical) weighting of di erent impact parameters; rather the change of shape is due to the evolution of the way in which the mean value of each observable depends on impact parameter, as shown in Figure 6.3.2 which presents how N C (b) and E t12 (b) change with bombarding energy. Apart from the regular increase of the maximum values reached at b = 0 (which will be studied in more detail in 6.3.3 below), the figure shows the gradual disappearance of the fla ening of the curve for central collisions seen at 25A MeV (in terms of the shape parameters, α decreases: see Table B.1).

It is this saturation of N C (b) for the most central collisions which leads to the accumulation of events with N C ∼ X max observed in P(N C ) (and at the same time reduces its e ectiveness for selecting very central collisions). The evolution for E t12 (b) is similar, evolving from a slight plateau at 25A MeV to a near-linear impact parameter dependence for 50A MeV collisions. As a result, P(E t12 ) distributions at low energies have a less marked shoulder than for N C and any sign of a shoulder disappears for bombarding energies above 32A MeV. Similar evolutions with bombarding energy and similar di erences between N C and E t12 are observed for all data.

Bombarding energy and system dependence of deduced k(c b )

We will now concentrate solely on the shapes of the relationship between the mean value of the observables and the impact parameter, and how they depend on not only bombarding energy but also the mass asymmetry of the entrance channel. To this aim Figure 6.3.3 shows the normalized shape functions k(c b ) of E t12 for three di erent systems as a function of reduced impact parameter (cross-section measurements are not available for all data). In these figures all data has been normalized to have a mean value of 0 for b = 1 and reach the maximum value 1 for b = 0. The system and energy dependence of the mean values of the observables for b = 0, seen to increase regularly with bombarding energy in Figure 6.3.2, will be studied in 6.3.3. Here it is clearer that the (negative) slope of k(c b ) at small b continuously increases with bombarding energy, and the correlation is nearly linear for 50A MeV, as remarked above. Also shown in the figure is the expected form of k(c b ) if it were proportional to the geometrical overlap between two spheres of equal radii. Such a b-dependence for an observable could be interpreted as evidence for a reaction dynamics dominated by the collision geometry, as in the participantspectator scenario. If so, then the k(c b ) curve deduced from fits to the data shows the evolution towards this regime with bombarding energy, although clearly at 50A MeV it has not yet been reached. The 3 curves for the near-identical 129 Xe+ 124 Sn collisions measured at GSI show the continuation of the trend at higher energies, at least up to 80A MeV.

The other panels of Figure 6.3.3 concern the two asymmetric colliding systems, 36 Ar+ 58 Ni and 58 Ni+ 197 Au. In a purely geometrical picture of such reactions we would expect a plateau for central collisions, below the impact parameter for which the smaller of the two nuclei is entirely contained within the larger, b < |R p -R t |: below this value the overlap volume remains that of the smallest nucleus. This hardly appears to be the case for 36 Ar+ 58 Ni collisions at 32A MeV ( Figure 6.3.3b) (it does on the other hand appear more clearly in the k(c b ) for N C ), whereas a more pronounced plateau is evident for the far more asymmetric 58 Ni+ 197 Au system at the same energy (Figure 6.3.3c).

The correct interpretation of the deduced k(c b ) functions requires comparison with di erent models of the reactions, for whom the generation of correlations such as those presented in Figure 6. as presented here [START_REF] Lopez | In-medium e ects for nuclear ma er in the Fermienergy domain[END_REF], would a ect the simple geometrical picture of the participant-spectator scenario. No further a empt to interpret them will be made here; rather we hope that these previously unavailable experimental correlations will provide new constraints for a wide range of dynamical models of heavy-ion collisions at Fermi energies.

New experimental constraints for dynamical reaction models?

It should not be forgo en that the correlations of Figures 6.3 Several similarities between the present experimental correlations with the QMD calculations may be remarked, including the slight change of convexity of the correlation (which may again be interpreted as evidence for an evolution towards the participant-spectator regime, as was in part the subject of the study presented in [START_REF] Zbiri | Transition from participant to spectator fragmentation in Au+Au reactions between 60A and 150A MeV[END_REF]), and the reduced importance of the fluctuations compared to the evolution of the mean value of E t12 with increasing bombarding energy. Nevertheless, our point here is once again not to put forward one particular interpretation of the data, in agreement (or otherwise) with one particular model, but to underline the fact that such correlations were previously only possible with model calculations, whereas now they are also experimentally accessible.

6.3.5a presents another previously inaccessible experimental information: the mean values of observables for head-on (b = 0) collisions. These would be the easiest constraints for dynamical models to test, as it is su icient to run the calculation for a single impact parameter. Figure 6.3.5a presents the maximum mean multiplicity N C (b = 0) for each system, normalized to the total system charge, Z tot = Z proj + Z targ . These all increase with the available energy, = E CM /A tot , in a non-linear fashion suggesting the appearance of a maximum for each curve (the dashed lines represent a fit using an ad hoc parabolic function). An exception to this regular behaviour is the 58 Ni+ 197 Au system, which seems to follow more closely 197 Au+ 197 Au than the expected similarmass/charge 129 Xe+ nat Sn system. Figure 6.3.5b shows the maximum mean E t12 values achieved for head-on collisions deduced from the fits to P(E t12 ) for all systems. A linear increase is observed for almost all data, the slope increases roughly with the total size of the colliding system, and there is no sign of the values reaching a maximum in the explored energy range, on the contrary to the behaviour seen for total multiplicity in Figure 6.3.5a. In fact, a near-universal behaviour is observed when E t12 (b = 0) is normalized to the total charge, Z tot , of each colliding system and plo ed as a function of the available centre of mass energy per nucleon, E CM /A tot . Such a scaling suggests that whatever the mechanism responsible for the transverse energies of LCP there is no sign of its weakening in this energy range. It would be very interesting to know if dynamical models of reactions at these energies reproduce this trend. (arrows) For each bin (indicated by the number), the range of impact parameters expected to be selected according to [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF].

Reconstructed impact parameter distributions

Let us now turn to the impact parameter distributions which can be reconstructed for di erent data selections using Equations (6.2.17)-(6.2.19) and the previously discussed parameters deduced from fi ing the inclusive distributions of di erent observables. We will study a common case, where the same observable is used both to define centrality cuts and to evaluate the e ective centrality of the di erent selections 5 .

In [START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF] 129 Xe+ nat Sn collisions from 25 -50A MeV were studied as a function of impact parameter using 8 centrality bins defined in terms of the total transverse energy of LCP, E t12 . In Figure 6.3.6 are shown the di erential cross-section distributions for these centrality bins, calculated from Equation (6.2.11) using the fi ed parameters. The numbered arrows in the figure represent the expected impact parameter range for each bin, deduced from the approach of Cavata et al. [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF]. It can be seen that for the least central bins (up to bin 5), near-Gaussian distributions of b are obtained, with centroids very close to the centre of the expected ranges.

Nevertheless, even for the most peripheral bins 1 and 2, the actual widths of the deduced b distributions largely exceed the naïve sharp cut-o expectation and considerable mixing of impact parameters between di erent bins is evident. For the "most central" selections, bins 6 to 8, there is total overlap between the selected impact parameter ranges, although the b for each bin continues to decrease as E t12 cuts increase. For bin 8, the mean impact parameter is b = 1.4 fm compared to the expected upper limit for the bin of b ≤ 0.5 fm. It is also important to realize that the sharp cut-o approximation of [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] supposes that the events in this bin should occupy the full (triangular) di erential cross-section below 0.5 fm; instead they are widely spread out and represent only a small fraction of the di erential cross-section for all impact parameters b 5 fm.

We can also turn the question around and ask what would be the distribution of our observable for any given centrality bin, but now determined by the "true" impact parameter, by using Equation (6.2.9) with di erent limits for b. Figure 6.3.7 shows such distributions for the same data and using the same intervals of b as in Figure 6.3.6. This is the equivalent of Figure 6.1.2, from Péter et al. [START_REF] Péter | Global variables and impact parameter determination in nucleusnucleus collisions below 100 MeV/u[END_REF], with the di erence being that this is experimental data, not a model calculation. It can clearly be seen that the 3 most central impact parameter bins, for b ≤ 2.5 fm, are mainly responsible for populating the high-E t12 tail of the distribution, and that they cover very similar ranges of the observable. It is then obvious that any a empt to isolate events with impact parameters below this limit using such an observable would be futile. The e ective centrality of the event samples increases (i.e. b decreases) with increasing energy, as is to be expected from the overall evolution of the k(c b ) relations (Figures 6.3.2 and 6.3.3) which become steeper at small b with increasing bombarding energy, while at the same time the maximum values reached in central collisions, E t12 (b = 0), also increase with energy for each system (Figure 6.3.5b), decreasing the relative importance of fluctuations as shown in Figure 6.3.4: all these e ects contribute to increase the selectivity of the observable for the most central collisions.

So just how central are the most central collisions?

For the 1% centrality cut the e ective b decreases by a factor of 2 from ∼ 0.3 at the lowest energies to ∼ 0.14 at the minimum, which is a large e ect. It is commonly assumed that centrality cuts like these select similar collision geometries for a wide range of colliding systems and energies, which is clearly shown to be false in Figure 6.3.8. In all future analyses it will be possible, even mandatory, to take this e ect into account by providing a quantitative estimate of the e ective impact parameter distribution for each data sample. Now we come to a crucial question: just how central are the most central collisions? Or, to put it another way, is there a limit to the e ective centrality ( b ) of events we can select with stricter and stricter centrality cuts?

Clearly we can see in Figure 6.3.8 that reducing the cut from 10% to 1% reduces b for all systems and energies: to have a quantitative idea of the improvement, the "minima" observed for the highest energies is b = 0.24 for the 10% centrality cut while for the 1% cut it is b = 0.14. How low can we go? For a cut c E t12 ≤ 10 -3 there is a further reduction to b = 0.1, but stricter cuts of 10 -4 or 10 -5 lead to negligibly smaller values of b = 0.09 and b = 0.08, respectively (it should be remembered that the widths of these distributions are of the same order of magnitude as the mean value, see Figure 6.3.6).

What increasingly restrictive centrality cuts are very e icient at, of course, is diminishing the statistics of the selected event sample. For most of the data studied, a few million events were recorded for each system and bombarding energy (see Table 6.1), therefore a c E t12 ≤ 10 -3 cut is probably the absolute lower limit in order to retain a statistically significant number of events, while a 1% cut retains a comfortable statistics with a b which is su iciently small to be considered "central".

Summary

Ever since the Cavata prescription [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] was proposed it has been known that it probably underestimates the true centrality of collisions selected with cuts defined using the experimental centrality calculated for observables assumed to be strongly correlated with the impact parameter. Even for less central collisions, where the deduced mean centrality has been shown to be generally well estimated by this method, the approach of [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] can tell us nothing about the impact parameter distributions retained by selections.

The new approach proposed in [START_REF] Das | Relating centrality to impact parameter in nucleus-nucleus collisions[END_REF][START_REF] Rogly | Reconstructing the impact parameter of protonnucleus and nucleus-nucleus collisions[END_REF] and adapted here to Fermi energy heavy-ion collisions greatly improves the previous situation by allowing for the first time to reconstruct in a model-independent way the impact parameter distributions for any selection of experimental data. This has allowed to confirm and quantify the suspicions concerning the true centrality of the "most central collisions", which should be taken into account for example when comparing experimental data with theoretical calculations. More generally, given the current uncertainties in the codes implementing various di erent transport model approaches [START_REF] Xu | Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions[END_REF][START_REF] Zhang | Comparison of heavy-ion transport simulations: Collision integral in a box[END_REF], it is more important than ever to be able to provide, in a quantitative way, experimental data as a function of impact parameter in order to further constrain the modelisation of heavy-ion collisions in this energy range.

Chapter 7

How isotropic are the most isotropic events in Fermi energy heavy-ion collisions ?

Introduction

As collisions become more and more central in the Fermi energy regime and above, where the dynamics are governed both by the nuclear mean field and the residual interaction in the form of elastic nucleon-nucleon collisions, one expects the momentum distributions of the outgoing nucleons and any clusters they may form to become more and more isotropic. Whether or not isotropy is achieved in the most central collisions of a given system at a given energy, even for the theoretical b = 0 case, will of course depend on such things as the nuclear incompressibility, momentum dependence of the mean field, in-medium nucleon-nucleon collision cross-sections, etc., therefore it is very interesting to track the evolution of the maximum isotropy achieved as a function of collision system mass, asymmetry and bombarding energy.

A study was performed for INDRA data in [START_REF] Lehaut | Study of Nuclear Stopping in Central Collisions at Intermediate Energies[END_REF] which related the apparently decreasing isotropy observed in central collisions to the weakening of the in-medium NN cross-section [START_REF] Lopez | In-medium e ects for nuclear ma er in the Fermienergy domain[END_REF]. The event samples used for this study were selected using a multiplicity cut defined so that the mean isotropy ratio (see 7.1.1 below) becomes approximately constant above the cut. Therefore, strictly speaking, they were not selected because they are "the most isotropic events". From the previous Chapter 6 we now know that such events, selected with a high-multiplicity cut, do not correspond to "the most central collisions" either: rather they are a subset of central collisions covering a wide range of impact parameters. Therefore now I would like to try to directly answer the question: how isotropic are the most isotropic events in Fermi energy heavyion collisions?

The first obstacle to this endeavour is of course the finite-number e ects on event shape determination caused by the low multiplicities (N C 100) encountered in reactions at these energies. Figure 7.1.1 shows two examples for simulated isotropic events with a total number of charged reaction products N C = 50 or N C = 5. Of course, when we say isotropic, what we mean is that the momentum of each reaction product was drawn at random according to an isotropic distribution. The resulting events do not look particularly isotropic, especially for the 97 case N C = 5; but, even with 50 nuclei, determining the degree of isotropy by eye (not to mention comparing one event with another) is no mean feat1 . Luckily we dispose of several global variables with which we can quantify the apparent isotropy of events.

Global shape variables

The simplest way to gauge the isotropy of product momentum distributions is through the ratio of some global kinetic property perpendicular and parallel to a given fixed axis. For example, using the total kinetic energy in the centre of mass frame perpendicular and parallel to the beam axis, we can define an isotropy ratio,

R E = ∑ i E i,⊥ 2 ∑ i E i, = ∑ i E i sin 2 θ i 2 ∑ i E i cos 2 θ i (7.1.1) 
where E i , θ i are the centre of mass kinetic energy and polar angle (w.r.t. the beam axis) of the i th product. Within a factor of 2, this is the same as the "stopping variable" E rat used by the FOPI collaboration [START_REF] Jeong | Collective motion in selected central collisions of Au on Au at 150 A MeV[END_REF] which was calculated using only products emi ed in the forward hemisphere of the centre of mass frame: a variant of R E , which we will call R fw E , using only forward-emi ed c.m. products was in fact the isotropy ratio used in Lehaut et al. [START_REF] Lehaut | Study of Nuclear Stopping in Central Collisions at Intermediate Energies[END_REF]. The characteristic asymptotic values of R E are 0 for "rod-shaped" events and 1 for a spherical distribution. Note however that there is no upper bound to the value of R E as both shape and orientation of the event determine its value: a rod-shaped event orientated perpendicular to the beam axis will have R E → ∞.

A more sophisticated tool is the flow tensor of Gyulassy et al.

[38]

T αβ = ∑ i=1 ω i p α (i)p β (i) (7.1.2)
which was already presented in equation (2.2.1) (section 2.2.1, Chapter 2), built from the Cartesian components (α, β = x, y, z) of particle momenta in the centre of mass frame. For nuclear collisions where composite particles may be produced, the weight factor ω i must take into account di erences in particle masses: with ω i = (m i (γ i + 1)) -1 , Equation (7.1.2) becomes the (relativistic) kinetic energy flow tensor. Diagonalization of T αβ allows to characterize the momentum distributions in terms of an ellipsoid in momentum space. The ellipsoid has a shape (described by the 3 eigenvalues λ 1 ≥ λ 2 ≥ λ 3 )2 and a direction (described by 3 eigenvectors). Several di erent combinations of the eigenvalues can be used to simplify the shape description; among these, the sphericity,

S = 3 2 (1 -λ 1 ) (7.1.3) 
defined using the normalised eigenvalue λ 1 = λ 1 / ∑ α λ α , which takes values from S = 0 (limit of extremely prolate event shapes) to S = 1 (a perfect sphere). It should be noted that the sphericity is independent of the event orientation relative to any fixed set of axes (which, relative to the beam axis, is given by the flow angle θ f ).

To overcome the inherent ambiguity of the isotropy ratio, R E , we can calculate it with respect to the major axis of the kinetic energy flow tensor of Equation (7.1.2). A er diagonalization of the la er, its only non-zero components in the basis described by its eigenvectors are

T αα = ∑ i ω i p 2 α (i) = λ α
so that the total kinetic energy parallel to the major axis is given by λ 1 while the sum of kinetic energies in the two perpendicular directions is given by λ 2 + λ 3 . We then find for the isotropy ratio calculated in the ellipsoid frame

R ell E = λ 2 + λ 3 2λ 1 = S (3 -2S) (7.1.4) 
This will be used in Section §7.3. 1 gives the values of the sphericity and isotropy ratio for the two finite-multiplicity events shown. For the N C = 50 case the values of all 3 variables are quite close to their asymptotic values: this multiplicity is typical of central collisions at bombarding energies ∼ 50A MeV when all charged reaction products are included. On the other hand, we may try to determine the isotropy of the source of the fragments (e.g. Z ≥ 5), and only consider the la er. Then a typical multiplicity corresponds more to the N C = 5 event in the figure, for which the shape variables have very unrepresentative values. Figure 7.1.2 shows how each variable responds to simulated isotropic events 3 over a wide range of multiplicities, from N C = 3 to N C = 50. For each value of N C 10 3 events were generated E the actual number of nuclei used to calculate the values is on average one half of the multiplicity reported on the axis. in order to have a statistically significant measure of both the mean value and the standard deviation of the distribution for each variable. It should be noted that although here a random partition was generated for each multiplicity, the same evolution is found if partitions of identical nuclei are used (i.e. N C protons or N C 12 C nuclei): the result is independent of the partition.

Response for isotropic events

√ λ 1 ≥ √ λ 2 ≥ √ λ 3 . 3 See
Figure 7.1.2a shows the multiplicity-dependence of the mean apparent isotropy deduced for each variable, and some comparisons can be made. Both isotropy ratios perform equally well and are close to their asymptotic value for multiplicities greater than 20. It should be noted however that they approach the asymptote from the "wrong" side: instead of mimicking less isotropic events with R E < 1, for all finite multiplicities the ratios are > 1 if the distribution is truly isotropic. The two variables derived from the flow tensor approach their asymptotic value much more slowly, on the other hand, with the isotropy ratio R ell E being worst a ected. For multiplicities N C < 10 the multiplicity dependence of all 4 variables is very strong.

Fluctuations of the variables are of course very important, as shown in Figure 7.1.2b: for low multiplicities the widths of distributions are so large that separating events with di erent degrees of isotropy using the value of one or other of these variables is hopeless. Although fluctuations of all variables decrease with increasing multiplicity, it can be noted that fluctuations of S are an order of magnitude smaller than for the isotropy ratios, of which R f w E has a slightly worse performance than R E as on average only 50% of the nuclei in each event contribute to its calculation. 3 -(top row) Tests of power of shape variables to discriminate between isotropic and anisotropic simulated events corresponding to an ellipsoidal momentum distribution with the indicated ratio between major and minor axes (see Appendix C). Variables calculated for isotropic events are labelled (I). (bo om row) cos θ f distributions for isotropic and anisotropic events for di erent multiplicities.

Discrimination of less isotropic events.

Having examined the ability of the shape variables to recognize isotropic events of di erent multiplicities, let us now examine their power to discriminate between such events and non-isotropic events. To do so, we generate random events with an ellipsoidal momentum distribution whose elongation is characterised by the ratio between its major and minor axes (see Appendix C).. The resulting events are anisotropic with a favoured emission along the beam direction.

The resulting mean values of the di erent shape variables are shown in Figures 7.1.3a and 7.1.3b for momentum distributions with elongation ratios 1.2:1 and 1.4:1, respectively, as a function of the multiplicity. The tensor-based variables S and R ell E decrease steadily with increasing elongation of the momentum distributions, while the isotropy ratios decrease much more rapidly, especially when going from isotropic to slightly elongated events. Note however that for the smallest multiplicities values R E > 1 can still be observed. For the larger elongation, the multiplicity dependence of all variables becomes weaker for multiplicities N > 15: the mean values are almost constant. For N < 10 however the multiplicity dependence is always as strong.

Finally, the multiplicity dependence of flow angle θ f distributions is shown in Figures 7.1.3c and 7.1.3d. For this variable there are two regimes: for an isotropic emission the distribution of θ f is isotropic for any multiplicity (Figures 7.1.3c). For anisotropic events on the other hand P(cos θ f ) becomes peaked at forward angles, and this peaking increases with the multiplicity: in the limit of an infinite multiplicity it would be a delta function at the "true" flow angle (i.e. in this case 0 o ).

New method for extracting the most isotropic events

One way to overcome the finite multiplicity distortions of estimated isotropy is to take a homogeneous sample of events and extend the sum of Equation (7.1.2) to run over all particles of interest in all events, giving an e ective tensor

S αβ = E ∑ e=1 N e ∑ i=1 ω i p α (i)p β (i) = E ∑ e=1 T e αβ (7.2.1)
with an e ective multiplicity N * = ∑ E e=1 N e where E is the total number of events in the sample and N e is the multiplicity of event e. Clearly in this case N * can be made very large even if the mean multiplicity N is small as long as the event sample size E is large enough, and the diagonalization of S αβ will give an undistorted estimate of the isotropy of the events in the sample, for an homogeneous sample. The problem is to build the homogeneous sample, and that is what we will now try to do.

The new method which we present here is vaguely inspired by the Metropolis algorithm for sampling multivariate probability distributions (it is not really a Metropolis algorithm 4 ). The aim of the algorithm is best described by the following problem: 4 In a true Metropolis algorithm, a part of the trial exchanges leading to a smaller sphericity S < S would also be accepted, for example with a probability P(S , S) = S /S. Tests using this method have shown that it does not converge to the maximum sphericity of the sample, and therefore we only accept trial exchanges of events if S > S. There is no contradiction however: in a true Metropolis algorithm, where the values of S and S would correspond to statistical weights for di erent equilibrium states, such 'bad' trials must be accepted in order to ensure detailed Problem. Beginning from a dataset D, find the event sample S containing a fixed number E of events which maximizes the e ective isotropy given by Equation (7.2.1).

We propose the following algorithm in order to solve this problem. Each event e in D can be characterised by the six values of T e αβ which correspond to its contribution to the tensor of Equation (7.2.1). Beginning from a sample S, we can a empt to maximise the isotropy of this sample by picking a random event e from D and a random event e from the sample and calculating the trial tensor

S αβ = S αβ -T e αβ + T e αβ (7.2.2)
which corresponds to replacing event e of the sample by event e of the dataset. If the sample sphericity S obtained by diagonalization of Equation (7.2.2) is greater than the current sphericity of the sample, the two events are exchanged. This procedure can be iterated until the sample sphericity S converges to a constant value, when no further exchanges are accepted. Note that in the wording of the problem (and the coding of the algorithm), it is stated that the isotropy is to be maximised for a sample of fixed size, i.e. with a fixed number E of events. Ideally, we would like our algorithm to pick the events constituting the most isotropic sample S possible from among all events of the dataset D, without fixing a priori the size of the sample, E . However, one can trivially increase the apparent isotropy of the sample just by increasing its e ective multiplicity N * , i.e. by increasing the number of events in the sample. We have also found that below a certain sample size the algorithm may seek to reduce the sample size in order to increase its sphericity. Therefore it seems that if E is not fixed, the problem is not well defined.

In the following we will apply this algorithm to complete events (Z tot ≥ 0.8(Z P + Z T )) measured for 129 Xe+ nat Sn collisions. As we will calculate the tensor using fragment (Z ≥ 5) momenta, requiring to have measured at least ≈ 80% of the total charge of each event is a good way to be certain not to have missed too much information on the fragments' momentum distributions.

Maximizing the isotropy of a single event sample

As a first test, we apply the algorithm to the data for 129 Xe+ nat Sn collisions at 50A MeV. Beginning with a random sample of size E = 2000 events and an initial sample sphericity S = 0.392, the algorithm tries to increase the overall sphericity of the sample by picking random events from the reservoir constituted by all events not in the sample S. Figure 7.2.1 shows how the algorithm converges. In Figure 7.2.1(a) the sample sphericity increases steadily with the number of trial swaps from the initial value to its final value of S = 0.999941. At the same time, the rate of exchange of events with the reservoir decreases steadily until, a er 37000 trials, no more exchanges are successful for 3000 a empts, which is our condition to stop the process (Figure 7

.2.1(b)).

A er isotropy maximization with our algorithm, the degree to which the sample corresponds to a set of isotropic events can be judged from Figure 7.2.1(c), where we compare the fragment flow angle θ f distributions for all complete events and those which are in the maximized sample, calculated event by event. All cos θ f values for the sample are very nearly equiprobable and cover the full range of flow angles from 0 o to 90 o . This is a very isotropic sample of events indeed.

balance and hence the correct sampling. Here we are only concerned with maximizing (or minimizing) the sphericity of the sample S. 

Minimizing the isotropy of an event sample?

Before going further in our quest to extract a homogeneous set of the most isotropic events from the data, and as further proof of the soundness of the method, let us demonstrate that the same method can also be used to find the least isotropic events in a given set, just by inverting the trial success criterion. However, it generally takes a lot more trials to converge, which may in itself be significant.

The results are shown in Figure 7.2.2. The correlations between atomic number Z and centre of mass longitudinal velocity V cm for fragments show a clear binary character, with sometimes quasi-projectile fragments with Z ≈ 54 seen in the forward direction close to the projectile velocity (in the centre of mass frame) of V cm = 4.7 cm/ns, sometimes what appear to be fission fragments of more excited quasi-projectile nuclei, in coincidence with a fragment originating from the target, with V cm < 0. Figure 7.2.2(b) presents the distribution of the flow angle θ f for these events. As expected, it is very narrow and limited to the most forward angles, with a mean value of θ f ≈ 5 o , not far from the CM grazing angle of the reaction (5.5 o ).

Extracting all the most isotropic events

Of course there is no reason to think that the 2000-event sample S extracted above corresponds to all of the most isotropic events in our dataset. The sample size of E = 2000 events is completely arbitrary, as arbitrary as making a cut in the distribution of a shape variable for a set of finitemultiplicity events, or a cut in the flow angle distribution, θ f > 60 o . It is precisely this kind of arbitrariness that we want to remove from the event selection here.

The only way to know if our sample does indeed contain all of the most isotropic events is to take another sample from the reservoir and apply our algorithm to that one (which we will call S 2 , the first sample becoming therefore S 1 ), and so on and so on. If there exists within our dataset a homogeneous set of events whose degree of isotropy is superior to all others, we would expect to be able to extract N samples S 1 , . . . , S N with the same sample isotropy, while for all samples S i>N the sample isotropy will decrease with increasing sample number i.

In fact, this is exactly what happens. Figure 7.2.3(a) shows the sample sphericity S for each of 50 consecutive samples of E = 2000 events whose isotropy was maximised using the algorithm and then removed from the dataset (and stored for safe keeping). S is approximately constant (and very nearly equal to 1) for the first 26 samples and then begins to rapidly decrease. To check if the isotropy calculated event-by-event for each event in the samples follows this trend, and to see if it concerns not only the fragments but all charged products, Figure 7.2.3(b) presents the mean isotropy ratio for forward-emi ed Z ≥ 1 products, R f w E , as a function of sample number. This shape variable, which is calculated completely independently from the sphericity used for the isotropy maximization algorithm (see 7.1.1), also displays the same characteristics: a constant mean value R f w E ≈ 0.7 for the first 26 samples, and then a trend of decreasing isotropy for the other samples. It can be noted also in this figure that the fluctuations (standard deviation) of R f w E are also constant for samples 1 to 26, which further confirms the impression that these samples constitute an homogeneous set of events. Figures 7.2.3(c) and (d) compare the correlations between fragment atomic numbers and their longitudinal velocity in the centre of mass frame for the full set of complete events (c) and for the 26 most isotropic samples of events (d). The complete events show a clear forward-backward pa ern in their correlations which is typical of binary dissipative collisions in this energy range (compare with Figure 7.2.2). For the most isotropic events on the other hand all such correlations between the fragments' velocities and Z are absent except for momentum conservation e ects which mean that heavier fragments tend to have lower velocities (narrowing of the correlations with increasing Z). These events are therefore compact in velocity space and are compatible with the multifragment decay of a single heavy system which is on average at rest in the centre of mass frame.

In order to converge for the 50 samples shown in Figure 7.2.3 (10 5 events), and for the other beam energies shown below, the sorting programme was run for 6 ∼ 12 hours on a 20-core Dell workstation. All cores were utilised thanks to the implicit multi-threading capabilities of the latest versions of the ROOT so ware framework [START_REF] Brun | ROOT: An object oriented data analysis framework[END_REF][START_REF]ROOT Data Analysis Framework[END_REF]. The implementation of the algorithm was only possible thanks to the direct access to any event in a ROOT database file provided by the TTree storage class. Although it has taken 25 years for me to correctly answer the problem set for my Masters' internship, in my defence I would like to plead that it took most of those 25 years for the necessary computer hardware and so ware to become available. [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (I): Selection of single-source events[END_REF].

• the total charge contained in the fragments, Z bound ;

• atomic number of the largest fragment by charge, Z max ;

• mean charge of the fragments, Z f ;

• and the mean relative velocity between each pair of fragments, V rel f .

All of these observables have constant or approximately constant mean values for all 26 samples in the event set. Not only their mean values are constant, but also the fluctuations represented by the standard deviation for each variable's distribution (open symbols). The values are no longer constant for the samples a er 26, as for the sample sphericity and forward isotropy ratio (Figure 7.2.3). We can therefore consider that these events constitute an homogeneous set corresponding to the most isotropic events produced by 129 Xe+ nat Sn collisions at 50A MeV.

7.2.4 Most isotropic events for 129 Xe+ nat Sn collisions from 25 to 50A MeV

The same method has been applied to complete events (Z tot ≥ 80) for 129 Xe+ nat Sn data from 25 to 50A MeV. Results for the di erent sets of most isotropic events are presented in Table 7.1. Note that the method was applied twice to the data at 25A MeV and 39A MeV with di erent sample sizes, E . It can be seen that the results are hardly sensitive to this numerical parameter, which demonstrates the robustness of the method.

The cross-section corresponding to these most isotropic events for each energy has been calculated using measured cross-sections for all M ≥ 4 trigger data in [START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF]. The cross-sections are unsurprisingly low, around 25 mb; nevertheless, this corresponds to 7 ∼ 10% of the cross-section for complete events. An exception is the 25A MeV data, for which the cross-section is 3 ∼ 4 times higher than for the other bombarding energies. This may of course be linked to the previously observed prevalence of fusion-like processes at this energy and below (see Part I, Chapter 3).

It is of course interesting to compare the cross-sections for the event sets we have isolated here with the cross-sections for data selected using the "old" single-source/QF selection, θ f > 60 o , of [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (I): Selection of single-source events[END_REF] and Part I, section 2.2.1. These are given in the last row of the table, doubled in order to estimate the total cross-section for all events assuming an isotropic θ f distribution. It can be seen that the new isotropic event sets follow the same evolution of cross-section as for QF events, but are always slightly lower in size. The reason for this can be seen in Figure 7.2.5 which shows the distributions of cos θ f for all complete events and the most isotropic events, for 25A MeV and 45A MeV bombarding energies. The first thing to notice is that for θ f > 60 o (cos θ f < 0.5), the distributions for the most isotropic events follow almost identically the distributions for complete events, which in this range of θ f correspond to the QF events selected with the flow angle selection. They are however slightly lower: therefore the most isotropic events we have isolated include nearly but not quite all of the previously-defined QF events.

On the other hand, the θ f distributions for our selections are far from isotropic (non-equiprobable cos θ f distribution): at all bombarding energies they display a strong suppression of events with flow angles θ f 50 o . This is not entirely unexpected, as we know that events with the most forward flow angles are dominated by reactions that are not fully relaxed in momentum space and which keep a strong memory both of the beam direction and the entrance channel nuclei. Nevertheless we might have expected the most isotropic events to have a perfectly isotropic θ f distribution "underneath" the dominantly forward-peaked distribution for less isotropic events.

However, it is very instructive to compare these distributions with that shown in Figure 7. selection of the most isotropic events are entirely compatible with these calculations. Figure 7.2.6 presents the same observables as in figure 7.2.4, but now with the mean value of each observable for the most isotropic dataset at each bombarding energy. The "rise and fall" of mean fragment multiplicity M f with a maximum for ≈ 45A MeV, the near-linear increase of mean light charged particle multiplicities M LCP , the decrease of the mean charge bound in fragments Z bound , of the mean charge of the largest fragment Z max , of the mean fragment charge Z f , and the increase of the mean inter-fragment relative velocity V rel f are the same as for the QF events selected with the flow angle cut and studied in [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF]: the only di erence is that here they are presented simply as a function of the bombarding energy, whereas in [START_REF] Bonnet | Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions[END_REF] they were shown as a function of the reconstructed excitation energy per nucleon of the multifragmenting systems.

Therefore we can conclude that the previously-studied QF or "single-source" multifragmentation events are a (representative) subset of the most isotropic events at each bombarding energy, which validates a posteriori the θ f -cut selection method. The main di erence here is that events ). Here flow angles θ f are from the tensor Equation (7.1.2) calculated with all Z ≥ 1. are selected without using any arbitrary or a priori assumption.

So just how isotropic are the most isotropic events?

Let us begin by comparing the apparent isotropy of our "most isotropic events" (from now on referred to as events) with that of the events retained in [START_REF] Lehaut | Study of Nuclear Stopping in Central Collisions at Intermediate Energies[END_REF] which were used to deduce the bombarding energy and system dependence of nuclear stopping. Let us first recall how the events were selected: the isotropy ratio R f w E was calculated event by event using all charged products (Z ≥ 1) in the forward centre-of-mass hemisphere (i.e. with centre-of-mass velocity v cm i > 0), for events satisfying a charge completeness criterion applied to these same products

Z f w tot = ∑ v cm i >0 Z i > 0.8Z p (7.3.1)
with Z p = 54 the atomic number of the projectile. S events were then selected with a total multiplicity cut N min C defined in such a way that for N C > N min C the value of R shows a small linear increase).

Let us compare the mean isotropy ratio R f w E

for each bombarding energy of 129 Xe+ nat Sn collisions. For the events the ratio is calculated exactly equivalently using all charged products (Z ≥ 1) in the forward centre-of-mass hemisphere, but without the Z f w tot completeness criterion (we recall that the completeness criterion for events is applied to the total charge of all products in the full velocity space).

At first glance, the mean apparent isotropy of the events is significantly higher for all bombarding energies, while the same trend of decreasing isotropy with increasing beam energy as for events can be observed (full symbols in Figure 7.3.1a). However the isotropy ratio calculated with respect to the beam axis has an inherent ambiguity: any change in the "orientation" of non-isotropic events, i.e. the flow angle θ f , will modify the value of R f w E so that it no longer measures just the apparent isotropy of the events but also their orientation. Therefore we cannot compare the apparent isotropy of two sets of events with di erent θ f distributions using R f w E

.

As Figure 7.3.1b shows, the flow angle distributions for the events are strongly peaked at small θ f , much more so than for events 6 (see figure 7.2.5). The apparent increase of R f w E

for each bombarding energy seen for events in Figure 7.3.1a is then simply due to the di erent weighting of the θ f distributions in each case, as shown in the figure, where the mean values for each set of events have been calculated for small (θ f < 60 o ) and large (θ f > 60 o ) flow angles (open symbols). Very di erent apparent isotropies are found in each case, and it can be seen that for θ f > 60 o almost identical R f w E > 1 values are found (note the particularly high value for 25A MeV), but this is simply due to the auto-correlation between the two variables, not an indication of greater isotropy. It can be noted on the other hand that for "small" flow angles where auto-correlation is not so strong, the events still display a higher apparent isotropy than the events. To remove this ambiguity we will now consider the isotropy ratio calculated in the ellipsoid frame, R ell E , of Equation (7.1.4). As Figure 7.3.2a shows, the evolution of the apparent isotropy measured with this variable is very di erent to that seen in Figure 7.3.1a: for both and events the apparent isotropy increases with incident energy, in the la er case reaching a plateau at around 39A MeV. Let us note also that the mean apparent isotropy for data at 25A MeV is very nearly the same for both data selections. There is however one more possible source of ambiguity which we have not dealt with and which a ects all shape variables: the number of nuclei used in the calculation of R ell E in each case, which here is nothing but the total charged product multiplicity N C . However, Figure 7.3.2b shows that at each bombarding energy N C is in fact a few units larger for stopping events; as they were selected with a cut in the upper tail of the N C distribution, this is not all that surprising. Whatever the reason, the increased apparent isotropy for stopping events in Figure 7.3.2a cannot be trivially explained by an increase in the mean multiplicity.

In order to compare the actual degree of anisotropy of the momentum distributions for 5 This is of course equally true for R E , the isotropy ratio using the full centre of mass velocity space. Almost identical results are obtained as in Figure 7.3.1 using R E . 6 As we are dealing with all Z ≥ 1 products in the calculation of R f w E , the flow angles in Figure 7.3.1b are calculated for the tensor Equation (7.1.2) using all Z ≥ 1, not just for fragments with Z ≥ 5 as in Figure 7.2.5 and in the super-tensor of Equation (7.2.1), used to select the events. The cos θ f distributions for all Z ≥ 1 products for events are also peaked at small angles (except for 25A MeV) but much less so than for stopping events: by a factor of ∼ 2 for 50A MeV, ∼ 3 for 32A MeV. and events, we present in Figure 7.3.3 the evolutions of the mean value R ell E with total multiplicity for each bombarding energy. Comparing mean isotropy ratios multiplicity by multiplicity is the only way to avoid any ambiguity due to di erences in the distributions of N C . As the events were selected with a cut in multiplicity (clearly evident in these figures), they e ectively have very di erent N C distributions. What is also evident in these figures is that at all bombarding energies and for all multiplicities the events have a lower apparent isotropy than the events (even at 25A MeV where the mean value for events shown in Figure 7.3.2a is slightly higher; this is a clear demonstration of the danger of studying apparent isotropies without taking into account the underlying multiplicity distributions).

Energy dependence of nuclear transparency

Another di erence in Figure 7.3.3 concerns the shape of the R ell E -N C correlations which increase more steeply for than for events (except at 25A MeV). Such correlations are of the same type as we saw in 7.1.1.2 when studying the multiplicity dependence of the di erent shape variables for momentum distributions with di erent degrees of anisotropy. In fact, for the events the correlations observed in Figure 7.3.3 can be exactly reproduced by simulations for a momentum distribution with a fixed elongation of ≈ 1.25 : 1, for bombarding energies above the Fermi energy, E b ≥39A MeV. At the two lower energies, the slopes of the correlations resemble more those of the stopping data, and cannot be reproduced by a fixed anisotropy. Without fully understanding the significance of this observation for the moment, we can at least estimate upper and lower limits for the degree of elongation of the momentum distributions in The values of the momentum distribution elongation parameter Υ deduced in this way for each bombarding energy are shown in Figure 7.4.1a. As in fact this parameter is representative of the amount of nuclear transparency in the collisions, we shall call it the nuclear transparency parameter. Obviously Υ = 1 corresponds to a fully isotropic momentum distribution, while increasing values of the elongation correspond to increasing transparency. The nuclear transparency is seen to decrease with bombarding energies up to the Fermi energy, where it becomes approximately constant.

However this transparency parameter is only a measure of the apparent transparency of nuclear ma er in these reactions: as we spent Chapter 6 demonstrating and quantifying, any sample of selected events corresponds to collisions with a distribution of di erent impact parameters. The observed transparency (or stopping) then depends on a convolution of nuclear ma er properties and collision geometry. The only way to disentangle the two is by comparison with the results of microscopic transport model calculations, which must be performed in such a way that the impact parameter distributions used are representative of the experimental data.

Therefore the values of Υ given in Figure 7.4.1a are of li le significance unless accompanied by the information given in Figure 7.4.1b, which concerns the estimated impact parameter distributions for the events. We present the distributions using both E t12 and N C for this purpose, as they do not give exactly the same results. In both cases the full distributions for all energies are very wide, up to 7 ∼ 8 fm 7 : as can be seen in the figure where the standard deviations are represented by vertical bars, the distributions are slightly narrower when deduced from the total multiplicity. The mean impact parameters decrease slightly with bombarding energy, from 3 ∼ 4 fm at 25A MeV to ≈ 2.5 fm at 50A MeV.

These data should now be used with transport model calculations in order to give a definitive answer to the question of the dependency of nuclear transparency on bombarding energy.

Summary

In this chapter it has been shown, for well-measured 129 Xe+ nat Sn collisions, that it is possible to extract from the data homogeneous event samples which correspond to the events with the highest degree of isotropy (or the most "compact" events) amongst all those measured. The novel selection method is performed in such a way that, unlike all previous approaches, it involves no arbitrary cuts or a priori definitions of how isotropic the most isotropic events should be. It is important to note that it is possible for this method to give the result that there are no "special" events, i.e. that starting from the first sample of arbitrary size E events the sample isotropy decreases continuously. This was not observed for 129 Xe+ nat Sn data, but may be observed if the method is applied to other data.

The events were then compared with the single-source or quasi-fused (QF) source events selected with an arbitrary cut in the θ f flow angle distribution, which have been studied many times over the years by the INDRA collaboration and are largely seen as a paradigm for multifragmentation in central collisions. It turns out that the QF events are in fact a representative subset of the sample, with near-identical fragment partition properties, and showing the same signs of collective radial expansion through their mean inter-fragment relative velocities. This is the strongest a posteriori experimental validation to date of the selection of compact multifragmenting sources using a θ f cut.

The question of the actual degree of isotropy of these most isotropic samples was then carefully considered. At all bombarding energies considered here, the events present a finite anisotropy: "full stopping" is not achieved. However, perfect isotropy, like b = 0 collisions and thermodynamic equilibrium, is a theoretical idealization and not to be expected when dealing with real experimental data. Using the methods introduced in Chapter 6 we estimate that the events result from collisions with mean impact parameters in the range b ≈ 2.5 -4 fm therefore a finite anisotropy is to be expected from the collision geometry. Comparing the multiplicity dependence of the measured apparent isotropy with simulated events having ellipsoidal momentum distributions, we have quantified the anisotropy for each bombarding energy, which, for E b ≥ 39A MeV, corresponds to a ratio between the major and minor axes of the ellipsoid in momentum space of 1.25:1, which is a small deformation compared to spherical isotropy.

Taking this elongation ratio Υ to be a measure of the apparent nuclear transparency, we find that when considering carefully-selected samples of the most isotropic events, the nuclear transparency decreases with bombarding energy and reaches a minimum at the Fermi energy. This is exactly what we expect to happen if, as the Fermi energy is approached, the phase space for elastic nucleon-nucleon collisions opens up, increasing the stopping power of nuclear ma er beyond that of the weakening mean-field one-body dissipation.

Of course, this is the exact opposite of the conclusions of [START_REF] Lehaut | Study of Nuclear Stopping in Central Collisions at Intermediate Energies[END_REF] where the nuclear stopping, supposed to be measured by R f w E , was shown to decrease and reach a minimum at the Fermi energy. As we have shown above, the interpretation of this variable in terms of anisotropy of event momentum distributions is far from direct, and requires to take into account the ambiguities introduced by di erences in event orientation (θ f distributions) and multiplicity distributions.

When such e ects are taken into account the nuclear stopping (isotropy ratio) calculated from the data is in fact shown to be, at worst, constant, or at best, slightly increasing in this energy range (Figure 7.3.2a).

Part III Appendixes

This equation provides a self-consistent mean-field evolution where the interaction between the particles is replaced by a 1-body mean-field potential generated by all the particles. It is, then, assumed that each particle evolves independently in this potential.

The TDHF approach provides an excellent treatment of one-body dissipation mechanisms which are crucial to properly describe low-energy (well below Fermi energy) heavy-ion collisions [START_REF] Simenel | Nuclear quantum many-body dynamics[END_REF], in the presence of phenomena such as coupling of macroscopic collective motions with microscopic excitations (distortion of the single-particle wave functions by the collision partner of a heavy-ion collision, particularly when, in dissipative reactions -i.e. deep-inelastic collisions -nucleons are transferred from one partner to the other leading to transfer of the kinetic energy of the relative motion of the two nuclei into intrinsic excitations; or, in fusion reactions, multiple reflections of single-particle wave functions on the mean field "wall" which dissipate collective translational energy into particle excitations and collective vibrations of the compound system) and emission of nucleons into the continuum, which is a natural cooling mechanism of excited nuclei.

On the other hand, with bombarding energies increasing towards the Fermi energy and beyond, the inclusion of beyond-mean-field correlations, specifically in-medium two-body correlations i.e. nucleon-nucleon collisions, which are hindered or completely suppressed at lower energies by the Pauli principle, become increasingly important for the correct description of the dynamics. These could in principle be taken into account by going to the next order of the BBGG hierarchy, i.e. using the equation for the time evolution of the 2-body density operator and neglecting 3-body correlations. However, such an approach demands far more computational e ort than the standard TDHF approach, and even now only a few applications have been a empted (see [START_REF] Simenel | Nuclear quantum many-body dynamics[END_REF] and references therein).

Historically, inclusion of residual interactions and other beyond-mean-field e ects in transport models for nuclear reactions in the Fermi energy range has proceeded via the use of semiclassical approximations to the TDHF equation (but see also [START_REF] Juillet | Exact Stochastic Mean-Field Approach to the Fermionic Many-Body Problem[END_REF][START_REF] Lacroix | Exact and approximate many-body dynamics with stochastic one-body density matrix evolution[END_REF]). Let us note in passing some very recent work by the Nantes group, who, a er their earlier work on a quantal Boltzmannlike approach (DYWAN: Dynamical Wavelets in Nuclei [START_REF] Jouault | Wavelet representation of the nuclear dynamics[END_REF]) are currently working to include fluctuations in an extended TDHF (ETDHF) approach [START_REF] Besse | Reexamining an extended-mean-field approach in heavy-ion collisions near the Fermi energy[END_REF].

A.1.2 Semi-classical approach: The nuclear Boltzmann equation

The N-particle Wigner function, f N (r 1 . . . r N ; p 1 . . . p N ; t), is an auxiliary function analogous to but distinct from the classical distribution function and quantum density matrix which may be defined as a Fourier transform of the N-particle density matrix [START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF],

f N = d 3 y 1 • • • d 3 y N N ∏ j=1 exp ip j • y j /h
×Φ N (r 1 + y 1 /2, . . . , r N + y N /2; r 1y 1 /2, . . . , r Ny N /2; t) (A. 1.8) Applying this transform to the TDHF equation, Equation (A.1.7), and truncating the resulting expansion in terms of powers of h, we recover the Vlasov equation [START_REF] Grégoire | Semi-classical dynamics of heavy-ion reactions[END_REF] ∂ ∂t

+ p • -→ ∇ r m -U(r) ← - ∇ r • -→ ∇ p f = ∂ f ∂t + { f , H} = 0 (A.1.9)
for the time evolution of a fluid of particles moving in a (momentum-independent) mean field potential U(r) generated by their own mutual interactions, with the e ective Hamiltonian here given by H = p2 /2m + U(r) 2 . Here f = f (r, p; t) is the 1-body Wigner distribution, which is the closest analogue to classical phase-space density that can be obtained from quantum mechanical wave functions (however, in certain cases f can be negative, unlike the classical case) [START_REF] Bertsch | A guide to microscopic models for intermediate energy heavy ion collisions[END_REF].

The Vlasov equation, Equation (A.1.9) is nothing but the Boltzmann equation minus the collision term on the right hand side:

∂ f ∂t + { f , H} = ∂ f ∂t + ∇ p H • ∇ r -∇ r H • ∇ p f = I[ f ] (A.1.10)
The collision term I[ f ] can be related back to the "residual" interactions between nucleons, i.e. all the beyond-mean-field correlations beyond the truncation of the BBGKY hierarchy at the level of the 2-body Wigner densities, rather than at the 1-body level, as for TDHF (Equation (A.1.7)) or the semi-classical Vlasov equation, Equation (A.1.9). As such, note that I[ f ] is not necessarily limited to 2-body collisions (see [START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF]). However, rather than deriving I[ f ] from the same interaction which gives the mean field part, usually the Uehling-Uhlenbeck modified version of the Boltzmann 2-body collision term is used [START_REF] Uehling | Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I[END_REF]:

I[ f ] = 1 2m dp 2 dp 1 dp 2 δ 4 (p 1 + p 2 -p 1 -p 2 ) ×w(p 1 , p 2 , p 1 , p 2 ) [ f 1 f 2 (1 -f 1 )(1 -f 2 ) -f 1 f 2 (1 -f 1 )(1 -f 2 )] = dp 2 dΩ |v 2 -v 1 | dσ dΩ [ f 1 f 2 (1 -f 1 )(1 -f 2 ) -f 1 f 2 (1 -f 1 )(1 -f 2 )] (A.1.11)
with w a suitable transition matrix for the sca ering process 1 + 2 → 1 + 2 , which in the last line is given by the product of the relative velocity of the incoming pair and the (possibly energy-, angle-, isospin-and density-dependent) di erential cross-section for elastic nucleonnucleon collisions. The modification of I[ f ] compared to classical Boltzmann takes account of the fermionic nature of nucleons via the inclusion of the Pauli blocking factors, (1f ), which suppress sca ering to states which are already occupied. The nuclear Boltzmann equation, Equation (A.1.10), along with the collision integral, Equation (A.1.11), is the basis for the semi-classical transport models Landau-Vlasov [START_REF] Grégoire | Semi-classical dynamics of heavy-ion reactions[END_REF], BUU [START_REF] Bertsch | A guide to microscopic models for intermediate energy heavy ion collisions[END_REF] and BNV [START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF], among others (see [START_REF] Xu | Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions[END_REF] for a full and recent list of transport codes, plus comparisons of their performance i.e. how well they actually simulate the equations given above). Such models provide quantitative simulations of heavy-ion collisions in the Fermi energy regime where both the nuclear mean field (calculated by an appropriate e ective force: see A.1.4 below) and Pauli-blocked nucleon-nucleon collisions play an important role. 

The test particle method

The nuclear Boltzmann equation is a non-linear integro-di erential equation which generally cannot be solved analytically or in a direct numerical way. Rather the common method is to simulate the solution by using the test-particle (TP) technique, which was introduced to nuclear physics in the beginning of the 1980s by Wong [START_REF] Wong | Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation from a classical point of view[END_REF] for the solution of the TDHF equation. The one-body Wigner distribution f (r, p; t) for A nucleons is then approximated by a sum of N TP distributions per nucleon,

f (r, p; t) = 1 N TP AN TP ∑ i=1 G (r -r i (t)) G (p -p i (t)) (A.1.12)
where G, G are shape functions in position and momentum space, respectively, which may be δ-functions, triangular functions or Gaussian distributions, depending on the implementation. Injecting Equation (A.1.12) into the Vlasov equation, Equation (A.1.9), we find the Hamiltonian equations of motion for the centroids of the shape functions,

dp i dt = -∇ r H dr i dt = ∇ p H (A.1.13)
which therefore move like real "test" particles in the e ective mean field.

The test particles are also used to simulate the Boltzmann collision integral Equation (A.1.11), according to the prescription of Bertsch and Das Gupta [START_REF] Bertsch | A guide to microscopic models for intermediate energy heavy ion collisions[END_REF]. Stochastic two-body collisions take place between pairs of test particles when they approach closer than the geometrical distance of closest approach d min = √ σ * /π. σ * may be the vacuum or in-medium elastic NN collision cross-section; collisions may take place only between pairs of test particles belonging to one of the A ensembles of N TP test particles (parallel ensembles method), or between all pairs among the AN TP test particles (full ensemble method), in the la er case with the reduced cross-section σ * /N TP . See [START_REF] Zhang | Comparison of heavy-ion transport simulations: Collision integral in a box[END_REF] for a recent and thorough comparison of implementations of the collision integral in di erent codes.

A.1.3 Beyond the nuclear Boltzmann equation

An essential shortcoming of the nuclear Boltzmann equation, is the fact that the propagation of the 1-body density is, in principle, entirely deterministic. This is because in the collision integral, Equation (A.1.11), the various possible outcomes of the residual collisions are averaged at each step (see Figure A.1.1), leading to a significantly di erent evolution compared to mean-field alone (Vlasov approach), but still a unique dynamical trajectory for a given set of initial conditions. In reality the number of collisions should fluctuate from one realisation of the evolution to another, due to the neglect of 3, 4, . . . , N-body correlations. This lack of stochasticity precludes the spontaneous appearance of fluctuations and thus renders the description inadequate when bifurcations and instabilities are encountered in the dynamics.

Several ways to avoid this shortcoming have been explored. The first consists in going beyond the mean value of the collision integral in order to calculate and include the associated fluctuations: these are the so-called Boltzmann-Langevin approaches. A second way tries to retain all N-body correlations while still maintaining a correct description of the mean field dynamics: this is the molecular dynamics approach.

A.1.3.1 Boltzmann-Langevin approaches

The Boltzmann-Langevin model allows the various stochastic collision outcomes to develop independently, thus leading to a continual trajectory branching and a corresponding ensemble of histories. This is done by now considering the collision term of Equation (A.1.10) to be a stochastic variable,

I[ f ] = Ī[ f ] + δI(r, p; t) (A.1.14)
with a mean value Ī[ f ] given by the Uehling-Uehlenbek expression, Equation (A.1.11), while the fluctuating term, arising from correlations not accounted for by the mean value, is characterised by the correlation function [START_REF] Ayik | Fluctuations of single-particle density in nuclear collisions[END_REF] ≺ δI(r, p; t)δI(r , p ; t) = C(p, p )δ(rr )δ(tt ) (A. 1.15) which is assumed local in space and time. Such stochasticity is typical of a reduced description of a dynamical system using a limited number of degrees of freedom; the fluctuations represent the coupling to the (many more) unknown degrees of freedom [START_REF] Ayik | The Boltzmann-Langevin model for nuclear collisions[END_REF]. The correlation function is completely determined by the averaged properties of the single-particle density and is closely related to the average collision term; no new parameters are required for describing fluctuation properties, in an equivalent way to the fluctuation-dissipation theorem in descriptions of Brownian motion.

Exact numerical solutions of the Boltzmann-Langevin equation (BLE), Equation (A. 1.14), are very di icult to implement and so various approximate methods have been developed in order to allow realistic simulations of collisions:

• in the Brownian one-body (BOB) dynamics, developed in [START_REF] Chomaz | Brownian One-Body Dynamics in Nuclei[END_REF][START_REF] Guarnera | Multifragmentation with Brownian one-body dynamics[END_REF], the fluctuating part of the collision integral δI is replaced by a stochastic force added to the standard Boltzmann-Nordheim-Vlasov (BNV) implementation of Equation (A.1.10), the strength of which can be tuned to correctly describe the growth of the most important unstable modes in an equilibrated system at a given density and temperature. It is not possible to use BOB in order to simulate the full collision dynamics from t = 0 and for any impact parameter. This is the approach used in my Ph.D work to simulate collisions of • in the Stochastic Mean Field (SMF) approach, developed in [START_REF] Colonna | Fluctuations and dynamical instabilities in heavy-ion reactions[END_REF][START_REF] Colonna | Fragmentation path of excited nuclear systems[END_REF], the assumption of local thermal equilibrium allows to mimic the fluctuation δI with density fluctuations corresponding to the kinetic equilibrium values typical of a Fermi gas at (local) temperature T and chemical potential µ,

σ 2 ρ,eq (r; t) = 1 V dp h 3 /4 σ 2 f (r, p; t) = T V 3ρ 2 F 1 - π 2 12 T F 2 + • • • (A.1.16)
SMF can simulate full collision dynamics for any impact parameter. This model was used to investigate compression-expansion dynamics and stopping for central collisions (b ≤ 4 fm) of 129 Xe+ nat Sn at di erent bombarding energies in [START_REF] Bonnet | Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies[END_REF];

• in the Boltzmann-Langevin One-Body model [START_REF] Napolitani | Bifurcations in Boltzmann-Langevin one body dynamics for fermionic systems[END_REF] two-body nucleon-nucleon collisions take place between "nucleon wave packets" defined as agglomerates of test particles based on proximity in phase space, following the prescription of Bauer et al. [START_REF] Bauer | Fluctuations and clustering in heavy-ion collisions[END_REF], but with an improved implementation of the Pauli blocking factors for wave packet collisions. In this way the Langevin fluctuations in the evolution of the one-body distribution function are implemented in full phase space with the correct amplitude at all times of the evolution;

• Recently, Lin and Danielewicz [START_REF] Lin | One-body Langevin dynamics in heavy-ion collisions at intermediate energies[END_REF] reformulated the beyond-mean-field dynamics in heavyion collisions in terms of Brownian motions of nucleons in the viscous, out-of-equilibrium nuclear medium, as opposed to the typical two-body sca erings. The Brownian motions are, in e ect, the momentum and energy exchange between a nucleon and the nuclear medium it is immersed in. They are governed by a set of Langevin equations consisting of a friction-like term and a stochastic term. This approach describes the dissipation and fluctuation dynamics consistently and simultaneously.

Antisymmetrized Molecular Dynamics (AMD) In AMD, the A-nucleon system is described by an anti-symmetrized Slater determinant of Gaussian wave packets,

|Φ(Z) = Â A ∏ i=1 φ i (i) (A.1.20)
with the full antisymmetrization operator Â. Each single-particle state is a product of a Gaussian function and a spin-isospin state,

r|φ i = exp -ν r - Z i √ ν 2 χ σ i (A.1.21)
The spin and isospin of each nucleon are fixed, as is the Gaussian width parameter, ν. The manybody state is thus parametrized by the (complex) Gaussian centroids Z = {Z 1, Z 2 , . . . , Z A } whose time evolution may be determined by the time-dependent variational principle

δ t 2 t 1 dt Φ(Z) ih d dt -H Φ(Z) Φ(Z)|Φ(Z) = 0 (A.1.22)
An e ective interaction is employed in the Hamiltonian H, such as the Gogny or Skyrme forces (see A.1.4). The resulting equations of motion then represent the motion of the wave packets in the mean field. Stochastic NN collisions are implemented using in-medium elastic crosssections, and are only allowed for final states which are also Slater determinants, thus respecting the Pauli principle. NN collisions in AMD are therefore treated as a quantum branching process in which the system stochastically jumps from one Slater determinant to another (this can be seen as an approximation to the approach of [START_REF] Lacroix | Exact and approximate many-body dynamics with stochastic one-body density matrix evolution[END_REF]). Recently, the two-nucleon collision process in AMD has been generalized to allow the possibility that each colliding nucleon may form a cluster of mass number A = 2, 3 or 4 with some other wave packets [START_REF] Ono | Dynamics of clusters and fragments in heavy-ion collisions[END_REF]. At the present time, AMD is probably the best available microscopic model for heavy-ion (and especially multifragmentation) reactions in the Fermi energy domain, as it respects both the coherent mean field propagation (a thorough and positive comparison between reaction dynamics with AMD and SMF was presented in [START_REF] Rizzo | Comparison of multifragmentation dynamical models[END_REF]) and the existence of strong many-body correlations, essential for the description of clusterization and fragmentation.

A.1.4 E ective forces

The most microscopic way to calculate empirical properties of nuclear ma er is to start from a realistic two-body free nucleon-nucleon (NN) interaction with parameters fi ed to NN sca ering phase shi s in di erent partial wave channels and to properties of the deuteron [START_REF] Machleidt | High-precision, charge-dependent bonn nucleon-nucleon potential[END_REF]. By taking these bare interactions as input into a many-body formalism, such as the non-relativistic Bruckner-Hartree-Fock [START_REF] Li | Nuclear ma er saturation point and symmetry energy with modern nucleon-nucleon potentials[END_REF] or relativistic Dirac-Bruckner-Hartree-Fock approximations [START_REF] Van Dalen | The relativistic dirac-brueckner approach to asymmetric nuclear ma er[END_REF], an e ective in-medium NN interaction can in principle be derived. Such an approach has been used with success to reproduce infinite nuclear ma er properties. However, these interactions are [START_REF] Sebille | Nuclear dynamics with the (finite-range) Gogny force: Flow e ects[END_REF].

t 3 [MeV] k W k [MeV] B k [MeV] H k [MeV] M k [MeV] a k [fm
a V [MeV] p F [MeV/c] ρ 0 [fm -3 ] m * /m K ∞ [MeV] a S [
(ρ nρ p )/ρ), as required for BUU-type calculations, is given by [START_REF] Das | Momentum dependence of symmetry potential in asymmetric nuclear ma er for transport model calculations[END_REF] U

(ρ, δ, p, τ) = A u ρ τ ρ 0 + A l ρ τ ρ 0 + B ρ ρ 0 σ (1 -xδ 2 ) (A.1.26) -x B σ + 1 ρ σ+1 ρ σ 0 dδ 2 dρ τ + 2C τ,τ ρ 0 d 3 p f τ (r, p ) 1 + (p -p ) 2 /Λ 2 + 2C τ,τ ρ 0 d 3 p f τ (r, p ) 1 + (p -p ) 2 /Λ 2
where Λ is a cut-o parameter (typically ∼ p F , the Fermi momentum at saturation density; see [START_REF] Das | Momentum dependence of symmetry potential in asymmetric nuclear ma er for transport model calculations[END_REF]), and x is a parameter introduced to cover the largely uncertain density dependence of the nuclear symmetry energy E sym (ρ) [START_REF] Baldo | The nuclear symmetry energy[END_REF]. For the meaning and values of other parameters, see [START_REF] Das | Momentum dependence of symmetry potential in asymmetric nuclear ma er for transport model calculations[END_REF]. The Gogny mean field has a realistic momentum dependence below at least E 200 MeV [START_REF] Sebille | Nuclear dynamics with the (finite-range) Gogny force: Flow e ects[END_REF]. The Gogny interaction has been utilized most frequently in AMD calculations (see [START_REF] Ono | Antisymmetrized molecular dynamics for heavy ion collisions[END_REF][START_REF] Ono | Dynamics of clusters and fragments in heavy-ion collisions[END_REF]).

QMD interaction

The interaction used in QMD [START_REF] Zbiri | Transition from participant to spectator fragmentation in Au+Au reactions between 60A and 150A MeV[END_REF] includes zero-range Skyrme, finite-range Yukawa and Coulomb components and can be wri en

V ij (r , r) = δ(r -r) t 1 + t 2 ρ r + r 2 γ-1 + t 3 exp (-|r -r|/µ) |r -r|/µ + Z i Z j e 2 |r -r|
It should be noted that Z i , Z j are the e ective charges of baryons i and j (Z proj /A proj for projectile nucleons, Z targ /A targ for target nucleons).

A.2 Statistical descriptions of multifragmentation

The starting point for statistical models of multifragmentation is to suppose that a highly-excited nuclear system will arrive, at some point in its evolution, at a moment commonly known as the freeze-out a er which the characteristics of the fragments produced by its decay will no longer significantly change, apart from the e ects of secondary decay (evaporation of light particles due to residual excitation energy) and Coulombian acceleration due to mutual repulsion between charged fragments. The original statistical model, and ancestor of all others, is commonly recognised to be that of Randrup and Koonin [START_REF] Randrup | The disassembly of nuclear ma er[END_REF].

It is a common fallacy, o -repeated not only by the users of such models, but also by their creators and a fortiori by their detractors, that the basic hypothesis of these models is that a multifragmenting system is in statistical equilibrium at freeze-out. This is a common misapplication of the ergodic theorem to non-ergodic finite systems (see Chapter 3 of [START_REF] Borderie | Liquid-Gas phase transition in nuclei[END_REF] for a detailed discussion of this and related points). What is actually supposed is that a given set (ensemble) of multifragmenting systems populate uniformly the phase space corresponding to the chosen description of the freeze-out, which is not the same thing.

Another misconception is that the use of statistical equilibrium concepts implies that in some way processes must be "su iciently slow". To quote D.H.E. Gross, who stands as one of the pioneers in the application of finite-system statistical mechanics to multifragmentation reactions, "a statistical process populates the accessible phase-space uniformely [sic], i.e. every quantum state of the system [my emphasis] that is not excluded by basic conservation laws [...] is populated independently of how easy or di icult this might be. That is, a statistical process must also be in general a slow process and thus will be an idealisation. In reality most reactions will not go slowly enough that remote parts of the phase space may not be reached [...]" [START_REF] Gross | Statistical decay of very hot nuclei-the production of large clusters[END_REF].

The apparent di iculty arises from the mistake of thinking that the aim of the statistical model being constructed is to describe a single system using a Gibbs ensemble of an infinite number of replicates of the system having the same macroscopic properties, as one commonly does when dealing with systems in the thermodynamic limit. Obviously in this case, any single system would need "su icient time" to explore the whole phase space mapped out by the ensemble of replicates -the ergodic theorem.

But Gross himself then gives the solution in the next lines: "The quantal transition probability P ik = (2π/h)|T ik | 2 ρ k is split into two factors: the square of the T matrix [reaction dynamics] times the final-state density ρ k . Because of equipartition in a statistical process |T ik | 2 is roughly constant and only ρ k determines the cross-section". In other words, if data from heavy-ion collisions are carefully sorted into homogeneous event samples corresponding to similar reactions so that for a given sample "|T ik | 2 is roughly constant", the properties of the selected events are determined mainly by the statistical weights ρ k regardless of whether the reaction represented by T ik is "fast" or "slow".

Specific statistical multifragmentation models di er in their description of the freeze-out configuration, the implementation of the initial conditions (constraints), and the numerical methods employed to make predictions based on the corresponding ensembles. See Botvina and Mishustin [START_REF] Botvina | Statistical description of nuclear break-up[END_REF] for a good review. Here I will just present the most salient points of some of the models mentioned in the manuscript. p(A 0 = 58) [START_REF] Bondorf | Statistical multifragmentation of nuclei[END_REF] p(A 0 = 58, Z 0 = 28) [START_REF] Sneppen | Partitioning of a two component particle system and the isotope distribution in nuclear fragmentation[END_REF] 

A.2.1 The Statistical Multifragmentation Model (SMM)

In SMM [START_REF] Bondorf | Statistical multifragmentation of nuclei[END_REF][START_REF] Bondorf | Statistical multifragmentation of nuclei[END_REF][START_REF] Bondorf | Statistical multifragmentation of nuclei[END_REF] the break-up channels of an excited nuclear system (A 0 , Z 0 , E 0 ) are described by the partitions

f : {N AZ ; 1 ≤ A ≤ A 0 , 0 ≤ Z ≤ Z 0 }
For fixed (A 0 , Z 0 ) the number of all possible partitions of this type can be calculated [START_REF] Sneppen | Partitioning of a two component particle system and the isotope distribution in nuclear fragmentation[END_REF]: it rapidly becomes astronomical with increasing A 0 (∼ 10 5 for A 0 = 20, ∼ 10 10 for A 0 = 50, with N 0 = Z 0 ), but is greatly decreased if only physical combinations of (N, Z) are kept in the partitions (see Table A.2).

The fragmented systems at freeze-out are represented as a set of (spherical) nuclei at normal density contained in a spherical volume large enough to contain all nuclei without overlapping: typical values are V ≈ 3 -6V 0 where V 0 is the volume occupied by A 0 nucleons at saturation density. Internal excitation of all but the lightest (A > 4) nuclei is taken into account using the Fermi gas relation (see below). Collective flow can be included in the calculations, but is not included in the calculation of the statistical weights, and is therefore decoupled from the partitions. To my knowledge, only a linear (Hubbleian) velocity profile v F (r) = r R v 0 has been used with SMM, for which the total flow energy is given by a simple expression, E F = 3 10 uA 0 v 2 0 , where r is the radial distance of a fragment from the centre of mass, R is the rootmean-square radius of all fragments in the break-up configuration, and u is the mass of the nucleon.

The statistical weights for partitions are determined by their free energy

F f (T, V) = F tr f (T, V f ) + ∑ A,Z F AZ (T, V)N AZ + E C 0 (V) (A.2.1)
where the first term corresponds to the translational motion of the fragments (within a free volume V f smaller than the freeze-out volume V due to the finite size and strong interaction of fragments), the second term is the sum of the free energies of the nuclei in the partition, given as a sum of bulk, surface, Coulomb and symmetry energy terms, SMM can be used with "microcanonical" or "canonical" weights, although strictly speaking they do not fully respect either ensemble3 . In the "microcanonical" case, a temperature T f is calculated for each partition in order to respect the energy conservation condition averaged over all microscopic states (fragment momenta, excitation energies, positions) leading to a given partition

E f (T f , V) = E tr f (T f , V) + ∑ A,Z E AZ (T f , V)N AZ + E C 0 (V) = E 0
Then the "microcanonical" partition weight is given by

W mic f = 1 ξ exp S f (A 0 , Z 0 , E 0 , V) = exp - ∂F f (T, V) ∂T f , ξ = ∑ { f }
exp S f (A 0 , Z 0 , E 0 , V)

In the "canonical" case a single temperature T is determined so that the mean energy of all partitions respects the energy conservation condition

E f (T f ) = ∑ { f } W f E(T, V) = E 0
and the partition weights are

W can f = 1 ζ exp -F f (T, V)/T , ζ = ∑ { f } exp -F f (T, V)/T
In both cases, the same temperature is used to determine both the thermal translational motion, intrinsic thermal excitation and surface energies of the fragments, although the excitation energy sharing can be modified by adjusting the level density parameter 0 used in the bulk free energy,

F B AZ (T) = -W 0 - T 2 0 A
where W 0 ≈16A MeV is the binding energy of bulk nuclear ma er at saturation density.

A.2.2 Microcanonical Multifragmentation Models (MMMC and MMM)

The original microcanonical multifragmentation model is that of Gross [START_REF] Zhang | On the decay of very hot nuclei (I). Canonical metropolis sampling of multifragmentation[END_REF][START_REF] Zhang | On the decay of very hot nuclei (II). Microcanonical metropolis sampling of multifragmentation[END_REF][START_REF] Gross | Statistical decay of very hot nuclei-the production of large clusters[END_REF], MMMC (Metropolis Multifragmentation Monte Carlo), which uses a Metropolis importance sampling technique to explore the phase space defined by microcanonical statistical weights for the freezeout configurations. In MMMC internal excitation of primary fragments is limited to particle 

(b)

(b) red symbols: Inclusive (marginal) distribution P(N C ) for all pseudo-events; dashed line: fit to P(N C ) using Equations (6.2.14), (6.2.20) and (6.2.23). directly to the values calculated from the pseudo-events themselves (red symbols). Apart from a slight deviation for the most peripheral "collisions" i.e. close to the low-multiplicity cut-o , the agreement is very satisfactory.

To further test the method we compare in Figure B.1.1c the impact parameter distributions of pseudo-events for multiplicity cuts corresponding to "central" or "peripheral" collisions with the P(b) distributions calculated using Equation (6.2.12) and the parameters found by fi ing P(N C ) in As can be seen, the impact parameter distributions deduced from the fit are very similar to the actual distributions of the pseudo-events selected with each cut. For the most "peripheral" cut (6 < N C < 9) the deduced P(b) is slightly distorted due to the low-multiplicity cut-o : the mean value and standard deviation of the distribution are slightly over-estimated using the fit parameters. The "central" cut we used corresponds to the value of N C at b = 0, and corresponds to an experimental centrality c X = 7%. Using the sharp cut-o approximation of [START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF], Equation (6.2.8), we would therefore expect b <0.26 (and b = 0.18); in reality this cut selects a far wider range of impact parameters, up to b ≈ 0.6, with mean value b = 0.26 and standard deviation 0.12.

This reduced selectivity for "the most central collisions" is simply a consequence of the form of the correlation between N C and b shown in 

B.2 Minimum bias impact parameter distribution

Simulations with many di erent reaction models and di erent so ware 'filters' to simulate the minimum-bias acceptance of the INDRA array suggest that data has an unbiased geometrical distribution up to some trigger-multiplicity-dependent impact parameter b. In general the simulated minimum-bias impact parameter distributions are well described by Equation (6.2.3) with an inelastic reaction probability distribution of the form 1b are the relationships between the centrality c b and impact parameter for the three distributions, given by the analytic function derived in B.2.2 below. It can be seen that for all but the most peripheral reactions the parabolic sharp cut-o relationship (∆b = 0 fm) is an exact approximation to the analytic formulae with ∆b > 0. The deviation from and in this particular case by the negative dilogarithm, -Li 2 (-e x ). Therefore we have for the final expression of the total cross-section which normalizes correctly the probability distribution of Equation (B.2.1), σ R = -2π(∆b) 2 This expression can be used to find b 0 for a given total cross-section and width parameter ∆b, by numerical inversion [START_REF] Brun | ROOT: An object oriented data analysis framework[END_REF]. This definite integral can be calculated using the incomplete Fermi-Dirac integral

B.2.2 Analytic expression for centrality

F j (a, x) = 1 Γ (j + 1) ∞ a t j 1 + exp (t -x)
dt, a ≥ 0 with a = b/∆b, and the complete Fermi-Dirac integral F j (x) of Equation (B.2.2): a 0 t j 1 + exp (tx) dt = Γ (j + 1) F j (x) -F j (a, x)

With j = 1, F 1 (x) = -Li 2 (-e x ) as above, while the incomplete FD integral can be wri en (by integration by parts) as

F 1 (a, x) = π 2 6 - (a 2 -x 2 )
2 + a ln 1 + e (a-x) + Li 2 -e (a-x)

The final expression for the centrality is therefore parameter, in the light of the new results presented in Chapter 6. For example, the fact that P(E t12 ) distributions "scale" with bombarding energy has long been presented as evidence that E t12 is mostly determined by the geometry of the collisions and therefore strongly correlated with impact parameter [START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF][START_REF] Bocage | Dynamical e ects in nuclear collisions in the Fermi energy range: aligned breakup of heavy projectiles[END_REF]. By "scaling" here we mean that the probability distributions of two variables related by a linear scaling transformation, X and Y = γX, are simply related by

c b = 2π(∆b) 2 σ R -Li 2 -exp b 0 ∆b - π 2 6 + (b 2 -b 2 0 ) 2(∆b) 2
P Y (Y = γX) = 1 γ P X (X)
so that the distribution of Y/γ is identical to that of X. This was demonstrated for E t12 for 129 Xe+ nat Sn collisions using γ = E proj /50 in [75]1 , or, equivalently for these quasi-symmetric collisions, using γ = E CM in [START_REF] Bocage | Dynamical e ects in nuclear collisions in the Fermi energy range: aligned breakup of heavy projectiles[END_REF] 2 . However, given the changes in the shape of the distributions of both N C and E t12 which are clearly evident in Figure 6.3.1, such a "scaling" can only be approximate at best (in reality only the tails of the distributions superimpose well -see Figure 1 of [START_REF] Bocage | Dynamical e ects in nuclear collisions in the Fermi energy range: aligned breakup of heavy projectiles[END_REF]). As shown in 6.3.2, the changing shape of the P(X) distributions is entirely determined by the changing shape of the k(c b ) relationship of Equation (6.2.23) which basically encodes the physics of the collisions for any given observable. Therefore an exact scaling of the inclusive distributions would mean that, apart from scale factors such as the total available energy or the total number of nucleons, the physics of the collisions (for a given observable) would basically have to be the same for all bombarding energies. Now let us consider the scaling properties of the gamma distribution used in P(X|b). Replacing X by Y/γ in Equation (6.2.20) we find

P θ (Y/γ|c b ) = 1 Γ(k)θ k Y k-1 γ k-1 e -Y/γθ = γ 1 Γ(k)ϑ k Y k-1 e -Y/ϑ = γP ϑ (Y|c b ) (B.4.1)
which is just the gamma distribution for a variable Y = γX with fluctuation parameter ϑ = γθ. Hence the necessary conditions to observe scaling for distributions given by Equation (6.2.14), i.e. for observables which are e ectively correlated with impact parameter, is not only that k i.e. the physics of the collisions, does not change, but also that the relative importance of the fluctuations of the observable scale in the same way as the observable itself.

As figure Figure B.4.1a shows for E t12 , both the mean value for the most central collisions and the fluctuation parameter θ increase approximately linearly with available (or bombarding) energy for 129 Xe+ nat Sn reactions, and approximately in the same way. It is therefore to be expected that, although the overall distributions of E t12 do not exhibit strict scaling behaviour, nevertheless the tails of the distributions superimpose to a rather good degree, as these are dominated by the fluctuations around the values of the observable for b = 0 collisions. On the other hand, as shown in Figure 6.3.5a(le ), the mean values of N C for head-on collisions do not increase linearly with bombarding energy, and in addition the θ parameters for fits to N C distributions are independent of bombarding energy for all systems listed in Table B.1. It then comes as no surprise that when trying to apply the same scaling to this observable as was done for E t12 in [START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF], not even the tails of the scaled distributions superimpose (Figure B.4.1b).

In conclusion, the correlation of observables such as N C and E t12 with impact parameter is not in doubt, as demonstrated by the fact that their inclusive distributions can be well-reproduced in a self-consistent manner by supposing they have a monotonic relationship with b (including fluctuations) and integrating over all centralities. The "scaling" of their distributions (at least for E t12 ) which was claimed in order to prove this correlation in previous works does not in fact exist, apart from an approximate scaling of the distribution tails which itself reveals something nontrivial about the way in which the fluctuations of the observable depend on bombarding energy. In general, observables which are strongly correlated with impact parameter should not exhibit scaling of their distributions with bombarding or available energy, unless their relationship with b is so trivial that it contains no information on the physics of the reactions.
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Figure 2 .

 2 Figure 2.1.1 -(main picture): Schematic illustration of the phase diagram of dense ma er [19]. (inset): Typical equation of state for symmetric nuclear ma er (isotherms in pressure-density plane) [20]. The spinodal boundary (dashed) and the coexistence curve (solid) are indicated.
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 212 Figure 2.1.2 -An obviously faked photograph of the coupled INDRA and FAZIA arrays in the INDRA sca ering chamber at the D5 cave in GANIL. I never wear a white coat and am not even allowed to touch the hardware. © P. Stroppa/CEA.
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 4221 Figure 2.2.1 -(le ) Pseudo-Wilczynski diagram for complete events (see text) measured for 155 Gd+ 238 U collisions at 36A MeV, total kinetic energy of reaction products in centre of mass frame versus the flow angle θ f . (right) Atomic number-longitudinal velocity correlations for events in the four zones defined on the le .
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 223 Figure 2.2.3 -BOB calculation of the spinodal decomposition of compact systems formed in head-on collisions of 155 Gd+ 238 U. Grey-scale represents nucleon density in the xz-plane.
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 224 Figure 2.2.4 -Results of BOB calculations (a er secondary decay) for QF reactions in 129 Xe+ nat Sn collisions at 32A MeV: distributions of the 3 first Z-ordered fragments of each event. Black full symbols are data, blue histograms calculations.
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 231 Figure 2.3.1 -Mean excitation energies of primary fragments (symbols) compared with SMM calculations (lines) for QF multifragmentation events of 129 Xe+ nat Sn from 32 to 50A MeV [67].
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 232 Figure 2.3.2 -AMD calculations for central 129 Xe+ nat Sn collisions at 50A MeV with (DS) or without (D) the improvement introduced in [68].
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 233 Figure 2.3.3 -Time evolution of the density in the centre-of-mass system projected onto the reaction plane calculated with AMD/DS for a typical collision of 129 Xe+ nat Sn at 50A MeV with impact parameter b = 3.4 fm. The beam direction is parallel to the horizontal axis, and the size of the shown area is 60 fm×60 fm. From [68].
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 241 Figure 2.4.1 -Log variance ln(κ 2 = σ 2 ) of Z max distributions vs. log squared mean values ln(κ 2 1 = Z max 2) for QF events from129 Xe+ nat Sn collisions from 25A MeV (right) to 50A MeV (le ). From[START_REF] Botet | Universal fluctuations in heavy-ion collisions in the Fermi energy domain[END_REF].

Figure 2 .

 2 Figure 2.4.2 -Scaled Z max distributions for 129 Xe+ nat Sn collisions from 39A MeV to 100A MeV reduced to a single Gumbel distribution, Equation (2.4.4) [82].
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 243 Figure 2.4.3 -Fits to the probability distributions of the atomic numbers of the three largest fragments, Z 1 > Z 2 > Z 3 , produced in each event in central collisions of Au+ 197 Au at di erent bombarding energies: (a)-(c): 40A MeV; (d)-(f): 60A MeV; (g)-(i): 80A MeV; (j)-(l): 100A MeV.

Figure 2 .

 2 Figure 2.5.1 -(le ) Radial collective energy E R as a function of excitation energy per nucleon E * for 129 Xe+ nat Sn QF sources (black squares), QP sources from 80 (red open circles) and 100A MeV (red full circles) 197 Au+ 197 Au reactions, and for π -+ 197 Au reactions (blue triangles). (right) Mean fragment multiplicities normalised to source size (charge), M (N)

  Figure 2.5.1(le ) compares the expansion energy for 129 Xe+ nat Sn QF sources produced in central collisions with that deduced from fragments produced by the break-up of quasi-projectile (QP) sources from peripheral 197 Au+ 197 Au collisions
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 252 Figure 2.5.2 -Atomic number Z and longitudinal velocity v correlations for fragments in (top row) well-detected events (see text) and (bo om row) QF events selected with θ f > 70 o . From [96].

  Figure 2.5.1(right) shows that the mean normalised fragment multiplicity, M (N)
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 253 Figure 2.5.3 -Comparison of QF multifragmentation events with E cm ∼8A MeV for symmetric or asymmetric entrance channel. (le ) distributions of fragment (Z ≥ 5) atomic number; (right) mean centre of mass kinetic energy of fragments as a function of Z. In both cases, the largest Z fragment of each event is excluded. From [99].

Figure 2 .

 2 Figure 2.5.4 -Experimental Z max distributions for central 129 Xe+ nat Sn collisions (black points) at the bombarding energies shown in the figure, fi ed with the weighted sum of Equation (2.5.1) (black curve) and showing the Gaussian (blue) and Gumbellian (red) component of each fit. From [102].
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 255 Figure 2.5.5 -Distributions of the largest cluster size s max calculated using the Smoluchowski equations Equation (2.5.2) for a system size N = 216 at di erent times (black points) fi ed with the weighted sum of Equation (2.5.1) (black curve) and showing the Gaussian (blue) and Gumbellian (red) component of each fit. From [102].

Figure 2 .

 2 Figure 2.5.6 -∆-scaling map showing the total system mass-dependence of the bombarding energy at which the change of ∆-scaling regime takes place for 36 Ar+KCl, 58 Ni+ 58 Ni, 129 Xe+ nat Sn and 197 Au+ 197 Au collisions. From [82].
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 257 Figure 2.5.7 -Z max distributions for the symmetric and asymmetric QF reactions of 2.5.1 (black points) fi ed with the weighted sum of Equation (2.5.1) (black curve) and showing the Gaussian (blue) and Gumbellian (red) component of each fit. From [96].

Figure 3 .

 3 Figure 3.1.1 -(le ) Cross-sections for 1n evaporation channels leading to SHE residues compared to model calculations for capture ("STICK"), compound nucleus formation ("STICK x DIFFUSE") and residue survival ("STICK x DIFFUSE x SURVIVE"). From [112]; (right) Calculated total potential energy of 129 Xe+ nat Sn entrance channel as a function of internuclear radial distance. The inset is a zoom to show the disappearance of the pocket with increasing angular momentum.

  (a) For 129 Xe+ nat Sn at 25A MeV colour contours indicate measured cross-sections as a function of Z max and E t12 relative to available centre of mass energy. (b) For 129 Xe+ nat Sn from 25 to 50A MeV mean Z max as a function ofE t12 , for complete events (at least 80% of total charge detected).
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 321 Figure 3.2.1 -Evidence for a fusion-like process in central collisions of129 Xe+ nat Sn at sub-Fermi energies, both figures from[START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF]. The total transverse energy of light charged particles, E t12 , is here used as an impact parameter sorter.

Figure 3 . 3 .

 33 Figure 3.3.1a shows the probability of di erent exit channels classified according to the number of heavy (Z > 10) fragments observed 2 , as a function of bombarding energy, E b , for the 5 new re-
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 331 Figure 3.3.1 -Beam-energy dependence and selection of isotropic 3-fragment exit channels for low energy 129 Xe+ nat Sn collisions. From [7].

Figure 3 . 4 . 1 -

 341 Figure 3.4.1 -Bizard-Dalitz plots of P i (see text) for isotropic 3-fragment events in reactions of 129 Xe+ nat Sn at 12, 15 and 20A MeV. From [7].

  Z (ijk) , Z (jk) : mean atomic number of the initial composite and intermediate systems; Asym 1 , Asym 2 : mean charge asymmetry (expressed as a percentage) of the first and second spli ing, respectively. (b) Evolution of the mean inter-spli ing time δt as a function of either beam energy E b (lower scale) or estimated excitation energy of the initial composite systems E * (upper scale). Horizontal error bars refer to E * .
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 342 Figure 3.4.2 -Deduced properties of the sequential fission leading to 3-fragment exit channels observed in 129 Xe+ nat Sn collisions from 8 to 20A MeV.

  (a) Sketch of the second fission (here Z s 1 ≡ Z j , Z s 2 ≡ Z k ) and its orientation θ w.r.t. the first scission (hereZ f 1 ≡ Z i ).(b) ,(c): distributions of proximity angle θ. (f),(g): relative velocity between second fission fragments as function of cos(θ).
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 351 Figure 3.5.1 -Proximity e ects between fragments from sequential fissions used to deduce the timescale of the 3-body break-up. From [7].

  (a) Impact parameter distributions for simulated 3-fragment events from either deepinelastic (DIC) or fusion reactions. (b) Mean spin and excitation energy of PLF and TLF fragments calculated with DIT.(c) Light charged particle (LCP) multiplicities for 3fragment events from data, binary deep inelastic collisions (DIC) calculated with DIT or statistical decay following complete fusion calculated with GEMINI++. Z-spin correlations for primary quasifission fragments leading to either M Z>10 = 2or M Z>10 = 3-fragment events.
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 361 Figure 3.6.1 -DIT+GEMINI++ calculations for 129 Xe+ nat Sn collisions at 12A MeV. From [8].
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 362 Figure 3.6.2 -Sequential fission calculations with the 4D Langevin fission model.
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 411 Figure 4.1.1 -Slide from the first presentation of the KaliVeda toolkit to the INDRA collaboration in July 2003. Note that nearly all of the code examples in the slide are still valid today.

Figure 4 . 2 . 1 -

 421 Figure 4.2.1 -Screenshot of the KaliVeda website taken on 11th August 2020.
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 431 Figure 4.3.1 -Overview of the main components of the core libraries of the KaliVeda toolkit

  cmake _ minimum _ required(VERSION 2.8.11) project(MyProject) #-------locate KaliVeda installation find _ package(KaliVeda REQUIRED) include(${KALIVEDA _ USE _ FILE}) #-------locate ROOT installation find _ package(ROOT REQUIRED) include(SetUpROOTBuild) add _ executable(MyExec MyCode.cpp) target _ link _ libraries(MyExec ${KALIVEDA _ LIBRARIES})
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 441 Figure 4.4.1 -Slide from presentation of the migration to Launchpad/bzr in June 2009, illustrating some of the stop-gap solutions which tried (and failed) to fill the absence of a CC-IN2P3-hosted TRAC server.
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 611 Figure 6.1.1 -Principle of the Cavata prescription [74]: (le ) measured cross section versus multiplicity; (right) geometrical cross-section versus b 2 , the square of the impact parameter. The hatched areas correspond to equal integrated cross-sections on both diagrams, with three multiplicity limits m 0 = ∞, m 1 and m 2 .

  1) < b ≤ x fm. Although for the more peripheral collisions (b > 4 fm) there is a reasonable correspondence between the real impact parameter range and that deduced from the Cavata prescription (although of course Cavata cannot describe the width or the shape of each distribution), for the more central collisions (b ≤ 4 1 I used this figure in my Ph.D thesis, as the question of the impact of the fluctuations on the estimation of the impact parameter has long been a preoccupation. As at the time it was not possible to simply "snapshot" any figure in the PDF of any article (as I have done in this manuscript), I wrote to ask Jean Péter for a copy of the figure which I could use. He sent me the original version of the figure on tracing paper which I still have and treasure.
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 612 Figure 6.1.2 -Simulated e ect of fluctuations in the relationship between impact parameter b and global variable ν on the selectivity of the la er. See text for explanations. From [31].

1 0P 1 0P(

 11 (c b ) P(X|c b ) dc b = X|c b ) dc b (6.2.14) and just by knowing P(X|c b ) we can calculate the experimental distribution of X. Similar simplifications follow for Equations (6.2.10)-(6.2.13), which become P(c b |X)P(X) = P(X|c b ) (6.2.15)
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 621 Figure 6.2.1 -Examples of k(c b ) curves obtained with the parametrization of Equation (6.2.23), as a function of reduced impact parameter b = b/b max . In all cases k max = 1 and k min = 0. The geometric relation c b = (b/b max ) 2 has been used.

129 Figure 6 . 3 . 1 -

 129631 Figure 6.3.1 -Results of fits to the inclusive distributions of N C (upper row) and E t12 (lower row) for the 129 Xe+ nat Sn data. Each distribution is presented with both linear (le panel) and logarithmic (right panel) y-axis. Statistical uncertainties on the data are shown when not smaller than the symbols.
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 632 Figure 6.3.2 -Impact parameter dependence of observables deduced from fits to 129 Xe+ nat Sn data.

Figure 6 . 3 .

 63 Figure 6.3.3a presents the k(c b ) function for 129 Xe+ nat Sn and 129 Xe+ 124 Sn data. For the 129 Xe+ nat Sn data these curves are the same as in Figure 6.3.2b apart from the normalization.
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 633 Figure 6.3.3 -Normalized shape functions k(c b ) (with k min = 0, k max = 1) for E t12 fits versus reduced impact parameter for di erent colliding systems. The black curves show the overlap volume for symmetric collisions (see text).

  .2 and 6.3.3 concern only the bdependence of the mean values of the observable, whereas a major improvement of the present approach is to take into account the fluctuations in the P(X|b) distribution relating the observable with the impact parameter. Examples of what can be achieved with this new method are shown in Figure6.3.4. Using the fit parameters for E t12 for two bombarding energies of 197 Au+ 197 Au collisions, it is possible to generate the full joint probability distribution P(E t12 , b) including impact parameter weighting and the fluctuations around the mean value E t12 (b) (also shown in the Figures 6.3.4b and 6.3.4c). These distributions can be directly compared with the same correlations calculated using the QMD model ([START_REF] Aichelin | antum" molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions[END_REF]; see Appendix A, A.1.3.2) which are shown in Figure6.3.4a.

  (a) QMD calculations of Zbiri et al. [149] for 60A MeV (top) and 150A MeV (bo om). Data for 150A MeV.
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 634 Figure 6.3.4 -Comparison between joint probability distributions P(E t12 , b) calculated with the QMD model or deduced from data for 197 Au+ 197 Au collisions. Colour contours represent a logarithmic scale of double di erential cross-section. Black curves show the mean value E t12 (b) as a function of impact parameter given by Equations (6.2.21), (6.2.23).

  Mean values of total charged product multiplicity for b = 0 collisions deduced from fits, N C (b = 0), normalized to total system charge Z tot , as a function of available centre of mass energy per nucleon E CM /A tot for all systems. Dashed curves are to guide the eye. Mean values of total transverse energy of light charged particles for b = 0 collisions deduced from fits, E t12 (b = 0), as a function of bombarding energy per nucleon E proj for all systems.
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 635 Figure 6.3.5 -Mean values of N C and E t12 observables for head-on (b = 0) collisions.

  Least central bins.

Figure 6 .

 6 Figure 6.3.6 -(curves) Reconstructed impact parameter distributions for129 Xe+ nat Sn collisions at 50A MeV selected using the 8 centrality bins defined by E t12 cuts in[START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF] (indicated by intervals in the figure legend). (arrows) For each bin (indicated by the number), the range of impact parameters expected to be selected according to[START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF].
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 637 Figure 6.3.7 -Distributions of E t12 for 129 Xe+ nat Sn collisions at 50A MeV for data (symbols) and impact parameter bins indicated in the legend.

Figure 6 .

 6 Figure 6.3.8 presents the mean values of reduced impact parameters b = b/b max(measured cross-sections are not available for all systems) for two di erent centrality cuts defined using E t12 , either c E t12 ≤ 10% or c E t12 ≤ 1%, for all studied colliding systems. In both cases b values for most systems seem to follow similar trends as a function of the available centre of mass energy per nucleon, E CM /A tot . Similar results are found using the total charged product multiplicity, N C .
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 638 Figure 6.3.8 -Mean reduced impact parameter b/b max for central collisions selected with a 10% (open symbols) or 1% (full symbols) centrality cut using E t12 , as a function of available centre of mass energy per nucleon, E CM /A tot . Dashed curves are to guide the eye.
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 550711 Figure 7.1.1 -Simulated isotropic events in velocity space with N C = 50 (le ) or N C = 5 (right) reaction products. The values of the isotropy variables sphericity, S, and energy-based isotropy ratio, R E , for each event are given in the table.

Figure 7 . 1 .

 71 Figure 7.1.1 gives the values of the sphericity and isotropy ratio for the two finite-multiplicity events shown. For the N C = 50 case the values of all 3 variables are quite close to their asymptotic values: this multiplicity is typical of central collisions at bombarding energies ∼ 50A MeV when all charged reaction products are included. On the other hand, we may try to determine the isotropy of the source of the fragments (e.g. Z ≥ 5), and only consider the la er. Then a typical multiplicity corresponds more to the N C = 5 event in the figure, for which the shape variables have very unrepresentative values.Figure7.1.2 shows how each variable responds to simulated isotropic events 3 over a wide range of multiplicities, from N C = 3 to N C = 50. For each value of N C 10 3 events were generated

  Appendix C for details of the simulation method.

  Standard deviations versus multiplicity.
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 712 Figure 7.1.2 -Multiplicity-dependent response of shape variables defined in the text to simulated isotropic emission events. Note that for R f w

  cos θ f distributions for isotropic events with dif-cos θ f distributions for anisotropic events with elongation 1.2:1.

Figure 7 . 1 .

 71 Figure 7.1.3 -(top row) Tests of power of shape variables to discriminate between isotropic and anisotropic simulated events corresponding to an ellipsoidal momentum distribution with the indicated ratio between major and minor axes (see Appendix C). Variables calculated for isotropic events are labelled (I). (bo om row) cos θ f distributions for isotropic and anisotropic events for di erent multiplicities.

Figure 7 . 2 . 1 -

 721 Figure 7.2.1 -Convergence of the isotropy maximization algorithm for a sample of E = 2000 events of 129 Xe+ nat Sn collisions at 50A MeV (complete events). (a) sample sphericity S calculated with the tensor of 7.2.1 as a function of the number of trials. (b) Number of swapped events per 1000 trials as a function of the number of trials. (c) Distribution of cos θ f for the sample a er maximization compared to that of all complete events.

Figure 7 . 2 . 2 -

 722 Figure 7.2.2 -Results of applying the algorithm in order to minimize the isotropy of a sample of 1000 events of 129 Xe+ nat Sn collisions at 50A MeV (complete events). (a) Correlation between atomic number Z and centre of mass longitudinal velocity V cm for fragments (Z ≥ 5). (b) Distribution of the flow angle θ f for fragments.

Figure 7 . 2 . 3 -

 723 Figure 7.2.3 -(a) Sample sphericity S versus sample number for 50 samples of size E = 2000 events extracted from complete events of 129 Xe+ nat Sn collisions at 50A MeV. (b) Mean value R f w E and standard deviation σ R E of the isotropy ratio calculated in the forward CM hemisphere as function of sample number. The dashed line indicates the last sample with a constant sample sphericity S in (a). (c) Correlations between fragment Z and longitudinal c.m. velocity V cm for all complete events. Logarithmic colour contours represent measured double di erential crosssections. (d) As in (c), but for the 26 most isotropic samples.

Figure 7 . 2 . 4 -

 724 Figure 7.2.4 -Homogeneity of the 26 event samples corresponding to the most isotropic events of 129 Xe+ nat Sn collisions at 50A MeV. Full symbols: mean values. Open symbols: standard deviations.

Figure 7 .

 7 2.4(a)-(f) gives a general survey of the homogeneity of the 26 samples corresponding to the most isotropic events. Both the mean value and standard deviation of each of the following quantities calculated event by event are presented as a function of sample number:• the fragment (Z ≥ 5) multiplicity, M f ;• the multiplicity of Light Charged Particles (Z < 3), M LCP ;

Figure 7

 7 Figure 7.2.5 -(le , middle): Flow angle distributions for complete events (open histograms) and for the most isotropic events (shaded histogram) for two bombarding energies. (right) (shaded histograms) Flow angle distributions for multifragmentation events in di erent impact parameter ranges from SMF calculations.

Figure 7 . 2 . 6 -

 726 Figure 7.2.6 -(closed symbols) Fragment properties of the most isotropic events as a function of beam energy for 129 Xe+ nat Sn collisions from 25 to 50A MeV. (open squares) results for QF (θ f > 60 o ) events.

  Comparison of mean isotropy ratios R f w Efor all events (full symbols) and for di erent θ f ranges (open symbols). Flow angle probability distributions for the events.

Figure 7 . 3 . 1 -

 731 Figure 7.3.1 -Comparison of the selected most isotropic events () and the events used in the nuclear stopping analysis of Lehaut et al.[START_REF] Lehaut | Study of Nuclear Stopping in Central Collisions at Intermediate Energies[END_REF] (). Here flow angles θ f are from the tensor Equation (7.1.2) calculated with all Z ≥ 1.

  as a function of N C (in reality, above N min C the value of R f w E

  Mean values of isotropy ratio calculated in the Z ≥ 1 ellipsoid frame R ell E Equation (7.1.4). Mean total charged product (Z ≥ 1) multiplicity.

Figure 7 . 3 . 2 -

 732 Figure 7.3.2 -Comparison of the selected most isotropic events ( ) and the events used in the nuclear stopping analysis of Lehaut et al. [106] ().

Figure 7 . 3 . 3 -

 733 Figure 7.3.3 -Mean isotropy ratios calculated in the ellipsoid frame, R ell E , as a function of total multiplicity N C for and events for each bombarding energy. Dashed lines are simulated results for momentum distributions with the elongations indicated in the legends.

  Mean values and standard deviations (vertical bars) of impact parameter distributions.

Figure 7 . 4 . 1 -

 741 Figure 7.4.1 -Apparent nuclear transparency and impact parameter distributions for the most isotropic events in 129 Xe+ nat Sn collisions from 25 to 50A MeV.

Figure A. 1 . 1 -

 11 Figure A.1.1 -Illustration of di erences between the evolution of the 1-body phase space density in various semi-classical treatments of microscopic nuclear dynamics. From[START_REF] Chomaz | Nuclear spinodal fragmentation[END_REF] 

F

  AZ (T , , V) = F B AZ (T) + F S AZ (T) + E C AZ (V) + E sym AZand the last term is the Coulomb repulsion energy of the partition. Initially calculated in a Wigner-Seitz approximation, since the introduction of the Markov chain Metropolis sampling version of SMM[START_REF] Botvina | Partitioning composite finite systems[END_REF][START_REF] Botvina | Statistical evolution of isotope composition of nuclear fragments[END_REF] E 0 C can be calculated exactly for each freeze-out configuration from fragment positions.

  Colour levels represent the joint probability distribution P(N C , b) in terms of number of events, red symbols are the mean multiplicity for each impact parameter bin and the white dashed line is N C (b) deduced from the parameters of the fit shown in (b).

  Impact parameter distributions for di erent multiplicity cuts: symbols represent the pseudo-event distributions, dashed curves are the P(b) calculated using Equation (6.2.12) and the parameters found by fi ing P(N C ).

Figure B. 1 . 1 -

 11 Figure B.1.1 -Test of the method with 10 4 pseudo-events generated using Equations (6.2.20) and (6.2.23).

  Figure B.1.1b.

  Figure B.1.1a: due to the fla ening (plateau) of the N C (b) curve for b < 0.5 the increase in N C going towards b = 0 is not significant compared to the fluctuations of N C for each impact parameter bin.

P R (b) = 1 1 +

 1 exp b-b 0 ∆b (B.2.1) with typical ∆b values of 0.3-0.4 fm. Examples of such distributions are shown in Figure B.2.1a for di erent ∆b values (including ∆b = 0 fm, which is the sharp cut-o approximation) and a fixed total reaction cross-section. The b 0 values (fixed by the normalization, see B.2.1 below) change only slightly with ∆b (9.97 fm for ∆b = 0.4 fm, or 9.83 fm for ∆b = 1 fm) and are wellapproximated by the sharp cut-o value b max = b 0 (∆b = 0) = 10 fm. On the other hand, the upper limit of the unbiased impact parameters, b, decreases rapidly from ≈ 8 fm for ∆b = 0.4 fm to ≈ 6 fm for ∆b = 1 fm. Also shown in Figure B.2.

1 +

 1 To calculate the centrality c b we substitute Equation (B.2.1) into Equation (6.2.1), and making the same substitutions as above (b = t∆b, b 0 = x∆b ) we find c b = 2π(∆b) 2 exp (tx) dt

( 1 +

 1 exp ((bb 0 )/∆b)) -Li 2 -e (b-b 0 )/∆b B.3 Fit results for all systems B.4 "Scaling" of inclusive distributions of variables correlated with impact parameter

  Evolution with available centre of mass energy per nucleon E CM /A tot of θ and E t12 (b = 0)/50 for 129 Xe+ nat Sn collisions from 25 to 50A MeV bombarding energy.

  "Scaled" total multiplicity N C * (50/E proj ) distributions for129 Xe+ nat Sn collisions.

Figure B. 4 . 1 -

 41 Figure B.4.1 -Scaling properties of E t12 and N C variables.

  

Table 6 .

 6 1 -Characteristics of collisions studied in this work: mass asymmetry |A p -A t |/(A p + A , it allows to be er reproduce impact parameter distributions P(b|S) for the most peripheral collisions. For more details on the properties and use of this distribution, see Appendix B, Section §B.2.

	System	Mass	E proj	Trigger	Events
		asymmetry [MeV/A] multiplicity	
			31.54	3	
	36 Ar+KCl [151]	0.00	39.97 51.66	3 3	
			74.00	3	
			31.54	3	
			39.97	3	
			51.66	3	
	36 Ar+ 58 Ni [152, 153]	0.23	63.03	3	
			74.00	4	
			83.63	4	
			95.22	4	
			31.98	4	
			52.00	4	
	58 Ni+ 58 Ni [154, 155]	0.00	63.63 73.96	4 4	
			82.00	4	
			90.00	4	
			31.98	4	
			52.00	4	
	58 Ni+ 197 Au [98]	0.55	63.63 73.96	4 4	
			82.00	4	
			90.00	4	
			24.98	4	
			32.00	4	
	129 Xe+ 119 Sn [42, 75]	0.04	38.98	4	
			45.00	4	
			50.13	4	
			65.00	3	
	129 Xe+ 124 Sn(*) [82]	0.02	80.00	3	
			100.00	3	
			40.00	3	
			60.00	3	
	197 Au+ 197 Au(*) [156]	0.00	80.00	3	
			100.00	3	
			150.00	5	

3-0.4 fm, where b 0 ≈ √ σ R /π. Although the use of such an assumed distribution changes nothing for the deduced impact parameter distributions for central t ), beam energy, DAQ trigger multiplicity and total number of recorded events. References are given to the original papers where details of the data-taking can be found. Systems marked with an asterisk were measured at GSI, all others at GANIL. collisions

Table 7 .

 7 1 -Most isotropic events for129 Xe+ nat Sn collisions from 25 to 50A MeV. Sample size, number of samples in the set of most isotropic events, deduced cross-section. Last row is twice the cross-section for the θ f > 60 o selection of

	Beam energy	25A MeV 32A MeV 39A MeV 45A MeV 50A MeV
	Sample size E	5000 2000	2000	2000 500	2000	2000
	Number of samples 40	99	24	23	98	23	26
	Cross-section [mb] 82.5 81.7	29.7	22.6 24.1	20.9	25.8
	2 × [θ f > 60] [mb]	97.0		38.2	28.3		24.5	28.5

  155 Gd+ 238 U 36A MeV and 129 Xe+ nat Sn 32A MeV at b = 0 leading to multifragmentation by spinodal decomposition (see section 2.2.2);

  Table A.1 -(top) Parameters of the Gogny D1-G1 force, and (bo om) Nuclear ma er characteristics with the above Gogny force: bulk energy a V , Fermi momentum p F at saturation density ρ 0 , e ective mass of nucleons m * /m, bulk incompressibility modulus K ∞ and surface energy coe icient a S

						MeV]
	-16.3	266.4	0.166	0.67	228	20.2

Table A .

 A p( 58 Ni) [15] 2 -Partition counting for A 0 = 58. p(A 0 = 58): number of partitions of the number 58; p(A 0 = 58, Z 0 = 28): number of partitions into two-component clusters (A, Z); p( 58 Ni): number of partitions of 58 Ni nucleus containing only physical nuclei calculated with a parallel processing algorithm.

	715,220	221,170,802,387	27,476,011

  Here a long-standing misapprehension will be addressed concerning an apparent scaling of inclusive distributions of observables which are supposed to be strongly correlated with the impact Table B.1 -Parameters of fits to total charged particle multiplicity distributions P(N C ) for all datasets. See 6.2.2 for meaning of parameters. χ 2 is the reduced chi-square value of each fit. Table B.2 -Results of fits to total transverse LCP energy distributions P(E t12 ) for all datasets. See 6.2.2 for meaning of parameters. χ 2 is the reduced chi-square value of each fit.

	System System	E proj E proj	α	α	γ	γ	θ	θ	X max X min χ 2 X max X min χ 2
		[MeV/A] [MeV/A]					[MeV] [MeV] [MeV]
		32	32	0.95 1.25 0.20 14.1 0.35 0.76 6.1 162	3.7	13.2 1.2
	36 Ar+KCl 36 Ar+KCl	40 52	40 52	0.98 1.46 0.23 15.6 0.88 1.40 0.22 17.6 0.37 0.89 7.5 196 0.35 1.02 8.5 269	4.2 4.0	6.5 8.2 1.0 1.2
		74	74	0.89 1.60 0.21 19.8 0.40 1.32 11.8 389	4.3	10.2 3.7
		32	32	1.37 1.12 0.25 14.8 0.97 1.17 8.5 148	2.5	85.4 3.3
		40	40	1.23 1.14 0.27 16.8 0.83 1.17 10.0 183	2.6	46.4 2.5
		52	52	1.07 1.17 0.28 19.1 0.68 1.26 12.0 251	2.7	53.5 2.3
	36 Ar+ Ni 36 Ar+ 58 Ni	63	63	0.99 1.19 0.29 20.6 0.60 1.35 13.1 328	2.7	28.1 1.3
		74	74	0.95 1.21 0.27 22.4 0.60 1.46 14.9 402	3.8	43.8 1.8
		84	84	0.96 1.24 0.27 23.2 0.60 1.52 16.1 463	3.8	25.8 1.7
		95	95	0.98 1.28 0.27 24.1 0.62 1.63 18.6 528	3.9	56.3 2.1
		32	32	1.24 1.19 0.28 16.3 0.79 1.04 9.9 186	3.7	55.4 1.6
		52	52	0.97 1.15 0.30 21.6 0.56 1.15 13.0 340	3.8	14.0 2.3
	58 Ni+ Ni 58 Ni+ 58 Ni	64 74	63 74	0.92 1.16 0.28 24.1 0.81 1.17 0.27 25.8 0.55 1.30 14.9 443 0.52 1.40 16.7 541	3.8 3.7	5.9 4.2 1.7 2.8
		82	82	0.96 1.45 0.29 26.4 0.61 1.68 18.5 591	4.6	8.1 1.7
		90	90	0.93 1.40 0.28 27.4 0.68 1.93 20.9 629	4.2	38.2 1.4
		32	32	1.79 1.79 0.34 16.2 1.41 1.71 12.8 223	4.1	84.3 6.7
		52	52	1.63 1.66 0.37 23.0 1.08 1.45 17.2 391	4.2	49.5 6.1
	58 Ni+ 197 Au 58 Ni+ 197 Au	64 74	64 74	1.48 1.64 0.37 26.4 1.44 1.62 0.39 28.4 0.93 1.50 18.8 521 0.92 1.63 21.6 630	4.3 4.1	15.1 45.6 3.8 4.8
		82	82	1.51 1.85 0.41 29.7 0.92 1.74 23.3 716	4.7	43.2 5.8
		90	90	1.06 1.43 0.37 32.2 0.74 1.68 21.8 838	3.9	9.5 5.0
		25	25	1.26 0.95 0.32 19.6 0.74 0.68 11.1 241	2.8	63.5 2.2
		32	32	1.24 1.08 0.34 24.0 0.67 0.69 12.4 310	3.2	40.3 1.7
	129 Xe+ Sn 129 Xe+ 119 Sn	39	39	1.18 1.17 0.34 28.4 0.57 0.75 13.9 408	3.5	55.1 2.9
		45	45	1.14 1.23 0.34 31.2 0.55 0.89 15.4 496	3.8	56.5 1.6
		50	50	1.14 1.35 0.34 34.1 0.57 1.06 16.0 584	4.0	36.6 1.3
		65	65	1.09 1.40 0.36 38.4 0.59 1.32 19.9 822	2.9	2.0 1.5
	129 Xe+ Sn 129 Xe+ 124 Sn	80	80	1.11 1.50 0.34 42.5 0.61 1.52 23.5 1071	3.1	1.5 2.0
		100 100	1.18 1.64 0.38 45.2 0.62 1.65 26.8 1374	3.5	2.7 3.6
		40	40	1.23 1.27 0.42 35.5 1.07 1.23 24.0 521	2.1	30.1 24.4
		60	60	1.22 1.62 0.45 47.8 0.67 1.38 25.5 1089	1.2	68.1 24.6
	197 Au+ Au 197 Au+ 197 Au	80	80	1.24 1.61 0.45 54.9 0.62 1.47 26.6 1648	2.8	16.9 3.0
		100 100	1.26 1.64 0.49 58.5 0.65 1.68 34.6 2054	3.1	52.0 4.4
		150 150	1.38 1.52 0.49 61.8 0.66 1.67 46.1 2831	5.2	6.0 2.2

The original text of the law of

23rd November 1988, article 1, states: "L'habilitation à diriger des recherches sanctionne la reconnaissance du haut niveau scientifique du candidat, du caractère original de sa démarche dans un domaine de la science de son aptitude à maîtriser une stratégie de recherche dans un domaine scientifique ou technologique su isamment large [et] de sa capacité à encadrer de jeunes chercheurs. "

From

onwards known as Laboratoire de Physique des 2 Infinis Irène Joliot Curie, or IJCLab for short.[START_REF] Order | Blue Monday[END_REF] Now known as Institut de Physique des 2 Infinis de Lyon, or IP2I Lyon for short[START_REF] La | Nuclear ma er and its role in supernovae, neutron stars and compact object binary mergers[END_REF] Grand Accelérateur National d'Ions Lourds, now known as GANIL.[START_REF] Raduta | Clusterized nuclear ma er in the (proto-)neutron star crust and the symmetry energy[END_REF] 'à la grande époque', GANIL, IPN Orsay, LPC Caen, IPN Lyon, CEA DAPNI-SPhN, SUBATECH Nantes. Later on joined by (at one time or another): INFN/University of Napoli, NIPNE Bucharest, Université de Laval au ébec, INFN Catania, Ecole des Applications Militaires de l'Energie Atomique, Cherbourg and Conservatoire National des Arts et Métiers, Paris. 15

GANIL

Laboratoire de Physique des Solides d'Orsay

Continuous (or second-order) phase transitions occur without phase coexistence; as a function of the control parameter x, the order parameter m characterising the phase transition changes value from m = 0 to m = 0 at the so-called critical value of x.

Here the selection was made by retaining events belonging to the upper centile of the distribution of Z tot × E t12 .

In fact, the values of E R for the 32 -50A MeV 129 Xe+ nat Sn data are from the Ph.D of Nicolas Le Neindre[START_REF] Neindre | Aspect thermodynamique de la multifragmentation Xe +Sn 32 à 50 A.MeV[END_REF], deduced from comparisons with SMM; these values were used to "calibrate" the relative velocity measurement, allowing to deduce values of E R for the 25A MeV data as well as for the197 Au+ 197 Au QP data.

It is interesting to note that the cluster size distribution is a power law, P(s) ∼ s -τ (with τ = 5/2) for all times

A very similar map is obtained for the lighter 58 Ni+[START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF] Ni system at 32A MeV (see[START_REF] Frankland | Model-independent tracking of criticality signals in nuclear multifragmentation data[END_REF], Figure

[START_REF] Order | Blue Monday[END_REF], for which fusion-like reactions are not forbidden by systematics, and indeed for which the corresponding cross-sections were measured and reported by Lautesse et al.[START_REF] Lautesse | Evolution of the fusion cross-section for light systems at intermediate energies[END_REF].[START_REF] Order | Blue Monday[END_REF] To avoid ambiguities, only well-measured events with detection of at least 80% of the projectile and target charge are considered.

Such ternary events were previously studied for[START_REF] Jedele | Characterizing Neutron-Proton Equilibration in Nuclear Reactions with Subzeptosecond Resolution[END_REF] Xe+ nat Sn reactions at 12.5A MeV by Glässel et al.[START_REF] Glässel | Observation of proximity-and nonequilibrium e ects in ternary heavy ion reactions[END_REF].

Note that Z (ijk) is a lower limit for the size of the initial composite system, neglecting the light charged particles which are detected in coincidence.

Not to be confused with the onset of true multifragmentation i.e. clustering of low density nuclear ma er due to spinodal instability, for which the onset in central[START_REF] Jedele | Characterizing Neutron-Proton Equilibration in Nuclear Reactions with Subzeptosecond Resolution[END_REF] Xe+ nat Sn collisions occurs at ≈ 32A MeV (see Section §2.2 and[START_REF] Napolitani | Bifurcations in Boltzmann-Langevin one body dynamics for fermionic systems[END_REF]).

Pre-equilibrium emission is not included in the model either.

It should be noted that the total measured reaction cross-section for all events was well reproduced by this simulation.

IFJ PAN, Krakow, Poland.

Only in its classic procedural incarnation Fortran77 or, for the more mature practitioners, Fortran66

as well as taking over responsibility for the data acquisition so ware environment, which was also based on FORTRAN from the user-analysis programmes of the VAX-based GANIL acquisition system to the graphical user interfaces (GUI) developed by the collaboration for the slow control of the detectors.

KUMAC was a custom scripting language developed in tandem with PAW in order to provide user-defined macros.

"Réflexions et propositions sur la gestion de l'évolution de l'environnement logiciel associé au multidétecteur INDRA et son successeur éventuel", J.D. Frankland, A. Chbihi, A. Mignon and D. Cussol, November 2002.

This is actually 3 more than T.E. Lawrence, who only had

[142].

Currently this is impossible since the ROOT packages were removed from the Debian archive for non-conformity a few years ago. However, it now seems that they might be coming back.

Released in 1990, there has been no further development of CVS since 2008.

DEA for those old enough to remember, for Diplôme d'Etudes Approfondies.

if a monotonically increasing function of centrality is required, replace c b by 1c b in Equation(6.2.23) 

Actually, the published equivalent sharp cut-o b max values from[START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF] which were deduced from the measured cross-sections, σ R = πb 2 max , were used. Moreover an impact parameter distribution like Equation (6.3.1) was assumed with ∆b = 0.3 fm, and b 0 calculated by numerical inversion of Equation (B.2.3). To relate centrality and impact parameter Equation (B.2.4) was used.

Consequently, the distributions cannot be said to "scale" with the incident or available energy, as has previously o en been claimed in various publications of the collaboration as proof of the close relationship between E t12 and the impact parameter. See Appendix B, Section §B.4.

There is of course nothing to stop us from using one observable to select the data, and a di erent one to evaluate the e ective centrality of the selected data, as was done in[START_REF] Phair | Impact-parameter filters for 36Ar+197Au collisions at[END_REF].

And yet that is exactly what was done in early works on multifragmentation using (nuclear) photographic emulsions: for example Barz et al.[START_REF] Barz | Flow e ects in intermediate-energy nuclear collisions[END_REF] even managed to deduce and measure a radial flow of the fragments in this way!

Strictly speaking, with the given weight ω i the flow tensor is characterized by an ellipsoid in kinetic energy flow space; the shape of the event in momentum space is represented by the square roots of the eigenvalues,

Let us note in passing that in[START_REF] Zhang | Unified description of nuclear stopping in central heavy-ion collisions from 10AMeV to 1.2AGeV[END_REF] where the data of[START_REF] Lehaut | Study of Nuclear Stopping in Central Collisions at Intermediate Energies[END_REF] was compare with IQMD, the calculated impact parameter distributions for events selected with an N C cut also reach up to

fm (see Figure2dof[START_REF] Zhang | Unified description of nuclear stopping in central heavy-ion collisions from 10AMeV to 1.2AGeV[END_REF]).

for Bogoliubov, Born, Green, Kirkwood and Yvon -the BBGKY hierarchy relates each of the reduced density functions ρ s (r 1 , . . . r s ; p 1 , . . . , p s ; t) in 6N-dimensional phase space to the next, ρ s+1 , in the classical description of the statistical physics of an N-particle system.

The second form of the equation using the {•, H} Poisson brackets is more general, and is valid also for the case where H contains a momentum-dependent potential.

"Strictly speaking, the above described [microcanonical] approach corresponds to the canonical approximation when considering a given partition. However, henceforth it will be called microcanonical because for every partition we fix the total fragment energy averaged over microscopic states, but not over partitions. "[START_REF] Bondorf | Statistical multifragmentation of nuclei[END_REF] 

-10 3 -10 2 -10

Strictly speaking, in[START_REF] Plagnol | Onset of midvelocity emissions in symmetric heavy ion reactions[END_REF] the "scaling" was demonstrated by comparing the relationship between b and the scaled E t12 deduced using the method of[START_REF] Cavata | Determination of the impact parameter in relativistic nucleus-nucleus collisions[END_REF] for bombarding energies

-50A MeV. As the shape of this relationship is basically given by the square root of the cumulative distribution function of P(E t12 ), and the value of E t12 for any given b is given by the corresponding quantile function, this is equivalent to comparing the shapes of the P(E t12 ) distributions.[START_REF] Order | Blue Monday[END_REF] The data used in[START_REF] Bocage | Dynamical e ects in nuclear collisions in the Fermi energy range: aligned breakup of heavy projectiles[END_REF] correspond to the minimum bias M ≥ 1 trigger, not the M ≥ 4 trigger used in the present work. Although the "scaling" of the distributions presented using a logarithmic y-axis in Figure1of[START_REF] Bocage | Dynamical e ects in nuclear collisions in the Fermi energy range: aligned breakup of heavy projectiles[END_REF] appears near-perfect, the same data with a linear axis present similar di erences as the distributions in Figure6.3.1.
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Appendix A

A not at all definitive guide to some o -mentioned models

In order not to clu er the manuscript with expositions of the many and varied models used in this work, I have tried to collect them together here. As a result, the manuscript is now clu ered with references to this chapter. You just can't win.

A.1 Microscopic models of nuclear reactions

There are basically two families of transport approaches which are used in the study of heavy-ion collisions [START_REF] Xu | Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions[END_REF]. One is the Boltzmann-Vlasov type, which is formulated for the evolution of the one-body phase-space density under the influence of a mean field. The other is the moleculardynamics type, which is formulated in terms of nucleon coordinates and momenta under the action of a many-body Hamiltonian. Both are supplemented with a two-body collision term. The following presentation concerns non-relativistic transport models for nuclear reactions and relies heavily on the following publications: [START_REF] Grégoire | Semi-classical dynamics of heavy-ion reactions[END_REF][START_REF] Bertsch | A guide to microscopic models for intermediate energy heavy ion collisions[END_REF][START_REF] Ayik | Transport theory of fluctuation phenomena in nuclear collisions[END_REF][START_REF] Aichelin | antum" molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions[END_REF][START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF][START_REF] Chomaz | Nuclear spinodal fragmentation[END_REF][START_REF] Simenel | Nuclear quantum many-body dynamics[END_REF][START_REF] Ono | Dynamics of clusters and fragments in heavy-ion collisions[END_REF]. For relativistic nuclear transport models, see [START_REF] Buss | Transport-theoretical description of nuclear reactions[END_REF].

The evolution of an interacting N-particle system described by the wave function |Ψ(r 1 , . . . , r N ; t)

is given in the non-relativistic limit by the Schrödinger equation

where Ĥ is the microscopic Hamiltonian of the system, or equivalently by the time variation of the N-particle density matrix in configuration space, Φ N (r 1 , . . . , r N , r 1 , . . . , r N ; t) = |Ψ Ψ| (A. 1.2) which is given by the von Neumann equation

The utility of such equations for describing nuclear reactions is rather limited, as, even assuming that we had a perfect knowledge of Ĥ, this equation can be solved exactly for simple cases only.

Generally, one has to rely on some approximations.

A. 

and most observables are 1-body in nature. However the equation for the time evolution of the 1-body density is still not necessarily tractable; for example, assuming only two-nucleon interactions ∑ i<j v ij , this equation will depend on the 2-body density operator:

and the 2-body density operator ρ(2) = N(N -1) Tr 3,...,N Φ N in turn depends on the 3-body density, and so on and so on: this is the quantum BBGKY 1 hierarchy, known as the Martin-Schwinger hierarchy (or BBGG according to Bonasera et al. [START_REF] Bonasera | The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation[END_REF], for Bogoliubov, Born, Green and Gurov). The Hartree-Fock ansatz then allows to find a closed solution to Equation (A.1.5), by assuming that the N-fermion state |Ψ is given by a Slater determinant of single particle wave functions, which is equivalent to assuming that the N fermions behave as independent particles moving in a mean field generated by averaging over their mutual interactions. In such a state, all the information is contained in the 1-body density matrix and the 2-body density operator becomes

Then the Time Dependent Hartree-Fock (TDHF) equation for the evolution of the 1-body density operator is

with the one-body mean-field potential which is defined depending on ρ as

A.1.

Molecular dynamics approaches

A di erent way to overcome the limitations of the essentially one-body transport models presented above, in essence trying to make the N-body quantum dynamics tractable while retaining as much as possible of the N-body correlations needed to describe clusterization, are the so-called molecular dynamics approaches. These are not derived from a semi-classical approximation to the truncated 1-body dynamics in the same way as the BUU-like models, but rather take as starting point a variational principle applied to an ansatz for the N-body description of the system which may be more or less quantal. Examples are the Constrained Molecular Dynamics (CoMD) model of Papa et al. [START_REF] Papa | Constrained molecular dynamics approach to fermionic systems[END_REF], the antum Molecular Dynamics (QMD) model of Aichelin [START_REF] Aichelin | antum" molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions[END_REF], the Anti-symmetrized Molecular Dynamics (AMD) model of Ono and Horiuchi [START_REF] Ono | Antisymmetrized molecular dynamics for heavy ion collisions[END_REF], and the Fermionic Molecular Dynamics model of Schnack and Feldmeier [START_REF] Schnack | The nuclear liquid-gas phase transition within fermionic molecular dynamics[END_REF].

" antum" Molecular Dynamics (QMD) The QMD model of Aichelin [START_REF] Aichelin | antum" molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions[END_REF][START_REF] Zbiri | Transition from participant to spectator fragmentation in Au+Au reactions between 60A and 150A MeV[END_REF] can be derived from a time-dependent Hartree (TDH) theory (antisymmetrization is neglected) with a trial wave function of the form

which is a product of Gaussian single-particle wave functions [START_REF] Xu | Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions[END_REF] 

with positions R i (t) and momenta P i (t) as variational parameters. Using a two-body interaction V ij (r , r) including zero-range Skyrme, finite-range Yukawa and Coulomb components (see section A.1.4 below), the centroids of the Gaussian packets are found to follow equations of motion very similar to those of the test particles in BUU approaches (see section A.1.2.1 above):

Nucleon-nucleon collisions are implemented in much the same way as for BUU; however in QMD nucleons, not test particles, collide with the NN in-medium cross section, and so a collision will a ect the evolution considerably more than a TP collision in BUU. The treatment of collisions in QMD approaches is intrinsically stochastic. In contrast to BUU, two-nucleon collisions induce event-by-event fluctuations, and so can lead to clusterisation and formation of fragments.

A recent improved and widely-used version of QMD including isospin-dependent forces and cross-sections is IQMD (Isospin-dependent QMD) of [START_REF] Liu | Nuclear Stopping as a Probe for In-Medium Nucleon-Nucleon Cross Sections in Intermediate Energy Heavy Ion Collisions[END_REF][START_REF] Zhang | Unified description of nuclear stopping in central heavy-ion collisions from 10AMeV to 1.2AGeV[END_REF][START_REF] Su | Non-equilibrium and residual memory in momentum space of fragmenting sources in central heavy-ion collisions[END_REF]. far too computationally intensive for calculations of reaction dynamics using the transport models presented above. Rather they employ e ective density-dependent phenomenological interactions which are fi ed to describe the ground-state properties of finite nuclei and nuclear ma er, using either zero-range (Skyrme model) or short finite-range (Gogny model) density functionals.

Skyrme interactions

The Skyrme interaction [START_REF] Skyrme | The e ective nuclear potential[END_REF][START_REF] Vautherin | Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei[END_REF][START_REF] Jaqaman | Nuclear condensation[END_REF][START_REF] Stone | The Skyrme interaction in finite nuclei and nuclear ma er[END_REF], originally constructed for finite nuclei and nuclear ma er at saturation density, is a low-momentum expansion of the effective two-body NN interaction in momentum space. In its simplest form, the isoscalar part of the e ective two-body Skyrme interaction is a zero-range density-dependent interaction,

with r ij = (r i + r j )/2 and where the parameters t 0 , t 3 and σ are fi ed to nuclear properties at zero temperature (see [START_REF] Dutra | Skyrme interaction and nuclear ma er constraints[END_REF] for a large compilation of much more recent versions of Skyrme interactions). The second, density-dependent, term, which Vautherin and Brink [START_REF] Vautherin | Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei[END_REF] showed to be equivalent to a three-body contact force, provides a short-range repulsion thus ensuring saturation at a certain density ρ 0 . The interaction of Equation (A.1.23) leads to a density-dependent mean field potential

which may be supplemented by an isospin-dependent term,

where τ n = 1 and τ p = -1. For the description of finite nuclei, a term proportional to ∇ 2 ρ is usual added to the potential which is adjusted to reproduce nuclear surface energies. Coulomb repulsion between protons is also included by solving the Poisson equation for the proton charge distribution,

The Skyrme force has been most o en used with BUU, BNV and SMF models. In our calculations for 155 Gd+ 238 U and 129 Xe+ nat Sn reactions in [START_REF] Frankland | Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition[END_REF] and [START_REF] Bonnet | Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies[END_REF] this potential with parameters A = -356 MeV, B = 303 MeV, ρ 0 = 0.16 fm -3 and σ = 1/6 was used, leading to saturation properties of cold symmetric nuclear ma er E/A = -16 MeV/nucleon and incompressibility K ∞ = 200 MeV. In [START_REF] Bonnet | Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies[END_REF] the isospin-dependent part with C = 36 MeV was also implemented.

It should be noted that in [START_REF] Dutra | Skyrme interaction and nuclear ma er constraints[END_REF], of 240 existing Skyrme parametrizations used in the literature, only 16 fulfilled a set of constraints derived from a wide range of macroscopic properties of symmetric or pure neutron nuclear ma er and mixtures of the two. Including four further more microscopic constraints, only 5 Skyrme parameter sets agree with existing experimental and empirical data.

Gogny interactions

The advantage of the structure of the Skyrme density functional is that it allows analytical expression of all variables characterizing infinite nuclear ma er, but as it neglects the finite range of the nuclear interaction there is no momentum dependence in the mean field. On the other hand the e ective interaction proposed by Gogny [START_REF] Dechargé | Hartree-Fock-Bogolyubov calculations with the D 1 e ective interaction on spherical nuclei[END_REF] explicitly considers the finite range of the nuclear force. Again neglecting the spin-orbit and isospin dependent terms for simplicity, this force has a form [START_REF] Sebille | Nuclear dynamics with the (finite-range) Gogny force: Flow e ects[END_REF] 

which is composed of two finite range two-body terms and a density-dependent zero range twobody term (almost the same as that of the Skyrme interaction, Equation (A.1.23)). The operators P σ and P τ are the spin and isospin exchange operators, respectively. The mean-field potential corresponding to this force (here given with the dependence on the isospin asymmetry, δ = stable levels only, which leads to relatively cold fragments, while it is assumed that any excess excitation energy of the primary fragments was previously evacuated through neutron evaporation, which are therefore present in the freeze-out description and contribute to the statistical weight. Given our current experimental knowledge and other model evidence for excitation and secondary decay of primary fragments [START_REF] Hudan | Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32A to 50A MeV[END_REF][START_REF] Piantelli | Freeze-out properties of multifragmentation events[END_REF], this is not a very realistic assumption. Note however that kinematic properties, notably the observed anisotropy of momentum distributions, for central collisions for 129 Xe+ nat Sn at 50A MeV were well-reproduced with a modified version, MMMC-NS, using a non-spherical freeze-out volume and/or non-Hubbleian flow profile [START_REF] Le Fèvre | Multifragmentation of nonspherical nuclei[END_REF][START_REF] Le Fèvre | Statistical multifragmentation of non-spherical expanding sources in central heavy-ion collisions[END_REF].

A more recent version of a Microcanonical Multifragmentation Model (MMM) is that of Raduta and Raduta [START_REF] Raduta | Simulation of statistical ensembles suitable for the description of nuclear multifragmentation[END_REF][START_REF] Raduta | Searching for the statistically equilibrated systems formed in heavy ion collisions[END_REF]. As in SMM, fragments are assumed to be spherical, non-overlapping, normal density nuclei in a spherical recipient of volume V. The basic assumption of the model is equiprobability between all configurations C : {A i , Z i , i , r i , p i ; i = 1, . . . , N} (the mass number, the atomic number, the excitation energy, the position, and the momentum of each fragment i of the configuration C, composed of N fragments) which respect the conservation laws, including momentum and angular momentum conservation in [START_REF] Raduta | Searching for the statistically equilibrated systems formed in heavy ion collisions[END_REF]. The integration over fragment momenta in the centre of mass frame can then be analytically performed subject to the aforementioned constraints,

with H the total energy of the configuration, E the total energy of the system prior to break-up, L the total angular momentum and I the inertial tensor of the configuration, and K the total kinetic energy. As in SMM, all but the lightest (A ≤ 4) fragments can have intrinsic excitation energies i > 0, but the corresponding level density formula

includes a cut-o factor with parameter τ = 9 MeV which is introduced to account for the dramatic decrease of the excited levels lifetime at high excitation energies according to the prescription of Randrup and Koonin [START_REF] Randrup | Microcanonical simulation of nuclear multifragmentation[END_REF]. Again as in SMM, radial flow can be included in the calculation, but it does not intervene in the calculation of the statistical weights, except in so much as collective flow energy reduces the available energy for all other degrees of freedom, to conserve energy. The following parametrization for the flow velocity of fragment i is used:

Non-linear velocity profiles can be treated, when the parameter α = 1.

Appendix B Reconstruction of impact parameter distributions B.1 Validation of the method

To test the numerical implementation of the method, we have generated pseudo-events using the probability distribution of Equation (6.2.20) with a set of parameters taken from a typical fit to data for the total multiplicity of charged products, N C (the parameters for the fit to Ni 58+ Ni 5852 data were used, see Table B.1). We have deliberately limited the generated statistics in order to accentuate statistical fluctuations (only 10 4 events were generated, far less than the experimental datasets: see Table 6.1).

For each event a random value of c b was uniformly generated in the range [0, 1], this was then used in Equation (6.2.23) to calculate k and a random value of X drawn according to the gamma distribution Equation (6.2.20). For the multiplicity N C we used the nearest integer value to this X, and as for data we rejected events with multiplicity less than the DAQ multiplicity trigger, N C ≥ 4 (see Part II, Section §6.3). ) distribution for all pseudo-events, along with the best fit which was achieved using Equations (6.2.14), (6.2.20) and (6.2.23) and starting from very di erent parameter values than those used to generate the events. As indicated by the dashed curve representing the fit, here we deliberately chose to exclude all but the high-multiplicity tail of the P(N C ) distribution (fits to experimental data typically included a far wider range of values, down to N C ∼ 7 -8 for a trigger multiplicity 4).

Nevertheless the fit converges to parameter values (shown in the figure) which are very close to the ones used to generate the events (it should be noted that if we fit the full P(N C ) distribution we find exactly the initial values for all parameters within uncertainties). The main e ect of limiting the fit to the high-multiplicity tail is to increase the uncertainty (and indeed the error) on the X min parameter which corresponds to the low-multiplicity cut-o .

The deduced correlation between N C and b is shown in 

B.2.1 Analytic expression for total cross-section

To normalize correctly the probability distribution Equation (B.2.1) we need to know the total reaction cross-section for a given set of parameters b 0 and ∆b. By definition,

db and making the substitutions b = t∆b and b 0 = x∆b we arrive at

This definite integral is related to the complete Fermi-Dirac integral

with j = 1, where Γ(j + 1) is the gamma function, Γ(j + 1) = j! for integer j. In general the value of this integral is given by a polylogarithm, Li s (z), specifically

Simulation of isotropic and anisotropic momentum distributions

To test the response of the di erent shape variables used in Chapter 7 to momentum distributions of varying anisotropy and multiplicity, and to try to deduce the actual form of the distributions for the selected events, required a toy model in order to generate simulated events. This was done by drawing random kinetic energy "vectors" within an ellipsoidal volume in kinetic energy "space" according to a constant "density". In other words, for a given multiplicity, N, and required elongation ratio a/b (where a is the radius of the major axis and b is the radius of the two transverse directions of the ellipsoid), for each product nucleus we draw values at random for the kinetic energy according to

and for the polar angle (with respect to the ellipsoid major axis) according to P(θ)dθ ∼ sin θdθ The kinetic energy is then checked against the maximum energy for a given polar angle (the distance of the surface of the ellipsoid from the origin)

If E > E max the draw is rejected and new values of E and θ drawn until a satisfactory value is found (i.e. a vector corresponding to a point inside the ellipsoid). For a successful draw the azimuthal angle for the particle is drawn uniformly between 0 and 2π. A er N particles have been successfully generated in this way, their momenta are recalculated so that they are in their centre of mass frame. The particles of each event are used to fill a super-tensor like in Equation (7.2.1) in order to calculate the "true" shape of the kinetic energy tensor without finite multiplicity distortions. The ratios used to characterise the di erent simulated anisotropies in momentum space in Chapter 7 are then given by the square root of the ratio of the two largest eigenvectors of this tensor calculated with all events. 147 It has been verified that this method gives the same results for the mean values of the di erent shape variables as a function of multiplicity whether we draw a random partition (i.e. random value of Z for each nucleus) or use the same Z for all nuclei of each event: the results are therefore independent of the partitions, and do not require for example to use the real partitions of the experimental events in order to make a meaningful comparison (although that would be perfectly possible if necessary).