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Preface

This manuscript has been prepared with the aim of obtaining the degree of “Habilitation à Diriger

des Recherches” (Authorization to Supervise Research) or “HDR”. The HDR sanctions recognition

of a candidate’s high scientific level, the original nature of their approach in a field of science,

their ability to master a research strategy in a su�iciently broad scientific or technological field

and their ability to supervise young researchers.
1

As such, this manuscript is divided into two parts. The first part is a detailed summary of

my research activities since my Ph.D thesis, with many references to the various publications

which resulted from these works. As a large proportion of my activity has also been dedicated to

so�ware development and maintenance for the INDRA and FAZIA collaborations, there is also a

short chapter on this work, not documented elsewhere.

The second part concerns two new as-yet unpublished studies which I have conducted over

the last two years. The first, currently being prepared for publication by the INDRA collaboration,

concerns a new method for the quantitative determination of impact parameter distributions

for any experimental selection of data in the Fermi energy range. The second, more recent, and

more exploratory work, presents an entirely new method for carefully selecting the most isotropic

events produced by collisions, allowing at last for a correct study of the dependence of nuclear

transparency with bombarding energy.

John Frankland

GANIL, 21st
September 2020

1
The original text of the law of 23rd November 1988, article 1, states: “L’habilitation à diriger des recherches

sanctionne la reconnaissance du haut niveau scientifique du candidat, du caractère original de sa démarche dans

un domaine de la science de son aptitude à maîtriser une stratégie de recherche dans un domaine scientifique ou

technologique su�isamment large [et] de sa capacité à encadrer de jeunes chercheurs.”

3

https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000298904
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Chapter 1

Introduction

My research activities are concerned with the dynamics and thermodynamics of nuclear ma�er.

Nuclear ma�er is a theoretical idealization of the same quantum fluid which can be found mi-

croscopically at the heart of all atomic nuclei or macroscopically in the collapsing core of massive

stars called supernovae, in the structure (or even in the collisions) of neutron stars [3, 4, 5]. On

Earth the study of nuclear ma�er in extreme conditions of density, temperature or neutron-proton

ratio is possible only through collisions between heavy ions (atomic nuclei) at bombarding ener-

gies from the Coulomb barrier (a few MeV per nucleon) up to a few 100s of MeV per nucleon. In

the course of these reactions the nuclear “liquid drops” which are the projectile and target collide,

deform, heat and disintegrate in many di�erent ways depending on their mass and charge, the

bombarding energy and the impact parameter of each collision. The experimental challenge of

these studies lies in the exploitation of complex multi-detector systems capable of reconstructing

each collision from the multi-parametric data on the dozens of nuclei which can be produced in

each event.

A�er my Ph.D at IPN Orsay
1

supervised by Bernard Borderie and a short post-doctoral so-

journ at IPN Lyon
2
, I was recruited by the CNRS in 1999 and posted to GANIL

3
in October of that

year as a “Chargé de recherches”. Ever since my Ph.D most of my research activity has taken

place within the INDRA collaboration which unites the main laboratories responsible for building

and running the detector
4
. My principal areas of research are the dynamics of heavy-ion colli-

sions in the nucleonic regime and thermodynamic properties of nuclear ma�er. These two lines

of research are complementary: the dynamics of the collisions allows to explore thermodynamic

aspects such as the equation of state or phase transitions. Most of my work has concentrated

on the study of nuclear multifragmentation and the characterization of this process as a mani-

festation of a phase transition of nuclear ma�er in a finite system. All of this work features in

a review article of the state of the art of the subject which I recently co-authored with Bernard

Borderie [1]. In parallel I have also led studies on reaction mechanisms at lower energies, below

1
From 2020 onwards known as Laboratoire de Physique des 2 Infinis Irène Joliot Curie, or IJCLab for short.

2
Now known as Institut de Physique des 2 Infinis de Lyon, or IP2I Lyon for short

3
Grand Accelérateur National d’Ions Lourds, now known as GANIL.

4
‘à la grande époque’, GANIL, IPN Orsay, LPC Caen, IPN Lyon, CEA DAPNI-SPhN, SUBATECH Nantes. Later

on joined by (at one time or another): INFN/University of Napoli, NIPNE Bucharest, Université de Laval au �ébec,

INFN Catania, Ecole des Applications Militaires de l’Energie Atomique, Cherbourg and Conservatoire National des

Arts et Métiers, Paris.

15



16 CHAPTER 1. INTRODUCTION

the multifragmentation threshold, for example by trying to establish upper limits to the fusion

between heavy nuclei and studying their decay by sequential fission [6, 7, 8].

To be�er understand heavy-ion reactions in this energy range, I have carried out many com-

parisons of data with di�erent dynamical models of nuclear collisions, or with statistical models

concerning the more thermodynamic aspects, in collaboration with many theorists of the field in

France and across the world. I have also participated in the organization of many workshops and

international conferences, most notably IWM (International Workshop on Multifragmentation,

to use the original - and less complicated - title) organized by the INDRA and CHIMERA collab-

orations conjointly in Catania or Caen, and of which I was part of the Scientific Commi�ee in

2007*, 2009, 2011* and 2018 (*and local organizer at GANIL).

Throughout my career at GANIL I have supervised students from the University of Caen

(now part of Normandy University), ENSICAEN (the Engineering School - considered to be a “cut

above” the University in the French educational system) or elsewhere, either during internships

as part of the first or second year of their Master’s degree, or by co-supervising Ph.D and post-

doctoral students. The last Ph.D I co-supervised, Diego Gruyer, was recruited by the CNRS in

2018 and is now working at LPC Caen. My current Ph.D student, Julien Lemarié, is working on

the analysis of the first INDRA-FAZIA experiment, in which he participated during his 2
nd

year

Master’s internship in 2019.

I have dedicated most of the last twenty years to obtaining and analysing the best data pos-

sible on heavy-ion collisions (HIC) in the GANIL bombarding energy range (from ∼ 5 to 95

MeV/u) with the charged particle multidetector INDRA [9, 10]. This work concerns not only the

physics analysis which I will present in the following, but also the maintenance and development

of the so�ware used to pilot and monitor the detector as well as for data acquisition, which I took

charge of on taking up my position at GANIL. Due to this commitment, besides the experiments

directly connected to my research programme, I have also taken an important part in many ex-

periments using or all or a part of INDRA, for example, to study giant resonances [11] or the

limits of existence of super-heavy elements [12]. I have also participated in many other experi-

ments either at GANIL using di�erent instruments (ORION, VAMOS, SPEG), or outside GANIL,

for example at GSI Darmstadt (INDRA, ALADIN) or at LNS Catania (CHIMERA, FAZIA).

In the early 2000s I also managed to convince the whole INDRA collaboration to undergo a

paradigm shi� concerning the so�ware environment for data analysis, which up till then had

been based on the Fortran computer language. Thus began the development of a new analysis

environment based on the ROOT framework [13, 14] wri�en in C++: KaliVeda [15]. Since 2005, I,

along with several collaborators, have ensured the evolution of this environment in order to integ-

rate new data with new challenges such as the coupling of INDRA & VAMOS in 2007, experiments

with FAZIA since 2014 (see below), and most recently of all the data from the INDRA-FAZIA ar-

ray. The expertise I gained in this adventure was put to another use, in collaboration with Daniel

Cussol (LPC Caen), creating and supervising a ROOT/C++ training course for French-speaking

nuclear physicists. Between 2003 and 2014, we trained (converted) a whole generation (or even

several) of nuclear physicists (and more) at GANIL, at LPC, at LPNHE (Paris), at the CEA centres

of Saclay, Bruyères-Le-Châtel, or Cadarache, at INSTN (Saclay), at IRMM Geel (Belgium), ...

Since 2011 I have been involved in the development of a new multidetector, FAZIA [16, 17], in

the framework of a European collaboration, in order to improve experimental data on heavy-ion

collisions thanks to a simultaneous identification of the Z and A of all reaction products up to
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Z ∼ 25 over a wide angular range. Between 2014 and 2018 there were many experiments at

LNS Catania, first for commissioning the first prototype FAZIA blocks and the associated control

systems for piloting and monitoring the detectors, and online analysis (which we developed in

collaboration with Eric Bonnet and Diego Gruyer), and then for the first physics experiments

using FAZIA [18]. In 2019 the first experiment coupling INDRA and FAZIA took place at GANIL,

opening a new era in the study of hot, dilute, nuclear ma�er with a strong neutron-proton asym-

metry. Currently we are involved in a project to replace the existing 30-year old VXI/CAMAC

electronics and acquisition system of INDRA with a new, far more compact and lightweight,

digital electronics system. Although the old warhorse has served us well and far beyond its

expected lifespan, the last available spare modules (liberated by the detectors removed for the

INDRA-FAZIA coupling) have all been used up and it is time to move on if INDRA is to survive

another 10 (or more) years.

In the following I present a detailed summary of my research activities, concerning the studies

I was most personally involved in, on multifragmentation, the nuclear ma�er equation of state

and associated phase transitions, and reaction mechanisms at lower energies.
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Chapter 2

Multifragmentation, Equation of State
(EoS) and Phase Transitions of Nuclear
Ma�er

2.1 Introduction
Nuclear ma�er is an idealized macroscopic system composed of neutrons and protons interacting

solely via short range nuclear forces with a spatially uniform density ρ. The nucleon-nucleon

interaction is comprised of two components according to their radial inter-distance: a very short-

range repulsive part which takes into account the incompressibility of the medium and a longer

range a�ractive part. Apart from the five orders of magnitude di�erence in energy and distance

scales, the nuclear interaction is very similar to van der Waals’ forces acting in everyday fluids,

and indeed calculations using realistic e�ective nuclear interactions [21, 22] predict an analogy

of the liquid–gas phase transition between normal- and low-density nuclear ma�er (“normal”

density is the saturation density, ρ0, which is currently estimated as 0.155 ± 0.005 nucleons

fm
−3

[23]). As many recent works on the composition of low-density nuclear (stellar) ma�er

have shown [24, 25, 26], the “gas” phase is predicted to be composed not only of nucleons but

also of a wide range of nuclear clusters (including but far from limited to
4He). In some sense,

strictly speaking, one should speak of a liquid-vapour phase transition for nuclear ma�er; in any

case, the predicted phase transition is expected to be first order, i.e. proceeding through phase

coexistence.

A schematic illustration of the phase diagram of dense ma�er is shown in Figure 2.1.1: the

rather small portion of this diagram concerning nuclei, nuclear ma�er and the liquid-gas phase

transition is limited to temperatures up to T ∼ 25 MeV, and densities ρ not exceeding ∼ 2ρ0
and mostly exploring sub-saturation densities, where the expected phase coexistence region is

situated. The coexistence zone terminates at a critical point, indicated by a black star in the figure,

which is predicted by di�erent models to be situated somewhere around ρ ∼ 0.4ρ0, T ∼ 16 MeV.

The inset of Figure 2.1.1 show a typical prediction of an equation of state (EoS) for nuclear

ma�er, which in this case is represented by isotherms in the pressure-density plane. All such

predicted EoS for nuclear ma�er with a coexistence region also predict a region of mechanical

instability in the phase diagram inside the coexistence region where ∂p/∂ρ < 0 (shown by the

19
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Figure 2.1.1 – (main picture): Schematic illustration of the phase diagram of dense ma�er [19].

(inset): Typical equation of state for symmetric nuclear ma�er (isotherms in pressure-density

plane) [20]. The spinodal boundary (dashed) and the coexistence curve (solid) are indicated.

dashed lines in the inset of Figure 2.1.1). This is called the spinodal region, and the instability is

known as spinodal instability. True first-order phase transitions are slow processes which require

the establishment of an equilibrium across a phase boundary; Bertsch and Siemens [22] were the

first to propose that the phase transition may manifest itself in collisions between finite nuclei

through the exponentially rapid growth of density fluctuations due to spinodal instability, leading

to the production of multiple fragments [20]: multifragmentation.

The experimental study of such reactions which occur in heavy-ion collisions (HIC) at 20−
150A MeV requires powerful multi-detector arrays with high granularity and 4π angular cov-

erage capable of impact parameter estimation and event sorting. Whether this sorting is based

on the multiplicity or (transverse) energy of reaction products, the charge, mass or velocity of

the largest product of each event, the event ‘shape’ (in momentum space), etc., whatever ob-

servable(s) is(are) used need(s) to be measured by the array with as li�le bias as possible for the

widest possible range of impact parameters. The DAQ dead-time must be kept low and the trig-

gering system also has to bias as li�le as possible the sample of collisions recorded during the

experiment.

Among the first generation of devices with these capabilities were the MSU 4π [27] and
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Figure 2.1.2 – An obviously faked photograph of the coupled INDRA and FAZIA arrays in the

INDRA sca�ering chamber at the D5 cave in GANIL. I never wear a white coat and am not even

allowed to touch the hardware. © P. Stroppa/CEA.

Miniball [28] arrays, and the combined Mur/Tonneau/DELF/XYZT arrays (commonly known as

NAUTILUS) [29, 30] at GANIL, and indeed most of the pioneering works on impact parameter

filtering in this energy range were made using these devices in the early 1990s [31, 32, 33].

INDRA [9, 10] is one of a second generation of 4π multidetector arrays, in continued use for

the study of HIC at GANIL in Caen (and briefly at GSI, Darmstadt) since 1993. Its 336 multi-layer

detection modules covering 90% of the solid angle around the target, low detection and identi-

fication thresholds, and minimum-bias trigger logic based on the number of fired modules make

it ideally suited for studies of multifragmentation in the Fermi energy range and beyond. What

follows is a presentation of my small contributions to the advances made in the understanding of

nuclear multifragmentation and its link to the nuclear liquid-gas phase transition by the INDRA

collaboration over the last 25 years. For a much wider review of the subject, including of course

many important results from di�erent groups and collaborations throughout the world, see the

recent review article by Borderie and Frankland [1].

2.2 Multifragmentation and spinodal instabilities
My Ph.D. thesis [34] concerned a detailed study of multifragmentation reactions for the very

heavy system
155Gd+

238U at 36A MeV, one of the reactions measured during the first INDRA

campaign in 1993. The goal was to link multifragmentation to the nuclear liquid-gas phase trans-

ition by demonstrating that the spinodal instability mechanism proposed in [22] was indeed a

plausible origin for the break up of the system into many di�erent fragments, using the recently-

developed Stochastic Mean Field approaches pioneered by, among others, Jørgen Randrup, Phil-
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ippe Chomaz and Maria Colonna [20].

2.2.1 Selection of “single source” or quasi-fused (QF) events
First of all this required to isolate a sample of events as compatible as possible with the multi-

fragmentation of a single source formed in central collisions from the majority of the projectile

and target nucleons. The reliability of the event selection for heavy-ion collisions is a sine qua non
for the quality of the subsequent analyses, especially regarding thermodynamic aspects. In order

to find the most appropriate method, several di�erent approaches were considered based on es-

timating either the collision centrality or the isotropy of the fragment momentum distributions

event by event [35].

Selections based on the “centrality” of the collisions are not well adapted in this context, as,

due to the large fluctuations occurring in collisions at Fermi energies, many di�erent outcomes

may coexist in the same range of impact parameter, and the “single source” events are expected

to form a subset over a large range of impact parameters among the “most central” collisions. It is

only very recently that it has become possible to quantify such e�ects and reconstruct the impact

parameter distributions from experimental data without reference to a model of collisions: see

Part II, Chapter 6. This recent work demonstrates even more clearly than before the impossibility

of a meaningful event-by-event selection based on the impact parameter for central collisions.

Another expected characteristic of the “single-source” events is a high degree of isotropy

of the fragments’ momentum distributions in the centre of mass frame. Unfortunately, the low

multiplicity of intermediate mass fragments produced in the reactions, which for reasons of mass

and charge conservation is typically less than 15, makes the event by event determination of the

isotropy extremely unreliable [36, 37] (see Part II, 7.1.1). The response of global variables used to

measure this isotropy is skewed by the low multiplicity, mean values for highly isotropic events

resemble those of far less isotropic events, and fluctuations from one event to the next are very

large [35].

On the other hand, the symmetric tensor

Sαβ =

M f

∑
i=1

ωi pα(i)pβ(i) (2.2.1)

built from the c.m. momentum components of the M f fragments in each event can be used to

represent the event in momentum or kinetic energy space (depending on the chosen weight ωi) as

an ellipsoid defined by the three eigenvectors and eigenvalues of the tensor [38, 39]. This ellipsoid

(or any other shape variable) is only representative of the real event shape if all or at least most

of the (charged) reaction products of each event are detected, reconstructed and identified: this

is why a prerequisite for such analyses is the selection of “complete” or “well-detected” events

by cuts on the total reconstructed charge

Ztot =
NC

∑
i=1

Zi (2.2.2)

and/or the total reconstructed momentum, which, as fragment masses are not identified by IN-
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Figure 2.2.1 – (le�) Pseudo-Wilczynski diagram for complete events (see text) measured for

155Gd+
238U collisions at 36A MeV, total kinetic energy of reaction products in centre of mass

frame versus the flow angle θ f . (right) Atomic number-longitudinal velocity correlations for

events in the four zones defined on the le�.

DRA, is o�en approximated by the total pseudo-momentum,

ZVtot =
NC

∑
i=1

Zivi,‖

where the sums run over the total number of reconstructed charged products, NC, and Zi and vi,‖
are respectively the atomic number and the longitudinal velocity (parallel to the beam direction)

of the ith
nucleus of the event.

Although the “shape” variables derived from the eigenvalues su�er from the same Jacobian

e�ects due to low multiplicity as any other, there is another information to be derived from this

tensor which is independent of such e�ects. The eigenvector with the largest eigenvalue gives

the direction of the largest flow of momentum or kinetic energy in the event, indicated by the

polar angle θ f it makes with the beam direction. Small flow angles then represent collisions

with li�le change of the nucleon momentum distributions compared to the entrance channel,

while larger and larger θ f represent increasing violent and dissipative reactions. If fragments

are produced by a single source in the centre of mass frame this angle should be isotropically

distributed, even if the number of fragments is small: in this case θ f is mostly determined by

random fluctuations. Hence single source events, if present in the data, should be best isolated

by a cut on θ f corresponding to the value above which the distribution becomes approximately

isotropic.

Selection of very heavy, compact, multifragmenting systems using the flow angle was first

achieved by the Nautilus collaboration, but with a slightly di�erent justification: Lecolley et al.
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[40] related the θ f angle to the orbiting time of the dinuclear system undergoing a deep-inelastic

collision à la Wilczynski [41], with the largest angles supposed to correspond to infinite times,

i.e. fusion. Although the validity of such reaction mechanisms to describe collisions at Fermi

energies and above is far from certain, both interpretations lead to the same selection method.

Figure 2.2.1(le�) shows a pseudo-Wilczynski diagram (kinetic energy versus orbiting angle) con-

structed for well-measured (charge completeness criterion)
155Gd+

238U collisions at 36A MeV,

where the total centre of mass kinetic energy of all detected reaction products is plo�ed as a func-

tion of the flow angle calculated from the fragment (Z ≥ 5) momentum tensor. It can be seen

that most of the dissipation (decrease of total kinetic energy) takes place for forward-peaked

events, θ f ≈ 10o
, in zones 1 and 2 of this diagram, which the corresponding Z-V‖ diagrams

in Figure 2.2.1(right) show are the result of predominantly binary collisions with recognisable

projectile- and target-like fragments and decay products. The remaining evolution towards the

most compact events in the last zone (here for θ f > 70o
) takes place with hardly any further

change in the degree of dissipation.

The flow angle selection for compact multifragmenting systems was first applied by the IN-

DRA collaboration in [42] for collisions of
129Xe+

natSn at 50A MeV. Then it was used in my Ph.D

thesis as well as the accompanying and subsequent papers [43, 35, 44, 45] in order to select homo-

geneous samples of quasi-isotropic events for
155Gd+

238U collisions at 36A MeV and
129Xe+

natSn
collisions at 32A MeV. Such events, originally termed “single source” events are nowadays more

commonly referred to as events with quasi-fused or QF sources [46]. It is to event samples se-

lected in this way (especially for
129Xe+

natSn collisions) that the analyses of the collaboration

demonstrating the occurrence of several of the expected signals of a first-order phase transition

in a finite system were performed: spinodal decomposition [44, 45, 47] (see below), negative heat

capacity [48, 49, 50], and back-bending constrained caloric curves [51]. The selection method

was later validated a posteriori, at least for the
129Xe+

natSn reactions, by Stochastic Mean Field

(SMF) transport model calculations, published in Bonnet et al. [52]. I will try to shed some new

light on the question of selecting homogeneous event samples corresponding to highly compact

multifragmenting systems, and the significance of the large-θ f events, in Part II, Chapter 7.

2.2.2 Spinodal decomposition & stochastic mean field calculations
The first evidence for a bulk e�ect, i.e. linking multifragmentation to bulk nuclear ma�er proper-

ties came from the comparison of the QF events for the two reactions
155Gd+

238U at 36A MeV

and
129Xe+

natSn at 32A MeV, both of which lead to very similar available energies in the centre

of mass frame, ECM =8 ∼ 8.5A MeV [43]. Although the
155Gd+

238U system contains ∼ 50%

more protons than
129Xe+

natSn, the fragment atomic number distributions P(Z) (shown in Fig-

ure 2.2.2) for the two systems are nearly identical (note that here “fragments” are defined as

products with Z ≥ 5). The di�erence in size of the two systems can be found in the mean multi-

plicity of fragments produced in each case, which increases exactly in the same ratio as the total

charge of projectile and target: 〈MGd+U
f 〉/〈MXe+Sn

f 〉 = 6.3/4.3 ≈ 1.5. Therefore we have here

two nuclear systems prepared in similar conditions (similar excitation energy, similar temperat-

ure) which break up in the same way independently of their size; only the number of fragments

produced depends on the amount of (nuclear) ma�er to be partitioned.

This behaviour is predicted by the hypothesis of multifragmentation due to spinodal instabil-
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Figure 2.2.2 – Comparison of fragment (Z ≥ 5) multiplicities (le�) and atomic number distri-

butions (right) for QF events from
155Gd+

238U collisions at 36A MeV (red open symbols) and

129Xe+
natSn collisions at 32A MeV (blue histograms).

ities. The dispersion relation for density fluctuations in unstable nuclear ma�er show that in

case of spinodal instability there is always a “mode” of instability which develops faster than

all others, and this mode is associated with a given wavelength [53, 54]. As the fragments form

from the density fluctuations, they therefore have similar sizes/atomic numbers determined by

this favoured wavelength, which at the typical temperatures reached in Fermi energy reactions

(T ∼ 4− 5 MeV) corresponds to atomic numbers Z ∼ 10. This prediction was the origin of

a�empts to demonstrate the presence of favoured partitions in multifragmentation initiated (un-

successfully) by More�o [55], and finally achieved thanks to the very high statistics of the 5th

INDRA campaign data [47].

The next step was to perform a full dynamical simulation of the reactions using the (at the

time) recently-developed stochastic mean field approaches [56]. Such approaches, based on the

nuclear Boltzmann-Langevin equation [57], restore the fluctuations around the mean one-body

evolution which are averaged out in approaches based on the nuclear Boltzmann equation [58]

and so in case of the onset of instabilities in the reaction dynamics such an approach allows to

explore the ensemble of possible exit channels e.g. in which the system undergoes multifrag-

mentation (see Appendix A, A.1.3).

We used the BOB (Brownian One-Body dynamics model [56, 59]; see Appendix A, A.1.3.1)

approximation to the full stochastic mean field dynamics for the simulation. In this model fluc-

tuations are introduced via a stochastic force whose strength is tuned to correctly describe the

growth rate of the most unstable modes in nuclear ma�er at a given temperature and density

inside the spinodal region [54, 53]. As it was not possible to adjust the force during the dynamical

evolution according to local equilibrium conditions, an initial calculation of the “source” condi-

tions was performed for an impact parameter b = 0 using a standard BNV transport model

(Boltzmann-Nordheim-Vlasov [58]; see Appendix A, A.1.2) employing a Skyrme interaction with
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Figure 2.2.3 – BOB calculation of the spinodal decomposition of compact systems formed in

head-on collisions of
155Gd+

238U. Grey-scale represents nucleon density in the xz-plane.

an incompressibility parameter K∞ = 200 MeV (see Appendix A, A.1.4). The predictions of these

calculations for both reactions is that, a�er a gentle compression phase (ρmax ≈ 1.2ρ0), an

isotropically expanding system is formed which enters the region of spinodal instability a�er

80 ∼ 100 fm/c at an average density ρ ≈ 0.4ρ0 and a temperature T ≈ 4 MeV [44].

The total proton and neutron numbers, average density, temperature and expansion velocity

of the “sources” calculated by BNV were then used as initial conditions for the BOB calculations

with the appropriately-tuned stochastic force strength. Le�ing each expanding system evolve

under the action of the mean field plus fluctuations, fragments form from the amplification of the

unstable modes in the spinodal region, as shown in Figure 2.2.3. The resulting fragments are well-

separated a�er ≈ 240 fm/c and have an average excitation of ∼ 3.2A MeV. They were therefore

used as input to an “a�er-burner” code (SIMON, [60]) capable of calculating their subsequent

evaporative decay and Coulomb trajectories up to the detectors.

The results of the calculations [44] give an excellent reproduction of the experimental QF

event characteristics such as the multiplicities and atomic number distributions of the fragments

for the two systems, and therefore reproduce the initial experimental observation of the scaling

of these observables with the system size (charge), confirming that such a bulk e�ect is linked to

the origin of the observed multifragmentation in the spinodal instability of low density nuclear

ma�er. This agreement extends to more detailed characteristics, such as the total charge bound

in fragments, Zbound, or the event-by-event distributions of the Z-ranked fragments, shown in

Figure 2.2.4 for the
129Xe+

natSn data. The “shape” of the events in momentum space, i.e. their

degree of isotropy was also well accounted for by the simulations. Later analyses of fragment-

fragment velocity correlations [45] showed an excellent agreement concerning the topology of

the system at freeze-out.

One aspect of the data which was not well reproduced, however, are the mean kinetic en-

ergies of the fragments for the
129Xe+

natSn system, which were underestimated by ≈ 20%.
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Figure 2.2.4 – Results of BOB calculations (a�er secondary decay) for QF reactions in
129Xe+

natSn
collisions at 32A MeV: distributions of the 3 first Z-ordered fragments of each event. Black full

symbols are data, blue histograms calculations.

The
155Gd+

238U system was not a�ected by this problem, presumably due to the much larger

Coulomb repulsion in this case. This underestimation is a well-known drawback of a�empts to

include fluctuations of the correct amplitude in semi-classical mean-field approaches. In later

calculations using the SMF model (see Appendix A, A.1.3.1) to calculate the full reaction dy-

namics beginning from t = 0 and at di�erent impact parameters, the lack of radial flow for

129Xe+
natSn at 32A MeV was such that this system did not even multi-fragment, as an abortive

spinodal decomposition re-collapses to a compound nuclear state [61, 52]. Only more recently,

with the inclusion of fluctuations in the full phase space, has the BLOB (Boltzmann-Langevin

One-Body) model [62] reproduced the onset of multifragmentation through spinodal decompos-

ition for
129Xe+

natSn below 32A MeV.

This work was the first strong evidence that multifragmentation in central collisions is due

to the onset of spinodal instability in finite systems composed of warm, dilute nuclear ma�er, as

predicted by finite-temperature mean-field approaches employing e�ective nuclear interactions

which lead to an Equation of State with a first-order liquid-gas phase transition at sub-saturation

densities [21, 63, 64]. It provides a strong basis for the scenario of a compression-expansion cycle

in central collisions which we will come back to later.

Let us mention in passing that calculations for the same two systems were made recently

using the QMD model ([65]; see Appendix A, A.1.3.2) and compared to both the data and the

BNV-BOB calculations [66]. The calculations, again performed for b = 0 collisions only, give a

reasonable agreement with the fragment multiplicity and charge distributions, including the dis-

tributions of the first three Z-ranked fragments, although the Zbound distribution for
155Gd+

238U
is not well reproduced. Unfortunately the authors of [66] gave no information on the kinematic

properties of the simulated fragments. The interesting point about these calculations is that the

fragments were reconstructed only 60-90 fm/c a�er the beginning of the reactions, when (accord-
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Figure 2.3.1 – Mean excitation energies

of primary fragments (symbols) compared

with SMM calculations (lines) for QF mul-

tifragmentation events of
129Xe+

natSn from

32 to 50A MeV [67].

Figure 2.3.2 – AMD calculations for cent-

ral
129Xe+

natSn collisions at 50A MeV with

(DS) or without (D) the improvement intro-

duced in [68].

ing to BNV) the system is compressed and/or expanding towards the spinodal density. However,

the reconstructed fragments are found to be in their ground states, which is probably an artefact

of the fragment reconstruction algorithm, and do not therefore undergo any evaporative decay,

on the contrary to the experimental results of [67], presented in the next section.

2.3 Freeze-out properties and AMD calculations for 129Xe+natSn
reactions

This study was part of the Ph.D. thesis of Sylvie Hudan [69], whose first aim was to extend the

systematic study of
129Xe+

natSn reactions begun during the 1st INDRA campaign at GANIL up

to 150A MeV using new data from the recently completed 4th campaign performed at the GSI

laboratory. In addition, a detailed study of the multifragmentation reactions from 32 to 50A MeV

was used to quantify the statistical decay of the primary fragments, allowing to reconstruct for

the first time experimentally the charge and excitation energy of the fragments at freeze-out [67].

It showed that the mean excitation energies of the primary fragments increases only slowly with

the bombarding or available energy of the reactions, reaching an apparent maximum around

3A MeV.

This is an important result as di�erent models can give very di�erent predictions for the excit-

ation energies of primary fragments, while being equally good at describing the same data such
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Figure 2.3.3 – Time evolution of the density in the centre-of-mass system projected onto the

reaction plane calculated with AMD/DS for a typical collision of
129Xe+

natSn at 50A MeV with

impact parameter b = 3.4 fm. The beam direction is parallel to the horizontal axis, and the size

of the shown area is 60 fm×60 fm. From [68].

as charge distributions, mean energies, and angular distributions. In both �antum Molecular

Dynamics (QMD: Appendix A, A.1.3.2) or Microcanonical Metropolis Monte Carlo (MMMC: Sec-

tion §A.2) calculations, the primary fragments are rather cold, i.e. they are almost una�ected by

subsequent secondary decays and arrive unchanged in the detectors. In the former case, the lack

of excitation energy in the nascent fragments is determined by the collision dynamics, whereas

in the la�er case, it is an assumption of the model when calculating the statistical weights of

the partitions. On the other hand, Antisymmetrized Molecular Dynamics (AMD: Appendix A,

A.1.3.2) , as well as the stochastic mean field simulations presented in the previous section 2.2,

both predict moderately “hot” primary fragments in reactions around the Fermi energy, with

excitation energies 2 ∼ 3A MeV.

Experimental results for primary fragment excitation energies are compared to calculations

made with the Statistical Multifragmentation Model (SMM: Section §A.2, A.2.1) in Figure 2.3.1.

The SMM parameters (source charge, mass, excitation energy, freeze-out volume and radial flow)

were fixed in order to well reproduce the experimental multiplicities, charge distributions and

kinetic energies of fragments at each of the four bombarding energies from 32 to 50A MeV, with

a fixed freeze-out volume equal to three times the volume of the source nucleus at normal nuclear

density.

Over all, a satisfactory agreement is observed concerning the excitation energies of individual

fragments (at least for Zpr ≤ 20). On the other hand, the average excitation energy of fragments

in SMM calculations, although of the same order as the experimental values, is over-estimated

and continues to increase with the incident energy. The saturation of primary fragment excita-

tion energies was later confirmed using a di�erent approach in the works of Piantelli et al [70, 71],

where a vanishing level-density at high excitation energies of primary fragments was implemen-

ted following [72] by the introduction of a limiting temperature for the fragments; as a result, the

temperatures associated to thermal motion of the fragments at freeze-out are no longer assumed

to be the same as their intrinsic temperature (as in SMM), in agreement with the microcanonical

treatment of [73].

The Ph.D. work of Sylvie Hudan also included the first comparisons of INDRA data with cal-

culations performed with the AMD transport model. As far as
129Xe+

natSn collisions at 50A MeV

are concerned, it was the first time that AMD was used for such a heavy system, and at relatively

low bombarding energies. The reactions were simulated for central impact parameters (b < 4 fm)

and, a�er statistical decay using an a�erburner and simulation of detection e�ects, compared to

data for the 10% most central collisions selected with the total transverse energy of light charged
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particles (see Part II, Chapter 6). Using the geometric prescription of [74] these collisions were

estimated to correspond to impact parameters b < 0.3bmax; for 50A MeV collisions a value of

bmax = 9.8 fm was deduced from the measured reaction cross-section [75]. The time evolution

of a typical collision is shown in Figure 2.3.3.

A very satisfactory agreement with the data concerning fragment multiplicities, Z distribu-

tions and kinetic energies was achieved [76] at both energies, and especially at the lower energy

of 50A MeV this was due to a significant improvement of the model made specifically in order to

reproduce these data. The improvement concerns the treatment of the mean-field propagation of

the wave packets used to represent each nucleon [68]. In previous versions of AMD (referred to

as ’AMD/D’ in Figure 2.3.2), wave packet di�usion during the propagation was implemented as

a stochastic branching process, which could not consistently reproduce the one-body dynamics

as predicted by mean field models.

The new version (referred to as ’AMD/DS’), incorporating wave packet shrinking as well as

di�usion in order to have a coherent mean-field evolution, modified the dynamics so as to lower

the expansion velocity of the fragmenting systems formed in central collisions, which is why

the yields of the heavier fragments are much be�er reproduced by AMD/DS than by AMD/D

(see Figure 2.3.2). The resulting AMD is a transport model incorporating many-body correlations

(essential to describe cluster/fragment formation) while respecting the correct mean-field dy-

namics, as shown by later comparisons with Stochastic Mean Field calculations [77]. The need

for a correct treatment of the mean-field and one-body dynamics in order to reproduce the data

at 50A MeV also underlines the fact that the nuclear mean field still plays an important role at

these energies.

2.4 Multifragmentation and universal fluctuations

2.4.1 Identifying the nature of the phase transition
A new approach to the study of critical phenomena in finite systems was developed in the early

2000s by Marek Ploszajczak
1

and Robert Botet
2
: the theory of universal order parameter fluc-

tuations [78]. Initially conceived in the framework of continuous phase transitions
3
, the theory

describes the fluctuations of the order parameter in a finite system as

σ2
m ∼ 〈m〉2∆

(2.4.1)

where the parameter ∆ can take values in the range 1/2 ≤ ∆ ≤ 1, the two extremes being associ-

ated with sub- or supercritical behaviour, respectively. This relationship provides a valuable tool

for multifragmentation data analysis when looking for evidence of an underlying phase trans-

ition: in order to identify critical behaviour and the associated order parameter, it is su�icient

to find an observable whose fluctuations change amplitude depending on an appropriate control

parameter.

1
GANIL

2
Laboratoire de Physique des Solides d’Orsay

3
Continuous (or second-order) phase transitions occur without phase coexistence; as a function of the control

parameter x, the order parameter m characterising the phase transition changes value from m = 0 to m 6= 0 at the

so-called critical value of x.
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Figure 2.4.1 – Log variance ln(κ2 = σ2)
of Zmax distributions vs. log squared mean

values ln(κ2
1 = 〈Zmax〉2) for QF events

from
129Xe+

natSn collisions from 25A MeV

(right) to 50A MeV (le�). From [79].

Figure 2.4.2 – Scaled Zmax distributions for

129Xe+
natSn collisions from 39A MeV to

100A MeV reduced to a single Gumbel dis-

tribution, Equation (2.4.4) [82].

Such behaviour was first demonstrated experimentally for the QF multifragmentation events

from
129Xe+

natSn reactions studied with INDRA, where, with m =Zmax (the largest atomic num-

ber Z measured in each event), ∆ was shown to switch from 1/2 to 1 between the bombarding

energies of 32A MeV and 39A MeV (see Figure 2.4.1), whereas the fluctuations of the total mul-

tiplicity scale with ∆ = 1/2 at all energies [79]. This means that Zmax , or the size (charge) of

the largest fragment of each event, is closely related to the order parameter of a phase transition,

whereas the number of fragments is not.

This result is far from trivial, as all generic models of critical clusterization phenomena can

be classed into two groups, each with a characteristic order parameter: for fragmentation models

(breaking a large cluster into smaller pieces) it is the number (multiplicity) of clusters, whereas

for aggregation models (small clusters group together into larger ones) it is the size of the largest

cluster.

Therefore just the simple observation that the reduced fluctuations σ2/〈Zmax〉 change scal-

ing behaviour with increasing energy answers two of the oldest questions concerning multifrag-

mentation. The first, asked ever since Finn et al. observed a power law mass distribution for

fragments [80], is: is multifragmentation linked to a phase transition? The definitive answer from

the universal fluctuations analysis is yes, because we can identify an order parameter associated

with multifragmentation which exhibits “critical” behaviour, Zmax. The second comes from the

title of a paper from 1984 by Jörg Aichelin and Joerg Huefner [81]: condensation of vapour or shat-
tering of glass? The identification of Zmax as the order parameter of the transition clearly shows

that we are dealing with a phenomenon much closer to the former than to the la�er.
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2.4.2 Form of the scaling function and pseudo-criticality
In reality, the scaling of an observable’s fluctuations as in Equation (2.4.1) is not a su�icient

condition for it to be considered an order parameter: the observable’s probability distributions

P(m) must also collapse to a unique scaling function when expressed in terms of the scaling

variable z(∆) = (m− 〈m〉)/〈m〉∆,

Φ(z(∆)) = 〈m〉∆P(m) (2.4.2)

as was indeed shown in [79] for Zmax. However the theory tells us next to nothing about the

functional form of Φ(z(∆)), except that close to a critical point the tail of the distribution for

large z(∆) should fall o� faster than exp−z2
(∆), which is never observed in data.

In [82] we extended the analysis to the full set of data for symmetric collisions studied up

to that point with INDRA (from Ar+KCl to Au+Au). For nearly all data, at low energy when

∆ ∼ 1/2 the scaling function is approximately Gaussian (but see 2.5.2 below). On the other

hand, for all systems which exhibit the ∆ ∼ 1 scaling, the scaling function has a very particular

form known from extremal statistics: to a good approximation it can be described by the Gumbel

distribution [83]

φk(sk) =
kk

(k− 1)!
1

bM
e−k(sk+e−sk )

(2.4.3)

with sk = (Zk − aM)/bM, which is one of the limiting forms for the probability distribution

of the k-largest value Zk among a set of (uncorrelated) random variables. For k = 1 we have

Z1 ≡ Zmax and the asymmetric distribution with an exponential tail seen in Figure 2.4.2 is given

by

P(Zmax) ∼ exp
(
−(Zmax − e−Zmax)

)
(2.4.4)

The Gumbel distribution is the equivalent, for extremal statistics, of the Gaussian distribution

for the central limit theorem: the Gaussian is the asymptotic distribution of the sum of a set of

(uncorrelated) random variables, whereas Gumbel is the asymptotic distribution of the extremum

(maximum or minimum) of the set. Note that in both cases, the random variables are assumed

to follow the same underlying probability law.

It was noted in [82] that the P(Zmax) data tend to resemble more and more the Gumbel

distribution the higher the bombarding energy, but also the higher the considered system mass

(or charge). For the heaviest system studied in [82], the agreement can in fact be extended

beyond Zmax using Equation (2.4.3). Fig. 2.4.3 presents the distributions for the first three Z-

ranked fragments, with Z1 > Z2 > Z3, produced in each central collision
4

of
197Au+

197Au at

bombarding energies 40, 60, 80 and 100A MeV. It can be seen that each of these distributions is

very well-fi�ed by Equation (2.4.3) using the appropriate value of k=1, 2 or 3.

This was first time that the presence and importance of the Gumbel distribution, and there-

fore of extremal statistics, had been recognized in multifragmentation data. Asymptotically, the

large-Zmax tail of the Gumbel distribution is exponential, therefore in the universal fluctuations

4
Here the selection was made by retaining events belonging to the upper centile of the distribution of Ztot× Et12.
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Figure 2.4.3 – Fits to the probability distributions of the atomic numbers of the three largest frag-

ments, Z1 > Z2 > Z3, produced in each event in central collisions of
197Au+

197Au at di�erent

bombarding energies: (a)-(c): 40A MeV; (d)-(f): 60A MeV; (g)-(i): 80A MeV; (j)-(l): 100A MeV.
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framework the observation of this form of P(Zmax) in the ∆ = 1 scaling regime means that al-

though fluctuations become very large, systems never approach a critical point. This is consistent

with [84], where it was shown that a critical behaviour in fragment observables can be consistent

with phase coexistence and the occurrence of a low freeze-out density due to finite size e�ects.

Indeed, for finite (small) systems it is su�icient for fluctuations (or, equivalently, the correl-

ation length) to be of the same order as the size of the system to mimic critical fluctuations on

all length scales which would be induced by a divergence of the correlation length in an “infin-

ite” system, i.e. in the thermodynamic limit. There is no contradiction between the scenario of

nuclear fragmentation inside the coexistence or the spinodal region associated with a first order

phase transition and the observation of various scaling laws and other pseudo-critical behaviour

[49]. For more on these aspects, see Sec. 6.2 of [1].

An example of such pseudo-criticality can be derived from the Gumbel fits with Equation (2.4.3)

shown in Figure 2.4.3. As mentioned above, the underlying statistical law governing the “random

variables” Z is assumed to be the same, in which case the parameters bk of Equation (2.4.3) should

be the same for all k (i.e. for fits to Z1, Z2 and Z3) at a given energy. This is approximately satis-

fied by the fits shown here, and the mean value of b̄ = ∑3
k=1 bk/3 exhibits a bombarding energy

Eb dependence which is highly reminiscent of the behaviour of critical exponents near a critical

point [85]:

b̄ ∼ |Eb − 24.4|−ν

with ν = 0.5. Needless to say, there are currently no plans to search for evidence of this “critical”

point for multifragmentation by performing
197Au+

197Au collisions at 24.4A MeV.

2.5 Multifragmentation and radial flow
One of the most important contributions of the INDRA collaboration since 1993 has been to

demonstrate, through many di�erent works (some of which are presented here; for the rest, see

[1]), that the origin of multifragmentation lies in the clusterization of excited nuclear ma�er at

sub-saturation densities, as described in the Introduction of this chapter. In central heavy-ion

collisions, such densities are reached through a compression-expansion cycle: during the ap-

proach and stopping phase of the collision, ma�er is compressed and heated; a combination of

Coulomb repulsion, thermal pressure and the incompressibility of nuclear ma�er then provokes a

“rebound” and the system begins to expand towards low densities, where fragments form through

spinodal instability. This is the typical scenario long predicted by semi-classical mean field mod-

els such as [86, 87, 88].

Traces of this expansion can be found in the kinetic energies of the fragments, which ex-

ceed the values expected solely from thermal and Coulomb contributions [89, 90, 91, 92] which

can be calculated using statistical multifragmentation models (see Section §A.2). For example,

the Microcanonical Multifragmentation Model (MMM: see A.2.2) was successfully used to repro-

duce the data for the QF events of
129Xe+

natSn 32A MeV and
155Gd+

238U 36A MeV in [93], not

only the fragment partition properties but also mean kinetic energies and fragment-fragment

velocity correlations. The best agreement was achieved for freeze-out volumes V ≈ 8.5V0 and

a non-Hubbleian radial flow of ≈ 1.8A MeV for both systems. Nevertheless, without an inde-

pendent experimental measurement of the freeze-out volume this method can only give a model-
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Figure 2.5.1 – (le�) Radial collective energy ER as a function of excitation energy per nucleon E∗

for
129Xe+

natSn QF sources (black squares), QP sources from 80 (red open circles) and 100A MeV

(red full circles)
197Au+

197Au reactions, and for π− + 197Au reactions (blue triangles).

(right) Mean fragment multiplicities normalised to source size (charge), M(N)
f rag, as a function of

excitation energy per nucleon E∗. Symbols as for le� panel. From [46].

dependent estimate of the expansion energy: the larger the assumed volume, the lower the inter-

fragment repulsion due to Coulomb, and the larger our estimate of the radial flow energy.

During the Ph.D thesis of Diego Gruyer (2011-2014), new evidence of the important role

played by collective radial expansion in the multifragmentation of excited nuclear systems was

brought to light in two original works presented in this section.

2.5.1 Multifragmentation for di�erent entrance channel asymmetries

Estimates of radial expansion energy from experimental data on multifragmentation have mostly

been obtained from comparisons of kinetic properties of fragments with statistical model calcu-

lations or any other method of reconstructing the system at freeze-out, which can provide an

estimate of the part of the fragment kinetic energies which can be a�ributed to thermal mo-

tion and Coulomb repulsion; any extra radial motion of the fragments can then be a�ributed to

expansion energy (for the best example of an application of this method, see [71]).

Nevertheless any such reconstruction necessarily involves a large amount of hypotheses and

resulting ambiguities, therefore a new method of estimating the expansion energy was developed

by Eric Bonnet during his Ph.D (2003-2006) which is far less model-dependent. Based on the

Coulomb-corrected mean relative velocities between fragments in each event, it was used to

measure and compare the radial flow for multifragmenting sources with the same excitation en-

ergies produced in di�erent reactions [46]. Figure 2.5.1(le�) compares the expansion energy for

129Xe+
natSn QF sources produced in central collisions with that deduced from fragments pro-

duced by the break-up of quasi-projectile (QP) sources from peripheral
197Au+

197Au collisions
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Figure 2.5.2 – Atomic number Z and longitudinal velocity v‖ correlations for fragments in (top

row) well-detected events (see text) and (bo�om row) QF events selected with θ f > 70o
. From

[96].

at 80A MeV and 100A MeV
5
. The large di�erences in ER which are observed beginning from

E∗ =6A MeV demonstrate the importance of the compression-expansion cycle in the QF reac-

tions, absent in the case of semi-peripheral collisions producing an excited QP fragment. For

comparison, radial flow energies for hadron-induced multifragmentation reactions at similar ex-

citation energies, measured by the ISIS collaboration [95], are also shown in the figure: in such a

reaction (π−+197 Au) there can be no doubt that only thermal pressure and Coulomb repulsion

contribute to the expansion. This shows that radial collective energy is essentially produced by

thermal pressure in semi-peripheral heavy-ion collisions while for QF sources produced in cent-

ral collisions the contribution from the compression–expansion cycle becomes more and more

important as the incident energy increases.

For similar-sized systems produced by the two reaction mechanisms at the same E∗, quant-

ities such as the total charge bound in fragments (Z ≥ 5) normalized to the total charge of the

source, the mean charge of the largest fragment 〈Zmax〉, or the normalized multiplicity of light

charged particles are the same. However, thermal excitation energy alone does not determine the

way in which nuclear systems undergo multifragmentation. Figure 2.5.1(right) shows that the

mean normalised fragment multiplicity, M(N)
f rag, is greater for QF multifragmentation than for QP

sources, and in [97] it was shown that at a given total excitation energy per nucleon the amount

of radial collective energy, ER, fixes M(N)
f rag, which in turn fixes the properties of the fragment

5
In fact, the values of ER for the 32 − 50A MeV

129Xe+
natSn data are from the Ph.D of Nicolas Le Neindre

[94], deduced from comparisons with SMM; these values were used to “calibrate” the relative velocity measurement,

allowing to deduce values of ER for the 25A MeV data as well as for the
197Au+

197Au QP data.
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partitions, which are in general more symmetric in the presence of larger collective expansion.

We decided to put this new understanding of the link between radial flow and fragment parti-

tions to the test with a new experiment. To make the simplest comparison possible between mul-

tifragmentation reactions induced with di�erent amounts of radial flow, we decided to reproduce

the
129Xe+

natSn QF sources using a di�erent entrance channel:
181Ta+

66Zn. By using an asym-

metric entrance channel, we can trigger multifragmentation in systems of the same size/charge,

at the same excitation energy per nucleon, using the same reaction mechanism of central col-

lisions, but with a smaller compression-expansion cycle as the reduced overlap volume for the

asymmetric system limits the amount of stopping and hence the maximum densities achieved.

The bombarding energies used in the experiment, 31.8 and 39.4A MeV, were fixed to give the

same available centre of mass energies as for the existing
129Xe+

natSn data at 25 and 32A MeV,

i.e. Ecm ∼6A MeV and Ecm ∼8A MeV respectively. A higher maximum energy would have been

possible with a lighter projectile i.e. using direct kinematics; however in that case the reduced

velocity of the centre of mass frame makes complete detection and identification of the reaction

products less likely, as was already seen for the
58Ni+197Au system (which is indeed approxim-

ately an asymmetric version of
129Xe+

natSn) measured during the 2nd INDRA campaign [98]. The

experiment, numbered E613, presented to the GANIL PAC in 2010, was accepted and scheduled

for October 2011, which coincided perfectly with the beginning of Diego Gruyer’s Ph.D thesis.

Figure 2.5.2 shows atomic number-longitudinal velocity correlations for the two reactions

with the highest available energy in the centre of mass (Ecm ∼8A MeV). In the top row, these

correlations concern only the most well-detected (“complete”) events (see Sec. 2.2.1). The bo�om

row presents the same correlations for QF events selected with a flow angle cut θ f > 70o
. The

e�ectiveness of the cut in isolating compact events is clear from the comparison between these

figures, especially for the asymmetric
181Ta+

66Zn system which shows a strong contribution

from heavy quasi-projectile nuclei without the θ f cut. Another result can also be seen in the

correlations for the QF events: the fragments for the asymmetric entrance channel have slightly

larger Z than for
129Xe+

natSn.

As shown in Figure 2.5.3(le�), this is not solely due to the largest fragment of each event: even

when Zmax is excluded, the distribution of all the remaining fragments still extends further in

Z for the QF sources produced by the asymmetric
181Ta+

66Zn reaction. The mean total charge

bound in fragments is the same within 3% for each pair of reactions, therefore unsurprisingly the

reason for the heavier fragments in the asymmetric reaction is the fragment multiplicity which

is 20% larger on average for the symmetric
129Xe+

natSn reaction at both energies.

The expected e�ects on the fragment partitions are therefore observed, but are they due to a

di�erence of radial expansion energy? A first answer to this question can be obtained by looking

at mean fragment kinetic energies in the centre of mass frame as a function of their atomic

number (Fig. 2.5.3(right)). Sorting the mean energies according to Z means that at least to a first

order approximation we can consider that the Coulomb contribution to 〈E〉 for each of the two

reactions is the same (especially as the overall total charge is the same in both cases). As can be

clearly seen, the mean kinetic energies of all fragments (again, excluding the largest fragment

of each event) are significantly higher for the
129Xe+

natSn data than for
181Ta+

66Zn, although

fragments in the
129Xe+

natSn case are on average smaller in Z, as expected if collective flow is

more important for the symmetric reaction.

This is confirmed by the Coulomb-corrected mean relative velocity between fragments in
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Figure 2.5.3 – Comparison of QF multifragmentation events with Ecm ∼8A MeV for symmetric

or asymmetric entrance channel. (le�) distributions of fragment (Z ≥ 5) atomic number; (right)

mean centre of mass kinetic energy of fragments as a function of Z. In both cases, the largest Z
fragment of each event is excluded. From [99].

each event, which is 23% higher for the
129Xe+

natSn data at Ecm ∼8A MeV (bombarding energy

32A MeV). Using the calibration curve given in Fig. 8 of [46] we can estimate that there is

a di�erence of 1A MeV in the radial expansion energy ER produced in
129Xe+

natSn central

collisions at 32A MeV compared to
181Ta+

66Zn reactions at 39.4A MeV.

These results are therefore the strongest confirmation to date that for a given excitation en-

ergy per nucleon and source size it is the amount of radial flow which determines the fragment

multiplicity and partition properties, as first proposed in [46]. It should be recalled that in all

statistical models of multifragmentation [100, 101] collective flow is not included in the calcu-

lation of the statistical weights. For a further, final, surprising confirmation of the di�erence in

radial flow between the two reactions, however, we will have to wait until the end of the next

section.

2.5.2 Multifragmentation timescale and Zmax fluctuations
In 2004, even before publication of our article [82] extending the universal fluctuations analysis

to cover most of the INDRA dataset, Abdou Chbihi suggested that, rather than separating the

data into two distinct classes of order parameter distributions, Gaussian at low energies and

Gumbellian at high energies, we should fit the Zmax distribution for each bombarding energy

with a weighted sum of the two distributions,

P(Zmax) = ηPGauss(Zmax) + (1− η)PGumbel(Zmax) (2.5.1)

with 0 ≤ η ≤ 1.

As Figure 2.5.4 shows, the shapes of the experimental P(Zmax) distributions are very well

fi�ed by this admixture of the two asymptotic distributions, and far be�er than by one or the

other distribution alone (according to the comparison of χ2
values for fits, see [102]). However,
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Figure 2.5.4 – Experimental Zmax distributions for central
129Xe+

natSn collisions (black points)

at the bombarding energies shown in the figure, fi�ed with the weighted sum of Equation (2.5.1)

(black curve) and showing the Gaussian (blue) and Gumbellian (red) component of each fit. From

[102].

until 2011 we had no way to interpret the meaning of this result, until Robert Botet made some

new calculations with an irreversible aggregation model applied to finite (small) systems.

The irreversible sol-gel transition can be modelled using the coupled non-linear di�erential

equations in cluster concentrations cs (the Smoluchowski equations [103])

dcs

dt
=

1
2 ∑

i+j=s
Ki,jcicj −∑

j
Ks,jcscj (2.5.2)

where s is cluster size and the concentrations are given by

cs = lim
N→∞

ns

N

with ns the number of clusters of size s in a system of size N = ∑s nss. Coe�icients Ki,j (aggreg-

ation kernels) represent the probability of aggregation per unit time between clusters of mass i
and j. The sol-gel transition in this model, as in percolation [104], corresponds to the appear-

ance of an “infinite” cluster which contains a finite fraction of the total mass of the system. The

transition occurs when the order parameter, which is the gel fraction

mG = lim
N→∞

1
N
〈smax〉 (2.5.3)

where smax is the size of the largest cluster, becomes non-zero. The size of the largest cluster can

therefore be treated as an order parameter of the model, as for percolation. In the specific case

with Ki,j = ij the gel fraction mG = 0 for times t < tc, where the critical time tc = 1, and

mG → 1 for t > tc
6
.

6
It is interesting to note that the cluster size distribution is a power law, P(s) ∼ s−τ

(with τ = 5/2) for all times
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Figure 2.5.5 – Distributions of the largest cluster size smax calculated using the Smoluchowski

equations Equation (2.5.2) for a system size N = 216 at di�erent times (black points) fi�ed

with the weighted sum of Equation (2.5.1) (black curve) and showing the Gaussian (blue) and

Gumbellian (red) component of each fit. From [102].

Botet and Ploszajczak had already shown in 2000 that the distribution P(smax) of the largest

cluster could have two distinct forms, Gaussian for t � tc in the gel phase, where the distribu-

tions scale with ∆ = 1/2, whereas for t = tc and the ∆ = 1 scaling, Figure 5 of [78] presents a

characteristically asymmetric distribution with a long large-smax tail: although not identified as

such at the time (that did not occur until our paper [82] of 2005), it appears very close to a Gum-

bel distribution. These calculations were made for quasi-infinite systems with N = 210 − 214
:

what Robert did now was to repeat the model calculations with N = 216, comparable to nuclear

system “sizes”.

What the new calculations showed (see Figure 2.5.5) was a continuous evolution of P(smax)
from the Gumbel form at early times before tc, with a Gaussian component appearing at large

smax for t ∼ tc and becoming dominant for t � tc. What this also means is that the order

parameter smax changes nature over time: from extremal (largest among a random set of clusters)

to additive (largest because of successive addition i.e. aggregation of random clusters).

Of course, the physical picture of clusters being built-up over time by agglomeration described

by the Smoluchowski equations recalls microscopic approaches in which fragments result from

the spinodal decomposition of hot, expanding nuclear ma�er. In order to make the link between

the Smoluchowski result (Fig. 2.5.5) and that for data (Fig. 2.5.4) requires to make a link between

bombarding energy and the timescale of fragment formation, for which a determining factor is

the amount of collective radial expansion: then the similarity between Fig. 2.5.5 and 2.5.4 can be

understood in terms of fragment size distributions being determined on shorter and shorter time

scales due to increasing radial flow with increasing bombarding energy (see Figure 2.5.1(le�),

t > tc, not only at the critical threshold. The whole distribution of finite-size clusters evolves self-similarly, and the

appearance of a power-law behaviour is not a sign of a critical behaviour but a specific characteristic of the gelation

phase [78].
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Figure 2.5.6 – ∆-scaling map showing the total system mass-dependence of the bombarding en-

ergy at which the change of ∆-scaling regime takes place for
36Ar+KCl, 58Ni+58Ni, 129Xe+

natSn
and

197Au+
197Au collisions. From [82].

Sec. 2.5.1). A similar scenario was earlier proposed by the FOPI collaboration of nuclear droplets

forming in hot expanding nuclear ma�er, where radial expansion provides a local cooling mech-

anism allowing the survival of clusters heavier than α particles [105]: however, in their case, the

reactions studied were at 400A MeV so the surviving fragments remained quite small (Z < 10)

compared to the data presented here.

Furthermore, this interpretation of the results allowed us to finally understand the ∆-scaling

“phase map” for the four systems
36Ar+KCl, 58Ni+58Ni, 58Ni+58Ni and

197Au+
197Au, shown

in Figure 2.5.6, that was the main result of [82]. This figure captures the essential results of

the universal fluctuations analysis applied to central collisions for these 4 systems, concerning

the bombarding energy at which the scaling of the Zmax fluctuations changes from ∆ = 1/2 to

∆ = 1, and the distributions P(Zmax) change from (dominantly) Gaussian to (dominantly) Gum-

bellian form. In fact, the actual change of regime is only observed for
58Ni+58Ni and

129Xe+
natSn

reactions, whereas the lightest system,
36Ar+KCl, exhibits only ∆ = 1/2 scaling with Gaus-

sian P(Zmax) distributions and the heaviest,
197Au+

197Au, only ∆ = 1 scaling and Gumbellian

P(Zmax) distributions (see Figure 2.4.3).

Radial expansion in central heavy-ion collisions occurs a�er significant compression of the

incoming nuclear fluid, and as such depends not only on static nuclear ma�er properties such as

incompressibility, but also on transport properties such as the degree of stopping achieved in the

collision, shown to increase with system mass above the Fermi energy for the same data in [106],

and linked to the energy dependence of the in-medium nucleon-nucleon cross-section or mean

free path in [107]. Thus for light systems, such as
36Ar+KCl or

58Ni+58Ni, the bombarding en-

ergy required to achieve su�icient initial compression for there to be significant radial expansion

is higher than for heavier systems like
129Xe+

natSn or
197Au+

197Au.
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Figure 2.5.7 – Zmax distributions for the symmetric and asymmetric QF reactions of 2.5.1 (black

points) fi�ed with the weighted sum of Equation (2.5.1) (black curve) and showing the Gaussian

(blue) and Gumbellian (red) component of each fit. From [96].
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In this way we can understand why the ∆-scaling and P(Zmax) transition occurs at higher

bombarding energies for
58Ni+58Ni than for

129Xe+
natSn. For the very light

36Ar+KCl system

we must assume that the threshold is higher than the maximum measured bombarding energy

of 74A MeV, whereas for
197Au+

197Au perhaps both the greater degree of stopping and far

larger Coulomb repulsion contribute to increase radial flow and reduce the fragment formation

timescale even at the lowest measured bombarding energy of 40A MeV. Since publication of [102]

analysis of data for the virtually identical
208Pb+

197Au system measured during the 5th INDRA

campaign has partially confirmed this conclusion: the P(Zmax) distribution for central collisions

is also Gumbellian at the even lower bombarding energy of 29A MeV.

Finally let us now come back to the question of the di�erence of radial flow for the QF sources

produced by the two reactions
129Xe+

natSn and
181Ta+

66Zn. As we showed in 2.5.1, these two

reactions with the same total mass and charge at the same centre of mass energy lead to signi-

ficantly di�erent fragment partitions, with some evidence that the collective flow for the asym-

metric reaction
181Ta+

66Zn is smaller than that for
129Xe+

natSn. Now, as shown above, we have

a new tool to compare the importance of flow for di�erent reactions: the decomposition of the

P(Zmax) distributions into Gaussian and Gumbellian components. Figure 2.5.7 presents the dif-

ferent components deduced from fits to the four P(Zmax) distributions using Equation (2.5.1).

Figures 2.5.7(a),(b) compare the results at Ecm ∼6A MeV while Figures 2.5.7(d),(e) compare the

results at Ecm ∼8A MeV. The overall fits to each distribution are of excellent quality, especially

in Figure 2.5.7(d) where the distribution has a very particular form. It is clear from these figures

that in both cases the asymmetric
181Ta+

66Zn reaction has a much more predominant Gaussian

component in its P(Zmax) distribution than the equivalent symmetric reaction, which confirms

once more that the radial collective flow is smaller for
181Ta+

66Zn than for
129Xe+

natSn.

2.6 Summary

To summarize this long chapter which concerns the major part of my research activities, the work

that I have participated in and/or led since my Ph.D has contributed to the following import-

ant cornerstones of current understanding of multifragmentation in central heavy-ion collisions

around the Fermi energy and the nuclear liquid-gas phase transition [1]:

Spinodal decomposition In the
129Xe+

natSn 32A MeV and
155Gd+

238U 36A MeV reactions

two systems with similar excitation energy per nucleon and similar importance of radial flow

(see Section §2.5) were shown to lead to very similar multifragmentation pa�erns, with the same

Z partitions and a mean multiplicity of fragments which increases with the total charge of the

system [43]. This was a first evidence for multifragmentation as a bulk process, linked to the

properties of the low density excited nuclear ma�er formed in both reactions.

Confrontation of these results with calculations using a stochastic transport model in which

spinodal decomposition occurs in the course of both reactions brought further evidence that such

a mechanism is responsible for nuclear multifragmentation [44, 45]. Later studies with very high

statistics data revealed the fossil signal of the spinodal decomposition in the fragment partitions,

which is a “smoking gun” for this mechanism [47].
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Freeze-out properties of fragments The experimental reconstruction of the primary frag-

ments at freeze-out for multifragmentation events in
129Xe+

natSn from 32A MeV to 50A MeV

showed that with increasing bombarding/available energy of the reactions the mean excitation

energies per nucleon of the primary fragments do not increase continuously, but rather “satur-

ate” at a maximum value of ≈ 3A MeV [67]. This is partly due to the onset and increase of

collective flow [46], but can also be ascribed to a vanishing level-density of nuclei at high excit-

ation energies [71]. In this case the temperatures associated with thermal kinetic motion of the

fragments can be much higher than those associated with their intrinsic excitation energy [51]:

then the back-bending of the “true” caloric curve associated with the liquid-gas phase transition

in a finite system [108, 109] is revealed in the kinetic temperatures at freeze-out.

Order parameter for multifragmentation The application of the universal fluctuations the-

ory [78] to multifragmentation data first for the
129Xe+

natSn reactions [79] and then for a wide

range of colliding systems and bombarding energies [82] showed in the simplest and most model-

independent way possible that the largest-Z fragment of each event, Zmax, behaves like the order

parameter of a critical phenomenon, i.e. a phase transition. All generic models of cluster/frag-

ment production by a process of aggregation have the largest cluster as their order parameter,

therefore the phase transition associated with multifragmentation is necessarily of this type.

Although the observed change of scaling behaviour of the order parameter fluctuations is

predicted near the critical point of a continuous phase transition, this and other pseudo-critical

behaviours [49] are fully consistent with the fact that Zmax was also shown to exhibit the expec-

ted bimodal behaviour associated with the order parameter of a first order phase transition in a

finite system [110, 111].

Flow and multifragmentation Evidence that multifragmenting systems with the same ex-

citation energy per nucleon formed by di�erent reaction mechanisms leading to very di�erent

amounts of collective expansion have di�erent partition properties was presented in [46]: at

a given total excitation energy per nucleon the amount of radial collective energy decides the

mean normalised fragment multiplicity which in turn fixes the properties of the fragment parti-

tions [97]. Our new data have shown that multifragmenting systems with the same excitation

energy per nucleon formed by the same reaction mechanism but using symmetric (asymmetric)

collisions to maximise (minimise) the radial flow also have di�erent partition properties [96, 99],

confirming the conclusions of [46, 97].

In addition it was shown in [102] that the relative importance of collective flow determines

the probability distribution (and hence the fluctuations) of the Zmax order parameter, as in a gen-

eric model of the irreversible aggregation process. The observed continuous evolution of P(Zmax)
from that of an additive to an extremal order parameter with bombarding energy is further evid-

ence that multifragmentation in central collisions occurs at low densities during the expansion

of an initially hot and compressed finite blob of nuclear ma�er.



Chapter 3

Reaction mechanisms at sub-Fermi
energies

3.1 Introduction
It is a truth universally acknowledged that heavy nuclei are very di�icult to fuse together [113],

which makes synthesis of potential superheavy elements a very laborious process with small

cross-sections that decrease by factors of 10 for every increase of Z (see Figure 3.1.1(le�)). Writing

the evaporation residue production cross-section as [112]

σER = πλ2
∞

∑
`=0

(2`+ 1)T`PCN(`)Psurv

with T` the `-dependent transmission coe�icient for the interaction potential, and λ the wavelength

of the colliding system in the centre of mass frame,

λ =
h̄√

2µECM

we can identify the two main limiting factors which are the probability to form a compound

nucleus for a given partial wave, PCN(`), and the probability that the compound will leave an

evaporation residue, Psurv. The la�er is drastically reduced because of the propensity of moder-

ately excited heavy compound nuclei to decay by fission, rather than particle and γ emission.

We will be more concerned with the probability to form a compound nucleus, PCN .

There are two factors which a�ect PCN , as illustrated in the figure. In order to form a com-

pound nucleus, the two nuclei of the entrance channel must first of all “stick” together, i.e. there

has to be a pocket in the internuclear potential where they can be trapped. An example of an

internuclear potential, V(R), for
129Xe+

natSn is shown in Figure 3.1.1(right). This potential is

given by

V(R) = VBSS(R) + Vprox(R) +
`(`+ 1)h̄2

2µR
where VBSS is the Bondorf-Sobel-Sperber modified Coulomb potential [114], Vprox is the nuclear

proximity potential of [115], and the last term is simply the centrifugal repulsion due to the

45
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Figure 3.1.1 – (le�) Cross-sections for 1n evaporation channels leading to SHE residues compared

to model calculations for capture (“STICK”), compound nucleus formation (“STICK x DIFFUSE”)

and residue survival (“STICK x DIFFUSE x SURVIVE”). From [112]; (right) Calculated total po-

tential energy of
129Xe+

natSn entrance channel as a function of internuclear radial distance. The

inset is a zoom to show the disappearance of the pocket with increasing angular momentum.

angular momentum. It can be seen that in the case of
129Xe+

natSn there is only a very shallow

pocket in the potential, due to the largely repulsive Coulomb potential which is maximised for

this quasi-symmetric system (for an asymmetric entrance channel with approximately the same

total mass and charge such as
181Ta+

66Zn or
58Ni+197Au, the repulsion is reduced, making the

pocket slightly deeper). Figure 3.1.1(right) also shows that with increasing angular momentum,

the pocket rapidly disappears, somewhere between ` = 50h̄ and ` = 100h̄.

Even if the two nuclei do stick together, they still have to evolve towards a compact com-

pound nuclear configuration. This process is described theoretically as a di�usion process in the

potential energy landscape of the shape of the system [116, 117], which is why the combined

probability for capture and formation of a compound nucleus is labelled “STICK x DIFFUSE” in

Figure 3.1.1(le�). As shown in the figure, it is the evolution towards the compound nucleus which

is the most penalising factor limiting the probability PCN . For very heavy and superheavy nuclei

the fission barrier of the compound, if one exists, is small and disappears for moderate angular

momenta [118, 119]; even if the barrier is su�iciently large, very heavy nuclei have compact fis-

sion saddle shapes, and it is quite probable that the dinuclear system of captured projectile and

target is more deformed than the CN saddle point. In both cases, the system rapidly disintegrates

into two fragments without ever forming a fully-equilibrated compound nucleus: this is called

quasi-fission [120, 121, 122].

From the preceding discussion, it should be clear that we do not expect fusion reactions to

occur with any sizeable cross-section for sub-Fermi energy collisions of
129Xe+

natSn, both from

the point of view of the unfavourably symmetric (Zp ∗ Zt) entrance channel and the fact that the

compound nucleus would be a (neutron-deficient) superheavy isotope of
248
104Rf, with an ` = 0

fission barrier of at most 4 ∼ 6 MeV [118, 119]. Ngô et al [122] gave a handy rule of thumb in

order to know if fusion can or cannot occur for collisions between two nuclei, using the e�ective
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(a) For
129Xe+

natSn at 25A MeV colour contours indicate

measured cross-sections as a function of Zmax and Et12 re-

lative to available centre of mass energy.

(b) For
129Xe+

natSn from 25 to 50A MeV mean

Zmax as a function ofEt12, for complete events

(at least 80% of total charge detected).

Figure 3.2.1 – Evidence for a fusion-like process in central collisions of
129Xe+

natSn at sub-Fermi

energies, both figures from [82]. The total transverse energy of light charged particles, Et12, is

here used as an impact parameter sorter.

fissility (
Z2

A

)
eff

=
4ZpZt

A1/3
p A1/3

t (A1/3
p + A1/3

t )
(3.1.1)

In their approach, based only on static potential energy arguments, if (Z2/A)e f f ≥ 48, fu-

sion is not possible (dynamical e�ects can reduce the possibilities for fusion event further). For

129Xe+
natSn we find (Z2/A)eff ≈ 44, therefore we are really at the limits.
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3.2 Heavy residue production in 129Xe+natSn collisions be-
low the Fermi energy

However, evidence that “something else happens” in central collisions of
129Xe+

natSn below

Fermi energies is not hard to find. Figure 3.2.1a presents contours of double di�erential cross-

section for the atomic number of the largest-Z fragment of each event, Zmax, as a function of

the total transverse energy of light charged particles, Et12, normalised to the available centre of

mass energy, Eavail, for the 25A MeV reactions. Et12 is here used, as in the rest of [82], in order

to sort events according to impact parameter (see Part II, Chapter 6). This map of the reactions

is dominated by peripheral (low Et12) collisions with (Zmax ≈ 50) or without (Zmax ≈ 2) a de-

tected projectile-like fragment, and mid-peripheral collisions where the excited PLF appears to

have undergone fission (Zmax ≈ 30), probably a�er significant angular momentum transfer.

Nevertheless, in the upper right-hand corner of this map there appears a definite contribution

from events with a heavy residue, with atomic numbers Z up to that of the projectile, which seem

to occur for central collisions (large Et12)
1
. Indeed, for the heaviest observed residues (Zmax ≥

48) a clear separation of their measured energy spectra at forward angles (θlab < 15o) into

two components is observed, corresponding to high energy projectile-like fragments and low-

energy fusion-like residues with very small centre of mass velocities, while Galilean-invariant

velocity diagrams for coincident light charged particles (LCP) also show well-defined Coulomb

rings centred on the c.m. velocity [76].

Figure 3.2.1b shows the evolution of this “heavy residue” production with bombarding en-

ergy and centrality. The mean charge of the largest-Z fragment of each event, 〈Zmax〉, is here

presented as a function of Et12 (collision centrality), but now only considering complete events

where at least 80% of the total charge of the projectile and target nuclei were measured. This is

to ensure that the largest detected fragment is most probably the largest produced fragment of

each event. For the 25A MeV reactions, there is a very clear increase of 〈Zmax〉 going towards

what we assume to be more central collisions. The same e�ect, but weaker, can also be observed

at 32A MeV; for bombarding energies ≥ 39A MeV, i.e. from the Fermi energy upwards, 〈Zmax〉
decreases monotonously with increasing violence of the collisions.

As 25A MeV was the lowest bombarding energy measured for this system in the first INDRA

campaign in 1993, and as the heavy residue production clearly increases with decreasing beam

energy, A. Chbihi and I proposed an experiment as part of the fi�h INDRA campaign in 2001, to

study
129Xe+

natSn collisions below 25A MeV.

3.3 3-fragment exit channels at ≤ 20A MeV
Figure 3.3.1a shows the probability of di�erent exit channels classified according to the number

of heavy (Z > 10) fragments observed
2
, as a function of bombarding energy, Eb, for the 5 new re-

1
A very similar map is obtained for the lighter

58Ni+58Ni system at 32A MeV (see [82], Figure 2), for which

fusion-like reactions are not forbidden by systematics, and indeed for which the corresponding cross-sections were

measured and reported by Lautesse et al. [123].

2
To avoid ambiguities, only well-measured events with detection of at least 80% of the projectile and target

charge are considered.
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(a) Evolution of di�erent exit channel production probabil-

ities as a function of the beam energy for
129Xe+

natSn col-

lisions from 8 to 25A MeV.

(b) (top) Total detected charge Ztot versus cos θ f low for

3-fragment events. (bo�om) cos θ f low distributions for

all 3-fragment events (full symbols) or with isotropic se-

lection Ztot ≥ 90 (open symbols).

Figure 3.3.1 – Beam-energy dependence and selection of isotropic 3-fragment exit channels for

low energy
129Xe+

natSn collisions. From [7].

actions measured in 2001. The 1-fragment “heavy residue” events (with probabilities < 5% at all

energies [6]) are not included here; these were exclusively studied in [124]. As o�en happens, the

original motivation for the experiments was not in the end the most interesting subject thrown up

by this new data. Rather, we will concentrate in the following on the 3-fragment events, which,

as shown in Figure 3.3.1a, become increasingly likely exit channels above 8A MeV bombarding

energy, and are even more probable than binary reactions for Eb ≥ 20A MeV. The question of the

origin of such events, and their eventual link to the threshold/onset of the multifragmentation

process observed in central
129Xe+

natSn collisions for ≥ 32A MeV (see Chapter 2), became one

of the subjects of the Ph.D thesis of Diego Gruyer [96].

In Figure 3.3.1b are the measured cross-sections as a function of total detected charge, Ztot,

and the cosine of the flow angle, θ f low, calculated from the c.m. momentum tensor (Equa-

tion (2.2.1)) for the 3 heavy fragments (Z > 10) of each event, for two bombarding energies. What

is clear from these correlations is that there are two distinct contributions to these reactions: one

strongly forward-peaked and less well-measured (Ztot < 80) mechanism, highly suggestive of

deep inelastic collisions followed by fission of projectile-like and/or target-like fragments
3
, and

another which is very nearly kinematically complete (Ztot ≥ 90) with a near-isotropic θ f low dis-

tribution, indicating that the 3 fragments were produced by a highly relaxed, possibly composite,

system.
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Figure 3.4.1 – Bizard-Dalitz plots of Pi (see text) for isotropic 3-fragment events in reactions of

129Xe+
natSn at 12, 15 and 20A MeV. From [7].

3.4 Sequential fission chronology
By considering the relative velocity of each pair among the 3 fragments in these events, and

comparing with systematics for symmetric or asymmetric fission [126, 127], it can be shown that

they result from a sequence of spli�ings, using a method developed by Bizard et al. [128]: for

each event, we calculate the quantities

Pi = ∆v2
i,(jk) + ∆v2

j,k (3.4.1)

∆vα,β = vexp
α,β − vsys

α,β (3.4.2)

with i = 1, 2, 3 representing each of the 3 possible sequences of spli�ing of the initial composite

made of the sum of all 3 fragments, (ijk):

(ijk) → i + (jk) (3.4.3)

(jk) → j + k (3.4.4)

In Equation (3.4.2), vexp(sys)
α,β is the experimental (systematic) relative velocity between the frag-

ments with indices α and β.

Plo�ing the 3 values {Pi} in a pseudo-Dalitz plot where the distances of each point (event)

from the sides of the triangle are given by

ai =
Pi

∑3
i=1 Pi

allows to easily visualize the evolution of the sequentiality of the spli�ings (Figure 3.4.1). Events

with a clear sequential spli�ing then cluster on branches parallel to the sides of the triangle

(Pi � Pj, Pk) or in the corners (Pi, Pj � Pk), while for quasi-simultaneous break-up (“democratic

decay”) they lie close to the centre (Pi ≈ Pj ≈ Pj). The sequential decay is then clear to see for

12A MeV, while the sequential nature gradually disappears with increasing bombarding energy.

3
Such ternary events were previously studied for

129Xe+
natSn reactions at 12.5A MeV by Glässel et al. [125].
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(a) Z(ijk), Z(jk): mean atomic number of the ini-

tial composite and intermediate systems; Asym1,

Asym2: mean charge asymmetry (expressed as a

percentage) of the first and second spli�ing, re-

spectively.

(b) Evolution of the mean inter-spli�ing time δt as a function of

either beam energy Eb (lower scale) or estimated excitation en-

ergy of the initial composite systems E∗ (upper scale). Horizontal

error bars refer to E∗.

Figure 3.4.2 – Deduced properties of the sequential fission leading to 3-fragment exit channels

observed in
129Xe+

natSn collisions from 8 to 20A MeV.
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The sequence of spli�ings was then identified event by event by finding the pair of fragments

{j, k} with the smallest value of ∆v2
j,k i.e. with the most fission-like relative velocity. The remain-

ing fragment, i, is then trivially deduced to result from the first spli�ing, and the three fragments

can be sorted according to their order of production, with reconstruction of the intermediate (jk)
system.

Figure 3.4.2a presents the results of this reconstruction. Z(ijk) is the mean atomic number of

the initial composite system i.e. the sum of the 3 fragments’ charges in each event
4
. It decreases

from ≈ 95 to ≈ 78 with increasing bombarding energy, which shows that very heavy composite

systems can be formed in these reactions, from platinum to americium. As the total detected

charge for all events is constrained by the selection Ztot > 90, this decrease reflects the increas-

ing multiplicity of emi�ed light charged particles with bombarding energy (see Figure 3 of [7]).

Asym1is the charge asymmetry of the first spli�ing, defined as

Asym1 =
Z(jk) − Zi

Z(ijk)
(3.4.5)

i.e. the di�erence between the charges of the two fragments resulting from the first spli�ing

(the light fragment Zi detected in the final event, and the intermediate composite nucleus Z(jk)
reconstructed from the charges of the two fragments Zj and Zk resulting from the second split-

ting), normalised to the charge of the initial composite system. In the figure Asym1 is given as a

percentage: the first spli�ing is on average highly asymmetric, the value ≈ 40% corresponding

to a ratio of 1:2.3 between the charges of the fission fragments. It is interesting to note that this

asymmetry is practically constant for all bombarding energies. One may then speculate whether

3-fragment events are observed only when the initial fission is asymmetric enough to produce an

intermediate system which is su�iciently heavy to fission again; the probability for a second scis-

sion will be further increased if in addition this intermediate system has high angular momentum

(spin).

Z(jk) and Asym2 in Figure 3.4.2a are, respectively, the mean charge of the intermediate

heavy fragment produced by the first spli�ing, and the charge asymmetry of the second split-

ting, defined as in Equation (3.4.5). The intermediate fragment’s mean atomic number decreases

slightly less than that of the composite system, from ≈ 66 (dysprosium) to ≈ 54 (xenon) with

increasing bombarding energy, while the mean asymmetry of the second spli�ing Asym2 is very

di�erent: it is virtually zero for all bombarding energies, meaning that the second spli�ing is on

average a symmetric fission.

3.5 Sequential fission chronometry
The timescale of the process was subsequently deduced using a new Coulomb chronometry

method based on proximity e�ects between the di�erent fragments in the exit channel. These

e�ects can introduce a modulation of the relative velocity between the fragments coming from

the second fission step depending on the orientation of this fission axis with respect to that of the

4
Note that Z(ijk) is a lower limit for the size of the initial composite system, neglecting the light charged particles

which are detected in coincidence.
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(a) Sketch of the second fission (here Zs
1 ≡ Zj,

Zs
2 ≡ Zk) and its orientation θ w.r.t. the first scis-

sion (here Z f
1 ≡ Zi).

(b) ,(c): distributions of proximity angle θ. (f),(g): relative velocity

between second fission fragments as function of cos(θ).

Figure 3.5.1 – Proximity e�ects between fragments from sequential fissions used to deduce the

timescale of the 3-body break-up. From [7].

first spli�ing (see Figure 3.5.1a). Indeed, for short inter-spli�ing time the second spli�ing occurs

close to the first emi�ed fragment, Zi. The Coulomb field of Zi will then favour, in the second

break up (Equation (3.4.4)), kinematic configurations where the fragments Zj and Zk are emi�ed

perpendicular to the first scission axis.

The proximity e�ects can be seen in Figure 3.5.1b,c which shows distributions of the cosine of

the proximity angle cos θ for two bombarding energies. For data at 15A MeV the distribution has

a U-shape symmetric with respect to 90o
which is characteristic of statistical fission of an equi-

librated hot nucleus. For 18A MeV and above, on the other hand, the distribution becomes more

and more peaked at 90o
, showing the increasing importance of the proximity e�ects. Indeed,

such large final-state interactions requires the second spli�ing to take place at a distance from

the first emi�ed fragment of the same order of magnitude as the distance between the centres

of the fissioning fragments at scission.

Also shown in Figure 3.5.1f,g is the e�ect of increasing proximity between first and second

spli�ing on relative velocity of the fission fragments of the second scission. A clear modulation of

vs
12 with θ is evident, the relative velocity is highest when the second fission occurs perpendicular

to the first scission axis, due to the Coulomb repulsion. It is this modulation which can be used in

order to deduce the inter-spli�ing time between the first and second fissions. To do so, Coulomb

trajectory calculations were performed simulating sequential breakups using the mean charges

of the di�erent fragments extracted from the data, and with initial conditions tuned to reproduce

the systematics of asymmetric fission [127].

The results are shown in Figure 3.4.2b, where the deduced inter-spli�ing time δt is plo�ed as

a function of bombarding energy. For the lowest energy, a mean fission time of δt ≈ 900 fm/c

(3× 10−21
sec., or 3 zeptoseconds [129, 130]) is found. This is already a short time compared to
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typical lifetimes for fission of excited nuclei formed in fusion-fission reactions, typically tFF ≥
10−20

seconds [131]. With increasing beam energy, the inter-spli�ing time decreases gradually

until at 20A MeV it reaches the limit of δt = 100 fm/c (0.33 zs) below which the simulation shows

that the two nuclei resulting from the first spli�ing do not have su�icient time to move beyond

the range of their mutual nuclear interaction before the second spli�ing occurs. This is therefore

the sensitivity limit of the method, and it means that to all intents and purposes from 20A MeV

upwards 3-fragment emission is quasi-simultaneous. In this sense, the beam energy 20A MeV

can be considered as the threshold of multi-fragment emission
5
.

3.6 Comparisons with theoretical models
Although the preceding analysis clearly established the mechanism responsible for the observed

3-fragment events as sequential spli�ings of an assumed very heavy composite system, there

remains much doubt over the formation of such a system given the high value of the pseudo-

fissility parameter Equation (3.1.1) for the
129Xe+

natSn reactions. In such a case fusion is certain

to be hindered to such an extent that quasi-fission must surely dominate even the most central

collisions of this system [121, 122, 116, 112]. Another possibility would be fully-relaxed deeply-

inelastic reactions. For either quasi-fission or deeply-inelastic reactions the “first spli�ing” in the

scenario above would not be the first step in the decay of an excited composite system, but rather

the last step of the entrance channel dynamics.

In order to try to clarify the origin of the sequential fission, calculations were performed with

the Deep Inelastic Transfers model (DIT) of Tassan-Got and Stéphan [132] for the reactions at

12A MeV [8]. As this model of binary dissipative collisions does not handle non-binary exit

channels, for a small cross-section of 92 mb among the most central simulated reactions we

used one of two ansatz : either complete fusion
6
, or a pseudo-quasi-fission event. In all cases,

the primary excited fragments resulting from the entrance channel calculation were then used

as inputs to the statistical decay code GEMINI++ [133, 134] and detection of all final charged

reaction products in INDRA was then simulated using KaliVeda ([15] and see Chapter 4).

The model calculations vastly underestimate the measured cross-section for 3-fragment events,

which was found for data to be ≈ 40 mb, whereas DIT+GEMINI leads to only 8 mb for this exit

channel
7
. Moreover, in the DIT model, 90% of the observed 3-fragment events result from PLF or

TLF fission following a mid-peripheral deep-inelastic collision (Figure 3.6.1a), for which the angu-

lar momentum (spin) transferred to the primary fragments reaches a maximum (Figure 3.6.1b).

These are exactly the type of ternary events which were observed and studied by Glässel et al. in

[135, 136, 125]. Such an origin for the experimentally observed 3-fragment events in our data can

be excluded thanks to the measured coincident light charged particle multiplicities (Figure 3.6.1c):

mid-peripheral collisions produce far smaller LCP multiplicities, reflecting the much lower excit-

ation energies of the primary fragments in this case (〈E∗〉 ≈0.9A MeV). Statistical decay of the

5
Not to be confused with the onset of true multifragmentation i.e. clustering of low density nuclear ma�er due

to spinodal instability, for which the onset in central
129Xe+

natSn collisions occurs at ≈ 32A MeV (see Section §2.2

and [62]).

6
Pre-equilibrium emission is not included in the model either.

7
It should be noted that the total measured reaction cross-section for all events was well reproduced by this

simulation.
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(a) Impact parameter distributions for sim-

ulated 3-fragment events from either deep-

inelastic (DIC) or fusion reactions.

(b) Mean spin and excitation energy of PLF and TLF fragments

calculated with DIT.

(c) Light charged particle (LCP) multiplicities for 3-

fragment events from data, binary deep inelastic colli-

sions (DIC) calculated with DIT or statistical decay fol-

lowing complete fusion calculated with GEMINI++.

]hPrimary fragment spin [
0 20 40 60 80 100

P
ri
m

a
ry

 f
ra

g
m

e
n

t 
Z

30

35

40

45

50

55

60

65

70

75

=2
Z>10

M

=3
Z>10

M

(d) Z-spin correlations for primary quasi-

fission fragments leading to either MZ>10 = 2-

or MZ>10 = 3-fragment events.

Figure 3.6.1 – DIT+GEMINI++ calculations for
129Xe+

natSn collisions at 12A MeV. From [8].
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(a) PES for
248Rf calculated with the Finite Range Li-

quid Drop Model (FRLDM) [138], for spin ` = 70h̄.

(b) Normalized primary fragment charge distributions

for 2- or 3-fragment events calculated for a
248Rf com-

pound nucleus with E∗ = 223 MeV.

Figure 3.6.2 – Sequential fission calculations with the 4D Langevin fission model.

compound nucleus formed by complete fusion, with excitation energies up to 1.9A MeV (for

` = 0), on the other hand produces on average 6.9 LCP in coincidence with the 3 fragments. Al-

though the width of the experimental distribution for MLCP is not reproduced, it can be remarked

that the most probable/mean value are very closely matched by the simulations.

The MLCP distribution for simulated quasi-fission events (not shown in Figure 3.6.1c) is very

similar to the one for fusion. The simulation of these events (see [8] for details) included a hy-

pothesis on the amount of entrance channel angular momentum transferred into the fragment

spins, using the sticking limit [137]. With this hypothesis, the simulated quasi-fission reactions

only produce 0.4 mb of 3-fragment events, i.e. 50% of the cross-section obtained with the com-

plete fusion hypothesis. It is possible to increase the cross-section to 4 mb with the assumption

that all entrance channel angular momentum is converted into fragment spin. Although this as-

sumption is physically unrealistic, an interesting result in this case is that the primary fragments

for the 3-fragment exit channel are those with the largest spin for a given Z (Figure 3.6.1d), while

their Z distribution becomes asymmetric, as observed for the “first spli�ing” in the experimental

data.

The question of the possibility to observe sequential fission due to part of primary fission

fragments possessing su�icient residual excitation energy and angular momentum is the sub-

ject of an ongoing collaboration with Katarzyna Mazurek
8
, using the 4D Langevin fission model

of [139, 140]. In this model the evolution of an excited nucleus towards fission is obtained by

solving the coupled Langevin classical equations of motion in a four-dimensional deformation

space, where the combined action of the driving potential, friction, and di�usion forces determ-

ines the trajectory of the nucleus on a three-dimensional potential energy surface (PES) here

calculated using the Finite Range Liquid Drop (FRLDM) model [138]. An example PES, for the

248Rf compound nucleus with spin ` = 70h̄ is shown in Figure 3.6.2a. During its path to fission

the system can de-excite by evaporating light particles (with A ≤ 3) and γ-rays using a Monte

Carlo approach.

In our calculations [141] the reactions
129Xe+

natSn at 8, 12, and 15A MeV were simulated

8
IFJ PAN, Krakow, Poland.
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by following the evolution of
248Rf compound nuclei with excitation energies E∗ = 223, 471

and 656 MeV, respectively, and angular momenta sampled from a triangular distribution up to

`max = 130h̄. In this original application of the model, either fragment resulting from fission

is itself used as the starting point for a new Langevin calculation, thus allowing for sequential

fission in a self-consistent way. A preliminary result is shown in Figure 3.6.2b. As can be seen, we

recover the behaviour observed experimentally: by considering 3-fragment events, we select the

most asymmetric primary fission, independently of the global charge distribution. However, in

this model the lowering of the fission barrier is mainly due to the residual angular momentum.

In such a case, the heavy fragments could undergo secondary fission if the angular momentum

is high enough to lower the fission barrier. Since residual angular momentum increases with the

charge/mass of the primary fission fragments, only the most asymmetric primary fission leads to

3-fragment events, thus confirming the interpretation we proposed above. The fragments coming

from the symmetric division of the compound nucleus have mass around A = 120 and angular

momenta around 10− 20h̄ which provide high fission barriers. These nuclei de-excite by particle

evaporation and their secondary fission probability is very low.
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Chapter 4

KaliVeda, or The Tao of Collaborative
So�ware Development

“All men dream: but not equally. Those who dream by night in the dusty
recesses of their minds wake in the day to find that it was vanity: but the
dreamers of the day are dangerous men, for they may act their dream with
open eyes, to make it possible.” [142]

4.1 Origins
From the very beginning of the INDRA project, given the large number of detectors to calibrate

(628 originally, 640 by the 4th campaign) and identification matrices to treat (864 originally, 876

by the 4th campaign), it was decided that all the data should be centralised at the IN2P3 Com-

puting Centre (Centre de Calcul) near Lyon, and that the responsibility for reduction of all the

data of each campaign would be shared among the di�erent teams of the collaboration, with

the resulting so�ware for reading and analysing the data being equally centralised at CC-IN2P3.

This was handled by two FORTRAN
1

programmes, kali.f (for calibration, identification, and

preparation of data for analysis) and veda.f (for analysis of the reduced data), which were

responsible for uniting all the di�erent subroutines wri�en by di�erent members of the collab-

oration into a coherent whole. Or rather, there were two programmes for the 1st campaign data,

two for the 2nd campaign (kali2.f, veda2.f), two for the 3rd, etc. etc. In addition, many of the

“utility” subroutines which could and should have been wri�en once and for all, compiled into a

standard library and reused, were copy-pasted from one version to another, or between di�erent

laboratories’ versions of the data reduction so�ware, o�en with “minor” tweaks that could be

user-specific.

Although the initial design was modular and quite well conceived for the time and the lim-

its of the programming language, the cumulated e�ects of time, increasing amounts of data to

treat, pressure to obtain results, and the generally low awareness of so�ware engineering “best

1
FORTRAN77 to be precise, not the modular variety introduced in Fortran 90.
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practices” of the average physicist had led to a situation a�er the 4th campaign in 1998/9 which

would soon become unmanageable:

• although the data reduction so�ware for each campaign shared a common architecture,

and many of the component parts (particle identification routines, calibration functions,

etc.) were basically the same from campaign to campaign, each campaign had an entirely

independent code base, in which many thousands of lines of code were replicated: code

re-use was virtually non-existent;

• similarly, the data analysis so�ware for each campaign, although performing essentially

the same functions, was rewri�en each time, either from scratch or starting from a copy of

the entire code base of the previous campaign;

• on the plus side, in order to analyse the final data, physicists needed only code a few

subroutines which would then be compiled and linked with the main analysis program;

however, due to subtle but important di�erences between the so�ware for each campaign,

physicists would also have to remember to add or remove small pieces of code at certain

key places in the subroutines depending on the campaign being analysed: failure to do so

could result in her analysis being (undetectably) false;

• in addition, due to the lack of a shared code base, each member of the collaboration would

be le� to implement her own version of whatever analysis tools were required, o�en even

re-implementing the same tools from one analysis to another (no code re-use). This was,

at best, a waste of time; at worst, astonishing new results could turn out to be the result of

avoidable programming errors.

Many of the above-listed problems can be traced back to the fact that all so�ware development

for INDRA was (and, indeed, still is) carried out by the physicists of the collaboration. At the time,

not only in the INDRA collaboration, but in the (French) nuclear physics community as a whole,

there were precious few physicists with any computer science culture, apart from a thorough

mastery of Fortran
2
. Generations of Ph.D students who had been introduced to programming

using C++ at university would have to abandon modern so�ware development practices and

adopt F77 in order to prepare their thesis: not the best way to make their CV a�ractive to potential

employers. In 2001, the 5th INDRA campaign took place at GANIL and I volunteered to take

over the so�ware for data reduction and analysis for this campaign
3
. Being the one who had to

manage the unmanageable, I decided it was time to change everything.

During the 4th campaign of data-taking, which took place at GSI Darmstadt, I had had a

glimpse of the future, as the Ph.D. students (and some senior physicists) had started using the

ROOT framework [13, 14] in order to perform some data reduction tasks, using custom-built

graphical user interfaces (GUI) which made the whole job look terribly easy. There was no com-

parison with the existing FORTRAN- and KUMAC
4
-based solutions based on PAW (Physics Ana-

2
Only in its classic procedural incarnation Fortran77 or, for the more mature practitioners, Fortran66

3
as well as taking over responsibility for the data acquisition so�ware environment, which was also based on

FORTRAN from the user-analysis programmes of the VAX-based GANIL acquisition system to the graphical user

interfaces (GUI) developed by the collaboration for the slow control of the detectors.

4
KUMAC was a custom scripting language developed in tandem with PAW in order to provide user-defined

macros.
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Figure 4.1.1 – Slide from the first presentation of the KaliVeda toolkit to the INDRA collaboration

in July 2003. Note that nearly all of the code examples in the slide are still valid today.

lysis Workstation, the direct ancestor of ROOT and coordinated by the same René Brun of CERN),

which had already seemed a li�le old-fashioned when I began my Ph.D. in 1995, but by 2000 was

simply antiquated. Of course, one major obstacle to changing framework was that ROOT was

wri�en in C++, which hardly anybody in the collaboration knew at the time having been ex-

clusively reared on FORTRAN since university. However it was clear to me from the example

of ROOT itself how the possibilities o�ered by the C++ language could be leveraged in order to

handle in a structured way the evolutive nature of the so�ware for data reduction and analysis.

Therefore a proposal for the future environment was wri�en and submi�ed to the collaboration,

it was accepted and the first presentation of the new so�ware took place in July 2003 (see Figure

4.1.1).

4.2 Mission statement & current status
The proposal

5
set out the problems we had identified in the context of the beginnings of the

modernisation of the CC-IN2P3 computing environment (to prepare for the LHC) and also that

of GANIL, where DEC VMS workstations were beginning to be phased out in favour of, first, DEC

Unix and, later, Linux-based solutions. The initial aim of KaliVeda was to propose solutions to

these problems, by:

• ensuring durability of the data from di�erent previous (and all future) campaigns at CC-

IN2P3 by storing them in a platform-independent and future-proof file format;

5
“Réflexions et propositions sur la gestion de l’évolution de l’environnement logiciel associé au multidétecteur

INDRA et son successeur éventuel”, J.D. Frankland, A. Chbihi, A. Mignon and D. Cussol, November 2002.
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Figure 4.2.1 – Screenshot of the KaliVeda website taken on 11th August 2020.

• ensuring a single “o�icial” version of the data for each campaign, centralising and making

fully traceable all steps of the data reduction process;

• providing a single environment for data reduction and analysis;

• making large-scale analyses of data from di�erent campaigns feasible by harmonising the

so�ware environment used for all data;

• centralising all additional information required for data analysis, such as target thickness,

ionisation chamber gas pressure, dead time and other scaler information run by run, etc.;

• providing a standardised and fully documented set of libraries containing a toolkit of tried

and tested versions of all support so�ware needed for data analysis;

• providing an accurate so�ware “filter” for each dataset almost as a by-product of the data

reduction process, without need for further so�ware development.

Of all these aims, it is only the last which has still not been fully realized, although partial solu-

tions exist and the goal has not been abandoned. The toolkit has a dedicated website (see Fig.

4.2.1) which provides links to download the toolkit and instructions on how to build and install

it, an on-line and frequently updated Users Guide, and links to the documentation of all classes

in the toolkit.

http://indra.in2p3.fr/kaliveda/
http://indra.in2p3.fr/kaliveda/
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Initially conceived solely in the framework of the INDRA collaboration and INDRA data, the

toolkit has been extended successfully to manage data from the INDRA-VAMOS campaign of

2007, data taken with FAZIA [16, 17] starting from 2014 (KaliVeda was adopted as so�ware en-

vironment by the FAZIA collaboration from the outset), and most recently the data from the first

campaign coupling INDRA and 12 FAZIA blocks at GANIL in 2019.

4.2.1 DAQ Slow Control so�ware
Although not listed above, another of the initial aims of KaliVeda was to replace the existing

graphical user interfaces developed by the collaboration (mostly Daniel Cussol) for the se�ing

and control of the DAQ electronics, high voltage supplies, and on-line data controls. Not because

they didn’t work (they did, very well), but because they were so strongly dependent on the DEC

VMS system that trying to extend their life beyond that of VMS was far too di�icult to envis-

age. Thus solutions based on the ROOT GUI back-end and KaliVeda were promised. However it

took a lot longer than planned, and the first replacement GUI (for se�ing the parameters of the

electronics) wasn’t ready until 2011, with the high voltage and VXI signal inspection interfaces

following in 2014, until which we had to artificially prolong the life of the last remaining DEC

VMS workstations at GANIL in order to continue using INDRA.

As noted above, the FAZIA collaboration adopted KaliVeda as standard, and so it was natural

that the task of creating the so�ware to handle the parameter se�ing for this new detector would

fall to GANIL. With Eric Bonnet we began development on the new interfaces in 2011, and they

were ready long before the first experiments with prototype FAZIA blocks in 2014. During his

Ph.D (2011-2014) and continuing during his post-doc in Florence (2015-2017), Diego Gruyer also

made many major contributions to the on-line so�ware for FAZIA, going far beyond what we

initially imagined, including a real-time oscilloscope capable of visualising the signals produced

by the FAZIA detectors.

4.3 Architecture
At the core of KaliVeda is a set of C++ class libraries which are extensions to the ROOT framework.

The essential functionalities of ROOT which are leveraged at the heart of KaliVeda are:

• inheritance of classes from TObject allowing data storage in platform-independent ROOT

files;

• interactive use of the toolkit classes on the ROOT command line;

• building graphical user interfaces using the ROOT widgets and GUI base classes;

• toolkit extension using “plug-in” derived classes defined in a plain text configuration file

while existing code is unchanged;

• TTree class for data storage and TSelector class for data analysis;

• xrootd for reading & analysing data provided by a remote server;
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Figure 4.3.1 – Overview of the main components of the core libraries of the KaliVeda toolkit

• PROOFLite (Parallel ROOT Facility) for e�icient data analysis on multi-core machines;

• ROOT geometry package for description of array geometries, deduction of particle traject-

ories, and tracking.

KaliVeda is built on 10 main pillars
6

which are:

Geometry Description of detector array geometries, including deduction of geometrical rela-

tionships between detectors of the array, possible trajectories of particles through the de-

tectors and the resulting possibilities for identification by ∆E− E (or other) methods;

Stopping Calculation of energy losses and ranges of charged particles in ma�er, both for calib-

ration purposes and array response to simulated data (“filtering”);

Nuclei Description of atomic nuclei, including databases of binding energies, charge radii, life-

times, level schemes and excited states;

Kinematics Handling of relativistic kinematics for multi-particle events, providing simple hand-

ling of transformations between di�erent reference frames;

Data Management Manage large catalogues of data from di�erent experiments, providing trans-

parent access to data whether it is stored locally or remotely (interfaces to IRODS data

6
This is actually 3 more than T.E. Lawrence, who only had 7 [142].
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management system used at CC-IN2P3, and access through XROOTD remote file server).

Moreover, each dataset has an associated database containing full details of the experi-

mental conditions of each run (beam energy, gas pressures, DAQ trigger, etc.);

Reconstruction Reconstruction of multi-particle events beginning from raw data i.e. DAQ re-

corded signals in detectors, using the knowledge of the geometry of the array;

Calibration Object-oriented approach to detector calibration based on successive transforma-

tions of the raw detector signals;

Identification A large range of tools for implementing ∆E− E (or other) identification of nuclei

from data, including many graphical user interfaces for drawing, adjusting and testing

identification grids;

Analysis Sophisticated environment for analysis of data, thanks to which the user’s only direct

concern is the implementation of the required analysis, for which many tools are provided

such as semi-automatic calculation of commonly-used or user-defined global variables

(multiplicities, total charge/momentum/energy, flow tensor, etc.). The same user analysis

code and graphical user interface can be used to launch either large-scale batch analysis

at CC-IN2P3 or for parallel processing on the user’s multi-core PC;

Simulation Tools for both generating simulated events (including an interface to the statistical

decay code Gemini++ [133, 134]) and for importing the results of calculations using di�er-

ent models (HIPSE, ELIE, MMM, SMF, INC++, ...), and a graphical user interface dedicated

to “filtering” the simulated events with di�erent experimental set-ups and analysing the

results.

4.4 Technologies

4.4.1 Language
Obviously, the bedrock of KaliVeda is the C++ programming language along with the ROOT

framework. As was the case with ROOT before version 6 (first released in May 2014) KaliVeda is

mostly wri�en using C++03, heavily reliant on run-time polymorphism (inheritance), with li�le

use of templates or the Standard Library containers and algorithms. As ROOT6 has matured and

compiler support for C++11/C++14 has become more widespread, KaliVeda has begun to exploit

more and more possibilities of the new standard, following the evolution of ROOT, but in all

cases backwards compatibility is ensured (a C++03 alternative is provided for those poor souls

still stuck with a very old compiler). Thus, it is now possible to loop over all nuclei in an event

and print their atomic number by simply writing

for(auto nuc : event)
{

std::cout << nuc.GetZ() << std::endl;
}

or select nuclei to be included in the calculation of global variables using lambda expressions:

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/language/lambda
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glob_var.SetSelection("Z<3",
[](const KVNucleus* nuc){ return nuc->GetZ()<3; });

4.4.2 Build system
Over the years, the environment has grown to currently include over 600 classes which are com-

piled into 30-40 shared object libraries. Correct compilation without errors on as many di�erent

systems (di�erent Linux distributions of di�ering ages, such as Ubuntu, Debian, CentOS, but also

MacOS) with di�erent compilers and as many versions of ROOT as possible was one of the ini-

tial mission statements of KaliVeda. This has to be ensured by the build system, which must also

check the availability and suitability of various 3rd-party packages that can alter which classes

can/should be compiled.

Until version 1.10 in March 2015, this was handled (more-or-less well) by a home-made build

system based on GNU Makefiles. However, rather like the original FORTRAN environment for IN-

DRA, the project had outgrown this approach and maintenance or further expansion had become

unfeasible. In parallel to the “o�icial” version, a�empts were made to transition to the successor

of make, automake, partly out of a desire to provide pre-compiled packages for Ubuntu Linux
7
.

Then ROOT changed build system as part of the evolution towards ROOT6, choosing the cmake

build system, which has now become a standard for open source so�ware projects. Compared

to make and automake, writing and maintaining a flexible build system with many complicated

dependencies with cmake is remarkably easy. In addition, it makes it easy for users to write and

compile their own code using KaliVeda. The following is an example CMakeLists.txt file (taken

from the KaliVeda User’s Guide) for generating an executable from some code MyCode.cpp us-

ing KaliVeda and ROOT frameworks:

cmake_minimum_required(VERSION 2.8.11)

project(MyProject)

#------- locate KaliVeda installation
find_package(KaliVeda REQUIRED)
include(${KALIVEDA_USE_FILE})
#------- locate ROOT installation
find_package(ROOT REQUIRED)
include(SetUpROOTBuild)

add_executable(MyExec MyCode.cpp)
target_link_libraries(MyExec ${KALIVEDA_LIBRARIES})

4.4.3 Version Control
An essential part of any so�ware project is a decent version control system (VCS), but it is sur-

prising how many physicists (and not only...) are still either unaware of the existence of VCS or

7
Currently this is impossible since the ROOT packages were removed from the Debian archive for non-conformity

a few years ago. However, it now seems that they might be coming back.

https://www.gnu.org/software/make/
https://www.gnu.org/software/automake/
https://cmake.org/
https://cmake.org/
http://indra.in2p3.fr/kaliveda/UsersGuide/gettingstarted.html
https://root.cern/install/#ubuntu-and-debian-based-distributions
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Figure 4.4.1 – Slide from presentation of the migration to Launchpad/bzr in June 2009, illustrating

some of the stop-gap solutions which tried (and failed) to fill the absence of a CC-IN2P3-hosted

TRAC server.

are reticent to use one. My first contact was again a side-e�ect of the 4th INDRA campaign at

GSI, following which in 1999 or 2000 Walther Mueller visited GANIL in order to share some of the

experience he had gained in so�ware development for INDRA using ROOT during the campaign.

He mentioned that all the source code was stored in a “CVS server” which allowed to keep track

of all the changes to the code and even to get back to a previously working version if someone

hacked the wrong way. It all seemed a bit too much, and I think I can remember saying a�er the

meeting “We won’t need that”. Luckily before ge�ing far with the KaliVeda project, I had time

to think and the first versions of the code were stored in a centralised CVS repository on a server

at CC-IN2P3
8
.

By 2008 however, KaliVeda was ge�ing harder and harder to manage with CVS, which provides

limited support for example for renaming or moving directories around in the project, unless you

find clever tricks to hack the system (and I did). In addition, in order to maximize e�iciency and

exchange with the “users” it was becoming more and more clear that some kind of website with

bug-tracker, discussion forum, code history and development planning tools would be of great

use. Such tools had recently become available in an integrated package called Trac which was

based on a new, modern version control system, SVN, which had been developed as a successor

to and major improvement on CVS, and which had recently been adopted by the ROOT devel-

opment team instead of CVS. Along with François Mauger and Daniel Cussol of LPC Caen, we

therefore asked CC-IN2P3 if they would consider hosting a Trac server for so�ware development

in IN2P3 laboratories. This was refused (I think on the grounds of security), and so I started

8
Released in 1990, there has been no further development of CVS since 2008.

https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://trac.edgewall.org/
https://en.wikipedia.org/wiki/Apache_Subversion
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looking around and playing with various solutions (see Figure 4.4.1).

For a long time I had been using Ubuntu Linux on my laptops, and it turned out that the

company behind Ubuntu, Canonical Ltd., hosted a website for so�ware projects with exactly the

features I was looking for: Launchpad (in fact, the principal role of the Launchpad site is to host

all of the projects which are included in Ubuntu). In May 2009, all code-hosting, bug-reporting,

etc. for KaliVeda was migrated to Launchpad, which also meant migrating to a new VCS, bzr
(pronounced “bazaar”), which was a breath of fresh air compared to CVS, making it far easier

for di�erent people to contribute to the code. Indeed it was from this point on that di�erent

contributors
9

really began to take part in developing and maintaining the so�ware.

Since early 2015 we have again changed VCS, and are currently using the standard tool for

open source so�ware projects, git. This has again been a major improvement compared to bzr

(I admit, not all of my fellow contributors agree), and the code is now hosted on the ubiquitous

github. Once again, we have thus realigned ourselves with the development path taken by ROOT,

now also hosted on github. In the meantime, somewhere between 2015 and 2018, the CC-IN2P3

finally began hosting the necessary tools for modern so�ware development, most notably in the

form of a gitlab platform, entirely equivalent to github and also to what we had requested in

2007. Some time in the near future, KaliVeda’s code repositories will migrate to this platform.

9
see the list here

https://launchpad.net/
https://github.com/kaliveda-dev/kaliveda
https://gitlab.in2p3.fr/
https://github.com/kaliveda-dev/kaliveda/graphs/contributors
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Present & Future: “What price to get out
of going through all these things twice?”
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It all seems so well timed
An’ here I sit so patiently
Waiting to find out what price
You have to pay to get out of
Going through all these things twice
[143]
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Chapter 5

Introduction

A�er having presented a detailed summary of my past scientific and so�ware development activ-

ities over the last twenty-five years in Part I, I will now present some more recent works and look

towards the future. The first new work has been a focus of my activity for the last two years and is

currently under discussion within the INDRA collaboration for publication. It concerns the quan-

tification of the rather nebulous concept of “centrality” in heavy-ion collisions, through the re-

construction of impact parameter distributions for experimental event samples. As a by-product,

this work confirms (and quantifies) the long-held suspicion that the “most central” collisions we

can select using experimental observables are in fact not as central as one might hope.

The second new work, begun just before the Covid-19 lock-down this spring, will bring us

full circle back to not only one of the main preoccupations of my Ph.D but also the subject of

the Masters’
1

internship which immediately preceded it: how best to isolate homogeneous event

samples corresponding to compact multifragmenting systems? This began from a long-standing

regret that we (the INDRA collaboration, or indeed anybody else) have never found a be�er

method for the selection of the single-source (QF) events, on which so much of our understanding

of the links between multifragmentation and the liquid-gas phase transition of nuclear ma�er is

based (see Borderie and Frankland [1]), than an arbitrary cut restricting to large flow angles θ f ,

where the distribution becomes supposedly isotropic.

I will show here that it is possible to extract, in a non-arbitrary way, an homogeneous subset

of events from a given set of data which are more isotropic than the others, and that the proper-

ties of these events are those of the QF events: indeed the large-θ f events make up the majority

of these “most isotropic” events, which therefore justifies a posteriori this selection method. Hav-

ing isolated the most isotropic events, I will then show how to extract from them an unambigu-

ous measurement of the degree of anisotropy of the underlying momentum distributions, which

could be used, knowing the associated impact parameter distributions, in conjunction with trans-

port model calculations in order to deduce the energy dependence of nuclear transparency in this

energy range.

1
DEA for those old enough to remember, for Diplôme d’Etudes Approfondies.
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Chapter 6

How central are the most central
collisions in Fermi energy heavy-ion
collisions ?

6.1 Introduction
For the last thirty years, there has only ever been one way to estimate the centrality of a sample

of experimental events: the geometrical prescription of Cavata et al. [74]. This simple method for

determining the impact parameter was first proposed for relativistic nucleus-nucleus collisions,

for which the total reaction cross-section is well approximated by the geometrical cross-section

σ = π(Rp + Rt)2
calculated from the equivalent hard-sphere radii of the projectile and target

nuclei, respectively. At these energies the essential features of the reaction dynamics are fixed by

the size of the participant zone which is determined by the geometrical overlap of two spheres

separated by impact parameter b [144].

Although the geometrical prescription which consists of transforming the measured cross-

section for collisions assumed to be the most central into an upper limit of impact parameter was

not new (see for example [145]), Cavata et al. extended this sharp cut-o� approximation (SCA)

over the whole range of centrality and it is always [74] which is cited when one or the other is

used.

The well-known method is illustrated in Figure 6.1.1, taken from their paper. Given an observ-

able X which is expected to increase with the number of participant nucleons, and therefore have

a monotonic dependence on b, it is assumed that the largest measured value of X (i.e. the last

occupied bin in the histogram in the le� panel of Figure 6.1.1) occurs for collisions with b = 0.

Then the total measured cross-section for X ≥ X, where X is any smaller value of the observ-

able, can be transformed into a value of impact parameter b > 0 using the SCA. In this way a

one-to-one correspondence between observable X and impact parameter b can be constructed

and used to provide an impact parameter scale for the experimental data.

To directly quote Cavata et al., “[t]his procedure is rigorous if there is no dispersion in the

correlation between [the observable] and impact parameter. In practice, there will always be a

finite dispersion, but the method should remain valid as long as the correlation is large enough

in comparison to the dispersion [...]”. In the Fermi energy domain, of course, fluctuations (“dis-

75
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Figure 6.1.1 – Principle of the Cavata prescription [74]: (le�) measured cross section versus mul-

tiplicity; (right) geometrical cross-section versus b2
, the square of the impact parameter. The

hatched areas correspond to equal integrated cross-sections on both diagrams, with three mul-

tiplicity limits m0 = ∞, m1 and m2.

persion”) dominate the dynamics of reactions, especially for more central collisions where, as

we saw in Part I, Chapter 2, instabilities may lead to bifurcations and multifragmentation. The

essential features of the reaction dynamics are not necessarily uniquely fixed by the geometrical

overlap between projectile and target (participant-spectator scenario), as the nuclear mean field

may still play an important role at these energies. Therefore in our case the dispersion in the

correlation between the observable and the impact parameter is unlikely to be negligible.

This was of course realised right from the start when the Cavata prescription was used in the

Fermi energy range [31, 32]. Figure 6.1.2 shows, for simulated events, the e�ect of fluctuations

in the relationship between observable and impact parameter
1

[31]. The thick curve in the fig-

ure represents the impact-parameter-integrated, inclusive distribution of an observable ν which

decreases on average monotonically with b, such as the total multiplicity. The upper impact para-

meter limits (in fm) corresponding to various values of ν deduced from the inclusive distribution

using the method of [74] are represented by the figures presented along this curve.

As this is a model calculation, it is also possible to decompose the inclusive distribution into

the contributions from di�erent impact parameter ranges. This is what is represented by the in-

dividual distributions shown under the main curve and labelled with an upper impact parameter

(in fm) x: each of these are the ν distributions for (x− 1) < b ≤ x fm. Although for the more

peripheral collisions (b > 4 fm) there is a reasonable correspondence between the real impact

parameter range and that deduced from the Cavata prescription (although of course Cavata can-

not describe the width or the shape of each distribution), for the more central collisions (b ≤ 4

1
I used this figure in my Ph.D thesis, as the question of the impact of the fluctuations on the estimation of the

impact parameter has long been a preoccupation. As at the time it was not possible to simply “snapshot” any figure

in the PDF of any article (as I have done in this manuscript), I wrote to ask Jean Péter for a copy of the figure which

I could use. He sent me the original version of the figure on tracing paper which I still have and treasure.
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Figure 6.1.2 – Simulated e�ect of fluctuations in the relationship between impact parameter b
and global variable ν on the selectivity of the la�er. See text for explanations. From [31].

fm) the distributions for di�erent impact parameter bins overlap more and more due to a combin-

ation of decreasing cross section and increasing relative fluctuation of the observable ν. Therefore

whereas the Cavata prescription implies that higher cuts in ν select more and more exclusively

central collisions, in reality above a certain limit (here somewhere between ν = 10 and ν = 15)

the actual mix of impact parameters which are retained by higher and higher cuts evolves far

less than the decreasing statistics retained for analysis.

This was the status quo for nearly thirty years, until, once again, a new approach arrived

from higher energies, although this time it came from the ultra-relativistic regime of collisions

at the LHC. Two papers published in 2018, [146] and especially [147], proposed to explicitly take

into account the fluctuations in the relationship between any observable X and b (even at such

energies where fluctuations could have been thought to be negligible) in order to deduce the

evolution of the mean value of the observable with centrality by fi�ing the inclusive measured

distributions P(X). In the following I will show how the same method can be applied to collisions

in the Fermi energy range and as a result give quantitative answers to the question “how central

are the most central collisions in intermediate energy heavy-ion collisions?”

6.2 �antifying the centrality of collisions

The impact parameter of a nucleus-nucleus collision is classically defined by the distance between

the straight-line trajectories of the centres of the two nuclei before their interaction. The cent-



78 CHAPTER 6. HOW CENTRAL ARE THE MOST CENTRAL COLLISIONS ?

rality, c (also called b-centrality or cb in [146]), is defined as the cumulative distribution function

of the impact parameter distribution of collisions,

cb ≡
∫ b

0
P(b′)db′ = Pr(b′ ≤ b) (6.2.1)

which varies between 0 (most central collisions) and 1 (most peripheral collisions). By definition

we have

dcb
db

= P(b) (6.2.2)

The impact parameter probability distribution for collisions leading to inelastic reactions can be

wri�en as

P(b) =
2π

σR
b · PR(b) (6.2.3)

where the first part is the purely geometrical semi-classical approximation of interaction between

hard spheres corresponding to the short-range nuclear interaction, and σR is the total reaction

cross-section. PR(b) is the probability for an inelastic reaction to occur at a given b, taking into

account all e�ects due to the physics of the collisions, such as surface di�usivity and nuclear

transparency; when considering experimental data PR includes also acceptance and other detec-

tion e�ects, and should be considered the probability for an inelastic reaction to occur and be
detected at a given impact parameter.

The sharp cut-o� approximation (SCA) assumes a simple form for PR(b),

PR(b) =

{
1 b ≤ bmax

0 b > bmax
(6.2.4)

In this case, the impact parameter distribution Equation (6.2.3) is triangular up to a maximum

impact parameter bmax given by

σR = πb2
max (6.2.5)

and the relationship between impact parameter and centrality is given by

cSCA
b =

πb2

σR
=

(
b

bmax

)2

= b̂2
(6.2.6)

where in the last equality we have defined the reduced impact parameter, b̂.

Experimental centrality can be quantified as in [74] using an observable X expected to have a

monotonic relationship with b, typically because it measures the violence or the degree of energy

dissipation of the collisions: examples are the total number of reaction products per event, or

the total kinetic energy in directions transverse to the beam axis [32, 35]. The experimental (or

apparent) centrality cX of an event sample S selected with a cut X ≥ X is then defined as the

cumulative distribution

cX ≡
∫

X≥X
P(X)dX = Pr(X ≥ X) (6.2.7)

where P(X) is the probability distribution of X for all recorded collisions, and we have assumed

that, as in most cases, X increases as b → 0. It should be noted that cX is quite simply the

fraction of all measured events retained by the cut.
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Experimental selections of “central” collisions are usually defined using the quantile function

associated with Equation (6.2.7) in order to find a cut which gives a value of cX deemed small

enough for the required selectivity (typically cX = 1− 10%), while retaining a statistically sig-

nificant number of events for the analysis. Up to now, in order to estimate the impact parameter

range associated with such a selection of data, the prescription of Cavata et al [74] has been

used. This consists in equating the apparent centrality cX of Equation (6.2.7) with the sample’s

true centrality calculated in the sharp cut-o� approximation, Equation (6.2.6); equating with cX

defined by the cut X ≥ X, the upper limit of reduced impact parameters b̂X corresponding to

the cut is deduced to be

b̂ ≤ b̂X, b̂X =
√

cX (6.2.8)

which is the main result of [74] and has been used in every analysis aiming to study impact

parameter dependence of heavy ion collisions at intermediate energies ever since.

6.2.1 Reconstructing impact parameter distributions for experimental
data

The method of [74] can give no information on the actual impact parameter distribution P(b|S)
associated with an event sample S: the triangular distribution of the sharp cut-o� approximation

(SCA) is simply assumed, and the fluctuations in the relationship between X and b are ignored.

The new method proposed in [146, 147] on the other hand makes no a priori assumption about

the form of P(b|S) but rather allows to reconstruct this impact parameter distribution from the

data, as will now be demonstrated.

For any observable X whose functional dependence on the impact parameter can be wri�en

in terms of a conditional probability distribution P(X|b), the inclusive distribution of X resulting

from all collisions with an impact parameter distribution P(b) is given by

P(X) =
∫ ∞

0
P(b) P(X|b)db (6.2.9)

Let us assume for the moment that we know P(X|b). The impact parameter distribution corres-

ponding to a finite range of X values can be calculated from

P(b|X1 < X ≤ X2) =

∫ X2
X1

P(b|X)P(X)dX∫ X2
X1

P(X)dX
=

1
cX1 − cX2

∫ X2

X1

P(b|X)P(X)dX

where we have used Equation (6.2.7) for the integral in the denominator. Using Bayes’ theorem,

P(b|X)P(X) = P(X|b)P(b) (6.2.10)

we can rewrite this as

P(b|X1 < X < X2) =
P(b)

cX1 − cX2

∫ X2

X1

P(X|b)dX (6.2.11)
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or, for a sample S : X ≥ X,

P(b|S : X ≥ X) =
P(b)
cX

∫
X≥X

P(X|b)dX (6.2.12)

More generally, we may wish to obtain impact parameter distributions for any sample of

events, not necessarily using a cut on the observable X: such selections may be e�ected using

several cuts on di�erent observables, or using an observable whose relationship with b is not so

evident or monotonic. In this case we can generalise Equation (6.2.12) for any sample S to give

P(b|S) = P(b)

∫
P(X|b)P(X|S)

P(X)
dX∫

P(X|S)dX
(6.2.13)

where P(X|S) is the sample distribution of X (i.e. a histogram of X filled from the events in

the sample), and the integrals are over the full domain of X. This is an extension of the method

proposed in [146, 147].

From Equations (6.2.11)–(6.2.13) we can therefore calculate impact parameter distributions

for experimental data samples if we can deduce the conditional probability distribution P(X|b)
by fi�ing the experimentally measured P(X) distribution using Equation (6.2.9). In order to do

this, however, we need to deal with the unknown distribution of impact parameters for all events,

P(b).

6.2.1.1 Removing the uncertainty on the overall impact parameter distribution

In Equations (6.2.9)–(6.2.13) P(b) is the impact parameter distribution of all collisions recorded

by the experiment (those responsible for P(X)) and is in principle unknown: although in an ideal

case it would simply be the sharp cut-o� approximation of Equation (6.2.4), it will be a�ected by

any experimental bias due to detection (in)e�iciency and triggering conditions, etc., which could

be simulated but would then be model-dependent.

However, by a change of variable using the b-centrality cb of Equation (6.2.1) the uncertainty

on the distribution of recorded impact parameters disappears, as by definition the cumulative

distribution function for any distribution P(b) is uniformly distributed between 0 and 1 and

P(cb) = 1. We then find for the distribution of X

P(X) =
∫ 1

0
P(cb) P(X|cb) dcb =

∫ 1

0
P(X|cb)dcb (6.2.14)

and just by knowing P(X|cb) we can calculate the experimental distribution of X. Similar sim-

plifications follow for Equations (6.2.10)–(6.2.13), which become

P(cb|X)P(X) = P(X|cb) (6.2.15)

P(cb|X1 < X < X2) =
1

cX1 − cX2

∫ X2

X1

P(X|cb)dX (6.2.16)

P(cb|S : X ≥ X) =
1

cX

∫
X≥X

P(X|cb)dX (6.2.17)
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and

P(cb|S) =

∫
P(X|cb)

P(X|S)
P(X)

dX∫
P(X|S)dX

(6.2.18)

Therefore if we can deduce the form of P(X|cb) by fi�ing the experimental P(X) distributions

using Equation (6.2.14) and a suitable parametrization of P(X|cb) (see 6.2.2 below), we can cal-

culate centrality distributions P(cb|S) for experimental event samples using Equation (6.2.18).

Then the impact parameter distribution for S is given by a change of variables as

P(b|S) = P(b)P(cb(b)|S) (6.2.19)

where we have used Equation (6.2.2).

6.2.2 Parametrizing the relationship between X and cb

The ansatz for P(X|cb) employed in [147] consists in separating the problem into two parts: (i)

the centrality dependence of the mean value of the observable, X(cb), and (ii) the fluctuations

of X around this mean. Concerning part (ii), the advantages of using a gamma distribution

P(X|cb) =
1

Γ(k)θk Xk−1e−X/θ
(6.2.20)

for the observable rather than a Gaussian or other symmetric distribution were demonstrated in

[147]. The mean and standard deviation of this distribution are given by

X(cb) = k(cb)θ (6.2.21)

σX =
√

k(cb)θ (6.2.22)

where the parameter θ = σ2
X/X determines the relative importance of fluctuations of the ob-

servable, and is assumed to be independent of centrality.

Concerning the parametrization of k(cb), the authors of [147] proposed a very general poly-

nomial form for a monotonically decreasing function of centrality. However, we have found that

when the order of the polynomial is su�icient to correctly describe the evolution of X by fi�ing

P(X) (typically order 3 or 4), the monotonicity of their function is no longer guaranteed without

imposing several non-trivial constraints on the parameters of the fit. Therefore we have sought

a simpler functional form which guarantees monotonicity while being su�iciently general to de-

scribe the typical shapes of X(b) curves as predicted by various transport model simulations in

this energy range (see for example [148, 75, 149, 150, 52]).

We have found that the following monotonically decreasing function of centrality

k(cb) = kmax [1− cα
b ]

γ + kmin (6.2.23)

can perform this role quite satisfactorily, with only 4 free parameters
2
. In addition, the values

of α and γ can be directly linked to the shape of k(cb), making interpretation of fit results more

2
if a monotonically increasing function of centrality is required, replace cb by 1− cb in Equation (6.2.23)
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Figure 6.2.1 – Examples of k(cb) curves obtained with the parametrization of Equation (6.2.23),

as a function of reduced impact parameter b̂ = b/bmax. In all cases kmax = 1 and kmin = 0. The

geometric relation cb = (b/bmax)2
has been used.

immediate. Examples of k(cb) for di�erent values of α, γ are presented in Figure 6.2.1. The value

of α determines whether or not the observable’s evolution with b presents a plateau for the most

central collisions, i.e. when α ≥ 1 there exists a range of small impact parameters for which the

derivative dk/db ≈ 0 which implies a lower limit to the observable’s sensitivity to variations

of b; the larger the value of α, the larger the range. The γ-parameter determines the concavity

of the curve: values of γ > 1 lead to S-shaped curves with an asymptotically zero derivative at

cb = 1.

The shapes of these curves can be related (but are not limited) to the participant-spectator

scenario [144]: Equation (6.2.23) with α ≈ 0.5 and γ ≈ 2 gives a perfect fit to the geometrical

overlap volume between two equal-radii spheres whose centres are separated by a distance b. The

overlap volume between unequal spheres (which reaches its maximum and presents a plateau for

b <
∣∣Rproj − Rtarg

∣∣
) can be approximated by α > 1 and γ values in the range 2-10.

kmax and kmin determine the maximum mean value of the observable achieved in head-on

collisions:

Xmax = X̄(b = 0) = θ(kmax + kmin) (6.2.24)

The ‘o�set’ parameter kmin is important because we cannot make the approximation that Xmin =
θkmin is zero for the most peripheral recorded collisions. This is especially clear when considering

X = NC, the total multiplicity of charged products. All INDRA data analysed in the following

were obtained with an online acquisition trigger corresponding to a minimum number of fired

telescopes of between 3 and 5 depending on the system studied. For the lightest systems con-

sidered in our study, the maximum charged particle multiplicity can be as small as 20; in this

case the role of kmin is far from negligible.
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6.2.3 Procedure for reconstruction of impact parameter distributions

For each dataset, we fit the inclusive probability distributions P(X) of each observable considered

using a numerical implementation of Equations (6.2.14), (6.2.20) and (6.2.23), using the latest

version of the ROOT so�ware toolkit [13, 14] in order to benefit from its built-in multithreading

capabilities which considerably speed up calculations. The 5 parameters α, γ, θ, kmin and kmax
were allowed to vary freely within reasonable limits and were adjusted using the MINUIT fi�ing

algorithm. The range of X considered for each fit was varied in order to optimize the reduced

χ2
for each distribution: in all cases the largest values (most central collisions) were included,

and in general only the smallest X (most peripheral collisions) needed to be excluded in order to

achieve convergence of the fi�ing procedure. Fits to each distribution typically required a few

seconds of processing time on a laptop with an Intel Core i7 processor.

For the validation of the method, see Appendix B, Section §B.1.

6.3 Reconstruction of impact parameter distributions for ex-
perimental data

In the following we will present the results of applying the methods presented above to data

for a wide range of di�erent colliding systems measured with INDRA, which are summarized in

Table 6.1. The data concern the two observables which are most commonly used with INDRA for

centrality estimation and/or selection, namely the total multiplicity of charged reaction products,

NC, and the total transverse energy of light charged particles (LCP, isotopes of Z = 1, 2 nuclei),

Et12. NC is the most commonly-used impact parameter filter by many di�erent groups in the

intermediate energy range, while Et12 has been especially used by the INDRA collaboration as it

exploits the very high, angle-independent e�iciency of the array for detection of LCP.

In Table 6.1, as well as the mass asymmetry, projectile energy and number of recorded events,

are given also the trigger multiplicity (corresponding to the minimum number of fired modules

which may include γ-ray, electron, pion or neutron detection in the CsI scintillators) for each

reaction. In the o�line analysis the same condition was applied to the reconstructed events

(corresponding to a minimum number of correctly identified charged products, thus excluding

γ-rays etc.).
From simulations with many di�erent reaction models and di�erent so�ware “filters” to sim-

ulate the acceptance of the INDRA array we expect that minimum bias data (i.e. with no se-

lection other than trigger multiplicity) has an unbiased geometrical distribution for all but the

most peripheral collisions (see for example Figure 2(a) of [157]) and can be well described by

Equation (6.2.3) with an inelastic reaction probability distribution of the form

PR(b) =
1

1 + exp
(

b−b0
∆b

) (6.3.1)

with typical ∆b values of 0.3-0.4 fm, where b0 ≈
√

σR/π. Although the use of such an as-

sumed distribution changes nothing for the deduced impact parameter distributions for central
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System Mass Eproj Trigger Events

asymmetry [MeV/A] multiplicity

36Ar+KCl [151] 0.00

31.54 3 3216332

39.97 3 3496188

51.66 3 2391311

74.00 3 3337570

36Ar+
58Ni [152, 153] 0.23

31.54 3 8259867

39.97 3 7234383

51.66 3 8599855

63.03 3 5020363

74.00 4 7648474

83.63 4 4657028

95.22 4 9799670

58Ni+58Ni [154, 155] 0.00

31.98 4 4538513

52.00 4 4738429

63.63 4 4473639

73.96 4 5198692

82.00 4 5578566

90.00 4 9144521

58Ni+197Au [98] 0.55

31.98 4 7448285

52.00 4 7941858

63.63 4 4720169

73.96 4 6685519

82.00 4 7398023

90.00 4 11664617

129Xe+
119Sn [42, 75] 0.04

24.98 4 5288164

32.00 4 3916797

38.98 4 5261377

45.00 4 6067739

50.13 4 5792220

129Xe+
124Sn(*) [82] 0.02

65.00 3 881642

80.00 3 424357

100.00 3 1328486

197Au+
197Au(*) [156] 0.00

40.00 3 2783629

60.00 3 7589902

80.00 3 3545170

100.00 3 10691556

150.00 5 928692

Table 6.1 – Characteristics of collisions studied in this work: mass asymmetry |Ap− At|/(Ap +
At), beam energy, DAQ trigger multiplicity and total number of recorded events. References are

given to the original papers where details of the data-taking can be found. Systems marked with

an asterisk were measured at GSI, all others at GANIL.
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collisions, it allows to be�er reproduce impact parameter distributions P(b|S) for the most peri-

pheral collisions. For more details on the properties and use of this distribution, see Appendix B,

Section §B.2.

When comparing data it is important to remember that not only will the upper limit for re-

corded impact parameters depend on the trigger conditions, but also on the colliding nuclei and

beam energy. As events are only recorded/analysed for collisions producing at least a minimum

number of charged products, the full reaction cross-section is not recorded. Very peripheral re-

actions, leading for example only to evaporation of neutrons, are excluded (unless projectile- or

target-like fragments are detected, which is unlikely for such peripheral reactions where the pro-

jectile is hardly deviated from the beam direction and the recoil of the target is insu�icient to

overcome detection thresholds). For each colliding system and an on-line trigger M ≥ mT , b0
will to a great extent be determined by the most peripheral reactions which produce at least mT
charged products, which at the threshold are most likely to be mT light charged particles (LCP,

Z = 1, 2) for reasons of detection e�iciency.

Even for the same projectile-target combination, it is evident that the upper limit for impact

parameters will depend on the beam energy, as shown in [75] for
129Xe+

natSn collisions with

a multiplicity trigger M ≥ 4: in this case where the cross-section was measured during the

experiment, the deduced sharp cut-o� bmaxwas found to increase by 15% in the limited energy

range 25− 50A MeV. On the other hand, if no cross-section measurement is available we cannot

talk of absolute but only reduced impact parameters, b̂ = b/bmax. Without an estimation of the

experimental bmax for each reaction, it is far from guaranteed that collisions with similar b̂ have

equivalent geometry even for the same projectile and target at di�erent energies, let alone when

comparing di�erent systems or even data from di�erent experiments. This is o�en overlooked.

Finally, let us note that for most of the studied reactions a small fraction of the beam time was

dedicated to an absolute minimum bias trigger of M ≥ 1, for normalization purposes. Although

these data should contain the largest possible unbiased range of impact parameters, closer to the

full reaction cross-section (once elastic sca�ering events are suppressed by o�-line analysis), they

obviously have very low statistics for central collisions and so were not used in the analysis. It

has been shown that the higher multiplicity triggers do not bias the event distribution for higher

multiplicities compared to the M ≥ 1 data [158].

6.3.1 Results of fits to data
Examples of fits to the inclusive distributions of the observables NC and Et12 are presented in

Figure 6.3.1, for the M ≥ 4 129Xe+
natSn data. Using the published measured cross-sections for

this data [75]
3
, the P(X) distributions are presented here as di�erential cross-sections. To be�er

appreciate the quality of the fits, for both low and high statistics regions of the distributions, each

is presented with both linear (le� panels) and logarithmic (right panels) y-axes. Apart from the

lowest NC or Et12 the shapes of the experimental distributions are extremely well-reproduced

by each fit, including the exponential tails for the highest multiplicities/energies. Reduced χ2

3
Actually, the published equivalent sharp cut-o� bmax values from [75] which were deduced from the measured

cross-sections, σR = πb2
max, were used. Moreover an impact parameter distribution like Equation (6.3.1) was as-

sumed with ∆b = 0.3 fm, and b0 calculated by numerical inversion of Equation (B.2.3). To relate centrality and

impact parameter Equation (B.2.4) was used.
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Figure 6.3.1 – Results of fits to the inclusive distributions of NC (upper row) and Et12 (lower

row) for the
129Xe+

natSn data. Each distribution is presented with both linear (le� panel) and

logarithmic (right panel) y-axis. Statistical uncertainties on the data are shown when not smaller

than the symbols.
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values for each fit are reported in Tables B.1 and B.2. For Et12 this goodness-of-fit parameter

is generally excellent (χ2 ∼ 1), whereas for NC the values are far from satisfactory, despite

the visual impression of adequate fits. This may in part be due to the necessarily finite binning

used with this integer variable compared to a continuous variable like Et12; the upper le� panel of

Figure 6.3.1 also shows that the fit generally fails to reproduce the distribution for small NC (close

to the DAQ trigger), decreasing sharply for small NC instead of increasing as in the experimental

data, and it is this discrepancy which dominates the χ2
values. Nevertheless, the Xmin values

for NC follow remarkably well the minimum multiplicity imposed by the trigger, including the

increase from M ≥ 3 to M ≥ 4 for the
36Ar+

58Ni data at 74A MeV (see Table B.1). Fits of

similar quality for both observables were obtained for all data in this study.

The shapes of the P(X) distributions for both NC and Et12 show a marked evolution with

bombarding energy, which is especially clear in the le� panels of Figure 6.3.1, with the linear

scale of dσ/dX4
. At the lowest energies there is a pronounced shoulder at the upper end of the

distributions which disappears for higher energies, as if to signal a change of weight between

central and the more peripheral collisions. Obviously no such change can occur in the relative

(geometrical) weighting of di�erent impact parameters; rather the change of shape is due to the

evolution of the way in which the mean value of each observable depends on impact parameter,

as shown in Figure 6.3.2 which presents how NC(b) and Et12(b) change with bombarding energy.

Apart from the regular increase of the maximum values reached at b = 0 (which will be studied

in more detail in 6.3.3 below), the figure shows the gradual disappearance of the fla�ening of the

curve for central collisions seen at 25A MeV (in terms of the shape parameters, α decreases: see

Table B.1).

It is this saturation of NC(b) for the most central collisions which leads to the accumulation

of events with NC ∼ Xmax observed in P(NC) (and at the same time reduces its e�ectiveness

for selecting very central collisions). The evolution for Et12(b) is similar, evolving from a slight

plateau at 25A MeV to a near-linear impact parameter dependence for 50A MeV collisions. As

a result, P(Et12) distributions at low energies have a less marked shoulder than for NC and any

sign of a shoulder disappears for bombarding energies above 32A MeV. Similar evolutions with

bombarding energy and similar di�erences between NC and Et12 are observed for all data.

6.3.2 Bombarding energy and system dependence of deduced k(cb)

We will now concentrate solely on the shapes of the relationship between the mean value of the

observables and the impact parameter, and how they depend on not only bombarding energy

but also the mass asymmetry of the entrance channel. To this aim Figure 6.3.3 shows the nor-

malized shape functions k(cb) of Et12 for three di�erent systems as a function of reduced impact

parameter (cross-section measurements are not available for all data). In these figures all data

has been normalized to have a mean value of 0 for b̂ = 1 and reach the maximum value 1 for

b̂ = 0. The system and energy dependence of the mean values of the observables for b = 0, seen

to increase regularly with bombarding energy in Figure 6.3.2, will be studied in 6.3.3.

4
Consequently, the distributions cannot be said to “scale” with the incident or available energy, as has previously

o�en been claimed in various publications of the collaboration as proof of the close relationship between Et12 and

the impact parameter. See Appendix B, Section §B.4.
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Figure 6.3.2 – Impact parameter dependence of observables deduced from fits to
129Xe+

natSn
data.

Figure 6.3.3a presents the k(cb) function for
129Xe+

natSn and
129Xe+

124Sn data. For the

129Xe+
natSn data these curves are the same as in Figure 6.3.2b apart from the normalization.

Here it is clearer that the (negative) slope of k(cb) at small b continuously increases with bom-

barding energy, and the correlation is nearly linear for 50A MeV, as remarked above. Also shown

in the figure is the expected form of k(cb) if it were proportional to the geometrical overlap

between two spheres of equal radii. Such a b-dependence for an observable could be interpreted

as evidence for a reaction dynamics dominated by the collision geometry, as in the participant-

spectator scenario. If so, then the k(cb) curve deduced from fits to the data shows the evolution

towards this regime with bombarding energy, although clearly at 50A MeV it has not yet been

reached. The 3 curves for the near-identical
129Xe+

124Sn collisions measured at GSI show the

continuation of the trend at higher energies, at least up to 80A MeV.

The other panels of Figure 6.3.3 concern the two asymmetric colliding systems,
36Ar+

58Ni
and

58Ni+197Au. In a purely geometrical picture of such reactions we would expect a plateau for

central collisions, below the impact parameter for which the smaller of the two nuclei is entirely

contained within the larger, b < |Rp − Rt|: below this value the overlap volume remains that

of the smallest nucleus. This hardly appears to be the case for
36Ar+

58Ni collisions at 32A MeV

( Figure 6.3.3b) (it does on the other hand appear more clearly in the k(cb) for NC), whereas a

more pronounced plateau is evident for the far more asymmetric
58Ni+197Au system at the same

energy (Figure 6.3.3c).

The correct interpretation of the deduced k(cb) functions requires comparison with di�erent

models of the reactions, for whom the generation of correlations such as those presented in

Figure 6.3.2 and Figure 6.3.3 is quite direct; for example, to investigate how Pauli blocking or

the onset and increase of nuclear transparency, previously studied for many of the same data
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Figure 6.3.3 – Normalized shape functions k(cb) (with kmin = 0, kmax = 1) for Et12 fits versus

reduced impact parameter for di�erent colliding systems. The black curves show the overlap

volume for symmetric collisions (see text).

as presented here [107], would a�ect the simple geometrical picture of the participant-spectator

scenario. No further a�empt to interpret them will be made here; rather we hope that these

previously unavailable experimental correlations will provide new constraints for a wide range of

dynamical models of heavy-ion collisions at Fermi energies.

6.3.3 New experimental constraints for dynamical reaction models?
It should not be forgo�en that the correlations of Figures 6.3.2 and 6.3.3 concern only the b-

dependence of the mean values of the observable, whereas a major improvement of the present

approach is to take into account the fluctuations in the P(X|b) distribution relating the ob-

servable with the impact parameter. Examples of what can be achieved with this new method

are shown in Figure 6.3.4. Using the fit parameters for Et12 for two bombarding energies of

197Au+
197Au collisions, it is possible to generate the full joint probability distribution P(Et12, b)

including impact parameter weighting and the fluctuations around the mean value Et12(b) (also

shown in the Figures 6.3.4b and 6.3.4c). These distributions can be directly compared with the

same correlations calculated using the QMD model ([65]; see Appendix A, A.1.3.2) which are

shown in Figure 6.3.4a.

Several similarities between the present experimental correlations with the QMD calculations

may be remarked, including the slight change of convexity of the correlation (which may again

be interpreted as evidence for an evolution towards the participant-spectator regime, as was in

part the subject of the study presented in [149]), and the reduced importance of the fluctuations

compared to the evolution of the mean value of Et12 with increasing bombarding energy. Nev-

ertheless, our point here is once again not to put forward one particular interpretation of the

data, in agreement (or otherwise) with one particular model, but to underline the fact that such

correlations were previously only possible with model calculations, whereas now they are also

experimentally accessible.

6.3.5a presents another previously inaccessible experimental information: the mean values of
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(a) QMD calculations of Zbiri et al. [149] for

60A MeV (top) and 150A MeV (bo�om).
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(b) Data for 60A MeV.
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(c) Data for 150A MeV.

Figure 6.3.4 – Comparison between joint probability distributions P(Et12, b) calculated with the

QMD model or deduced from data for
197Au+

197Au collisions. Colour contours represent a

logarithmic scale of double di�erential cross-section. Black curves show the mean value Et12(b)
as a function of impact parameter given by Equations (6.2.21), (6.2.23).
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Figure 6.3.5 – Mean values of NC and Et12 observables for head-on (b = 0) collisions.

observables for head-on (b = 0) collisions. These would be the easiest constraints for dynamical

models to test, as it is su�icient to run the calculation for a single impact parameter. Figure 6.3.5a

presents the maximum mean multiplicity NC(b = 0) for each system, normalized to the total

system charge, Ztot = Zproj + Ztarg. These all increase with the available energy, ε = ECM/Atot,

in a non-linear fashion suggesting the appearance of a maximum for each curve (the dashed lines

represent a fit using an ad hoc parabolic function). An exception to this regular behaviour is the

58Ni+197Au system, which seems to follow more closely
197Au+

197Au than the expected similar-

mass/charge
129Xe+

natSn system.

Figure 6.3.5b shows the maximum mean Et12 values achieved for head-on collisions deduced

from the fits to P(Et12) for all systems. A linear increase is observed for almost all data, the slope

increases roughly with the total size of the colliding system, and there is no sign of the values

reaching a maximum in the explored energy range, on the contrary to the behaviour seen for total

multiplicity in Figure 6.3.5a. In fact, a near-universal behaviour is observed when Et12(b = 0)
is normalized to the total charge, Ztot, of each colliding system and plo�ed as a function of the

available centre of mass energy per nucleon, ECM/Atot. Such a scaling suggests that whatever

the mechanism responsible for the transverse energies of LCP there is no sign of its weakening

in this energy range. It would be very interesting to know if dynamical models of reactions at

these energies reproduce this trend.
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Figure 6.3.6 – (curves) Reconstructed impact parameter distributions for
129Xe+

natSn collisions

at 50A MeV selected using the 8 centrality bins defined by Et12 cuts in [75] (indicated by inter-

vals in the figure legend). (arrows) For each bin (indicated by the number), the range of impact

parameters expected to be selected according to [74].

6.3.4 Reconstructed impact parameter distributions

Let us now turn to the impact parameter distributions which can be reconstructed for di�erent

data selections using Equations (6.2.17)-(6.2.19) and the previously discussed parameters deduced

from fi�ing the inclusive distributions of di�erent observables. We will study a common case,

where the same observable is used both to define centrality cuts and to evaluate the e�ective

centrality of the di�erent selections
5
.

In [75]
129Xe+

natSn collisions from 25− 50A MeV were studied as a function of impact para-

meter using 8 centrality bins defined in terms of the total transverse energy of LCP, Et12. In Fig-

ure 6.3.6 are shown the di�erential cross-section distributions for these centrality bins, calculated

from Equation (6.2.11) using the fi�ed parameters. The numbered arrows in the figure represent

the expected impact parameter range for each bin, deduced from the approach of Cavata et al.
[74]. It can be seen that for the least central bins (up to bin 5), near-Gaussian distributions of b
are obtained, with centroids very close to the centre of the expected ranges.

Nevertheless, even for the most peripheral bins 1 and 2, the actual widths of the deduced

b distributions largely exceed the naïve sharp cut-o� expectation and considerable mixing of

impact parameters between di�erent bins is evident. For the “most central” selections, bins 6

to 8, there is total overlap between the selected impact parameter ranges, although the 〈b〉 for

each bin continues to decrease as Et12 cuts increase. For bin 8, the mean impact parameter is

〈b〉 = 1.4 fm compared to the expected upper limit for the bin of b ≤ 0.5 fm. It is also important

5
There is of course nothing to stop us from using one observable to select the data, and a di�erent one to evaluate

the e�ective centrality of the selected data, as was done in [32].
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Figure 6.3.7 – Distributions of Et12 for
129Xe+

natSn collisions at 50A MeV for data (symbols) and

impact parameter bins indicated in the legend.

to realize that the sharp cut-o� approximation of [74] supposes that the events in this bin should

occupy the full (triangular) di�erential cross-section below 0.5 fm; instead they are widely spread

out and represent only a small fraction of the di�erential cross-section for all impact parameters

b . 5 fm.

We can also turn the question around and ask what would be the distribution of our observ-

able for any given centrality bin, but now determined by the “true” impact parameter, by using

Equation (6.2.9) with di�erent limits for b. Figure 6.3.7 shows such distributions for the same

data and using the same intervals of b as in Figure 6.3.6. This is the equivalent of Figure 6.1.2,

from Péter et al. [31], with the di�erence being that this is experimental data, not a model cal-

culation. It can clearly be seen that the 3 most central impact parameter bins, for b ≤ 2.5 fm,

are mainly responsible for populating the high-Et12 tail of the distribution, and that they cover

very similar ranges of the observable. It is then obvious that any a�empt to isolate events with

impact parameters below this limit using such an observable would be futile.

6.3.5 So just how central are the most central collisions?

Figure 6.3.8 presents the mean values of reduced impact parameters b̂ = b/bmax (measured

cross-sections are not available for all systems) for two di�erent centrality cuts defined using

Et12, either cEt12 ≤ 10% or cEt12 ≤ 1%, for all studied colliding systems. In both cases 〈b̂〉 values

for most systems seem to follow similar trends as a function of the available centre of mass energy

per nucleon, ECM/Atot. Similar results are found using the total charged product multiplicity,

NC.
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The e�ective centrality of the event samples increases (i.e. 〈b̂〉 decreases) with increasing

energy, as is to be expected from the overall evolution of the k(cb) relations (Figures 6.3.2 and

6.3.3) which become steeper at small b with increasing bombarding energy, while at the same

time the maximum values reached in central collisions, Et12(b = 0), also increase with energy

for each system (Figure 6.3.5b), decreasing the relative importance of fluctuations as shown in

Figure 6.3.4: all these e�ects contribute to increase the selectivity of the observable for the most

central collisions.

For the 1% centrality cut the e�ective 〈b̂〉 decreases by a factor of 2 from ∼ 0.3 at the low-

est energies to ∼ 0.14 at the minimum, which is a large e�ect. It is commonly assumed that

centrality cuts like these select similar collision geometries for a wide range of colliding systems

and energies, which is clearly shown to be false in Figure 6.3.8. In all future analyses it will be

possible, even mandatory, to take this e�ect into account by providing a quantitative estimate of

the e�ective impact parameter distribution for each data sample.

Now we come to a crucial question: just how central are the most central collisions? Or, to

put it another way, is there a limit to the e�ective centrality (〈b̂〉) of events we can select with

stricter and stricter centrality cuts?

Clearly we can see in Figure 6.3.8 that reducing the cut from 10% to 1% reduces 〈b̂〉 for all

systems and energies: to have a quantitative idea of the improvement, the “minima” observed for

the highest energies is 〈b̂〉 = 0.24 for the 10% centrality cut while for the 1% cut it is 〈b̂〉 = 0.14.

How low can we go? For a cut cEt12 ≤ 10−3
there is a further reduction to 〈b̂〉 = 0.1, but

stricter cuts of 10−4
or 10−5

lead to negligibly smaller values of 〈b̂〉 = 0.09 and 〈b̂〉 = 0.08,

respectively (it should be remembered that the widths of these distributions are of the same

order of magnitude as the mean value, see Figure 6.3.6).

What increasingly restrictive centrality cuts are very e�icient at, of course, is diminishing

the statistics of the selected event sample. For most of the data studied, a few million events

were recorded for each system and bombarding energy (see Table 6.1), therefore a cEt12 ≤ 10−3

cut is probably the absolute lower limit in order to retain a statistically significant number of

events, while a 1% cut retains a comfortable statistics with a 〈b̂〉 which is su�iciently small to be

considered “central”.

6.4 Summary
Ever since the Cavata prescription [74] was proposed it has been known that it probably un-

derestimates the true centrality of collisions selected with cuts defined using the experimental

centrality calculated for observables assumed to be strongly correlated with the impact para-

meter. Even for less central collisions, where the deduced mean centrality has been shown to

be generally well estimated by this method, the approach of [74] can tell us nothing about the

impact parameter distributions retained by selections.

The new approach proposed in [146, 147] and adapted here to Fermi energy heavy-ion col-

lisions greatly improves the previous situation by allowing for the first time to reconstruct in a

model-independent way the impact parameter distributions for any selection of experimental

data. This has allowed to confirm and quantify the suspicions concerning the true centrality of

the “most central collisions”, which should be taken into account for example when comparing
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experimental data with theoretical calculations. More generally, given the current uncertainties

in the codes implementing various di�erent transport model approaches [159, 160], it is more

important than ever to be able to provide, in a quantitative way, experimental data as a function

of impact parameter in order to further constrain the modelisation of heavy-ion collisions in this

energy range.



Chapter 7

How isotropic are the most isotropic
events in Fermi energy heavy-ion
collisions ?

7.1 Introduction
As collisions become more and more central in the Fermi energy regime and above, where the

dynamics are governed both by the nuclear mean field and the residual interaction in the form

of elastic nucleon-nucleon collisions, one expects the momentum distributions of the outgoing

nucleons and any clusters they may form to become more and more isotropic. Whether or not

isotropy is achieved in the most central collisions of a given system at a given energy, even for

the theoretical b = 0 case, will of course depend on such things as the nuclear incompressibility,

momentum dependence of the mean field, in-medium nucleon-nucleon collision cross-sections,

etc., therefore it is very interesting to track the evolution of the maximum isotropy achieved as a

function of collision system mass, asymmetry and bombarding energy.

A study was performed for INDRA data in [106] which related the apparently decreasing

isotropy observed in central collisions to the weakening of the in-medium NN cross-section

[107]. The event samples used for this study were selected using a multiplicity cut defined so

that the mean isotropy ratio (see 7.1.1 below) becomes approximately constant above the cut.

Therefore, strictly speaking, they were not selected because they are “the most isotropic events”.

From the previous Chapter 6 we now know that such events, selected with a high-multiplicity

cut, do not correspond to “the most central collisions” either: rather they are a subset of central

collisions covering a wide range of impact parameters. Therefore now I would like to try to

directly answer the question: how isotropic are the most isotropic events in Fermi energy heavy-

ion collisions?

The first obstacle to this endeavour is of course the finite-number e�ects on event shape

determination caused by the low multiplicities (NC � 100) encountered in reactions at these

energies. Figure 7.1.1 shows two examples for simulated isotropic events with a total number

of charged reaction products NC = 50 or NC = 5. Of course, when we say isotropic, what we

mean is that the momentum of each reaction product was drawn at random according to an

isotropic distribution. The resulting events do not look particularly isotropic, especially for the

97
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NC = 5 NC = 50

S 0.34 0.83

RE 1.37 1.20

Figure 7.1.1 – Simulated isotropic events in velocity space with NC = 50 (le�) or NC = 5 (right)

reaction products. The values of the isotropy variables sphericity, S, and energy-based isotropy

ratio, RE, for each event are given in the table.

case NC = 5; but, even with 50 nuclei, determining the degree of isotropy by eye (not to mention

comparing one event with another) is no mean feat
1
. Luckily we dispose of several global variables

with which we can quantify the apparent isotropy of events.

7.1.1 Global shape variables
The simplest way to gauge the isotropy of product momentum distributions is through the ratio

of some global kinetic property perpendicular and parallel to a given fixed axis. For example,

using the total kinetic energy in the centre of mass frame perpendicular and parallel to the beam

axis, we can define an isotropy ratio,

RE =
∑i Ei,⊥
2 ∑i Ei,‖

=
∑i Ei sin2 θi

2 ∑i Ei cos2 θi
(7.1.1)

where Ei, θi are the centre of mass kinetic energy and polar angle (w.r.t. the beam axis) of the ith

product. Within a factor of 2, this is the same as the “stopping variable” Erat used by the FOPI

collaboration [91] which was calculated using only products emi�ed in the forward hemisphere of

the centre of mass frame: a variant of RE, which we will call Rfw
E , using only forward-emi�ed c.m.

products was in fact the isotropy ratio used in Lehaut et al. [106]. The characteristic asymptotic

values of RE are 0 for “rod-shaped” events and 1 for a spherical distribution. Note however that

there is no upper bound to the value of RE as both shape and orientation of the event determine

its value: a rod-shaped event orientated perpendicular to the beam axis will have RE → ∞.

A more sophisticated tool is the flow tensor of Gyulassy et al. [38]

Tαβ = ∑
i=1

ωi pα(i)pβ(i) (7.1.2)

1
And yet that is exactly what was done in early works on multifragmentation using (nuclear) photographic

emulsions: for example Barz et al. [89] even managed to deduce and measure a radial flow of the fragments in this

way!
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which was already presented in equation (2.2.1) (section 2.2.1, Chapter 2), built from the Cartesian

components (α, β = x, y, z) of particle momenta in the centre of mass frame. For nuclear colli-

sions where composite particles may be produced, the weight factor ωi must take into account

di�erences in particle masses: with ωi = (mi(γi + 1))−1
, Equation (7.1.2) becomes the (relativ-

istic) kinetic energy flow tensor. Diagonalization of Tαβ allows to characterize the momentum

distributions in terms of an ellipsoid in momentum space. The ellipsoid has a shape (described by

the 3 eigenvalues λ1 ≥ λ2 ≥ λ3)
2

and a direction (described by 3 eigenvectors). Several di�erent

combinations of the eigenvalues can be used to simplify the shape description; among these, the

sphericity,

S =
3
2
(1− λ′1) (7.1.3)

defined using the normalised eigenvalue λ′1 = λ1/ ∑α λα, which takes values from S = 0 (limit

of extremely prolate event shapes) to S = 1 (a perfect sphere). It should be noted that the

sphericity is independent of the event orientation relative to any fixed set of axes (which, relative

to the beam axis, is given by the flow angle θ f ).

To overcome the inherent ambiguity of the isotropy ratio, RE, we can calculate it with respect

to the major axis of the kinetic energy flow tensor of Equation (7.1.2). A�er diagonalization of

the la�er, its only non-zero components in the basis described by its eigenvectors are

Tαα = ∑
i

ωi p2
α(i) = λα

so that the total kinetic energy parallel to the major axis is given by λ1 while the sum of kinetic

energies in the two perpendicular directions is given by λ2 + λ3. We then find for the isotropy

ratio calculated in the ellipsoid frame

Rell
E =

λ2 + λ3

2λ1
=

S
(3− 2S)

(7.1.4)

This will be used in Section §7.3.

7.1.1.1 Response for isotropic events

Figure 7.1.1 gives the values of the sphericity and isotropy ratio for the two finite-multiplicity

events shown. For the NC = 50 case the values of all 3 variables are quite close to their asymptotic

values: this multiplicity is typical of central collisions at bombarding energies∼ 50A MeV when

all charged reaction products are included. On the other hand, we may try to determine the

isotropy of the source of the fragments (e.g. Z ≥ 5), and only consider the la�er. Then a typical

multiplicity corresponds more to the NC = 5 event in the figure, for which the shape variables

have very unrepresentative values.

Figure 7.1.2 shows how each variable responds to simulated isotropic events
3

over a wide

range of multiplicities, from NC = 3 to NC = 50. For each value of NC 103
events were generated

2
Strictly speaking, with the given weight ωi the flow tensor is characterized by an ellipsoid in kinetic energy flow

space; the shape of the event in momentum space is represented by the square roots of the eigenvalues,

√
λ1 ≥√

λ2 ≥
√

λ3.

3
See Appendix C for details of the simulation method.
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Figure 7.1.2 – Multiplicity-dependent response of shape variables defined in the text to simulated

isotropic emission events. Note that for R f w
E the actual number of nuclei used to calculate the

values is on average one half of the multiplicity reported on the axis.

in order to have a statistically significant measure of both the mean value and the standard

deviation of the distribution for each variable. It should be noted that although here a random

partition was generated for each multiplicity, the same evolution is found if partitions of identical

nuclei are used (i.e. NC protons or NC
12C nuclei): the result is independent of the partition.

Figure 7.1.2a shows the multiplicity-dependence of the mean apparent isotropy deduced for

each variable, and some comparisons can be made. Both isotropy ratios perform equally well

and are close to their asymptotic value for multiplicities greater than 20. It should be noted

however that they approach the asymptote from the “wrong” side: instead of mimicking less

isotropic events with RE < 1, for all finite multiplicities the ratios are > 1 if the distribution is

truly isotropic. The two variables derived from the flow tensor approach their asymptotic value

much more slowly, on the other hand, with the isotropy ratio Rell
E being worst a�ected. For

multiplicities NC < 10 the multiplicity dependence of all 4 variables is very strong.

Fluctuations of the variables are of course very important, as shown in Figure 7.1.2b: for

low multiplicities the widths of distributions are so large that separating events with di�erent

degrees of isotropy using the value of one or other of these variables is hopeless. Although fluc-

tuations of all variables decrease with increasing multiplicity, it can be noted that fluctuations

of S are an order of magnitude smaller than for the isotropy ratios, of which R f w
E has a slightly

worse performance than RE as on average only 50% of the nuclei in each event contribute to its

calculation.
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Figure 7.1.3 – (top row) Tests of power of shape variables to discriminate between isotropic and

anisotropic simulated events corresponding to an ellipsoidal momentum distribution with the

indicated ratio between major and minor axes (see Appendix C). Variables calculated for isotropic

events are labelled (I). (bo�om row) cos θ f distributions for isotropic and anisotropic events for

di�erent multiplicities.
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7.1.1.2 Discrimination of less isotropic events.

Having examined the ability of the shape variables to recognize isotropic events of di�erent mul-

tiplicities, let us now examine their power to discriminate between such events and non-isotropic

events. To do so, we generate random events with an ellipsoidal momentum distribution whose

elongation is characterised by the ratio between its major and minor axes (see Appendix C).. The

resulting events are anisotropic with a favoured emission along the beam direction.

The resulting mean values of the di�erent shape variables are shown in Figures 7.1.3a and

7.1.3b for momentum distributions with elongation ratios 1.2:1 and 1.4:1, respectively, as a func-

tion of the multiplicity. The tensor-based variables S and Rell
E decrease steadily with increasing

elongation of the momentum distributions, while the isotropy ratios decrease much more rap-

idly, especially when going from isotropic to slightly elongated events. Note however that for the

smallest multiplicities values 〈RE〉 > 1 can still be observed. For the larger elongation, the mul-

tiplicity dependence of all variables becomes weaker for multiplicities N > 15: the mean values

are almost constant. For N < 10 however the multiplicity dependence is always as strong.

Finally, the multiplicity dependence of flow angle θ f distributions is shown in Figures 7.1.3c

and 7.1.3d. For this variable there are two regimes: for an isotropic emission the distribution

of θ f is isotropic for any multiplicity (Figures 7.1.3c). For anisotropic events on the other hand

P(cos θ f ) becomes peaked at forward angles, and this peaking increases with the multiplicity:

in the limit of an infinite multiplicity it would be a delta function at the “true” flow angle (i.e. in

this case 0o
).

7.2 New method for extracting the most isotropic events
One way to overcome the finite multiplicity distortions of estimated isotropy is to take a ho-

mogeneous sample of events and extend the sum of Equation (7.1.2) to run over all particles of

interest in all events, giving an e�ective tensor

Sαβ =
E

∑
e=1

Ne

∑
i=1

ωi pα(i)pβ(i) =
E

∑
e=1

Te
αβ (7.2.1)

with an e�ective multiplicity N∗ = ∑E
e=1 Ne where E is the total number of events in the sample

and Ne is the multiplicity of event e. Clearly in this case N∗ can be made very large even if

the mean multiplicity 〈N〉 is small as long as the event sample size E is large enough, and the

diagonalization of Sαβ will give an undistorted estimate of the isotropy of the events in the

sample, for an homogeneous sample. The problem is to build the homogeneous sample, and that

is what we will now try to do.

The new method which we present here is vaguely inspired by the Metropolis algorithm for

sampling multivariate probability distributions (it is not really a Metropolis algorithm
4
). The aim

of the algorithm is best described by the following problem:

4
In a true Metropolis algorithm, a part of the trial exchanges leading to a smaller sphericity S′ < S would also

be accepted, for example with a probability P(S′, S) = S′/S. Tests using this method have shown that it does not

converge to the maximum sphericity of the sample, and therefore we only accept trial exchanges of events if S′ > S.

There is no contradiction however: in a true Metropolis algorithm, where the values of S and S′ would correspond

to statistical weights for di�erent equilibrium states, such ‘bad’ trials must be accepted in order to ensure detailed
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Problem. Beginning from a dataset D, find the event sample S containing a fixed number E of
events which maximizes the e�ective isotropy given by Equation (7.2.1).

We propose the following algorithm in order to solve this problem. Each event e in D can be

characterised by the six values of Te
αβ which correspond to its contribution to the tensor of Equa-

tion (7.2.1). Beginning from a sample S, we can a�empt to maximise the isotropy of this sample

by picking a random event e from D and a random event e′ from the sample and calculating the

trial tensor

S ′
αβ = S αβ − Te′

αβ + Te
αβ (7.2.2)

which corresponds to replacing event e′ of the sample by event e of the dataset. If the sample

sphericityS′ obtained by diagonalization of Equation (7.2.2) is greater than the current sphericity

of the sample, the two events are exchanged. This procedure can be iterated until the sample

sphericity S converges to a constant value, when no further exchanges are accepted.

Note that in the wording of the problem (and the coding of the algorithm), it is stated that

the isotropy is to be maximised for a sample of fixed size, i.e. with a fixed number E of events.

Ideally, we would like our algorithm to pick the events constituting the most isotropic sample S

possible from among all events of the dataset D, without fixing a priori the size of the sample,

E . However, one can trivially increase the apparent isotropy of the sample just by increasing its

e�ective multiplicity N∗, i.e. by increasing the number of events in the sample. We have also

found that below a certain sample size the algorithm may seek to reduce the sample size in order

to increase its sphericity. Therefore it seems that if E is not fixed, the problem is not well defined.

In the following we will apply this algorithm to complete events (Ztot ≥ 0.8(ZP + ZT))
measured for

129Xe+
natSn collisions. As we will calculate the tensor using fragment (Z ≥ 5)

momenta, requiring to have measured at least ≈ 80% of the total charge of each event is a

good way to be certain not to have missed too much information on the fragments’ momentum

distributions.

7.2.1 Maximizing the isotropy of a single event sample
As a first test, we apply the algorithm to the data for

129Xe+
natSn collisions at 50A MeV. Begin-

ning with a random sample of size E = 2000 events and an initial sample sphericity S = 0.392,

the algorithm tries to increase the overall sphericity of the sample by picking random events from

the reservoir constituted by all events not in the sample S. Figure 7.2.1 shows how the algorithm

converges. In Figure 7.2.1(a) the sample sphericity increases steadily with the number of trial

swaps from the initial value to its final value of S = 0.999941. At the same time, the rate of ex-

change of events with the reservoir decreases steadily until, a�er 37000 trials, no more exchanges

are successful for 3000 a�empts, which is our condition to stop the process (Figure 7.2.1(b)).

A�er isotropy maximization with our algorithm, the degree to which the sample corresponds

to a set of isotropic events can be judged from Figure 7.2.1(c), where we compare the fragment

flow angle θ f distributions for all complete events and those which are in the maximized sample,

calculated event by event. All cos θ f values for the sample are very nearly equiprobable and cover

the full range of flow angles from 0o
to 90o

. This is a very isotropic sample of events indeed.

balance and hence the correct sampling. Here we are only concerned with maximizing (or minimizing) the sphericity

of the sample S.
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Figure 7.2.1 – Convergence of the isotropy maximization algorithm for a sample of E = 2000
events of

129Xe+
natSn collisions at 50A MeV (complete events). (a) sample sphericity S calcu-

lated with the tensor of 7.2.1 as a function of the number of trials. (b) Number of swapped events

per 1000 trials as a function of the number of trials. (c) Distribution of cos θ f for the sample a�er

maximization compared to that of all complete events.

7.2.2 Minimizing the isotropy of an event sample?
Before going further in our quest to extract a homogeneous set of the most isotropic events from

the data, and as further proof of the soundness of the method, let us demonstrate that the same

method can also be used to find the least isotropic events in a given set, just by inverting the trial

success criterion. However, it generally takes a lot more trials to converge, which may in itself be

significant.

The results are shown in Figure 7.2.2. The correlations between atomic number Z and centre

of mass longitudinal velocity Vcm
‖ for fragments show a clear binary character, with sometimes

quasi-projectile fragments with Z ≈ 54 seen in the forward direction close to the projectile

velocity (in the centre of mass frame) of Vcm
‖ = 4.7 cm/ns, sometimes what appear to be fission

fragments of more excited quasi-projectile nuclei, in coincidence with a fragment originating

from the target, with Vcm
‖ < 0. Figure 7.2.2(b) presents the distribution of the flow angle θ f for

these events. As expected, it is very narrow and limited to the most forward angles, with a mean

value of θ f ≈ 5o
, not far from the CM grazing angle of the reaction (5.5o

).

7.2.3 Extracting all the most isotropic events
Of course there is no reason to think that the 2000-event sample S extracted above corresponds to

all of the most isotropic events in our dataset. The sample size of E = 2000 events is completely

arbitrary, as arbitrary as making a cut in the distribution of a shape variable for a set of finite-

multiplicity events, or a cut in the flow angle distribution, θ f > 60o
. It is precisely this kind of

arbitrariness that we want to remove from the event selection here.

The only way to know if our sample does indeed contain all of the most isotropic events is

to take another sample from the reservoir and apply our algorithm to that one (which we will

call S2, the first sample becoming therefore S1), and so on and so on. If there exists within our

dataset a homogeneous set of events whose degree of isotropy is superior to all others, we would
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Figure 7.2.2 – Results of applying the algorithm in order to minimize the isotropy of a sample

of 1000 events of
129Xe+

natSn collisions at 50A MeV (complete events). (a) Correlation between

atomic number Z and centre of mass longitudinal velocity Vcm
‖ for fragments (Z ≥ 5). (b) Dis-

tribution of the flow angle θ f for fragments.

expect to be able to extract N samples S1, . . . , SN with the same sample isotropy, while for all

samples Si>N the sample isotropy will decrease with increasing sample number i.
In fact, this is exactly what happens. Figure 7.2.3(a) shows the sample sphericity S for each of

50 consecutive samples of E = 2000 events whose isotropy was maximised using the algorithm

and then removed from the dataset (and stored for safe keeping). S is approximately constant

(and very nearly equal to 1) for the first 26 samples and then begins to rapidly decrease. To check

if the isotropy calculated event-by-event for each event in the samples follows this trend, and to

see if it concerns not only the fragments but all charged products, Figure 7.2.3(b) presents the

mean isotropy ratio for forward-emi�ed Z ≥ 1 products, R f w
E , as a function of sample number.

This shape variable, which is calculated completely independently from the sphericity used for

the isotropy maximization algorithm (see 7.1.1), also displays the same characteristics: a constant

mean value 〈R f w
E 〉 ≈ 0.7 for the first 26 samples, and then a trend of decreasing isotropy for the

other samples. It can be noted also in this figure that the fluctuations (standard deviation) of R f w
E

are also constant for samples 1 to 26, which further confirms the impression that these samples

constitute an homogeneous set of events.

Figures 7.2.3(c) and (d) compare the correlations between fragment atomic numbers and their

longitudinal velocity in the centre of mass frame for the full set of complete events (c) and for

the 26 most isotropic samples of events (d). The complete events show a clear forward-backward

pa�ern in their correlations which is typical of binary dissipative collisions in this energy range

(compare with Figure 7.2.2). For the most isotropic events on the other hand all such correlations

between the fragments’ velocities and Z are absent except for momentum conservation e�ects

which mean that heavier fragments tend to have lower velocities (narrowing of the correlations

with increasing Z). These events are therefore compact in velocity space and are compatible with

the multifragment decay of a single heavy system which is on average at rest in the centre of



106 CHAPTER 7. HOW ISOTROPIC ARE THE MOST ISOTROPIC EVENTS ?

0 10 20 30 40 50
Sample number

0.8

0.9

1

S
am

pl
e 

sp
he

ric
iti

y

Sn 50MeV/AnatXe+129

Sample size:
2000 events

(a)

0 10 20 30 40 50
Sample number

0.2

0.3

0.4

0.5

0.6

0.7

>fw
E<R

ERσ

(b)

10− 5− 0 5 10

 [cm/ns]||
cmV

10

20

30

40

50

60Z (c)

10− 5− 0 5 10

 [cm/ns]||
cmV

10

20

30

40

50

60Z (d)

Figure 7.2.3 – (a) Sample sphericity S versus sample number for 50 samples of size E = 2000
events extracted from complete events of

129Xe+
natSn collisions at 50A MeV. (b) Mean value

〈R f w
E 〉 and standard deviation σRE of the isotropy ratio calculated in the forward CM hemisphere

as function of sample number. The dashed line indicates the last sample with a constant sample

sphericity S in (a). (c) Correlations between fragment Z and longitudinal c.m. velocity Vcm
‖ for

all complete events. Logarithmic colour contours represent measured double di�erential cross-

sections. (d) As in (c), but for the 26 most isotropic samples.
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Figure 7.2.4 – Homogeneity of the 26 event samples corresponding to the most isotropic events

of
129Xe+

natSn collisions at 50A MeV. Full symbols: mean values. Open symbols: standard devi-

ations.

mass frame.

In order to converge for the 50 samples shown in Figure 7.2.3 (105
events), and for the other

beam energies shown below, the sorting programme was run for 6 ∼ 12 hours on a 20-core Dell

workstation. All cores were utilised thanks to the implicit multi-threading capabilities of the

latest versions of the ROOT so�ware framework [13, 14]. The implementation of the algorithm

was only possible thanks to the direct access to any event in a ROOT database file provided by

the TTree storage class. Although it has taken 25 years for me to correctly answer the problem

set for my Masters’ internship, in my defence I would like to plead that it took most of those 25

years for the necessary computer hardware and so�ware to become available.

Figure 7.2.4(a)-(f) gives a general survey of the homogeneity of the 26 samples corresponding

to the most isotropic events. Both the mean value and standard deviation of each of the following

quantities calculated event by event are presented as a function of sample number:

• the fragment (Z ≥ 5) multiplicity, M f ;

• the multiplicity of Light Charged Particles (Z < 3), MLCP;

https://root.cern.ch/doc/master/classTTree.html


108 CHAPTER 7. HOW ISOTROPIC ARE THE MOST ISOTROPIC EVENTS ?

Beam energy 25A MeV 32A MeV 39A MeV 45A MeV 50A MeV

Sample size E 5000 2000 2000 2000 500 2000 2000

Number of samples 40 99 24 23 98 23 26

Cross-section [mb] 82.5 81.7 29.7 22.6 24.1 20.9 25.8

2× [θ f > 60] [mb] 97.0 38.2 28.3 24.5 28.5

Table 7.1 – Most isotropic events for
129Xe+

natSn collisions from 25 to 50A MeV. Sample size,

number of samples in the set of most isotropic events, deduced cross-section. Last row is twice

the cross-section for the θ f > 60o
selection of [35].

• the total charge contained in the fragments, Zbound;

• atomic number of the largest fragment by charge, Zmax;

• mean charge of the fragments, Z f ;

• and the mean relative velocity between each pair of fragments, Vrel
f .

All of these observables have constant or approximately constant mean values for all 26 samples

in the event set. Not only their mean values are constant, but also the fluctuations represen-

ted by the standard deviation for each variable’s distribution (open symbols). The values are no

longer constant for the samples a�er 26, as for the sample sphericity and forward isotropy ra-

tio (Figure 7.2.3). We can therefore consider that these events constitute an homogeneous set

corresponding to the most isotropic events produced by
129Xe+

natSn collisions at 50A MeV.

7.2.4 Most isotropic events for 129Xe+natSn collisions from 25 to 50A MeV
The same method has been applied to complete events (Ztot ≥ 80) for

129Xe+
natSn data from

25 to 50A MeV. Results for the di�erent sets of most isotropic events are presented in Table 7.1.

Note that the method was applied twice to the data at 25A MeV and 39A MeV with di�erent

sample sizes, E . It can be seen that the results are hardly sensitive to this numerical parameter,

which demonstrates the robustness of the method.

The cross-section corresponding to these most isotropic events for each energy has been cal-

culated using measured cross-sections for all M ≥ 4 trigger data in [75]. The cross-sections are

unsurprisingly low, around 25 mb; nevertheless, this corresponds to 7 ∼ 10% of the cross-section

for complete events. An exception is the 25A MeV data, for which the cross-section is 3 ∼ 4 times

higher than for the other bombarding energies. This may of course be linked to the previously

observed prevalence of fusion-like processes at this energy and below (see Part I, Chapter 3).

It is of course interesting to compare the cross-sections for the event sets we have isolated here

with the cross-sections for data selected using the “old” single-source/QF selection, θ f > 60o
,

of [35] and Part I, section 2.2.1. These are given in the last row of the table, doubled in order to

estimate the total cross-section for all events assuming an isotropic θ f distribution. It can be seen
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Figure 7.2.5 – (le�, middle): Flow angle distributions for complete events (open histograms) and

for the most isotropic events (shaded histogram) for two bombarding energies. (right) (shaded

histograms) Flow angle distributions for multifragmentation events in di�erent impact parameter

ranges from SMF calculations.

that the new isotropic event sets follow the same evolution of cross-section as for QF events, but

are always slightly lower in size.

The reason for this can be seen in Figure 7.2.5 which shows the distributions of cos θ f for all

complete events and the most isotropic events, for 25A MeV and 45A MeV bombarding energies.

The first thing to notice is that for θ f > 60o
(cos θ f < 0.5), the distributions for the most isotropic

events follow almost identically the distributions for complete events, which in this range of θ f
correspond to the QF events selected with the flow angle selection. They are however slightly

lower: therefore the most isotropic events we have isolated include nearly but not quite all of the

previously-defined QF events.

On the other hand, the θ f distributions for our selections are far from isotropic (non-equi-

probable cos θ f distribution): at all bombarding energies they display a strong suppression of

events with flow angles θ f . 50o
. This is not entirely unexpected, as we know that events with

the most forward flow angles are dominated by reactions that are not fully relaxed in momentum

space and which keep a strong memory both of the beam direction and the entrance channel nuc-

lei. Nevertheless we might have expected the most isotropic events to have a perfectly isotropic θ f
distribution “underneath” the dominantly forward-peaked distribution for less isotropic events.

However, it is very instructive to compare these distributions with that shown in Figure 7.2.5-

(right), which comes from our paper [52] investigating collective radial expansion and stopping

in central heavy ion collisions around the Fermi energy. In this paper, the Stochastic Mean Field

transport model (SMF, see Appendix A, section A.1.3.1) was used to simulate central
129Xe+

natSn
collisions at impact parameters b ≤ 4 fm. For bombarding energies 39A MeV and above, the

most central collisions (b . 1.5 fm) lead to the formation of compact sources which undergo

multifragmentation through spinodal decomposition. The θ f distribution for these events is the

blue shaded histogram in Figure 7.2.5(right). It is clear that the flow angle distributions for our
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Figure 7.2.6 – (closed symbols) Fragment properties of the most isotropic events as a function

of beam energy for
129Xe+

natSn collisions from 25 to 50A MeV. (open squares) results for QF

(θ f > 60o
) events.

selection of the most isotropic events are entirely compatible with these calculations.

Figure 7.2.6 presents the same observables as in figure 7.2.4, but now with the mean value of

each observable for the most isotropic dataset at each bombarding energy. The “rise and fall”

of mean fragment multiplicity 〈M f 〉 with a maximum for ≈ 45A MeV, the near-linear increase

of mean light charged particle multiplicities 〈MLCP〉, the decrease of the mean charge bound in

fragments 〈Zbound〉, of the mean charge of the largest fragment 〈Zmax〉, of the mean fragment

charge 〈Z f 〉, and the increase of the mean inter-fragment relative velocity 〈Vrel
f 〉 are the same as

for the QF events selected with the flow angle cut and studied in [46]: the only di�erence is that

here they are presented simply as a function of the bombarding energy, whereas in [46] they were

shown as a function of the reconstructed excitation energy per nucleon of the multifragmenting

systems.

Therefore we can conclude that the previously-studied QF or “single-source” multifragment-

ation events are a (representative) subset of the most isotropic events at each bombarding energy,

which validates a posteriori the θ f -cut selection method. The main di�erence here is that events
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Figure 7.3.1 – Comparison of the selected most isotropic events (isomax) and the events used in

the nuclear stopping analysis of Lehaut et al. [106] (stopping). Here flow angles θ f are from the

tensor Equation (7.1.2) calculated with all Z ≥ 1.

are selected without using any arbitrary or a priori assumption.

7.3 So just how isotropic are the most isotropic events?
Let us begin by comparing the apparent isotropy of our “most isotropic events” (from now on

referred to as isomax events) with that of the events retained in [106] which were used to deduce

the bombarding energy and system dependence of nuclear stopping. Let us first recall how the

stopping events were selected: the isotropy ratio R f w
E was calculated event by event using all

charged products (Z ≥ 1) in the forward centre-of-mass hemisphere (i.e. with centre-of-mass

velocity vcm
i > 0), for events satisfying a charge completeness criterion applied to these same

products

Z f w
tot = ∑

vcm
i >0

Zi > 0.8Zp (7.3.1)

with Zp = 54 the atomic number of the projectile. Stopping events were then selected with a

total multiplicity cut Nmin
C defined in such a way that for NC > Nmin

C the value of 〈R f w
E 〉 becomes

approximately constant as a function of NC (in reality, above Nmin
C the value of 〈R f w

E 〉 shows a

small linear increase).

Let us compare the mean isotropy ratio 〈R f w
E 〉 for each bombarding energy of

129Xe+
natSn

collisions. For the isomax events the ratio is calculated exactly equivalently using all charged
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products (Z ≥ 1) in the forward centre-of-mass hemisphere, but without the Z f w
tot completeness

criterion (we recall that the completeness criterion for isomax events is applied to the total charge

of all products in the full velocity space).

At first glance, the mean apparent isotropy of the isomax events is significantly higher for all

bombarding energies, while the same trend of decreasing isotropy with increasing beam energy

as for stopping events can be observed (full symbols in Figure 7.3.1a). However the isotropy

ratio calculated with respect to the beam axis has an inherent ambiguity: any change in the

“orientation” of non-isotropic events, i.e. the flow angle θ f , will modify the value of R f w
E so that it

no longer measures just the apparent isotropy of the events but also their orientation. Therefore

we cannot compare the apparent isotropy of two sets of events with di�erent θ f distributions

using R f w
E

5
.

As Figure 7.3.1b shows, the flow angle distributions for the stopping events are strongly

peaked at small θ f , much more so than for isomax events
6

(see figure 7.2.5). The apparent increase

of 〈R f w
E 〉 for each bombarding energy seen for isomax events in Figure 7.3.1a is then simply due

to the di�erent weighting of the θ f distributions in each case, as shown in the figure, where the

mean values for each set of events have been calculated for small (θ f < 60o
) and large (θ f > 60o

)

flow angles (open symbols). Very di�erent apparent isotropies are found in each case, and it can

be seen that for θ f > 60o
almost identical 〈R f w

E 〉 > 1 values are found (note the particularly high

value for 25A MeV), but this is simply due to the auto-correlation between the two variables, not

an indication of greater isotropy. It can be noted on the other hand that for “small” flow angles

where auto-correlation is not so strong, the isomax events still display a higher apparent isotropy

than the stopping events.

To remove this ambiguity we will now consider the isotropy ratio calculated in the ellipsoid

frame, Rell
E , of Equation (7.1.4). As Figure 7.3.2a shows, the evolution of the apparent isotropy

measured with this variable is very di�erent to that seen in Figure 7.3.1a: for both stopping and

isomax events the apparent isotropy increases with incident energy, in the la�er case reaching a

plateau at around 39A MeV. Let us note also that the mean apparent isotropy for data at 25A MeV

is very nearly the same for both data selections. There is however one more possible source of

ambiguity which we have not dealt with and which a�ects all shape variables: the number of

nuclei used in the calculation of Rell
E in each case, which here is nothing but the total charged

product multiplicity NC. However, Figure 7.3.2b shows that at each bombarding energy 〈NC〉 is

in fact a few units larger for stopping events; as they were selected with a cut in the upper tail of

the NC distribution, this is not all that surprising. Whatever the reason, the increased apparent

isotropy for stopping events in Figure 7.3.2a cannot be trivially explained by an increase in the

mean multiplicity.

In order to compare the actual degree of anisotropy of the momentum distributions for isomax

5
This is of course equally true for RE, the isotropy ratio using the full centre of mass velocity space. Almost

identical results are obtained as in Figure 7.3.1 using RE.

6
As we are dealing with all Z ≥ 1 products in the calculation of R f w

E , the flow angles in Figure 7.3.1b are

calculated for the tensor Equation (7.1.2) using all Z ≥ 1, not just for fragments with Z ≥ 5 as in Figure 7.2.5 and in

the super-tensor of Equation (7.2.1), used to select the isomax events. The cos θ f distributions for all Z ≥ 1 products

for isomax events are also peaked at small angles (except for 25A MeV) but much less so than for stopping events:

by a factor of ∼ 2 for 50A MeV, ∼ 3 for 32A MeV.
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Figure 7.3.2 – Comparison of the selected most isotropic events (isomax) and the events used in

the nuclear stopping analysis of Lehaut et al. [106] (stopping).

and stopping events, we present in Figure 7.3.3 the evolutions of the mean value 〈Rell
E 〉 with

total multiplicity for each bombarding energy. Comparing mean isotropy ratios multiplicity by

multiplicity is the only way to avoid any ambiguity due to di�erences in the distributions of NC.

As the stopping events were selected with a cut in multiplicity (clearly evident in these figures),

they e�ectively have very di�erent NC distributions. What is also evident in these figures is that

at all bombarding energies and for all multiplicities the stopping events have a lower apparent

isotropy than the isomax events (even at 25A MeV where the mean value for stopping events

shown in Figure 7.3.2a is slightly higher; this is a clear demonstration of the danger of studying

apparent isotropies without taking into account the underlying multiplicity distributions).

7.4 Energy dependence of nuclear transparency

Another di�erence in Figure 7.3.3 concerns the shape of the 〈Rell
E 〉-NC correlations which increase

more steeply for stopping than for isomax events (except at 25A MeV). Such correlations are of

the same type as we saw in 7.1.1.2 when studying the multiplicity dependence of the di�erent

shape variables for momentum distributions with di�erent degrees of anisotropy. In fact, for the

isomax events the correlations observed in Figure 7.3.3 can be exactly reproduced by simulations

for a momentum distribution with a fixed elongation of ≈ 1.25 : 1, for bombarding energies

above the Fermi energy, Eb ≥39A MeV. At the two lower energies, the slopes of the correla-

tions resemble more those of the stopping data, and cannot be reproduced by a fixed anisotropy.

Without fully understanding the significance of this observation for the moment, we can at least

estimate upper and lower limits for the degree of elongation of the momentum distributions in
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Figure 7.3.3 – Mean isotropy ratios calculated in the ellipsoid frame, 〈Rell
E 〉, as a function of total

multiplicity NC for isomax and stopping events for each bombarding energy. Dashed lines are

simulated results for momentum distributions with the elongations indicated in the legends.
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Figure 7.4.1 – Apparent nuclear transparency and impact parameter distributions for the most

isotropic events in
129Xe+

natSn collisions from 25 to 50A MeV.

this case, which are shown by the red and blue curves in this case.

The values of the momentum distribution elongation parameter Υ deduced in this way for

each bombarding energy are shown in Figure 7.4.1a. As in fact this parameter is representative

of the amount of nuclear transparency in the collisions, we shall call it the nuclear transpar-

ency parameter. Obviously Υ = 1 corresponds to a fully isotropic momentum distribution, while

increasing values of the elongation correspond to increasing transparency. The nuclear trans-

parency is seen to decrease with bombarding energies up to the Fermi energy, where it becomes

approximately constant.

However this transparency parameter is only a measure of the apparent transparency of nuc-

lear ma�er in these reactions: as we spent Chapter 6 demonstrating and quantifying, any sample

of selected events corresponds to collisions with a distribution of di�erent impact parameters.

The observed transparency (or stopping) then depends on a convolution of nuclear ma�er prop-

erties and collision geometry. The only way to disentangle the two is by comparison with the

results of microscopic transport model calculations, which must be performed in such a way that

the impact parameter distributions used are representative of the experimental data.

Therefore the values of Υ given in Figure 7.4.1a are of li�le significance unless accompanied by

the information given in Figure 7.4.1b, which concerns the estimated impact parameter distribu-

tions for the isomax events. We present the distributions using both Et12 and NC for this purpose,

as they do not give exactly the same results. In both cases the full distributions for all energies

are very wide, up to 7 ∼ 8 fm
7
: as can be seen in the figure where the standard deviations are

represented by vertical bars, the distributions are slightly narrower when deduced from the total

7
Let us note in passing that in [161] where the data of [106] was compare with IQMD, the calculated impact

parameter distributions for events selected with an NC cut also reach up to 8 fm (see Figure 2d of [161]).
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multiplicity. The mean impact parameters decrease slightly with bombarding energy, from 3 ∼ 4
fm at 25A MeV to ≈ 2.5 fm at 50A MeV.

These data should now be used with transport model calculations in order to give a definitive

answer to the question of the dependency of nuclear transparency on bombarding energy.

7.5 Summary

In this chapter it has been shown, for well-measured
129Xe+

natSn collisions, that it is possible

to extract from the data homogeneous event samples which correspond to the events with the

highest degree of isotropy (or the most “compact” events) amongst all those measured. The novel

selection method is performed in such a way that, unlike all previous approaches, it involves no

arbitrary cuts or a priori definitions of how isotropic the most isotropic events should be. It is

important to note that it is possible for this method to give the result that there are no “special”

events, i.e. that starting from the first sample of arbitrary size E events the sample isotropy

decreases continuously. This was not observed for
129Xe+

natSn data, but may be observed if the

method is applied to other data.

The isomax events were then compared with the single-source or quasi-fused (QF) source

events selected with an arbitrary cut in the θ f flow angle distribution, which have been studied

many times over the years by the INDRA collaboration and are largely seen as a paradigm for

multifragmentation in central collisions. It turns out that the QF events are in fact a representat-

ive subset of the isomax sample, with near-identical fragment partition properties, and showing

the same signs of collective radial expansion through their mean inter-fragment relative velocit-

ies. This is the strongest a posteriori experimental validation to date of the selection of compact

multifragmenting sources using a θ f cut.

The question of the actual degree of isotropy of these most isotropic samples was then care-

fully considered. At all bombarding energies considered here, the isomax events present a finite

anisotropy: “full stopping” is not achieved. However, perfect isotropy, like b = 0 collisions and

thermodynamic equilibrium, is a theoretical idealization and not to be expected when dealing

with real experimental data. Using the methods introduced in Chapter 6 we estimate that the

isomax events result from collisions with mean impact parameters in the range 〈b〉 ≈ 2.5− 4 fm

therefore a finite anisotropy is to be expected from the collision geometry. Comparing the mul-

tiplicity dependence of the measured apparent isotropy with simulated events having ellipsoidal

momentum distributions, we have quantified the anisotropy for each bombarding energy, which,

for Eb ≥ 39A MeV, corresponds to a ratio between the major and minor axes of the ellipsoid in

momentum space of 1.25:1, which is a small deformation compared to spherical isotropy.

Taking this elongation ratio Υ to be a measure of the apparent nuclear transparency, we

find that when considering carefully-selected samples of the most isotropic events, the nuclear

transparency decreases with bombarding energy and reaches a minimum at the Fermi energy.

This is exactly what we expect to happen if, as the Fermi energy is approached, the phase space

for elastic nucleon-nucleon collisions opens up, increasing the stopping power of nuclear ma�er

beyond that of the weakening mean-field one-body dissipation.

Of course, this is the exact opposite of the conclusions of [106] where the nuclear stopping,
supposed to be measured by 〈R f w

E 〉, was shown to decrease and reach a minimum at the Fermi
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energy. As we have shown above, the interpretation of this variable in terms of anisotropy of event

momentum distributions is far from direct, and requires to take into account the ambiguities

introduced by di�erences in event orientation (θ f distributions) and multiplicity distributions.

When such e�ects are taken into account the nuclear stopping (isotropy ratio) calculated from

the stopping data is in fact shown to be, at worst, constant, or at best, slightly increasing in this

energy range (Figure 7.3.2a).
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Appendix A

A not at all definitive guide to some
o�-mentioned models

In order not to clu�er the manuscript with expositions of the many and varied models used in

this work, I have tried to collect them together here. As a result, the manuscript is now clu�ered

with references to this chapter. You just can’t win.

A.1 Microscopic models of nuclear reactions
There are basically two families of transport approaches which are used in the study of heavy- ion

collisions [159]. One is the Boltzmann-Vlasov type, which is formulated for the evolution of the

one-body phase-space density under the influence of a mean field. The other is the molecular-

dynamics type, which is formulated in terms of nucleon coordinates and momenta under the

action of a many-body Hamiltonian. Both are supplemented with a two-body collision term. The

following presentation concerns non-relativistic transport models for nuclear reactions and relies

heavily on the following publications: [162, 163, 164, 65, 58, 20, 165, 166]. For relativistic nuclear

transport models, see [167].

The evolution of an interacting N-particle system described by the wave function

|Ψ(r1, . . . , rN; t)〉

is given in the non-relativistic limit by the Schrödinger equation

Ĥ|Ψ〉 = ih̄
∂|Ψ〉

∂t
(A.1.1)

where Ĥ is the microscopic Hamiltonian of the system, or equivalently by the time variation of

the N-particle density matrix in configuration space,

ΦN(r1, . . . , rN, r′1, . . . , r′N; t) = |Ψ〉〈Ψ| (A.1.2)

which is given by the von Neumann equation

ih̄
∂ΦN

∂t
=
[
Ĥ, ΦN

]
(A.1.3)
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The utility of such equations for describing nuclear reactions is rather limited, as, even assuming

that we had a perfect knowledge of Ĥ, this equation can be solved exactly for simple cases only.

Generally, one has to rely on some approximations.

A.1.1 The time-dependent Hartree-Fock (TDHF) equation
To reduce the complexity of the N-body dynamics we can work at the level of the 1-body density

operator

ρ̂ = N Tr
2,3,...,N

ΦN (A.1.4)

Practically all transport models try to solve the time evolution of this operator (or its semi-

classical Wigner transform - see Sec. A.1.2 below). This is su�icient for most cases, as knowing

the 1-body density operator ρ̂(t) at a time t allows to calculate the expectation value of any 1-

body observable O = ∑N
i=1 oi, as 〈Ψ(t)|O|Ψ(t)〉 = Tr[oρ̂(t)], and most observables are 1-body

in nature. However the equation for the time evolution of the 1-body density is still not neces-

sarily tractable; for example, assuming only two-nucleon interactions ∑i<j vij, this equation will

depend on the 2-body density operator:

ih̄
d
dt

ρ̂ =

[
−h̄2

2m
∇2, ρ̂

]
+ Tr

2

[
v12, ρ̂(2)

]
(A.1.5)

and the 2-body density operator ρ̂(2) = N(N − 1)Tr3,...,N ΦN in turn depends on the 3-body

density, and so on and so on: this is the quantum BBGKY
1

hierarchy, known as the Martin-

Schwinger hierarchy (or BBGG according to Bonasera et al. [58], for Bogoliubov, Born, Green

and Gurov).

The Hartree-Fock ansatz then allows to find a closed solution to Equation (A.1.5), by assuming

that the N-fermion state |Ψ〉 is given by a Slater determinant of single particle wave functions,

which is equivalent to assuming that the N fermions behave as independent particles moving

in a mean field generated by averaging over their mutual interactions. In such a state, all the

information is contained in the 1-body density matrix and the 2-body density operator becomes

ρ̂
(2)
12 = Â12ρ̂1ρ̂2 (A.1.6)

Then the Time Dependent Hartree-Fock (TDHF) equation for the evolution of the 1-body density

operator is

ih̄
d
dt

ρ̂ =

[
−h̄2

2m
∇2 + U1[ρ̂], ρ̂

]
(A.1.7)

with the one-body mean-field potential which is defined depending on ρ̂ as

U1[ρ̂] = Tr
2

Â12v12ρ̂2

1
for Bogoliubov, Born, Green, Kirkwood and Yvon - the BBGKY hierarchy relates each of the reduced density

functions ρs(r1, . . . rs; p1, . . . , ps; t) in 6N-dimensional phase space to the next, ρs+1, in the classical description of

the statistical physics of an N-particle system.
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This equation provides a self-consistent mean-field evolution where the interaction between the

particles is replaced by a 1-body mean-field potential generated by all the particles. It is, then,

assumed that each particle evolves independently in this potential.

The TDHF approach provides an excellent treatment of one-body dissipation mechanisms

which are crucial to properly describe low-energy (well below Fermi energy) heavy-ion collisions

[165], in the presence of phenomena such as coupling of macroscopic collective motions with

microscopic excitations (distortion of the single-particle wave functions by the collision partner

of a heavy-ion collision, particularly when, in dissipative reactions — i.e. deep-inelastic collisions

— nucleons are transferred from one partner to the other leading to transfer of the kinetic energy

of the relative motion of the two nuclei into intrinsic excitations; or, in fusion reactions, multiple

reflections of single-particle wave functions on the mean field “wall” which dissipate collective

translational energy into particle excitations and collective vibrations of the compound system)

and emission of nucleons into the continuum, which is a natural cooling mechanism of excited

nuclei.

On the other hand, with bombarding energies increasing towards the Fermi energy and bey-

ond, the inclusion of beyond-mean-field correlations, specifically in-medium two-body correl-

ations i.e. nucleon-nucleon collisions, which are hindered or completely suppressed at lower

energies by the Pauli principle, become increasingly important for the correct description of the

dynamics. These could in principle be taken into account by going to the next order of the BBGG

hierarchy, i.e. using the equation for the time evolution of the 2-body density operator and neg-

lecting 3-body correlations. However, such an approach demands far more computational e�ort

than the standard TDHF approach, and even now only a few applications have been a�empted

(see [165] and references therein).

Historically, inclusion of residual interactions and other beyond-mean-field e�ects in trans-

port models for nuclear reactions in the Fermi energy range has proceeded via the use of semi-

classical approximations to the TDHF equation (but see also [168, 169]). Let us note in passing

some very recent work by the Nantes group, who, a�er their earlier work on a quantal Boltzmann-

like approach (DYWAN: Dynamical Wavelets in Nuclei [170]) are currently working to include

fluctuations in an extended TDHF (ETDHF) approach [171].

A.1.2 Semi-classical approach: The nuclear Boltzmann equation

The N-particle Wigner function, fN(r1 . . . rN; p1 . . . pN; t), is an auxiliary function analogous to

but distinct from the classical distribution function and quantum density matrix which may be

defined as a Fourier transform of the N-particle density matrix [58],

fN =
∫

d3y1 · · · d3yN

N

∏
j=1

exp
(

ipj · yj/h̄
)

×ΦN(r1 + y1/2, . . . , rN + yN/2; r1 − y1/2, . . . , rN − yN/2; t) (A.1.8)

Applying this transform to the TDHF equation, Equation (A.1.7), and truncating the resulting

expansion in terms of powers of h̄, we recover the Vlasov equation [162]
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[
∂

∂t
+

p · −→∇ r

m
−U(r)

←−∇ r ·
−→∇ p

]
f =

∂ f
∂t

+ { f , H} = 0 (A.1.9)

for the time evolution of a fluid of particles moving in a (momentum-independent) mean field

potential U(r) generated by their own mutual interactions, with the e�ective Hamiltonian here

given by H = p2/2m + U(r)2
. Here f = f (r, p; t) is the 1-body Wigner distribution, which is

the closest analogue to classical phase-space density that can be obtained from quantum mech-

anical wave functions (however, in certain cases f can be negative, unlike the classical case) [163].

The Vlasov equation, Equation (A.1.9) is nothing but the Boltzmann equation minus the collision

term on the right hand side:

∂ f
∂t

+ { f , H} = ∂ f
∂t

+
[
∇pH · ∇r −∇r H · ∇p

]
f = I[ f ] (A.1.10)

The collision term I[ f ] can be related back to the “residual” interactions between nucleons, i.e. all

the beyond-mean-field correlations beyond the truncation of the BBGKY hierarchy at the level

of the 2-body Wigner densities, rather than at the 1-body level, as for TDHF (Equation (A.1.7))

or the semi-classical Vlasov equation, Equation (A.1.9). As such, note that I[ f ] is not necessarily

limited to 2-body collisions (see [58]).

However, rather than deriving I[ f ] from the same interaction which gives the mean field part,

usually the Uehling-Uhlenbeck modified version of the Boltzmann 2-body collision term is used

[172]:

I[ f ] =
1

2m

∫∫∫
dp2dp1′dp2′δ

4(p1 + p2 − p1′ − p2′)

×w(p1, p2, p1′ , p2′) [ f1′ f2′(1− f1)(1− f2)− f1 f2(1− f1′)(1− f2′)]

=
∫∫

dp2dΩ |v2 − v1|
dσ

dΩ
[ f1′ f2′(1− f1)(1− f2)− f1 f2(1− f1′)(1− f2′)] (A.1.11)

with w a suitable transition matrix for the sca�ering process 1 + 2 → 1′ + 2′, which in the

last line is given by the product of the relative velocity of the incoming pair and the (possibly

energy-, angle-, isospin- and density-dependent) di�erential cross-section for elastic nucleon-

nucleon collisions. The modification of I[ f ] compared to classical Boltzmann takes account of

the fermionic nature of nucleons via the inclusion of the Pauli blocking factors, (1− f ), which

suppress sca�ering to states which are already occupied.

The nuclear Boltzmann equation, Equation (A.1.10), along with the collision integral, Equa-

tion (A.1.11), is the basis for the semi-classical transport models Landau-Vlasov [162], BUU [163]

and BNV [58], among others (see [159] for a full and recent list of transport codes, plus com-

parisons of their performance i.e. how well they actually simulate the equations given above).

Such models provide quantitative simulations of heavy-ion collisions in the Fermi energy regime

where both the nuclear mean field (calculated by an appropriate e�ective force: see A.1.4 below)

and Pauli-blocked nucleon-nucleon collisions play an important role.

2
The second form of the equation using the {·, H} Poisson brackets is more general, and is valid also for the case

where H contains a momentum-dependent potential.
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Figure A.1.1 – Illustration of di�erences between the evolution of the 1-body phase space density

in various semi-classical treatments of microscopic nuclear dynamics. From [20]

A.1.2.1 The test particle method

The nuclear Boltzmann equation is a non-linear integro-di�erential equation which generally

cannot be solved analytically or in a direct numerical way. Rather the common method is to

simulate the solution by using the test-particle (TP) technique, which was introduced to nuclear

physics in the beginning of the 1980s by Wong [173] for the solution of the TDHF equation. The

one-body Wigner distribution f (r, p; t) for A nucleons is then approximated by a sum of NTP
distributions per nucleon,

f (r, p; t) =
1

NTP

ANTP

∑
i=1

G (r− ri(t)) G̃ (p− pi(t)) (A.1.12)

where G, G̃ are shape functions in position and momentum space, respectively, which may be

δ-functions, triangular functions or Gaussian distributions, depending on the implementation.

Injecting Equation (A.1.12) into the Vlasov equation, Equation (A.1.9), we find the Hamiltonian

equations of motion for the centroids of the shape functions,

dpi
dt

= −∇r H

dri

dt
= ∇pH (A.1.13)

which therefore move like real “test” particles in the e�ective mean field.
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The test particles are also used to simulate the Boltzmann collision integral Equation (A.1.11),

according to the prescription of Bertsch and Das Gupta [163]. Stochastic two-body collisions take

place between pairs of test particles when they approach closer than the geometrical distance

of closest approach dmin =
√

σ∗/π. σ∗ may be the vacuum or in-medium elastic NN collision

cross-section; collisions may take place only between pairs of test particles belonging to one of

the A ensembles of NTP test particles (parallel ensembles method), or between all pairs among

the ANTP test particles (full ensemble method), in the la�er case with the reduced cross-section

σ∗/NTP. See [160] for a recent and thorough comparison of implementations of the collision

integral in di�erent codes.

A.1.3 Beyond the nuclear Boltzmann equation
An essential shortcoming of the nuclear Boltzmann equation, is the fact that the propagation

of the 1-body density is, in principle, entirely deterministic. This is because in the collision in-

tegral, Equation (A.1.11), the various possible outcomes of the residual collisions are averaged at

each step (see Figure A.1.1), leading to a significantly di�erent evolution compared to mean-field

alone (Vlasov approach), but still a unique dynamical trajectory for a given set of initial condi-

tions. In reality the number of collisions should fluctuate from one realisation of the evolution to

another, due to the neglect of 3, 4, . . . , N-body correlations. This lack of stochasticity precludes

the spontaneous appearance of fluctuations and thus renders the description inadequate when

bifurcations and instabilities are encountered in the dynamics.

Several ways to avoid this shortcoming have been explored. The first consists in going beyond

the mean value of the collision integral in order to calculate and include the associated fluctu-

ations: these are the so-called Boltzmann-Langevin approaches. A second way tries to retain all

N-body correlations while still maintaining a correct description of the mean field dynamics: this

is the molecular dynamics approach.

A.1.3.1 Boltzmann-Langevin approaches

The Boltzmann–Langevin model allows the various stochastic collision outcomes to develop in-

dependently, thus leading to a continual trajectory branching and a corresponding ensemble of

histories. This is done by now considering the collision term of Equation (A.1.10) to be a stochastic

variable,

I[ f ] = Ī[ f ] + δI(r, p; t) (A.1.14)

with a mean value Ī[ f ] given by the Uehling-Uehlenbek expression, Equation (A.1.11), while the

fluctuating term, arising from correlations not accounted for by the mean value, is characterised

by the correlation function [174]

≺ δI(r, p; t)δI(r′, p′; t) �= C(p, p′)δ(r− r′)δ(t− t′) (A.1.15)

which is assumed local in space and time. Such stochasticity is typical of a reduced description of

a dynamical system using a limited number of degrees of freedom; the fluctuations represent the

coupling to the (many more) unknown degrees of freedom [57]. The correlation function is com-

pletely determined by the averaged properties of the single-particle density and is closely related
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to the average collision term; no new parameters are required for describing fluctuation prop-

erties, in an equivalent way to the fluctuation-dissipation theorem in descriptions of Brownian

motion.

Exact numerical solutions of the Boltzmann-Langevin equation (BLE), Equation (A.1.14), are

very di�icult to implement and so various approximate methods have been developed in order

to allow realistic simulations of collisions:

• in the Brownian one-body (BOB) dynamics, developed in [56, 59], the fluctuating part of

the collision integral δI is replaced by a stochastic force added to the standard Boltzmann–

Nordheim–Vlasov (BNV) implementation of Equation (A.1.10), the strength of which can

be tuned to correctly describe the growth of the most important unstable modes in an

equilibrated system at a given density and temperature. It is not possible to use BOB in

order to simulate the full collision dynamics from t = 0 and for any impact parameter. This

is the approach used in my Ph.D work to simulate collisions of
155Gd+

238U 36A MeV and

129Xe+
natSn 32A MeV at b = 0 leading to multifragmentation by spinodal decomposition

(see section 2.2.2);

• in the Stochastic Mean Field (SMF) approach, developed in [175, 176], the assumption of

local thermal equilibrium allows to mimic the fluctuation δI with density fluctuations cor-

responding to the kinetic equilibrium values typical of a Fermi gas at (local) temperature

T and chemical potential µ,

σ2
ρ,eq(r; t) =

1
V

∫ dp
h3/4

σ2
f (r, p; t) =

T
V

3ρ

2εF

(
1− π2

12

(
T
εF

)2

+ · · ·
)

(A.1.16)

SMF can simulate full collision dynamics for any impact parameter. This model was used

to investigate compression-expansion dynamics and stopping for central collisions (b ≤ 4
fm) of

129Xe+
natSn at di�erent bombarding energies in [52];

• in the Boltzmann-Langevin One-Body model [62] two-body nucleon-nucleon collisions

take place between “nucleon wave packets” defined as agglomerates of test particles based

on proximity in phase space, following the prescription of Bauer et al. [86], but with an

improved implementation of the Pauli blocking factors for wave packet collisions. In this

way the Langevin fluctuations in the evolution of the one-body distribution function are

implemented in full phase space with the correct amplitude at all times of the evolution;

• Recently, Lin and Danielewicz [177] reformulated the beyond-mean-field dynamics in heavy-

ion collisions in terms of Brownian motions of nucleons in the viscous, out-of-equilibrium

nuclear medium, as opposed to the typical two-body sca�erings. The Brownian motions

are, in e�ect, the momentum and energy exchange between a nucleon and the nuclear

medium it is immersed in. They are governed by a set of Langevin equations consisting

of a friction-like term and a stochastic term. This approach describes the dissipation and

fluctuation dynamics consistently and simultaneously.
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A.1.3.2 Molecular dynamics approaches

A di�erent way to overcome the limitations of the essentially one-body transport models presen-

ted above, in essence trying to make the N-body quantum dynamics tractable while retaining as

much as possible of the N-body correlations needed to describe clusterization, are the so-called

molecular dynamics approaches. These are not derived from a semi-classical approximation to

the truncated 1-body dynamics in the same way as the BUU-like models, but rather take as start-

ing point a variational principle applied to an ansatz for the N-body description of the system

which may be more or less quantal. Examples are the Constrained Molecular Dynamics (CoMD)

model of Papa et al. [178], the �antum Molecular Dynamics (QMD) model of Aichelin [65],

the Anti-symmetrized Molecular Dynamics (AMD) model of Ono and Horiuchi [179], and the

Fermionic Molecular Dynamics model of Schnack and Feldmeier [180].

“�antum” Molecular Dynamics (QMD) The QMD model of Aichelin [65, 149] can be de-

rived from a time-dependent Hartree (TDH) theory (antisymmetrization is neglected) with a trial

wave function of the form

Φ =
At+Ap

∏
i=1

φi (A.1.17)

which is a product of Gaussian single-particle wave functions [159]

φi(r; t) =
(

1
2π∆x2

)3/4

exp

{
− [r− Ri(t)]

2

(2∆x)2 + ir.Pi(t)

}
(A.1.18)

with positions Ri(t) and momenta Pi(t) as variational parameters. Using a two-body interaction

Vij(r′, r) including zero-range Skyrme, finite-range Yukawa and Coulomb components (see sec-

tion A.1.4 below), the centroids of the Gaussian packets are found to follow equations of motion

very similar to those of the test particles in BUU approaches (see section A.1.2.1 above):

Ṙi =
Pi

m
+∇Pi ∑

j
〈Vij〉

Ṗi = −∇Ri ∑
j 6=i
〈Vij〉 (A.1.19)

with

〈Vij〉 =
∫

d3rd3r′φ∗i (r
′)φ∗j (r)V

ij(r′, r)φi(r′)φj(r)

Nucleon-nucleon collisions are implemented in much the same way as for BUU; however in

QMD nucleons, not test particles, collide with the NN in-medium cross section, and so a collision

will a�ect the evolution considerably more than a TP collision in BUU. The treatment of collisions

in QMD approaches is intrinsically stochastic. In contrast to BUU, two-nucleon collisions induce

event-by-event fluctuations, and so can lead to clusterisation and formation of fragments.

A recent improved and widely-used version of QMD including isospin-dependent forces and

cross-sections is IQMD (Isospin-dependent QMD) of [181, 161, 182].
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Antisymmetrized Molecular Dynamics (AMD) In AMD, the A-nucleon system is described

by an anti-symmetrized Slater determinant of Gaussian wave packets,

|Φ(Z)〉 = Â
A

∏
i=1

φi(i) (A.1.20)

with the full antisymmetrization operator Â. Each single-particle state is a product of a Gaussian

function and a spin-isospin state,

〈r|φi〉 = exp

[
−ν

(
r− Zi√

ν

)2
]

� χσi (A.1.21)

The spin and isospin of each nucleon are fixed, as is the Gaussian width parameter, ν. The many-

body state is thus parametrized by the (complex) Gaussian centroids Z = {Z1,Z2, . . . , ZA}
whose time evolution may be determined by the time-dependent variational principle

δ
∫ t2

t1

dt

〈
Φ(Z)

∣∣∣(ih̄ d
dt − H

)∣∣∣Φ(Z)
〉

〈Φ(Z)|Φ(Z)〉 = 0 (A.1.22)

An e�ective interaction is employed in the Hamiltonian H, such as the Gogny or Skyrme forces

(see A.1.4). The resulting equations of motion then represent the motion of the wave packets

in the mean field. Stochastic NN collisions are implemented using in-medium elastic cross-

sections, and are only allowed for final states which are also Slater determinants, thus respecting

the Pauli principle. NN collisions in AMD are therefore treated as a quantum branching process

in which the system stochastically jumps from one Slater determinant to another (this can be

seen as an approximation to the approach of [169]). Recently, the two-nucleon collision process

in AMD has been generalized to allow the possibility that each colliding nucleon may form a

cluster of mass number A = 2, 3 or 4 with some other wave packets [166].

At the present time, AMD is probably the best available microscopic model for heavy-ion (and

especially multifragmentation) reactions in the Fermi energy domain, as it respects both the co-

herent mean field propagation (a thorough and positive comparison between reaction dynamics

with AMD and SMF was presented in [183]) and the existence of strong many-body correlations,

essential for the description of clusterization and fragmentation.

A.1.4 E�ective forces

The most microscopic way to calculate empirical properties of nuclear ma�er is to start from a

realistic two-body free nucleon-nucleon (NN) interaction with parameters fi�ed to NN sca�er-

ing phase shi�s in di�erent partial wave channels and to properties of the deuteron [184]. By

taking these bare interactions as input into a many-body formalism, such as the non-relativistic

Bruckner-Hartree-Fock [185] or relativistic Dirac-Bruckner-Hartree-Fock approximations [186],

an e�ective in-medium NN interaction can in principle be derived. Such an approach has been

used with success to reproduce infinite nuclear ma�er properties. However, these interactions are
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Figure A.1.2 – Comparison of three beyond-nuclear-Boltzmann-equation transport models: the

Brownian one-body Langevin dynamics of [177], SMF and AMD. Density contours in the reaction

plane for
112Sn+

112Sn collisions at 50A MeV with b = 0.5 fm. From [177].

far too computationally intensive for calculations of reaction dynamics using the transport mod-

els presented above. Rather they employ e�ective density-dependent phenomenological interac-

tions which are fi�ed to describe the ground-state properties of finite nuclei and nuclear ma�er,

using either zero-range (Skyrme model) or short finite-range (Gogny model) density functionals.

Skyrme interactions The Skyrme interaction [187, 188, 63, 189], originally constructed for

finite nuclei and nuclear ma�er at saturation density, is a low-momentum expansion of the ef-

fective two-body NN interaction in momentum space. In its simplest form, the isoscalar part of

the e�ective two-body Skyrme interaction is a zero-range density-dependent interaction,

vij = −t0δ(ri − r j) +
t3

6
ρσ(rij)δ(ri − r j) (A.1.23)

with rij = (ri + r j)/2 and where the parameters t0, t3 and σ are fi�ed to nuclear properties

at zero temperature (see [190] for a large compilation of much more recent versions of Skyrme

interactions). The second, density-dependent, term, which Vautherin and Brink [188] showed to

be equivalent to a three-body contact force, provides a short-range repulsion thus ensuring sat-

uration at a certain density ρ0. The interaction of Equation (A.1.23) leads to a density-dependent

mean field potential

U(ρ) = A
ρ

ρ0
+ B

(
ρ

ρ0

)σ+1

(A.1.24)
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which may be supplemented by an isospin-dependent term,

Uq=n,p = C
ρn − ρp

ρ0
τq

where τn = 1 and τp = −1. For the description of finite nuclei, a term proportional to ∇2ρ is

usual added to the potential which is adjusted to reproduce nuclear surface energies. Coulomb

repulsion between protons is also included by solving the Poisson equation for the proton charge

distribution,

∇2UCoul(r) = −
1
ε0

ρp(r)

The Skyrme force has been most o�en used with BUU, BNV and SMF models. In our calcula-

tions for
155Gd+

238U and
129Xe+

natSn reactions in [44] and [52] this potential with parameters

A = −356 MeV, B = 303 MeV, ρ0 = 0.16 fm−3
and σ = 1/6 was used, leading to saturation

properties of cold symmetric nuclear ma�er E/A = −16 MeV/nucleon and incompressibility

K∞ = 200 MeV. In [52] the isospin-dependent part with C = 36 MeV was also implemented.

It should be noted that in [190], of 240 existing Skyrme parametrizations used in the liter-

ature, only 16 fulfilled a set of constraints derived from a wide range of macroscopic properties

of symmetric or pure neutron nuclear ma�er and mixtures of the two. Including four further

more microscopic constraints, only 5 Skyrme parameter sets agree with existing experimental

and empirical data.

Gogny interactions The advantage of the structure of the Skyrme density functional is that

it allows analytical expression of all variables characterizing infinite nuclear ma�er, but as it neg-

lects the finite range of the nuclear interaction there is no momentum dependence in the mean

field. On the other hand the e�ective interaction proposed by Gogny [191] explicitly considers

the finite range of the nuclear force. Again neglecting the spin-orbit and isospin dependent terms

for simplicity, this force has a form [192]

vij =
2

∑
k=1

(Wk + BkPσ − HkPτ −MkPσPτ) exp[−(ri − r j)
2/a2

k]

+ t3δ(ri − r j)(1 + Pσ)ρ

(
ri + r j

2

)1/3

(A.1.25)

which is composed of two finite range two-body terms and a density-dependent zero range two-

body term (almost the same as that of the Skyrme interaction, Equation (A.1.23)). The operators

Pσ
and Pτ

are the spin and isospin exchange operators, respectively. The mean-field potential

corresponding to this force (here given with the dependence on the isospin asymmetry, δ =
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t3 [MeV] k Wk [MeV] Bk [MeV] Hk [MeV] Mk [MeV] ak [fm]

1350

1 -402.4 -100 -496.2 -23.56 0.7

2 -21.3 -11.77 37.27 -68.81 1.2

aV [MeV] pF [MeV/c] ρ0 [fm
−3

] m ∗ /m K∞ [MeV] aS [MeV]

-16.3 266.4 0.166 0.67 228 20.2

Table A.1 – (top) Parameters of the Gogny D1-G1 force, and (bo�om) Nuclear ma�er character-

istics with the above Gogny force: bulk energy aV , Fermi momentum pF at saturation density

ρ0, e�ective mass of nucleons m∗/m, bulk incompressibility modulus K∞ and surface energy

coe�icient aS [192].

(ρn − ρp)/ρ), as required for BUU-type calculations, is given by [193]

U(ρ, δ, p, τ) = Au
ρτ′

ρ0
+ Al

ρτ

ρ0
+ B

(
ρ

ρ0

)σ

(1− xδ2) (A.1.26)

− x
B

σ + 1
ρσ+1

ρσ
0

dδ2

dρτ

+
2Cτ,τ

ρ0

∫
d3p′

fτ(r, p′)
1 + (p− p′)2/Λ2

+
2Cτ,τ′

ρ0

∫
d3p′

fτ′(r, p′)
1 + (p− p′)2/Λ2

where Λ is a cut-o� parameter (typically ∼ pF, the Fermi momentum at saturation density; see

[193]), and x is a parameter introduced to cover the largely uncertain density dependence of the

nuclear symmetry energy Esym(ρ) [194]. For the meaning and values of other parameters, see

[193]. The Gogny mean field has a realistic momentum dependence below at least E . 200
MeV [192]. The Gogny interaction has been utilized most frequently in AMD calculations (see

[179, 166]).

QMD interaction The interaction used in QMD [149] includes zero-range Skyrme, finite-range

Yukawa and Coulomb components and can be wri�en

Vij(r′, r) = δ(r′ − r)

[
t1 + t2

[
ρ

(
r′ + r

2

)]γ−1
]
+ t3

exp (−|r′ − r|/µ)

|r′ − r|/µ
+

ZiZje2

|r′ − r|

It should be noted that Zi, Zj are the e�ective charges of baryons i and j (Zproj/Aproj for projectile

nucleons, Ztarg/Atarg for target nucleons).
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A.2 Statistical descriptions of multifragmentation
The starting point for statistical models of multifragmentation is to suppose that a highly-excited

nuclear system will arrive, at some point in its evolution, at a moment commonly known as the

freeze-out a�er which the characteristics of the fragments produced by its decay will no longer

significantly change, apart from the e�ects of secondary decay (evaporation of light particles

due to residual excitation energy) and Coulombian acceleration due to mutual repulsion between

charged fragments. The original statistical model, and ancestor of all others, is commonly recog-

nised to be that of Randrup and Koonin [195].

It is a common fallacy, o�-repeated not only by the users of such models, but also by their

creators and a fortiori by their detractors, that the basic hypothesis of these models is that a

multifragmenting system is in statistical equilibrium at freeze-out. This is a common misapplic-

ation of the ergodic theorem to non-ergodic finite systems (see Chapter 3 of [1] for a detailed

discussion of this and related points). What is actually supposed is that a given set (ensemble)

of multifragmenting systems populate uniformly the phase space corresponding to the chosen

description of the freeze-out, which is not the same thing.

Another misconception is that the use of statistical equilibrium concepts implies that in some

way processes must be “su�iciently slow”. To quote D.H.E. Gross, who stands as one of the pion-

eers in the application of finite-system statistical mechanics to multifragmentation reactions, “a

statistical process populates the accessible phase-space uniformely [sic], i.e. every quantum state

of the system [my emphasis] that is not excluded by basic conservation laws [...] is populated

independently of how easy or di�icult this might be. That is, a statistical process must also be

in general a slow process and thus will be an idealisation. In reality most reactions will not go

slowly enough that remote parts of the phase space may not be reached [...]” [196].

The apparent di�iculty arises from the mistake of thinking that the aim of the statistical

model being constructed is to describe a single system using a Gibbs ensemble of an infinite num-

ber of replicates of the system having the same macroscopic properties, as one commonly does

when dealing with systems in the thermodynamic limit. Obviously in this case, any single system

would need “su�icient time” to explore the whole phase space mapped out by the ensemble of

replicates — the ergodic theorem.

But Gross himself then gives the solution in the next lines: “The quantal transition probability

Pik = (2π/h̄)|Tik|2ρk is split into two factors: the square of the T matrix [reaction dynamics]

times the final-state density ρk. Because of equipartition in a statistical process |Tik|2 is roughly

constant and only ρk determines the cross-section”. In other words, if data from heavy-ion col-

lisions are carefully sorted into homogeneous event samples corresponding to similar reactions

so that for a given sample “|Tik|2 is roughly constant”, the properties of the selected events are

determined mainly by the statistical weights ρk regardless of whether the reaction represented

by Tik is “fast” or “slow”.

Specific statistical multifragmentation models di�er in their description of the freeze-out con-

figuration, the implementation of the initial conditions (constraints), and the numerical methods

employed to make predictions based on the corresponding ensembles. See Botvina and Mishustin

[197] for a good review. Here I will just present the most salient points of some of the models

mentioned in the manuscript.
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p(A0 = 58) [198] p(A0 = 58, Z0 = 28) [200] p(58Ni) [15]

715,220 221,170,802,387 27,476,011

Table A.2 – Partition counting for A0 = 58. p(A0 = 58): number of partitions of the number

58; p(A0 = 58, Z0 = 28): number of partitions into two-component clusters (A, Z); p(58Ni):
number of partitions of

58Ni nucleus containing only physical nuclei calculated with a parallel

processing algorithm.

A.2.1 The Statistical Multifragmentation Model (SMM)
In SMM [198, 199, 100] the break-up channels of an excited nuclear system (A0, Z0, E0) are

described by the partitions

f : {NAZ; 1 ≤ A ≤ A0, 0 ≤ Z ≤ Z0}

For fixed (A0, Z0) the number of all possible partitions of this type can be calculated [200]: it

rapidly becomes astronomical with increasing A0 (∼ 105
for A0 = 20, ∼ 1010

for A0 = 50,

with N0 = Z0), but is greatly decreased if only physical combinations of (N, Z) are kept in the

partitions (see Table A.2).

The fragmented systems at freeze-out are represented as a set of (spherical) nuclei at normal

density contained in a spherical volume large enough to contain all nuclei without overlapping:

typical values are V ≈ 3− 6V0 where V0 is the volume occupied by A0 nucleons at saturation

density. Internal excitation of all but the lightest (A > 4) nuclei is taken into account using

the Fermi gas relation (see below). Collective flow can be included in the calculations, but is

not included in the calculation of the statistical weights, and is therefore decoupled from the

partitions. To my knowledge, only a linear (Hubbleian) velocity profile

vF(r) =
( r

R

)
v0

has been used with SMM, for which the total flow energy is given by a simple expression, EF =
3
10 uA0v2

0, where r is the radial distance of a fragment from the centre of mass, R is the root-

mean-square radius of all fragments in the break-up configuration, and u is the mass of the

nucleon.

The statistical weights for partitions are determined by their free energy

Ff (T, V) = Ftr
f (T, Vf ) + ∑

A,Z
FAZ(T, V)NAZ + EC

0 (V) (A.2.1)

where the first term corresponds to the translational motion of the fragments (within a free

volume Vf smaller than the freeze-out volume V due to the finite size and strong interaction of

fragments), the second term is the sum of the free energies of the nuclei in the partition, given

as a sum of bulk, surface, Coulomb and symmetry energy terms,

FAZ(T,, V) = FB
AZ(T) + FS

AZ(T) + EC
AZ(V) + Esym

AZ



A.2. STATISTICAL DESCRIPTIONS OF MULTIFRAGMENTATION 135

and the last term is the Coulomb repulsion energy of the partition. Initially calculated in a

Wigner-Seitz approximation, since the introduction of the Markov chain Metropolis sampling

version of SMM [201, 202] E0
C can be calculated exactly for each freeze-out configuration from

fragment positions.

SMM can be used with “microcanonical” or “canonical” weights, although strictly speaking

they do not fully respect either ensemble
3
. In the “microcanonical” case, a temperature Tf is cal-

culated for each partition in order to respect the energy conservation condition averaged over all

microscopic states (fragment momenta, excitation energies, positions) leading to a given partition

E f (Tf , V) = Etr
f (Tf , V) + ∑

A,Z
EAZ(Tf , V)NAZ + EC

0 (V) = E0

Then the “microcanonical” partition weight is given by

Wmic
f =

1
ξ

exp S f (A0, Z0, E0, V) = exp

(
−

∂Ff (T, V)

∂Tf

)
, ξ = ∑

{ f }
exp S f (A0, Z0, E0, V)

In the “canonical” case a single temperature T is determined so that the mean energy of all

partitions respects the energy conservation condition

〈E f (Tf )〉 = ∑
{ f }

W f E(T, V) = E0

and the partition weights are

Wcan
f =

1
ζ

exp
(
−Ff (T, V)/T

)
, ζ = ∑

{ f }
exp

(
−Ff (T, V)/T

)
In both cases, the same temperature is used to determine both the thermal translational mo-

tion, intrinsic thermal excitation and surface energies of the fragments, although the excitation

energy sharing can be modified by adjusting the level density parameter ε0 used in the bulk free

energy,

FB
AZ(T) =

(
−W0 −

T2

ε0

)
A

where W0 ≈16A MeV is the binding energy of bulk nuclear ma�er at saturation density.

A.2.2 Microcanonical Multifragmentation Models (MMMC and MMM)
The original microcanonical multifragmentation model is that of Gross [203, 204, 196], MMMC

(Metropolis Multifragmentation Monte Carlo), which uses a Metropolis importance sampling

technique to explore the phase space defined by microcanonical statistical weights for the freeze-

out configurations. In MMMC internal excitation of primary fragments is limited to particle

3
“Strictly speaking, the above described [microcanonical] approach corresponds to the canonical approximation

when considering a given partition. However, henceforth it will be called microcanonical because for every partition

we fix the total fragment energy averaged over microscopic states, but not over partitions.” [100]
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stable levels only, which leads to relatively cold fragments, while it is assumed that any excess

excitation energy of the primary fragments was previously evacuated through neutron evapor-

ation, which are therefore present in the freeze-out description and contribute to the statistical

weight. Given our current experimental knowledge and other model evidence for excitation and

secondary decay of primary fragments [67, 71], this is not a very realistic assumption. Note

however that kinematic properties, notably the observed anisotropy of momentum distributions,

for central collisions for
129Xe+

natSn at 50A MeV were well-reproduced with a modified ver-

sion, MMMC-NS, using a non-spherical freeze-out volume and/or non-Hubbleian flow profile

[205, 206].

A more recent version of a Microcanonical Multifragmentation Model (MMM) is that of

Raduta and Raduta [101, 93]. As in SMM, fragments are assumed to be spherical, non-overlapping,

normal density nuclei in a spherical recipient of volume V. The basic assumption of the model is

equiprobability between all configurations

C : {Ai, Zi, εi, ri, pi; i = 1, . . . , N}
(the mass number, the atomic number, the excitation energy, the position, and the momentum

of each fragment i of the configuration C, composed of N fragments) which respect the conser-

vation laws, including momentum and angular momentum conservation in [93]. The integration

over fragment momenta in the centre of mass frame can then be analytically performed subject

to the aforementioned constraints,∫ N

∏
i=1

dpi δ(H − E)δ

(
∑

i
pi

)
δ

(
∑

i
ri × pi − L

)

=
2π

Γ
[3

2(N − 2)
] (∏i mi

∑i mi

)3/2 1√
det I

[
2π

(
K− 1

2
LT I−1L

)](3/2)(N−2)−1

with H the total energy of the configuration, E the total energy of the system prior to break-up,

L the total angular momentum and I the inertial tensor of the configuration, and K the total

kinetic energy.

As in SMM, all but the lightest (A ≤ 4) fragments can have intrinsic excitation energies

εi > 0, but the corresponding level density formula

ρ(ε) =

√
π

12a1/4ε5/4 exp
(
2
√

aε
)

exp (−ε/τ)

includes a cut-o� factor with parameter τ = 9 MeV which is introduced to account for the

dramatic decrease of the excited levels lifetime at high excitation energies according to the pre-

scription of Randrup and Koonin [207].

Again as in SMM, radial flow can be included in the calculation, but it does not intervene in

the calculation of the statistical weights, except in so much as collective flow energy reduces the

available energy for all other degrees of freedom, to conserve energy. The following parametriz-

ation for the flow velocity of fragment i is used:

vF
i = v0

( ri

R

)α
, v0 = v0

(
ri

ri

)
Non-linear velocity profiles can be treated, when the parameter α 6= 1.
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Reconstruction of impact parameter
distributions

B.1 Validation of the method
To test the numerical implementation of the method, we have generated pseudo-events using the

probability distribution of Equation (6.2.20) with a set of parameters taken from a typical fit to

data for the total multiplicity of charged products, NC (the parameters for the fit to
Ni58+

Ni5852

data were used, see Table B.1). We have deliberately limited the generated statistics in order to

accentuate statistical fluctuations (only 104
events were generated, far less than the experimental

datasets: see Table 6.1).

For each event a random value of cb was uniformly generated in the range [0, 1], this was then

used in Equation (6.2.23) to calculate k and a random value of X drawn according to the gamma

distribution Equation (6.2.20). For the multiplicity NC we used the nearest integer value to this

X, and as for data we rejected events with multiplicity less than the DAQ multiplicity trigger,

NC ≥ 4 (see Part II, Section §6.3).

Figure B.1.1a shows the resulting joint probability distribution of NC and b/bmax and the

mean multiplicities calculated for the pseudo-events in each impact parameter bin. To calculate

the impact parameter corresponding to each centrality cb we have simply assumed a triangular

distribution for P(b): in this case cb = (b/bmax)2
.

Figure B.1.1b presents the inclusive P(NC) distribution for all pseudo-events, along with the

best fit which was achieved using Equations (6.2.14), (6.2.20) and (6.2.23) and starting from very

di�erent parameter values than those used to generate the events. As indicated by the dashed

curve representing the fit, here we deliberately chose to exclude all but the high-multiplicity tail

of the P(NC) distribution (fits to experimental data typically included a far wider range of values,

down to NC ∼ 7− 8 for a trigger multiplicity 4).

Nevertheless the fit converges to parameter values (shown in the figure) which are very close

to the ones used to generate the events (it should be noted that if we fit the full P(NC) distribution

we find exactly the initial values for all parameters within uncertainties). The main e�ect of

limiting the fit to the high-multiplicity tail is to increase the uncertainty (and indeed the error)

on the Xmin parameter which corresponds to the low-multiplicity cut-o�.

The deduced correlation between NC and b is shown in Figure B.1.1a and can be compared

137
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Figure B.1.1 – Test of the method with 104
pseudo-events generated using Equations (6.2.20) and

(6.2.23).
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directly to the values calculated from the pseudo-events themselves (red symbols). Apart from a

slight deviation for the most peripheral “collisions” i.e. close to the low-multiplicity cut-o�, the

agreement is very satisfactory.

To further test the method we compare in Figure B.1.1c the impact parameter distributions of

pseudo-events for multiplicity cuts corresponding to “central” or “peripheral” collisions with the

P(b) distributions calculated using Equation (6.2.12) and the parameters found by fi�ing P(NC)
in Figure B.1.1b.

As can be seen, the impact parameter distributions deduced from the fit are very similar to

the actual distributions of the pseudo-events selected with each cut. For the most “peripheral”

cut (6 < NC < 9) the deduced P(b) is slightly distorted due to the low-multiplicity cut-o�: the

mean value and standard deviation of the distribution are slightly over-estimated using the fit

parameters. The “central” cut we used corresponds to the value of NC at b = 0, and corresponds

to an experimental centrality cX = 7%. Using the sharp cut-o� approximation of [74], Equa-

tion (6.2.8), we would therefore expect b̂ <0.26 (and 〈b̂〉 = 0.18); in reality this cut selects a far

wider range of impact parameters, up to b̂ ≈ 0.6, with mean value 〈b̂〉 = 0.26 and standard

deviation 0.12.

This reduced selectivity for “the most central collisions” is simply a consequence of the form

of the correlation between NC and b shown in Figure B.1.1a: due to the fla�ening (plateau) of

the NC(b) curve for b̂ < 0.5 the increase in NC going towards b = 0 is not significant compared

to the fluctuations of NC for each impact parameter bin.

B.2 Minimum bias impact parameter distribution
Simulations with many di�erent reaction models and di�erent so�ware ‘filters’ to simulate the

minimum-bias acceptance of the INDRA array suggest that data has an unbiased geometrical

distribution up to some trigger-multiplicity-dependent impact parameter b̃. In general the sim-

ulated minimum-bias impact parameter distributions are well described by Equation (6.2.3) with

an inelastic reaction probability distribution of the form

PR(b) =
1

1 + exp
(

b−b0
∆b

) (B.2.1)

with typical ∆b values of 0.3-0.4 fm. Examples of such distributions are shown in Figure B.2.1a

for di�erent ∆b values (including ∆b = 0 fm, which is the sharp cut-o� approximation) and

a fixed total reaction cross-section. The b0 values (fixed by the normalization, see B.2.1 below)

change only slightly with ∆b (9.97 fm for ∆b = 0.4 fm, or 9.83 fm for ∆b = 1 fm) and are well-

approximated by the sharp cut-o� value bmax = b0(∆b = 0) = 10 fm. On the other hand, the

upper limit of the unbiased impact parameters, b̃, decreases rapidly from ≈ 8 fm for ∆b = 0.4
fm to ≈ 6 fm for ∆b = 1 fm.

Also shown in Figure B.2.1b are the relationships between the centrality cb and impact para-

meter for the three distributions, given by the analytic function derived in B.2.2 below. It can

be seen that for all but the most peripheral reactions the parabolic sharp cut-o� relationship

(∆b = 0 fm) is an exact approximation to the analytic formulae with ∆b > 0. The deviation from
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Figure B.2.1 – Examples of cross-section distributions and the associated centrality calculated

with Equation (B.2.1).

the parabolic form gives another estimation for b̃: for ∆b = 0.4 fm the approximation holds up

to b̃ ≈ 9 fm, while for ∆b = 1 fm unbiased centrality holds up to b̃ ≈ 7 fm.

B.2.1 Analytic expression for total cross-section
To normalize correctly the probability distribution Equation (B.2.1) we need to know the total

reaction cross-section for a given set of parameters b0 and ∆b. By definition,

σR =
∫ ∞

0
2πb

[
1 + exp

(
b− b0

∆b

)]−1

db

and making the substitutions b = t∆b and b0 = x∆b we arrive at

σR = 2π(∆b)2
∫ ∞

0

t
1 + exp (t− x)

dt

This definite integral is related to the complete Fermi-Dirac integral

Fj(x) =
1

Γ(j + 1)

∫ ∞

0

tj

1 + exp (t− x)
dt (B.2.2)

with j = 1, where Γ(j + 1) is the gamma function, Γ(j + 1) = j! for integer j. In general the

value of this integral is given by a polylogarithm, Lis(z), specifically

Fj(x) = −Lij+1(−ex)
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and in this particular case by the negative dilogarithm, −Li2(−ex). Therefore we have for the

final expression of the total cross-section which normalizes correctly the probability distribution

of Equation (B.2.1),

σR = −2π(∆b)2Li2

(
− exp

(
b0

∆b

))
(B.2.3)

This expression can be used to find b0 for a given total cross-section and width parameter ∆b, by

numerical inversion [13].

B.2.2 Analytic expression for centrality
To calculate the centrality cb we substitute Equation (B.2.1) into Equation (6.2.1), and making the

same substitutions as above (b = t∆b, b0 = x∆b ) we find

cb =
2π(∆b)2

σR

∫ b/∆b

0

t′

1 + exp (t′ − x)
dt′

This definite integral can be calculated using the incomplete Fermi-Dirac integral

Fj(a, x) =
1

Γ (j + 1)

∫ ∞

a

tj

1 + exp (t− x)
dt, a ≥ 0

with a = b/∆b, and the complete Fermi-Dirac integral Fj(x) of Equation (B.2.2):∫ a

0

tj

1 + exp (t− x)
dt = Γ (j + 1)

[
Fj (x)− Fj (a, x)

]
With j = 1, F1(x) = −Li2(−ex) as above, while the incomplete FD integral can be wri�en (by

integration by parts) as

F1(a, x) =
π2

6
− (a2 − x2)

2
+ a ln

(
1 + e(a−x)

)
+ Li2

(
−e(a−x)

)
The final expression for the centrality is therefore

cb =
2π(∆b)2

σR

[
−Li2

(
− exp

(
b0

∆b

))
− π2

6
+

(b2 − b2
0)

2(∆b)2 (B.2.4)

− b
∆b

ln (1 + exp ((b− b0)/∆b))− Li2
(
−e(b−b0)/∆b

)]

B.3 Fit results for all systems

B.4 “Scaling” of inclusive distributions of variables correl-
ated with impact parameter

Here a long-standing misapprehension will be addressed concerning an apparent scaling of in-

clusive distributions of observables which are supposed to be strongly correlated with the impact
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System Eproj α γ θ Xmax Xmin χ2

[MeV/A]

36Ar+KCl

32 0.95 1.25 0.20 14.1 3.7 13.2

40 0.98 1.46 0.23 15.6 4.2 6.5

52 0.88 1.40 0.22 17.6 4.0 8.2

74 0.89 1.60 0.21 19.8 4.3 10.2

36Ar+
58Ni

32 1.37 1.12 0.25 14.8 2.5 85.4

40 1.23 1.14 0.27 16.8 2.6 46.4

52 1.07 1.17 0.28 19.1 2.7 53.5

63 0.99 1.19 0.29 20.6 2.7 28.1

74 0.95 1.21 0.27 22.4 3.8 43.8

84 0.96 1.24 0.27 23.2 3.8 25.8

95 0.98 1.28 0.27 24.1 3.9 56.3

58Ni+58Ni

32 1.24 1.19 0.28 16.3 3.7 55.4

52 0.97 1.15 0.30 21.6 3.8 14.0

63 0.92 1.16 0.28 24.1 3.8 5.9

74 0.81 1.17 0.27 25.8 3.7 4.2

82 0.96 1.45 0.29 26.4 4.6 8.1

90 0.93 1.40 0.28 27.4 4.2 38.2

58Ni+197Au

32 1.79 1.79 0.34 16.2 4.1 84.3

52 1.63 1.66 0.37 23.0 4.2 49.5

64 1.48 1.64 0.37 26.4 4.3 15.1

74 1.44 1.62 0.39 28.4 4.1 45.6

82 1.51 1.85 0.41 29.7 4.7 43.2

90 1.06 1.43 0.37 32.2 3.9 9.5

129Xe+
119Sn

25 1.26 0.95 0.32 19.6 2.8 63.5

32 1.24 1.08 0.34 24.0 3.2 40.3

39 1.18 1.17 0.34 28.4 3.5 55.1

45 1.14 1.23 0.34 31.2 3.8 56.5

50 1.14 1.35 0.34 34.1 4.0 36.6

129Xe+
124Sn

65 1.09 1.40 0.36 38.4 2.9 2.0

80 1.11 1.50 0.34 42.5 3.1 1.5

100 1.18 1.64 0.38 45.2 3.5 2.7

197Au+
197Au

40 1.23 1.27 0.42 35.5 2.1 30.1

60 1.22 1.62 0.45 47.8 1.2 68.1

80 1.24 1.61 0.45 54.9 2.8 16.9

100 1.26 1.64 0.49 58.5 3.1 52.0

150 1.38 1.52 0.49 61.8 5.2 6.0

Table B.1 – Parameters of fits to total charged particle multiplicity distributions P(NC) for all

datasets. See 6.2.2 for meaning of parameters. χ2
is the reduced chi-square value of each fit.
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System Eproj α γ θ Xmax Xmin χ2

[MeV/A] [MeV] [MeV] [MeV]

36Ar+KCl

32 0.35 0.76 6.1 162 3 1.2

40 0.37 0.89 7.5 196 8 1.0

52 0.35 1.02 8.5 269 12 1.2

74 0.40 1.32 11.8 389 19 3.7

36Ar+
58Ni

32 0.97 1.17 8.5 148 9 3.3

40 0.83 1.17 10.0 183 11 2.5

52 0.68 1.26 12.0 251 15 2.3

63 0.60 1.35 13.1 328 18 1.3

74 0.60 1.46 14.9 402 30 1.8

84 0.60 1.52 16.1 463 32 1.7

95 0.62 1.63 18.6 528 35 2.1

58Ni+58Ni

32 0.79 1.04 9.9 186 21 1.6

52 0.56 1.15 13.0 340 29 2.3

64 0.55 1.30 14.9 443 33 1.7

74 0.52 1.40 16.7 541 37 2.8

82 0.61 1.68 18.5 591 46 1.7

90 0.68 1.93 20.9 629 56 1.4

58Ni+197Au

32 1.41 1.71 12.8 223 32 6.7

52 1.08 1.45 17.2 391 36 6.1

64 0.93 1.50 18.8 521 39 3.8

74 0.92 1.63 21.6 630 44 4.8

82 0.92 1.74 23.3 716 48 5.8

90 0.74 1.68 21.8 838 49 5.0

129Xe+
119Sn

25 0.74 0.68 11.1 241 6 2.2

32 0.67 0.69 12.4 310 5 1.7

39 0.57 0.75 13.9 408 7 2.9

45 0.55 0.89 15.4 496 24 1.6

50 0.57 1.06 16.0 584 34 1.3

129Xe+
124Sn

65 0.59 1.32 19.9 822 34 1.5

80 0.61 1.52 23.5 1071 41 2.0

100 0.62 1.65 26.8 1374 44 3.6

197Au+
197Au

40 1.07 1.23 24.0 521 18 24.4

60 0.67 1.38 25.5 1089 5 24.6

80 0.62 1.47 26.6 1648 31 3.0

100 0.65 1.68 34.6 2054 55 4.4

150 0.66 1.67 46.1 2831 91 2.2

Table B.2 – Results of fits to total transverse LCP energy distributions P(Et12) for all datasets.

See 6.2.2 for meaning of parameters. χ2
is the reduced chi-square value of each fit.
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Figure B.4.1 – Scaling properties of Et12 and NC variables.

parameter, in the light of the new results presented in Chapter 6. For example, the fact that

P(Et12) distributions “scale” with bombarding energy has long been presented as evidence that

Et12 is mostly determined by the geometry of the collisions and therefore strongly correlated

with impact parameter [75, 208]. By “scaling” here we mean that the probability distributions of

two variables related by a linear scaling transformation, X and Y = γX, are simply related by

PY(Y = γX) =
1
γ

PX(X)

so that the distribution of Y/γ is identical to that of X. This was demonstrated for Et12 for

129Xe+
natSn collisions using γ = Eproj/50 in [75]

1
, or, equivalently for these quasi-symmetric

collisions, using γ = ECM in [208]
2
. However, given the changes in the shape of the distribu-

tions of both NC and Et12 which are clearly evident in Figure 6.3.1, such a “scaling” can only be

approximate at best (in reality only the tails of the distributions superimpose well - see Figure

1 of [208]). As shown in 6.3.2, the changing shape of the P(X) distributions is entirely determ-

ined by the changing shape of the k(cb) relationship of Equation (6.2.23) which basically encodes

1
Strictly speaking, in [75] the “scaling” was demonstrated by comparing the relationship between b and the scaled

Et12 deduced using the method of [74] for bombarding energies 25− 50A MeV. As the shape of this relationship is

basically given by the square root of the cumulative distribution function of P(Et12), and the value of Et12 for any

given b is given by the corresponding quantile function, this is equivalent to comparing the shapes of the P(Et12)
distributions.

2
The data used in [208] correspond to the minimum bias M ≥ 1 trigger, not the M ≥ 4 trigger used in the

present work. Although the “scaling” of the distributions presented using a logarithmic y-axis in Figure 1 of [208]

appears near-perfect, the same data with a linear axis present similar di�erences as the distributions in Figure 6.3.1.



B.4. “SCALING” OF VARIABLES CORRELATED WITH IMPACT PARAMETER 145

the physics of the collisions for any given observable. Therefore an exact scaling of the inclusive

distributions would mean that, apart from scale factors such as the total available energy or the

total number of nucleons, the physics of the collisions (for a given observable) would basically

have to be the same for all bombarding energies.

Now let us consider the scaling properties of the gamma distribution used in P(X|b). Repla-

cing X by Y/γ in Equation (6.2.20) we find

Pθ(Y/γ|cb) =
1

Γ(k)θk
Yk−1

γk−1 e−Y/γθ

= γ
1

Γ(k)ϑk Yk−1e−Y/ϑ = γPϑ(Y|cb) (B.4.1)

which is just the gamma distribution for a variable Y = γX with fluctuation parameter ϑ = γθ.
Hence the necessary conditions to observe scaling for distributions given by Equation (6.2.14),

i.e. for observables which are e�ectively correlated with impact parameter, is not only that k
i.e. the physics of the collisions, does not change, but also that the relative importance of the

fluctuations of the observable scale in the same way as the observable itself.

As figure Figure B.4.1a shows for Et12 , both the mean value for the most central collisions and

the fluctuation parameter θ increase approximately linearly with available (or bombarding) en-

ergy for
129Xe+

natSn reactions, and approximately in the same way. It is therefore to be expected

that, although the overall distributions of Et12 do not exhibit strict scaling behaviour, neverthe-

less the tails of the distributions superimpose to a rather good degree, as these are dominated by

the fluctuations around the values of the observable for b = 0 collisions. On the other hand, as

shown in Figure 6.3.5a(le�), the mean values of NC for head-on collisions do not increase linearly

with bombarding energy, and in addition the θ parameters for fits to NC distributions are inde-

pendent of bombarding energy for all systems listed in Table B.1. It then comes as no surprise

that when trying to apply the same scaling to this observable as was done for Et12 in [75], not

even the tails of the scaled distributions superimpose (Figure B.4.1b).

In conclusion, the correlation of observables such as NC and Et12 with impact parameter is not

in doubt, as demonstrated by the fact that their inclusive distributions can be well-reproduced

in a self-consistent manner by supposing they have a monotonic relationship with b (including

fluctuations) and integrating over all centralities. The “scaling” of their distributions (at least for

Et12) which was claimed in order to prove this correlation in previous works does not in fact exist,

apart from an approximate scaling of the distribution tails which itself reveals something non-

trivial about the way in which the fluctuations of the observable depend on bombarding energy.

In general, observables which are strongly correlated with impact parameter should not exhibit

scaling of their distributions with bombarding or available energy, unless their relationship with

b is so trivial that it contains no information on the physics of the reactions.
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Appendix C

Simulation of isotropic and anisotropic
momentum distributions

To test the response of the di�erent shape variables used in Chapter 7 to momentum distributions

of varying anisotropy and multiplicity, and to try to deduce the actual form of the distributions

for the selected isomax events, required a toy model in order to generate simulated events. This

was done by drawing random kinetic energy “vectors” within an ellipsoidal volume in kinetic

energy “space” according to a constant “density”. In other words, for a given multiplicity, N, and

required elongation ratio a/b (where a is the radius of the major axis and b is the radius of the

two transverse directions of the ellipsoid), for each product nucleus we draw values at random

for the kinetic energy according to

P(E)dE ∼ E2dE

and for the polar angle (with respect to the ellipsoid major axis) according to

P(θ)dθ ∼ sin θdθ

The kinetic energy is then checked against the maximum energy for a given polar angle (the

distance of the surface of the ellipsoid from the origin)

Emax = E0
ab√

a2 cos2 θ + b2 sin2 θ

If E > Emax the draw is rejected and new values of E and θ drawn until a satisfactory value

is found (i.e. a vector corresponding to a point inside the ellipsoid). For a successful draw the

azimuthal angle for the particle is drawn uniformly between 0 and 2π.

A�er N particles have been successfully generated in this way, their momenta are recalcu-

lated so that they are in their centre of mass frame. The particles of each event are used to fill a

super-tensor like in Equation (7.2.1) in order to calculate the “true” shape of the kinetic energy

tensor without finite multiplicity distortions. The ratios used to characterise the di�erent sim-

ulated anisotropies in momentum space in Chapter 7 are then given by the square root of the

ratio of the two largest eigenvectors of this tensor calculated with all events.

147
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It has been verified that this method gives the same results for the mean values of the di�erent

shape variables as a function of multiplicity whether we draw a random partition (i.e. random

value of Z for each nucleus) or use the same Z for all nuclei of each event: the results are therefore

independent of the partitions, and do not require for example to use the real partitions of the

experimental events in order to make a meaningful comparison (although that would be perfectly

possible if necessary).
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