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Professeur, University of Innsbruck (Institute for Experimental
Physics) Examinateur

Laurent Sanchez-Palencia
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Introduction

"Upward, not northward", this is the famous sentence in the book "Flatland" by Edwin
A. Abbott, where a two-dimensional (2D) square is given a glimpse of three-dimensional
(3D) truth. This is the mantra he repeats, although he ends up dying without anyone in
his world believing him. This book marks one of the first time that people perceives the
power of dimensionality. In the nature, dimensionality plays a strong role. Although one
of the main interest is to detect the existence of higher dimension in the context of high
energy physics, understanding dimension lower than 3 is also valuable and interesting in
many other fields.

In quantum physics, low dimensions are particularly rich. For instance, two-dimensional
quantum systems appear to be extremely suitable for the study of topological effects,
vortex physics and rotational ring structure [1]. Also, as pointed out by Refs. [1–3], the
one-dimensional bosons have its special peculiarities such as the collective property of
excitations, the power law decay of the correlation functions, as well as the fermionization
of strongly-interacting bosons. More detailed discussion for the speciality of 1D bosons
will be presented in the first chapter of this thesis.

From the experimental point of view, the achievement of Bose-Einstein condensates
and ultracold Fermi seas since the second half of the 1990’s have opened a new avenue to
study three-dimensional quantum systems, but also in the lower dimensions [4–8]. With
the development of quantum optics, people can change the dimensionality of the quantum
systems and constrain one or two spatial dimensions with an attractive laser light, optical
lattices and atom chips [9–12]. Various research has been carried out in low dimensional
quantum systems [1, 9–39].

One-dimensional bosons is one of those low dimensional quantum systems which have
attracted much attentions. In the continuum, they exhibit a special property called
"fermionization" in the strongly-interacting limit, which is also known as the Tonks-
Girardeau gases [40]. In 2004, these special gases have firstly been achieved experimentally,
see Refs [9,10]. Also, in the presence of periodic lattices or disorder, they show properties
of quantum phase transition different from 3D, see examples in Refs. [13–16,41]. It opens
a new area of research where exists fruitful physics to be explored.

Understanding the quantum phase transitions as well as regime crossovers is one of the
main topics in quantum statistical physics. In the field of ultracold atoms, the superfluid-
Mott insulator transition in lattice systems is the most well-studied one, since this is
a good quantum simulator for the conductance-insulator transition in condensed matter
physics [13,15,42,43]. However, it is also interesting to investigate other types of systems,
for instance: (i) For continuous systems, the quantum gas can have different regimes of
degeneracy depending on temperature, interactions and etc. (ii) In the presence of disorder
or quasi-disorder, they can exhibit localization transitions.

In this manuscript, we theoretically study the properties of one-dimensional bosons in
various types of systems, focusing on the phase transitions or crossovers between different
quantum degeneracy regimes. Thanks to advanced quantum Monte Carlo simulations
complemented by exact diagonalization and Yang-Yang thermodynamics, we can study
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0. Introduction

the properties of 1D bosons in various situations where the results are still lacking. The
main results of the thesis constitute three parts. Firstly, focusing on the 1D harmonically
trapped continuous bosons, we give a full characterization of the quantity called "Tan’s
contact" for arbitrary interactions and temperature. This is a experimentally measurable
quantity which provides fruitful information about the system, such as the interaction
energy and the variation of the grand potential. Our results turn out to show that this
quantity gives a good characterization for different regimes. Especially, in the strongly-
interacting regime, we find the Tan contact behaves non-monotonously versus temperature
and exhibits a maximum which is the signature of the crossover to the fermionization at
finite temperature, where other quantities always behave motononously. Secondly, we turn
to the study of the localization properties of the 1D ideal gas in shallow quasiperiodic
potentials. In the previous works, the localization problems in the tight-binding Aubry-
André (AA) model have been extensively studied. The shallow lattice case is much less
explored. However, it is interesting because it’s different from the AA model and may
cure the severe temperature problems in the ultracold atom systems. With the help of
exact diagonalization, we find the universal critical behaviors for the critical potential,
mobility edge as well as the critical exponent. Also, we study in detail the fractality of
the energy spectrum and propose a method to calculate the fractal dimension. We find
the fractal dimension is always smaller than one, which proves that the energy spectrum
is nowhere dense and the mobility edge always stays in the band gap. Finally, we further
study the quantum phase transition for the 1D interacting bosons in shallow quasiperiodic
lattices. Similarly as the non-interacting case, the phase diagram has been widely studied
in the deep lattice case in previous work where the temperature effect is not negligible.
With the help of large scale QMC calculations, we determine the phase diagrams for
shallow quasiperiodic lattices, where an incompressible insulator Bose glass phase appears
in between the superfluid and Mott insulator. Then, we also investigate the thermal effects
and find the stability of Bose glass against the finite temperature, which is strongly relevant
for experimental observability. Moreover, by studying the melting of the Mott lobes, we
find its structure is fractal-like and this property can be linked with the fractality of the
single-particle spectrum.

The manuscript is organized as follows.

First of all, in Chapter 1 and 2, we give the introductions to the physics of 1D bosons
and to the numerical approaches we shall extensively use in the remainder of the thesis,
namely quantum Monte Carlo.

Chapter 1: We start with an introduction of bosons in one dimension. We first
explain the general interest of 1D bosons. Then, we introduce the two main approaches
for describing the 1D continuous bosons, i.e. the Lieb-Liniger model and the Luttinger
liquid theory. Finally, we turn to the case of 1D bosons in a lattice. We focus on the case
of tight-binding limit Bose-Hubbard model as well as the case of the shallow lattice, and
explain the known results explored in the 2010’s.

Chapter 2: We give an introductory presentation for the quantum Monte Carlo
(QMC) approach we used in most of the following parts of the thesis. It is the path
integral Monte Carlo approach in continuous space with worm algorithm implementations.
We first present the basic path integral Monte Carlo with basic moves. Then, we present
the worm algorithm which is an implementation that improves the computation efficiency.
And we explain in the end the way of computing relevant observables.

Then, in the Chapters 3 to 5, we present the main results of this manuscript.

Chapter 3: We study a quantity called "Tan’s contact" for 1D bosons which has be-
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0. Introduction

come pivotal in the description of quantum gases. We provide a full characterization of
the Tan contact in harmonic traps with arbitrary temperatures and interactions. Com-
bining the thermal Bethe ansatz, local-density approximation and quantum Monte Carlo
calculations, we have shown the contact follows a universal two-parameters scaling and we
determine the scaling function. We identify the behavior of the contact in various regime
which characterizes the degeneracy for 1D bosons in continuum. Especially, we find the
temperature dependence of the contact displays a maximum and it provides an unequiv-
ocal signature of the crossover to the fermionized regime, which is accessible in current
experiments.

Chapter 4: We then study the critical behavior for 1D ideal gases in shallow quasiperi-
odic potentials. The quasiperiodic system provides an appealing intermediate between
long-range ordered and genuine disordered systems with unusual critical properties. Here,
we determine the critical localization properties of the single-particle problem in 1D shal-
low quasiperiodic potentials. On the one hand, we determine the properties of critical
potential amplitude, mobility edge and inverse participation ratio (IPR) critical exponents
which are universal. On the other hand, we calculate the fractal dimension of the energy
spectrum and find it is non-universal but always smaller than unity, hence showing that
the spectrum is nowhere dense and the mobility edge is always in a gap.

Chapter 5: We further study the case of 1D interacting bosons in shallow quasiperiodic
lattices. The interplay of interaction and disorder in correlated Bose fluid leads to the
emergence of a compressible insulator phase known as the Bose glass. While it has been
widely studied in the tight-binding model, its observation remains elusive owing to the
temperature effect. Here, with the large scale QMC calculations, we compute the full
phase diagrams for the Lieb-Liniger bosons in shallow quasiperiodic lattices where the
issue may be overcome. A Bose glass phase, surrounded by superfluid and Mott insulator,
is found above a critical potential and for finite interactions. At finite temperature, we find
the Bose glass phase is robust against thermal fluctuations up to temperatures accessible
in current experiments of quantum gases. Also, we show that the melting of the Mott lobes
is a characteristic of the fractal structure.

Chapter 6: We summarize the main results obtained in this work and give an outlook
on it, from both theoretical and experimental points of view.
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Résumé

"Vers le haut, pas vers le nord", telle est la célèbre phrase du livre "Flatland" d’Edwin A.
Abbott, où un carré en deux dimensions (2D) laisse entrevoir une vérité en trois dimensions
(3D). C’est le mantra qu’il répète, bien qu’il finisse par mourir sans que personne dans son
monde ne le croit. Ce livre marque l’une des premières fois où les gens perçoivent le pouvoir
de la dimensionnalité. Dans la nature, la dimensionnalité joue un rôle important. Bien que
l’un des principaux intérêts soit de détecter l’existence d’une dimension supérieure dans le
contexte de la physique des hautes énergies, la compréhension de la dimension inférieure à
3 est également précieuse et intéressante dans de nombreux autres domaines.

En physique quantique, les basses dimensions sont particulièrement riches. Par exem-
ple, les systèmes quantiques bidimensionnels sont extrêmement adaptés à l’étude des effets
topologiques, de la physique des tourbillons et de la structure des anneaux de rotation [1].
En outre, comme le soulignent les Réfs. [1–3], les bosons unidimensionnels ont leurs partic-
ularités telles que les propriétés collectives des excitations, la décroissance des fonctions de
corrélation en loi de puissance, ainsi que la fermionisation des bosons à forte interaction.
Une discussion plus détaillée de la spécificité des bosons 1D sera présentée dans le premier
chapitre de cette thèse.

D’un point de vue expérimental, la réalisation de condensats de Bose-Einstein et de
mers de Fermi ultra-froides depuis la seconde moitié des années 1990 a ouvert une nou-
velle voie pour l’étude des systèmes quantiques tridimensionnels, mais aussi en dimensions
inférieures [4–8]. Avec le développement de l’optique quantique, on peut changer la di-
mension des systèmes quantiques et contraindre une ou deux dimensions spatiales avec
une lumière laser attractive, des réseaux optiques et des puces atomiques [9–12]. Diverses
recherches ont été menées sur les systèmes quantiques de faible dimension [1, 9–39].

Les bosons unidimensionnels sont l’un de ces systèmes quantiques en basse dimension
qui ont attiré beaucoup d’attention. Dans le continu, ils présentent une propriété spéciale
appelée "fermionisation" dans la limite de forte interaction, qui est également connue sous
le nom de gaz de Tonks-Girardeau [40]. En 2004, ces gaz particuliers ont été obtenus pour
la première fois expérimentalement, voir les Réfs. [9,10]. En outre, en présence de réseaux
périodiques ou de désordre, ils présentent des propriétés de transition de phase quantique
différentes de celles de la 3D, voir les exemples les Réfs. [13–16,41]. Cela ouvre un nouveau
domaine de recherche où il existe une physique fructueuse à explorer.

La compréhension des transitions de phase quantique et crossovers est l’un des princi-
paux sujets de la physique statistique quantique. Dans le domaine des atomes ultra-froids,
la transition superfluide-isolant de Mott dans les systèmes de réseaux est la plus étudiée,
car c’est un bon simulateur quantique pour la transition conducteur-isolant en physique
de la matière condensée [13, 15, 42, 43]. Cependant, il est également intéressant d’étudier
d’autres types de systèmes, par exemple : (i) Pour les systèmes continus, le gaz quantique
peut présenter différents régimes de dégénérescence en fonction de la température, des in-
teractions, etc. (ii) En présence de désordre ou de quasi-désordre, ils peuvent présenter
des transitions de localisation.
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0. Résumé

Dans ce manuscrit, nous étudions théoriquement les propriétés des bosons unidimen-
sionnels dans différents types de systèmes, en nous concentrant sur les transitions de phase
ou les crossovers entre différents régimes de dégénérescence quantique. Grâce à des simula-
tions de Monte Carlo quantique avancées, complétées par des approches de diagonalisation
exacte et la thermodynamique Yang-Yang, nous pouvons étudier les propriétés des bosons
1D dans diverses situations où les résultats font encore défaut. Les principaux résultats de
la thèse consituent trois parties. Premièrement, en se concentrant sur les bosons continus
1D piégés de manière harmonique, nous donnons une caractérisation complète de la quan-
tité appelée "contact de Tan" pour des interactions et des températures arbitraires. Il s’agit
d’une quantité mesurable expérimentalement qui fournit des informations fructueuses sur
le système, telles que l’énergie d’interaction et la variation du grand potentiel. Nos résul-
tats montrent que cette quantité donne une bonne caractérisation pour différents régimes.
En particulier, dans le régime d’interaction forte, nous constatons que le contact de Tan
se comporte de manière non monotone en fonction de la température et présente un max-
imum qui est la signature de l’entre dans le régime de fermionisation à température finie,
où d’autres quantités se comportent toujours de manière motonone. Ensuite, nous nous
tournons vers l’étude des propriétés de localisation du gaz idéal 1D dans des potentiels
quasi-périodiques peu profonds. Dans les travaux précédents, les problèmes de localisation
dans le modèle Aubry- André (AA) de liaisons fortes ont été largement étudiés. Le cas
du réseau peu profond est beaucoup moins exploré. Cependant, il est intéressant car il
est différent du modèle AA et peut résoudre les sérieux problèmes de température dans
les systèmes d’atomes ultrafroids. À l’aide d’une diagonalisation exacte, nous obtenons les
comportements critiques universels pour le potentiel critique, le seuil de mobilité ainsi que
l’exposant critique. Nous étudions également en détail la fractalité du spectre énergétique
et proposons une méthode pour calculer la dimension fractale. Nous constatons que la
dimension fractale est toujours inférieure à un, ce qui prouve que le spectre d’énergie n’est
dense nulle part et que le seuil de mobilité reste toujours dans la bande interdite. Enfin,
nous étudions plus en détail la transition de phase quantique pour les bosons 1D en interac-
tion dans des réseaux quasi-périodiques peu profonds. De même que dans le cas des bosons
idéaux, le diagramme de phase a été largement étudié dans des travaux précédents dans
le cas des réseaux profonds où l’effet de la température n’est pas négligeable. À l’aide de
calculs QMC à grande échelle, nous déterminons les diagrammes de phase pour les réseaux
quasi-périodiques peu profonds, où une phase de verre de Bose, isolant incompressible,
apparaît entre le superfluide et l’isolant de Mott. Ensuite, nous étudions également les
effets thermiques et prouvons la stabilité du verre de Bose vis-à-vis de la température finie,
ce qui est très important pour l’observabilité expérimentale. De plus, en étudiant la fusion
des lobes de Mott, nous découvrons que sa structure est fractale et que cette propriété
peut être reliée à la fractalité du spectre des particules individuelles.

Le manuscrit est organisé comme suit.

Tout d’abord, dans les chapitres 1 et 2, nous donnons des introductions à la physique
des bosons 1D et aux approches numériques que nous utiliserons largement dans la suite
de la thèse, à savoir le Monte Carlo quantique.

Chapitre 1 : Nous commençons par une introduction aux bosons en une dimension.
Nous expliquons d’abord l’intérêt général des bosons 1D. Ensuite, nous introduisons les
deux principales approches pour décrire les bosons 1D continus, c’est-à-dire le modèle de
Lieb-Liniger et la théorie des liquides de Luttinger. Enfin, nous abordons le cas des bosons
1D dans un réseau. Nous nous concentrons sur le cas du modèle de Bose-Hubbard à liaisons
fortes ainsi que sur le cas du réseau peu profond, et nous expliquons les résultats connus
explorés dans les années 2010.

11



0. Résumé

Chapitre 2 : Nous faisons une présentation introductive de l’approche de Monte Carlo
quantique (QMC) que nous avons utilisée dans la plupart des parties suivantes de la thèse.
Il s’agit de l’approche de Monte Carlo par intégrales de chemin dans l’espace continu avec
des implémentations d’algorithmes de vers. Nous présentons tout d’abord la méthode
de Monte Carlo par intégrales de chemin avec des mouvemetnts basiques. Ensuite, nous
présentons l’algorithme du ver, est une implémentation qui améliore l’efficacité du calcul.
Nous expliquons enfin la manière de calculer les observables pertinentes.

Ensuite, dans les chapitres 3 à 5, nous présentons les principaux résultats de ce manuscrit.

Chapitre 3 : Nous étudions une quantité appelée "contact de Tan" pour les bosons
1D, qui est devenue centrale dans la description des gaz quantiques. Nous fournissons
une caractérisation complète du contact de Tan dans les pièges harmoniques pour des
températures et des interactions arbitraires. En combinant l’ansatz de Bethe thermique,
l’approximation de densité locale et les calculs de Monte Carlo quantique, nous avons
montré que le contact suit une loi d’échelle universelle à deux paramètres et nous en déter-
minons la fonction d’échelle. Nous identifions le comportement du contact dans différents
régimes de dégénérescence pour les bosons 1D dans le continu. En particulier, nous con-
statons que la dépendance du contact à la température présente un maximum et fournit
une signature sans équivoque de l’entrée dans le régime fermionisé, accessible dans les
expériences actuelles.

Chapitre 4 : Nous étudions ensuite le comportement critique des gaz idéaux 1D dans
des potentiels quasi-périodiques peu profonds. Les systèmes quasi-périodiques constituent
un intermédiaire intéressant entre les systèmes ordonnés à longue distance et les véritables
systèmes désordonnés aux propriétés critiques inhabituelles. Ici, nous déterminons les pro-
priétés critiques de localisation de particules uniques dans des potentiels quasi-périodiques
1D peu profonds. D’une part, nous déterminons les propriétés des exposants critiques,
de l’amplitude du potentiel critique, du seuil de mobilité et du rapport de participation
inverse (IPR) qui sont universels. D’autre part, nous calculons la dimension fractale du
spectre d’énergie et constatons qu’elle est non universelle mais toujours inférieure à l’unité,
montrant ainsi que le spectre n’est dense nulle part et que le seuil de mobilité est toujours
dans une bande interdite.

Chapitre 5 : Nous étudions plus en détail le cas des bosons en interaction 1D dans des
réseaux quasi-périodiques peu profonds. La compétition de l’interaction et du désordre
dans le fluide de Bose corrélé conduit à l’émergence d’une phase isolante compressible
connue sous le nom de verre de Bose. Bien qu’elle ait été largement étudiée dans le modèle
de liaisons fortes, son observation reste insaisissable en raison de l’effet de la température.
Ici, avec les calculs QMC à grande échelle, nous calculons les diagrammes de phase complets
pour les bosons de Lieb-Liniger dans des réseaux quasi-périodiques peu profonds où le
problème peut être surmonté. Une phase de verre de Bose, entourée de superfluide et
d’isolants de Mott, se trouve au-dessus d’un potentiel critique et pour des interactions
finies. À température finie, nous constatons que la phase de verre de Bose est robuste
contre les fluctuations thermiques jusqu’à des températures accessibles dans les expériences
actuelles sur les gaz quantiques. De plus, nous montrons que la fusion des lobes de Mott
est une caractéristique de la structure fractale.

Chapitre 6 : Nous résumons les principaux résultats obtenus dans ce travail et donnons
en discutons les perspectives, tant du point de vue théorique qu’expérimental.
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Chapter 1

Bosons in One Dimension

Thanks to the development of the cooling techniques as well as quantum optics, people are
able to generate ultracold quantum systems with the temperature scale from micro-Kelvin
to nano-Kelvin [4–6]. At this temperature scale, it’s possible to obtain Bose-Einstein
condensates(BEC) for bosons and ultracold Fermi sea for fermions [7, 8], which opens a
new domain to study quantum physics both in and out of equilibrium.

In the past decades, there are two main developments which enlarge the accessible range
of physics for cold atom systems. On the one hand, various techniques for controlling
the strength of interaction appeared, such as Feshbach resonances [44, 45]. It enables
experimentalists to achieve ultracold gases where the interaction can be controlled. More
importantly, even when the interactions are strong, they are still two-body interactions.
On the other hand, using optical lattices or atom chips, it is possible to strongly confine
the quantum gases in one or two directions and realise dimension of 1D and 2D [9–12].
For instance, as shown in Fig 1.1, with two pairs of laser with strong amplitudes, one
can generate 2D optical lattices and cut the BEC systems into a bunch of 1D tubes.
With these two developments, one can now generate low dimension strongly-interacting
cold atom systems, which is an interesting system to study for both theoreticians and
experimentalists. In one-dimension, the gases reach strongly-interacting regime in the
dilute case, which is totally different from 3D. Also, thanks to the geometry confinement,
the excitations can only be collective. In two-dimension, the system also has many special
features. For instance, the superfluid transition is BKT type, it is an ideal structure to
study vortex pair and rotational ring, and etc.

In this chapter, we start by discussing in detail the interests of studying the 1D inter-
acting bosonic systems, which is the main subject we address in this manuscript. Then,

Figure 1.1: One-dimensional tubes of Bose gases in actual experiments, which is created
by 2D optical lattices with strong amplitudes.
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1. Bosons in One Dimension

we give the two descriptions of 1D bosons in continuum, namely Lieb-Liniger Hamiltonian
and Luttinger liquid. The first one is based on the picture of particle description and
describe the physics by its kinetic movement and interactions. This is the Hamiltonian
widely used in nowadays research, as well as most of the study in this thesis. The second
one is based on the field operator description. It is useful when studying certain quantities
such as phonon speed and correlation function. This description can also be generalized
to fermionic systems. Finally, we introduce the basic properties of 1D bosons in a periodic
optical lattice. We discuss the phase transitions in the deep and shallow periodic lattice
cases, as well as the case in the presence of a disordered potential.

1.1 The general interest of one dimensional bosons

In this section , we present the general interests for performing research on one-dimensional
strongly correlated bosonic systems. The interest of such kind of system can be separated
into three main aspects.

Firstly, thanks to the two techniques mentioned above, we obtain atomic systems which
interaction cannot be ignored. Comparing with ideal gases, the interacting systems present
a flurry of new properties and phenomenons. For instance, loading the system into periodic
lattices, the interacting system can realize a phase transition from superfluid to Mott
insulator [13,15,42,43]. Adding disorder into the system, one finds a variety of localization
effects, such as collective Anderson localization [46–51], Bose glass physics [52–54], and
many-body localization. Moreover, on the theoretical side, standard techniques for ideal
bosons are not efficient any more. It calls for more advanced techniques, both analytical
(such as Yang-Yang thermodynamics, Bethe ansatz and etc.) and numerical (such as
quantum Monte Carlo, density matrix renormalization group, tensor network and etc.)
[3, 55–59].

Secondly, the cold atom setup is one of the best choices serving for quantum simulators
nowadays. Loading the atoms into optical lattices, one can simulate electrons in solid.
There are two advantages for such a machine performing quantum simulation. On the one
hand, the control of parameters is easy. For example, we can change the amplitude of the
periodic potential by simply increasing the power of lasers or use Feshbach resonances to
control the interactions. On the other hand, there are many simple and powerful measure-
ment tools for such a system. For instance, by releasing the atoms and performing the
so-called time of flight (TOF) detection, people can measure plenty of quantities, such as
atom number, momentum distribution, temperature and etc.

Thirdly, low dimensional atomic gases exhibit totally new and interesting physical
properties which are significantly different from 3D. This can be understood by an illus-
tration based on Fig. 1.2. We depict here two extreme cases of interacting quantum gases.
In Fig. 1.2(a), the system is fully delocalized and thus the dominant energy term is the

Figure 1.2: Two extreme cases for interacting quantum gases. (a). The delocalized
system where the energy is dominant by the two-body interactions. (b). The localized
system system where the kinetic energy is dominant.
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1. Bosons in One Dimension

interaction energy. So the average energy per particle e1 could be estimated as

e1 =
E

N
' 1

2
gn (1.1)

where E is the total energy, N the particle number, n the density of particle and g is
the coupling constant which controls the interaction strength between two particles and
will be introduced more carefully later. The opposite extreme case would be Fig. 1.2(b),
where the system is fully localized. In this case, the particle can be treated as hard balls
with radius a and the dominant term now is the kinetic energy. Therefore, the energy per
particle can be written as

e2 '
~2

2ma2
' ~2n2/d

m
(1.2)

where m is the mass of a single particle, ~ the Planck constant and d the dimension of the
system. If the quantum system is in the strongly-interacting regime, we expect e1 � e2

and the particles tend to occupy different spaces. In three dimensions, it yields

n1/3 � ~2

mg
(1.3)

Hence, the strong interaction regime corresponds to high densities. This conclusion seems
natural with the common understanding. However, now if we turn to one dimension, we
shall get

n−1 � ~2

mg
(1.4)

and it indicates that the strongly-interacting regime is found for low density, which is
counter-intuitive. Moreover, at low temperature, the strongly-interacting 1D bosons will
be fermionized and this is the so called Tonks-Girardeau gases. The origin of this effect is
that the interaction is repulsive and short range. Therefore, due to the confined structure
in 1D, the atoms will avoid to be on top of each other and they also cannot meet the other
atoms except the nearest neighbors. This creates a "Pauli blocking in position space" and
thus part of the properties of the system will be the same as ideal fermions. All these
properties are specific to 1D systems.

Here, it is also important to define a dimensionless interaction strength, namely the
Lieb-Liniger parameter,

γ =
mg

~2n
. (1.5)

From Eq. (1.4), we can see that this quantity can help us easily verify the three interacting
regimes for 1D bosons, namely strong interaction (γ � 1), intermediate interaction (γ ∼ 1)
and weak interaction (γ � 1). This quantity will be widely used in the following discussion.

1.2 One-dimensional bosons in the continuum

In this section, we discuss the basic of 1D Bosons in continuous systems. First, we start
with the Lieb-Liniger model, which describes the system as individual particles with two-
body interactions. Then, we introduce the Bethe ansatz and Yang-Yang thermodynamics
which are efficient methods for solving this Hamiltonian. Finally, we discuss the Luttinger
liquid theory which is the field operator description for 1D systems at low temperature.

1.2.1 Lieb-Liniger bosons and delta-range interaction

In this manuscript, we always consider 1D ultracold bosons with repulsive interactions in
different kinds of external potentials. To describe such a kind of system, the widely-used
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1. Bosons in One Dimension

model is the one given by Lieb and Liniger in 1963 [55,56],

H =
∑

1≤j≤N

[
− ~2

2m

∂2

∂x2
j

+ V (xj)
]

+ g
∑
j<`

δ(xj − x`), (1.6)

where m is the particle mass, x is the space coordinate and g the coupling constant for the
two-body interactions. The three terms in the Hamiltonian are the kinetic term, external
potential and two-body interactions, respectively. For the external potential V (x), we take
the form of a harmonic trap in the Tan’s contact project (Chapter 3) and a quasiperiodic
lattice in the localization project (Chapter 4 and 5).

Here, we consider a strictly 1D gas which is normally generated by an efficient transverse
confinement,

~ω⊥ � kBT, µ (1.7)

with ω⊥ the trap frequency on the transverse direction, T the temperature of the system
and µ the chemical potential. This condition simply implies that no excitations are created
in the transverse direction and all the physics occurs only along the 1D tube. In the actual
experiment, the interaction is normally controlled by the Feshbach resonant [60] or external
lattices [61], which yields the relevant parameter named s-wave scattering length asc. We
can also write the effective 1D scattering length as [62]

a1D = −l⊥(
l⊥
asc
− C) (1.8)

with l⊥ =
√

~/mω⊥ the oscillation length in the transverse direction, C = |ζ(1/2)|/
√

2 =
1.0326 and ζ the Riemann zeta function. Then, taking the pseudopotential form from the
scattering problem [63], we can write the interaction term as the form of delta function in
Eq. (1.6) and the parameter g writes

g = − 2~2

ma1D
. (1.9)

In the following, we only consider the case where the term a1D is always a negative number
which leads to g always positive. This indicates that the interactions are repulsive and this
is normally the case in nowadays’ ultracold atom experiments. Also, different from the 3D
case where g increases with a3D, we find larger g when a1D is smaller. Moreover, when the
condition Eq. (1.7) is not satisfied but the size on the longitude direction is much larger
than the transverse one, we obtain the so called elongated gas (also named as cigar shaped
gas). In this case, the Eqs (1.6) and (1.9) are not valid any more. One has to consider
the 3D structure and establish another effective 1D Hamiltonian, see details for instance
in Ref. [64–67]

Here, one may notice that the systems which satisfy Eq. (1.6) is known to be integrable
in homogeneous case. It can be studied at zero temperature using the Bethe ansatz [56]
and at finite temperature with Yang-Yang thermodynamics [57], which we will introduce
in detail in the next two subsections.

1.2.2 One-dimensional bosons at zero temperature and Bethe ansatz

In 1963, E. Lieb and W. Liniger solved the Hamiltonian in Eq. (1.6) exactly in the thermo-
dynamic and zero temperature limits, using the so-called Bethe ansatz [55,56]. Hereafter,
we review the approach quite into details, since it will be used for some of the calculations
in Chapter 3. The ansatz proposes that the eigenfunction takes the form

ψB(x1 < x2 < ... < xN ) =
∑
P

A(P )ei
∑
n kP (n)xn (1.10)
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1. Bosons in One Dimension

with x1 < x2 < ... < xN the position of the N particles and P the N ! possible permutation
of the particles, and A(P ) an amplitude which is initially unknown. The interpretation
of the form in Eq. (1.10) is the following. We start from the non-interacting case where
Eq. (1.6) is leaved with only the kinetic term. Thus, the N -particle wavefunction is the
product of plane waves, up to the permutation. Then, we consider the interaction. We
assume the atoms with momentum km and kn will collides. Due to the 1D nature, they
can only end up with either the same momenta or exchanging them. This process leads
to a condition on the factor A(P ). If we assume P and P ′ only differ by the exchange of
momenta km and kn, according to the Shrödinger equation, we have

A(P ) =
km − kn + ig̃

km − kn − ig̃
A(P ′) (1.11)

with g̃ = mg/~2 the dimensionless coupling parameter. In the hard-core limit g → +∞,
the solution has been obtained in Refs. [68]. As pointed out by Ref. [40], the wavefunction
can be written as

ψB(x1 < x2 < ... < xN ) = S(x1 < x2 < ... < xN )ψF(x1 < x2 < ... < xN ) (1.12)

with S(x1 < x2 < ... < xN ) =
∏
i>j sign(xi − xj) and ψF(x1 < x2 < ... < xN ) the

wavefunction of spinless ideal fermions. In the limit of infinite interactions, the strong
repulsive interaction prevents two particle from being at the same point. Thus, it forms a
Pauli-like blocking in the position space and the system can be partially mapped to ideal
fermions. Here, the function S is for compensating the sign exchange of the fermionic
wavefunction. The gas in this regime is also known as the Tonks-Girardeau(TG) gas. In
the case of TG gas, the total energy can be written as

E =
∑
n

~2k2
n

2m
. (1.13)

Now, if we turn back to the Bethe ansatz which can be treated as a generalization of the
TG solution. The condition Eq. (1.11) can be treated as a constraint on the quasi-momenta
{kn}, it yields

eikmL =
N∏

n=1,n6=m

km − kn + ig̃

km − kn − ig̃
(1.14)

Note that Eq. (1.14) actually holds for periodic boundary condition. Taking the logarithm
of Eq. (1.14), we find

kn =
2πIn
L

+
1

L

∑
n

log

(
km − kn + ig̃

km − kn − ig̃

)
(1.15)

with {In} a set of integer numbers. Now, we introduce the momenta density ρ(kn) =
1/[L(kn+1 − kn)] and take the continuum limit, Eq. (1.15) then yields

2πρ(k) = 1 + 2

∫ q0

−q0

g̃ρ(k′)

(k − k′)2 + g̃2
(1.16)

where q0 satisfies ρ(k) = 0 for any |k| > q0. Within the continuous limit, the total energy
in Eq. (1.13) could be rewrite as

E = L

∫ q0

q0

dk
~2k2

2m
ρ(k) (1.17)
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with the particle density ρ0 found by

ρ0 =

∫ q0

−q0
ρ(k)dk. (1.18)

Then, using the dimensionless form,

G(q) = ρ(k/q0); α =
g̃

q0
; γ =

g̃

ρ0
, (1.19)

one can write Eq. (1.17) and Eq. (1.18) as the so-called Lieb-Liniger equations,

α = γ

∫ +1

−1
dqG(q) (1.20)

G(q) =
1

2π
+

∫ +1

−1

d q′

2π
G(q′)

2α

(q′ − q)2 + α2
(1.21)

whereG is the density of states corresponded to the proposed ansatz, q the quasi-momentum
and γ is the Lieb-Liniger parameter. Here, one should notice that the definition of γ in
Eq. (1.19) is consistent with what is discussed above, see Eq. (1.5). These two equations
form a closed loop and the solution of it is unique. The solution depends on a single
parameter, namely γ. With the quantities of α and G(q), we shall be able to express the
function e(γ), which writes

e(γ) =
γ

α(γ)

∫ +1

−1
dq G(q; γ)q2. (1.22)

All ground state properties of the Bose gas can then be found from this function. For
instance, the ground state energy E and the chemical potential µ, read

E =
~2Ln3

2m
e(γ), (1.23)

and

µ =
∂E

∂N

∣∣∣∣∣
L

=
~2

2m
n2
[
3e(γ)− γe′(γ)

]
. (1.24)

In particular, since γ is a function of the particle density n, Eq. (1.24) gives the equation
of state, i.e. the chemical potential as a function of density µ = µ(n). Here, we numerically
solve the Bethe ansatz equations and find the equation of state, see the black solid line in
Fig. 1.3. In the following paragraphs, we will discuss the behavior of 1D bosons in different
interaction limits and compare it with the Bethe ansatz solution.

The strongly-interacting limit (γ → +∞): Tonks-Girardeau gases

As explained in the discussion of the Bethe ansatz, in the hard-core limit g → +∞, the
repulsive interaction is so strong that the system can be mapped onto ideal fermions [40].
Here, one should notice that they are not strictly fermions since the wavefunction is still
symmetric. However, we should still be able to calculate the total energy by the integral
up to the Fermi momentum kF and find

E =

∫ kF

−kF

Ldk

2π

~2k2

2m
=
π2~2Ln3

6m
(1.25)

Then, with the relation µ = ∂E/∂N , we find the equation of state

n =

√
2mµ

π2~2
(1.26)
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1. Bosons in One Dimension

Figure 1.3: The equation of state for 1D bosons in the thermodynamic limit calculated
from Bethe ansatz, see black solid line. We also show the analytical results for γ → ∞
(red dashed line), γ � 1 (red solid line), γ → 0 (blue dashed line) and γ � 1 (blue solid
line).

Taking the limit g → +∞ in the Lieb-Liniger equation Eq. (1.21), we find the second term
on the right hand side of Eq. (1.21) goes to zero which indicates G(k) = 1/2π. Then,
in Eq. (1.20), we find α → ∞ and α/γ = 1/π. Also, we shall find from Eq. (1.22) and
Eq. (1.23) the total energy, which is consistent with Eq. (1.25).

In Fig. 1.3, we plot Eq. (1.26) as red dashed line. It fits well with the Bethe ansatz
solution in the limit γ →∞ (equivalently (~2/m)n/g → 0). Moreover, one can find a more
elaborated solution with higher order term in the equation of state, which yields

n =

√
2mµ

π2~2
+

8µ

3πg
− 2
√

2µ1.5

π2g2
. (1.27)

We plot Eq. (1.27) in Fig. 1.3 as red solid line and find it fit well with the Bethe ansatz
solution in a much larger range, for γ � 1 (equivalently (~2/m)n/g →� 1).

The weakly-interacting limit (γ → 0): Gross-Pitaevskii equation

In the limit γ → 0, we can use the Gross-Pitaevskii equation to describe the system,
which is

µψ = − ~2

2m
∇2ψ + V (x)ψ + g|ψ|2ψ (1.28)

where ψ is the wave function. In one dimension, all bosons are quasi-condensed in this
regime. Therefore, the interaction shows up as a non-linear term. By solving the equation,
one can find the chemical potential and the total energy

n =
µ

g
, (1.29)

E =
1

2
gn2L. (1.30)

To obtain this equations from the limit γ → 0 of the Bethe ansatz is non-trivial, since
it’s not possible to ignore the integrated term in Eq. (1.21). However, from the numerical
results of Bethe ansatz, the solution fit well with the equation above. In Fig. 1.3, we plot
Eq. (1.29) as blue dashed line. It fits well with the Bethe ansatz solution in the limit γ → 0
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(equivalently (~2/m)n/g → ∞). Similarly as the strongly-interacting case, one can even
find a more elaborated solution with higher order term in the equation of state. It writes

n =
µ

g
+

1

π

√
mµ

~2
(1.31)

We plot Eq. (1.31) in Fig. 1.3 as blue solid line and find it fit well with the Bethe ansatz
solution in a much larger range, for γ � 1 (equivalently (~2/m)n/g →� 1).

1.2.3 One-dimensional bosons at finite temperature and Yang-Yang ther-
modynamics

Now, we consider the case of a finite temperature. First, we discuss the thermal Bethe
ansatz for solving the Lieb-Liniger Hamiltonian at finite temperature, which is the so called
Yang-Yang thermodynamics. Then, we discuss the existence of the quasi-condensate.

The Yang-Yang thermodynamics

The Bethe ansatz we introduced previously works well for 1D bosons in the zero tem-
perature limit. In 1969, C. N. Yang and C. P. Yang reported the extension of the Bethe
ansatz to finite temperature, so-called Yang-Yang thermodynamics. According to Ref. [57],
for such a system, they define a quantity called dressed energy ε(k) by

ρh
ρ

= exp[ε(k)/kBT ] (1.32)

where ρ and ρh correspond to the density of filled states and holes. The dress energy
simply describes the particle-hole distribution thanks to the excitation by temperature. In
the mapping to fermions, we would have the Fermi-Dirac distribution for free Fermi gases

ρ =
1

eε/kBT + 1
(1.33)

with ρh = 1−ρ and the chemical potential µ is included in the definition of ε(k). Therefore,
the term ε(k) in Eq.(1.33) is interpreted as an effective single-particle energy in an ideal
Fermi gas picture. Here, it is the energy of a boson dressed by the interaction with the
other particles.

Similarly as the standard Bethe ansatz, one can treat the interaction as the collision of
atoms, which leads to a condition on the momentum. One can find the equation similar
as Eq. (1.16), which yields

2π(ρ(k) + ρh(k)) = 1 + 2

∫ +∞

−∞
dk′

g̃ρ(k′)

(k − k′)2 + g̃2
. (1.34)

Here, one may notice that we need to consider the contribution of the holes on the left-hand
side, which is different from the zero temperature case. Moreover, the particle density n,
the energy E and the entropy S can be written as a function of ρ and ρh. At temperature
T , to calculate the dressed energy at thermal equilibrium, one need to compute the parti-
tion function exp(S/kB − E/kBT ) and find the condition to maximize it. Combined with
Eq.( 1.34), we find that the Yang-Yang equation for the dressed energy writes

ε(k) =
~2k2

2m
− µ− kBT

2π

∫ +∞

−∞
dq

g

g2/4 + (k − q)2
ln

[
1 + e

− ε(q)
kBT

]
. (1.35)

This is a self-consistent equation where the form of ε(k) can be solved by numerically
looping process. The detailed procedure for solving this equation will be presented in
Chapter 3.
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1. Bosons in One Dimension

Figure 1.4: The thermal shift of the chemical potential ∆µ/µLL as a function of the
rescaled temperature T = kBT/mc

2, with c the sound velocity. The symbols are the Yang-
Yang solution. Different curves are results from various theories: Sommerfield expansion
of the ideal Fermi gas (IFG) and Hartree-Fock (HF) theory, Bogoliubov theory(BG), virial
ideal Fermi gas (virial IFG) and virial Gross-Pitaevskii (GP) predictions and Luttinger
Liquid theory. This plot is from Ref. [69].

With the solution of ε(k), one can calculate thermodynamic quantities such as the
grand potential density,

Ω(µ, g, T ) = −kBT
2π

∫ +∞

−∞
dq ln

[
1 + e

− ε(q)
kBT

]
. (1.36)

From the expression of Ω, we can calculate the density of the system using the thermody-
namic relation

n = −∂Ω

∂µ

∣∣∣∣∣
T,g

. (1.37)

One should notice that this equation is nothing but the equation of state. One example for
the application of the Yang-Yang thermodynamics is presented in Ref. [69]. One of the main
results is concluded in Fig. 1.4. In this paper, they use the Yang-Yang thermodynamics
to calculate the difference of the chemical potential with the zero temperature solution
µLL (µ calculated from the Luttinger liquid theory, see detailed discussion in subsection
1.2.4), i.e. ∆µ = µ− µLL at different temperature. Also, they calculate the corresponding
sound velocity c and plot ∆µ/µLL as a function of rescaled temperature T = kBT/mc

2

under different interactions, see symbols in Fig. 1.4. In the low temperature limit, we find
the YY solution fits well with the Sommerfield expansion in the strong interaction regime
which is expected for the fermionized bosons. In the weakly interacting regime, they also
fit well with the Bogoliubov theory. At high temperature, we find the results fit well with
the virial ideal Fermi gas and virial Gross-Pitaevskii (GP) prediction in the strong and
weak interaction regimes correspondingly. Another example for application of the Yang-
Yang thermodynamics is the computation of the Tan contact, which we will study in detail
in Chapter 3. In that chapter, we will also take advantage of the Yang-Yang results to
analysis the different regimes of degeneracy for Lieb-Liniger bosons in harmonic trap at
finite temperature.

Quasi-condensate

For 1D bosons in homogeneous systems, it is well known that there is no condensation
at any temperature. At sufficiently low temperature, the density fluctuations are sup-
pressed but the phase fluctuations are not, which is the signature of a quasi-condensate.
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1. Bosons in One Dimension

Figure 1.5: The regimes of degeneracy for 1D trapped bosons at finite temperature with
the harmonic trap α = 10. This plot is from Ref. [70].

However, at finite temperature, a true BEC may exist with a finite size system, such as
the harmonically trapped system. In Ref. [70], D. Petrov et al have given the regime of
degeneracy for 1D bosons at finite temperature, see Fig. 1.5. The diagram is plotted in
presence of a certain harmonic trap α = 10, where α defined by

α =
mgaho
~2

(1.38)

with aho =
√
~/mω the oscillation length and ω the frequency of the harmonic trap. For

this system, there are two relevant temperatures. One is the degeneracy temperature TD

below which the system shows quantum properties, i.e. Thomas-Fermi gases in weakly-
interacting regimes and fermionized bosons in strongly-interacting regime. Another one is
the coherence temperature Tφ = ~ωTD/µ In the Thomas-Fermi regime, it is always much
smaller than TD. For T < Tφ, both the density and phase fluctuations are negligible. In
this case, we have the true condensate, see the left up corner in Fig. 1.5. Then, when
Tφ < T < TD, the density fluctuations are still negligible but the phase fluctuations are
visible. In the considered regime, the density profile is still Thomas Fermi kind but the
phase coherence length extracted from the correlation function is smaller than the size of
the system. This is what is referred as quasi-condensate in the plot. Finally, we have the
Tonks gas in strong interaction limit N � α2 and the classical gas at high temperature
T > TD.

1.2.4 The field description: Luttinger liquid theory

Beyond the particle picture described in the last section, it’s also possible to use the
field operator to describe the system, which is known as the Tomonaga-Luttinger liquid
theory [2, 71]. At low temperature, the 1D bosonic models exhibits a liquid phase where
no continuous or discrete symmetry is broken. To be more precise, the model satisfies two
main features: (i) the low energy excitations are collective modes with linear dispersion,
(ii) at zero temperature, the correlation function shows an algebraic decay with exponents
related to the parameters of the model. These two features define a universality class of
1D interacting bosonic systems which is known as the Tomonaga-Luttinger liquids [2, 71].

The collective nature of the low-energy excitations in 1D can be easily understood by
the special space structure in 1D. Thanks to the existence of interaction, a particle has
to push its neighbour while it is moving. Thus, when a particle is moving in a certain
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1. Bosons in One Dimension

direction, the individual motion will quickly be converted into a collective one. This can
be fruitfully described by a field description [2, 72]. The boson field operator normally
writes

Ψ̂† = [ρ̂(x)]1/2e−iθ̂(x) (1.39)

where the two collective fields are the density ρ̂(x) and the phase θ̂(x). Here, the two
operators satisfy the commutation rule,

[ρ̂(x), θ̂(x′)] = iδ(x− x′). (1.40)

Considering a translationally invariant system, the ground state has a constant average
density ρ0. The full expression of the density operator writes [72]

ρ̂(x) '
(
ρ0 −

1

π
∂xφ̂(x)

) +∞∑
j=−∞

aje
2ij(πρ0x−φ̂(x)), (1.41)

with φ̂(x) a slowly varying quantum field. Here, all the oscillating term are included in the
expression. To write the Hamiltonian under the field description, we can rewrite Eq. (1.6)
as

H =

∫
dx

(
∇Ψ̂†∇Ψ̂

2m
+
g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)
(1.42)

To proceed further, we will do two approximations: (i) We assume the field φ̂(x) is smooth
on the scale of ρ−1

0 , thus the high order oscillating term in Eq (1.42) will vanish when
performing the integral on x. (ii) We consider low enough temperature where the exci-
tation satisfied the linear dispersion, thus the value k is small enough and we can ignore
the high order term of k, i.e. the term (∇2φ̂(x))2. More details of the derivations can
be found in Refs. [2, 3]. Finally, with the two approximations mentioned above, we can
combine Eq (1.42), Eq (1.39) and Eq (1.41), and write the effective Hamiltonian in the
field representation

H =
~

2π

∫
dx

(
cK

(
∂θ̂

∂x

)2

+
c

K

(
∂φ̂

∂x

)2
)

(1.43)

where c is the sound velocity which leads to the linear dispersion ω = c|k|. And K is the
so-called Luttinger parameter which describes the relative weights of the phase and density
terms in Eq. (1.43). Arguably, the most remarkable feature of Luttinger liquids is that the
correlation functions all decay algebraically. While c sets the velocity scale, the parameter
K describes universal features. For instance, for the one-body correlation function g1(x),
one can show that it decays as

g1(x) ∝
(

1

x

)1/2K

(1.44)

with the exponent related with K. Here, the algebraic decay of the correlation functions
is a pivotal characteristics of Luttinger liquids. Also, one should notice that this approach
is called harmonic fluid approach (also called "bosonization").

1.3 One-dimensional bosons in a lattice

In the previous section, we have considered the 1D bosons in a continuous system. Now, we
turn to the case with the presence of a lattice, i.e. for the Hamiltonian Eq. (1.6) with the
external potential V (x) = V0cos(kx) with V0 the amplitude of the lattice. We start with
the deep lattice case, where we have the tight-binding Bose-Hubbard model. Then, we
move to the more general case, where the problem can be solved either by the Sine-Gordon
model analytically, or by the numerical Monte Carlo calculation.
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Figure 1.6: Mott transition in 3D Bose-Hubbard model, plot from Ref. [1]. (a). Schematic
zero-temperature phase diagram of the 3D Bose-Hubbard model. Dashed lines of constant-
integer density n = 1, 2, 3 in the SF hit the corresponding MI phases at the tips of the lobes
at a critical value of J/U , which decreases with increasing density n. Here, the system is
just holding by optical lattices without an harmonic trap. (b). The wedding cake model
which presents the phase distribution of cold atoms in optical lattices with a harmonic
trap. The starting point of the red arrow is the bottom of the trap. With the direction of
the red arrow, the trap potential increases, which decreases the effective chemical potential
µ(r) = µ0 − Vtrap(r), creates several SF and MI regions.

1.3.1 One-dimensional Bose-Hubbard model

In the deep lattice limit, i.e. V0 is the largest energy scale in the problem, we can use
the tight-binding approximation and the eigenstate Ψ(x) could be written in the basis of
the Wannier function. Here, the meaning of the "large enough" lattice amplitude can be
translated into two main points: (i) both the thermal and mean interaction energies at the
single site are much smaller than the energy separating the ground Bloch band from the
first excited band. It means Ψ has no component on the excited band. (ii) the Wannier
function decay essentially within a single lattice site, which means only on-site interactions
are taken into account. Under these assumptions, we can write the Bose-Hubbard (BH)
model in one dimension

H =
∑
j

[
− J

(
b̂†j b̂j+1 + H.c.

)
+
U

2
b̂†j b̂
†
j b̂j b̂j − µn̂i

]
(1.45)

where j is the index of the lattice site, b̂†j and b̂j are the bosonic creation and annihilation
operators on lattice site j, and n̂i = b̂†j b̂j is the site occupation operator. The pre-factor
of the three terms are the tunneling J , interaction strength U and chemical potential µ.
For cold atom systems, it’s possible to compute the term J and U from first principles, see
details in Ref. [1, 42]. The main interest of studying the BH model is the Mott transition,
i.e. the transition between a compressible conducting phase named superfluid (SF) and an
incompressible insulator phase named Mott insulator (MI).

Mott transition in the three-dimensional Bose-Hubbard model

We start with the phase diagram of SF-MI transition in 3D, and then moving to the
case of 1D by comparing their similarities and differences. In 3D,D. Jaksch et al. firstly
propose to study the SF-MI transition in cold atom systems theoretically in 1998 [42].
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Figure 1.7: Absorption images of multiple matter-wave interference patterns after atoms
were released from an optical lattice potential with a potential depth of (a) 0Er, (b) 3Er,
(c) 7Er, (d) 10Er, (e) 13Er, (f) 14Er, (g) 16Er, and (h) 20Er. The ballistic expansion time
was 15 ms. The interference pattern visible on panels (a) of the SF phase. In contrast,
absence of interference signals the MI phase. This figure is from Ref. [43].

The theoretical phase diagram is plotted in Fig. 1.6. Figure 1.6(a) describes the phase
diagram of the 3D BH model without an additional trap. In this diagram, the black solid
line notes the transition points of the two phases. On the left side of the line, there exists
several MI phases with integer atom number per lattice site. On the right side, there is
the region of the SF phase where the atom number in each lattice site fluctuates, which
can be associated with inter-site phase coherence. Following the red array, which scans
the chemical potential with the fixed interactions, there exists several transitions between
SF and MI. In the presence of a harmonic trap, the red arrow could be probed. Shown as
Fig. 1.6(b), the phase distribution of the cold atoms in optical lattices with an additional
harmonic trap Vtrap(r) = mω2r2/2 is depicted. Here, the starting point of the red arrow
is the bottom of the trap. Following the red arrows, the trap potential increases, which
decreases the "local chemical potential" µ(r) = µ0 − Vtrap(r), and induces several phase
transitions between MI and SF. In the red arrow of Fig. 1.6(b), the interaction U and
tunneling J is fixed while µ(r) vanishes. Therefore, it equally corresponds to the red arrow
in Fig. 1.6(a).

The first experimental observation of the Mott transition in 3D BH model was first
done by M. Greiner et al. in 2002 [43]. In the experiment, they prepare a cold atom gas
in a 3D optical lattice in the presence of the harmonic trap. They observe the transition
phenomenon by scanning J/U while the atom number is approximately fixed. In their
setup, they fixed the scattering length and scanned the parameter J/U by changing the
lattice depth. The lattice depth is noted by the unit of the recoil energy Er = 2k2/2m,
which is a natural measure of energy scales in optical lattice potential. Under the scanning,
the system enters the MI phase from the SF phase. Figure 1.7 shows the absorption
images of the matter wave interference in the experiment which draws the phase transition
between SF and MI. For small lattice depth, because of the coherence of SF phase, several
interference peaks appear after an expansion period. On the opposite, when the lattice
depth is large, the system reaches the MI region. Without any interference, the expansion
picture shows a single Gaussian-like distribution, which is characteristic of localization of
bosons in single sites. Therefore, from Figure 1.7(a) to Figure 1.7(h), with the increasing
of the lattice depth, the phase transition from SF to MI is observed.
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Figure 1.8: Phase diagram of 1D BH model at zero temperature. (a). Phase diagram at
the region nearby the first MI lobes presented in Ref. [3]. It contains different set of results
from different methods: quantumMonte Carlo results ( "+" from Ref. [73] and "x" from
Ref. [74]) , earlier DMRG results (filled circle from Ref. [75]), later DMRG results (empty
boxes from Ref. [76]), and analysis of 12-th order strong-coupling expansions (solid line
from Ref. [77]). (b). Schematic phase diagram of 1D BH model on a larger range of the
chemical potential µ, from Ref. [36].

Mott transition in one-dimensional Bose-Hubbard model

Qualitatively, the SF-MI phase transition in optical lattices is similar in all dimensions.
However, in one dimension, there are two main features which are different from the case
of 3D. First, different from 3D, for arbitrary low potential amplitude, there always exists
Mott insulator phase in the 1D lattice model. We will discuss this point in detail in the
next subsection. Another main difference is the sharp tip structure of the Mott lobes. In
Fig. 1.8, we show the phase diagram of the 1D BH model. In Fig. 1.8. (a), we show the
phase diagram in the region of the first Mott lobe n = 1 from Ref. [3]. Here, the term t
is the tunneling term which is equivalent to our parameter J , The plot consists of datas
from different methods of calculations [73–77], see details in the caption. It indicates a
sharp tip structure of the Mott lobe totally different from the 3D case. Moreover, in the
different calculations, they both find the critical value (J/U)c on the tip nearby 0.3 with
about 3% variation. In Fig. 1.8. (b), we show a schematic phase diagram on a larger range
of µ from Ref. [36]. The scale of the diagram is comparable with Fig. 1.6(a) and one can
clearly see the difference on the shape of the Mott lobes. Moreover, this plot also helps us
to distinguish two main types of the phase transition in 1D:

• Mott-U transition (dashed pink and red line): Fix the fillings n and increasing the
value of J/U , one cross from the MI phase to SF phase via the tip of the Mott lobe.
This transition is of the Berezinskii-Kosterlitz-Thouless (BKT) type.

• Mott-δ transition (vertical dashed line): fixing the value of J/U and varying the
chemical potential µ. The system crosses between a MI phase with commensurate
filling and a SF phase with incommensurate filling. The transition is of Prokfovsky-
Talapov type [3, 78] and is also called commensurate-incommensurate transition.

Here, one may notice that for the Luttinger parameter K which depicts the algebraic decay
of the correlation function, it is finite in the SF phase and zero in the MI phase. In fact,
the Luttinger liquid is valid in the SF phase. The MI phase is signalled by an instability
and the Luttinger liquid description actually breaks down. For a commensurate order p, it
has been shown that the critical values of K are Kc = 1/p2 and Kc = 2/p2 for the Mott-δ
and Mott-U transition correspondingly, see details in Refs. [79–81].
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Figure 1.9: Modulation spectroscopy on bosons in shallow and deep optical lattices.
(a),(b),(d) are the spectra for low(a), intermediate(b) and high(d) lattice depth V , which
depicts the δ − f dependence. (c) shows the determination of the transition point for the
case of the shallow lattice depth V = 1.5Er. The diagram is from Ref. [13].

1.3.2 One-dimensional bosons in shallow periodic lattice

For the case of 1D shallow periodic lattices, the BH model is not effective anymore. Thus,
we need a more general model or more powerful computation method for studying the
phase diagram.

The Sine-Gordon model

To describe the 1D Bose gases in a shallow periodic potential, one proper way is the
Sine-Gordon (SG) model [71]. It is the Luttinger Hamiltonian Eq. (1.43) complemented by
a cosine term, which accounts for the shallow periodic potential. Note, however, that the
amplitude V is not the bare amplitude of the potential because of the renormalization of
the amplitude in the heuristic Hamiltonian. In the Sine-Gordon model, the Hamiltonian
writes [13]

H =
~c
2π

∫
dx

(
K

(
∂θ̂

∂x

)2

+
1

K

(
∂φ̂

∂x

)2

+
V nπ

~c
cos(2φ̂)

)
(1.46)

with V the amplitude of the lattice and n the particle density. Based on this model, it’s
possible to perform analysis and compute the important quantities such as the transition
point and critical Luttinger parameters, see details in Refs. [2, 3].

The first experiment studying the 1D Mott transition in a shallow lattice was reported
in Ref. [13]. Using a deep 3D lattice, they create the 3D ultracold gases in Mott-Hubbard
state with one atom per lattice site. Reducing the lattice depth in one direction, they
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Figure 1.10: Phase diagram of 1D strongly-interacting bosons from Ref. [13]. The two
parameters for the phase diagram are the inverse Lieb-Liniger parameter 1/γ and the
lattice depth V in the unit of the recoil energy Er. The inset shows the measured gap
energy Eg as a function of V .

obtain arrays of 1D tubes in the presence of a periodic potential on the transverse direction.
The phase of the system can be probed with the amplitude modulation spectroscopy, which
detects the excitation gap and distinguish the gapped Mott insulator phase from the gapless
superfluid phase. Firstly, they induce a modulation to the frequency f of the potential
of the system. Then, they ramp down the lattice beams, give the system a suspended
expansion of 40 − 60ms, detect the atoms from time-of-flight, and determine the atomic
spatial width δ by a Gaussian fit. By plotting the δ−f relation and studying the slope, one
can obtain the information of the energy gap. The experimental results for different lattice
depths are shown in Fig. 1.9(a),(b),(d). For shallow lattices in the strong interaction regime
(blue circles), there is a sudden change in the slope which can be associated to the existence
of an excitation gap and it is attributed to the signature of Mott insulator. In contrast, in
the weak interaction regime (red square), the δ − f relation presents a linear dependence
which reflects the gapless superfluid character of the gas. Similar interpretation can be
taken out for the two cases of larger lattice depths, see Fig. 1.9(b) and (d). However,
one may notice that the difference between Fig. 1.9(a) and Fig. 1.9(d) gives an obvious
comparison to the two limit sides of the model, Sine-Gordon model and BHM model.

To further locate the transition point, one find the intercept of the linear fit with the
axis of the curve in Fig. 1.9(a) and (b) which gives the frequency gap fg. By scanning
the Lieb-Liniger parameter γ, the diagram of the fg − γ is depicted in Fig. 1.9(c) (as
well as its inset), which gives the transition point between SF and MI phase for a fixed,
shallow potential. In the case of a deep lattice, the state of the system is determined by the
transport measurement which is more sensitive in this regime. With all the results measure
above, they plots the phase diagram for the 1D strongly-interacting bosons, see Fig. 1.10.
The transition points are determined either by amplitude modulation spectroscopy (red
circles) in the shallow lattice regime, or by transport measurement (blue squares) in the
deep lattices regime. The solid and dashed lines are predictions from SG and BH models,
which fit well with the experimental data within errorbars, respectively. Also, the value γc
in the limit V = 0 fits with the predicted value γc = 3.5 in Ref. [82]. However, one may
notice the significant errobars on the shallow lattice data points, which did not allow to
draw an accurate phase diagram. Also, for the phase transition of an intermediate value
of the potential amplitude, a powerful numerical technique is needed.
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Figure 1.11: (a). Phase diagram in the g-V plane at the commensurate filling na = 1. The
big black and small green points are QMC theoretical and experimental results. The solid
blue line is the BHM prediction and the red dashed line is the result from bare sine-Gordon
theory. (b). The critical momentum pc versus 3D scattering length a3D for different lattice
depths: V/Er = 1 (red), 2 (orange), 2.8 (green), 4 (blue). The inset is one example for the
time evolution of the momentum distribution peak p for a3D = 109a0 and V/Er = 2. The
diagram is from Ref. [15].

The continuous space QMC

To determine the Mott transition point accurately at any values of lattice strength, one
needs to seek for powerful numerical tools. The quantum Monte Carlo (QMC) method in
continuous space appears to be a solution to this problem (see details about the technique
in Chapter 2). From the QMC calculation, one can calculate the superfluid fraction fs,
compressibility κ and Luttinger parameter K. All these three quantities are finite for
superfluid (compressible conductance) phase, but zero for Mott insulator (incompressible
insulator) phase. From these data, one can locate the Mott transition accurately. In 2016,
G. Boéris et al have performed such kind of calculation in Ref. [15]. The main results are
shown in Fig. 1.11. In Fig. 1.11 (a), the black dots are the QMC solution. Different from
the BH model (blue line) and the Sine-Gordon model (red line) mentioned above, this
calculation has no range limitation of the lattice depth and the interaction strength, for it
uses the continous space Lieb-Liniger Hamiltonian Eq. (1.6) without any approximation for
the lattice potential V (x) = V sin2(kx). Based on this Hamiltonian, with the appropriate
QMC calculations, the transition curve could be accurately determined in both the shallow
and deep lattice regimes. For small γ, the QMC data (black dot) fits well with the BH
models (light-blue solid line). However, for large γ, the QMC data separate from the SG
model (red dashed line), although they reach the same limit at V = 0. In fact, the SG
is applicable but the lattice, even weak, significantly renormalize the Luttinger parameter
which explains the deviation to the SG prediction with no renormalization (red dashed
line).

An experimental measurement is also presented in the same reference. In the experi-
ment, they start with the 3D Bose-Einstein condensate of 39K atoms. With 2D horizontal
optical lattice, they create 1000 vertical 1D tubes. By varying the 3D scattering length
a3D, they can tune the Lieb-Liniger parameter γ in the range 0.07 − 7.4. In most of the
tubes, they control the fillings na = 1. To detect the quantum phase, they suddenly switch
off the magnetic field gradient which provides a shift of the potential and drags the sys-
tem. After the atoms evolve in a time duration t, they switch off all the optical potentials
and record the time-of-flight images, especially the momentum distribution peak p. One
example of the function p(t) is shown as the black dots in the inset of Fig. 1.11 (b). We
can see that p(t) increases up to a critical value pc. By detecting the value pc while varying
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Figure 1.12: Phase diagram in the g − µ plane from QMC calculations at the potential
V = 2Er. There exists two quantum phases: the superfluid(white) and Mott insulator
(red). The black points joined by lines are the phase transition points. The blue dashed
lines are the prediction from the BH model. In the inset, there are the detailed plots
for the four parameters computed from the QMC, namely the particle density n, the
compressibility κ, the superfluid fraction fs and the Luttinger parameter K. These data
are at the interaction g = 7~2/ma and various system sizes L/a = 30, 50, 100 (blue, green
and red).

a3D, we know that it should show strong dependence in the SF phase and remain constant
in the MI phase, see several examples in the main plot of Fig. 1.11 (b). Here, one should
notice that pc should be zero for MI phase, however, some tubes are supefluid so that pc
shows a plateau instead of strictly vanishing. From this scan, one can get the transition
point at different potential amplitude V , see green points in Fig. 1.11 (a). Here, we find
that it is in good agreement with the theoretical results.

One main interesting outcome from this calculation is that the curve hits the 1/γ axis
at the red cross point, which means that for an arbitrary small amplitude of the lattice
potential, there always exists a Mott insulator phase. This is totally different from the
3D case, where below a critical lattice potential amplitude Vc, no MI phase is found. This
special property of 1D bosons may be attributed to the specificity of the Tonks-Girardeau
limit. In this limit, the Mott lobes can be mapped onto the band gap of ideal fermions
in a lattice, which exists at any nonvanishing potential amplitude. Thus, it will form a
incompressible insulator states.

Also, in this paper, the authors perform the QMC calculations for a fixed potential
amplitude V = 2Er with various interaction g and chemical potential µ, see Fig. 1.12. In
the plot, the black points joined by lines are the transition points determined by the QMC
data. One example of which is shown in the inset plot. In the inset, they present the QMC
data for the particle density n, the compressibility κ, the superfluid fraction fs and the
Luttinger parameter K at g = 7~2/ma and various system sizes L/a = 30, 50, 100 (blue,
green and red). By increasing the sizes, one finds that the transition gets sharper and
sharper. Finally, by finding the position κ = κc = 0, fs = fsc = 0 and K = Kc = 1, they
determine the transition points in the main plot (see inset of Fig. 1.12). There, surrounded
by a superfluid region (white), they find the Mott lobes na = 1 (red) significantly different
from the BH prediction. However, they still find the sharp tip structure of the Mott lobes
which is different from the 3D case.
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Figure 1.13: Phase diagrams of 1D bosons in disordered potentials at zero temperature. In
each plots, the x-axis is the interaction strength and the y-axis is the disorder amplitude.
(a). 1D bosons in continuum, calculated from renormalization group techniques. K is
the Luttinger parameter and D is the disorder strength. The solid red line is the SF-
BG transition calculated from RG calculations, which leads to Kc = 3/2 in the limit
of zero disorder. The dashed blue line is still open. On the left side, the blue vertical
line indicates the Anderson localization phase at zero interaction. This subfigure is from
Ref. [3]. (b) and (c) are phase diagrams for 1D Bose-Hubbard model with the on-site energy
follows a uniform random distribution in the range [−∆,∆], calculated from density-matrix
renormalization group (DMRG), with incommensurate filling n = 0.5 and commensurate
filling n = 1. These two subfigures are from Ref. [83].

1.3.3 One-dimensional bosons in purely-disordered potentials

The interacting bosons in the presence of a disordered potential, known as the dirty boson
problem, is one of the interesting topics on understanding the nature of quantum phases.

At zero temperature, the case of 1D Bose-Hubbard model with incommensurate fillings
is similar to the continuous gases, in the presence of disorder. The Hamiltonian of the
disordered Bose-Hubbard model writes

H =
∑
j

[
− J

(
b̂†j b̂j+1 + H.c.

)
+
U

2
b̂†j b̂
†
j b̂j b̂j − Vj b̂

†
j b̂j

]
(1.47)

with Vj the random onsite energy. The phase diagram of such kinds of systems was first
proposed in Ref [52]. The calculations were performed by bosonization and renormalization
group (RG) techniques, where they treated the disorder as a perturbation. The results
are shown in Fig. 1.13(a). Here, they find two phases: a compressible superfluid, and
a incompressible insulator named Bose glass (BG). Different from the Mott insulator we
mentioned before, the BG phase is gapless since the insulating property is induced by
disorder. For the case of ideal gas (K = ∞), all the particles stay on the ground state
which forms the Anderson localization. For finite but small interactions, more states are
populated although the system remains insulating. In the intermediate interaction regime,
when the disorder D is low enough, the conducting islands in the system connect with each
other and the system becomes a superfluid. Further increasing the interaction, the bosons
are pinned by the disordered potential and the superfluidity is destroyed again. In the
strong interaction regime, the phase transition point are determined precisely in Ref [52],
see red solid line in Fig. 1.13(a). They are found as BKT type and the critical Luttinger
parameter hits Kc = 3/2 in the limit D = 0. On the contrary, the perturbative RG fails
in the weak interaction regime, which is shown as the blue dashed line in Fig. 1.13(a).
This part is further studied by numerics in Refs. [22, 83, 84]. In Ref. [83], the phase
diagram of 1D BH model with incommensurate filling n = 0.5 is obtained by density matrix
renormalization group (DMRG), see Fig. 1.13(b). This further confirms the structure
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1. Bosons in One Dimension

predicted in Fig. 1.13(a).
The case of 1D Bose-Hubbard model with commensurate fillings is slightly different. In

the absence of disorder (D = 0), we already know from section 1.2.1 that a Mott insulator
appears in the strongly-interacting regime. The phase diagram for this case was firstly
proposed by Ref. [54] (see detailed discussion in Sec. 5.1.1). Then, a numerical study was
performed in Ref. [83], see Fig. 1.13(c). As we expected, a Mott insulator was found in the
strongly-interacting regime where the disorder is weak. Also, as argued by Ref. [54], the
MI phase is totally surrounded by BG, which equivalently means that there is no direct
transition from MI to SF. It has been shown to be correct even in higher dimension, see
Ref [85].

In recent years, the case of a quasiperiodic potential, which is the intermediate between
the periodic and disordered potentials, has drawn people’s attention. Obtaining the phase
diagram and study the phase transitions between the SF, MI and BG phases have become
one of the main interesting questions to address. In Chapters 4 and 5 of this manuscript, we
will introduce the question of quasiperiodic systems and study in detail its phase diagrams.

Conclusion and Outlook

1D bosons are special. In this chapter, we went through the basic knowledge of 1D
bosons and some of the main aspect we shall build on in this thesis. We started with
the general interest of the 1D bosonic systems, especially indicating its special properties
which are totally different from 3D. Then, we introduced the basic concept for 1D contin-
uous bosonic systems. We introduced the two main approaches for describing such kind
of systems: the particle description Lieb-Liniger model and the field operator description
Luttinger liquid model. Finally, we turn to the introduction of 1D bosons in the pres-
ence of an optical lattices, be it deep or shallow. We introduced several theoretical and
experimental studies on the superfluid-Mott insulator transition.

Beyond the introduction we presented here, there are still many open questions to be
investigates for 1D bosonic systems. These properties forms the basis on which we shall
build in the thesis. On the one hand, we shall study the Tan contact in harmonically
trapped Lieb-Liniger gases at arbitrary temperature, which is a central characteristics of
interacting systems (Chap. 3). On the other hand we shall study localization properties
in quasiperiodic potentials, extends the Mott transition in a shallow periodic potential
(Chaps 4 and 5)
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Chapter 2

Continuous-space quantum Monte
Carlo for bosons

Schördinger equation is known to provide a correct description of any quantum system.
However, for most of the cases of many-body problems, it is a tremendous challenge to cal-
culate exactly the physical quantities from it, due to the exponential growth of the Hilbert
space dimension with the number of particles. To solve this problem, physicists have ex-
plored plenty of methods dedicated to certain kinds of Hamiltonian, both analytically and
numerically, over the last decades.

For a few Hamiltonians, the equation can be solved analytically. In 1D, see for in-
stance the examples in section 1.2. Beyond those, numerical methods are necessary to
an efficient calculation of the solution. For example, exact diagonalization works prop-
erly for single particle problem in various inhomogeneous potentials [31, 86], or for the
lattice spin systems with a couple of tens of spins [87, 88]. For the Ising model, one can
use mean-field approximation in high dimensions to obtain reliable results. In the case of
weakly-interacting boson systems, the property could be described properly by the Gross-
Pietaevskii equation and Bogoliubov theory [89–91]. However, all those techniques fail for
strongly-interacting problems.

QuantumMonte Carlo (QMC) approaches can overcome the difficulty in certain cases. [92]
The Monte Carlo approaches contains a large variety of different types and each of them
has its pros and cons. The variational Monte Carlo (VMC) applies the variational methods
to compute the ground states properties [93,94]. The method is simple but the accuracy of
the results depend crucially on the trial wavefunction. The diffusive Monte Carlo (DMC)
method generalizes DMC by working with complex wavefunctions and it calculates better
the ground state properties by avoiding the systematic errors [95, 96]. To compute the
finite-temperature properties, however, one needs to call for more powerful techniques, for
instance the path intergral Monte Carlo (PIMC). This method was first introduced by
Cerperley and Pollock [97–99], and it provides a first quantitative result for the Helium
4 superfluid transition. In this manuscript, the QMC we used is PIMC, since it solves
perfectly the properties of ultracold bosonic systems in various inhomogeneous external
potentials, at any regime of interaction and temperature. It fits well with the subject we
study. Nevertheless, despite the method is powerful for the system we are interested, we
have to point out that the extension of the PIMC to fermionic systems and time-depend
problem is extremely difficult. There are other Monte Carlo methods which may overcome
those problems in certain cases. For instance, bold diagrammatic Monte Carlo which alle-
viate the sign problem for fermions [100]. And time-dependent Monte Carlo which opens
the way for the study of dynamics [101,102].

In this Chapter, we first briefly introduce the path integral Monte Carlo in continuous
space, which is the QMC method we used widely in our simulation. We shall describe
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2. Continuous-space quantum Monte Carlo for Bosons

the basic PIMC as introduced in the pioneering work of Cerperley and Pollock [97–99].
Then, we present the building blocks of Monte Carlo methods, namely the basic moves
with the so-called worm algorithm. It is first developed by Prokov’ev and Svistunov [58,
59], which improved strongly the computation efficiency for certain variables such as the
superfluid fraction. Finally, we briefly describe how we compute the the physically-relevant
observables in detail, which is the final goal of the QMC calculation.

2.1 Path-integral Monte Carlo for interacting bosons

In this section, we present the PIMC method for interacting bosons at finite temperature as
in [97,99]. There are two main ideas of the PIMC. First, using the Feynman path integral
representation, one can map the quantum systems with interacting particles onto a classical
system with interacting polymers. Then, we sample the partition function of such a system
stochastically using the Monte Carlo approach. Finally, we obtain the targeted observables
by the averaging values over the generated polymer configurations.

2.1.1 Feynman path integral for a single particle

Quantum mechanics, formulated by Dirac, Heisenberg, and Hilbert in 1920s, depicts the
physical states of a system by vectors in a Hilbert space. The time evolution of such a
state is controlled by the operator called Hamiltonian. Thanks to the "canonical quantiza-
tion", classical quantities such as the position, the momentum, and the Hamiltonian, are
promoted to operators satisfying certain commmutation relations.

The path integral approach is another formulation. It formulates quantum mechanics in
such a way to recover the least action principle in the classical limit (h→ 0). The essential
idea was first presented in the works of Wiener and Dirac [103–105], and formalized by
Feynman [106]. The later has also proved that it’s equivalence with standard quantum
mechanics. Here, we start with the path integral formulation of a single particle, which is
the conceptual basis of the PIMC.

Imaginary time path integral for a single particle

Considering a single particle evolving in a d-dimensional space, its Hamiltonian reads
as

Ĥ = Ĥ0 + V (r̂) (2.1)

with Ĥ0 = p̂2

2m the kinetic term, p̂ = −i~∇ the momentum operator, m the particle mass
and V the external potential. The main quantity of interest is the propagation amplitude
〈rf |e−τĤ |ri〉 between the initial and final points ri and rf . If τ is a purely imaginary
number, this quantity stands for the probability amplitude for the particle to propagate
from ri to rf during the real time τ = it/~, under the Hamiltonian Ĥ. In the following, we
call τ the imaginary time, although it has the dimension of an inverse energy. Normally, this
exponential term is difficult to be computed directly, since the kinetic and potential term
in the Hamiltonian do not commute. To overcome this difficulty, we split the propagator
into J pieces in the imaginary time, with each piece a shorter time propagator in a time
interval ε = τ/J . Introducing the identity operator Î =

∫
dr|r〉〈r| between each ε step, it

writes
〈rf |e−τĤ |ri〉 =

∫
drJ−1...dr1 〈rf |e−εĤ |rJ−1〉 × ...× 〈r1|e−εĤ |ri〉. (2.2)

Using the primitive approximation e−ε(Â+B̂) = e−εÂe−εB̂ +O(ε2), we can write the short-
time propagator as

〈r′|e−εĤ |r〉 = 〈r′|e−εĤ0 |r〉e−εV (r) +O(ε2). (2.3)
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2. Continuous-space quantum Monte Carlo for Bosons

Figure 2.1: Path integral representation of the single particle propagator 〈rf |e−τĤ |ri〉.
Its value is calculated by summing over the exponential weight over all the possible paths
joining ri and rf . The imaginary time of the two points are τi and τj .

The free propagator term can be computed in the momentum space,

〈r′|e−εĤ0 |r〉 =
( m

2π~2ε

)d/2
e−

m
~2

(r−r′)2
2ε . (2.4)

In the end, the full propagator could be written as

〈rf |e−τĤ |ri〉 =
( m

2π~2ε

)Jd/2
∫

drJ−1...dr1e
−

∑J−1
j=0

[
m
~2

(rj+1−r′j)
2

2ε
+εV (rj)

]
+O(ε)

 .

(2.5)
with the notation r0 = ri and rJ = rf for the initial and final positions. This expression
describes the propagation of the particle from ri to rf during the imaginary time τ with
time step ε. The quantity rj gives the position of the particle at the time jε. Each pos-
sible sequence of (r0, ..., rj , .., rJ) corresponds to a possible trajectory along the imaginary
timeline [0, τ ]. The integral over the rj corresponds to the sum over all the possible paths
between ri and rf , with each path associated with a specific weight. Taking the continuous
time limit ε→ 0, we find the final formula for the expression

〈rf |e−τĤ |ri〉 ∝
∫ r(τ)=rf

r(0)=ri
Dr(τ ′)e−

∫ τ
0 dτ ′

[
m
2~2 ( dr

dτ
)2+V (r)

]
, (2.6)

where the integral is performed over all the possible paths r(τ ′) going from ri to rf .
Figure. 2.1 shows an illustration for such a integral. The exponential term in Eq. (2.6)
gives a certain weight to each path and the propagator is calculated by summing over all
the possible paths. One should notice that the paths can go beyond the initial ri and final
position rf .

Here, we shall make two remarks linked with the PIMC method. Firstly, the calculation
of the propagator is accurate if the time step ε is small enough. Thus, the parameter ε is
a numerical parameter in the actual code which will influence the efficiency and accuracy
of the calculations. It is thus important to take proper care of this parameter. The
actual approximation in the code goes beyond the primitive approximation, and it will be
presented in the section 2.1.3. Secondly, the propagator is written as an weighted integral
over all the configurations of propagation. In principle, it’s very complicated to calculate
such an integral. In PIMC, this integral is computed efficiently by the numerical Monte
Carlo method, and it will be described in section 2.1.4 and 2.1.5.

35



2. Continuous-space quantum Monte Carlo for Bosons

Path integral in real time

For completeness, we provide the classical limit of the path integral formalism, which
corresponds to the original one proposed by Dirac and Feynman. Using the correspondence
τ → it/~ with t the real time, we obtain

〈rf |e−itĤ/~|ri〉 ∝
∫ r(t)=rf

r(0)=ri
Dr(t′) e

i
~S[r(t′], (2.7)

with S[r(t′] =
∫ t′

0 [1
2mṙ2 − V (r)] is the action of the classical system. Similarly, the real-

time propagator is computed with the sum over all the possible paths with an assigned
phase proportional to the classical action. In the limit ~ → 0, thanks to the stationary
phase argument, only the paths which extremize the action contribute to the integral and
the other ones are cancelled. This recovers exactly the principle of least action in classical
mechanics.

Feynman-Kac formula

In Eq. (2.7), we drop the prefactor for simplicity. However, the term could actually
blow up in the continuous limit. To avoid this difficulty, one possibility is to divide it by
the free propagator 〈rf |e−itĤ0/~|ri〉. The prefactors are cancelled since they are identical
in both cases. Then, one may recognize the term

π[r(τ ′)] = e−
∫ τ
0 dτ ′ m

2~2 ( dr
dτ

)2/

∫ r(τ)=rf

r(0)=ri
Dr(τ ′)e−

∫ τ
0 dτ ′ m

2~2 ( dr
dτ

)2 (2.8)

is the probability density of a Brownian process with volatility σ =
√
~2/m. Because the

process is fixed to start and end at certain fixed point, it’s called a Brownian bridge between
ri and rj . Using the stochastic interpretation, one shall get the so-called Feynman-Kac
formula [107],

〈rf |e−τĤ |ri〉
〈rf |e−τĤ0 |ri〉

=

〈
exp

[
−
∫ τ

0
dτ ′V (r(τ ′))

]〉
π

(2.9)

where < ... >π represents the expectation value under the Brownian measure Eq. 2.8. This
formula will be useful in further calculations of the imaginary time propagator, see section
2.1.3.

2.1.2 Feynman path integral for many-body bosonic systems

Now, consider a N boson system in a d-dimensional continuous space. We will derive the
path integral representation used in the PIMC algorithm. The main aim of the method
is to compute the expectation value of an observable Â of interest at thermodynamic
equilibrium, in the canonical ensemble at temperature T . It can be written as

〈A〉 =
1

Z
Tr[e−βĤÂ] (2.10)

where β = 1/kBT is the inverse temperature and Z = Tr[e−βĤ ] is the partition function.
Here, we use the variable R = (r1, r2, ..., rN) to denote the positions of the N parti-
cles. To take into account the indistinguishability of identical bosons, we introduce the
symmetrization operator

Ŝ =
1

N !

∑
σ∈Π

|σ ·R〉〈R| (2.11)
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Figure 2.2: Path integral representation of the many particle propagator. The plot
illustrate the configuration of N particles which enters the partition function.

where Π stands for the group of permutations of theN elements and |σ·R〉 = |rσ1 , rσ2 ..., rσN〉
is one of the possible permutations of R. Therefore, the trace of an operator X̂ should be
written as

Tr[X̂] =

∫
dR〈R|X̂Ŝ|R〉. (2.12)

Then, similarly as the single particle case, splitting the inverse temperature axis [0, β] in
infinitesimal portions of step ε = β/J with J the number of steps, we can finally write

Tr[e−βĤÂ] =
1

N !

∑
σ∈Π

∫
dRJ−1...dR0〈σ·R0|e−εĤ |RJ−1〉×...×〈R2|e−εĤ |R1〉×〈R1|e−εĤÂ|R0〉.

(2.13)
Here, one should notice that the expression is obtained thanks to the fact that Ŝ commutes
with Ĥ, Â as well as Î, and it satisfies the condition Ŝ2 = Ŝ.

In the expression Eq.( 2.13), a possible distribution (R1,R2, ...,RJ) is defined as a
configuration C. A typical example of configuration is shown in Fig. 2.2. In the plot, each
particle propagates along a trajectory in imaginary time from τ = 0 to β, which is called a
worldline. The position of the i-th particle at time jε is called bead. It is noted as rji and
depicted as a black disk. Moreover, one should notice that the condition |RJ〉 = |σ ·R0〉
due to the definition of trace, which implies β-periodicity along the imaginary time axis.
It also indicates that one particle could choose to close at the initial position of another
particle, which fits with the particle indistinguisability. The exchange cycle reflects the
quantum exchange appearing at low temperature, especially involved in the phenomenon
such as Bose-Einstein condensation and superfluidity.

In order to simply the notation, we may introduce the weight of the configuration C,

W(C) =
1

N !
〈σ ·R0|e−εĤ |RJ−1〉 × ...× 〈R1|e−εĤ |R0〉 (2.14)

and the normalized weight π(C) =W(C)/Z. They satisfy the normalization
∫
π(C)dC = 1.

Moreover, we may define the path-integral estimator for observable Â, which presents as

A(C) =
〈R1|e−εĤÂ|R0〉
〈R1|e−εĤ |R0〉

. (2.15)

We can then write the expectation value of the obervable Â as

〈Â〉 =

∫
π(C)A(C)dC (2.16)
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In this formula, A(C) is the value of Â we calculated associated to the configuration C
and π(C) is the corresponding statistical distribution. This expression is exact but remains
hard to compute directly. Therefore, we shall introduce several extra approximation steps
in the next section.

2.1.3 The imaginary time propagator

The configuration weight,W(C), is built out of the imaginary-time many-body propagator.
We may notice that it is the density matrix ρ(R′,R, ε) = 〈R′|e−εĤ |R〉 up to a normal-
ization factor. In this subsection, we introduce several approximations to compute the
propagator in the limit ε → 0. For concreteness, we write the Hamiltonian of the typical
bosonic system with two-body interactionsĤ = Ĥ0 + Ĥ1 + Ĥ2, with

Ĥ0 =

N∑
i=1

p̂i
2

2m
, Ĥ1 =

N∑
i=1

V1(r̂i), Ĥ2 =
∑
i<j

V2(r̂i − r̂j). (2.17)

Here, the three terms in the Hamiltonian are respectively the kinetic term, the external
potential and the two-body interactions. Then, we can write the density matrix

ρ(R′,R, ε) = ρ0(R′,R, ε)e−U(R′,R,ε), (2.18)

where ρ0 is the free density matrix associated to the Hamiltonian H0 and U is called the
action. Usually, the action could be written as U = U1 + U2, with the one-body and
two-body interaction potential terms correspondingly.

Free density matrix

Consider only the free particle Hamiltonian Ĥ0, it is trivial that the density matrix
writes

ρ0(R′,R, ε) =
N∏
j=1

ρ0(r′j, rj, ε), (2.19)

where ρ0(r′j, rj, ε) = (m/2π~2ε)d/2exp(−m(r− r′)2/2~2ε) is the free density matrix for one
particle. The free density matrix actually introduces a strong condition on the configura-
tions shown in Fig. 2.2. Since the particle position evolves in imaginary time steps by a
Gaussian with standard deviation

√
ε in the unit of ~2/m, two connected beads on a single

worldline are seperated by at most several
√
ε. In the limit ε → 0, the paths becomes

Brownian process with volatility
√
~2ε/m.

The one-body action: Trotter-Suzuki approximation

The main difficulty to calculate the action of the full Hamiltonian is the fact that
the kinetic and potential terms of the Hamiltonian do not commute with each other in
general. It forbids the splitting of the exponential of the Hamiltonian into separated
exponential terms. However, for small ε, the splitting is possible thanks to the Trotter-
Suzuki approximation [108,109],

e−ε(Â+B̂) = e−
1
2
εB̂e−εÂe−

1
2
εB̂ +O(ε3). (2.20)

This approximation is an improved version of the primitive approximation introduced in
section 2.1.1, with the validity of higher order of ε. Then, by setting Â = Ĥ0 + Ĥ2 and
B̂ = Ĥ1, one can extract the one-body potential from the propagator. Therefore, the
one-body action in the propagator writes finally

U1(R,R′, ε) = ε

N∑
j=1

V1(r′j) + V1(rj)

2
. (2.21)
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Then, the propagator terms for Ĥ0 + Ĥ2 will be evaluated using further assumptions
in the next part. Here, one should notice that there are other possibilities for using the
Trotter-Suzuki approximation. For instance, one can split the Hamiltonian by Â = Ĥ0 and
B̂ = Ĥ1 + Ĥ2, in order to obtain the free particle and potential part separately. However,
the first way of separating has an advantage that one can use the standard scattering
theory, so we insist on this method for the QMC calculations in this thesis.

The two-body action: Pair-product approximation

Now, we compute the propagator with the term Â = Ĥ0 +Ĥ2. The first approximation
we use here is the pair-product approximation [110], which allows us to write the many-
body density matrix as a product of two-body density matrices. This approximation is
sufficiently precise for dilute gases and short-range interactions, i.e. the system we studied.
First of all, using the Feynman-Kac formula [99], we shall write the action

e−U2(R′,R,ε) =
〈R′|e−ε(Ĥ0+Ĥ2)|R〉
〈R′|e−εĤ0 |R〉

=

〈∏
i<j

exp

[
−
∫ ε

0
dτV2(ri(τ)− rj(τ))

]〉
(2.22)

which average is performed over the Brownian bridges joining the two points R and R′.
If we assume that

√
ε and the typical potential range b are much smaller than the mean

interparticle distance n−1/d, one particular path will typically interact with at most one
single other path. Then, the N(N -1)/2 factors on the right-hand side could be considered
to be independent. Therefore, we shall write it as,

e−U2(R′,R,ε) =
∏
i<j

〈
exp

[
−
∫ ε

0
dτV2(ri(τ)− rj(τ))

]〉
(2.23)

Using the Feynman-Kac formula again, we shall get

U2(R′,R, ε) =
∑
i<j

u2(r′i, r
′
j, ri, rj, ε) (2.24)

where u2(r′i, r
′
j, ri, rj, ε) is the action for two interacting particles. As we mentioned in

the beginning, the derivation is performed under the assumption of a rapidly decaying
interaction potential. However, for the case of long-range interactions, it’s also guaranteed
to be valid for small enough ε, although less precise. This is because in the limit ε→ 0, it
reduces to the Trotter approximation.

The two-body action: Change of reference

For further simplifying the two-body matrix, we turn to work in the center of mass
frame. We introduce the center of mass coordinate rCM = (r1 + r2)/2, the relative coordi-
nate rrel = r1 − r2, the total mass M = 2m and the reduced mass m∗ = m/2. Then, the
two-body Hamiltonian writes

Ĥ =
p̂2
CM

2M
+

ˆp2
rel

2m∗
+ V2(rrel). (2.25)

Thanks to the fact that the momentum operator p̂2
CM commutes with the term rrel, the

two-body density matrix can be factorized as

〈r′1, r′2|e−εĤ |r1, r2〉 = 〈r′CM |e−ε
p̂2
CM
2M |rCM 〉〈r′rel|e

−ε

[
ˆp2
rel

2m∗+V2(rrel)

]
|rrel〉. (2.26)

Then, dividing both sides by the free density matrix, one shall find that the two-body
action reduces to

u2(r′1, r
′
2, r1, r2, ε) = urel(r

′
1 − r′2, r1 − r2, ε) = urel(r′rel, rrel, ε), (2.27)
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with urel the action for an effective particle of mass µ in the external potential V2. For
certain cases, this action can be calculated analytically. For instance, for the 1D delta
interaction potential Ĥ2 = g

∑
j<` δ(xj − x`), i.e. the system we are interested, the two-

body action writes [111]

〈r′rel|e
−ε[

ˆp2
rel
2µ

+V2(rrel)]|rrel〉 = 1− exp

(
−
µ(rrelr′rel + |rrelr′rel|)

ε~2

)
×
√
πµε

2

g

~
erfc(u)exp(u)

(2.28)
with u = m ∗ (|rrel|+ |r′rel|+ gε)/

√
2m ∗ ε~2 and erfc is the complementary error function.

In the actual calculations, instead of going through all pairs ri and rj , we only compute
the term with |ri−rj | < rjudge and rjudge is a threshold at several

√
ε. The other terms are

extremely small and can be ignored. This is consistent with the property of the short-range
interactions and it improves the efficiency of the calculation.

Moreover, such an analytical forms for the two-body propagator are also available for
delta range interactions at higher dimension [28, 111]. However, there are some other
cases where the analytical form is not provided. In this case, one shall evaluate the value
numerically using the procedure explained in the next paragraph.

The numerical method: Feynman-Kac formula and Matrix squaring tech-
nique

When an analytical formula for the propagator is not available, for instance the Hamil-
tonian contains certain types of long-range interactions, one should calculate the propaga-
tor using numerical procedures. Here, we propose two possible methods to do that.

First, one can evaluate the propagator using the Feynman-Kac formula [107]. For each
considered pairs of r and r′, one can calculate the right-hand side of Eq. (2.9) using a
Monte-Carlo approach. We can discretize the Brownian bridge by a smaller time step
η = ε/Q with Q some integer. Then, one can use the Lévy construction to sample the
path [112] and obtain the action as an average over all the generated path.

A second possible method is called matrix squaring technique [107,113]. The main issue
is that evaluating the propagator with direct use of Trotter approximation on discretization
step ε is not accurate enough. Thus, one starts with the single-density matrix M0 = e−ηÂ

at a higher temperature η = 2−Kε where K is a integer, i.e. a smaller resolution step.
Then, we are allowed to use the Trotter approximation to separate the interaction term
and we have

M0(rrel, rrel′) = e
η
2

[V2(rrel)+V2(rrel′ )]ρ0(rrel′ , rrel, ε). (2.29)

Then, we can generate a sequence of matrices by Mk+1 = M2
k and after K iterations, we

can get the matrix at the temperature ε.

2.1.4 Sampling the configurations using the Monte Carlo approach

In the previous paragraphs, we have introduced the path-integral formulation to describe
the quantum many-body system by a picture of classical statistical physics with interact-
ing polymers. The thermodynamical observables are then calculated by the Eq. (2.16),
with π(C) the weight Eq. (2.14) calculated by the method introduced in section 2.1.3 at
small ε limit. However, it is still hard to evaluate the integral (2.16) over all the possible
configurations.

The rectangular method, which numerically calculate the value of integralsA =
∫
f(x)dx

by dividing the configuration space into small cells and summing the integrand on the points
of the grids times the elementary volume of the cell, i.e. A '

∑
i f(xi)dxi ,are widely used

in various calculations. However, the computing cost grows exponentially with the di-
mensionality of the integrated element dx. In the integral Eq. (2.13), the dimension of
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the configuration space is NdJ , which grows to infinitely large at small ε limit. Thus,
one calls for methods beyond the rectangular one and compute the result efficiently. The
Monte Carlo approach, which samples the configurations stochastically, is one of the good
choices for this situation. One of the key reasons for its success is that they can perform
importance sampling, which means the highly probable configurations are generated much
more than the one with low probability. On the contrary, the rectangular method treats
all the configurations equally. In this section, we first describe the Monte Carlo approach
from the general point of view, and then move to the specific case which we are interested
in.

Monte Carlo method for calculating integrals numerically

Now, we explain the core idea about the Monte Carlo approach 1 for calculating inte-
grals. Considering a real-valued function f : RD → R, we want to calculate

I =

∫
RD

f(x)dx (2.30)

Now, we introduce a random variable X, which takes values in the integration space RD.
The probability distribution of X is noted as π which is normalized to unity,

∫
π(x)dx = 1.

We should notice that a hidden condition here is that π is strictly positive since it represents
the probability density. Then, the integral may be rewritten as

I =

∫
RD

f(x)

π(x)
π(x)dx = 〈I(X)〉π (2.31)

where I(X) = f(X)/π(X) is a random variable linked with X and thus the value of I can
be understood by the expectation value of (I)(X) under the probability distribution π. The
Monte Carlo approach propose to compute this integral using the law of large numbers. The
basic idea is to generate a large number of independent samples X1, X2, ..., Xn following
the probability density π, and to estimate the integral I by calculating the average

Î =
I(X1) + I(X2) + ...+ I(Xn)

n
. (2.32)

In the limit n → ∞, the estimator Î converges to the value of the integral almost surely.
However, in actual simulation, only finite number of samples are generated. Therefore, the
a statistical error Î − I enters into the estimation. The error can be evaluated precisely
using the central limit theorem (CLT). It states that a random variable Î − I follows a
Gaussian distribution with standard deviation

εI =
σI√
n

(2.33)

where σI is the standard deviation of I(X). A more detailed analysis of the errorbar will
be presented at the end of this subsection.

Now, we turn back to the evaluation of the observable given by the path integral
Eq. (2.16). For Bosons, the weight function π(C) is always positive since W(C) is always

1The original birth of the Monte Carlo method should go back to the atomic bomb project at Los Alamos
in 1946. Physicist Stanislaw Ulam, who was a member of the project, was recovering from a surgery. To
occupy his own mind from boring, he tried to play solitaire in an IQ demanded way: calculating the
probability of winning the game. His answer is simple: play it 100 times, count the number of wins and
you will have a pretty good estimation. Thanks to the availability of the computer at the time, this method
became quite practical for a variety of questions, such as the mechanical simulation of random diffusion
of neutrons. As a secret government work, a code name is asked. The name of the Moncaco city "Monte
Carlo", is given to this approach, since it’s the town where Ulam’s uncle frequently gambled.
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positive. This can be seen from Eq. (2.14) combined with Eq. (2.18) and Eq. (2.19). Since it
also satisfies the condition

∫
π(C)dC = 1, it can play the role of the probability distribution

in Eq. (2.31). The PIMC then proceeds as follows. We can produce a large number of
configurations C1, C2, ..., Cn according to the probability distribution π. The corresponding
path integral estimator A(Ck) will be calculated for each configuration. Then, we can get
the approximate expectation value of observable Â by

〈A〉 ∼=
A(C1) + ...+A(Cn)

n
. (2.34)

Having introduced the idea of general Monte Carlo method, we will proceed to describe
the detail technique for generating C in the next paragraphs.

Markov Chain Monte Carlo

The direct sampling of certain probability distributions is typically possible for a num-
ber of simple laws, such as Gaussian distributions or uniform distributions. However, it
is impossible to generate the configurations with the weight as complex as the one in
Eq. (2.14). The solution is to use a Markov chain to perform a random walk in the config-
uration space. It means that we generate a sequence of configurations iteratively,

C1 → C2 → ...→ Ck → ... (2.35)

The probability to go from the configuration Ck = C to Ck+1 = C′ is given by a transition
matrix p(C → C′) = MCC′ . Here, one should notice that the term of Markov chain means
that the probability of a configuration at time k + 1 only depends on the configuration at
time k, and not the older configurations. If appropriate ergodicity hypothesis is satisfied,
the long-time distribution will go towards to a unique stationary πstat which satisfies the
condition Mπstat = πstat. Therefore, with proper choice of M , we shall reproduce the
correct statistical distribution π(C) by πstat. Since there is a large number of admissible
transition matrices for a given law π, one usually restricts itself to the matrices satisfying
the detailed balance condition

π(C)p(C → C′) = π(C′)p(C′ → C) (2.36)

which just directly implies the stationary condition but simpler to implement.

Hasting-Metropolis algorithm

For finding a proper process that satisfies the condition Eq. (2.36), the Hasting-Metropolis
algorithm [114, 115] is introduced. The transition from Ck to Ck+1 contains two steps:
propose and judge. Firstly, a new configuration Ck+1 = C′ is proposed with probability
pprop(C → C′). Then, we judge whether we want to accept this propose or not, according
to the acceptance probability

paccept(C → C′) = min
(

1,
π(C′)pprop(C′ → C)
π(C)pprop(C → C′)

)
(2.37)

Therefore, the Markov chain may jump to Ck+1 = C′ with the probability paccept or stay
in the previous configuration with the probability 1 − paccept. This definition also makes
sure that the transition probability p(C → C′) = pprop(C → C′)paccept(C → C′) follows the
detailed balance condition and that the Markov chain also samples the distribution π. In
actual computations, we should propose new configurations in such a way that the ratio in
Eq. (2.37) is at the magnitude of 1, in order to keep the high acceptance rate and make the
move efficient. One typical way for achieving that is to use local updates, which means we
normally modify a small part of the configuration in one single propose, and the unlikely
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configuration is prevented. More details about the moves for PIMC will be presented in
section 2.1.5.

Systematic and Statistical errors in PIMC

The results obtained from the PIMC calculation contains two typical types of errors.
The first one is the systematic error coming from the discretization of the worldlines, i.e.
the finite value of ε. The influence of the finite ε value presents in all the calculations of
the propagators. For getting rid of this error, one normally performs the simulation with
decreasing value of ε and study the convergence of limit ε→ 0. For instance, in the study
of Tan’s contact for 1D interacting bosons, a careful analysis of ε is necessary. We shall
discuss more details in section 3.1.3 of Chapter. 3.

The second type of error is the statistical error, due to the finite number of configura-
tions generated during the simulation. In principle, when the sampled configurations are
independent, the errorbar can be estimated using the CLT by Eq. (2.33). However, the
configurations by Markov Chain process are highly correlated since the typical moves only
updates small part of the configurations. Therefore, a more complicated error analysis is
necessary. Thanks to the ALPS packages, two types of error analysis are performed in our
PIMC calculation [116,117]. The first one is called simple binning method. For simplicity,
we note Ai = A(Ci). Then, we define an autocorrelation time of the accumulated data

τA =

∑∞
t=1(〈Ai+tAi〉 − 〈A〉2)

σ2
A

. (2.38)

Then, the real statistical error of the ensemble should write

εA '
√
τA
n
σA. (2.39)

Therefore, in actual computation, the main task of the error estimation is to find the proper
τA for the obtained data. The simple binning method calculate the average and errors with
different bin sizes along the Monte Carlo step, i.e. it perform a binning analysis to estimate
the integrated autocorrelation time and returns a trustable value of the errorbar. However,
this method is not sufficient if the observable we compute comes from a function of several
correlated measurements. In this case, one needs to use another method which is called
jackknife method. It re-samples the data by throwing one single sampling and evaluate the
expectation value from the leftN−1 samples, then performing all the possible throwing and
evaluation process and obtain the final expectation value and errors on top of those data.
It is the most trustable analysis, but also the most expensive one in time and memory. In
the computations of this manuscript, we always use one of these two methods of analysis,
depending on the quantity we calculate. For details of the two error estimations, one can
find them in Refs. [116,118].

2.1.5 Standard moves for path-integral Monte Carlo

Now we provide the details about the Monte Carlo moves, which are used to generate new
samples of configurations. The essential idea is to guarantee the ergodicity of the Markov
chain. It means that the whole configuration space must be accessible from any initial
configuration. This is satisfied by defining two basic types of moves, namely reshape and
swap. The illustration of the two moves are shown in Fig. 2.3. Further advanced types of
moves can be introduced to improve the efficiency of the simulation, see section 2.2.

Reshape

The first type of move is to change the shape of one chosen path. Here, we assume
the move starts from configuration C. We introduce an integer M the number of beads
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Figure 2.3: Two basic moves of standard PIMC methods. Here, we always indicate the
unchanged beads in black, the old beads to be changed as dashed elements, and the new
position of the beads in solid grey. The left and right figures correspond to the two moves
named reshape and swap, respectively.

modified by the move. It maintains the same definition in all the following statement of
the other moves. Then, we select one bead randomly among the whole configuration and
name the position index i and the time slice index j0. Thus, its position is noted as rj0
and the trajectory we would like to change is (rj0 , rj0+1, ..., rj0+M−1, rj0+M ). Using the
Lévy construction [112], we propose a Brownian bridge between rj0 and rj0+M and name
the new path (rj0 , r′j0+1, ..., r

′
j0+M−1, rj0+M ), corresponding to the new configuration C′.

Then, we can write the weight of the old and new configurations,

π(C) = Kρ0(rj0 , rj0+1, ε)...ρ0(rj0+M−1, rj0+M , ε)e
−U (2.40)

π(C′) = Kρ0(rj0 , r
′
j0+1, ε)...ρ0(r′j0+M−1, rj0+M , ε)e

−U ′ (2.41)

where K is the production of free density matrices on the unaffected path segments and
it is thus the same for both configurations. The quantity U and U ′ are the actions for the
old and new configurations respectively. Then, using the free density matrices to construct
the probability density for a Brownian bridge, we writes the probabilities to propose the
direct and reciprocal moves,

pprop(C → C′) =
1

JN

ρ0(rj0 , r′j0+1, ε)...ρ0(r′j0+M−1, rj0+M , ε)

ρ0(rj0 , rj0+M ,Mε)
(2.42)

pprop(C′ → C) =
1

JN

ρ0(rj0 , rj0+1, ε)...ρ0(rj0+M−1, rj0+M , ε)

ρ0(rj0 , r′j0+M ,Mε)
. (2.43)

Here, the factor JN is due to the probability of choosing an initial bead. Then, according
to Eq. (2.37), we find the acceptance probability

paccept

(
C → C′) = min(1, e−∆U

)
(2.44)

where ∆U = U ′ − U is the difference between the old and new action. Here, we use this
move to serve as an example to give the detail derivation of the probability of propose and
acceptance. In the following statement of the other moves, we shall skip the detail and
give directly the final formulas.

Swap

The move reshape cannot introduce the quantum exchange between different worldlines.
Thus, it cannot change the topology of the configuration. To correctly perform the sample
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considering all the permutations in Eq. (2.13), we introduce the move swap which can
exchange the worldline of the two particles. One starts by choosing a random particle with
index i1 and choose a bead at time slice j0 on its path. Then, we choose a second particle
i2 with the probability

p(i2) =
ti1,i2ti2,i1∑N
i=1 ti1,iti,i1

(2.45)

with ti,i′ = ρ0(rij0 , r
i′
j0+M ,Mε). If i1 = i2, the move is rejected. Otherwise, we generate two

Brownian bridges between ri1j0 and ri2j0+M on the one hand, and ri2j0 and ri1j0+M on the other
hand. Finally, the move is accepted with probability given by Eq. (2.44). Here, one should
notice that the way of choosing the second particle here ensures the distance |ri1j0 − r

i2
j0+M |

is of the order
√
Mε, thus the exchange is likely to be accepted and the sampling process

can move efficiently in the configuration space.

2.2 Worm algorithm

The PIMC simulation described previously has been successfully used to the study of
quantum liquids in continuous space. [97, 119, 120] They are very efficient for calculating
observables obtained from local estimators, such as the particle density and the average
energy. However, this method faces difficulty while working on properties related to par-
ticles indistinguishability, such as computation of the superfluid fraction. This situation
is annoying, since the superfluid fraction is one of the key quantities to study quantum
phase transitions at low temperature, especially the transition to the superfluid phase. The
core difficulty is the existence of long exchange cycles in superfluid phase which contains a
macroscopic number of particles. However, the standard PIMC simulation only proposes
moves performing local modification and the topology of cycles in the whole configurations
is hard to be changed efficiently. As a consequence, the superfluid fraction can only be cal-
culated for small sizes of the system, which hardly reflect the physics in the thermodynamic
limit.

In Refs. [58, 59], an implementation technique named worm algorithm is proposed to
solve the permutation problem by introducing an open worldline. This sort of worldline
is called worm. It breaks the closed one and enables efficient change for the topology of
configurations. Fig. 2.4 gives an example for such kind of configurations. On the right

Figure 2.4: Left- Configuration with 4 particles involved in a quantum exchange. The
configuration contains both open and close worldlines. Right- One image of keyword
"worm" from google images and its fit with the top left open worldline in the Feynman
diagram.
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subplot, we show an image of worm from random search in google images and we find it
fits well with the open worldline on the top left. With gradual shrinking and growing of the
worm, the particle numbers can change continuously and it allows huge jump of the sample
in the configuration space. In Fig. 2.5, we show an example that the system performs huge
jump between two different configurations in Z-sector via the channel of G-sector. The
number of particles also suddenly jumps from 1 to 3. Therefore, we shall conclude that
this implementation establishes an efficient grand-canonical algorithm, while the standard
PIMC are more performed in the canonical ensemble.

2.2.1 The winding number

An important property of the worm is that they like to twist or wind on a curved structure,
such as fruits or trunks of plants. In fact, this also applies to the worms in our model. In
our configuration, by introducing periodical boundary conditions on the r axis, we produce
a curved structure in the position space for the worm to wind. The worm algorithm will
generate efficiently the process of winding. For instance, in Fig. 2.5 (c), there are one worm
who successfully cross the border r = L and twist back at r = 0 thanks to the winding
process. This process is important since it counts for the long exchange cycles appearing
at low temperature. Furthermore, we introduce the winding number which is the number
of times a cycle crosses the boundaries of the simulation box. More precisely, we define
the winding number estimator

W =
N∑
i=1

J−1∑
j=0

(rj+1
i − rji ). (2.46)

For example, for a 1D configuration on the x axis, the quantityWx/L equals to the number
of times the worldlines exit the simulation box at x = L and enter back at x = 0. In Fig. 2.5
(d), we can find a winding number equals of 1. The average of this quantity is at the heart
of the estimator for the superfluid fraction, as we will explain in section 2.3.

To ensure that we calculate the average of the winding number properly, we must intro-
duce moves which can change efficiently the winding number of the systems. However, since
the winding number is a topological property of the configuration concerning a macroscopic
number of particles, the local moves in standard PIMC cannot change its value. The worm
algorithm conquers the problem since it facilitates the transitions between configurations
with different winding numbers. For instance, in Fig. 2.5, the winding number goes from
0 to 1 by removing, advancing and closing. Thus, it improves considerably the averaging
procedure to find the relevant physical quantities such as the superfluid fraction. In the
next two subsection, we shall introduce in detail the worm algorithm and its moves.

2.2.2 The extended partition function: Z-sector and G-sector

As explained in the beginning of this section, the worm algorithm works in an extended
configuration space. It can be divided into two subspaces, or we can call it two sectors.
The first sector contains only the closed worldline configurations and it is called Z-sector.
We use the letter "Z" since it stands for the notation of the standard partition function.
This sector corresponds to all the configurations in the standard PIMC and we call those
configurations the diagonal configurations. Naturally, the second sector contains configu-
rations with an open worldline, thus the worm. We call it G-sector since it samples the
green function (see detail in section 2.3.3). The configurations in the G-sector are called
off-diagonal configurations. The Z-sector contains the physical configurations, while the
G-sector contains the unphysical one which are however useful intermediates between the
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Figure 2.5: The process of destroying a Z-sector configuration and re-building a config-
uration with increasing winding numbers in the worm algorithm. It contains a series of
remove, advance and close moves. The panels (a) and (d) are in Z-sector while the panel
(b) and (c) are in G -sector. The final configuration has a winding number equals to 1.

physical configurations. The existence of G-sector allows to move efficiently between topo-
logically inequivalent configurations in Z-sector. In the following, we will give detail about
these two sectors.

Z-sector

Since the worm algorithm is established in the grand-canonical ensemble, we should
rewrite the partition function and configuration weight with the grand-canonical Hamilto-
nian K̂ = Ĥ − µN , with µ the chemical potential and N̂ the particle number operator.
Similarly as the previous statement, the partition function should write Z = Tr[e−βK̂ ].
Expanding it as a sum over particle numbers and particle spatial positions, we find

Z =
+∞∑
N=0

1

N !

∑
σ∈Π

∫
dR0〈σ ·R0|e−βK̂ |R0〉. (2.47)

Then, dividing β into small time steps ε, we can define naturally the weight similarly as
the path-integral picture (2.14),

W(C) = eβµN 〈σ ·R0|e−εĤ |RJ−1〉 × ...× 〈R1|e−εĤ |R0〉. (2.48)

for a configuration C containing N closed worldlines. Here, one should pay attention to how
the term N ! disappears. In standard PIMC which is in canonical ensemble, the factor N ! in
Eq. 2.13 is identical for all configurations. Therefore, we exclude this term in the expression
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of the weight because it will not change the Hasting-Metropolis transition probability
anyway. However, the situation is different in the grand-canonical ensemble. The weight
of configurations with different numbers of particles must be considered properly. The idea
is that with the notation of the position space |R〉 = |r1, ..., ri, ..., rN 〉, the particles are
labeled by the index i and we could thus follow the propagation of each single particles.
However, in actual Monte Carlo simulation, we don’t label the worldlines and only the
structure of the path is stored. Therefore, each configuration in the simulation corresponds
to N ! possibilities of labels in Eq. (2.47) and it cancels the factor 1/N ! in the front. Finally,
we should omit this term in the expression of the configuration weight.

G-sector

The configurations in the G-sector always contains an open worldline, for example the
Fig. 2.5 (b) and (c). They normally also include closed world lines similar as in the Z-
sector. For historical reasons, we call the first and last beads of the worm Masha (M) and
Ira (I). Then, the weight in the G-sector can be expressed as

W(C) = CeεµNlink〈σ ·R0|e−εĤ |RJ−1〉 × ...× 〈R1|e−εĤ |R0〉. (2.49)

where Nlink is the number of linked bead pairs in the configuration, and C is some positive
constant which will be explained in detailed later. Here, one should notice that the vector
Rj doesn’t have the same number of elements. They contain N particles if jM < j < jI
and N + 1 particles if jI < j < jM. And the factor eεµNlink is compatible with the eβµN

term in the Z-sector and it ensures the configuration weight increase progressively with
the length of the worm and allow the worm to grow and shrink gradually. The constant C
here is to control the relative weight of Z- and G- sectors. If C is too small, the algorithm
will spend most of the time in the Z-sector and the sampling will not be efficient. It will
lead to long correlation times and be hard to converge. On the other hand, if C is too
large, the Z-sector is hardly visited and it will cause a low measurement number for most
of the observables (except the correlation function) and induces a high statistical error.
Therefore, a proper choice of C is important for obtaining the correct result with small
error bar, correlation time and execution time. According to Refs. [58,59], a proper choice
would be

C ∼ ε2

V β
(2.50)

where V is the volume of the simulated system. Moreover, integrating all the configurations
in the G-sector, one can define the partition function

ZG =

∫
G
W(C)dC (2.51)

Then, the total partition function of the whole configuration space should write ZW =
Z + ZG.

2.2.3 Monte Carlo moves in the worm algorithm

In the worm algorithm, the configuration space is extended with open configurations. Thus,
we need to introduce new moves which allow us to switch between Z- and G-sectors, as
well as inside G-sector itself. The illustration of all these moves are presented in Fig. 2.6.
In the following, we will provide details about each move and its acceptance probability
which follows the Hasting-Metropolis algorithm. We always note j0 the starting timeslice
of the modification, M the number of modified beads and J the total imaginary time step.
The numberM is a random number chosen from the interval [0, M̄ ], with M̄ the maximum
number of modified beads which is set in the beginning of the simulation.
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Figure 2.6: Moves used in worm algorithm. The dashed beads and grey beads mean the
erased and added beads, respectively The black bead stands for the unchanged ones.
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Insert (Z→ G)

In this move, we choose Masha at position rM and the time slice j0 with probability
law. Then, M consecutive beads are added at the following time slice, by using the free-
propagator generator. The acceptance probability for this move is

pinsert(C → C′) = min
(
1, CV JMe−∆U+µMε

)
. (2.52)

Remove (G→ Z)

If the length of the worm in the configuration is between 1 and M̄ , we propose to
remove the worm. The acceptance probability is

premove(C → C′) = min
(
1, e−∆U−µMε/CV JM

)
. (2.53)

Open (Z→ G)

This move starts from a closed configuration. It chooses a bead at random and removes
the M following links, which transfers the configuration into an open one. Here, we define
rI and rM the position of Ira and Masha. We also note Nbd = NJ the total number of
beads in the initial configuration. Then, the acceptance probability is

popen(C → C′) = min
(
1, CM̄Nbde

−∆U−µMε/ρ0(rI , rM,Mε)
)
. (2.54)

Close (G→ Z)

The move starts from an open configuration. If the distance between Ira and Masha
along the imaginary time slice is not between 1 and M̄ , then we reject the move. Other-
wise, we generate a Brownian bridge between Ira and Masha. The move is accepted with
probability

pclose(C → C′) = min
(
1, ρ0(rI , rM,Mε)e−∆U+µMε/CM̄Nbd

)
. (2.55)

Advance (G→ G)

This move starts from a configuration in the G-sector. It proposes to increase the size of
the worm by adding M beads to Ira with the free propagator. The acceptance probability
is

padvance(C → C′) = min
(
1, e−∆U+µMε

)
. (2.56)

Recede (G→ G)

This move starts from a configuration in the G-sector. It proposes to reduce the size of
the worm by removing M beads to Ira with the free propagator. The acceptance probability
is

precede(C → C′) = min
(
1, e−∆U−µMε

)
. (2.57)

Swap (G→ G)

The move swap in the G-sector is the counterpart of the standard swap move introduced
in section 2.1. However, different from the one in standard PIMC, the swap move in the
G-sector can change the winding number of the configuration efficiently. In this move, we
choose two beads α and δ with M̄ time slices in between along the same worldline, under
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the condition that δ is on the same time slice as Ira. Then, we destroy the path between
α and δ, and establish a Brownian bridge between α and I, which leads to δ become the
role of Ira of the new configuration.

To force the algorithm to propose and accept the swap move efficiently, one must
choose a bead α that is close enough to Ira, typically with a distance of the order of

√
M̄ε.

Otherwise, the proposed configuration will be easily rejected. Therefore, we propose an
updated version of the swap move. We divide the simulation box into small hypercubic
bins with each bin containing typically several particles. The beads in the same or neighbor
bins are considered to be close. The beads at time slice jI + M which are close to Ira
are collected to a list. We choose one of them called α with probability ρ0(rI , rα, M̄ε)/ΣI
where ΣI is the normalization constant given by the sum of ρ0(rI , rη, M̄ε) over all beads
η in the list. The bead on the same worldline of α at M̄ links before is called δ. If δ is not
close to I, the move is rejected. Otherwise, we erase the path between α and δ and connect
α and I using a Brownian bridge. Finally, the move is accepted with the probability

pswap(C → C′) = min
(
1, e−∆UΣI/Σδ

)
. (2.58)

The term Σδ is the sum of ρ0(rδ, rη, M̄ε) over the beads η close to δ at time slice jI+M .
One should notice that the swap move has no reciprocal move as the other moves before,
since it is its own inverse move.

2.3 Computation of observables

The aim of the Monte Carlo calculation is to compute the average value of relevant observ-
able Â in the canonical or grand canonical ensemble. To this aim, one must firstly give an
appropriate path integral estimator A for the observable Â as in Eq. (2.15). Then, we can
find 〈Â〉 by the average of A(C) over the configurations C generated by the Markov Chain
sampling. In this section, we introduce the estimators for computing all the important
quantities in this thesis.

2.3.1 Particle density and compressibility

The number of worldlines contained in a Z-sector configuration directly gives the number
of particles in the system 〈N〉Z . Here, the Z subscript means the average is only performed
over the Z-sector. Then, the particle density n can be directly obtained from the estimator

n =
1

Ld
〈N〉Z (2.59)

where L is the system size, d the dimension of the system and N is the number of worldlines
contained in the configuration.

In practice, the system we studied is normally inhomogeneous, with an external poten-
tial V (r). Then, the density profile also becomes inhomogeneous and the detail information
of the distribution n(r) is useful in many cases. Since the local density is diagonal in the
position representation, the expression Eq. (2.15) reduces to 〈R0|n(r)|R0〉 =

∑N
i=1 δ(r−r0

i ).
Thanks to the translational invariance in the imaginary time of the path integral represen-
tation, in reality one can use any timeslice to calculate the observable. Thus, it leads to
an improved version of the distribution:

n(r) =
1

J

〈 J−1∑
j=0

N∑
i=0

δ(r− rji )
〉
Z

(2.60)

which takes advantage of all the information contained in the full configuration. In practice,
we divide the simulation space into a grid of hypercubes in d dimensions with linear size a,
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2. Continuous-space quantum Monte Carlo for Bosons

located at discrete positions r. The singular delta function is then replaced by a discrete
version δr,rji /a

d, with δr,rji indicating whether the bead rji belongs to the bin at r.
Another important quantity which is related is the compressibility κ. It measures

the change of the number of particles when the chemical potential is changed at fixed
temperature

κ =
∂n

∂µ

∣∣∣∣
T

. (2.61)

Differentiating the expression n = Tr[N̂e−β(Ĥ−µN̂)]/LdZ with respect to µ, we can find
the link between the compressibility and particle number fluctuation,

κ =
β

L
[
〈
N2
〉

Z
−
〈
N
〉2

Z
]. (2.62)

In practice, since the chemical potential µ is the input of the calculation, one can either
use Eq. (2.61) or Eq. (2.62) to calculate the compressibility, depending on the situation.

2.3.2 Superfluid density

The superfluid density is defined by the non-classical moment of intertia of the system. For
the following discussion, we focus on only the x-axis and study the case of one dimension.
The analysis can be generalized to higher dimension. We assume the fluid system is in a
container moving with velocity v = vex with respect to the frame of reference. For a fully
viscous fluid, the momentum of the system in the reference frame is 〈Px〉v = Mv with M
the mass of the system. However, the portion of superfluid shall not move with the system.
Therefore, the superfluid mass can be derived from the equation

Ms = M − ∂〈Px〉v
∂v

(2.63)

Then the superfluid density writes ns = Ms/mL
d with m the mass of a single particle. We

shall rewrite Eq. (2.63) as

ns = n− 1

mLd
∂〈Px〉v
∂v

(2.64)

To calculate the average momentum, one can weight the state with the partition function
of the Hamiltonian in the moving frame Ĥv = Ĥ − v · P̂,

〈Px〉v =
1

Z
Tr[P̂xe

−βĤv ] (2.65)

For obtaining the expression of superfluid fraction with Eq. (2.64), we need to compute
the derivation of Eq. (2.65) to the velocity v. Thanks to the Duhamel formula

∂te
Â(t) =

∫ 1

0
esÂ(t)∂tÂ(t)e(1−s)Â(t)ds (2.66)

and applying it by treating Ĥ(v) as Â(t), we find the derivation of the trace reads

∂vTr[P̂xe
−βĤv ] = Tr[P̂x

∫ β

0
eτĤ(v)P̂xe

(β−τ)Ĥ(v) dτ ] =

∫ β

0
Tr[P̂xe

τĤ(v)P̂xe
(β−τ)Ĥ(v)] dτ.

(2.67)
Combining Eq. (2.67) with Eq. (2.64) and Eq. (2.65), we find

ns = n− 1

mLd

∫ β

0
dτ 〈Px(τ)Px(0)〉. (2.68)

52



2. Continuous-space quantum Monte Carlo for Bosons

Here, one may notice that the key point to proceed is to calculate the correlator in the
integral.

Now, we rewrite the integral in Eq. (2.68) in the path-integral representation. Replacing
the integral

∫ β
0 by the discrete sum ε

∑J−1
j=0 and taking advantage of the translational

invariance of the imaginary time axis, we write∫ β

0
dτ 〈Px(τ)Px(0)〉 =

ε

J

∑
j,j′

〈Px(j′ε)Px(jε)〉 (2.69)

This equation cannot be estimated by Eq. (2.15) because it has an explicit dependence on
the imaginary time. Therefore, we need to compute explicitly the correlator at different
imaginary times. Separating the terms j 6= j′ and j = j′, we find

ε

J

∑
j,j′

〈Px(j′ε)Px(jε)〉 =

ε

J

∑
j 6=j′

〈
〈Rj+1|P̂xe−εĤ |Rj〉
〈Rj+1|e−εĤ |Rj〉

〈Rj′+1|P̂xe−εĤ |Rj′〉
〈Rj′+1|e−εĤ |Rj′〉

〉
Z

+
ε

J

∑
j

〈
〈Rj+1|P̂ 2

xe
−εĤ |Rj〉

〈Rj+1|e−εĤ |Rj〉

〉
Z

(2.70)

Using the primitive approximation, one can then expand the evolution operator e−εĤ . The
contribution from the potential terms cancels out and the result only depends on the free
density matrix. The matrix element for single particles are

〈r′|p̂xe−εĤ0 |r〉 =
im

~ε
(x′ − x)〈r′|e−εĤ0 |r〉 (2.71)

〈r′|p̂2
xe
−εĤ0 |r〉 =

[
− (

m

~ε
)2(x′ − x)2 +

m

ε

]
〈r′|e−εĤ0 |r〉 (2.72)

Combining Eq. (2.71) with Eq. (2.70) and comparing it with Eq. (2.46), we find the final
expression

ns =
1

βLd
m

~2
〈W 2

x 〉Z . (2.73)

Here, we realise that the superfluid fraction is linked with the winding number estimator.
Thus, the worm algorithm which provides us with an efficient modification of configurations
is important to study the superfluid density. Moreover, the statement here is restricted
along x-axis only but one can extend it for other directions.

2.3.3 Green’s function

In the previous section, we mentionned that the exploration of the G-sector is mainly for
improving the sampling efficiency in the Z-sector. However, the G-sector itself can also
be used for calculating interesting physical quantities. In particular, it gives access to the
Matsubara Green’s function

G(r1, r2, τ) = 〈T ψ̂(r1, τ)ψ̂†(r2, 0)〉 (2.74)

with the function Â(τ) = eτĤÂe−τĤ the Heisenberg representation of operator Â in imag-
inary time and T the time-order operator. The connection of this quantity to the G-sector
is natural, since the worm itself corresponds to create a particle at time jM and annihilate
it at jI . In the following, we assume the interested imaginary time τ is located at the Q-th
timeslice, namely τ = Qε. Here, we only treat the case τ > 0 while the derivation remains
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the same for the opposite case. We first insert an identity at timeslice Q into Eq. (2.74)
and find

G(r1, r2, τ) =
1

Z

+∞∑
N=0

e−βµN
∫

dRQdR0〈R0|Ŝe−(J−Q)εĤ |RQ〉〈RQ|ψ̂(r1)e−QεĤ ψ̂†(r2)|R0〉.

(2.75)
We write the creation operator in the first quantization picture and apply it on the vector
|R〉 which contains N particles. It creates a particle in position r and generate ψ̂†(r)|R〉 =
Ŝ|R, r〉. Then, the integrand in Eq. (2.75) becomes

〈R0|Ŝe−(J−Q)εĤ |RQ〉〈RQ, r1|e−QεĤ Ŝ|R0, r2〉. (2.76)

Cutting the propagator terms into slices of step ε, one can recover the configuration weight
Eq. (2.49) up to a factor. Then, the green function can be written as

G(r1, r2, τ) =
1

Z

e−Qεµ

CJ

∫
GQ

dCW(C)δ(r1 − rI)δ(r2 − rM) (2.77)

Here, one should notice that the integral is performed in the subspace GQ of the G-sector
where the distance between the worm endpoints in imaginary time, jI−jM mod [J ], equals
Q. Dividing the r.h.s. of the above equation by the partition function of the Q sector, we
finally obtain the Monte Carlo estimator

G(r1, r2, τ) =
e−Qεµ

CJ

〈δ(GQ)〉W
〈δ(Z)〉W

〈δ(r1 − rI)δ(r2 − rM)〉GQ (2.78)

The symbol δ(Z)(C) equals 1 if C is in the Z-sector and 0 otherwise. A similar definition
holds for δ(GQ). In practice, we divide our space with hypercubes of linear size a similarly
as for the density estimator. With the statistics of the bins, we calculate the Green function
at imaginary time τ = Qε from the histogram of the endpoints of the worm for fixed worm
length Q. This discretization may introduce systematic error and it can be improved with
the method mentioned in Refs. [58,59].

2.3.4 Correlation function and momentum distribution

The first order correlation function, also known as one-body density matrix, is defined by

g(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 (2.79)

It measures the spatial coherence of the system and gives very important information about
the quantum phase of the cold atom system. It can be given by the Green function at
equal time, thus g(1)(r, r′) = G(r, r′, 0). Then, the estimator writes

g(1)(r, r′) =
1

CJ

〈δ(G0)〉W
〈δ(Z)〉W

〈δ(r1 − rI)δ(r2 − rM)〉G0 (2.80)

Here, the subspace G0 indicates that Ira and Masha are located on the same timeslice.
Another related quantity which can be calculated here is the momentum distribution.

It’s defined by n(k) = 〈â†kâk〉, where â
†
k is the creation operator which adds a particle

with momentum k. It measures the particle density with momentum k of the system.
This quantity is important since it can be measured from experiments directly with the
time-of-flight in ultracold atom gases for instance. Thanks to the relation with the field
operator â†k = 1

Ld/2

∫
ψ̂†(r)eik·rdr, we find

n(k) =
1

Ld

∫
〈ψ̂†(r)ψ̂(r′)〉eik·(r−r′) drdr′. (2.81)
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Here, one may realize that the momentum distribution is simply the Fourier transform
of the one-body correlation function. We normalize the momentum distribution with the
condition

∫
dk
2πn(k) = n, with n the average density of the system. Inserting Eq. (2.80)

into Eq. (2.81), we find

n(k) =
1

CJLd
〈δ(G0)〉W
〈δ(Z)〉W

〈eik·(rM−rI)〉G0 . (2.82)

Conclusion

In this chapter, we introduced the quantum Monte Carlo technique for bosons which
is used for the rest of the manuscript. We described the standard PIMC approach which
maps the quantum problem into classical interacting polymers thanks to Feynman path
integral representation. It evolves in an additional dimension called imaginary time. The
weight of the polymer configurations are calculated by the many-body propagator, com-
bined with several analytical and numerical techniques such as Trotter approximation,
pair-product approximation and etc. Then, the physical quantities are computed by the
Markov chain Monte Carlo based on the Hasting-Metropolis algorithm. We introduced the
worm algorithm which implements the PIMC with open worldlines. It allows for a more
efficient way of sampling and provides new estimators like the Green function.

With the numerical tools introduced in this chapter, we can now investigate the physical
properties for the 1D bosonic systems that is difficult to reach by other methods. In the
remainder of this thesis, we shall make extensive us of it.
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Chapter 3

Tan’s contact for trapped
Lieb-Liniger bosons at finite
temperature

Describing strongly correlated quantum systems with universal relations is one of the main
challenges for modern many-body physics. For strongly-correlated systems with pointlike
interactions, it has been shown that for the momentum distribution n(k), the large mo-
mentum tails always show an algebraic behavior [121, 122], n(k) ' C/k4. We call the
weight C the Tan contact. It is a fundamental quantity which can be related to many
useful thermodynamic properties of quantum systems. A number of such relations have
been derived by Shina Tan [122–124]. Nevertheless, one may notice that the first calcula-
tion for the k−4 tail of zero temperature gas is indicated in [121]. The existence of the
k−4 scaling is universal for the many-body systems with short-range interactions, which
means it holds irrespective of the dimension, temperature, interaction strength as well as
the quantum statistics (bosons or fermions).

In the recent years, the study of the Tan contact attracts a lot of attention, mainly for
three reasons.

First, there is a direct access from experiment. Time-of-flight (TOF), known as one of
the most widely used techniques in cold atom experiments, can measure the full momentum
distribution of the atomic systems. By probing accurately the data at large k tail, one
can directly extract the contact from the TOF data. For instance, in the experiment
of Ref. [125], they prepare a 3D 4He BEC system and manage to detect the momentum
distribution with a good accuracy over 6 orders of magnitudes decaying, see Fig. 3.1.(a). It
shows that in principle one can measure the momentum distribution accurate enough and
obtain the value of the contact. In this experiment, however, the value of the contact is not
measured owing to the collisions with atoms in different internal states. There also exists
other examples of measurement such as the one in Ref. [126]: with the radio frequency
spectroscopy, they are able to detect the contact for 3D 85Rb system at various scattering
length, see Fig. 3.1.(b). A series of detection in fermionic systems have also been performed
in recent years [127–132]. Moreover, thanks to the development of optical lattices and atom
chips [9,12,133], it provides the possibility to measure the Tan contact in lower dimension
and different regimes.

Second, the Tan contact can give fruitful information about the many-body systems
which is hard to detect with standard techniques. With the so-called Tan sweep rela-
tions [123], it gives the link between the contact and other macroscopic thermodynamic
quantities such as the grand potential Ω, the pressure P and the entropy S. Moreover,
the microscopic version of the relation connects the contact with the interaction energy
of the system, which is normally hard to measure in the cold atom systems. Therefore,
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Figure 3.1: Two examples of the potential detection for the Tan contact. (a). The
detection in Ref. [125], where the contact is found from the TOF for 3D 4He systems.
(b). The detection in Ref. [126], where the contact is found from the radio frequency
spectroscopy for 3D 85Rb systems.

one key motivation to study the contact is that the measurement of the contact gives the
possibility to access the information about the quantities mentioned above, which are hard
to detect with normal measurement techniques.

Third, the contact is valuable for characterizing different regimes in 1D. Interacting 1D
bosons displays different physical regimes at varying interactions and temperatures. The
probe of the contact could possibly serve for charaterizing those regimes. Thus, it will be
interesting to investigate the behavior of the contact for 1D interacting bosons at various
interactions and temperatures. While the homogeneous 1D gas is exactly solvable by Bethe
ansatz, the trapped system is not integrable, therefore requiring approximate or ab initio
numerical approaches. Previously, there have been fruitful theoretical studies on contact in
different limits, such as the homogeneous bosons at finite temperature [134, 135], trapped
bosons at zero temperature [17, 121], and at finite temperature in the Tonks-Girardeau
limit [18]. Several examples of certain set of parameters for the momentum distributions of
strongly interacting, trapped bosons at finite temperature were also computed by quantum
Monte Carlo methods [136]. However, a complete characterization for trapped Lieb-Liniger
bosons at finite temperature is still lacking.

In this chapter, we study the Tan contact for Lieb-Liniger bosons at finite temperature,
in the presence of a harmonic trap, at any interaction and temperature [137]. We first prove
that the contact follows a two-parameter scaling, and calculate it with a combination of
Yang-Yang thermodynamics with local density approximation (LDA), as well as QMC
techniques. Then, we identify the behavior of the contact in various regimes of interaction
and temperature. For the weakly-interacting regime, the contact is well described by the
Gross-Pitaevskii equation and Bogoliubov excitations. More interestingly, for the strongly-
interacting regime, the temperature dependence presents a maximum which provides a clear
signature of the fermionization of the bosons. Finally, we compute the full momentum
distribution in various regimes and analyze the conditions for experimental observation.

Before going into the details about our results, we shall present here several important
equations for the contact. The first one is the Tan sweep relation linked with the thermo-
dynamic quantities. In Ref. [123], S. Tan gives the first sweep relation of the contact for
3D fermions, which links it to the total energy E of the system, it writes

− dE

d(1/a)
=

~2C

2πm
(3.1)

with a the 3D scattering length of the system. Suggested by Ref. [138], one can rewrite
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the relation in lower dimensions. For one-dimensional bosons, we get

C =
4m

~2

∂Ω

∂a1D

∣∣∣∣
T,µ

(3.2)

where Ω is the grand potential. Moreover, one can extend the sweep relation to a form
linked with the interaction energy. Using the grand canonical description of the grand
potential, we can rewrite Eq. (3.2) as

C =
2gm2

~4
〈Hint〉, (3.3)

with 〈Hint〉 the interaction energy of the system. This quantity is normally hard to measure
separately from the total energy and linked to the pair correlation g2(x).

3.1 Two-parameter scaling function

The Tan contact of trapped Lieb-Liniger bosons at finite temperature should naturally
depend on four parameters. They are the total number of particles N , the temperature
T , the trap frequency ω and the coupling constant g. In this section, we firstly show
that the contact can actually be written as a scaling function of only two parameters,
which characterizes the regimes of the temperature and interaction correspondingly. Then,
we calculate the scaling function using two different techniques, namely the Yang-Yang
thermodynamics and quantum Monte Carlo. The results of the two different methods are
complementary to each other and they also fit well.

3.1.1 The two-parameter scaling

Derivation of the grand potential

In this chapter, we consider a gas of quantum particles, subjected to contact interactions
and in the presence of a harmonic confining potential V (x) = mω2x2/2, in arbitrary
dimension d. Here m is the atomic mass, x is the d-dimensional coordinate, and ω is the
trap angular frequency. The dynamics is governed by the first-quantization Hamiltonian

H =

N∑
j=1

[
− ~2

2m

∂2

∂x2
j

+ V (xj)

]
+ g

∑
j<`

δ(xj − x`), (3.4)

where xj and x` span the ensemble of N particles. For proceeding, we start with the
homogenous case V (x) = 0. In any dimension but d = 2, the coupling constant g in the
Hamiltonian defines the natural length scale asc ∼ (2mg/~2)1/(d−2), known as the scattering
length. In dimension d = 2, the rescaled coupling constant mg/~2 is dimensionless. But
one can recover the following derivation with the same logic which we will not give details.
First of all, working in the grand-canonical ensemble, we write the expression for the
grand-potential

Ω = −kBT ln
[
Tr e−(H−µN )/kBT

]
(3.5)

where kB is the Boltzmann constant, N the particle number operator, and µ the chemical
potential. The other thermodynamic properties can be derived from it. Here, We propose
a rescaling approach by using kBT as the unit energy and, correspondingly, the thermal
de Broglie wavelength λT =

√
2π~2/mkBT as the unit length. Then, we can readily

find that the grand potential Ω divided by the temperature is a universal function that
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Figure 3.2: Sketch of the LDA. Here, we present a one-dimensional atom system trapped
by a harmonic potential. The brown curve presents the trap potential which is a parabola,
while the black curve stands for the density distribution of the atoms.

depends only on the two dimensionless quantities α = µ/kBT (logarithm of the fugacity)
and ξT = |asc|/λT ,

Ω

kBT
=
Ld

λdT
Ah

(
µ

kBT
,
|asc|
λT

)
, (3.6)

with Ah a dimensionless function stemming from Eqs. (5.9) and (3.5). Because all the
thermodynamic quantities can be found from Ω by partial derivatives, the scaling forms of
the thermodynamic quantities then follow from Eq. (3.6)

Then, we move to a gas under harmonic confinement which applies to a cold gas in
an optical or magnetic trap, within harmonic approximation. Here, the additional energy
scale ~ω emerges, associated to the length scale aho =

√
~/mω. In this situation, we

need to use the local density approximation (LDA). A simple explanation of the LDA is
illustrated by Fig. 3.2. For a fixed position point x1, instead of saying that it’s a point of
inhomogeneous system with chemical potential µ1 and trap potential V (x1) = 1

2mω
2x2

1,
we treat it as a locally homogeneous point at the chemical potential µ′1 = µ1−V and trap
potential V = 0. Within LDA, we show here that the thermodynamic properties of the
harmonically trapped gas depend again on only two parameters, found as combinations of
N , asc, aho, and kBT . To proceed, we first find the LDA expression for the grand potential,

Ω

kBT
=

∫
ddx

λdT
Ah [µ− V (x), T, g] . (3.7)

Using the scaling form (3.6) and rescaling the position x in each of the position by the
quantity 2

√
πa2

ho/λT in the integral, we then find

Ω

kBT
=

(
aho
λT

)2d

A
(

µ

kBT
,
|asc|
λT

)
. (3.8)

with A a dimensionless function stemming from Ah. As a result, since all thermodynamics
quantities can then be computed from Eq. (3.8), we conclude that any thermodynamic
quantities in appropriate unit can be written as a function of these two parameters. For
example, the number of particles in found using the thermodynamic relation

N = − ∂Ω

∂µ

∣∣∣∣
T,asc

. (3.9)

Combining with Eq. (3.8), it yields

N =

(
aho
λT

)2d

AN
(

µ

kBT
,
|asc|
λT

)
(3.10)
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with AN a dimensionless function stemming from A.
Finally, we focus on the case d = 1, which is the situation for Lieb-Liniger bosons.

Then, Eq. (3.8) can be written as

Ω

kBT
=
(aho
λT

)2A( µ

kBT
,
a1D
λT

)
. (3.11)

Also, taken d = 1 in Eq. (3.10), we find the number of particles N writes

N = (
aho
λT

)2AN
( µ

kBT
,
a1D
λT

)
. (3.12)

Changing variables

In actual experiments, the observed parameters are the temperature T , the number of
particles N , the scattering length a1D and the trap frequency ω. There is no direct access
to the chemical potential µ. Therefore, it is fruitful to change the variables in the scaling
function into the experimental parameters by replacing µ. In Eq. (3.12), we can normalize
the right-hand side’s factor to 1, and find the left-hand side write Nλ2

T /a
2
ho. Then, one can

rewrite it by exchanging the variables on the two counterparts and find

µ

kBT
= U

(Nλ2
T

a2
ho

,
a1D
λT

)
(3.13)

with U some function stemming from Eq. (3.12). Equivalently, we can rewrite the two
parameters and finally find

ξγ = −aho/a1D
√
N, (3.14)

ξT = −a1D/λT , (3.15)

Here, the parameter ξγ is simply the square root of the inverse of the first parameter in
Eq. (3.13). With the two new parameters, we can also rewrite Eq. (3.13) as

µ

kBT
= Ũ(ξγ , ξT). (3.16)

Then, for any scaling function A we calculated previously, it can write

A
( µ

kBT
,
a1D
λT

) = A
(
Ũ(ξγ , ξT), ξT

)
= Ã(ξγ , ξT) (3.17)

For instance, the final scaling function of the grand potential writes

Ω

kBT
=
(aho
λT

)2Ã(ξγ , ξT) (3.18)

One may notice that these two parameters ξγ and ξT will be the final parameters we use,
and they characterize the interaction and temperature strength for the systems.

Application to the Tan contact

Finally, we can apply the two parameters scaling to the contact. First, by inserting
Eq. (3.11) into the Tan sweep relation Eq. (3.2), we find

C =
a2
ho

a5
1D

AC
( µ

kBT
,
a1D
λT

) (3.19)

Using Eq. (3.16) and writing µ/kBT as a function of ξγ and ξT, it yields

C =
a2
ho

a5
1D

f (ξγ , ξT) , (3.20)
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Then, with the help of Eq. (3.12) and the fact that ξT = −a1D/λT , we can replace the
parameter a1D by N in the prefactor of Eq. (3.20) and finally find

C =
N5/2

a3
ho

f (ξγ , ξT) , (3.21)

with f a dimensionless function. In the following, we shall use this two-parameter scaling
form and calculate in detail the function f . Note that the choice of the scaling parameters is
not unique For instance, one can also choose 2mkBT/(~2n2

0) andmg/(~2n0) as in Ref. [136],
with n0 being the density at the trap centre. One can relate our scaling parameters to those
ones since N is always function of n0 and aho. Moreover, the procedure used to find the
scaling form (3.21) is general and can be straightforwardly extended to higher dimensions
and Fermi gases.

Here, one should notice that the whole derivation is working within the grand-canonical
ensemble. This is the same with the YY calculation mentioned in section 1.2.3 as well as
the PIMC technique presented in Chapter 2 . Therefore, in the next sessions, we compute
the scaling function with both of these two methods.

3.1.2 Computing the scaling function using the Yang-Yang theory

Now, we want to find the scaling function f for interacting 1D bosons. In this subsection,
we propose to tackle this issue by combining the YY thermodynamics with the local density
approximation (LDA), although the validity of LDA for 1D bosons are questionable. We
shall further implement the calculation of QMC to verify its validity in the next subsection.

Yang-Yang thermodynamics for 1D bosons

Here, we recall the Yang-Yang equation for 1D homogeneous bosons which we have
introduced in section 1.2.3. It writes

ε(k) =
~2k2

2m
− µ− kBT

2π

∫ +∞

−∞
dq

g

g2/4 + (k − q)2
ln

[
1 + e

− ε(q)
kBT

]
. (3.22)

where ε(k) is the dress energy, µ is the chemical potential, g the coupling constant and T
is the temperature. The term ε(k) is related to the ratio of density between particle and
holes at quasi-momentum k, and it is linked with many thermodynamic quantities, such
as the grand potential density

Ωh/L = −kBT
∫

dq

2π
ln

[
1 + e

− ε(q)
kBT

]
. (3.23)

Moreover, based on the solution of Ω, one can find the particle density by Eq. (3.9).
Now, we will explain in detail how we solve the Yang-Yang equations numerically. The

procedure is the following:

• 1. For a given set of values (T, g, µ, ω), we start with a initial setup ε0(k), which is
not far from the true solution. In principle, one can start with any ε0(k). However,
for practical purpose, it is better to start from a set not far from the solution. It can
be done by starting at the zero temperature and strongly-interacting limit, and then
calculating successively the solutions for decreasing g and increasing µ and T .

• 2. Inserting the initial values of ε0(k) into the r.h.s. of Eq. (3.22), we obtain a in
ε1(k) from the l.h.s.

• 3. With ε1(k), redo the step 2, we find ε2(k). Then, similarly, we get ε3(k)... and
εn(k).
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• 4. After m loops, when εm(k) are converged with
∫
|εm(k)−εm−1(k)| < 10−3kBT , we

stop the iterations and the quantity εm(k) is a good approximation of the solution
we want. Here, one should notice that the convergence condition may be more strict
for special groups of parameters.

Then, with the final solution of ε(k), we can calculate the thermodynamic quantities we are
interested. For instance, we can get the grand potential Ω and density n from Eq. (3.23)
and Eq. (3.9). One successive example of solving the Yang-Yang thermodynamics has been
shown in sec. 1.2.3, see Fig. 1.4 and its discussion.

Then, we can calculate the thermodynamic quantities in the trapped case with LDA.
First, we shall write the grand potential of the inhomogeneous system by doing the integral
of the local grand potential density. In 1D, Eq. (3.7) yields

Ω =
1

L

∫
dxΩh(µ− V (x), g, T ), (3.24)

with the potential V (x) = mω2x2/2 for a harmonic trap. Then, we can also write the
number of particles by integrating the density,

N =

∫
dx n(µ− V (x), g, T ). (3.25)

Finally, inserting Eq. (3.24) the sweep relation Eq. (3.2), we can find the Tan contact for
a trapped system.

The Yang-Yang solution for the Tan contact

With the procedure of Yang-Yang calculation we discussed above, we calculate the
scaling function f , namely the rescaled contact a3

hoC/N
5/2 as a function of the parameters

ξγ and ξT, for 1D bosons under harmonic confinement from YY theory and LDA. The final
result is shown in Fig. 3.3. Here, the parameters ξγ covers the weak to strong interaction
regimes when it goes from 10−2 to 101. Similarly for ξT since it scans over the low to
high temperature regimes when ranges from 10−2 to 102. For low temperature (small ξT),
as ξγ increases, the rescaled contact increases slower and slower, and reaches a constant
in the end. This behavior fits with the Bethe ansatz prediction of the zero temperature
limit in Ref. [121]. Conversely, for high temperature (large ξT), the rescaled contact keeps
increasing while ξγ increases. Moreover, in the weakly-interacting regime (small ξγ), only
a weak temperature dependence is observed. However, for the strongly-interacting regime
(large ξγ), when the temperature increases, the rescaled contact firstly behaves like a
constant, then increases with T , and finally decreases with T, where an interestingly
non-monotonic temperature dependence appears.

Here, one should notice that the results presented here need to be checked owing to
two reasons. On the one hand, the presence of quasi long-range correlation in low tem-
perature 1D Bose gases may break the LDA calculation. On the other hand, the Y-Y
thermodynamics is valid in the thermodynamic limit and our calculation is performed in
presence of a harmonic trap, i.e. finite size and finite number of particles. Therefore, it’s
not clear that for the system and quantity we study, whether the LDA is correct or not.
Thus, beyond calculating the result from Y-Y dynamics combined with LDA, it is useful
to check its validity by comparing with the QMC and true experimental data.

3.1.3 Validation of the scaling function using quantum Monte Carlo

To validate the two parameter scaling and the accuracy of the LDA, we perform ab initio
quantum Monte Carlo (QMC) calculations. We use the path integral Monte Carlo with
worm algorithm implementation as described in Chapter 2. The continuous-space path
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integral formulation allows us to simulate the exact Hamiltonian in Eq. (5.9), for an arbi-
trary trap V (x), within the grand-canonical ensemble. With a certain input of chemical
potential µ, temperature T , interaction strength g and trap frequency ω, the statistical
average of the number of worldlines yields the total number of particles N . By cutting the
system into small pixels, we can further compute the density profile n(x). Moreover, the
interaction energy 〈Hint〉 can be calculated from the statistical average of the action U .
The U can be extracted from the numerics restricted in the Z-sector 〈U〉Z . By definition,
it equals to the sum of the external potential energy E1 and interaction energy E2. Then,
with the calculated density profile n(x) from the QMC, one can obtain the term E1 by
E1 =

∫
dx V (x)n(x). Thus, we can find the interaction energy by the difference of the two

terms

E2 =
〈U〉Z
β
−
∫
dx V (x)n(x) (3.26)

Finally, the contact is found using the thermodynamics relation Eq. (3.3).

Finite-ε scaling of QMC computation

In QMC calculations, the worldlines are cut into an adjustable number M of slices of
imaginary propagation time ε = 1/MkBT and sampled efficiently using worm algorithm
[58, 59]. As explained in Chapter 2, the QMC results are exact only in the ε → 0 limit.
In order to find the proper final results, we actually perform a finite-ε analysis. For each
set of physical parameters (interaction strength, chemical potential, temperature, and trap
frequency), we perform a series of QMC calculations for different values of ε and extrapolate
the result to the limit ε→ 0. Here, we give the detail of such an analysis.

For most of the calculations, we are able to use a sufficiently small value of ε and a
linear extrapolation is sufficient. We fit the QMC data with a3

hoC/N
5/2 = a + b(ε/β),

with a and b as fitting parameters. Then, we use the quantity a as the final result for
a3
hoC/N

5/2. An example is shown on the left panel of Fig. 3.4 below. In this case, the
linear extrapolation only corrects the QMC result for the smallest value of ε (ε/β = 0.01)
by less than 4%.

In some other cases, however, the linear fit is not sufficient for extrapolating correctly
the QMC results. This occurs mostly in the strongly-interacting regime for low to in-
termediate temperatures. In such cases, we use a third-order polynomial, a3

hoC/N
5/2 =

a+ b(ε/β) + c(ε/β)2 + d(ε/β)3, to extrapolate the finite-ε numerical data. An example is
shown on the right panel of Fig. 3.4. In this case, the extrapolation corrects the QMC

Figure 3.3: Reduced Tan contact a3
hoC/N

5/2 for 1D Bose gases in a harmonic trap,
versus the reduced temperature ξT = −a1D/λT and the reduced interaction strength ξγ =
−aho/a1D

√
N . The results are found using thermal Bethe ansatz solutions combined with

local density approximation.
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Figure 3.4: Quantum Monte Carlo (QMC) results for the reduced Tan contact for ξT =
|a1D|/λT = 0.28 and ξγ = aho/|a1D|

√
N = 0.1 (left panel) and for ξT = 0.0085 and ξγ = 4.47

(right panel). The red points show the QMC results for various values of the dimensionless
parameter ε/β, where β = 1/kBT is the inverse temperature, together with a linear (left
panel) or third-order polynomial (right panel) fit.

result for the smallest value of ε (ε/β = 0.0005) by roughly 25%.
Nevertheless, for all the QMC results reported in this thesis, we have performed a

systematic third-order polynomial extrapolation, even when a linear extrapolation was
sufficient.

The validation of the scaling function

For checking the validation of the scaling as well as LDA, we check in detail the QMC
data along cuts on Fig. 3.3. In Fig. 3.5(a), we plot the contact a3

1DC as a function of
the interaction strength ξγ for various values of the temperature via the quantity ξT =
−a1D/λT = 0.0085 (blue), 0.28 (green), and 18.8 (red). For each ξT, we also try to cover
a broad set of parameters, which corresponds to the various symbols |a1D|/aho = 9.5 (red
squares), 0.032 (red diamonds), 1.41 (green squares), 0.14 (green diamonds), 0.14 (blue
squares), and 2.02 (blue diamonds). Here, one may notice that the scaling of the contact

Figure 3.5: Tan contact versus the scaling parameters from QMC calculations (points).
The contact is rescaled in two different ways: (a). The Monte-Carlo scaling a3

1DC. (b).
The scaling in the function f : a3

hoC/N
5/2. The colors indicate the fixed temperatures

ξT = −a1D/λT = 0.0085 (blue), 0.28 (green), and 18.8 (red). The different symbols indicate
different set of parameters, namely |a1D|/aho = 9.5 (red squares), 0.032 (red diamonds),
1.41 (green squares), 0.14 (green diamonds), 0.14 (blue squares), and 2.02 (blue diamonds).
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Figure 3.6: Reduced Tan contact a3
hoC/N

5/2 versus the scaling parameters, as found from
LDA (solid lines) and QMC calculations (points). (a) Reduced contact versus the inter-
action, ξγ = −aho/a1D

√
N , at the fixed temperatures ξT = −a1D/λT = 0.0085 (blue), 0.28

(green), and 18.8 (red). (b) Reduced contact versus the temperature via the quantity ξT
at the fixed interaction strengths ξγ = 10−2 (blue), 1.58 × 10−1 (green), and 15.0 (red).
The black dashed, red dotted, and red dash-dotted lines correspond to Eqs. (3.54),(3.38),
and (3.49) respectively. The QMC data are found from various sets of parameters, corre-
sponding to the various symbols.

a3
1DC is not the scaling we proposed and just directly what is returned by the numerical

QMC codes. Apparently, without the proper scaling, the data for a fixed ξT stays apart.
Thus, we plot the same data with the scaling we proposed a3

hoC/N
5/2 in Fig. 3.5(b). We

find the data points for the same ξT collapse and get aligned. It confirms that a3
hoC/N

5/2

is a function of the two parameters ξT and ξγ , hence validating the scaling Eq. (3.21).

The validation of the local density approximation

Moreover, in Fig. 3.6(a), we plot on top of the Fig. 3.5(b) the results from YY+LDA
(solid lines) for a quantitative comparison. Clearly, the QMC data falls onto the LDA
lines. We even perform the computation inversely, i.e. the rescaled contact as a function of
ξT for various values of ξγ in Fig. 3.6(b). Different colors represent the interaction strength
ξγ = 10−2 (blue), 1.58 × 10−1 (green), and 15.0 (red). Also, the different symbols stand
for different sets of parameters |a1D|/aho = 10 (blue squares), 31.62 (blue diamonds), 0.45
(green squares), 1.41 (green diamonds), 75.0 (red squares) and 47.4 (red diamonds). We
still find the collapsing of the QMC data points from different sets of parameters validates
the scaling function, and the matches between QMC and YY+LDA results prove that
the LDA is very accurate in computing the contact for the trapped LL model. Quite re-
markably, the agreement holds also in the low-temperature and strongly interacting regime
where the particle number is as small as N ' 5, within less that 3%.

3.2 The behavior of the contact and regimes of degeneracy

In this section, we study in detail the behavior of the contact in different regimes. In fact,
the Tan contact is a good quantity to characterize different regimes of bosons, at least
in 1D. The function f behaves very differently in different regimes. We firstly recall the
known the results for the homogeneous case, and then move to the study of our scaling
function in the trapped case. By studying the contact as a function of the two parameters
ξγ and ξT, one can recognize which regime the system is in. In each regime, we can find
the function f analytically under certain approximations. Then, we compare it with our
numerical results and find they fit well with each other. Finally, we especially announce
the onset of the maximum in the strongly-interacting regime, which is a signature of the
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Figure 3.7: The local correlation g(2) versus interaction γ at different temperature τ . The
solid curves are exact numerical results while the dashed lines are analytical formulas. The
plot is from [134].

crossover to fermionized regime.

3.2.1 The behavior of the contact in the homogeneous case

Before discussing the behavior of the contact for the 1D trapped bosons, we firstly present
the known results of the contact in homogeneous case. In [134], the authors studied
the two-body correlation function g(2) = 〈Ψ̂†Ψ̂†Ψ̂Ψ̂〉/n2 for 1D homogeneous bosons in
various regimes, with Ψ̂ the field operator. The interaction and temperature parameters
are chosen as the Lieb-Liniger parameter γ and the reduced temperature τ = T/Td with
Td = ~2n2/2m the degeneracy temperature. The result is shown in Fig. 3.7.

In the case of 1D homogeneous bosons, the Tan contact C can be mapped to the
quantity g(2) by the relation

g(2) =
~4

m2g2n2L
C. (3.27)

Therefore, the results shown in Fig. 3.7 reflects the behavior of the contact. In low tem-
perature limit (see for instance τ = 0.001), the result fits well with the prediction of Som-
merfield expansion of ideal fermions in the strongly-interacting regime, while it matches
the Gross-Pitaevskii prediction in the weakly-interacting regime. In the high temperature
limit (see for instance τ = 1000), the quantum degeneracy is broken and the behavior
fits well with what is predicted by the decoherent bosons. Here, we would like to draw
the attention of readers to an important point. According to the results in Fig. 3.7, at
any regimes, for a fixed coupling constant g and particle density n, the Tan contact al-
ways increases with temperature. In the next subsection, we will see that the contact
behaves non-monotonically due to the influence of the harmonic trap, where an interesting
phenomenon appears.

3.2.2 The scaling function in different regimes

The regimes of degeneracies for the 1D trapped bosons have been discussed in Refs. [70,134],
with another pair of parameters N and T/~ω and a fixed value −aho/a1D = 10. Here, we
extend the discussion to more general cases using the two scaling parameters we mentioned
above, namely the temperature parameter ξT and the interaction parameter ξγ , see Fig. 3.8.
In the following, we will explain the condition of each regime, and then give the analytical
form for the contact.
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Figure 3.8: The regime of degeneracy for 1D Lieb-Liniger bosons at finite temperature,
in presence of a harmonic trap.

Strongly-interacting regime at low temperature ( ξT . ξ−1
γ . 1)

As explained in the first chapter, the strongly-interacting bosons at low temperature
behaves like ideal fermions, which is also known as the Tonks-Girardeau gases. There are
two conditions for this regime. On the one hand, the Lieb-liniger parameter γ0 = mg/~2n0,
with n0 the density in the centre of the trap, should be large enough, i.e. γ0 & 1. Since the
density decreases from the trap center to edges, it guarantees that all the gas is strongly-
interacting. On the other hand, the temperature T should be smaller than the quantum
degeneracy temperature for fermions,

Td =
~2n2

0

2mkB
. (3.28)

This ensures that the equivalent ideal Fermi gas is strongly degenerated and weakly affected
by temperature effects. It can thus be considered at zero temperature. Combining the two
conditions and using our scaling parameters, we find

ξT . ξ−1
γ . 1. (3.29)

In this regime, the gas is strongly degenerated and the density profile is frozen by Pauli
blocking to the fermionic Thomas-Fermi (TF) form

n(x) = n0

√
[1− (x/LTF)2], (3.30)

with n0 =
√

2mµ/π2~2 the density in the center of the trap, LTF =
√

2µ/mω2 the TF
half-length and µ the chemical potential. Integrated Eq. (3.30) for x in range [−LTF, LTF],
we find the total number of particles follows N ∼ n0LTF. Since n0 ∼ LTF/a

2
ho, it yields

N ∼ L2
TF/a

2
ho. Thus, the typical density yields n ∼ N/LTF ∝

√
N/aho Moreover, the

kinetic energy density in this regime writes

eK(x) = π2~2n(x)3/2m. (3.31)
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The contact can then be found from the Bose-Fermi mapping [139]

C = (4m/~2)

∫
dxn(x)eK(x). (3.32)

Inserting the Eq. (3.30) and Eq. (3.31) into the Fermi formula above and computing the
integration, we find

C =
256
√

2

45π2

N5/2

a3
ho

, ξT . ξ−1
γ . 1. (3.33)

This formula also matches the results in Ref. [121], where the authors obtain it from the
Bethe ansatz result of the strong interaction limit.

Strongly-interacting regime at intermediate temperature (ξ−1
γ . ξT . 1)

When we are in the condition

1 .
T

Td
. γ2

0 , (3.34)

the temperature is larger than the Fermi degeneracy temperature. Moreover, rewriting
T/Td . γ2

0 , we find a1D . λT , which indicates the 1D scattering length a1D is still smaller
than the De Broglie wavelength λT . In this regime, both quantum and thermal fluctuations
are dominated by repulsive interactions and the gas is still fermionized although with weak
degeneracy. Thus, the gases can be treated as weakly-degenerate Fermions. Rewriting the
condition of the regime Eq (3.34) with our scaling parameters, we find

ξ−1
γ . ξT . 1 (3.35)

Since the gas is weakly degenerate, the kinetic energy density of the equivalent ideal Fermi
gas follows from the equipartition theorem of the kinetic part, i.e.

eK(x) =
n(x)kBT

2
(3.36)

and the density profile can be taken as the noninteracting one,

n(x) =

(
N√

2πLth

)
exp(−x2/2L2

th) (3.37)

with Lth =
√
kBT/mω2. The contact is then found from the Bose-Fermi mapping Eq. (3.32).

It yields

C =
2
√

2N5/2ξγξT
a3
ho

, ξ−1
γ . ξT . 1, (3.38)

which increases as
√
T with temperature. It thus recovers the results of Ref. [18] by a

different approach where the regime is called non-degenerate fermions.

The weakly interacting regime at low temperature (1, ξT . ξ−1
γ )

In the weakly-interacting regime, γ0 . 1, the gas is never fermionized. At low enough
temperature, i.e. kBT . N~ω, the gas forms a quasicondensate characterized by suppressed
density fluctuations and the density profile follows the one of Thomas-Fermi type [70,134]. 1

We can rewrite the conditions mentioned above with our scaling parameters. On the one
hand, since n ∼

√
N/aho (demonstration similarly as the Thomas-Fermi profile in the

strongly-interacting regime), the condition γ0 . 1 indicates ξγ . 1. On the other hand,
1Within this regime, when kBT < N~2ω2/2µ, the phase fluctuation is also suppressed and the system

forms a true condensate.
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for the condition kBT . N~ω, replacing the term N and T with proper power of ξγ and
ξT correspondingly, we find ξTξγ . 1. Combining the two conditions, it yields

1, ξT . ξ−1
γ . (3.39)

This regime is named as "Weakly-interacting degenerate bosons" in Fig. 3.8. It is also
called "GP regime" in Ref. [134], since the system can be described by the Gross-Pitaevskii
equation. The contact can be found from the mean-field expression for the interaction
energy,

〈Hint〉 =
1

2

∫
dx gn(x)2, (3.40)

where the density profile can be described by the Thomas-Fermi (TF) density profile

n(x) =
µ

g
(1− x2/L2

TF) (3.41)

with LTF =
√

2µ/mω2. Inserting Eq. (3.41) into Eq. (3.40), we shall obtain the interaction
energy. Thanks to the sweep relation Eq. (3.3), we then find the contact

C = η
N5/2ξ

5/3
γ

a3
ho

, 1, ξT . ξ−1
γ (3.42)

with η = 4× 32/3/5. It’s possible to find the very weak Bogouliubov corrections on top of
it and one can show that the small temperature effect in low temperature regime leads to
a very weak increase of the contact versus the temperature.

The weakly interacting regime at intermediate temperature ( ξ−1
γ . ξT .

ξ−2
γ )

When kBT > N~ω, the gas enters a decoherent regime. Equivalently it writes ξTξγ & 1.
In this regime, the Thomas-Fermi profile is not valid any more, since the interactions are
negligible and the bosons form a nearly ideal degenerate gas [70, 134]. However, if the
temperature is smaller than the quantum degeneracy temperature, i.e. T . Td, the density
profile remains its quantum property and writes

n(x) = λ−1
T Li1/2

[
exp

(
α− x2

2L2
th

)]
(3.43)

with α(ξγ , ξT) = ln[1 − exp(−1/(2πξ2
γξ

2
T))]. This regime is referred as "Degenerate ideal

bosons" in Fig. 3.8. Here, one should notice that although the parameter Td is intro-
duced by Eq. (3.28) as the degeneracy temperature for the fermionized bosons in strongly-
interaction regime, it also characterizes the competition between the inter-particle separa-
tion and the de Broglie wavelength. Taking into consideration n ∼ N/Lth, the condition
for the weakly-interacting degenerate Bose regime can be rewritten with the scaling pa-
rameters as

ξ−1
γ . ξT . ξ−2

γ (3.44)

Insert the profile of this regime into the interaction energy Eq. (3.40) and calculate the
contact with the sweep relation Eq. (3.3), we shall find

C =
16
√
πN5/2ξ5

γξ
3
T

a3
ho

G(α), ξ−1
γ . ξT . ξ−2

γ (3.45)

with G(α) the integration of the polylogarithm function, which writes

G(α) =

∫
dx Li21/2[exp(α− x2)]. (3.46)
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Figure 3.9: The function G(Γ) with Γ = ξ2
Tξ

2
γ (solid black line). The dashed blue line is

H(Γ) = 0.03Γ3/2 ∼ ξ3
T which indicates that G(Γ) decreases faster than ξ3

T.

Studying the temperature dependence of the function G(α), we define Γ = ξ2
Tξ

2
γ and

plot the function G(Γ), see solid black line in Fig. 3.9. In comparision, we also plot
H(Γ) = 0.03Γ3/2 which is proportional to ξ3

T, see blue dashed line. In the log-log scale, it
is clear that G(α) decreases faster than ξ3

T in the regime ξTξγ ∼ 1. Using Eq. (3.45), it
indicates that the contact C decreases with the temperature T . Here, we recall C increases
with T in the low temperature regime, hence it indicates that there is a maximum of the
contact even in the weakly-interacting regime. We will study the property of this maximum
in the next section.

High temperature classical regime (ξ−1
γ , 1 .

√
ξT)

For both the strongly- or weakly-interacting gases, the high temperature regime presents
the same property and its condition yields the temperature is higher than any relevant
temperature scale: T > Td and a1D > λT . Rewriting this two conditions in our scaling
parameters (demonstration similar as before), we find

1, γ2
0 .

T

Td
. (3.47)

Rewritting it with our scaling parameters, we find

ξ−1
γ , 1 .

√
ξT. (3.48)

In this regime, one obtains a weakly degenerate Bose gas dominated by thermal fluctua-
tions. We refer it as "Weakly-degenerate ideal bosons" in Fig. 3.8. In this case, the contact
can still be estimated by the mean-field expression of the interaction energy Eq. (3.40).
However, the density profile loses its quantum property and behaves like the thermal
Boltzman distribution Eq. (3.37). Combining these two equations with the sweep relation
Eq. (3.3), we find

C ' 2
√

2N5/2ξγ
πξTa3

ho

, ξ−1
γ , 1 .

√
ξT. (3.49)

Here, at any interaction but high temperature, we may notice that the contact decreases
with temperature as 1/

√
T . And it recovers what is expected from high temperature

strongly-interacting bosons in Ref. [18].
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Figure 3.10: Behavior of the temperature at which the contact is maximum versus the
interaction strength. Shown is the value of ξ∗T (solid black line with shaded gray error bars)
as found from the data of Fig. 3.3, together with the asymptotic behaviors ξ∗T ' 0.49 for
the strongly interacting regime (dashed red line) and ξ∗T ∝ ξνfitT , with νfit ' 0.6 for the
weakly interacting regime (dotted blue line).

3.2.3 The onset of maximum

As we already announced in the previous section, the particularly interesting outcome here
is the nonmonotonicity of C versus temperature and the onset of a maximum, for example
see Fig. 3.6(b). In fact, this behavior strongly contrasts with the previous results found for
the homogeneous gas and the trapped gas in the Tonks-Girardeau limit (a1D → 0), which
are both characterized by a systematic increase of the contact versus temperature [18,134].
In the trapped case, the maximum in the contact as a function of ξT is found irrespective to
the strength of interactions but is significantly more pronounced in the strongly interacting
regime. From the data of Fig. 3.3, we extract the temperature T ∗ at which the contact is
maximum at fixed ξγ . In Fig. 3.10, we plot the corresponding ξ∗T = −a1D/λ∗T as a function
of ξγ . As we can see, ξ∗T shows significantly different behavior in the strongly and weakly
interacting regimes. It depends on the value of ξγ in the weakly-interacting regime and
remain constant in strongly-interacting regime. Now, we study in detail the origin of the
maximum and its physical meaning.

Maximum in the strong interaction regime

In strongly-interacting regime, ρ(0)|a1D| . 1, we stress that both Eqs. (3.38) and (3.49)
are in good agreement with the numerical calculations, see red-dotted and dash-dotted lines
in Fig. 3.6(b). These expressions show that the contact increases with temperature in the
fermionized regime but decreases when thermal fluctuations dominate over interactions,
which is the origin of the existence of maximum. It provides a nonambiguous signature of
the crossover to fermionization and we will analysis this into detail now.

We can obtain the analytical expression for the contact using the virial expansion.
Here, I would like to point out that the whole derivation in this part has been done by
Prof. Patrizia Vignolo. To start with, we recall the expression of the grand potential in
statistical physics,

Ω = −kBT lnZ (3.50)

with Z the partition function. By performing the virial expantion to the grand potential
as in Ref. [18, 140], it writes

Ω = −kBTQ1(z + b2z
2 + b3z

3 + ...) (3.51)
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with z = eβµ the fugacity and bn the n-th virial expansion coefficient related with Qn =
Trn[exp(−H/kBT )]. The bn can be calculated from the cluster partition functions [141],
for instance, b2 = Q2/Q1−Q1/2. Using the Tan sweep relation Eq. (3.2) and keeping only
the z2 term, one can find

C =
4mω

~λT
N2 c2 (3.52)

where c2 = λT
∂b2
∂|a1D|

and b2 =
∑

ν e
−β~ω(ν+1/2). The ν’s are the solutions of the transcen-

dental equation [142]

f(ν) =
Γ(−ν/2)

Γ(−ν/2 + 1/2)
=
√

2
a1D
aho

. (3.53)

Then, with further mathematical derivation, one can solve the solution for ν in Eq. (6.2)
and infer the term c2 in Eq. (6.1). The detail of this derivation is shown in the Appendix.
With the solution of c2, one can find the analytical form for the contact by Eq. (6.1), it
yields

C =
2N5/2

πa3
ho

ξγ
ξT

(
√

2− e1/2πξ2T

ξT
Erfc(1/

√
2πξT)

)
, (3.54)

see black dashed line in Fig. 3.6(b). Solving ∂C/∂T = 0 in Eq. 3.54, we can locate a
maximum at ξ∗T = 0.485, which is in very good agreement with the asymptotic scaling
ξ∗T ' 0.490± 0.005 extracted from the data (dashed red line in Fig. 3.10).

From Eq. (3.3), we can infer that the maximum of the contact is equivalent to the
maximum of the interaction energy, while fixing g. Then, the existence of the maximum
can actually be understood by the competition of two processes. On the one hand, at low
temperature, the bosons can never overlap since they are blocked by the strong repulsive
interaction, which is equivalent to Pauli blocking in the equivalent ideal Fermi gas. With
the increase of temperature, the bosons gain enough energy repulsion to overcome the
blockade and allow a spatial overlap, thus increasing the interaction energy locally, i.e.
increase the contact C. On the other hand, since the system is a many-body system
confined in a harmonic trap, increasing the temperature will enlarge the size of the system
and dilute the gas. Therefore, the interaction energy will be reduced globally, i.e. the
contact C will decrease. As a consequence, the competing of these two processes leads to
the non-monotonic temperature effect of the contact. It forms a maximum when the effect
of both are on the same scale. In another word, due to the competition of interaction and
temperature, the maximum contact should appear at the temperature where the interaction
and dilution effect reaches the same magnitude. According to Fig. 3.8, this crossover
happens at ξT ∼ 1 when ξγ > 1, i.e. in length scale a1D ∼ λT , which fit well with what we
find in the previous calculations.

We further argue that the existence of this maximum is extremely interesting, since
it is a direct consequence of the dramatic change of correlations and thus provides an
unequivocal signature of the crossover to fermionization in the trapped 1D Bose gas. For
other detected quantities such as the density profile, they normally show a smooth variation
while going through the crossover. However, the maximum of the contact provides the
probability to probe it accurately with sharp change of behavior.

Maximum in the weak interaction regime

The maximum in the weak interaction regime is much weaker, but it is still possible for
us to capture it from the theoretical point of view. For low temperature regimes, the contact
follows Eq. (3.42) with Bogoliubov correction term increasing with T . Then, for higher
temperature, the contact follows Eq. (3.45) where C decreases with the temperature thanks
to the property of G as we discussed above. Since the contact increases with temperature
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at low T , due to the weak Bogoliubov excitations, we can conclude that there also exists
the maximum contact in the weakly-interacting regime and it signals the crossover from
the quasicondensate regime to the ideal Bose gas regime. The position of the maximum
of the contact may be estimated by equating Eqs. (3.42) and (3.45). The calculation is
significantly simplified by neglecting quantum degeneracy effects and treat the density
profile as a Gaussian in Eq. (3.45). Then, it yields

G(α) '
√
π/2 exp(2α) (3.55)

Performing the Taylor expansion for G(α) as a function of Γ = ξ2
Tξ

2
γ , we find G(α) ' Γ−2 ∼

1/ξ4
γξ

4
T and we have checked by numerical plotting that this approximation is valid up to

the regime ξγξT ∼ 1. Then, equating Eqs. (3.42) and (3.45) with the function G(α) above,
we finally find

ξ∗T ∼ ξ−νγ , ν = 2/3. (3.56)

To check this prediction, we have fitted by Eq. (3.56) with ν as an adjustable parameter
(see dotted blue line in Fig. 3.10), yielding νfit = 0.6 ± 0.06, in good agreement with the
theoretical estimate νth = 2/3. However, quantum degeneracy effects tend to increase the
value of ν for small values of ξγ . In the asymptotic limit ξγ → 0, they become dominant.
In this limit, we find G(α) ' π2/

√
|α| and it yields ν ' 1. Nevertheless, we should point

out that the maximum is extremely weak and hardly visible in practice in this regime.

The maximum of entropy

To further interpret the onset of a maximum contact versus temperature, we realise that
it is actually equivalent to the onset of a maximum entropy S versus interaction strength.
For a fixed number of particles, it is a direct consequence of the Maxwell identity. Here,
we recall the definition of the free energy F in thermodynamics

F (N,T, a1D) = Ω(µ, T, a1D) + µN, (3.57)

where we change the variables from µ to N . Then, we can rewrite the sweep relation for
the contact in term of the free energy and it gives

C =
4m

~2

∂F

∂a1D

∣∣∣∣
T,N

. (3.58)

Moreover, we use the thermodynamic definition of the entropy

S = − ∂F

∂T

∣∣∣∣
a1D,N

. (3.59)

Combining Eq. (3.58) and Eq.( 3.59), we find

∂C

∂T

∣∣∣∣
a1D,N

= −4m

~2

∂S

∂a1D

∣∣∣∣
T,N

, (3.60)

which indicates that the two maximums appear at the same set of parameters. In the
homogeneous LL gas, the entropy at fixed temperature and number of particles decreases
monotonically versus the interaction strength, since repulsive interactions inhibit the over-
lap between the particle wavefunctions. Hence, the supression of free space for particles
diminishes the number of available configurations. In the trapped gas, however, this ef-
fect competes with the interaction dependence of the available volume. More precisely,
starting from the noninteracting regime, the system size increases sharply with interaction
strength, while the particle overlap varies smoothly. Therefore, in this regime, the number
of available configurations and the entropy increase with the interaction strength. At the
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onset of fermionization, interaction-induced spatial exclusion becomes dramatic and the
particles strongly avoid each other. In turn, as opposed to the weakly-interacting regime,
the volume increases very slightly. In this regime, the number of available configurations
thus decreases when the interactions increase. This picture confirms that the maximum
of the entropy as a function of the interaction strength, consistently with the maximum
of the contact as a function of the temperature. Thus, it also signals the fermionization
crossover.

3.3 Experimental observability

In this section, we discuss the experimental observability of the contact and its proper-
ties, especially the maximum contact in strongly-interaction regimes which signatures the
crossover to fermionization. We mainly focus on three aspects, namely the detection ac-
curacy, the validity of the purely 1D gas model, and the consequence of averaging over 1D
gases with different number of particles, as relevant in experiments creating a 2D array of
1D tubes.

3.3.1 Accuracy of detection

As we discussed at the beginning of this chapter, our predictions can be investigated
with quantum gases where the Tan contact is extracted from radio-frequency spectra or
momentum distributions [125–127, 130]. To understand better the observation condition
in the later case, we compute the momentum distribution. Here, one should notice that
the momentum distribution cannot be found from Y-Y thermodynamics. In turn, QMC
calculation can do it efficiently, see Section 2.3.4.

Figure 3.11 shows momentum distributions found from QMC calculations in the strongly
interacting regime for two typical temperatures. Figure. 3.11(a) is close to zero tempera-
ture (ξT � 1) and Fig. 3.11(b) is at the temperature for the maximum contact ξT ' ξ∗T.
In both cases, an algebraic decay at large momenta is observed, with an amplitude match-
ing our estimate for the contact. Here, one should note the log-log scale in the main
panels and the lin-lin scale are plotted as insets. Fitting the tails of the momentum dis-
tributions found from the QMC calculations by n(k) ' Cfit/k

pfit , where we obtain pfit and
C̃fit = a3

hoCfit/N
5/2. For Fig. 3.11(a), we find pfit = 3.80±0.20 and C̃fit = (1.01±0.14)×10−3

while C̃ ' 0.97× 10−3. For Fig. 3.11(b), we find pfit = 3.72± 0.10 and C̃fit = 0.23± 0.04
while C̃ ' 0.22. The agreement with the expected exponent p = 4 is better than 7% and
with the contact C better than 5%. Here, we notice that for the two examples shown
here, the momentum distributions decay over three to four decades. Such a range is quite
unusual. Helium atoms can however measure momentum distribution in such a range
taking advantage of single-particle resolution. For instance, measurement of momentum
distributions in Ref. [125] covers up to six decades.

3.3.2 Validity condition of the quasi-1D regime

Focusing on the observability of the maximum, one should also be careful with the condition
to have really one-dimensional tube instead of 3D (also named as quasi-1D). In ultracold
atoms, the tubes are induced either by a magnetic field or a transverse optical lattice. In
the second case, the system consists of arrays of 1D tubes, see Fig. 1.1. In both cases, it
creates a local transverse harmonic trap with frequency ω⊥. The condition for the such
kinds of systems to be in strictly-1D regime writes kBT, µ � ~ω⊥. The condition simply
means that the system remains in ground state for the freedom of the transverse harmonic
oscillation and no significant excitation is created, see details in for instance Ref. [62].
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Figure 3.11: Log-log plots of momentum distributions found by QMC calculations in the
strongly interacting regime. (a) Low temperature: ξγ = 4.47 and ξT = 0.0085. (b) Tem-
perature at the maximum contact: ξγ = 1.26 and ξT = 0.49. The solid blue lines with
shaded statistical error bars are the QMC results, the dashed red lines are algebraic fits
to the large-k tails, and the dotted green lines are the momentum distributions of the
non-degenerate ideal gas. The insets show the same data in lin-lin scale.

This condition may be re-written using the scaling parameters ξγ = −aho/a1D
√
N and

ξT = −a1D/λT . Using the relations aho =
√

~/mω, λT =
√

2π~2/mkBT , and

ξTξγ =
1√

2πN

√
kBT

~ω
, (3.61)

it reads as

ξTξγ �
1√

2πN
×
√
ω⊥
ω
. (3.62)

In experiments, the typical value of ω⊥/ω varies from a few hundreds to a few thousands.
In Fig. 6.1, we reproduce the Fig. 3.10, together with the condition (3.62) for two values

of the atom number N and the parameters of Ref. [12], ω/2π = 15.8Hz and ω⊥/2π =
14.5kHz. The regions where the validity condition is not fulfilled (i.e.quasi-1D) is shown in
purple for N = 2 and orange for N = 10. From the figure, we conclude that the value ξ∗T
corresponding to the maximum of the contact is well inside the validity regime deep enough
in the strongly-interacting regime, ξγ � 1. It is thus possible to observe the maximum
contact in this regime. Moreover, one can further extend the validity region by increasing
the value of the ratio ω⊥/ω, i.e. by increasing the transverse confinement.

3.3.3 Tube distributions

A single tube of 1D weakly-interacting bosons can be obtained by the atom chip tech-
niques [11,12]. However, for generating 1D quantum gases with stronger interactions, one
requires a stronger confinement that is easier to realize optically. One uses optical lattice
but it creates 2D arrays of 1D tubes. In most cases, strong transverse confinement is
realized by applying a 2D optical lattice in the directions y and z, orthogonal to the 1D
direction x. For sufficiently strong lattices, it creates an array of independent 1D tubes,
indexed by the labels (j, `) ∈ Z2. Since the tubes are independent, the momentum dis-
tribution D(p) is simply the sum of that for all the tubes, i.e. D(p) =

∑
j,`D(j,`)(p). In

particular, the Tan contact is also the sum of that for all the tubes, and it writes

C =
∑
j,`

C(j, `), (3.63)

where C(j, `) is the contact in the corresponding tube. Each tube is populated with a
number N(j, `) of atoms, which depends on the loading procedure of the atoms in the 2D
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Figure 3.12: Reproduction of Fig. 3.10 together with the validity condition of the quasi-1D
regime (equivalently the regime for the failure of purely-1D gas), Eq. (3.62), for

√
ω⊥/ω =

30, relevant for the experiments of Ref. [12]. The dark regions show the excluded regions
for N = 2 atoms (purple) and N = 10 atoms (orange).

lattice. Since the number of atoms is maximum in the central tube (j = ` = 0), we have
ξγ(j, `) ≥ ξγ(0, 0), and the condition for having all tubes in the strongly-interacting regime
reduces to ξγ(0, 0)� 1.

In that regime, the temperature dependence of the contact around the maximum is
independent of ξγ , and thus independent of the tube. Indeed, as shown by Eq. (3.54), the
parameter ξγ just appears as a prefactor. In particular, the maximum contact is located
at the universal value ξ∗T ' 0.485, which is identical for the tubes. Using Eq. (3.54), we
then find

C∗ ' 0.55×
∑
j,`

N(j, `)5/2ξγ(j, `)

a3
ho

. (3.64)

At zero temperature, the contact may be found using the mapping between the strongly-
interacting Bose gas and the strongly-degenerate ideal Fermi gas. It yields the value of the
contact at zero temperature [121]

C0 ' 0.82×
∑
j,`

N(j, `)5/2

a3
ho

. (3.65)

We then find that the relative amplitude of the maximum contact with respect to its
zero-temperature value fulfils the inequality

C∗

C0
& 0.68× ξγ(0, 0). (3.66)

Therefore, the relative amplitude of the maximum contact is larger than a fraction of
the interaction parameter ξγ(0, 0) � 1 and should be observable. For instance, for the
parameters of Ref. [12], we find ξγ(0, 0) ' 7.5 and C∗/C0 & 5.1.

Note that the lower bound in Eq. (3.66) is universal in the sense that it does not depend
on the distribution of atoms in the various lattice tubes. Note also that it is immune to
shot-to-shot fluctuations of the atom numbers in the tubes.

Finally, a more precise value of the relative amplitude of the maximum contact is
found by computing the sums in Eqs. (3.64) and (3.65) for realistic distributions of the
atom numbers among the tubes. Here, using the estimation that the initial 3D BEC follows
the Thomas-Fermi profile and the loading process is fast, we shall write

Nj,` =

[
1− 2πN(0, 0)

5N

(
j2 + `2

)]3/2

, (3.67)
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which is relevant to the experiments of Refs. [9, 12]. With Eq. (3.67), we find C∗/C0 '
0.8 × ξγ(0, 0), which is only about 20% larger than the atom distribution-independent
lower bound, Eq. (3.66). For the parameters of Ref. [12], it yields C∗/C0 & 6.1. It may be
further increased by lowering the total number of atoms, although at the expense of atom
detectability.

Conclusion

In this chapter, we have provided a complete characterization of the Tan contact for
the trapped Lieb-Liniger gas with arbitrary interaction strength, number of particles, tem-
perature, and trap frequency. We first derived a universal scaling function of only two
parameters, which stand for the temperature and interaction strengths. We have shown
that it is in excellent agreement with the numerically exact QMC results as well as the
Yang-Yang calculations over a wide range of parameters. In different regimes of degener-
acy, we found that the results of the contact fit well with the asymptotic formula as we
expected. As a pivotal result, we found that the contact exhibits a maximum versus the
temperature for any interaction strength. This behavior is mostly marked in the gas with
large interactions and provides an unequivocal signature of the crossover to fermionization.
Finally, we also analyzed the experimental observation condition for the contact, especially
the maximum.

In the outlook, our theoretical results provides fruitful physics to be detected in experi-
ments. On the one hand, its behavior as a function of the temperature and interaction can
identify regimes of degeneracy and critical behaviors. It also provides plenty of information
such as the interaction energy, correlation function, as well as the behaviors of the ther-
modynamic quantities. On the other hand, 1D ultracold atoms created by optical lattices
is a good candidate for such a detection, since it can observe the momentum distribution
with a good accuracy over 6 orders of magnitudes decaying [125], as well as entering the
strong interacting regimes with ξγ & 10 [12].
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Chapter 4

Critical behavior in shallow 1D
quasiperiodic potentials: localization
and fractality

Anderson localization, known as the absence of diffusion of waves in a disordered medium,
is one of the hottest topic of research since 20-th centry, in the framework of both condensed
matter and quantum simulations. In a homogeneous system, all the single-particle wave
functions are extended. In contrast, they may be exponentially localized in the presence
of disorder owing to the breaking of translational invariance [143]. The effect of the phase
transition between the extended and localized state is known as the Anderson localization.
It is a single-particle effect caused by disorder as well as a fundamental and ubiquitous
phenomenon at the origin of metal-insulator transitions in many systems [144].

The Anderson localization and its phase transition have been widely studied in the
purely disordered systems, both the single-particle case [143,145–148] and the interacting
many-body systems [46–51, 149]. The influence of disorder in fermionic systems are also
studied [150–153]. The quasiperiodic models, known as the intermediate between the pe-
riodic and fully disordered systems, hold a special place. An illustration for the three kinds
of system is shown in Fig. 4.1. While a single trigonometric function stands for the purely
periodic system, the disordered system is the opposite case where its Fourier components
contain infinite and dense values of different frequencies. The quasiperiodic system is the
intermediate of the two, which can be understood by a sum of two or trigonometric func-
tion which frequencies has an incommensurate ratio between each other and form a finite
or discrete set, i.e. no true periodicity exists. In recent years, it attracts a lot of attentions
and interests of research.

"Quasiperiodic model" describes a variety of systems. On the condensed matter side,
it includes quasicrystals [154], electronic materials in orthogonal magnetic fields [155–
157] or with incommensurate charge-density waves [158], Fibonacci heterostructures [159],
photonic crystals [160], and cavity polaritons [161]. Moreover, on the research field of
cold atoms, it can be achieved by realizing external quasiperiodic potentials on top of
the cold atomic gases. This kind of systems have proved pivotal in quantum gases [153,
162, 163] to investigate Anderson localization of matter waves [8, 164, 165] and interacting
Bose gases [41], the emergence of long-range quasiperiodic order [19, 166, 167], Bose-glass
physics [14,20,21,164,165,168], and many-body localization [16,169–171].

In a disordered system, a phase transition between the Anderson-localized and extended
phases occurs only in dimension strictly higher than 2 [172]. However, in quasiperiodic
systems, the behavior is significantly different and a phase transition may occur. The most
celebrated example is the Aubry-André (AA) Hamiltonian, obtained from the tight-binding
model generated by a strong lattice, combined with a second, weak, incommensurate lattice
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Figure 4.1: The typical shape for three kinds of potential: (a). Periodic. (b). Disordered.
(c). Quasiperiodic, which may be a sum of several periodic potentials with incommensurate
ratio of lattice spacings.

serving as the quasi-disorder. In the AA model, the localization transition occurs at a
critical value of the quasiperiodic potential, irrespective of the particle energy [173]. This
behavior results from a special symmetry, known as self-duality. When the latter is broken,
an energy mobility edge (ME), i.e. a critical energy separating localized and extended
states, generally appears, as demonstrated in a variety of models [31, 174–179]. One of
the simplest examples is obtained by using two incommensurate lattices of comparable
amplitudes, which refers to a shallow or continuous bichromatic lattice. This model attracts
significant attention in ultracold-atom systems owing to the fact that it is generally easier
to realize compared to truly disordered systems [180, 181]. They have been used to study
many-body localization in a 1D system exhibiting a single-particle ME [16]. Recently, the
localization properties and the ME of the single-particle problem have been studied both
theoretically [181] and experimentally [182]. However, important critical properties of this
model are still unknown. For instance, whether an intermediate phase appears in between
the localized and extended phases remains unclear.

In this chapter, we study the critical properties and the fractality of noninteracting
particles in shallow quasiperiodic potentials [86]. We firstly introduce the important con-
cepts in this problem, such as the definition of a localized state, the critical potential and
the mobility edge(ME). Then, we start the study with balanced bichromatic lattices. With
balanced amplitude, we find that a finite energy ME exist above a certain critical ampli-
tude of potential Vc. We determine its value from the scaling of the inverse participation
ratio and find the universal critical exponent ν ' 1/3. We further extend the investigation
to more generalized case, i.e. bichromatic lattices with imbalanced amplitudes as well as
trichromatic lattices, and we find the results remain the same. Finally, we find the ME is
always found in one of the energy gaps, which are dense thanks to the fractal character of
the energy spetrum. We propose a method to compute the critical Hausdorff dimension
and find values significantly different from that found for the AA model, showing that it is
a non-universal quantity. In all the considered cases, we remain the lattice amplitudes on
the scale of the recoil energy Er = ~2k2/2m, to maintain in the shallow potential regime.

79



4. Critical Behavior in Shallow 1D Quasiperiodic Potentials: Localization and Fractality

4.1 Localization, disorder and quasiperiodicity

In this section, we introduce the basic concepts and standard models used in this chapter.
We first demonstrate several important definitions in this chapter, such as the extended
and localized states, the mobility edge(ME) and the critical potential (Vc). Then, we go
through some well-known examples and discuss in detail the localization property.

4.1.1 Basic concepts for localization

Before we move on to present the scientific results, it’s important to give the rigorous
definition of several key quantities at this stage.

Extended and localized phases

The difference between the extended and localized phases is illustrated on Fig. 4.2. In
the diagram, the black curve stands for the external potential and the blue wave packets
stand for the eigenstate wavefunction. We use L for the size of the system and l the typical
width of the certain eigenstate. From the left panel to the right panel, we double the size
of the system and keep all the other parameters unchanged. On the upper row, the system
is in the localized phase so that the width of the eigenstate remains constant. On the lower
row, the width of the eigenstate also doubles similarly as the size of the system, thus it is
defined as extended state.

Figure 4.2: Illustration of the difference between localized and extended states. The black
curve stands for the external potential and the blue wave package stand for the eigenstate.
L is the size of the system and l is the width of the eigenstate.

The localization property of an eigenstate ψ can be characterized by the second-order
inverse participation ratio (IPR) [183],

IPR =

∫
dx |ψn(x)|4(∫
dx |ψn(x)|2

)2 . (4.1)

with ψn(x) the wavefunction of the n-th eigenstate. If the state ψn(x) is a wavepacket with
typical size l, then we have IPR ∼ 1/l and the value of itself thus gives an estimation of
the localization. However, we have to be careful that it is rather a measure of the fraction
of space that it covered by the space. Thus, there exists cases where the value of IPR does
not say much about the localization. For instance, for a deep periodic lattices, the local
compression at the bottom of the wells leads to IPR � 1 although the state is extended.
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Figure 4.3: General picture of the localization property in energy spectrum. The extended
states are shown in yellow and the localized states in blue. (a) Case V < Vc where all the
states are extended. (b), (c), and (d) Three examples in the case V > Vc, with different
values of the mobility edge Ec. The potential V increases from (b) to (d).

Therefore, to better distinguish the localized and extended state, we should study the
scaling of IPR with the system size L. It generally scales as IPR ∼ 1/Lτ , with τ = 1 for
an extended state and τ = 0 for a localized state. Thus, studying the exponential behavior
between IPR and system size L, we can identify the phase of a certain state. Here, one
should note that in some other works, people may choose a large enough value of L and
expect IPR∼ 0 for extended state and finite for localized state. We argue that this method
is generally proper for most of the cases. However, there exists exceptions for such kind of
detection. One example is an extended state in deep periodical lattices. The wavefunction
is periodically peaked but narrow. Thus, one may find a finite value of IPR for large L
even though the state is extended. Therefore, the rigorous definition of the localization
property should still be extracted from the exponent τ .

Mobility edge and critical potential

Another pair of important concepts are the mobility edge (ME) and the critical poten-
tial (Vc), which is demonstrated by Fig. 4.3. From the left to the right, we show the energy
spectrum in four different cases with increasing amplitude of the disordered potential. The
color of the eigenstate indicates whether it’s localized (blue) or extended (yellow). When
the potential is low enough, all the states are extended as Fig 4.3.(a). Then, localized state
starts to appear in the spectrum while the potential amplitude is above a critical poten-
tial, which is named as Vc. When V > Vc, we expect the existence of both localized and
extended states. For a fixed V , the transition point between the localized and extended
state is called the mobility edge (ME). By increasing V , more states become localized and
the ME changes its position in the spectrum. 1 However, in many cases, one should notice
that a finite Vc and ME even don’t necessarily exist (see examples below).

4.1.2 Localization in different kinds of system

At the single-particle level, the phase transition between extended and localized states are
widely studied in different kinds of systems. In this subsection, we briefly review some

1One should notice that it’s not necessary the localized states are at the lower energy state comparing
with the extended states. For instance, if one take the discrete disordered model, such as the Anderson
model, the localized states are at both the low and high band edges, while the center of the band is
extended. Moreover, for quasiperiodic systems, there also exists cases where the localized states are found
at higher energy of extended state, see [184] .
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results in one dimension.

Periodic and disordered system

The 1D periodic system is a standard model for electronic systems, see for instance
the Bloch theorem. The ultracold atomic system is a clean realization where the external
potential is exactly trigonometric function V (x) = V cos (2kx) with V the potential ampli-
tude and k the wave vector. The lattice spacing a = π/k gives the spatial period. In such
kind of systems, it is well known that all single particle states are extended no matter how
large the amplitude of the potential. Thus, there is no critical potential and ME in such a
system.

The situation is opposite in the purely disordered system. In this case, there is no phase
transition in one dimension and all the eigenstates are localized as soon as the potential is
non-zero. Thus, there is no Vc and ME in this situation. A phase transition between the
Anderson-localized and extended phases can only occur in dimension strictly higher than
2 [172]. Therefore, as an intermediate situation between periodic and disordered one, we
may expect that in a one-dimensional quasiperiodic system, we can obtain a finite Vc and
a finite ME.

Aubry-André model

The typical form of the bichromatic quasiperiodic lattices writes

V (x) =
V1

2
cos (2k1x) +

V2

2
cos (2k2x+ ϕ) , (4.2)

where the quantities Vj (j = 1, 2) are the amplitudes of two periodic potentials of incom-
mensurate spatial periods π/kj with k2/k1 = r, an irrational number. The Aubry-André
(AA) model is one of the most widely studied bichromatic quasiperiodic model in 1D since
1950s [173]. The external potential takes the tight-binding limit of Eq. (4.2) generated by
a strong lattice. The second is weak and has an incommensurate lattice spacing with the
first lattice r = (

√
5− 1)/2. Equivalently, it yields the condition

V1 � V2, Er, E
′
r (4.3)

with Er = ~2k2
1/2m and E′r = ~2k2

2/2m the recoil energy of the first and second lattice.
Since V1 is much larger than any recoil energy, the system can be treated discretized as
the tight-binding model. Moreover, since V2 is much smaller than the band gap of the
first lattices, the second lattice can serve as a perturbation of the first lattice and one can
restrict to the first band of the first lattice. Then, the single-particle Hamiltonian can be
written as

ĤAA = −J
∑
〈i,j〉

(
â†i âj + H.c.

)
+ ∆

∑
i

cos(2πri+ ϕ)â†i âi, (4.4)

where âi is the annihilation operator of a particle in the lattice site i (located at the position
xi = a × i), J is the tunneling energy associated to lattice 1 and ∆ is the quasi-periodic
amplitude induced by lattice 2. The AA parameters J and ∆ in Eq. (4.4) can be related
to the parameters of the two lattices V1 and V2 by

J ' 4Er√
π

(
V1

Er

)3/4

exp

(
−2

√
V1

Er

)
with ∆ ' V2

2
exp

(
−r2

√
Er

V1

)
. (4.5)

The detailed derivation can be found in Refs. [164,177].
In the AA model, it is well known that the phase transition happens at the critical

potential ∆c/2J = 1. However, there is no ME existed. For ∆/2J > 1, all states are
localized while for ∆/2J < 1 all states are extended. In the next section, we focus the
localization phase transition of shallow quasiperiodic lattice, i.e.V1 ∼ V2 ∼ Er and study
the critical behaviors.
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4.2 Critical localization behavior in 1D shallow quasiperiodic
lattices

In this section, we focus on the study of the critical localization behavior for single particles
in 1D shallow quasiperiodic lattices. We mainly focus on three quantities, the critical
potential Vc, the mobility edge ME, and critical exponents. We start with the balanced
bichromatic lattice, and then generalize the study to the imbalanced bichromatic lattices
as well as trichromatic lattices.

4.2.1 The localization properties of balanced bichromatic lattices

The single-particle wave functions ψ(x) could be found by solving numerically the continuous-
space, 1D Schrödinger equation:

Eψ(x) = − ~2

2m

d2ψ

dx2
+ V (x)ψ(x), (4.6)

using exact diagonalization for Dirichlet absorbing boundary conditions, ψn(0) = ψn(L) =
0. Here, E and m are the particle energy and mass, respectively, L is the system size,
and ~ is the reduced Planck constant. In this subsection, we consider the case of balanced
bichromatice lattices. Thus, V (x) takes the form of Eq. (4.2) with V1 = V2. We also take
r = (

√
5 − 1)/2 the golden ratio, similar as the previous works based on the AA model.

Here, one should notice that the choice of other incommensurate numbers shall give the
same physics, except for Liouville numbers [185]. Moreover, the relative phase shift ϕ is
essentially irrelevant, except for some values, which induce special symmetries. Thus, in
the following, we always use ϕ = 4 which avoids such cases. One should note that the
model we consider cannot be mapped onto the AA model, even for V � Er, since none of
the periodic components of V (x) dominates the other.

The Mobility Edge

Figure 4.4(a) shows the IPR versus the particle energy E and the potential amplitude
V for a large system, L = 100a with a = π/k1 the spatial period of the first periodic
potential. The results indicate the onset of localization (corresponding to large values
of the IPR) at a low particle energy and high potential amplitude, consistently with the

Figure 4.4: Localization transition for the balanced bichromatic potential, Eq. (4.2) with
V1 = V2 ≡ V . (a) IPR versus the particle energy E and the lattice amplitude V for the
system size L = 100a. Localized states correspond to large values of the IPR (blue) and
extended to vanishingly small values (yellow). The ME, found from finite-L scaling analysis
of the IPR, is shown as black points. (b) and (c) Density profiles of two eigenstates in the
localized and extended regimes respectively. Here, the two states correspond to energies
right below and right above the ME at V = 2Er.
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Figure 4.5: Accurate determination of the energy mobility edge Ec for the balanced
bichromatic lattice. Panel (a) shows the IPR versus the particle energy E and the lattice
amplitude V for the system size L = 100a [reproduced from Fig. 4.4(a). Panel (b) shows
the exponent τ versus E and V , as found from finite-size scaling analysis of data computed
for various system sizes. Panels (c) and (d) are cuts of panel (b) at V = 2Er and V = 1.7Er,
respectively. The system size ranges from L = 50a to L = 800a for most of the points.
When the ME lies in a very small gap, as for panel (d) for instance we use larger system
sizes, typically up to L = 1000a.

existence of a V -dependent energy ME Ec. This is confirmed by the behavior of the wave
functions, which turn from exponentially localized at low energy [Fig. 4.4(b)] to extended
at high energy [Fig. 4.4(c)]. These results are characteristic of 1D quasiperiodic models
that break the AA self-duality condition [176,180,181]. However, one should notice that the
IPR varies smoothly with the particle energy, and is not sufficient to distinguish extended
states from states localized on a large scale, see discussions in section 4.1.1.

To determine the ME precisely, we perform a systematic finite-size scaling analysis of
the IPR and compute the quantity

τ ≡ −d log IPR
d logL

. (4.7)

For each value of the quasi-periodic amplitude V , we diagonalize the Hamiltonian for a
series of system sizes L, typically ranging from 50a to 800a. For any state, we find that
the IPR scales as IPR ∼ L−τ , with either τ = 0±0.2 or τ = 1±0.2. Therefore, in contrast
to the IPR at a given system length, which varies smoothly (see the crossover of the color
from blue to yellow via a green region in Fig. 4.4(a), also reproduced on Fig. 4.5(a)), the
exponent τ shows a sharp transition from localized states (corresponding to τ ' 0) to
extended states (corresponding to τ ' 1), see Fig. 4.5(b) as well as Fig. 4.5(c) and (d) for
two typical cuts at fixed values of the quasi-periodic amplitude. The mobility edge (ME)
Ec is then determined as the transition point between the values of τ , see black points on
Fig. 4.5(b). More precisely, the ME is always in an energy gap (see detailed discussion of
the dense gap structure and fractality for the energy spectrum) and we define Ec as the
average energy of the last localized state and the first extended state, see dashed black
lines on Figs. 4.5(c) and (d), corresponding to a large and small gap, respectively. For all
the cases considered here, no intermediate behavior is found in the thermodynamic limit.
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Figure 4.6: Critical localization behavior. (a) Ground-state IPR versus the quasiperiodic
amplitude for the balanced bichromatic lattice (solid lines); Inset: Magnification in the
vicinity of the critical point at Vc. Darker lines correspond to increasing system sizes,
L/a = 50 (light blue), 200 (blue), 1000 (dark blue) and 10 000 (black). The dashed green
line corresponds to the trichromatic lattice for L/a = 10 000. (b), (c) Ground-state IPR
versus V −Vc in the log-log scale for the bichromatic and trichromatic lattices, respectively.

The critical potential

As shown in Fig. 4.4(a), a finite ME appears only for a potential amplitude V larger than
some critical value Vc. This fits with the statement in Ref. [176]. In order to determine the
critical potential, we plot the IPR of the ground state (IPR0) versus V in Fig. 4.6(a). The
darker color of the curves indicates the larger sizes of the systems, namely L/a = 50 (light
blue), 200 (blue), 1000 (dark blue) and 10 000 (black). As usual, for a system with small
size, the transition from the extended phase (vanishingly small IPR) to the localized phase
(finite IPR) is a smooth crossover thanks to the finite size effect, see the cases L/a = 50, 200.
It gets sharper when the system size increases and becomes critical in the thermodynamic
limit, see the darker solid blue lines in the main figure of Fig. 4.6(a) and the inset).

The IPR scales as IPR0 ∼ 1/L in the extended phase and as IPR0 ∼ 1 in the localized
phase. Thus, the critical amplitude can be found with a high precision by plotting the
quantity IPR0 ×

√
La at various sizes, see Fig. 4.7. When increasing the system size L,

its value increase as
√
L for a localized state and decrease as 1/

√
L for an extended state.

Figure 4.7: Plots of the quantity IPR0 ×
√
La as a function of the potential amplitude

V for the balanced bichromatic lattice and different system lengths. Darker lines corre-
spond to increasing system sizes, L/a = 200 (light blue), 1000 (blue), 5000 (dark blue),
10000 (black).
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Figure 4.8: Plots of the quantity IPR0 × Lα × a1−α as a function of the potential am-
plitude V for the balanced bichromatic lattice and different system lengths. Darker lines
correspond to increasing system sizes, L/a = 200 (light blue), 1000 (blue), 5000 (dark
blue), 10000 (black).

Therefore, the fixed point of the curves indicates the transition point. It yields

Vc/Er ' 1.112± 0.002. (4.8)

In fact, the critical potential amplitude Vc is determined by plotting the quantity
IPR0 × Lαa1−α versus V with any value of α between the range 0 < α < 1. However,
we argue here that the choice α = 1/2 gives the more accurate result. According to the
L dependence of IPR, for a localized state, the quantity IPR0 × Lαa1−α increases with
L, while for an extended state it decreases with L. The turning point between these two
opposite behaviours yields an accurate value of Vc. Figure 4.8 shows this approach for the
balanced bichromatic lattice. For large enough systems and any of the considered values of
α, the curves corresponding to different lengths cross each other at almost the same value
of V/Er. For the various values of α considered here, we find the following estimates:

α 1/4 1/3 1/2 2/3 3/4
Vc/Er 1.113 1.111 1.112 1.111 1.110

accuracy 0.004 0.002 0.002 0.002 0.004

Table 4.1: The choice of α and the Vc found correspondlngly.

All the results agree within the errorbars. From the table, we find that the most
accurate result is found for α = 1/2, which maximally discriminates the localized and
extended states. It yields the value in Eq. 4.8.

The critical exponent

The accurate value of Vc we obtained allows us to determine the critical exponent of
the transition. Plotting IPR0 versus V −Vc in log-log scale, we find a clear linear behavior
for sufficiently large systems, consistent with the power-law scaling

IPR0 ∼ (V − Vc)ν (4.9)
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Figure 4.9: Crossover of ground-state IPR (solid black line) from the critical behaviour
IPR0 ∼ (V −Vc)

ν with ν ' 1/3 (dashed red line) at criticality to the asymptotic behaviour
IPR0 ∼ V ν′ with ν ′ ' 1/4 for V � Vc, Er (dashed yellow line). The panels (a) and (b)
correspond to the bichromatic and trichromatic cases, respectively.

which can be seen from Fig. 4.6(b). Fitting the slope, we find the critical exponent ν '
0.327± 0.007, see red dashed line in Fig. 4.9 (a). Note that for V far enough from Vc, the
behavior of the IPR changes. It is normal that the behavior changes since the algebraic
behavior is only expected near by the critical point. For instance, for the case V � Vc,
the local potential minima support bound states and, for the quasi-periodic potential, the
tunnelling is suppressed. At the potential minima, we can perform Taylor expansion and
find the harmonic approximation V (x) ∝ V x2 ∼ ω2x2. Thus, we find the frequency

ω ∝
√
V Er/~. (4.10)

The lowest energy eigenstates of the quasi-periodic potential, which are the ground states
of the local harmonic oscillators, are nearly Gaussian functions of width

` =
√

~/mω ∝ V 1/4 (4.11)

and centered at the bottom of different potential minima. Then, the IPR of the ground
state scales as IPR0 ∼ 1/`, i.e.

IPR0 ∼ V ν′ with ν ′ = 1/4. (4.12)

This exponent significantly differs from the critical exponent ν ' 1/3 found at the critical
point Vc. In Fig. 4.9 (a), we plot IPR as a function of V − Vc in a larger window, and find
the scaling IPR0 ∼ V ν′ with ν ′ ' 0.258 ± 0.005 in large V limit, see yellow dashed line
This is consistent with the exponent 1/4 expected in the tight-binding limit

4.2.2 Other quasi-periodic lattices and universality

In this subsection, we extend our study of the critical behavior to other quasiperiodic
models and check the universality of the results. We start with the imbalanced bichromatic
lattices, and then move to the trichromatic case.

The imbalanced bichromatic lattice

We first consider the imbalanced bichromatic lattice, Eq. (4.2) with V1 6= V2. In
Fig. 4.10, we plot the ME versus the quasiperiodic amplitudes V1 and V2. The dark region
corresponds to cases where the ME is absent. Its boundary yields the critical line in the
V1-V2 plane, thus it yields the pair of critical potential (V1c, V2c). Note that Fig 4.10 is
not symmetric by exchange of V1 and V2 even upon rescaling the energies. This owes to
the strong dependence of the model on the incommensurate ratio r. Since the two cosine
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Figure 4.10: Mobility edge for the imbalanced bichromatic lattice, Eq. (4.2) versus the
amplitudes V1 and V2. The dark region indicates the absence of a mobility edge, and its
boundary the localization critical line.

functions in the potential have different frequencies, if one exchange the value of V1 and
V2, the incommensurate ratio is also changed to the opposite and the critical localization
potential changes.

We found that the localization transition is universal, and the critical and fractal prop-
erties discussed above for the balanced case apply irrespectively to the relative amplitudes
of the two lattices, i.e. also for V1 6= V2.

On the one hand, beyond the critical line, the ME still marks a sharp transition between
exponentially localized and extended states, with no intermediate phase. For instance, we
consider here the case with V1 = 8Er and scan the value of V2 Here, the ME is found
at V2c/Er ' 0.140 ± 0.005, see Fig. 4.11(a). Using the same analysis as for the balanced
lattice (see main text), we find the critical behaviour

IPR0 ∼ (V2 − V2c)
ν with ν ' 0.33± 0.01, (4.13)

see inset of Fig. 4.11(a). This value of the critical exponent ν is very close to that found
for the balanced case.

Now, we study the ME for a fixed potential amplitude V1 = 8Er, V2 = 0.15Er > V2c
and perform the finite-size analysis. We compute the IPR versus the energy E for various
system sizes. For any E, we find the scaling IPR ∼ 1/Lτ with either τ ' 0 or τ ' 1 just
as the balanced case, see Fig. 4.11 (b). A sharp jump from τ ' 0 to τ ' 1 marks the ME,
here found at Ec ' 2.64. As shown by Fig. 4.11(b), the ME is in a gap. It confirms that
the transition is sharp, between a localized phase and an extended phase. The subfigure
(c) indicates the fractal property for the energy spectrum which will be demonstrated in
chapter 4.3.

On the other hand, for any value of V1 up to values deep in the AA limit (50Er), we
always found IPR0 ∼ (V2 − V2c)

ν with ν ' 0.33 ± 0.02. The same applies to the discrete
AA model, which we shall discuss in detail below.

The Aubry-André limit: critical potential and mobility edge

On Fig. 4.12(a), we plot the critical potential of the second lattice, V2c, versus the
amplitude of the first lattice, V1, for the imbalanced bichromatic lattice. It corresponds
to the boundary between the colorful and dark region in Fig. 4.10. We find excellent
agreement between the results founds for the continuous model (solid blue lines) and the
prediction of the discrete AA model for V1 & 8Er, corresponding to ∆ = 2J for Hamiltonian
Eq. (4.4) [173] (dashed red lines),
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Figure 4.11: Critical and fractal behaviour for the imbalanced bichromatic lattice. Here
we use V1 = 8.0Er and r = (

√
5 − 1)/2. (a) IPR of the ground state, IPR0, versus the

amplitude of the second lattice V2. Darker lines correspond to increasing system sizes,
L/a = 50 (light blue), 200 (blue), 1000 (dark blue), 10000 (black). Inset: Same data
versus V2−V2c in log-log scale, confirming the critical behaviour IPR0 ∼ (V2−V2c)

ν , with
ν ' 0.33 ± 0.01 (dashed red line). (b) Scaling exponent τ versus the energy E as found
from fits as IPR ∼ 1/Lτ , for the specific case V2 = 0.15Er > V2c. The black dashed line
marks the ME. (c) Energy box-counting number NB as a function of the energy resolution
ε, in the energy window corresponding to panel (b).

Figure 4.12(b) shows the same comparision in the opposite situation where lattice 2
is in the tight-binding regime and lattice 1 is weak. In this case, the AA parameters are
changed from Eq. (4.5) by exchanging V1 and V2 and replacing Er by r2Er. they write

J ' 4Err
1/2

√
π

(
V2

Er

)3/4

exp

(
−2r−1

√
V2

Er

)
with ∆ ' V1

2
exp

(
−r−1

√
Er

V2

)
.

(4.14)
Then, the critical potential V1c found in the continuous model approaches the AA predic-
tion for V2 & 6Er.

In the AA model, it is well known that there is no ME. However, in the AA limit of the
continuous model, we find a finite ME. This is due to the fact that the ME is found above
the lowest band, which is the only one described in the AA model. Thus, the two results
are actually compatible. In Fig. 4.12(c), we show the lowest part of the energy spectrum
in the AA limit of the continuous bichromatic model, V1 = 10Er � Er, as a function of
the amplitude of the second lattice, V2. The structure of the spectrum is reminiscent of
the band spectrum of the dominant lattice, and we refer to the visible states clusters as

Figure 4.12: Comparison between the critical point found in the continuous bichromatic
model (solid blue lines) and the discrete Aubry-André model (dashed red lines). Panel (a)
corresponds to the tight-binding regime for lattice 1 and panel (b) to tight-binding regime
for lattice 2, respectively. Panel (c) shows the lowest part of the energy spectrum for
V1 = 10Er, as a function of V2. The color scale encodes the IPR, corresponding to localized
(blue) and extended (yellow) states. The ME is shown as the solid black line.
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the first bands of the main lattice. The color scale encodes the IPR, corresponding to
localized (blue) and extended (yellow) states. The solid black line shows the mobility edge
as found from a cut of Fig. 4.10 at the fixed value of V1 = 10Er. For vanishingly small
values of V2, there is no ME and all the states are extended. When increasing the value of
V2, the ME sharply jumps to a value in the first band gap of the main lattice. Then, all the
states of the first band of the main lattice become localized. The critical point is found at
V2 ' 0.09Er. Using the formulas in Eq. (4.5), we find that it corresponds to ∆/2J ' 1.04,
in excellent agreement with the prediction of the discrete AA model [173]. Note that the
states of the second and third bands of the main lattice are still extended. They become
localized at a higher value of V2, see Fig. 4.10.

The Aubry-André limit: critical exponent

It is worth noting that the behavior of the IPR differs from that of the Lyapunov
exponent (inverse localization length). The IPR is dominated by the core of the wave
function and characterizes, for instance, the short-range interaction energy of two particles
in a localized state [22]. In contrast, the Lyapunov exponent γ characterizes the exponential
tails of the wave functions,

ψ(x) ∼ exp(−γ|x|), (4.15)

and it is insensitive to the core. For nonpurely exponential wave functions, which appear
in our model (see for instance Fig. 4.4(b)), these two quantities are not proportional. For
instance, in the AA model, one has

γ ∝ ln(∆/2J). (4.16)

At the critical point ∆ = 2J , we can perform the Taylor expansion of the ln function at
∆ = 2J and find

γ ∝ ∆−∆c

2J
. (4.17)

From Eq. (4.5), we find ∆ ∝ V2 and J is independent of V2, thus we can write

γ ∝ (V2 − V2c)
β. (4.18)

with the Lyapunov critical exponent β = 1. This value differs from the IPR critical
exponent-ν ' 1/3-found above.

In order to compare the two behaviors, we plot the ground-state wavefunction for
the AA model slightly above the critical point, namely ∆/J = 2.05, see Fig. 4.13. The
wavefunction shows a clear exponential localization in the wings. The dahsed red lines

Figure 4.13: Ground-state wavefunction of the Aubry-André model for ∆/J = 2.05 (solid
blue line) together with exponential fits (dashed red lines) on the left-hand and right-hand
sides of the localization center.
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are the fitted exponential function |ψ| ∝ e−γ|x−x0| with the localization center x0 and
the Lyapunov exponent γ as fitting parameters. It yields γ = 6.2 × 10−3 ± 6.85 × 10−5.
However, the wavefunction is not a pure exponential function. In particular, it shows
a core about one order of magnitude larger than the exponential fit at the localization
center x0. This core dominates the IPR. For instance, restricting the wavefunction to the
range [x1, x2] such that ψ(x1) = ψ(x2) = 0.01ψ(x0), we find that the IPR is 99.5% of the
value found for the full wavefunction. Here, we cut at 0.01ψ(x0) since this is where the
wavefunction starts to deviate from the exponential decay. Our result illustrated that the
IPR is independent of the exponential behaviour of the tails, and the IPR and Lyapunov
exponent yield different pieces of information about localization. Moreover, we perform
the study of IPR and γ by scanning V2 nearby V2c, see Fig. 4.14. For both of the two
parameters, we find a linear behavior in log-log scale. Fitting them by a linear function,
we find the scalings

IPR0 ∼ (V2 − V2c)
ν and γ ∼ (V2 − V2c)

β, (4.19)

with ν ' 0.33± 0.015 and β ' 0.96± 0.04.

The trichromatic lattice

Now, we consider the trichromatic lattice

V (x) =
V

2

[
cos (2k1x) + cos (2k2x+ ϕ) + cos

(
2k3x+ ϕ′

) ]
, (4.20)

with k3/k2 = k2/k1 = r, so that the three lattice spacings are incommensurate to each
other [note that k3/k1 = r2 = (3 −

√
5)/2 is an irrational number]. Performing the same

analysis as for the other models, we recover the same universal features. We find a finite
critical amplitude Vc and the critical behavior IPR0 ∼ (V − Vc)

ν with ν ' 0.327 ± 0.007;
see Fig 4.6(c). The only significant difference is that the critical point for the trichromatic
lattice, Vc/Er ' 0.400±0.005, is smaller than for the bichromatic lattice, see green dashed
line in Fig. 4.6(a). In particular, we study the standard deviation of the potential,

∆V =
√
〈V (x)2〉 − 〈V (x)〉2 (4.21)

which is the quantity that characterizes the amplitude of disorder in truly disordered
system. For the quasiperiodic potentials we considered, the term 〈V (x)〉2 in Eq. (4.21) is
simply zero. Then, we have ∆V2 '

√
1/4V2 for the bichromatic case and ∆V3 '

√
3/8V3

Figure 4.14: The ground state IPR and Lyapunov exponent γ for the AA model near
the transition point ∆c (data points plotted as yellow balls). Here, both of the two plots
are in log-log scale. In both cases, with a linear fit (blue dashed line), we find the slopes
ν ' 0.33± 0.015 for (a) and β ' 0.96± 0.04 for (b).
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for the trichromatic case. Taking the ratio of the two values at the critical point, we find

∆V2c

∆V3c
=

√
2

3

V2c

V3c
= 2.27 (4.22)

Comparing with the balanced bichromatic case, it is a factor about 2.27 smaller at the
critical point for the trichromatic lattice. This is consistent with the intuitive expectation
that it should vanish in the disordered case corresponding to an infinite series of cosine
components with random phases [186,187].

Up to now, we have checked the localization properties for imbalanced bichromatic
lattices, continuous bichromatice lattices in AA limit, as well as trichromatic lattices. We
find it’s universal that there exists a finite critical potential and ME. Especially, in the
AA limit of the continuous model, the ME exists and is above the band considered in
the discrete AA model. Moreover, we find in all cases a critical exponent ν with the value
around 1/3 which is quite remarkable. There is no explanation yet for this value and it will
be worth understanding it. In the next subsection, we will focus on the fractal property of
the energy spectrum and study the location of ME.

4.3 The fractality of the energy spectrum

In this section, we study in detail the fractal properties of the energy spectrum created by
the quasiperiodic potential. It helps us understand better the structure of the bands and
gaps and the position of the ME. Also, we will benefit from this result when studying the
many-body phase diagram (see details in Chapter 5). Therefore, in this section, we first
introduce the mathematical definition of the fractal as well as the Hausdorff dimension.
Then, we perform the box-counting analysis to the energy spectrum of our quasiperiodic
system and study its fractal dimension. It helps us reach the conclusion that the ME is al-
ways in a gap without any intermediate region thanks to the fractal-like spectrum. Finally,
we study in detail the property of the fractal dimension, mainly about its dependence on
the potential amplitude and spectrum range.

4.3.1 Fractals and fractal dimension

In mathematics, a fractal is a subset of an Euclidean space for which its dimension is
smaller than the geometrical dimension. The main property of the fractal is the so called
self-similarity: it exhibits similar pattern while going to increasingly smaller scale. In
Fig. 4.15. (a) and (b), we show two typical examples of fractal structure. Figure 4.15.(a)
shows the mathematic textbook example: Sierpinski triangle. The black and white regions
stand for the set and empty space. When using a better and better resolution to observe
the shape, small holes represented by the white triangles appear. The structure in smaller
triangles are always a repetition of themselves in the larger ones. However, fractals exist
much more widely on top of papers and textbooks. The world we live in is beautiful and
there are plenty of approximate self-similar fractals in the nature. The Romanian broccoli
presented in Fig. 4.15.(b) is one of them. There are also other good examples such as
animal coloration patterns, DNA structure, rings of Saturn and etc.

On top of the fractal structure mentioned above, they also exist in the structure of phys-
ical quantities, for instance, the energy spectrum of the quasiperiod model. In Fig. 4.15.(c),
we plot the first 500 eigenstate for the 1D balanced bichromatic lattice with V = 2.0Er,
with system size L = 500a. Zooming the first band, we clearly recover the same struc-
ture on a smaller scale, see inset plot. This process also applies for the "second and third
bands", as well as higher level of zooming. Thus, it will be interesting to study further the
fractal property for the spectrum of our system.
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Figure 4.15: Three examples of fractal structures: (a). Sierpinski triangle. (b). Romanian
broccoli. (c). Energy spectrum of the first 500 states for the 1D balanced bichromatic
lattice with V = 2.0Er, with system size L = 500a.

Hausdorff dimension and box-counting analysis

An important property of a fractal structure is the fractal dimension. It depicts the
shape scale when increasing the resolution in a predictable way. One of the most widely
used method is the box-counting scaling. In this analysis, it defines a resolution box with
linear size ε. Then, we count the minimal number of ε-size boxes needed to cover the
full system, which is called the box-counting number NB. In a perfect self-similar fractal
structure, the scaling of NB(ε) versus the resolution ε is expected to be

NB(ε) ∼ ε−DH , (4.23)

which defines the fractal dimension DH of the energy spectrum. Thanks to the analysis,
this quantity is also called box-counting dimension. In strict mathematical definition, it
differs from the so-called Hausdorff dimension. However, for well-behaved structures, such
as the Sierpinski triangle and the Cantor set, the two values are the same. This is also the
case for all the models we considered in this thesis. Therefore, from now on, we may call
it Hausdorff dimension DH although the calculation is based on the box-counting analysis.

A natural way to calculate DH in practice is to detect the scaling by changing the
resolution. Decreasing the resolution by a factor of b, one should expect the box-counting
number will increase with factor of B. It writes

NB(
1

b
ε) = BNB(ε). (4.24)

Combing it with Eq. (4.23), one shall find

DH =
log B

log b
. (4.25)

In Fig. 4.16, we show several typical examples of box-counting analysis. In each subplots,
we show the resolution ε with the corresponding box-counting number NB. In the upper
row, for a one-dimensional line, we find B = b. Thus, the dimension is DH = logb/logb = 1.
In the bottom row, similarly, we consider a filled parallelogram and find B = b2. It leads
to DH = logb2/logb = 2. In the intermediate row, we show the analysis for the Sierpinski
triangle. From the left to the right, each time we decrease the resolution by half and the
number of necessary boxes increases by a factor of 3. It leads to B = blog23. Thus, the
Hausdorff dimension is

DH =
log3

log2
= 1.57. (4.26)

Its value is fractional and smaller than the dimension of its Euclidean space (for a triangle,
it is 2). This indicates that there exists a repeating self-similar hole structure when zooming
on smaller and smaller resolutions.
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Figure 4.16: Three typical examples of box-counting analysis: Upper row: One dimen-
sional line. Intermediate row: Sierpinski triangle with Hausdorff dimension DH = 1.57.
Lower row: Two dimensional parallelogram.

Cantor set

The cantor set is another important example of fractals in mathematics. It is a set of
points lying on a single line segment that has a bunch of gapped intervals which present
in a self-similar structure. The construction of a Cantor set is shown in Fig. 4.17. On the
0-th level, we start with the interval [0, 1]. Then, for reaching the first level, we delete 1/3
of the segment in the middle, (1

3 ,
2
3), which leaves

C1 = [0,
1

3
] ∪ [

2

3
, 1]. (4.27)

Next, for the two remaining segments, we delete the middle 1/3 intervals for both of them,
which leads to

C2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1]. (4.28)

If we continue this process up to the level of infinity, we finally obtain the Cantor set C.
The process of deleting up to the n-th order can also be understood as observing the

set with resolution ε = (1/3)n. Thus, we shall find B = 2n while b = 3n. Therefore, we
can calculate its Hausdorff dimension DH = log2/log3 ' 0.631. It is fractional and smaller
than the dimension of the Euclidean space DE = 1. Thus, it has a fractal structure with

Figure 4.17: The construction process of the classical Cantor set.
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Figure 4.18: The original figure of the Hofstadter butterfly produced in Ref. [157],

infinite gaps open in a self-similar way. Moreover, one should notice that the Cantor set
we introduced above is the so-called Cantor middle-1/3 set. The definition of a Cantor
set can be much more general. During the process of construction, there does not have to
be a single deleted interval and its position is also not necessarily the middle 1/3. This
is also known as the so-called generalized Cantor set, which can be mapped to the energy
spectrum of the quasiperiodic potentials [185,188] (see details later).

AA model and Hofstader butterfly

The energy spectrum of the Aubry-André model has been studied in detail by Douglas
R. Hofstadter in Ref. [157], known for the famous Hofstadter butterfly. Although its
initial motivation was to study the Harper equation for 2D electrons in magnetic fields,
the Schrödinger equation can be mapped onto the AA model as Eq. (4.4) with J = 2∆.
The parameter r also stands for the magnetic flux per cell in the 2D problem. In Fig. 4.18,
we show the original figure of the famous Hofstadter butterfly in Ref. [157]. It shows an
interesting fractal structure. The horizontal axis is the eigenenergy, while the vertical axis
is the ratio of the two lattice spacing r. When r = p/q is rational, the spectrum contains
q subbands. When r is irrational, the spectrum is fractal-like and it has a well-defined
fractal dimension [189,190].

In fact, when r is irrational, the spectrum is always a fractal, irrespective of the value
for J/∆. It is always homeomorphic to a Cantor set. This can be understood by the
rational approximation for an irrational number. We take the golden ratio r = (

√
5− 1)/2

as an example. It can always be approximated by the ratio of two neighbours in the
Fibonacci series {Fn}, i.e. r ' Fn/Fn+1. On the n-th order of approximation, we find that
the spectrum contains Fn+1 subbands and Fn+1−1 gaps which opens by the beating of the
two quasimomentums Fn and Fn+1. Increasing the approximation order n of the irrational
number r, more gaps open and it similarly reproduces the construction of a Cantor set. For
this choice of r, it has even been proved that the fractal dimension for the energy spectrum
at J = 2∆ is DH = 0.5 [189, 190]. For other incommensurate number which is not a
Liouville number, one can always build the corresponding generalised Fibonacci series
and perform the similar construction [185, 188].. Even for the continuous quasiperiodic
system we studied, we argue that the statement still holds and we shall find the fractal-like
structure in the energy spectrum.
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Figure 4.19: Fractal behavior of the energy spectrum. (a) shows nε(E)/ε in the vicinity
of the ME at V = 6.0Er for L = 600a and ε/Er = 0.1 (light blue), 0.05 (blue), 0.01 (dark
blue). (b) shows the same quantity for the ME at V = 8.5Er for L = 1000a and ε/Er =
0.1 (light blue), 0.03 (blue), 0.003 (dark blue). (c) and (d) show the energy-box counting
number NB versus ε for the parameters of (a) and (b), respectively. The linear slopes in
log-log scale are consistent with a fractal behavior, Eq. (4.23) with DH = 0.72± 0.03 and
DH = 0.76± 0.03, respectively.

4.3.2 Fractality of the energy spectrum for 1D quasiperiodic systems

Now, we turn to the energy spectrum of 1D continuous quasiperiodic systems. From the
integrated density of state (IDOS), we confirm the fractal structure of the spectrum. Then,
we perform the box-counting analysis to calculate its fractal dimension, and conclude that
the ME always lay in a gap.

The integrated density of states (IDOS)

To characterize the energy spectrum and understand better its fractal structure, we
start by computing the IDOS per unit lattice spacing nε(E), i.e. the number of eigenstates
in the energy range [E − ε/2, E + ε/2], divided by L/a. Figures. 4.19(a) and (b) show the
quantity nε(E)/ε in the vicinity of the ME for two values of the quasiperiodic amplitude
V and several energy resolutions ε. Here, one should notice that the quantity nε(E)/ε may
be interpreted as the density of states (DOS) for an energy resolution ε. Because of the
fractality of the energy spectrum, the DOS- limε→0+ nε(E)/ε- is, however, ill defined (see
below). For any value of ε, the IDOS displays energy bands separated by gaps. However,
when the resolution ε decreases (corresponding to increasingly dark lines on the plots),
new gaps appear inside the bands, while the existing gaps are stable. It gives a first signal
that the spectrum is nowhere dense while the gaps are dense in the thermodynamic limit.
In particular, the density of states limε→0+ nε(E)/ε is singular. The limit of its value is
zero since DH < 1. Moreover, the ME is always found in a gap for a sufficiently resolved
spectrum, see the red arrow in Figs. 4.19(a) and 4.19(b).

Here, one should note that this is not a finite-size effect: For all the results shown here,
we have used large enough systems so that each ε-resolved band contains at least 10 - 15
states. In addition, we have checked that the IDOS is stable against further increasing
the system’s length (see later discussion about the finite-size analysis). All these aspects
confirm that the opening of an infinite series of minigaps is characteristic of a fractal
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Figure 4.20: Two examples of the box-counting number NB for the energy spectrum under
different resolutions ε.

behavior.

Box-counting analysis for the energy spectrum

As we mentioned in the last subsection, the fractal character of the energy spectrum of
1D incommensurate systems has been studied for discrete models, such as the Fibonacci
chain and the AA model [157, 161, 189–192]. In all of these cases, it was shown that the
spectrum is homeomorphic to a Cantor set. To study fractality in our continuous model,
we use the direct box-counting analysis similar as the mathematical one [193, 194]: We
introduce the energy-box counting number,

NB(ε) = lim
q→0+

∫ E2

E1

dE

ε

[
nε(E)

]q
, (4.29)

for some energy range [E1, E2]. In the limit q → 0+, the quantity
[
nε(E)

]q approaches 1 if
nε(E) 6= 0 and 0 if nε(E) = 0. Therefore, the quantity limq→0+

[
nε(E)

]q contributes 1 in
the boxes of width ε containing at least one state and vanishes in the empty boxes. The
sum of these contributions, NB(ε), counts the minimal number of ε-wide boxes necessary
to cover all the states within the energy range [E1, E2]. In Fig. 4.20, we show two typical
examples of the box-counting number NB under different observation resolution ε. In
Fig. 4.20 (b), there are 8 boxes in the whole energy range but only NB = 7 filled box, since
the third box from the bottom contains no eigenstate inside.

The scaling of NB(ε) versus the energy resolution ε will follow Eq. (4.23), which defines
the Hausdorff dimension DH of the energy spectrum. In all considered cases, we found a
scaling consistent with Eq. (4.23) with 0 < DH < 1. This is characteristic of a nontrivial
fractal. For a continuous (respectively discrete) spectrum, one finds DH = 1 (respectively
0). Intermediate values of DH are characteristic of a nontrivial self-similar behavior. For
instance Figs. 4.19(c) and (d) show NB versus ε in the vicinity of the MEs at V = 6Er
and V = 8.5Er for the energy ranges corresponding to Figs. 4.19(a) and (b), respectively.
We find a linear scaling in the log-log scale, consistent with Eq. (4.23) and the Hausdorff
dimensions DH = 0.72 ± 0.03 and DH = 0.76 ± 0.03, respectively. Both values are signifi-
cantly smaller than the geometrical dimension d = 1. Therefore, the Lebesgue measure of
the energy support vanishes in the limit of an infinitely small resolution, and the spectrum
is nowhere dense in the thermodynamic limit.

In the section 4.2.1, we have questioned whether the location of ME is a gap or a band.
Thanks to the fractality of the spectrum, all the points in the spectrum are disconnected
with each other. Therefore, there is even no connected band exists in the spectrum in the
thermodynamic limit. And it confirms that the ME should always lie in a gap.
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Figure 4.21: Two examples of the box-counting number NB for the energy spectrum under
different resolutions ε. (a). 1D trichromatic lattice with V = 0.6Er. (b) 2D quasicrystal
structure with V0 = 5.5Er.

Here, we should note that the Hausdorff dimension found above significantly differs from
that found in previous work at the critical point of the AA model, DH ' 0.5 [189, 190].
We conclude that the spectral Hausdorff dimension is a nonuniversal quantity. This is
confirmed by further calculations we performed. For instance, in the AA limit of our
continuous model, V1 � V2, Er, we recover DH = 0.507 ± 0.005 at the critical point.
Conversely, we found DH = 0.605 ± 0.014 at the critical point of the balanced lattice.
However, we argue that the existence of the fractal spectrum structure and DH < 1 is
universal. It holds for any 1D bichromatic lattices. We even confirm further that it holds
for the spectrum of 1D trichromatic lattices and 2D quasiperiodic lattices. In Fig. 4.21,
we show the box-counting number versus the resolution ε for the energy spectrums of two
typical cases. In Fig. 4.21(a), we study the case of the 1D trichromatic lattice as Eq. (4.20)
with V = 0.6Er. Here, we find a linear behavior in log-log scale with the fractal dimension
DH = 0.74± 0.02. Also, in Fig. 4.21(b), we treat the 2D quasicrystal structure considered
in Refs. [19,33,195], which Hamiltonian writes

Ĥ =
∑
j

[
− ~2

2m
∇2
j + V (r̂j)

]
(4.30)

where r̂j is the position of the j-th particle and V (r) quasicrystal lattice potential. The
quasicrystal potential is eightfold rotation symmetric,

V (r) = V0

4∑
k=1

cos2 (Gk · r) (4.31)

where V0 is the potential amplitude and the quantities Gk are the lattice vectors of four
mutually incoherent standing waves oriented at the angles 0◦, 45◦, 90◦, and 135◦, respec-
tively. We perform the similar exact diagonalization techniques as for the 1D case, for the
potential V0 = 5.5Er to find the energy spectrum and perform the box-counting analysis to
get Fig. 4.21(b). Even in this case, we find a linear behavior in log-log scale and a fractal
dimension DH = 0.83± 0.03.

Finite-size analysis and check of fidelity

Here, we want to show that the opening of mini gaps in the energy spectrum, i.e. the
results shown in Figs. 4.19(a) and (b) are not due to finite-size effects. We have computed
the integrated density of states (IDOS) for various system lengths. Figures 4.22(a) and
(b) reproduce the IDOS shown on Fig. 4.19 for the smallest considered energy resolutions
ε and various values of the length L. The results corresponding to the different system
lengths are indistinguishiable. Moreover, we have computed the Hausdorff dimensions in
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Figure 4.22: Finite-size scaling analysis for the IDOS. The panels (a) and (b) reproduce
the IDOS divided by the energy resolution, nε(E)/ε, shown on Fig. 2 for the smallest
considered energy resolutions ε but for various values of the length L. (a) IDOS in the
vicinity of the ME at V = 6Er for ε = 0.01Er and L = 400a (dotted light blue line),
600a (dashed blue line), 800a (solid black line). (b) Same as panel (a) for V = 8.5Er,
ε = 0.003Er, and L = 800a (dotted light blue line), 1000a (dashed blue line), 1200a (solid
black line). (c) and (d) Hausdorff dimension DH calculated for the various system sizes
used for the panels (a) and (b).

both cases for the different lengths, see Figs. 4.22(c) and (d). The behaviours of DH do
not show significant variations with the system size. These results allow us to rule out
finite-size effects.

Furthermore, we want to confirm the fidelity of our box-counting approach, we have
performed two additional checks. On the one hand, we have computed the Hausdorff
dimension of the first band of the first lattice for the continuous model in the Aubry-
André limit (V1 � V2, Er). At the critical point, we find a clear fractal behaviour of the
energy-box number, NB ∼ ε−DH with DH = 0.51± 0.01, see Fig. 4.23(a). It is in excellent

Figure 4.23: Energy-box counting number NB versus ε for (a) the continuous bichromatic
model in the Aubry-André limit, V1 = 10Er and V2 = 0.09Er, at criticality and (b) the
commensurate bichromatic lattice, r = 2/3 and V1 = V2 = 6Er.
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Figure 4.24: Fractal dimension of the energy spectrum for various values of V1 and V2.
The black dashed line is the critical potential calculated in Ref. [86]

agreement with the Hausdorff dimension found by another method in the discrete Aubry-
André model, DH ' 0.5 [189, 190]. On the other hand, we have reproduced the same
calculations as for the case corresponding to Fig. 4.22(b), i.e. V1 = V2 = 6Er, but with the
commensurate filling r = 2/3. It corresponds to a periodic system and a regular spectrum
with DH = 1 is expected. The result is shown on Fig. 4.23(b) and we find DH = 0.98±0.01,
in excellent agreement with this prediction. These results further validate our approach to
determine the fractal dimension of the energy spectrum.

4.3.3 Properties of the spectrum fractal dimension

As we explained in the previous subsection, the existence of a spectrum fractal dimension
smaller than unity is universal for quasiperiodic potentials with finite potential amplitudes.
However, its value is not universal and will change with the potentials. In this subsection,
we study in detail the property of the spectrum fractal dimension, i.e. its dependence on
the quasiperiodic potentials.

We focus on the energy spectrum in the range [E0, EN ], where E0 is the ground state
energy and EN is the energy of the N -th state with N = L/a. For the following calcula-
tions, we take N = 500. Here, we scan V1 and V2 and calculate the fractal dimension DH of
the energy spectrum. For both of the two values V1 and V2, we scan from 0Er to 6Er, with
resolution of 0.25Er. The results are shown in Fig. 4.24. From the results, we find that
when (V1, V2) is very small or large, DH are going to unity. The physical interpretation is
the following. In the zero potential limit, we find the spectrum of a free particle which is
continuous parabola. In the large potential limit, the system is like isolated deep wells with
different depth. The eigenenergies are simply the energy of each well. Thus, considering
the thermodynamic limit L → ∞, the eigenenergies go through all the values between,
roughly, [−V1 − V2, V1 + V2], and it should also be continuous and leads to DH = 1. In
between, a non-monotonic behavior is presented. The minimum seems appearing at the
critical potential (black dashed line).

To further check the position of the minimum fractal dimension, we plot two cuts of
Fig. 4.24, for the two cases: (i) V1 = V2 = V , (ii) V2 = 10Er and scanning V1, see Fig. 4.25
(a) and (b) correspondingly. In both cases, we find the fractal dimension tends to unity in
the zero and large potential limits. Also, a minimum value of DH is found approximately at
the position of Vc. Especially, for the case (ii), we find the minimum valueDH = 0.51±0.02,
which recovers the prediction of the Aubry-André model in Refs. [189,190]. Although the
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Figure 4.25: Fractal dimension of the energy spectrum for two cases: (i) V1 = V2 = V ,
(ii) V2 = 10Er and scanning V1. The red dashed line is the critical potential calculated in
Ref. [86]

physical explanation of the two potential limits is well understood, it is still open that why
the minimum value of DH appears at the critical potential. Also, another open question
for this study is how should the fractal dimension varies with the range of spectrum we
focus on. This calls for further work to understand it.

Conclusion

In this chapter, we have studied the critical and fractal behavior for single particles in
quasiperiodic potentials. Our results shed light on models that have become pivotal for
Anderson [181,182] and many-body [16] localization. We found that the ME is always in a
gap and separates localized and extended states, with no intermediate phase. We related
this behavior to the fractality of the energy spectrum and found that the Hausdorff dimen-
sion is always smaller than unity but nonuniversal. In contrast, we calculated precisely the
critical potential Vc and found the critical behaviour IPR0 ∼ (V − Vc)

ν with the universal
exponent ν ' 1/3. These predictions may be confirmed in experiments similar to Ref. [182]
using energy-resolved state selection [196–198]. In parallel to further theoretical studies,
they may help answer questions our results call. For instance, it would be interesting to
determine the physical origin of the critical exponent ν and extend our study to higher
dimensions. Another important avenue would be to extend it to interacting models in
connection to many-body localization.

Our results may also pave the way to the observation of the still elusive Bose-glass
phase. So far ultracold-atom experiments have been performed in the AA limit, the energy
scale of which is the tunneling energy J [23]. The latter is exponentially small in the
main lattice amplitude and of the order of the temperature. It suppresses coherence,
and significantly alters superfluid-insulator transitions [14, 24]. In shallow quasiperiodic
potentials, the energy scale is, instead, the recoil energy Er, which is much higher than
the temperature. Temperature effects should thus be negligible. For strong interactions,
the 1D Bose gas can be mapped onto an ideal Fermi gas and the Bose-glass transition is
directly given by the ME we computed here. It would be interesting to determine how the
transition evolves for weak interactions. Therefore, in the next chapter, we move further to
the interacting atomic system in quasiperiodic potential at finite temperature, and study
its phase transition.
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Chapter 5

Lieb-Liniger bosons in a shallow
quasiperiodic potential

Based on the study in the last chapter, we now turn to the Lieb-Liniger bosons in a shallow
quasiperiodic lattices in presence of a finite interaction and a finite temperature. The main
interest for investigating such kinds of systems is the interplay between interactions and
disorder, which induces a rich physics. This is at the origin of many intriguing phenomena,
including many-body localization [199–203], collective Anderson localization [41, 46–51,
149], and the emergence of new quantum phases. For instance, a compressible insulator,
known as the Bose glass (BG) [52–54, 83, 204], may be stabilized against the superfluid
(SF) and, in lattice models, against the Mott insulator (MI).

In one-dimensional (1D) systems, it is particularly fascinating for the SF may be desta-
bilized by arbitrary weak perturbations, an example of which is the pinning transition in
periodic potentials [3, 13, 15, 72, 205]. Similarly, above an interaction threshold, the BG
transition can be induced by arbitrary weak disorder [52, 53]. The phase diagram of 1D
disordered bosons has been extensively studied and is now well characterized theoreti-
cally [22, 83, 84, 204, 206, 207]. The experimental observation of the BG phase remains,
however, elusive [20, 168, 208–211], despite recent progress using ultracold atoms in the
tight-binding quasiperiodic potentials [14,24].

Controlled quasiperiodic potentials, as realized in ultracold atom [153, 163, 212] and
photonic [160,161,213,214] systems, have long been recognized as a promising alternative to
observe the BG phase. So far, however, this problem has been considered only in the tight-
binding limit, known as the Aubry-André model [23, 164, 165, 192, 215]. It sets the energy
scale to the tunneling energy, which is exponentially small in the main lattice amplitude and
of the order of magnitude of the temperature in typical experiments. The phase coherence
is then strongly reduced, which significantly alters the phase diagram. Although such
systems give some evidence of a Bose glass phase [14, 24], they require a heavy heuristic
analysis of the data to factor out the very important effects of the temperature. Thus,
we propose to overcome this issue by using shallow quasiperiodic potentials. The energy
scale would then be the recoil energy, which is much larger than typical temperatures in
ultracold-atom experiments [1, 212]. This, however, raises the fundamental question of
whether a BG phase can be stabilized in this regime: In the hard-core limit, interacting
bosons map onto free fermions [40] (see detail discussion in Chapter 1). A band of localized
(resp. extended) single particles then maps onto the BG (resp. SF) phase while a band gap
maps onto the MI phase. In the shallow bichromatic lattice, however, we have shown
that band gaps, i.e. MI phases, are dense [86] and the BG would thus be singular, see
detailed discussions about the fractality of the single-particle spectrum in Section 4.3.
On the other hand, decreasing the interactions down to the meanfield regime favors the
SF phase [22, 52, 53, 216]. Hence, a BG can only be stabilized, if at all, for intermediate
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Figure 5.1: Phase diagrams of Lieb-Liniger bosons in a shallow quasiperiodic potential for
increasing values of the potential (V = Er < Vc, V = 1.5Er & Vc, and V = 2Er > Vc from
left to right). Upper row: Quantum phase diagrams as found from QMC calculations at a
vanishingly small temperature [kBT = 10−3Er for (a1) and kBT = 2× 10−3Er for (a2) and
(a3)]. Lower row: Counterpart of the upper row at the finite temperature kBT = 0.015Er.
There, the "SF", "MI", and "BG" regimes are defined as those that retain the zero-
temperature properties of the corresponding phases. The normal fluid (NF) corresponds
to points where significant temperature effects are found. On the left of each panel, we
show the equation of state ρ(µ) at strong interactions, −a1D/a = 0.05 (solid black line)
together with that of free fermions at the corresponding temperatures (dashed red line).
Note that the smallest band gaps are smoothed out by the finite temperatures. The dotted
blue line visible on panel (a2) shows the single-particle ME at V = 1.5Er, Ec ' 0.115Er.

interactions.

In this chapter, we tackle this issue using exact quantumMonte Carlo calculations [217].
Firstly, we briefly review the previous studies of the BG transition in the disordered system
as well as the Aubry-André model. Then, we move to the computation of the exact phase
diagram of interacting bosons in a shallow 1D bichromatic lattice. Our main results are
summarized on Fig. 5.1 and we will give detailed discussion for it in Section 5.2. We
shall see that a BG phase can be stabilized at intermediate interaction for a quasiperiodic
potential above a critical threshold. Finally, we will study the finite temperature effect and
we shall show that the BG phase is robust to the thermal fluctuations up to temperatures
accessible to present-day experiments.

5.1 The Bose glass phase

Before addressing the problem of the phase diagram for 1D shallow quasiperiodic systems,
we briefly review previous work and basic knowledge about the Bose glass. We start with
the first waves of demonstration for Bose glass phase in purely disordered systems [52–54].
Then, we talk about the Bose glass physics in the Aubry-André model [23,164,165,192,215],
and its experimental achievements [14,20,24].
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Figure 5.2: The Bose-Hubbard model. (a). The illustration of its potential. (b). The
phase diagram.

5.1.1 Bose glass phase in random potentials

The first work on the Bose glass is in Refs. [52, 53]. It is specific to one dimensional
continuous systems in the presence of disorder and use renormalization group analysis
within Luttinger liquid approach. Then, in Ref. [54], M. P. A. Fisher et al consider the
disordered Bose-Hubbard model. For 1D bosons in continuum, it is in superfluid phase at
zero temperature. In presence of a disordered potential, however, a Bose glass phase may
appear against the SF phase when the disorder is large enough. On the one hand, it is
localized thanks to the disorder. On the other hand, adding one particle only cost a small
amount of energy, i.e. it is compressible. Therefore, with the competition between disorder
and interaction, the BG phase can be stabilized against SF in certain regimes. Moving to
the lattice system, the argument is similar, except that the BG phase appears in between
the Mott insultor and superfluid. In the following, we present the introduction of the Bose
glass phase in disordered lattice model following the statement in Ref. [54], the main idea
of which is the minimization of energy for Bose-Hubbard model. One may notice that an
equivalent statement is illustrated in Ref. [53] from the renormalization group aspect.

The Bose-Hubbard model

We start with the Bose-Hubbard model which is created by an external periodic lat-
tice potential, shown in Fig. 5.2.(a). In this case, we expect Mott insulator lobes in
strongly-interacting regime which turns into superfluid phase while interaction decreases,
as discussed in section 1.3. In this case, the Hamiltonian writes

Ĥ = −J
∑
i,j

â†i âj +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i (5.1)

with J the tunneling, U the on-site interaction and µ the chemical potential. To obtain
the quantum phase diagram at zero temperature, one should minimize the total energy.
Equivalently, thanks to the periodicity, we simply minimize the on-site energy on each
lattice sites. We first consider the atomic limit J = 0. Then, the on-site energy of lattice
site i writes

ei =
1

2
Uni(ni − 1)− µni, (5.2)

which is a parabolic function of ni. Thus, for a certain µ in the range U(n− 1) < µ < Un
with n a certain integer, taking ni = n will minimize the energy ei. Equivalently, it means
the system has a fixed integer fillings in each lattice sites, which forms the incompressible
Mott-insulator phase.
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Figure 5.3: The Bose-Hubbard model with on-site disorder. (a). The illustration of its
potential. (b). The phase diagram.

Now, we take a finite tunneling parameter J > 0. It is important to introduce two
typical energies,

δEp ∼ (
1

2
− α)U, δEh ∼ (

1

2
+ α)U (5.3)

which are the energies required to add or remove one particle from the system. Let’s
consider starting from a point in the µ−J plane with n particle on each site. Allowing one
particle to hop from one site to its neighbour will gain approximately J in kinetic energy
with the expense of δEph = δEp + δEh in the interaction energy. Thus, when J is small
enough compared to the scale of δEph, the system will remain in the Mott insulator phase
with filling n. For each fixed µ, when J is large enough compared to δEph and above a
critical value (J/U)c, the filling ni = n doesn’t give the minimal energy any more. Each
particle are delocalized on the full system and thus it forms a compressible and extended
superfluid phase. Combining the above statements, we shall find the phase diagram in
Fig. 5.2.(b).

Bose-Hubbard model with disorder

Now, we add the disorder on top of the Bose-Hubbard model, see Fig. 5.3.(a). With the
presence of disorder, a localized but compressible Bose glass phase is expected to appear
in between the MI and SF phase. Here, the Hamiltonian shall write

Ĥ = −J
∑
i,j

â†i âj +
U

2

∑
i

n̂i(n̂i − 1)−
∑
i

(µi + δµi)n̂i (5.4)

with δµi the on-site disorder. It’s a random number following the uniform distribution
between [−∆,∆]. Hence, in the atomic limit, the on-site energy of lattice site i should
become

ei =
1

2
Uni(ni − 1)− (µ+ δµi)ni. (5.5)

We assume the disorder term ∆ is smaller than the interaction term U . Starting with
J = 0, for minimizing the on-site energy, there are three possibilities. They yield:

• For n − 1 < µ/U < n − 1 + ∆, the on-site energy might be minimized by either
ni = n− 1 or ni = n.

• For n− 1 + ∆ < µ/U < n−∆, the on-site energy will be minimized by ni = n.

• For n −∆ < µ/U < n, the on-site energy might be minimized by either ni = n or
ni = n+ 1.
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Figure 5.4: The phase diagram for bichromatic Bose-Hubbard model shown in Ref. [23].
The diagrams are shown as a function of the interaction U and quasiperiodic potential
amplitude V2, in the unit of the hopping J . The indicated phases are Bose glass (BG),
superfluid (SF), Mott insulator (MI) and incommensurate charge density wave (ICDW).
The three plots corresponds to three particle densities: (a). n = 1, (b). n = r, (c) n = 0.5.
For the case n = 1, the darker region indicates there could be small gaps which cannot be
resolved by the calculation.

For the second case above, all the lattice sites have the same integer filling ni = n, and
it thus forms a Mott insulator phase. The width of the Mott insulator lobe writes ∆µ =
U − 2∆. However, for the first and third cases, different lattice sites might be minimized
by different values of the filling. Thusr, the many-body state is localized globally and the
average filling is not an integral. Thus, it is neither a Mott insulator nor a superfluid.
It is a compressible insultator phase with fractional fillings, which we called Bose glass.
Then, for J > 0, similar as the periodic system case, when J � U , it’s insufficient to
overcome the repulsive on-site potential and allow extra particles to hop in the system.
Then, for each fixed µ, the system go through a transition to the superfluid phase when
J is sufficiently large. Moreover, even for the BG phase, the finite tunneling enables the
particles to hop between different sites and enhances the coherence of the system. Above
a certain value (J/U)c, the system becomes extended and it turns to the superfluid phase.
Therefore, the phase diagram should look like Fig. 5.3.(b). Moreover, when the disorder is
large enough ∆ > 2U , the Mott lobe are totally eliminated and there should only remain
the BG and SF phases in the phase diagram.

5.1.2 Bose glass phase in quasiperiodic Bose-Hubbard model

In this part, we shall introduce the known work of Bose glass physics in quasiperiodic
systems. All the following work is done in the tight-binding limit, i.e. the Aubry-André
model, and it contains research both theoretically and experimentally.

Theoretical prediction of the phase diagram

The system we consider now is a Lieb-Liniger gas, i.e. a 1D N -bosons gas with re-
pulsive contact interactions, subjected to a quasiperiodic potential V (x). We recall the
Hamiltonian writes

H =
∑

1≤j≤N

[
− ~2

2m

∂2

∂x2
j

+ V (xj)
]

+ g
∑
j<`

δ(xj − x`), (5.6)

where m is the particle mass, x is the space coordinate, and g = −2~2/ma1D is the
interaction strength with a1D < 0 the 1D scattering length. The quasiperiodic potential
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writes
V (x) = V1 cos2 (k1x) + V2 cos2 (k2x+ ϕ) . (5.7)

where the spatial frequencies k1 and k2 are incommensurate. The corresponding recoil
energy is defined as Erj = ~2k2

j /2m with j = 1, 2.
Now, we introduce the theoretical outcome from Ref. [23] for the tight-binding limit,

which is named as bichromatic Bose-Hubbard model. The considered situation satisfies
the condition

V1 � V2, Er1, Er2. (5.8)

It is similar as the one for the non-interacting Aubry-André model. On the one hand, the
potential V1 is much larger than the recoil energy, the system is thus in the tight-binding
limit and can be treated as discretized. On the other hand, the second lattice V2 is much
smaller than the first one, which can be treated as a pertubation. Following the derivation
in Ref. [23], one can recover the discrete version of the tight-binding Hamiltonian, which
yields

H = −J
∑
j

[b†j+1bj + h.c.] + U
∑
j

nj(nj − 1)/2 +
V2

2

∑
j

[1 + cos(2rπj + 2φ)]nj (5.9)

with b†j the creation operator of bosons and nj = b†jbj the local particle number operator.
The hopping term J and interaction term U follows the same definition as in the non-
interacting Aubry-André model, see section 4.1.

With Density Matrix Renormalization Group (DMRG) calculations, one can calculate
the phase diagram at finite interactions and zero temperature. In Fig. 5.4, they show the
phase diagrams of three typical cases. In each plot, they show the result for a fixed density
n at different interaction U and disorder V2, rescaled by the hopping J . For obtaining
the phase, the numerics are performed to calculate five quantities, namely the one-body
correlation length ξ (see detailed definition in later discussion), the one-particle gap ∆c,
the condensate fraction fc, the superfluid density ρs and the Luttinger parameter K. The
verification of the different phases are identified as follows.

Phase ξ ∆c fc ρs K

SF ' L = 0 � 0 > 0 > 0

MI � L > 0 & 0 = 0 = 0

BG � L = 0 & 0 = 0 = 0

ICWD � L > 0 & 0 = 0 = 0

Table 5.1: Identification of the quantum phases from the DMRG calculations.

Here, from the first two columns of Table. 5.1, we can see that the first three phases can
be distinguished by the correlation length ξ and the one-particle gap ∆. The correlation
function is algebraic decaying in the SF phase and ξ is thus infinite. For a finite size system
of size L, we would thus have ξ ∼ L, For the other phases, the correlation function decays
exponentially and ξ is finite and smaller than L. Then, the MI and ICWD phase are gapped
insulator with finite ∆ while the SF and BG are gapless. For further distinguishing the MI
and ICWD, one should look at the particle filling n. It’s an integer for MI and fractional
number for ICWD. The other three columns in Table. 5.1, give redundant information. On
the one hand, they can be used as a double check for the different phases. On the other
hand, they all have specific physical meanings which describes one aspect of features for
the system.

In Fig. 5.5, we show the calculated results for these quantities for the case n = 1, with
the quantity equals to zero (finite value) while the color of the region is black (non black
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Figure 5.5: In the Bose-Hubbard-Aubry-André model, numerical results for the phase
diagram n = 1 shown in Ref. [23]. The results come from the DMRG calculations with
system size L = 35. They present the value of the correlation length ξ, the inverse of
correlation length 1/ξ, the one-particle gap ∆, the condensate fraction fc, the superfluid
density ρs and the Luttinger parameter K, correspondingly.

colors). With this result, one can recover the phase diagrams in Fig. 5.4 for n = 1. The
other two cases are also obtained in the similar way.

Now, we turn to the discussion of the detailed phase diagram. For the case n = 1,
three phases appear. At low enough interaction and disorder, the system is superfluid.
Then, when the interaction becomes large enough, it starts to be Mott insulator with one
particle on each sites. This phase transition comes from the fact that the interaction is
competing with the hopping process. When the repulsive interaction is strong enough,
it localizes the particles and the system becomes an insulator. On the other hand, when
increasing the disorder amplitude, it also competes with the on-site interaction. When
V2 is large enough, the Bose glass phase, which is a gapless insulating phase, appears.
The origin of the localization of the Bose glass phase comes from the external disorder
potential, different from the Mott insulator which is localized due to the gapped spectrum
formed by the repulsive interactions. Then, moving to the case n = r, we still find the
SF and BG phases similarly. However, since the particle density is non integer but the
lattice spacing ratio r, we find a Mott insulator phase with incommensurate fillings, which
is named as incommensurate charge density wave by the authors. Finally, for the cases
n = 0.5, because the density is neither an integer nor a linear combination of 1 and r,
only the BG and SF phases appear in the phase diagram, at strong and weak disorder,
correspondingly.

Another interesting result from the work Ref. [23] is the equation of state for hard-
core bosons at different strength of disorder. First, one can calculate the single-particle
spectrum with exact diagonalization similar as Chapter 4. Then, the equation of state in
the hard-core limit can be computed using the Bose-Fermi mapping [40]. In Fig. 5.6, the
authors show the equation of state for increasing values of V2. As soon as the disorder V2

is turned on, small gaps are open at relevant fillings of r, namely n = r, 1 − r, 2r − 1...,
thanks to the beating of the two incommensurate lattices. By increasing the disorder, the
plateaus increase and become more and more significant. Those mini-gaps corresponds
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Figure 5.6: In the Bose-Hubbard-Aubry-André model, the equation of state n(µ) in the
hard-core limit for increasing order of V2 with step of J/4, from Ref. [23].

to the ICDW phases with incommensurate fillings. This also fits with the fractal energy
spectrum for quasiperiodic systems as we described in Chapter 4.

The experimental observation

In Refs. [14], an experimental observation of the Bose glass phase transition is presented.
For obtaining the Hamiltonian Eq. (5.6), C. D’Errico et al builds an experimental setup
shown as Fig. 5.7. First of all, they prepare a 3D BEC with 39K atoms. With the two laser
pairs on the horizontal line, the system is cut into a 2D array of 1D tubes. Then, on the
vertical line, a quasiperiodic potential is formed by superimposing two incommensurate
optical lattices, with wave lengths λ1 = 1064nm and λ2 = 856nm. Since λ1/λ2 = 1.243...
is far from a simple fraction, it mimics the potential with an incommensurate ratio of
the two lattice spacings. The strength of the main lattice is V1/Er = 9 and the disorder
parameter ∆ is controlled by varying the amplitude of the second lattice. The degeneracy
temperature of the system is kBT = 8J . The typical experimental temperature is around
kBT = 3J , thus the gas reaches the quantum degeneracy.

By varying the amplitudes of the two lattices, one can control the two parameters of

Figure 5.7: The experimental setup of Ref. [14] for producing the Hamiltonian Eq. 5.6.
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the phase diagram, the interaction U/J and disorder ∆/J . By absorption imaging after
a time-of-flight, one obtains the momentum distribution. A first indication of the phase
can be captured by the root-mean-square width Γ of the momentum distribution P (k),
shown in Fig. 5.8. Here, we recall that in section 2.3.4, we have shown that the momentum
distribution P (k) is the Fourier transform of the one-body correlation function g1(x). It
yields the relation between their widths Γ ∼ 1/ξ. Therefore, for the insulating BG and
MI phases, Γ is large since the correlation length is finite and small. On the contrary,
there is no well-defined ξ in the SF phase since the g1 function follows algebraic decay.
Equivalently, it means the effective ξ is extremely large and Γ is extremely small.

To further distinguish the MI and BG phases, they take advantage of the lattice modu-
lation spectroscopy [218]. In Fig. 5.9, they show the excitation spectra for fixed interaction
U = 26J and three different disorder strength from (a) to (c). When there is no disorder,
we only find absorption peaks for the MI at hν = jU with ν the modulation frequency and
j some integers. Here, one may notice that U is the gap of the MI phase. When hν = jU ,
the system can be excited and an absorption of energy is shown in the spectroscopy. In
Fig. 5.9.(a), we see the two MI peaks with j = 1 and j = 2. For j = 1, it corresponds
to the excitations within the individual MI domains with fillings n = 1, 2, 3. For j = 2,
it is due to the excitations between different MI domains [219]. By increasing the dis-
order, a BG phase suddenly appears and it creates another peak at hν ′ ' ∆ < U , see
Fig. 5.9.(b) and (c). Here, the term ∆ is the disorder amplitude with the similar definition
as Eq. (4.5). This absorption peak cannot be correlated with the MI phase. In turn, it
is the expected behavior of a strongly correlated BG phase which can be mapped onto a
fermionic insulator, see detail discussions in Ref. [220]. Using the Bose-Fermi mapping, we
can compute the absorption spectrum following the derivation of Ref. [220] and find the
theoretical prediction for the BG behavior. In Fig. 5.9.(d), we zoom on the BG peak and
find the data points fit well with the theoretical prediction(red solid line) calculated from
the method in Ref. [220].

Later, in Ref. [24], L. Gori check the phases in Fig. 5.8. more carefully with numerics
and study the diagram more in detail. They perform a DMRG calculation for the consid-
ered regimes in Fig. 5.8, taking into account the finite temperature effect and the presence
of a harmonic trap. With the T=0 DMRG results, they manage to clarify the different

Figure 5.8: Measured root-mean-square width Γ of the momentum distribution P (k)
in the phase diagram of Fig. 5.7. There are mainly three phases: superfluid (SF), Mott
insulator (MI) and Bose glass (BG). In the weakly-interacting limit, one also find the
Anderson localization phase (AL). The plot is from Ref. [14].
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Figure 5.9: Excitation spectrum for three points of the phase diagram: the interaction
strength U = 26J and disorder (a). ∆ = 0J . (b). ∆ = 6.5J . (c). ∆ = 9.5J . The plot is
from Ref. [14].

expected phases in Fig. 5.8, noted by the texted phase name. Along the zero interaction
U = 0 line, one find the transition from SF phase to Anderson localization by increasing
∆. On the other limit ∆ = 0, we see the SF to MI transition by increasing the interaction
U . For a fixed and not so strong interaction, one always finds the SF-BG transition by
increasing ∆. Finally, at low disorder and strong interactions, one find a mixture of MI
and BG phase, thanks to the presence of the harmonic trap.

Beyond the zero-temperature calculations, L. Gori et al perform further the finite-T
phenomenological approaches based on T = 0DMRG calculations of the momentum dis-
tribution P (k), see Fig. 5.10. For the aspect of the temperature effect, they calculate
first T = 0 DMRG results of P (k) and get its Fourrier transform, i.e. the one-body cor-
relation length gi,j(T ) at the distance |i − j| and temperature T . Then, they propose a
phenomenological ansatz where they introduce the modified correlations

g̃i,j(T ) = Ce−|i−j|/ξTgi,j(T = 0) (5.10)

with g̃i,j(T ) the finite temperature correlation function, ξT the effective thermal correlation
length and C the normalization factor. Fitting the experimental data with Eq. (5.10), one
can get the information for the thermal effect on the correlation length. Four typical
examples of the momentum distribution P (k) are shown as the small subplots on the left
and right sides. The different curves are the zero-T DMRG results (black solid lines),

Figure 5.10: The U − ∆ diagram for the momentum width Γ from finite-T DMRG
calculations. The detailed plots of the momentum distribution P (k) are shown for four
typical points. The different curves are the zero-T DMRG results (black solid lines),
experimental data (blue dash-dotted lines) and fit of finite-T phenomenological ansatz(red
dashed lines). The plot is from Ref. [24].
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finite-T phenomenological fit (red dashed lines) and experimental data (blue dash-dotted
lines). Although the finite temperature results are similar as the zero-temperature case
for the two points in the strongly-interacting regime, there is clearly a thermal broadening
for the correlation length in the intermediate interaction regime. These results suggest
that the measurements are strongly altered by the finite temperature effects. Therefore,
in the next section, we will study the Bose glass phase transition in shallow quasiperiodic
potentials, where the temperature effect is significantly reduced.

5.2 The phase diagram for the shallow quasiperiodic systems

Now, we turn to full continuous study of the phase diagram for shallow quasiperiodic
systems. Instead of the deep lattice limit, now we turn to the shallow lattice case, i.e. we
come back to the Hamiltonian Eq. (5.9). In particular, we are interested in the regime where
the quasiperiodic potential is on the same scale of the recoil energy Er and is bichromatic
with equal amplitudes, i.e.

V (x) =
V

2

[
cos (2k1x) + cos (2k2x+ ϕ)

]
. (5.11)

where the spatial frequencies k1 and k2 are incommensurate. In the following calculations,
we will use the spatial period of the first lattice, a = π/k1, and the corresponding recoil
energy, Er = ~2k2

1/2m, as the space and energy units, respectively.
We firstly start with the single-particle problem, i.e. g = 0 for Eq. (5.9). In Chapter 4,

we have studied in detail the single-particle problem for the case r = k2/k1 = (
√

5− 1)/2.
As shown in Ref. [176], both the critical potential Vc and mobility edge Ec strongly depend
on the incommensurate ratio r. In this chapter, we use the incommensurate ratio close to
the experimental value of Refs. [14,24], it yields

r =
λ1

λ2
=

856nm
1064nm

' 67

83
' 0.807. (5.12)

Thus, we repeat the similar calculation for single-particle problem with a different value
of r = 0.807 to provide a basis for the further study in this chapter.

Here, we recall that the main procedure is to determine the single-particle eigenstates
by using exact diagonalization and computing the inverse participation ratio (IPR),

IPRn =

∫
dx |Ψn(x)|4(∫
dx |Ψn(x)|2

)2 , (5.13)

Figure 5.11: Critical potential and mobility edge for the single-particle problem in the
shallow bichromatic lattice with r ' 0.807. (a) Ground-state IPR versus the quasiperiodic
amplitude V for various system sizes. Darker lines correspond to increasing system sizes,
L/a = 50 (light blue), 200 (blue), 500 (dark blue), and 1000 (black). (b) Rescaled IPR of
the ground state, IPR0 ×

√
La using the same data as in panel (a). (c) Scaling exponent

τ of the IPR as a function of eigenenergy E for the quasiperiodic amplitude V = 1.5Er. It
is computed for a system size varying from L/a = 200 to 2000.

112



5. Lieb-Liniger Bosons in a Shallow Quasiperiodic Potential

Figure 5.12: Fractal behaviour of the energy spectrum for single particles in the shallow
bichromatic lattice. Shown are plots of the energy-box counting number NB as a function
of energy resolution ε, for two amplitudes of the bichromatic potential: (a) V = 1Er and
(b) V = 1.5Er. In both cases, the considered energy ranges [E1, E2] are the same as those
of the chemical potential µ on Fig. 5.1.

where Ψn is the n-th eigenstate. By computing the IPR of the ground state (n = 0) versus
the quasiperiodic amplitude V for various system lengths L, we can determine the critical
amplitude Vc for localization in the bichromatic lattice, see Fig. 5.11(a). As in section
4.2.1, we plot the rescaled IPR, IPR0×

√
La for various system lengths L, see Fig. 5.11(b).

Then, we can find the accurate value of the critical potential which yields

Vc/Er ' 1.375± 0.008. (5.14)

Here, we should notice that we find a different value compared to that of Eq. (4.8) since
we are using a different value of r. Based on this value, we choose three typical potential
amplitudes in the later calculation of the many-body problem: V = 1.0Er < Vc, V =
1.5Er & Vc and V = 2.0Er > Vc, see Fig. 5.1.

For the two cases V > Vc which are relevant to the many-body phase diagram in
Fig. 5.1, i.e. V = 1.5Er & Vc and V = 2.0Er > Vc, we further compute the energy Ec of
the ME in the single-particle spectrum. As in section 4.2.1, we fit the scaling IPR ∼ L−τ

and plot τ as a function of the eigenenergy E. The case V = 1.5Er is shown in Fig. 5.11(c),
where we find the ME at the black dashed line. For V = 1.5Er and V = 2Er, we find
Ec ' 0.115Er and Ec ' 1.2Er, respectively.

Also, we compute the fractal dimension for the single-particle spectrum for the case
V = 1.0Er < Vc and V = 1.5Er > Vc, which is relevant to the discussion in section 5.3.
Here, we recall the definitions of the box counting number and the associated Hausdorff
dimension introduced in Chapter 4. The energy-box counting number within the energy
range [E1, E2] is the quantity

NB(ε) = lim
q→0+

∫ E2

E1

dE

ε

[
nε(E)

]q
, (5.15)

where nε(E) is the integrated density of states (IDOS) per unit lattice spacing. For a
fractal spectrum, it scales as NB ∼ ε−DH , where DH the spectral Hausdorff dimension. In
Fig. 5.12, we plot NB versus ε for the two relevant values of the quasiperiodic amplitude,
namely V = Er and V = 1.5Er. The energy ranges considered here are the same as those
of the chemical potential µ on the phase diagrams, see Fig. 5.1. Fitting the latter to the
numerical data, we find DH = 0.74± 0.03 for V = Er and DH = 0.54± 0.01 for V = 1.5Er.

5.2.1 Quantum Monte Carlo calculations for the determination of the
phase

Now, we turn to the interacting Lieb-Liniger gas. At zero temperature, we expect three
possible phases: the MI (incompressible insulator), the SF (compressible superfluid), and

113



5. Lieb-Liniger Bosons in a Shallow Quasiperiodic Potential

the BG (compressible insulator). They can be identified through the values of only two
quantities, namely the compressibility κ and the superfluid fraction fs. Accurate values
of both are found using large-scale, path-integral quantum Monte Carlo (QMC) calcula-
tions in continuous space using the worm algorithm implementation [58,59] as introduced
in Chapter 2. The calculation is performed within the grand-canonical ensemble at the
chemical potential µ and the temperature T . We span a large number of boson configu-
rations within both the physical Z-sector (closed worldlines) and the unphysical G-sector
(worms, i.e. worldlines with open ends). The average number of particles N is found from
the statistics of worldlines within the Z-sector. It yields the particle density ρ = N/L,
where L is the system size, and the compressibility κ = ∂ρ/∂µ. One can find details in
the section 2.3.1. For the superfluid fraction fs = Υs/ρ, it can be found from the the
superfluid stiffness Υs using the winding number estimator, as introduced in section 2.3.2.
The calculation of these three quantities allows us to discriminate the 3 phases at zero
temperature and most of them at finite temperature except BG and NF.

For distinguishing the BG and NF phases at finite temperature, we need to further cal-
culate the one-body correlation function g1(x) at different temperatures. While ξ remains
unchanged versus temperature for BG phase, it strongly depends on T for the thermal
NF phase. Detailed discussion on this point can be found in section 5.3.1. We recall the
definition of the one-body correlation function,

g1(x) =

∫
dx′

L
〈Ψ(x′ + x)†Ψ(x′)〉, (5.16)

where Ψ(x) is the Bose field operator. In the QMC calculations, it is computed from the
statistics of worms with open ends at x′ and x′ + x within the G-sector, see section 2.3.4
for details. For insulating phases (i.e. MI, BG and NF phases), it behaves as

g1(x) ∼ exp

(
−|x|
ξ

)
(5.17)

where ξ is the correlation length. Fitting the function g1(x) ∼ exp (−|x|/ξ) and obtaining
the parameter ξ, we can distinguish the BG from NF regimes via the temperature depen-
dence (see details in Section 5.3.1). To make a short conclusion, the detailed properties of
each phase can be found in Table 5.2.

Phase SF fraction fs Compressibility κ T -dep. of corr. length ∂ξ/∂T
Superfluid (SF) 6= 0 6= 0 /

Mott-insulator (MI) = 0 = 0 ∼ 0

Bose-glass (BG) = 0 6= 0 ∼ 0

Normal fluid (NF) = 0 6= 0 6= 0

Table 5.2: Identification of the (zero-temperature) quantum phases and finite-temperature
regimes from quantum Monte Carlo calculations. Note that the one-body correlation
function g1(x) is algebraic in the superfluid regime and the correlation length ξ(T ) is not
defined.

Figure 5.13 shows typical results for the particle density ρ, the compressibility κ, and
the superfluid fraction fs. The six panels correspond to cuts of the six diagrams of Fig. 5.1
at the interaction strength −a1D/a = 0.1.

Figure 5.13(a1): We consider first the case V = Er,i.e. below the critical potential and zero
temperature T = 0. In this case, we find an alternation of compressible (κ > 0) and in-
compressible (κ = 0) phases, in exact correspondance with superfluidity: the compressible
phases always have a finite superfluid fraction (fs > 0) while the incompressible phases are
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Figure 5.13: Typical QMC results for the density ρ, the superfluid fraction fs, and the
compressibility κ as a function of the chemical potential µ. The various panels are cuts
of the diagrams of Fig. 5.1 at the interaction strength −a1D/a = 0.1: (a1) V = Er and
kBT/Er = 0.001, (a2) V = 1.5Er and kBT/Er = 0.002 (a3) V = 2Er and kBT/Er = 0.002,
(b1)-(b3) Same as in panle (a) but at temperature kBT/Er = 0.015.

always non-superfluid (fs = 0). They correspond to SF (red areas) and MI phases (blue
areas), respectively. There is no BG phase existed which is consistent with the fact that
the potential amplitude is below the critical potential, V < Vc ' 1.38Er.

Figure 5.13(a2): We consider then the case V = 1.5Er,i.e. slightly above the critical
potential, and zero temperature T = 0. Here we find a similar behaviour for large enough
chemical potential, µ & 0.1Er. For smaller chemical potentials, however, we find clear
signatures of BG phases, corresponding to a compressible insulator (κ > 0 and fs = 0,
yellow areas). Here, the BG phases are separated by MI phases (κ = 0 and fs = 0,
blue areas). As expected, in the strongly-interacting limit, the BG phase appears only for
µ < Ec ' 0.115Er, i.e. the single-particle mobility edge in Fig. 5.11.(c) (dashed black line).

Figure 5.13(a3) [V = 2Er even more above the critical potential; T = 0]: We consider
then the case V = 2.0Er,i.e. even more above the critical potential, and zero temperature
T = 0. In this case, the Bose gas is non-superfluid, fs = 0, in the whole range of the
chemical potential considered here. It, however, shows an alternance of compressible and
incompressible phases, corresponding to BG (yellow areas) and MI (blue areas) phases,
respectively. Note that for V = 2Er the single-particle mobility edge is Ec ' 1.2Er, which
is beyond the considered range of the chemical potential.

Figure 5.13(b1-b3): Finally, we consider the case of finite temperature T = 0.015Er. The
lower panel shows the finite-temperature counterpart of the upper panel. The various
regimes are characterized by the same criteria as for zero temperature. First, we find
regimes with vanishingly small compressibility and superfluid fraction. They correspond
to regimes where the zero-temperature MI is unaffected by the finite temperature effects
(blue areas, all panels). Second, although superfluidity is absent in the thermodynamic
limit, we find compressible regimes with a clear non-zero superfluid fraction in our system
of size L = 83a for weak enough quasiperiodic potential (red areas, left panel). We refer
to such regimes as finite-size superfluids. We have checked that the one-body correlation

115



5. Lieb-Liniger Bosons in a Shallow Quasiperiodic Potential

function is, consistently, algebraic over the full system size in these regimes (see below).
Third, we find insulating, compressible regimes (fs = 0 and κ > 0). At finite temperature,
however, the values of fs and κ are not sufficient to distinguish the BG and NF phases,
which are thus discriminated via the temperature dependence of the correlation length
ξ(T ): the absence of temperature dependence shows that the quantum phase is unaffected
by the thermal fluctuations and the corresponding regimes are identified as the BG (yellow
areas). Conversely, the regimes where the correlation length shows a sizable temperature
dependence are identified as the NF (light blue areas).

5.2.2 Analysis of the phase diagram

Now, we come back to the results of the whole phase diagram. With the method mentioned
above, we are able to identify the different phases of the system at varying interactions,
chemical potentials, potential amplitudes and temperatures. The computed phase diagram
is our main result of this chapter and plotted in Fig. 5.1. The upper row on Fig. 5.1 shows
the quantum phase diagrams versus the inverse interaction strength and the chemical
potential, for increasing amplitudes of the quasiperiodic potential. They are found from
QMC calculations of κ and fs at a vanishingly small temperature. In practice, we have used
kBT ∼ 0.001 − 0.002Er, where kB is the Boltzmann constant, and we have checked that
there is no sizable temperature dependence at a lower temperature. The results thus fairly
account for the zero-temperature phase diagram of the system. For V < Vc, no localization
is expected and we only find SF and MI phases, see panel (a1). The SF dominates at large
chemical potentials and weak interactions. Strong enough interactions destabilize the SF
phase and Mott lobes open, with fractional occupation numbers (ρa = r, 2r − 1, 2 − 2r,
1 − r from top to bottom). The number of lobes increases with the interaction strength
and eventually become dense in the hard-core limit (see below). For V > Vc and a finite
interaction, a BG phase , reminiscent of single-particle localization, develops in between
the MI lobes up to the single-particle ME at µ = Ec, see panel (a2). There, the SF fraction
is strictly zero and the compressibility has a sizable, non-zero value, within QMC accuracy.
When the quasiperiodic amplitude V increases, the BG phase extends at the expense of
both the MI and SF phases, see panel (a3).

The lower row on Fig. 5.1 shows the counterpart of the previous diagrams at the fi-
nite temperature T = 0.015Er/kB, corresponding to the minimal temperature in Ref. [12].
While quantum phases may be destroyed by arbitrarily small thermal fluctuations, the
finite-size systems we consider (L = 83a) retain characteristic properties, reminiscent of
the zero-temperature phases. The SF, MI, and BG regimes shown on Figs. 5.1(b1)-(b3)
are identified accordingly. While the former two are easily identified, special care should
be taken for the BG, which cannot be distinguished from the normal fluid (NF), since
both are compressible insulators (κ > 0 and fs = 0). A key difference, however, is that
correlations are suppressed by the disorder in the BG and by thermal fluctuations in the
NF. To identify the BG regime, we thus further require that the suppression of correla-
tions is dominated by the disorder, i.e. the correlation length is nearly independent of the
temperature. The QMC results show that the NF develops at low density and strong in-
teractions, see panel (b1). For a moderate quasiperiodic amplitude, it takes over the BG,
which is completely destroyed, see panel (b2). For a strong enough quasiperiodic potential,
however, the BG is robust against thermal fluctuations and competes favourably with the
NF regime, see panel (b3). We hence find a sizable BG regime, which should thus be
observable at temperatures accessible to current experiments using 1D quantum gases.
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Figure 5.14: Temperature-induced melting of the quantum phases. The various panels
show the coherence length ξ (black lines) and the superfluid fraction fs (blue lines) as
a function of temperature for four typical cases: (a) BG to NF crossover (V = 2Er,
µ = −0.28Er, and −a1D/a = 4.0), (b) SF to NF crossover (V = 2Er, µ = 0.53Er, and
−a1D/a = 0.2), (c) MI to NF crossover (V = 2Er, µ = 0.47Er,and −a1D/a = 0.2), (d) MI
to NF, via SF, crossover (V = Er, µ = 0.2Er, and −a1D/a = 0.05). The colored areas
correspond to the regimes identified as in Fig. 5.1.

5.3 Finite temperature effects

5.3.1 The melting of the quantum phases

Now, we turn to the quantitative study of the temperature effects. As we explained in
the previous section, we compute the one-body correlation function and fit it to g1(x) ∼
exp (−|x|/ξ), and the quantity we focused on is the correlation length ξ. At low enough
temperature, ξ remains constant while increasing temperature T , see for instance Fig. 5.14(a).
Thus, although the temperature is not strictly zero, we argue that the phase in this situa-
tion is reminiscent of the zero temperature quantum phase, at the finite size we considered.
This is the criteria we use to determine whether the observed regime is reminiscent of the
zero-temperature quantum phase or not. Then, further increasing the temperature, ξ starts
to show a strong dependence on T which presents the crossover to the thermal phase. In
Fig. 5.14, we show four typical examples for such a finite temperature behavior. Now, we
shall explain them in detail.

BG→NF transition

In Fig. 5.14(a), the typical behavior of ξ(T ) when increasing the temperature T from a
point in the BG phase (V = 2Er, µ = −0.28Er, and −a1D/a = 4.0) is displayed by the black
solid line. Here, one should notice that a key difference between the BG and NF phases
is that correlations are suppressed by the disorder in the BG and by thermal fluctuations
in the NF. To identify the BG regime, we thus further require that the suppression of
correlations is dominated by the disorder, i.e. the correlation length is nearly independent
of the temperature. In Fig. 5.14(a), it shows a plateau at low temperature, which is
identified as the BG regime, reminiscent of the zero temperature quantum phase. Above
some melting temperature T ∗, the thermal fluctuations suppress phase coherence and ξ
decreases with T , as expected for a NF. In both the BG and NF regimes, superfluidity is
absent and we consistently find fs = 0, also shown in the figure (blue line).
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Figure 5.15: One-body correlation function g1(x) for the parameters V = 2Er, µ =
−0.28Er, and −a1D/a = 4.0. The calculations are for two different temperatures: (a) T =
0.004Er/kB (BG regime) and (b) T = 0.04Er/kB (NF regime). The upper and lower
panels show plots of the same data in semi-log and log-log scales, respectively. The dashed
red lines indicate linear fits to g1(x) in semi-log scale. It yields the coherence lengths
(a) ξ ' 2.86a and (b) ξ = 1.81a, respectively.

In Fig. 5.15, we show in detail the behaviour of g1(x) for a typical point of BG and
NF in Fig. 5.14(a) respectively. The upper and lower panels show plots of the same data
in semi-log and log-log scales, respectively. We find, in both cases, that g1(x) is better
fitted by an exponential function, g1(x) ∼ exp(−|x|/ξ), rather than an algebraic function.
This is consistent with the expected behaviour in insulating regimes. Fitting the linear
slope in semi-log scale (dotted red line), we extract the correlation length ξ(T ). Here,
the case in subplot (a) has the correlation length ξ/a = 2.86, which is the same value
of the zero-temperature limit ξ0. Thus, we identify it as finite temperature BG phase in
the reminiscent of the zero temperature quantum phase. On the contrary. for the case in
subplot (b), we find ξ = 1.81a < ξ0, where a strong finite-temperature is observed. We
conclude the system is in NF phase in this case.

SF→NF transition

Consider now increasing the temperature from a point in the SF phase at T = 0, see
Fig. 5.14(b). For low enough T , we find a finite SF fraction fs, which, however, strongly
decreases with T . In this regime, the correlation function shows a characteristic algebraic
decay over the full system of length L = 83a. The sharp decrease of fs allows us to identify
a rather well defined temperature T ∗ beyond which we find a NF regime, characterized
by a vanishingly small fs. In this regime, the correlation function consistently shows an
exponential decay and the correlation length ξ(T ) decreases with T . This scenario is
consistent with the expected suppression of coherence induced by thermal fluctuations.

In Fig. 5.16, we show examples of correlation functions for two typical points in the
SF and NF regimes of Fig. 5.14(b). On the one hand, the left panel corresponds to the
temperature T = 2.4 × 10−3Er/kB, where we find a finite-size SF. Consistently, the one-
body correlation function is well fitted by an algebraic function (dotted red line), but
not by an exponential function, over the full system size. On the other hand, the right
panel corresponds to the temperature T = 3 × 10−2Er/kB, where we find a compressible
insulator with a temperature-dependent correlation length. Consistently, the one-body
correlation function is here better fitted by an exponential function (dotted red line) than
by an algebraic function, over the full system size.
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Figure 5.16: One-body correlation function g1(x) for the parameters V = 2Er, µ = 0.53Er,
and −a1D/a = 0.2. The calculations are for two different temperatures: (a) T = 2.4 ×
10−3Er/kB (finite-size SF regime) and (b) T = 0.03Er/kB (NF regime). The upper and
lower panels show plots of the same data in semi-log and log-log scales, respectively. The
dashed red lines indicate linear fits to g1(x) in semi-log scale or log-log scale.

MI→NF transition

Consider now increasing the temperature from a point in a MI lobe at T = 0, a typical
example is shown on Figs. 5.14(c). As expected, below a melting temperature T ∗, the
correlation length shows a plateau, identified as the MI regime. Quite counterintuitively,
however, we find that above T ∗ the phase coherence is enhanced by thermal fluctuations, up
to some temperature Tm, beyond which it is finally suppressed. This anomalous behavior is
signaled by the nonmonotony of the correlation length ξ(T ), see Fig. 5.14(c). We interpret
this behavior from the competition of two effects. On the one hand, a finite but small
temperature permits the formation of particle-hole pair excitations, which are extended and
support phase coherence. This effect, which is often negligible in strong lattices, is enhanced
in shallow lattices owing to the smallness of the Mott gaps, particularly in the quasiperiodic
lattice where Mott lobes with fractional fillings appear [86,192]. This favours the onset of
a finite-range coherence at finite temperature. On the other hand, when the temperature
increases, a larger number of extended pairs, which are mutually incoherent, is created.
This suppresses phase coherence on a smaller and smaller length scale, hence competing
with the former process and leading to the nonmonotonic temperature dependence of the
coherence length.

MI→SF→NF transition

In Fig. 5.14(d), we show the melting effect for another point which is MI at zero
temperature and inside a MI lobe surrounded by a SF phase. In this case, the nonmonotonic
temperature effect on the correlation length still exists. It is even strong enough to induce
a finite superfluid fraction fs, and correspondingly an algebraic correlation function in our
finite-size system, see Fig. 5.14(d).

To further confirm the appearance of the SF region in this case, Fig. 5.17 shows the
g1(x) functions, in both semi-log (upper panel) and log-log (lower panel) scales, for the
parameters of Fig. 5.14(d) and three different temperatures: (a) T = 8 × 10−4Er/kB,
corresponding to the MI regime, (b) T = 4 × 10−3Er/kB, corresponding to the finite-size
SF regime, and (c) T = 3× 10−2Er/kB, corresponding to the NF regime [see Fig. 5.14(d)].
Consistently, we find that g1(x) is better fitted by an exponential function in the insulating
regimes [MI and NF, panels (a) and (c)] and by an algebraic function in the finite-size SF
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Figure 5.17: One-body correlation function g1(x) for the parameters V = Er, µ = 0.2Er,
and −a1D/a = 0.05 at three different temperatures: (a) T = 8 × 10−4Er/kB (MI regime),
(b) T = 4 × 10−3Er/kB (finite-size SF regime), and (c) T = 3 × 10−2Er/kB (NF regime).
The upper and lower panels show plots of the same data in semi-log and log-log scales,
respectively. The dashed red lines indicate linear fits to g1(x) in semi-log or log-log scale.

regime [panel (b)]. This is further confirmed by the calculation of the Pearson correlation
coefficients P for a linear fit of g1(x) in semi-log and log-log scales, see Fig. 5.18. The
Pearson correlation coefficient P for a linear fit of data (X,Y ) defines as

P (X,Y ) =
cov(X,Y )

σXσY
(5.18)

with cov(X,Y ) the covariance of (X,Y ) and σX is the variance of X. The closer P is to
unity, the better the linear fit. Figure 5.18 confirms that the correlation function is closer
to an exponential function in the MI (dark blue) and NF (light blue) regimes, and closer
to an algebraic function in the superfluid regime (red).

Bose glass at higher temperatures in actual experiment

Results such as those shown on Fig. 5.14(a) provide us with the condition of experi-
mental temperature for observing the BG phase. Here, we discuss further the observability
in actual experiment based on our phase diagram. In the Fig 5.1, the diagrams of the

Figure 5.18: Pearson’s correlation coefficient for linear fits of one-body correlation function
g1(x) for the parameters V = Er, µ = 0.2Er, and −a1D/a = 0.05, in semi-log scale (solid
blue line) and log-log scale (solid green line). The shaded areas correspond to the MI (dark
blue), SF (red), and NF (light blue) regimes, determined as in Fig. 2(d).
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Figure 5.19: Existence of the BG regime for V = 2Er at higher temperatures. (a) Re-
production of the Fig. 5.1(b3), indicating the MI (blue), SF (red), BG (yellow), and
NF (green) regimes at the temperature T = 0.05Er/kB. The markers indicate points
where the melting temperature T ∗ of the BG phase is kBT ∗/Er < 0.05 (black squares),
0.05 < kBT

∗/Er < 0.1 (blue disks) or kBT ∗/Er > 0.1 (red disks). (b) Temperature depen-
dence of the correlation length ξ for the four points indicated on panel (a). The dashed blue
and red lines indicate the temperatures T = 0.05Er/kB and T = 0.1Er/kB, respectively.
The background colors indicate the BG (yellow) and NF (light blue) regimes.

lower row are computed at the finite temperature T = 0.015Er/kB. It corresponds to
the temperature T = 1.5nK for 1D 133Cs atoms, corresponding approximately to the low-
est temperatures reported in Ref. [12]. For the amplitude of the quasiperiodic potential
V = 2Er, its shows a sizable BG regime, see red disks in Fig. 5.19(a), which reproduces
the Fig. 5.1(b3). The BG should be observable in such an experiment.

Moreover, we have checked that a sizable BG regime survives up to higher temper-
atures. For instance the experiment of Ref. [12] reported temperatures in the range
1nK. T . 10nK for 133Cs atoms, corresponding to 0.01 . kBT/Er . 0.1. The experiment
of Ref. [14] was operated at T ' 15nK for 39K atoms, corresponding to kBT/Er ' 0.07.
We have studied the temperature dependence of the correlation length ξ as determined
from exponential fits to the one-body correlation function g1(x). Some examples are
shown on Fig. 5.14 as well as in Figs. 5.19(b1)-(b4). The melting temperature T ∗ of
the BG is the temperature where ξ(T ) starts to decrease. The points in the BG regime
we have check are indicated by markers on Fig. 5.19(a): black squares correspond to
cases where kBT ∗/Er < 0.05 [see for instance Fig.5.19(b4)], blue disks to cases where
0.05 < kBT

∗/Er < 0.1 [see for instance Fig. 5.19(b3)], and red disks to cases where
kBT

∗/Er > 0.1 [see for instance Fig. 5.19(b1) and (b2)]. It shows that sizable BG regimes
are still found at T ' 0.05Er/kB and at T ' 0.1Er/kB, and should thus be observable in
experiments such as those of Refs. [12,14].

5.3.2 Fractal Mott lobes

According to the statement in Ref. [221], the typical scale of the melting temperature for
the Mott lobe is given by

T ∗ ∝ ∆/kB (5.19)

where ∆ is the width of the lobe. More precisely, it normally appears typically at the
temperature scale T ∼ 0.1∆/kB. In the quasiperiodic lattice, however, there is no typical
gap, owing to the fractal structure of the Mott lobes, inherited from that of the single-
particle spectrum, see discussions in section 4.3 and Refs. [23, 86, 192]. In this subsection,
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Figure 5.20: Equation of state ρ(µ) for free fermions, equivalent to hard-core bosons.
(a) Same as Fig. 5.1(a2), V = 1.5Er, r = 0.807, T = 2× 10−3Er/kB. (b) and (c) are same
as panel (a) but with smaller temperatures, T = 8× 10−4Er/kB and T = 1.6× 10−4Er/kB
correspondingly.

we will study in detail the finite temperature effect for the fractal Mott lobes and its link
with the fractality of the energy spectrum.

Smoothing of the spectral gaps in the hard-core limit

First of all, we want to understand better the origin of the fractal Mott lobes. We
start with the equation of state which is linked with the fractality of the single-particle
spectrum. As discussed before, Bose-Fermi mapping in the hard-core limit allows us to
write the equation of state

ρ(µ) ' 1

L

∑
j

fFD(Ej − µ) (5.20)

with the Fermi-Dirac distribution

fFD(E) =
1

eE/kBT + 1
, (5.21)

where Ej is the energy of the j-th eigenstate of the single-particle Hamiltonian. At zero
temperature, fFD(E) is simply a Heaviside step function centred at E = µ. Thus, it simply
fills all the state below µ with one particle per state and leaves empty the states above µ.
Therefore, with the single-particle energy spectrum, one can recover the equation of state
in the hard-core limit. Owing to the fractality of the single-particle spectrum (see details
in Sec. 4.3), at strictly zero temperature, ρ(µ) is a discontinuous step-like function at any
scale.

Any finite temperature T smoothes out all the gaps smaller than the typical energy scale
kBT . For instance, Fig. 5.20(a) reproduces the equation of state plotted on the left-hand
side of the Fig. 5.1(a2), corresponding to the temperature T = 2 × 10−3Er/kB. One sees
compressible regions between the plateaus. When the temperature decreases, however, new
plateaus appear within these compressible regions. See for instance Fig. 5.20(b) and (c),
which correspond to the temperatures T = 8× 10−4Er/kB and T = 1.6× 10−4Er/kB. This
is consistent with the pure step-like equation of state expected at strictly zero temperature.
The new plateaus observed on Fig. 5.20(b) and (c) correspond to Mott gaps for interacting
bosons. By taking a smaller value of T and larger values of g, we shall see these smaller
gaps. They, however, appear at a stronger interaction strength than that considered in
this study. They are thus irrelevant to our discussion.

The compressible fraction and spectrum fractal dimension

To get further insight into the description of the melting of the MI lobes, consider the
compressible phase fraction, i.e. the complementary of the fraction of MI lobes,

K = lim
q→0+

∫ µ2

µ1

dµ

µ2 − µ1

[
κ(µ)

]q
, (5.22)
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Figure 5.21: Melting of the Mott phase. (a) Compressible phase fraction versus temper-
ature for V = 1.5Er, µ/Er ∈ [−0.4, 0.8], and various interaction strengths. (b) Exponent
α versus the interaction strength for V = Er (green solid line) and V = 1.5Er (blue). The
colored dashed lines indicate the corresponding values of 1−DH.

in the chemical potential range [µ1, µ2]. Here, we may notice that the compressible phases
contribute with κ(µ) = 1 and the incompressible MI phase with κ(µ) = 0. The behavior of
K versus temperature is shown on Fig. 5.21(a) for various interaction strengths. Below the
melting temperature of the smallest MI lobes, T ?1 , K is insensitive to thermal fluctuations
and we correspondingly find K = cst. Above that of the largest one, T ?2 , all MI lobes
are melt and K = 1. Here, one should note that the gap of the smallest lobes does not
vary much with the interaction strength while that of the largest lobes do, see Fig. 5.1.
It explains that only T ?2 varies significantly with the interaction strength on Fig. 5.21. In
the intermediate regime, T ?1 . T . T ?2 , we find the algebraic scaling K ∼ Tα, where the
exponent α depends on both the interaction strength and the quasiperiodic amplitude V ,
see Fig. 5.21(b). This behavior is reminiscent of the fractal structure of the MI lobes.

To understand this, consider the Tonks-Girardeau limit, a1D → 0 where the Lieb-Liniger
gas may be mapped onto free fermions [40]. We recall that in this limit, the particle density
then reads as Eq. (5.20). This picture provides a very good approximation of our QMC
results at large interaction, irrespective of T and V , see left panels of each plot on Fig. 5.1.
The compressibility thus reads as

κ(µ) ' 1

L

∑
j

(
− ∂fFD

∂E

)∣∣∣∣
E=Ej−µ

(5.23)

Since f ′FD = ∂fFD/∂E is a peaked function of typical width kBT around the origin, we find

κ(µ) ∼ nε=kBT (µ), (5.24)

where nε(E) is the integrated density of states (IDoS) per unit length of the free Hamil-
tonian in the energy range [E − ε/2, E + ε/2]. Hence, the compressibility maps onto the
IDoS, kBT onto the energy resolution, and, up the factor kBT/(µ2 − µ1), the compressible
phase fraction onto the spectral box-counting number NB(ε) introduced in Ref. [86] as well
as section 4.3 of this manuscript. We then find

K ∼ kBT

µ2 − µ1
NB(ε = kBT ) ∼ T 1−DH , (5.25)

where DH is the Hausdorff dimension of the free spectrum, and we recover the algebraic
temperature dependence K ∼ Tα, with α = 1−DH.

To validate this picture, we have computed the exponent α by fitting curves as on
Fig. 5.21(a) as a function of the interaction strength. The results are shown on Fig. 5.21(b)
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for two values of the quasiperiodic amplitude (colored solid lines). As expected, we find
α → 1 − DH (colored dashed lines) in the Tonks-Girardeau limit, a1D → 0. When the
interaction strength decreases, the fermionization picture breaks down. The exponent α
then decreases and vanishes when the last MI lobe shrinks.

Moreover, our results show that the compressible BG fraction is suppressed at low
temperature (α > 0) and strong interactions [see Fig. 5.21(a)]. This is consistent with the
expected singularity of the BG phase in the hard-core limit, where the MI lobes become
dense.

Conclusion

In summary, in this section, we have computed the quantum phase diagram of Lieb-
Liniger bosons in a shallow quasiperiodic potential. Our main result is that a BG phase
emerges above a critical potential and for finite interactions, surrounded by SF and MI
phases. We have also studied the effect of a finite temperature. We have shown that
the melting of the MI lobes is characteristic of their fractal structure and found regimes
where the BG phase is robust against thermal fluctuations up to a range accessible to
experiments. For instance, the temperature T = 0.015Er/kB used in Fig. 5.1 corresponds
to T ' 1.5nK for 133Cs ultracold atoms, which is about the minimal temperature achieved
in Ref. [12]. Further, we have checked that a sizable BG regime is still observable at higher
temperatures, for instance T = 0.1Er/kB, which is higher than the temperatures reported
in Refs. [12, 14]. This paves the way to the direct observation of the still elusive BG
phase, as well as the fractality of the MI lobes, in ultracold quantum gases. We propose
to characterize the phase diagram using the one-body correlation function, as obtained
from Fourier transforms of time-of-flight images in ultracold atoms [14,24]. Discrimination
of algebraic and exponential decays could benefit from box-shaped potentials [222–224].
Our results indicate that the variation of the correlation length ξ(T ) with the temperature
characterizes the various regimes, see Fig. 5.14.

Further, our work questions the universality of the BG transition found here. On
the one hand, in contrast to truly disordered [52, 53] or Fibonacci [225, 226] potentials,
the shallow bichromatic lattice contains only two spatial frequencies of finite amplitudes.
Hence, the emergence of a BG requires the growth of a dense set of density harmonics
within the renormalization group flow, which may significantly affect the value of the
critical Luttinger parameter. On the other hand, it will be interesting to investigate the
Bose glass transition in higher dimension, such as two-dimensional quasicrystal structure.
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Chapter 6

Conclusion and perspectives

In this manuscript, we have studied the properties of one dimensional (1D) Bosons in var-
ious contexts. We have mainly focused on the characterization of the quantum degeneracy
regimes in the trapped gases at a finite temperature and on the effect of quasiperiodic
potentials on correlated bosons. We have used a variety of approaches, from analytical
(Bethe ansatz, Yang-Yang thermodynamics) to advanced quantum Monte Carlo (QMC)
techniques, as well as exact diagonalization. The combination of all these methods have
been crucial to obtain the various results presented in this thesis. Beyond its interest from
the theoretical point of view, those results are also particularly relevant for nowadays ex-
periments, in particular for ultracold atom systems but potentially also in other quantum
simulator platforms such as quantum photonics for instance.

Main results presented in the thesis

We first studied the Tan contact for 1D Lieb-Liniger bosons in the presence of a har-
monic trap in Chapter 3. This quantity, which characterizes the amplitude of the long
momentum tails as well as spectroscopic signals, can be accurately measured in ultra-
cold atom experiments. We have shown that it provides a useful characteristics of the
degenerate quantum regimes. Our most important results is that the contact exhibits a
maximum as a function of temperature. In the strongly-interacting regime, it provides a
signature of the crossover to fermionization at finite temperature, while usual quantities
vary smoothly and monotonously from low to high temperature. Also, we analysed the
conditions for experimental observation and this work can trigger fruitful physics to be
detected in experiment.

Then, we moved to the study of 1D bosons in the presence of a quasiperiodic potential.
In Chapter 4, we discussed the localization properties of single particles in a 1D

quasiperiodic potential. On the one hand, we studied the fractal structure of the en-
ergy spectrum and proposed a box-counting analysis to calculate the fractal dimension.
It confirms the spectrums are fractal-like. We have shown that the fractal dimension is
nonuniversal and depends on the model as well as the potential amplitude. As a byprod-
uct, we have shown that the spectrum is nowhere dense (since the fractal dimension is
smaller than unity). It shows that the mobility edge is always in a gap, hence invalidating
previous assertions. On the other hand, we found a finite critical potential for the IPR and
finite ME in balanced bichromatic systems, which is totally different from the tight-binding
AA model or the 1D purely disordered system. We also found the IPR critical exponent
ν = 1/3 which is universal. And we also extend this study to more general cases, such
as imbalanced bichromatic systems and trichromatic systems. This extends the previous
study about the localization problem in the 1D tight-binding quasiperiodic system (AA
model) into the shallow lattice case. It also provides a steady basis for the study of the
interacting system.
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6. Conclusion and perspectives

Then, in Chapter 5, we moved to the study of the many-body problem and determined
the phase diagram for 1D Lieb-Liniger bosons in a shallow quasiperiodic potential where the
potential amplitude is around the recoil energy V ∼ Er. As argued in this thesis, this case
is important because it significantly lowers the energy scale to a regime where temperature
effects are negligible. The existence of a Bose glass was, however, not guaranteed owing
to the fact that the Mott lobes are dense in the Tonks-Girardeau limit. Using QMC,
we have been able to show that the Bose glass phase can be stabilized at intermediate
interactions. At zero temperature, we found that a clear compressible insulting Bose glass
phase appears on top of the superfluid and Mott insulator phases, for a chemical potential
above the single-particle mobility edge. Also, we studied the finite-temperature effects on
all phases. Most importantly, we found that the Bose glass phase can be robust to thermal
fluctuations up to the range which is accessible by experiments. Moreover, we have shown
that the melting effect of the Mott lobes is a signature of its fractal structure and can
be linked, in the Tonks-Girardeau limit, to the fractal dimension of the single-particle
spectrum.

Perspectives

This work paves the way for the further research, both experimentally and theoretically.

Experimental perspectives—

From the experimental perspective, this works provides predictions that can be detected
in the present-day experiments.

In the case of 1D bosons in a harmonic trap (chapter 3), the measurement of the Tan
contact is direct via momentum distribution. By changing the level of cooling and fixing
the number of particles, one can scan the temperature effect on the contact. Especially
at large interactions, one expects to observe the maximum contact which is the signature
of the crossover to fermionized regime. The experimetal setup in Ref. [12] can realize 1D
strongly-interacting systems with at least up to ξγ ' 7.5 and the measurement technique
in Ref. [125] allows one to detect the momentum distribution with high accuracy with 6
orders of magnitudes. These kinds of setups are extremely suitable for the experimental
observation of our predictions. Also, for most of the experiments, instead of generating
a single tube, they create 2D arrays of 1D tubes by 2D optical lattices, see for instance
Ref. [12]. Therefore, it will be useful to study how the 2D tube distribution influences the
detected contact and the existence of the maximum.

In the case of 1D bosons in the quasiperiodic potential (chapter 4 and 5), generally
speaking, the most interesting thing to be detected is the phase diagram. So far, no
experiments provide direct observation of a Bose glass phase, although careful analysis
has allowed to show observations compatible with a Bose glass phase [14, 24]. Also, the
temperature effects blur the phase diagram. Here, we propose an approach to overcome
these issues. It is realizeable in present-day experiment and would represent the first direct
determination of the phase diagram and observation of the Bose glass phase. Moreover, we
have found that the Mott lobes has an interesting fractal behavior. We have shown that
the temperature-induced melting of the latter is characteristic of their fractality, which
also offers stimulating experimental perspectives.

Theoritical perspectives—

From the theoretical aspect, there are also several possible extensions based on our
work.

For the Tan contact of 1D bosons (Chapter 3), there are two main directions of possible
future research. On the one hand, one can further perform the analysis of the Tan contact
for the excited states. On the other hand, it will be interesting to extend the study to
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6. Conclusion and perspectives

other type of systems, such as systems in higher dimension, fermionic systems and multi-
component (Bose, Fermi or Bose-Fermi) systems.

For the single-particle problem of the quasiperiodic system (Chapter 4), several points
deserve further investigation. First, it’s not clear what is the explanation of the universal
critical exponent ν ' 1/3 for the IPR. This value is universal for 1D bichromatic lattice
with balanced and imbalanced amplitude, as well as 1D trichromatic lattice. However, a
proper interpretation for this number is still lacking. Second, it’s important to study the
properties of the fractal dimension, for instance it’s dependence on the potential amplitude
and energy spectrum range. This can help us understand better several related and impor-
tant properties, such as the fractality of the Mott lobes and other physical consequences of
the spectral fractality of quasiperiodic systems. Thirdly, it’s also important to check the
universality of our results in higher dimensions, for instance in 2D quasiperiodic potentials.

For the many-body systems in the presence of a quasiperiodic potentials (Chapter 5),
one can identify three main lines of perspectives. First, it will be interesting to study the
Luttinger parameters and its critical value at the transition point. In Ref. [226], the authors
show that the critical Luttinger parameter for fermions in the Fibonacci chain is different
from the one in disordered potentials. It’s interesting to study the case of 1D bosons in
quasiperiodic potentials compared with the these two known results. Second, although the
initial motivation for studying the quasiperiodic potential is to simplify the realization of
disordered potentials in early experiments, here we show that the quasiperiodic potentials
are interesting in their own right. One major point is the fractality and we have shown
that the melting of certain quantum phases is characteristic of such a fractal behavior.
So far, this aspect has been loosing studied and would deserve further work to explore
other consequences. Finally, one can also generalize the study of the phase diagram to
other types of quasiperiodic systems. On the one hand, one can extend the study to 1D
trichromatic lattices. This is rather a technical point but it is potentially important for
experiments. We shall expect that the physics is similar but one can benefit from a lower
value of the critical potential. On the other hand, it would be interesting to investigate
higher dimensional quasicrystal structures. This line of research is fully open. We have just
started to study this for 2D quasicrystal structures and a publication is under preparation
while completing this thesis.

Beyond all these points about physics, there is also an outlook for the QMC code
we have discussed in Chapter 2 and used in the whole thesis. There are two possible
extensions for this code. On the one hand, the interactions can be changed into long-range
type and it can simulate the Rydberg gases. The difficulty for this update is to find the
proper analytical forms for the interaction propagator by the scattering theory. On the
other hand, one can extend the code into higher dimensions. As mentioned above, I’ve
collaborated with an internship student Ronan Gautier and we extend this code to 2D.
We’ve checked that the code is working well in 2D quasiperiodic potentials and find the
quantum phase diagram ranging from weak to strong interactions [227]. In the future, one
can adapt the code into other 2D structures and even 3D systems.
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Appendix:
Derivation for the virial expansion
equation of the Tan contact

Here, we present the details about solving Eq. (3.52) and obtain the analytical formula
for the Tan contact, Eq. (3.53), which is the equation for the contact in the regime of
high temperature (kBT � N~ω) and large interactions |a1D|/aho � 1. This derivation
was proposed by Prof. Patrizia Vignolo. Here, we recall the first step which is already
presented in section 3.2.2 and it yields the virial expansion we find for the contact [18]

C =
4mω

~λT
N2 c2 (6.1)

where c2 = λT
∂b2
∂|a1D|

and b2 =
∑

ν e
−β~ω(ν+1/2). The ν’s are the solutions of the transcen-

dental equation

f(ν) =
Γ(−ν/2)

Γ(−ν/2 + 1/2)
=
√

2
a1D
aho

. (6.2)

First, we start with using the Euler reflection formula of the Γ function, which yields,

Γ(z)Γ(1− z) =
π

sin(πz)
. (6.3)

With Eq. (6.3), one can re-write Eq. (6.2) under the form

f(ν) = −cot(πν/2)
Γ(ν/2 + 1/2)

Γ(ν/2 + 1)
. (6.4)

Now, we remind the asympotic series for the Γ function

Γ(z) '
√

2π zz−1/2 e−z (1 +O(1/z)) . (6.5)

Inserting Eq. (6.5) into Eq. (6.4), in the limit ν � 1, we obtain the asymptotic expression
for f(ν)

f(ν) ' −cot(πν/2)
1√

ν/2 + 1/2
' −

√
2

ν
cot(πν/2). (6.6)

In the Tonks-Girardeau regime (a1D = 0) , one has ν = 2n + 1, with n ∈ N. Thus, in the
regime |a1D|/aho � 1, we obtain an explicit expression for ν, by writing√

2

2n+ 1
cot(πν/2) '

√
2
|a1D|
aho

(6.7)

namely

νn =
2

π
arccot(

√
2n+ 1|a1D|/aho) + 2n, n ∈ N. (6.8)
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2 calculated using the numerical solution of Eq. (6.2) (blue continuous
line) and using the analytical expression (3.54) (magenta dashed line). We have considered
|a1D|/aho = 0.4.

This yields the following explicit expression for c2:

c2 = λT
∑
ν

(−β~ω)
∂ν

∂|a1D|
e−β~ω(νn+1/2)

= λT
∑
n

(−β~ω)
2

π

√
2n+ 1

aho

−1

1 + (2n+ 1)
a21D
a2ho

e−β~ω(νn+1/2)

=
2λTβ~ω
πaho

∑
n

√
2n+ 1

1 + (2n+ 1)
a21D
a2ho

e−β~ω(νn+1/2).

(6.9)

In order to evaluate analytically the sum in Eq. (6.9), we replace ν with 2n + 1 in the
exponential. Indeed, the first-order correction in |a1D| gives a negligible contribution in the
limit β~ω → 0 and |a1D|/aho → 0. Also, we recall the property of the complementary error
function Erfc(x),

Erfc(az) =
2z

π
e−a

2z2
∫ +∞

0

e−a
2t2 dt

t2 + z2
. (6.10)

Taking a2 = β~ω and z = aho/a1D, combined with Eq. (6.9), we finally get

c2 =
√

2

(
1

2πξ2
T

− e1/2πξ2T

23/2πξ3
T

Erfc(1/
√

2πξT)

)
. (6.11)

with ξT = −a1D/λT defined in section 3.1.1. Combined with Eq. (6.1), the contact at large
temperatures and large interactions can be approximated by

C =
4
√

2N2ξT
|a1D|a2

ho

(
1

2πξ2
T

− 1

23/2πξ3
T

e1/2πξ2TErfc(1/
√

2πξT)

)
=

2N5/2

πa3
ho

ξγ
ξT

(
√

2− e1/2πξ2T

ξT
Erfc(1/

√
2πξT)

)
.

(6.12)

In Fig. 6.1, we plot Eq. (6.1) (magenta dashed line) and compare it with the results
calculated by the numerical solution of Eq. (6.2) (blue continuouus line). From the plot,
we can see that these two curves fit well with each other when ξT & 0.3.



List of publications

1. H. Yao, D. Clément, A. Minguzzi, P. Vignolo and L. Sanchez-Palencia. ”Tan’s
contact for trapped Lieb-Liniger bosons at finite temperature”, Phys. Rev. Lett.
121,220402 (2018).

2. H. Yao, H. Khoudli, L. Bresque and L. Sanchez-Palencia. ”Critical behavior and
fractality in shallow one-dimensional quasiperiodic potentials”, Phys. Rev. Lett. 123,
070405 (2019).

3 H. Yao, T. Giamarchi, and L. Sanchez-Palencia, ”Lieb-Liniger bosons in a shallow
quasiperiodic potential: Bose glass phase and fractal Mott lobes”, Phys. Rev. Lett.
125, 060401 (2020).

4. R. Gautier, H. Yao and L. Sanchez-Palencia. ”Strongly-Interacting bosons in a
two-dimensional quasicrystal lattice”, arXiv : 2010.07590 (2020)

130



Bibliography

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev.
Mod. Phys. 80, 885 (2008).

[2] T. Giamarchi, Quantum Physics in One Dimension (Carendon press, Oxford, 2004).

[3] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional
bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83, 1405
(2011).

[4] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Three-dimensional
viscous confinement and cooling of atoms by resonance radiation pressure, Phys. Rev.
Lett. 55, 48 (1985).

[5] J. Reichel, F. Bardou, M. Ben-Dahan, E. Peik, S. Rand, C. Salomon, and C.-T. C.,
Raman cooling of cesium below 3nK: New approach inspired by Lévy flight statistics,
Phys. Rev. Lett. 75, 4575 (1995).

[6] E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Trapping of neutral sodium
atoms with radiation pressure, Phys. Rev. Lett. 59, 2631 (1987).

[7] E. A. Cornell and C. E. Wieman, Nobel lecture: Bose-Einstein condensation in a
dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3),
875 (2002).

[8] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Fermi-Bose quantum degenerate
40K-87Rb mixture with attractive interaction, Phys. Rev. Lett. 89, 150403 (2002).

[9] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov,
T. W. Hänsch, and I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical
lattice., Nature (London) 429, 277 (2004).

[10] T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional Tonks-
Girardeau gas, Science 305, 1125 (2004).

[11] I. Bouchoule, N. J. van Druten, and C. I. Westbrook, Atom Chips. J. Reichel and V.
Vuletic eds (Wiley-Blackwell, 2011), chap. "Atom chips and one-dimensional Bose
gases", pp. 331–363.

[12] F. Meinert, M. Panfil, M. J. Mark, K. Lauber, J.-S. Caux, and H.-C. Nägerl, Probing
the excitations of a Lieb-Liniger gas from weak to strong coupling, Phys. Rev. Lett.
115, 085301 (2015).

[13] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M. Gustavsson, M. Dal-
monte, G. Pupillo, and H.-C. Nägerl, Pinning quantum phase transition for a Lut-
tinger liquid of strongly interacting bosons, Nature (London) 466, 597 (2010).

131



[14] C. D’Errico, E. Lucioni, L. Tanzi, L. Gori, G. Roux, I. P. McCulloch, T. Giamarchi,
M. Inguscio, and G. Modugno, Observation of a disordered bosonic insulator from
weak to strong interactions, Phys. Rev. Lett. 113, 095301 (2014).

[15] G. Boéris, L. Gori, M. D. Hoogerland, A. Kumar, E. Lucioni, L. Tanzi, M. Inguscio,
T. Giamarchi, C. D’Errico, G. Carleo, et al., Mott transition for strongly interacting
one-dimensional bosons in a shallow periodic potential, Phys. Rev. A 93, 011601(R)
(2016).

[16] T. Kohlert, S. Scherg, X. Li, H. P. Lüschen, S. Das Sarma, I. Bloch, and M. Aidels-
burger, Observation of many-body localization in a one-dimensional system with a
single-particle mobility edge, Phys. Rev. Lett. 122, 170403 (2019).

[17] A. Minguzzi, P. Vignolo, and M. Tosi, High momentum tail in the Tonks gas under
harmonic confinement, J. Phys. Lett. A 294, 222 (2002).

[18] P. Vignolo and A. Minguzzi, Universal contact for a Tonks-Girardeau gas at finite
temperature, Phys. Rev. Lett. 110, 020403 (2013).

[19] K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, and U. Schneider, Matter-wave diffrac-
tion from a quasicrystalline optical lattice, Phys. Rev. Lett. 122, 110404 (2019).

[20] L. Fallani, J. E. Lye, V. Guarrera, C. Fort, and M. Inguscio, Ultracold atoms in a
disordered crystal of light: Towards a Bose glass, Phys. Rev. Lett. 98, 130404 (2007).

[21] L. Tanzi, E. Lucioni, S. Chaudhuri, L. Gori, A. Kumar, C. D’Errico, M. Inguscio, and
G. Modugno, Transport of a Bose gas in 1D disordered lattices at the fluid-insulator
transition, Phys. Rev. Lett. 111, 115301 (2013).

[22] P. Lugan, D. Clément, P. Bouyer, A. Aspect, M. Lewenstein, and L. Sanchez-
Palencia, Ultracold Bose gases in 1D disorder: From Lifshits glass to Bose-Einstein
condensate, Phys. Rev. Lett. 98, 170403 (2007).

[23] G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U. Schollwöck, and T. Giamarchi,
Quasiperiodic Bose-hubbard model and localization in one-dimensional cold atomic
gases, Phys. Rev. A 78(2), 023628 (2008).

[24] L. Gori, T. Barthel, A. Kumar, E. Lucioni, L. Tanzi, M. Inguscio, G. Modugno,
T. Giamarchi, C. D’Errico, and G. Roux, Finite-temperature effects on interacting
bosonic one-dimensional systems in disordered lattices, Phys. Rev. A 93, 033650
(2016).

[25] L. Pricoupenko and M. Olshanii, Stability of two-dimensional Bose gases in the res-
onant regime, J. Phys. B: At. Mol. Opt. Phys. 40, 2065 (2007).

[26] C. Mora and Y. Castin, Extension of bogoliubov theory to quasicondensates, Phys.
Rev. A 67(5), 053615 (2003).

[27] Z. Hadzibabic and J. Dalibard, Two-dimensional Bose fluids: An atomic physics
perspective, Rivista del Nuovo Cimento 34, 389 (2011).

[28] G. Carleo, G. Boéris, M. Holzmann, and L. Sanchez-Palencia, Universal superfluid
transition and transport properties of two-dimensional dirty bosons, Phys. Rev. Lett.
111, 050406 (2013).

[29] L.-C. Ha, C.-L. Hung, X. Zhang, U. Eismann, S.-K. Tung, and C. Chin, Strongly
interacting two-dimensional bose gases, Phys. Rev. Lett. 110(14), 145302 (2013).



[30] C. De Rossi, R. Dubessy, K. Merloti, M. d. G. de Herve, T. Badr, A. Perrin,
L. Longchambon, and H. Perrin, Probing superfluidity in a quasi two-dimensional
bose gas through its local dynamics, New J. Phys. 18(6), 062001 (2016).

[31] A. Szabó and U. Schneider, Non-power-law universality in one-dimensional qua-
sicrystals, Phys. Rev. B 98, 134201 (2018).

[32] A. Szabó and U. Schneider, Mixed spectra and partially extended states in a two-
dimensional quasiperiodic model, Phys. Rev. B 101(1), 014205 (2020).

[33] M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt, and U. Schneider, Observing
localisation in a 2D quasicrystalline optical lattice, arXiv preprint arXiv:2001.10912
(2020).

[34] F. Meinert, M. Knap, E. Kirilov, K. Jag-Lauber, M. B. Zvonarev, E. Demler, and
H.-C. Nägerl, Bloch oscillations in the absence of a lattice, Science 356(6341), 945
(2017).

[35] G. Lang, F. Hekking, and A. Minguzzi, Ground-state energy and excitation spectrum
of the lieb-liniger model: accurate analytical results and conjectures about the exact
solution, SciPost Physics 3(1), 003 (2017).

[36] J. Despres, L. Villa, and L. Sanchez-Palencia, Twofold correlation spreading in a
strongly correlated lattice Bose gas, Sci. Rep. 9, 4135 (2019).

[37] L. Villa, J. Despres, and L. Sanchez-Palencia, Unraveling the excitation spectrum of
many-body systems from quantum quenches, Phys. Rev. A 100, 063632 (2019).

[38] L. Villa, J. Despres, S. Thomson, and L. Sanchez-Palencia, Local quench spectroscopy
of many-body quantum systems, arXiv preprint arXiv:2007.08381 (2020).

[39] Y. Guo, R. Dubessy, M. d. G. de Herve, A. Kumar, T. Badr, A. Perrin, L. Longcham-
bon, and H. Perrin, Supersonic rotation of a superfluid: a long-lived dynamical ring,
Phys. Rev. Lett. 124(2), 025301 (2020).

[40] M. Girardeau, Relationship between systems of impenetrable bosons and fermions in
one dimension, J. Math. Phys. 1, 516 (1960).

[41] S. Lellouch and L. Sanchez-Palencia, Localization transition in weakly-interacting
Bose superfluids in one-dimensional quasiperdiodic lattices, Phys. Rev. A 90,
061602(R) (2014).

[42] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms
in optical lattices, Phys. Rev. Lett. 81(15), 3108 (1998).

[43] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase
transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature
(London) 415(6867), 39 (2002).

[44] S. Inouye, M. R. Andrews, J. Stenger, H. J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate,
Nature (London) 392(6672), 151 (1998).

[45] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman,
Stable 85Rb Bose-Einstein condensates with widely tunable interactions, Phys. Rev.
Lett. 85(9), 1795 (2000).



[46] V. Gurarie and J. T. Chalker, Some generic aspects of bosonic excitations in disor-
dered systems, Phys. Rev. Lett. 89, 136801 (2002).

[47] V. Gurarie, G. Refael, and J. T. Chalker, Excitations of one-dimensional Bose-
Einstein condensates in a random potential, Phys. Rev. Lett. 101(17), 170407 (2008).

[48] N. Bilas and N. Pavloff, Anderson localization of elementary excitations in a one-
dimensional Bose-Einstein condensate, Eur. Phys. J. D 40(3), 387 (2006).

[49] P. Lugan, D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia, Anderson
localization of Bogolyubov quasiparticles in interacting Bose-Einstein condensates,
Phys. Rev. Lett. 99(18), 180402 (2007).

[50] P. Lugan and L. Sanchez-Palencia, Localization of Bogoliubov quasiparticles in inter-
acting Bose gases with correlated disorder, Phys. Rev. A 84(1), 013612 (2011).

[51] S. Lellouch, L.-K. Lim, and L. Sanchez-Palencia, Propagation of collective pair exci-
tations in disordered Bose superfluids, Phys. Rev. A 92, 043611 (2015).

[52] T. Giamarchi and H. J. Schulz, Localization and interactions in one-dimensional
quantum fluids, Europhys. Lett. 3, 1287 (1987).

[53] T. Giamarchi and H. J. Schulz, Anderson localization and interactions in one-
dimensional metals, Phys. Rev. B 37(1), 325 (1988).

[54] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization
and the superfluid-insulator transition, Phys. Rev. B 40(1), 546 (1989).

[55] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general
solution and the ground state, Phys. Rev. 130, 1605 (1963).

[56] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum,
Phys. Rev. 130, 1616 (1963).

[57] C. N. Yang and C. P. Yang, Thermodynamics of a one-dimensional system of bosons
with repulsive δ-function interaction, J. Math. Phys. 10, 1115 (1969).

[58] M. Boninsegni, N. Prokof’ev, and B. Svistunov, Worm algorithm for continuous-space
path integral Monte Carlo simulations, Phys. Rev. Lett. 96, 070601 (2006).

[59] M. Boninsegni, N. V. Prokof’ev, and B. V. Svistunov, Worm algorithm and diagram-
matic Monte Carlo: A new approach to continuous-space path integral Monte Carlo
simulations, Phys. Rev. E 74, 036701 (2006).

[60] V. Gurarie, One-dimensional gas of bosons with Feshbach-resonant interactions,
Phys. Rev. A 73(3), 033612 (2006).

[61] N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C. Fort, and J.-S. Caux,
Dynamical structure factor of one-dimensional Bose gases: Experimental signatures
of beyond-Luttinger-liquid physics, Phys. Rev. A 91, 043617 (2015).

[62] M. Olshanii, Atomic scattering in the presence of an external confinement and a gas
of impenetrable bosons, Phys. Rev. Lett. 81(5), 938 (1998).

[63] V. Flambaum, G. Gribakin, and C. Harabati, Analytical calculation of cold-atom
scattering, Phys. Rev. A 59(3), 1998 (1999).



[64] S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock, D. S.
Petrov, G. V. Shlyapnikov, H. Kreutzmann, L. Santos, et al., Observation of phase
fluctuations in elongated Bose-Einstein condensates, Phys. Rev. Lett. 87, 160406
(2001).

[65] F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, and A. Aspect,
Momentum distribution and correlation function of quasicondensates in elongated
traps, Phys. Rev. A 67, 051602 (2003).

[66] J. Estève, J.-B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook, and I. Bouchoule,
Observations of density fluctuations in an elongated Bose gas: Ideal gas and quasi-
condensate regimes, Phys. Rev. Lett. 96, 130403 (2006).

[67] J. Decamp, M. Albert, and P. Vignolo, Tan’s contact in a cigar-shaped dilute bose
gas, Phys. Rev. A 97(3), 033611 (2018).

[68] T. NAGAMIYA, Statistical mechanics of one-dimensional substances i, Proceedings
of the Physico-Mathematical Society of Japan. 3rd Series 22(8-9), 705 (1940).

[69] G. De Rosi, P. Massignan, M. Lewenstein, and G. E. Astrakharchik, Beyond-
Luttinger-liquid thermodynamics of a one-dimensional bose gas with repulsive contact
interactions, Phys. Rev. R 1(3), 033083 (2019).

[70] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Regimes of quantum de-
generacy in trapped 1D gases, Phys. Rev. Lett. 85, 3745 (2000).

[71] A. O. gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and strongly corre-
lated systems (Cambridge university press, 2004).

[72] F. D. M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-
dimensional quantum fluids, Phys. Rev. Lett. 47, 1840 (1981).

[73] G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Quantum critical phenomena
in one-dimensional Bose systems, Phys. Rev. Lett. 65, 1765 (1990).

[74] V. A. Kashurnikov, A. V. Krasavin, and B. V. Svistunov, Mott-insulator-superfluid-
liquid transition in a one-dimensional bosonic hubbard model: Quantum monte carlo
method, JETP Lett. 64(2), 99 (1996).

[75] T. D. Kühner and H. Monien, Phases of the one-dimensional Bose-Hubbard model,
Phys. Rev. B 58, R14741 (1998).

[76] T. D. Kühner, S. R. White, and H. Monien, One-dimensional Bose-Hubbard model
with nearest-neighbor interaction, Phys. Rev. B 61, 12474 (2000).

[77] N. Elstner and H. Monien, Dynamics and thermodynamics of the bose-hubbard model,
Phys. Rev. B 59(19), 12184 (1999).

[78] V. Pokrovsky and A. Talapov, Ground state, spectrum, and phase diagram of two-
dimensional incommensurate crystals, Phys. Rev. Lett. 42(1), 65 (1979).

[79] H. J. Schulz, Critical behavior of commensurate-incommensurate phase transitions in
two dimensions, Phys. Rev. B 22, 5274 (1980).

[80] T. Giamarchi, Resistivity of a one-dimensional interacting quantum fluid, Phys. Rev.
B 46, 342 (1992).



[81] E. B. Kolomeisky, Universal jumps of conductance at the metal-insulator transition
in one dimension, Phys. Rev. B 47, 6193 (1993).

[82] H.-P. Büchler, G. Blatter, and W. Zwerger, Commensurate-incommensurate transi-
tion of cold atoms in an optical lattice, Phys. Rev. Lett. 90(13), 130401 (2003).

[83] S. Rapsch, U. Schollwöck, and W. Zwerger, Density matrix renormalization group
for disordered bosons in one dimension, Europhys. Lett. 46, 559 (1999).

[84] L. Fontanesi, M. Wouters, and V. Savona, Superfluid to Bose-glass transition in a
1d weakly interacting Bose gas, Phys. Rev. Lett. 103(3), 030403 (2009).

[85] L. Pollet, N. V. Prokof’ev, B. V. Svistunov, and M. Troyer, Absence of a direct
superfluid to Mott insulator transition in disordered Bose systems, Phys. Rev. Lett.
103(14), 140402 (2009).

[86] H. Yao, H. Khoudli, L. Bresque, and L. Sanchez-Palencia, Critical behavior and
fractality in shallow one-dimensional quasiperiodic potentials, Phys. Rev. Lett. 123,
070405 (2019).

[87] A. Lüscher and A. M. Läuchli, Exact diagonalization study of the antiferromagnetic
spin-1/2 heisenberg model on the square lattice in a magnetic field, Phys. Rev. B
79(19), 195102 (2009).

[88] A. M. Läuchli, J. Sudan, and E. S. Sørensen, Ground-state energy and spin gap of
spin-1/2 kagomé-heisenberg antiferromagnetic clusters: Large-scale exact diagonal-
ization results, Phys. Rev. B 83(21), 212401 (2011).

[89] E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento
(1955-1965) 20(3), 454 (1961).

[90] L. P. Pitaevskii, Vortex lines in an imperfect bose gas, Sov. Phys. JETP 13(2), 451
(1961).

[91] N. Bogoliubov, On the theory of superfluidity, J. Phys 11(1), 23 (1947).

[92] L. Pollet, Recent developments in quantum monte carlo simulations with applications
for cold gases, Reports on progress in physics 75(9), 094501 (2012).

[93] W. L. McMillan, Ground state of liquid he 4, Phys. Rev. 138(2A), A442 (1965).

[94] D. Ceperley, G. Chester, and M. Kalos, Monte carlo simulation of a many-fermion
study, Phys. Rev. B 16(7), 3081 (1977).

[95] J. W. Moskowitz, K. Schmidt, M. A. Lee, and M. H. Kalos, A new look at correlation
energy in atomic and molecular systems. ii. the application of the green’s function
monte carlo method to LiH, The Journal of chemical physics 77(1), 349 (1982).

[96] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester Jr, Fixed-node quantum
monte carlo for molecules, The Journal of Chemical Physics 77(11), 5593 (1982).

[97] E. Pollock and D. M. Ceperley, Simulation of quantum many-body systems by path-
integral methods, Phys. Rev. B 30(5), 2555 (1984).

[98] E. Pollock and D. M. Ceperley, Path-integral computation of superfluid densities,
Phys. Rev. B 36(16), 8343 (1987).



[99] D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys.
67, 279 (1995).

[100] N. Prokof’ev and B. Svistunov, Bold diagrammatic Monte Carlo technique: when the
sign problem is welcome, Phys. Rev. Lett. 99, 250201 (2007).

[101] G. Carleo, F. Becca, M. Schiró, and M. Fabrizio, Localization and glassy dynamics
of many-body quantum systems, Sci. Rep. 2, 243 (2012).

[102] G. Carleo, L. Cevolani, L. Sanchez-Palencia, and M. Holzmann, Unitary dynamics
of strongly interacting Bose gases with the time-dependent variational Monte Carlo
method in continuous space, Phys. Rev. X 7, 031026 (2017).

[103] N. Wiener, The average of an analytic functional, Proceedings of the National
Academy of Sciences of the United States of America 7(9), 253 (1921).

[104] N. Wiener, Differential-space, Journal of Mathematics and Physics 2(1-4), 131
(1923).

[105] P. DIRAC, The lagrangian in quantum mechanics, Physikalische Zeitschirift der Sow-
jetunion 3, 312 (1933).

[106] R. P. Feynman, Space-time approach to nonrelativistic quantum mechanics, Rev.
Mod. Phys. 20, 367 (1948).

[107] M. Kac, On distributions of certain wiener functionals, Transactions of the American
Mathematical Society 65(1), 1 (1949).

[108] H. F. Trotter, On the product of semi-groups of operators, Proceedings of the Amer-
ican Mathematical Society 10(4), 545 (1959).

[109] M. Suzuki, Generalized trotter’s formula and systematic approximants of exponential
operators and inner derivations with applications to many-body problems, Communi-
cations in Mathematical Physics 51(2), 183 (1976).

[110] J. Barker, A quantum-statistical monte carlo method; path integrals with boundary
conditions, The Journal of Chemical Physics 70(6), 2914 (1979).

[111] Y. Yan and D. Blume, Incorporating exact two-body propagators for zero-range in-
teractions into n-body monte carlo simulations, Phys. Rev. A 91(4), 043607 (2015).

[112] W. Krauth, Statistical mechanics: algorithms and computations, vol. 13 (OUP Ox-
ford, 2006).

[113] M. Pierce and E. Manousakis, Path-integral monte carlo simulation of the second
layer of 4 he adsorbed on graphite, Physical Review B 59(5), 3802 (1999).

[114] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
Equation of state calculations by fast computing machines, The journal of chemical
physics 21(6), 1087 (1953).

[115] W. HASTINGS, Monte carlo sampling methods using marcov chains and their appli-
cations, Biometrika 57, 97 (1970).

[116] V. Ambegaokar and M. Troyer, Estimating errors reliably in monte carlo simulations
of the ehrenfest model, American Journal of Physics 78(2), 150 (2010).



[117] B. Bauer, L. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukel-
berger, E. Gull, S. Guertler, et al., The alps project release 2.0: open source software
for strongly correlated systems, Journal of Statistical Mechanics: Theory and Exper-
iment 2011(05), P05001 (2011).

[118] M. Troyer, B. Ammon, and E. Heeb, in International Symposium on Computing in
Object-Oriented Parallel Environments, Springer (1998), pp. 191–198.

[119] W. Krauth, Quantum monte carlo calculations for a large number of bosons in a
harmonic trap, Phys. Rev. Lett. 77(18), 3695 (1996).

[120] M. Holzmann and W. Krauth, Kosterlitz-thouless transition of the quasi-two-
dimensional trapped bose gas, Phys. Rev. Lett. 100(19), 190402 (2008).

[121] M. Olshanii and V. Dunjko, Short-distance correlation properties of the Lieb-Liniger
system and momentum distributions of trapped one-dimensional atomic gases, Phys.
Rev. Lett. 91, 090401 (2003).

[122] S. Tan, Large momentum part of fermions with large scattering length, Ann. Phys.
(NY) 323, 2971 (2008).

[123] S. Tan, Generalized virial theorem and pressure relation for a strongly correlated
Fermi gas, Ann. Phys. (NY) 323, 2987 (2008).

[124] S. Tan, Energetics of a strongly correlated Fermi gas, Ann. Phys. (NY) 323, 2952
(2008).

[125] R. Chang, Q. Bouton, H. Cayla, C. Qu, A. Aspect, C. I. Westbrook, and D. Clément,
Momentum-resolved observation of thermal and quantum depletion in a Bose gas,
Phys. Rev. Lett. 117, 235303 (2016).

[126] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and D. S. Jin, Measurements of
Tan’s contact in an atomic Bose-Einstein condensate, Phys. Rev. Lett. 108, 145305
(2012).

[127] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Verification of universal
relations in a strongly interacting Fermi gas, Phys. Rev. Lett. 104, 235301 (2010).

[128] Y. Sagi, T. E. Drake, R. Paudel, and D. S. Jin, Measurement of the homogeneous
contact of a unitary Fermi gas, Phys. Rev. Lett. 109, 220402 (2012).

[129] S. Hoinka, M. Lingham, K. Fenech, H. Hu, C. J. Vale, J. E. Drut, and S. Gandolfi,
Precise determination of the structure factor and contact in a unitary Fermi gas,
Phys. Rev. Lett. 110, 055305 (2013).

[130] C. Luciuk, S. Trotzky, S. Smale, Z. Yu, S. Zhang, and J. H. Thywissen, Evidence
for universal relations describing a gas with p-wave interactions, Nat. Phys. 12, 599
(2016).

[131] R. J. Fletcher, R. Lopes, J. Man, N. Navon, R. P. Smith, M. W. Zwierlein, and
Z. Hadzibabic, Two- and three-body contacts in the unitary Bose gas, Science 355,
377 (2017).

[132] S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, and C. Salomon, Connecting
few-body inelastic decay to quantum correlations in a many-body system: A weakly
coupled impurity in a resonant Fermi gas, Phys. Rev. Lett. 118, 103403 (2017).



[133] A. Johnson, S. S. Szigeti, M. Schemmer, and I. Bouchoule, Long-lived nonthermal
states realized by atom losses in one-dimensional quasicondensates, Phys. Rev. A 96,
013623 (2017).

[134] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and G. V. Shlyapnikov, Pair
correlations in a finite-temperature 1D Bose gas, Phys. Rev. Lett. 91, 040403 (2003).

[135] M. Kormos, G. Mussardo, and A. Trombettoni, Expectation values in the Lieb-Liniger
Bose gas, Phys. Rev. Lett. 103, 210404 (2009).

[136] W. Xu and M. Rigol, Universal scaling of density and momentum distributions in
Lieb-Liniger gases, Phys. Rev. A 92, 063623 (2015).

[137] H. Yao, D. Clément, A. Minguzzi, P. Vignolo, and L. Sanchez-Palencia, Tan’s contact
for trapped Lieb-Liniger bosons at finite temperature, Phys. Rev. Lett. 121, 220402
(2018).

[138] M. Barth and W. Zwerger, Tan relations in one dimension, Ann. Phys. (NY) 326,
2544 (2011).

[139] M. A. Cazalilla, One-dimensional optical lattices and impenetrable bosons, Phys. Rev.
A 67, 053606 (2003).

[140] H. Hu, X.-J. Liu, and P. D. Drummond, Universal contact of strongly interacting
fermions at finite temperatures, New J. Phys. 13(3), 035007 (2011).

[141] X.-J. Liu, H. Hu, and P. D. Drummond, Virial expansion for a strongly correlated
Fermi gas, Phys. Rev. Lett. 102(16), 160401 (2009).

[142] T. Busch, B.-G. Englert, K. Rzażewski, and M. Wilkens, Two cold atoms in a har-
monic trap, Foundations of Physics 28(4), 549 (1998).

[143] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109,
1492 (1958).

[144] E. Abrahams, 50 years of Anderson Localization (World Scientific, Singapore, 2010).

[145] P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys.
57(2), 287 (1985).

[146] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a
disordered medium, Nature (London) 390, 671 (1997).

[147] M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, Observation of the critical
regime near Anderson localization of light, Phys. Rev. Lett. 96(6), 063904 (2006).

[148] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Transport and Anderson local-
ization in disordered two-dimensional photonic lattices, Nature (London) 446, 52
(2007).

[149] V. Gurarie and J. T. Chalker, Bosonic excitations in random media, Phys. Rev. B
68(13), 134207 (2003).

[150] P. W. Anderson, Theory of dirty superconductors, J. Phys. Chem. Sol. 11, 26 (1959).

[151] G. Orso, BCS-BEC crossover in a random external potential, Phys. Rev. Lett. 99(25),
250402 (2007).



[152] L. Han and C. A. R. Sá de Melo, Evolution from Bardeen-Cooper-Schrieffer to Bose-
Einstein condensate superfluidity in the presence of disorder, New J. Phys. 13(5),
055012 (2011).

[153] L. Sanchez-Palencia and M. Lewenstein, Disordered quantum gases under control,
Nat. Phys. 6, 87 (2010).

[154] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range
orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[155] R. Peierls, Theory of the diamagnetism of conduction electrons, Z. Phys. 80, 763
(1933).

[156] P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field,
Proc. Phys. Soc. London A 68, 874 (1955).

[157] D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and
irrational magnetic fields, Phys. Rev. B 14, 2239 (1976).

[158] J. Wilson, F. Di Salvo, and S. Mahajan, Charge-density waves and superlattices in
the metallic layered transition metal dichalcogenides, Adv. Phys. 24, 117 (1975).

[159] R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattacharya, Quasiperiodic
GaAs-AlAs heterostructures, Phys. Rev. Lett. 55, 1768 (1985).

[160] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Sil-
berberg, Observation of a localization transition in quasiperiodic photonic lattices,
Phys. Rev. Lett. 103, 013901 (2009).

[161] D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin, A. Lemaître, E. Galopin, I. Sagnes,
A. Amo, J. Bloch, and E. Akkermans, Fractal energy spectrum of a polariton gas in
a Fibonacci quasiperiodic potential, Phys. Rev. Lett. 112, 146404 (2014).

[162] A. Aspect and M. Inguscio, Anderson localization of ultracold atoms, Phys. Today
62, 30 (2009).

[163] G. Modugno, Anderson localization in Bose-Einstein condensates, Rep. Prog. Phys.
73, 102401 (2010).

[164] B. Damski, J. Zakrzewski, L. Santos, P. Zoller, and M. Lewenstein, Atomic Bose and
Anderson glasses in optical lattices, Phys. Rev. Lett. 91, 080403 (2003).

[165] R. Roth and K. Burnett, Phase diagram of bosonic atoms in two-color superlattices,
Phys. Rev. A 68, 023604 (2003).

[166] L. Sanchez-Palencia and L. Santos, Bose-Einstein condensates in optical quasicrystal
lattices, Phys. Rev. A 72, 053607 (2005).

[167] N. Macé, A. Jagannathan, and M. Duneau, Quantum simulation of a 2D quasicrystal
with cold atoms, Crystals 6, 124 (2016).

[168] B. Gadway, D. Pertot, J. Reeves, M. Vogt, and D. Schneble, Glassy behavior in a
binary atomic mixture, Phys. Rev. Lett. 107, 145306 (2011).

[169] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Many-body localization in a
quasiperiodic system, Phys. Rev. B 87, 134202 (2013).



[170] A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani,
J. Léonard, and M. Greiner, Probing entanglement in a many-body-localized system,
arXiv:1805.09819 (2018).

[171] R. Matthew, L. Alexander, S. Robert, K. Sooshin, T. M. Eric, L. Julian, and
G. Markus, Quantum critical behavior at the many-body-localization transition,
arXiv:1812.06959 (2018).

[172] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling
theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev.
Lett. 42, 673 (1979).

[173] S. Aubry and G. André, Analyticity breaking and Anderson localization in incom-
mensurate lattices, Ann. Israel Phys. Soc. 3, 133 (1980).

[174] C. Soukoulis and E. Economou, Localization in one-dimensional lattices in the pres-
ence of incommensurate potentials, Phys. Rev. Lett. 48, 1043 (1982).

[175] S. Das Sarma, A. Kobayashi, and R. E. Prange, Proposed experimental realization
of Anderson localization in random and incommensurate artificially layered systems,
Phys. Rev. Lett. 56, 1280 (1986).

[176] J. Biddle, B. Wang, D. J. Priour Jr, and S. Das Sarma, Localization in one-
dimensional incommensurate lattices beyond the Aubry-André model, Phys. Rev. A
80, 021603 (2009).

[177] J. Biddle and S. Das Sarma, Predicted mobility edges in one-dimensional incommen-
surate optical lattices: An exactly solvable model of Anderson localization, Phys. Rev.
Lett. 104, 070601 (2010).

[178] J. Biddle, D. J. Priour Jr, B. Wang, and S. D. Sarma, Localization in one-dimensional
lattices with non-nearest-neighbor hopping : Generalized Anderson and Aubry-André
models, Phys. Rev. B 83, 075105 (2011).

[179] S. Ganeshan, J. Pixley, and S. Das Sarma, Nearest neighbor tight binding models with
an exact mobility edge in one dimension, Phys. Rev. Lett. 114, 146601 (2015).

[180] D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus, Mobility edges in bichromatic
optical lattices, Phys. Rev. A 75, 063404 (2007).

[181] X. Li, X. Li, and S. Das Sarma, Mobility edges in one-dimensional bichromatic in-
commensurate potentials, Phys. Rev. B 96, 085119 (2017).

[182] H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia, X. Li, S. Das Sarma,
and I. Bloch, Single-particle mobility edge in a one-dimensional quasiperiodic optical
lattice, Phys. Rev. Lett. 120, 160404 (2018).

[183] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).

[184] R. B. Diener, G. A. Georgakis, J. Zhong, M. Raizen, and Q. Niu, Transition between
extended and localized states in a one-dimensional incommensurate optical lattice,
Phys. Rev. A 64(3), 033416 (2001).

[185] A. Avila and S. Jitomirskaya, The ten martini problem, Annals of Mathematics pp.
303–342 (2009).

[186] I. M. Lifshits, S. Gredeskul, and L. Pastur, Introduction to the Theory of Disordered
Systems (Wiley, New York, 1988).



[187] C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys.
69, 731 (1997).

[188] B. Simon, Almost periodic schrödinger operators: a review, Advances in Applied
Mathematics 3(4), 463 (1982).

[189] C. Tang and M. Kohmoto, Global scaling properties of the spectrum for a quasiperiodic
Schrödinger equation, Phys. Rev. B 34, 2041 (1986).

[190] M. Kohmoto, B. Sutherland, and C. Tang, Critical wave functions and a Cantor-set
spectrum of a one-dimensional quasicrystal model, Phys. Rev. B 35, 1020 (1987).

[191] M. Kohmoto, Metal-insulator transition and scaling for incommensurate systems,
Phys. Rev. Lett. 51, 1198 (1983).

[192] T. Roscilde, Bosons in one-dimensional incommensurate superlattices, Phys. Rev. A
77, 063605 (2008).

[193] B. B. Mandelbrot, The Fractal Geometry of Nature, vol. 2 (WH freeman New York,
1982).

[194] J. Theiler, Estimating fractal dimension, JOSA A 7, 1055 (1990).

[195] A. Jagannathan and M. Duneau, An eightfold optical quasicrystal with cold atoms,
Europhys. Lett. 104(6), 66003 (2014).

[196] L. Pezzé and L. Sanchez-Palencia, Localized and extended states in a disordered trap,
Phys. Rev. Lett. 106, 040601 (2011).

[197] V. V. Volchkov, M. Pasek, V. Denechaud, M. Mukhtar, A. Aspect, D. Delande,
and V. Josse, Measurement of spectral functions of ultracold atoms in disordered
potentials, Phys. Rev. Lett. 120, 060404 (2018).

[198] J. Richard, L.-K. Lim, V. Denechaud, V. V. Volchkov, B. Lecoutre, M. Mukhtar,
F. Jendrzejewski, A. Aspect, A. Signoles, L. Sanchez-Palencia, et al., Elastic scat-
tering time of matter waves in disordered potentials, Phys. Rev. Lett. 122, 100403
(2019).

[199] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-insulator transition in a
weakly interacting many-electron system with localized single-particle states, Ann.
Phys. (NY) 321(5), 1126 (2006).

[200] V. Oganesyan and D. A. Huse, Localization of interacting fermions at high tempera-
ture, Phys. Rev. B 75, 155111 (2007).

[201] R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quan-
tum statistical mechanics, Annual Rev. Cond. Mat. Phys. 6, 15 (2015).

[202] E. Altman and R. Vosk, Universal dynamics and renormalization in many-body-
localized systems, Annual Rev. Cond. Mat. Phys. 6, 383 (2015).

[203] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localiza-
tion, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019).

[204] W. Krauth, N. Trivedi, and D. Ceperley, Superfluid-insulator transition in disordered
boson systems, Phys. Rev. Lett. 67(17), 2307 (1991).



[205] F. D. M. Haldane, Solidification in a soluble model of bosons on a one-dimensional
lattice: The Boson-Hubbard chain, J. Phys. Lett. A 80, 281 (1980).

[206] R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Localization in interacting,
disordered, Bose systems, Phys. Rev. Lett. 66(24), 3144 (1991).

[207] R. Vosk and E. Altman, Superfluid-insulator transition of ultracold bosons in disor-
dered one-dimensional traps, Phys. Rev. B 85, 024531 (2012).

[208] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and
Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered
photonic lattices, Phys. Rev. Lett. 100(1), 013906 (2008).

[209] M. Pasienski, D. McKay, M. White, and B. DeMarco, A disordered insulator in an
optical lattice, Nat. Phys. 6, 677 (2010).

[210] B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Mod-
ugno, and M. Inguscio, Delocalization of a disordered bosonic system by repulsive
interactions, Nat. Phys. 6, 354 (2010).

[211] R. Yu, L. Yin, N. S. Sullivan, J. S. Xia, C. Huan, A. Paduan-Filho, N. F. O. Jr,
S. Haas, A. Steppke, C. F. Miclea, et al., Bose glass and Mott glass of quasiparticles
in a doped quantum magnet, Nature (London) 489, 379 (2012).

[212] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, Ultracold
atomic gases in optical lattices: Mimicking condensed matter physics and beyond,
Adv. Phys. 56, 243 (2007).

[213] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, and Y. Silberberg, Topological
pumping over a photonic Fibonacci quasicrystal, Phys. Rev. B 91, 064201 (2015).

[214] F. Baboux, E. Levy, A. Lemaître, C. Gómez, E. Galopin, L. Le Gratiet, I. Sagnes,
A. Amo, J. Bloch, and E. Akkermans, Measuring topological invariants from gener-
alized edge states in polaritonic quasicrystals, Phys. Rev. B 95, 161114 (2017).

[215] X. Deng, R. Citro, A. Minguzzi, and E. Orignac, Phase diagram and momentum
distribution of an interacting Bose gas in a bichromatic lattice, Phys. Rev. A 78,
013625 (2008).

[216] L. Sanchez-Palencia, Smoothing effect and delocalization of interacting Bose-Einstein
condensates in random potentials, Phys. Rev. A 74(5), 053625 (2006).

[217] H. Yao, T. Giamarchi, and L. Sanchez-Palencia, Lieb-Liniger bosons in a shallow
quasiperiodic potential: Bose glass phase and fractal Mott lobes, Phys. Rev. Lett.
125, 060401 (2020).

[218] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, Transition from a
strongly interacting 1d superfluid to a mott insulator, Physical review letters 92(13),
130403 (2004).

[219] C. Kollath, A. Iucci, T. Giamarchi, W. Hofstetter, and U. Schollwöck, Spectroscopy
of ultracold atoms by periodic lattice modulations, Phys. Rev. Lett. 97(5), 050402
(2006).

[220] G. Orso, A. Iucci, M. Cazalilla, and T. Giamarchi, Lattice modulation spectroscopy
of strongly interacting bosons in disordered and quasiperiodic optical lattices, Phys.
Rev. A 80(3), 033625 (2009).



[221] F. Gerbier, Boson Mott insulators at finite temperatures, Phys. Rev. Lett. 99, 120405
(2007).

[222] T. P. Meyrath, F. Schreck, J. L. Hanssen, C.-S. Chuu, and M. G. Raizen, Bose-
Einstein condensate in a box, Phys. Rev. A 71, 041604 (2005).

[223] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, Bose-
Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett. 110, 200406
(2013).

[224] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène,
J. Beugnon, and J. Dalibard, Emergence of coherence via transverse condensation in
a uniform quasi-two-dimensional Bose gas, Nat. Comm. 6, 6162 (2015).

[225] J. Vidal, D. Mouhanna, and T. Giamarchi, Correlated fermions in a one-dimensional
quasiperiodic potential, Phys. Rev. Lett. 83, 3908 (1999).

[226] J. Vidal, D. Mouhanna, and T. Giamarchi, Interacting fermions in self-similar po-
tentials, Phys. Rev. B 65, 014201 (2001).

[227] R. Gautier, H. Yao, and L. Sanchez-Palencia, Strongly-interacting bosons in a two-
dimensional quasicrystal lattice, arXiv preprint arXiv:2010.07590 (2020).



Titre : Bosons fortement corrélés unidimensionnels dans des potentiels continus et quasi-périodiques

Mots clés : Monte Carlo quantique ; thermodynamique de Yang-Yang ; contact de Tan ; potentiel quasi-
périodique ; verre de Bose ; fractale

Résumé : Dans cette thèse, nous étudions les pro-
priétés des bosons unidimensionnels dans divers
types de systèmes, en nous concentrant sur les tran-
sitions de phase ou les croisements entre différents
régimes de dégénérescence quantique. En combi-
nant la méthode de Monte Carlo quantique avec
d’autres techniques standard telles que la diagona-
lisation exacte et l’ansatz de Bethe thermique, nous
pouvons calculer le comportement des bosons à une
dimension dans différents cas où les résultats font
encore défaut. Tout d’abord, dans le cas de bosons
continus piégés de manière harmonique, nous four-
nissons une caractérisation complète d’une quan-
tité appelée contact de Tan. En calculant la fonc-
tion d’échelle universelle de cette quantité, nous iden-
tifions le comportement du contact dans différents
régimes de dégénérescence pour les bosons 1D.
Nous montrons que le contact présente un maximum
en fonction de la température et qu’il s’agit d’une si-
gnature de la fermionisation du gaz dans le régime de
forte interaction. Ensuite, nous étudions la localisation
et les propriétés fractales des gaz idéaux 1D dans
des potentiels quasi-périodiques peu profonds. Le
système quasi-périodique constitue un intermédiaire

intéressant entre les systèmes ordonnés à longue
distance et les véritables systèmes désordonnés aux
propriétés critiques inhabituelles. Alors que le modèle
d’Aubry-André (AA) à liaison étroite a été largement
étudié, le cas du réseau peu profond se comporte
différemment. Nous déterminons les propriétés cri-
tiques de localisation du système, le potentiel critique,
les bords de mobilité et les exposants critiques qui
sont universels. De plus, nous calculons la dimen-
sion fractale du spectre d’énergie et nous constatons
qu’elle est non universelle mais toujours inférieure à
l’unité, ce qui montre que le spectre n’est dense nulle
part. Enfin, nous passons à l’étude avec les interac-
tions. Avec les calculs quantiques de Monte Carlo,
nous calculons le diagramme de phase des bosons
de Lieb-Liniger en potentiels quasi-périodiques peu
profonds. On trouve un verre de Bose, entouré de
phases superfluides et de Mott. À température finie,
nous montrons que la fusion des lobes de Mott est
caractéristique d’une structure fractale et constatons
que le verre de Bose est robuste contre les fluc-
tuations thermiques jusqu’à des températures acces-
sibles dans les expériences.
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Abstract : In this thesis, we investigate the proper-
ties of one-dimensional bosons in various types of
systems, focusing on the phase transitions or crosso-
vers between different quantum degeneracy regimes.
Combining quantum Monte Carlo with other standard
techniques such as exact diagonalization and thermal
Bethe ansatz, we can compute the behavior of 1D bo-
sons in different cases where the results are still la-
cking. First, in the case of harmonically trapped conti-
nuous bosons, we provide a full characterization of a
quantity called Tan’s contact. By computing the uni-
versal scaling function of it, we identify the behavior of
the contact in various regimes of degeneracy for 1D
bosons. We show that the contact exhibits a maximum
versus temperature and that it is a signature of the
crossover to fermionization in the strongly-interacting
regime. Secondly, we study the localization and frac-
tal properties of 1D ideal gases in shallow quasipe-
riodic potentials. The quasiperiodic system provides
an appealing intermediate between long-range orde-

red and genuine disordered systems with unusual cri-
tical properties. While the tight-binding Aubry-André
(AA) model has been widely studied, the shallow lat-
tice case behaves differently. We determine the cri-
tical localization properties of the system, the critical
potential, mobility edges and critical exponents which
are universal. Moreover, we calculate the fractal di-
mension of the energy spectrum and find it is non-
universal but always smaller than unity, which shows
the spectrum is nowhere dense. Finally, we move to
the study of the interacting case. With the quantum
Monte Carlo calculations, we compute the phase dia-
gram of Lieb-Liniger bosons in shallow quasiperiodic
potentials. A Bose glass, surrounded by superfluid
and Mott phases, is found. At finite temperature, we
show that the melting of the Mott lobes is characteris-
tic of a fractal structure and find that the Bose glass is
robust against thermal fluctuations up to temperatures
accessible in experiments.
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