Pierre-Brice Wieber 
  
MPC Model Predictive Control PFS Passive Friendly Safety PS Passive Safety

Keywords: 

This work focuses on two challenging tasks for humanoid robots: bipedal balance and collision avoidance in a dense crowd. We solve these tasks on a limited time horizon in which we can anticipate the consequences of robot actions.

We can guarantee that the robot is able to stop in a few steps and avoid falling. When the robot is not planning to stop but to continue walking, we show the guarantee to avoid falling is not lost but it depends on the length of the time horizon. It is impossible to know beforehand what people will do next, so we cannot guarantee that no collision will ever occur. Over a limited time horizon we can guarantee Passive Safety: the robot is able to stop before a collision occurs. This safety guarantee is combined with fall avoidance in a Model Predictive Control scheme. The capacity for the robot to react and avoid collisions is constrained once a step is planted on the ground, until the next step is initiated. With the control scheme outlined above the robot reacts not only at each step initiation but also in between. We show that reacting only once per step (thus saving computational power) does not degrade collision avoidance capability.

The time left for people to react and avoid collisions once the robot has stopped (to guarantee Passive Safety) might not be enough. We propose a new control scheme called Collision Mitigation that guarantees fall avoidance while aiming to leave as much time as possible for the people to react. As a result, the robot collides less often and later than when it guarantees Passive Safety. This scheme can be adapted to take different priorities into account. For example, when the members of a crowd are divided in robots and people, the robot should leave as much time as possible for the people to react and then, if possible, for the other robots. Or when the robot must reach a target location at the utmost important and people might obstruct the motion of the robot, the robot can jostle people if necessary to reach the location.

iii

Résumé

Ce travail se concentre sur deux tâches difficiles pour les robots humanoïdes: l'équilibre bipède et la prévention des collisions dans une foule dense. Nous résolvons ces tâches sur un horizon temporel limité dans lequel nous pouvons anticiper les conséquences des actions des robots.

Nous pouvons garantir que le robot est capable de s'arrêter en quelques pas et d'éviter de tomber. Lorsque le robot ne prévoit pas de s'arrêter mais de continuer à marcher, nous montrons que la garantie d'éviter la chute n'est pas perdue mais qu'elle dépend de la longueur de l'horizon temporel. Il est impossible de savoir à l'avance ce que les gens feront ensuite, et nous ne pouvons donc pas garantir qu'aucune collision ne se produira jamais. Sur un horizon temporel limité, nous pouvons garantir la sécurité passive : le robot est capable de s'arrêter avant qu'une collision ne se produise. Cette garantie de sécurité est combinée avec l'évitement de chutes dans un schéma de contrôle prédictif. La capacité du robot à réagir et à éviter les collisions est limitée une fois qu'un pied est posé au sol, et ce jusqu'au prochain pas. Avec le schéma de commande décrit ci-dessus, le robot réagit non seulement à chaque pas, mais aussi entretemps. Nous montrons que le fait de ne réagir qu'une seule fois par pas (ce qui permet d'économiser de la puissance de calcul) ne dégrade pas la capacité d'éviter les collisions.

Le temps laissé aux personnes pour réagir et éviter les collisions une fois que le robot s'est arrêté (pour garantir la sécurité passive) pourrait ne pas être suffisant. Nous proposons un nouveau système de contrôle appelé Collision Mitigation qui garantit l'évitement de chutes tout en visant à laisser aux personnes le plus de temps possible pour réagir. Ainsi, le robot entre en collision moins souvent et plus tard que lorsqu'il garantit la sécurité passive. Ce système peut être adapté pour prendre en compte différentes priorités. Par exemple, lorsque les membres d'une foule sont divisés en robots et en personnes, le robot doit laisser autant de temps que possible aux personnes pour réagir et ensuite, si possible, aux autres robots. Ou encore, lorsque le robot doit atteindre une cible de la plus haute importance et que des personnes pourraient entraver le mouvement du robot, ce dernier peut, si nécessaire, bousculer les personnes pour atteindre le lieu en question.

1.1 Research and test of humanoid robots. . . . . . . . . . . . . . . . . . . . . . . 1.2 Humanoid robots are controlled with a cascade of controllers [START_REF] Dafarra | [END_REF][START_REF] Kajita | [END_REF]]. The MPC, the controller under analysis in this work, is just one of the many controllers that makes the robot moves. We assume that the output of MPC is perfectly tracked by next controllers. . . . . . . . . . . . .

2.1

The figure (taken from [HRP 2020]) shows HRP-2 humanoid robot (stature: 1.54m with n = 30) [START_REF] Kaneko | [END_REF]]. . . . . . . . . . . . . . . . . . . . . . . . . 2.2 The figure (taken from [Kajita 2014, pag.106]) shows the CoM at a constant height c z above the ground, and the CoP p inside the contact surface. . . . . 2.3 The figure is a top view of footprints (with rectangular shapes) onto the ground of a robot walking to the right (or to the left). We note the step and stride lengths. 

Context and motivation

Humanoid robotics is one of the most fascinating research area in the field of robotics. Humanoid robots are comparable to humans at least in their motion capabilities and, given their versatility to perform a variety of activities (such as sensing, manipulation or locomotion), they are expected to have a tremendous impact on social and industrial settings. These 2 CHAPTER 1. INTRODUCTION machines for example are meant to autonomously perform tasks in environment shared with humans, or to eliminate human involvement in dangerous and/or repetitive tasks and allow them to focus on high-value operations. Humanoid robotics became a big research area since the early 2000s (Figure 1.1a). Nevertheless, existing humanoid robots back in 2011 were not ready to be deployed for a disaster response as the Fukushima (Japan) nuclear power plant accident [START_REF] Fuk | Fukushima Daiichi nuclear disaster[END_REF]] (Figure 1.1b). In fact, some of the damage could have been minimized if it had been possible to access the manual valves inside the reactor building.

In order to accelerate this robotics research, the U.S. DARPA agency organized a "Robotics Challenge" [DRC 2015] (Figure 1.1c) where some remarkable progress has been made in terms of emergency response. And since 2014 the EU Research and Innovation programme called "Horizon 2020" [1] invested part of its funding in projects that involve humanoid robots in environments shared with humans such as: dense crowds [CBP 2018], shopping mall [MuM 2016], or industrial settings [START_REF] Shs | SecondHands: A robot assistant for industrial maintenance[END_REF]]. The European project Comanoid for example demonstrated successfully the deployment of biped robots to achieve human-robot collaboration in well-identified Airbus airliner assembly lines, which are inaccessible to wheeled platforms [START_REF] Kheddar | [END_REF]] (Figure 1.1d). With the steady decline in prices owing to reduced sensor and actuator costs, humanoid robots are also gaining traction across all industry verticals (it is expected the global shipments to reach 1 million units by 2024 [START_REF] Gmi | Residential, Military & Defense, Construction, Underwater Systems), Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast[END_REF], and robotic companies are starting the first partnerships with big industries. Four-legged robots for example are used to evaluate robotic inspection and maintenance [AN2 2018, BDA 2020], but also Ford announced its plan to develop its biped robot "Digit" in cooperation with Agility Robotics, which will be used for delivery purposes [AR2 2019].

In this thesis, we focus only on two tasks of humanoid robots: balance (for bipedal locomotion), and motion safety capability (the capability to avoid collisions) in environments shared with humans.

The concept of balance for humanoid robots can be formalized with the help of the viability theory [Wieber 2002]. The application of this theory makes it possible to formally separate situations where a fall is inevitable and which are therefore to be avoided, from situations where it is avoidable and which are therefore to be preferred. The same approach was proposed to formalize collision avoidance in dynamic environments, formally separating situations where a collision is inevitable and which are therefore to be avoided from situations where it is avoidable and which are therefore to be preferred. Such a formalization allows to demonstrate for example that existing approaches did not answer completely to the security requirements of robots [Fraichard 2006]. But to transform these formal advances into practical ones, the following aspect had to be taken into account. A robot can only anticipate the consequences of its actions on a limited time horizon (or planning horizon), if only because the future is uncertain.

To that end, it was proposed a Partial Motion Planning approach for collision avoidance [START_REF] Petti | [END_REF]] and a similar Model Predictive Control (MPC) approach for the balance of humanoid robots [Wieber 2006a]: an iterative control process which computes explicitly the actions of the robot and their consequences over a limited time horizon. This obviously requires formulating objectives that can be achieved over a limited time horizon.

For the balance of humanoid robots when walking, the existing research suggests that the 1 https://ec.europa.eu/programmes/horizon2020/ 1.1. CONTEXT AND MOTIVATION 3 Figure 1.2: Humanoid robots are controlled with a cascade of controllers [START_REF] Dafarra | [END_REF][START_REF] Kajita | [END_REF]]. The MPC, the controller under analysis in this work, is just one of the many controllers that makes the robot moves. We assume that the output of MPC is perfectly tracked by next controllers. length of the time horizon should cover 2 or 3 steps [START_REF] Zaytsev | Two steps is enough: No need to plan far ahead for walking balance[END_REF][START_REF] Kajita | [END_REF][START_REF] Koolen | [END_REF][START_REF] Carver | [END_REF]]. Following the concept of Capturability [START_REF] Koolen | [END_REF]], we can guarantee that the robot is able to stop in a few steps without falling (for whatever horizon length -covering whatever number of steps) and this is enough to guarantee that it is able to simply avoid falling. In MPC this is achieved by imposing a capturability condition at the end of the horizon [Sherikov 2016]. However, when the robot is not really planning to stop but actually consider making a new step at the end of the horizon to continue walking, the guarantee to avoid falling is lost. The first contribution of this work is to provide a numerical evidence that, despite the sudden plan change, the guarantee to avoid falling is not lost. But the guarantee depends on the length of the time horizon. We observe that many time horizons covering 2 steps lost this guarantee.

For the motion safety capability, it is impossible to guarantee absolute motion safety which is that no collision will ever occur, if only in the presence of non-cooperative or even hostile behaviour. What can actually be guaranteed over a limited time horizon, is Passive Safety (PS): the robot is able to stop before a collision occurs. If a collision is inevitable, at least the robot will be at rest when that happens. No collision would happen if everybody behaved that way, so in a sense the robot will have done its share [Bouraine 2014]. Capturability has previously been used to successfully control the movement of a humanoid robot in a crowd and to guarantee both fall avoidance and PS in a single MPC scheme [Bohorquez 2016].

For biped robots, once a step is planted on the ground, it usually stays there at a constant position until the next step is initiated. This naturally constrains the capacity for the robot to react and adapt its motion in between steps. As a result, the walking strategies in [Chestnutt 2005[START_REF] Karkowski | [END_REF][START_REF] Garimort | Humanoid navigation with dynamic footstep plans[END_REF] propose to re-plan the walking motion to adapt to changing environments once per step, only when a new step is initiated. In contrast, the MPC scheme outlined above re-plans the walking motion not only at each step initiation but also in between (8 times per step). Obviously re-planning more often than once per step comes at the expense of computational power. The second contribution of this work is to show that, when controlling the movement of a humanoid robot in a crowd, we can favor to re-plan the walking motion to adapt to changing environments once per step, instead of 2, 4 or 8 times per step, since motion safety capabilities of the robot are not degraded. We thus save computational power without deteriorating the robot's motion safety capability. But re-planning should only happen just before initiating the next step, or during the time that the robot has only one step in contact with the ground.

PS has been criticized because while the robot makes sure to always have time to stop before a collision happens, this time might not be enough for people around to actually react and avoid the collision once the robot has stopped [Macek 2008]. Based on the criticism of PS, we conveyed that people around the robot could potentially attempt to react and avoid collisions if they have enough time to do so. For this reason, we claim the following: more time to react for the surrounding environment reduces the number of collisions. In the literature, a variant of PS was proposed under the name of Passive Friendly Safety (PFS) [Macek 2008[START_REF] Mitsch | [END_REF]: the robot will be at rest before collisions happen, leaving enough time for the surrounding environment to react and avoid collisions. Both PS and PFS however limit the time to react the robot can leave for people because the robot is constrained to stop before collisions happen. We show that if the robot is not constrained to stop before collisions happen, it can further improve this time. For this reason, we propose to control the movement of a humanoid robot in a crowd that guarantee fall avoidance while aiming to leave as much time to react as possible for the people (instead of guaranteeing PS) in a single MPC scheme, that we call Collision Mitigation (CM). The third contribution of this work is to show that, when controlling the movement of a humanoid robot in a crowd, we can favor CM instead of PS to reduce the number of collisions and postpones these collisions later in time.

We consider the case where a humanoid robot moves in a crowd and the members of this crowd are equally divided in robots and people. The fourth contribution of this work is to control the movement of a humanoid robot in this particular crowd scenario with a new single MPC scheme. This scheme guarantees fall avoidance while aiming to leave as much time to react as possible for the people and then, if possible, for the other robots. When this revised version of CM takes priorities into account, e.g. prioritizing people, the simulation results reflect these priorities. The biped robot collides always later with people and reduces the number of collisions with them. For the other robots instead, collisions happen earlier and more often.

Last, we propose another situation for the robot moving in a crowd (populated with only people). We suppose the robot must reach a target location at the utmost important, and this time people might obstruct the motion of the robot. The fifth (and last) contribution is to control the movement of a humanoid robot in this situation with a new single MPC scheme. This scheme guarantees fall avoidance while enabling the robot to jostle people of the crowd if necessary to reach the target location. We compare this scheme in the situation outlined above with a robot that does not enable jostling but only aims to reach the target location as soon as possible. Our results show that the robot collides less and collisions are postponed in time when we enable jostling. However, If we increase the density of the crowd, both robots converges to equally perform in terms of collisions. This is because the robot might not have enough space to jostle among people.

Contributions and Outline

The contributions of this thesis are:

• We bring the Strong Recursive Feasibility (SRF) concept from MPC theory in the field of humanoid robotics. The relationship between SRF and viability is the following: SRF guarantees that all feasible states are viable at all time. In case of balance preservation for biped robots, no feasible state can lead to a fall of the robot.

CONTRIBUTIONS AND OUTLINE

• We introduce two new MPC variables: planning period and initial planning phase, that in our case decide how often and when to re-plan the walking motion. Bigger planning period means to re-compute less often the walking motion and save computational power.

• We propose a single MPC scheme that guarantees fall avoidance while aiming to leave as much time to react as possible for the people to avoid colliding with the robot. This scheme is a revised version of Collision Mitigation proposed in [Bohorquez 2018a] where fall avoidance was not guaranteed because the robot would sacrifice its capturability for aiming to leave as much time to react as possible for the people to avoid colliding with the robot.

• We propose an MPC scheme for a robot moving in a crowd used to prioritize collision avoidance with specific members of the crowd.

• We propose an MPC scheme for a robot moving in a crowd, that enables the robot push its way through the crowd, i.e. to jostle people, if necessary to reach the target location.

List of publications

The work on this thesis resulted in the following publications in peer-reviewed conferences 

Outline

The thesis starts with the introduction of the dynamical model for the robot, the problem of balance and MPC scheme for biped walking in Chapter 2. The contribution to the guarantee of avoiding falling even when the robot is not really planning to stop but consider to make a new step to continue walking is explained and explored in Chapter 3. The problem of robot's motion safety capability in a crowd is presented in Chapter 4. In this chapter, we present the choice of the crowd behavior and the MPC scheme that guarantee both fall avoidance and passive safety. The contribution to the re-planning frequency on the MPC-based safe navigation of a humanoid robot in a crowd is explained and explored in Chapter 5. The MPC scheme that guarantees fall avoidance while aiming to leave as much time to react as possible for the people to avoid colliding with the robot is presented in Chapter 6. Last, the two new MPC schemes: one is used to prioritize collision avoidance with specific members of the crowd, and the second to enable jostling, are presented in Chapter 7.

CHAPTER 1. INTRODUCTION

Notation

Software names

Names of programs and software libraries, names of constants, variables and functions that are used in programs are typed in a monospaced font: MATLAB.

General scalars, vectors, matrices

• Vectors and matrices are denoted by letters in a bold font: v, M .

• Scalars are denoted using the standard italic font: N, n.

• Special functions are written in plain text: diag(•).

• (•) -transpose of a matrix or a vector.

• Block diagonal matrices:

diag 2 (M ) = M 0 0 M (1.1)
• Inequalities between vectors v ≥ r are interpreted component-wise.

• • p refers to the L p norm, for p ∈ {1, . . . , ∞}. When the subscript is not specified, i.e. • , then it should be understood as the L 2 (or Euclidean) norm.

Sets

• Sets are written in calligraphic S, P or Capital Greek letters Ω, T.

• Special sets are written in blackboard bold R, N, Z.

• R is the set of real numbers.

• R n is the set of real-valued vectors.

• R n×m is the set of real-valued matrices.

Other

• Function names in mathematical expressions are written in the regular font: func(x, y).

Chapter 2 Balance 

Introduction

In this chapter we introduce the robot dynamic model and the control scheme, that employs this model, to generate a stable walking motion. We start describing the general mechanical model of the biped robot (Section 2.2.1). We explain how the motion of the center of mass is linearly related to the contact forces applied on the ground (Section 2.2.2), and how we model a walking cycle for the robot (Section 2.2.3). When walking on a flat ground, the robot needs to satisfy a set of constraints to comply with the whole-body kinematic and dynamical structure (Section 2.2.4). In this work, if the robot satisfies those constraints not only in the present but also into the future, it preserves its balance (Section 2.3). A sufficient condition to preserve balance is the robot's ability to stop in a given number of steps, called capturability (Section 2.3.1). The control scheme that employs these model and constraints is called Model Predictive Control (MPC) and it is explained in Section 2.4. In our implementation we point out an issue that will be the core of the next chapter.

8

CHAPTER 2. BALANCE

Biped robot

Mechanics

A biped robot (such as HRP-2 in Figure 2.1) is composed by R+1 rigid bodies, called links, connected by R rotational joints with 1 degree of freedom each. This multi-body system is free floating, i.e. none of the links have a priori constant pose with respect to a general frame of reference, so the robot can move freely in 3D environment. The configuration space Q of the robot can then be characterized by: the joint configurations and, the position and orientation of a frame attached to a robot's link called the base frame [1] . This space is

Q = R n × R 3 × SO(3)
, and its elements are triplets composed by the generalized coordinates: 3) denotes the origin and orientation of the base frame.

q =   α ρ θ   ∈ Q, (2.1) where α = {α 1 , • • • , α n } ∈ R n are joint angles and (ρ, θ) ∈ R 3 × SO(
The biped robot is equipped with rotary actuators at each joint α i to change the robot's posture, but we do not include additional actuators, e.g. thrusters, that can directly act on (ρ, θ) and would enable the robot to fly [START_REF] Nava | [END_REF]]. The multi-body system is then underactuated. Moreover, we consider the biped robot in contact with the environment, so it is affected by forces of interactions. The corresponding Lagrangian dynamics of the multi-body system has the following structure [START_REF] Wieber | [END_REF]]:

M (q)   q +   0 g 0     + N (q, q) =   η 0 0   + i J i (q)λ i , (2.2) 
where M ∈ R (n+6)×(n+6) is the generalized inertia matrix, g ∈ R 3 is the constant gravity acceleration vector, N ∈ R (n+6) is the vector of Coriolis and centrifugal effects, η ∈ R n is the vector of joint torques (provided by the actuators), λ i ∈ R 3 is a force exerted by the environment on the robot and J i ∈ R 3×(n+6) is the associated Jacobian matrix [Wieber 2006b]. Any robot's posture must be restricted to the ones without interpenetration of robot body parts, i.e. self-collisions, and that takes into account hardware restrictions, e.g. actuator limits. These limitations can be represented by kinematic and task-related constraints [Sherikov 2016]:

φ ≤ φ(q, q, q, η) ≤ φ.

(2.3)

From the Lagrangian dynamics, it appears the fact that joint torques η cannot act directly on (ρ, θ): joint torques cannot make the robot move around. Thus robot locomotion requires external contact forces. We consider the general case where these contact forces λ i are the only one between the feet and the ground: ground reaction forces. However other parts of the robot can produce helpful support [Kudruss 2015], or produce other types of locomotion, e.g crawling [Kuehn 2016].

When the robot takes a step, i.e. establishes a contact with the ground, an impact occurs. Impacts are assumed to be collisions with rigid surface and they are normally modeled as a non-smooth transition between the pre-and post-impact velocities of the system [START_REF] Hurmuzlu | [END_REF]]:

(q + , q+ ) = ∆(q -, q-).

(2.4)

In robot locomotion, the continuous dynamics (2.2) is suddenly interrupted every time the robot takes a step (2.4), for this reason the dynamics becomes hybrid. Forces, required for locomotion, can only be applied to contacts already made. Unless the biped robot can fasten its feet to the ground at will, e.g. with some sort of clamping device (such as vacuum suction cup) on the sole of the feet, it can only push and not pull on the ground. This can be modeled as a complementarity condition between contacts and forces [START_REF] Hurmuzlu | [END_REF]]. Denote with the superscripts (•) and (•) ⊥ tangential and normal components of vectors with respect to the contact surfaces, and let be r i the position vector of the i th contact, we have

r ⊥ i λ ⊥ i = 0, with r ⊥ i ≥ 0, λ ⊥ i ≥ 0. (2.5)
The unilateral nature of this contact interaction (the feet can only push on the ground) imposes the robot to exploit ground friction to walk. However, it must avoid foot slipping and this is achieved by satisfying the following constraint [Sherikov 2016]:

λ i ≤ µ i λ ⊥ i , (2.6)
where µ i is the friction coefficient of the i th contact interaction. Actuation of the joints can produce a sequence of postures that must always satisfy kinematic constraints (2.3) and account (indirectly) for ground reaction forces, e.g. with (2.4)-(2.5)-(2.6), in order to realize a desired balancing or walking motion [Sherikov 2016].

Contact forces and CoM relationship when walking on flat ground

When ground reaction forces act on the robot, they directly affect the base frame position ρ. If we choose the Center of Mass (CoM) position c as base frame position: c = ρ, the underactuated part of the Lagrangian dynamics boils down to the Newton and Euler equations of motion of the robot taken as a whole [Wieber 2006b]. They correspond to:

m(c + g) = i λ i (2.7) L = i (r i -c) × λ i , (2.8)
where m is the total mass of the robot, and L is the centroidal angular momentum of the entire robot. We sum the c× of Newton equation (2.7) to the Euler equation (2.8) and we obtain:

m c × (c + g) + L = i (r i × λ i ) (2.9)
Denote with (•) x , (•) y , (•) z the Cartesian coordinates of a frame with origin on the contact surface of one foot on the ground and the axis z normal to it. Now we divide the result (2.9) by the z coordinate of the Newton equation (2.7):

m c × (c + g) + L m (c z + g z ) = i (r i × λ i ) i λ z i .
(2.10) Assume all the contact points lie in a horizontal plane and for simplicity the plane is located at zero height, therefore ∀i, r z i = 0. This allows us to simplify the cross products in (2.10) in the following way:

c y -c x - c z (c z + g z ) (c y + g y ) -(c x + g x ) + 1 m (c z + g z ) Lx Ly = 1 i λ z i i r y i -r x i λ z i . (2.11) CHAPTER 2. BALANCE
We multiply the equation with a rotation matrix R = 0 -1 1 0 and we obtain:

c x,y - c z (c z + g z ) (c x,y + g x,y ) + 1 m (c z + g z ) R Lx,y = i r x,y i λ z i i λ z i .
(2.12)

There is a point on the contact surface where the horizontal momenta produced by the contact forces, λ i , with respect to this point are equal to zero: (2.13) this point is called Center of Pressure (CoP), p x,y [START_REF] Sardain | [END_REF]]. And it is exactly what appears on the RHS of equation (2.12)

i (p x,y -r x,y i )λ z i = 0,
p x,y = i r x,y i λ z i i λ z i . (2.14)
We consider the case of walking on a horizontal ground, that implies g x,y = 0. Moreover, we consider that the CoM moves strictly horizontally above the ground: c z is constant and cz i = 0 (see Figure 2.2). And equation (2.12) becomes:

c x,y - c z g z cx,y + 1 m g z R Lx,y = p x,y . (2.15)
Last, we consider the variations of the angular momentum equal to zero, Lx,y = 0. This is not true in reality: execution of limb motions implies certain values of rate of angular momentum, but it has proven to be sufficient to realize robot locomotion [START_REF] Feng | [END_REF]] . Variations of the angular momentum L x,y however can be estimated using multi-mass models [START_REF] Shimmyo | [END_REF]] and/or can be bounded: to generate vertical motion [Serra 2016] or because accounted as source of uncertainty [Villa 2019a]. We end up with a linear differential equation that relates the dynamics of the CoM with contact forces:

c x,y - 1 ω 2 cx,y = p x,y , (2.16) 
where

ω = g z c z .
(2.17)

This model has been experimentally validated for the balance of human beings while standing [START_REF] Winter | [END_REF]], and it has been widely used for control of legged robots [START_REF] Englsberger | [END_REF][START_REF] Kajita | [END_REF], Romualdi 2018]. From now on we remove the x and y superscripts.

For control purpose, the dynamics (2.16) has been originally proposed as a triple integrator by [START_REF] Kajita | [END_REF]] where CoM jerk, ... c , is the control input. This was later employed and extended in [START_REF] Diedam | [END_REF][START_REF] Herdt | [END_REF], Agravante 2016] and many other works. The triple integrator implies a smooth variation of CoM acceleration. This results in a smooth change of CoP position (2.16), which helps the realization of robot locomotion. This model however leads to some subtle difficulties in terms of realization of robot locomotion but they can be fixed by appropriate control design choices [Wieber 2006a]. Discussion on this issue can be found in Appendix A.3. A second or third order model can use the CoP position as state [START_REF] Scianca | [END_REF][START_REF] Kajita | [END_REF]]. This is suggested since modern robots can be equipped with force sensors in the feet to estimate the position of the CoP [START_REF] Englsberger | [END_REF][START_REF] Kaneko | [END_REF][START_REF] Kaneko | [END_REF]].

Another way is to use the CoP position as control input [Villa 2019a]. In this case, the dynamics can be transformed in a modal form, exposing its stable and unstable parts [START_REF] Englsberger | [END_REF][START_REF] Takenaka | [END_REF], Krause 2012].

In this work, we consider a third order model that use CoP velocity ṗ ∈ R 2 as control input [Sherikov 2016]. This choice is not subjected at subtleties of the triple integrator with CoM acceleration as control input, and yet implies a smooth change of CoP position. The state of this model is the following:

x = c x ċx cx c y ċy cy .

(2.18)

By differentiating the dynamics (2.16) we have the following linear time invariant system:

ẋ = Gx + H ṗ p = Dx, (2.19) 
(2.20)

where

G = diag 2     0 1 0 0 0 1 0 ω 2 0     , H = diag 2     0 0 -ω 2     , D = diag 2 1 0 -1 ω 2 .
(2.21)

We consider that there are no uncertainties in measurements of the state and/or in parameters of the robot as in [Sherikov 2016]. We refer to [Villa 2019b] for the study of uncertainties in modeling and control of legged robots.

Discrete-time CoM model

Standard approaches to control legged robots rely on discrete-time models. We discretize time in a sequence of time instants t i , i ∈ N. We represent the value of any variable at time t i as (•) i . Each time interval [t i , t i+1 ] has a fixed duration T , usually called sampling period, in seconds. From now on we refer to this type of discretization in case of discrete-time models.

CHAPTER 2. BALANCE

The control input is generally kept constant for a fixed time duration, this approach is called zero-order hold for controls [Ogata 1995, Chapter 5]. ṗj = ṗi , for t i ≤ t j < t i+1 .

(2.22)

By doing so, step-by-step in Appendix A.2, the model (2.19) corresponds to

x i+1 = Ax i + B ṗi p i = Dx i , (2.23) (2.24)
where [2] A = diag

2 e G T = diag 2     1 sinh(T ω)/ω cosh(T ω)/ω 2 -1/ω 2 0 cosh(T ω) sinh(T ω)/ω 0 sinh(T ω)ω cosh(T ω)     , (2.25) B = diag 2 T 0 e Gt dt H = diag 2     T -sinh(T ω)/ω 1 -cosh(T ω) -ω sinh(T ω)     . (2.26)
It is then possible to describe a CoM trajectory by evolving for example the state x i N -times following the dynamics (2.23):

ci = diag N (I c ) (U 1 x i + U 2 pi ), (2.27) 
which relates the sequence ci ∈ R 2N of N CoM (2D) positions [3] (from time t i+1 to t i+N ),

ci = {c (i+1|i) , • • • , c (i+N |i) } (2.28)
with a sequence pi ∈ R 2N of CoP velocities [4] (from time t i to t i+N -1 ),

pi = { ṗ(i|i) , • • • , ṗ(i+N-1|i) } (2.29)
with 

U 1 =      A A 2 . . . A N      , U 2 =      B 0 . . . 0 AB B . . . 0 . . . . . . . . . . . . A N -1 B A N -2 B . . . B      , ( 2 
pi = U 3 x i + U 4 pi , (2.31)
where pi ∈ R 2N describes the evolution of the CoP position,

pi = {p (i+1|i) , • • • , p (i+N |i) } (2.32)
with (U 3 , U 4 ) similar to (U 1 , U 2 ). 

Walking cycle

Modeling of biped robot walking is inspired by human walking [START_REF] Rose | [END_REF]]. Walking is a sequence of regularly recurring events. At each event there is, at least, one foot on the ground. A gait (or stride) cycle is defined as the period between a foot contact on the ground to the next contact of the same foot on the ground again. The stride length is defined as the distance between successive ground contacts of the same foot. The step cycle (s d ) is defined as the period between a foot contact on the ground to the next contact of the opposite foot, i.e. half gait cycle. The step length is the distance between the point of initial contact of one foot and the point of initial contact of the opposite foot. We consider the case where the step cycle is divided into two events: Single Support (SS) and Double support (DS) phases. Lengths are represented in Figure 2.3 and cycles in Figure 2.4b. A biped robot starts in DS, that is, with both feet in contact with the ground. Then it lifts one leg and swings it in the air to a new position on the ground. While one of the legs is in the air the walker is in SS. The moment the swinging leg hits the ground produces an impact and the walker returns to the DS again. In our case, the heel rise is absent during the SS phase and the (flat) foot is lifted all together. This can limit the walking speed. Rotation about the front edge of the stance foot before heel strike or rotation through the use of toe joint [START_REF] Kaneko | [END_REF]] can benefit the walking speed but it would increase the difficulty of controlling the robot.

We model changes of the foot positions on the ground in order to facilitate their automatic adjustment, which helps for example in: disturbance compensation [Sherikov 2016], physical interaction [Agravante 2016] and tracking of desired walking speed [START_REF] Herdt | [END_REF]]. This automatic adjustment might be complex. When the robot walks on a flat ground, it may have two feet contacts with the ground at the same time, e.g. when the robot is in DS phase of a walking cycle. Multiple contacts with the same surface may lead to a contact surface of a complex shape. This area depends on the position and orientation of the feet onto the ground: these variables can be accounted in the automatic adjustment [START_REF] Naveau | [END_REF], Bohórquez 2018b]. We can also adjust the step cycle duration along the walking [START_REF] Bohórquez | [END_REF]]. In this work, we build a discrete-time model for the changes of the foot positions on the ground and we made the following simplifications to reduce the complexity of the automatic adjustment as is done in [START_REF] Herdt | [END_REF]]:

• we consider that foot rotations are fixed in advance: we disable the possibility to reorient the feet along the walking.

• we consider a fixed time duration for both DS and SS phases. As a consequence, we CHAPTER 2. BALANCE have a fixed duration s d .

• at each sample, we consider that the robot puts its weight on only one foot in contact with the ground. Let s pc be the next foot that will hit the ground, starting the DS phase and let s c be the current foot that will be lifted, ending the DS phase. We sample as follows:

we sample exactly when s pc hits the ground, when the DS phase starts. In this case s c is considered the contact with the ground supporting the weight of the robot. At this sample, s pc is already fixed. we sample exactly when s c is lifted from the ground, when the DS phase ends. In this case s pc is considered the contact with the ground supporting the weight of the robot. At this sample, we update s c with s pc .

So the sampling period T is considered the duration of the DS phases.

We represent some of these aspect in Figure 2.4. (a) The robot starts in SS phase on position s c . At 0.2[s] the next foot s pc hits the ground: the DS phase starts. And s c is lifted from the ground at 0.3[s]: the DS phase ends. The contact surface in blue depends on the foot or feet in contact with the ground. We sample when the DS phase starts and ends (samples in dashed gray lines). 

SS t DS DS t i t i+1

Gait Cycle

… …

Step Cycle

BIPED ROBOT 15

With these simplifications, we can model the evolution of a walking cycle for N time instants as (2.33) where si ∈ R 2N is the sequence of footsteps ahead (from time t i+1 to t i+N ),

si = V pc i s pc i + V f i s f i ,
si = {s (i+1|i) , • • • , s (i+N |i) } (2.34)
In case of walking, once a step is planted on the ground, it usually stays there at a constant position for quite sometime until the next step is initiated. As a consequence, we represent as s [j|i] , the j-th footstep planted for several time instants, and we can group the sequence si in the number of footsteps only as

si = {s [1|i] , • • • , s [J|i] } (2.35)
And s pc i ∈ R 2 can be the next foot that will hit the ground or identical to the current step position onto the ground s c ∈ R 2 . In both cases the variable s pc i is always fixed. And s f i ∈ R 2m is a sequence of m adjustable foot positions. The matrices (V pc i , V f i ) vary cyclically and determine which foot is onto the ground at what time

V pc i =                  I . . . I 0 . . . 0 0 . . . 0                  ∈ R 2N ×2 , V f i =                   0 0 . . . . . . 0 0 I 0 . . . . . . I 0 0 I . . . . . . 0 I . . .                   ∈ R 2N ×2m . (2.36)
We explain in details these matrices and how they cycle in Appendix A.4. In this work we do not account for the motion of the feet in the air. It could be modeled however with a 3-rd order polynomial as in [Sherikov 2016, Section 4.4.3].

Whole-body restrictions on CoM dynamics

The joint torques η that will actuate the entire mechanical structure are chosen with an inverse dynamics (ID) problem [Sherikov 2016]. This problem takes as input generalized coordinates q and contact forces λ i and as output find the joint torques that satisfy the Lagrangian dynamics (2.2) η = ID(q, q, q, λ i ).

(2.37)

From the evolution of CoM dynamics (2.19)-(2.20), we can obtain a sequence of contact forces (thanks to the CoP). And, there exists a relationship between CoM and the wholebody kinematics (thus generalized coordinates) ċ = J CoM q, (2.38)

where J CoM is a Jacobian matrix [START_REF] Sugihara | [END_REF]. It is then possible to generate a desired walking motion via CoM dynamics and use it to move the whole-body of the robot. As we explained in Section 2.2.1, generalized coordinates and contact forces need to comply with mechanical constraints, e.g. joint limits and friction constraints. If we ensure CHAPTER 2. BALANCE the realization of the CoM motion for the whole-body hardware restrictions and with the limitations of each physical interaction, it is then possible to use the inverse dynamics problem tracking the CoM motion and contact forces in order to realize a walking motion. This motivates the introduction of a set of constraints on the CoM dynamics and contact forces that reflects whole-body restrictions.

Consider only the case of one contact with the ground, hereby called the j th footstep s j ∈ R 2 . Since contact forces with the ground are unilateral, the CoP is always constrained within a convex hull P, called the support polygon p ∈ P(s j )

(2.39) that varies depending on the position and orientation of s j . In our case foot rotation is fixed in advance, so the support polygon depends only on the position of s j . In our work the feet of the robot have a rectangular shape, and the set-valued function P(s) specifies a rectangular region of width and length w × l around the position s:

P(s) {r ∈ R 2 | -l/2 -w/2 ≤ (r -s) ≤ l/2 w/2 }.
(2.40)

We consider that friction forces constraints to avoid slipping (2.6) are always satisfied, but additional constraints can be imposed [START_REF][END_REF]]. We consider that the position of the (j + 1) th footstep with respect to the position of the j th footstep is restricted to a region S where the legs do not cross: s j+1 ∈ S(s j ).

(2.41)

The set-valued function S(s) specifies a halfspace around s and is separated from it by a distance w + f s S(s) {r ∈ R 2 | (-1) j (w + f s ) ≤ I y (r -s)}, (2.42)

where I y = 0 1 . Last, the CoM position is constrained to a closed convex region C due to the maximal leg length of the robot [START_REF] Brasseur | [END_REF]]:

c ∈ C(s j ).

(2.43)

The set-valued functions C(s) specifies a rectangular region of width and length W ×L around the position s:

C(s) {r ∈ R 2 | -L/2 -W/2 ≤ (r -s) ≤ L/2 W/2 }.
(2.44)

If we can satisfy these kinematic (2.41)-(2.43) and dynamic (2.39) constraints, we comply with the whole-body kinematic and dynamical structure of the robot when walking on a flat ground.

Balance Preservation

We assume that violation of the set of constraint (2.41)-(2.43)-(2.39) indicates a fall. And the preservation of balance means avoiding falls at all future moments. So it is necessary to not only satisfy that set of constraints in the present time but also into the future. In fact, there can be a set of states where the robot has not fallen yet (all the constraints are satisfied at the present time), but is bound to fall inexorably [START_REF] Wieber | [END_REF]]. Anticipation is crucial! In order to avoid falling, the robot must be in a state where it can avoid falling. Such states are so-called viable, and the set of viable states is called viability kernel (concepts from Viability

BALANCE PRESERVATION

Theory [Aubin 2009]). The same approach can be used to formalize collision avoidance in dynamic environments, what is called Inevitable Collision State (ICS) [START_REF] Fraichard | [END_REF]], which separate situations where a collision is inevitable (to be avoided) from situations where it is avoidable (to be preferred). In general it is difficult to check if the state of the robot is inside the viability kernel because the problem to compute this set of states appears to be intractable in the case of humanoid robots [Wieber 2002]. It is however possible to isolate a subset of these viable states, which are demonstrated to be balanced.

Capturability

There are 2 standard set of states: (i) the set of states for which the robot reaches a cyclic motion or (ii) the set of states for which the robot stops after a given number of steps. As a consequence, 2 standard approaches to control biped robots are (i) to consider that the robot keeps repeating indefinitely the same cyclic motion [START_REF] Takenaka | [END_REF][START_REF] Tajima | [END_REF], Nagasaka 2004[START_REF] Scianca | [END_REF]] or (ii) that it stops after a given number of steps [START_REF] Takanishi | [END_REF], Hun-ok Lim 2002, Bohorquez 2016], what corresponds to capturability [START_REF] Koolen | [END_REF]].

In this work, we favor capturability, since we almost always want the robot to eventually stop, or at least be able to stop. And, on the collision front, these states can be combined effortlessly with the ones that guarantee passive safety [Bouraine 2014]: if a collision is inevitable, at least the robot will be at rest when that happens. Passive safety is discussed further in Section 4.5.4.

The set of capturable states is identified analytically, for the linear system derived above (2.19), with the help of

ξ = c + ċ ω . (2.45)
This variable is called the Capture Point (CP) ξ. When considering the robot walking on a flat ground, the CP has the same constant CoM height and when projected on the floor it is the point where a robot has to step to come to a complete rest. Among the capturable states, we identify the ones that make the robot 0-step capturable, i.e. for which the robot can stop without having to make any further step [START_REF] Koolen | [END_REF]]. From now on we consider the projected position (in 2D coordinates) onto the floor of ξ.

The CoM dynamics (2.16) can be transformed in a modal form, exposing its stable and unstable parts. The unstable part yields exactly the same definition as in (2.45). Reformulating (2.16) and (2.45), we have that the CP diverges from the CoP p, but the CoM converges to the CP:

ċ ξ = -ω ω 0 ω c ξ + 0 -ω p. (2.46) If ξ is inside the support polygon, ξ ∈ P(s j ), (2.47)
we can have ξ = p so the CP and the CoP do not move (2.48) and the robot comes to a stop without having to make any further step. The set of states that satisfy condition (2.47) are 0-step capturable (hence viable).

ṗ = ξ = 0,
So realizing a stable walking motion requires to take decisions that satisfy a set of constraints, and to work with predictions of the future outcome of decisions made in the CHAPTER 2. BALANCE present. One of few suitable methods to handle this problem is Model Predictive Control (MPC) [Wieber 2008]. It has been used therefore extensively for the control of biped robots [Wieber 2018].

Model Predictive Control of biped walking

MPC Approach

Standard approaches to MPC rely on discrete-time models. In this work, we employ a linear discrete-time time-invariant model of the form

x i+1 = Ax i + Bu i , (2.49)
where x i ∈ R a , u i ∈ R b and x i+1 are respectively the state, control and successor state vectors, and (A, B) are matrices of proper dimensions. An MPC scheme is an iterative planning process: it solves iteratively a finite-horizon optimization problem, until some objectives (or goals) are reached.

At time t i , given the state x i , in this work assumed to be known and exact, MPC aims to find a motion, i.e. a sequence of N control inputs or N -actions

π N i = {u (i|i) , u (i+1|i) , • • • , u (i+N -1|i) }.
(2.50)

The action u (β|α) is computed at time t α and is planned to be executed at time t β and kept constant for a duration T . The motion is valid for N time instants (from t i to t i+N ) and it has a duration N T , where N is called planning horizon [5] . The motion is called feasible when the pair (x i , π N i ) satisfies a time-varying set of constraints, in this work linear, applied for [t i , t i+N ]:

E i x i π N i ≤ d i , (2.51)
where E i and d i are respectively a time-varying matrix and vector of proper dimensions.

An MPC scheme classically chooses a sequence π N i that minimizes the deviation from a given objective (u ref , x ref ): minimize

π N i f (π N i ).
(2.52)

Typically, the reference deviation is expressed as a least-squares objective, for example,

f (π N i ) = N j=1 Γ u (u (i+j-1|i) -u ref ) 2 2 + Γ x (x (i+j|i) -x ref ) 2 2 , (2.53)
where Γ u and Γ x are weighting matrices. Constraints (2.51) and reference deviation (2.52) are satisfied and minimized altogether, solving the following Quadratic Program (QP) [Nocedal 2006[START_REF] Boyd | [END_REF]:

minimize π N i f (π N i ) s.t. E i x i π N i ≤ d i , (2.54a) (2.54b)
which can be solved with off-the-shelf software, e.g. qpOASES [START_REF] Ferreau | [END_REF]]. When we account for bounded disturbances also the state x i can become a decision variable when solving (2.54) [Mayne 2005]. The first action κ 1 = u (i|i) is executed, i.e. applied to the system:

x i+1 = Ax i + Bκ 1 .
(2.55)

Then at time t i+1 the whole planning process is repeated, until the objective is reached.

Remark 1. Given an horizon N , we do not account the time for computing a plan solving the QP (2.54), and we assume no time delay to execute the control action.

Walking motion generation with automatic footstep placement

We use an MPC scheme that generates a walking motion online with automatic footstep placement [START_REF] Herdt | [END_REF]]. A motion π N i is composed by a sequence of CoP input velocities and a sequence of adjustable footsteps.

π N i = pi s f i ∈ R 2N +2m
(2.56)

The CoM, CoP trajectories (2.27)-(2.31) and the model the evolution of a walking cycle (2.33) are used to formulate the following constraints that we want the motion to satisfy:

∀k ∈ {1, • • • , N }, ∀j ∈ {1, • • • , J},    p (i+k|i) ∈ P(s [j|i] ), Dynamical constraint c (i+k|i) ∈ C(s [j|i] ), Kinematic constraints. s [j+1|i] ∈ S(s [j|i] ) (2.57)
Furthermore, we make sure the maximum length of the legs is respected between two samples: during the DS with

c (i+q|i) ∈ C(s [j+1|i] ), DS Kinematic constraints, c (i+q+1|i) ∈ C(s [j|i] ) (2.58)
where t i+q is the instant the robot plans to start the DS phase, and t i+q+1 is the instant the robot plans to end the DS phase. The constraints (2.57)-(2.58):

• are linear with respect to the CoP velocity ṗ and the adjustable steps s f [Sherikov 2016], thanks to the the simplification made for the step automatic adjustment in Section 2.2.3. And they can be formulated in the linear form (2.51).

• define all together a closed convex set of solutions since they impose closed convex regions: for the CoP position with (2.40), limiting its velocity, for the CoM position with (2.44)-(2.58), limiting its velocity and acceleration, and for the foot position since the halfspace region (2.42) is combined with the CoP and CoM regions.

• vary cyclically because of the time-varying model of the walking cycle (2.33), with a fixed period: the fixed step cycle duration.

The action κ 1 of the motion (2.56) is the first constant CoP velocity input that updates the system (2.23). And, cyclically, the first future footstep position s f (1) updates s pc as explained in Appendix A.4.

In MPC, the capacity to satisfy constraints, which is usually called feasibility, is classically guaranteed recursively [START_REF] Mayne | [END_REF]]. An important aspect of our application is that the MPC scheme has to adapt continuously to the dynamic environment of the robot: collision avoidance [Bohorquez 2016], physical interaction with humans [Agravante 2016], or visual feedback [START_REF] Dune | Vision based control for Humanoid robots[END_REF]]. We aim therefore at guaranteeing recursive feasibility for all possible scenarios, which is called strong recursive feasibility. 20 CHAPTER 2. BALANCE

Strong Recursive Feasibility

Let the set of solutions of (2.51) be

F N i {(x i , π N i ) | E i x i π N i ≤ d i }.
(2.59)

Two useful projections of F N i are

K 1|N i {(x i , κ 1 ) | ∃ π N i , (x i , π N i ) ∈ F N i , κ 1 = u (i|i) }, (2.60)
the set of state-action pairs of a feasible motion, and

X N i {x i | ∃ π N i , (x i , π N i ) ∈ F N i }, (2.61)
generally called the feasible set, the set of states for which there exists at least one feasible motion.

Strong Recursive Feasibility (SRF) [Kerrigan 2001] guarantees that applying the first action of any pairs in K 1|N i to the system (2.49), a state in X N i+1 is reached, independently from the minimization of any objective function (2.52). We define SRF in the following way:

Definition 2.4.1 (Strong Recursive Feasibility). An MPC scheme is strongly recursive fea- sible if and only if ∀i, ∀(x i , κ 1 ) ∈ K 1|N i , x i+1 = Ax i + Bκ 1 ∈ X N i+1 .
(2.62)

Remark 2. SRF is "stronger" than the standard Recursive Feasibility since the latter depends on a optimal solution of a specific cost function (2.52) [Kerrigan 2001, Section 5.3]. Changing the cost function at any t i and/or not reaching an optimal solution do not affect SRF property.

Remark 3. The relationship between SRF and viability is the following: SRF guarantees that ∀i, at time t i all feasible states are viable. In case of balance preservation for biped robots, no feasible state can lead to a fall of the robot.

Strong recursive feasibility is classically obtained by introducing a terminal constraint at the end of the planning horizon [Kerrigan 2001, Section 5.7.2] to make sure the system remains feasible indefinitely after the end of the horizon.

Capturability terminal constraint

We favored the capability of the robot to stop, being capturable, as a sufficient condition to maintain balance without violating the constraints (2.57)-(2.58). Only an additional constraint on the final state x (i+N |i) formalizes conditions under which the robot can be stopped. This condition on the final state acts as a terminal constraint of the MPC scheme. Once reached the state x (i+N |i) , a simple controller can stabilize the system after the horizon N [Mayne 2014].

Since we want the robot to stop at the end of the planning horizon, we construct a controller in such a way that the CoP will be maintained at a constant position: p (i+N |i) = p (i+N +j|i) , ∀j ∈ N + . Position of the CoP for the dynamics (2.23) can always be maintained with a trivial linear controller: ṗi = 0. It is however necessary to analyze the stability of the system. We know that the system has an unstable mode [START_REF] Englsberger | [END_REF]].

We will nullify this mode rendering the system stable [START_REF] Muske | [END_REF]]. We identify the eigenvalues of the matrix A in (2.25) via the matrix factorization called eigendecomposition:

(1, e T ω , e -T ω ).

(2.63)

The matrix A has one unstable eigenvalue: e T ω , which is outside of the unit circle since T ω > 0. Its corresponding mode is m u = ċi + ci ω -1 . Nullifying m u means to impose the following equality constraint ċi + ci ω -1 = 0.

(2.64)

If this equation holds, the state [ c i+j , ċi+j , ci+j ] of the autonomous system (because ṗi = 0) converges to [ p i , 0, 0 ] as j → ∞ while the CoP does not move. Notice that the unstable mode corresponds to the derivative of the CP ξ, see Section 2.3.1, so we are actually imposing ξi = 0.

(2.65)

When the CP is not moving (2.65), the projected position onto the floor of CP coincide with the position of the CoP, see the second line of the system (2.46). This it implies the CP is above the support polygon, defined with (2.57), and the robot can stop without making further steps: it is 0-step capturable. From this analysis, we impose

ξ(i+N|i) ∈ T, (2.66) where T {r ∈ R 2 | r = 0}, (2.67) 
as terminal constraint, making sure that after the end of the horizon, a simple controller can stabilize the system (2.49). From now if we include a terminal constraint in (2.51) that defines a terminal set T, the solution, state-action pairs and feasible sets are represented by:

F N i (T), K 1|N i (T) and X N i (T).
At time t i , suppose the model of the walking cycle (2.33), starting from the end of the horizon N is assumed to be time-invariant, which implies, in particular, that the number and positions of the contacts do not change, represented in Figure 2.5. In this case, after t i+N , the state can remain feasible in T since it is a subset of all possible feasible states (defined in the footstep where the robot will stop). At time t i+1 , SRF is guarantee by construction and the MPC is strongly feasible. The problem is when at time t i+1 the robot is not really planning to stop, and considers actually making a new step at the end of the planning horizon. With such a sudden change, SRF is not guaranteed anymore. We address this issue in Chapter 3.

Conclusion

We presented a linear model that relates the CoM of the robot to the contact forces applied on the ground (2.16). We model changes of the foot positions on the ground in order to facilitate their automatic adjustment (2.33). With those models we build a set of constraints that the robot needs to satisfy in order to comply with the whole-body kinematic and dynamical structure. We additionally imposed a capturability constraint that allows the robot to stop in a given number of steps since we almost always want the robot to eventually stop. Models and constraints were employed in a single MPC scheme.

CHAPTER 2. BALANCE (a) At time t i it is assumed the number and positions of the contacts do not change from time t i+N onward.

0 0.5 1 1.5 2 -0.5 0 0.5 (b)
The assumption made at time t i is valid.

0 0.5 1 1.5 2 -0.5 0 0.5
Chapter 3

Strong Recursive Feasibility in MPC of Biped Walking

Introduction

Chapter 2 presented the Model Predictive Control (MPC) of biped walking that generates walking motion with automatic footstep placement. We favored the capability of the robot to stop, being capturable, as a sufficient condition to maintain balance. This was formalized in a capturability terminal constraint (imposed at the end of the planning horizon). This constraint works also as a sufficient condition to guarantee strong recursive feasibility (Definition 2.4.1) for the control scheme. However, it is explained in Section 3.2 how strong recursive feasibility guarantee is lost when the robot is not really planning to stop but considers actually making a new step. In this Chapter we demonstrate numerically (Section 3.5) that strong recursive feasibility is actually guaranteed, even when a new step is added in the planning horizon. But the guarantee depends on the length of the horizon (Section 3.5). On the other hand, if we remove the capturability terminal constraint we lose the robot's ability to stop and and we loose completely strong recursive feasibility for several horizon lengths (Section 3.6). Finally, we discuss the ongoing research on the choice of the capturability constraint and recursive feasibility in the literature of control for biped walking (Section 3.7).

Problem formulation

We can see in Fig. 3.1a how a capturability terminal constraint makes sure that the system remains feasible indefinitely. This way, when the planning horizon advances as in Fig. 3.1b, we are sure that the MPC scheme remains feasible: SRF is guaranteed by construction. In this case the robot can keep planning to stop until it really stops, and then re-start walking.

In such a way, the robot would walk for few steps and come to a stop periodically. Since in our application the robot needs to adapt continuously to the dynamic environment, e.g. avoid collision or physical interaction, we want the robot to stop only in case of necessity and continue walking otherwise. When the robot is walking and is not really planning to stop but considers actually making a new step, with such a sudden plan change, SRF is not guaranteed anymore, as shown in Fig. 3.1c. Note that this issue occurs independently of the planning horizon length N .

We investigate this issue and we provide a numerical evidence that SRF is actually guaranteed, even when a new step is added in the planning horizon. We found that in this case, the SRF guarantee depends on the horizon length N . Since this issue is introduced by the capturability terminal constraint, we remove it and we investigate again SRF. In this case, the MPC scheme loses SRF guarantee for all horizon lengths N tested. (a) A capturability terminal constraint (that defines a terminal constraint set T) makes sure that the motion of the biped robot remains feasible indefinitely. 

Parameters

Robot

The parameters of the biped robot were selected according to the kinematics of the robot HRP-2 [START_REF] Kaneko | [END_REF]], see Table 3.1.

MPC

In MPC-based walking strategies such as [Bohorquez 2016[START_REF] Kajita | [END_REF][START_REF] Herdt | [END_REF][START_REF] Scianca | [END_REF][START_REF] Herdt | [END_REF] or [START_REF] Naveau | [END_REF]], the sampling period T is usually small. In our framework, the sampling period is set to 0.1[s], and it corresponds to the duration of the DS phase. The duration of the SS phase is set to 0.7[s], resulting in a step cycle of 0.8[s/step]. These choices proved to realize stable walking motions [START_REF] Dune | Vision based control for Humanoid robots[END_REF]]. The number of planned steps ahead is chosen accordingly to (N T /s d ) , that depends on the planning horizon, sampling period and step cycle. When N ≥ 1, the number of adjustable future steps is m = ((N -1)T /s d ) : details in Appendix A.4. In our case, when N = 8 the robot is always planning a full step cycle, and when N = 16 the robot is always planning a full gait cycle. The parameters are summarized in Table 3.2. 

NUMERICAL APPROACH

Numerical approach

The sets F N i (T), K 1|N i (T) (showed in Figure 3.2a) and X N i (T) are convex polytopes [START_REF] Boyd | [END_REF]] following definitions in Section 2.4.3. And in our case they also happen to be closed, as explained in Section 2.4.2. Thanks to these properties, it is sufficient to check SRF (2.62) only on the vertices of K 1|N i (T), as can be seen on Fig. 3.2b. The number of vertices of these polytopes is finite, but enumerating all of them from definition (2.59) and (2.60) is actually an NP-hard problem [START_REF] Borwein | [END_REF]] although various algorithms exist for this enumeration, e.g. [START_REF] Löfberg | Oops! I cannot do it again: Testing for recursive feasibility in MPC[END_REF][START_REF] Fukuda | [END_REF][START_REF] Jones | [END_REF]. In this work we are going to use a randomized shooting approach.

Numerical evidence. The method we propose is based on the observation that the simplex method for Linear Programming (LP) always terminates on a so-called basic solution, which is actually a vertex [START_REF] Bertsimas | [END_REF]]. We propose therefore to solve LPs of the form minimize

x i ,π N i γ T x i π N i s.t. E i x i π N i ≤ d i , (3.1a) (3.1b)
for randomly chosen directions γ ∈ R 6+2N +2m , will provide a random selection of vertices of F N i (T). Instead of projecting each vertex F N i (T) onto K 1|N i (T), we decided to choose randomly the entries of γ that multiply (x i , κ 1 ) and set to zero the others. And SRF is checked simply verifying, with each vertex found, that the following LP minimize

π N i+1 ψ T π N i+1 s.t. E i+1 Ax i + Bκ 1 π N i+1 ≤ d i+1 , (3.2a) 
(3.2b) has a solution for any direction ψ ∈ R 2N +2m , chosen arbitrarily. This is a randomized approach (random shooting) which cannot guarantee to enumerate all the vertices, so it can only provide a numerical evidence.

SRF with the capturability terminal constraint

In our MPC framework, when the robot wants to continue walking, a new step appears at the end of the planning horizon cyclically. It is sufficient to check SRF not for all time, ∀i, but only for that moment. We indicate the time before and after the appearance of a new step at the end of the planning horizon, t k and t k+1 , respectively in Fig. 3.1a and in Fig. 3.1c. We investigate the SRF guarantee for several planning horizons lengths, N . Depending on N , there are 3 possible walking moments from time t k to t k+1 :

1. At time t k the robot starts the DS phase, and t k+1 the robot ends the DS phase.

2. At time t k the robot is in SS phase, and at time t k+1 the robot starts the DS phase.

3. For both time t k and t k+1 , the robot is in SS phase.

SRF WITH THE CAPTURABILITY TERMINAL CONSTRAINT

27

These cases are represented in Figure 3.3. In the MPC scheme, at time t k , the 3 different projections

K 1|N k (T) are: 1. t k = t sDS , where K 1|N sDS {(x, κ 1 )} ∈ R 10 , κ 1 = [ ṗ(k|k) , s pc k ] . The foot position s c
k is fixed but we explore all the possible DS phases the robot can start, using s pc k as decision variable.

2. t k = t eSS , where K 1|N eSS {(x, κ 1 )} ∈ R 10 , κ 1 = [ ṗ(k|k) , s f k (1)
] . We have s c k = s pc k and the first future adjustable step s f k (1) defines all the possible DS phases the robot can start at time t k+1 . (a) Numerical results with the capturability terminal constraint.

3. t k = t SS , where K 1|N SS {(x, κ 1 )} ∈ R 8 , κ 1 = ṗ(k|k) . We have s c k = s pc k . At time t k+1 : 1. s c is updated with s pc : s c k+1 = s pc k 2. s pc is updated with s f (1): s pc k+1 = s f k (1) 3. s pc k+1 = s pc k and s c k+1 = s c k .

N

Steps ahead

Set 

F N k (T) Projection K 1|N k (T) Vertices (x k , κ 1 ) SRF cstr dim R (•) K 1|N sDS K 1|N SS K 1|N eSS ∃π N k+1 π N

N

Steps ahead

Set 

F N k Projection K 1|N k Vertices (x k , κ 1 ) SRF cstr. dim R (•) K 1|N sDS K 1|N SS K 1|N eSS ∃π N k+1 π N

Numerical evidence from randomly selected vertices

At time t k , three million vertices were found with (3.1) by choosing three million random directions γ. Within this set of vertices, many of them were duplicates, thus removed. There is no strong reason behind the choice of three million since it is a randomized shooting approach and the search of all vertices can never be said <concluded>. So we chose a reasonably high number. Successively, the LP (3.2) was used to check a feasible solution for each vertex at time t k+1 . This process was repeated for several horizon lengths N ∈ {8, 9, • • • , 17, 18}. MATLAB R2016a was used to run the linear programming problems (3.1) and (3.2) with the linprog function (simplex method). The results of this numerical approach are summarized in Table 3.3a.

The system can become infeasible when the robot is not planning to stop and consider to make a new step in the near future, e.g. when planning a full step cycle (N = 8). As the horizon length increases, the robot can plan 2 steps ahead: N ∈ {9, • • • , 12, 13}, but we still do not guarantee the feasibility of the system when the robot considers to make a new step. We obtained a numerical evidence that the system remains feasible when the robot plans with: N ∈ {14, 15}, when the robot plans a full gait cycle N = 16 and when the robot starts planning 3 steps ahead: N ∈ {17, 18}.

F k (T) dimension As a side note, when passing from 1 to 2 steps ahead (or from 2 to 3 steps ahead), the dimension of F k (T) does not increase. When N = 8 (1 step ahead), the decision variables are: the state of the robot x, the control sequence π N and s pc . When passing to N = 9 (2 steps ahead), the planning horizon is increased, but the number of adjustable steps m does not, and we lose the decision variable s pc . So the dimension of F k (T) remains unchanged.

Vertices verification

In theory, the simplex method for LP always terminates on a vertex. In practice, we want to verify that the LP always terminated on a vertex. We want to understand how many solutions are actually vertices.

Each vertex is verified with the following procedure. Suppose you have a point v that belongs to a polytope of dimension n, with inequality and equality constraints. An inequality constraint that becomes an equality constraint for that point v is said to be active (equality constraints are always active). If there are at least n linearly independent constraints that are active for v, v is a vertex.

Take the set of vertices V found with the numerical evidence, Section 3.5.1. Each vertex v ∈ V has dimension D: dimension of F N k (T). From the set of constraints (3.1b), we do

w = E k v -d k (3.3)
and we look for the number of zero (absolute value is smaller than 10 -8 ) elements of w. These elements identify a set of linear active constraints from (3.3):

A cstr v = b cstr . (3.4)
If there are at least D linearly independent active constraints:

rank(A cstr ) = D, (3.5)
where rank performs a singular value decomposition and returns the number of singular values of A cstr that are larger than 10 -11 , then we confirm v as a vertex.

We repeated this process for each N and we summarized the results in Table 3.3b. For each N we found at least a vertex that did not pass the test. When N = 18 for example, up to 70% of the vertices did not pass the test. However, after this verification, we have the same binary answers: SRF is guaranteed for the planning horizon lengths N ∈ {14, • • • , 18}.

SRF without the capturability terminal constraint

Without the capturability terminal constraint, the system is no longer feasible indefinitely by construction. And, when the planning horizon advances, even when a new step is not added in the planning horizon (Fig. 3.1b), we do not know if the system remains feasible. With sufficiently long planning horizon N , we have implicitly the equivalent of a terminal constraint [START_REF] Boccia | [END_REF], Grüne 2012], but we can't know how long is "sufficiently long" without testing numerically. We used the same numerical test as in Section 3.5.1 (with the vertex verification in Section 3.5.2). This time we only chose 10.000 random directions for γ. We obtained a numerical proof that SRF is not guarantee for the set of horizon lengths N ∈ {14, • • • , 17, 18} without the capturability terminal constraint, see the results in Table 3.3c. The horizon length N = 18 is yet not "sufficiently long" to guarantee SRF. Hereby, we list several important aspects of this result:

• it is sufficient to check SRF not for all time, ∀i, but only for the step cycle (even when a new step is not added in the planning horizon). Since we found at least 1 vertex that was not a feasible solution at time t k+1 (when a new step is added in the planning horizon), we obtained a numerical proof that SRF is not guaranteed. Thus, we do not need to run the test for all other times of the step cycle.

• we did not need to run the test for the planning horizon lengths N ∈ {8, 9, • • • , 12, 13}. Because the polytope F N k without the terminal constraint contains the polytope with the terminal constraint

F N k (T) ⊆ F N k , (3.6)
and with both our approaches, we have already a numerical proof that SRF is not guaranteed for those horizon lengths N , see Tables 3.3a.

Discussion

Hereby, we discuss on few aspects of this contribution, and possible future directions.

Providing a numerical proof

The Multi-Parametric Toolbox (MPT) [Herceg 2013] uses algorithms found in the literature to enumerate vertices. The vertex enumeration can be delegated to an external CDD solver, wrapped in the toolbox that use the double description method [START_REF] Fukuda | [END_REF]]. We tested this toolbox on our polytopes, but they have a very large dimension and vertex enumeration became complicated. In Table 3.4a we report the results from the toolbox. We verified the results as it was done in Section 3.5.2 (Table 3.4b). And in Table 3.4c we compared the results found with our approach and the toolbox. Sometimes the total number of vertices found by the toolbox were less than the vertices found by our numerical approach, and for some horizon length the toolbox gave us completely different results. For example when N = 10, the toolbox did not find any vertices for which ∃π N k+1 . The toolbox could not compute a projection for N > 15. From this toolbox however we used .isBounded function to verify that all the polytopes were actually closed: for all N tested (with and without terminal constraint), we obtained a positive answer.

Preliminary results with MPT We represent the polytope F N i by half-plane description [1] . We project it onto K 1|N i and we enumerate the vertices. The projection is done using the Fourier-Motzkin Elimination: it is numerically robust for polytopes of large dimension, and for enumerating vertices we use the double description method [START_REF] Fukuda | [END_REF]]. Each vertex is used to check SRF by simply verifying that the LP (3.2) has a solution (at time t i+1 ). MPT was used to build polytopes, project them and enumerate the vertices of the projection, see Algorithm 1. The vertex enumeration is done by the external CDD solver, wrapped in the toolbox. MPT tries to enumerate all vertices, providing numerical proof.

Algorithm 1 Vertices enumeration with MPT (a) Numerical results from MPT-3 toolbox of SRF. 

1: F N i = polyhedron(E i ,d i ) 2: K 1|N i = (F N k ).projection(dim, 'ifourier'); 3: (x i , κ 1 ) = (K 1|N i ).computeVRep();

N

Set F N k Projection K 1|N k Vertices (x k , κ 1 ) SRF cstr dim R (•) cstr dim R (•) ∃π N k+1 π N

Ongoing research with the capturability terminal constraint

In the literature of MPC for biped robots, many applications are successful without capturability constraint [START_REF] Dune | Vision based control for Humanoid robots[END_REF][START_REF] Kajita | [END_REF], Agravante 2016]. Successful applications explored only feasible states that were viable. So what kind of improvements the capturability constraint bring to the MPC scheme? First, a capturability constraint guarantees capturability, i.e. the ability to stop. Second, the capturability constraint implies viability. When the robot plans to stop in a fixed number of steps, the constraint guarantees SRF for all planning horizon lengths. In case of sudden plan change: when the robot considers to make a new step at the end of the horizon, SRF is yet guaranteed but not for all horizon lengths. An MPC scheme with capturability constraint is more reliable in balance preservation and we provided several planning horizon lengths (relatively small) to achieve SRF in case of sudden plan change.

The capturability constraint has been recently extended for walking up stairs [START_REF] Pajon | [END_REF]] or for compensating potential perturbations [Villa 2019b]. However, both cases lack an evaluation of the issue highlighted in this Chapter, so we do not know for which horizon lengths SRF is actually guaranteed when the robot considers to make a new step at the end of the horizon. An important contribution to recursive feasibility using a capturability terminal constraint is proposed in [START_REF] Scianca | [END_REF]]. It differs from our approach in the followings:

• they generate walking motions with 2 MPC schemes: the first one generates candidate step positions, and the second generates the CoM/CoP trajectories (based on the candidate step positions).

• they do not use the kinematic constraints (2.43) applied to the CoM.

• they impose a fixed CoP position after the end of the horizon, in the middle of the support polygon.

And they propose an analytical solution that provides a lower bound on the horizon length N for which recursive feasibility is guaranteed for the second MPC. The lower bound depends on kinematic capabilities of the robot, e.g. size of the feet and height of the CoM, and postulate an upper bound on the CoP velocity. We would like to work in this direction since an analytical solution of this kind is quickly adaptable for the MPC of any biped robots.

Currently, if we change any parameters of the robot, we need to re-evaluate SRF for all horizon lengths. Finally, we want to study the SRF guarantee also when adjusting footstep orientation and step cycle duration all together in a single MPC [Bohorquez 2018a].

Conclusion

We investigated the SRF guarantee in MPC for biped walking. We showed that with the capturability terminal constraint this guarantee is achieved for horizon lengths N ∈ {14, • • • , 18}. Without this constraint, the guarantee is lost for all tested lengths. It is then profitable to include the capturability terminal constraint in the MPC scheme to guarantee capturability: the robot is then able to stop in finite time, and guarantee SRF.

Chapter 4

Motion Safety 

Introduction

We want biped robots to navigate safely in close proximity of people and in this work we focus on a biped robot walking in a dense crowd, represented in Figure 4.1. Navigate among people is challenging since their future behavior can be difficult to predict. Therefore environments shared with humans can be categorized as dynamic and uncertain environments.

Before placing biped robots in a real crowd, we need to evaluate the performance of their physical capabilities in a simulated scenario. This should potentially feature both fixed and moving people whose future behavior is unknown and we should limit the sensors of the simulated robot to provide a partial knowledge of its surroundings. In this work we are interested in the robot's capability to avoid collisions, i.e. its motion safety. A collision is avoided if the robot respects some kind of thresholds or bounds applied to the motion that will execute, e.g. minimum distance from people. The robot therefore needs to anticipate people behaviors, i.e. modeling their future behavior, and to render explicit these bounds.

In this Chapter, we describe how we model a simulated dense crowd as well as how to model their future behavior (Section 4.2). Then we explain the sensors of the robot and 4.2. CROWD 35 how it perceives people, with relative perception errors (Section 4.4). We define collisions with a physical description of the simulated robot and people in Section 4.3. We extend the model predictive control scheme of biped walking for safe navigation purposes among people (Section 4.5): we include collision avoidance constraints and navigation objectives. For a robot moving in a crowd, there are situations where collisions are inevitable: limited physical capabilities and limited knowledge of the future do not help in this regard (Section 4.5.4). Our model predictive control scheme addresses this issue by guaranteeing the robot is at rest before a collision occurs, this is called passive motion safety (Section 4.5.4).

Crowd

Behavior

One possible crowd behavior could be that every person is very careful in trying to avoid collisions with the robot, i.e. cooperative (or joint) collision avoidance [START_REF] Trautman | [END_REF][START_REF] Althoff | [END_REF][START_REF] Silva | [END_REF]]. This scenario relates to human aware navigation [START_REF] Kruse | [END_REF]] that focuses on socially acceptable and legible robot behaviors, rather than explicitly solving the collision avoidance problem. In fact, this can lead to a strong bias on the evaluation of the robot's motion safety with potentially no collisions ever happening what and would not be very meaningful [Fraichard 2006].

Another extreme could be a crowd specifically aiming at collisions with the robot. This scenario represents a hostile or adversarial environment to the robot, that was actually observed in many case studies where children persistently obstructed the robot's activity in a shopping mall in Japan [START_REF] Brscić | [END_REF]]. This scenario also focuses on socially acceptable behaviors and it would corrupt the evaluation of the robot's motion safety, e.g. only collisions, and would not be very meaningful.

One way to evaluate the robot motion's safety capabilities and the robot's motion safety capabilities alone, could be to consider that the robot is actually the only one in charge to avoid collisions [Bohorquez 2016, Wu 2012, Bouraine 2014]. Colloquially the crowd can be said inattentive or moving blindly, in that it does not account for the presence of the robot. This scenario can also be adopted for benchmarking purposes. In [Liu 2017[START_REF] Cao | [END_REF]] a robot was simulated in a human environment where human-trajectories were played from public datasets of real pedestrian crowds, e.g. from CVL lab [START_REF] Pellegrini | [END_REF]] (Zurich) or from UCY lab [Lerner 2007] (Cyprius), so people appeared to walk inattentive to the presence of the robot. The set of human-trajectories however can be limited to the number of crowd recordings.

In this thesis, we decided to work with this inattentive crowd scenario. To fully consider the crowd inattentive, people will (also) not try to avoid each other, i.e. collisions among people are disregarded. Since people are not aware of their surroundings and do not actively avoid collisions with the robot or with each other, we assume that they walk at a constant velocity.

Pedestrian model

Since the future behavior of people can be difficult to predict, modeling pedestrians is challenging. Motion models are usually built from analyzing human movement. Some of the sophisticated models analyze human intention [START_REF] Grasso | [END_REF]], which are usually highly complex, and walking gait [START_REF] Laumond | [END_REF][START_REF] Bissacco | [END_REF]]. Motion capture technology has been used to record several human trajectories and they were found to obey a simple nonholonomic system, i.e. the unicycle model [Arechavaleta 2008], which has been used for motion prediction [START_REF] Batkovic | [END_REF], Schneider 2013]. In the scenario where pedestrians do not change CHAPTER 4. MOTION SAFETY their walking orientation, e.g. no turning maneuvers, it is then possible to describe their motion with a basic motion model: a single or double integrator [Kooij 2014[START_REF] Cao | [END_REF].

Since the crowd is assumed to walk blindly, with respect to the robot and each other, their motion can be chosen arbitrarily. We consider the case where each person follows a straight trajectory (different from person to person), e.g. people crossing a road on a zebra cross. With this choice, we model each pedestrian with a double integrator model. Let the state of the model for the j-th person in a 2D space be:

η j = z j żj , (4.1)
where z j ∈ R 2 is the person position and his velocity żj ∈ R 2 . We have then the following LTI system:

ηj = Σ 1 η j + Σ 2 zj , (4.2) 
where

Σ 1 = diag 2 0 1 0 0 , Σ 2 = diag 2 0 1 . (4.3)
In discrete time, using the discretization explained in Section 2.2.2, we have

η j i+1 = Γ 1 η j i + Γ 2 zj i , (4.4) 
where

Γ 1 = diag 2 e Σ 1 T = diag 2 1 T 0 1 , (4.5) 
Γ 2 = diag 2 T 0 e Σ 1 t dt Σ 2 = diag 2 T 2 2 T . (4.6)

Model of the future

Modeling the environment's future behavior, e.g. the pedestrian's future behavior, is one of the safety criteria presented in [Fraichard 2006], crucial for robot motion safety. The robot therefore needs a model that anticipates the motion of people to avoid collisions in the present and into the future. Models of the future broadly fall into three classes: deterministic, conservative and probabilistic (Figure 4.2).

Deterministic models are used when future motions are known beforehand. From a motion safety point of view, deterministic models are useful as long as their prediction of the future evolution of the environment is reliable. Unfortunately, for a crowd of people it is impossible to know beforehand what people will do next. Probabilistic and conservative models address this issue.

There are two popular methods to build probabilistic models. One method consists in two stages. A first stage of "learning": observe the environment (through sensors) in order to identify and model possible motion patterns or plans. And then a second stage of "prediction": learned patterns are used in order to predict future motions. These models aim to improve the accuracy of the prediction (to be as close as possible to the real motion) [START_REF] Ellis | [END_REF][START_REF][END_REF][START_REF] Keller | [END_REF][START_REF] Vasquez | [END_REF] for a long time horizon (≈ 5 -7s) [START_REF] Ellis | [END_REF][START_REF][END_REF]], but the general drawbacks is the high computational complexity that comes from the "learning" stage [START_REF] Keller | [END_REF]. A second method is to use stochastic transition function to describe motion patterns. A probabilistic model is obtained for example through an Extended Kalman Filter [START_REF] Kushleyev | [END_REF]]. t

CROWD

Deterministic model Conservative model Probabilistic model

The model takes the current measurement of pedestrian position and/or velocity, and it assumes the pedestrian will follow a certain behavior, e.g. maintains constant motion, at all future times. A probability of pedestrian (physical) occupation is assigned along the predicted model. A Gaussian noise can represent the probability distribution, with an increasing variance value across time representing the uncertainty of the prediction. The probability distribution is bounded up to two standard deviations from the mean (95% of the normal distribution). The future occupancy within the bound is considered reliable for motion safety purposes [START_REF] Bautin | [END_REF][START_REF] Althoff | [END_REF]. The uncertainty will grow with time and, at some point, the distribution will be so wide, that will occupy the entire space. While the uncertainty grows, the probability of pedestrian occupancy diffuses, i.e. flattens, and eventually cancels out: the pedestrian "disappears" from the whole space. So pedestrian's future trajectories are predicted until the probability of pedestrian occupancy flattens [START_REF] Kushleyev | [END_REF]].

Conservative models simply consider all the possible pedestrian's future trajectories. Accordingly, each pedestrian is assigned a reachable set, i.e. the set of positions it can potentially occupy in the future, to represent its future motion [Bouraine 2014, Liu 2017]. In general, the computational complexity is relatively low since these models do not pass from any "learning" phase and use few observations about the pedestrian, e.g. their estimated current position. All the pedestrian (physical) occupation along the predicted model is assumed to be reliable for motion safety purposes and it is based on some sort of bounded behavior assumption. For example: each person's motion is limited by a maximum walking speed in any direction. Once decided this bounded behavior, there can be a time in which the monotonous growth of the region occupied by the pedestrian is such that, eventually, the whole space will be that region. Accordingly, after this time any motion would not be safe, so pedestrian's future trajectories are predicted no further than that time.

Probabilistic or conservative models? It is a crucial question. The common factor is that both deal with parameters that are constrained within certain bounds, i.e. on the uncertainty distribution or on the assumed behavior. Since any form of motion safety will always be guaranteed with respect to certain bounds, we could choose independently one of these two models. In this work, we choose a conservative model to anticipate a pedestrian's future behavior. In our crowd scenario: (i) people walk at a constant velocity and they do not try to avoid the robot and (ii) collisions among people are disregarded (see Section 4.2.1). The robot uses these information to anticipate the motion of people.

The assumption that people walk at a constant velocity, i.e. accelerations equal to zero, determines the anticipative motion of the j-th person computed at time t i for N time instants:

∀k ∈ {1, • • • , N }, zj (i+k-1|i) = 0. (4.7)
If not for our crowd scenario only but in general, this is a strong assumption on the anticipative motion. We claim however that this is valid when the future behavior is anticipated for about one or two seconds (≈ 1 -2s).

It is then possible to describe a pedestrian's future position by evolving for example the state η i for N -times following the dynamics (4.4) with assumption (4.7):

zj i = diag N (I z ) (U 5 η j i ), (4.8) where zi ∈ R 2N zi = {z j (i+1|i) , • • • , z j (i+N |i) }, (4.9) 
and

U 5 = Γ 1 Γ 2 1 • • • Γ N 1 , (4.10) 
with I z ∈ R 2×4 a selection matrix to extract the person position from the state.

Physical attributes and interactions

Biped robot and people

The biped robot occupies an area defined by a circle of ray D robot . Let A be the area occupied by the robot's body when the CoM is at position c (area in gray, Figure 4.3a)

A ball(c, D robot ), (4.11) where ball(x c , R) {x | x -x c ≤ R}. (4.12)
As for humans, each person occupies an area defined by a circle [Liu 2017, Bohorquez 2016, Bouraine 2014]. Consider a crowd composed of Z pedestrians. Let B j be the area occupied by the j th person as a circle of radius D person (area in blue, Figure 4.3a). Given the position of the person, z j , this space is:

B j ball(z j , D person ). (4.13)
Let B be the space occupied by all Z pedestrians in a crowd: The position c is the center of the robot circle with ray D robot . And z j position is the center of the person circle with ray D person . We consider "no contact" between these two areas as long as czj ≥ D robot + D person . Finally, the FoV of the robot is a circle centered in c with R max as ray: the maximal distance around the robot at which it is capable of perceiving people. 

B = j∈{1,••• ,Z} B j . ( 4 

Collision

In the crowd scenario, we are interested in identifying a physical contact event between a human and the robot, i.e. a collision. We say that a biped robot is in collision if

A ∩ B = ∅. (4.15)
The minimum safe distance (no contact) is (4.16) Collisions between pedestrian body and robot feet are disregarded.

σ 0 = D robot + D person .

Robot's perception

Field of View

We consider a biped robot equipped with a range sensor, e.g. laser telemeter or range camera, and it can only perceive a subset of agents that surrounds it. This subset is the robot's FoV. Its shape is arbitrary and it depends on the current surrounding of the robot and the maximum range of its sensor. Occlusions in perception are disregarded, making the robot aware of the current position of everybody within the FoV.

In our case, the FoV has a circular shape centered in c and R max is the maximal distance around the robot at which it is capable of perceiving people composing the crowd (area in yellow, Figure 4.3a). The j th person in the crowd is inside the FoV if

B j ∩ ball(c, R max ) = ∅.
(4.17)

Perception uncertainties

We consider uncertainties in position and velocity estimations of the crowd with respect to the real position z j and velocity żj (showed in Figure 4.3b):

zj = z j -ẑj , zj = żj - ẑj . (4.18)

MPC-based safe biped navigation in a crowd

The MPC scheme in Section 2.4.2 generates a walking motion online with automatic footstep placement. We included a capturability terminal constraint (2.66) to ensure the robot's ability to stop in a finite time and maintain its balance. In this section we expand this scheme to navigate safely in a crowd.

Collision avoidance with the crowd

In this work, the robot avoids collisions by not entering the circle occupied by each person. For the j-th person, c (i+k|i) -z j (i+k|i) / ∈ ball(0, σ (i+k|i) ), (4.19) this is a nonlinear, non convex constraint. Let σ (i+k|i) be the minimal distance between the center of the j-th person and the CoM of the robot planned for time t i+k . Then it follows that (4.19) can be represented by the Euclidean distance as:

n j (i+k|i) (c (i+k|i) -z j (i+k|i) ) ≥ σ (i+k|i) , (4.20) 
where n j (i+k|i) ∈ R 2 is a unit normal vector that points from the center of the j-th person to the CoM of the robot:

n j (i+k|i) = (c (i+k|i) -z j (i+k|i) ) c (i+k|i) -z j (i+k|i) , (4.21)
and we want to impose this constraint along the planning horizon

nj i = {n j (i+1|i) , • • • , n j (i+N |i) }. (4.22)
The separation distance σ includes perception uncertainties (see Section 4.4.2) as "additional safety distance":

σ (i+k|i) = σ 0 + zj + zj (T k). (4.23)
Given the magnitude of the uncertainty in position zj , we consider that the real position z j lies in a circle of radius zj centered at the estimated position ẑj . Furthermore, given the magnitude of the uncertainty in velocity zj , the radius of this circle increases at a rate zj (T k) as it moves with the estimated velocity ẑj . We discuss important aspects about the area defined by the magnitude of the uncertainty in Section 4.5.2.

The CoM of the robot is restricted to a moving half-space H [Boyd 2004, Section 2.2.1]:

c (i+k|i) ∈ H(n j (i+k|i) , z j (i+k|i) , σ (i+k|i) ), (4.24) where H(n, o, R) {r : n T (r -o) ≥ R}. (4.25)
Note that n j (i+k|i) is a nonlinear expression for the variables c (i+k|i) and z j (i+k|i) . Since c (i+k|i) depends on the decision variables, (4.24) is a nonlinear constraint. When T is small enough, n from the i th computation of the MPC does not differ too much from n obtained in the previous (i -1) th computation lim

T →0 n j (i+k|i) -n j (i+k-1|i-1) = 0, (4.26)
and we can use it to approximate the original constraint and obtain a completely linear formulation as

n j (i+k-1|i-1) (c (i+k|i) -z j (i+k|i) ) ≥ σ (i+k|i) , (4.27) 
and impose it along the planning horizon:

∀k ∈ {1, • • • , N }, c (i+k|i) ∈ H(n j (i+k-1|i-1) , z j (i+k|i) , σ (i+k|i) ). (4.28)
This approximation is safe with respect to the nonlinear problem because it is an outer approximation to the left-hand side of the inclusion (4.19). We impose the constraint (4.28) along the evolution of the robot position c i (2.27), using the evolution of each person position z j i (4.8) appearing inside the FoV. This half-space method comes at a very low computational cost and it has been successfully applied to industrial robots [START_REF] Homsi | [END_REF]. The constraint (4.28) allows to ensure, at each time instant t i , a separation between robot and people, i.e. no collision. When generating a collision-free motion, ensuring that collisions are avoided at each t i does not guarantee continuous collision avoidance: that there is no collision during each time interval (t i , t i+1 ), i.e. between samples. In this work, it is assumed that avoiding collisions at time t i and t i+1 implies to avoid collisions between samples. It is however possible to enforce an additional set of collision avoidance constraints (4.28) in between samples, similar to (2.58) [START_REF] Brossette | [END_REF][START_REF] Zheng | [END_REF]. Continuous collision avoidance (between samples) is also guaranteed in [Mercy 2016] with (4.24) by B-spline parametrization of the CoM motion. The parametrization however restricts the set of possible motions.

Conservativeness in time

We consider that the real position z j lies in a circle of radius zj centered at the estimated position ẑj . For this reason, the area B j occupied by the j th person (4.13), is somewhere inside an area called W j (t)

B j ⊆ W j (t). (4.29)
The estimated position of the j th person ẑj walking with the estimated speed ẑj at time t occupies the area W j (t). This area is modeled as a circle with a radius that accounts for D person and robot's perception errors, ( zj , zj ), W j (t) ball( ẑj + ẑj t , D person + zj + zj t).

(4.30)

We call this area unsafe zone because there is a person inside but the robot does not know exactly where. Let W be the unsafe zone occupied by the estimation of all Z pedestrians in a crowd:

W(t) = j∈{1,••• ,Z} W j (t).
(4.31) (a) The unsafe zone W j (t) is an area where there is a person (B j ) inside it but the robot does not know exactly where the person is. The unsafe zone is modeled as a circle with a radius that accounts for D person and robot's perception errors, ( zj , zj ). The figure shows W j (0).

z j ̂• z j ∥z j ∥ + D perso n • z j ẑ j (b)
The figure shows in 1D space how the monotonous growth of W j (i+k|i) is updated (or reset) at each computation time when we gather a new estimate of the person's position (in this case the estimate in velocity ẑj is 0). As a consequence, each predicted unsafe zone computed at time t i fits always inside the one re-computed at time t i+1 . In blue, the area B j occupied by the j th person is somewhere inside W j .

t i t i+ 1 t i+ N t i+ N+ 1 z j i+ 1 ∥z j ∥ + D perso n ẑ j i z j i ⋯ ẑ j i+ 1 W j (i+ 2|i+ 1) W j (i+ 1|i) W j (i+ 2|i) t so we have: B ⊆ W(t).
(4.32)

In our discrete-time model implementation, let W j (i+k|i) be the unsafe zone computed at time t i and predicted for time t i+k as

W j (i+k|i) ball( ẑj i + ẑj i (T k) , D person + zj + zj (T k)). (4.33)
The radius of this circle increases at a rate zj (T k) as it moves with the estimated velocity ẑj . The monotonous growth of W j however is updated (or reset) at each computation time when we gather a new estimates of the person's position and velocity. As a consequence, each predicted area computed at time t i fits always inside to the one re-computed at time t i+1 . In general we have:

W j (i+k|i+k) ⊆ W j (i+k|i) .
(4.34)

In Figure 4.4 we represent these 2 properties (4.29) and (4.34) of W j . The prediction of the unsafe zone is always reduced at each computation time: it cannot be bigger than before.

Optimization

We would like a feasible walking motion to minimize the deviation from a set of objectives.

Objectives

On the balance front, we want to keep the CoP as close as possible to the center of the foot on the ground along the planning, to improve the robustness of the robot against perturbations [Wieber 2006a], such as possible collisions. We could furthermore minimize the CoM jerk component to improve fall avoidance of the biped robot [START_REF] Kajita | [END_REF]], but we addressed this issue (maintain balance) with the capturability terminal constraint (2.66).

On the collision front, when the robot is traversing the crowd, the objectives can fall on a wide spectrum. We can focus on sociability (adherence to explicit high-level socio-cultural conventions), on comfort (absence of annoyance and stress for humans), and/or naturalness (robot tries to mimic human behaviour patterns). Most of these objectives take into account some common sense rules and comply with social conventions. We could for example use a repulsive potential function [Khatib 1985], where the repulsive force applied to the robot is based on social forces: a measure for the internal motivation of the individuals to perform certain movements [START_REF] Helbing | [END_REF]]. The robot could additionally try to walk at a comfortable distance from each person: same concept of collision avoidance constraints, but as a reference function [Bohorquez 2018a]. Last, but not least, a penalty function can be used to respect a desired social norm [START_REF][END_REF]], e.g. "passing a person on the right", breaking the collision avoidance symmetry problem [1] .

In this work however, we are only interested in the robot's motion safety and not in socially acceptable behaviors. For this reason, we can either ask the robot to reach a desired location or to follow a desired walking speed ċref . Whatever choice of these objectives, they should make the robot traverse a moving crowd (to evaluate its motion safety). We choose the robot should walk at a certain walking speed.

The objective on the balance front (CoP as close as possible to the center of the foot) and the objective to make the robot traverse the crowd (follow desired walking speed) are expressed as a convex quadratic function of the form (2.53) (see [START_REF] Herdt | [END_REF]] for details): 

f w (π N i ) = N k=1 ċref -ċ(i+k|i) 2 + p (i+k|i) -s (i+k|i) 2 . ( 4 

Newton step

While the linear approximation in (4.28) is safe with respect to the nonlinear problem (4.19), it might over-constrain the robot's behavior. To overcome this problem, to treat collision avoidance as a nonlinear problem, we apply a Newton method [Nocedal 2006] each time we solve the QP (4.36). At the i th computation, the QP is solved iteratively to reduce the collision avoidance approximation. Let nj i,k the sequence of normal vectors of the j-th person at iteration k. This is updated with the optimal solution of the previous iteration k -1, π * i,k-1 , and the iteration process stops when:

π * i,k -π * i,k-1 ≤ . (4.37)
The maximum number of iterations is set to max Iter and is chosen arbitrarily small: order of one thousandth. We summarize this procedure in Algorithm 2. 

k ← k + 1 14:
end if 15: until the maximum number of iteration max Iter is reached

Safe optimal behavior

Classical approaches for collision avoidance such as velocity damping [START_REF] Faverjon | [END_REF]], control barrier functions [START_REF][END_REF]], repulsive potential field [Khatib 1985], invariance control [Kimmel 2017] and momentum limitations [Tsai 2014], come with a major drawback. They optimize the motion with arbitrary restrictions (or constraints), i.e. based on arbitrary parameters, related to the robot-obstacles distance and sometimes loosely to the dynamics of the robot. For this reason, they generate suboptimal behaviors such as: unnecessary detours for a biped robot walking among obstacles [Agrawal 2017, Fig. 7-8] when using control barrier functions or decelerating/stopping in proximity of obstacles when using velocity damping [START_REF] Kanehiro | [END_REF]].

Some of those classical approaches furthermore assume that avoiding collisions is always possible. This is impossible to guarantee in a partially unknown dynamic environment such as a crowd. We discuss this safety issue in the next section.

Safety guarantee

For a biped robot moving in a crowd, two things that should be avoided are to fall and to collide with people.

On the balance front, with the capturability terminal constraint (2.66), we can guarantee that the robot will always be able to stop in a few footsteps and maintain its balance forever. On the collision front, only with the complete knowledge of the surrounding environment and its future evolution it is possible to determine whether the robot, given its current configuration and limited physical capabilities, achieves "no collision ever", dubbed absolute motion safety, thanks to the concept of ICS [START_REF] Fraichard | [END_REF]]. This corresponds to satisfy at all time a set of collision avoidance constraints such as (4.24). And it is the assumption of classical approaches on collision avoidance, see Section 4.5.3. In practice, such knowledge is possible to obtain only in specific environments that we are not interested in: static, freezing or periodic [START_REF] Bouguerra | [END_REF]]. In dynamic and uncertain environments such as a crowd, "no collision ever" is impossible to guarantee [Fraichard 2006].

It is nonetheless possible to guarantee that the robot will be able to stop before a collision takes place, should this collision be inevitable. No collision would happen if everybody behaved that way, and in this sense the robot will have done its share. This property is called passive motion safety [Bouraine 2014], and it has already been used effectively with several robotics platforms, see Figure 4.5.

Remark 4. In our case, absolute motion safety corresponds to guarantee SRF for the MPC scheme (4.36) because the set of collision avoidance constraints would be satisfied at all time.

Fall avoidance and Passive Safety guarantees

Passive motion safety or called also Passive Safety (PS) guarantees that the robot is able to stop before a collision occurs: if a collision is inevitable, at least the robot will be at rest when that happens. Capturability has previously been used in MPC scheme for biped robots to guarantee both balance and PS. This scheme combines the conservative model that anticipates the motion of people (4.8) and the capturability terminal constraint (2.66) to ensure that the robot can stop (keeping its balance indefinitely) before any collision happens [Bohorquez 2016].

The main idea is that at time instant t i the robot tries to compute a motion for N time instants solving (4.36) in which: it will walk without colliding for few footsteps and additionally maintain balance in the last footstep forever, i.e. stop. If it cannot compute such motion, it can always execute all the remaining N -1 actions of the last computed motion at time instant t i-1 as fallback. Thanks to conservativeness in time explained in Section 4.5.2, the last motion that was safe, it is still safe since the unsafe zone cannot grow in time. As a consequence, the robot walks without colliding and it will stop balancing on its last footstep on the ground (balance guaranteed) before any collision occurs (PS guaranteed).

The robot, before executing the remaining actions of the fallback motion, can re-evaluate the situation to check if, based on new measurements of the surrounding crowd, it is possible CHAPTER 4. MOTION SAFETY to postpone as long as possible the moment when it will stop. We can go, after executing each action, through a simple loop to find a motion valid for the largest number of time instants: {1, 2, • • • , N }, that satisfies all constraints. 

Conclusion

Pedestrian's future behavior is crucial for robot motion safety. We chose to consider all the possible pedestrian's future trajectories, using a conservative model of the future. We use this model to design collision avoidance constraints for our biped robot, accounting for perception errors on the estimation of people's velocity/position around it.

We then use those constraints in a MPC-based biped navigation scheme to generate safe walking motions in proximity of people. Last, in case a collision will be inevitable, this scheme guarantees the robot will stop balancing on its last footstep on the ground (balance guaranteed) before any collision occurs (PS guaranteed). This is possible thanks to the capturability constraint and conservative model of the future.

Chapter 5

Re-planning Effect on MPC-based Safe Biped Navigation in a Crowd

Introduction

We control a biped robot moving in a crowd using the MPC scheme presented in Chapter 4, which generates stable walking motions with automatic step placement and guarantees both fall avoidance and passive motion safety. For biped robots, once a step is planted on the ground, it usually stays there at a constant position until the next step is initiated. This naturally constrains the capacity for the robot to react and adapt its motion in between steps. As a result, the walking strategies in [Chestnutt 2005[START_REF] Karkowski | [END_REF][START_REF] Garimort | Humanoid navigation with dynamic footstep plans[END_REF] propose to re-plan the walking motion to adapt to changing environments once per step, only when a new step is initiated. In contrast, our MPC scheme re-plans the walking motion not only at each step initiation but also in between. Obviously re-planning more often than once per step comes at the expense of computational power.

In this Chapter we measure if re-planning the walking motion more often than once per step can lead to an improvement in collision avoidance when navigating in a crowd. To compare our approach with the walking strategies in the literature, we introduce in Section 5.2 two new MPC variables:

1. planning period.

initial planning phase.

In our case they are used to decide:

1. how often to re-plan the walking motion per step.

2. when to re-plan the walking motion along the step.

The challenging scenario of a biped robot walking against an inattentive crowd, used for our evaluation purposes, is described in Section 5.3.1. We used the robot parameters as in Chapter 3 and Section 5.3.3 presents the MPC parameters. The results of collision avoidance performances obtained using simulated crowd scenarios are finally presented and discussed in Section 5.4.

Planning period and initial planning phase in MPC

The standard MPC approach, as explained in Section 2.4.1, is an iterative planning process that operates as follows: at time t i , a motion π N i made up of a sequence of N control actions is computed. The motion satisfies a set of constraints imposed from t i to t i+N , N is the planning horizon. The first control action of the motion is executed. At 48CHAPTER 5. RE-PLANNING EFFECT ON MPC-BASED SAFE BIPED NAVIGATION IN A CROWD time t i+1 the planning process is repeated, until an objective is reached. The sampling period T denotes the fixed duration (in seconds) between two consecutive time instants [t i , t i+1 ].

The planning process in the standard MPC approach is repeated at every time t i . In certain situations though, it might be difficult to compute a new motion at each time, it might be interesting to compute instead a new motion every M times, e.g. to save computational power. In such a case, it would correspond to execute M actions of the motion π N i before repeating the planning process at time t i+M . Henceforth, M denotes what we will call the planning period (equal to 1 in standard MPC) Definition 5.2.1 (Planning Period). The planning period M ,

M ∈ {1, 2, • • • , N }, (5.1)
is the number of time instants before the planning process is repeated.

When M > 1 the planning process will not be repeated at every time t i . In case we deal with some sort of cycle (with a period greater than T ), it is however possible to choose the set of instants at which the planning process will be repeated along the cycle by introducing Definition 5.2.2 (Initial Planning Phase). The initial planning phase φ,

φ ∈ {0, • • • , M -1}, (5.2)
is the time instant t φ considered the initial time at which the planning process starts.

The planning process will be repeated at every time t iM +φ .

Simulation parameters

Crowd

We summarize the crowd behavior chosen in Section 4.2:

• people do not account for the presence of the robot.

• people do not try to avoid each other, i.e. collisions among people are disregarded.

• each person walk at a constant velocity.

• each person follows a straight trajectory.

In this Chapter, we consider the worst case scenario where the robot is walking in the opposite direction of the crowd. We consider 100 different random crowds, composed of Z people that differ in the initial positions z 0 and speeds along y, { ży }. The initial positions of the people vary uniformly over an area of 10 × 8[m 2 ]. For all people the velocity along x is chosen constant 0.5[m/s], while for each person speed along y is picked randomly in an interval [-0.2, 0.2][m/s]. Parameters are summarized in Table 5.1a.

Robot

The parameters of the biped robot were selected according to the kinematics of the robot HRP-2 as it was done in Chapter 3, but we recall these parameters in Table 5.1b.

MPC

The sampling period T and the step cycle s d are chosen as in Section 3.3.2. The robot plans always a full gait cycle, N = 16, since it is a standard choice for our MPC-based biped locomotion [START_REF] Dune | Vision based control for Humanoid robots[END_REF], Sherikov 2016[START_REF] Herdt | [END_REF]. We control the robot with the MPC scheme in Section 4.5.4 that guarantees fall avoidance and PS. We chose arbitrarily the parameter for the Newton method: the maximum number of iterations max Iter is 5, and the convergence factor is 10 -4 . We made no comparison with any other parameter choice. When the robot walks against a crowd, the robot perceives people around it within a FoV based on a specific sensor, e.g. laser scanner. The choice of FoV is not treated fully as in [Bouraine 2014], but its radius R max is chosen greater than a certain lower bound in order to guarantee PS [Bohorquez 2016]. This lower bound depends on the plan duration N T and the robot's and people's walking velocities:

R max ≥ N T ( żx + ċx r ) (5.3)
We account for different magnitudes of uncertainties ( zj , zj ) when the robot estimates people's position and velocity. All these MPC and perception parameters are summarized in Table 5.1c.

In Chapter 4, the robot tries to plan a new walking motion at each time instant, this corresponds to M = 1. Up to now, we can only find M = 1 in the literature of MPC for biped robots: [START_REF] Dafarra | [END_REF][START_REF] Tsagarakis | [END_REF][START_REF] Naveau | [END_REF][START_REF][END_REF][START_REF] Gouaillier | [END_REF]]. In our framework, when M = 1, the robot re-plans 8 times per step, every 0.1 [s]. Since most walking strategies proposed to re-plan the walking motion once per step (to adapt to changing environments), we can compare this choice with our MPC framework by changing the planning period to M = 8. Doing so, the robot re-plans less often, every 0.8 [s]. We additionally consider intermediate cases. When the robot re-plans 4 times per step, every 0.2[s], and when it re-plans 2 times per step, every 0.4 [s]. We represent these re-planning choices in Figure 5.1a, and we show in Table 5.1d the relationship between the re-planning per step frequency and planning period M . In our implementation, we choose t 0 as the time the robot starts a DS phase. When the robot re-plans once per step in Figure 5.1a, this corresponds to set the initial planning phase as φ = 0. In Figure 5.1b we show how the robot could choose instead to start planning at different phases, e.g. with φ = 1 when the robot ends DS phases. If the robot can only re-plan less often than at each time instant, when is the best moment (w.r.t. its motion safety capabilities) to re-plan along the step? How often to re-plan and when to re-plan are investigated in Section 5.4.

The additional parameters M and φ have no impact on the safety guarantees of the MPC scheme in Section 4.5.4. For example, if the robot cannot compute a new motion at time t i , it can always execute all the remaining N -M actions of the fallback motion computed at time t i-M , ∀M . It will walk without colliding and stop balancing on its last footstep on the ground (balance guaranteed) before any collision occurs (PS guaranteed). (a) The figure shows when at time t i we plan a walking motion pattern of 2 steps ahead with a fixed step cycle. Below, we can see when the planning events happen by re-planning 1, 2, 4 or 8 times per step. In our case, re-planning 8 times per step corresponds to re-plan at each time instant.

SS t DS DS t i t i+1

Step Cycle 

Results

The effect of re-planning per step on success rate for a biped robot traversing a moving crowd is evaluated numerically, as seen in Fig. 5.2. We consider a "success" if the robot walks and does not collide for 20 [s]. And we stop the simulation before if people collide with the robot. The initial positions of the people are randomly chosen in front of the robot outside the FoV. For each uncertainty ( zj , zj ), we simulate 100 crowds of Z people.

We start by evaluating all the possible initial planning phases φ per re-planning frequency in the crowd scenario. Each point of Figure 5.3a corresponds to 3600 crowd scenarios, varying all the possible combination of uncertainty ( zj , zj ) and crowd size Z for a choice of re-planning frequency. 100% of success rate means that the robot did not collide for 3600 simulations. Re-planning less often means to save computational power but it comes at the expense of a decay in success. The results indicates that when re-planning less often than 8 times per step, choosing never to re-plan when the robot starts DS phases (in our settings φ > 0), leads to a significant improvement in success rate. Recall from Section 2.2.3 that at the time the robot starts a DS phase, the next step is fixed: this helps to reduce the complexity of the step adjustment. The results here indicate that re-planning less often, but keeping the re-plan when a DS phase starts, worsen the robot motion safety capabilities adaptation to changing environments.

We see in Figure 5.3a that re-planning when the DS phase ends and/or along the SS phase only, the success of the biped improves at least by 20% when re-planning once per step, but only less than 5% when re-planning 2, 4 times per step. Overall, the biped reaches the "best" success rate:

• when re-planning 2, 4 times per step and one of the re-planning occurs when the DS phase ends (φ * = 1).

• when re-planning once per step and the re-planning occurs in the middle of SS phases only (φ * = 4).

RESULTS

53

Note in the Figure when φ = 4, there is less than 5% difference in success rate between re-planning once and 2 times per step. We now compare the choices of re-planning frequency (for both φ = 0 and φ * ) versus the crowd sizes. Each point of the plot in Figure 5.3b corresponds to 900 crowd scenarios, varying all the possible combination of uncertainty ( zk , zk ) for a choice of re-planning frequency and crowd size Z. We report the number of success in perceptual as "success rate": 100% means that the robot did not collide for 900 simulations. Obviously, the success of the robot decreases when we increase the density of the crowd: represented by the number of people Z, that the robot needs to traverse. In the plot, the dashed lines are the results with φ = 0 for all choices of re-planning frequency. The solid lines are the results where we set φ * for each re-planning frequency. When re-planning once per step for example, the robot improves its success from 20% (Z = 8) to 30% (Z = {16, 24, 32}) if it re-plans in the middle of SS phases (with φ * ), instead of re-planning when it starts the DS phases (φ = 0). We conclude that, for a robot traversing a moving crowd, we can favor to re-plan only once per step and in the middle of SS phases only, instead of 2, 4 or 8 times per step to save computational power, since success improves only by less than 10%. (a) The success rate for different re-planning frequencies and initial planning phases φ is showed in solid line. When φ = M + j with j ∈ N we have duplicated results in dashed lines.

(b) The success rate for different re-planning frequencies and crowd sizes Z. In dashed line, for all re-planning frequencies, one of the re-planning occurs when the robot starts the DS phase (φ = 0). In solid line, when the robot re-plans 2, 4 times per step, one of the re-panning occurs when the DS phase ends (φ * = 1). And when it re-plans once per step, re-planning occurs in the middle of SS phases only (φ * = 4). 

Collisions and uncertainty

We now give some insight on the relationship between success rate and uncertainty. We summarize in Table 5.2 the success rate in all the simulations that counts all crowd sizes Z and all initial planning phases φ, for each re-planning frequency and various amount of uncertainty ( zj , zj ). Given a re-planning frequency for any uncertainty pair ( zj , zj ), the total number of simulations is simulations = 100 × (n. of Z) × (n. of φ).

(5.4)

When re-planning once per step for example, the success rate is calculated over 3200 simulations.

When there is uncertainty, the robot accounts for it by being more cautious: uncertainty is represented as an additional area where people might be into the future and the robot needs to avoid it. As result, the success rate increases in the presence of uncertainty. We can observe that uncertainty on speed has a higher impact on success rate than uncertainty on position. This is marked in the table when re-planning 1 per step. 

Discussion

Hereby, we discuss on few aspects of this contribution, and possible future directions.

Constraints on the swing phase

We explained in Section 2.2.3 that we do not account for the motion of the feet in the air, but it could be modeled however with a 3-rd order polynomial as in [Sherikov 2016, Section 4.4.3]. Furthermore, we do not account for constraints on the swing foot during the SS as it is done in [START_REF] Diedam | [END_REF]]. Those constraints are simple bounds on the position of the next step depending on the current position of the foot in the air. When we re-plan not at each time instant, but more scarcely along the SS, the robot adjusts less often the position of the next step where the current step in the air will land and this might be infeasible without the additional constraints on the swing phase. Based on this observation, our future work is to include those bounds and re-evaluate the experiments when the robot re-plans less often than at each time instant along the SS phase: φ ≥ 2.

56CHAPTER 5. RE-PLANNING EFFECT ON MPC-BASED SAFE BIPED NAVIGATION IN A CROWD

Varying the dynamicity of the crowd

When the simulated robot walks in the same inattentive crowd that moves at a standard human walking speed (between 1[ms -1 ] and 1.5[ms -1 ] [Ralston 1958]), it was observed that the success rate drops dramatically when the robot re-plan at each time instant [Bohorquez 2016], and the same result is expected for all choice of re-planning. The robot does not have enough kinematic and dynamic capabilities to avoid collisions with people walking that fast. In fact, the robot's maximal walking speed, with a fixed stride length (×2 step length) and step duration, is approximately 0.6[ms -1 ].

When the simulated robot walks among people that do not move, i.e. ∀j, żj = 0, we simulate a static environment. When unexpected static people appear inside the FoV, if the robot can guarantee PS, respecting the lower bound on the radius R max (5.3), it always has a fallback motion at hand to stop in front of those people and avoid colliding with them: we achieve absolute motion safety. As a consequence the success rate would be 100% for all choices of re-planning.

It could be interesting to see how the success rate for all choices of re-planning varies for different crowd velocities in between the extreme points explained above. The focus of interest would be the case that performed worst: when the robot re-plans once per step at the start of DS phases (φ = 0). And for example finding the smallest crowd velocity the success rate decays drastically for that choice.

Varying the sampling period

In our framework, when the robot tries to plan a new walking motion at each time instant, it re-plans 8 times per step. This is due to the choice of step cycle duration and sampling period T . As a future direction, we could increase the length of the sampling period instead of re-planning less often that at each time instant. It has been shown for example that when considering only the balance of a biped robot, re-planning more often than every 0.2[s] to potential perturbations leads to no practical improvement in the maximal tracking error [Villa 2019a]. In that work the sampling period T was set to 0.2[s]. This choice would correspond to re-planning at each time instant and 4 times per step. By increasing the sampling period we could have the same effect of re-planning at each time instant.

Conclusion

Most existing walking strategies propose to re-plan the walking motion, adapting to changing environments only once at every step. Currently, our MPC scheme for biped robots re-plans the walking motion 8 times per step. We investigated if re-planning the walking motion more often than once per step: 2, 4 or 8, can lead to an improvement in motion safety capabilities when a biped robot is navigating in a crowd.

Our results show that we can favor to re-plan once per step, instead of 2, 4 or 8 times per step, since the motion safety capabilities of the robot improves only by less than 10%. There is, however, an important condition to satisfy: the robot re-plans once per step in the middle of SS phases only. We can conclude that it is possible to save computational power with our MPC for biped robots by re-planning less often the walking motion to adapt to changing environments, without deteriorating the robot's motion safety capabilities.

Chapter 6

Collision Mitigation

Introduction

Passive Safety (PS) has been criticized because while the robot makes sure to always have time to stop before a collision happens, this time might not be enough for people around to actually react and avoid the collision once the robot has stopped [Macek 2008].

We begin this Chapter by introducing the Time To React or TTR for the people (Section 6.2): the time left before the robot enters the unsafe zone (where collisions could eventually happen) when following a particular motion. Our definition of TTR is different from the one that can be found in the literature of risk indicators for autonomous vehicles [Lefèvre 2014[START_REF] Sontges | [END_REF][START_REF] Wagner | [END_REF]: the time available for the driver to act before the collision is inevitable. Based on the criticism of PS, we conveyed that people around the robot could potentially attempt to react and avoid collisions if they have enough time to do so. For this reason, we claim the following: more TTR for the surrounding environment reduces the number of collisions. For this reason, we would like the robot to leave as much TTR as possible for the people.

A variant of PS was proposed under the name of Passive Friendly Safety (PFS): the robot will be at rest before collisions happen, leaving enough time for the surrounding environment to react and avoid collisions. Both PS and PFS however limit the TTR the robot can leave for people because the robot is constrained to stop before collisions happen. We show that if the robot is not constrained to stop before collisions happen, it can further improve TTR.

For this reason, we propose a new MPC-based biped navigation scheme called Collision Mitigation (CM) that no longer guarantee PS but aims at leaving as much TTR as possible for the people (Section 6.4). We then measure if controlling the robot with CM lead to an improvement in collision avoidance when navigating in a crowd with respect to the MPCbased biped navigation scheme introduced in Chapter 4, that guarantees PS. The challenging scenario of a biped robot walking against an inattentive crowd as in Chapter 5 is used for our evaluation purposes. In this scenario, we compare the number of collisions (collision risk), collision time and relative collision velocity of both navigation strategies. These results obtained using simulated crowd scenarios are finally presented and discussed in Section 6.6.1-6.6.2.

The Time To React (TTR)

From the Ethics Commission of the German Federal Ministry of Transport and Infrastructure [Ethics Commission 2017], we cite: 58 CHAPTER 6. COLLISION MITIGATION "[...] collision avoidance systems are governed by the same principle as airbags or seat belts. Death caused an airbag inflating improperly remains a wrong, but the manufacturer will not be held liable for it if they have done everything that might be reasonably expected to minimize such risks." However, a definition of such "risk" is not provided. Because we are mainly interested in the risk of collision, we propose the following definition: Definition 6.2.1 (Collision Risk). The number of collisions.

Following the ethics recommendation, the robot must aim to achieve a zero collision risk, in other words: "no collisions ever happen". But this is impossible to guarantee [START_REF] Fraichard | [END_REF]] and for this reason the robot must constantly aim at minimizing such risk, achieving: Goal 6.2.1 (Collision Risk Minimization). The robot minimizes the collision risk.

Define A π (t) the area occupied by the robot following a motion π ∈ Π at time t, where Π is the set of all possible motions of a finite duration [1] starting from the current state of the robot. Let's introduce the Time To React or TTR for the surrounding environment as: Definition 6.2.2 (TTR). The time to react or TTR is the time left before the robot enters the unsafe zone [2] W(t) following a motion π:

TTR(π) {t * | 0 ≤ t < t * , A π (t) ∩ W(t) = ∅, A π (t * ) ∩ W(t * ) = ∅}. (6.1)
People around the robot could potentially attempt to react and avoid collisions if they have enough time to do so. For this reason, we claim the following: Assumption 6.2.1. More TTR for the surrounding environment reduces the collision risk.

Beyond the planning horizon, which is constrained by the sensors horizon (e.g. radius of the FoV as in (5.3)), anything can happen and the entire environment can be suddenly unsafe: we consider that beyond the planning horizon, everywhere is unsafe.

Define A π (i+k|i) the area occupied by the robot at time t i+k that is following the motion π computed at time t i . We can calculate the TTR at each computation time when the robot is not inside the unsafe zone:

TTR i (π) {t i+k * | ∀k ∈ [0, • • • , k * -1], A π (i+k|i) ∩ W (i+k|i) = ∅, A π (i+k * |i) ∩ W (i+k * |i) = ∅} (6.2)
As explained in Section 4.5.2, some parts of the unsafe zone can become safe later, when the uncertainty is reduced with new observations of the surrounding environment, but the TTR(π) never gets worse, as shown in the following Lemma.

Lemma 6.2.1. Suppose that the robot is outside the unsafe zone at time t i , then:

TTR i+1 (π) ≥ TTR i (π). (6.3)
Proof. Suppose that at time t i :

A π (i+k|i) ∩ W (i+k|i) = ∅. (6.4) 6.2. THE TIME TO REACT (TTR) 59 
Following the same motion π, the predicted area that the robot will occupy at time t i+k does not change:

A π (i+k|i+1) ≡ A π (i+k|i) . (6.5)
As explained in Section 4.5.2, thanks to the conservativeness in time of our model for the unsafe zone, the unsafe zone predicted at time t i+1 always fits inside the one predicted at time t i : W (i+k|i+1) ⊆ W (i+k|i) . (6.6) Therefore, at the (i + 1) th computation time we have

A π (i+k|i+1) ∩ W (i+k|i+1) = A π (i+k|i) ∩ W (i+k|i+1) ⊆ A π (i+k|i) ∩ W (i+k|i) = ∅. (6.7) As a consequence TTR i+1 (π) ≥ TTR i (π).
The Lemma 6.2.1 considers the situation when the robot does not recompute a new motion at time t i+1 . If the robot keeps following the motion π, TTR i+1 (π) cannot get worse, but searching for a new motion π n at time t i+1 , it might actually improve: TTR i+1 (π n ) ≥ TTR i+1 (π), especially since the unsafe zone could be reduced with new observations of the surrounding environment.

The impossibility to achieve zero collision risk led to settle with a safety guarantee called PS: the robot is at rest when a collision happens. It guarantees that the robot is always able to stop before a collision occurs: if a collision is inevitable, at least the robot will be at rest when that happens. No collision would happen, so the collision risk would be minimal (zero), if everybody behaved that way: in this sense, the robot will have done its share. PS is achieved by imposing the robot to stop before entering the unsafe zone and staying at rest for the entire duration inside it: ∀t ≥ TTR(π), A π (t) ≡ A π (TTR(π)).

(6.8)

And the set of motions that the robot must follow to guarantee PS before entering the unsafe zone is:

Π PS {π ∈ Π | ∃t * ≤ TTR(π), ∀t ≥ t * , A π (t) ≡ A π (t * ))}. (6.9)
This is of course a subset of the set of all motions:

Π PS ⊂ Π. (6.10)

PS has been criticized because while the robot makes sure to always have time to stop before a collision happens, this time might not be enough for people around to actually react and avoid the collision once the robot has stopped [Macek 2008]. Let's now borrow a basketball example that explain the relationship between PS and TTR.

Consider a robot as a defender in basketball. One of the main objectives of a defender in basketball is to use his or her body to impede the ball-carrier's advance toward the basket. The defender's only absolute way to achieve this is to stand directly and as quickly as possible in the ball-carrier's path, ideally triggering a charging foul in case a collision occurs while the defender is still [3] . This corresponds to minimizing TTR while maintaining PS. This is to show that PS is "indifferent" to TTR: it is possible to maintain PS while looking to maximize, or minimize TTR, or do anything else in between.

A variant of PS was proposed under the name of PFS: the robot will be at rest before a collision happens, leaving T s time for the surrounding environment to react and avoid 60 CHAPTER 6. COLLISION MITIGATION collisions. This time can be based on further assumptions about the environment, e.g. lower bound braking power and an upper bound reaction time to avoid collisions [START_REF] Mitsch | [END_REF]]. PFS is achieved by imposing the robot to remain at rest for enough time T s , before entering the unsafe zone:

∀t ≥ TTR(π) -T s , A π (t) ≡ A π (TTR(π) -T s ). (6.11)

And the set of motions that the robot must follow to guarantee PFS before entering the unsafe zone is:

Π PFS Ts {π | ∃t * ≤ TTR(π) -T s , ∀t ≥ t * , A π (t) ≡ A π (t * )}.
(6.12)

Suppose we choose T s 1 ≥ T s 2 ≥ 0, we have the following set inclusion [4] : 

Π PFS Ts 1 ⊆ Π PFS Ts 2 ⊆ Π PFS 0 = Π PS . ( 6 

Motion planning solving a lexicographic optimization problem

For a biped robot moving in a crowd, two things that should be avoided are to fall and to collide with people. Additionally, the robot should minimize the deviation from some given references. These goals or objectives might conflict: avoiding a collision might lead the robot to fall onto the ground, in that case at least one of them must be relaxed. This conflict can be approached with Goal Programming [START_REF] Escande | [END_REF]]. This technique has already been used effectively for the control of all kinds of robots, humanoid [START_REF] Sherikov | [END_REF]], industrial [START_REF] Homsi | [END_REF] and self-driving vehicles [START_REF] Blumentals | An MPC Approach to Safe Trajectory Generation for an Autonomous Bus[END_REF]]. It accounts for multiple potentially incompatible objectives in complete safety, which is essential to deal with complex situations. In our case, the objectives can be expressed as a set of linear inequalities of the form

E i x i π N i ≤ d i (6.17)
Relaxation can be done by introducing a violation w as in

E i x i π N i -w i ≤ d i (6.18)
Note that the objective is satisfied if w i = 0. We assign priority levels for different objectives, deciding which of them can be relaxed. Objectives with the same importance are defined in the same level. Once assigned the priority levels, we try to satisfy objectives by minimizing their violations accordingly, that is, as a lexicographic least squares problem [START_REF] Dimitrov | [END_REF]]. This ensures objectives with lower priority are optimized as far as they do not interfere with the optimization of objectives with higher priority.

In the lexicographic programming approach, we have a sequence of objectives to be satisfied. These objectives are competing with each other: it is impossible to satisfy them all at the same time. So we arrange these objectives according to relative importance in a hierarchy. We then try to solve them "sequentially". First, we solve the most important one. Then, among the set of solutions of the most important one, we solve the second objective in importance. And so on until the least important objective.

By defining P priority levels, each objective is described by a pair (E i , d i ), and we look to lex minimize (6.19a) (6.19b) Solving problem (6.19) means to plan a motion π N i for the robot to perform. We solved it with our in-house solver LexLS and we refer to [START_REF] Dimitrov | [END_REF]] for algorithmic details.

π N i ,{w j i } { w 1 i 2 , . . . , w P i 2 } s.t.    E 1 i . . . E P i    x i π N i -    w 1 i . . . w P i    ≤    d 1 i . . . d P i   .
6.4 A lexicographic programming approach to maximize TTR Collision avoidance could conflict with preserving balance. We consider here that preserving balance has higher priority. As a result, the first objective of the robot is to preserve balance as defined by the set of walking constraints (2.57)-(2.58) with the capturability terminal constraint (2.66). Balance is preserved as long as those constraints are not violated. As explained in Chapter 3, for several horizon lengths N we do not have any constraint violation when the robot is planning to stop and when a new step is added at the end of the horizon to continue walking.

Once balance is preserved, the robot aims at Goal 6.2.2. Suppose only 1 person is present inside the FoV. Collision avoidance constraints are assigned in temporal order to the priority levels: avoid a collision at time t i+k corresponds to satisfy the k th collision avoidance constraint as (6.20) where d k+1 (i+k|i) corresponds to the approximated euclidean distance between the person and the robot (left hand side of (4.27)), which is assigned to the (k + 1) priority level, k ∈ {1, • • • , N }. If the minimal violation of the level (k + 1) is (w k+1 i ) * = 0 (6.21) the robot avoids entering the unsafe zone when executing the k th action of π N i . The temporal order of these constraints in the priority levels ensures to leave as much TTR as possible for the surrounding people (Goal 6.2.2).

d k+1 (i+k|i) ≥ σ k+1 (i+k|i) .
If the robot cannot avoid entering the unsafe zone at time t i+k , we have

d k+1 (i+k|i) < σ k+1 (i+k|i) . (6.22)
The violation w k+1 i accounts for the penetration into the unsafe zone:

d k+1 (i+k|i) + w k+1 i = σ k+1 (i+k|i) .
(6.23) Among all possible options, π N i minimizes such violation in a least-squares manner (6.19a). Let's call δ the displacement between two consecutive minimized violations w as We call this scheme Collision Mitigation (CM) and it is represented by Hierarchy 1.

Hierarchy 

Simulation parameters and settings

The parameters

• of the crowd are in Table 5.1a.

• of the robot are in Table 5.1b, and the FoV of the robot is 4[m].

• of the MPC are in Table 5.1c but we limit the experiments to M = 1 (φ = 0).

We use the crowd settings as explained in Section 5.3.1.

Mitigating the risk of collision in the crowd scenario

The effect of mitigating the risk of collision (Goal 6.2.1) for a biped robot traversing a moving crowd is evaluated numerically. The collision risk (Definition 6.2.1) counts the number of collision events (or failure): when we stop the simulation because people collide with the robot in 20s or less. The initial positions of the people are randomly chosen in front of the robot outside the FoV. For each uncertainty ( zj , zj ), we simulate 100 crowds of Z people.

Collision risk

We compare in the crowd scenario a robot controlled with the MPC scheme used in Chapter 5, that we call hereby just PS, and the same robot controlled with the MPC scheme called CM (Hierarchy 1). We compute the cumulative collision risk along the simulation time, showed in Figure 6.2. The cumulative (frequency) plot shows the percentage [%] out of 3600 crowd scenarios [5] , varying all the possible combination of uncertainty ( zj , zj ) 64 CHAPTER 6. COLLISION MITIGATION for a choice of crowd size Z, of collision risk that are less than or equal to particular time.

In our simulations, people are inattentive thus they will never react to avoid collisions. It is however possible to compute the time when collisions happen. Increasing the TTR means that collisions would happen later in time. In Figure 6.2, for any collision risks, the robot controlled with CM collides always later than the one controlled with PS.

The figure shows that CM outperforms PS in terms of collision risk: CM better fulfills Goal 6.2.1. Due to the cumulative sum, we have many collision events in the top right of the plot whereas few events in the bottom left. Statistics in the bottom left are considered less reliable because they are based on few events only (around 20 events only, ≈ 0.5[%]).

As long as the robot can avoid entering the unsafe zone for the entire plan duration (N T ), the walking motion of the robot with PS is equivalent to the one of CM: the motion satisfies the same set of constraints (including the capturability terminal constraint) and it is optimized with the same cost function. The same robot controlled either with PS or CM follows the same path. If at any time, we have a motion that guarantees PS (of whatever length), next time we can plan either PS or CM and both will have an opportunity to improve TTR (as explained in Lemma 6.2.1). But, when the robot cannot avoid the unsafe zone for the entire plan duration, CM plans a less constrained motion before entering the unsafe zone [6] , and it is always at least as good, if not better than PS with respect to Goal 6.2.2.

When the robot is inside the unsafe zone, the one controlled with PS stays at rest waiting for a new safe motion to continue walking. The one controlled with CM is not imposed to remain at rest, but instead is trying to minimize the penetration (6.23) and can keep walking. We observe that searching a motion to minimize the penetration over time inside the unsafe zone helps in postponing collisions later in time and reducing collision risk. 

Collision velocity

We compare PS and CM in terms of impact. The kinetic energy transferred to a person can be used as a metric for injury of people [Shea ]. In our case, we consider the relative collision velocity between a robot and person that is proportional to the kinetic energy transferred to the person. This velocity is calculated as the difference between the robot and person velocity components in the direction of the point of collision. We compute the cumulative collision risk along the magnitude of relative collision velocity, showed in Figure 6.4. The cumulative (frequency) plot shows the percentage [%] out of 3600 crowd scenarios, varying all the possible combination of uncertainty ( zj , zj ) for a choice of crowd size Z, of collision risk that are less than or equal to particular relative collision velocity.

PS guarantees that the robot is at rest when collisions happen (i.e. zero robot's kinetic energy during impacts). This implies that the robot does not add (or remove) kinetic energy to impacts. The robot cannot actively collide with people. The blue curve confirms this theory: the relative collision velocity with PS is always lower or equal than the maximum velocity of people. We can however observe that for ≈ 0.5% of collision risk (top left of blue curve) the robot added a small amount of kinetic energy to the collision. Our hypothesis is that the capturability constraint (2.66) to stop the robot does not imply immediately 0 speed of the robot, but converging to 0. So for those cases, the robot was stopping while balancing with a single foot on the ground. One simulation that represents this situation is showed in Figure 6.3. In the case of CM up to 11% of collision risk the robot did not add (or remove) kinetic energy with people (as for PS) but it is not the case for the remaining 5%. CM is worse than PS in this respect since there are a significant amount of collision events where the robot actively collided with people. The goal of CM is to postpone collisions as much as possible. We described in Section 6.4 CHAPTER 6. COLLISION MITIGATION that there is a relationship between this goal and the minimization of the average velocity of the robot in the direction of the estimated position of the person inside the unsafe zone. This velocity is the closest component to the collision velocity of the robot, and it was expected that this minimization would help the robot to not actively collide with people and even reduce further the relative collision velocity. This minimization however did not have the effect expected. Our hypothesis is that the robot controlled with CM prefers to postpone collisions with stronger impact later in time. 

Conclusions

PS has been criticized because while the robot makes sure to always have time to stop before a collision happens, this time might not be enough for people around to actually react and avoid the collision once the robot has stopped [Macek 2008]. We introduced a variable called Time To React or TTR: the time left before the robot enters the unsafe zone (where collisions could eventually happen) when following a particular motion.

TTR improves in time thanks to the conservativeness in time of our model for the unsafe zone: some part of the zone can become safe later, when the uncertainty is reduced with new observations of the surrounding environment. We showed how the set of all possible motions that achieve PS is a subset of the set of all possible motions of a finite duration starting from the current state of the robot. The robot can then achieve a better TTR if it is not imposed to be at rest before entering the unsafe zone. For this reason, we propose a new MPC-based navigation scheme called CM that no longer guarantee PS but aims at leaving as much TTR as possible for the people. We investigated if controlling the robot with CM leads to an improvement in collision avoidance when navigating in a crowd with respect to the MPC-based biped navigation scheme introduced in Chapter 4, that guarantees PS. Our results show that CM outperforms the control scheme that guarantees PS in terms of collisions: collisions happen less often and later in time (people are left with more time to react and avoid collisions). But PS guarantees that the robot does not actively collide with people. With CM instead the robot actively collides with people for a significant amount of collisions. CM is worse than PS in terms of impact.

Chapter 7

Prioritizing People and Jostling

Introduction

In this Chapter, we start by proposing a variant of the crowd scenario: we equally divide the members of the crowd in robots and people. In this variant of the crowd scenario, we propose a new MPC-based biped navigation scheme that first aims at leaving as much TTR as possible for the people and then, if possible, for the other robots (Section 7.2). When the biped robot distinguishes between robots and people, we measure if controlling the robot with this new scheme leads to an improvement in collision avoidance with respect to CM.

Next, we propose another situation for the robot in the crowd scenario (populated with only people). We suppose the robot must reach a target location at the utmost important, and this time people might obstruct the motion of the robot. We propose another MPC-based biped navigation scheme for this situation that enables the robot to jostle people of the crowd if necessary to reach the target location (Section 7.3). We measure if controlling the robot with this new scheme leads to an improvement in collision avoidance when navigating in a crowd with respect to a robot that does not enable jostling but only aims to reach the target location as soon as possible.

The challenging scenario of a biped robot walking against an inattentive crowd is used for our evaluation purposes. In this scenario, we compare the number of collisions (collision risk) and collision time of both navigation strategies. These results obtained using simulated crowd scenarios are finally presented and discussed in Sections 7.5.1-7.5.2.

PRIORITIZING PEOPLE IN A MIXED CROWD

69

Prioritizing people in a mixed crowd

Suppose the crowd is equally divided in robots and people, and our biped robot (that is traversing the crowd) can distinguish between them in its FoV. We want the robot to aim at Goal 6.2.2 first with respect to people and then, if possible, with respect to other robots. To do so, we first mitigate collision with respect to people, and then with the other robots. This is represented by the Hierarchy 2.

Jostling

There are situations where the robot must reach a location at the utmost importance, e.g. for a fire fighter robot [COL 2017], but people in a crowd can obstruct the motion of the robot. We can deal with these situations with Hierarchy 3. 

Simulation parameters and settings

The parameters

• of the crowd are in Table 5.1a.

• of the robot are in Table 5.1b, and the FoV of the robot is 4[m].

• of the MPC are in Table 5.1c but we limit the experiments to M = 1 (φ = 0).

We use the crowd settings as explained in Section 5.3.1. 7.5 The effect of prioritizing people and jostling on the crowd scenario

The effect of prioritizing people and jostling for a biped robot traversing a moving crowd is evaluated numerically. To evaluate the prioritization of people, we use a variant of the crowd scenario: the crowd is equally divided in robots and people both inattentive to the presence of our biped robot, as seen in Fig. 7.1a. To evaluate jostling we consider the situation where the robot must reach a target location inside the moving crowd as represented in Fig. 7.1b, and the crowd composed by people only. The collision risk (Definition 6.2.1) counts the number of collision events (or failure): when we stop the simulation because people or other robots collide with our biped robot in 20s or less. The initial positions of all members of a crowd is randomly chosen in front of our biped robot outside the FoV. For each uncertainty ( zj , zj ), we simulate 100 crowds of Z people and robots.

Results for prioritizing people

We compare in the crowd scenario a robot controlled with CM and the same robot controlled with Hierarchy 2 in the variant of the inattentive crowd scenario represented in Fig. 7.1a. We compute the cumulative collision risk along the simulation time, showed in Figure 7.2. The cumulative (frequency) plot shows the percentage [%] out of 3600 crowd scenarios, varying all the possible combination of uncertainty ( zj , zj ) for a choice of crowd size Z, 13.9

of collision risk that are less than or equal to particular time.

When the robot mitigates the risk of collision with other robots and people equally, the collision risk of other robots and people is similar. When the biped robot distinguishes between robots and people, the biped robot collides always later with people and reduces its collision risk with them (by ≈ 5%). For the other robots instead, collisions happen earlier and more often (collision risk is increased by ≈ 4%). The overall collision risk in this variant of inattentive crowd scenario was actually reduced with the choice of prioritizing people (from 16.3% to 15.7%). When it is possible to distinguish between robots and people, the robot fulfills better Goal 6.2.1 with respect to people if it first mitigates collision with them and then if possible with other robots. Hierarchy 2 is better than CM in this regard. We compare a robot controlled with Hierarchy 3 and the same robot controlled with Hierarchy 4. The robot controlled with the latter hierarchy aims only to reach the target location as fast as possible without trying to avoid collisions with the surrounding people, we therefore call it careless robot. We compute the cumulative collision risk along the simulation time, showed in Figure 7.3-7.4. The cumulative (frequency) plot shows the percentage [%] out of 900 crowd scenarios for a crowd size Z, varying all the possible combination of uncertainty ( zj , zj ), of collision risk that are less than or equal to particular time. 88.9

Results for jostling

In all cases, whereas walking (without falling) to reach a target location is at utmost importance, we observed that by introducing jostling for the robot, the collision risk decreases and collisions are postponed later in time. In this scenario whatever crowd density, collisions could not been postponed later than ≈ 15s. The jostling robot is always at least as good, if not better than the careless robot with respect to Goal 6.2.1. This is of course related to the fact that mitigating collision risk has a lower priority than reaching a location in the case of jostling robot, or it is not asked at all to the careless robot. 88.9

Obviously, collision risk increases when we increase the density of the crowd Z, that the robot needs to traverse. Introducing jostling when the robot needs to traverse a crowd of few people Z = 8, the collision risk decreased significantly by 5%, and 3% for Z = 16. When the density of the crowd increases both strategies basically collide in all the simulations (100% collision risk) but yet the jostling robot postpones collisions later than the careless robot. If we increase further the density of the crowd Z, both jostling and careless robot might equally perform in all crowd scenarios because the robot might not have enough space to jostle among people.

Conclusions

In this Chapter, we introduced a variant of the crowd scenario: we equally divide the members of the crowd in robots and people. In this variant of the crowd scenario, we proposed a new MPC-based biped navigation scheme that first aims at leaving as much TTR as possible for the people and then, if possible, for the other robots. When the biped robot distinguishes between robots and people, we investigated if controlling the robot with this new scheme leads to an improvement in collision avoidance when navigating in a crowd with respect to CM. Our results show that with CM the robot collides with other robots and people equally. On the other hand, when we control the robot with the new scheme the biped robot collides always later with people and reduces its collision risk with them. For the other robots instead, collisions happen earlier and more often. The new scheme takes priorities into account and that the simulation results reflect these priorities. The new scheme outperforms CM in terms of collisions.

We also introduced another situation for the robot in the crowd scenario (that is no longer populated by other robots but only people). We suppose the robot must reach a target location at the utmost important, and in this case people of the crowd can obstruct the motion of the robot. We proposed another MPC-based biped navigation scheme for this situation that enable the robot to jostle people of the crowd if necessary to reach the target location. We investigated if controlling the robot with this new scheme leads to an improvement in collision avoidance when navigating in a crowd with respect to a robot that does not enable jostling but only aims to reach the target location as soon as possible. Our results show that the robot collides less and collisions are postponed in time when we enable jostling. Obviously, when we increase the density of the crowd that the robot needs to traverse, the robot that enables jostling starts to collide more often but yet less and later than the robot that only aims to reach the target location as soon as possible. If we increase further the density of the crowd, both robots might equally perform in terms of collisions. This is because the robot might not have enough space to jostle among people.

Chapter 8

Conclusions

Summary

This thesis contributes to the problem of balance preservation for biped locomotion and motion safety capability (the capability to avoid collisions ) in a crowd.

In Chapter 2, we started the dissertation by presenting a linear dynamical model that relates the CoM of the robot to the contact forces applied on the ground. We model changes of the foot positions on the ground in order to facilitate their automatic adjustment. With those models, we build a set of constraints that the robot needs to satisfy to comply with the whole-body kinematic and dynamical structure. We additionally imposed a capturability constraint that guarantees the robot is able to stop in a few steps without falling and this is enough to guarantee that it is able to simply avoid falling. Models and constraints were employed in a single MPC scheme: an iterative control process which computes explicitly the actions of the robot and their consequences over a limited time horizon.

When the robot is not really planning to stop but actually consider making a new step at the end of the horizon to continue walking, the guarantee to avoid falling is lost. We investigated this issue in Chapter 3. In the same chapter we provided a numerical evidence that, despite the sudden plan change, the guarantee to avoid falling is not lost. But the guarantee depends on the length of the time horizon.

In Chapter 4 we addressed the problem of motion safety capability in a crowd. Pedestrian's future behavior is crucial for this capability. We chose to consider all the possible pedestrian's future trajectories, using a conservative model of the future. Thanks to this model we can guarantee Passive Safety (PS): the robot is able to stop before a collision occurs. If a collision is inevitable, at least the robot will be at rest when that happens. No collision would happen if everybody behaved that way, so in a sense the robot will have done its share. Capturability was used to successfully control the movement of a humanoid robot in a crowd and to guarantee both fall avoidance and PS in a single MPC scheme.

Most existing walking strategies propose to re-plan the walking motion, adapting to changing environments only once at every step. In contrast, the MPC scheme outlined above replans the walking motion not only at each step initiation but also in between (8 times per step). In Chapter 5, we show that we can favor to re-plan the walking motion to adapt to changing environments once per step, instead of 2, 4 or 8 times per step. We thus save computational power without deteriorating the robot's motion safety capability. But re-planning should only happen just before initiating the next step, or during the time that the robot has only one step in contact with the ground.

PS has been criticized because while the robot makes sure to always have time to stop before a collision happens, this time might not be enough for people around to actually react and avoid the collision once the robot has stopped. Based on the criticism of PS, we conveyed 76 CHAPTER 8. CONCLUSIONS that people around the robot could potentially attempt to react and avoid collisions if they have enough time to do so. For this reason, we claimed the following: more time to react for the surrounding environment reduces the number of collisions. In Chapter 6, we proposed to control the movement of a humanoid robot in a crowd that guarantee fall avoidance while aiming to leave as much time to react as possible for the people (instead of guarantee PS) in a single MPC scheme, that we call Collision Mitigation (CM). When controlling the movement of a humanoid robot in a crowd, we can favor CM instead of PS to reduce the number of collisions and postpones these collisions later in time.

We considered the case where a humanoid robot moves in a crowd and the members of this crowd are equally divided in robots and people. In Chapter 7 we proposed a new MPC scheme guarantees fall avoidance and while aiming to leave as much time to react as possible for the people and then, if possible, for the other robots. When this revised version of CM takes priorities into account, e.g. prioritizing people, the simulation results reflect these priorities. The biped robot collides always later with people and reduces the number of collisions with them. For the other robots instead, collisions happen earlier and more often. We then considered another situation for the robot moving in a crowd (populated with only people). We suppose the robot must reach a target location at the utmost important, and this time people might obstruct the motion of the robot. In this situation we proposed another new MPC scheme guarantees fall avoidance while enabling the robot to jostle people of the crowd if necessary to reach the target location. We compare this scheme in the situation outlined above with a robot that does not enable jostling but only aims to reach the target location as soon as possible. Our results show that the robot collides less and collisions are postponed in time when we enable jostling. However, If we increase the density of the crowd, both robots converges to equally perform in terms of collisions. This is because the robot might not have enough space to jostle among people.

Future Work

We discussed few research directions Section 3.7 and 5.5. We conclude by proposing an additional research direction for strong recursive feasibility in MPC of biped walking.

The notion of SRF (Definition 2.4.1) demands that for any feasible state-control pair, a feasible state is reached. In the literature of MPC, we can find a "stronger" notion called Strong Forward Invariance (SFI) [Grüne 2012, Section 5]: for any feasible state-motion pair, a feasible state is reached. In between, we can introduce M -actions Strong Recursive Feasibility, or M -SRF in short (where M is the planning period introduced in Chapter 5). Definition 8.2.1 (M -actions Strong Recursive Feasibility). An MPC scheme is M -actions strongly recursive feasible if and only if

∀i, ∀(x i , {κ 1 , • • • , κ M }) ∈ K M |N i , x i+M = A M x i + M j=1
A M -j Bκ j ∈ X N i+M .

(8.1)

This definition introduces another projection of the feasible set of solution F N i : (8.2) the set of state and M -actions pairs of a feasible motion. Definition 8.2.1 corresponds to the standard SRF when M =1, and corresponds to SFI when M =N . The following lemma shows SFI implies SRF, and in general: when the MPC is SFI, then it is also (N -1, • • • , 1)-SRF.

K M |N i {(x i , {κ 1 , • • • , κ M }) | ∃ π N i , (x i , π N i ) ∈ F N i , κ j = u (i+j-1|i) , j ∈ [1, M ]},

FUTURE WORK

77

Lemma 8.2.1 (M -SRF implies (M -1)-SRF). if an MPC scheme is M -actions strongly recursive feasible then it is also (M -1)-actions strongly recursive feasible, where M ∈ {2, 3, • • • , N }.

Proof. From any pair (x i , {κ 1 ,

• • • , κ M }) ∈ K M |N i
execute the first M -1 actions, and reach a state x i+M -1 . This state is feasible (x i+M -1 ∈ X N i+M -1 ) and the MPC scheme is (M -1)-SRF since there exists at least one feasible π N i+M -1 associated with it. For example (8.3) in which π N i+M exists since the MPC scheme is M -SRF.

π N i+M -1 = {u (i+M |i) ∈π N i , u (i|i+M ) , u (i+1|i+M ) , • • • , u (i+N -2|i+M ) ∈π N i+M },
It is then preferable SFI property over SRF for the MPC of biped walking. When the robot is planning to stop SFI is guaranteed by construction, but the guarantee is lost when the robot actually consider to make a new step at the end of the horizon. This is the exact same issue as explained in Chapter 3 and it could be investigated numerically with our proposed method. As a consequence, SFI would probably depend on the length of the planning horizon. 

e G T =    1 T + ω 2 T 3 3! + • • • T 2 2 + ω 2 T 4 4! + • • • 0 1 + ω 2 T 2 2 + ω 4 T 4 4! + • • • T + ω 2 T 3 3! + • • • 0 ω 2 T + ω 4 T 3 3! + • • • 1 + ω 2 T 2 2 + ω 4 T 4 4! + • • •    (A.8)
Let's analyses the second element in the first row: (1,2), of (A.8). We have

T + ω 2 T 3 3! + • • • = 1 ω ωT + ω 3 T 3 3! + • • • . (A.9)
Based on the definition of the exponential expansion (A.3), we have

T + ω 2 T 3 3! + • • • = 1 ω e T ω -e -T ω 2 = 1 ω sinh (T ω).
(A.10)

Consider now (1,3) of (A.8). We have The CoM dynamics (2.16) has been originally proposed as a triple integrator by [START_REF] Kajita | [END_REF] where CoM jerk, ... c , is the control input. This was later employed and extended in [START_REF] Diedam | [END_REF][START_REF] Herdt | [END_REF], Agravante 2016] and many other works. The triple integrator implies a smooth variation of CoM acceleration. This results in a smooth change of CoP position (2.16), which helps the realization of robot locomotion. This model however leads to some subtle difficulties in terms of realization of robot locomotion.

T 2 2 + ω 2 T 4 4! + • • • = 1 ω 2 T 2 2 + ω 2 T 4 4! + • • • = 1 ω 2 1 + T 2 2 + ω 2 T 4 4! + • • • -1 .
The analysis of this section is valid for both {x, y} coordinates, but for sake of simplicity we consider only one. The triple integrator model controlled by the CoM jerk in discrete time has the following linear form: where Similarly, this dependence is quadratic in the case of a second order model controlled by the CoM acceleration [START_REF] Bohórquez | [END_REF]]. The constant jerk ... c i applied during T could lead to an overshoot of the CoP that violates the limit of the support area. Therefore, satisfaction of the CoP constraints at time 0 and T , as is usually enforced by MPC schemes, does not guarantee their satisfaction at t ∈ (0, T ). This problem, however, is typically not critical, since the support areas are intentionally shrunk due to the addition of safety margins [START_REF] Wieber | [END_REF]]. The size of these margins can be estimated by computing maxima of the polynomial equation (A.29).

A t =   1 t
The systems controlled by the CoP position or its velocity are not subject to this problem. Take the system controlled with CoP velocity (2.23) and use the procedure as (A.27), where (a) DS kinematic constraints ensure the maximum length of the legs is respected during the DS. (c) Without the DS kinematic constraints, we limit the distance between footprints that ensures the maximum length of the legs is respected during the DS, but they might overconstrain the kinematic capabilities of the biped robot. The figure shows only the limit for the first two footprints. 

A t =   1 sinh(t ω)/ω cosh(t ω)/ω 2 -

Figure 1 . 1 :

 11 Figure 1.1: Research and test of humanoid robots.(a) Number of publication per year under the search of "Humanoid Robotics" for Conference/Journals/Books in [IE 2020] (dated 12/03/2020).

Figure 2 . 1 :

 21 Figure 2.1: The figure (taken from [HRP 2020]) shows HRP-2 humanoid robot (stature: 1.54m with n = 30) [Kaneko 2004].

Figure 2 . 2 :

 22 Figure 2.2: The figure (taken from [Kajita 2014, pag.106]) shows the CoM at a constant height c z above the ground, and the CoP p inside the contact surface.

Figure 2 . 3 :

 23 Figure 2.3:The figure is a top view of footprints (with rectangular shapes) onto the ground of a robot walking to the right (or to the left). We note the step and stride lengths.

Figure 2 . 4 :

 24 Figure 2.4: The figure shows how we sample DS phases and the sampled gait and step cycles.

  In the figure (taken and adjusted from[START_REF] Pratt | [END_REF]) is shown when DS and SS phases happens, and the duration of a gait and step cycle. The sampling period T is the duration of the DS phases.

Figure 2 . 5 :

 25 Figure2.5: Representation of the walking cycle model (2.33) when starting from the end of the horizon N is assumed to be time-invariant, which implies, in particular, that the number and positions of the contacts do not change.

Figure 3 . 1 :

 31 Figure 3.1: The figures represent when the robot is walking and is planning to stop (Figure 3.1a-3.1b), and when the robot considers actually making a new step (Figure 3.1c).

  When the planning horizon advances, thanks to the fixed terminal constraint set T, the MPC scheme remains feasible. When the robot considers making a new step, with such a sudden change, recursive feasibility is not guaranteed anymore.

Figure 3 . 2 :

 32 Figure 3.2: Representations of the closed convex polytopes F N i (T) and K 1|N i (T), and SRF definition with time-varying constraints. (a) The polytope F N i (T), defined in (2.59), and its projection K 1|N i (T) defined in (2.60). (b) SRF, Definition 2.4.1 with time-varying constraints.

Figure 3 . 3 :

 33 Figure 3.3: Representation of the 3 possible walking moments at time t k and t k+1 .

  (a) At time t k the robot starts the DS phase, and t k+1 the robot ends the DS phase. At time t k the robot is in SS phase, and at time t k+1 the robot starts the DS phase. For both time t k and t k+1 , the robot is in SS phase.

Figure 4 . 1 :

 41 Figure 4.1: Representation of a biped robot (HRP-2) in a dense crowd.

Figure 4 . 2 :

 42 Figure 4.2: Modeling the future in 1D space. Deterministic model (gray lines): future motion is known and available beforehand. Conservative model (represented by the gray area):we consider all the possible future motions. Probabilistic model (represented by a gray gradient): bound a probability distribution on pedestrian future occupancy.

Figure 4 . 3 :

 43 Figure 4.3: Physical 2D modeling of the biped robot (and its perception) and the person.(a) The figure shows the areas occupied by the biped robot and a person: these areas are circles.The position c is the center of the robot circle with ray D robot . And z j position is the center of the person circle with ray D person . We consider "no contact" between these two areas as long as czj ≥ D robot + D person . Finally, the FoV of the robot is a circle centered in c with R max as ray: the maximal distance around the robot at which it is capable of perceiving people.

  The figure shows the uncertainties in position and velocity estimations of a person (ẑ j , ẑj) with respect to the real position z j and velocity żj .

Figure 4 . 4 :

 44 Figure 4.4: Representation of the unsafe zone and its conservativeness in time.

Figure 4 . 5 :

 45 Figure 4.5: Passive Safety has already been developed and used with several robotics platforms.(a) humanoid robots[START_REF] Morisawa | [END_REF]].(b) self-driving cars[Macek 2008].

  (d) It corresponds to the emergency stop procedures required for industrial and personal care robots [ISO 2014].

50CHAPTER 5 .

 5 RE-PLANNING EFFECT ON MPC-BASED SAFE BIPED NAVIGATION IN A CROWD

Figure 5 . 1 :

 51 Figure 5.1: How often and when to re-plan the walking motion.

  Figure 5.2: The inattentive crowd scenario. (a) Time t 0 in a crowd of size Z = 16: robot in black, people in blue (collisions among people are disregarded), the FoV is the dashed circle and the instantaneous velocity of each person is represented by the red vector. The robot is asked to walk to the right with ċx r = 0.5[m/s].

54CHAPTER 5 .

 5 Figure 5.3: Results of re-planning effect on success rate.

  (δ k i ) * = (w k+1 i ) * -(w k i ) * . (6.24) 6.5. SIMULATION PARAMETERS AND SETTINGS 63 Dividing this quantity by the time interval duration T , we have the average velocity along that component of the average velocity of the robot in the direction of the estimated position of the person inside the unsafe zone. At the lowest priority (N + 2), we minimize the deviation w N +1 i 2 from the references (4.35): CoP as close as possible to the center of the foot and follow a desired walking speed.

Figure 6 . 2 :

 62 Figure 6.2: The figure shows the cumulative plot of the collision risk in percentage along the time of all simulations for PS and CM.

Figure 6 . 3 :

 63 Figure 6.3: The figure shows a simulation for PS where the speed of the robot is not 0 at collision time, but it is converging to 0.

Figure 6 . 4 :

 64 Figure 6.4: The figure shows the cumulative plot of the collision risk in percentage along the relative collision velocity of all simulations for PS and CM.

Figure 7 . 1 :

 71 Figure 7.1: Two variants of the inattentive crowd scenario, with people prioritization (left), and jostling (right).

( a )

 a Time t 0 in a crowd of size Z = 16. The crowd is equally divided in robots (gray circles) and people (blue circles), and our biped robot, in black, can distinguish if someone entering the FoV is a robot or a person. The robot is asked to walk to the right with ċx r = 0.5[m/s]. Time t 0 in a crowd of size Z = 16. The robot must reach a target location (vertical dashed black line) but people in a crowd can obstruct the motion of the robot.

Figure 7 . 2 :

 72 Figure 7.2: The figure shows the cumulative plot of collision risk in percentage along the time of all simulations for original CM (Hierarchy 1), transparent lines, and Hierarchy 2, in solid lines.

  Capturable walking motion (2.57)-(2.58)-(2.66) 2: Minimize reference deviation: reach the target location (7.1)

Figure 7 . 3 :

 73 Figure 7.3: The figure shows the cumulative plot of collision risk in percentage along the time of allsimulations of small crowd sizes for a robot that does not care about avoiding colliding with people (Hierarchy 4) and a robot that enables jostling (Hierarchy 3).

  Figure 7.4: The figure shows the cumulative plot of collision risk in percentage along the time of allsimulations of big crowd sizes for a robot that does not care about avoiding colliding with people (Hierarchy 4) and a robot that enables jostling (Hierarchy 3).

  simply integrate the matrix e G T componentwise. zero apart from the third component, we can focus only on the last column of the matrix. We have ) = sinh(T ω)/ω.(A.21) of Pressure position during the time interval

  constraints on p i and p i+1 in the models controlled by the CoM acceleration or jerk does not guarantee their satisfaction during the i-th sampling interval. Let [c i , ċi , ci ] be an initial state, ... c i -the constant jerk applied during T , [c t , ċt , ct ] -the state of the system at some t ∈ [0, T ]. Position of the CoP during the sampling interval can be found as p

Figure A. 1 :

 1 Figure A.1: The figures represent the top view of the same biped robot walking for few footsteps. When we impose the DS kinematic constraints (A.41) along the walking motion of the robot (Figure A.1a), when we remove those constraints (Figure A.1b-A.1c) but we limit the distance between footprints (Figure A.1c).

  Without the DS kinematic constraints, the maximum length of the legs is not respected during the DS.

  Perfect Tracking and State Estimation: no uncertainties

	Model Predictive Control	
	References	Model Predictive Controller	Stabiliser	Whole Body Controller	Low Level Controller	Actuators	Sensors
					Estimation		

Table 3 .

 3 1: Robot parameters.

	Parameter	Symbol	Value	Unit
	Height of CoM (2.17)	c z	0.8	m
	Min. Feet Separation (2.42)	f s	0.07	m
	Feet Dimensions (2.40)	(l, w)	(0.24, 0.14)	(m,m)
	Step Length (2.44)	(L, W )	(0.24, 0.30)	m

Table 3 .

 3 2: MPC scheme parameters.

	Parameter	Symbol	Value	Unit
	Planning Period	N	{8, 9, • • • , 17, 18}	-
	Sampling Period	T	0.1	s
	Step Cycle	s d	0.8	s/step
	Planned Steps Ahead	-	(N T /s d )	step

Table 3 .

 3 3: Numerical results from randomly selected vertices of SRF in MPC of biped walking.

Table 3 . 4 :

 34 Preliminary results with MPT-3 of SRF and comparison with our numerical approach.

Table 5 . 1 :

 51 Simulation parameters.

		(a) Crowd Parameters.	
	Parameter		Symbol	Value	Unit
	Crowd Size		Z	{8, 16, 24, 32}	ppl
	Number of randomly generated crowds (for size Z)	-	100	-
	Velocity of the j-th person	żx ży	0.5 [-0.2, 0.2]	m/s m/s
	Body radius (4.11)-(4.13)	D person D robot	0.5 0.5	m m
	min. separation distance (4.16)	σ 0	1	m
		(b) Robot Parameters.	
	Parameter	Symbol		Value	Unit
	Height of CoM (2.17)	c z		0.8	m
	Min. Feet Separation (2.42)	f s		0.07	m
	Feet Dimensions (2.40)	(l, w)	(0.24, 0.14)	(m,m)
	Step Length (2.44)	(L, W )	(0.24, 0.30)	m
	(c) MPC, Newton method and perception parameters.
	Parameter	Symbol		Value	Unit
	Sampling Period	T		0.1	s
	Planning Period	M	{1, 2, 4, 8}	-
	Initial Planning Phase	φ	{0, • • • , M -1}	-
	Planning Horizon	N		16	-
	Adjustable Steps Ahead	m		2	step
	Step Cycle	s d		0.8	s/step
	Reference Speed (4.35)	( ċx r , ċy r )		(0.5, 0.0)	m/s
	Newton step Iterations	max Iter		5	-
	Convergence Parameter			10 -4	-
	FoV distance (4.17)	R max		4	m
	Uncertainty	zj zj	{0, 0.15, 0.30} {0, 0.05, 0.10}	m m/s
	(d) Relationship between re-planning per step frequency and planning period M .
				Value
	Re-planning per step frequency 1 2 4 8
	Planning Period M	8 4 2 1

Table 5 . 2 :

 52 Relationship between collisions and uncertainty.

	Uncertainty	Success Rate [%] for re-planning
	zj [m/s]	zj [m] 1 per step 2 per step 4 per step 8 per step
		0.00	61.72	80.38	82.25	83.00
	0.00	0.15	59.78	76.44	77.50	79.25
		0.30	61.34	74.62	76.38	77.50
		0.00	69.06	82.44	85.12	88.25
	0.05	0.15	68.72	79.88	80.00	81.00
		0.30	66.44	76.75	80.25	81.75
		0.00	75.22	83.44	84.88	85.75
	0.10	0.15	73.47	80.62	83.50	83.75
		0.30	71.31	77.50	80.50	80.50

  .13) For example, the robot that achieves PS can choose to stop (and remain at rest) from TTR(π) -T s 1 , achieving also PFS for T s 1 . In general, when in doubt about the environment and how much T s is necessary, Assumption 6.2.1 would actually relate Goal 6.2.1 to: Goal 6.2.2 (Maximization of TTR). The robot leaves as much TTR as possible for the surrounding environment. ) while a person is walking towards it. PFS imposes the robot to be at rest waiting for the surrounding people to avoid collisions. If the person does not react to avoid the coming collision, the robot waiting at rest reduces TTR. Since the robot can do more when it is not at rest, TTR is improved when it guarantees only PS. And, the TTR is further improved if the robot is not required to stop just before entering the unsafe zone, but only aiming at Goal 6.2.2. We simulate 1D scenario where a robot is walking away from a person. The robot aiming at Goal 6.2.2 (in green) without additionally guaranteeing to be at rest before entering the unsafe zone, achieved the greatest TTR since it is less constrained.

	maximize π It is possible to combine this goal with the previous safety guarantees. Based on the set TTR(π) (6.14a) relationships Π PFS Ts ⊆ Π PS ⊂ Π, (6.15) all the possible TTR that PFS can achieve are achievable by PS, and all the possible TTR that PS can achieve are achievable by any general motion. For this reason, a general motion fulfills Goal 6.2.2 as good as, or at least better than any motion that guarantees only PS. And PS fulfills Goal 6.2.2 as good as, or at least better than any motion that guarantees PFS. We have then maximize π∈Π TTR(π) ≥ maximize π∈Π PS TTR(π) ≥ maximize π∈Π PFS Ts TTR(π). (6.16a) In Figure 6.1 a robot aims at Goal 6.2.2 (in green), additionally guarantees PS (in blue) or guarantees PFS (in yellow6.3. MOTION PLANNING SOLVING A LEXICOGRAPHIC OPTIMIZATION PROBLEM61 0.2 0.4 0.6 0.8 1 0.0 0.02 0.04 0.06 0.08 0.1 Figure 6.1: 0 0.12

  The difference with Hierarchy 1-2 is that minimizing the deviation from a target location the robot should reach at the end of the horizonc ref -c (i+N |i)The effect is that the robot will jostle people of the crowd if necessary to reach the target location. It will mitigate collisions but only as far as it does not impede reaching the target location.

	2	(7.1)
	has higher priority than aiming at Goal 6.2.2. Hierarchy 2: Prioritize People	
	1: Capturable walking motion (2.57)-(2.58)-(2.66)	
	2: Minimize penetration unsafe zone (6.20) for People at t i+1	
	. . .	
	N+1: Minimize penetration unsafe zone (6.20) for People at t i+N	
	N+2: Minimize penetration unsafe zone (6.20) for Robot at t i+1	
	. . .	
	2N+1: Minimize penetration unsafe zone (6.20) for Robot at t i+N	
	2N+2: Minimize reference deviation (4.36a)	
	Hierarchy 3: Jostling	
	1: Capturable walking motion (2.57)-(2.58)-(2.66)	
	2: Minimize reference deviation: reach the target location (7.1)	
	3: Minimize penetration unsafe zone (6.20) at t i+1	
	. . .	
	N+2: Minimize penetration unsafe zone (6.20) at t i+N	

  82APPENDIX A. SUBTLETIES ON THE IMPLEMENTATION OF MPC FOR BIPED ROBOTS Hence, the CoP position at time t depends cubically on time t:

	p t =	... c i 6	t 3 +	ci 2	t 2 + ċi -	... c i	1 ω 2 t -ci	1 ω 2 + c i .	(A.29)
						t 2 /2			 t 3 /6	
					0 1	t		 , B t =	 t 2 /2	 .	(A.28)
					0 0	1				t

  During the sampling interval, the CoP position at time t depends linearly on time t:p t = p i + ṗi t, (A.31)which guarantees the CoP does not violate the support area during the sampling interval.

		1/ω 2		 t -sinh(t ω)/ω		
	0 cosh(t ω)	sinh(t ω)/ω	 , B t =		1 -cosh(t ω)	 .	(A.30)
	0 sinh(t ω)ω	cosh(t ω)			-ω sinh(t ω)		

The base frame is typical central to the body (pelvis or trunk) or in an extremity (foot or hand).

Euler's number: e.

The state x (β|α) of the evolution is described at time tα and is reached at time t β .

The control input u (β|α) of the sequence is described at time tα to be executed at time t β and kept constant for a duration T .

N is typically called prediction horizon in the Model Predictive Control literature. In general however, π and ϕ can have different horizon lengths: control and prediction horizon lengths[Kerrigan 2001].

A polytope P is represented in half-plane description as: P = {x | Ax ≤ b, Aex = be}.

When there exists at least two equally efficient ways to avoid a collision, such as overtaking a person on the right or on the left.

For example the motion duration used in this work: N T .

It is the area where there is a person inside but the robot does not know exactly where.

https://en.wikipedia.org/wiki/Personal_foul_(basketball)#Charging_and_blocking

As a side note, when the robot achieves PFS for Ts that corresponds to its maximum value, the entire motion duration, the robot remains at rest at all time.

Appendix A Subtleties on the implementation of MPC for biped robots

A.1 Introduction

In this Appendix, we focus on 3 aspects about the implementation of Model Predictive Control (MPC) for biped robots. The first aspect (Section A.3) is taken from [Sherikov 2016, Section 4.2.2.1]. We discuss about the variation of the CoP during the sampling interval. This variation depends on the discrete model that describes the CoM dynamics. The second and third aspect (Section A.4 and A.5) relate to the work in [START_REF] Herdt | [END_REF]]: the MPC with automatic footstep placement. We discuss how the step selection matrices cycle for the automatic footstep placement and how many steps are planned based on the choice of the planning horizon. Last, we show the effect of the DS kinematic constraints in our MPC scheme.

A.2 Derivation of the Discrete Time CoM Model

The analysis of this section is valid for both {x, y} coordinates, but for sake of simplicity we consider only one. We want to calculate the matrix exponential

where

We expand the exponential up to the third term as

and we have:

(A.4) and

A.4 How the step selection matrices cycle

We use the simplification introduced in Section 2.2.3. Re-call the evolution of a walking cycle for N time instants was modeled as

where si ∈ R 2N is the sequence of footsteps ahead (from time t i+1 to t i+N ), s pc i ∈ R 2 can be the next foot that will hit the ground or identical to the current step position onto the ground s c ∈ R 2 , and s f i ∈ R 2m is a sequence of m adjustable foot positions. The matrices (V pc i , V f i ) are

They vary cyclically and determine which foot is onto the ground at what time.

Let consider an example with the following parameters: N = 9, T = 0.1[s] equals to DS duration and SS duration 0.7[s], resulting in s d = 0.8[s/step]. We choose the number of adjustable steps m accordingly to ((N -1)T /s d ) , we have m = 1. Consider these three instant of time:

1. t sDS the instant when the robot starts the DS phase.

2. t SS one instant along the SS phase.

3. t eSS the instant in the SS phase and the next instant is t bDS .

These instants have the the following configuration of the step selection matrices:

1. In this case s c is considered the contact with the ground supporting the weight of the robot. At this sample, s pc is already fixed. At the next sample, we update s c with s pc .

V pc sDS = I I I I I I I I 0 (A.35)

V f sDS = 0 0 0 0 0 0 0 0 I (A.36) 2. Along the SS phase, s c = s pc and it is considered the contact with the ground supporting the weight of the robot. The number of identity matrices I in V pc SS for example indicates that the current step is planted onto the ground for another four samples.

V pc SS = I I I I 0 0 0 0 0 (A.37) .38) 3. In this case s c = s pc is considered the contact with the ground supporting the weight of the robot. This is the last instant before the cycle is repeated. The next instant is t sDS where s pc is updated with s f eSS .

V pc eSS = I 0 0 0 0 0 0 0 0 (A.39) Only at the instant t sDS , the robot is planning 2 steps ahead. The robot starts the DS phase and the current step s c is considered the contact with the ground supporting the weight of the robot, the planned step ahead are: s pc and s f sDS . For all the other samples of the step cycle, the robot plans only 1 step ahead. The step s c = s pc is considered the contact with the ground supporting the weight of the robot, and s f is the planned step ahead.

The number of planned steps ahead along horizon In this implementation, with the simplification made in Section 2.2.3, the step cycle is sampled in (s d /T ) time instants. When N = (s d /T )k + j with k ∈ N and j ∈ {1, • • • , (s d /T )}, the robot plans (N T /s d ) -1 steps ahead for (s d /T ) -j time instants along the step cycle, (N T /s d ) otherwise. along the walking motion to make sure the maximum length of the legs is respected during the DS. Where t i+q is the instant the robot starts the DS phase, and t i+q+1 is the instant the robot ends the DS phase. Figure A.1b shows that when we remove these constraints, the maximum length of the legs is not respected during the DS phases. We can decide to limit the distance between footprints. The limit acts as (A.41) (Figure A.1c) but it requires hand tuning. This tuning can overconstrain the kinematic capabilities of the biped robot, so we favor for the DS Kinematic constraints.

A.5 Kinematic constraints during the DS phase

A.5. KINEMATIC CONSTRAINTS DURING THE DS PHASE