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Abstract

This work focuses on two challenging tasks for humanoid robots: bipedal balance and collision
avoidance in a dense crowd. We solve these tasks on a limited time horizon in which we can
anticipate the consequences of robot actions.

We can guarantee that the robot is able to stop in a few steps and avoid falling. When
the robot is not planning to stop but to continue walking, we show the guarantee to avoid
falling is not lost but it depends on the length of the time horizon. It is impossible to know
beforehand what people will do next, so we cannot guarantee that no collision will ever occur.
Over a limited time horizon we can guarantee Passive Safety : the robot is able to stop before
a collision occurs. This safety guarantee is combined with fall avoidance in a Model Predictive
Control scheme. The capacity for the robot to react and avoid collisions is constrained once
a step is planted on the ground, until the next step is initiated. With the control scheme
outlined above the robot reacts not only at each step initiation but also in between. We
show that reacting only once per step (thus saving computational power) does not degrade
collision avoidance capability.

The time left for people to react and avoid collisions once the robot has stopped (to
guarantee Passive Safety) might not be enough. We propose a new control scheme called
Collision Mitigation that guarantees fall avoidance while aiming to leave as much time as
possible for the people to react. As a result, the robot collides less often and later than when
it guarantees Passive Safety. This scheme can be adapted to take different priorities into
account. For example, when the members of a crowd are divided in robots and people, the
robot should leave as much time as possible for the people to react and then, if possible, for
the other robots. Or when the robot must reach a target location at the utmost important
and people might obstruct the motion of the robot, the robot can jostle people if necessary
to reach the location.
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Résumé

Ce travail se concentre sur deux tâches difficiles pour les robots humanöıdes: l’équilibre bipède
et la prévention des collisions dans une foule dense. Nous résolvons ces tâches sur un horizon
temporel limité dans lequel nous pouvons anticiper les conséquences des actions des robots.

Nous pouvons garantir que le robot est capable de s’arrêter en quelques pas et d’éviter
de tomber. Lorsque le robot ne prévoit pas de s’arrêter mais de continuer à marcher, nous
montrons que la garantie d’éviter la chute n’est pas perdue mais qu’elle dépend de la longueur
de l’horizon temporel. Il est impossible de savoir à l’avance ce que les gens feront ensuite,
et nous ne pouvons donc pas garantir qu’aucune collision ne se produira jamais. Sur un
horizon temporel limité, nous pouvons garantir la sécurité passive : le robot est capable de
s’arrêter avant qu’une collision ne se produise. Cette garantie de sécurité est combinée avec
l’évitement de chutes dans un schéma de contrôle prédictif. La capacité du robot à réagir et
à éviter les collisions est limitée une fois qu’un pied est posé au sol, et ce jusqu’au prochain
pas. Avec le schéma de commande décrit ci-dessus, le robot réagit non seulement à chaque
pas, mais aussi entretemps. Nous montrons que le fait de ne réagir qu’une seule fois par pas
(ce qui permet d’économiser de la puissance de calcul) ne dégrade pas la capacité d’éviter les
collisions.

Le temps laissé aux personnes pour réagir et éviter les collisions une fois que le robot s’est
arrêté (pour garantir la sécurité passive) pourrait ne pas être suffisant. Nous proposons un
nouveau système de contrôle appelé Collision Mitigation qui garantit l’évitement de chutes
tout en visant à laisser aux personnes le plus de temps possible pour réagir. Ainsi, le robot
entre en collision moins souvent et plus tard que lorsqu’il garantit la sécurité passive. Ce
système peut être adapté pour prendre en compte différentes priorités. Par exemple, lorsque
les membres d’une foule sont divisés en robots et en personnes, le robot doit laisser autant
de temps que possible aux personnes pour réagir et ensuite, si possible, aux autres robots.
Ou encore, lorsque le robot doit atteindre une cible de la plus haute importance et que
des personnes pourraient entraver le mouvement du robot, ce dernier peut, si nécessaire,
bousculer les personnes pour atteindre le lieu en question.
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Chapter 1

Introduction

Figure 1.1: Research and test of humanoid robots.

(a) Number of publication per year under the
search of “Humanoid Robotics” for Con-
ference/Journals/Books in [IE 2020] (dated
12/03/2020).
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(b) Fukushima Daiichi nuclear disaster in
2011.

(c) DARPA Robotics Challenge (DRC) in
2015.

(d) The European project Comanoid in 2019.

1.1 Context and motivation

Humanoid robotics is one of the most fascinating research area in the field of robotics. Hu-
manoid robots are comparable to humans at least in their motion capabilities and, given their
versatility to perform a variety of activities (such as sensing, manipulation or locomotion),
they are expected to have a tremendous impact on social and industrial settings. These
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2 CHAPTER 1. INTRODUCTION

machines for example are meant to autonomously perform tasks in environment shared with
humans, or to eliminate human involvement in dangerous and/or repetitive tasks and allow
them to focus on high-value operations.

Humanoid robotics became a big research area since the early 2000s (Figure 1.1a). Nev-
ertheless, existing humanoid robots back in 2011 were not ready to be deployed for a disaster
response as the Fukushima (Japan) nuclear power plant accident [FUK 2011] (Figure 1.1b).
In fact, some of the damage could have been minimized if it had been possible to access the
manual valves inside the reactor building.

In order to accelerate this robotics research, the U.S. DARPA agency organized a
“Robotics Challenge” [DRC 2015] (Figure 1.1c) where some remarkable progress has been
made in terms of emergency response. And since 2014 the EU Research and Innovation
programme called “Horizon 2020” [1] invested part of its funding in projects that involve
humanoid robots in environments shared with humans such as: dense crowds [CBP 2018],
shopping mall [MuM 2016], or industrial settings [SHS 2015]. The European project
Comanoid for example demonstrated successfully the deployment of biped robots to achieve
human-robot collaboration in well-identified Airbus airliner assembly lines, which are
inaccessible to wheeled platforms [Kheddar 2019] (Figure 1.1d). With the steady decline
in prices owing to reduced sensor and actuator costs, humanoid robots are also gaining
traction across all industry verticals (it is expected the global shipments to reach 1 million
units by 2024 [GMI 2016]), and robotic companies are starting the first partnerships with
big industries. Four-legged robots for example are used to evaluate robotic inspection
and maintenance [AN2 2018, BDA 2020], but also Ford announced its plan to develop its
biped robot “Digit” in cooperation with Agility Robotics, which will be used for delivery
purposes [AR2 2019].

In this thesis, we focus only on two tasks of humanoid robots: balance (for bipedal
locomotion), and motion safety capability (the capability to avoid collisions) in environments
shared with humans.

The concept of balance for humanoid robots can be formalized with the help of the
viability theory [Wieber 2002]. The application of this theory makes it possible to formally
separate situations where a fall is inevitable and which are therefore to be avoided, from
situations where it is avoidable and which are therefore to be preferred. The same approach
was proposed to formalize collision avoidance in dynamic environments, formally separating
situations where a collision is inevitable and which are therefore to be avoided from situations
where it is avoidable and which are therefore to be preferred. Such a formalization allows
to demonstrate for example that existing approaches did not answer completely to the
security requirements of robots [Fraichard 2006]. But to transform these formal advances
into practical ones, the following aspect had to be taken into account. A robot can only
anticipate the consequences of its actions on a limited time horizon (or planning horizon), if
only because the future is uncertain.

To that end, it was proposed a Partial Motion Planning approach for collision avoid-
ance [Petti 2005] and a similar Model Predictive Control (MPC) approach for the balance
of humanoid robots [Wieber 2006a]: an iterative control process which computes explicitly
the actions of the robot and their consequences over a limited time horizon. This obviously
requires formulating objectives that can be achieved over a limited time horizon.

For the balance of humanoid robots when walking, the existing research suggests that the

1https://ec.europa.eu/programmes/horizon2020/

https://ec.europa.eu/programmes/horizon2020/
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Figure 1.2: Humanoid robots are controlled with a cascade of controllers [Dafarra 2018,
Kajita 2010]. The MPC, the controller under analysis in this work, is just one of the
many controllers that makes the robot moves. We assume that the output of MPC is
perfectly tracked by next controllers.
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length of the time horizon should cover 2 or 3 steps [Zaytsev 2015, Kajita 2003, Koolen 2012,
Carver 2009]. Following the concept of Capturability [Koolen 2012], we can guarantee that
the robot is able to stop in a few steps without falling (for whatever horizon length - covering
whatever number of steps) and this is enough to guarantee that it is able to simply avoid
falling. In MPC this is achieved by imposing a capturability condition at the end of the
horizon [Sherikov 2016]. However, when the robot is not really planning to stop but actually
consider making a new step at the end of the horizon to continue walking, the guarantee to
avoid falling is lost. The first contribution of this work is to provide a numerical evidence
that, despite the sudden plan change, the guarantee to avoid falling is not lost. But the
guarantee depends on the length of the time horizon. We observe that many time horizons
covering 2 steps lost this guarantee.

For the motion safety capability, it is impossible to guarantee absolute motion safety
which is that no collision will ever occur, if only in the presence of non-cooperative or even
hostile behaviour. What can actually be guaranteed over a limited time horizon, is Passive
Safety (PS): the robot is able to stop before a collision occurs. If a collision is inevitable, at
least the robot will be at rest when that happens. No collision would happen if everybody
behaved that way, so in a sense the robot will have done its share [Bouraine 2014]. Captura-
bility has previously been used to successfully control the movement of a humanoid robot in a
crowd and to guarantee both fall avoidance and PS in a single MPC scheme [Bohorquez 2016].

For biped robots, once a step is planted on the ground, it usually stays there at a
constant position until the next step is initiated. This naturally constrains the capacity for
the robot to react and adapt its motion in between steps. As a result, the walking strategies
in [Chestnutt 2005, Karkowski 2016, Garimort 2011] propose to re-plan the walking motion
to adapt to changing environments once per step, only when a new step is initiated. In
contrast, the MPC scheme outlined above re-plans the walking motion not only at each
step initiation but also in between (8 times per step). Obviously re-planning more often
than once per step comes at the expense of computational power. The second contribution
of this work is to show that, when controlling the movement of a humanoid robot in a
crowd, we can favor to re-plan the walking motion to adapt to changing environments
once per step, instead of 2, 4 or 8 times per step, since motion safety capabilities of the
robot are not degraded. We thus save computational power without deteriorating the
robot’s motion safety capability. But re-planning should only happen just before initiating
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the next step, or during the time that the robot has only one step in contact with the ground.

PS has been criticized because while the robot makes sure to always have time to stop
before a collision happens, this time might not be enough for people around to actually react
and avoid the collision once the robot has stopped [Macek 2008]. Based on the criticism
of PS, we conveyed that people around the robot could potentially attempt to react and
avoid collisions if they have enough time to do so. For this reason, we claim the following:
more time to react for the surrounding environment reduces the number of collisions. In
the literature, a variant of PS was proposed under the name of Passive Friendly Safety
(PFS) [Macek 2008, Mitsch 2013]: the robot will be at rest before collisions happen, leaving
enough time for the surrounding environment to react and avoid collisions. Both PS
and PFS however limit the time to react the robot can leave for people because the robot is
constrained to stop before collisions happen. We show that if the robot is not constrained to
stop before collisions happen, it can further improve this time. For this reason, we propose
to control the movement of a humanoid robot in a crowd that guarantee fall avoidance while
aiming to leave as much time to react as possible for the people (instead of guaranteeing PS)
in a single MPC scheme, that we call Collision Mitigation (CM). The third contribution of
this work is to show that, when controlling the movement of a humanoid robot in a crowd,
we can favor CM instead of PS to reduce the number of collisions and postpones these
collisions later in time.

We consider the case where a humanoid robot moves in a crowd and the members of
this crowd are equally divided in robots and people. The fourth contribution of this work is
to control the movement of a humanoid robot in this particular crowd scenario with a new
single MPC scheme. This scheme guarantees fall avoidance while aiming to leave as much
time to react as possible for the people and then, if possible, for the other robots. When this
revised version of CM takes priorities into account, e.g. prioritizing people, the simulation
results reflect these priorities. The biped robot collides always later with people and reduces
the number of collisions with them. For the other robots instead, collisions happen earlier
and more often.

Last, we propose another situation for the robot moving in a crowd (populated with only
people). We suppose the robot must reach a target location at the utmost important, and
this time people might obstruct the motion of the robot. The fifth (and last) contribution
is to control the movement of a humanoid robot in this situation with a new single MPC
scheme. This scheme guarantees fall avoidance while enabling the robot to jostle people of
the crowd if necessary to reach the target location. We compare this scheme in the situation
outlined above with a robot that does not enable jostling but only aims to reach the target
location as soon as possible. Our results show that the robot collides less and collisions are
postponed in time when we enable jostling. However, If we increase the density of the crowd,
both robots converges to equally perform in terms of collisions. This is because the robot
might not have enough space to jostle among people.

1.2 Contributions and Outline

The contributions of this thesis are:

• We bring the Strong Recursive Feasibility (SRF) concept from MPC theory in the field
of humanoid robotics. The relationship between SRF and viability is the following: SRF
guarantees that all feasible states are viable at all time. In case of balance preservation
for biped robots, no feasible state can lead to a fall of the robot.
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• We introduce two new MPC variables: planning period and initial planning phase, that
in our case decide how often and when to re-plan the walking motion. Bigger planning
period means to re-compute less often the walking motion and save computational
power.

• We propose a single MPC scheme that guarantees fall avoidance while aiming to leave
as much time to react as possible for the people to avoid colliding with the robot. This
scheme is a revised version of Collision Mitigation proposed in [Bohorquez 2018a] where
fall avoidance was not guaranteed because the robot would sacrifice its capturability
for aiming to leave as much time to react as possible for the people to avoid colliding
with the robot.

• We propose an MPC scheme for a robot moving in a crowd used to prioritize collision
avoidance with specific members of the crowd.

• We propose an MPC scheme for a robot moving in a crowd, that enables the robot
push its way through the crowd, i.e. to jostle people, if necessary to reach the target
location.

1.2.1 List of publications

The work on this thesis resulted in the following publications in peer-reviewed conferences

• M. Ciocca, P.-B. Wieber and T. Fraichard. Strong recursive feasibility in model pre-
dictive control of biped walking. In 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), pages 730–735, Nov 2017

• M. Ciocca, P.-B. Wieber and T. Fraichard. Effect of Planning Period on MPC-based
Navigation for a Biped Robot in a Crowd. In IROS 2019 - IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1–8, Macau, China, November
2019. IEEE

And presented at the workshop:

• From freezing to jostling robots: Current challenges and new paradigms for safe robot
navigation in dense crowds in the International Conference on Intelligent Robots
(IROS) 2018, Madrid, Spain.

1.2.2 Outline

The thesis starts with the introduction of the dynamical model for the robot, the problem of
balance and MPC scheme for biped walking in Chapter 2. The contribution to the guarantee
of avoiding falling even when the robot is not really planning to stop but consider to make a
new step to continue walking is explained and explored in Chapter 3. The problem of robot’s
motion safety capability in a crowd is presented in Chapter 4. In this chapter, we present
the choice of the crowd behavior and the MPC scheme that guarantee both fall avoidance
and passive safety. The contribution to the re-planning frequency on the MPC-based safe
navigation of a humanoid robot in a crowd is explained and explored in Chapter 5. The MPC
scheme that guarantees fall avoidance while aiming to leave as much time to react as possible
for the people to avoid colliding with the robot is presented in Chapter 6. Last, the two
new MPC schemes: one is used to prioritize collision avoidance with specific members of the
crowd, and the second to enable jostling, are presented in Chapter 7.
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1.3 Notation

Software names

Names of programs and software libraries, names of constants, variables and func-
tions that are used in programs are typed in a monospaced font: MATLAB.

General scalars, vectors, matrices

• Vectors and matrices are denoted by letters in a bold font: v, M .

• Scalars are denoted using the standard italic font: N,n.

• Special functions are written in plain text: diag(·).
• (·)> – transpose of a matrix or a vector.

• Block diagonal matrices:

diag
2

(M) =

[
M 0
0 M

]
(1.1)

• Inequalities between vectors v ≥ r are interpreted component-wise.

• ‖·‖p refers to the Lp norm, for p ∈ {1, . . . ,∞}. When the subscript is not specified,
i.e. ‖·‖, then it should be understood as the L2 (or Euclidean) norm.

Sets

• Sets are written in calligraphic S,P or Capital Greek letters Ω, T.

• Special sets are written in blackboard bold R,N,Z.

• R is the set of real numbers.

• Rn is the set of real-valued vectors.

• Rn×m is the set of real-valued matrices.

Other

• Function names in mathematical expressions are written in the regular font:
func(x,y).



Chapter 2

Balance

Figure 2.1: The figure (taken from [HRP 2020]) shows HRP-2 humanoid robot (stature: 1.54m with
n = 30) [Kaneko 2004].

2.1 Introduction

In this chapter we introduce the robot dynamic model and the control scheme, that employs
this model, to generate a stable walking motion. We start describing the general mechanical
model of the biped robot (Section 2.2.1). We explain how the motion of the center of mass
is linearly related to the contact forces applied on the ground (Section 2.2.2), and how we
model a walking cycle for the robot (Section 2.2.3). When walking on a flat ground, the robot
needs to satisfy a set of constraints to comply with the whole-body kinematic and dynamical
structure (Section 2.2.4). In this work, if the robot satisfies those constraints not only in the
present but also into the future, it preserves its balance (Section 2.3). A sufficient condition to
preserve balance is the robot’s ability to stop in a given number of steps, called capturability
(Section 2.3.1). The control scheme that employs these model and constraints is called Model
Predictive Control (MPC) and it is explained in Section 2.4. In our implementation we point
out an issue that will be the core of the next chapter.

7
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2.2 Biped robot

2.2.1 Mechanics

A biped robot (such as HRP-2 in Figure 2.1) is composed by R+1 rigid bodies, called links,
connected by R rotational joints with 1 degree of freedom each. This multi-body system
is free floating, i.e. none of the links have a priori constant pose with respect to a general
frame of reference, so the robot can move freely in 3D environment. The configuration
space Q of the robot can then be characterized by: the joint configurations and, the position
and orientation of a frame attached to a robot’s link called the base frame[1]. This space is
Q = Rn×R3×SO(3), and its elements are triplets composed by the generalized coordinates:

q =

αρ
θ

 ∈ Q, (2.1)

where α = {α1, · · · , αn} ∈ Rn are joint angles and (ρ,θ) ∈ R3 × SO(3) denotes the origin
and orientation of the base frame.

The biped robot is equipped with rotary actuators at each joint αi to change the robot’s
posture, but we do not include additional actuators, e.g. thrusters, that can directly act on
(ρ,θ) and would enable the robot to fly [Nava 2018]. The multi-body system is then under-
actuated. Moreover, we consider the biped robot in contact with the environment, so it is
affected by forces of interactions. The corresponding Lagrangian dynamics of the multi-body
system has the following structure [Wieber 2016]:

M(q)

q̈ +

0
g
0

+N(q, q̇) =

η0
0

+
∑
i

J>i (q)λi, (2.2)

where M ∈ R(n+6)×(n+6) is the generalized inertia matrix, g ∈ R3 is the constant gravity
acceleration vector, N ∈ R(n+6) is the vector of Coriolis and centrifugal effects, η ∈ Rn is the
vector of joint torques (provided by the actuators), λi ∈ R3 is a force exerted by the envi-
ronment on the robot and Ji ∈ R3×(n+6) is the associated Jacobian matrix [Wieber 2006b].

Any robot’s posture must be restricted to the ones without interpenetration of robot
body parts, i.e. self-collisions, and that takes into account hardware restrictions, e.g. ac-
tuator limits. These limitations can be represented by kinematic and task-related con-
straints [Sherikov 2016]:

φ ≤ φ(q, q̇, q̈,η) ≤ φ. (2.3)

From the Lagrangian dynamics, it appears the fact that joint torques η cannot act directly
on (ρ,θ): joint torques cannot make the robot move around. Thus robot locomotion requires
external contact forces. We consider the general case where these contact forces λi are the
only one between the feet and the ground: ground reaction forces. However other parts of the
robot can produce helpful support [Kudruss 2015], or produce other types of locomotion, e.g
crawling [Kuehn 2016].

When the robot takes a step, i.e. establishes a contact with the ground, an impact
occurs. Impacts are assumed to be collisions with rigid surface and they are normally mod-
eled as a non-smooth transition between the pre- and post-impact velocities of the system
[Hurmuzlu 2004]:

(q+, q̇+) = ∆(q−, q̇−). (2.4)

1The base frame is typical central to the body (pelvis or trunk) or in an extremity (foot or hand).
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In robot locomotion, the continuous dynamics (2.2) is suddenly interrupted every time the
robot takes a step (2.4), for this reason the dynamics becomes hybrid.

Forces, required for locomotion, can only be applied to contacts already made. Unless
the biped robot can fasten its feet to the ground at will, e.g. with some sort of clamping
device (such as vacuum suction cup) on the sole of the feet, it can only push and not pull
on the ground. This can be modeled as a complementarity condition between contacts and
forces [Hurmuzlu 2004]. Denote with the superscripts (·)‖ and (·)⊥ tangential and normal
components of vectors with respect to the contact surfaces, and let be ri the position vector
of the ith contact, we have

r⊥i λ
⊥
i = 0, with r⊥i ≥ 0, λ⊥i ≥ 0. (2.5)

The unilateral nature of this contact interaction (the feet can only push on the ground)
imposes the robot to exploit ground friction to walk. However, it must avoid foot slipping
and this is achieved by satisfying the following constraint [Sherikov 2016]:

‖λ‖i ‖ ≤ µiλ
⊥
i , (2.6)

where µi is the friction coefficient of the ith contact interaction.
Actuation of the joints can produce a sequence of postures that must always satisfy

kinematic constraints (2.3) and account (indirectly) for ground reaction forces, e.g. with (2.4)-
(2.5)-(2.6), in order to realize a desired balancing or walking motion [Sherikov 2016].

2.2.2 Contact forces and CoM relationship when walking on flat ground

When ground reaction forces act on the robot, they directly affect the base frame position ρ.
If we choose the Center of Mass (CoM) position c as base frame position: c = ρ, the under-
actuated part of the Lagrangian dynamics boils down to the Newton and Euler equations of
motion of the robot taken as a whole [Wieber 2006b]. They correspond to:

m(c̈+ g) =
∑
i

λi (2.7)

L̇ =
∑
i

(ri − c)× λi, (2.8)

where m is the total mass of the robot, and L is the centroidal angular momentum of the
entire robot. We sum the c× of Newton equation (2.7) to the Euler equation (2.8) and we
obtain:

m c× (c̈+ g) + L̇ =
∑
i

(ri × λi) (2.9)

Denote with (·)x, (·)y, (·)z the Cartesian coordinates of a frame with origin on the contact
surface of one foot on the ground and the axis z normal to it. Now we divide the result (2.9)
by the z coordinate of the Newton equation (2.7):

m c× (c̈+ g) + L̇

m (c̈z + gz)
=

∑
i(ri × λi)∑

i λ
z
i

. (2.10)

Assume all the contact points lie in a horizontal plane and for simplicity the plane is located
at zero height, therefore ∀i, rzi = 0. This allows us to simplify the cross products in (2.10) in
the following way:[

cy

−cx
]
− cz

(c̈z + gz)

[
(c̈y + gy)
−(c̈x + gx)

]
+

1

m (c̈z + gz)

[
L̇x

L̇y

]
=

1∑
i λ

z
i

∑
i

[
ryi
−rxi

]
λzi . (2.11)
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We multiply the equation with a rotation matrix R =

[
0 −1
1 0

]
and we obtain:

cx,y − cz

(c̈z + gz)
(c̈x,y + gx,y) +

1

m (c̈z + gz)
RL̇x,y =

∑
i r

x,y
i λzi∑
i λ

z
i

. (2.12)

There is a point on the contact surface where the horizontal momenta produced by the contact
forces, λi, with respect to this point are equal to zero:∑

i

(px,y − rx,yi )λzi = 0, (2.13)

this point is called Center of Pressure (CoP), px,y [Sardain 2004]. And it is exactly what
appears on the RHS of equation (2.12)

px,y =

∑
i r

x,y
i λzi∑
i λ

z
i

. (2.14)

We consider the case of walking on a horizontal ground, that implies gx,y = 0. Moreover,
we consider that the CoM moves strictly horizontally above the ground: cz is constant and
c̈zi = 0 (see Figure 2.2). And equation (2.12) becomes:

cx,y − cz

gz
c̈x,y +

1

mgz
RL̇x,y = px,y. (2.15)

Last, we consider the variations of the angular momentum equal to zero, L̇x,y = 0. This is not
true in reality: execution of limb motions implies certain values of rate of angular momentum,
but it has proven to be sufficient to realize robot locomotion [Feng 2016] . Variations of the
angular momentum Lx,y however can be estimated using multi-mass models [Shimmyo 2013]
and/or can be bounded: to generate vertical motion [Serra 2016] or because accounted as
source of uncertainty [Villa 2019a]. We end up with a linear differential equation that relates
the dynamics of the CoM with contact forces:

cx,y − 1

ω2
c̈x,y = px,y, (2.16)

where

ω =

√
gz

cz
. (2.17)

This model has been experimentally validated for the balance of human beings
while standing [Winter 1998], and it has been widely used for control of legged
robots [Englsberger 2011, Kajita 2010, Romualdi 2018]. From now on we remove the x
and y superscripts.

For control purpose, the dynamics (2.16) has been originally proposed as a triple integra-
tor by [Kajita 2003] where CoM jerk,

...
c , is the control input. This was later employed and

extended in [Diedam 2008, Herdt 2010, Agravante 2016] and many other works. The triple
integrator implies a smooth variation of CoM acceleration. This results in a smooth change
of CoP position (2.16), which helps the realization of robot locomotion. This model however
leads to some subtle difficulties in terms of realization of robot locomotion but they can be
fixed by appropriate control design choices [Wieber 2006a]. Discussion on this issue can be
found in Appendix A.3.
A second or third order model can use the CoP position as state [Scianca 2016, Kajita 2010].
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Figure 2.2: The figure (taken from [Kajita 2014, pag.106]) shows the CoM at a constant height cz

above the ground, and the CoP p inside the contact surface.

cz

p

c

This is suggested since modern robots can be equipped with force sensors in the feet to esti-
mate the position of the CoP [Englsberger 2014, Kaneko 2004, Kaneko 2009].
Another way is to use the CoP position as control input [Villa 2019a]. In this case,
the dynamics can be transformed in a modal form, exposing its stable and unstable
parts [Englsberger 2011, Takenaka 2009, Krause 2012].

In this work, we consider a third order model that use CoP velocity ṗ ∈ R2 as control
input [Sherikov 2016]. This choice is not subjected at subtleties of the triple integrator with
CoM acceleration as control input, and yet implies a smooth change of CoP position. The
state of this model is the following:

x =
[
cx ċx c̈x cy ċy c̈y

]>. (2.18)

By differentiating the dynamics (2.16) we have the following linear time invariant system:

{
ẋ = Gx+Hṗ

p = Dx,

(2.19)

(2.20)

where

G = diag
2

0 1 0
0 0 1
0 ω2 0

, H = diag
2

 0
0
−ω2

, D = diag
2

([
1 0 − 1

ω2

])
. (2.21)

We consider that there are no uncertainties in measurements of the state and/or in parameters
of the robot as in [Sherikov 2016]. We refer to [Villa 2019b] for the study of uncertainties in
modeling and control of legged robots.

Discrete-time CoM model

Standard approaches to control legged robots rely on discrete-time models. We discretize
time in a sequence of time instants ti, i ∈ N. We represent the value of any variable at time
ti as (·)i. Each time interval [ti, ti+1] has a fixed duration T , usually called sampling period,
in seconds. From now on we refer to this type of discretization in case of discrete-time models.
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The control input is generally kept constant for a fixed time duration, this approach is
called zero-order hold for controls [Ogata 1995, Chapter 5].

ṗj = ṗi, for ti ≤ tj < ti+1. (2.22)

By doing so, step-by-step in Appendix A.2, the model (2.19) corresponds to

{
xi+1 = Axi +Bṗi

pi = Dxi,

(2.23)

(2.24)

where[2]

A = diag
2

(
eGT

)
= diag

2

1 sinh(Tω)/ω cosh(Tω)/ω2 − 1/ω2

0 cosh(Tω) sinh(Tω)/ω
0 sinh(Tω)ω cosh(Tω)

, (2.25)

B = diag
2

((∫ T

0
eGtdt

)
H

)
= diag

2

T − sinh(Tω)/ω
1− cosh(Tω)
−ω sinh(Tω)

. (2.26)

It is then possible to describe a CoM trajectory by evolving for example the state xi N -times
following the dynamics (2.23):

c̄i = diag
N

(Ic) (U1xi +U2
¯̇pi), (2.27)

which relates the sequence c̄i ∈ R2N of N CoM (2D) positions[3] (from time ti+1 to ti+N ),

c̄i = {c(i+1|i), · · · , c(i+N |i)} (2.28)

with a sequence ¯̇pi ∈ R2N of CoP velocities[4] (from time ti to ti+N−1),

¯̇pi = {ṗ(i|i), · · · , ṗ(i+N−1|i)} (2.29)

with

U1 =


A
A2

...
AN

, U2 =


B 0 . . . 0
AB B . . . 0

...
...

. . .
...

AN−1B AN−2B . . . B

, (2.30)

and Ic ∈ R2×6 a selection matrix to extract the CoM position from the state. The same state
evolution can be used to describe a CoP trajectory, from (2.23) and (2.24):

p̄i = U3xi +U4
¯̇pi, (2.31)

where p̄i ∈ R2N describes the evolution of the CoP position,

p̄i = {p(i+1|i), · · · ,p(i+N |i)} (2.32)

with (U3,U4) similar to (U1,U2).

2 Euler’s number: e.
3The state x(β|α) of the evolution is described at time tα and is reached at time tβ .
4The control input u(β|α) of the sequence is described at time tα to be executed at time tβ and kept

constant for a duration T .
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Figure 2.3: The figure is a top view of footprints (with rectangular shapes) onto the ground of a
robot walking to the right (or to the left). We note the step and stride lengths.

footstep

step length

stride length

2.2.3 Walking cycle

Modeling of biped robot walking is inspired by human walking [Rose 2005]. Walking is a
sequence of regularly recurring events. At each event there is, at least, one foot on the
ground. A gait (or stride) cycle is defined as the period between a foot contact on the ground
to the next contact of the same foot on the ground again. The stride length is defined as the
distance between successive ground contacts of the same foot. The step cycle (sd) is defined as
the period between a foot contact on the ground to the next contact of the opposite foot, i.e.
half gait cycle. The step length is the distance between the point of initial contact of one
foot and the point of initial contact of the opposite foot. We consider the case where the
step cycle is divided into two events: Single Support (SS) and Double support (DS) phases.
Lengths are represented in Figure 2.3 and cycles in Figure 2.4b.

A biped robot starts in DS, that is, with both feet in contact with the ground. Then it
lifts one leg and swings it in the air to a new position on the ground. While one of the legs
is in the air the walker is in SS. The moment the swinging leg hits the ground produces an
impact and the walker returns to the DS again. In our case, the heel rise is absent during
the SS phase and the (flat) foot is lifted all together. This can limit the walking speed.
Rotation about the front edge of the stance foot before heel strike or rotation through
the use of toe joint [Kaneko 2011] can benefit the walking speed but it would increase the
difficulty of controlling the robot.

We model changes of the foot positions on the ground in order to facilitate their automatic
adjustment, which helps for example in: disturbance compensation [Sherikov 2016], physical
interaction [Agravante 2016] and tracking of desired walking speed [Herdt 2010]. This auto-
matic adjustment might be complex. When the robot walks on a flat ground, it may have two
feet contacts with the ground at the same time, e.g. when the robot is in DS phase of a walk-
ing cycle. Multiple contacts with the same surface may lead to a contact surface of a complex
shape. This area depends on the position and orientation of the feet onto the ground: these
variables can be accounted in the automatic adjustment [Naveau 2017, Bohórquez 2018b].
We can also adjust the step cycle duration along the walking [Bohórquez 2017]. In this work,
we build a discrete-time model for the changes of the foot positions on the ground and we
made the following simplifications to reduce the complexity of the automatic adjustment as
is done in [Herdt 2010]:

• we consider that foot rotations are fixed in advance: we disable the possibility to reorient
the feet along the walking.

• we consider a fixed time duration for both DS and SS phases. As a consequence, we
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have a fixed duration sd.

• at each sample, we consider that the robot puts its weight on only one foot in contact
with the ground. Let spc be the next foot that will hit the ground, starting the DS
phase and let sc be the current foot that will be lifted, ending the DS phase. We sample
as follows:

– we sample exactly when spc hits the ground, when the DS phase starts. In this
case sc is considered the contact with the ground supporting the weight of the
robot. At this sample, spc is already fixed.

– we sample exactly when sc is lifted from the ground, when the DS phase ends. In
this case spc is considered the contact with the ground supporting the weight of
the robot. At this sample, we update sc with spc.

So the sampling period T is considered the duration of the DS phases.

We represent some of these aspect in Figure 2.4.

Figure 2.4: The figure shows how we sample DS phases and the sampled gait and step cycles.

(a) The robot starts in SS phase on position sc. At 0.2[s] the next foot spc

hits the ground: the DS phase starts. And sc is lifted from the ground
at 0.3[s]: the DS phase ends. The contact surface in blue depends on
the foot or feet in contact with the ground. We sample when the DS
phase starts and ends (samples in dashed gray lines).
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(b) In the figure (taken and adjusted from [Pratt 2012]) is shown when DS and SS phases happens,
and the duration of a gait and step cycle. The sampling period T is the duration of the DS phases.

SS tDS DS

ti ti+1

Gait Cycle

… …

Step Cycle
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With these simplifications, we can model the evolution of a walking cycle for N time
instants as

s̄i = V pc
i s

pc
i + V f

i s
f
i , (2.33)

where s̄i ∈ R2N is the sequence of footsteps ahead (from time ti+1 to ti+N ),

s̄i = {s(i+1|i), · · · , s(i+N |i)} (2.34)

In case of walking, once a step is planted on the ground, it usually stays there at a constant
position for quite sometime until the next step is initiated. As a consequence, we represent
as s[j|i], the j-th footstep planted for several time instants, and we can group the sequence s̄i
in the number of footsteps only as

s̄i = {s[1|i], · · · , s[J |i]} (2.35)

And spci ∈ R2 can be the next foot that will hit the ground or identical to the current
step position onto the ground sc ∈ R2. In both cases the variable spci is always fixed. And

sfi ∈ R2m is a sequence of m adjustable foot positions. The matrices (V pc
i ,V f

i ) vary cyclically
and determine which foot is onto the ground at what time

V pc
i =



I
...
I
0
...
0
0
...
0


∈ R2N×2, V f

i =



0 0
...

...
0 0
I 0
...

...
I 0
0 I
...

...

0 I
. . .


∈ R2N×2m. (2.36)

We explain in details these matrices and how they cycle in Appendix A.4. In this work we
do not account for the motion of the feet in the air. It could be modeled however with a 3-rd
order polynomial as in [Sherikov 2016, Section 4.4.3].

2.2.4 Whole-body restrictions on CoM dynamics

The joint torques η that will actuate the entire mechanical structure are chosen with an
inverse dynamics (ID) problem [Sherikov 2016]. This problem takes as input generalized
coordinates q and contact forces λi and as output find the joint torques that satisfy the
Lagrangian dynamics (2.2)

η = ID(q, q̇, q̈,λi). (2.37)

From the evolution of CoM dynamics (2.19)-(2.20), we can obtain a sequence of contact
forces (thanks to the CoP). And, there exists a relationship between CoM and the whole-
body kinematics (thus generalized coordinates)

ċ = JCoMq̇, (2.38)

where JCoM is a Jacobian matrix [Sugihara 2002]. It is then possible to generate a desired
walking motion via CoM dynamics and use it to move the whole-body of the robot.

As we explained in Section 2.2.1, generalized coordinates and contact forces need to
comply with mechanical constraints, e.g. joint limits and friction constraints. If we ensure
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the realization of the CoM motion for the whole-body hardware restrictions and with the
limitations of each physical interaction, it is then possible to use the inverse dynamics
problem tracking the CoM motion and contact forces in order to realize a walking motion.
This motivates the introduction of a set of constraints on the CoM dynamics and contact
forces that reflects whole-body restrictions.

Consider only the case of one contact with the ground, hereby called the jth footstep
sj ∈ R2. Since contact forces with the ground are unilateral, the CoP is always constrained
within a convex hull P, called the support polygon

p ∈ P(sj) (2.39)

that varies depending on the position and orientation of sj . In our case foot rotation is fixed
in advance, so the support polygon depends only on the position of sj . In our work the feet of
the robot have a rectangular shape, and the set-valued function P(s) specifies a rectangular
region of width and length w × l around the position s:

P(s) , {r ∈ R2 |
[
−l/2
−w/2

]
≤ (r − s) ≤

[
l/2
w/2

]
}. (2.40)

We consider that friction forces constraints to avoid slipping (2.6) are always satisfied, but
additional constraints can be imposed [Caron 2015]. We consider that the position of the
(j + 1)th footstep with respect to the position of the jth footstep is restricted to a region S
where the legs do not cross:

sj+1 ∈ S(sj). (2.41)

The set-valued function S(s) specifies a halfspace around s and is separated from it by a
distance w + fs

S(s) , {r ∈ R2 | (−1)j(w + fs) ≤ Iy(r − s)}, (2.42)

where Iy =
[
0 1

]
. Last, the CoM position is constrained to a closed convex region C due to

the maximal leg length of the robot [Brasseur 2015]:

c ∈ C(sj). (2.43)

The set-valued functions C(s) specifies a rectangular region of width and length W×L around
the position s:

C(s) , {r ∈ R2 |
[
−L/2
−W/2

]
≤ (r − s) ≤

[
L/2
W/2

]
}. (2.44)

If we can satisfy these kinematic (2.41)-(2.43) and dynamic (2.39) constraints, we comply
with the whole-body kinematic and dynamical structure of the robot when walking on a flat
ground.

2.3 Balance Preservation

We assume that violation of the set of constraint (2.41)-(2.43)-(2.39) indicates a fall. And the
preservation of balance means avoiding falls at all future moments. So it is necessary to not
only satisfy that set of constraints in the present time but also into the future. In fact, there
can be a set of states where the robot has not fallen yet (all the constraints are satisfied at
the present time), but is bound to fall inexorably [Wieber 2016]. Anticipation is crucial! In
order to avoid falling, the robot must be in a state where it can avoid falling. Such states are
so-called viable, and the set of viable states is called viability kernel (concepts from Viability
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Theory [Aubin 2009]). The same approach can be used to formalize collision avoidance in
dynamic environments, what is called Inevitable Collision State (ICS) [Fraichard 2003], which
separate situations where a collision is inevitable (to be avoided) from situations where it is
avoidable (to be preferred). In general it is difficult to check if the state of the robot is
inside the viability kernel because the problem to compute this set of states appears to be
intractable in the case of humanoid robots [Wieber 2002]. It is however possible to isolate a
subset of these viable states, which are demonstrated to be balanced.

2.3.1 Capturability

There are 2 standard set of states: (i) the set of states for which the robot reaches a
cyclic motion or (ii) the set of states for which the robot stops after a given number of
steps. As a consequence, 2 standard approaches to control biped robots are (i) to con-
sider that the robot keeps repeating indefinitely the same cyclic motion [Takenaka 2009,
Tajima 2009, Nagasaka 2004, Scianca 2016] or (ii) that it stops after a given number of
steps [Takanishi 1989, Hun-ok Lim 2002, Bohorquez 2016], what corresponds to capturabil-
ity [Koolen 2012].

In this work, we favor capturability, since we almost always want the robot to eventually
stop, or at least be able to stop. And, on the collision front, these states can be combined
effortlessly with the ones that guarantee passive safety [Bouraine 2014]: if a collision is
inevitable, at least the robot will be at rest when that happens. Passive safety is discussed
further in Section 4.5.4.

The set of capturable states is identified analytically, for the linear system derived
above (2.19), with the help of

ξ = c+
ċ

ω
. (2.45)

This variable is called the Capture Point (CP) ξ. When considering the robot walking on a
flat ground, the CP has the same constant CoM height and when projected on the floor it
is the point where a robot has to step to come to a complete rest. Among the capturable
states, we identify the ones that make the robot 0-step capturable, i.e. for which the robot
can stop without having to make any further step [Koolen 2012]. From now on we consider
the projected position (in 2D coordinates) onto the floor of ξ.

The CoM dynamics (2.16) can be transformed in a modal form, exposing its stable and
unstable parts. The unstable part yields exactly the same definition as in (2.45). Reformulat-
ing (2.16) and (2.45), we have that the CP diverges from the CoP p, but the CoM converges
to the CP: [

ċ

ξ̇

]
=

[
−ω ω
0 ω

][
c
ξ

]
+

[
0
−ω

]
p. (2.46)

If ξ is inside the support polygon,

ξ ∈ P(sj), (2.47)

we can have ξ = p so the CP and the CoP do not move

ṗ = ξ̇ = 0, (2.48)

and the robot comes to a stop without having to make any further step. The set of states
that satisfy condition (2.47) are 0-step capturable (hence viable).

So realizing a stable walking motion requires to take decisions that satisfy a set of
constraints, and to work with predictions of the future outcome of decisions made in the
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present. One of few suitable methods to handle this problem is Model Predictive Con-
trol (MPC) [Wieber 2008]. It has been used therefore extensively for the control of biped
robots [Wieber 2018].

2.4 Model Predictive Control of biped walking

2.4.1 MPC Approach

Standard approaches to MPC rely on discrete-time models. In this work, we employ a linear
discrete-time time-invariant model of the form

xi+1 = Axi +Bui, (2.49)

where xi ∈ Ra, ui ∈ Rb and xi+1 are respectively the state, control and successor state
vectors, and (A,B) are matrices of proper dimensions. An MPC scheme is an iterative
planning process: it solves iteratively a finite-horizon optimization problem, until some
objectives (or goals) are reached.

At time ti, given the state xi, in this work assumed to be known and exact, MPC aims
to find a motion, i.e. a sequence of N control inputs or N -actions

πNi = {u(i|i),u(i+1|i), · · · ,u(i+N−1|i)}. (2.50)

The action u(β|α) is computed at time tα and is planned to be executed at time tβ and kept
constant for a duration T . The motion is valid for N time instants (from ti to ti+N ) and
it has a duration NT , where N is called planning horizon [5]. The motion is called feasible
when the pair (xi,π

N
i ) satisfies a time-varying set of constraints, in this work linear, applied

for [ti, ti+N ]:

Ei

[
xi
πNi

]
≤ di, (2.51)

where Ei and di are respectively a time-varying matrix and vector of proper dimensions.
An MPC scheme classically chooses a sequence πNi that minimizes the deviation from a
given objective (uref,xref):

minimize
πNi

f(πNi ). (2.52)

Typically, the reference deviation is expressed as a least-squares objective, for example,

f(πNi ) =
N∑
j=1

(∥∥Γu(u(i+j−1|i) − uref)
∥∥2

2 +
∥∥Γx(x(i+j|i) − xref)

∥∥2
2

)
, (2.53)

where Γu and Γx are weighting matrices. Constraints (2.51) and reference devia-
tion (2.52) are satisfied and minimized altogether, solving the following Quadratic Pro-
gram (QP) [Nocedal 2006, Boyd 2004]:

minimize
πNi

f(πNi )

s.t. Ei

[
xi
πNi

]
≤ di,

(2.54a)

(2.54b)

5N is typically called prediction horizon in the Model Predictive Control literature. In general however, π
and ϕ can have different horizon lengths: control and prediction horizon lengths [Kerrigan 2001].
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which can be solved with off-the-shelf software, e.g. qpOASES [Ferreau 2017]. When we
account for bounded disturbances also the state xi can become a decision variable when
solving (2.54) [Mayne 2005]. The first action κ1 = u(i|i) is executed, i.e. applied to the
system:

xi+1 = Axi +Bκ1. (2.55)

Then at time ti+1 the whole planning process is repeated, until the objective is reached.

Remark 1. Given an horizon N , we do not account the time for computing a plan solving
the QP (2.54), and we assume no time delay to execute the control action.

2.4.2 Walking motion generation with automatic footstep placement

We use an MPC scheme that generates a walking motion online with automatic footstep
placement [Herdt 2010]. A motion πNi is composed by a sequence of CoP input velocities
and a sequence of adjustable footsteps.

πNi =

[ ¯̇pi
sfi

]
∈ R2N+2m (2.56)

The CoM, CoP trajectories (2.27)-(2.31) and the model the evolution of a walking cycle (2.33)
are used to formulate the following constraints that we want the motion to satisfy:

∀k ∈ {1, · · · , N},
∀j ∈ {1, · · · , J},


p(i+k|i) ∈ P(s[j|i]), Dynamical constraint

c(i+k|i) ∈ C(s[j|i]), Kinematic constraints.
s[j+1|i] ∈ S(s[j|i])

(2.57)

Furthermore, we make sure the maximum length of the legs is respected between two samples:
during the DS with {

c(i+q|i) ∈ C(s[j+1|i]), DS Kinematic constraints,
c(i+q+1|i) ∈ C(s[j|i])

(2.58)

where ti+q is the instant the robot plans to start the DS phase, and ti+q+1 is the instant the
robot plans to end the DS phase. The constraints (2.57)-(2.58):

• are linear with respect to the CoP velocity ṗ and the adjustable steps sf

[Sherikov 2016], thanks to the the simplification made for the step automatic adjust-
ment in Section 2.2.3. And they can be formulated in the linear form (2.51).

• define all together a closed convex set of solutions since they impose closed convex
regions: for the CoP position with (2.40), limiting its velocity, for the CoM position
with (2.44)-(2.58), limiting its velocity and acceleration, and for the foot position since
the halfspace region (2.42) is combined with the CoP and CoM regions.

• vary cyclically because of the time-varying model of the walking cycle (2.33), with a
fixed period: the fixed step cycle duration.

The action κ1 of the motion (2.56) is the first constant CoP velocity input that updates
the system (2.23). And, cyclically, the first future footstep position sf (1) updates spc as
explained in Appendix A.4.

In MPC, the capacity to satisfy constraints, which is usually called feasibility, is classi-
cally guaranteed recursively [Mayne 2000]. An important aspect of our application is that
the MPC scheme has to adapt continuously to the dynamic environment of the robot: col-
lision avoidance [Bohorquez 2016], physical interaction with humans [Agravante 2016], or
visual feedback [Dune 2011]. We aim therefore at guaranteeing recursive feasibility for all
possible scenarios, which is called strong recursive feasibility.
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2.4.3 Strong Recursive Feasibility

Let the set of solutions of (2.51) be

FNi , {(xi,πNi ) |Ei
[
xi
πNi

]
≤ di}. (2.59)

Two useful projections of FNi are

K1|N
i , {(xi,κ1) | ∃πNi , (xi,π

N
i ) ∈ FNi ,κ1 = u(i|i)}, (2.60)

the set of state-action pairs of a feasible motion, and

XNi , {xi | ∃πNi , (xi,π
N
i ) ∈ FNi }, (2.61)

generally called the feasible set, the set of states for which there exists at least one feasible
motion.

Strong Recursive Feasibility (SRF) [Kerrigan 2001] guarantees that applying the first

action of any pairs in K1|N
i to the system (2.49), a state in XNi+1 is reached, independently

from the minimization of any objective function (2.52). We define SRF in the following way:

Definition 2.4.1 (Strong Recursive Feasibility). An MPC scheme is strongly recursive fea-
sible if and only if

∀i, ∀(xi,κ1) ∈ K1|N
i ,

xi+1 = Axi +Bκ1 ∈ XNi+1.
(2.62)

Remark 2. SRF is “stronger” than the standard Recursive Feasibility since the latter depends
on a optimal solution of a specific cost function (2.52) [Kerrigan 2001, Section 5.3]. Changing
the cost function at any ti and/or not reaching an optimal solution do not affect SRF property.

Remark 3. The relationship between SRF and viability is the following: SRF guarantees that
∀i, at time ti all feasible states are viable. In case of balance preservation for biped robots,
no feasible state can lead to a fall of the robot.

Strong recursive feasibility is classically obtained by introducing a terminal constraint
at the end of the planning horizon [Kerrigan 2001, Section 5.7.2] to make sure the system
remains feasible indefinitely after the end of the horizon.

2.4.4 Capturability terminal constraint

We favored the capability of the robot to stop, being capturable, as a sufficient condition
to maintain balance without violating the constraints (2.57)-(2.58). Only an additional
constraint on the final state x(i+N |i) formalizes conditions under which the robot can be
stopped. This condition on the final state acts as a terminal constraint of the MPC scheme.
Once reached the state x(i+N |i), a simple controller can stabilize the system after the
horizon N [Mayne 2014].

Since we want the robot to stop at the end of the planning horizon, we construct
a controller in such a way that the CoP will be maintained at a constant position:
p(i+N |i) = p(i+N+j|i), ∀j ∈ N+. Position of the CoP for the dynamics (2.23) can always
be maintained with a trivial linear controller: ṗi = 0. It is however necessary to analyze the
stability of the system. We know that the system has an unstable mode [Englsberger 2011].
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We will nullify this mode rendering the system stable [Muske 1993]. We identify the eigen-
values of the matrix A in (2.25) via the matrix factorization called eigendecomposition:

(1, eTω, e−Tω). (2.63)

The matrix A has one unstable eigenvalue: eTω, which is outside of the unit circle since
Tω > 0. Its corresponding mode is mu = ċi + c̈i ω

−1. Nullifying mu means to impose the
following equality constraint

ċi + c̈i ω
−1 = 0. (2.64)

If this equation holds, the state [ ci+j , ċi+j , c̈i+j ] of the autonomous system (because ṗi = 0)
converges to [pi,0,0 ] as j → ∞ while the CoP does not move. Notice that the unstable
mode corresponds to the derivative of the CP ξ, see Section 2.3.1, so we are actually imposing

ξ̇i = 0. (2.65)

When the CP is not moving (2.65), the projected position onto the floor of CP coincide with
the position of the CoP, see the second line of the system (2.46). This it implies the CP
is above the support polygon, defined with (2.57), and the robot can stop without making
further steps: it is 0-step capturable. From this analysis, we impose

ξ̇(i+N |i) ∈ T, (2.66)

where
T , {r ∈ R2 | r = 0}, (2.67)

as terminal constraint, making sure that after the end of the horizon, a simple controller
can stabilize the system (2.49). From now if we include a terminal constraint in (2.51) that
defines a terminal set T, the solution, state-action pairs and feasible sets are represented by:

FNi (T), K1|N
i (T) and XNi (T).

At time ti, suppose the model of the walking cycle (2.33), starting from the end of the
horizon N is assumed to be time-invariant, which implies, in particular, that the number and
positions of the contacts do not change, represented in Figure 2.5. In this case, after ti+N ,
the state can remain feasible in T since it is a subset of all possible feasible states (defined in
the footstep where the robot will stop). At time ti+1, SRF is guarantee by construction and
the MPC is strongly feasible. The problem is when at time ti+1 the robot is not really planning
to stop, and considers actually making a new step at the end of the planning horizon. With
such a sudden change, SRF is not guaranteed anymore. We address this issue in Chapter 3.

2.5 Conclusion

We presented a linear model that relates the CoM of the robot to the contact forces applied on
the ground (2.16). We model changes of the foot positions on the ground in order to facilitate
their automatic adjustment (2.33). With those models we build a set of constraints that the
robot needs to satisfy in order to comply with the whole-body kinematic and dynamical
structure. We additionally imposed a capturability constraint that allows the robot to stop
in a given number of steps since we almost always want the robot to eventually stop. Models
and constraints were employed in a single MPC scheme.
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Figure 2.5: Representation of the walking cycle model (2.33) when starting from the end of the
horizon N is assumed to be time-invariant, which implies, in particular, that the number
and positions of the contacts do not change.

(a) At time ti it is assumed the number and posi-
tions of the contacts do not change from time
ti+N onward.
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(b) The assumption made at time ti is valid.
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Chapter 3

Strong Recursive Feasibility in
MPC of Biped Walking

3.1 Introduction

Chapter 2 presented the Model Predictive Control (MPC) of biped walking that generates
walking motion with automatic footstep placement. We favored the capability of the robot
to stop, being capturable, as a sufficient condition to maintain balance. This was formal-
ized in a capturability terminal constraint (imposed at the end of the planning horizon).
This constraint works also as a sufficient condition to guarantee strong recursive feasibility
(Definition 2.4.1) for the control scheme. However, it is explained in Section 3.2 how strong
recursive feasibility guarantee is lost when the robot is not really planning to stop but con-
siders actually making a new step. In this Chapter we demonstrate numerically (Section 3.5)
that strong recursive feasibility is actually guaranteed, even when a new step is added in the
planning horizon. But the guarantee depends on the length of the horizon (Section 3.5). On
the other hand, if we remove the capturability terminal constraint we lose the robot’s ability
to stop and and we loose completely strong recursive feasibility for several horizon lengths
(Section 3.6). Finally, we discuss the ongoing research on the choice of the capturability
constraint and recursive feasibility in the literature of control for biped walking (Section 3.7).

3.2 Problem formulation

We can see in Fig. 3.1a how a capturability terminal constraint makes sure that the system
remains feasible indefinitely. This way, when the planning horizon advances as in Fig. 3.1b,
we are sure that the MPC scheme remains feasible: SRF is guaranteed by construction. In
this case the robot can keep planning to stop until it really stops, and then re-start walking.
In such a way, the robot would walk for few steps and come to a stop periodically. Since
in our application the robot needs to adapt continuously to the dynamic environment, e.g.
avoid collision or physical interaction, we want the robot to stop only in case of necessity
and continue walking otherwise. When the robot is walking and is not really planning to
stop but considers actually making a new step, with such a sudden plan change, SRF is not
guaranteed anymore, as shown in Fig. 3.1c. Note that this issue occurs independently of the
planning horizon length N .

We investigate this issue and we provide a numerical evidence that SRF is actually guar-
anteed, even when a new step is added in the planning horizon. We found that in this case,
the SRF guarantee depends on the horizon length N . Since this issue is introduced by the
capturability terminal constraint, we remove it and we investigate again SRF. In this case,
the MPC scheme loses SRF guarantee for all horizon lengths N tested.

23
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Figure 3.1: The figures represent when the robot is walking and is planning to stop (Figure 3.1a-
3.1b), and when the robot considers actually making a new step (Figure 3.1c).

(a) A capturability terminal constraint (that de-
fines a terminal constraint set T) makes sure
that the motion of the biped robot remains
feasible indefinitely.
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(b) When the planning horizon advances, thanks
to the fixed terminal constraint set T, the
MPC scheme remains feasible.
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(c) When the robot considers making a new step,
with such a sudden change, recursive feasibil-
ity is not guaranteed anymore.
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3.3 Parameters

3.3.1 Robot

The parameters of the biped robot were selected according to the kinematics of the robot
HRP-2 [Kaneko 2004], see Table 3.1.

3.3.2 MPC

In MPC-based walking strategies such as [Bohorquez 2016, Kajita 2003, Herdt 2010,
Scianca 2016, Herdt 2010] or [Naveau 2017], the sampling period T is usually small. In our
framework, the sampling period is set to 0.1[s], and it corresponds to the duration of the DS
phase. The duration of the SS phase is set to 0.7[s], resulting in a step cycle of 0.8[s/step].
These choices proved to realize stable walking motions [Dune 2011].
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Table 3.1: Robot parameters.

Parameter Symbol Value Unit

Height of CoM (2.17) cz 0.8 m
Min. Feet

Separation (2.42)
fs 0.07 m

Feet Dimensions (2.40) (l, w) (0.24, 0.14) (m,m)
Step Length (2.44) (L,W ) (0.24, 0.30) m

The number of planned steps ahead is chosen accordingly to d(NT/sd)e, that depends on the
planning horizon, sampling period and step cycle. When N ≥ 1, the number of adjustable
future steps is m = d((N − 1)T/sd)e: details in Appendix A.4. In our case, when N = 8 the
robot is always planning a full step cycle, and when N = 16 the robot is always planning a
full gait cycle. The parameters are summarized in Table 3.2.

Table 3.2: MPC scheme parameters.

Parameter Symbol Value Unit

Planning Period N {8, 9, · · · , 17, 18} -
Sampling Period T 0.1 s

Step Cycle sd 0.8 s/step
Planned Steps Ahead − d(NT/sd)e step

3.4 Numerical approach

The sets FNi (T), K1|N
i (T) (showed in Figure 3.2a) and XNi (T) are convex poly-

topes [Boyd 2004] following definitions in Section 2.4.3. And in our case they also happen to
be closed, as explained in Section 2.4.2. Thanks to these properties, it is sufficient to check

SRF (2.62) only on the vertices of K1|N
i (T), as can be seen on Fig. 3.2b. The number of

vertices of these polytopes is finite, but enumerating all of them from definition (2.59) and
(2.60) is actually an NP-hard problem [Borwein 1987] although various algorithms exist for
this enumeration, e.g. [Löfberg 2012, Fukuda 1996, Jones 2004]. In this work we are going to
use a randomized shooting approach.

Numerical evidence. The method we propose is based on the observation that the simplex
method for Linear Programming (LP) always terminates on a so-called basic solution, which
is actually a vertex [Bertsimas 1997]. We propose therefore to solve LPs of the form

minimize
xi,πNi

γT
[
xi
πNi

]
s.t. Ei

[
xi
πNi

]
≤ di,

(3.1a)

(3.1b)

for randomly chosen directions γ ∈ R6+2N+2m, will provide a random selection of vertices

of FNi (T). Instead of projecting each vertex FNi (T) onto K1|N
i (T), we decided to choose
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Figure 3.2: Representations of the closed convex polytopes FN
i (T) and K1|N

i (T), and SRF definition
with time-varying constraints.

(a) The polytope FN
i (T), defined in (2.59), and

its projection K1|N
i (T) defined in (2.60).

(b) SRF, Definition 2.4.1 with time-varying con-
straints.

randomly the entries of γ that multiply (xi,κ1) and set to zero the others. And SRF is
checked simply verifying, with each vertex found, that the following LP

minimize
πNi+1

ψTπNi+1

s.t. Ei+1

[
Axi +Bκ1

πNi+1

]
≤ di+1,

(3.2a)

(3.2b)

has a solution for any direction ψ ∈ R2N+2m, chosen arbitrarily. This is a randomized
approach (random shooting) which cannot guarantee to enumerate all the vertices, so it can
only provide a numerical evidence.

3.5 SRF with the capturability terminal constraint

In our MPC framework, when the robot wants to continue walking, a new step appears at
the end of the planning horizon cyclically. It is sufficient to check SRF not for all time, ∀i,
but only for that moment. We indicate the time before and after the appearance of a new
step at the end of the planning horizon, tk and tk+1, respectively in Fig. 3.1a and in Fig.
3.1c. We investigate the SRF guarantee for several planning horizons lengths, N . Depending
on N , there are 3 possible walking moments from time tk to tk+1:

1. At time tk the robot starts the DS phase, and tk+1 the robot ends the DS phase.

2. At time tk the robot is in SS phase, and at time tk+1 the robot starts the DS phase.

3. For both time tk and tk+1, the robot is in SS phase.
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These cases are represented in Figure 3.3. In the MPC scheme, at time tk, the 3 different

projections K1|N
k (T) are:

1. tk = tsDS , where K1|N
sDS , {(x,κ1)} ∈ R10, κ1 = [ṗ(k|k), s

pc
k ]>.

The foot position sck is fixed but we explore all the possible DS phases the robot can
start, using spck as decision variable.

2. tk = teSS , where K1|N
eSS , {(x,κ1)} ∈ R10, κ1 = [ṗ(k|k), s

f
k(1)]>.

We have sck = spck and the first future adjustable step sfk(1) defines all the possible DS
phases the robot can start at time tk+1.

3. tk = tSS , where K1|N
SS , {(x,κ1)} ∈ R8, κ1 = ṗ(k|k).

We have sck = spck .

At time tk+1:

1. sc is updated with spc: sck+1 = spck

2. spc is updated with sf (1): spck+1 = sfk(1)

3. spck+1 = spck and sck+1 = sck.

Figure 3.3: Representation of the 3 possible walking moments at time tk and tk+1.

(a) At time tk the robot starts the DS phase,
and tk+1 the robot ends the DS phase.
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(b) At time tk the robot is in SS phase, and at
time tk+1 the robot starts the DS phase.
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(c) For both time tk and tk+1, the robot is in
SS phase.
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Table 3.3: Numerical results from randomly selected vertices of SRF in MPC of biped walking.

(a) Numerical results with the capturability terminal constraint.

N
Steps
ahead

Set FNk (T) Projection K1|N
k (T) Vertices (xk,κ1)

SRF
cstr dim R(·) K1|N

sDS K1|N
SS K1|N

eSS ∃πNk+1 @πNk+1

8 1 90 26 x 523 522 No
9 94 26 x 1074 753 No
10 110 30 x 470 205 No
11 118 32 x 398 195 No
12 126 34 x 338 149 No
13 134 36 x 358 113 No
14 142 38 x 374 0 Yes
15 150 40 x 390 0 Yes
16

2

166 44 x 1246 0 Yes
17 170 44 x 3465 0 Yes
18

3
186 48 x 2123 0 Yes

(b) Vertices verification with the capturability terminal constraint.

N
Vertices (xk,κ1) for ∃πNk+1 Vertices (xk,κ1) for @πNk+1

Original Verified Original Verified

8 523 363 522 362
9 1074 1074 753 753
10 470 316 205 134
11 398 380 195 186
12 338 196 149 80
13 358 329 113 66
14 374 165 0 0
15 390 285 0 0
16 1246 495 0 0
17 3465 3461 0 0
18 2123 638 0 0

(c) Numerical results without the capturability terminal constraint.

N
Steps
ahead

Set FNk Projection K1|N
k Vertices (xk,κ1)

SRF
cstr. dim R(·) K1|N

sDS K1|N
SS K1|N

eSS ∃πNk+1 @πNk+1

14 140 38 x 36 220 No
15 148 40 x 50 219 No
16

2
164 44 x 5 59 No

17 168 44 x 0 826 No
18

3
184 48 x 5 199 No
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3.5.1 Numerical evidence from randomly selected vertices

At time tk, three million vertices were found with (3.1) by choosing three million random di-
rections γ. Within this set of vertices, many of them were duplicates, thus removed. There is
no strong reason behind the choice of three million since it is a randomized shooting approach
and the search of all vertices can never be said <concluded>. So we chose a reasonably high
number. Successively, the LP (3.2) was used to check a feasible solution for each vertex
at time tk+1. This process was repeated for several horizon lengths N ∈ {8, 9, · · · , 17, 18}.
MATLAB R2016a was used to run the linear programming problems (3.1) and (3.2) with the
linprog function (simplex method). The results of this numerical approach are summarized
in Table 3.3a.

The system can become infeasible when the robot is not planning to stop and consider
to make a new step in the near future, e.g. when planning a full step cycle (N = 8). As the
horizon length increases, the robot can plan 2 steps ahead: N ∈ {9, · · · , 12, 13}, but we still
do not guarantee the feasibility of the system when the robot considers to make a new step.
We obtained a numerical evidence that the system remains feasible when the robot plans
with: N ∈ {14, 15}, when the robot plans a full gait cycle N = 16 and when the robot starts
planning 3 steps ahead: N ∈ {17, 18}.

Fk(T) dimension As a side note, when passing from 1 to 2 steps ahead (or from 2 to 3 steps
ahead), the dimension of Fk(T) does not increase. When N = 8 (1 step ahead), the decision
variables are: the state of the robot x, the control sequence πN and spc. When passing
to N = 9 (2 steps ahead), the planning horizon is increased, but the number of adjustable
steps m does not, and we lose the decision variable spc. So the dimension of Fk(T) remains
unchanged.

3.5.2 Vertices verification

In theory, the simplex method for LP always terminates on a vertex. In practice, we want
to verify that the LP always terminated on a vertex. We want to understand how many
solutions are actually vertices.

Each vertex is verified with the following procedure. Suppose you have a point v that
belongs to a polytope of dimension n, with inequality and equality constraints. An inequality
constraint that becomes an equality constraint for that point v is said to be active (equality
constraints are always active). If there are at least n linearly independent constraints that
are active for v, v is a vertex.

Take the set of vertices V found with the numerical evidence, Section 3.5.1. Each vertex
v ∈ V has dimension D: dimension of FNk (T). From the set of constraints (3.1b), we do

w = Ekv − dk (3.3)

and we look for the number of zero (absolute value is smaller than 10−8) elements of w.
These elements identify a set of linear active constraints from (3.3):

Acstr v = bcstr. (3.4)

If there are at least D linearly independent active constraints:

rank(Acstr) = D, (3.5)

where rank performs a singular value decomposition and returns the number of singular
values of Acstr that are larger than 10−11, then we confirm v as a vertex.
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We repeated this process for each N and we summarized the results in Table 3.3b. For
each N we found at least a vertex that did not pass the test. When N = 18 for example,
up to 70% of the vertices did not pass the test. However, after this verification, we have the
same binary answers: SRF is guaranteed for the planning horizon lengths N ∈ {14, · · · , 18}.

3.6 SRF without the capturability terminal constraint

Without the capturability terminal constraint, the system is no longer feasible indefinitely by
construction. And, when the planning horizon advances, even when a new step is not added
in the planning horizon (Fig. 3.1b), we do not know if the system remains feasible. With
sufficiently long planning horizon N , we have implicitly the equivalent of a terminal con-
straint [Boccia 2014, Grüne 2012], but we can’t know how long is “sufficiently long” without
testing numerically.

We used the same numerical test as in Section 3.5.1 (with the vertex verification in
Section 3.5.2). This time we only chose 10.000 random directions for γ. We obtained a
numerical proof that SRF is not guarantee for the set of horizon lengths N ∈ {14, · · · , 17, 18}
without the capturability terminal constraint, see the results in Table 3.3c. The horizon
length N = 18 is yet not “sufficiently long” to guarantee SRF. Hereby, we list several
important aspects of this result:

• it is sufficient to check SRF not for all time, ∀i, but only for the step cycle (even when
a new step is not added in the planning horizon). Since we found at least 1 vertex
that was not a feasible solution at time tk+1 (when a new step is added in the planning
horizon), we obtained a numerical proof that SRF is not guaranteed. Thus, we do not
need to run the test for all other times of the step cycle.

• we did not need to run the test for the planning horizon lengths N ∈ {8, 9, · · · , 12, 13}.
Because the polytope FNk without the terminal constraint contains the polytope with
the terminal constraint

FNk (T) ⊆ FNk , (3.6)

and with both our approaches, we have already a numerical proof that SRF is not
guaranteed for those horizon lengths N , see Tables 3.3a.
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3.7 Discussion

Hereby, we discuss on few aspects of this contribution, and possible future directions.

3.7.1 Providing a numerical proof

The Multi-Parametric Toolbox (MPT) [Herceg 2013] uses algorithms found in the literature
to enumerate vertices. The vertex enumeration can be delegated to an external CDD solver,
wrapped in the toolbox that use the double description method [Fukuda 1996]. We tested
this toolbox on our polytopes, but they have a very large dimension and vertex enumeration
became complicated. In Table 3.4a we report the results from the toolbox. We verified the
results as it was done in Section 3.5.2 (Table 3.4b). And in Table 3.4c we compared the
results found with our approach and the toolbox. Sometimes the total number of vertices
found by the toolbox were less than the vertices found by our numerical approach, and for
some horizon length the toolbox gave us completely different results. For example when
N = 10, the toolbox did not find any vertices for which ∃πNk+1. The toolbox could not
compute a projection for N > 15. From this toolbox however we used .isBounded function
to verify that all the polytopes were actually closed: for all N tested (with and without
terminal constraint), we obtained a positive answer.

Preliminary results with MPT We represent the polytope FNi by half-plane description[1].

We project it onto K1|N
i and we enumerate the vertices. The projection is done using the

Fourier-Motzkin Elimination: it is numerically robust for polytopes of large dimension, and
for enumerating vertices we use the double description method [Fukuda 1996]. Each vertex
is used to check SRF by simply verifying that the LP (3.2) has a solution (at time ti+1). MPT
was used to build polytopes, project them and enumerate the vertices of the projection, see
Algorithm 1. The vertex enumeration is done by the external CDD solver, wrapped in the
toolbox. MPT tries to enumerate all vertices, providing numerical proof.

Algorithm 1 Vertices enumeration with MPT

1: FNi = polyhedron(Ei,di)

2: K1|N
i = (FNk ).projection(dim, ’ifourier’);

3: (xi,κ1) = (K1|N
i ).computeVRep();

1A polytope P is represented in half-plane description as: P = {x |Ax ≤ b,Aex = be}.
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Table 3.4: Preliminary results with MPT-3 of SRF and comparison with our numerical approach.

(a) Numerical results from MPT-3 toolbox of SRF.

N
Set FNk Projection K1|N

k Vertices (xk,κ1)
SRF

cstr dim R(·) cstr dim R(·) ∃πNk+1 @πNk+1

8 90 26 22 10 768 768 No
9 94 26 25 10 1536 1024 No
10 110 30 17 8 0 224 No
11 118 32 24 8 512 256 No
12 126 34 22 8 384 192 No
13 134 36 21 8 384 96 No
14 142 38 21 8 480 0 Yes
15 150 40 21 8 320 0 Yes

(b) Vertices verification from MPT-3.

N
Vertices (xk,κ1) for ∃πNk+1 Vertices (xk,κ1) for @πNk+1

Original Verified Original Verified

8 768 768 768 768
9 1536 1536 1024 1024
10 0 0 224 0
11 512 512 256 256
12 384 384 192 192
13 384 384 96 96
14 480 480 0 0
15 320 320 0 0

(c) The verified vertices v from numerical evidence (NE) and MPT are compared. A vertex is identical
(or ID) if the absolute value of each element in vNE − vMPT-3 is smaller than 10−8.

N
Vertices (xk,κ1) for ∃πNk+1 Vertices (xk,κ1) for @πNk+1

EVID PR ID EVID PR ID

8 363 768 61 362 768 64
9 1074 1536 270 753 1024 183
10 316 0 0 134 0 0
11 380 512 330 186 256 112
12 196 384 178 80 192 61
13 329 384 312 66 96 53
14 165 480 165 0 0 0
15 285 320 285 0 0 0

3.7.2 Ongoing research with the capturability terminal constraint

In the literature of MPC for biped robots, many applications are successful without captura-
bility constraint [Dune 2011, Kajita 2003, Agravante 2016]. Successful applications explored
only feasible states that were viable. So what kind of improvements the capturability
constraint bring to the MPC scheme? First, a capturability constraint guarantees captura-
bility, i.e. the ability to stop. Second, the capturability constraint implies viability. When
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the robot plans to stop in a fixed number of steps, the constraint guarantees SRF for all
planning horizon lengths. In case of sudden plan change: when the robot considers to make
a new step at the end of the horizon, SRF is yet guaranteed but not for all horizon lengths.
An MPC scheme with capturability constraint is more reliable in balance preservation and
we provided several planning horizon lengths (relatively small) to achieve SRF in case of
sudden plan change.

The capturability constraint has been recently extended for walking up stairs [Pajon 2019]
or for compensating potential perturbations [Villa 2019b]. However, both cases lack an evalu-
ation of the issue highlighted in this Chapter, so we do not know for which horizon lengths SRF
is actually guaranteed when the robot considers to make a new step at the end of the horizon.
An important contribution to recursive feasibility using a capturability terminal constraint
is proposed in [Scianca 2020]. It differs from our approach in the followings:

• they generate walking motions with 2 MPC schemes: the first one generates candi-
date step positions, and the second generates the CoM/CoP trajectories (based on the
candidate step positions).

• they do not use the kinematic constraints (2.43) applied to the CoM.

• they impose a fixed CoP position after the end of the horizon, in the middle of the
support polygon.

And they propose an analytical solution that provides a lower bound on the horizon length N
for which recursive feasibility is guaranteed for the second MPC. The lower bound depends
on kinematic capabilities of the robot, e.g. size of the feet and height of the CoM, and
postulate an upper bound on the CoP velocity. We would like to work in this direction since
an analytical solution of this kind is quickly adaptable for the MPC of any biped robots.
Currently, if we change any parameters of the robot, we need to re-evaluate SRF for all
horizon lengths. Finally, we want to study the SRF guarantee also when adjusting footstep
orientation and step cycle duration all together in a single MPC [Bohorquez 2018a].

3.8 Conclusion

We investigated the SRF guarantee in MPC for biped walking. We showed that with the cap-
turability terminal constraint this guarantee is achieved for horizon lengths N ∈ {14, · · · , 18}.
Without this constraint, the guarantee is lost for all tested lengths. It is then profitable to
include the capturability terminal constraint in the MPC scheme to guarantee capturability:
the robot is then able to stop in finite time, and guarantee SRF.



Chapter 4

Motion Safety

Figure 4.1: Representation of a biped robot (HRP-2) in a dense crowd.

4.1 Introduction

We want biped robots to navigate safely in close proximity of people and in this work we focus
on a biped robot walking in a dense crowd, represented in Figure 4.1. Navigate among people
is challenging since their future behavior can be difficult to predict. Therefore environments
shared with humans can be categorized as dynamic and uncertain environments.

Before placing biped robots in a real crowd, we need to evaluate the performance of their
physical capabilities in a simulated scenario. This should potentially feature both fixed and
moving people whose future behavior is unknown and we should limit the sensors of the
simulated robot to provide a partial knowledge of its surroundings. In this work we are
interested in the robot’s capability to avoid collisions, i.e. its motion safety. A collision is
avoided if the robot respects some kind of thresholds or bounds applied to the motion that
will execute, e.g. minimum distance from people. The robot therefore needs to anticipate
people behaviors, i.e. modeling their future behavior, and to render explicit these bounds.

In this Chapter, we describe how we model a simulated dense crowd as well as how to
model their future behavior (Section 4.2). Then we explain the sensors of the robot and

34
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how it perceives people, with relative perception errors (Section 4.4). We define collisions
with a physical description of the simulated robot and people in Section 4.3. We extend the
model predictive control scheme of biped walking for safe navigation purposes among people
(Section 4.5): we include collision avoidance constraints and navigation objectives. For a
robot moving in a crowd, there are situations where collisions are inevitable: limited physical
capabilities and limited knowledge of the future do not help in this regard (Section 4.5.4).
Our model predictive control scheme addresses this issue by guaranteeing the robot is at rest
before a collision occurs, this is called passive motion safety (Section 4.5.4).

4.2 Crowd

4.2.1 Behavior

One possible crowd behavior could be that every person is very careful in trying to avoid
collisions with the robot, i.e. cooperative (or joint) collision avoidance [Trautman 2010,
Althoff 2012, Silva 2018]. This scenario relates to human aware navigation [Kruse 2013] that
focuses on socially acceptable and legible robot behaviors, rather than explicitly solving the
collision avoidance problem. In fact, this can lead to a strong bias on the evaluation of the
robot’s motion safety with potentially no collisions ever happening what and would not be
very meaningful [Fraichard 2006].

Another extreme could be a crowd specifically aiming at collisions with the robot. This
scenario represents a hostile or adversarial environment to the robot, that was actually ob-
served in many case studies where children persistently obstructed the robot’s activity in a
shopping mall in Japan [Brscić 2015]. This scenario also focuses on socially acceptable be-
haviors and it would corrupt the evaluation of the robot’s motion safety, e.g. only collisions,
and would not be very meaningful.

One way to evaluate the robot motion’s safety capabilities and the robot’s motion safety
capabilities alone, could be to consider that the robot is actually the only one in charge to
avoid collisions [Bohorquez 2016, Wu 2012, Bouraine 2014]. Colloquially the crowd can be
said inattentive or moving blindly, in that it does not account for the presence of the robot.
This scenario can also be adopted for benchmarking purposes. In [Liu 2017, Cao 2019] a robot
was simulated in a human environment where human-trajectories were played from public
datasets of real pedestrian crowds, e.g. from CVL lab [Pellegrini 2009] (Zurich) or from
UCY lab [Lerner 2007] (Cyprius), so people appeared to walk inattentive to the presence of
the robot. The set of human-trajectories however can be limited to the number of crowd
recordings.

In this thesis, we decided to work with this inattentive crowd scenario. To fully consider
the crowd inattentive, people will (also) not try to avoid each other, i.e. collisions among
people are disregarded. Since people are not aware of their surroundings and do not actively
avoid collisions with the robot or with each other, we assume that they walk at a constant
velocity.

4.2.2 Pedestrian model

Since the future behavior of people can be difficult to predict, modeling pedestrians is chal-
lenging. Motion models are usually built from analyzing human movement. Some of the
sophisticated models analyze human intention [Grasso 1998], which are usually highly com-
plex, and walking gait [Laumond 2017, Bissacco 2009]. Motion capture technology has been
used to record several human trajectories and they were found to obey a simple nonholo-
nomic system, i.e. the unicycle model [Arechavaleta 2008], which has been used for motion
prediction [Batkovic 2018, Schneider 2013]. In the scenario where pedestrians do not change
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their walking orientation, e.g. no turning maneuvers, it is then possible to describe their
motion with a basic motion model: a single or double integrator [Kooij 2014, Cao 2019].

Since the crowd is assumed to walk blindly, with respect to the robot and each other,
their motion can be chosen arbitrarily. We consider the case where each person follows a
straight trajectory (different from person to person), e.g. people crossing a road on a zebra
cross. With this choice, we model each pedestrian with a double integrator model. Let the
state of the model for the j-th person in a 2D space be:

ηj =
[
zj żj

]>, (4.1)

where zj ∈ R2 is the person position and his velocity żj ∈ R2. We have then the following
LTI system:

η̇j = Σ1η
j + Σ2z̈

j , (4.2)

where

Σ1 = diag
2

([
0 1
0 0

])
, Σ2 = diag

2

([
0
1

])
. (4.3)

In discrete time, using the discretization explained in Section 2.2.2, we have

ηji+1 = Γ1η
j
i + Γ2z̈

j
i , (4.4)

where

Γ1 = diag
2

(
eΣ1T

)
= diag

2

([
1 T
0 1

])
, (4.5)

Γ2 = diag
2

((∫ T

0
eΣ1tdt

)
Σ2

)
= diag

2

([
T 2

2
T

])
. (4.6)

4.2.3 Model of the future

Modeling the environment’s future behavior, e.g. the pedestrian’s future behavior, is one
of the safety criteria presented in [Fraichard 2006], crucial for robot motion safety. The
robot therefore needs a model that anticipates the motion of people to avoid collisions
in the present and into the future. Models of the future broadly fall into three classes:
deterministic, conservative and probabilistic (Figure 4.2).

Deterministic models are used when future motions are known beforehand. From a
motion safety point of view, deterministic models are useful as long as their prediction of
the future evolution of the environment is reliable. Unfortunately, for a crowd of people it
is impossible to know beforehand what people will do next. Probabilistic and conservative
models address this issue.

There are two popular methods to build probabilistic models. One method consists
in two stages. A first stage of “learning”: observe the environment (through sensors)
in order to identify and model possible motion patterns or plans. And then a second
stage of “prediction”: learned patterns are used in order to predict future motions. These
models aim to improve the accuracy of the prediction (to be as close as possible to the real
motion) [Ellis 2009, Chen 2016, Keller 2014, Vasquez Govea 2009] for a long time horizon
(≈ 5 − 7s) [Ellis 2009, Chen 2016], but the general drawbacks is the high computational
complexity that comes from the “learning” stage [Keller 2014].
A second method is to use stochastic transition function to describe motion patterns. A prob-
abilistic model is obtained for example through an Extended Kalman Filter [Kushleyev 2009].
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Figure 4.2: Modeling the future in 1D space. Deterministic model (gray lines): future motion is
known and available beforehand. Conservative model (represented by the gray area):
we consider all the possible future motions. Probabilistic model (represented by a gray
gradient): bound a probability distribution on pedestrian future occupancy.

t

Deterministic model Conservative model Probabilistic model

The model takes the current measurement of pedestrian position and/or velocity, and it
assumes the pedestrian will follow a certain behavior, e.g. maintains constant motion, at
all future times. A probability of pedestrian (physical) occupation is assigned along the
predicted model. A Gaussian noise can represent the probability distribution, with an
increasing variance value across time representing the uncertainty of the prediction. The
probability distribution is bounded up to two standard deviations from the mean (95% of
the normal distribution). The future occupancy within the bound is considered reliable
for motion safety purposes [Bautin 2010, Althoff 2010]. The uncertainty will grow with
time and, at some point, the distribution will be so wide, that will occupy the entire
space. While the uncertainty grows, the probability of pedestrian occupancy diffuses, i.e.
flattens, and eventually cancels out: the pedestrian “disappears” from the whole space. So
pedestrian’s future trajectories are predicted until the probability of pedestrian occupancy
flattens [Kushleyev 2009].

Conservative models simply consider all the possible pedestrian’s future trajectories.
Accordingly, each pedestrian is assigned a reachable set, i.e. the set of positions it can
potentially occupy in the future, to represent its future motion [Bouraine 2014, Liu 2017]. In
general, the computational complexity is relatively low since these models do not pass from
any “learning” phase and use few observations about the pedestrian, e.g. their estimated
current position. All the pedestrian (physical) occupation along the predicted model is
assumed to be reliable for motion safety purposes and it is based on some sort of bounded
behavior assumption. For example: each person’s motion is limited by a maximum walking
speed in any direction. Once decided this bounded behavior, there can be a time in which
the monotonous growth of the region occupied by the pedestrian is such that, eventually,
the whole space will be that region. Accordingly, after this time any motion would not be
safe, so pedestrian’s future trajectories are predicted no further than that time.

Probabilistic or conservative models? It is a crucial question. The common factor is
that both deal with parameters that are constrained within certain bounds, i.e. on the



38 CHAPTER 4. MOTION SAFETY

uncertainty distribution or on the assumed behavior. Since any form of motion safety will
always be guaranteed with respect to certain bounds, we could choose independently one of
these two models. In this work, we choose a conservative model to anticipate a pedestrian’s
future behavior. In our crowd scenario: (i) people walk at a constant velocity and they do
not try to avoid the robot and (ii) collisions among people are disregarded (see Section 4.2.1).
The robot uses these information to anticipate the motion of people.

The assumption that people walk at a constant velocity, i.e. accelerations equal to zero,
determines the anticipative motion of the j-th person computed at time ti for N time instants:

∀k ∈ {1, · · · , N}, z̈j(i+k−1|i) = 0. (4.7)

If not for our crowd scenario only but in general, this is a strong assumption on the
anticipative motion. We claim however that this is valid when the future behavior is
anticipated for about one or two seconds (≈ 1− 2s).

It is then possible to describe a pedestrian’s future position by evolving for example the
state ηi for N -times following the dynamics (4.4) with assumption (4.7):

z̄ji = diag
N

(Iz) (U5η
j
i ), (4.8)

where z̄i ∈ R2N

z̄i = {zj(i+1|i), · · · , z
j
(i+N |i)}, (4.9)

and

U5 =
[
Γ1 Γ2

1 · · · ΓN1
]>, (4.10)

with Iz ∈ R2×4 a selection matrix to extract the person position from the state.

4.3 Physical attributes and interactions

4.3.1 Biped robot and people

The biped robot occupies an area defined by a circle of ray Drobot. Let A be the area occupied
by the robot’s body when the CoM is at position c (area in gray, Figure 4.3a)

A , ball(c, Drobot), (4.11)

where

ball(xc, R) , {x | ‖x− xc‖ ≤ R}. (4.12)

As for humans, each person occupies an area defined by a circle [Liu 2017, Bohorquez 2016,
Bouraine 2014]. Consider a crowd composed of Z pedestrians. Let Bj be the area occupied
by the jth person as a circle of radius Dperson (area in blue, Figure 4.3a). Given the position
of the person, zj , this space is:

Bj , ball(zj , Dperson). (4.13)

Let B be the space occupied by all Z pedestrians in a crowd:

B =
⋃

j∈{1,··· ,Z}

Bj . (4.14)
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Figure 4.3: Physical 2D modeling of the biped robot (and its perception) and the person.

(a) The figure shows the areas occupied by the biped robot and a person: these areas are circles.
The position c is the center of the robot circle with ray Drobot. And zj position is the center of
the person circle with ray Dperson. We consider “no contact” between these two areas as long as
‖c− z̃j‖ ≥ Drobot +Dperson. Finally, the FoV of the robot is a circle centered in c with Rmax as
ray: the maximal distance around the robot at which it is capable of perceiving people.

Drobot
Dperson

c
zj

Rmax

(b) The figure shows the uncertainties in position and velocity estimations of a person (ẑj , ˆ̇z
j
) with

respect to the real position zj and velocity żj .

zj ̂zj

̂·zj

·zj

4.3.2 Collision

In the crowd scenario, we are interested in identifying a physical contact event between a
human and the robot, i.e. a collision. We say that a biped robot is in collision if

A ∩ B 6= ∅. (4.15)

The minimum safe distance (no contact) is

σ0 = Drobot +Dperson. (4.16)

Collisions between pedestrian body and robot feet are disregarded.

4.4 Robot’s perception

4.4.1 Field of View

We consider a biped robot equipped with a range sensor, e.g. laser telemeter or range
camera, and it can only perceive a subset of agents that surrounds it. This subset is the
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robot’s FoV. Its shape is arbitrary and it depends on the current surrounding of the robot
and the maximum range of its sensor. Occlusions in perception are disregarded, making the
robot aware of the current position of everybody within the FoV.
In our case, the FoV has a circular shape centered in c and Rmax is the maximal distance
around the robot at which it is capable of perceiving people composing the crowd (area in
yellow, Figure 4.3a). The jth person in the crowd is inside the FoV if

Bj ∩ ball(c, Rmax) 6= ∅. (4.17)

4.4.2 Perception uncertainties

We consider uncertainties in position and velocity estimations of the crowd with respect to
the real position zj and velocity żj (showed in Figure 4.3b):

z̃j = zj − ẑj , ˜̇z
j

= żj − ˆ̇z
j
. (4.18)

4.5 MPC-based safe biped navigation in a crowd

The MPC scheme in Section 2.4.2 generates a walking motion online with automatic footstep
placement. We included a capturability terminal constraint (2.66) to ensure the robot’s ability
to stop in a finite time and maintain its balance. In this section we expand this scheme to
navigate safely in a crowd.

4.5.1 Collision avoidance with the crowd

In this work, the robot avoids collisions by not entering the circle occupied by each person.
For the j-th person,

c(i+k|i) − z
j
(i+k|i) /∈ ball(0, σ(i+k|i)), (4.19)

this is a nonlinear, non convex constraint. Let σ(i+k|i) be the minimal distance between the
center of the j-th person and the CoM of the robot planned for time ti+k. Then it follows
that (4.19) can be represented by the Euclidean distance as:

nj(i+k|i) (c(i+k|i) − z
j
(i+k|i)) ≥ σ(i+k|i), (4.20)

where nj(i+k|i) ∈ R2 is a unit normal vector that points from the center of the j-th person to
the CoM of the robot:

nj(i+k|i) =
(c(i+k|i) − z

j
(i+k|i))

>

‖c(i+k|i) − z
j
(i+k|i)‖

, (4.21)

and we want to impose this constraint along the planning horizon

n̄ji = {nj(i+1|i), · · · ,n
j
(i+N |i)}. (4.22)

The separation distance σ includes perception uncertainties (see Section 4.4.2) as “additional
safety distance”:

σ(i+k|i) = σ0 + ‖z̃j‖+ ‖˜̇zj‖ (Tk). (4.23)

Given the magnitude of the uncertainty in position ‖z̃j‖, we consider that the real position zj

lies in a circle of radius ‖z̃j‖ centered at the estimated position ẑj . Furthermore, given

the magnitude of the uncertainty in velocity ‖˜̇zj‖, the radius of this circle increases at a

rate ‖˜̇zj‖ (Tk) as it moves with the estimated velocity ˆ̇z
j
. We discuss important aspects

about the area defined by the magnitude of the uncertainty in Section 4.5.2.
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The CoM of the robot is restricted to a moving half-space H [Boyd 2004, Section 2.2.1]:

c(i+k|i) ∈ H(nj(i+k|i), z
j
(i+k|i), σ(i+k|i)), (4.24)

where
H(n,o, R) , {r : nT (r − o) ≥ R}. (4.25)

Note that nj(i+k|i) is a nonlinear expression for the variables c(i+k|i) and zj(i+k|i). Since c(i+k|i)
depends on the decision variables, (4.24) is a nonlinear constraint. When T is small enough,
n from the ith computation of the MPC does not differ too much from n obtained in the
previous (i− 1)th computation

lim
T→0
‖nj(i+k|i) − n

j
(i+k−1|i−1)‖ = 0, (4.26)

and we can use it to approximate the original constraint and obtain a completely linear
formulation as

nj(i+k−1|i−1) (c(i+k|i) − z
j
(i+k|i)) ≥ σ(i+k|i), (4.27)

and impose it along the planning horizon:

∀k ∈ {1, · · · , N}, c(i+k|i) ∈ H(nj(i+k−1|i−1), z
j
(i+k|i), σ(i+k|i)). (4.28)

This approximation is safe with respect to the nonlinear problem because it is an outer ap-
proximation to the left-hand side of the inclusion (4.19). We impose the constraint (4.28)
along the evolution of the robot position ci (2.27), using the evolution of each person posi-
tion zji (4.8) appearing inside the FoV.

This half-space method comes at a very low computational cost and it has been success-
fully applied to industrial robots [Al Homsi 2016]. The constraint (4.28) allows to ensure,
at each time instant ti, a separation between robot and people, i.e. no collision. When
generating a collision-free motion, ensuring that collisions are avoided at each ti does not
guarantee continuous collision avoidance: that there is no collision during each time inter-
val (ti, ti+1), i.e. between samples. In this work, it is assumed that avoiding collisions at
time ti and ti+1 implies to avoid collisions between samples. It is however possible to en-
force an additional set of collision avoidance constraints (4.28) in between samples, similar
to (2.58) [Brossette 2017, Zheng 2020]. Continuous collision avoidance (between samples) is
also guaranteed in [Mercy 2016] with (4.24) by B-spline parametrization of the CoM motion.
The parametrization however restricts the set of possible motions.

4.5.2 Conservativeness in time

We consider that the real position zj lies in a circle of radius ‖z̃j‖ centered at the estimated
position ẑj . For this reason, the area Bj occupied by the jth person (4.13), is somewhere
inside an area called Wj(t)

Bj ⊆ Wj(t). (4.29)

The estimated position of the jth person ẑj walking with the estimated speed ˆ̇z
j

at time t
occupies the area Wj(t). This area is modeled as a circle with a radius that accounts for

Dperson and robot’s perception errors, (‖z̃j‖,‖˜̇zj‖),

Wj(t) , ball(ẑj + ˆ̇z
j
t , Dperson + ‖z̃j‖+ ‖˜̇zj‖ t). (4.30)

We call this area unsafe zone because there is a person inside but the robot does not know
exactly where. Let W be the unsafe zone occupied by the estimation of all Z pedestrians in
a crowd:

W(t) =
⋃

j∈{1,··· ,Z}

Wj(t). (4.31)
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Figure 4.4: Representation of the unsafe zone and its conservativeness in time.

(a) The unsafe zone Wj(t) is an area where there is a person (Bj) inside it but the robot does not
know exactly where the person is. The unsafe zone is modeled as a circle with a radius that

accounts for Dperson and robot’s perception errors, (‖z̃j‖,‖˜̇z
j
‖). The figure shows Wj(0).

zj

̂·zj ∥z̃j∥ + Dperso n

·zj ̂zj

(b) The figure shows in 1D space how the monotonous growth of Wj
(i+k|i) is updated (or reset) at

each computation time when we gather a new estimate of the person’s position (in this case the

estimate in velocity ˆ̇z
j

is 0). As a consequence, each predicted unsafe zone computed at time
ti fits always inside the one re-computed at time ti+1. In blue, the area Bj occupied by the jth

person is somewhere inside Wj .

ti

ti+ 1

ti+ N

ti+ N+ 1

zj
i+ 1

∥z̃j∥ + Dperso n

̂zj
izj

i

⋯

̂zj
i+ 1

Wj
(i+ 2|i+ 1)

Wj
(i+ 1|i)

Wj
(i+ 2|i)

t

so we have:

B ⊆ W(t). (4.32)

In our discrete-time model implementation, let Wj
(i+k|i) be the unsafe zone computed at

time ti and predicted for time ti+k as

Wj
(i+k|i) , ball(ẑji + ˆ̇z

j

i (Tk) , Dperson + ‖z̃j‖+ ‖˜̇zj‖ (Tk)). (4.33)



4.5. MPC-BASED SAFE BIPED NAVIGATION IN A CROWD 43

The radius of this circle increases at a rate ‖˜̇zj‖ (Tk) as it moves with the estimated veloc-

ity ˆ̇z
j
. The monotonous growth of Wj however is updated (or reset) at each computation

time when we gather a new estimates of the person’s position and velocity. As a consequence,
each predicted area computed at time ti fits always inside to the one re-computed at time
ti+1. In general we have:

Wj
(i+k|i+k) ⊆ W

j
(i+k|i). (4.34)

In Figure 4.4 we represent these 2 properties (4.29) and (4.34) of Wj . The prediction of the
unsafe zone is always reduced at each computation time: it cannot be bigger than before.

4.5.3 Optimization

We would like a feasible walking motion to minimize the deviation from a set of objectives.

Objectives

On the balance front, we want to keep the CoP as close as possible to the center of the foot
on the ground along the planning, to improve the robustness of the robot against perturba-
tions [Wieber 2006a], such as possible collisions. We could furthermore minimize the CoM
jerk component to improve fall avoidance of the biped robot [Kajita 2003], but we addressed
this issue (maintain balance) with the capturability terminal constraint (2.66).

On the collision front, when the robot is traversing the crowd, the objectives can fall on
a wide spectrum. We can focus on sociability (adherence to explicit high-level socio-cultural
conventions), on comfort (absence of annoyance and stress for humans), and/or naturalness
(robot tries to mimic human behaviour patterns). Most of these objectives take into account
some common sense rules and comply with social conventions. We could for example use a
repulsive potential function [Khatib 1985], where the repulsive force applied to the robot is
based on social forces: a measure for the internal motivation of the individuals to perform
certain movements [Helbing 1995]. The robot could additionally try to walk at a comfortable
distance from each person: same concept of collision avoidance constraints, but as a reference
function [Bohorquez 2018a]. Last, but not least, a penalty function can be used to respect a
desired social norm [Chen 2017], e.g. “passing a person on the right”, breaking the collision
avoidance symmetry problem[1].

In this work however, we are only interested in the robot’s motion safety and not in
socially acceptable behaviors. For this reason, we can either ask the robot to reach a desired
location or to follow a desired walking speed ċref. Whatever choice of these objectives, they
should make the robot traverse a moving crowd (to evaluate its motion safety). We choose
the robot should walk at a certain walking speed.

The objective on the balance front (CoP as close as possible to the center of the foot)
and the objective to make the robot traverse the crowd (follow desired walking speed) are
expressed as a convex quadratic function of the form (2.53) (see [Herdt 2010] for details):

fw(πNi ) =
N∑
k=1

(
‖ċref − ċ(i+k|i)‖2 + ‖p(i+k|i) − s(i+k|i)‖2

)
. (4.35)

1When there exists at least two equally efficient ways to avoid a collision, such as overtaking a person on
the right or on the left.
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The MPC scheme computes a motion by solving the following QP:

minimize
πNi

fw(πNi )

s.t.


physical constraints (2.57)-(2.58),

terminal constraint (2.66),

collision avoidance constraints (4.28).

(4.36a)

(4.36b)

Newton step

While the linear approximation in (4.28) is safe with respect to the nonlinear problem (4.19),
it might over-constrain the robot’s behavior. To overcome this problem, to treat collision
avoidance as a nonlinear problem, we apply a Newton method [Nocedal 2006] each time we
solve the QP (4.36). At the ith computation, the QP is solved iteratively to reduce the
collision avoidance approximation. Let n̄ji,k the sequence of normal vectors of the j-th person
at iteration k. This is updated with the optimal solution of the previous iteration k − 1,
π∗i,k−1, and the iteration process stops when:

‖π∗i,k − π∗i,k−1‖ ≤ ε. (4.37)

The maximum number of iterations is set to max Iter and ε is chosen arbitrarily small: order
of one thousandth. We summarize this procedure in Algorithm 2. Thanks to the safe linear
approximation of (4.19), feasible iterates are always generated. If we do not satisfy (4.37)
after max Iter iterations, we can however use the solution π∗i,max Iter since it is feasible.

Algorithm 2 Netwon Step for the j-th person

Require: n̄ji−1, zi

1: Compute a motion π∗i from (4.36) with n̄ji−1

2: Compute a CoM sequence c̄i from π∗i
3: Compute n̄ji from (4.21) with c̄i and z̄i
4: Set n̄ji,0 ← n̄ji , c̄i,0 ← c̄i and π∗i,0 ← π∗i
5: k ← 0
6: repeat
7: Compute a motion π∗i,k+1 from (4.36) with n̄ji,k
8: if ‖π∗i,k+1 − π∗i,k‖ ≤ ε then
9: k ← max Iter

10: else
11: Compute a CoM sequence c̄i,k+1 from π∗i,k+1

12: Compute n̄ji,k+1 from (4.21) with c̄i,k+1 and z̄ji
13: k ← k + 1
14: end if
15: until the maximum number of iteration max Iter is reached

Safe optimal behavior

Classical approaches for collision avoidance such as velocity damping [Faverjon 1987], con-
trol barrier functions [Chen 2018], repulsive potential field [Khatib 1985], invariance con-
trol [Kimmel 2017] and momentum limitations [Tsai 2014], come with a major drawback.
They optimize the motion with arbitrary restrictions (or constraints), i.e. based on arbitrary
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parameters, related to the robot-obstacles distance and sometimes loosely to the dynam-
ics of the robot. For this reason, they generate suboptimal behaviors such as: unnecessary
detours for a biped robot walking among obstacles [Agrawal 2017, Fig. 7-8] when using con-
trol barrier functions or decelerating/stopping in proximity of obstacles when using velocity
damping [Kanehiro 2008].

Some of those classical approaches furthermore assume that avoiding collisions is always
possible. This is impossible to guarantee in a partially unknown dynamic environment such
as a crowd. We discuss this safety issue in the next section.

4.5.4 Safety guarantee

For a biped robot moving in a crowd, two things that should be avoided are to fall and to
collide with people.

On the balance front, with the capturability terminal constraint (2.66), we can guarantee
that the robot will always be able to stop in a few footsteps and maintain its balance forever.
On the collision front, only with the complete knowledge of the surrounding environment
and its future evolution it is possible to determine whether the robot, given its current
configuration and limited physical capabilities, achieves “no collision ever”, dubbed absolute
motion safety, thanks to the concept of ICS [Fraichard 2003]. This corresponds to satisfy at
all time a set of collision avoidance constraints such as (4.24). And it is the assumption of
classical approaches on collision avoidance, see Section 4.5.3. In practice, such knowledge is
possible to obtain only in specific environments that we are not interested in: static, freezing
or periodic [Bouguerra 2019]. In dynamic and uncertain environments such as a crowd, “no
collision ever” is impossible to guarantee [Fraichard 2006].

It is nonetheless possible to guarantee that the robot will be able to stop before a collision
takes place, should this collision be inevitable. No collision would happen if everybody
behaved that way, and in this sense the robot will have done its share. This property is
called passive motion safety [Bouraine 2014], and it has already been used effectively with
several robotics platforms, see Figure 4.5.

Remark 4. In our case, absolute motion safety corresponds to guarantee SRF for the MPC
scheme (4.36) because the set of collision avoidance constraints would be satisfied at all time.

Fall avoidance and Passive Safety guarantees

Passive motion safety or called also Passive Safety (PS) guarantees that the robot is able
to stop before a collision occurs: if a collision is inevitable, at least the robot will be at
rest when that happens. Capturability has previously been used in MPC scheme for biped
robots to guarantee both balance and PS. This scheme combines the conservative model
that anticipates the motion of people (4.8) and the capturability terminal constraint (2.66)
to ensure that the robot can stop (keeping its balance indefinitely) before any collision hap-
pens [Bohorquez 2016].

The main idea is that at time instant ti the robot tries to compute a motion for N
time instants solving (4.36) in which: it will walk without colliding for few footsteps and
additionally maintain balance in the last footstep forever, i.e. stop. If it cannot compute
such motion, it can always execute all the remaining N − 1 actions of the last computed
motion at time instant ti−1 as fallback. Thanks to conservativeness in time explained in
Section 4.5.2, the last motion that was safe, it is still safe since the unsafe zone cannot grow
in time. As a consequence, the robot walks without colliding and it will stop balancing on its
last footstep on the ground (balance guaranteed) before any collision occurs (PS guaranteed).

The robot, before executing the remaining actions of the fallback motion, can re-evaluate
the situation to check if, based on new measurements of the surrounding crowd, it is possible
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to postpone as long as possible the moment when it will stop. We can go, after executing each
action, through a simple loop to find a motion valid for the largest number of time instants:
{1, 2, · · · , N}, that satisfies all constraints.

Figure 4.5: Passive Safety has already been developed and used with several robotics platforms.

(a) humanoid robots [Morisawa 2005].
(b) self-driving cars [Macek 2008].

(c) autonomous helicopters
[Choudhury 2014].

(d) It corresponds to the emergency stop pro-
cedures required for industrial and per-
sonal care robots [ISO 2014].

4.6 Conclusion

Pedestrian’s future behavior is crucial for robot motion safety. We chose to consider all the
possible pedestrian’s future trajectories, using a conservative model of the future. We use this
model to design collision avoidance constraints for our biped robot, accounting for perception
errors on the estimation of people’s velocity/position around it.
We then use those constraints in a MPC-based biped navigation scheme to generate safe
walking motions in proximity of people. Last, in case a collision will be inevitable, this
scheme guarantees the robot will stop balancing on its last footstep on the ground (balance
guaranteed) before any collision occurs (PS guaranteed). This is possible thanks to the
capturability constraint and conservative model of the future.



Chapter 5

Re-planning Effect on MPC-based
Safe Biped Navigation in a Crowd

5.1 Introduction

We control a biped robot moving in a crowd using the MPC scheme presented in Chapter 4,
which generates stable walking motions with automatic step placement and guarantees both
fall avoidance and passive motion safety. For biped robots, once a step is planted on the
ground, it usually stays there at a constant position until the next step is initiated. This
naturally constrains the capacity for the robot to react and adapt its motion in between
steps. As a result, the walking strategies in [Chestnutt 2005, Karkowski 2016, Garimort 2011]
propose to re-plan the walking motion to adapt to changing environments once per step, only
when a new step is initiated. In contrast, our MPC scheme re-plans the walking motion not
only at each step initiation but also in between. Obviously re-planning more often than once
per step comes at the expense of computational power.

In this Chapter we measure if re-planning the walking motion more often than once
per step can lead to an improvement in collision avoidance when navigating in a crowd. To
compare our approach with the walking strategies in the literature, we introduce in Section 5.2
two new MPC variables:

1. planning period.

2. initial planning phase.

In our case they are used to decide:

1. how often to re-plan the walking motion per step.

2. when to re-plan the walking motion along the step.

The challenging scenario of a biped robot walking against an inattentive crowd, used for
our evaluation purposes, is described in Section 5.3.1. We used the robot parameters as in
Chapter 3 and Section 5.3.3 presents the MPC parameters. The results of collision avoidance
performances obtained using simulated crowd scenarios are finally presented and discussed
in Section 5.4.

5.2 Planning period and initial planning phase in MPC

The standard MPC approach, as explained in Section 2.4.1, is an iterative planning
process that operates as follows: at time ti, a motion πNi made up of a sequence of N
control actions is computed. The motion satisfies a set of constraints imposed from ti to
ti+N , N is the planning horizon. The first control action of the motion is executed. At
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time ti+1 the planning process is repeated, until an objective is reached. The sampling pe-
riod T denotes the fixed duration (in seconds) between two consecutive time instants [ti, ti+1].

The planning process in the standard MPC approach is repeated at every time ti. In
certain situations though, it might be difficult to compute a new motion at each time, it might
be interesting to compute instead a new motion every M times, e.g. to save computational
power. In such a case, it would correspond to execute M actions of the motion πNi before
repeating the planning process at time ti+M . Henceforth, M denotes what we will call the
planning period (equal to 1 in standard MPC)

Definition 5.2.1 (Planning Period). The planning period M ,

M ∈ {1, 2, · · · , N}, (5.1)

is the number of time instants before the planning process is repeated.

When M > 1 the planning process will not be repeated at every time ti. In case we deal
with some sort of cycle (with a period greater than T ), it is however possible to choose the
set of instants at which the planning process will be repeated along the cycle by introducing

Definition 5.2.2 (Initial Planning Phase). The initial planning phase φ,

φ ∈ {0, · · · ,M − 1}, (5.2)

is the time instant tφ considered the initial time at which the planning process starts.

The planning process will be repeated at every time tiM+φ.

5.3 Simulation parameters

5.3.1 Crowd

We summarize the crowd behavior chosen in Section 4.2:

• people do not account for the presence of the robot.

• people do not try to avoid each other, i.e. collisions among people are disregarded.

• each person walk at a constant velocity.

• each person follows a straight trajectory.

In this Chapter, we consider the worst case scenario where the robot is walking in the opposite
direction of the crowd. We consider 100 different random crowds, composed of Z people that
differ in the initial positions z0 and speeds along y, {ży}. The initial positions of the people
vary uniformly over an area of 10 × 8[m2]. For all people the velocity along x is chosen
constant 0.5[m/s], while for each person speed along y is picked randomly in an interval
[−0.2, 0.2][m/s]. Parameters are summarized in Table 5.1a.

5.3.2 Robot

The parameters of the biped robot were selected according to the kinematics of the robot
HRP-2 as it was done in Chapter 3, but we recall these parameters in Table 5.1b.



5.3. SIMULATION PARAMETERS 49

5.3.3 MPC

The sampling period T and the step cycle sd are chosen as in Section 3.3.2. The robot plans
always a full gait cycle, N = 16, since it is a standard choice for our MPC-based biped loco-
motion [Dune 2011, Sherikov 2016, Herdt 2010]. We control the robot with the MPC scheme
in Section 4.5.4 that guarantees fall avoidance and PS.
We chose arbitrarily the parameter for the Newton method: the maximum number of itera-
tions max Iter is 5, and the convergence factor ε is 10−4. We made no comparison with any
other parameter choice. When the robot walks against a crowd, the robot perceives people
around it within a FoV based on a specific sensor, e.g. laser scanner. The choice of FoV is
not treated fully as in [Bouraine 2014], but its radius Rmax is chosen greater than a certain
lower bound in order to guarantee PS [Bohorquez 2016]. This lower bound depends on the
plan duration NT and the robot’s and people’s walking velocities:

Rmax ≥ NT (żx + ċxr ) (5.3)

We account for different magnitudes of uncertainties (‖z̃j‖,‖˜̇zj‖) when the robot estimates
people’s position and velocity. All these MPC and perception parameters are summarized in
Table 5.1c.

In Chapter 4, the robot tries to plan a new walking motion at each time instant, this
corresponds to M = 1. Up to now, we can only find M = 1 in the literature of MPC for
biped robots: [Dafarra 2018, Tsagarakis 2017, Naveau 2017, Caron 2019, Gouaillier 2010].
In our framework, when M = 1, the robot re-plans 8 times per step, every 0.1[s]. Since
most walking strategies proposed to re-plan the walking motion once per step (to adapt to
changing environments), we can compare this choice with our MPC framework by changing
the planning period to M = 8. Doing so, the robot re-plans less often, every 0.8[s]. We
additionally consider intermediate cases. When the robot re-plans 4 times per step, every
0.2[s], and when it re-plans 2 times per step, every 0.4[s]. We represent these re-planning
choices in Figure 5.1a, and we show in Table 5.1d the relationship between the re-planning
per step frequency and planning period M .
In our implementation, we choose t0 as the time the robot starts a DS phase. When the
robot re-plans once per step in Figure 5.1a, this corresponds to set the initial planning phase
as φ = 0. In Figure 5.1b we show how the robot could choose instead to start planning
at different phases, e.g. with φ = 1 when the robot ends DS phases. If the robot can only
re-plan less often than at each time instant, when is the best moment (w.r.t. its motion
safety capabilities) to re-plan along the step? How often to re-plan and when to re-plan are
investigated in Section 5.4.

The additional parameters M and φ have no impact on the safety guarantees of the MPC
scheme in Section 4.5.4. For example, if the robot cannot compute a new motion at time ti,
it can always execute all the remaining N −M actions of the fallback motion computed at
time ti−M , ∀M . It will walk without colliding and stop balancing on its last footstep on the
ground (balance guaranteed) before any collision occurs (PS guaranteed).
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Table 5.1: Simulation parameters.

(a) Crowd Parameters.

Parameter Symbol Value Unit

Crowd Size Z {8, 16, 24, 32} ppl
Number of randomly generated

crowds (for size Z)
- 100 -

Velocity of the j-th person
żx 0.5 m/s

ży [−0.2, 0.2] m/s

Body radius (4.11)-(4.13)
Dperson 0.5 m
Drobot 0.5 m

min. separation distance (4.16) σ0 1 m

(b) Robot Parameters.

Parameter Symbol Value Unit

Height of CoM (2.17) cz 0.8 m
Min. Feet

Separation (2.42)
fs 0.07 m

Feet Dimensions (2.40) (l, w) (0.24, 0.14) (m,m)
Step Length (2.44) (L,W ) (0.24, 0.30) m

(c) MPC, Newton method and perception parameters.

Parameter Symbol Value Unit

Sampling Period T 0.1 s
Planning Period M {1, 2, 4, 8} -

Initial Planning Phase φ {0, · · · ,M − 1} -
Planning Horizon N 16 -

Adjustable Steps Ahead m 2 step
Step Cycle sd 0.8 s/step

Reference Speed (4.35) (ċxr , ċ
y
r) (0.5, 0.0) m/s

Newton step Iterations max Iter 5 -
Convergence Parameter ε 10−4 -

FoV distance (4.17) Rmax 4 m

Uncertainty
‖z̃j‖ {0, 0.15, 0.30} m

‖˜̇zj‖ {0, 0.05, 0.10} m/s

(d) Relationship between re-planning per step frequency and planning period M .

Value

Re-planning per step frequency 1 2 4 8
Planning Period M 8 4 2 1
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Figure 5.1: How often and when to re-plan the walking motion.

(a) The figure shows when at time ti we plan a walking motion pattern of 2 steps ahead with a fixed
step cycle. Below, we can see when the planning events happen by re-planning 1, 2, 4 or 8 times
per step. In our case, re-planning 8 times per step corresponds to re-plan at each time instant.

SS tDS DS

ti ti+1

Step Cycle

plan of  steps ahead2

… …

re-plan 1 per step:

re-plan 2 per step:

re-plan 4 per step:

re-plan 8 per step:

(b) We choose t0 as the time the robot starts a DS phase. The figure shows the case of re-planning 1
time per step and for several choices of initial planning phase φ. By varying φ, the robot re-plans
the walking motion at different time along the step cycle.

SS tDS DS … …

t0 t1
ϕ = 0

ϕ = 4

ϕ = 1
ϕ = 2
ϕ = 3

⋯
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Figure 5.2: The inattentive crowd scenario.

(a) Time t0 in a crowd of size Z = 16: robot in
black, people in blue (collisions among people
are disregarded), the FoV is the dashed circle
and the instantaneous velocity of each person
is represented by the red vector. The robot is
asked to walk to the right with ċxr = 0.5[m/s].
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(b) Frame of the biped robot that is traversing
an inattentive crowd. The instantaneous ve-
locity of the CoM is represented by the green
vector.
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5.4 Results

The effect of re-planning per step on success rate for a biped robot traversing a moving
crowd is evaluated numerically, as seen in Fig. 5.2. We consider a “success” if the robot
walks and does not collide for 20[s]. And we stop the simulation before if people collide
with the robot. The initial positions of the people are randomly chosen in front of the

robot outside the FoV. For each uncertainty (‖z̃j‖,‖˜̇zj‖), we simulate 100 crowds of Z people.

We start by evaluating all the possible initial planning phases φ per re-planning frequency
in the crowd scenario. Each point of Figure 5.3a corresponds to 3600 crowd scenarios, varying

all the possible combination of uncertainty (‖z̃j‖,‖˜̇zj‖) and crowd size Z for a choice of
re-planning frequency. 100% of success rate means that the robot did not collide for 3600
simulations.
Re-planning less often means to save computational power but it comes at the expense of
a decay in success. The results indicates that when re-planning less often than 8 times per
step, choosing never to re-plan when the robot starts DS phases (in our settings φ > 0), leads
to a significant improvement in success rate.
Recall from Section 2.2.3 that at the time the robot starts a DS phase, the next step is fixed:
this helps to reduce the complexity of the step adjustment. The results here indicate that
re-planning less often, but keeping the re-plan when a DS phase starts, worsen the robot
motion safety capabilities adaptation to changing environments.

We see in Figure 5.3a that re-planning when the DS phase ends and/or along the SS phase
only, the success of the biped improves at least by 20% when re-planning once per step, but
only less than 5% when re-planning 2, 4 times per step. Overall, the biped reaches the “best”
success rate:

• when re-planning 2, 4 times per step and one of the re-planning occurs when the DS
phase ends (φ∗ = 1).

• when re-planning once per step and the re-planning occurs in the middle of SS phases
only (φ∗ = 4).



5.4. RESULTS 53

Note in the Figure when φ = 4, there is less than 5% difference in success rate between
re-planning once and 2 times per step.

We now compare the choices of re-planning frequency (for both φ = 0 and φ∗) versus
the crowd sizes. Each point of the plot in Figure 5.3b corresponds to 900 crowd scenarios,
varying all the possible combination of uncertainty (‖z̃k‖,‖˜̇zk‖) for a choice of re-planning
frequency and crowd size Z. We report the number of success in perceptual as “success
rate”: 100% means that the robot did not collide for 900 simulations.
Obviously, the success of the robot decreases when we increase the density of the crowd:
represented by the number of people Z, that the robot needs to traverse.
In the plot, the dashed lines are the results with φ = 0 for all choices of re-planning
frequency. The solid lines are the results where we set φ∗ for each re-planning frequency.
When re-planning once per step for example, the robot improves its success from 20%
(Z = 8) to 30% (Z = {16, 24, 32}) if it re-plans in the middle of SS phases (with φ∗), instead
of re-planning when it starts the DS phases (φ = 0).

We conclude that, for a robot traversing a moving crowd, we can favor to re-plan only
once per step and in the middle of SS phases only, instead of 2, 4 or 8 times per step to save
computational power, since success improves only by less than 10%.
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Figure 5.3: Results of re-planning effect on success rate.

(a) The success rate for different re-planning frequencies and initial planning phases φ is showed in
solid line. When φ = M + j with j ∈ N we have duplicated results in dashed lines.

(b) The success rate for different re-planning frequencies and crowd sizes Z. In dashed line, for all
re-planning frequencies, one of the re-planning occurs when the robot starts the DS phase (φ = 0).
In solid line, when the robot re-plans 2, 4 times per step, one of the re-panning occurs when the DS
phase ends (φ∗ = 1). And when it re-plans once per step, re-planning occurs in the middle of SS
phases only (φ∗ = 4).
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5.4.1 Collisions and uncertainty

We now give some insight on the relationship between success rate and uncertainty. We
summarize in Table 5.2 the success rate in all the simulations that counts all crowd sizes Z
and all initial planning phases φ, for each re-planning frequency and various amount of

uncertainty (‖z̃j‖,‖˜̇zj‖). Given a re-planning frequency for any uncertainty pair (‖z̃j‖,‖˜̇zj‖),
the total number of simulations is

simulations = 100× (n. of Z)× (n. of φ). (5.4)

When re-planning once per step for example, the success rate is calculated over 3200 simula-
tions.

When there is uncertainty, the robot accounts for it by being more cautious: uncertainty
is represented as an additional area where people might be into the future and the robot
needs to avoid it. As result, the success rate increases in the presence of uncertainty. We can
observe that uncertainty on speed has a higher impact on success rate than uncertainty on
position. This is marked in the table when re-planning 1 per step.

Table 5.2: Relationship between collisions and uncertainty.

Uncertainty Success Rate [%] for re-planning

‖˜̇zj‖[m/s] ‖z̃j‖[m] 1 per step 2 per step 4 per step 8 per step

0.00
0.00 61.72 80.38 82.25 83.00
0.15 59.78 76.44 77.50 79.25
0.30 61.34 74.62 76.38 77.50

0.05
0.00 69.06 82.44 85.12 88.25
0.15 68.72 79.88 80.00 81.00
0.30 66.44 76.75 80.25 81.75

0.10
0.00 75.22 83.44 84.88 85.75
0.15 73.47 80.62 83.50 83.75
0.30 71.31 77.50 80.50 80.50

5.5 Discussion

Hereby, we discuss on few aspects of this contribution, and possible future directions.

5.5.1 Constraints on the swing phase

We explained in Section 2.2.3 that we do not account for the motion of the feet in the air,
but it could be modeled however with a 3-rd order polynomial as in [Sherikov 2016, Section
4.4.3]. Furthermore, we do not account for constraints on the swing foot during the SS as it
is done in [Diedam 2008]. Those constraints are simple bounds on the position of the next
step depending on the current position of the foot in the air. When we re-plan not at each
time instant, but more scarcely along the SS, the robot adjusts less often the position of the
next step where the current step in the air will land and this might be infeasible without
the additional constraints on the swing phase. Based on this observation, our future work is
to include those bounds and re-evaluate the experiments when the robot re-plans less often
than at each time instant along the SS phase: φ ≥ 2.
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5.5.2 Varying the dynamicity of the crowd

When the simulated robot walks in the same inattentive crowd that moves at a standard hu-
man walking speed (between 1[ms−1] and 1.5[ms−1] [Ralston 1958]), it was observed that the
success rate drops dramatically when the robot re-plan at each time instant [Bohorquez 2016],
and the same result is expected for all choice of re-planning. The robot does not have enough
kinematic and dynamic capabilities to avoid collisions with people walking that fast. In fact,
the robot’s maximal walking speed, with a fixed stride length (×2 step length) and step
duration, is approximately 0.6[ms−1].
When the simulated robot walks among people that do not move, i.e. ∀j, żj = 0, we simulate
a static environment. When unexpected static people appear inside the FoV, if the robot can
guarantee PS, respecting the lower bound on the radius Rmax (5.3), it always has a fallback
motion at hand to stop in front of those people and avoid colliding with them: we achieve
absolute motion safety. As a consequence the success rate would be 100% for all choices of
re-planning.
It could be interesting to see how the success rate for all choices of re-planning varies for dif-
ferent crowd velocities in between the extreme points explained above. The focus of interest
would be the case that performed worst: when the robot re-plans once per step at the start
of DS phases (φ = 0). And for example finding the smallest crowd velocity the success rate
decays drastically for that choice.

5.5.3 Varying the sampling period

In our framework, when the robot tries to plan a new walking motion at each time instant,
it re-plans 8 times per step. This is due to the choice of step cycle duration and sampling
period T . As a future direction, we could increase the length of the sampling period in-
stead of re-planning less often that at each time instant. It has been shown for example
that when considering only the balance of a biped robot, re-planning more often than every
0.2[s] to potential perturbations leads to no practical improvement in the maximal track-
ing error [Villa 2019a]. In that work the sampling period T was set to 0.2[s]. This choice
would correspond to re-planning at each time instant and 4 times per step. By increasing
the sampling period we could have the same effect of re-planning at each time instant.

5.6 Conclusion

Most existing walking strategies propose to re-plan the walking motion, adapting to changing
environments only once at every step. Currently, our MPC scheme for biped robots re-plans
the walking motion 8 times per step. We investigated if re-planning the walking motion more
often than once per step: 2, 4 or 8, can lead to an improvement in motion safety capabilities
when a biped robot is navigating in a crowd.

Our results show that we can favor to re-plan once per step, instead of 2, 4 or 8 times
per step, since the motion safety capabilities of the robot improves only by less than 10%.
There is, however, an important condition to satisfy: the robot re-plans once per step in the
middle of SS phases only. We can conclude that it is possible to save computational power
with our MPC for biped robots by re-planning less often the walking motion to adapt to
changing environments, without deteriorating the robot’s motion safety capabilities.



Chapter 6

Collision Mitigation

6.1 Introduction

Passive Safety (PS) has been criticized because while the robot makes sure to always have
time to stop before a collision happens, this time might not be enough for people around to
actually react and avoid the collision once the robot has stopped [Macek 2008].

We begin this Chapter by introducing the Time To React or TTR for the people (Sec-
tion 6.2): the time left before the robot enters the unsafe zone (where collisions could
eventually happen) when following a particular motion. Our definition of TTR is differ-
ent from the one that can be found in the literature of risk indicators for autonomous vehi-
cles [Lefèvre 2014, Sontges 2018, Wagner 2018]: the time available for the driver to act before
the collision is inevitable. Based on the criticism of PS, we conveyed that people around the
robot could potentially attempt to react and avoid collisions if they have enough time to
do so. For this reason, we claim the following: more TTR for the surrounding environment
reduces the number of collisions. For this reason, we would like the robot to leave as much
TTR as possible for the people.

A variant of PS was proposed under the name of Passive Friendly Safety (PFS): the robot
will be at rest before collisions happen, leaving enough time for the surrounding environment
to react and avoid collisions. Both PS and PFS however limit the TTR the robot can leave
for people because the robot is constrained to stop before collisions happen. We show that if
the robot is not constrained to stop before collisions happen, it can further improve TTR.

For this reason, we propose a new MPC-based biped navigation scheme called Collision
Mitigation (CM) that no longer guarantee PS but aims at leaving as much TTR as possible
for the people (Section 6.4). We then measure if controlling the robot with CM lead to an
improvement in collision avoidance when navigating in a crowd with respect to the MPC-
based biped navigation scheme introduced in Chapter 4, that guarantees PS. The challenging
scenario of a biped robot walking against an inattentive crowd as in Chapter 5 is used for
our evaluation purposes. In this scenario, we compare the number of collisions (collision
risk), collision time and relative collision velocity of both navigation strategies. These results
obtained using simulated crowd scenarios are finally presented and discussed in Section 6.6.1-
6.6.2.

6.2 The Time To React (TTR)

From the Ethics Commission of the German Federal Ministry of Transport and Infrastruc-
ture [Ethics Commission 2017], we cite:

57
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“[...] collision avoidance systems are governed by the same principle as airbags or seat
belts. Death caused an airbag inflating improperly remains a wrong, but the manufacturer
will not be held liable for it if they have done everything that might be reasonably expected to
minimize such risks.”

However, a definition of such “risk” is not provided. Because we are mainly interested in
the risk of collision, we propose the following definition:

Definition 6.2.1 (Collision Risk). The number of collisions.

Following the ethics recommendation, the robot must aim to achieve a zero collision
risk, in other words: “no collisions ever happen”. But this is impossible to guaran-
tee [Fraichard 2003] and for this reason the robot must constantly aim at minimizing such
risk, achieving:

Goal 6.2.1 (Collision Risk Minimization). The robot minimizes the collision risk.

Define Aπ(t) the area occupied by the robot following a motion π ∈ Π at time t, where
Π is the set of all possible motions of a finite duration[1] starting from the current state of
the robot. Let’s introduce the Time To React or TTR for the surrounding environment as:

Definition 6.2.2 (TTR). The time to react or TTR is the time left before the robot enters
the unsafe zone[2] W(t) following a motion π:

TTR(π) , {t∗ | 0 ≤ t < t∗, Aπ(t) ∩W(t) = ∅, Aπ(t∗) ∩W(t∗) 6= ∅}. (6.1)

People around the robot could potentially attempt to react and avoid collisions if they
have enough time to do so. For this reason, we claim the following:

Assumption 6.2.1. More TTR for the surrounding environment reduces the collision risk.

Beyond the planning horizon, which is constrained by the sensors horizon (e.g. radius
of the FoV as in (5.3)), anything can happen and the entire environment can be suddenly
unsafe: we consider that beyond the planning horizon, everywhere is unsafe.

Define Aπ(i+k|i) the area occupied by the robot at time ti+k that is following the motion π
computed at time ti. We can calculate the TTR at each computation time when the robot
is not inside the unsafe zone:

TTRi(π) , {ti+k∗ | ∀k ∈ [0, · · · , k∗ − 1], Aπ(i+k|i) ∩W(i+k|i) = ∅, Aπ(i+k∗|i) ∩W(i+k∗|i) 6= ∅}
(6.2)

As explained in Section 4.5.2, some parts of the unsafe zone can become safe later, when
the uncertainty is reduced with new observations of the surrounding environment, but the
TTR(π) never gets worse, as shown in the following Lemma.

Lemma 6.2.1. Suppose that the robot is outside the unsafe zone at time ti, then:

TTRi+1(π) ≥ TTRi(π). (6.3)

Proof. Suppose that at time ti:

Aπ(i+k|i) ∩W(i+k|i) = ∅. (6.4)

1For example the motion duration used in this work: NT .
2It is the area where there is a person inside but the robot does not know exactly where.
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Following the same motion π, the predicted area that the robot will occupy at time ti+k does
not change:

Aπ(i+k|i+1) ≡ A
π
(i+k|i). (6.5)

As explained in Section 4.5.2, thanks to the conservativeness in time of our model for the
unsafe zone, the unsafe zone predicted at time ti+1 always fits inside the one predicted at
time ti:

W(i+k|i+1) ⊆ W(i+k|i). (6.6)

Therefore, at the (i+ 1)th computation time we have

Aπ(i+k|i+1) ∩W(i+k|i+1) = Aπ(i+k|i) ∩W(i+k|i+1) ⊆ Aπ(i+k|i) ∩W(i+k|i) = ∅. (6.7)

As a consequence TTRi+1(π) ≥ TTRi(π).

The Lemma 6.2.1 considers the situation when the robot does not recompute a new
motion at time ti+1. If the robot keeps following the motion π, TTRi+1(π) cannot
get worse, but searching for a new motion πn at time ti+1, it might actually improve:
TTRi+1(πn) ≥ TTRi+1(π), especially since the unsafe zone could be reduced with new
observations of the surrounding environment.

The impossibility to achieve zero collision risk led to settle with a safety guarantee
called PS: the robot is at rest when a collision happens. It guarantees that the robot is
always able to stop before a collision occurs: if a collision is inevitable, at least the robot
will be at rest when that happens. No collision would happen, so the collision risk would
be minimal (zero), if everybody behaved that way: in this sense, the robot will have done
its share. PS is achieved by imposing the robot to stop before entering the unsafe zone and
staying at rest for the entire duration inside it:

∀t ≥ TTR(π), Aπ(t) ≡ Aπ(TTR(π)). (6.8)

And the set of motions that the robot must follow to guarantee PS before entering the unsafe
zone is:

ΠPS , {π ∈ Π | ∃t∗ ≤ TTR(π), ∀t ≥ t∗, Aπ(t) ≡ Aπ(t∗))}. (6.9)

This is of course a subset of the set of all motions:

ΠPS ⊂ Π. (6.10)

PS has been criticized because while the robot makes sure to always have time to stop before
a collision happens, this time might not be enough for people around to actually react and
avoid the collision once the robot has stopped [Macek 2008]. Let’s now borrow a basketball
example that explain the relationship between PS and TTR.

Consider a robot as a defender in basketball. One of the main objectives of a defender in
basketball is to use his or her body to impede the ball-carrier’s advance toward the basket.
The defender’s only absolute way to achieve this is to stand directly and as quickly as possible
in the ball-carrier’s path, ideally triggering a charging foul in case a collision occurs while
the defender is still[3]. This corresponds to minimizing TTR while maintaining PS. This
is to show that PS is “indifferent” to TTR: it is possible to maintain PS while looking to
maximize, or minimize TTR, or do anything else in between.

A variant of PS was proposed under the name of PFS: the robot will be at rest before
a collision happens, leaving Ts time for the surrounding environment to react and avoid

3https://en.wikipedia.org/wiki/Personal_foul_(basketball)#Charging_and_blocking

https://en.wikipedia.org/wiki/Personal_foul_(basketball)#Charging_and_blocking
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collisions. This time can be based on further assumptions about the environment, e.g. lower
bound braking power and an upper bound reaction time to avoid collisions [Mitsch 2013].
PFS is achieved by imposing the robot to remain at rest for enough time Ts, before entering
the unsafe zone:

∀t ≥ TTR(π)− Ts, Aπ(t) ≡ Aπ(TTR(π)− Ts). (6.11)

And the set of motions that the robot must follow to guarantee PFS before entering the
unsafe zone is:

ΠPFS
Ts , {π | ∃t∗ ≤ TTR(π)− Ts, ∀t ≥ t∗, Aπ(t) ≡ Aπ(t∗)}. (6.12)

Suppose we choose Ts1 ≥ Ts2 ≥ 0, we have the following set inclusion[4]:

ΠPFS
Ts1
⊆ ΠPFS

Ts2
⊆ ΠPFS

0 = ΠPS . (6.13)

For example, the robot that achieves PS can choose to stop (and remain at rest) from
TTR(π)−Ts1 , achieving also PFS for Ts1 . In general, when in doubt about the environment
and how much Ts is necessary, Assumption 6.2.1 would actually relate Goal 6.2.1 to:

Goal 6.2.2 (Maximization of TTR). The robot leaves as much TTR as possible for the
surrounding environment.

maximize
π

TTR(π) (6.14a)

It is possible to combine this goal with the previous safety guarantees. Based on the set
relationships

ΠPFS
Ts ⊆ ΠPS ⊂ Π, (6.15)

all the possible TTR that PFS can achieve are achievable by PS, and all the possible TTR
that PS can achieve are achievable by any general motion. For this reason, a general motion
fulfills Goal 6.2.2 as good as, or at least better than any motion that guarantees only PS.
And PS fulfills Goal 6.2.2 as good as, or at least better than any motion that guarantees PFS.
We have then

maximize
π∈Π

TTR(π) ≥ maximize
π∈ΠPS

TTR(π) ≥ maximize
π∈ΠPFS

Ts

TTR(π). (6.16a)

In Figure 6.1 a robot aims at Goal 6.2.2 (in green), additionally guarantees PS (in blue) or
guarantees PFS (in yellow) while a person is walking towards it. PFS imposes the robot to
be at rest waiting for the surrounding people to avoid collisions. If the person does not react
to avoid the coming collision, the robot waiting at rest reduces TTR. Since the robot can do
more when it is not at rest, TTR is improved when it guarantees only PS. And, the TTR
is further improved if the robot is not required to stop just before entering the unsafe zone,
but only aiming at Goal 6.2.2.

4As a side note, when the robot achieves PFS for Ts that corresponds to its maximum value, the entire
motion duration, the robot remains at rest at all time.
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Figure 6.1: We simulate 1D scenario where a robot is walking away from a person. The robot aiming
at Goal 6.2.2 (in green) without additionally guaranteeing to be at rest before entering
the unsafe zone, achieved the greatest TTR since it is less constrained.
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6.3 Motion planning solving a lexicographic optimization
problem

For a biped robot moving in a crowd, two things that should be avoided are to fall and
to collide with people. Additionally, the robot should minimize the deviation from some
given references. These goals or objectives might conflict: avoiding a collision might lead
the robot to fall onto the ground, in that case at least one of them must be relaxed. This
conflict can be approached with Goal Programming [Escande 2014]. This technique has al-
ready been used effectively for the control of all kinds of robots, humanoid [Sherikov 2015],
industrial [Al Homsi 2016] and self-driving vehicles [Blumentals 2017]. It accounts for mul-
tiple potentially incompatible objectives in complete safety, which is essential to deal with
complex situations. In our case, the objectives can be expressed as a set of linear inequalities
of the form

Ei

[
xi
πNi

]
≤ di (6.17)

Relaxation can be done by introducing a violation w as in

Ei

[
xi
πNi

]
−wi ≤ di (6.18)

Note that the objective is satisfied if ‖wi‖ = 0. We assign priority levels for different
objectives, deciding which of them can be relaxed. Objectives with the same importance
are defined in the same level. Once assigned the priority levels, we try to satisfy objectives
by minimizing their violations accordingly, that is, as a lexicographic least squares prob-
lem [Dimitrov 2015]. This ensures objectives with lower priority are optimized as far as they
do not interfere with the optimization of objectives with higher priority.

In the lexicographic programming approach, we have a sequence of objectives to be sat-
isfied. These objectives are competing with each other: it is impossible to satisfy them all
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at the same time. So we arrange these objectives according to relative importance in a hi-
erarchy. We then try to solve them “sequentially”. First, we solve the most important one.
Then, among the set of solutions of the most important one, we solve the second objective
in importance. And so on until the least important objective.

By defining P priority levels, each objective is described by a pair (Ei,di), and we look to

lex minimize
πNi ,{w

j
i }

{‖w1
i ‖

2, . . . , ‖wP
i ‖

2}

s.t.

E
1
i

...
EP
i

[ xi
πNi

]
−

w
1
i

...
wP
i

 ≤
d

1
i
...
dPi

.
(6.19a)

(6.19b)

Solving problem (6.19) means to plan a motion πNi for the robot to perform. We solved it
with our in-house solver LexLS and we refer to [Dimitrov 2015] for algorithmic details.

6.4 A lexicographic programming approach to maximize TTR

Collision avoidance could conflict with preserving balance. We consider here that preserving
balance has higher priority. As a result, the first objective of the robot is to preserve balance
as defined by the set of walking constraints (2.57)-(2.58) with the capturability terminal
constraint (2.66). Balance is preserved as long as those constraints are not violated. As
explained in Chapter 3, for several horizon lengths N we do not have any constraint violation
when the robot is planning to stop and when a new step is added at the end of the horizon
to continue walking.

Once balance is preserved, the robot aims at Goal 6.2.2. Suppose only 1 person is present
inside the FoV. Collision avoidance constraints are assigned in temporal order to the pri-
ority levels: avoid a collision at time ti+k corresponds to satisfy the kth collision avoidance
constraint as

dk+1
(i+k|i) ≥ σ

k+1
(i+k|i). (6.20)

where dk+1
(i+k|i) corresponds to the approximated euclidean distance between the person and the

robot (left hand side of (4.27)), which is assigned to the (k+1) priority level, k ∈ {1, · · · , N}.
If the minimal violation of the level (k + 1) is

(wk+1
i )∗ = 0 (6.21)

the robot avoids entering the unsafe zone when executing the kth action of πNi . The temporal
order of these constraints in the priority levels ensures to leave as much TTR as possible for
the surrounding people (Goal 6.2.2).

If the robot cannot avoid entering the unsafe zone at time ti+k, we have

dk+1
(i+k|i) < σk+1

(i+k|i). (6.22)

The violation wk+1
i accounts for the penetration into the unsafe zone:

dk+1
(i+k|i) + wk+1

i = σk+1
(i+k|i). (6.23)

Among all possible options, πNi minimizes such violation in a least-squares manner (6.19a).
Let’s call δ the displacement between two consecutive minimized violations w as

(δki )∗ = (wk+1
i )∗ − (wki )∗. (6.24)
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Dividing this quantity by the time interval duration T , we have the average velocity along
that displacement

(
¯̇
δki )∗ =

(δki )∗

T
. (6.25)

This is the component of the average velocity of the robot in the direction of the estimated
position of the person inside the unsafe zone.

At the lowest priority (N + 2), we minimize the deviation ‖wN+1
i ‖2 from the refer-

ences (4.35): CoP as close as possible to the center of the foot and follow a desired walking
speed.

We call this scheme Collision Mitigation (CM) and it is represented by Hierarchy 1.

Hierarchy 1: Collision Mitigation

1: Capturable walking motion (2.57)-(2.58)-(2.66)

2: Minimize penetration unsafe zone (6.20) at ti+1
...

N: Minimize penetration unsafe zone (6.20) at ti+N−1

N+1: Minimize penetration unsafe zone (6.20) at ti+N

N+2: Minimize reference deviation (4.36a)

6.5 Simulation parameters and settings

The parameters

• of the crowd are in Table 5.1a.

• of the robot are in Table 5.1b, and the FoV of the robot is 4[m].

• of the MPC are in Table 5.1c but we limit the experiments to M = 1 (φ = 0).

We use the crowd settings as explained in Section 5.3.1.

6.6 Mitigating the risk of collision in the crowd scenario

The effect of mitigating the risk of collision (Goal 6.2.1) for a biped robot traversing a moving
crowd is evaluated numerically. The collision risk (Definition 6.2.1) counts the number of
collision events (or failure): when we stop the simulation because people collide with the
robot in 20s or less. The initial positions of the people are randomly chosen in front of the

robot outside the FoV. For each uncertainty (‖z̃j‖,‖˜̇zj‖), we simulate 100 crowds of Z people.

6.6.1 Collision risk

We compare in the crowd scenario a robot controlled with the MPC scheme used in
Chapter 5, that we call hereby just PS, and the same robot controlled with the MPC scheme
called CM (Hierarchy 1). We compute the cumulative collision risk along the simulation
time, showed in Figure 6.2. The cumulative (frequency) plot shows the percentage [%] out

of 3600 crowd scenarios[5], varying all the possible combination of uncertainty (‖z̃j‖,‖˜̇zj‖)
5These scenarios are used for both PS and CM
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for a choice of crowd size Z, of collision risk that are less than or equal to particular time.

In our simulations, people are inattentive thus they will never react to avoid colli-
sions. It is however possible to compute the time when collisions happen. Increasing
the TTR means that collisions would happen later in time. In Figure 6.2, for any colli-
sion risks, the robot controlled with CM collides always later than the one controlled with PS.

The figure shows that CM outperforms PS in terms of collision risk: CM better fulfills
Goal 6.2.1. Due to the cumulative sum, we have many collision events in the top right of
the plot whereas few events in the bottom left. Statistics in the bottom left are consid-
ered less reliable because they are based on few events only (around 20 events only, ≈ 0.5[%]).

As long as the robot can avoid entering the unsafe zone for the entire plan duration (NT ),
the walking motion of the robot with PS is equivalent to the one of CM: the motion satisfies
the same set of constraints (including the capturability terminal constraint) and it is
optimized with the same cost function. The same robot controlled either with PS or CM
follows the same path. If at any time, we have a motion that guarantees PS (of whatever
length), next time we can plan either PS or CM and both will have an opportunity to
improve TTR (as explained in Lemma 6.2.1). But, when the robot cannot avoid the unsafe
zone for the entire plan duration, CM plans a less constrained motion before entering the un-
safe zone[6], and it is always at least as good, if not better than PS with respect to Goal 6.2.2.

When the robot is inside the unsafe zone, the one controlled with PS stays at rest waiting
for a new safe motion to continue walking. The one controlled with CM is not imposed to
remain at rest, but instead is trying to minimize the penetration (6.23) and can keep walking.
We observe that searching a motion to minimize the penetration over time inside the unsafe
zone helps in postponing collisions later in time and reducing collision risk.

Figure 6.2: The figure shows the cumulative plot of the collision risk in percentage along the time
of all simulations for PS and CM.
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6capturability is no longer imposed before entering the unsafe zone
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6.6.2 Collision velocity

We compare PS and CM in terms of impact. The kinetic energy transferred to a person can
be used as a metric for injury of people [Shea ]. In our case, we consider the relative collision
velocity between a robot and person that is proportional to the kinetic energy transferred
to the person. This velocity is calculated as the difference between the robot and person
velocity components in the direction of the point of collision.
We compute the cumulative collision risk along the magnitude of relative collision velocity,
showed in Figure 6.4. The cumulative (frequency) plot shows the percentage [%] out of 3600

crowd scenarios, varying all the possible combination of uncertainty (‖z̃j‖,‖˜̇zj‖) for a choice
of crowd size Z, of collision risk that are less than or equal to particular relative collision
velocity.

PS guarantees that the robot is at rest when collisions happen (i.e. zero robot’s
kinetic energy during impacts). This implies that the robot does not add (or remove)
kinetic energy to impacts. The robot cannot actively collide with people. The blue curve
confirms this theory: the relative collision velocity with PS is always lower or equal than
the maximum velocity of people. We can however observe that for ≈ 0.5% of collision
risk (top left of blue curve) the robot added a small amount of kinetic energy to the
collision. Our hypothesis is that the capturability constraint (2.66) to stop the robot does
not imply immediately 0 speed of the robot, but converging to 0. So for those cases, the
robot was stopping while balancing with a single foot on the ground. One simulation
that represents this situation is showed in Figure 6.3. In the case of CM up to 11% of
collision risk the robot did not add (or remove) kinetic energy with people (as for PS)
but it is not the case for the remaining 5%. CM is worse than PS in this respect since
there are a significant amount of collision events where the robot actively collided with people.

Figure 6.3: The figure shows a simulation for PS where the speed of the robot is not 0 at collision
time, but it is converging to 0.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

The goal of CM is to postpone collisions as much as possible. We described in Section 6.4
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that there is a relationship between this goal and the minimization of the average velocity of
the robot in the direction of the estimated position of the person inside the unsafe zone. This
velocity is the closest component to the collision velocity of the robot, and it was expected
that this minimization would help the robot to not actively collide with people and even
reduce further the relative collision velocity. This minimization however did not have the
effect expected. Our hypothesis is that the robot controlled with CM prefers to postpone
collisions with stronger impact later in time.

Figure 6.4: The figure shows the cumulative plot of the collision risk in percentage along the relative
collision velocity of all simulations for PS and CM.
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6.7 Conclusions

PS has been criticized because while the robot makes sure to always have time to stop before
a collision happens, this time might not be enough for people around to actually react and
avoid the collision once the robot has stopped [Macek 2008]. We introduced a variable called
Time To React or TTR: the time left before the robot enters the unsafe zone (where collisions
could eventually happen) when following a particular motion.

TTR improves in time thanks to the conservativeness in time of our model for the unsafe
zone: some part of the zone can become safe later, when the uncertainty is reduced with
new observations of the surrounding environment. We showed how the set of all possible
motions that achieve PS is a subset of the set of all possible motions of a finite duration
starting from the current state of the robot. The robot can then achieve a better TTR if
it is not imposed to be at rest before entering the unsafe zone. For this reason, we propose
a new MPC-based navigation scheme called CM that no longer guarantee PS but aims at
leaving as much TTR as possible for the people. We investigated if controlling the robot
with CM leads to an improvement in collision avoidance when navigating in a crowd with
respect to the MPC-based biped navigation scheme introduced in Chapter 4, that guarantees
PS. Our results show that CM outperforms the control scheme that guarantees PS in terms
of collisions: collisions happen less often and later in time (people are left with more time to
react and avoid collisions). But PS guarantees that the robot does not actively collide with
people. With CM instead the robot actively collides with people for a significant amount of
collisions. CM is worse than PS in terms of impact.



Chapter 7

Prioritizing People and Jostling

7.1 Introduction

In this Chapter, we start by proposing a variant of the crowd scenario: we equally divide
the members of the crowd in robots and people. In this variant of the crowd scenario, we
propose a new MPC-based biped navigation scheme that first aims at leaving as much TTR
as possible for the people and then, if possible, for the other robots (Section 7.2). When
the biped robot distinguishes between robots and people, we measure if controlling the robot
with this new scheme leads to an improvement in collision avoidance with respect to CM.

Next, we propose another situation for the robot in the crowd scenario (populated with
only people). We suppose the robot must reach a target location at the utmost important,
and this time people might obstruct the motion of the robot. We propose another MPC-based
biped navigation scheme for this situation that enables the robot to jostle people of the crowd
if necessary to reach the target location (Section 7.3). We measure if controlling the robot
with this new scheme leads to an improvement in collision avoidance when navigating in a
crowd with respect to a robot that does not enable jostling but only aims to reach the target
location as soon as possible.

The challenging scenario of a biped robot walking against an inattentive crowd is used
for our evaluation purposes. In this scenario, we compare the number of collisions (collision
risk) and collision time of both navigation strategies. These results obtained using simulated
crowd scenarios are finally presented and discussed in Sections 7.5.1-7.5.2.

68
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7.2 Prioritizing people in a mixed crowd

Suppose the crowd is equally divided in robots and people, and our biped robot (that is
traversing the crowd) can distinguish between them in its FoV. We want the robot to aim
at Goal 6.2.2 first with respect to people and then, if possible, with respect to other robots.
To do so, we first mitigate collision with respect to people, and then with the other robots.
This is represented by the Hierarchy 2.

7.3 Jostling

There are situations where the robot must reach a location at the utmost importance, e.g.
for a fire fighter robot [COL 2017], but people in a crowd can obstruct the motion of the
robot. We can deal with these situations with Hierarchy 3. The difference with Hierarchy 1-2
is that minimizing the deviation from a target location the robot should reach at the end of
the horizon

‖cref − c(i+N |i)‖2 (7.1)

has higher priority than aiming at Goal 6.2.2. The effect is that the robot will jostle people
of the crowd if necessary to reach the target location. It will mitigate collisions but only as
far as it does not impede reaching the target location.

Hierarchy 2: Prioritize People

1: Capturable walking motion (2.57)-(2.58)-(2.66)

2: Minimize penetration unsafe zone (6.20) for People at ti+1
...

N+1: Minimize penetration unsafe zone (6.20) for People at ti+N

N+2: Minimize penetration unsafe zone (6.20) for Robot at ti+1
...

2N+1: Minimize penetration unsafe zone (6.20) for Robot at ti+N

2N+2: Minimize reference deviation (4.36a)

Hierarchy 3: Jostling

1: Capturable walking motion (2.57)-(2.58)-(2.66)

2: Minimize reference deviation: reach the target location (7.1)

3: Minimize penetration unsafe zone (6.20) at ti+1
...

N+2: Minimize penetration unsafe zone (6.20) at ti+N

7.4 Simulation parameters and settings

The parameters

• of the crowd are in Table 5.1a.
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• of the robot are in Table 5.1b, and the FoV of the robot is 4[m].

• of the MPC are in Table 5.1c but we limit the experiments to M = 1 (φ = 0).

We use the crowd settings as explained in Section 5.3.1.

Figure 7.1: Two variants of the inattentive crowd scenario, with people prioritization (left), and
jostling (right).

(a) Time t0 in a crowd of size Z = 16. The crowd
is equally divided in robots (gray circles) and
people (blue circles), and our biped robot,
in black, can distinguish if someone entering
the FoV is a robot or a person. The robot is
asked to walk to the right with ċxr = 0.5[m/s].
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(b) Time t0 in a crowd of size Z = 16. The robot
must reach a target location (vertical dashed
black line) but people in a crowd can obstruct
the motion of the robot.
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7.5 The effect of prioritizing people and jostling on the crowd
scenario

The effect of prioritizing people and jostling for a biped robot traversing a moving crowd is
evaluated numerically. To evaluate the prioritization of people, we use a variant of the crowd
scenario: the crowd is equally divided in robots and people both inattentive to the presence
of our biped robot, as seen in Fig. 7.1a. To evaluate jostling we consider the situation where
the robot must reach a target location inside the moving crowd as represented in Fig. 7.1b,
and the crowd composed by people only.

The collision risk (Definition 6.2.1) counts the number of collision events (or failure):
when we stop the simulation because people or other robots collide with our biped robot in
20s or less. The initial positions of all members of a crowd is randomly chosen in front of our

biped robot outside the FoV. For each uncertainty (‖z̃j‖,‖˜̇zj‖), we simulate 100 crowds of Z
people and robots.

7.5.1 Results for prioritizing people

We compare in the crowd scenario a robot controlled with CM and the same robot controlled
with Hierarchy 2 in the variant of the inattentive crowd scenario represented in Fig. 7.1a.
We compute the cumulative collision risk along the simulation time, showed in Figure 7.2.
The cumulative (frequency) plot shows the percentage [%] out of 3600 crowd scenarios,

varying all the possible combination of uncertainty (‖z̃j‖,‖˜̇zj‖) for a choice of crowd size Z,
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Figure 7.2: The figure shows the cumulative plot of collision risk in percentage along the time of all
simulations for original CM (Hierarchy 1), transparent lines, and Hierarchy 2, in solid
lines.
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of collision risk that are less than or equal to particular time.

When the robot mitigates the risk of collision with other robots and people equally, the
collision risk of other robots and people is similar. When the biped robot distinguishes
between robots and people, the biped robot collides always later with people and reduces its
collision risk with them (by ≈ 5%). For the other robots instead, collisions happen earlier
and more often (collision risk is increased by ≈ 4%). The overall collision risk in this variant
of inattentive crowd scenario was actually reduced with the choice of prioritizing people (from
16.3% to 15.7%). When it is possible to distinguish between robots and people, the robot
fulfills better Goal 6.2.1 with respect to people if it first mitigates collision with them and
then if possible with other robots. Hierarchy 2 is better than CM in this regard.

7.5.2 Results for jostling

Hierarchy 4: Careless

1: Capturable walking motion (2.57)-(2.58)-(2.66)

2: Minimize reference deviation: reach the target location (7.1)

We compare a robot controlled with Hierarchy 3 and the same robot controlled with
Hierarchy 4. The robot controlled with the latter hierarchy aims only to reach the target
location as fast as possible without trying to avoid collisions with the surrounding people, we
therefore call it careless robot. We compute the cumulative collision risk along the simulation
time, showed in Figure 7.3-7.4. The cumulative (frequency) plot shows the percentage
[%] out of 900 crowd scenarios for a crowd size Z, varying all the possible combination of

uncertainty (‖z̃j‖,‖˜̇zj‖), of collision risk that are less than or equal to particular time.
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Figure 7.3: The figure shows the cumulative plot of collision risk in percentage along the time of all
simulations of small crowd sizes for a robot that does not care about avoiding colliding
with people (Hierarchy 4) and a robot that enables jostling (Hierarchy 3).
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In all cases, whereas walking (without falling) to reach a target location is at utmost
importance, we observed that by introducing jostling for the robot, the collision risk
decreases and collisions are postponed later in time. In this scenario whatever crowd density,
collisions could not been postponed later than ≈ 15s. The jostling robot is always at least
as good, if not better than the careless robot with respect to Goal 6.2.1. This is of course
related to the fact that mitigating collision risk has a lower priority than reaching a location
in the case of jostling robot, or it is not asked at all to the careless robot.
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Figure 7.4: The figure shows the cumulative plot of collision risk in percentage along the time of all
simulations of big crowd sizes for a robot that does not care about avoiding colliding
with people (Hierarchy 4) and a robot that enables jostling (Hierarchy 3).
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Obviously, collision risk increases when we increase the density of the crowd Z, that the
robot needs to traverse. Introducing jostling when the robot needs to traverse a crowd of few
people Z = 8, the collision risk decreased significantly by 5%, and 3% for Z = 16. When the
density of the crowd increases both strategies basically collide in all the simulations (100%
collision risk) but yet the jostling robot postpones collisions later than the careless robot. If
we increase further the density of the crowd Z, both jostling and careless robot might equally
perform in all crowd scenarios because the robot might not have enough space to jostle among
people.
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7.6 Conclusions

In this Chapter, we introduced a variant of the crowd scenario: we equally divide the members
of the crowd in robots and people. In this variant of the crowd scenario, we proposed a
new MPC-based biped navigation scheme that first aims at leaving as much TTR as possible
for the people and then, if possible, for the other robots. When the biped robot distinguishes
between robots and people, we investigated if controlling the robot with this new scheme leads
to an improvement in collision avoidance when navigating in a crowd with respect to CM.
Our results show that with CM the robot collides with other robots and people equally.
On the other hand, when we control the robot with the new scheme the biped robot collides
always later with people and reduces its collision risk with them. For the other robots instead,
collisions happen earlier and more often. The new scheme takes priorities into account and
that the simulation results reflect these priorities. The new scheme outperforms CM in terms
of collisions.

We also introduced another situation for the robot in the crowd scenario (that is no
longer populated by other robots but only people). We suppose the robot must reach a
target location at the utmost important, and in this case people of the crowd can obstruct
the motion of the robot. We proposed another MPC-based biped navigation scheme for
this situation that enable the robot to jostle people of the crowd if necessary to reach the
target location. We investigated if controlling the robot with this new scheme leads to an
improvement in collision avoidance when navigating in a crowd with respect to a robot that
does not enable jostling but only aims to reach the target location as soon as possible.
Our results show that the robot collides less and collisions are postponed in time when we
enable jostling. Obviously, when we increase the density of the crowd that the robot needs
to traverse, the robot that enables jostling starts to collide more often but yet less and later
than the robot that only aims to reach the target location as soon as possible. If we increase
further the density of the crowd, both robots might equally perform in terms of collisions.
This is because the robot might not have enough space to jostle among people.



Chapter 8

Conclusions

8.1 Summary

This thesis contributes to the problem of balance preservation for biped locomotion and
motion safety capability (the capability to avoid collisions ) in a crowd.

In Chapter 2, we started the dissertation by presenting a linear dynamical model that
relates the CoM of the robot to the contact forces applied on the ground. We model changes
of the foot positions on the ground in order to facilitate their automatic adjustment. With
those models, we build a set of constraints that the robot needs to satisfy to comply with
the whole-body kinematic and dynamical structure. We additionally imposed a capturability
constraint that guarantees the robot is able to stop in a few steps without falling and this
is enough to guarantee that it is able to simply avoid falling. Models and constraints were
employed in a single MPC scheme: an iterative control process which computes explicitly the
actions of the robot and their consequences over a limited time horizon.

When the robot is not really planning to stop but actually consider making a new step
at the end of the horizon to continue walking, the guarantee to avoid falling is lost. We
investigated this issue in Chapter 3. In the same chapter we provided a numerical evidence
that, despite the sudden plan change, the guarantee to avoid falling is not lost. But the
guarantee depends on the length of the time horizon.

In Chapter 4 we addressed the problem of motion safety capability in a crowd. Pedes-
trian’s future behavior is crucial for this capability. We chose to consider all the possible
pedestrian’s future trajectories, using a conservative model of the future. Thanks to this
model we can guarantee Passive Safety (PS): the robot is able to stop before a collision
occurs. If a collision is inevitable, at least the robot will be at rest when that happens. No
collision would happen if everybody behaved that way, so in a sense the robot will have done
its share. Capturability was used to successfully control the movement of a humanoid robot
in a crowd and to guarantee both fall avoidance and PS in a single MPC scheme.

Most existing walking strategies propose to re-plan the walking motion, adapting to chang-
ing environments only once at every step. In contrast, the MPC scheme outlined above re-
plans the walking motion not only at each step initiation but also in between (8 times per
step). In Chapter 5, we show that we can favor to re-plan the walking motion to adapt to
changing environments once per step, instead of 2, 4 or 8 times per step. We thus save com-
putational power without deteriorating the robot’s motion safety capability. But re-planning
should only happen just before initiating the next step, or during the time that the robot has
only one step in contact with the ground.

PS has been criticized because while the robot makes sure to always have time to stop
before a collision happens, this time might not be enough for people around to actually react
and avoid the collision once the robot has stopped. Based on the criticism of PS, we conveyed
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that people around the robot could potentially attempt to react and avoid collisions if they
have enough time to do so. For this reason, we claimed the following: more time to react for
the surrounding environment reduces the number of collisions. In Chapter 6, we proposed to
control the movement of a humanoid robot in a crowd that guarantee fall avoidance while
aiming to leave as much time to react as possible for the people (instead of guarantee PS) in a
single MPC scheme, that we call Collision Mitigation (CM). When controlling the movement
of a humanoid robot in a crowd, we can favor CM instead of PS to reduce the number of
collisions and postpones these collisions later in time.

We considered the case where a humanoid robot moves in a crowd and the members of this
crowd are equally divided in robots and people. In Chapter 7 we proposed a new MPC scheme
guarantees fall avoidance and while aiming to leave as much time to react as possible for the
people and then, if possible, for the other robots. When this revised version of CM takes
priorities into account, e.g. prioritizing people, the simulation results reflect these priorities.
The biped robot collides always later with people and reduces the number of collisions with
them. For the other robots instead, collisions happen earlier and more often.
We then considered another situation for the robot moving in a crowd (populated with only
people). We suppose the robot must reach a target location at the utmost important, and this
time people might obstruct the motion of the robot. In this situation we proposed another
new MPC scheme guarantees fall avoidance while enabling the robot to jostle people of the
crowd if necessary to reach the target location. We compare this scheme in the situation
outlined above with a robot that does not enable jostling but only aims to reach the target
location as soon as possible. Our results show that the robot collides less and collisions are
postponed in time when we enable jostling. However, If we increase the density of the crowd,
both robots converges to equally perform in terms of collisions. This is because the robot
might not have enough space to jostle among people.

8.2 Future Work

We discussed few research directions Section 3.7 and 5.5. We conclude by proposing an
additional research direction for strong recursive feasibility in MPC of biped walking.

The notion of SRF (Definition 2.4.1) demands that for any feasible state-control pair,
a feasible state is reached. In the literature of MPC, we can find a “stronger” notion
called Strong Forward Invariance (SFI) [Grüne 2012, Section 5]: for any feasible state-motion
pair, a feasible state is reached. In between, we can introduce M -actions Strong Recursive
Feasibility, or M -SRF in short (where M is the planning period introduced in Chapter 5).

Definition 8.2.1 (M -actions Strong Recursive Feasibility). An MPC scheme is M -actions
strongly recursive feasible if and only if

∀i, ∀(xi, {κ1, · · · ,κM}) ∈ KM |Ni ,

xi+M = AMxi +

M∑
j=1

AM−jBκj ∈ XNi+M .
(8.1)

This definition introduces another projection of the feasible set of solution FNi :

KM |Ni , {(xi, {κ1, · · · ,κM}) | ∃πNi , (xi,π
N
i ) ∈ FNi ,κj = u(i+j−1|i), j ∈ [1,M ]}, (8.2)

the set of state and M -actions pairs of a feasible motion. Definition 8.2.1 corresponds to the
standard SRF when M=1, and corresponds to SFI when M=N . The following lemma shows
SFI implies SRF, and in general: when the MPC is SFI, then it is also (N − 1, · · · , 1)-SRF.
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Lemma 8.2.1 (M -SRF implies (M − 1)-SRF). if an MPC scheme is M -actions strongly
recursive feasible then it is also (M − 1)-actions strongly recursive feasible, where
M ∈ {2, 3, · · · , N}.

Proof. From any pair (xi, {κ1, · · · ,κM}) ∈ KM |Ni execute the first M−1 actions, and reach a
state xi+M−1. This state is feasible (xi+M−1 ∈ XNi+M−1) and the MPC scheme is (M−1)-SRF
since there exists at least one feasible πNi+M−1 associated with it. For example

πNi+M−1 = {u(i+M |i)︸ ︷︷ ︸
∈πNi

,u(i|i+M),u(i+1|i+M), · · · ,u(i+N−2|i+M)︸ ︷︷ ︸
∈πNi+M

}, (8.3)

in which πNi+M exists since the MPC scheme is M -SRF.

It is then preferable SFI property over SRF for the MPC of biped walking. When the
robot is planning to stop SFI is guaranteed by construction, but the guarantee is lost when the
robot actually consider to make a new step at the end of the horizon. This is the exact same
issue as explained in Chapter 3 and it could be investigated numerically with our proposed
method. As a consequence, SFI would probably depend on the length of the planning horizon.



Appendix A

Subtleties on the implementation of
MPC for biped robots

A.1 Introduction

In this Appendix, we focus on 3 aspects about the implementation of Model Predictive Control
(MPC) for biped robots. The first aspect (Section A.3) is taken from [Sherikov 2016, Section
4.2.2.1]. We discuss about the variation of the CoP during the sampling interval. This
variation depends on the discrete model that describes the CoM dynamics. The second
and third aspect (Section A.4 and A.5) relate to the work in [Herdt 2010]: the MPC with
automatic footstep placement. We discuss how the step selection matrices cycle for the
automatic footstep placement and how many steps are planned based on the choice of the
planning horizon. Last, we show the effect of the DS kinematic constraints in our MPC
scheme.

A.2 Derivation of the Discrete Time CoM Model

The analysis of this section is valid for both {x, y} coordinates, but for sake of simplicity we
consider only one. We want to calculate the matrix exponential

A = eGT (A.1)

where

G =

0 1 0
0 0 1
0 ω2 0

. (A.2)

We expand the exponential up to the third term as

eGT = I +AT +
(AT )2

2!
+

(AT )3

3!
+

(AT )4

4!
+ · · · (A.3)

and we have:

(AT )2 = AAT 2 =

0 1 0
0 0 1
0 ω2 0

0 1 0
0 0 1
0 ω2 0

T 2 =

0 0 1
0 ω2 0
0 0 ω2

T 2 =

0 0 T 2

0 ω2T 2 0
0 0 ω2T 2

.
(A.4)

and

(AT )3 =

0 0 1
0 ω2 0
0 0 ω2

0 1 0
0 0 1
0 ω2 0

T 3 =

0 ω2 0
0 0 ω2

0 ω4 0

T 3 =

0 ω2T 3 0
0 0 ω2T 3

0 ω4T 3 0

. (A.5)
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and

(AT )4 =

0 ω2T 3 0
0 0 ω2T 3

0 ω4T 3 0

0 1 0
0 0 1
0 ω2 0

T 4 =

0 0 ω2

0 ω4 0
0 0 ω4

T 4 =

0 0 ω2T 4

0 ω4T 4 0
0 0 ω4T 4

. (A.6)

Back to the exponential:

eGT =

1 0 0
0 1 0
0 0 1

+

0 T 0
0 0 T
0 ω2T 0

+

+

0 0 T 2

2

0 ω2T 2

2 0

0 0 ω2T 2

2

+

0 ω2T 3

3! 0

0 0 ω2T 3

3!

0 ω4T 3

3! 0

+

0 0 ω2T 4

4!

0 ω4T 4

4! 0

0 0 ω4T 4

4!

+ · · ·

(A.7)

eGT =

1 T + ω2T 3

3! + · · · T 2

2 + ω2T 4

4! + · · ·
0 1 + ω2T 2

2 + ω4T 4

4! + · · · T + ω2T 3

3! + · · ·
0 ω2T + ω4T 3

3! + · · · 1 + ω2T 2

2 + ω4T 4

4! + · · ·

 (A.8)

Let’s analyses the second element in the first row: (1,2), of (A.8). We have

T +
ω2T 3

3!
+ · · · = 1

ω

(
ωT +

ω3T 3

3!
+ · · ·

)
. (A.9)

Based on the definition of the exponential expansion (A.3), we have

T +
ω2T 3

3!
+ · · · = 1

ω

(
eTω − e−Tω

2

)
=

1

ω
sinh (Tω).

(A.10)

Consider now (1,3) of (A.8). We have

T 2

2
+
ω2T 4

4!
+ · · · = 1

ω2

(
T 2

2
+
ω2T 4

4!
+ · · ·

)
=

1

ω2

(
1 +

T 2

2
+
ω2T 4

4!
+ · · · − 1

)
.

=
1

ω2

(
eωT + e−ωT

2
− 1

)
=

1

ω2
(cosh (Tω)− 1)

=
cosh (Tω)

ω2
− 1

ω2
.

(A.11)

Consider now (2,2) or (3,3) of (A.8). We have

1 +
ω2T 2

2
+
ω4T 4

4!
+ · · · =eωT + e−ωT

2
= cosh (Tω).

(A.12)

Consider now (2,3) of (A.8). We have

T +
ω2T 3

3!
+ · · · = 1

ω

(
ωT +

ω3T 3

3!
+ · · ·

)
=

1

ω

(
eωT − e−ωT

2

)
=

1

ω
sinh (Tω).

(A.13)
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Consider now (3,2) of (A.8). We have

ω2T +
ω4T 3

3!
+ · · · =ω

(
ωT +

ω3T 3

3!
+ · · ·

)
=ω

(
eωT − e−ωT

2

)
=ω sinh (Tω).

(A.14)

We ends up with

eGT =

1 sinh(Tω)/ω cosh(Tω)/ω2 − 1/ω2

0 cosh(Tω) sinh(Tω)/ω
0 sinh(Tω)ω cosh(Tω)

. (A.15)

Now we calculate the following:

B =

(∫ T

0
eGtdt

)
H, (A.16)

where

H =

 0
0
−ω2

. (A.17)

We need to simply integrate the matrix eGT componentwise.∫ T

0
eGtdt =

=

∫ T

0

1 sinh(tω)/ω cosh(tω)/ω2 − 1/ω2

0 cosh(tω) sinh(tω)/ω
0 sinh(tω)ω cosh(tω)

dt
=


∫ T

0 1
∫ T

0 sinh(tω)/ω
∫ T

0 (cosh(tω)/ω2 − 1/ω2)∫ T
0 0

∫ T
0 cosh(tω)

∫ T
0 sinh(tω)/ω∫ T

0 0
∫ T

0 sinh(tω)ω
∫ T

0 cosh(tω)

dt
(A.18)

Since H is zero apart from the third component, we can focus only on the last column of the
matrix. We have∫ T

0

(
cosh(tω)/ω2 − 1/ω2

)
dt =

1

ω2

(∫ T

0
(cosh(tω)− 1)dt

)
=

1

ω2

(∫ T

0
cosh(tω)dt

)
− 1

ω2

(∫ T

0
1dt

)
=

sinh(Tω)

ω3
− T

ω2
,

(A.19)

and ∫ T

0
sinh(tω)/ω = cosh(Tω)/ω2 − 1/ω2, (A.20)

and ∫ T

0
cosh(tω) = sinh(Tω)/ω. (A.21)



A.3. CENTER OF PRESSURE POSITION DURING THE TIME INTERVAL 81

We ends up with (∫ T

0
eGtdt

)
H =

? ? sinh(Tω)/ω3 − T/ω2

? ? cosh(Tω)/ω2 − 1/ω2

? ? sinh(Tω)/ω

H
=

? ? sinh(Tω)/ω3 − T/ω2

? ? cosh(Tω)/ω2 − 1/ω2

? ? sinh(Tω)/ω

 0
0
−ω2


=

T − sinh(Tω)/ω
1− cosh(Tω)
−ω sinh(Tω)

.
(A.22)

A.3 Center of Pressure position during the time interval

The CoM dynamics (2.16) has been originally proposed as a triple integrator by [Kajita 2003]
where CoM jerk,

...
c , is the control input. This was later employed and extended

in [Diedam 2008, Herdt 2010, Agravante 2016] and many other works. The triple integrator
implies a smooth variation of CoM acceleration. This results in a smooth change of CoP
position (2.16), which helps the realization of robot locomotion. This model however leads
to some subtle difficulties in terms of realization of robot locomotion.

The analysis of this section is valid for both {x, y} coordinates, but for sake of simplicity
we consider only one. The triple integrator model controlled by the CoM jerk in discrete
time has the following linear form:ci+1

ċi+1

c̈i+1

 = A

ciċi
c̈i

+B
...
c i (A.23)

where

A =

1 T T 2/2
0 1 T
0 0 1

, B =

T 3/6
T 2/2
T

. (A.24)

And the relationship with the CoP is

pi = D

ciċi
c̈i

 (A.25)

where
D =

[
1 0 − 1

ω2

]
. (A.26)

Satisfaction of the constraints on pi and pi+1 in the models controlled by the CoM acceleration
or jerk does not guarantee their satisfaction during the i-th sampling interval. Let [ci, ċi, c̈i]
be an initial state,

...
c i – the constant jerk applied during T , [ct, ċt, c̈t] – the state of the

system at some t ∈ [0, T ]. Position of the CoP during the sampling interval can be found as

pt = D

ctċt
c̈t

 = D

At

ciċi
c̈i

+Bt
...
c i

, (A.27)

where

At =

1 t t2/2
0 1 t
0 0 1

, Bt =

t3/6t2/2
t

. (A.28)
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Hence, the CoP position at time t depends cubically on time t:

pt =

...
c i
6
t3 +

c̈i
2
t2 +

(
ċi −

...
c i

1

ω2

)
t− c̈i

1

ω2
+ ci. (A.29)

Similarly, this dependence is quadratic in the case of a second order model controlled by
the CoM acceleration [Bohórquez 2017]. The constant jerk

...
c i applied during T could

lead to an overshoot of the CoP that violates the limit of the support area. Therefore,
satisfaction of the CoP constraints at time 0 and T , as is usually enforced by MPC schemes,
does not guarantee their satisfaction at t ∈ (0, T ). This problem, however, is typically
not critical, since the support areas are intentionally shrunk due to the addition of safety
margins [Wieber 2016]. The size of these margins can be estimated by computing maxima
of the polynomial equation (A.29).

The systems controlled by the CoP position or its velocity are not subject to this problem.
Take the system controlled with CoP velocity (2.23) and use the procedure as (A.27), where

At =

1 sinh(t ω)/ω cosh(t ω)/ω2 − 1/ω2

0 cosh(t ω) sinh(t ω)/ω
0 sinh(t ω)ω cosh(t ω)

, Bt =

t− sinh(t ω)/ω
1− cosh(t ω)
−ω sinh(t ω)

. (A.30)

During the sampling interval, the CoP position at time t depends linearly on time t:

pt = pi + ṗit, (A.31)

which guarantees the CoP does not violate the support area during the sampling interval.
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A.4 How the step selection matrices cycle

We use the simplification introduced in Section 2.2.3. Re-call the evolution of a walking cycle
for N time instants was modeled as

s̄i = V pc
i s

pc
i + V f

i s
f
i , (A.32)

where s̄i ∈ R2N is the sequence of footsteps ahead (from time ti+1 to ti+N ), spci ∈ R2 can
be the next foot that will hit the ground or identical to the current step position onto the
ground sc ∈ R2, and sfi ∈ R2m is a sequence of m adjustable foot positions. The matrices

(V pc
i ,V f

i ) are

V pc
i =

[
I · · · I 0 · · · 0 0 · · · 0

]> ∈ R2N×2 (A.33)

V f
i =

0 · · · 0 I · · · I 0 · · · 0
0 · · · 0 0 · · · 0 I · · · I

. . .

> ∈ R2N×2m. (A.34)

They vary cyclically and determine which foot is onto the ground at what time.

Let consider an example with the following parameters: N = 9, T = 0.1[s] equals to DS
duration and SS duration 0.7[s], resulting in sd = 0.8[s/step]. We choose the number of
adjustable steps m accordingly to d((N − 1)T/sd)e, we have m = 1.

Consider these three instant of time:

1. tsDS the instant when the robot starts the DS phase.

2. tSS one instant along the SS phase.

3. teSS the instant in the SS phase and the next instant is tbDS .

These instants have the the following configuration of the step selection matrices:

1. In this case sc is considered the contact with the ground supporting the weight of the
robot. At this sample, spc is already fixed. At the next sample, we update sc with spc.

V pc
sDS =

[
I I I I I I I I 0

]
(A.35)

V f
sDS =

[
0 0 0 0 0 0 0 0 I

]
(A.36)

2. Along the SS phase, sc = spc and it is considered the contact with the ground supporting
the weight of the robot. The number of identity matrices I in V pc

SS for example indicates
that the current step is planted onto the ground for another four samples.

V pc
SS =

[
I I I I 0 0 0 0 0

]
(A.37)

V f
SS =

[
0 0 0 0 I I I I I

]
(A.38)

3. In this case sc = spc is considered the contact with the ground supporting the weight
of the robot. This is the last instant before the cycle is repeated. The next instant is
tsDS where spc is updated with sfeSS .

V pc
eSS =

[
I 0 0 0 0 0 0 0 0

]
(A.39)

V f
eSS =

[
0 I I I I I I I I

]
(A.40)
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Only at the instant tsDS , the robot is planning 2 steps ahead. The robot starts the DS
phase and the current step sc is considered the contact with the ground supporting the
weight of the robot, the planned step ahead are: spc and sfsDS . For all the other samples
of the step cycle, the robot plans only 1 step ahead. The step sc = spc is considered the
contact with the ground supporting the weight of the robot, and sf is the planned step ahead.

The number of planned steps ahead along horizon In this implementation, with the
simplification made in Section 2.2.3, the step cycle is sampled in (sd/T ) time instants. When
N = (sd/T )k + j with k ∈ N and j ∈ {1, · · · , (sd/T )}, the robot plans d(NT/sd)e − 1 steps
ahead for (sd/T )− j time instants along the step cycle, d(NT/sd)e otherwise.

A.5 Kinematic constraints during the DS phase

Figure A.1a shows the effect of imposing{
ci+q ∈ C(sj+1),

DS Kinematic constraints (Section 2.4.2),
ci+q+1 ∈ C(sj)

(A.41)

along the walking motion to make sure the maximum length of the legs is respected during
the DS. Where ti+q is the instant the robot starts the DS phase, and ti+q+1 is the instant
the robot ends the DS phase.
Figure A.1b shows that when we remove these constraints, the maximum length of the legs is
not respected during the DS phases. We can decide to limit the distance between footprints.
The limit acts as (A.41) (Figure A.1c) but it requires hand tuning. This tuning can over-
constrain the kinematic capabilities of the biped robot, so we favor for the DS Kinematic
constraints.
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Figure A.1: The figures represent the top view of the same biped robot walking for few footsteps.
When we impose the DS kinematic constraints (A.41) along the walking motion of the
robot (Figure A.1a), when we remove those constraints (Figure A.1b-A.1c) but we limit
the distance between footprints (Figure A.1c).

(a) DS kinematic constraints ensure the maxi-
mum length of the legs is respected during
the DS.
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(b) Without the DS kinematic constraints, the
maximum length of the legs is not respected
during the DS.
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(c) Without the DS kinematic constraints, we
limit the distance between footprints that en-
sures the maximum length of the legs is re-
spected during the DS, but they might over-
constrain the kinematic capabilities of the
biped robot. The figure shows only the limit
for the first two footprints.
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robots. Theses, Université Grenoble Alpes, December 2018. (Cited on pages 5, 33,
and 43.)
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