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Karine Heydemann
Maı̂tre de conférences/HDR, Sorbonne Université (LIP6) Invitée

Ulrich Kühne
Maı̂tre de conférences, Télécom Paris (COMELEC) Invité
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Abstract

Summary

In this thesis, we propose a new hardware Control Flow Integrity (CFI) pro-
tection implementation called Code and Control Flow integrity. Current CFI
protection implementations, either software or hardware, are actually limited
to a coarse-grain coverage, or feature an overhead cost which is prohibitive.
The latter cost can concern the running time execution or directly impacts
the hardware footprint.

We start in chapter 1 by introducing the security problem inherent of
today’s processors. This security flaw can affect all kinds of systems and
constitutes a major problem for system continuity and person safety. The
processors variability is discussed in order to understand the field of applica-
tion of our solution. We present the concept of Control Flow Graph as the
basic structure of a program. This allows us to explain on the one hand to
what extent CFI is able to protect programs against corruption, and on the
other hand what are the advantages and limitations of this protection.

Then we explore in chapter 2 the state-of-the-art of today’s protections.
This is presented as a list of existing CFI implementations, either software or
hardware, academic or industrial. This allows us to distinguish coarse-grain
and fine-grain protections, their limitations and advantages as well as their
cost. We also propose an overview of historical protections to understand
their history and why some protections have been adopted by industrialists
while others have been ignored.

Then, in chapter 3, the threat model is exposed to explain the attacker
capabilities. This describes what the attacker is able to perform on the
targeted processor, and highlights the requirement for efficient protections.

The next three chapters (4 & 5 & 6) present our innovative solution with
a top-down approach. We start by setting definition of a program structure

13
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and security property of CCFI. Then, each level of security is detailed, from
functions call and return, called inter-procedural, to control flow checking
between basic block inside a function, called intra-procedural. The chapter
4 leads to a simple implementation of CCFI and explain each aspect of its
security. In the following chapter 5 we describe an implementation deployable
on microcontroller and small processor. This presents the minimal hardware
implementation needed to offer CCFI protection. The last chapter 6 describes
a more advanced implementation, able to deal with complex processors using
speculative execution and branch prediction. We also address the mangement
of interruptions and propose a flexible solution to prevent false positive and
protect code during an interruption.

In chapter 7 we summarize all benefits of the CCFI approach to provide
efficient CFI. Its capacity of adaptation on many platforms and its low impact
on performance and hardware cost makes it a good candidate to be adopted
by the industry. Some perspectives on how this solution can be improved
are discussed. It is notably pointed out that CCFI can be implemented in
many different ways allowing an adaptation to many different architectures.
We also discuss the possibility to use CCFI when an operating system or an
hypervisor are used. In this case we show how our solution can be adapted
to support context switch.

Contributions
The premise of this thesis was a publication in 2014 at PPREW [25]. These
four years of research gave rise to three publications. The first one was pub-
lished in “The New Codebreakers” book in 2016 [24], the second was in 2018 at
DSD conference under the name “CCFI-Cache: A Transparent and Flexible
Hardware Protection for Code and Control-Flow Integrity” [22], and the last
one, “Processor Anchor to Increase the Robustness against Fault Injection
and Cyber Attacks”, has been accepted for presentation at COSADE [70],
in october 2020. This thesis also led to a patent for Secure-IC based on our
technique to synchronize metadata and code.
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Résumé long en Français

Dans cette thèse, nous proposons une nouvelle implémentation matérielle
pour le Contrôle d’Intégrité du Flot d’exécution (CFI: Control Flow In-
tegrity) nommée Code and Control Flow Integrity (CCFI). Les implémen-
tations actuelles, logicielles ou matérielles, implémentant la protection CFI
sont actuellement limitées à une protection à gros grain ou ont un surcoût
en temps d’exécution ou en terme d’empreinte matérielle trop coûteuse pour
être déployée.

Nous commençons par introduire dans le chapitre 1 les problèmes de
sécurité inhérents aux processeurs modernes. Ces failles de sécurité peu-
vent affecter toutes sortes de systèmes et constituent un problème majeur
pour la continuité des systèmes et la sécurité des personnes. Les différences
entre les processeurs sont discutées pour comprendre les différents champs
d’application de notre solution. Nous y présentons le concept Graphe de Flot
de Contrôle (CFG: Control Flow Graph).

Un CFG est la représentation graphique du flux d’exécution d’un pro-
gramme. Les CFG sont principalement utilisés dans l’analyse statique ainsi
que dans les applications de compilation. Sur la figure 1a chaque point bleu
représente une instruction assembleur et chaque flèche une transition au-
torisée pendant l’exécution du programme. Afin de simplifier le CFG de la
figure 1a, nous pouvons utiliser le principe de Bloc de Base (BB: Basic Bloc)
qui définit un ensemble d’instructions assembleurs toujours exécutées ensem-
ble et dont le seul point d’entrée est la première instruction du BB et que le
seul point de sortie est la dernière instruction de ce BB. Ainsi nous pouvons
réduire le CFG de 14 nœuds à 7 nœuds (voir figure 1b).

Le principal problème de sécurité des processeurs modernes vient du fait
que les processeurs n’ont pas connaissance du partitionnement mémoire. Les
différentes zones mémoire utilisées par les programmeurs comme la pile, le tas
et les pages mémoires de code ou de données ne sont que des constructions
faites par les programmeurs afin de faciliter la conception de programme.
Mais le processeur n’est pas informé de cette structure, ce qui permet à des
attaquants de modifier l’exécution du programme ciblé. Plusieurs exemples
sont présentés dans la section 2.1.3. Un exemple significatif est l’attaque de
type dépassement de tampon (buffeur overflow) où le programme accède à
des données à partir d’un pointeur de tableau mais ces données se trouvent
au-delà de la plage mémoire destinée à ce tableau. Ce type de vulnérabilité
est présent dans beaucoup de langage bas niveau comme le C.
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(a) Représentation simplifiée du CFG
d’un programme

(b) Représentation simplifiée du CFG
d’un programme avec son équivalent
avec des blocs de base (rectangle vert)

Figure 1: Représentation simplifiée du graphe d’un programme

D’autres attaques consistent à directement injecter du code dans l’ appli-
cation. Par exemple, en utilisant un champ de données destinées à contenir
des informations de l’utilisateur pour y stocker du code binaire. Ensuite
l’attaquant n’a plus qu’à dévier l’exécution du programme sur le code injecté
pour finir son attaque. Ce genre d’attaque est maintenant arrêtée par des
protections du type W^X. Mais cette protection n’est pas présente sur tous les
processeurs, en particulier sur les microcontrôleurs. De plus, il existe main-
tenant des attaques de type réutilisation de code (code reuse) qui permettent
d’achever le même type d’attaque sans avoir à injecter le code. Ce qui met
à mal les protections de type W^X.

Le tableau 1 (pages 17 et 32) résume les différentes protections existantes
ainsi que leur niveau de sécurité.

Dans le chapitre 2 nous explorons l’état de l’art des protections exis-
tantes. Nous y détaillons la liste des implémentations de la protection CFI,
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qu’elles soient logicielles ou matérielles, académiques ou industrielles. Cela
nous permet de distinguer les protections à gros grain de celles à grain fin
et d’en déduire leurs avantages et leurs inconvénients ainsi que leur coût
respectif. Nous proposons ainsi une vue d’ensemble de l’historique des pro-
tections implémentées dans les systèmes pour comprendre leur histoire et
définir pourquoi certaines protections ont été adoptées par l’industrie tandis
que d’autres ont été ignorées.

L’état de l’art nous permet de distinguer plusieurs familles de sécurité.
La première famille se base sur la gestion de la segmentation de la mémoire.
Le principe est de segmenter la mémoire en pages et d’attribuer à chaque
page des droits spécifiques. Par exemple des droits d’écriture, de lecture
ou d’exécution. Cette technique est poussée plus loin avec les protections
implémentant les fat-pointers. L’idée est d’offrir un niveau plus fin de gestion
de la mémoire, par exemple être capable de délimiter la zone mémoire pour
un tableau.

Le principe de protection des pages mémoire a en premier été implémenté
en logiciel mais est maintenant répandu dans tout processeur moderne. Par
contre, les techniques de fat-pointer ont encore beaucoup de mal à être dé-
ployées en milieu industriel. Principalement en raison de leur surcoût, en
terme de mémoire, de temps d’exécution mais également car certaines pro-
tections nécessitent des changements au niveau de la chaîne de compilation.

La seconde famille de protections qui nous intéresse est celle implémen-
tant des protections du type CFI. Les implémentations logicielles souffrent
d’une vitesse d’exécution fortement réduite empêchant alors toute utilisa-
tion concrète. Les implémentations logicielles réussissant à avoir des perfor-
mances correctes le font en réduisant le niveau de sécurité, par exemple en
vérifiant le respect du CFG uniquement au niveau des appels des fonctions.
Les implémentations matérielles quant à elles sont généralement plus rapides
mais nécessitent une modification du processeur pour fonctionner. Or, dans
un contexte industriel, il n’est pas possible de modifier les processeurs, soit
parce que l’accès au code source du processeur n’est pas disponible, soit parce
que le temps d’intégration et de validation du processeur est trop long.

Le modèle d’attaquant est discuté dans le chapitre 3. Cela décrit ce que
l’attaquant est capable de faire sur le système et souligne la nécessité d’une
protection efficace.

Nous considérons qu’un attaquant puissant est capable d’exécuter des at-
taques logicielles et/ou matérielles. En d’autres termes, le vecteur d’attaque
peut être soit l’exploitation d’une faille existante (qui permet de corrompre
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l’état du programme) ou une altération causée par un stress externe qui mod-
ifie l’état interne comme les attaques par injection électromagnétique. Les
attaques matérielles sont détectées si la perturbation vise le code ou des poin-
teurs de code. Notez que certaines attaques récentes (telles que RowHammer
et PlunderVolt) sont des modifications matérielles déclenchées par le logiciel
et sont donc considérées comme des attaques logicielles et matérielles.

Comme les attaques physiques sont capables de modifier un mot en mé-
moire sans passer par le gestionnaire de mémoire, elles sont capables de
contourner les protections matérielles comme W^X. L’attaquant est ainsi en
mesure de modifier les instructions ou de sauter une instruction. En tant
qu’attaque logicielle, il est capable d’utiliser toute vulnérabilité présente dans
le logiciel Cela comprend l’utilisation de dépassement de tampon sur la pile
pour modifier l’adresse de retour et de changer des pointeurs de fonction.

Les chapitres 4, 5 & 6 présentent notre solution innovante par une ap-
proche top-down. Nous commençons par définir la structure d’un programme
et les propriétés de sécurité du CCFI. Chaque niveau de sécurité est dé-
taillé. La protection des appels et des retours des fonctions est appelée
inter-procédurale. La protection du flux d’exécution entre les BB est ap-
pelée intra-procédurale. Enfin la protection du flux d’exécution au sein du
BB est appelée intra-BB.

Comme l’objectif est de fournir une implémentation d’une protection CFI
capable de fonctionner sur une grande variété de processeurs, nous voulons
que cette dernière ne soit pas intrusive et ne nécessite pas la modification
du processeur protégé. Il est aussi nécessaire de prévoir la possibilité de
protéger des codes utilisant des mécanismes d’interruptions, car cela peut
s’apparenter à une déviation du CFG si cela n’est pas pris en compte. La
solution doit aussi être capable de protéger des processeurs plus avancés
utilisant potentiellement de l’exécution spéculative. Ainsi nous retrouvons
tous les niveaux de sécurité que doit satisfaire notre solution CCFI dans le
tableau 1

Le chapitre 4 conduit à une mise en œuvre simple du CCFI et explique
chaque aspect de sa sécurité. Dans le chapitre 4, nous décrivons une mise
en œuvre sur microcontrôleur et petit processeur. Cela présente le matériel
minimal nécessaire pour assurer la protection CCFI.

La figure 2 représente l’architecture de base de la solution CCFI. Elle
est assurée par deux modules matériels supplémentaires (indiqué en rouge)
: Le CCFI-cache récupère les métadonnées qui ont été calculées au moment
de la compilation. Ces métadonnées contenant toutes les informations rel-
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atives au flot de contrôle. Ces informations sont utilisées au moment de
l’exécution par le second module matériel, le CCFI-checker. Pour suivre
et contrôler l’exécution du processeur, le CCFI-checker est connecté aux
signaux d’interface entre le processeur et le cache d’instructions.

Le CCFI-cache a les mêmes caractéristiques (largeur, taille, associativ-
ité, politique de remplacement, etc...) que le cache d’instructions. Pour
chaque bloc de base du programme, il y a un bloc de métadonnées corre-
spondant. Chaque bloc de métadonnées est parfaitement aligné en mémoire
sur le BB de code correspondant, avec un décalage constant. Pour chaque
accès au cache d’instructions, une requête est émise au CCFI-cache. Grâce
à l’utilisation d’un décalage constant entre les instructions et les métadon-
nées, le calcul d’adresses complexes est évité. En outre, les données du cache
d’instructions et du CCFI-cache seront toujours cohérentes, c’est-à-dire que
si un BB de code est présent dans le cache d’instructions alors ses métadon-
nées sont présentes dans le CCFI-cache.

Les métadonnées pour chaque BB contiennent trois informations cruciales
pour la vérification du flot d’exécution:

• Le nombre d’instructions contenues dans le BB

• Les adresses de destinations valides comme successeurs du BB

• Une signature calculée à partir des instructions et des metadonnées du
BB

La vérification proprement dite est réalisée par le CCFI-checker. A la fin
de chaque BB, il vérifie la validité de l’adresse suivante en la comparant avec
les adresses valides contenues dans les métadonnées, assurant ainsi que le CFI
intra-procédural est respecté. En cas d’appel ou de retour de fonction, une
copie de la pile d’appels (shadow stack) est utilisée pour vérifier le CFI inter-
procédural. Cette pile d’appels est intégrée dans le CCFI-Checker et n’est
pas accessible depuis le processeur principal. La cohérence intra-BB est as-
surée par un compteur qui contrôle le nombre d’instructions exécutées avant
un transfert de contrôle. Enfin, l’intégrité du code et des métadonnées est
assurée par une signature pré-calculée stockée dans les metadonnées. Cette
signature est comparée à une valeur calculée durant l’exécution du BB par
le CCFI-checker. En cas de violation, une interruption est déclenchée. Les
détails du CCFI-checker sont présentés à la section 5.1.3.
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Figure 2: Vue simplifiée de l’architecture de base du CCFI

Le dernier chapitre 6 décrit une mise en œuvre plus avancée, capable
de protéger des processeurs complexes utilisant l’exécution spéculative et la
prédiction de branchement. Nous abordons également la gestion des inter-
ruptions et proposons une solution souple pour éviter les faux positifs et
protéger le code durant l’exécution du code de l’interruption.

Lorsqu’une interruption se produit, le processeur détermine l’adresse mé-
moire du vecteur d’interruption et saute dessus. Il y a deux façons princi-
pales pour un processeur d’exécuter le gestionnaire d’interruption. La pre-
mière est d’avoir un code statique en dur dans le processeur, quelle que soit
l’interruption il exécutera ce code. La distinction du type d’interruption et
l’appel du bon gestionnaire d’interruption sont laissés au programmeur. La
seconde est d’avoir une zone de mémoire dédiée à un tableau de pointeurs de
code. Pour chaque interruption, le processeur va chercher le pointeur de code
correspondant et exécute le code relatif. Dans tous les cas, il en résulte un
saut direct à la sous-routine d’interruption à tout moment et de n’importe
où. Ce comportement, vu de l’extérieur, est considéré comme une violation
du CFG. Pour être agnostique sur le type d’interruption, notre solution con-
siste à ajouter un drapeau Int dans l’en-tête des métadonnées du premier et
du dernier BB de la fonction du gestionnaire afin de détecter le début et la
fin de l’interruption.
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Cela permet de détecter les interruptions déclenchées à la volée, indépen-
damment de la la mise en œuvre du processeur. En cas d’interruption, le
CCFI-checker détecte la discontinuité du flux de contrôle, mais les méta-
données indiqueront que la destination est à la fois un Start BB et Int
signifiant que cette fonction est appelée à cause d’une interruption. Dans
ce cas le CCFI-Checker sauvegarde son contexte d’exécution actuel dans une
mémoire interne et la shadow stack est utilisée pour sauvegarder le PC actuel.
Une fois la sauvegarde du contexte fait le CCFI-Checker saute à un autre
FSM dédié à suivre l’exécution du gestionnaire d’interruption. Cette machine
à états est la même que l’état normal, sauf pour l’état END BB où le drapeau
ENDINT est vérifié. Si l’indicateur ENDINT est présent, alors le précédent con-
texte sauvegardé est restauré. Une fois le contexte restauré, le CCFI-checker
peut poursuivre la vérification du BB là où elle a été interrompue.

Pour réussir à protéger les processeurs utilisant de l’exécution spécula-
tive, il faut faire la distinction entre l’instruction récupérée par le processeur
et l’instruction exécutée. Pour cela chaque instruction extraite est stockée
dans un tampon circulaire avec ses métadonnées correspondantes. Ce tam-
pon circulaire est aussi profond que nécessaire pour reproduire la latence du
pipeline entre l’étage de la collecte (fetch) et l’étage de l’interface de traçabil-
ité (voir figure 3). Pour chaque instruction récupérée par le processeur, une
ligne est stockée dans le module Buf. Chaque ligne dans le module Buf con-
tient l’instruction, son adresse et les métadonnées associées. Ainsi, lorsque
la sortie de l’interface de trace expose une adresse, cette adresse est envoyée
au module Buf pour sélectionner l’entrée correspondante. Le module Trace
Decoder est présent pour assurer la récupération de l’adresse du PC à par-
tir de l’interface de trace. Par construction, il n’est jamais possible pour
le processeur de sortir un PC à partir de l’interface de trace sans que les
métadonnées correspondantes soient présentes dans le module Buf. Une fois
la ligne sélectionnée, le module Buf envoie les informations (PC, instruction
et les métadonnées) au CCFI-Checker. Ce faisant, le CCFI-Checker est en
mesure de suivre l’exécution du processeur, étape par étape, sans erreur, et
cela même avec un processeur utilisant l’exécution spéculative.

Dans le chapitre 7, nous résumons tous les avantages de l’approche du
CCFI pour fournir un CFI efficace. Sa capacité d’adaptation sur de nom-
breuses plateformes et son faible impact sur les performances et le coût
matériel, en font un bon candidat à l’adoption par l’industrie. Quelques
perspectives sur la manière dont cette solution peut être améliorée sont dis-
cutées. Il est notamment souligné que le CCFI peut être adapté de différentes
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Figure 3: Vue simplifiée de l’architecture de la solution CCFI prenant en
compte l’exécution spéculative

manières afin de permettre une adaptation à des architectures différentes.
Nous discutons également de la possibilité d’utiliser le CCFI lorsqu’un sys-
tème d’exploitation est utilisé. Dans ce cas, nous montrons comment notre
solution peut être adaptée pour soutenir le changement de contexte et les
modifications à apporter au système d’exploitation.

La vérification de l’intégrité du code et du flux de contrôle en parallèle
avec l’exécution du logiciel est de la plus haute importance pour les ap-
plications de sécurité et de sûreté. L’idée de base d’utiliser un cache pour
récupérer les métadonnées en même temps que le code a montré son efficacité
en terme de performance, sans pour autant diminuer le niveau de sécurité.
En effet, l’alignement des métadonnées avec la structure du code a été une
bonne idée, tant pour simplifier le calcul de l’emplacement des métadonnées
à partir de l’adresse du code que pour utiliser au mieux le cache de métadon-
nées. Nous avons prouvé qu’il est possible de développer une solution de CFI
à grain fin tout en maintenant de bonnes performances. Un avantage majeur
de notre solution est sa taille réduite en coût silicium et indépendante de la
puissance de calcul du processeur utilisé.

Néanmoins, certaines IPs spécialisées sont nécessaires en plus de la con-
ception de base pour travailler avec les processeurs complexes, par exemple
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ceux qui utilisent l’exécution spéculative. Le surcoût mémoire lié à l’ajout
des métadonnées, doublant la taille mémoire nécessaire pour le code, peu-
vent faire l’objet de controverses parmi les industriels et les universitaires.
Cependant, nous pouvont considérer que c’est un prix raisonnable à payer
pour ce niveau de sécurité et qu’aujourd’hui la mémoire est relativement bon
marché. En outre, lorsque le code est compilé efficacement, il reste dans
le cache et donc la vitesse d’exécution n’est pas impactée. Dans d’autres
cas d’utilisation, doubler la taille mémoire est difficile surtout lorsque cette
mémoire est intégrée dans un SoC (System-On-Chip). Comme nous l’avons
vu, lors du développement de la solution CCFI, un des défis principal est
de pouvoir détecter le début et la fin des blocs de base (BB) au cours de
l’exécution. En effet, lors de l’exécution, seules les instructions qui modifient
le flux de contrôle donnent un aperçu du CFG, mais cela ne suffit pas pour
déduire l’ensemble du CFG. Nous avons intelligemment contourné ce prob-
lème en ajoutant ces informations directement dans nos métadonnées. Nous
soulignons que la solution garantit le CFI au niveau des BB, ce qui le rend
efficace et capable de détecter toutes les attaques modifiant le déroulement
de l’exécution du programme. L’impact de la solution sur les performances
est prometteur avec une variation de 2 à 30% selon le type de programme et
le type d’architecture mis en place, ce qui est très raisonnable et industrielle-
ment viable.

Ayant démontré son efficacité, la solution CCFI ouvre toutefois un cer-
tain nombre de perspectives en terme d’amélioration. La première piste
d’amélioration est de lever la restriction forte de l’implémentation actuelle
qui requiert que les métadonnées soient alignées avec le code. Ce qui implique
que les métadonnées requièrent autant de place que le code. Or une grande
partie des métadonnées ne contiennent pas d’informations utiles et certains
BB du code sont artificiellement agrandis ce qui impacte les performances
du programme. Il serait donc intéressant d’explorer la possibilité d’assouplir
cette contrainte afin de réduire l’empreinte mémoire et d’améliorer les per-
formances. Toute la difficulté étant de trouver un algorithme qui permet de
déterminer l’adresse des métadonnées aussi rapidement que possible. Une
possibilité serait de stocker l’adresse des métadonnées du BB suivant à côté
de l’adresse du code au sein même des métadonnées. Nous pouvons aussi
explorer la possibilité d’améliorer les performances de façon globale en mod-
ifiant le compilateur pour générer des BB de base suffisamment grands pour
contenir toutes les métadonnées au prix, par exemple, de dupliquer du code.
Une dernière optimisation concerne le CCFI-cache que nous pouvons intégrer
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directement au cache d’instructions pour alléger le nombre de requêtes sur
le bus de mémoire et factoriser la logique du CCFI-cache avec celle du cache
d’instructions.
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Chapter 1

Introduction

1.1 Today’s processors

1.1.1 Common architecture of today’s processors

Today processor are everywhere, inside computer, smartphone, smartwatch,
calculator, TV box, toys and a lot more with the IOT devices. For all
these purposes different kinds of processors have been developed from small
microcontroller able to operate at few dozen of Mhz to powerful processor
containing multiple cores, each operating at over 3.0 Ghz. This gap of perfor-
mance is due to architectural differences, while microcontrollers have only a
3 stage pipeline and limited caches or none at all, big processors have around
14 stage pipeline and large caches. Advanced processors also have advanced
prediction system to guess which part of the program while be executed.
This in order to keep the pipeline full and to keep the number of instructions
executed per cycle high. This complexity comes with a physical size and cost
increase.

While it is relatively easy to follow the execution of a program from the
outside of the processor by looking at which address it fetch instruction. It
is more difficult, event impossible, to follow the execution path of the pro-
gram for more complex processors. This can be because of prefetch mecha-
nism which add a hidden cache inside the processor to speculative execution.
During speculative execution the processor will guess the next jump before
it had computes the destination. If this guessing was right it is time saved
but in case of miss prediction the processor will make an internal rollback to
previous state and take the right one. From the outside of the processor it

27
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is hazardous to guess if the processor has make a wrong prediction or if it
was an unexpected behavior. This can be theoretically possible if we know
exactly the internal functioning of of the prediction mechanism. But this is
rarely the case for most of the processor. It would come back to recreate a
part of the processor to be able to follow processor execution. This will be-
come more and more expensive as the processor have complex and multiple
predictions.

1.1.2 RISC Processors

CISC processors can have a large number of possible instructions, to minimize
the code size and its impact on the necessary size of the instruction cache,
these instructions have various length. This particularity makes harder to
detect the beginning of an instruction in memory. It’s also a risk for the
security because instruction can be misinterpreted if they are fetched with
one byte of offset. RISC processors feature constant size instruction which
facilitates code instrumentation and lower the complexity of their pipeline.
This is easier to detect misaligned fetch and to detect the beginning of an in-
struction. Their execution is also much more deterministic, for these reasons
we focus on RISC processor in the rest of this PhD.

1.2 Control Flow Graph

At the level of the machine code, a program is composed of multiple functions
which in turn can be decomposed into basic blocks. A Basic Block (BB)
is a straight-line sequence of instructions with a unique entry point and a
unique exit point, i.e. if the control flow enters a BB, it will execute all of
its instructions in sequence until leaving the BB at the exit point. A control
flow transfer can only take place at the last instruction. This means that
a basic block begins by an instruction that is the destination of a jump
instruction (typically: branch, jump, call or return), and finishes by a jump
instruction (idem: branch, jump, call or return) or by an instruction whose
next instruction is the beginning of a new basic block. Each function can
be represented as a control-flow graph (CFG), where each node corresponds
to a BB, and edges represent the control transfers between the BBs. For
example, Figure 1.1 illustrates a program along with its flow graph. These
CFGs of function always have only one BB to enter the function and only
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Figure 1.1: Example of program and associated flow graph (from [34])

one BB to exit the function. This constraint is set by the compiler during
compilation. A whole program is composed of the CFG of each function
linked by edges representing function calls and returns. It is noted that it is
common in compilation world to consider that a BB can contain a call to a
function without ended it. In our case we consider a call automatically set
the end of the BB.

During a nominal program execution the flow remains on the CFG. How-
ever due to no memory safety of low level language it can happen that the pro-
gram executes outside of the CFG. This behavior can be caused by software
bug or physical disruption. Such behavior can be exploited by an attacker
to leak date or take control over the machine. It is therefor extremely im-
portant to guarantee execution integrity. Technique to perform are referred
to as Control Flow Integrity.

1.3 Control Flow Hijacking

There are multiple ways to an attacker can hijack the program execution
to take over the machine. In many cases, buffer overflows – due to bad
programming – offer an entry point for an attacker. They can be exploited
to inject code and/or to compromise return addresses stored on the stack to
divert the execution flow.
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Executing injected code can be mitigated by DEP which prevents writ-
ten data to be executed. This protection can be circumvented by code reuse
attacks that rely on (stubs of) existing functions in libraries, so-called gad-
gets. Known variants of this type of attacks are return-oriented program-
ming (ROP), jump-oriented programming (JOP) or call-oriented program-
ming (COP) [17]. As shown in [68], all such attacks rely on code pointer
corruption. In this way, only legitimate code of the application is executed,
but the CFG of the program is not respected anymore. Executing injected
code can be mitigated by Data Execution Prevention (DEP)/W^X which
prevents written data to be executed. This protection can be circumvented
by code reuse attacks that rely on (stubs of) existing functions in libraries,
so-called gadgets. Known variants of this type of attacks are return-oriented
programming (ROP), jump-oriented programming (JOP) or call-oriented pro-
gramming (COP) [17]. As shown in [68], all such attacks rely on code pointer
corruption. In this way, only legitimate code of the application is executed,
but the CFG of the program is not respected anymore.

Another threat – invalidating DEP protections – are fault attacks, where
memory contents are altered by physical means [43, 73]. Using the RowHam-
mer attack [44], a dynamic RAM cell can be changed by rapidly reading
neighboring cells before a refresh. Its stealthiness makes this threat extremely
dangerous: Even trusted firmware code with a digital signature can be cor-
rupted when residing in RAM. Some examples of attacks enabled by such
modifications are Shamir’s bug attack [12] (e.g., on RSA) or Sbox tamper-
ing attacks [6] (e.g., on AES). Fault attacks are difficult to master, but can
be used to change instructions, to manipulate access rights, to skip an in-
struction, or to directly change the current program counter, in some cases
without violating the CFG.

1.4 Control Flow Integrity

Control-Flow Integrity (CFI) refers to protections against control-flow hi-
jacking and was introduced in Abadi’s [3] [4] seminal papers. In the paper
of 2005 Abadi et al. present a software implementation of CFI. In theory CFI
limit all control-flow transfers to those who are intended by the programmer.
This prevent the use of code injection, ROP and JOP. CFI is divided in 2
phases, first phase is an analysis phase of the source code to extract the CFG
of the programme. This phase can be done on the generated assembly code
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but it will be less precise due to the fact we lose information on indirect jump.
This is why it is preferable to directly extract the CFG from the source code.
The second phase is an enforcement of the CFI by checking the current path
of execution against the CFG data extracted during the previous phase.

To prevent control flow hijacking and fault attacks, it is necessary to
ensure that control transfer instructions execute as expected, i.e. any control
transfer originates from an address that corresponds to a control transfer
instruction and targets a valid destination address for this specific instruction.
For direct jumps and conditional branches, the valid destinations can be
determined at compile-time. Verifying the integrity of these control transfers
boils down to checking that for each executed jump or branch, there is a
corresponding edge in the function’s CFG. We refer to this check as intra-
procedural CFI.

A different treatment is needed for function calls and returns. Since com-
mon functions – such as printf – are called from many sites, just checking
that the function returns to one of these call sites does not provide a reason-
able protection against ROP attacks. Instead, the correct pairing of call and
return addresses needs to be ensured. We refer to this as inter-procedural
CFI.

It should be noted that indirect jumps and calls pose a special problem
for CFI as the set of destination addresses can be significant. However, in
many cases – such as a switch statement which has been compiled to an
indirect jump – the set of target addresses is usually small and can often be
determined at compile-time.

Otherwise, either manual code changes are necessary or these specific
instructions must remain unprotected.

While these checks only consider control transfer instructions, it is nec-
essary to ensure that inside a BB, all instructions are executed in-order,
thereby preventing instruction skips. This verification, which is hard to im-
plement in software, is called intra-BB CFI. Finally, Code integrity (CI) refers
to verifying that all instructions have been executed unaltered. This prevent
physical injection to to modify an instruction in memory to change the result
of computation, to bypass some verification.

In summary, a combined CFI and CI protection must ensure basic block
integrity and verify both intra-procedural and inter-procedural control trans-
fers.
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1.5 Introduction

Software are know to contains unsolicited behavior called bugs. These bugs
are present in all kinds of systems ranging from personal computer and cell-
phone to cloud-servers via industrial control systems. This bug can be a risk
for people, environment and also for infrastructures. In fact these bugs are
exploited by malicious attackers to extract sensitive data or to take control
over the device. While these vulnerabilities can be eliminated by using tech-
nique or tools like technical code review, static analysis, usage of memory-safe
programming languages or mechanically proved programs, in reality it is dif-
ficult to do. This can be due to the complexity and the time needed to use
expert tools to prove lack of vulnerabilities. There are also many already
existing programs use today which have been written long time ago that
have vulnerabilities. One solution would be to rewrite these code in memory
safe language but the investment in cost in time is too high the fault to by
time-to-market constraints, legacy code reuse, and high competition.

Cyber-attacks exploit these bugs in different ways. There is another
threat that can overcome some protection: fault injection. The software at-
tacks exploit bugs or wrong configurations in order to hijack the control flow.
In practice, such cyber-attacks mainly operate in two distinct manners. At-
tacks such as Return-Oriented-Programming (ROP) consist in corrupting the
stack such that it calls carefully picked pieces of code called gadgets, which
altogether form the attack payload. ROP attacks are thus “code-based”. The
second type of cyber-attacks exploit contamination of data to force pointers
to different locations. Such “data-based” attacks exploit improperly checked
user-inputs, which can lead to control-flow contamination. In this article, we
focus on “code-based” attacks, including their protection.

Control-flow integrity (CFI) refers to protections against control-flow hi-
jacking and was introduced in Abadi’s seminal paper [4]. The idea is to
verify at run-time by a monitor process or by dedicated hardware that the
correct control flow is respected. A common specification of the control flow
is given by the static control flow graph (CFG) of the application, which can
be determined at compile-time.

Since [4] was published many CFI implementation was proposed. There is
two main approaches to implement the CFI, software or hardware. Software
CFI solutions are convenient mainly because they can be deployed on existing
equipment. These solutions rely on instrumenting the software to add self
verification or by using an external monitor to check the behavior of the
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monitored thread. The flexibility of the software solution is at the cost of
performance slow down or to only ensure coarse grained CFI, like [21]. On the
another hand, hardware solutions are generally proposed in academic papers
and rely on hardware monitor to follow the execution of the processor. Or by
using cryptographic primitive with core modification to ensure CFI and more.
These hardware solution have generally less impact on processor performance
but needs modification of the internal of the processor, which is a very high
price to pay in the industrial world, like SOFIA implementation [27].

Most CFI approaches assume that the code cannot be modified, due to
the presence of widely used data execution prevention (DEP) protections.
Such a protection is commonly present on high performance processors but
rarely deployed on embedded platforms or micro-controllers. Furthermore,
different threats may invalidate this assumption: There exist physical attacks
able to perform fault injections that result in a modification of the executed
code [43, 73]. Since the discovery of the RowHammer attack [44], it is known
that changes in write protected DRAM can even be induced by software.
Hence, code integrity (CI) is also to be targeted in order to protect systems
against a large body of attacks that disrupt the execution.

Hardware-based solutions range from lightweight solutions – ensuring
only some types of control transfer (such as a so-called shadow stack) or
reducing the amount of reusable code by marking valid call/jump destina-
tions – to solutions covering all control transfers that can be determined
statically at compile-time, at link-time, or at load-time of the application
[23, 27]. Unfortunately, such approaches either offer coarse-grained protec-
tion or does not allow indirect jump or they require a significant modification
of the CPU, which prevents them from being deployed in practice due to ei-
ther the huge amount of work required for validating a modified processor or
the use of off-the-shelf processor cores. This is why we target a non-intrusive
solution that does not modify the CPU core.

Another technical point generally not addressed by CFI implementation
is how to handle interruptions. Interruption can happen at any time, and can
be seen as a violation of the CFG from an external point of view. It is also
necessary that the hardware implementation of CFI addresses the speculative
execution or branch prediction. This adds another complexity level to the
CFG verification as unused predicted instruction should not be checked by
CFI.

We present a hardware-based solution that combines CFI with CI, while
being non-intrusive. The Code and Control-Flow Integrity (CCFI) checks are
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performed at runtime by a dedicated hardware module outside the processor
core. The control flow information – referred to as metadata – is stored in
a dedicated section in memory and is aligned with the instructions. These
metadata are fetched by a cache named CCFI-cache. Whenever a new in-
struction is requested by the processor, the corresponding metadata is fetched
transparently and in parallel, so as not to disrupt or slow down the execu-
tion flow. The CCFI-checker verifies the integrity of execution flow changes
by checking the effective target addresses. Function calls and returns are
protected by an integrated shadow stack. Additionally, we ensure code and
metadata integrity by computing a signature based on the executed instruc-
tions and metadata fetched by validating it against a precomputed signature
contained in the metadata.

The proposed CCFI solution architecture has been implemented on a
RISC-V [11] platform, without modifying the processor core and without
adding sanity check code within the program. Our experiments show that
the run-time overhead is acceptable for different benchmarks. The price to
pay for this very flexible solution is a two-fold increase in instruction memory.

In summary, the contribution of this work is a novel hardware-based CFI
scheme that:

• is non-intrusive, since the CPU core remains untouched,

• implemented code integrity (CI),

• is fine-grained, in that it enforces intra- and inter-procedural CFI,

• has low run-time overhead, and

• only requires very minor code modifications from the application code
side.

The aforementioned protections, namely code integrity check and intra-
and inter-procedural CFI, address hardware and software threats, to various
extents, as depicted in Tab. 1.2. The code integrity is granted by various
system-level mechanisms already (W^X, etc.), but the code is very fragile
with respect to hardware-level modifications. On the contrary, control flow
hijacking can be achieved more reliabily by the exploitation of software issues.
A complete analysis is provided in chapter 3.
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Table 1.2: Mapping between CCFI protections and threats

Hardware attack Software attack
Code Integrity +++ +

Control Flow Integrity + +++



Chapter 2

State-of-the-art

2.1 Software weaknesses and associated attacks

2.1.1 Introduction

This section first introduces the general structure of a program. Particularly,
in the case of Executable Link Format (ELF) format, the static and dynamic
structures are described in detail, followed by the vulnerabilities induced by
the use of of these representations in memory and how they can be exploited.
Finally, different methods for payload creation are reviewed.

2.1.2 Program architecture

This section is about the general structure of a program in memory, although
some aspects specific to the ELF (Executable Linkable Format) format are
mentioned. This format is used by numerous systems, especially GNU/Linux
systems (embedded or not). The ELF format specifications are openly avail-
able ([20]).

First we present static structures which are declared at compilation time
and are allocated inside the ELF file. Secondly we introduce dynamic struc-
tures allocated during the execution of the program. Finally we introduce
dynamic linking mechanisms for libraries.

37
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Static structures

The structure of a program in memory is divided into sections, in order to
make memory management easier for the programmer. It is mainly composed
of the following sections:

• .text containing the program instructions.

• .rodata containing read-only data.

• .data containing the initialized data, which is accessible for reading
and writing.

• .bss containing non initialized data, or data initialized with 0, which
is also accessible for reading and writing.

These sections allow to sort the different types of information in memory.
For example, the .text and .rodata sections can be read from a non-volatile
memory, for example a Flash memory, and the .data section can be copied
into Random Access Memory (RAM) to increase performance.

Additionally, some ELF binaries are endowed with .init, .fini .ctors
and .dtors sections, which serve to call initialization code (.init, .ctors)
or termination code at the program exit (.fini, .dtors).

It is important to note that microprocessors have no knowledge of the
semantic that the developer choose to assign to each of the sections. To be
more precise, the microprocessor does not even consider the notion of section
at hardware level, as it is actually a generic calculation module. The data
semantic and the breakdown into sections are defined by the developer for
convenience. The attacks introduced later in this document are linked to
the genericity property of the microprocessor, viewed as a general execution
module.

It is interesting to note that the control of sections such as .text, .fini
or .dtors may give an attacker the control of the instruction flow during
the execution or at the program termination. These sections are therefore
sensitive areas. Also, the possibility to execute code from the .data section
is an ideal attack mean, as it is explained in the next sections.

After this introduction about the main big "static" structures of a pro-
gram, the next section covers "dynamic" structures, namely the heap and
the stack.
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Dynamic structures

The heap and stack are also stored in RAM. These structures allow the
user to perform dynamic allocation during the program execution, unlike
the others sections previously presented which are statically allocated (even
though their content changes dynamically).

Function calls and stack: For programming flexiblity, programs are or-
ganized in functions. This allows to reuse code at several locations in the
program, and also to use recursive procedures.

Each function needs resources to be functional, particularly local vari-
ables. Moreover, it is necessary to store the parameters of a function call, as
well as the state of the registers of a calling function in order to resume the
previous computation after the called function was correctly executed.

The microprocessor registers, being limited in number (16 on Intel x86
architectures), dynamic allocation is necessary to satisfy the memory needs of
functions. To store all these data (local variables, registers, parameters and
return address), we use a stack structure. This stack is a dynamic structure
allocated during the execution of program. Each time a function is called, it
is used to save the current state of registers and store the address where to
return once the called function has finished. A function can also store their
local variables on the stack to be able to manage more data than the number
of available registers.

At hardware level, the stack is generally addressed by at least one register
which serves to identify its top position, as seen in the microprocessor address
space.

Function call conventions, and therefore the organisation of data on the
stack, may vary depending on the considered microprocessor architecture, the
compiler, and the Operating System. For example, some microprocessors
have both a register to store the stack current top position, called stack
pointer, and a register to save the stack top position before the last function
call. This register is generally called frame pointer and is frequently used as
a reference to locate data on the stack more easily, in particular the function
call parameters. A frame is a memory section of the stack where data of
the current function is stored. In a normal behavior the function must not
access to other sections of the stack. frame pointer is used to access local
variables more easily than by using the stack pointer.

Figure 2.1 (page 40) shows how the various items are saved on the stack
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Free word(not allocated)

Local variables (5)

Registers backup (4)

Frame pointer backup (2)

Return address backup (1)

Function parameters (3)

Calling function context (0)

Stack Pointer

Frame
direction of
stack growth

Figure 2.1: Typical data structure on the stack

when a function is called, including at least a return address (1) to get
back to the calling function, and optionally the frame pointer (2). The
function arguments (3) can be passed partially by the registers (e.g. on
SPARC architecture) or fully on the stack. Finally, the called function starts
its execution by saving the processor registers that will be used (4), and by
allocating the necessary space for local variables (5) that cannot be saved
into registers. These registers used by the function are then restored to their
original state before resuming the calling function.

When the function call returns, local variables are freed by incrementing
the stack pointer, and the registers are then restored from the backups
before those are also freed. At this point, the stack pointer has the same
value as the frame pointer, which is restored from its backup on the stack.
Finally, the return address backup is loaded, then freed on the stack, before
being used to return to the calling code.

Quite a few sensitive points can already be identified about this dynamic
structure. The registers backups and the function call arguments are poten-
tially important with regards to security, but more importantly, the saved
return address, also called code pointer, is an address that references code.

This variable is extremely important because its purpose is to modify the
execution flow of the program. Taking control of this return address allows
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the attacker to take control of the execution flow when the called function
ends. This vulnerability (or architectural flaw) is presented in greater detail
in the section 2.1.4. The control of the frame pointer backup allows the
attacker to control what the calling function considers the "stack context"
(denoted (0) on the figure) once the called function ends. This includes
arguments, local variables, return address of the calling function, and so on.

Heap: Like the stack, a heap is a structure for dynamic memory allocation,
commonly present in a lot of programs. This structure is not necessarily used
in critical softwares or in embedded systems with low complexity, which rely
mainly on static allocation and on the stack. However, it can be found in
the vast majority of other programs, especially in Operating Systems such
as Windows, GNU/Linux, etc.

The heap is allocated and deallocated by two types of function calls. The
first function call (e.g. malloc for C/Unix) requests a memory allocation
for an area of a given size n, which can be a variable of the program. The
second function call (e.g. free for C/Unix) allows to deallocate a memory
area previously allocated.

Several mechanisms may be involved when allocation and deallocation
are requested by the user, depending on the size of the concerned memory
area. Accordingly to the exploitation methods presented in the next sections,
we will consider memory allocations of small memory areas. Indeed, these
areas are the objects of specific procedures from the heap manager, which is
an opportunity for the attacker.

Thereafter, the focus will be put on the dlmalloc allocator, formerly
present in systems equipped with GNU LibC. This allocator has been re-
placed by ptmalloc which, while respecting the general principles of dlmalloc,
introduces consistency tests to detect potential memory corruptions, as well
as mechanisms for concurrent accesses in multi-threaded systems.

dlmalloc memory allocator The heap manages allocation and dealloca-
tion requests by splitting and handling a dedicated range of memory, whose
size may vary depending on the memory requirements of the program.

This memory zone is segmented into pieces called chunks. The chunks
fit into several categories according to their size. Each chunk contain the
necessary information to the proper management of the heap (e.g. its size,
the position of the next chunk, etc.) and a zone dedicated to user data (see
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Figure 2.2).

PREV SIZE
previous chunk size if it is free

SIZE
size of chunk

User Data

Unused next chunk PREV SIZE
field holding chunk user data

chunk

next chunk

Figure 2.2: Structure of an allocated memory chunk

The structure of the chunk and its metadata vary depending on its state:
free or allocated. The last chunk, called wilderness chunk, is special and
borders the memory space allocated to the heap. This wilderness chunk size
can be increased or reduced depending on the memory requirements.

When a chunk is freed, the manager first checks if it is adjacent to another
freed chunk. If so, the two chunks are merged. If not, the field PREV_SIZE
of the next chunk is initialized, and the first two words of the area dedicated
to the current chunk user are used to save the pointers fd and bk, which will
serve to insert the chunk in the doubly linked list of free chunks (see Figure
2.3).

Two free chunks cannot be positioned one after another as the dlmalloc
manager would merge them. Consequently, such a situation would indicate
a heap corruption. dlmalloc exploits this property to optimize the memory
utilisation by using the PREV_SIZE field of the following chunk to store the
user data of the current chunk.

The heap contains several of these linked lists, called "bins". Each of
these lists corresponds to a size or a group of sizes of chunks. Thus, when
a new chunk is being allocated, the lists can be used to search a chunk of
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size greater or equal to the requested space, in order to reuse it. In Figure
2.4, the chunk is therefore inserted by the frontlink() macro into a list of
chunks as presented in the Figure 2.3 page 43.

When a chunk is allocated again or when it is merged with another re-
cently freed chunk, it is removed from the linked list via the unlink() macro.

PREV SIZE

SIZE

FD

BK

Unused space

PREV SIZE

PREV SIZE

SIZE

FD

BK

Unused space

PREV SIZE

PREV SIZE

SIZE

FD

BK

Unused space

PREV SIZE

Figure 2.3: Linked list of “free” memory chunks
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Unused PREV SIZE field
holding previous chunk user data

SIZE
size of chunk

fd: forward pointer to the
next free chunk in the linked list

bk: backward pointer to the
previous free chunk in the linked list

Uninitialized Data
(Potentially user-controlled)

Unused next chunk PREV SIZE
contains chunk size as it is free

chunk

next chunk

Figure 2.4: Structure of a “free” memory chunk

It will later be explained that if an attacker controls the metadata of one or
many chunks, it can lead to exploitations. Finally, the status of a chunk
(allocated or free) is stored with a flag in the field SIZE, of which the two
least significant bits are unused, given that allocations are aligned on 32-bit
words.

Metadata corruption may lead an attacker to write data in memory at
arbitrary addresses, or to control a program memory, which makes metadata
sensitive data.

Dynamic Loading of Libraries.

The ELF (see 2.1.2) standard specifies three different types of files format,
each with a precise role in the construction chain of an executable program
in memory. Prior to the execution, three phases can be distinguished, repre-
sented in Figure 2.5 (page 45):

1. The compilation: this step converts files from a programming language
into machine code for a given processor architecture.
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2. The linking : this step produces the executable file by linking together
the different modules produced at compilation.

3. The loading of the program and its preparation for execution: this
step is handled by different tools from the operating system (program
loader and dynamic linker). The goal is to load the program code into
memory, to link it to the necessary shared libraries and to transfer the
control to allow the execution of the program. These initialization steps
are, therefore, performed at each execution.

int main(
int argc, char**
argv) {
...
return 0 ;
}

source code

...
push %eax
mov %eax, %ebx
call ¡foo¿
call
¡printf@plt¿
...

object

...
push %eax
mov %eax,%ebx
call 0xff00
call 0xfe08
...

executable

...
push %eax
mov %eax, %ebx
call 0xff00
...

program ready
for execution

int
printf(...) {
...
return 0 ;
}

source code

...
push %eax
mov %eax,%ebx
call ¡foo¿
...

object

...
push %eax
mov %eax,%ebx
call 0xff00
call 0xfe08
...

shared object

compiler link

compiler link

dynamic link

Figure 2.5: Compilation and execution cycle of a program

The first file type specified by the ELF format corresponds to the compila-
tion step and is called object file. It cannot be directly used as an executable
program, or by another program to extend its functionalities at execution.
It is actually a container of data and code produced by the compilation of a
source file, and can be associated with the rest of the program code at the
linking step. In order to be shared between several compilation tasks, this
file should be independent of any memory address that could be the cause of
conflicts with other objects. Thus, the compiler creates a relocatable file. A
relocatable file is composed of code independent of memory positions (PIC:
Position Independent Code). In situations where the code requires hardcoded
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addresses, for example, to reference data, the compiler uses symbols instead
of addresses, which are later replaced by definite values during the linking
phase.

The second type of file is the executable format. It is produced after the
linking step. This format essentially contains all the information neccessary
for execution. In particular, it may include references to shared libaries
needed for running. The most commonly used library is LibC as it provides
a large number of basic functions, used almost systematically in program.

The mechanism of library sharing has several advantages. It allows to
share the development efforts as the functions developed in a library can be
used directly from an executable at runtime. It also permits to benefit from
these functions’ updates without recompiling the program. Historically, this
mechanism was proposed to limit the memory footprint of programs and to
avoid to store the same code multiple times.

The third type of files, shared libraries or shared objects, is produced after
the linking step too. However, they are not directly executable and can only
be used when loaded by another program.

As the creation processes of the executable program does not consider
information about the size and the memory position of the different shared
libraries, the compiler has to establish indirection mechanisms. These mecha-
nisms rely on tables whose fields are updated at dynamic linking. Concretely,
to allow a program to call a function from a shared library, the compiler pro-
duces two elements:

1. A procedure (short and independent portion of code performing a spe-
cific task) within a table of functions called Procedure Linkage Table
(PLT).

2. An uninitilized entry of address pointer in a table called Global Offset
Table (GOT).

The GOT is an array of pointers, in which each entry of this table ref-
erence a function of shared library. The PLT is an array of small code the
purpose of which is to fill the GOT with the correct pointer during the ex-
ecution of the program. At the first call of the shared function the code
executes the code contained in the PLT of the corresponding function. This
code will resolve the address of the shared function and store it inside the
corresponding GOT entry, and finally calls the shared function. On the next
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call of the shared function the GOT is already filled so the PLT only call the
shared function without the need to resolve it.

From this description, one can deduce that being able to read the GOT
may allow an attacker to localize libraries in memory. Similarly, being able
to write in this table may lead directly to taking control over the execution
flow of the program.

2.1.3 Vulnerable points

Memory management as described in the previous section, is only a vision
organized to make the code more understandable and its maintenance easier.
But the processor has no knowledge about the semantics of the breakdown
into sections, which is defined by the developer. In real terms, the processor
do not make any difference between memory areas and the different ways
to access them. This generic vision of memory serves to create memory
corruptions, which are the causes of vulnerabilities.

In this section, it will be explained how programming errors can lead to
memory corruptions. First, the two main types of memory corruptions will
be presented, namely spatial errors and temporal errors.

Spatial errors

Spatial errors are some of the most common errors regarding memory man-
agement, and are often under the form of buffer overflows. Those happen
when the index used to access a memory buffer is not correctly computed and
addresses areas out of the buffer limits. This error may also occur when the
value used by the program to index the buffer is directly linked to some user
data without verification. Two types of errors can be distinguished: when
the value is used for reading access and when it is used for writing access.

Buffer over-read If a spatial error occurs during a buffer reading, it can
lead to data leakage. This kind of error is used to make information leak
about the program. The "Heart Bleed" [19] attack is an example of these
errors in which the attacker can recover sensitive data. In this attack, the
number of bytes to read in a buffer was provided by the user request and
used by the program without verification. With this knowledge, the attacker
could recover data from other users, and even cryptographic keys from a
server. This kind of attack is called memory disclosure or memory leakage.
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Buffer over-flow The same type of error may occur for reading accesses,
creating what is called a buffer overflow. Depending on the memory buffer
location, it can give an attacker the opportunity to modify the values of other
variables (see Section 2.1.4). The most famous buffer overflow attacks are
those located on the stack and which modify the code pointer of the function
return address (see Section 2.1.4). Buffer overflows can also happen in other
memory zones. This attack can be divided into two categories: linear or
indexed buffer overflows. Figure 2.6 shows these two categories, with the
attacker aiming at modifying the value of data3 and red zones representing
the modified memory cells.

1. linear buffer overflow : the writing continues beyond the buffer size and
modifies all the data between the buffer and data3.

2. indexed buffer overflow : the attacker is able to modify the value of
data3 without compromising other data.

T[0] T[1] ... ... T[L-2] T[L-1] Data1 Data2 Data3 ...

1. Linear Buffer overflow

T[0] T[1] ... ... T[L-2] T[L-1] Data1 Data2 Data3 ...

2. Indexed Buffer overflow

Figure 2.6: 2 ways of realizing buffer overflows

Temporal errors

Another type of vulnerability can be exploited when the program reuses a
pointer which is no longer valid. This generally occurs if there is a mismatch
in the code parts responsible for allocation and deallocation of memory, and
allows the attacker to write a memory word to an arbitrary address [9] [59]
or to modify the called function by C++ object virtual methods [63]. Like
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spatial errors, this kind of vulnerability may be used to read or write in
unauthorized memory spaces, which can lead to the deflection of the program
execution if this error is used to modify a code pointer (like vtables).

2.1.4 Vulnerability exploitation

In this section, we will show how the vulnerable points seen in section 2.1.3
can be used by an attacker to hijack the execution flow of a vulnerable
program.

As presented thereafter, three main attack families can be distinguished:

• Attacks aiming only at the program data modification, meaning that
the attacker uses the flaw to change the program behaviour without
modifying its execution flow.

• Attacks by code injection, meaning that malicious instructions are
placed into memory by the attacker and are executed with the help
of the techniques described later.

• Attacks by code reuse, meaning that instructions already in memory
are reused in a specific order and manner to perform malicious actions.

As a first step, we will focus on how to call the malicious code to execute
rather than on its provenance. The techniques used to create payloads will
be presented in section 2.1.5.

Data only attack

The first way to exploit a vulnerability is to use it to modify a program data
in order to change the program behaviour. These attacks are called data only
attack and are relatively simple, while difficult to counter.

Overwrite data A buffer overflow may be used to modify data next to
the targeted buffer which will modify the execution flow of a program. In
the following example, there is no verification on the size of the data given
as argument to the check_authentication(), which will create a buffer
overflow when calling the strcpy function.
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1 #include <s td i o . h>
2 #include <s t d l i b . h>
3 #include <s t r i n g . h>
4

5 int check_authent icat ion (char∗ password )
6 {
7 int auth_flag = 0 ;
8 char password_buffer [ 4 ] ;
9

10 s t r cpy ( password_buffer , password ) ;
11

12 i f ( strcmp ( password_buffer , " c a f e " ) == 0)
13 auth_flag = 1 ;
14

15 return auth_flag ;
16 }
17

18 int main ( int argc , char∗ argv [ ] )
19 {
20 i f ( check_authent icat ion ( argv [ 1 ] ) )
21 p r i n t f ( "␣Access ␣Granted\n" ) ;
22 else
23 p r i n t f ( "␣Access ␣Denied\n" ) ;
24 }

As previously explained, local variables of the function are stored on the
stack. Since auth_flag and password_buffer are declared as local vari-
ables of the function check_authentication, they are next to each other in
memory. If the attacker specifies a character string longer that 4 characters,
he will be able to modify the value of the variable auth_flag and to force
the return value of the function check_authentication. He will therefore
obtain the access authorization without knowledge of the password.

Format String Exploitation In [58], Payer and Gross show how the con-
trol of the printf first argument provides access to write to any memory ad-
dress. More specifically, the attacker controls the tokens used by the printf
function (%s, %p, %n, etc.).

This kind of exploit is due to an incorrect utilization of the function
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printf() by developers. The following example shows how the first argu-
ment of printf() can be controlled by the user.

1 #include<s td i o . h>
2 #include<s t d l i b . h>
3

4 void main ( int argc , char∗ argv [ ] )
5 {
6 p r i n t f ( "Hel lo , ␣" ) ;
7 p r i n t f ( argv [ 1 ] ) ;
8 p r i n t f ( "\n" ) ;
9 // Ins t ead o f s imply

10 // p r i n t f (" Hel lo , %s\n" , argv [ 1 ] ) ;
11 }

If the attacker uses tokens such as %s,%p,%n in the first argument of the
program (argv[1]), the tokens will be interpreted by printf. By correctly
formatting this character string, the attacker can control both the writing
address and the value to write. %n allows to print the number of characters
written by printf inside a pointer. By carefully crafting the string argument
passed to printf the attacker can write any value anywhere in memory. For
more practical information on how this attack works please refer to [58].

Stack overflow

The first Stack overflow exploit dates back from 1960s. It consists in filling
a memory buffer located on the stack with more data than it can contain,
in order to overwrite or modify critical data. The main objective of these
attacks is to compromise the return address of the current function so that
the execution flow of the program is redirected to the attacker payload when
the function returns.

Aleph One [54] presents in details this vulnerability and how to exploit
it. As explained previously, at a function call, the following items are se-
quentially pushed on the stack.

• the arguments of the function call.

• the return address of the function.

• the address of the previous local frame.
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Buffer[L-1]
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0xFFFF.... : High address

0x0000.... : Low address

Figure 2.7: Overflow in the stack

• the local buffers and the local variables.

The surplus of items copied in the stack should overwrite the return address
of the calling function. Thus, after the function call, the address of the next
instruction to execute can be chosen by the attacker in order to execute
malicious instructions.

Figure 2.7 shows a stack after the function call. The stack contains a
local buffer of L elements. The objective of the stack overflow attack is to
fill this local buffer with L+2 elements. The Lth and the L+1th elements will
overwrite the address of the previous local frame and the return address of
the function, respectively. At the end of the function execution, the value of
the L+1th element will be put in the %eip register (instruction pointer). By
copying the start address of a malicious code into the L+1th element, it is
possible to hijack the execution of the program.

Following is a simple example of redirection:

1 void hackExample ( ) {
2 p r i n t f ( "\n∗∗∗∗∗∗Red i r e c t i on ␣ o f ␣ the ␣

func t i on ∗∗∗∗∗∗∗∗\n\n" ) ;
3 }
4

5 void save_name (char ∗ input_name ) {
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6 char bu f f e r [ 2 ] ;
7 s t r cpy ( bu f f e r , input_name ) ;
8

9 p r i n t f ( "Your␣name , ␣%s , ␣was␣ s u c c e s s f u l l y ␣
saved\n" , bu f f e r ) ;

10 }
11

12 int main ( int argc , char ∗argv [ ] ) {
13 i f ( argc != 2) {
14 p r i n t f ( "Usage␣ : ␣%s ␣<Your␣name>\n

" , argv [ 0 ] ) ;
15 e x i t (0 ) ;
16 }
17

18 save_name ( argv [ 1 ] ) ;
19 p r i n t f ( " Process ␣normaly␣ executed \n" ) ;
20

21 return 0 ;
22 }

1 $ . / test $ ( python −c ’ p r i n t ␣"aaaaaaaaaaaaaa"␣+␣
"\xc4"␣+␣"\x84"␣+␣"\x04"␣+␣"\x08"␣ ’ )

2 Your name , aaaaaaaaaaaaaat ? , was s u c c e s s f u l l y
saved

3

4 ∗∗∗∗∗∗Red i r e c t i on o f the function ∗∗∗∗∗∗∗∗
5

6 Segmentation f a u l t ( core dumped)

With the help of gdb and the disassemble command, it is easy to retrieve
the address of the function hackExample : 0x080484c4. By creating an
overflow and injecting the address in the arguments’ characters, it is possible
to execute the hackExample function without calling it in the source code.

Currently, numerous solutions exist to counter this type of flow control
exploitation, such as the ASLR countermeasure or canaries. To successfully
run the example above, it is necessary to disable some protections:

• ALSR: # echo 0 < /proc/sys/kernel/randomize_va_space;

• the stack protector, at compilation: -fno-stack-protector.
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Heap overflow

Unlike the stack, the heap does not contain the return addresses of func-
tions. It is however possible to write a chosen integer almost everywhere in
memory. To achieve this, several attacks have been proposed, as well as asso-
ciated countermeasures which will be presented in later sections. The basic
techniques for control flow hijacking through heap corruption, presented in
[42] and in [9], exploits the unlink() and frontlink() macros, respectively
used for allocation and deallocation of chunks.

To understand the attacks based on heap overflow, the mechanics of the
functions unlink() and frontlink() will be first explained.

Let us consider the example of a bin composed of three free chunks as
presented on Figure 2.8.

Each free chunk is characterised by two main fields: the address of the
previous chunk named bk (backward), and the address of the next chunk,
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PREV SIZE

chunk1

chunk2
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Ch1.fd = @chunk2

Ch2.fd = @chunk3

Ch3.bk = @chunk2

Ch2.bk = @chunk1

Figure 2.8: Example of a bin
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named fd (forward). For example, in the case of chunk 2, ch2.fd contains
the address of the chunk 3 and ch2.bk contains the address of the chunk 1.
When a free chunk is allocated (for example, chunk 2), it is deleted from the
bin. The bin should reshape its doubly linked list to, exclusively, contain the
chunks 1 and 3. This action is performed by the macro unlink(), the code
for which is presented below:

1 #define unl ink ( P, BK, FD ) {
2 BK = P−>bk ;
3 FD = P−>fd ;
4 FD−>bk = BK;
5 BK−>fd = FD;
6 }

In our example, outlined on Figure 2.9, the macro performs the following
operations:

1. Copy the value of ch2.bk at address (ch2.fd) + 12 which contains the
address of ch3.bk.

2. Copy the value of ch2.fd at address (ch2.bk) + 8 which contains the
address of ch1.fd.

If an attacker modifies the header of the chunk 2 (mainly the content of
ch2.bk and ch2.fd), then he can write any integer value at an arbitrary ad-
dress. In our example, he can write the value of ch2.bk at address (ch2.fd)
+ 12.

A simple example of exploitation of this vulnerability is presented in [42].
It is about creating an overflow in a buffer A, in the heap. With wisely chosen
values, the overflow creates a fake free chunk B, adjacent to A. Given the
characteristics of B, the macro unlink will be called during the deallocation
of A and will modify the entry of the function free() in the GOT, which will
redirect towards malicious code. At the next call to free, the malicious code
will be executed.

Another possible way to highjack the execution flow is to exploit the
frontlink() macro. It is used to replace a freed chunk in a bin. It is stated
in [42] that taking control of the execution flow through frontlink() is less
flexible and more difficult than with unlink().
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Figure 2.9: chunk modification in the heap

This section only focuses on the basic exploitation of the heap to hijack
to execution flow. More elaborated solutions exist (and they are therefore
more difficult to use), presented in several publications such as [59] and [41],
where exploits on the memory allocator Malloc are described.

Data and bss overflow

Like the stack or the heap, the .data and .bss segments (Figure 2.10) can be
exploited to corrupt data, and also to deflect the execution flow by modifying,
for example, important variables such as function pointers.

In the segment .bss, the flow diversion can be obtained with an overflow
of a buffer located on top of a function pointer. By copying a L+1th element,
the function pointer can be overwritten. It may then point to a malicious
function.
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2.1.5 Payload creation method

The previous section presented solutions to divert a program execution, in
other words, to make a program execute unexpected malicious code at a
specific moment. This section addresses the provenance of the malicious
code, which is:

• either injected: the attacker writes his own code and deflects the flow
of the target program to execute it.

• either reused: the attacker uses code parts of existing programs, exe-
cuted at specific moments and in a specific order.

Code injection

The attacker may leverage on user inputs to save data into memory, that will
be interpreted as code by the processor.

Standard code injection: the shellcode A shellcode is simply a char-
acter string which can be interpreted as executable code. Historically, in
[54], once interpreted, this character string, once interpreted, launched a
command interpreter called shell. The advantage is that the shell has the

Buffer[0]

Buffer[1]

Buffer[L-2]

Buffer[L-1]

Function pointer

bss segment
Buffer of L elements

Figure 2.10: bss segment
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same privileges as the vulnerable program. Thus, if the vulnerable program
is SUID root, the shell commands will have the same privileges as the root
user.

Generic shellcodes have been programmed for different architectures, such
as the ones proposed in [62].

To create an operational shellcode, it is necessary to respect some rules:

1. It can be written directly in assembly or in C. In that case, it will be
necessary to compile it with the option -static so that it will contain
the code of the called external libraries. The produced binary code will
then be transformed into a character string.

2. It must be of small size in order to be exploitable on small size buffers.

3. If the shellcode is injected under the form of C-String, it must not con-
tain the byte NULL which would prematurely interrupt the shellcode.

4. The shellcode should not contain absolute addresses.

The shellcode proposed in [54] and shown below opens a shell by executing
the command "/bin/sh" via a system call.

1 char s h e l l c o d e [ ] =
2 "\xeb\ x1f \x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46"
3 "\x0c\xb0\x0b\x89\ xf3 \x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
4 "\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\ x f f \ x f f \ x f f / bin / sh" ;

A simple case of utilization of this shellcode is to overflow the return
address of a function in the stack with the start address of the shellcode
instead.

Code injection in a JIT compiler Just-In-Time compilers (JIT) are
programs which, while running, quickly compiles source code and executes
it. The goal is to achieve performances similar to those of compiled lan-
guages while preserving the flexibility of interpreted languages. There are
JIT compilers in the .NET framework, in Java virtual machine and in Web
browsers.

JIT compilers are critical regarding security: a website might convey
code which, once compiled, behave maliciously. This is why code compiled
at runtime is always compiled in a low risk environment, also called sandbox,
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where system calls are limited. JIT compilers generally do not compile the
entire code, but only the most used parts (the compilation should be fast in
order to avoid slowing down the launching/initialization).

An attacker can inject arbitrary code by using the following technique:
declaring a variable as the result of successive XORs between different 32-
bits integers. This code can then be compiled at runtime to speed up its
execution (especially if it is used in a loop).

1 var a = (0 x11223344^0x44332211^0x44332211 ^ . . . )

Let us dissassemble the produced code:

1 0 : b8 44 33 22 11 mov $0x11223344 ,%eax mov eax , 0 x11223344
2 5 : 35 11 22 33 44 xor $0x44332211 ,%eax xor eax , 0 x44332211
3 a : 35 11 22 33 44 xor $0x44332211 ,%eax xor eax , 0 x44332211

This code has the expected behaviour: it computes the initial value of a.
However, let us see what would be the effect of executing this code from the
address 1 instead of address 0.

1 1 : 44 inc %esp inc esp
2 2 : 33 22 xor (%edx) ,% esp xor esp ,DWORD PTR [ edx ]
3 4 : 11 35 11 22 33 44 adc %es i , 0 x44332211 adc DWORD PTR ds : 0 x44332211 , e s i
4 a : 35 11 22 33 44 xor $0x44332211 ,%eax xor eax , 0 x44332211

This code behaves differently, as the processor decodes it with an offset
of one byte (the first byte b8 is ignored). This is possible for processors with
instruction sets of variable size (eg. x86) where instructions are not aligned
on 32 or 64-bits multiples. In reality, it can be shown that any program
can be injected and made executable in this way. Then, it remains to find a
vulnerability to deflect the execution flow of a program to this shellcode.

Code Reuse Attack

Payload creation via code injection is one of the earliest techniques, and
associated countermeasures such as Address Space Layout Randomization
(ASLR) or Data Execution Prevention (DEP) have already been deployed.
In order to bypass these protections, attackers can choose the code reuse
technique. The principle is to modify the execution flow of the program in
order to execute a sequence of existing instructions in a specific order.
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Return-to-libc The first code reuse attack to appear was presented by
Solar Designer in "lpr LIBC RETURN exploit" [28], later renamed "Return-
to-libc". In this, the attacker uses an exploit to store the parameters of
a function from the shared library libc in the stack data, and modifies
the return address with the address of the desired function. Generally, the
attacker tries to call the system(...) function which simply executes the
shell command given in argument.

Return-oriented programming (ROP) The concept of ROP was pro-
posed first by Hovav Shacham in 2007 [64]. This method is the generalization
of the attack "Return-to-libc". It is the method of choice for payload creation
(along with JOP).

It consists in using short sequences of code available in the binary or
in the libraries linked to the application which, when sequentially executed,
conduct the operation desired by the attacker. These short code sequences,
called gadgets, must end with the instruction "ret" or "0xc3" in hexadecimal,
for x86 assembly.

To execute malicious operations, it is first necessary to find available
gadgets. This step unfolds as follows:

1. First find bytes equal to 0xc3 (instruction "ret") in the binary code.

2. For each "ret" byte found, check if the previous instructions are valid.
In reality, only the preceding 20 bytes are verified; that is an arbitrary
limit of the searched gadgets size.

3. Establish a list of gadgets with their addresses and functionalities.

Some tools are available to help in gadget researching, such as in [39] or
[48].

Gadgets offer plenty of basic functionnalities:

• loading a constant value into a register.

• loading a constant value into memory.

• saving a register value into memory.

• arithmetic operations.

• function calls.
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• conditional or unconditional branchings

Gadget exploitation and sequencing is possible because of the "ret" in-
struction. During the program execution in assembly, when this instruction
is met, the top value is popped from the stack and put into the %eip register,
containing the address of the next instruction to execute.

Because a gadget is composed of one or several instructions followed by
the instruction ret, deflecting the execution flow can be done by simply using
an overflow to create a chain of gadget addresses, interspersed with constants
if needed.

Let us consider a program calling a function fct1 with two parameters
and containing a local buffer of size L. The stack content after the function
call is presented on the left of Figure 2.11. For example, suppose a ROP
attack whose goal is to add two constants cst1 and cst2, given by the
attacker, and to save the result in a register. For that, we assume that three
gadgets are available:

• pop %eax ; ret ;: This gadget pops the top value from the stack and
saves it in the register %eax. Consider that the address of this gadget’s
first instruction is @gad1.

• pop %ebx ; ret ;: This gadget pops the top value from the stack and
saves it in the register %ebx. Consider that the address of this gadget’s
first instruction is @gad2.

• add %eax, %ebx ; ret ;: This gadget adds the content of registers
%ebx and %eax and saves the result in %eax. Consider that the address
of this gadget’s first instruction is @gad3.

The left part of the Figure 2.11 presents the stack after the call of the function
fct1, while the right part shows the stack after the overflow.

Figure 2.12 presents the state of the stack and of the register %eip for
each instruction:

• t : the instruction ret of the function fct1 is executed.

• t + 1 : the instruction pop %eax of the gadget 1 is executed, %eax=cst1.

• t + 2 : the instruction ret of the gadget 1 is executed.
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Figure 2.11: Stack before and after a ROP attack

• t + 3 : the instruction pop %ebx of the gadget 2 is executed, %ebx=cst2.

• t + 4 : the instruction ret of the gadget 2 is executed.

• t + 5 : the instruction add %eax, %ebx of the gadget 3 is executed,
%eax=cst1+cst2.

• t + 6 : . . .

Thus, at the end of the execution, register %eax contains the value com-
puted by cst1+cst2. The same idea, applied to different gadgets, allows
the attacker to realize any operation.

Jump-oriented programming (JOP) Another attack based on code
reuse was proposed in "Jump-oriented programming: a new class of code-
reuse attack" [14] in 2011. Named Jump Oriented Programming (JOP), it
relies on reuse of code ending with the jump instruction (and not by ret as
in ROP attaks). These instruction blocks are also called gadgets.
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The first step consists in searching valid gadgets. For that, an algorithm
looks into the execution segment for the character string 0xFF, which is the
bytecode for the instruction jump. The exploitation based on these gadgets is
different from the ROP attack. For JOP attacks, the addresses of the gadgets
should be placed in memory in an initializer table via a set of instructions
named initializer gadget. Then, the control of the flow is handled by a special
gadget, the dispatcher, which sequentially executes the different gadgets.

Figure 2.13 shows the mechanism of a JOP attack with the order of the
executed jump instructions in red color.

It works as follows:

• The dispatcher obtains (or computes) the address of the next gadget
to execute, stored in the dispatcher table.

• (1) The dispatcher executes a jump at the address previously obtained.
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Figure 2.12: Stack during a ROP attack
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Figure 2.13: JOP example

• The instructions of the gadget are executed.

• (2) At the end of the gadget, a jump instruction to the dispatcher is
executed.

• The dispatcher obtains (or computes) the address of the new gadget
and executes a jump

• (3) and so on.

Call Oriented Programming Similarly to the JOP exploit, COP tech-
niques used gadgets ending with an instruction modifying the execution flow
of the program. However, these gadgets ends with an indirect call instruc-
tion. COP is very similar to JOP, but the use of call modifies the program
stack. For example, on x86, it will automatically save the register %eip on the
stack. The behavior of call can differ depending on the architecture. These
particularities can be used by an attacker to build more complex payloads.

Counterfeit Object-Oriented Programming Schuster et al. present
in the "Counterfeit Object-oriented Programming" [63], a generic method to
exploit C++ objects’ vtables. One of the particularities of object-oriented
languages is the use of vtables for object virtual functions. The method
shows how a counterfeited object can be used by an attacker to use the
vtable of this object as a ROP attack dispatcher.
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Signal Oriented Programming Presented by Erik Bosman & Herbert
Bos in [16], this special variant of ROP uses a buffer overflow in the signal
manager (signal handler). At the reception of a signal, the kernel saves the
execution context of the program in a structure called uc_mcontext and
pushes it on the stack. It then gives the control to the signal handler. After
executing the signal manager, the kernel returns the control to the program
by using the previously saved structure uc_mcontext to restore the context
of the program. By creating a buffer overflow on the stack, it is possible to
modify the uc_mcontext structure to modify the instruction pointer and the
different flags stored there. Thus, at the return of the signal handler, the
modifications of the uc_mcontext structure makes any system call (syscall)
possible.

2.1.6 Synthesis

In the previous section, we introduced the architecture of a program in mem-
ory, and the low level programs’ intrinsic vulnerabilities. These vulnerabil-
ities primarily exist because the processor does not consider the segmented
representation of memory introduced by the programmer in the ELF format.
The modus operandi of the attacker is always to exploit this generic aspect of
the processor, to access or modify memory areas that are security critical due
to their semantics "Eternal War in Memory" [69] proposes the representation
of the attack path of different exploits, as presented in Figure 2.14.

The graph in the figure well summarizes the possible attacks. It is impor-
tant to note that all the attacks starts with a spatial error (Make a pointer
go out of bound) or by a temporal error (Make a pointer become dangling).
The green sets show the different protection categories, protecting against
the different phases of the exploit.

MS : Memory Safety

DI : Data Integrity

CI : Code Integrity

CPI : Code Pointer Integrity

DSR : Data Space Randomization

ASR : Address Space Randomization
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DFI : Data-Flow Integrity

CFI : Control-Flow Integrity

DEP : Data Execution Prevention

ISR : Instruction Set Randomization

2.2 Hardware countermeasure

In this section we present countermeasures based on hardware implementa-
tions. Some of them are transparent for software operation while others need
software modifications in order to operate properly. The countermeasures
commonly deployed on recent architectures as well as academic research on
the subject will be described. The impact on performance of the counter-
measures is also indicated as and when available.

2.2.1 Existing Hardware Protections

In this section we will first present hardware countermeasures currently de-
ployed on recent architectures.

Data Execution Prevention

The countermeasure Data Execution Prevention (DEP), which is also called
W⊕X, (W XOR X), is a protection mechanism intended to make memory
pages exclusively executable, or writeable. Code pages are, therefore, exe-
cutable but accessible for reading only. On the contrary, the heap or stack
can be accessed for writing but cannot contain executable code. It is an ef-
fective protection against code injection, however it does not protect against
ROP and related attacks nor against hardware attacks such as fault injection.

Thus, an attacker who controls the contents of a memory zone in write
mode may not use it to inject code. The first (software) implementation of
this protection was realized under the name of PaX protection. It consisted in
overloading the use of supervisor bit in order to simulate the NX bit. Another
method consisted in separating the writable data and executable code in two
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distinct memory zones. Today, this countermeasure is directly supported by
the processor. Depending on implementations, software or hardware, several
names have been given to this countermeasure:

• NX bit: generic term;

• WˆX: OpenBSD software implementation;

• Exec Shield: Red Hat software implementation with emulation for Intel
x86;

• PAX: software implementation on Linux;

• XD bit: hardware support for Intel processors (x86_64);

• Enhanced Virus Protection: hardware support for AMD processors;

• XN : hardware support for ARM processors.

The hardware implementation is simple and corresponds to a single bit,
in the table of pages, showing for each page if it can be accessed in executable
or write mode. The protection via NX bit is disabled for some old software
which may need to see their own code modified. JIT compilers can use this
protection by making the memory pages containing code compiled on the fly
non-writable afterwards. However this leaves a time window during which
the executed code could be accessed in write mode. Nowadays this hardware
countermeasure is widely deployed and its impact on software performance
is considered to be null.

Control-flow Enforcement Technology

In Control-flow Enforcement Technology Preview (CET) [36], Intel presents
its countermeasures to reinforce execution flow control. The two proposed
protections are a Shadow Stack and the addition of instructions to check indi-
rect jumps. While the shadow stack is a powerful solution for inter-procedural
CFI, it does not provide any other guarantees. On top, Intel introduces an
interrupt code called Control Protection Exception (#CP), which is the excep-
tion used by these new countermeasures when a security bypass is detected.
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Shadow Stack Intel proposes the setup of a Shadow Stack compatible
with the modes USER and SUPERVISER1. To achieve this, the behaviour of
instructions CALL and RET is modified. Instruction CALL, on top of storing
the return address in the software stack, will store a copy of this return
address in a Shadow Stack placed in another memory page. In order to do
that, a new register called SSP, which contains the address of the Shadow
Stack top, is added to the processor. The instruction RET is also modified to
fetch the two return addresses and to compare them. If the two addresses
are different then the processor raises exception #CP.

The memory page controller ensures the protection of the Shadow Stack
memory zone. To this effect, a marker is added in the controller, enabling to
mark a page as used by a Shadow Stack. This allows to prevent write/read
of the protected stack by the protected software. Since the protection of the
memory zone of the Shadow Stack is undertaken by the memory page con-
troller, it is not available in 8086 compatible mode since the page controller
is not activated in this mode.

There is no communication about the performance of this countermea-
sure, but one may think its impact is low, since it only adds one additional
memory write to the instruction CALL, and one additonal read when calling
the instruction RET.

Indirect Branch Tracking The second countermeasure is the addition
of an instruction ENDBRANCH (ENDBR), which is intended to validate indirect
jumps when they are executed. To this end, instruction ENDBR is added after
each indirect CALL and JMP. At execution, the processor expects to find the
instruction ENDBR after jump instructions, and if this is not the case the
exception #CP is raised.

This countermeasure seems not to prevent the modification of code point-
ers, but rather mitigates the issue of JOP gadgets proliferation in software
which use instructions of varied sizes, which is the case with x86. On top,
the mandatory presence of instruction ENDBR after a CALL must make the
discovery of gadgets fulfilling this condition more difficult.

We did not find information quantifying the impact of this countermea-

1In this case, the protection of the page Shadow Stack is not anymore ensured



70 CHAPTER 2. STATE-OF-THE-ART

sure, whether in terms of performance or in terms of reduction of the number
of available gadgets.

Memory Protection Extension

Memory Protection eXtension (MPX) [1] is an extension for Intel processors
enabling the protection of memory access. It is integrated in the Skylake
family (sixth generation of Intel microarchitectures). MPX is an extension
of the x86 instructions set to support pointers check:

• 4 new 128 bit registers (BND0 to BND3);

• 4 new check instructions (BNDMK, BNDCL, BNDCU, BNDCN) ;

• 4 new data load/save instructions on pointers (BNDMOV (2), BNDLDX,
BNDSTX) ;

• 1 new interrupt #BR.

On execution, the new MPX instruction set allows to verify memory ad-
dresses which may be accessed by a software. Thus, a process may not access
a memory on which it has no rights and is also protected against attacks of
the buffer overflow type. The principle is that each pointer is associated to
an address range in which it can move (spatial security, not the temporal).
If a pointer which is out of its allowed address range is de-referenced, an
exception is raised.

Thus MPX consists in a set of new registers and instructions, which are
accelerated by the CPU in order to minimize the additional cost of this veri-
fication. This should allow to implement a fast access to metadata associated
to the pointers, which are stored in a Shadow Memory. The Intel MPX tech-
nology is now functional with the latest versions of Linux kernels such as
those of Fedora and Ubuntu (kernel 4.1 is recommended and must have the
flag CONFIG_X86_INTEL_MPX activated) and the latest versions of the
gcc compiler (≥ 5.2 recommended).

Intel MPX needs a recompilation of executables via GCC options. Read-
ers are invited to refer to document [35] for more explanations. Code com-
piled with the MPX protection remains compatible with old executables
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which will not benefit from the protection. At compilation, the code un-
dergoes a static analysis to detect pointers which access the memory. The
bounds of these pointers are calculated and the code is then modified to acti-
vate checks at runtime. The compiler is in charge of suppressing predictable
checks during static analysis. The source code may need minor modifications
because some ambiguities must be cleared in very specific cases. The check
of pointers may also be deactivated when starting the execution in order to
increase performance.

The pointer bounds calculated by the compiler are indicated in a Bounds
Table where access is done via a 2-level tree structure (tree) (see Figure 2.15
page 71). This management is necessary because 4 BND registers are not
enough to save all the data linked to all the software pointers. For a given
pointer, there may also be different possible accesses and, thus, different
bounds.

MSB LSB

Pointer value

Tree[0]

Tree[1]

Tree[2]

Tree[3]

Tree[4]

Bounds

Bounds

Bounds

Bounds

Bounds

Bounds

Bounds

Bounds

Bounds

Bounds

Figure 2.15: Example of 2 -level Lookup-Tree

In the case of 32-bit pointers, each Tree is made with 16 bits. One should
note that the Tree and Bounds tables do not necessarily use memory space;
the operating system only creates memory pages when they are accessed
for the first time. Thus, it is not necessary to fill the Tree table with the
maximum of 232 Bounds sub-tables.
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However, it is important to note that a software compiled for MPX may
use a lot of memory in the worst case (about 500% more). Moreover, each
time a pointer bounds information are loaded, the processor must read data
in a memory out of the software virtual address space, which impacts the
bandwidth related to the Memory Management Unit (MMU) (translation
of virtual addresses in physical addresses). The reader is invited to refer to
the following study: [50] about performance with benchmarking in order to
obtain more detailed information. A thorough evaluation of these aspects
must then be performed on applications sensitive to performance, before
deployment with Intel MPX technology.

Narrowing The case of structures is managed in a specific way. On the
one hand, it is not possible to differentiate a pointer on a complete structure
from a pointer on the first element of that structure. On the other hand,
tables of structures present an issue, because the number of entries created
in the Bounds Table should be equal to the number of elements in the table.

The different elements of a structure or a table are, thus, only partially
protected against overflows.

For example, the following case is protected:

1 struct myStruct {
2 int a ;
3 char buf [ 1 0 ] ;
4 int b ;
5 }
6 myStruct s ;

Here, s.a and s.b are protected against underflows/overflows on s.buf.

However, it is not the case in the following examples:

1 struct myStruct {
2 char buf [ 1 0 ] ;
3 int b ;
4 }
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5 myStruct s ;

Here, one may not be able to distinguish a pointer on buf from a pointer
on s (the compiler is able to make the distinction, but not the hardware
architecture). Thus, s.buf may provoke an overflow on s.b. Similarly, if we
look at the following case:

1 struct myStruct {
2 int a ;
3 char buf [ 1 0 ] ;
4 int b ;
5 }
6 myStruct s [ 1 0 ] ;

Here, s[x].buf may cause an overflow on the complete table s.

The narrowing method is described in [35]. Other technical information
on MPX implementation can be found in the thesis of Nagarakatte [51] and
in WatchdogLite [49], in an improved version. A development manual is also
available on the Intel site [2].

Pointer Authentication

ARM Pointer Authentication, or ARM-PA, is a new security technology de-
velopped by ARM and integrated into their ARM v8.3 architecture (2016).
It aims at protecting the value of some pointers while they reside in memory.

The specification is not publicly available, but an official change log is
available on their blog. Detailed explanations are available in an official
ARM presentation. Other useful resources are Qualcomm’s whitepaperand
Liljestr and et Al. analysis.

The most typical vulnerabilities found in a program are memory corrupt-
ing vulnerabilities such as buffer overflows. The most typical way to exploit
such vulnerabilities is often to change the value of function pointers, or re-
turn adresses, to change the flow of execution. This allows an attacker to
remotely execute some malicious code in the target program.

ARM-PA protects the value of such pointers while they reside in memory.
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If an attacker wanted to use a vulnerability to replace a pointer’s value, it
would be impossible for her to craft a valid value.

Thus, ARM-PA prevents attacks that aim at altering the execution path
using code pointers, such as ROP, JOP and others.

However ARM-PA has some limitations. Although it is possible to au-
thenticate any pointer, including data pointers, ARM-PA does not prevent
the pointed-to data to be altered. It means that it cannot be used to mitigate
data-based attacks all by itself. However, it should be noted that in most
cases it will effectively make it harder for an attacker to do a data-based
attack.

Since ARM-PA protects pointers only while they reside in memory, it
does not prevent physical attacks that could alter the value of a register, or
the instruction being executed.

Since ARM-PA protects only pointers, it does not prevent attacks that
alter the static part of the control flow. These are typically physical attacks
that can skip or replay an instruction.

ARM-PA can only be as efficient as the key management and signing
architecture is. If a vulnerability allows an attacker to access the key, to
make the software sign a malicious pointer, or if an attacker can guess the
key (e.g. due to weak key generations), then ARM-PA becomes useless.

In order to use this protection, a few requirements must be fulfilled:

• One needs to use a compatible processor: AArch64 on an ARM-V8.3A
or greater.

• The program needs to be altered. If one wants to protect return address
pointers, this can be done by a compatible compiler (GCC version 7 or
greater). For other pointers, one needs to manually edit the code.

Some new instructions are encoded in the NOP space of previous architec-
tures, meaning that the resulting binary is backward compatible with other
ARM-V8 processors.

The way ARM-PA operates is described below.

ARM-PA is based on the fact that not all 64 bits of a pointer are used on
the AArch64 architecture. Typically, on Linux, for a page size of 4KB and
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three levels of page tables, only the 40 least significant bits (LSBs) are used.
The 24 most significant bits (MSBs) are normally sign-extended. ARM-PA
uses these 24 higher bits to hold information that will allow it to verify the
pointer’s integrity, called a PAC (Pointer Authentication Code). Note the
actual size of the PAC depends on the system configuration and may be only
3 bits wide. The more bits available for the PAC, the more secure it will be.
To do so, three new instructions are available.

‘PAC* pointer-reg, context-reg‘ will compute the PAC of the given pointer
and place it in its higher bits. The second operand is a context. It is used
in the PAC computation, such that the pointer can not be decoded without
the same context value. Without this context, an attacker could replace an
authenticated pointer’s value with any other authenticated pointer’s. After
this call, the pointer can not be used as a jump destination until one of
instructions ‘AUT*‘ or ‘XPAC*‘ is called. If it is used in an irregular way, it
is guaranteed that it will raise an exception.

‘AUT* pointer-reg, context-reg‘ will check the validity of the PAC in the
pointer. If the PAC is valid, then the register will contain the initial, usable
pointer value. If the check fails, the register will be set with a value that is
guaranteed to generate an exception if it is used as a jump destination.

‘XPAC* pointer-reg‘ will just remove the PAC of the pointer without first
checking it. It makes it usable as a jump destination.

The ‘*‘ in these instructions should be replaced with one of ‘IA‘, ‘IB‘,
‘DA‘, ‘DB‘ which determines which key is going to be used for the PAC
computation. The processor is indeed capable of using up to four keys, that
are stored in registers. Those registers are not available in user mode (EL0).
It is expected that the key to secure a program running at a certain privilege
level should be managed by the higher privilege level. The keys should also
be short-lived and regenerated for each execution since otherwise a bruteforce
attack would be possible.

A special use case, and a good way to demonstrate how ARM-PA works
is protecting return adresses. When a function calls another one, it uses the
instruction "jump and link" which saves the return adress in the link register.
If multiple function calls are nested, this register should be temporarily saved
in memory. ARM-PA can be used to protect this pointer which can be
rewritten by exploiting e.g. buffer overflows. To achieve this protection
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mechanism, one would put this at the beginning of the function, to encode
the link register using the stack pointer as a context value.

At the end of the function, before returning, one would then verify the
pointer’s PAC. If the verification fails, the pointer becomes invalid and the
‘RET‘ will raise an exception. Otherwise, the pointer will be valid and the
‘ret‘ will work normally.

ARM has added special pseudo-operations which are just aliases for these
two instructions: ‘paciasp‘ and ‘authiasp‘ As said in the requirements part,
GCC 7 (or greater) supports automatically adding these instructions in each
function’s prologue and epilogue using the option ‘-msign-return-address‘

ARM-PA is also capable of protecting data, altough it is not its goal.
Using a fifth general purpose key called ‘GA‘, the instruction ‘PACGA rd,
rs1, rs2‘ will produce a 32 bits wide PAC based on the content of the given
two 64 bits registers. The PAC is placed in a destination register, and is
be saved in memory. There is no ‘AUTGA‘ instruction. To validate the
PAC, one should regenerate it using ‘PACGA‘ and check for equality with
the previously computed PAC.

This security mechanism is not new nor better than other existing mech-
anisms, as it is just like computing a MAC to sign any data. Its main
advantage is to be easy to use in a program targeting ARM-PA as it re-uses
the same hardware and software.

The new instructions need to compute a MAC, which is rather slow. A
SoC designer can choose to change the cryptographic primitive used, but
ARM recommands its new QARMA as it is lightweight and made to support
ARM-PA constraints. Typically, calls to ‘PAC*‘ and ‘AUT*‘ will each add
an additional overhead of 6 to 8 cycles. Based on Liljestrand et al., the
overhead is insignificant when signing return adresses and function pointers
with roughly a 0.5% increase in execution time. This is due to the low amount
of function pointers and return addresses (only one) in each function. Data
pointers are much more frequent, and can thus induce a much higher overhead
(19.5 % average in the benchmarks used).

Note that the only cost is that of the call to ‘PAC*‘ and ‘AUT*‘. The
overhead will thus vary greatly depending on the frequency and amount of
authenticated pointers. One should make a compromise between the security
level to achieve, and the acceptable performance overhead.
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Trusted Execution Environment

A Trusted Execution Environment (TEE) [33] is a secure zone in the proces-
sor, where the code and data are protected in confidentiality and integrity. It
is a way to isolate an execution thread. In a way, a TEE is more secure than
a rich environment, while offering more functionalities than a secure element
(SE). There are two industry standard organizations who work on the TEE:

• GlobalPlatform, which aims at standardizing the TEE specifications (a
protection profile has been written) ;

• Trusted Computing Group, which tries to align the notions of TEE and
of Trusted Platform Module (TPM).

A TEE can rely on a technology such as the ARM TrustZone, but this
is not compulsory. An enclave in the SGX technology is a TEE. The main
applications of the TEE are related to the protection of sensitive data, such
as mobile payment or valuable multimedia content management in set-top
boxes. The hardware implementation of this countermeasure is very much
dependent on architectural choices and on requirements in terms of security.

The two next sections will be dedicated to the description of widely de-
ployed TEE hardware implementations: TrustZone and Software Guard Ex-
tensions.

TrustZone

TrustZone [10] is a security extension from ARM. It allows to consider a
unique processor as two virtual processors. The offered functionality is a
switch between the two hardware pipelines. Dedicated hardware enables
a complete isolation of the two virtual processors. In ARM terminology,
these are called two ’worlds’. The notion of world is independent from all
the other capabilities of the processor. For example, it is possible to run
a rich OS in one world and security functions (of reduced size, and, thus,
better checked) in another world, completely isolated from the rich one. For
example, Samsung’s Knox uses TrustZone to guarantee the kernel integrity.
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Let’s note that the ARM TrustZone technology was adapted by Trusted
Foundations Software, which was acquired by Gemalto.

Giesecke & Devrient have implemented a comparable solution. The three
technologies were grouped together in a joint venture called Trustonic (pun
on: “Trust on IC”).

However, implementation details of TrustZone being confidential, its ro-
bustness may not be evaluated, although it is well known that realizing at-
tacks is possible, as shown for example by [46] and [65].

Please note that these two last references are about software bugs which
allow to bypass the security of the trust zone.

Software Guard Extensions

Intel Software Guard eXtension (SGX) [37] has appeared in 2014 with the
advent of Intel Skylake architectures, in parallel with the protection system
Memory Protection Extensions MPX. This protection system is an extension
of Intel architectures enabling to guarantee the security of applications in-
tegrity and confidentiality even when privileged software (kernel, hypervizor,
drivers, etc...) are considered as potentially malicious.

This sytem allows to create applications which, when running, are isolated
in a memory enclave, enabling the protection of their code and of sensitive
data.

As shown in Figure 2.16 (page 79), the attack surface of the SGX pro-
tected application is in this way reduced and all attacks coming from the OS
and the VMM (Virtual Memory Manager) are not possible anymore.

This protection is both at the hardware and the software level. At the
hardware level, an instruction set is added to enable the switch between the
standard software execution and the enclave execution. Activation generally
takes place generally in the BIOS. At the software level, it is necessary to
use a software development kit (SDK) when developing the application to
be protected. The SDK allows the application to create an enclave in the
memory, which enables its execution. This enclave is allocated and managed
directly by the processor. It contains code and encrypted data, of which
integrity is also checked. The processor contains a unique master key per
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Figure 2.16: Attack surface with and without the SGX protection (diagram
extracted from Intel website)

system, which is derived (instruction EGETKEY). There is no SGX debug
mode at production stage. Practically, the application starts normally and
then loads encrypted data in memory, after their validation by the proces-
sor. Then, the application starts in protected mode by running the code in
memory and when it exits this mode, it may not access these protected data
anymore. The Intel SGX system includes an attestation mechanism allowing
to indicate that an enclave is set on a platform. The attestation may be:

• local – Two enclaves authenticate one another on the same platform,
which is very useful when several enclaves must work together or when
two applications must share sensitive data from the same enclave. Once
the two enclaves have proved they could be trusted, they establish a
protected session via an ECDH exchange to obtain a session key. This
key then enables data encryption;

• remote (cf. Figure 2.17) – An enclave is recognized as trusted by a
remote system. A third party equipment then enables trust establish-
ment between two enclaves. For each platform, a hash of the software
information is combined with a unique asymmetric key stored in the
hardware, this message being sent to the third party equipment via an
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authenticated channel. The third party equipment determines if the
enclave is running on a Intel SGX processor and grants access to se-
crets it has selected via the authenticated channel.

Figure 2.17: Remote attestation (diagram from the Intel website)

The SGX system also includes a seal function which allows to encrypt
and save sensitive data that may be seen only when the trusted environment
is restored. This function uses a hardware encryption function (integrated in
the processor).

In theory this system seems to effectively protect sensitive data. An
attacker might, nevertheless, use these enclaves precisely to store malicious
code.

An open platform OpenSGX [66] was created in order to emulate the SGX
system and perform research and tests. It allows to obtain a performance
evaluation of such a system. Thanks to this platform, one can observe the
number of cycles needed to access the enclave is exponentially related to its
size. However, enclave initialization requires about 120M cycles, indepen-
dently from its size.

Secure Memory Encryption

AMD’s Secure Memory Encryption (SME) [8] dates back to 2016 with the
advent of AMD Zen architectures. This protection system is a Secure Pro-
cessor enabling encryption of data before it is copied to RAM. The impact
of encryption on performance is low according to AMD, because it is possible
to encrypt only parts of the data.

AMD associates this system to the Secure Encrypted Virtualization (SEV)
which allows to control multiple virtual machines with the hypervisor. The
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architecture of the SEV system is schematically represented in Figure 2.18
(page 81). Each virtual machine has its own encryption. The SEV system
(memory encryption) is included in SVM (Security and Virtual Machine)
systems which will be described in section 2.2.1.

VM A VM B VM C

Key A Key B Key C

Hypervisor

AES-128 Engine

DRAM

Figure 2.18: SEV Architecture (diagram inspired by the AMD website)

From the security point of view, this system can allow two users of the
same station to have distinct encryption keys and, thus, the administrator
does not necessarily have access to all the data of that station. The SME
system uses the AES 128 bit encryption algorithm. The key is unique per
system and is generated randomly at each start up. Moreover, this encryp-
tion key may not be read or modified from the software applications. Each
individual page of the memory pages’ table is marked as encrypted or not.
As shown in Figure 2.19 (page 82), each data read from a page marked as en-
crypted must automatically be decrypted and each data written in a DRAM
page marked as encrypted must be automatically encrypted/decrypted. This
system, thus, enables encryption from startup, allowing, for example, to have
an encrypted kernel.

The CPUID opcode (instruction for x86 architectures) is used to check if
this protection system is available or not. At start up, the system is activated
via the SYSCFG MSR (syscfg : system configuration tool of the firmware
and the BIOS). Then, the C-bit is used to check if the memory page is
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Figure 2.19: Read and DWrite in SME mode (diagram from the AMD web-
site)

encrypted or not. The C-bit location (by default bit 47) is also determined
by the CPUID.

The impact on performance is minimal, only a small additional latency
appears for encrypted pages. Encryption depends upon the address, which
allows to prevent attacks based on data /code displacement (so called splicing
attacks). The algorithm used is AES-128 and the key is managed by a micro-
controller. The operating mode of the AES is not indicated. One may think it
is ECB, but OFB is also possible (which would allow to absorb the encryption
time in the AES calculation latency).

Contrary to Intel SGX system, the application does not require any
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change, so this system is easier to implement. The encryption key man-
agement is completely performed by the hardware system (AMD Secure pro-
cessor). This system protects against physical attacks on memory. Unlike
the Intel SGX system, it does not protect, for example, against an attacker
who compromised the kernel.

It protects mainly against:

• Cold-boot attacks (Attacks by cold start allowing to recover encryption
keys from a hard disk via an auxiliary channel, requiring a physical
access to the system);

• snooping on the memory bus ("sniffing" sensitive data on the bus);

• uncovering of temporary data saved in the persistent memory.

Virtual-Machine Extensions

Virtual-Machine Extensions (VMX) from Intel is an addition of instruc-
tions to the processor in order to enable hardware assisted virtualization.
A schematic representation of this method is shown Figure 2.20 (page 84).
As was explained in the section about software countermeasures in the pre-
vious report, virtualization is used to isolate services. As this technology is
used very often in the industrial market, it was very quickly implemented
in hardware. The addition of virtualization capabilities to the processor en-
ables to simplify the Virtual Machine Monitor (VMM) and to dramatically
increase performances compared to pure software solutions. To this end, new
instructions are added to the processor. Each process, launched under VMM
control (thanks to the command VMLAUNCH), considers it is the only process
running on the processor.

Recently, the extension Extended Page Tables (EPT) has been added to
new generation processors which allows each virtualized software to manage
their own table page, has been added to new generation processors. Before
the implementation of this extension, the VMM was in charge of addresses
translations.

Regarding performances, complete OS virtualization is almost as efficient
as having a real machine, and eases the sharing of resources.
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Figure 2.20: Schematic representation of VMX

Secure Virtual Machine

Secure Virtual Machine (SVM) from AMD is a hardware system improving
the performances of virtualization systems on x86 architectures. This system,
which is similar to the Intel VMX solution, was introduced in 2004 under
the name "Pacifica" [5] and is now known as AMD-V. The first processors
implementing this system were introduced in 2006.

Virtualization uses a Virtual Machine Manager (VMM) which is between
the OS and the hardware, and which allows to run several systems on a unique
physical machine. The AMD-V is a hardware extension which accelerates the
management between a virtual machine and the hardware.

In order to run, it must be activated in the BIOS. Like the Intel solution,
it is made of a new instruction set (VMRUN, VMLOAD, VMSAVE, VMMCALL, STGI,
CLGI, SKINIT, INVLPGA). These commands allow the VMM (hypervisor) to
enter/exit the guest mode of the processor. The AMD technology for the
management of the Second Level Address Translation (SLAT) mechanism,
which is equivalent to the Memory Management Unit (MMU) on virtualized
systems, is Rapid Virtualisation Indexing (RVI) (see Figure 2.21).

This mechanism enables the protection of the memory pages of the hy-
pervisor and the memory accesses between VMs. There are three different
types of addresses:

• virtual addresses related to the guest process (converted to physical
addresses for the VM by the MMU);

• physical adresses related to the VM (converted to physical addresses
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Process A

VM

Host

MMU

RVI

Figure 2.21: SVM protection representation

for the host by the RVI);

• physical addresses related to the host.

Silicon Secure Memory

Oracle, in its SPARC M7 processor, proposes the Silicon Secure Memory
(SSM) [55] protection, which performs a hardware check of pointer bounds
during execution.

After the memory zone is allocated, a code is attributed to that zone and
stored in the pointer, and when the pointer is used to access the memory,
the hardware checks if the pointer code is identical to the memory zone code.
This code is also called ’colour’ because this technique has a lot in common
with tainting.

In order to use this countermeasure, the application must respect some
conditions, which are:

• it should be be compiled in 64-bits;

• SSM for the targeted memory zone should be enabled;

• the allocated memory zone must be aligned on 64 bytes;
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• the size of the allocated memory zone must be a multiple of 64;

• the memory zone must have a colour;

• the pointer must have the same colour as the zone it points to.

A synthetic representation of this countermeasure is shown Figure 2.22.

Code 64bits data

Code 64bits data

Code 64bits data

Code 64bits data

Code 64bits data

Code 64bits data

Code 64bits data

Code

Metadata

64bits data

Data

M7 Memory and Cache

ld ...

st ....

ld ...

st ....

Code address

Code address

M7 Pipeline

Version error

Figure 2.22: SSM representation

There is not much information available on this technology. According
to the Oracle blog [60], a subset of the pointer bits is used to store the code,
which explains why the memory zone must be aligned within 64 bytes. But
there is no information on the way the allocated zone colour is stored and
where, or how two colours are compared by the processor.

The probability to detect a non-aligned memory access is proportional to
the number of bits used to store the code.

The table below shows the detection probabilities as a function of the
number of bits used to code the colour, based on the hypothesis that the
colour is chosen randomly.

Number of used bits Detection probability
1 50%
2 75%
3 87.5%
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If the colour is not chosen randomly but selected by the memory alloca-
tor in order to systematically have a colour different from that of adjacent
regions, then the detection rate is close to 100%. This countermeasure can
also prevent temporal errors by ensuring that a zone previously allocated
does not reuse the same colour.

Regarding performances, Oracle declares that the overhead caused by the
countermeasure is less than 1%.

2.2.2 Academic studies

In this section, we will present countermeasures proposed in the academic
litterature. We will begin with the protections designed by Secure-IC and
Télécom-ParisTech in the framework of the project RAPID CyberCPU. These
countermeasures focus mainly on the protection of the CFG of applications.
Other protections proposed in the literature, based on different methods,
such as tagging, will then be presented.

Secure-Call

Secure-Call (SCALL) is a countermeasure developed by Secure-IC in co-
operation with Télécom-ParisTech in the framework of the project RAPID
CyberCPU. This countermeasure focuses on the protection of the backward
edge of the CFG, that is function returns. To this end, the pipeline of the
SPARC/LEON3 processor has been modified so that the instructions call
and jmpl, which normally store the return addresses in the register %o7, also
store them in a hardware stack called SCALL. This stack can only be ac-
cessed by the processor. The running software has no access to the memory
of this shadow stack, thus, achieving a protection against the bypass of the
countermeasure by an attacker. For the software, the management of this
shadow stack is totally transparent.

When there is a function return, the address contained in register %o7 is
used. The comparator module of SCALL then checks if the two addresses,
the one in the software data stack and the one in the shadow stack SCALL,
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are identical. If these two addresses are equal, the module then sends back
the return address. If they are different, the comparison module of SCALL
raises an exception in order to warn the operating system that an anomaly
was detected. It is then up to the OS to decide which security policy to follow.
The Figure 2.23 (page 88) schematically shows the operation of SCALL.

...

...

...

Parameter

Parameter

Return address n

Parameter

Parameter

Parameter

Return address n-1

Parameter

Return address n-2

...

...

...

stack

SCALL
Comparator

...

...
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...

...

Return address n

Return address n-1

Return address n-2

Return address n-3

Return address n-4

Return address n-5

Return address n-6

Return address n-7

Return address n-8

Return address n-9

Secure-CALL

Exception

Return address

Figure 2.23: Schematic representation of the countermeasure SCALL

Three different security policies can be distinguished as:

• HARD policy: the process is simply aborted ;

• SOFT policy: the process continues to run – this may be useful in order
to analyze an attack;

• SAFE policy: the process continues to run but uses the return address
given by the shadow stack SCALL.

If there is an exception, it is up to the OS to correctly update the Shadow
Stack so that no alarm is triggered at the return from the exception. Simi-
larly, in case of fork or a programming multithread occurs, the OS copies the
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contents of the Shadow Stack in the data of the new processes. If an exec*
is executed, the Shadow Stack is then reset.

The shadow stack SCALL being sized to contain 64 return addresses, it
is sufficient for the majority of software which were tested, knowing that
they use, on average, only 14 entries in this stack. No noticeable decrease in
performance was seen on the test benchmark.

HCODE

Like SCALL, HCODE has been developed in the framework of the CyberCPU
project. This protection focuses on the check of the integrity of the Basic
Block (BB) executed in the processor. First, one needs to identify the Basic
Block in the software to be protected. To that end, the compiler is modified
to insert labels at the beginning of each BB. To correctly run the protection,
HCODE must be able to detect the ends of BB at runtime.

This is generally easy because a Basic Block usually ends with a jump
instruction.

However in some cases such as the example shown in Figure 2.24 (page 89),
the end of a BB can be associated with the fact that the next instruction is
the target of a jump. In that case, the detection of the end of BB end is not
straightforward at runtime. For this reason the compiler is modified so that
all the Basic Blocks end with a jump instruction, even if it is a jump to the
next address.

IF

Then

After

Figure 2.24: Example of Basic Block (BB) without jump in the end
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The second step in the compilation is to calculate a HASH of the instruc-
tions for each BB. A list of triplets (BB start address, BB end address, BB
HASH) is then generated for each Basic Block in the code and stored in a
special section of the executable file.

At the time of loading the software in memory, the loader copies the sec-
tion of the binary, containing the triplets, in a memory zone dedicated to
the HCODE moduleso that the hardware module may access it. At runtime,
the HCODE module calculates the HASH of instructions executed by the
processor on the fly. When a jump instruction is executed by the proces-
sor, the countermeasure HCODE deduces that it is a Basic Block end. It
then fetches the reference HASH from the memory, calculated during the
compilation, and compares it with the one calculated during the execution.
While the reference HASH is researched, the processor is paused, so that
the HCODE module may fetch and compare the HASHs. If the two HASHs
are the same, the processor is restarted. If the two HASHs are different,
an exception is raised to inform the OS that an anomaly has been detected.
Figure 2.25 shows the HCODE hardware module.

HCODE does entail a noticeable performance loss on software execution.
This is mainly caused by the time necessary for the module to find the
reference HASH. This research is, for the time being, performed in a linear
and a better way search algorithm would improve the performance. Future
HCODE developments will implement a complete software check of the CFG.
To that end, the OS will be in charge of checking that the history of the
executed BB is conforming to the CFG.

Project CHERI

Project CHERI (Capability Hardware Enhanced RISC Instructions), pre-
sented in march 2012, proposes the implementation of a countermeasure
based on the use of fat pointers, which enables the detection of the overflows
of a table. To that end, rather than representing a pointer with its address,
a solution is to add the address of the first word in the table (base) and the
end address of the table (bound) as shown schematically in Figure 2.26. This
representation is exactly what is called a fat pointer.

During use, the fat pointer (i.e. the bits containing the addresses) may
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Figure 2.25: HCODE hardware module

be incremented or decremented. If the resulting pointer is still within the
bounds, the software continues running. Otherwise an alarm is raised.

The main issue with this method is the huge cost in memory linked to the
use of fat pointers. In the CHERI project, the fat pointers are mapped on
256 bits including 64 address bits (64 bits for the base and 64 bits of bound
[72] [75]). Among the remaining 128 bits, 31 are used to manage permissions
(write, read, run) and the last remaining ones are reserved only for research
and tests. For industrial applications, it will be possible to eliminate some of
these bits. To implement this protection a recompilation (done via LLVM)
is necessary. Then, the management of these fat pointers is performed by a
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Memory buffer Pointer base bound

Metadata

Figure 2.26: fat pointer representation

dedicated coprocessor.

Processor SAFELite: Low fat pointer

In [45], A. Kwon et al. propose an adaptation of fat pointers called SAFELite
processor, which introduces a new representation of pointers, the low fat
pointers. This solution is interesting because of its low cost in terms of gates
count which allows a short calculation time. The encoding of fat pointers
called “BIMA” is based on a floating representation of the segments size. For
example, for this processor, the pointer and its associated metadata (base
and bound)can be contained in a unique 64-bit word for a 46-bit address
range as shown in Figure 2.27.

B I M @

046525864

Figure 2.27: Diagram of a BIMA type counter

In this Figure, the various fields on the BIMA pointers encoding represent:

• B: the size of each block is 2B words;

• I: the base is given by 2B × I words;
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• M: the bound is given by 2B ×M words.

In a case where :

• B = 2

• I = 1

• M = 4

• @ = 5

For such values, the various words in memory are shown Figure 2.28.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Base = I ∗ 2B @ Base = M ∗ 2B

Bloc= 2B

Figure 2.28: Example of low fat pointer

In the SAFElite processor, creation and use of fat pointers are managed
by a special unit called memory manager.

Moreover, to ensure an enhanced security of data management, 8 addi-
tional bits of information about the type are added to the data.

HardBound

Devietti et al. propose in [29] a hardware solution in order to manage the
spatial security of the memory for pointers in the heap and the stack, as
well as global pointers. The target of this method is to optimize the cost in
memory and in calculation caused by the fat pointers.

The principle of the HardBound architecture is to add 4 tag bits to data
in order to identify their type:

• not a pointer;
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• one among 14 types of compressed fat pointers: "tag";

• an uncompressed fat pointer.

In the case of compressed fat pointer with type "tag" and tag = 4,. . . ,14,
the base is equal to the pointer and the bound is equal to 4 × tag. A fat
pointer must be uncompressed:

• if its size is not a multiple of 4;

• if its size is over 56 bytes;

• if the pointer does not point to the start of the object.

Compilation-Enforced Temporal Safety

Many tools allow to detect and manage, more or less effectively, the over-
flows. Nagarkatte et al. propose a solution called CETS (Compiler-Enforced
Temporal Safety) [50].

The principle of CETS is based on a "lock-and-key" identifier and on the
use of a shadow memory. In fact, CETS gives each pointer two additional
fields: a unique key and a lock address (lock address).

Figure 2.29 schematically represents the CETS operation. When a table

Memory

Pointer key lock address

Metadata

?

Figure 2.29: CETS schematic operation
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(or another object type) is allocated, the pointer key (key) is set with a
unique value. That key is saved in a memory area called lock. The address
of this memory area is saved in the second additional field of the pointer
lock address. When the pointer is deallocated the key (key) is reset.

For each use of the pointer, the key (key) and the lock value (lock)
pointed by lock address are compared. If these two values differ, an alarm
is raised because a temporal corruption of the pointer occurs.

Moreover, in order not to alter compatibility and to improve metadata
security, the values (lock and key) are not placed after the data ("in-line
metadata" like in fat pointers). They are stored in a shadow memory using
a two-level sorting tree.

A sorting tree is a multi-level data structure in which each level can be
accessed, thanks to different sets of input bits.

The impact of this countermeasure is an increase of the runtime by 39%
when it is supported by hardware, compared to a 108% increase in case it is
fully implemented in software.

Architectural Support for Instruction Set Randomization

Architectural Support for Instruction Set Randomization ASIST [56] is a
modification of the LEON3 CPU which enables the dynamic encryption of
executable code in RAM at loading as well as its on-the-fly decryption at
execution. Only the code zone (.text) is encrypted, while data (.data,
.rodata, .bss, .stack, .heap) are stored unencrypted. The encryption key
is dedicated to a given executable code: it is loaded in the processor registers
when there is a context switch, that is, when the multitask operating system
scheduling indicates it is time to run another process. Related libraries are
also encrypted with the key of the executable, as well as the return addresses
(in the stack zone), because they are considered as code chunks which the
user should not be able to access. The .text zone encryption prohibits all
injection code attacks: the injected code would have to be encrypted by the
attacker before injection, since the CPU would decrypt it automatically in
order to execute it. But the encryption key is randomly generated at each
software execution, and the encryption algorithm is considered secure against
the attacker’s limited capabilities. When considering such hypothesis, a XOR
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with the key, a XOR with several keys derived from the master key, or a per-
mutation controlled by a key are considered as secure. Such encryption does
not protect against code reuse, so encrypting also the return addresses can
be used to prevent an execution flow modification by controlling the return
address. The attacks which are still possible are attacks based on code reuse
which do not rely on suppressing the return address of a function, such as a
JOP. The runcode encryption mechanism is dynamic and is performed when
loading the code (when it is copied from the HDD to the RAM), so that
ASIST may function without code recompilation.

In terms of silicon area, this countermeasure increases the used area by
7% maximum. The impact of the countermeasure on applications’ runtime
is negligible.

In [25], it is proposed to add, to the processor, a mode in which the in-
structions fetched in memory are encrypted. Thus, the processor needs to
decrypt before executing them. This countermeasure is intended for soft-
ware protection against reverse-engineering, but an interesting aspect of this
kind of countermeasure is that it also limits the number of gadgets an at-
tacker may use to perform a code reuse attack. Indeed, contrary to the
ASIST countermeasure, REV [25] allows, thanks to specific instructions, to
switch between encrypted and clear modes. The attacker, thus, cannot use
encrypted code when in clear mode, and is obliged to use encrypted gadgets
only in encrypted mode, and unencrypted gadgets only in clear mode.

Software and Control Flow Integrity Architecture

Software and Control Flow Integrity Architecture (SOFIA) [27] proposes to
couple the control flow integrity (CFI) and software integrity (Software In-
tegrity SI) protections based on ISR.

To that end, the software is divided in a set of encrypted instructions
blocks containing a checksum for these instructions. The flow integrity is
checked with the decryption part, the key used to decrypt the current in-
struction being a combination of its address and the address of the previous
instruction. So, if the CFG is followed, the instructions are decrypted cor-
rectly.

On top of the encryption, each instruction block includes one (or several)
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checksums corresponding to the instructions in the block. A check is per-
formed at execution: if the two checksums are different then the controller is
re-started. Figure 2.30 (page 97) schematically shows the operation of this
countermeasure. In order to execute a non-linear flow, the concept of Basic
Block with several predecessors is introduced (see Figure 2.31, page 98).

Figure 2.30: SOFIA operation diagram (extracted from [27])

This countermeasure was implemented on a FPGA with a LEON3 proces-
sor. An increase in 28.2% of the used area has been measured. The decrease
in performance is mainly due to a decrease of 84.6% in the clock frequency
and to an increase in the execution cycles by 13.7%. Overall, the total execu-
tion time increases by 210% mainly due to changes made inside the pipeline
of the processor.

On top of this significant performance loss, this protection is not designed
to work on complex systems with an OS. Moreover it is not able to protect
complex or dynamic control flows. So it is not possible to protect code using
polymorphism, because it is mandatory to know all the branches of the CFG
at compilation time, which is not possible with the polymorphism principle.
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Figure 2.31: Basic Block allowing two predecessors (diagram extracted from
[27])

Hardware-Assissted Fine-Grained Control-Flow Integrity: Towards
Efficient Protection of Embedded Systems Against Software Ex-
ploitation

[26] propose an hardware implementation of Abadi’s paper [3] [4]. For this
purpose, two new instructions are added: CFIBR,CFIRET. And the RET in-
struction is modified, or the new DEACT instruction is implemented.

Because this implementation can only raise an alarm on wrong return
label, it is not capable of detecting JOP attack, which never use return
instruction. To address this problem they use counters to monitor executed
instruction in the windows of five indirect jump. This give indicator that a
JOP or a ROP attack is undergoing.

2.2.3 CFI

Previous works on control-flow integrity (CFI) are generally based on soft-
ware instrumentation implemented by the insertion of additional instructions
on each block [34, 4, 47].
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Let us describe more specifically three existing representative solutions
which implement CFI:

• Enhanced Control Flow Checking using Assertions (ECCA [7]);

• Control Flow Checking by Software Signatures (CFCSS [53]);

• Hardware-Assisted Fine-Grained Control-Flow Integrity (HAFGCFI [26]);

• Hardware-enforced Control Flow Integrity (HCFI [18]).

ECCA

ECCA is able to check the correct execution of the control flow by assigning
an unique prime number for each basic block. Each basic block is decorated
with two new code-checkers:

• At the beginning: with a test assertion which checks whether the pre-
vious basic block is permissible.

• At the end: with a set assignment which updates an identifier taking
into account the whole set of possible next basic block.

This technology is subsequently tested using automated fault injection benches,
and most of the contribution is geared towards the simulation-based fault
coverage methodology.

CFCSS

CFCSS assigns a unique signature to each basic block and, for the purpose
of checking, a global variable contains the run-time signature. But CFCSS
cannot cover control flow errors if multiple nodes share multiple nodes as
their destination nodes [53].

These two first previous works have some issues: they suffer from memory
overhead and low performance due to the large size of the protection code
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added for checking flow execution. We will show that hardware / software
collaboration allows for better performance.

Some other CFI protections use hardware for improved performance [26],
as discussed here-after.

HAFGCFI

HAFGCFI is based on checking every function call. Each function is associ-
ated to a unique label and each call to the function is replaced with a new
CFI instruction called CFIBR. A shadow stack is used to save the call-tree
containing the function label called by CFIBR. Also each return instruction
is replaced by a CFIRET which checks the consistency of the return (the label
of the CFIRET is in the call-tree), thereby preventing ROP and JOP. But
for indirect call and jump, an heuristic behavioral-based approach is used by
analyzing number of POP, PUSH, and indirect jumps.

Like other software implementations it checks transition upon “jump”
instructions but does not verify the integrity of the executed code.

CFI can be also used for enforcement of more elaborate security poli-
cies such as Inlined Reference Monitor (IRMs) and Software Fault Isolation
(SFI) [31, 32]. This use of CFI in these securities can help to prevent an
attacker from bypassing the control sequence.

HCFI

In paper [18], the authors present HCFI (Hardware-enforced CFI ), which is
a modified SPARC architecture. It combines a shadow stack with a CFI-
dedicated extension of the SPARC instruction set. While the solution con-
centrates only on call/return instructions, it achieves an impressively low
run-time overhead of only 1%.

The sequel of this manuscript presents a solution which is further opti-
mized (based on caches), processor-agnostic, and covers a larger number of
faults (including physical disruptions, as discussed in the next chapter).



Chapter 3

Threat Model

3.1 Statement of threat model

We consider a powerful attacker able to perform both software and hardware
attacks. In other words, the attack vector can either the exploitation of an ex-
isting bug (which allows to corrupt the state of the program) or an alteration
caused by external stress which modifies the internal state. Figure 3.1 illus-
trates some emblematic attacks which are detected by our protection called
CCFI. The hardware attacks are detected if the perturbation targets either
the code or pointers to the code. Notice that some recent attacks (such as
RowHammer and PlunderVolt) are software-triggered hardware modification
attacks, hence are depicted inbetween software and hardware attacks.

As physical attack he is able to modify one word in memory, bypassing
hardware memory protection like W^X. With this he is able to modify instruc-
tion in the code in order to skip an instruction or to change an instruction
to another one.

As software attack he is able to use any vulnerability present in the soft-
ware. This includes:

• Using buffer overflow on the stack to change return address

• change function pointer
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Figure 3.1: Attack vectors addressed by our CCFI technology

3.2 Mitigation of the threat

To protect against the aforementioned threats we implement CCFI (see chap-
ter 5). In this respect, we must introduce several technologies:

• Basic Block (BB) verification (HCODE), as described in chapter 4;

• CFG verification, including forward and backward BB transition, as
described in chapter 5;

• Support of interruptions and OOO execution, as described in chapter 6.

3.3 Offered security

3.3.1 Fine-grain security

CCFI offer the most fine-grained CFI security possible at instruction granu-
larity. Its construction of check at the end of BB before jumping anywhere
make it impossible for an attacker to modify pointer (function pointer or
return address) by any mean to jump on his code or on gadgets.
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3.3.2 Reactive vs infective strategies

Other CFI protections or protections like ASIST [57] offer resistance of the
code against data injection by obfuscating those data in memory. Though
such strategy is certainly effective against a vast majority of assaults, it suf-
fers from a lack of reporting capabilities. Indeed, upon attacking ASIST, the
process or the OS will crash, but no further information about the perpe-
trated penetration is available.

Still worse, before crashing, the program will execute inconsistent code,
which can result in random corruption(s) of the memory. Now, it is known
since 1997 that errors in cryptographic implementations can lead to full key
extractions. For an overview of fault-based cryptanalysis, we redirect the
reader to the reference book [40]. Of special interest are fault-based attacks
which work even if the fault falls at a random location. We detail hereafter
two examples: one in asymmetric and another in symmetric cryptography.

1. In asymmetric cryptography, the BellCoRe attack [15] shows that if
whatever is broken in a computation of CRT-RSA, then the modulus
N can be factored in its two prime factors p and q (provided the input of
RSA is known). Initially, the authors of the BellCoRe attack imagined
hardware faults, such as “hardware glitches that cause the processor to
miscalculate”, or “induced faults”. The case of latent faults, i.e., when
the hardware itself is computing wrong, has been developed by Biham,
Carmeli and Shamir [12]; it is known as the bug attack.

2. In symmetric cryptography, the “differential fault analysis” paper by
Biham and Shivam [13] shows similar results. In the section 5.1. of
this article, it is explained how some bits of the secret key can be
guessed provided one bit of a register is permanently set to zero. Now,
the same effect can be obtained if a some entries of the substitution
boxes of the block cipher are erased.

So, in both asymmetric and symmetric cryptography, alterations of the code
or the data can lead to efficient cryptanalyses. Now, it can well be that the
fault results from a memory corruption caused by the crash of ASIST. We are
not aware of any proof-of-concept of such attack, but it is plausible. Thus,
cyber-induced fault attacks must be prohibited, for instance by a suitable
detection method.
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This is where CFI (and in particular our hardware-assisted approach)
turns out to be useful. Indeed, in case of a security violation, the system
can log the event, which enables for statistics. A kernel module can be
easily designed to handle such reporting. Such report can be made very
accurate, including for instance the address at which the program started to
go astray, and a memory dump (core file). So, even forensic replay of the
attack becomes possible. But more precious information can be gathered
from the attack event:

• the system can proactively stop and open a debugger console, allowing
the user to get direct access to the attack being executed (useful in
honeypots);

• the system can take timely actions, such as killing the attacked process.

3.4 Comparison with SOA

As we have seen in chapter 2, lots of existing counter measure implement fat
pointer technique to ensure memory safety (MPX 2.2.1, SSM 2.2.1, CHERI 2.2.2,
SAFELite 2.2.2, HardBound 2.2.2 and CETS 2.2.2). On the figure 2.14
we can place these protections on the first line, they prevent to "Make a
pointer go out of bound".

While other protections focus on protecting pointer with Code Pointer
Integrity protection (CET 2.2.1, Shadow Stack 2.2.1, Pointer Authentica-
tion 2.2.1 and Secure-CALL 2.2.2).

Our solution protect any code modification by verifying an hash for each
executed basic bloc. This protect against code corruption attack witch can
be made by software or by fault injection. This Code Integrity protection
is on the third line on figure 2.14 as "Modify code ...". The second
part of the CCFI protection implement Control Flow Integrity preventing
to "Use pointer by indirect call/jump" and "Use pointer by return
instruction", fifth line of the figure 2.14.

In summary our protection able to prevent Code corruption attack
and Control-flow hijack attack of the figure 2.14.
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Functional Mechanism of Control
Flow Integrity

4.1 Formalism

4.1.1 Definitions and security property

In this section, we define the protection of the program flow and its associated
instructions.

Definition 1 (Program). A program is an oriented graph, where vertices are
addresses (values of the program pointer, in the sequel referred to as “PC”),
and where the edges represent the allowed transitions.

Dynamically, the execution of a program is denoted as a program flow. It
consists in a walk on the oriented graph.

We notice that it could have been possible to define a program by labelling
vertices with instructions instead of addresses. But actually, it amounts the
same by the introduction of a program binary code:

Definition 2 (Binary code). The binary code of a program is a table in
which every licit address of the PC is mapped to an instruction.

This notion corresponds to the .TEXT segment of a program object,
where the possible addresses translations are ignored. Therefore, the notion

105



106CHAPTER 4. FUNCTIONAL MECHANISM OF CONTROL FLOW INTEGRITY

of running code is simply the mapping of the sequence of addresses from the
program flow through the binary code. In the sequel, we denote by T this
translation table, between addresses and instructions.

Notation 1. We denote by T [@] the instruction in the binary code at address
@.

We attract the reader’s attention on two limitations of our modelization:

1. The data are not modeled, hence errors on data are not captured. Other
protections for the data will be needed on top of HCODE, such as
dynamic information flow tracking [67]. In particular, if a data, whose
purpose is to select amongst various licit transitions, is corrupted, then
the program flow will be considered correct (despite it is not!), in the
sense than no new edge is added to the graph.

2. The program graph is known statically, in the sense that no transition
can be created dynamically. This is a limitation of our approach on
the input language, compilation and link tools. One idea to get over
this limitation is to make our CFG early in the compilation chain. If
the CFG is deduced from a high level language, it is possible to catch
the construction of dynamic calls, like switch tables and vtables.

A convenient representation of a graph is a list of vertices, each of which
being the address stored in the vertex and the list of next (downstream)
vertices.

Definition 3. For every address @, let Succ[@] denote the list of successors
of @ in the program graph.

We can also define the predecessors of an address in the program graph:

Definition 4. The predecessors Pred[V1] of vertex V1 is the set defined by
{V2 ∈ program flow graph;Succ[V2] = V1}.

Under nominal execution, the dynamic program flow remains strictly
within the program graph. Similarly, under nominal execution, the run-
ning code corresponds to the image through the binary program of a licit
walk in the program graph. This is formally expressed by this property:
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Property 1 (P : unaltered execution). An unaltered execution (property
named P ) consists in checking both that:

1. the dynamic sequence of PC addresses belongs to the static program
graph, and

2. the dynamic sequence of instructions belongs to the image of the set
of dynamic sequences on the static program graph through the binary
code T . Equivalently, there exists a dynamic sequence of PC addresses
belonging to the static program graph such that its image through T
yields the dynamic sequence of instructions.

Here are some examples of attacks that would violate the property P :

• Jump at an address which is not a successor of this vertex. This can be
due to a classic program flow hijacking, for instance by stack smashing:
the return address of functions are overwritten. Another example is
return- or jump-oriented programming (ROP & JOP).

• Replace code, which is possible, for example if the hardware does not
support RO (read-only) restriction on the executable portions of the
memory (.TEXT section for instance), or under debug. Another pos-
sibility is when laser, electromagnetic fault injections or SEUs occur.

In such cases, an attacker would violate the property P .

4.1.2 Concept of seamless verification of security prop-
erty P

The figure 4.1 represents the different finite state machines (FSM) involved
in the verification of property P . The left-hand side represents the functional
FSM of the execution platforms, namely the update of the program counter
(PC) to the next instruction address (nPC), and the update of the opcode
register (denoted by “instruction”). The right-hand side are the FSMs which
are added for the purpose of verifying the security property P . A copy of the
program graph is stored securely, so that for every value of the PC, the list
of licit successors is known. At every execution step, the hardware verifies
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that the sequence of values of the program counter remains on the program
graph. This is the implementation of the runtime verification of the first
item in property P . A sibling FSM checks the sequence of instructions. For
this purpose, a copy (T_copy) of the program binary (table T ) is used for
sanity check. This implements the runtime verification of the second item in
property P .

Check
Instruction

Alert
Integrity

Update PC
PC=nPC

¬irq

Check
PC

Alert
CFI

If nPC  Succ[PC] ∈

If nPC  Succ[PC]  ∉

Program execution CFI

Branch IRQ
PC=&irq_hld

irq

nPC T[nPC]

memory Instruction 
(opcode)

If instruction ≠ T_copy[@]

If instruction = T_copy[@]

Figure 4.1: Program state machine (left) and CFI state machine (right)

Unfortunately, we have this fact:

Fact 1. The verification of the good execution of P during the execution
takes more time than executing the program himself. Indeed, executing one
instruction and computing the next address is a single operation, whereas
verifying the next address of the PC requires a search in a list.

Actually, in Figure 4.1, the costly operations are those which require an
indirection (Succ[.] and T_copy[.]), but the verification that a given vertex
V belongs to a list can require more than one indirection (depending on the
cardinality of the said list).
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4.1.3 Basic-block based seamless verification of prop-
erty P

We can improve Fact 1 by reducing the program’s graph flow. This is achieved
by merging some vertices together.

Definition 5. We define R a relation between two vertices V1 and V2 such
that V1 R V2 is verified if one of the following properties holds:

1. V1 = V2

2. V2 only admits V1 as a predecessor and V1 only admits V2 as a successor
(Succ[V1] = {V2} and Pred[V2] = {V1})

3. V1 only admits V2 as a predecessor and V2 only admits V1 as a successor
(Succ[V2] = {V1} and Pred[V1] = {V2})

Definition 6 (Equivalence relation). We define E an equivalence relation
between two vertices V1 and V2 as follows:

V1 E V2 ⇐⇒
∃n ∈ N, ∃{IVi}1≤i≤n ⊂ {V, V ∈ program flow graph}
such that: V1 R IV1 R IV2 R . . . R IVn R V2 .

A class of vertices that verify the equivalence relation E is called a basic
block. A basic block contains at least one vertex V , in which case we have
V R V , and n = 0 in Definition 6 (i.e., there is no intermediate vertex).
Applying the equivalence relation E regroups several vertices together, as
depicted in figures 4.2a (before simplification) and 4.2b (after simplification).

We have this well-known result:

Proposition 1 (Control Flow Graph). A program graph can be uniquely
partitioned into basic blocks.

Proof. From the definition 6 it follows that the relation E is reflexive, transi-
tive and symmetric. Therefore we can use E to define classes of equivalence
to partition the graph of a program into basic blocks.
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(a) Simple program graph representation
(b) Simple program graph representation
with basic block class equivalent (mate-
rialized by green boxes)

Figure 4.2: Simple program graph representation

This simplification of the program flow is called a control flow graph
(CFG). It induces a simplification in the verification FSM, as shown in Fig-
ure 4.3.

With this simplification we are able to do the same security controls
but with much less verification operations. Indeed, within a basic block, it
suffices to check that the PC is incremented by one instruction. The rest is
the verification of the jumps, which is referred to as CFI.

To implement basic block integrity verification, it is sufficient to compute
a signature of the instruction sequence that has been executed. The notion
of signature we use is the following:

Definition 7 (signature of a sequence of instructions). A signature “Sign”
is a function which can be computed incrementally, and which produces a
result of the same size as the instruction, with the following property. Let
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T[PC]=jmp ⋀ Signature≠S[PC]

T[PC]=jmp ⋀ 
Signature=S[PC]

Figure 4.3: Program state machine (left) and CFI state machine (right),
optimized to take into account basic blocks

n, n′ ∈ N? (recall that a basic block is made up of at least one instruction,
hence n and n′ are taken nonzero). If

Sign(instruction1, . . . , instructionn) =

Sign(instruction′1, . . . , instruction
′
n′) ,

then with very high probability, we have n = n′ and for all i (1 ≤ i ≤ n),

instructioni = instruction′i .

In the sequel, we will implement the signature by concrete primitives,
such as cyclic redundancy check (CRC). We might also refer to this CRC
as “hashing”, although strictly speaking, we do not need the properties of
a cryptographic hash function. The property of anti-collision presented in
Definition 7 is very basic, and satisfied by usual CRC algorithms.
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Remark 1. Actually, as represented in Figure 4.3, we make the classical
assumption that signatures can be updated after each new instruction is
processed. That is, Sign (in Def. 7) is made up of two functions:

1. one which initiates a signature with the first block (here, the first in-
struction), and

2. a second one which updates the signature by digesting further blocks.

The initial function is typically the update function (SignUpdate) with an
initialization vector (IV) instead of the previous signature. And so, in Defi-
nition 7, the expression:

Sign(instruction1, . . . , instructionn)

is actually short for the following recursive expression:

Sign(instruction1, . . . , instructionn) =

SignUpdate(SignUpdate(. . .
SignUpdate(SignUpdate(IV, instruction1), instruction2),

. . .), instructionn) .

At this point, the only costly verifications on a graph are inter-basic block
integrity checks. In practice, the FSM can delineate in real-time the basic
blocks, since they follow a jump instruction (conditional test, function call,
etc.) and end before a jump instruction. Then, it is sufficient to store the
CFG and the signature of basic blocks instead of the whole binary code. We
continue to refer to flow graph as Succ[@], but only those addresses @ that
end basic blocks have a list of successor defined. Similarly, the binary code
is replaced by the signatures of basic blocks.

Notation 2. We also denote by S[@] the signature of each basic block,
where @ is the representative address of a basic block, typically the last ad-
dress (where the basic block integrity verification is done, as represented in
Fig. 4.3).

Therefore, the statically computed graph of all Succ[.] and of all signa-
tures S[.] is drastically compacted with respect to the original ones (T_copy[.]
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as described in Sec. 4.1.3). So, as illustrated in the bottom right-hand side
of Figure 4.3, on jumps, the correct execution of instructions is checked by
the correct signature of a basic block.

In addition, we have this remarkable result:

Theorem 1 (CFI+HCODE). If both the CFI and HCODE are verified si-
multaneously during the execution of a program, then not only the CFG is
unaltered, but also the entire program graph.

Proof. The integrity of the program graph is checked:

• by the CFI on jumps, and

• by the HCODE signatures on exiting basic blocks.

Now, by Proposition 1, a program graph is completely described by its basic
blocks and the CFG that connects them.

Corollary 1. When both CFI and HCODE are used to verify the two items of
Property P (property 1), then it is useless to verify that the program counter
addresses are incremented with basic blocks. This means that, in Fig. 4.3,
the transition from state “Check PC in BB” to “Alert CFI” can be removed,
since such assertion would be caught by the transition from state “Update
Signature” to “Alert code integrity”.

Proof. This is a direct application of property of signatures given in Defini-
tion 7. If the program counter is not incremented linearly, then the sequence
of instructions will change, and the signature will be erroneous, which will
trigger an alert.

To be precise, the signature will be correct in the case where the instruc-
tions are replaced by exactly the same number of identical instructions. But
in this case, it the program execution is correct, and there is no need to raise
an alarm.

In the following sections, we describe how we implement the mechanisms
from Theorem 1 into the platform1.

1For conciseness, we may denote in the sequel the verification presented in Theorem 1
as “HCODE” (instead of “CFI+HCODE”).
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4.2 HCODE Operating Principle

4.2.1 Big picture

In this section, we briefly summarize the rationale of HCODE real-time CFI.

The basic idea of the hardware support for control flow integrity checking
is that a trace of the program counter is generated in real-time, and placed in
a queue for verification purposes. Verification can be achieved concurrently,
either by dedicated hardware, by software code running on another core, or
sequentially by another process running on the same core. The hashing can
be accelerated by a batch processing, possibly out-of-order.

Of course, as already highlighted in Fact 1, it is much more time-consuming
to check that a sequence of program counter addresses travels correctly on a
precomputed CFG than to execute a program. Indeed, most instructions are
executed in a small (from one to a few units) amount of clock tics, whereas
the verification that an address belongs to the list of possible successors of
a vertex in a CFG can take a long time, depending on the complexity of
the CFG. So, to relax the verification constraints, we have proposed in The-
orem 1 a specific “shortcut” for checking basic blocks integrity. Instead of
posting a series a consecutive addresses for verification, a hardware module
computes a signature of the executed instructions. At the end of the basic
block, the signature is checked against a precomputed one. The signature is
specified to detect errors in case the previous (normally straightline) instruc-
tion sequence has not been executed as expected. So, the verification of a
dynamically computed value against a precomputed one can be achieved in
one clock cycle, which does not delay the CFG verification procedure. Fur-
thermore, the signature verification module is idle during the execution of
basic blocks (i.e., while the condition “T[PC] 6= Jmp” is asserted in Fig. 4.3);
it can thus take advantage of this time to perform the (more time-consuming)
verifications of the CFG which have been delayed (e.g., queued in a FIFO).

4.2.2 Overview

HCODE is a hardware accelerator module placed between the processor and
the instruction cache. It works by computing a signature of basic blocks
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executed by the processor. A manual or automatic analysis of the assembler
code is needed to get the control flow graph and precompute the signature
of each basic block. They will be used during the execution of the program
to verify the integrity of the executed instructions. During the execution
of the program, the HCODE module intercepts each instruction fetched by
the processor and calculates a signature (or a CRC, or a hash) until a jump
instruction is fetched. Then HCODE module enqueues the CRC and the
address relative to the basic block in one FIFO, and starts the computation
of the new CRC for the next basic block. When the processor switches
contexts, the operating system (OS) is responsible for emptying the FIFO
and checking that each computed CRC present in the FIFO are the same
as those present in the section ‘.HCODE’ of the binaries (place where the
precomputed CRC is stored).

A program with HCODE protection embeds one .HCODE section in its
ELF object file. This new section contains all necessary information to do
CFI and the correctness verification of executed instructions (.HCODE seg-
ment is explained in section 4.3.2). When the program is launched, the OS
loads the program in memory as usual with all the additional data of the
.HCODE segment in the process table.

The HCODE module can be disabled globally or locally depending of its
configuration.

4.3 Software implementation

To benefit from the HCODE protection measure, we need to make little
adjustments in the compilation toolchain. Indeed HCODE assumes that
each basic block ends by a jump instruction, which is not necessarily the
case if the next basic block is the target of an another jump instruction (see
one example in Listing 4.1).

The figure 4.4 represents the modified compilation work flow for adding
HCODE protection. The first step is to generate assembly code, in which we
check whether each basic block ends with a jump instruction. If this is not
the case an unconditional jump to the next basic block is added by taking
into account the delay slots if necessary. In parallel we add a unique label of
each start/end of basic block (see Listing 4.2).
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Figure 4.4: Modified compilation toolchain

4.3.1 Adding jump

1 l b l 0 :
2 mov . . .
3 add . . .
4 l b l 1 :
5 cmp . . .
6 jmp l b l 1
Listing 4.1: Basic block, which is not delineated by a “jump” instruc-
tion
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1 . g l o b a l hcode_start_0001
2 . g l o b a l hcode_end_0001
3 . g l o b a l hcode_start_0002
4 . g l o b a l hcode_end_0002
5

6 l b l 0 :
7 hcode_start_0001 :
8 mov . . .
9 add . . .

10 hcode_end_0001 :
11 ; jmp i n s e r t e d by HCODE
12 jmp hcode_start_0002
13 l b l 1 :
14 hcode_start_0002 :
15 cmp . . .
16 hcode_end_0002 :
17 jmp l b l 1

Listing 4.2: Basic block, separated by a dummy “jmp”

The second step is performed on the generated binary object file. For
each portion of code we want to apply the HCODE protection to, we extract
the basic blocks list and then compute the corresponding checksums. Finally,
all needed pieces of information (list of successors and CRC) are stored in a
new section of the ELF file we name ‘.HCODE’.

The program may not always be comprehensively protected by HCODE,
as some part of the program can be dynamically loaded at the execution time
(dynamic linked libraries) and therefore cannot be modified by the user. This
justifies the functional requirement of being able to specify which parts of
the program should be subject to HCODE protection.

4.3.2 The new ‘.HCODE’ section

Once the ELF executable has been generated by the compilation toolchain,
we must initialize the section ‘.HCODE’ in the ELF file. After initialization,
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this section contains all precomputed signatures of desired basic blocks. This
section contains one or more entries. Each entry is defined by the end address
of basic blocks, and contains all addresses of their successor along with the
CRC of the current basic block instructions.

4.3.3 Hardware module

The HCODE hardware module is inserted between the instruction cache
and the processor. It catches all opcodes fetched by the processor, the out-
put of the program counter and the AMBA (Advanced Microcontroller Bus
Architecture) bus, used by LEON (and most systems-on-chip, like ARM pro-
cessors, etc.).

The HCODE module contains control logic, a signature (or CRC, or hash)
module, a RAM on the AMBA bus used as a FIFO, and multiple config
registers also on the AMBA bus used for internal configuration.

Data
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PC hashPC hash
PC hash
PC hashPC hash
PC hash
PC hashPC hash
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PC hashPC hash
PC hashF

IF
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AMBA Ctrl

AMBA BUS
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AMBA Ctrl

      Integer Unit
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Figure 4.5: Hardware implementation (simplified)

At each processor cycle, the opcode of the currently executed instruction
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is intercepted and used to update the current signature. If the module inter-
cepts an opcode corresponding to a jump instruction, it updates the sum of
control and posts it in a hardware FIFO along with the address of the current
basic block of the program. After that, the hash module is reinitialized for
the next basic block. Its FSM is more detailed in the section 4.3.3.

The HCODE module is addressable on the AMBA system bus and pro-
vides control registers:

• register CONF: this is the configuration register (On/Off; user/user
and super mode; . . . ).

• register HASH: contains the signature of the current basic block.

• register PC: contains the record of the beginning of the current basic
block.

• register NEXT: contains the next free line in the HCODE FIFO.

The HCODE module is designed to send an interruption when the FIFO
(dual-port AMBA RAM) is full to prevent losing data. This causes a context
switch forcing the OS to empty the FIFO and make all the necessary integrity
verifications. This operation is more detailed in the OS section, namely
section 4.3.5. Notice that, let apart this interruption, the HCODE module
is totally passive with respect to the CPU: it can be inserted without any
modification, since it only probes some buses (but does not modify them).

The verification of Property P is done outside of the HCODE module,
by a code which validates the pairs (PC, hash) of the FIFO against the
precomputed data stored in the .HCODE section in the binary.

HCODE FSM

The HCODE has two states: active and inactive, depending on the CONFIG
register, user or super mode and also page memory settings.

In the inactive state, opcodes are just forwarded to the processor, and no
hashing is done. It prevents the FIFO from getting full too quickly. Inactive
states are used by the kernel when it is running processes without support
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for HCODE. In this case, context switches do not go through the verification
process and “HCODE MEMORY FULL” interruptions are not triggered.

In the active state, every opcode is hashed depending of the current ba-
sic block. In the hardware implementation, availability of a new opcode is
indicated by the ’op’ signal, ’¬op’ corresponding to a processor stall. Every
address of the beginning of a basic block is saved in a register (PC). At the
end of a basic block – indicated by the ’end_BB’ signal, the hash is pushed
in a FIFO, along with the saved address of the basic block.

The active mode is described by the FSM depicted in Figure 4.6.

4.3.4 LEON 3

For implementation and experimentation purposes, the LEON3 processor is
chosen. It is a compact processor implementing the SPARC v8 instruction
set including multiply and divide instructions and a 7-stage pipeline. Our
configuration includes a debug support unit (DSU), a 32×32 multiplier, data
and instruction caches with MMU and 8 register windows. The LEON3 is in-
tegrated on a Virtex 5 FPGA (xc5vlx110) on the Gaisler board GR-PCI-XC5V.
The prototype is shown in figure 4.7. The figure 4.8 summarizes the archi-
tecture of the processor, as provided by Gaisler.

Although the examples are carried out with a LEON3, they can be back-
ported to almost every processor. As previously mentioned, the HCODE
module is a “blackbox” (i.e., it can be plugged without altering the nominal
behavior of the process), placed between the instruction cache and the inte-
ger unit pipeline (see Figure 4.9). Since we do not modify the binary code
of the executed program, we just wiretap the requested instruction.

To be as general as possible, we assume that only the program counter
and the opcodes are fed into the blackbox from the integer unit.

In order to raise interruptions, we also use the interruption line passing
through the module.
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4.3.5 Software OS

HCODE verification

In a firmware environment, the HCODE module triggers the “HCODE MEM-
ORY FULL” interruption which is used to signal to the firmware that the
FIFO memory of the HCODE is full, and that an action from the software
is required. In a kernel context, every context change is used to perform all
the verifications and flush the HCODE memory. But the interruption is also
used if the program has a high priority, and in this case, the memory could
overflow.

The action required to flush and process the HCODE memory is as fol-
lows:

• Dump the FIFO RAM from the AMBA bus;

• For each line in the RAM, check that:

– the current PC of the line is in the list of accepted addresses from
the previous line. If it is the first line, it uses the saved “last
address” or the start address of the program if it is the first time
that the verification is done;

– the linear block has the same hash as the precomputed one.

For optimization reasons, the processing of each line can be out-of-order.

Since the hardware module does not check whether a basic block is in-
cluded in the .HCODE section, the kernel or the firmware ignores every line
in the FIFO corresponding to a non-protected basic block.

Kernel context

When the kernel starts a new process, it allocates a new struct to save
information about the new process. In the case of a program with HCODE
support, we modify this struct to save the control flow graph (CFG) and the
HCODE blocks inside the struct. We also reserve an entry in the struct
to save the internal state of hash module and the first address for the CFG
inspector.
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To handle context switching in kernel-land, the following pseudo-code are
added:

• Do the HCODE verification (see Sec. 4.3.5);

• Dump the configuration RAM via the AMBA bus. This dump contains:

– the internal state of the hashing module,

– the saved program counter corresponding of the begin of the basic
block,

– the address of the next free line in the HCODE memory.

• Save in the configuration and the last line of the HCODE memory in
the process struct;

• Write back the configuration RAM of the HCODE with the previously
saved configuration. If it is a new process, use a blank configuration;

• Write back the HCODE block in the first position in the HCODE mem-
ory;

• Reset the next address of the HCODE memory using the configuration
RAM and make it point to the first line;

• Continue normal context switch operation in the kernel.

4.4 Performance estimation

4.4.1 Hardware performance

Since all transitions in the HCODE FSM are done in one cycle, there is no
latency in the treatment of an opcode.

The sizeable part of the HCODE module is the FIFO RAM whose depth is
adapted to reduce unwanted context switches due to the “HCODEMEMORY
FULL” interruption. In our programs, the mean size of a basic block is ten
instructions. So providing an approximation of the number of instruction
per context-switch, it is possible to eliminate unwanted context switches.
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4.4.2 Software performance

Since we are not introducing many additional instructions in the original
program unlike other software based control flow integrity implementations,
the performance cost in greatly reduced.

Our embedded firmware (an AES [52] test code) composed of 2545 in-
structions, only 81 jumps are added to permit the HCODE module noticing
the end of a basic block. Dynamically, for each AES execution, 9220 jumps
are executed before modification, and 10934 after.

In most cases, the overhead is small (like in our AES test code), but in
case of program with a lot of added-jumps (program with lots of loops), this
performance impact could be mitigated by the addition of a new instruction
closing the basic block. This one cycle instruction should not update the
hash but permit to save and init again the hash module.

So in the user mode, the performance is globally the same as that of an
unmodified program.

The main performance impact is due to the context switch since this is
when all the verifications are made.

In the GNU/Linux OS, the context switch is very expensive. Dumping
and checking a FIFO is not the most expensive part of the switch code.

4.5 Conclusion

In this chapter we present the basis of functioning of our solution. We
introduce the CFI verification and the inter-Basic-Block verification called
HCODE. In this chapter demonstrate that is possible to ensure a full fine-
grain CFI with CI with hardware module without modifying the processor.
we have seen that with little additional hardware, without (or nearly) adding
code instruction, we are able to significantly mitigate the corruption of the
instructions flow, without much slowing down the user process.

Nonetheless, the strategy of adding a jump at the end of each basic bloc
to detect the end of it is costly at the runtime. We also have highlight that
research of the signature in the .HCODE section is time consuming. In the
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next chapter we present a new approach using metadata to store needed
information such as the signature to overcome these limitations. We also
present a new innovative approach using hardware cache to speed up the
metadata fetch during the execution time.
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Figure 4.6: FSM of the HCODE controller hardware module
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Figure 4.7: Gaisler board used for the LEON3 prototype
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Figure 4.8: LEON 3 internal
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Figure 4.9: LEON 3 internal with HCODE module



Chapter 5

CCFI: Code and Control Flow
Integrity

5.1 Solution

In this section, we present the principles of our proposed solution, before
discussing implementation issues in Section 5.2.

5.1.1 Architecture Overview

The basic architecture is shown in Figure 5.1. We consider a simple platform
based on a CPU core with separate instruction and data cache, which connect
to the memory bus. CFI is ensured by two added hardware modules (shown
in red): The CCFI-cache fetches the metadata which has been computed at
compile-time, containing all control-flow related information. This informa-
tion is used at runtime by the second module, the CCFI-checker. In order to
follow and monitor the execution of the CPU, the CCFI-checker is hooked
up to the interface signals between the CPU and the instruction cache.

The CCFI-cache has the same characteristics (bit width, size, associativ-
ity, replacement policy, . . . ) as the instruction cache. For each basic block
in the executed program, there is a corresponding block of metadata. Each
block of metadata is perfectly aligned in memory to its corresponding BB,

129
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Figure 5.1: Overview of the proposed architecture

with a constant offset. For each access to the instruction cache, a parallel
access to the CCFI-cache will be issued. In this way, complex address calcu-
lations are avoided. Furthermore, the instruction cache and the CCFI-cache
will always be consistent, i.e. either both a BB and its metadata are cached
or none of them.

The metadata for each BB contain three crucial elements that serve for
the CFI verification:

1. The number of instructions in the current BB

2. The valid destination addresses of the succeeding BBs

3. A hash value of the instructions in the BB and its corresponding meta-
data

Section 5.1.2 discusses in more detail the format of the metadata.
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StartBB VD EndType NInstr

31 30 29 28 27 26 . . . 8 7 . . . 0

ValidDest Addr *
Empty *
EndBB Hash

EndType ::= Branch | Call | Return

NInstr - 2

Figure 5.2: Metadata format description

The actual verification is realized by the CCFI-checker. At the end of
each BB, it checks the validity of the target address by comparing it with
the precomputed valid addresses contained in the metadata, thereby ensur-
ing intra-procedural CFI. In case of a function call or return, an integrated
shadow stack is used to verify inter-procedural CFI. This shadow stack in
embedded inside de CCFI-Checker and is not accessible from the main pro-
cessor. Intra-BB consistency is ensured by a watch-dog counter that controls
the number of executed instructions before a control transfer. Finally, code
and metadata integrity is ensured by a precomputed signature that is com-
pared to a hash value over the executed instructions computed at run-time.
In case of any violation, an interrupt is raised. The details of the CCFI-
checker are presented in Section 5.1.3.

5.1.2 Metadata

The format of the metadata is shown in Figure 5.2. There are four different
entry types, which are distinguished by a label contained in the two most
significant bits. For each BB, the metadata record has the same format: A
StartBB entry, followed by zero or more ValidDest and Empty entries, and
ending with a EndBB entry.

The entry StartBB marks the beginning of a BB. The bit VD indicates the
presence of one or more valid destination addresses in the record. Note that
in some cases destination of indirect branch or jump cannot be computed
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statically, in this case the VD bit is unset and there will be no verification
of the destination address at the end of the BB. The field EndType defines
the type of control transfer at the end of the BB: Call and Return indicate a
function call and return, respectively. For any other type of control transfer,
Branch marks either a BB that will always be succeeded by the next consec-
utive BB – i.e. there is no branch or jump at the end – or one ending with
a direct or indirect jump or branch instruction. Typically, blocks ending
with a direct jump or call will have one valid destination and conditional
branches two, while indirect control transfers can have an arbitrary number
of valid destinations. Finally, there is an 8-bit field NInstr, which gives the
total number of instructions in the BB.

The ValidDest entry contains one valid destination address, corresponding
to an allowed edge in the CFG. Finally, the end of the BB is marked by an
EndBB entry, which additionally contains a hash signature computed over all
the instructions of the BB.

All metadata are computed offline at the end of the compilation, after
code optimization. For each BB a metadata record of the same size is allo-
cated. Metadata are stored in a custom section of the program file, which
has the same size as the .text section.

If the number of entries needed for the CFI information is smaller than
the number of instructions in the corresponding BB, then the metadata is
simply padded with Empty entries before the EndBB entry. The opposite case
can occur as well, if the BB is very short or if there are multiple valid address
entries. In order to match the BB size with the metadata record, the compiler
inserts nop (no operation) instructions just before the last instruction of the
BB.

Depending on the specific implementation of the CPU, there can be other
situations that require adjustment of the binary code. One such case is
branch prediction, which potentially leads to a mismatch between the fetched
instructions and those that are effectively executed. Since the CFI-cache only
monitors the interface signals of the CPU, it needs to be aware of such fea-
tures in order to correctly detect the destination of branches. Section 5.2
explains how we have resolved this issue for the used RISC-V implementa-
tion and gives an example for the correspondence between binary code and
metadata. We evaluate the performance penalty of these code adjustments
in Section 5.3.
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5.1.3 CFI Verification

At loading time, the .metadata section is loaded into a reserved memory
region, at a constant offset from the .text section. This offset allows cal-
culating the metadata address on-the-fly based on the current instruction
address.

During the execution of the program, the instruction cache and the CCFI-
cache are always kept in a consistent state, which allows the CCFI-checker
to follow the execution and verify the control flow on-the-fly using the meta-
data. The checker processes the metadata in parallel to the execution. For
this purpose, the CCFI-checker is composed of the following principal com-
ponents:

• A set of registers to store the valid destination addresses,

• A shadow stack to store function return addresses,

• An instruction counter, and

• A signature register to compute a hash value of the executed instruc-
tions.

A simplified view of the control state machine of the checker is shown in
Figure 5.3. The state machine basically follows the structure of the metadata
record (cf Figure 5.2). At the beginning of a BB (state Start BB in Fig-
ure 5.3), it sets the instruction counter to the number of instructions in the
BB and initializes the signature register. It also checks that the beginning
of the BB is correctly labeled with StartBB. The valid destination addresses
are collected while traversing the BB (state Store Dest) and stored in the
internal register bank1. If there are Empty entries in the metadata record,
the state machine loops in the Inside BB state until the end of the BB.
During the traversal, the signature register is updated after each instruction.
For this purpose, a suitable hash digest function H needs to be chosen.

The actual verification takes place in the End BB state. There are two
conditions that each triggers the transition into this state: Either an EndBB

1Note that the size k ≥ 2 of this register bank is an implementation parameter that
can be chosen freely. Any BB with more than k valid targets can be split recursively until
each BB has at most k valid successors.
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label is found or the instruction counter reaches zero. This ensures that both
too long and too short BBs will be detected immediately. Normally, the end
of the BB should coincide with the instruction counter reaching zero, which is
verified in the End BB state. It is also checked if the hash value extracted
from the EndBB entry equals the signature register. Call and Return are
verified using the shadow stack. If there have been any valid address entries in
the metadata, these are used to verify the effective target address. Note that
this applies either for calls or local branches and jumps. The implementation
of the internal register bank must ensure that the address comparison can be
performed in parallel for all valid entries in one clock cycle, before the state
machine continues to process the next BB.

In case any of the checks fails, an interrupt will be triggered, allowing
the CPU to react to the attack immediately. Note that for simplicity rea-
sons, Figure 5.3 does not show the state transitions in the case of a security
violation.

5.1.4 Attack Model and Security Guaranties

In this work, we address the protection of embedded platforms without DEP.
We consider that the attacker is able to exploit programming bugs which
allow buffer overflows. Such attacks can either modify the return address on
the stack and/or inject malicious code. Note that this attack model is quite
permissive in contrast to the classical CFI setting, which usually considers
that code memory is immutable [4].

Additionally, we consider non-destructive physical attacks. This includes
random changes in memory by either software-driven attacks (row-hammer)
or hardware attacks (such as electromagnetic injection or glitches) leading
to instruction skips. Since the successful demonstration of practical attacks
such as row-hammer, physical attacks must be considered a realistic scenario,
especially in the context of embedded and mobile devices.

Assuming that the main memory contains the code alongside with its
correctly generated metadata, the CCFI-checker enables detection of the fol-
lowing attacks:

• Changing a return address on the stack (detected by shadow stack)
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Start BB

check Op = StartBB
valid← ∅
count← NInstr
sig ← H(0, instr,md)

start

Store Dest

valid← valid ∪ {Addr}
count← count− 1
sig ← H(sig, instr,md)

Inside BB

count← count− 1
sig ← H(sig, instr,md)

End BB

check count = 0
check Op = EndBB
check sig = Hash
if (Return):

check pc = pop()
else:

check pc ∈ valid
if (Call):

push(pc)

VD = true

VD = false

Op = Empty ∧
count > 0

count = 0 ∨
Op = EndBB

Op = ValidDest ∧
count > 0

count = 0 ∨
Op = EndBB

Op = Empty ∧
count > 0

Figure 5.3: CCFI-checker state machine
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• Changing the target of a call, branch or jump outside of the static CFG
(detected by destination address verification)

• Returning or jumping into the middle of a BB (detected by StartBB
label check)

• Adding instructions at the end of a BB (detected by EndBB label check
and instruction counter)

• Turning a branch into a nop (detected by signature check)

• Changing the pc to skip an instruction (detected by signature and
instruction counter)

• Changing any instruction word in memory or up to the CPU interface
(detected by signature)

• Deleting or manipulation metadata in any way inconsistent with the
code (detected by signature)

One obvious limitation are physical attacks that directly affect the inter-
nal state of the CPU, such as the register state or skipping computations
within the pipeline. Note that however such attacks will be caught if they
directly or indirectly change the instruction address on the cache interface.
We also do not consider advanced destructive attacks (such as focused ion
beams) that could e.g. cut the interrupt line on the circuit die and thereby
practically disable the CCFI-checker.

Furthermore, data only attacks that do not change the static control flow
are not detected. An attacker that has full control over the memory could
also forge metadata. A typical solution for this problem is to assume that
the metadata (or the metadata and the code) reside in a protected read-only
memory. Considering our proposed architecture in Figure 5.1, such a solution
can easily be implemented by having a completely separated memory bus for
the CCFI-cache, thereby preventing any access to the metadata originating
from the CPU.

Finally, special care needs to be taken for the treatment of the interrupt
triggered by the CCFI-checker. Since interrupt mechanisms vary greatly
on different target platforms, there is no system-independent solution. For
instance, if interrupt target vectors are writable from user code, the interrupt
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service routine (ISR) itself needs to be protected. Any tampering with the
ISR would then lead to a re-occurring violation, blocking the system in an
infinite loop. In embedded platforms, watchdog counters are typically used
to reset the system when it gets caught in a deadlock. Depending on the
application, if recovery is considered less important, the interrupt line of the
CCFI-checker can also be routed directly to the reset line, preventing any
attack path via the ISR.

5.2 Implementation

To validate the CCFI architecture, we have implemented it on a microcon-
troller platform based on the PicoRV32 [74], a free implementation of the
RISC-V ISA [11]. The CPU core is a 3-stage pipeline processor with a single
memory interface for accessing instructions and data. In our platform, the
separate instruction and data caches are accessed via an address decoder. The
platform uses a crossbar for memory access. To highlight memory contention
between instruction cache and CCFI-cache, we have implemented two differ-
ent memory layouts: 1) Two separate memories for application code (.text
and .rodata) and metadata, 2) a single memory to store both. In all cases,
our platform uses one big RAM as runtime memory.

As mentioned in Section 5.1.2, branch prediction can potentially pose a
problem for the CCFI-checker, since the address seen on the memory interface
(i.e. the program counter) may not coincide with the effective branch target
address. The PicoRV32 does not feature branch prediction, but branches
are decided late in the pipeline, such that the instruction following a con-
ditional branch is always fetched. We resolve this specific case during the
compilation phase by always inserting a nop instruction after a conditional
branch, thereby deferring the actual control transfer by one instruction. We
claim that the proposed architecture is suitable for more complex prediction
schemes, for instance using a checker that mimics the prediction logic. A
detailed discussion of the required modifications is beyond the scope of this
paper.

Table 5.1 shows an example with two BBs and the corresponding meta-
data. The upper BB ends with a conditional branch and there are two valid
destinations stored in the metadata record. In the code, there are two addi-
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Figure 5.4: Overhead on code size

tional nops, which are needed to match the size of the metadata, and – for
the second one – to resolve the prefetch of the conditional branch.

5.3 Performance

We have tested the solution on a Digilent Nexys4 DDR board with an Artix 7
FPGA [30]. The resource usage is summarized in Table 5.2. As can be seen,
the hardware overhead is small, it is in the order of 10% in terms of LUTs
and FFs 2.

Figure 5.4 shows the impact of the inserted nop instructions on the code
size. Over the different benchmarks (bubble sort, Dhrystone, and an AES
encryption) and optimization levels (-O1, -O2, -O3, and -Os), the overhead
ranges from 9% to 30%.

2The difference between total CCFI and the sum of CCFI-cache and checker is due to
glue logic and the more complex memory and bus infrastructure.
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Figure 5.5: Overhead on execution time

Figure 5.5 shows the impact of our solution on runtime performance. We
compare 1) the original program with 2) the modified program, but with-
out protection, 3) CCFI enabled with parallel memory access, and 4) CCFI
enabled with sequential memory access. We can see that most of the perfor-
mance penalty is due to the inserted nop instructions leading to a runtime
overhead between 2% and 63%. Beyond this overhead, the CCFI protection
using parallel memory access does not further impact the performance. The
implementation using sequential memory access incurs a small additional
cost in the order of 1% (up to 8% in the worst case), which is directly related
to the instruction miss rate of the benchmark.

Fault attacks. We have simulated fault attacks by modifying an instruc-
tion code in the main memory and in the cache. All performed attacks have
been detected by the CCFI-checker, through the signature check. Any fault
injection inside the processor which directly manipulates the program counter
is detected as well.



140 CHAPTER 5. CCFI: CODE AND CONTROL FLOW INTEGRITY

Software attacks. We have also tried several software attacks on the pro-
tected platform. Any buffer overflow manipulating the stack is detected
thanks to the shadow stack. Even changing unprotected indirect jumps is
detected if the destination address is not the beginning of a BB (labeled by
a StartBB entry). Thus, ROP or JOP attacks are made very difficult, since
the number of useful gadgets is significantly reduced.

5.4 Conclusion

We have presented a non-intrusive hardware-based protection able to effec-
tively mitigate cyber- and physical attacks. Our solution uses precomputed
control flow information which are verified at runtime. Only requiring a dou-
ble code memory size, our solution is very competitive regarding the hardware
overhead and the performance penalty, which are minimal and affordable in
most cases which make our technology practical and deployable.

Up to now, the metadata are computed as a post-processing step using
the binary code. The integration of this step into the compiler flow is left to
future work, to have better control over well sized BBs and the resolution of
indirect jump destinations.
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Table 5.2: Hardware cost

Component LUTs FFs RAMB18

Original 11094 8939 8
CCFI-cache 531 (+4.8%) 139 (+1.6%) 8 (+100.0%)
CCFI-checker 294 (+2.6%) 443 (+4.9%) 0 (+0%)
Total CCFI2 1250 (+11.3%) 777 (+8.7%) 8 (+100.0%)



Chapter 6

Interruption and Speculative
Execution

In previous chapters, we present the basic operation of the CCFI solution,
in this chapter we present modification apported to the solution to be able
to protect interruption and processeur using out-of-order execution. In fact
interruption can divert the control flow of an program at anytime to run
an interrupt routine. From an external point of view this can be seen as an
abnormal processor behaviour. We present a modification to the metadata to
ensure that interruptions are detected and protected appropriately. Branch
prediction and speculative execution are also introduce difficulties to our
solution. Previous exposed solution rely on the fact that intrcution fetch
from the processor to the cache is representative of the execution flow. This
assumption is no longer correct when processor use complex mechanism to
fill up its pipeline. We present is this chapter changes made to ensure full
CFI protection to processor using these technique.

6.1 Solution

In this section we present changes bring to the architecture and to the meta-
data of our solution. First we present the hardware modifications part by
presenting the integration of the CCFI with an processor then detail the in-
ternal architecture of CCFI parts. In a second section we present changes

143
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Figure 6.1: Overview of the proposed architecture

bring to the software part, metadata structure and toolchain modification to
generate them. Section 6.2 present specificity needed in the architecture to
be to protect processor with speculative execution. Section 6.3 present the
modification introduced in the CCFI-checker and metadata to handle and
protect interruptions.

Our goal is to provide the same level of security than the previous exposed
solution on more advanced processor processor, namely CFI at Inter Pro
Inter Procedural, Intra Procedural and Intra BB levels.

6.1.1 Hardware

The platform architecture of the solution is shown in Figure 6.1. We consider
a simple platform based on a CPU core with separate instruction and data
cache. CCFI is divided in five different module, two ensuring the CFI and
CI: CCFI-Checker and CCFI-Cache (in red in figure 6.1). The other three
are adaptation module which allow to adapt the solution to many different
core.

The CCFI-cache fetches metadata which has been computed at compile-
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time, containing all control-flow related information. This information is used
at runtime by the second module, the CCFI-checker. The CCFI-cache has
the same characteristics (bit width, size, associativity, replacement policy,
. . . ) as the instruction cache. Sync module on the figure 6.1 emit the correct
@meta given pc from CPU. It also act as barrier to synchronise the response of
the instruction cache and the CCFI-Cache. When instruction and metadata
are ready it sends both plus the actual PC of the request into Buf module
which is implemented as a circular buffer. The purpose of Buf is explained
in details in section 6.2. The purpose of Trace Decoder module connected
to the trace interface of the processor is to extract the PC of the current
instruction executed. The need of this module come from the fact that trace
interface is not standardized. Some processor give all information such as
address of the instruction and instruction itself. Other give less information
like if a conditional jump is taken or not. This is why for some processor we
need the Trace Decoder which will compute or extract the PC from the trace
interface. Once PC extracted, it is send to Buf which given PC return data
stored (instruction and metadata) of the given address to the next module,
CCFI-checker. The actual verification is realized by the second hardware
module CCFI-checker like previously. For each instruction issued from the
trace interface CCFI-Checker receive at the same time the corresponding
metadata of the current instruction, send by by the Buf.

6.1.2 Software

Metadata

Metadata contains informations depicting the Control Flow Graph of the
program. These are organised in individual blocks of metadata each depicting
the behavior of the execution of one Basic Block. Figure 6.2 show which
informations are stored in these block of metadata and how it is formatted
in memory for a 32bits architecture.

These metadata contain for each basic block the list of valid destination
accessible at the end of the BB. It also contains a signature of the basic block
computed from its instructions as well as the number of instruction present
in the BB and other informations depicted in this section. These metadata
have the same organisation as presented in section 5.1.2.
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StartBB VD EndType Int Func NInstr

31 30 29 28 27 26 25 24 23 . . .8 7 . . . 0

ValidDest Addr *
Empty *
EndBB Hash

EndType ::= None | Call | Return
Int ::= Start Interruption | End Interruption

NInstr - 2

Figure 6.2: Metadata format description

Two field have been added to the StartBB entry. The first one is a 1 bit
flag Func that was added to mark the first BB of functions. In the previous
implementation, when a BB end by an indirect call that we don’t know
the allowed destination, the only restriction was the destination must be the
beginning of a BB, same as for an indirect jump. This modification allow
to restrict destination this type of call only to the beginning of a function.
The second field is a 2 bits width Int, allowing to mark the beginning and the
ending of an interruption routine. This flag allow the CCFI-cheker to detect
on-the-fly when a interruption occur. If the execution flow divert from the
CFG, CCFI-checker will check this flag before raising an alarm. If this flag
is set to mark the beginning of an interruption routine CCFI-checker save is
current state and execute normally. Otherwise an alarm is raised to inform
that the execution flow have been diverted. This is explained in detail in
section 6.3.

Toolchain

All metadata are now computed during the compilation, by adding a plugin
to GCC and modifying the linker. The creation of metadata is done in
two phase during the assembly and the linkage. Figure 6.3 summarizes the
compilation flow.

Firstly a GCC plugin is inserted to the compilation workflow to insert
assembly directive in the assembly code generated to add metadata. For the
compiler a BB can contain a call, this is not compatible with our approach.
During this phase BB containing call are split up to be compatible with
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our solution. When a BB is too small to contain all needed metadata a
corresponding numbert of nop is added to extend it. This case happens
generally when a BB is only one instruction or when the end of the BB is
a indirect jump with a lot of destination possible. At the end of this first
phase memory space have been allocated to store metadata for each BB but
there values are not yet set.

The second phase is done with the linker, when all relocation are done
all VD in metadata can be filled. The signature Hash is also computed at
this stage, after the relocation stage because the linker can modify some
instruction like short jump and long jump.

6.2 Speculative execution

Depending on the specific implementation of the CPU, there can be other
situations that require adjustment of the solution. One such case is branch
prediction and speculative execution, which leads to a mismatch between
the fetched instructions and those that are effectively executed. Since the
CFI-cache monitors the cache interface of the CPU, it needs to be aware
of such features in order to correctly detect the destination of branches.
This section describe how such feature is detected as an attack by a simple
implementation and explain needed change on the CCFI-Checker to be able
to protect processor using speculative execution. Section 6.4 explains how
we have resolved this issue for the used RISC-V implementation.

Speculative execution is commonly used in modern processors, and even
in some microcontrollers due to its benefits in term of performance improve-
ment. From our CFI point of view speculative execution can be detected as
CF violation since the processor actually begins to execute some instructions
of the predicted jump destination. If the branch prediction appears to be in-
correct, it will rollback all change induced by the speculative execution and
jump to the right address. This behaviour is represented on figure 6.4, where
the processor have predicted the that the branch will no be taken and exe-
cute speculatively the instruction at the address 133c. Prediction was wrong,
and processor rollback and jump to address 1210. This impromptu jump is
detected as violation of the CFG by the basic implementation presented in
the previous section 6.1. More advanced processor, in order to improve per-
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132c: nop

1330: addi s1,s1,1

1334: li a4,101

1338: bne s1,a4,1210

133c: li a0,0

1340: sw a3,24(sp)

1344: sw a2,20(sp)

1348: sw a5,28(sp)

134C: jal ra,450 <time>

1210: lui a5,0x2

1214: addi a1,a5,-652

1218: li a5,65

121c: sb a5,1968(s3)

1220: addi a0,sp,80

1224: li a5,66

1228: sb a5,1969(s0)

122c: sw s5,-1916(s4)

1230: jal ra,988 <strcpy>

Figure 6.4: Exemple of miss branch prediction

formance, can also have prefetch technique that make it impossible to follow
the execution flow from instruction fetched.

To address this behaviour we have to make distinction between instruction
fetched and instruction executed. Each instruction fetched is stored in a
circular buffer along with its metadata. This circular buffer is as deep as
needed to reproduce the latency of the pipeline between fetch stage and
the stage of trace interface. For each fetched instruction by the processor,
one line is stored in the Buf module. Each line contain the instruction, its
address and the metadata associated. So when the trace interface output
an address, this address is send to Buf module to select the corresponding
line. By construction it is never possible for the processor to output an PC
from the trace interface without having its corresponding metadata present
in Buf. Once the line selected, Buf the related information (PC, instruction
and metadata) to the CCFI-Checker. Doing so CCFI-Checker is able to
follow the execution of the processor step by step without error even with an
processor using speculative execution.

This solution for handling speculative execution is easily scalable on dif-
ferent sizes of processor pipeline and prediction mechanism by adjusting the
maximum size of the cyclic buffer. This approach also has the advantage of
not limiting the number of valid destination we can store for one BB.



150CHAPTER 6. INTERRUPTION AND SPECULATIVE EXECUTION

6.3 Interruptions

In the literature of CFI, interruption and exception are rarely discussed due
to the fact they can happen at any time and break the CFG of the current
running program.

When an interruption occurs the processor determines the memory ad-
dress of the interruption handler and jumps to it. There two major ways for
a processor to execute the handler. The first one is to have static hard-coded
address in the processor, regardless of the interruption the processor will exe-
cute the code at this address. The distinction of the type of interruption and
the call of the right function handler is left to the programmer. The second
method is to have a dedicated memory zone for an array of code pointer. For
each one of interruption the processor fetches the corresponding code pointer
and executes the pointed handler.

In all cases this results to jump directly on the interruption subroutine at
any time and from anywhere. From outside of the processor this behaviour is
viewed as a violation of the CFG. To be agnostic of the type of interruption
our solution consists in adding an Int flag in the metadata header of the
first and last BB of the handler function to detect start and end of handler
function.

This allows to detect on-the-fly triggered interruptions, regardless of the
processor implementation. Upon interruption, CCFI-checker detects the dis-
continuity of the control flow but metadata will indicate this is at the same
time an Start BB end Int meaning this function is call because of an interrup-
tion. Figure 6.5 is a partial view of the CCFI-Checker FSM. From any state
if the next instruction is the Start of a BB and also the beginning of an inter-
ruption procedure so CCFI-Checker save its current context of execution in
an internal memory. The shadow stack is used to save the current PC. Once
it is done the CCFI-Checker jumps to another FSM dedicated to follows the
execution of the interruption handler (right FSM of the figure 6.5). This
FSM is the same that the normal FSM except for the END BB where the flag
ENDINT is checked. If the ENDINT flag is present in a ENDBB then the previous
saved context is restored. Once the context have been restored CCFI-checker
can continue verification of the BB where it has been interrupted.

This mechanism of saving and restoring context allows to be interrupted



6.3. INTERRUPTIONS 151

S
ta

rt
B
B

if
(O

p
=

S
ta
rt
B
B
∧
I
N
T
):

S
av
eC

o
n
te
x
t(
)

P
u
sh
(p
c)

st
ar
t

S
to

re
D
e
st

if
(O

p
=

S
ta
rt
B
B
∧
I
N
T
):

S
av
eC

on
te
x
t(
)

P
u
sh
(p
c)

In
si
d
e
B
B

if
(O

p
=

S
ta
rt
B
B
∧
I
N
T
):

S
av
eC

on
te
x
t(
)

P
u
sh
(p
c)

E
n
d

B
B

if
(O

p
=

S
ta
rt
B
B
∧
I
N
T
):

S
av
eC

o
n
te
x
t(
)

P
u
sh
(p
c)

if
(R

et
u
rn
):

ch
ec
k
p
c
=

p
op
()

if
(E
N
D
IN
T
):

R
es
to
re
C
o
n
te
x
t(
)

IN
T

S
ta

rt
B
B

IN
T

S
to

re
D
e
st

IN
T

In
si
d
e
B
B

IN
T

E
n
d

B
B

if
(R

et
u
rn
):

ch
ec
k
p
c
=

p
op
()

if
(E
N
D
IN
T
):

R
es
to
re
C
on

te
x
t(
)

*

*
O
p
=

S
ta
rt
B
B
∧
I
N
T

*

*

F
ig
ur
e
6.
5:

In
te
rr
up

ti
on

F
SM



152CHAPTER 6. INTERRUPTION AND SPECULATIVE EXECUTION

in the middle of a BB without triggering any false CFI alarms. In case of
reentrancy a internal stack is used to save multiple contexts. Reentrance
level is limited by the depth of this stack.

To overcome this limitation, next implementations this stack can trigger
an alarm to flag when its full. This will allow the programmer to implement a
routine to dump this stack in memory. This virtually allow to have unlimited
interruption reentrancy. This technique will introduce a vulnerability in our
design since data of the internal state of CCFI-checker will be exposed to the
monitored program.

6.4 Implementation

In order to validate the CCFI architecture, we have implemented it on mi-
crocontroller platform based on industrial RISC-V processor [11]. The CPU
core is a 5-stage pipeline processor with a two memory interfaces for accessing
instructions and data (Harvard architecture). The platform uses a crossbar
for memory access, with one ROM for code and metadata and one RAM for
the execution.

As mentioned in Section 6.2, branch prediction can potentially pose a
problem for the CCFI-checker, since the address seen on the memory inter-
face (i.e. the program counter) may not coincide with the effective branch tar-
get address. The targeted processor have branch prediction and speculative
execution capabilities. It also had a complex prefetch system which prevent
us to directly use the PC from the instruction cache fetch to determine the
execution flow of the program. We claim that the proposed architecture is
suitable for complex prediction schemes, A detailed discussion of the required
modifications is beyond the scope of this paper.

6.5 Performance

The interruption support has been tested in many benchmarks having pre-
dictable and random interruptions. Our implementation is able to save and
restore context of execution without errors and significant impact on the
performance level.
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Table 6.1: Hardware cost

Component Cells Cell Area

CCFI-cache 2078 58728
CCFI-checker 8199 24812

Table 6.2: Hardware cost of caches

Component CellsCell Area Net AreaTotal

Dcache ctrl 3808 63278 6194 69473
Icache ctrl 2114 58655 3511 62166

Table 6.1 and 6.2 report the hardware cost of CCFI-cache module, CCFI-
checker and caches on Intel’s Cyclone V FPGA.

Table 6.3 presents the execution time in number of cycles when the code is
running on a more powerful processor with speculative execution. Nominal
run is the software without any modification and without the presence of
CCFI. NOP only corresponds to the software modified by the toolchain but
without the CCFI module. This test gives us the impact on performance
when adding NOP to enlarge BB. CFI/NOP corresponds to the run fully
protected by CCFI module. These benchmarks show an impact of 21% on
average. Most of the overhead is due to the NOP added in the code to ensure
metadata alignment.

As we can see in table 6.3 nearly all runtime overhead came from the
added NOP. In total NOP added represent 25% of more code. Empty metadata
represented the memory space allocated for metadatas not used. As we
can see around 31% of memory space of metadata does not store useful
information.

6.6 Conclusion

In this chapter we present a more complex approach of the CCFI solution
to handle advanced processor using speculative execution and branch pre-
diction. We also present metadata and hardware modification to be able to
detect and protect interruptions. This solution remains independent of the
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Table 6.3: Benchmark on A* processor in number of cycle

Run Bubble SortDrystone AES

Nominal 1023533 420857 6342603
CFI/NOP 1289903 443337 8340834
NOP only 1289599 442644 8339606
Software overhead 25.99% 5.17% 31.48%
Hardware overhead 0.02% 0.15% 0.01%
Total overhead 26.02% 5.34% 31.50%

Table 6.4: Software modification

Run Bubble SortDrystone AES

number total of instructions 989 1490 2944
number total of BB 251 339 528
number total of nop added 216 232 456
number total of empty metadata 327 575 1127

processor although it needs a specific trace interface from the processor to be
able to work. However, modifying the processor would be error-prone since
revalidation is costly, and legacy processors cannot be modified anyway.

Performance of the solution remains the same as the previous CCFI ar-
chitecture while increasing the size of the needed hardware. The bottleneck
of our solution remain is that the binary code shall be instrumented with
some extract NOPs to match the size of basic blocks in respectively the code
and the metadata. As a perspective, the compiler shall be involved actively
to help produce basic blocks which are not too small, thereby reducing the
overhead caused by such stuffing.

Profiling attest that this solution is very competitive regarding the hard-
ware overhead and the performance penalty, which are minimal and afford-
able in most cases which make our technology practical and deployable.
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Conclusion

Code and control flow integrity checking in parallel with the software execu-
tion is of utmost importance for security and safety applications.

The base idea of using cache technologies to retrieve metadata simulta-
neously with the code has been proven to work well, performance-wise, while
not hindering security. Indeed, alignment of metadata with the code struc-
ture has proved to be a good idea both to simplify the computation of the
location of metadata from code’s address and to make the best use of the
metadata cache.

We have proven this is possible develop the current finest-grain solution
for CFI while maintaining good performance, with the help of dedicated
hardware (CCFI-Cache). One major advantage of our solution is its reduced
size in silicon. Namely, it is not dependent on the power of the processor.
Still, some specialized IPs are required in addition to the design to work with
complex processors, for example those using speculative execution.

The overhead cost of adding twice the size of the (cache) code can be
seen controversial among industrialists and academics. However, it can be
said that it is a reasonable price to pay for security and today’s memory is
relatively cheap. Besides, when code is compiled efficiently, it remains in the
cache, therefore runtime speed is not compromised. In other use-cases, it can
be said that it is cost-sensitive to double the size of memory especially when
this memory is embedded within the SoC.
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As we have seen during the development of the CCFI-Cache solution, one
of the challenges is to be able to detect the beginning and the end of basic
block online. Indeed during the execution, only instructions that change the
control flow give hint of the CFG but this is not enough to deduce the full
CFG. We have smartly circumvented this problem by adding these pieces of
information directly in our metadata.

In a nutshell, we underline that the solution ensures CFI at the basic
block level, which makes it efficient and capable of catching all attacks mod-
ifying the program execution flow. Solution’s impact on performance are
promising varying from 2% to 30% depending on the type of program and
the architecture put in place, which is very reasonable and industrially vi-
able.
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Perspectives

In this chapter we propose some research perspectives to improve CCFI so-
lution. These tracks are base on the previous results of our research. First
we summarize limitations of our approach and then we propose some idea to
improve performances and flexibility of the solution.

8.1 Limitation of our approach

Compared to state-of-the-art solutions, we have shown that our solution has
the largest coverage against SOTA solution. But we do not detect:

• Change on non-control-data: In this scenario, the attacker changes
non-control-data using software bug or using physical attack targeting
memory or the processor. This class of attack is undetected because
the data value are altered while respecting the CFG.

• Correlated alteration on code and metadata: In this sophisti-
cated attack, the attacker is able to modify the code and at the same
time modify metadata accordingly to respect rules of CCFI-checker.
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8.2 Interface with the processor

Our choice to implement a hardware CFI solution without modifying the pro-
cessor pipeline was a challenge. The choice to connect between the processor
and its caches have demonstrated some limitation, especially when processor
use speculative execution or branch prediction.

There are two way to overcome difficulties linked to speculative execution.
Both implies to extract information from the pipeline, without modification
of the logic.

First is to have more information from the fetch stage like:

• Instruction Fetch

• Program Counter

• When it is speculative execution

This solution allows us to follow the CFG even if there is a prefetch unit.
With this approach CCFI must keep heuristic branch prediction model. This
approach may not work with processor having large number of stages in its
pipeline. In fact CCFI will have to reproduce the delay between fetch and
instruction commit, drastically increasing the silicon area needed.

The second solution will be to extract information of executed instruc-
tion from the write back stage. With this approach we are able to follow
more precisely the CFG of the program since write back stage only commits
instruction really executed. This introduces a delay of the size of pipeline in
the verification process of the BB. In return we do not have to implement de-
pendant heuristic to match the processor’s branch prediction. Unfortunately
it is common for processor implementation to drop fetch instruction after
the decode stage. Meaning it is not possible anymore to retrieve information
past this stage.

There is actually a draft proposal for a standardisation of a trace interface
for RISCV (https://github.com/riscv/riscv-trace-spec). This proposition is
born from the difficulty of understanding program behavior. In fact some
programs are difficult to monitor due to processor behavior and event like
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realtime events, exception, interruption or multiprocess programming. Usu-
ally software debugger is used to follow the execution of a process, this is
based on using special instructions inserted on the code. This technique is
considered as intrusive and can show some limitation. We can imagine in
the future that interface will give enough information (instruction executed,
program counter, conditional branch taken or not, ...) to be used by our so-
lution to both simplify the complexity of CCFI and be adaptable to complex
processor.

8.3 Metadata alignment

Our idea to align metadata with the code is a good idea to solve the trou-
ble to find the corresponding metadata in memory. Experiment show that
approach to work but at cost of doubling the memory space unused by the
code. Opinions on this cost vary, some think it is a cheap cost to pay for
this level of security, especially because memory is cheap and in general code
size is small compare to data size. Other think this cost is too high when
we need to double the size of code memory in SOC, which is more expensive
than external memory.

In our experimentation half of the metadata are empty and therefore
useless, so there is room for optimization. To resolve this problem we need
to improve how we compute address of metadata from instruction’s address.
One idea would be to find a function f which given a address of the start of a
BB @BB is able to compute the corresponding metadata address @META.
This would give the following function f(@BB) = @META. One of the
challenges of this idea is that this function wouldn’t be linear.

Another approach can be to store, with the address of valid destination,
the address of the corresponding metadata if this destination is taken. This
would enlarge the metadata but will get ride of the need of empty metadata.
However we will have a problem when a BB do not have valid destination
inside his metadata.
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8.4 Cache

One other optimisation is to merge metadata cache with instruction cache.
This will reduce the cost of a miss but imply major modifications of the
platform architecture such as the bus and memory size. The advantage to
merge the instruction cache and the metadata cache will be to reduce the
latency of fetching metadata and to reduce the size of silicon by merging
caches logic.

8.5 Basic Block Optimisation

One of the impact on performance is to add NOP instructions when a BB is
to small to contain all needed metadata. One approach to reduce the number
of inserted NOP will be to modify the compiler so that is does not generate
small BB. It can be done by merging BB together event if it mean duplicating
the code. It will be a tread off between the code size and the performance
at the execution.



Acronyms

AMBA Advanced Microcontroller Bus Architecture.

BB Basic Block.

CFG Control Flow Graph.

CFI Control Flow Integrity.

CHERI Capability Hardware Enhanced RISC Instructions.

CI Code Integrity.

CRC Cyclic Redundancy Check.

ELF Executable and Linkable Format.

FIFO First In First Our.

FSM Finite State Machine.

ISR Instruction Set Randomization.

JOP Jump Oriented Programming.

MAC Message Authentication Code.

OOO Out-of-Order.

PC Program Pointer.
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RISC Reduced Instruction Set Computer.

ROP Return Oriented Programming.



Chapter 9

Bibliography

[1] Introduction to Intel R© Memory Protection Exten-
sions. https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions.

[2] Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual. https://software.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf, 2016.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Vijay Atluri, Catherine A. Meadows, and Ari Juels, ed-
itors, Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, CCS 2005, Alexandria, VA, USA, November 7-11,
2005, pages 340–353. ACM, 2005.

[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity principles, implementations, and applications. ACM
Trans. Inf. Syst. Secur., 13(1), 2009.

[5] ADM. AMD64 Virtualization Codenamed “Pacifica” Tech-
nology. Secure Virtual Machine Architecture Reference Man-
ual. http://www.mimuw.edu.pl/~vincent/lecture6/sources/
amd-pacifica-specification.pdf.

[6] Alejandro Cabrera Aldaya, Alejandro Cabrera Sarmiento, and Santiago
Sánchez-Solano. AES t-box tampering attack. J. Cryptographic Engi-
neering, 6(1):31–48, 2016.

163

https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf
http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf


164 CHAPTER 9. BIBLIOGRAPHY

[7] Zeyad Alkhalifa, V. S. S. Nair, Narayanan Krishnamurthy, and Jacob A.
Abraham. Design and evaluation of system-level checks for on-line con-
trol flow error detection. IEEE Trans. Parallel Distrib. Syst., 10(6):627–
641, 1999.

[8] AMD. AMD Memory Ecryption, White paper. http:
//amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/
12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf.

[9] Anonymous. Once upon a free()... Phrack 57, page 9, 08 2001.

[10] ARM. ARM TrustZone. https://www.arm.com/products/
security-on-arm/trustzone.

[11] Krste Asanović and David A. Patterson. Instruction sets should be free:
The case for RISC-V. Technical Report UCB/EECS-2014-146, EECS
Department, University of California, Berkeley, Aug 2014.

[12] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In CRYPTO,
volume 5157 of LNCS, pages 221–240. Springer, 2008. Santa Barbara,
CA, USA.

[13] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret
Key Cryptosystems. In CRYPTO, volume 1294 of LNCS, pages 513–
525. Springer, August 1997. Santa Barbara, California, USA. DOI:
10.1007/BFb0052259.

[14] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang.
Jump-oriented programming: a new class of code-reuse attack. In Bruce
S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S.
Wong, editors, Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ASIACCS 2011, Hong Kong,
China, March 22-24, 2011, pages 30–40. ACM, 2011.

[15] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract).
In Walter Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes
in Computer Science, pages 37–51. Springer, 1997.

[16] Erik Bosman and Herbert Bos. Framing signals - A return to portable
shellcode. In 2014 IEEE Symposium on Security and Privacy, SP 2014,

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone


165

Berkeley, CA, USA, May 18-21, 2014, pages 243–258. IEEE Computer
Society, 2014.

[17] Nicholas Carlini and David A. Wagner. ROP is still dangerous: Breaking
modern defenses. In Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, 2014., pages 385–399, 2014.

[18] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris
Ioannidis. HCFI: hardware-enforced control-flow integrity. In Proceed-
ings of the Sixth ACM on Conference on Data and Application Security
and Privacy, CODASPY, New Orleans, pages 38–49, 2016.

[19] CODENOMICON. The heartbleed bug. http://heartbleed.com/.

[20] TIS Comitee. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification v1.2, 1995.

[21] Thomas Coudray, Arnaud Fontaine, and Pierre Chifflier. PICON: con-
trol flow integrity on LLVM IR. In Symposium sur la sécurité des tech-
nologies de l’information et des communications, Rennes, France, June
3-5, 2015, 2015.

[22] Jean-Luc Danger, Adrien Facon, Sylvain Guilley, Karine Heydemann,
Ulrich Kühne, Abdelmalek Si-Merabet, and Michaël Timbert. Ccfi-
cache: A transparent and flexible hardware protection for code and
control-flow integrity. In Martin Novotný, Nikos Konofaos, and Amund
Skavhaug, editors, 21st Euromicro Conference on Digital System De-
sign, DSD 2018, Prague, Czech Republic, August 29-31, 2018, pages
529–536. IEEE Computer Society, 2018.

[23] Jean-Luc Danger, Sylvain Guilley, Thibault Porteboeuf, Florian Praden,
and Michaël Timbert. HCODE: hardware-enhanced real-time CFI. In
Proceedings of the 4th Program Protection and Reverse Engineering
Workshop, PPREW@ACSAC, New Orleans, 2014.

[24] Jean-Luc Danger, Sylvain Guilley, Thibault Porteboeuf, Florian Praden,
and Michaël Timbert. Hardware-Enforced Protection Against Buffer
Overflow Using Masked Program Counter. In Peter Y. A. Ryan, David
Naccache, and Jean-Jacques Quisquater, editors, The New Codebreakers

http://heartbleed.com/


166 CHAPTER 9. BIBLIOGRAPHY

- Essays Dedicated to David Kahn on the Occasion of His 85th Birth-
day, volume 9100 of Lecture Notes in Computer Science, pages 439–454.
Springer, 2016.

[25] Jean-Luc Danger, Sylvain Guilley, and Florian Praden. Hardware-
enforced protection against software reverse-engineering based on an
instruction set encoding. In Suresh Jagannathan and Peter Sewell, ed-
itors, Proceedings of the 3rd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop 2014, PPREW 2014, January 25, 2014,
San Diego, CA, pages 5:1–5:11. ACM, 2014.

[26] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. Hardware-
assisted fine-grained control-flow integrity: Towards efficient protection
of embedded systems against software exploitation. In The 51st An-
nual Design Automation Conference 2014, DAC ’14, San Francisco, CA,
USA, June 1-5, 2014, pages 133:1–133:6. ACM, 2014.

[27] Ruan de Clercq, Ronald De Keulenaer, Bart Coppens, Bohan Yang,
Pieter Maene, Koen De Bosschere, Bart Preneel, Bjorn De Sutter, and
Ingrid Verbauwhede. SOFIA: software and control flow integrity ar-
chitecture. In Luca Fanucci and Jürgen Teich, editors, 2016 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2016,
Dresden, Germany, March 14-18, 2016, pages 1172–1177. IEEE, 2016.

[28] Solar Designer. lpr LIBC RETURN exploit. http://insecure.org/
sploits/linux.libc.return.lpr.sploit.html.

[29] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.
Hardbound: architectural support for spatial safety of the C program-
ming language. In Susan J. Eggers and James R. Larus, editors, Proceed-
ings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2008, Seat-
tle, WA, USA, March 1-5, 2008, pages 103–114. ACM, 2008.

[30] Digilent. Nexys4 DDR FPGA board reference manual, april 2016.

[31] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of se-
curity policies: a retrospective. In Darrell M. Kienzle, Mary Ellen
Zurbo, Steven J. Greenwald, and Cristina Serbau, editors, Proceedings

http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html


167

of the 1999 Workshop on New Security Paradigms, Caledon Hills, ON,
Canada, September 22-24, 1999, pages 87–95. ACM, 1999.

[32] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of java stack
inspection. In 2000 IEEE Symposium on Security and Privacy, Berke-
ley, California, USA, May 14-17, 2000, pages 246–255. IEEE Computer
Society, 2000.

[33] GlobalPlatform. GlobalPlatform made simple guide: Trusted Execu-
tion Environment (TEE) Guide. http://www.globalplatform.org/
mediaguidetee.asp.

[34] Olga Goloubeva, Maurizio Rebaudengo, Matteo Sonza Reorda, and Mas-
simo Violante. Soft-error detection using control flow assertions. In 18th
IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2003), 3-5 November 2003, Boston, MA, USA, Proceed-
ings, pages 581–588. IEEE Computer Society, 2003.

[35] IlyaEnkovich. Intel R© Memory Protection Extensions (Intel R© MPX)
support in the GCC compiler. https://gcc.gnu.org/wiki/Intel%
20MPX%20support%20in%20the%20GCC%20compiler, 2016.

[36] Intel. Control-flow Enforcement Technology Preview. https:
//software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf.

[37] Intel. Intel SGX. https://software.intel.com/en-us/sgx.

[38] Intel. Control-flow Enforcement Technology Preview, Revision 2.0, June
2017.

[39] JonathanSalwan. Ropgadget. https://github.com/JonathanSalwan/
ROPgadget/tree/master.

[40] Marc Joye and Michael Tunstall. Fault Analysis in Cryptography.
Springer LNCS, March 2011. http://joye.site88.net/FAbook.html.
DOI: 10.1007/978-3-642-29656-7 ; ISBN 978-3-642-29655-0.

[41] jp. Advanced doug lea’s malloc exploits. Phrack 61, page 6, 08 2003.

[42] Michel "MaXX" Kaempf. Vudo - an object superstitiously believed to
embody magical powers. Phrack 57, page 8, 08 2001.

http://www.globalplatform.org/mediaguidetee.asp
http://www.globalplatform.org/mediaguidetee.asp
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/en-us/sgx
https://github.com/JonathanSalwan/ROPgadget/tree/master
https://github.com/JonathanSalwan/ROPgadget/tree/master
http://joye.site88.net/FAbook.html


168 CHAPTER 9. BIBLIOGRAPHY

[43] D. Karaklajić, J. M. Schmidt, and I. Verbauwhede. Hardware Designer’s
Guide to Fault Attacks. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 21(12):2295–2306, December 2013.

[44] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. SIGARCH Comput. Archit. News,
42(3):361–372, 2014.

[45] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight
Jr., and André DeHon. Low-fat pointers: compact encoding and ef-
ficient gate-level implementation of fat pointers for spatial safety and
capability-based security. In Sadeghi et al. [61], pages 721–732.

[46] Laginimaineb. Bits, please!: Full trustzone exploit for
msm8974. http://bits-please.blogspot.fr/2015/08/
full-trustzone-exploit-for-msm8974.html.

[47] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. Soft-
ware countermeasures for control flow integrity of smart card C codes.
In Miroslaw Kutylowski and Jaideep Vaidya, editors, Computer Secu-
rity - ESORICS 2014 - 19th European Symposium on Research in Com-
puter Security, Wroclaw, Poland, September 7-11, 2014. Proceedings,
Part II, volume 8713 of Lecture Notes in Computer Science, pages 200–
218. Springer, 2014.

[48] longld. Ropme. http://www.vnsecurity.net/research/2010/08/13/
ropeme-rop-exploit-made-easy.html, 8 2010.

[49] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
doglite: Hardware-accelerated compiler-based pointer checking. In
David R. Kaeli and Tipp Moseley, editors, 12th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
2014, Orlando, FL, USA, February 15-19, 2014, page 175. ACM, 2014.

[50] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve
Zdancewic. CETS: compiler enforced temporal safety for C. In Jan Vitek
and Doug Lea, editors, Proceedings of the 9th International Symposium

http://bits-please.blogspot.fr/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.fr/2015/08/full-trustzone-exploit-for-msm8974.html
http://www.vnsecurity.net/research/2010/08/13/ropeme-rop-exploit-made-easy.html
http://www.vnsecurity.net/research/2010/08/13/ropeme-rop-exploit-made-easy.html


169

on Memory Management, ISMM 2010, Toronto, Ontario, Canada, June
5-6, 2010, pages 31–40. ACM, 2010.

[51] Santosh Ganapati Nagarakatte. Practical low-overhead enforcement of
memory safety for C programs. PhD thesis, Faculties of the University
of Pennsylvania, 2012.

[52] NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS
PUB 197, Nov 2001. http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

[53] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Control-
flow checking by software signatures. IEEE Transactions on Reliability,
51(1):111–122, 2002.

[54] Aleph One. Smashing the stack for fun and profit. Phrack 49, page 14,
11 1996.

[55] Oracle. Oracle’s SPARC T7 and SPARC M7 Server
Architecture. http://www.oracle.com/technetwork/
server-storage/sun-sparc-enterprise/documentation/
sparc-t7-m7-server-architecture-2702877.pdf.

[56] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and
Sotiris Ioannidis. ASIST: architectural support for instruction set ran-
domization. In Sadeghi et al. [61], pages 981–992.

[57] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and
Sotiris Ioannidis. ASIST: architectural support for instruction set ran-
domization. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
981–992. ACM, 2013.

[58] Mathias Payer and Thomas R. Gross. String oriented programming:
when ASLR is not enough. In Jeffrey Todd McDonald and Mila Dalla
Preda, editors, Proceedings of the 2nd ACM SIGPLAN Program Protec-
tion and Reverse Engineering Workshop 2013, PPREW@POPL 2013,
January 26, 2013, Rome, Italy, pages 2:1–2:9. ACM, 2013.

[59] Phantasmal Phantasmagoria. The malloc maleficarum, 10 2005.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf


170 CHAPTER 9. BIBLIOGRAPHY

[60] Rajp-Oracle. Silicon Secured Memory - It’s Better Than You Might
Think. https://blogs.oracle.com/raj/entry/silicon_secured_
memory_in_action.

[61] Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors. 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. ACM, 2013.

[62] Jonathan Salwan. Shellcodes database. http://shell-storm.org/
shellcode/.

[63] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in C++
applications. In 2015 IEEE Symposium on Security and Privacy, SP
2015, San Jose, CA, USA, May 17-21, 2015, pages 745–762. IEEE Com-
puter Society, 2015.

[64] Hovav Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In Peng Ning, Sabrina
De Capitani di Vimercati, and Paul F. Syverson, editors, Proceedings of
the 2007 ACM Conference on Computer and Communications Security,
CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 552–
561. ACM, 2007.

[65] Di Shen. Attacking your “Trusted Core” Exploiting TrustZone
on Android. https://www.blackhat.com/docs/us-15/materials/
us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.
pdf, 2015.

[66] sslab.gtisc.gatech.edu. Plateforme libre OpenSGX :. https://github.
com/sslab-gatech/opensgx.

[67] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Se-
cure program execution via dynamic information flow tracking. In Shubu
Mukherjee and Kathryn S. McKinley, editors, Proceedings of the 11th In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2004, Boston, MA, USA, Oc-
tober 7-13, 2004, pages 85–96. ACM, 2004.

https://blogs.oracle.com/raj/entry/silicon_secured_memory_in_action
https://blogs.oracle.com/raj/entry/silicon_secured_memory_in_action
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://github.com/sslab-gatech/opensgx
https://github.com/sslab-gatech/opensgx


171

[68] Laszlo Szekeres, Mathias Payer, Tao Wei, and R. Sekar. Eternal war in
memory. IEEE Security & Privacy, 12(3):45–53, 2014.

[69] Laszlo Szekeres, Mathias Payer, Tao Wei, and R. Sekar. Eternal war in
memory. IEEE Security & Privacy, 12(3):45–53, 2014.

[70] Michaël Timbert, Jean-Luc Danger, Adrien Facon, Sylvain Guilley,
Karine Heydemann, Ulrich Kühne, Abdelmalek Si Merabet, and Bap-
tiste Pecatte. Processor Anchor to Increase the Robustness against Fault
Injection and Cyber Attacks. In Constructive Side-Channel Analysis and
Secure Design - 11th International Workshop, COSADE 2020, Lugano,
Switzerland, October 5, 2020, Proceedings, LNCS. Springer, 2020.

[71] Victor van der Veen, Dennis Andriesse, Enes Göktas, Ben Gras, Lionel
Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Prac-
tical context-sensitive CFI. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, pages
927–940, 2015.

[72] Robert N.M. Watson, Peter G. Neumann, Jonathan Woodruff, Jonathan
Anderson, Ross Anderson, Nirav Dave, Ben Laurie, Simon W. Moore,
Steven J. Murdoch, Philip Paeps, Michael Roe, and Hassen Saidi.
CHERI: a research platform deconflating hardware virtualization and
protection. Unpublished workshop paper for Runtime Environments,
Systems, Layering and Virtualized Environments (RESoLVE), 2012.

[73] Mario Werner, Erich Wenger, and Stefan Mangard. Protecting the con-
trol flow of embedded processors against fault attacks. In Smart Card
Research and Advanced Applications (CARDIS), Bochum. Revised Se-
lected Papers, pages 161–176, 2015.

[74] Clifford Wolf. PicoRV32 - A size-optimized RISC-V CPU.

[75] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. The CHERI capability model:
Revisiting RISC in an age of risk. In ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN,
USA, June 14-18, 2014, pages 457–468. IEEE Computer Society, 2014.



Titre : Protections des processeurs contre les cyber-attaques par vérification de l’intégrité du flot d’exécution
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Résumé : Les cyber-attaques reposent sur l’in-
trusion des systèmes numériques en exploitant des
vulnérabilités pour prendre le contrôle du système.
De nombreuses protections existent contre les cyber-
attaques. Parmi elles, citons les techniques d’ob-
fuscation de code, de vérifications d’intégrité de la
mémoire, la personnalisation du jeu d’instruction, la
distribution aléatoire de l’espace d’adressage (ASLR),
les anticipations par les canaris ou bac à sable, l’iso-
lation des processus (machines virtuelles), la ges-
tion de droits d’accès. Au niveau matériel, les pro-
cesseurs modernes procurent des techniques de
sécurisation par isolation de zones (anneaux de
protection, MMU, NX bit, Trustzone). Le Contrôle
de l’Intégrité du flux d’exécution (Control Flow In-
tegrity, CFI) est une nouvelle technique proposée
par Abadi et al. pour empêcher la corruption d’un
programme. Cette technique a donné lieu à beau-
coup d’implémentations mais aucune n’est à la fois
complète, rapide et facilement incorporable aux pro-
cesseurs existants. Cette thèse est inspirée des tra-
vaux de HCODE qui implémente l’intégrité du code
par calcule de signature pour chaque bloc de base
de code exécuté. HCODE est un module matériel

conçu pour être connecté en lecture seule sur l’in-
terface entre le processeur et le cache d’instruction.
Dans cette thèse nous présentons une amélioration
de HCODE nommée CCFI qui fournit à la fois la
protection de d’intégrité de code et l’intégrité du flux
d’exécution. Nous proposons une architecture ca-
pable de protéger les sauts directs et indirects aussi
bien que les interruptions. La solution proposée re-
pose à la fois sur des modules matériels et sur
des modifications du code pour assurer rapidité et
flexibilité de la solution. Pour garantir une protec-
tion CFI complète, des métadonnées sont ajoutées
au code. Ces métadonnées décrivent le graphe de
flot de contrôle (Control Flow Graph, CFG) du pro-
gramme. Celles-ci sont calculées statiquement pen-
dant la phase de compilation et sont utilisées par le
module matériel CCFI en conjonction avec le code
exécuté pour garantir que le CFG est respecté. Nous
démontrons que notre solution est capable de fournir
une intégrité du flux d’exécution Complète en étant
à la fois rapide et facilement adaptable aux proces-
seurs existants. Nous l’illustrons sur deux proces-
seurs RISC-V.
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Abstract : Cyber attacks are based on intrusions
into digital systems by exploiting bugs to take control
over the system. Many protections have been develo-
ped to thwart cyber attack, among them we can quote
code obfuscation, memory integrity check, instruction
set randomization, address space layout randomiza-
tion (ASLR), canary, sand boxing, process isolation,
virtualization and access right restriction. Modern pro-
cessors provide security by zone isolation systems
(Protection ring, MMU, NX bit, TrustZone), Control
Flow Integrity (CFI) is a new technique proposed by
Abadi et al. to mitigate program corruption. This tech-
nique gave rise to many implementations but none are
complete, fast and easily incorporable to existing pro-
cessor. This thesis is inspired from previous work on
HCODE which implements code integrity by compu-
ting signature for each executed basic block. HCODE
is an hardware block designed to be plugged in read

only on the interface between the processor and the
instruction cache. In this thesis we present CCFI so-
lution, improvement of HCODE, which is now able to
provide Code Integrity and Control Flow Integrity. We
propose CCFI architecture able to protect direct and
indirect jumps as well as interruptions. The proposed
solution is based on both hardware modules and soft-
ware modifications to ensure speed and flexibility of
the solution. To ensure a full CFI protection metadata
are embedded with the code. These metadata des-
cribes the Control Flow Graph (CFG) of the program.
These are computed statically during compilation and
are used by the hardware CCFI module in conjunction
with executed code to ensure that the CFG is respec-
ted. We demonstrate that the our solution is able to
provide a full CFI solution while being fast and easily
adaptable to different processors. We illustrate it on
two RISC-V Processor.
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