
HAL Id: tel-03068501
https://theses.hal.science/tel-03068501

Submitted on 15 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Self-Stabilizing Stable Marriage
Marie Laveau

To cite this version:
Marie Laveau. Asynchronous Self-Stabilizing Stable Marriage. Distributed, Parallel, and Cluster
Computing [cs.DC]. Université Paris-Saclay, 2020. English. �NNT : 2020UPASG008�. �tel-03068501�

https://theses.hal.science/tel-03068501
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
G
0
0
8

Asynchronous Self-stabilizing
Stable Marriage

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de
l’Information et de la Communication (STIC)

Spécialité de doctorat : Informatique
Unité de recherche : Université Paris-Saclay, CNRS, Laboratoire de

recherche en informatique, 91405, Orsay, France
Référent : Faculté des sciences d’Orsay

Thèse présentée et soutenue à Orsay, le 30 Septembre 2020,
par

Marie LAVEAU

Composition du jury :

Johanne Cohen Présidente
Directrice de Recherche, Université Paris-Saclay (LRI)
Colette Johnen Rapporteure & Examinatrice
Professeure, Université Bordeaux (LaBRI)
Volker Turau Rapporteur & Examinateur
Professeur, Hamburg University of Technology (Institut
für Telematik)
Hugues Fauconnier Examinateur
Professeur, Université de Paris (IRIF)
Sébastien Tixeuil Examinateur
Professeur, Sorbonne Université (LIP6)

Joffroy Beauquier Directeur de thèse
Professeur émérite, Université Paris-Saclay (LRI)
Thibault Bernard Co-encadrant & Examinateur
Maître de conférences, Université de Reims (Li-PaRAD,
UP-Saclay)
Janna Burman Co-encadrante & Examinatrice
Maîtresse de conférences (HDR), Université Paris-Saclay
(LRI)

Résumé
Titre : Mariage Stable Asynchrone et Auto-stabilisant

Mots-clés : Algorithmes Distribués, Modèles Asynchrones, Auto-stabilisation, Mariage
Stable, Complexité en Moves, Démon inéquitable, Confidentialité

Le Problème du Mariage Stable (SMP) est un problème d’appariement où les par-
ticipants ont des préférences à propos de leurs partenaires potentiels. L’objectif est de
trouver un appariement optimal (stable dans un sens) au regard des préférences. Ce type
d’appariement a de très nombreuses applications comme les affectations d’étudiants à
des universités (APB ou ParcourSup), celles des internes en médecine aux hôpitaux, les
choix des donneurs pour les patients en attente d’organe, la mise en rapport des taxis et
de leurs clients ou encore la diffusion de contenu sur Internet. Certaines de ces applica-
tions peuvent être traitées de manière centralisée tandis que d’autres, de par leur nature
distribuée et la complexité de leurs données, nécessitent un traitement différent. Par ex-
emple, dans le contexte du Cloud-Computing, des machines virtuelles sont émulées par
des machines réelles situées sur la terre entière. Un algorithme centralisé causerait des
délais considérables dans les prises de décision tout en étant sensible aux défaillances,
ce qui est inconcevable pour un service supposé disponible à tout moment.

D’un autre côté, chaque fois que des personnes sont impliquées dans un appariement,
elles ont le droit de garder privées leurs données personnelles et en particulier leur liste
de préférences, qui peut contenir des informations sensibles. Par conséquent, il est
souhaitable que les listes de préférence des personnes ne soient jamais transmises sur
Internet, et encore moins rassemblées pour un traitement centralisé. C’est pourquoi la
distribution, la tolérance aux défaillances (par auto-stabilisation) et la confidentialité
sont les trois principaux mots-clés de cette thèse.

Dans ce contexte, nous proposons deux solutions distribuées auto-stabilisantes. De
telles solutions tolèrent les défaillances (e.g., corruptions de mémoire ou de messages)
transitoires (ou de courte durée) de n’importe quels noeuds. La confidentialité des listes
de préférences est garantie par les deux algorithmes que nous proposons : les listes ne
sont pas partagées et seules des queries binaires et leurs réponses sont échangés. Une
différence entre ces algorithmes est le modèle de communication : le premier algorithme
utilise le modèle à état tandis que le second algorithme utilise le modèle à registre plus
général. Dans les deux modèles, les exécutions se déroulent par pas atomiques et un
démon (démon distribué inéquitable) exprime la notion d’asynchronisme. Avec ce dé-
mon, le temps de stabilisation peut être borné en terme de moves (pas locaux). Cette
mesure de complexité permet d’évaluer avec précision la puissance de calcul nécessaire
ou l’énergie dissipée par les exécutions de l’algorithme. Ce n’est pas le cas quand la
complexité est évaluée en rounds, puisque le nombre de moves effectués dans un round
n’est pas nécessairement borné.

Le premier algorithme, basé sur la méthode centralisée de Ackermann et al. (SICOMP’
2011), résout le SMP en O(n4) moves.

Le point de départ du deuxième algorithme est le schéma de détection locale/correction
globale de Awerbuch et al. (DA’ 1994) : un algorithme non auto-stabilisant (devant être

iv

initialisé) mais avec la propriété d’être vérifiable localement peut être combiné avec un
détecteur et un algorithme de réinitialisation. De cette combinaison résulte un algo-
rithme auto-stabilisant. Malheureusement, la définition de la vérifiabilité locale de DA’
1994 ne s’applique pas à notre cas (en particulier en raison du démon inéquitable).
Nous proposons donc une nouvelle définition. De plus, nous concevons un algorithme de
réinitialisation (reset) asynchrone, distribué et auto-stabilisant. L’algorithme résultant
résout le SMP en Θ(n2) moves.

Nous adaptons ces deux algorithms pour résoudre certaines variantes du SMP telles
que le mariage stable avec indifférence, avec partenaires inacceptables, etc.

Abstract
Title: Asynchronous Self-stabilizing Stable Marriage

Keywords: Distributed Algorithms, Asynchronous Model, Self-stabilization, Stable
Marriage, Move Complexity, Unfair Daemon, Privacy

The Stable Marriage Problem (SMP) is a matching problem where participants have
preferences over their potential partners. The objective is to find a matching that is
optimal (stable in certain sens) with regard to these preferences. This type of match-
ing has a lot of widely used applications such as the assignment of children to schools,
interns to hospitals, kidney transplant patients to donors, as well as taxi scheduling
or content delivery on the Internet. Some applications can be solved in a centralized
way while others, due to their distributed nature and their complex data, need a dif-
ferent treatment. For example, when applying this problem to the Cloud-Computing
context, virtual machines are emulated by real machines located all over the world. A
centralized algorithm would cause unbearable delays and be sensible to failures, which
is inconceivable for a service meant to be available at any time.

On the other hand, when humans are to be matched or involved in a matching,
they have the right to keep their personal data private and in particular their list of
preferences. Consequently, the preference lists should not be transmitted on the Internet,
and even less gathered for a centralized treatment. This is why, distribution, fault-
tolerance (by self-stabilization) and privacy are the three main keywords of this thesis.

In order to handle these challenges, we provide two distributed self-stabilizing solu-
tions. Such solutions tolerate transient (or short-lived) failures (e.g., memory or message
corruptions) of any nodes. The privacy of the preference lists is guaranteed by the two
proposed algorithms: lists are not shared, only some binary queries and responses are
transmitted. One of the differences between the two algorithms is the communication
model: the first algorithm uses the state model while the second algorithm uses the
more general register model. In both models, executions proceed in atomic steps and
a daemon (distributed unfair daemon) conveys the notion of asynchrony. Under this
daemon, the stabilization time can be bounded in term of moves (local computations).
This complexity metrics allows to evaluate the necessary computational power or the
energy consumption of the algorithm’s executions. This is not the case when the sta-
bilization time is measured in rounds since an unbounded number of moves may be
executed during a round.

The first algorithm, based on the centralized method of Ackermann et al. (SICOMP’
2011), solves the problem in O(n4) moves.

The starting point of the second algorithm is the local detection/global correction
scheme of Awerbuch et al. (DA’ 1994): a non-self-stabilizing algorithm (with initializa-
tion) that satisfies the property of local checkability can be combined with a detector
and a reset algorithms. The result of this composition is a self-stabilizing version of
the given algorithm. Unfortunately, local checkability definition of DA ’1994 does not
apply to our case (in particular due to the unfair daemon). Consequently, we propose a
new definition. Furthermore, we design a distributed self-stabilizing asynchronous reset

vi

algorithm. Using it, the resulting composed algorithm solves SMP in Θ(n2) moves in a
self-stabilizing way.

We adapt both algorithms to solve some variants of SMP such as the stable marriage
with indifference, with unacceptable partners, etc.

Contents

1 Introduction 1

2 Related Work 7

I Centralized Solutions . 7
II Distributed Solutions . 8

II.1 Synchronous Model . 8
II.2 Asynchronous Model . 9

III Self-stabilizing Solutions . 9
III.1 On the Way to Self-stabilizing Stable Marriage Algorithms 10
III.2 Transformer to Self-stabilizing Solutions 10

3 Models and Definitions 13

I The Stable Marriage Problem . 13
II Distributed Systems . 15
III Distributed Algorithms . 15

III.1 Algorithm . 15
III.2 Configurations . 16

IV Execution of Distributed Algorithms . 16
IV.1 Scheduler . 16
IV.2 Execution . 16

V Communication Models . 17
VI Self-stabilization . 18
VII Time Complexity . 19

4 A Solution Based on Ackermann et al. Two-Phased Idea 21

I Preliminaries and Contribution . 21
II Self-stabilizing Solution to SMP . 25

II.1 Algorithm Implementation . 28
II.1.1 Variables, Constants, Functions and Predicates 28
II.1.2 Algorithm. 30

III Correctness Proof and Time Complexity Analysis 34
III.1 Sketch . 34
III.2 Detailed Proofs . 36

III.2.1 Properties of the Terminal Configurations 36
III.2.2 Convergence Proof . 40

IV Conclusion . 66

viii Contents

5 An Approach by Local Checkability and Reset 67

I Introduction . 68
II Local Checkability . 70
III Towards a Distributed Asynchronous Version of GSA 71

III.1 Distributed Asynchronous Version of GSA: Async-GSA 73
III.1.1 Variables, Constants, Registers and Functions 74
III.1.2 Async-GSA’s Algorithm Predicate 74
III.1.3 Algorithm . 75

III.2 Local Checkability of Async-GSA 77
III.2.1 Local Predicates . 77
III.2.2 Proof of Async-GSA’s Local Checkability. 79

III.3 Time Complexity . 82
IV Reset . 84

IV.1 Tree Algorithm TreeAlg . 85
IV.1.1 Variables, Constants, Registers and Functions 86
IV.1.2 Tree Algorithm Predicate . 86
IV.1.3 Algorithm . 87
IV.1.4 Correctness and Complexity Analysis 87

IV.2 Reset Algorithm ResetAlg . 89
IV.2.1 Algorithm . 90
IV.2.2 Correctness Proof Complexity Analysis 94

V Composition . 107
V.1 Composition Algorithm CompAlg 108

V.1.1 Variables and Predicates . 108
V.1.2 Algorithm . 109

V.2 Correctness and Complexity Analysis 110
V.2.1 Stabilization of the Tree (to PredT) 112
V.2.2 Convergence after PredT is satisfied 117

VI Conclusion . 118

6 Extensions to Variants of SMP 119

I Subsets of unequal Size . 120
II Stable Matching with Indifference . 121
III Unacceptable Partners . 122
IV Many-to-One (Hospitals-to-Residents Problem) 124
V Many-to-Many . 125

7 Conclusion 129

I Summary . 129
II Perspectives . 130

Bibliography 135

Chapter 1

Introduction

“Matching under preferences is a topic of great practical importance, deep
mathematical structure, and elegant algorithmics.”

Kurt Melhorn in [Man13]

Stable Marriage is a matching problem where the participants have preferences over
their potential partners. The objective is to find a matching (i.e., an assignment of the
participants to one another) that is optimal (stable in a certain sense) with regards to
these preferences. This type of matching has a lot of widely used applications such as
the assignment of children to schools, interns to hospitals, kidney transplant patients
to donors, as well as taxi scheduling or content delivery on the Internet. But in fact,
matching under preferences is as old as civilizations. In some cases, the difficulty to
solve this problem seemed to have caused serious trouble. As an example, if we go back
to antiquity, Danaus had fifty daughters, the Danaides. After Aegyptus, his brother,
commanded that his fifty sons should marry the Danaides, Danaus, maybe afraid of
the difficulty of getting a matching which would satisfy everybody, elected to flee in-
stead, and to that purpose, he built a ship, the first ship that ever was and fled to
Argos. Naturally, the problem is still relevant nowadays. For example, APB (Admission
Post-Bac) and ParcourSup, the applications intended to manage the student/university
assignments in France use matching under preferences algorithms.

Matching under preferences is an important topic in the domain of economics, es-
pecially in market modelization. As a matter of fact, it is easy to relate the notion of
preference to the notion of payoff. The preferred choice is associated to the one with the
higher payoff and so on. That is why, since the beginning of its algorithmic study fifty
years ago, the matching problem with preferences has received a large attention from
the economy world. One of the actors in this domain, Lloyd Shapley, received in 2012
the Nobel Prize in economy, partly for his work on matching under preferences. Later,
strong relations with game theory have been established: the solutions achieve a pure
Nash equilibrium in a cooperative game. Lloyd Shapley and David Gale, in a famous
article [GS62], introduced in its current form an instance of matching under preferences
by using the metaphor of marriage. There are women and an equal number of men.
Each accepts to be married with a person of the other sex. Each participant, woman or
man, has a complete list of preferences on the persons of the other sex. The problem is
to get them married in such a way that the matching is stable. In this example, stable
means that there does not exist a pair of a woman and a man, each married to other
partners but that prefer each other. If there is no such unmarried pair, there is always
somebody in a married pair who has no interest, in terms of preference, in changing her
or his partner (see Chap. 3 for formal definition). Gale and Shapley called this prob-
lem Stable Marriage and this name is still used to define the form of matching under

2 Chapter 1. Introduction

preferences. Stable marriage is a model for simple markets (like producers/consumers)
but when modeling real world interactions, more complicated situations arise. For this
reason, many variants of the problem have since been developed and analyzed. We
study some of these variants (e.g., stable marriage with ties, with incomplete list, ...) in
Chapter 6.

Although being one of the most studied topics in algorithmics during the last decades,
matching under preferences stays a very important subject, because of its universality.
A deep theory has been developed, numerous theorems have been established, several
books on the topic have been published [GI89, RS90, Man13], Donald Knuth wrote a
monograph [Knu76] on the topic, and yet the subject is still alive. Indeed, emerging
networks and in particular the Internet puts this problem in a completely different
perspective and scale. Fifty years ago, the issue was to find algorithmic solutions to
handle very hard problems. When one had to match several thousands of medical
students, each with its own preferences, to hundreds of hospitals, each with its own
criteria, in a way where everybody was satisfied, the solutions by hand were not feasible.
Thanks to the advent of computers, a satisfying output was obtained: all the complex
data was fed into one machine that calculated the matching. This centralized way of
computing the data is still used, but there are new situations (i.e., with distributed
data/computation power) that require a different treatment.
As an example, consider a typical Cloud. There are real machines, the computers,
located in data centers all over the world, emulating virtual machines and able to give
a personalized service to the consumers. An issue is: on which real machine(s) to run
the virtual machines in order to have the best performance? But also: where to migrate
them depending on the load of the real machines in real time? This type of problem
corresponds to the matching under preferences. A centralized solution would cause
unbearable delays in the decisions and create bottlenecks. Such a solution would have
no failure tolerance, what is inconceivable for a service that is supposed to be available
at any time. Due the nature of the problem, solution here must be distributed: the
different data centers have to take their decisions locally, from their own information and
the information received from other data centers. On the other hand, consider examples
of matching under preferences involving humans, like residents-to-hospitals assignments
or students-to-universities matchings (e.g., ParcourSup or APB). People have the right
to keep their personal data private and in particular their list of preferences: such a list
may give a lot of sensible information on a person. The risk is that connections and
deductions could be made from participant’s preference lists leading to a loss of privacy.
Consequently the preference lists of persons should not be transmitted on the Internet,
and even less gathered for a centralized treatment.

That is why we are aiming at solutions based on matching under preferences, which
are completely distributed, tolerate a certain type of failures and respect the confiden-
tiality of the lists. To the best of our knowledge, it is the first time that these three
notions are incorporated together for solving the problem.

In order to handle faults, we provide self-stabilizing distributed solutions. Such so-
lutions tolerate transient (or short-lived) failures (e.g., memory or message corruptions)
of any number of nodes. That means that after any number of such failures (corrupting
nodes’ memory), which bring the system into an arbitrary state, the algorithm must
recover from these failures (automatically - without any intervention). Meanwhile, the

3

constants and the code are assumed to be untouched. Thus a self-stabilizing solution
solves a problem whatever starting configuration (the global system state) is (see a for-
mal definition in the models and definitions Chapter 3, Section VI). This property is
particularly interesting for Cloud and Internet based applications in general, since they
frequently require some level of self-stabilization.

We consider two models of communication commonly used for self-stabilizing algo-
rithms: the state model (cf. [Dij74]) and the register model (cf. [DIM93]). In both mod-
els, executions proceed in atomic steps and a daemon conveys the notion of asynchrony.
We assume the strongest (and the most general) daemon (adversary), the distributed
unfair daemon. It models a very high level of asynchrony. In particular, it may keep
a node from being activated as long as other nodes are eligible for activation (have in-
structions to execute). Though being general, designing and analyzing algorithms under
such daemon is more difficult than under fair daemons. The natural time measure with
unfair daemon is in terms of steps or moves (local computations). This is also prac-
tically relevant metrics since all local actions are counted until stabilization, allowing
the computational power and the energy consumption being evaluated (cf. [BA16]).
Indeed, with other deamons such as the weakly fair one (often used for self-stabilizing
algorithms), the stabilization time is measured in term of rounds. In a round, all eligi-
ble nodes are activated at least once. That is, under an unfair daemon, a round may
contain an unbounded number of moves. Thus, a round analysis may lead to a too
coarse-grained evaluation of the energy and computational consumption. Hence, a poly-
nomial algorithm in term of rounds can be proved exponential in term of steps/moves.
For example, a silent leader election with a linear round complexity [DLV11a, DLV11b]
has been proved to be exponential [ACD+17] in steps. Huang and Chen’s BFS Algo-
rithm [HC92] has an exponential lower bound in steps [DJ16]. Similarly, in [GHIJ19],
they prove that the step lower bound of their algorithm [GHIJ14] is exponential, while
the upper bound in rounds is linear. Moreover, the step/move distributed analysis can
be compared with the analysis of some centralized solutions for stable marriage where
the evaluations are in terms of queries or messages (cf. [OR15]).

Contributions and Roadmap
The Stable Marriage Problem (SMP) is defined on the complete bipartite graph Kn,n

(one set of women and one of men). Each node u has a different priority for each node v
in the other set, between 1 (the most preferred) and n. The goal is: (i) to match (marry)
the women and the men together such that everyone is matched, in a way that (ii) there
is no pair of a woman and a man that are not matched to each other, but prefer each
other over their current matches. When there are no such pairs, called blocking pairs
(BPs), the set of marriages is said stable.

In this work, we consier decentralized distributed settings, where the bipartite graph
represents a communication network. Edges represent the communication links and
nodes are computing entities (to be matched), having unique identifiers. Each node
has only a partial information about the problem instance, contrary to the centralized
case. In particular, it is assumed to be initially aware only of its own preferences,
but not of the other nodes’ preferences. In addition, to ensure confidentiality of the

4 Chapter 1. Introduction

preferences [BM05] and avoid high message complexity, we follow the previous related
studies and rule out a trivial solution where nodes exchange their preference lists and
then run a known centralized solution at each node.

Contributions. The present work aims to design algorithms for SMP in a distributed
and self-stabilizing fashion but without exchanging preferences. Since a self-stabilizing
algorithm runs from any configuration to a configuration satisfying the problem, nodes
have to detect and manage the BPs. Unfortunately, in his monograph [Knu76], Knuth
notices that resolving locally the BPs one after the other can lead to an infinite cy-
cle of actions. The first step towards self-stabilization was made by Ackermann et
al. [AGM+11] who gave a centralized algorithm that solves locally the BPs in a particu-
larly synchronized way avoiding cycling. Expressed in a distributed setting, this solution
is not self-stabilizing, since even if the initial matching may be arbitrary, some variables
are required to be initialized. Our first main contribution is a self-stabilizing solution
to SMP in the distributed state model. This solution adopts the principle of (two) syn-
chronized phases present in the Ackemann et al. solution, but has to add an additional
phase for a distributed synchronization and a local management of variables ensuring
the self-stabilization property. We present a formal analysis of the complexity in moves
of the solution. The Gale and Shapley’s Algorithm (GSA) is known to terminate in
O(n2) rounds, but also in O(n2) moves. The Ackermann et al. centralized solution is of
O(n2) moves too. Our distributed solution is of O(n4) moves [LMB+17]. This raises the
issue of the gap between the relevant centralized and distributed solutions. Note that
an independent result [OR15] gives a lower bound for the communication complexity
of Ω(n2) bits, for solving the same problem (in the two parties communication setting
using a single bidirectional link). However, this lower bound implies only Ω(n2/ logn)
moves in the communication model here (assuming constant size registers, used by our
solutions).

This leads to the second main contribution of the thesis which is a distributed self-
stabilizing solution for SMP in Θ(n2) moves. Moreover we tackle this time the problem
in a more general communication model of shared registers. In this model, instead of
reading the states of the neighbors directly, a node can only access the designated per
neighbor shared registers. This solution involves several stages. The starting point is
the local detection/global correction scheme of [APSVD94] inspired by [AKY90]. The
authors proved that if an algorithm A with initialization is locally checkable, it can
be combined with a detector and a reset modules yielding a self-stabilizing algorithm.
The basic idea is to launch a reset over the system, when a BP is locally detected
(considering it as an abnormal situation). After resetting, the reached configuration is
an initial configuration of A. Unfortunately, the local checkability in [APSVD94] does
not apply to our case even though BPs are locally detectable. Indeed, in [APSVD94], the
local checkability is defined under fair assumptions. But an unfair daemon can choose to
keep nodes (e.g., those detecting faults) unactivated as long as other nodes are eligible,
and in general even forever, avoiding the detection of faults/“anomalies” preventing the
correct stabilization. Thus, we propose a new definition of local checkability with, in
particular, a termination condition.

In addition, we design a self-stabilizing distributed asynchronous reset algorithm.
This algorithm uses a rooted spanning tree that must be built in a self-stabilizing way

5

too. Hence, we build a rooted spanning tree of depth 2. The reset algorithm has a
stabilization time of O(n · 6p) moves (where p is the depth of the tree). There exist, in
the literature, self-stabilizing reset algorithms functioning over a spanning tree [GM91,
AO94, KA98, DJ19]. However, there is no one coming with move complexity analysis
while running under unfair scheduler with shared registers communication model.

Finally, we propose an asynchronous version of GSA in the distributed link register
model [BBB+18] and we prove its local checkability according to our new definition.
Then we put all the modules together and we prove that the algorithm resulting from
the composition (with the tree construction, the reset and the detector) is correct and
has a stabilization time of Θ(n2) moves.

Other contributions of less importance are adaptations of the solutions for SMP to
some variants of the problem: sets of unequal size, indifference, incomplete lists, many-
to-one and many-to-many matchings. We want to emphasize that the results that we
present are obtained under the so called unfair scheduler, which is the most difficult
setting to deal with. An unfair scheduler may never choose to activate a process, unless
this process is the only one to be eligible.

Roadmap Following this introduction, Chapter 2 proposes an overview of the histor-
ical background for SMP and self-stabilization. In Chapter 3, concepts are detailed and
the models used in this thesis are defined. In particular, we define the stable marriage
problem, self-stabilization and communication models (state reading and link register).
Following these two chapters, we present our contributions.

Chapter 4: A solution based on Ackermann et al. phases.
In this chapter, we propose a self-stabilizing stable marriage solution, in the model
of composite atomicity (state reading model), under an unfair distributed scheduler
[LMB+17]. This algorithm is the first self-stabilizing algorithm for SMP. It solves the
problem in O(n4) moves/steps (formal proofs of correctness and complexity are given).

Chapter 5: Local Checkability and Reset.
In this chapter we propose an adapted version of the local checkability. In particular,
this definition can be used with the unfair daemon. In order to solve SMP, we provide
Async-GSA, a distributed asynchronous version of GSA (see Section III.1) in the register
model, under an unfair distributed scheduler [BBB+18]. The proof of the local checka-
bility (of Async-GSA) is done as well as its correctness and complexity proof. The move
and round complexity of Async-GSA is of Θ(n2).
We also provide a self-stabilizing distributed reset with a self-stabilization time of O(n)
moves on a tree of depth 2. Finally, we compose Async-GSA with detection and reset
modules in order to build a self-stabilizing algorithm for SMP. The composed algorithm
solves the problem in Θ(n2) moves.

Chapter 6: Extensions to Variants of SMP.
In this last chapter, we extend the two algorithms to some classical variants. The studied
variants are basic extensions: unequal sizes of opposite sets, indifference (ties in prefer-

6 Chapter 1. Introduction

ence lists), unacceptable partners (incomplete lists), many-to-one matching (Hospitals-
to-Residents problem) and the more difficult many-to-many matching. The modifi-
cations for each case are presented in such a way that they can be simply combined
together to obtain a general algorithm solving all the considered variants. Furthermore,
we explain why the complexity and correctness proofs remain (almost) the same.

Chapter 2

Related Work

Contents
I Centralized Solutions . 7
II Distributed Solutions . 8

II.1 Synchronous Model . 8
II.2 Asynchronous Model . 9

III Self-stabilizing Solutions . 9
III.1 On the Way to Self-stabilizing Stable Marriage Algorithms 10
III.2 Transformer to Self-stabilizing Solutions 10

In 1962, Gale & Shapley introduced the stable marriage problem in their seminal
paper [GS62]. After this publication, a lot of works have been published about this
problem in economics but also in mathematics and computer science: the problem (and
its variants) has many applications in these areas [Bir17]. It can be viewed as a particular
formulation of two sided matching markets and has been proved useful in many empirical
approaches. For example, it is central for the solution of the large residents-to-hospitals
assignment in USA (since 1952) or to the students-to-schools matching in Boston or
New York. Later, in computer science, it was used to perform migrations of VMs or
schedule taxis [BLAK14, KBW16] . Numerous books [Knu76, RS90, Irv94, Man13], book
chapters [KMR16, Bir17, Cse17, Cec17] and surveys [Che19, CCM19] have been written
on this topic until now. An International workshop on Matching Under Preferences
(MATCH-UP) is devoted to the matching problem each two/three years [MAT]. Finally,
a Dagstuhl seminar dedicated to matching under preferences was scheduled in July
2020 [Dag].

We distinguish centralized (Section I) and distributed solutions (Section II). The
second section sums up the works regarding two different models: synchronous (Sub-
section II.1) and asynchronous (Sub-section II.2).

Finally, since we focus on self-stabilization, we summarize main self-stabilizing re-
sults in Section III, first in a centralized context (Sub-section III.1), then concerning
transformers (Sub-section III.2).

I - Centralized Solutions
In their paper, Gale and Shapley [GS62] provided a centralized algorithm (working
by deferred acceptances, see Chapter 5, Section III for explanations) running in O(n2)
time, which is proved to be asymptotically optimal (for centralized algorithms) in [NH90,
Seg07]. Gale and Shapley proved also that there always exists at least one stable mar-
riage in any system. The first application of this algorithm was for the allocation of

8 Chapter 2. Related Work

graduating medical students in US hospitals. Still now, the national Resident Match-
ing program uses (an extension of) this algorithm [NRM] and handle now over 40,000
applicants. Now, stable marriage algorithms are used to assign graduating medical
students to residency programs at hospitals also in Canada and Scotland. Similar mech-
anism are used to assign students to schools and universities in Norway and Singapore
(cf. [TST99, Gol06]) but also in Boston [APRS05] and New York City [APR05]. More
recently, the french students-to-universities matching (APB, ParcourSup) uses also such
algorithms.

Notice that, in [Gol06], Golle takles the problem of privacy and cheating in such
systems: with the knowledge of all the preference lists, a participant can manipulate
the algorithm and change the output matching [GS85, GI89, TST99]. Golle proposes
a private algorithm based on the Gale and Shapley algorithm (preference lists are kept
secret). Similarly, Doerner et al. in [DES16] build a more efficient private algorithm
(also based on Gale and Shapley algorithm) in order to apply it on large scale (for
matching medical residents).

II - Distributed Solutions
Though different distributed problems have been well studied since decades, works on
distributed stable marriage appeared much later than the centralized studies of this
problem. Among these studies, theoretical ones consider an idealized synchronous dis-
tributed communication model, where nodes’ progress in a lock-step manner, exchang-
ing information and performing computations all together at each step (called round).
These works focus on round complexity of the problem and its variants. On the con-
trary, studies with application cases consider an asynchronous distributed communica-
tion model, where there is no bound on message delivery, channel capacities or relative
process speeds. That is, there is no global clock and nodes will eventually perform their
computations. These works focus on applications such as Cloud-Computing or content
delivery.

II.1 - Synchronous Model
Kipnis and Patt-Shamir [KPS09] prove a lower bound of Ω(

√
(n/B logn)) rounds, where

B is the number of bits per message, and provide an algorithm that solves the distributed
stable marriage in O(n2) rounds. Searching for better time complexity and conditions
that can provide it, many studies consider specific restrictions on the preference lists
such as weighted stable marriage [AGL10], incomplete or bounded lists [FKPS10, OR15],
“almost regular” lists [OR15] and “similarity” in preference lists [KW16]. Still for
improving time complexity, approximate versions have been considered (e.g., [KPS09,
FKPS10, GNOR15, OR15]), reaching a polylogarithmic time. Furthermore, when as-
suming strict restrictions on preference lists, approximate stable marriage can be solved
even in constant time (cf. [FKPS10, OR15]). Notice also several bound results on com-
munication complexity and step complexity (cf. [Seg07, CL10, GNOR15]). In particular,
Gonczarowski [GNOR15] proved a lower bound on communication complexity: Ω(n2)
Boolean queries or bits have to be exchanged between two distributed parties, when one

III. Self-stabilizing Solutions 9

(Alice) holds all the preference lists of the one set (women) and the other party (Bob)
holds all the preference lists of the opposite set (men), and they want to solve SMP with
these preferences.

II.2 - Asynchronous Model
The first paper considering an asynchronous model in distributed settings is [BM05].
Brito and Meseguer propose an extended version of GSA (with proposals and accep-
tances), but the participants who receive and accept a proposal delete all the worse
ranked participants in its preference list. Thus, the preference lists are not communi-
cated, reenforcing the privacy of the data. This algorithm is intended to work in the
message passing model and is asynchronous. It is provided with empirical results but no
complexity analysis. In the domain of Cloud computing, stable marriage is used for per-
forming efficient migration of virtual machines to servers (e.g., [XL11a, KL14]). Notice
that the Xu and Li’s algorithm [XL11a] is an extension of the Brito et Meseguer’s al-
gorithm. Content delivery networks that distribute much of the world’s content and
services have to solve a large and complex stable marriage problem between users
and servers [XL11b, MS15]. Recently, in [YAB19], the authors apply the Brito’ and
Meseguer’s algorithm for the scheduling of electric vehicle charging. Since charging
takes a long time and the station depends on the demander’s route, the scheduling must
be done in-advance for efficient resource allocation. Furthermore, due to the frequent
charging, driving patterns and preference lists can be divulged if the algorithm exchanges
the input data. Thus, the algorithm must be dynamic, private and efficient. To compare
their algorithm with the Gale and Shapley’s algorithm, they made experiments and ob-
serve that their algorithm is more efficient and exchanges less message (than a adapted
distributed version Gale and Shapley’s algorithm).

III - Self-stabilizing Solutions
Introduced by Dijkstra in [Dij74, Dij86], self-stabilization is a property of distributed
algorithms. A self-stabilizing algorithm for a problem P ensures that, from any config-
uration of the system (resulting from transient faults or not), the algorithm converges
to the solution of P . Since many applications of stable marriage, especially in computer
science, require failure tolerance1, it is natural to look at a self-stabilizing solution (one
of the failure tolerance schemes).

We first present works on the stable marriage that are related to self-stabilization in
Sub-section III.1. There is no distributed, asynchronous and self-stabilizing solution for
SMP but some results are helpful for our study.

A way of obtaining a self-stabilizing algorithm for a problem P is to combine a non-
self-stabilizing algorithm for P with a transformer. Thus, in Sub-section III.2, we sum
up such transformers with their pros and cons.

1Notice e.g. the tolerance demanding problem of scheduling charging points to electric vehicles on
route, described in the previous section).

10 Chapter 2. Related Work

III.1 - On the Way to Self-stabilizing Stable Marriage Al-
gorithms

Since self-stabilizing algorithms have to solve the problem from any configuration, a
central issue is the resolution of blocking pairs (BPs). If a configuration contains an
unstable marriage, the algorithm must detect BPs.

Knuth in a famous monograph [Knu76] puts forward this question by providing a
problematic example. Indeed, when starting from an arbitrary configuration, it may
exist a circular path of BPs resolutions (by matching the blocking pair and the previous
partners) involving that an execution may cycle. In the self-stabilizing context, this cycle
can lead to a non convergent execution (see Chapter 4, Section I, for explanations). In
[RVV90], an open question raised by Knuth is answered: from any configuration contain-
ing an unstable matching, there exists at least one path of resolutions (by only matching
the BPs’ partners) that provides a stable matching. A consequence is that, under fair
assumptions, from any unstable marriage there is a finite path of BPs resolutions that
reaches a configuration with a stable marriage with probability one.

In [AGM+11], Ackermann et al. propose an algorithm for the stable marriage prob-
lem, starting from an arbitrary matching. This algorithm works in two phases. The
first solves BPs in the same manner as Roth [RVV90], i.e. married women start solving
their BPs. In the second phase, single women run GSA. This algorithm converges in
polynomial time.

Finally, in [Mat07a, Mat07b, Mat09] the author investigates the so-called “self-
stabilizing” stable marriage in peer-to-peer networks. The problem is restricted to
acyclic preference lists (i.e. containing no cycle of peers such that each peer in the
cycle prefers its successor to its predecessor). In this case, it is known that exactly one
stable marriage exist. Moreover, the fact that there exists no cycle in the preference lists
induces that Knuth’s cycle cannot happen. Thus, starting in any given marriage, follow-
ing any strategy of choosing and “fixing” blocking pairs, eventually results in a stable
marriage. So, in this particular sense, the case of acyclic preferences is self-stabilizing.
The authors prove that the number of such “fixes” (using any strategy) till stabiliza-
tion can be exponential. However, if choosing the fixes in a round-robin fashion over
the nodes’ set, the number of fixes can be reduced to polynomial. Finally this study
presents simulation results in P2P networks.

III.2 - Transformer to Self-stabilizing Solutions
There are several ways to transform a non-self-stabilizing algorithm into a self-stabilizing
one. The first transformer was proposed by Katz and Perry [KP90]. It works for an
asynchronous message passing system. Using a self-stabilizing snapshot [CL85], the pro-
tocol repeatedly evaluates the global state of the system. This evaluation is made by
a fixed leader. If a “bad” global state is detected, a reset of the system is launched,
restoring a pre-determined global state. This snapshot tool needs some synchronization
(round numbers) and exchanges a lot of information (values of local variables and mes-
sages). The authors do not provide an upper bound on the number of messages. This
approach uses global detection and global correction.

In [AKY90], a new approach is introduced: local detection and global correction. If

III. Self-stabilizing Solutions 11

a node maintains locally some information so that it can detect bad configurations, a
global reset can be launched. When the reset is terminated, the algorithm is restarted
from a predefined configuration from which it is correct. If such a local detection is
feasible, the algorithm is said to be locally checkable. Notice that the communication
model uses Read/Write atomicity [DIM93] with a fair daemon.

Later, in [APSV91, Var93], another transformer with a local detection and local
correction is proposed. A protocol is said to be locally correctable if the global state
of the protocol can be corrected to a legitimate global state by applying independent
local actions. The protocol uses the Input/Output Automata model with bounded
channels [LT89].

Since many algorithms are not both locally checkable and correctable (most of
the time only locally checkable), Awerbuch et al. [APSVD94] develop the local de-
tection/global correction idea of [AKY90]. The global correction is made with a global
reset. They formalize the definitions of local checkability and give an analysis of the
combination: the stabilization time of the combined algorithm has an overhead of O(R)
asynchronous rounds where R is the response time of the reset.

The global correction is made through a global reset. An example of such an ap-
proach is given in [AG90], where a self-stabilizing reset uses a spanning tree built in
a self-stabilizing way. The requirements are unique identifiers and the knowledge of a
bound on the number of nodes in the network. The stabilization time of this protocol
has been proved for asynchronous rounds with a fair daemon.

In this work, we adopt the idea of the latter transformer, by adapting it to our setting
with the unfair daemon (Chapter 5). We also design an appropriate reset algorithm. All
that with the goal to evaluate the move complexity of the transformed self-stabilizing
algorithm to SMP in the link register model under unfair daemon. This allows us to
obtain a better time complexity of only O(n2) moves in a more general (than the state
reading) model.

Chapter 3

Models and Definitions

Contents
I The Stable Marriage Problem 13
II Distributed Systems . 15
III Distributed Algorithms . 15

III.1 Algorithm . 15
III.2 Configurations . 16

IV Execution of Distributed Algorithms 16
IV.1 Scheduler . 16
IV.2 Execution . 16

V Communication Models . 17
VI Self-stabilization . 18
VII Time Complexity . 19

We first give a formal definition of the blocking pairs (BPs) and the Stable Marriage
problem in Section I.

Then, we define distributed systems and distributed algorithm (Section II and III)
and the notion of an execution in Section IV. Then, in Section V, we define the two
different communication models. Our algorithm (Chapter 4) is designed for the state
model while the second one (Chapter 5) is designed for the link register model.

Finally, we define the self-stabilization property of distributed systems in Section VI
and the associated complexity metrics (Section VII).

I - The Stable Marriage Problem
The stable marriage problem has been introduced by Gale and Shapley in their seminal
paper in 1962 [GS62]. We consider a set of men (Men) and a set of women (Women)
such that each women w is given with a priority for each manm, denoted priority(w,m),
and reciprocally. The priorities go from 1 to n and the most preferred person has priority
1. In such a system, the goal is to match (marry) women and men together such that
everyone is matched and there is no blocking pair (BP), i.e., no unmarried pair (w,m)
of a woman w and a man m, who both prefer each other to their current matches
(partners). When there are no such pairs of nodes, the set of marriages is said to be
stable. Formal definitions are given below.

Definition 1 (Blocking Pair (BP)). Given a matching M ⊂ Women × Men, a pair
(w,m) is a blocking pair iff the following conditions hold:

14 Chapter 3. Models and Definitions

1. w and m are not matched together, i.e. (w,m) /∈ M;

2. w is married with m′ and prefers m to m′,
i.e. ∃ m′ : (w,m′) ∈ M ∧ priority(w,m) < priority(w,m′);

3. m is married with w′ and prefers w to w′,
i.e. ∃ w′ : (w′,m) ∈ M ∧ priority(m,w) < priority(m,w′).

Definition 2 (Stable Marriage (SM)). A matching M ⊂ Women × Men is a stable
marriage iffM does not contain any blocking pair and every node is matched.

Notice that Gale and Shapley proved that there always exists at least one sta-
ble marriage for any instance of preference lists, but there are possibly several. In
the Table 3.1, we present an example of an SM instance. Let us first consider
a matching M1 = {(Jane,Mark), (Anna, Scott), (Zoe, John)}. In this match-
ing, the pairs (Zoe, Scott) and (Jane, Scott) are BPs, i.e. M1 is unstable. On the
contrary, the matchings M2 = {(Jane, Scott), (Anna, John), (Zoe,Mark)} or
M3 = {(Jane,Mark), (Anna, John), (Zoe, Scott)} are stable.

Jane Scott Mark John John Zoe Anna Jane
Anna John Mark Scott Scott Zoe Jane Anna
Zoe Mark Scott John Mark Jane Zoe Anna

Table 3.1: Women’ preferences in the right table and men’ preferences in the left table

On the Figure 3.1, the instance of Table 3.1 with the unstable marriage M1 is
represented in a distributed system. Bold black edges as well as bold names in the
preference lists represent the pairs in the marriage. The blocking pairs (Jane, Scott)
and (Zoe, Scott) are represented with the red bold edges and red names.

Jane
{Scott,
Mark,
John}

Anna
{John,
Mark,
Scott}

Zoe
{Mark,
Scott,
John}

John
{Zoe,
Anna,
Jane}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

Figure 3.1: Distributed bipartite system with the unstable marriage M1

Remark 1. For technical reasons, we use in the proofs a more general definition of
blocking pair than the definition given above, as it applies to incomplete matching. In
the original definition, a blocking pair has to be a pair of already married persons. In the

II. Distributed Systems 15

definition of BP used here, man can be unmarried. Formally, a pair (w,m) of a woman
w and a man m is blocking iff w is matched to m′, m is matched to w′ and w and m
prefer each other to their actual matching, or, w is matched to m′, m is unmatched and
w prefer m to m′. Clearly enough, the two notions coincide if the matching is complete.
The definition implies that a man prefers to be matched with any woman rather than to
stay unmatched.

II - Distributed Systems
A distributed system includes a set of computational units called nodes (or processes).
They are connected, i.e. able to communicate in a one-to-one fashion and do not have
a central memory. Furthermore, there is no centralized control over the nodes.

Each node v can communicate (directly) with a subset of other nodes, called its
neighbors and denoted by N (v) (not including v). Communication is assumed to be
bidirectional. Hence, the topology of the system can be represented as a simple undi-
rected graph G = (V, E), where V is the set of nodes and E the set of edges, i.e.,
communication links. It is assumed that G is the complete bipartite graph Kn,n, over
two subsets of nodes of equal size n.

Following the terminology of [GS62], we call women the n nodes of the first subset
(Women) in the bipartite graph and men the n nodes of the second subset (Men). Each
node has a unique identifier that can be compared to others. For a clear presentation,
we use names to identify nodes. In addition, each node has locally a complete list of n
ordered preferences for the nodes of the other set (each woman has a complete list of
men and reciprocally) to represent the priorities.

III - Distributed Algorithms

III.1 - Algorithm
A distributed algorithm consists of a set of local algorithms (one per node). Each node
updates its state according to its local algorithm. One way to represent the code of a
node v is by a finite set of guarded rules of the following form:

Label: (* Comment *)
{Guard}
Actions

The labels are used to identify rules. The guard of a rule in the code of v is a Boolean
expression involving the variables of v and of its neighbors (inside their states or the
shared registers, depending on the model). If the guard of some rule evaluates to True,
then the rule is said to be enabled at v. Node v is said to be eligible if at least one of
its rules is enabled. Actions represent a sequence of actions on v’s variables. A rule
can be executed (activated) only if it is enabled. In this case, its execution consists in
performing the sequence of actions, using the values of the variables at the time of the
guard evaluation.

16 Chapter 3. Models and Definitions

III.2 - Configurations

The state of a node is a vector of the values of its variables. A configuration of the
system is a vector of states of all nodes. For a given sub-algorithm Alg, we denote by
CAlg a projection of a configuration C to the variables of Alg. By default, in a section
dedicated to a particular algorithm Alg, when speaking of some configuration we refer
to the projection of a configuration to the variables of Alg. Furthermore, we use the
notation var(C) for the value of var in the configuration C.

IV - Execution of Distributed Algorithms

IV.1 - Scheduler

The asynchrony of the system is modeled by an adversary, called scheduler or daemon. In
a configuration, the scheduler selects a non-empty subset of eligible nodes, then chooses
one of the enabled rules per node, then, still atomically, executes the corresponding
actions. This is called a step (or transition) and the activation of each rule in the
step is called a move, i.e., there are at most n moves per step (one per node). Notice
that, since the evaluation of all the rules is made at the same time, moves are causally
independent. Such a scheduler is called distributed in the literature (contrary to a central
scheduler, choosing at each step only one enabled node, or to the synchronous scheduler
that chooses all the enabled nodes). It is convenient to represent a scheduler as a set of
sequences of steps or, equivalently as the predicate defining this set. Different types of
fairness, limiting the possible decisions of the scheduler, appear in the literature. We do
not make any such limitation on the predicate except forcing the scheduler to choose at
least one eligible node at each step. This scheduler appears in the literature under the
name of unfair scheduler. It allows to obtain the strongest results, in particular because
some constantly eligible node may stay inactivated for an arbitrary period of time.

IV.2 - Execution

When a step is executed in the configuration C, it leads to a configuration C’ and we
write C → C’. We say that C’ is reached from C, denoted by C ∗→ C’, if C s→ C1

s1→ C2
s2→ . . .

sx→ C’. An execution is a maximal sequence of pairs (step, configuration): (s0,C0),
(s1,C1), . . . , (sk,Ck), . . . such that Ci

si→ Ci+1 for all i ≥ 0 and such that the sequence of
steps s0, s1, . . . satisfies the predicate of the scheduler.

The term “maximal” means that the execution is either infinite or ends in a terminal
configuration, i.e., a configuration in which no node is eligible.

A distributed algorithm solves the stable marriage problem if each of its executions
starting from a predefined initial configuration, under the unfair distributed scheduler,
reaches a terminal configuration in which there is a stable marriage.

V. Communication Models 17

V - Communication Models
Several communication models exist in the literature. In this thesis, we use two models:
the state model in Chapter 4 and the register model in Chapter 5. Thus, in the following,
this two models are presented.

State model. This is the composite atomicity model of computation (cf. [Dij74,
Gho14]) in which the nodes communicate by reading the variables’, but not constants’,
values directly in the states of their neighbors. That is, each node can read its own
variables and those of its neighbors, but can write only to its own variables. Constants
cannot be directly read by a neighbor. This is for being able to keep confidential a
sensitive information of a node (like the preference list).

Register model. In Chapter 5, we adopt the link register communication model
(cf. [DIM93]). Each process is associated with a set of atomic registers, each of size of
O(1) bits (our algorithm does not require more space). For each adjacent node u, the
node v shares a register rv,u in which v is the only node allowed to write and that u can
read. Each register is a record with several fields. The field var in the register rv,u is
named varv,u.

The Figure 3.2 shows the characteristics of the register model. As for the state
model, the variables of the node v are read and written by v. The difference with
the state model is the read access of the neighbors. Indeed, j can read sv1v,j and
sv1u,j (similarly sv2v,j , and sv2u,j) while i can read sv1v,i and sv1u,i (similarly, sv2u,i

and sv2u,i). Notice that, at the starting configuration, a shared variable sv1v,j may be
outdated in the correspondence with the local state of v, before v is activated and writes
into it. This is impossible in the state reading model, since a neighboring node reads
the local memory of v directly.

u

v

i

j
local variables

lv1v

lv2v

shared variables
sv1v,j

sv2v,j

sv1v,i

sv2v,i

local variables
lv1j

lv2j

shared variables
sv1j,v

sv2j,v

sv1j,u

sv2j,u

local variables
lv1i

lv2i

shared variables
sv1i,v

sv2i,v

sv1i,u

sv2i,u

local variables
lv1u

lv2u

shared variables
sv1u,j

sv2u,j

sv1u,i

sv2u,i

Figure 3.2: The register model

18 Chapter 3. Models and Definitions

VI - Self-stabilization
The notion of self-stabilization [Dij74] is related to transient failure tolerance. Corrup-
tions of variables1 may put the system in an arbitrary configuration, from which the
algorithm has to recover.

Formally let A be a distributed algorithm, C the set of its configurations and E the
set of its executions from any configuration in C. A (specification of a) problem is a
predicate Prob on executions.

Definition 3. A is self-stabilizing for Prob (or solves Prob in a self-stabilizing way) if
and only if there exists a non-empty subset L of C of so called legitimate configurations,
such that:

1. (Correctness) any execution in E starting from a configuration C in L satisfies
Prob,

2. (Convergence) any execution in E reaches a configuration in L.

For any execution of a self-stabilizing algorithm A, whenever Prob is satisfied, we
say that A has stabilized.

On the Figure 3.3, the rectangles represent configurations of a system (in C). Green
rectangles are legitimate configurations (in L). Orange rectangles are non-legitimate
configuration (in C \ L). Arrows are the possible transitions from a configuration to an-
other. From non-legitimate configurations, the execution reaches eventually a legitimate
configuration. Furthermore, from a legitimate configuration only legitimate configura-
tions are reachable: this is a particular case of stabilization.

All system
configurations

Legitimate configurations

Stabilization (for Prob)

Figure 3.3: Self-stabilization

In the context of stable marriage, the predicate Prob defining the problem is satisfied
by an execution iff a) the execution reaches a terminal configuration (i.e., a configuration
in which no node is eligible), and b) this configuration contains a stable marriage (i.e.,
all nodes are married and there is no BP).

1Notice that constants, like IDs or preference lists, are assumed to be incorruptible.

VII. Time Complexity 19

VII - Time Complexity
The time complexity of a self-stabilizing distributed algorithm can be evaluated in
terms of moves, steps or asynchronous rounds (see Definition 4). The stabilization
time, counted in moves (respectively in steps or in rounds), is the maximum number
of moves (resp. steps, rounds) until a configuration in L is reached, starting from an
arbitrary configuration. The stabilization time in moves gives an upper bound on the
stabilization time in steps and rounds.

Asynchronous rounds. Asynchronous rounds (or simply rounds in the following)
have been introduced in [DIM97] and extended with the concept of neutralization
[BDPV07]. A process v is said neutralized during a step Ci → Ci+1, if v is eligi-
ble in configuration Ci but not in configuration Ci+1, and is not activated in the step
Ci → Ci+1. The rounds are inductively defined as follows.

Definition 4 (Asynchronous rounds). The first round of an execution e = (s0, C0),
(s1, C1), . . . is the minimal prefix e′ = (s0, C0), . . . , (sj , Cj), such that every process
that is eligible in C0 either executes a rule or is neutralized during a step of e′. Let e′′
be the suffix (sj , Cj), (sj+1, Cj+1), . . . of e. The second round of e is the first round of
e′′, and so on.

Chapter 4

A Solution Based on Ackermann
et al. Two-Phased Idea

Contents
I Preliminaries and Contribution 21
II Self-stabilizing Solution to SMP 25

II.1 Algorithm Implementation . 28
II.1.1 Variables, Constants, Functions and Predicates 28
II.1.2 Algorithm. 30

III Correctness Proof and Time Complexity Analysis 34
III.1 Sketch . 34
III.2 Detailed Proofs . 36

III.2.1 Properties of the Terminal Configurations 36
III.2.2 Convergence Proof . 40

IV Conclusion . 66

In this chapter, we present our first solution to SMP. This work is published [LMB+17]
and received a best paper award. At the time of publication, it was the first self-stabilizing
distributed solution for general SMP. The algorithm is designed for the model of compos-
ite atomicity (state reading model), under an unfair distributed scheduler (see Chapter 3
for definitions).

We first present an historical background and explain how this algorithm is obtained,
in Section I. Then, in Section II, we present the solution. In Section III, the proof
analysis is provided in two steps. We first sketch the proof in Sub-section III.1 and
in Sub-section III.2, we provide the formal proof of correctness and a time complexity
analysis, providing an upper bound in terms of moves and steps. Finally, we conclude
this chapter with some remarks and perspectives (Section IV).

I - Preliminaries and Contribution
Even though the original stable marriage algorithm by Gale and Shapley (GSA) is
essentially centralized, it can be interpreted as a distributed one [BM05] and most of
the existing distributed algorithms rely on GSA. In general, the algorithm proceeds
by iteratively realizing proposals, e.g., by women, and acceptances, e.g., by men (or
vice-versa). Intuitively speaking, the algorithm creates matches and resolves appearing
BPs, when improving iteratively the quality of the matches according to the preferences
(“better match” dynamics). But, GSA does not necessarily converge towards correct

22 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

configurations from any initial configuration. In other words, it does not naturally
tolerate transient failures that can put a system in an arbitrary configuration, i.e., it
is not self-stabilizing. In particular, from some configurations, BPs can appear and
not been eliminated during the execution. Thus the issue of their elimination in a
self-stabilizing context naturally appears.

SMP has received a lot of attention, in particular by Knuth [Knu76]. When inves-
tigating combinatorial properties of the problem, Knuth discovered the possibility of
cycles when resolving BPs (in a specific way) from some initial configurations with an
incomplete or unstable matching.

The Figures below show an example of such a cycle. The pair (Jane, Mark) is
a BP, i.e. the marriage is unstable. Knuth proposes to resolve the BP by exchanging
the partners of the pair. Here, Mark and Jane are married together and their former
partners, Zoe and John are married together (Figure 4.1.b).

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,
Anna}

(a) Initial configuration with a BP
(Jane, Mark)

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

(b) Configuration after solving the BP
.

Figure 4.1: Knuth’s cycle: first resolution

In the reached system, the marriage is still unstable: the pair (Jane, Scott) is a
BP (Figure 4.2.a). After the repair (in the same way as previously), the system is as in
Figure 4.2.b.

I. Preliminaries and Contribution 23

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

(a) Resulting configuration with an other BP:
(Jane, Scott)

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

(b) Configuration after solving the BP
.

Figure 4.2: Knuth’s cycle: second resolution

But, there is again a BP: the pair (Zoe, Scott) (Figure 4.3.a). Figure 4.3.b shows
the system after the repair by exchanging the partners.

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

(a) Resulting configuration with an other BP:
(Zoe, Scott)

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

(b) Configuration after solving the BP
.

Figure 4.3: Knuth’s cycle: third resolution

The pair (Zoe, Mark) is a BP, making the matching unstable (Figure 4.4.a). Finally,
after the repair, the matching is as in Figure 4.4.b.

24 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

(a) Resulting configuration with an other BP:
(Zoe, Mark)

Jane
{Scott,
Mark,
John}

Anna{Arbitrary
list}

Zoe
{Mark,
Scott,
John}

John {Arbitrary
list}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,
Anna}

(b) Configuration after solving the BP
.

Figure 4.4: Knuth’s cycle: fourth resolution

Notice that the Figure 4.4.b is the same as the Figure 4.1.a, with the same BP and
no improvement in the matchings. This example shows that a self-stabilizing solution
cannot be simply obtained by repairing locally the blocking pairs created by transient
failures.

After this negative result, a step forward was taken by Roth and Vande Vate [RS90]
and by Ackermann et al. [AGM+11]. Both works present completely centralized strate-
gies allowing to solve stable marriage starting from any given matching. The strategy
proposed by Roth and Vande Vate stores and consults a global access set of previously
resolved BPs and thus is inherently centralized. Differently, the strategy by Ackermann
et al. [AGM+11] works in two phases. In the first one, only married women make pro-
posals for improving their marriages. When no married woman can improve anymore,
the second phase starts. In this phase, only unmarried women can make proposals (until
they all are matched). At the end of this phase, a stable marriage is obtained (after
at most O(n2) steps). In a distributed context, being able to start from an arbitrary
matching is not sufficient to be self-stabilizing, for the reasons that we explain below.
Nevertheless, it is a first step towards self-stabilization, and it is the reason why we
adopted the idea of the two phases, like in [AGM+11].

Making this idea work in a distributed asynchronous and self-stabilizing way is still
very challenging. First, there is a need of a sort of synchronization of phases between the
nodes that cannot move all together to the next phase, like in the centralized case. Then,
termination detection is needed for detecting the end of the first phase. Furthermore,
Ackermann et al. supposed “best response” dynamics, contrary to the “better” ones
in a distributed GSA. “Best response” dynamics are inherently centralized too, since
creation or suppression of a match is not instantaneous (as it is in the centralized case)
and the actual matches can change during the delay for realizing these actions. Hence,
it is difficult to implement perfect “best response” dynamics. Finally, notice that a
distributed matching has to be encoded with pointers that can be badly initialized.
This is not taken into account in the algorithm of Ackermann et al..

In addition to these difficulties, we strive to provide a truly decentralized solution
using neither leader nor global reset and detecting and correcting faults locally (similarly
to the way GSA resolves BPs). This rules out the known self-stabilizing automatic

II. Self-stabilizing Solution to SMP 25

transformers requiring such type of primitives. On the positive side, this allows obtaining
more efficient algorithms in terms of time and space. This is also the reason for not using
known synchronization techniques (e.g., [AKM+07], [BPV04]). The proposed algorithm
works with only one additional phase of synchronization (in addition to the two phases in
the strategy of Ackermann et al.), while using known synchronization techniques would
result in much more additional phases. On top of that, it ensures a sort of confidentiality,
in the sense that the preference lists of the nodes are not public1. Notice that keeping the
complete preference lists of users secret may be an important requirement, for instance
in some economic contexts. This goal cannot be achieved by any centralized solution.

The proposed algorithm works under an unfair distributed scheduler, i.e., choos-
ing at each step a non-empty subset of nodes that have actions to perform (i.e., en-
abled nodes; see model Section V in Chapter 3 for a formal definition). In spite of all
the aforementioned difficulties, we design (Section II) and prove (Section III) such a
self-stabilizing stable marriage algorithm (which also guarantees confidentiality of the
preference lists). The sketch of its proof is in Sub-section III.1 and the details in Sub-
section III.2 The time complexity analysis provides an upper bound of O(n4) moves
(activations changing the state of a node). Straightforwardly, this upper bound applies
to steps (activations changing the configuration of the system; see the model section).
Note that, in Chapter 6, we also study how the proposed algorithm can be useful for
obtaining self-stabilizing solutions to some variants of the stable marriage problem. The
results (variants included) have been submitted to a journal.

II - Self-stabilizing Solution to SMP
The solution of Ackermann et al. proceeds in two phases. In the first phase, already
married women try to improve their marriage as in the example of Figures 4.5 - 4.7.
In this example, married women are green. In the initial configuration (Figure 4.5.a),
there is only one BP: (Zoe, John). In the Ackermann et al. algorithm, resolving a BP
means to match the BP but, contrary to Knuth, former partners become single. After
resolving the BP (Zoe, John) leads to a configuration (Figure 4.5.b) with a new BP:
(Anna, Scott).

1A node v only communicates to its neighbor u the priority it gives to u, and the priority of its actual
spouse.

26 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Jane
{Mark,
John,
Scott}

Anna
{Scott,
Mark,
John}

Zoe
{John,
Mark,
Scott}

John
{Zoe,
Jane,
Anna}

Scott
{Jane,
Zoe,
Anna}

Mark
{Zoe,
Anna,
Jane}

(a) Unstable marriage: (Zoe, John) is a BP
.

Jane
{Mark,
John,
Scott}

Anna
{Scott,
Mark,
John}

Zoe
{John,
Mark,
Scott}

John
{Zoe,
Jane,
Anna}

Scott
{Jane,
Zoe,

Anna}

Mark
{Zoe,
Anna,
Jane}

(b) After the BP’s resolution, a new BP:
(Anna, Scott)

Figure 4.5: First phase of the Ackermann et al.’s algorithm

After the resolution of the new BP, the following configuration is reached (Figure 4.6).
When no improvement (i.e., no resolution of BP) is possible, phase 2 starts.

Jane
{Mark,
John,
Scott}

Anna
{Scott,
Mark,
John}

Zoe
{John,
Mark,
Scott}

John
{Zoe,
Jane,
Anna}

Scott
{Jane,
Zoe,

Anna}

Mark
{Zoe,
Anna,
Jane}

Figure 4.6: Configuration after the first phase

In the second phase, single women (in blue in Figure 4.7.a) try to be married, using
the Gale and Shapley’s mechanism: they propose to men in their preference list’s order.
If a married man receives a better proposal, he accepts the proposal and divorces from his
actual spouse, who becomes single and, then, proposes in her preference list’s order. In
this example, Jane is the only single woman and she proposes toMark, her first choice.
When all single women are married, the final stable marriage is reached (Figure 4.7.b).

II. Self-stabilizing Solution to SMP 27

Jane
{Mark,
John,
Scott}

Anna
{Scott,
Mark,
John}

Zoe
{John,
Mark,
Scott}

John
{Zoe,
Jane,
Anna}

Scott
{Jane,
Zoe,

Anna}

Mark
{Zoe,
Anna,
Jane}

(a) The single woman Jane proposes to her
first choice.

Jane
{Mark,
John,
Scott}

Anna
{Scott,
Mark,
John}

Zoe
{John,
Mark,
Scott}

John
{Zoe,
Jane,
Anna}

Scott
{Jane,
Zoe,

Anna}

Mark
{Zoe,
Anna,
Jane}

(b) Final matching
.

Figure 4.7: Second phase of the Ackermann et al.’s algorithm

Phase 1 Phase 2

Figure 4.8: Phase transition in the
Ackermann et al.’s algorithm

In the first phase, women globally reduce
their regrets, i.e., increase the quality of their
matching, and in the second phase, men do
symmetrically the same. The algorithm is
correct, even when started from an incom-
plete matching, but is not self-stabilizing in
the strict sense, because all nodes must start
in phase 1 and change simultaneously to phase
2. That is, some possible configurations can-
not appear in an execution, while self-stabilization has to recover from any starting
configuration. It could be made self-stabilizing using centralization, with the implemen-
tation of an incorruptible global phase counter. In a distributed asynchronous setting,
things are more difficult. The distributed self-stabilizing solution that we propose takes
the idea of two phases, but use a supplementary phase for the purpose of synchroniza-
tion. We number the phases 1, 1.5 and 2. Phases 1 and 2 play about the same role as
in Ackermann et al.’s algorithm.

Phase 1.5 is an intermediary phase performing synchronization between phase 1 and
2 (due to an erroneous initial configuration). During phases 1 and 2, women have the
initiative to propose marriage, men can only choose among the different proposals.

Phase 1 Phase 1.5 Phase 2

Figure 4.9: Phase transitions in the
proposed distributed self-stabilizing version

We start by explaining the role of
phases when all nodes are initially in
phase 1. The transition from phase 1 to
phase 1.5 is realized first by women who
have checked the lack of BPs. Once all
women are in phase 1.5, men can change
to phase 1.5 if they do not detect BPs.
Otherwise, the detecting man blocks the
process (by staying in phase 1). When the
woman involved in the BP is activated, it
changes its phase to 1 (forcing a come back to phase 1 for all men). It is only when all
nodes reach phase 1.5 that women can move to phase 2. Then, men follow by moving

28 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

to the phase 2 too. The verification of the absence of BPs before entering phase 1.5
guarantees their absence at the beginning and during phase 2.

Now we precise how self-stabilization is obtained. When a faulty configuration is
detected, nodes can move from phase 2 to phase 1. For example, this happens if it is
detected that some pointers are badly initiated, if the phase number of a man is greater
than the one of a woman, or if some phase values are not consecutive. This move can
also be initiated by a married woman in phase 2, who detects a possible improvement
(i.e., a BP since the woman is married). All other nodes will detect the phase change
and move to phase 1 too.

We will show that no execution cycles more than one time through the phases 1,
1.5, 2. Similarly to the algorithm of Ackermann et al., we show that, during the last
execution of the first phase, the regrets of the married women are globally decreasing.
This ensures that no BP exists at the end of this phase. During the last execution of
phase 2, it is the same for the regrets of men and, thus, no BP can appear (even though
the matching can be still incomplete). At the end, in O(n4) moves in overall, a complete
stable marriage is obtained.

II.1 - Algorithm Implementation
We now make precise the implementation of these ideas. Each node v has variables and
constants. The variables can be read by the neighbors, but the access to constants is
limited, for the confidentiality reasons that we explained before.

II.1.1 - Variables, Constants, Functions and Predicates (for a node v)

Variables.

• marriage ∈ N (v) ∪ Null: if the value is not Null, we say that it is the spouse of
v. Otherwise we say that v is single.

• proposal ∈ N (v) ∪ Null: if v is a woman, we say that this is the node to whom v
has proposed; if v is a man, this is the woman whose proposal has been accepted
by v. If the value is Null, we say that there is no proposal or acceptance.

• phase ∈ {1, 1.5, 2}: v is said to be in phase α if v.phase = α.

Constants.

• pref : the v’s list of its n neighbors in preference order. The priority of the ith
element of the list is i. Then, the first element is the most preferred neighbor and
its priority is 1.

Observe that pref is an ordered list that exactly contains all the elements in N (v).
Recall that the lists of preferences are kept secret. A node v only communicates to its
neighbor u the priority it gives to u and the priority of its actual spouse. If v is single,
the latter is n+ 1.

II. Self-stabilizing Solution to SMP 29

Functions.

• priority(v,u): returns the priority of u in the preference list of v. Note that if
parameter u is evaluated to Null, priority(v,u) = n+ 1 (v is single).

• min(A): returns the most preferred node in a set A of nodes

Let Cv be the set of nodes which prefer v and are preferred by v:
Cv = { u ∈ v.pref : priority(v,u) < priority(v,v.marriage)

∧ priority(u,v) < priority(u,u.marriage) }

The following function is used by women to determine which man to propose to.

• BestMarriage(v): if (Cv 6= ∅) then return min(Cv) else return Null

Let Pv be the set of women who: (a) are preferred by v to his own spouse; (b) prefer
v to their own spouse; (c) have proposed to v; (d) are in the same phase as v; (e) are
single, if their phase is 2, or with a spouse, if their phase is 1.

Pv = {u ∈ Cv : u.proposal = v ∧ u.phase = v.phase

∧ [(u.marriage 6= Null ∧ u.phase = 1)
∨ (u.marriage = Null ∧ u.phase = 2)]

The following function is used only by men to determine which proposal to accept.

• BestProposal(v) = if (Pv 6= ∅) then return min(Pv) else return Null

Predicates.
The solution that we propose uses predicates for testing locally some properties.

The predicate Married(v) is used by a woman v for checking whether she is recipro-
cally married (True), or not (False).

• Married(v) ≡ (v.marriage 6= Null) ∧ [(v.marriage.marriage = v) ∨
(v.marriage.proposal = v)]

• MarriedM(v) ≡ (v.marriage 6= Null) ∧ (v.marriage.marriage = v)

The predicate Response(v) checks if the proposal of v has been accepted.

• Response(v) ≡ (v.proposal 6= Null) ∧ (v.proposal.proposal = v)

The predicate AlreadyEngaged(v) is used by a man to detect if he already accepted a
proposal.

• AlreadyEngaged(v) ≡ (v.proposal 6= Null) ∧
[(v.proposal.proposal = v) ∨ (v.proposal.marriage = v)]

Since there is an asymmetry between women’s proposals and men’s acceptances (women
ask first for a marriage and then men answer), they have different predicates to verify
whether their pointers are correct and, in particular, that their marriages are reciprocal
(suffix W in the predicate name refers to women and M to men). Otherwise, the predicate
is False and pointers are said incoherent.

30 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

• IncoherentPointersW(v) ≡ (v.marriage 6= Null) ∧ [((v.marriage.marriage 6= v)
∧ (v.marriage.proposal 6= v)) ∨ (v.marriage = v.proposal) ∨
(v.marriage.proposal = v ∧ priority(v.marriage,v) >
priority(v.marriage,v.marriage.marriage))]

• IncoherentPointersM(v) ≡ (v.marriage 6= Null)
∧ [(v.marriage.marriage 6= v) ∨ (v.marriage = v.proposal)]

Since the definition of BP is asymmetrical (cf. Remark 1), there are two predicates for
checking the presence of BP (which involves a married woman). Hence, if at least one
of these two predicates is True, that indicates there is a BP. If a node detects a BP, we
say that it is involved in a BP.

• BlockingPairW(v) ≡ Married(v) ∧ (Cv 6= ∅)

• BlockingPairM(v) ≡ (∃u ∈Cv: u.marriage 6= Null)

The following predicate, AllCoherentPhase(v), checks some coherence in phases, namely
whether v and all its neighbors are in phase 2, or v is in phase 1 and all its neighbors in
phases 1 or 1.5. It is used only by men to decide if they can accept a proposal (women
verify somewhat different conditions).

• AllCoherentPhase(v) ≡ (v.phase = 2 ∧ (∀u ∈N (v): u.phase = 2))
∨ (v.phase = 1 ∧ (∀u ∈N (v): u.phase ∈ {1, 1.5}))

II.1.2 - Algorithm.

The matching M built by the presented algorithm is defined by pairs (w,m) ∈
E such that w.marriage = m and m.marriage = w. The algorithm
predicate is Pred2Phases ≡ [∀w ∈Women: Married(w) ∧ ¬BlockingPairW(w)
∧ ¬BlockingPairM(w.marriage)] and for the proof of self-stabilization, we define the
legitimate configurations as the configurations satisfying this predicate. Notice that
executions satisfying Pred2Phases satisfies also Prob.

The part of the algorithm executed by women (Algorithm 1) has 9 rules. We start
by describing intuitively what those rules do.

1. The Reset rule performs a reset of marriage and proposal pointers, if these point-
ers appeared to be incoherent according to IncoherentPointersW.

2. The rule BadInit is executed by a woman in phase 2. In this phase a married
woman is not supposed to make a proposal. Thus, if her proposal and marriage
pointers are not set to Null (the only reason for that is a bad initialization),
BadInit resets the proposal pointer and sets the phase to 1 (to restart the com-
putation of a matching).

3. The rule Propose1 (respectively Propose2) is executed by a married (resp. sin-
gle) woman in phase 1 (resp. 2). This rule’s effect is a proposal to the man who
corresponds to the best marriage for her (i.e., best for the woman but also for the
man with respect to its actual spouse or single status).

II. Self-stabilizing Solution to SMP 31

4. The rule Confirm1 (resp. Confirm2) is executed by a married (resp. single)
woman in phase 1 (resp. 2), after she has made a proposal to a man and this pro-
posal has been accepted (the man has put the name of the woman in its variable
proposal). Then, the woman confirms the marriage, breaking from her previous
man (only Confirm1) and matching with the new one. The couple is now con-
sidered married.

5. The rule ToPhase1.5 is a phase transition rule from phase 1 to phase 1.5. When
a woman in phase 1 cannot make any proposal (no BP is detected or she is single),
she has to move to phase 1.5 if all men are in phase 1.

6. The rule ToPhase2 is also a phase transition rule. A woman in phase 1.5 can
change to phase 2 if she does not detect any BP and if all men are in phase 1.5.

7. The rule ToPhase1 is the third phase transition rule. It is executed by a woman
in order to move from phase 2 or phase 1.5 to phase 1. The change happens if the
following (faulty) conditions are detected: (a) the woman is in phase 2 but some
man is in phase 1 (either a BP has been detected or phase synchronization has not
stabilized yet); (b) the woman is in phase 1.5 but a man is in phase 2 (the phase
synchronization has not stabilized yet); (c) the woman is married and either in
phase 1.5 or 2 but detects a BP.

Remark 2. If a man m does not answer positively to a proposal from a woman w (it
has a better priority proposal), she detects it. BestMarriage(w) will not return m any
longer and w can change her proposal with Propose1 or Propose2.

32 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Algorithm 1 for w ∈ Women
1: Reset : (* Reset pointers of marriage and proposal *)
2: {IncoherentPointersW(w)}
3: w.marriage ← Null, w.proposal ← Null
4: BadInit : (* Reset the pointer of proposal *)
5: {¬IncoherentPointersW(w) ∧ w.marriage 6= Null
6: ∧ w.proposal 6= Null ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 2}
7: w.proposal ← Null, w.phase ← 1
8: Propose1 : (* Propose in phase 1 *)
9: {¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1

10: ∧ BestMarriage(w) 6= w.proposal ∧ Married(w)}
11: w.proposal ← BestMarriage(w)
12: Confirm1 : (* Confirm a proposal in phase 1 *)
13: {¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1
14: ∧ Response(w) ∧ Married(w) ∧ BestMarriage(w) = w.proposal}
15: w.marriage ← w.proposal, w.proposal ← Null
16: Propose2 : (* Propose in phase 2*)
17: {¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 2
18: ∧ BestMarriage(w) 6= w.proposal ∧ w.marriage = Null}
19: w.proposal ← BestMarriage(w)
20: Confirm2 : (* Confirm a proposal in phase 2 *)
21: {¬IncoherentPointersW(w) ∧ ∀ v ∈N (w) ∪ {w} : v.phase = 2
22: ∧ Response(w) ∧ w.marriage = Null
23: ∧ BestMarriage(w) = w.proposal}
24: w.marriage ← w.proposal, w.proposal ← Null
25: ToPhase1.5 : (* To phase 1.5 *)
26: {¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1
27: ∧ ¬BlockingPairW(w)}
28: w.phase ← 1.5, w.proposal ← Null
29: ToPhase2 : (* To phase 2 *)
30: {¬IncoherentPointersW(w) ∧ ∀ v ∈N (w) ∪ {w} : v.phase = 1.5
31: ∧ ¬BlockingPairW(w)}
32: w.phase ← 2, w.proposal ← Null
33: ToPhase1 : (* To phase 1 *)
34: {¬IncoherentPointersW(w) ∧ (
35: [∃ m ∈ N (w): (m.phase = 1 ∧ w.phase = 2)
36: ∨ (m.phase = 2 ∧ w.phase = 1.5)]
37: ∨
38: [w.phase ∈ {2, 1.5} ∧ BlockingPairW(w)}
39: w.phase ← 1, w.proposal ← Null

II. Self-stabilizing Solution to SMP 33

The part of the algorithm executed by men (Algorithm 2) consists of 6 rules:

1. The Reset rule resets the marriage pointer of a man and changes its phase to 1.
We prove later that this can happen only once for a man in phase 2.

2. The Accept rule checks that women are in a consistent phase with respect to the
phase of the man executing the rule (AllCoherentPhase), that the best proposal
received is different from his actual partner and that he has not accepted another
proposal (¬ AlreadyEngaged). Remark that this is a commitment, but the couple
is not yet married. If the man is married to another woman, he has to break the
marriage since he received a better proposal.

3. The role of the rule Confirm is to confirm a marriage. The rule checks that the
phases are coherent (AllCoherentPhase) and if the woman has her variable marriage
set to the man, he confirms too.

4. The rule ToPhase1.5 is a phase transition rule from phase 1 to phase 1.5. If all
women are in phase 1.5 and no BP is detected, the man changes his phase to 1.5.

5. ToPhase2 makes men change to phase 2. When all women are in phase 2 and
men have checked the lack of BPs, then phase 2 can begin.

6. The ToPhase1 rule detects a phase synchronization problem (a woman being in
phase 1 or 1.5 with the man in phase 2) or a woman willing to change to phase 1
(a BP has been detected) when he is in phase 1.5. Then the man moves to phase
1.

34 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Algorithm 2 for m ∈ Men
1: Reset : (* Reset pointer of marriage *)
2: { IncoherentPointersM(m) }
3: m.marriage ← Null,m.phase ← 1
4: Accept : (* Accept a proposal except in phase 1.5 *)
5: {¬IncoherentPointersM(m) ∧ AllCoherentPhase(m)
6: ∧ BestProposal(m) 6= Null ∧ ¬AlreadyEngaged(m)}
7: m.proposal ← BestProposal(m)
8: Confirm : (* Confirm a marriage *)
9: {¬IncoherentPointersM(m) ∧ m.proposal 6= Null

10: ∧ m.proposal.marriage = m ∧ AllCoherentPhase(m)
11: ∧ priority(m,m.proposal) < priority(m,m.marriage)}
12: m.marriage ← m.proposal, m.proposal ← Null
13: ToPhase1.5 : (* To phase 1.5 *)
14: {¬IncoherentPointersM(m) ∧ ∀ w ∈ N (m): w.phase = 1.5
15: ∧ m.phase = 1 ∧ ¬BlockingPairM(m)}
16: m.phase ← 1.5, m.proposal ← Null
17: ToPhase2 : (* To phase 2 *)
18: {¬IncoherentPointersM(m) ∧ ∀ w ∈N (m): w.phase = 2
19: ∧ m.phase = 1.5 ∧ ¬BlockingPairM(m)}
20: m.phase ← 2, m.proposal ← Null
21: ToPhase1 : (* To phase 1 *)
22: {¬IncoherentPointersM(m) ∧ (
23: [(∃ w ∈N (m): w.phase ∈ {1.5, 1}) ∧ m.phase = 2]
24: ∨
25: [(∃ w ∈N (m): w.phase = 1) ∧ m.phase = 1.5]) }
26: m.phase ← 1, m.proposal ← Null

III - Correctness Proof and Time Complexity
Analysis (Algorithms 1 and 2)

We have to prove that Algorithms 1 and 2 are self-stabilizing for the specification Prob
of SMP. For that, we prove that any execution (from an arbitrary configuration) termi-
nates in a configuration satisfying Pred2Phases. That establishes convergence and, as
Pred2Phases ⇒ Prob, this property yields also correctness.

In the following Sub-section III.1, we sketch the proof. The detailed proofs can be
found in Sub-section III.2.

III.1 - Sketch
The analysis of the algorithm appears to be complex for several reasons. First, the
algorithm has to overcome the unfair adversary that can prevent some enabled nodes
from being activated as long as there are other enabled nodes. This may take many
moves made by nodes in different states and configurations. Moreover, all these moves

III. Correctness Proof and Time Complexity Analysis 35

may not contribute to the convergence (e.g., if an existing fault is not yet detected). Still,
they have to be taken into account for the correctness and the time analysis. Another
reason for the analysis difficulty is the distribution and asynchrony of the solution.
For example, as mutual marriage, divorce, and blocking pair detection cannot be done
instantaneously, or at least within some timing guarantees (as in synchronous lock-step
models), the related results on previous centralized or synchronous solutions cannot be
used in our case.

Finally, due to self-stabilization, the analysis has to consider executions starting
from an arbitrary configuration. In particular, initially, the phase numbers can be
arbitrary. Moreover there are specific rules applying to such or such phase number.
The consequence of that is a great number of cases to treat, each case necessitating
a particular treatment and special arguments. For classifying the different cases into
categories, the following definition is introduced.

Definition 5. We say that a configuration C is in (A,B, bp) iff, in C, the set of phase
numbers of women is A, the set of phase numbers of men is B and there are bp blocking
pairs. The configuration C is in (A,B, bp)× iff, in C, the set of phase numbers of
women is included in A, the set of phase numbers of men is included in B and there are
bp blocking pairs.

For example, we have the identity:
({a}, {b, c}, X)× ≡ ({a}, {b, c}, X) ⋃ ({a}, {b}, X) ⋃ ({a}, {c}, X). Furthermore, we
denote by C1W (resp. C1M) the set of configurations having at least one women (resp.
one man) in phase 1 and we set C1 = C1W ⋃

C1M .
We denote by C1 the set of configurations where ∃ v ∈ V : v.phase = 1. C1W and

C1M are sets of configurations in C1 where, respectively, v ∈ Women and v ∈ Men.
We prove the correctness of the algorithm for every possible starting configuration

type. We start by giving a skeleton, which allows to skip the countless cases of the
detailed proof and which is sufficient for understanding its main ideas. Interested readers
will find all the details in the following Sub-section (Sub-sect. III.2).

The first proposition states that any terminal configuration is legitimate (see defini-
tion in Sub-sect II.1.2) and in (2, 2, 0).

Proposition 1. In a terminal configuration, the set of edges {(w,m) ∈ E :
w.marriage = m ∧ m.marriage = w} is non-empty and is a stable matching.
This configuration is in ({2}, {2}, 0).

Then, we study the convergence. Lemmas 7 - 16 establish that from any configu-
ration in C1, in O(n4) moves, an execution reaches a configuration in ({1.5}, {1.5}, 0).
That is made by showing that the sum of the regrets of married women is regularly
decreasing. Notice that this property cannot be derived directly from a similar result
for the centralized two-phased algorithm of Ackermann et al., since it is based on the
“best response” dynamics that are used there (in phase 1). As already explained before,
since marriages, divorces and detection of BPs cannot be done instantaneously under a
distributed setting, it is difficult and costly to realize such dynamics.

Then, Lemmas 17 - 29 and Proposition 2 below establish that every execution,
starting in ({1.5}, {1.5}, 0), reaches a configuration in ({2}, {2}, 0). From there, in every

36 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

reachable configuration, nodes are in phase 2. Recall that in a configuration ({2}, {2}, 0),
there may be still unmarried nodes.

Proposition 2. Every execution takes O(n4) moves to reach a configuration C in
({2}, {2}, 0). Moreover, every configuration reached from C is in ({2}, {2}, X) for X ≥
0.

Proposition 2 ensures that the condition required by Proposition 3 (all nodes in phase
2) holds after O(n4) moves. Proposition 3 concerns precisely a segment of execution,
in which nodes stay in phase 2, and establishes a bound O(n4) on the length of this
segment. The bound is obtained by showing that the sum of the regrets of married
men is strictly decreasing. Notice that, as before (for phase 1), this property cannot
be directly derived from a similar result for the centralized two-phased algorithm of
Ackermann et. al.. Then, by Proposition 3, from configurations in ({2}, {2}, X) for
X ≥ 0, a terminal configuration is obtained in additional O(n4) moves (this is proven
through Lemmas 30 - 37 and Corollary 1).

Proposition 3. Let E be a sub-execution such that, in every configuration, all nodes
are in phase 2. Nodes can execute at most O(n4) moves in E.

Finally, Proposition 1, 2 and 3 altogether imply the main theorem below.

Theorem 1. Any execution takes O(n4) moves to reach a terminal configuration where
the set of edges {(w,m) ∈ E : w.marriage = m ∧ m.marriage = w} is a stable
matching.

III.2 - Detailed Proofs
In this section we prove the technical lemmas needed for Proposition 1 (Lemmas 1 -
6), Proposition 2 (Lemmas 7 - 29) and Proposition 3 (Lemmas 30 - 37). The three
propositions yields the main Theorem 1, as described in Sub-sect. III.1.

III.2.1 - Properties of the Terminal Configurations

We start by proving that terminal configurations are configurations in (2, 2, 0) (Lemma 5)
by showing that in all other sets of configurations, there is at least one node eligible for
a rule. Then, in Proposition 1, we prove that terminal configurations have a set of edges
such that (w,m) ∈ E : w.marriage = m ∧ m.marriage = w is a stable marriage.

Lemma 1. Let C be a terminal configuration. For a node m ∈ Men (resp. w ∈
Women), IncoherentPointersM(m) (resp. IncoherentPointersW(w)) is False.

Proof. A node satisfying this predicate is eligible for Reset, whence a contradiction
with the fact that the configuration is terminal.

Lemma 2. Let C be a terminal configuration and let m ∈ Men. Then AllCoherent-
Phase(m) is True in C.

III. Correctness Proof and Time Complexity Analysis 37

Proof. Assume that AllCoherentPhase(m) is False, by contradiction. Then there exists
a woman w ∈ Women such that:

1. if m.phase = 2 then w.phase ∈ {1, 1.5}

2. if m.phase = 1 then w.phase = 2

IncoherentPointersW(w) is False by Lemma 1. If w.phase ∈ {2, 1.5} then w is eligible
for ToPhase1 since m ∈N (w) and because of points 1 and 2. If w.phase = 1 then m is
eligible for ToPhase1. This contradicts the fact that the configuration is terminal.

Lemma 3. Let C be a terminal configuration and v be a node. If there exists a node
u ∈N (v) such that v.marriage = u then u.marriage = v.

Proof. Assume first that v ∈ Men and that v.marriage = u ∈Women. If
u.marriage 6= v, then IncoherentPointersM(v) is True, which is not possible in a
terminal configuration, by Lemma 1.

Assume now that v ∈ Women, that v.marriage = u with u ∈Men and that
u.marriage 6= v. Necessarily u.proposal = v or IncoherentPointersW(v) is True,
which is not possible by Lemma 1. There are two cases.

• Assume first that u.marriage = Null. Then u is eligible for Confirm since
priority(u,v) < Null. This yields a contradiction.

• Assume now that u.marriage = v1 ∈ Women. Necessarily priority(u,v) >
priority(u,v1) or u is eligible for Confirm (since IncoherentPointersM(u) is False
by Lemma 1 and that AllCoherentPhase(u) is True by Lemma 2). Observe now that
the inequality priority(u,v) > priority(u,v1) implies that IncoherentPointersW(v) is
True. This is not possible by Lemma 1.

Lemma 4. Let C be a terminal configuration. No node is in phase 1 in C.

Proof. Assume by contradiction that there exists a node in phase 1, in a terminal con-
figuration C.

We consider first the case in which there exists w ∈ Women in phase 1. Let m ∈
Men. IncoherentPointersM(m) and IncoherentPointersW(w) are False by Lemma 1. Ob-
serve now that m is in phase 1 or eligible for ToPhase1. Thus we can assume that all
men are in phase 1 as well. There are two different cases for a woman w.

• She is married (Married(w) is True) and she forms a BP with some node m1 ∈
Men. Assume without loss of generality that m1 corresponds to BestMarriage(w).
Necessarily w.proposal = m1 or w eligible for Propose1.
Observe first that BestProposal(m1) 6= Null since w.proposal = m1 and both are
in phase 1.

– If m1.proposal = w then w is eligible for Confirm1 since Response(w) is
True and IncoherentPointersW(w) is False, by Lemma 1. This yields a con-
tradiction.

38 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

– Assume now that m1.proposal 6= w. First, AllCoherentPhase(m1) is True
by Lemma 2 and BestProposal(m1) 6= Null. If AlreadyEngaged(m1) is False
then m1 is eligible for Accept. Therefore assume that AlreadyEngaged(m1)
is True. This implies that there exists w2 ∈ Women such that w2 =
m1.proposal and w2.proposal = m1 or w2.marriage = m1. By defini-
tion of the predicate, w2 6= Null. Now m1.marriage 6= w2 or Incoherent-
PointersM(m1) is True, which is not possible by Lemma 1. There are two
cases.
First, if w2.marriage = m1 and priority(m1,w2) < prior-
ity(homme1,m1.marriage) then m1 is eligible for Confirm. If prior-
ity(m1,w2) > priority(m1,m1.marriage) then IncoherentPointersW(w2) holds
and w2 is eligible for Reset which yields a contradiction.
Thus consider the second case in which w2.marriage 6= m1. Observe first
that w2 is either in phase 1 or 1.5 or AllCoherentPhase(m1) is False since m1
is in phase 1. This is not possible by Lemma 2. We consider these two cases.

∗ Assume first that w2 is in phase 1. There are two sub-cases.
· w2 is married with some node m2 ∈ Men. If BlockingPairW(w2)

is False then w2 eligible for ToPhase1.5. If it is True, then by
definition of the predicate, the set Cw2 is not empty and BestMar-
riage(w2) 6= Null. Recall also that w2.proposal = m1. Thus, if
BestMarriage(w2) = m1 then w2 eligible for Confirm1. Otherwise,
if BestMarriage(w2) 6= m1 then w2 eligible for Propose1. This yields
a contradiction.

· w2 is not married by definition, BlockingPairW(w2) is False. In that
case, it is eligible for ToPhase1.5. This yields a contradiction.

∗ Secondly assume that w2 is in phase 1.5. If BlockingPairW(w2) is False
then it is eligible for ToPhase2. If it is True, it is eligible for ToPhase1.
This yields a contradiction.

• She is single or married with no BP: ToPhase1.5 can be applied. Thus, in a
terminal configuration C, women are not in phase 1. Assume now that ∃m ∈Men
with m.phase = 1 in C. Women can either be in phase 1.5 or 2 (since women are
not in phase 1, as proved above).
If some woman is in phase 2, she is eligible for ToPhase1 since m.phase = 1.
Thus we can assume that all women are in phase 1.5. If there exists a woman w
such that BlockingPairW(w) is True, then she is eligible for ToPhase1. Thus, this
predicate is False for every woman. There are two cases.

– Assume first that BlockingPairM(m) is True. Let w be the woman which
forms a BP with m. Then, BlockingPairW(w) is True. This is not possible as
shown above.

– Therefore assume BlockingPairM(m) is False. Then, m eligible for
ToPhase1.5, which yields a contradiction.

III. Correctness Proof and Time Complexity Analysis 39

Lemma 5. A terminal configuration is in ({2}, {2}, 0).

Proof. We prove this lemma by contradiction. Let C be a terminal configuration not in
({2}, {2}, 0). Since by Lemma 4 no node is in phase 1, we have that C is in one of the
following sets:

1. ({1.5}, {1.5}, X)

2. ({1.5, 2}, {1.5}, X)

3. ({1.5, 2}, {2}, X)

4. ({2}, {1.5, 2}, X)

5. ({1.5}, {1.5, 2}, X)

6. ({1.5, 2}, {1.5, 2}, X)

7. ({1.5}, {2}, X)

8. ({2}, {1.5}, X)

9. ({2}, {2}, X), X > 0.

In case 1, all nodes are in phase 1.5. If X = 0 then women can apply ToPhase2. If
X 6= 0 then the woman in a BP can apply ToPhase1.

In case 2, all women are in phase 1.5, men are in phase 1.5 or 2 (with at least one
in each phase). Women in phase 1.5 are eligible for ToPhase1. The same holds for
cases 6 and 8.

For cases 3, all women are in phase 2, men are in phase 1.5 or 2. If there are BPs,
women in these pairs are eligible for ToPhase1. Otherwise, men in phase 1.5 are eligible
for ToPhase2.

For cases 4, all men are in phase 2 and women are in phase 1.5 or 2. If there are
BPs, women in these pairs are eligible for ToPhase1. Otherwise, women in phase 1.5
are eligible for ToPhase2.

For cases 5, all men are in phase 1.5 and women are in phase 1.5 or 2. If there are
BPs, women in these pairs are eligible for ToPhase1. Otherwise, men in phase 1.5 are
eligible for ToPhase2.

For cases 7, if there are BPs, women in these pairs are eligible for ToPhase1.
Otherwise men are eligible for ToPhase2.

Finally consider configurations in ({2}, {2}, X), X > 0. Women which have a BP
are eligible for ToPhase1. This concludes the overall proof.

Lemma 6. In a terminal configuration, for every woman w, Married(w) holds.

Proof. Let C be a terminal configuration. By Lemma 5, C is in ({2}, {2}, 0). Assume by
contradiction that there exists w ∈ Women for which Married(w) does not hold. This
implies that there is at least one man m for which MarriedM(m) does not hold, since
the graph is bipartite complete with the same number of men and women.

There are two cases. First, if m.marriage 6= Null then m is eligible for Reset since
m.marriage.marriage 6= m by definition of MarriedM(m).

40 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Then if m.marriage = Null, it can be also assumed that w.marriage = Null.
Otherwise, by definition of Married(w), the disjunction w.marriage.marriage 6= w ∨
w.marriage.proposal 6= w holds, which implies that w is eligible for . Altogether, we
can assume that m.marriage = w.marriage = Null.

We have first that Cw, the set of nodes u such that (w, u) is a BP, is not empty,
since both m and w prefer each other to their current (Null) marriage. Assume without
loss of generality that m = BestMarriage(w). If w.proposal 6= m then w is eligible for
Propose2. Thus assume that w.proposal = m, implying that BestProposal(m) 6= ∅.
Thus let w1 = BestProposal(m). If AlreadyEngaged(m) is False then m is eligible for
Accept, which yields a contradiction. Then assume that it is True. By definition of
this predicate, m.proposal 6= Null. Let w2 such that w2 = m.proposal. We also have
by definition of AlreadyEngaged(m) that w2.proposal = m or w2.marriage = m.

In the second case, m is eligible for Confirm since priority(m,w2) < m.marriage =
Null. In the first case, if w2.marriage 6= Null then it is eligible for BadInit. Thus
assume that w2.marriage = Null. If BestMarriage(w2) is m then w2 is eligible for
Confirm2 and otherwise it is eligible for Propose2. This concludes the proof.

Proposition 1. In a terminal configuration, the set of edges {(w,m) ∈ E :
w.marriage = m ∧ m.marriage = w} is a stable marriage.

Proof. By Lemma 5, a terminal configuration is in ({2}, {2}, 0), which implies that
there are no BPs in such a configuration. By Lemma 6 and Lemma 3 all nodes are
matched.

III.2.2 - Convergence Proof

There are multiple techniques for proving the convergence of a self-stabilizing algorithm
(Definition 3). Here we adopt a method introduced by Gouda and Multari [GM91],
called convergence stairs or sometimes attractors. The image of a stair describes well
the method. For reaching the desired set of legitimate configurations, the algorithm
proceeds step by step, and the proof consists in showing that, once one step has been
reached, the following step will be necessarily reached too. In our case, the steps of the
stair correspond to the sets of configurations resulting from Definition 5. This technique
allows to compute an upper bound of the stabilization time, by adding the upper bounds
of moves, necessary for going from one step to another.

Recall that C1W (resp. C1M) denotes the set of configurations having at least one
women (resp. one man) in phase 1 and that C1 = C1W ⋃

C1M .

III.2.2.1 - Convergence to ({2}, {2}, 0)

Lemma 7. Let C be a configuration in C1M where ∀w ∈Women: w.phase = 2. Any
execution starting from C reaches a configuration C’ in C1W in O(n) moves.

Proof. In C, a woman w in phase 2,

(a) either is eligible for Reset if IncoherentPointersW(w) = True (this rule does not
change the phase number).

(b) or is eligible for ToPhase1 since at least one man is in phase 1.

III. Correctness Proof and Time Complexity Analysis 41

Others rules cannot be applied since at least one man is in phase 1 and w in phase
2.

• A man m in phase 1 is eligible for Reset if IncoherentPointersM(m) = True.

• A man in phase 2 is eligible either forReset if IncoherentPointersM(m) = True (af-
ter aReset,m.phase = 1), or forConfirm andAccept. Indeed, if ∀w ∈Women:
w.phase = 2, if m.proposal 6= Null ∧ m.proposal.marriage = m, m is eligible
for Confirm. Furthermore, after this move, AlreadyEngaged(m) = False and, if
a better woman is proposing to m, BestProposal(m) 6= Null. Thus, m can also be
eligible for Accept.

• A man in phase 1.5 is eligible either for Reset or ToPhase2 (all women are
in phase 2). Indeed, after a Reset, m.phase = 1 and m is no more eligible for
ToPhase2. Reciprocally, after a ToPhase2, m cannot be eligible for Reset since
IncoherentPointersM(m) = False for ToPhase2.

We enumerate all possibles sets of configurations with all women in phase 2 and we
ount the number of moves in the corresponding executions:

A. ({1}, {2}, X ≥ 0): first at most n men’s and n women’sReset (both do not change
nodes’ phases), then at most n women’s ToPhase1. After these O(n) moves a
configuration in C1W is reached.

B. ({1, 2}, {2}, X ≥ 0): first, at most n women’s Reset and n− 1 men’s Reset (men
in phase 1). Furthermore, men in phase 2 can also be eligible for Confirm and/or
Accept, that is at most 2n moves. After this moves, all remaining rules change
the phase number. There are two cases that reach both a configuration in C1W :

(a) all nodes are activated: at most n − 1 men in phase 2 for Reset (if they
had not been activated for Accept/Confirm) and at most n women for
ToPhase1 after 4n− 1 moves, that is O(n) moves.

(b) only men in phase 2 are activated (if they had not been activated for Ac-
cept/Confirm) for Reset and the reached configuration is in ({1}, {2}, X)
and then, in C1W (see the point A. for explanations) after O(n) moves.

C. ({1, 1.5}, {2}, X ≥ 0): at most n women and at most n− 1 men in phase 1 can be
activated for Reset. After that, there is four possible cases:

(a) If all men in phase 1.5 are activated for Reset (at most n− 1), the reached
configuration is in ({1}, {2}, X) A. and then, in C1W (see the point A. for
explanations) after O(n) moves.

(b) If all men in phase 1.5 are activated for ToPhase2 or Reset, the reached
configuration is in ({1, 2}, {2}, X) and then in C1W (see point B. for expla-
nations) after O(n) moves.

(c) If some men in phase 1.5 are activated for Reset and/or some men in
phase 1.5 for ToPhase2 (at most n − 2 men altogether), a configuration in
({1, 1.5, 2}, {2}, X) is reached after O(n) moves. From there, C1W is reached

42 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

after at most O(n) moves (see the point D. for explanations except the tran-
sition to a configuration in ({1, 1.5}, {2}, X) since men in phase 2 have been
activated for ToPhase2 and cannot be now eligible for Reset).

(d) at most n men are activated (for ToPhase2 or Reset) but also at most n
women for ToPhase1, the reached configuration is in C1W after at most O(n)
moves.

D. ({1, 1.5, 2}, {2}, X ≥ 0): at most n women and at most n− 2 men in phase 1 can
be activated for Reset. Furthermore, at most n−2 men in phase 2 can be eligible
for Accept and/or Confirm, that is at most 2n − 2 moves. After that, there is
four possible cases:

(a) If all men in phase 1.5 and 2 are activated for Reset (at most n − 2), the
reached configuration is in ({1}, {2}, X) A. and then, in C1W (see the point
A. for explanations) after O(n) moves.

(b) If all men in phase 1.5 are activated for ToPhase2 or Reset, the reached
configuration is in ({1, 2}, {2}, X) and then in C1W (see point B. for expla-
nations) after O(n) moves.

(c) If all men in phase 2 are activated for Reset, the reached configuration is in
({1, 1.5}, {2}, X) and then in C1W (see point C. for explanations) after O(n)
moves.

(d) at most n men are activated (for ToPhase2 or Reset) but also at most n
women for ToPhase1, the reached configuration is in C1W after at most O(n)
moves.

To sum up, from any configuration C ∈ C1 where ∀ w ∈ Women : w.phase = 2, any
execution takes O(n) moves to reach a configuration in ∈ C1W .

Lemma 8. Let C be a configuration in C1 where ∀w ∈Women : w.phase ∈ {2, 1.5}.
Any execution starting from C takes O(n) moves to reach a configuration C’ in C1W .

Proof. In these sets of configuration, a women w in phase:

• 1.5 is eligible for Reset and ToPhase1 if ∃w ∈Women : w.phase = 2 or if
BlockingPairW(w) = True.

• 2 is eligible for Reset and ToPhase1.

Since ∃w1, w2 ∈Women : w1.phase = 2 ∧ w2.phase = 1.5, a man m in phase

• 1 is only eligible for Reset.

• 2 is eligible either for Reset or for ToPhase1.

• 1.5 is eligible for Reset.

We enumerate all possibles sets of configurations with all women either in phase 2
or 1.5 and count the moves in the corresponding executions:

III. Correctness Proof and Time Complexity Analysis 43

A. ({1}, {1.5, 2}, X ≥ 0): after at most 2n Reset (men and women), only at most
n− 1 women are eligible (women in phase 2, for ToPhase1). Thus, after at most
3n− 1 moves, that is O(n) moves, a configuration in C1W is reached.

B. ({1, 1.5}, {1.5, 2}, X ≥ 0): after at most 2n−1 Reset (all men except one in phase
1.5 and n women), there is two cases:

(a) Either only the last man in phase 1.5 is activated for the Reset and a con-
figuration in ({1}, {1.5, 2}, X) is reached after 2n moves. From there, by the
point A., after O(n) moves a configuration in C1W is reached.

(b) Or at most n − 1 women (those which are in phase 2) and the last man in
phase 1.5 are activated (respectively for ToPhase1 andReset), that is 3n−1
moves, i.e. O(n) moves. The reached configuration is then in C1W .

Hence, from ({1, 1.5}, {1.5, 2}, X ≥ 0) and after O(n) moves, a configuration in
C1W is reached.

C. ({1, 2}, {1.5, 2}, X ≥ 0): after at most 2n− 1 Reset (all men except one in phase
2 and n women), there are two cases.

(a) Either at most n− 1 men in phase 2 are activated for ToPhase1 or Reset,
that is O(n) moves, and the reached configuration is in ({1}, {1.5, 2}, X). By
point A., after O(n) moves, a configuration in C1W is reached.

(b) Or at most n − 1 men in phase 2 (for ToPhase1 or Reset) and at most n
women are activated (for ToPhase1), that is O(n) moves, and the reached
configuration is in C1W .

D. ({1, 1.5, 2}, {1.5, 2}, X ≥ 0): after at most 2n − 1 Reset (all men except one in
phase 2 and n women), there are four cases.

(a) All men in phase 2 and 1.5 (at most n−1) are activated for ToPhase1 orRe-
set, that is O(n) moves, and the reached configuration is in ({1}, {1.5, 2}, X).
By point A., after O(n) moves, a configuration in C1W is reached.

(b) All men in phase 2 (at most n − 2) are activated for ToPhase1 or Reset,
that is O(n) moves, and the reached configuration is in ({1, 1.5}, {1.5, 2}, X).
By point B., after O(n) moves, a configuration in C1W is reached.

(c) All men in phase 1.5 (at most n − 2) are activated for Reset, that is O(n)
moves, and the reached configuration is in ({1, 2}, {1.5, 2}, X). By point C.,
after O(n) moves, a configuration in C1W is reached.

(d) At most n men (for ToPhase1 or Reset) and at most n women are activated
(for ToPhase1), that is O(n) moves, and the reached configuration is in C1W .

To sum up, from any configuration C ∈ C1 where ∀w ∈Women : w.phase ∈ {2, 1.5},
any execution takes O(n) moves to reach a configuration in ∈ C1W .

Lemma 9. Let C be a configuration in C1 where ∀w ∈Women : w.phase = 1.5.
Any execution starting from C takes O(n) moves to reach a configuration C’ in C1W or
({1.5}, {1.5}, X) with X ≥ 0.

44 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Proof. Let us suppose, by contradiction, that starting from C, no C’ in C1W or
({1.5}, {1.5}, X) with X ≥ 0 is ever reached. Thus, women are only eligible for
Reset. Indeed, since C1W is not reached and women are in phase 1.5, ToPhase1 is
not activated. ToPhase1.5 is not enabled since women are already in phase 1.5 and
ToPhase2 is not enabled since all men are not in phase 1.5 (({1.5}, {1.5}, X ≥ 0) is
not reached). Other rules are also not enabled because of women’s phases.

Men have several enabled rules relying to their phases and to women’s phases (that
does not change since they are only eligible for Reset). A man m in phase:

• 1 is only eligible for Reset and for ToPhase1.5 if BlockingPairM(m) = False.

• 2 is eligible either for Reset or for ToPhase1.

• 1.5 is eligible for Reset or for ToPhase1 if BlockingPairM(m) = True.

Since women cannot change their phases and that there is no configuration in C1W

or ({1.5}, {1.5}, X ≥ 0), either a terminal configuration is reached or the execution
reaches two times the same configuration (since the variables are bounded and if no
terminal configuration is reached). By Proposition 1, the terminal configuration is in
({2}, {2}, 0). But since no man is eligible for ToPhase2, this case is impossible. Now
consider the configuration that is reached twice. Because all rules change at least one
value and the same configuration is reached twice, at least one node v sets the same
values to variables twice. Since women are eligible only once for Reset, v /∈ Women.
If v.phase = 1, there are two cases. Either v is first activated for Reset and then for
ToPhase1.5. But after this move, he is no more eligible (Reset not enabled because
v.proposal = Null after ToPhase1.5). Or v is only activated for ToPhase1.5. In
both cases, the variables of v have different values.
If v.phase = 1.5, there are also three cases. Either v is first activated for Reset and
then for ToPhase1.5. But after this move, v is no more eligible (Reset is not enabled
because v.proposal = Null after ToPhase1.5), or it is only activated for ToPhase1,
or it is activated for ToPhase1 and ToPhase1.5. In the first two cases, the variables of
v have different values. For the third case, v has been activated for ToPhase1 because
of a BP. If he is activated for ToPhase1.5, BlockingPairM(m) = False. This case
happens if the woman w involved in the BP is now considered as single by v after a
Reset (i.e. she was not married, but her marriage pointer was not Null). Then, v can
have the same state after these two moves but w has now a new pointer value.
If v.phase = 2, there are four cases. Node v is either activated for Reset and
ToPhase1.5, for ToPhase1 and ToPhase1.5, only for Reset or only for ToPhase1.
In this four cases, the phase number is not the same, i.e. the state is not the same. This
lead to a contradiction. Note that, men can reach phases 1 or 1.5 from all phases. Thus,
if ∀m ∈Men: BlockingPairM(m) = True, m.phase = 1.5 in C and if the two nodes
involved in the BPs are not activated in the execution until C’, all other men shift to
phase 1.5, C’ is in ({1.5}, {1.5}, X ≥ 0). Otherwise, at least a woman is activated and
the configuration is in C1W .

Thus, there is no execution not reaching a configuration in C1W or in ({1.5}, {1.5}, X ≥
0). Furthermore, women can only be activated for Reset and ToPhase1 and each man
can at most be activated for 2 moves, that is O(n) moves in total.

III. Correctness Proof and Time Complexity Analysis 45

Lemma 10. Let C be a configuration in C1. Any execution starting from C takes O(n)
moves to reach a configuration C’ in C1W or in ({1.5}, {1.5}, X ≥ 0).

Proof. By definition of C1, in C, ∃ v ∈ V : v.phase = 1. Necessarily, v ∈ Men,
otherwise the configuration would be already in C1W . Let us enumerate all possible sets
of configuration in which C can be:

• C1 where ∀ w ∈ Women : w.phase = 2. By lemma 7, a configuration in C1W

is reached after O(n) moves.

• C1 where ∀ w ∈ Women : w.phase ∈ {2, 1.5}. By lemma 8, a configuration in
C1W is reached after O(n) moves.

• C1 where ∀ w ∈ Women : w.phase = 1.5. By lemma 9, a configuration in C1W

or in ({1.5}, {1.5}, X ≥ 0) is reached after O(n) moves.

To sum up, from a configuration in C1, after O(n) moves, a configuration in C1W or
({1.5}, {1.5}, X ≥ 0) is reached.

Lemma 11. Let C be a configuration in C1W . Any execution starting from C takes
O(n2) moves to reach a configuration C’ in ({1}, {1, 1.5}, X)× ⋃ ({1.5}, {1.5}, 0).

Proof. Let w1 be the woman in phase 1 (because C ∈ C1W). Let us analyze the moves
of other nodes.

Let m be a node in Men. Independently of its phase number, m can be eligible for
Reset. After the move, m.phase = 1. Otherwise, if:

1. m.phase = 2 or m.phase = 1.5, m is only eligible for ToPhase1 if he was
not eligible for Reset: one of its neighbors is in phase 1. If a woman in phase 2
proposes/confirms tom, it cannot accept/confirm (AllCoherentPhase(m) is False).

2. m.phase = 1, m can be eligible for different rules. If m is eligible for Accept or
Confirm, there are incoherent pointers. Indeed, if a woman w has been activated
for Propose1/2 or Confirm1/2, all men are in phase 1. Furthermore, if m is
eligible for Accept or Confirm, all women are in phase 1 or 1.5. Then, the
configuration is already C’.
Now, if m is eligible for Accept because a proposal of a woman w, the pointers of
w are incoherent and all women are either in phase 1 or 1.5. But men are not all
in phase 1. Then, w is not eligible for Confirm until no man is in phase 1, that
is the configuration C’. No new marriage can be done before reaching C’. If m is
eligible for Confirm to w, that means that m is already married with w. Then
after its move, no new marriage is done.
Since these moves are possible only because of incoherent pointers and each woman
has only two pointers, there are at most n moves (Accept or Confirm) resulting
from their incoherent pointers.

Then, a man is eligible for at most two rules (Reset or ToPhase1 and Accept or
Confirm. That means that in altogether O(n) moves, men are all in phase 1.

Let w be a node in Women. Reset is enabled for w. If

46 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

• w.phase = 1.5, w is eligible for ToPhase1 if w is involved in a BP or if a man
is in phase 2.

• w.phase = 1, w is eligible for Propose, Confirm or ToPhase1.5 if w is not
involved in a BP.

• w.phase = 2, w is eligible for Propose or Confirm, BadInit (if no reset) if all
men are in phase 2 and for ToPhase1 if a man is in phase 1 or if w is involved in
a BP.

In short, in O(n2) moves, the execution reaches C’.
In the sequel, we consider a particular node and we enumerate its possible inter-

actions with the perspective of determining upper bounds to their number. Naturally,
there is a great number of cases to examine, but no one is complicated and its results
come from a simple examination of the rules of the algorithm.

Let v be a node in phase 1. Firstly, consider the case of v ∈ Men. Other men may
be in any phase. Let w be in Women. If its pointers are incoherent, w can be eligible
for Reset . For the other rules, we consider the different sub-cases:

1. w.phase = 2: w is only eligible for ToPhase1 (one of its neighbors is in phase
1), BadInit and Reset. The first two rules set the phase of w to 1, after a Reset
if necessary. Reset does not affect the phase value.

2. w.phase = 1.5: if w is involved in a BP, its is eligible for ToPhase1. Otherwise,
w is eligible for Reset, ToPhase1 and ToPhase2. If w is eligible for ToPhase2,
all men are in phase 1.5, but v could move to 1.5 from 1 only if all women are in
phase 1.5 too, thus the configuration C’has been reached. Otherwise, w is eligible
either for Reset or for ToPhase1. ToPhase1 sets w.phase to 1, after a Reset
if necessary. Reset does not affect the phase value.

3. w.phase = 1: if some men are not in phase 1, w has no enabled rule except the
Reset. Otherwise, w is eligible for:

• Reset only once. Indeed, after Reset w is single in phase 1 and cannot be
married (propose or confirm) in this phase.

• ToPhase1.5 only once and when w is single or married without a BP. In
phase 1.5 and after man’s Reset, w may detect a BP with this man. She is
then eligible for ToPhase1. To be eligible again for ToPhase1.5, w has to
propose, a man has to accept, and w then has to confirm. Till confirmation,
w has to stay in phase 1 and all men have to be in phase 1. They cannot
change their phase till confirmation of w. Moreover, a man can accept only if
all women are in phase 1 or 1.5. Thus C’ is already reached, contradicting the
fact that w eligible for ToPhase1.5 for the second time before C’ is reached.

• Propose1: since w may propose only once to each man (and not to her
spouse), w is eligible for this rule at most n− 1 times. Indeed, if w propose
to a man m, BestMarriage selects the best possible spouse. But if pointers
of men are incoherent, w cannot detect the BP with a better spouse m1 and
propose to m. After the activation of m1 for the Reset, she can propose.
And this case may happen n− 1 times.

III. Correctness Proof and Time Complexity Analysis 47

• Confirm1: it is a special case of the previous case. Indeed, since women
are not all in phases 1 or 1.5, men cannot accept a proposal. But in the
configuration C, the proposal pointer of a man m can be already set to w.
Then, if w proposes to this man, w can also be eligible for Confirm1. Then,
w has resolved a BP (because in the definition of Cv, w checks if its proposal is
also more interesting for m). Man m is eligible for Confirm when all women
are in phase 1 or 1.5, that is the configuration C’.

The worst case is when all women are in phase 1 except one in phase 2 and men all in
phase 1, because they can propose to men n − 1 times. Indeed, each woman is eligible
for O(n) moves. That is altogether, O(n2) moves of women and then all women are
either in phase 1 or 1.5.

Now, let us consider the case of v ∈Women. Let us analyze the other nodes next
moves. Let m ∈ Men. In all cases, m is eligible for Reset and then its phase is set to
1. Otherwise, if:

1. m.phase = 1, m has nothing to do. In fact, ifm is eligible forAccept orConfirm,
all men are in phase 1 because otherwise women could not propose or confirm a
marriage. If all women are in phase 1 and there is an incoherent pointer, a woman
possibly has her pointer of proposal to m and m is eligible for Accept, but the
woman will not answer while all men are not in phase 1 (and then, the configuration
is C’). Furthermore, if all pointers of a woman are incoherent (the two pointers
are set to m for example) m cannot be eligible for these two rules because of the
definition of Pv. A man is eligible at most once for one of these rules.

2. m.phase = 2 or m.phase = 1.5, m is eligible for ToPhase1 if he was not eligible
for Reset: one of his neighbors is in phase 1. If a woman in phase 2 proposes to
m, m cannot accept (AllCoherentPhase(m) is False).

Then, a man is eligible for at most two rules. That is altogether O(n) moves after which
men are all in phase 1.

In short, in O(n2) moves, the system reaches C’.

In the two following lemmas (Lemmas 12 and 11), we introduce a norm function
and we precise conditions in which this function is strictly decreasing. A norm function
is a function from a set of configurations into a well ordered set (ordered set with no
infinite strictly decreasing sequence). If there exists a norm function on a subset of
configurations, an execution on this subset either terminates or reaches a configuration
outside the subset. Then exhibiting a norm function allows to prove that an execution
does not remain indefinitely at the same step of a convergence stair. The considered
norm function is based on the notion of regret ([Knu76, GI89]).

Let MarriedWomen(C) be the set of nodes v in Women that are married in the
configuration C. LetRw(C) be the sum of the regret of nodes v in MarriedWomen(C):

Rw(C) =
∑

v ∈ MarriedWomen(C)
priority(v,v.marriage(C))

48 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Lemma 12. Let C be a configuration in ({1}, {1, 1.5}, X > 0)×. Any execution start-
ing from C takes O(n2) moves to reach a configuration C’ in ({1}, {1, 1.5}, Y ≥ 0) ⋃
({1}, {1}, Y ≥ 0) such that Rw(C) > Rw(C’).

Proof. Let T be the transition C1→ C2 and let us consider moves such that Rw(C1) >
Rw(C2). Note that Confirm1 is the only rule that decreases Rw(C) (no rule in-
creases the sum). Indeed, a woman w0 is married if [(w0.marriage.marriage = w0) ∨
(w0.marriage.proposal = w0)] (Married(w0)) and Confirm1 set her marriage pointer
to a man m0 if m0.proposal = w0 (Response(w0)). Furthermore, BestMarriage(w0)
= w0.proposal checks if w0.proposal is the best man for w0 in the current configura-
tion. Then, if a woman is activated for Confirm1, she gets married with a new man,
better ranked than its actual partner, i.e., decreases Rw.

Now, we consider all enabled rules in C that do not change Rw and we count how
many times each rule is enabled for each node. First, let m be in Men. Relying on its
state and the state of the system , m is eligible for:

• Reset, once. Indeed, since Reset is enabled only if m.marriage 6= Null and
sets m.marriage to Null between the two activations of Reset, m.marriage is
set to some value. So m has been activated for Confirm (the only rule that sets
m.marriage). Thus, if a man is eligible twice, a woman has been activated for
Confirm1 and Rw has decreased. Then, Reset is enabled only once.

• ToPhase1.5: m is eligible only if all women are in phase 1.5, BlockingPairM(m)
= False and AlreadyEngaged(m) = False. Furthermore, m is eligible only once
for this rule. Indeed, if m is activated twice for this rule (let us called this two
transitions A and B), it means that before A and B all women were in phase 1.5.
But between them, m has shift back to phase 1 (otherwise he would not be eligible
the transition B). The only reason for which a woman shift to phase 1 between A
and B is a BP. Moreover, she was in phase 1.5 for B. Then a BP has been resolved
between A and B.

• ToPhase1: since men are eligible for ToPhase1.5 and there are X BP(s), at
least one man (involved in a BP (m1, w1)) will stay in phase 1. Woman w1 will
be activated for ToPhase1 (BlockingPairW(w) is True). After this move, if m is
in 1.5 he is eligible for ToPhase1, at most once between each resolved BP.

• Accept: there is a woman w such that w.proposal = m and her proposal is the
best proposal for m in C, i.e. Pv = w. Since Pv is defined with respect to the
preferences of the proposing woman and of m, m accepts only if the marriage is
beneficial for both of them. If m is activated for Accept in C0such that C ∗→
C0 (such that C0

∗→ C1), m can be activated once again for Accept in C1, if a
woman w1 has been activated for Propose for m and that w is proposing to a
better ranked man. Then, m is eligible O(n) times (for each woman).

• Confirm: when m confirms, m is already considered married (after Confirm1 of
the woman). But he is not eligible twice, because it would implies a new marriage
(and then a woman would have been activated for Confirm1).

III. Correctness Proof and Time Complexity Analysis 49

Altogether, a man is eligible for at most O(n) moves, that is O(n2) moves for all men.
Now, let w be in Women. The 4 following rules may be enabled for w:

• Reset: if she is eligible for Reset, that means she is not married. She cannot be
involved in a BP and she is at most eligible for another move: ToPhase1.5.

• ToPhase1.5: if she is single or not involved in a BP in phase 1. Woman w can
be activated for this rule only once, otherwise it means she has gone back to 1
(because of a BP, see the next point). But if she is eligible again for ToPhase1.5,
that means there are no more BPs.

• ToPhase1: if a woman w involved in a BP (BlockingPairW(w) is True) is in phase
1.5 (only once because of the previous point).

• Propose1: if BlockingPair(w) = True: she proposes to the best ranked man in
Cv. Woman w can be involved in at most n− 1 BP(s) (if she is married with the
worst ranked man), she can be eligible n− 1 times for Propose1. Indeed, if, for
a man m, IncoherentPointersM(m) = True, w cannot detect the BP (w,m). Then,
she can propose to a first man m1 before a man m2 is activated for Reset and
she detects the BP because m2 is better ranked than m1).

In overall, a woman is eligible for at most O(n) moves, that is O(n2) moves for all
women.

To summarize, nodes are eligible for at most O(n2) moves before that at least one
woman w is eligible for Confirm1. Men are in phase 1 (since there was a BP before
w’s Confirm1) and women are either in phase 1 or 1.5. Thus, C’ is reached. Note that
the number of BPs is now Y ≥ 0 but not necessarily Y < X: a BP (m,w) has been
resolved but the previous spouse m1 of w is now single. New BP(s) involving m1 can
appear after the resolution of the BP.

Lemma 13. Let C and C’ be configurations in ({1}, {1, 1.5}, X)× ⋃ ({1, 1.5}, {1.5}, X)×
such that C ∗→ C’. Let w be a woman. If w.marriage(C) 6= w.marriage(C’) then
priority(w,w.marriage(C)) > priority(w,w.marriage(C’)) or
w.marriage(C’) = Null. Thereby, Rw(C) > Rw(C’). Furthermore, w cannot be
married again with w.marriage(C) before being activated for ToPhase2.

Proof. Let w be in Women and m be in Men. Since women are in phase 1, if
w.marriage(C) 6= w.marriage(C’), there are two cases:

1. w.marriage(C) = m and w.marriage(C’) = Null or

2. w.marriage(C) = m and w.marriage(C’) = m1.

Indeed, since single women in phase 1 or 1.5 cannot been eligible for Propose1, the case
w.marriage(C) = Null and w.marriage(C’) = m is not possible (Married(w)) in C is
False). The first case appears if there is a BP (w1,m) for some woman w1: w1 proposes
to m (w1.proposal = m) and m accepts/confirms the proposal (m.proposal = w
and then m.marriage = w). Then, w becomes single. We have Rw(C) > Rw(C’)
because w is now single and does not count any longer and w1 diminishes her regret.

50 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

ToPhase1.5 is now enabled for w since she is no more married (and cannot belong to
a BP) and, after that, for ToPhase2.

The second case happen if (w,m1) is a BP: m1 is better ranked by w than m.
Woman w resolves the BP by making a proposal (w.proposal = m1) and a confirmation
(w.marriage = m1). Then, Rw(C) > Rw(C’). Woman w cannot be married once
again with m implying the existence of a BP (w,m), because m is worse ranked than
m1: w cannot propose to m while she is married with m1 (BestMarriage(w) 6= m).
Then, if there is still a BP involving w, she improves again her regret but can still not
be married again with m. When there is no more BP involving w, she is only eligible
for ToPhase1.5 and ToPhase2 if all men are in phase 1.5.

In all stages that we considered up to know, the complexity in moves is an O(n2).
Now we arrive at the hard part, which will weigh on the global complexity and which
is an O(n4). The reason is simple: there can be O(n2) BPs in a configuration and
the resolution of a single BP may take O(n2) steps. These O(n2) supplementary steps
with respect to Ackermann et al.’s algorithm is caused by the distribution. While the
centralized algorithm resolves a BP in one action, the distribution, together with an
adversarial unfair scheduler, makes that there can be some delay before the BP is effec-
tively solved. It seems that nothing can be done against that, but trying a completely
different approach. This other approach is the object of the next chapter, but presently,
we continue with the analysis of the first algorithm.

Lemma 14. Let C be in ({1}, {1, 1.5}, X)×. Any execution starting from C takes O(n4)
moves to reach a configuration C’ in ({1}, {1, 1.5}, 0)×.

Proof. Remind that ({1}, {1, 1.5}, X)× ≡ ({1}, {1.5}, X) ⋃ ({1}, {1, 1.5}, X) ⋃
({1}, {1}, X). If X = 0, there is nothing to prove except if C is in ({1}, {1}, 0).
Women are eligible for at most two rules: Reset and ToPhase1.5. Men can only be
eligible for Reset. Then, if X = 0, after at most 2n Reset (men and women) and
ToPhase1.5 (women), that is O(n) moves, the configuration C’ is reached.

Now assume X > 0. Let us determine an upper bound on X. Since there is a BP
(w, m) only if w is married, w is involved in at most n− 1 BP(s). Then, if each women
is involved in n− 1 BP, there are O(n2) BP(s).

By Lemma 12, one BP is resolved in O(n2) moves. Since each BP can be resolved
at most once (Lemma 13), there is no more BPs after O(n4) moves. When a woman w
is activated to confirm (resolving the last BP (w,m) by setting w.marriage = m), all
men are in phase 1 and at least w is in phase 1 too (AllCoherentPhase(w) in Confirm1).
Other women are either in phase 1 or 1.5 (ToPhase2 cannot be applied since men are
in phase 1). This configuration is in ({1}, {1, 1.5}, 0)×.

Lemma 15. Any execution starting from a configuration C in ({1}, {1, 1.5}, 0) takes
O(n) moves to reach a configuration C’ ∈ ({1}, {1.5}, 0).

Proof. Consider the enabled rules in configuration C. Men are only eligible for Reset.
Indeed, they are not eligible for Accept or Confirm. Even if there are woman’s inco-
herent pointers, men cannot accept because of the definition of Pv. Indeed, Pv evaluates
if the proposal is more interesting for both, the man and the woman and if the woman
is married (if there exists still a BP). This yields to a contradiction with the fact that

III. Correctness Proof and Time Complexity Analysis 51

there is no more BPs in C by definition. Men are not eligible for Reset since they are
already in phase 1 (men) and also not for ToPhase1.5 because of women in phase 1.

Women are eligible for Reset and ToPhase1.5 (women in phase 1). Indeed, since
there are no more BP, no woman is eligible for Propose1 or even Confirm1. Con-
cerning ToPhase1, women cannot be eligible, since there is no more BPs (women).
ToPhase2 and BadInit are not enabled because of nodes’ phases.

Thus, after at most 2n Reset, at most n − 1 women are eligible for ToPhase1.5
(and men have no enabled rules), that is O(n) moves, the system reaches a configuration
C’ in ({1}, {1.5}, 0).

Lemma 16. Any execution starting from a configuration C in ({1}, {1.5}, 0) takes O(n)
moves to reach a configuration C’ ∈ ({1.5}, {1.5}, 0).

Proof. Let us consider first women. They have no enabled rule except Reset since they
are in phase 1.5 and not all men are in phase 1.5.

Now, let us consider men. As women are in phase 1.5 and cannot change their phase,
men are only eligible for ToPhase1.5. Furthermore, they are eligible for Reset. Notice
that each man is eligible for Reset before ToPhase1.5 due to IncoherentPointersM.

Then, after 2n Reset (men and women) and n men’s ToPhase1.5, that is O(n)
moves, the configuration C’∈ ({1.5}, {1.5}, 0) is reached.

Lemma 17. In a configuration C in ({1.5}, {1.5}, 0) ⋃ ({1.5}, {1.5, 2}, 0), women are
enabled for rules in the following set {ToPhase2, Reset} and men are only enabled for
Reset. Furthermore if C → C’, then the configuration C’ is:

• in ({1.5}, {1.5}, 0) ⋃ ({1.5}, {1.5, 2}, 0) if only women’s Reset are activated in
the transition.

• in ({1.5}, {1.5, 2}, 0) ⋃ ({1.5}, {2}, 0) if at least one women’s ToPhase2 and no
men’s Reset is activated in the transition.

• in C1 if at least one men’s Reset is activated in the transition.

Proof. Let v be an eligible node in Men. By definition of C, v.phase = 1.5. Then,
Accept, Confirm and ToPhase1.5 cannot be applied. Since there is no woman in
phase 1 and v is in phase 1.5, v cannot be eligible for ToPhase1. Furthermore, as there
exists at least one woman in phase 1.5, ToPhase2 is also not enabled. Thus, v is only
eligible for Reset, if its pointers are incoherent.

Now, let v be in Women. Because men’s phase is 1.5, v cannot be eligible for
Propose1, Confirm1, Propose2, Confirm2, BadInit and ToPhase1.5. ToPhase1
is also not enabled: there is no BP and there is no man in phase 1. Thus, the only
possible rules for v are ToPhase2 (if v is in phase 1.5) and Reset (if its pointers are
incoherent).

To sum up, if in the transition C → C’ at least one man (Reset) is activated, the con-
figuration C’ is in C1. Otherwise, if only women are activated, C’ is in (({1.5}, {1.5, 2}, 0)⋃ ({1.5}, {2}, 0) if at least one women’s ToPhase2 is activated or in ({1.5}, {1.5}, 0) ⋃
({1.5}, {1.5, 2}, 0) if only women’s Reset are activated.

52 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Lemma 18. In a configuration C in ({1.5}, {2}, 0) ⋃
{1.5, 2}, {2}, 0), women are only

enabled for Reset and men are enabled for rules in {ToPhase2, Reset, Accept,
Confirm}. Furthermore if C → C’, then the configuration C’ is:

• in ({1.5}, {2}, 0) ⋃
{1.5, 2}, {2}, 0) if only Accept (men), Confirm (men) and

Reset (women) are activated in the transition.

• in ({1.5, 2}, {2}, 0) ⋃ ({2}, {2}, 0) if at least one men’s ToPhase2 and no men’s
Reset are activated in the transition.

• in C1 if in C if at least one men’s Reset is activated in the transition.

Proof. Let v be an eligible node in Women. By definition of C, there exists at least one
man in phase 1.5. Then, Propose1, Propose2, Confirm1, Confirm2 and BadInit
cannot be applied. Since women are already in phase 2 and there is no BP, ToPhase2,
ToPhase1.5 andToPhase1 are also not enabled. Then, if the pointer of v is incoherent,
v is eligible only for Reset (the marriage is not reciprocal), otherwise, women have no
enabled rules.

Now, let v be in Men. Because v.phase 6= 1, v cannot activate ToPhase1.5. Since
women are in phase 2, ToPhase1 is also not enabled. Let us consider Accept and
Confirm and the two possible cases:

• v.phase = 1.5. Because of AllCoherentPhase(v), these rules cannot be applied.

• v.phase = 2. If there is a woman w such that w.proposal = v, that Best-
Proposal(v) 6= Null and if ¬AlreadyEngaged(v), v is eligible for Accept. But if
v accepts the proposal and since the woman cannot answer in this configuration,
there is no new marriage. Furthermore, if v is eligible for Confirm, he was already
married (the woman had its identifier in her pointer of marriage). In any cases,
that does not create a marriage and thereby also not a BP. Moreover, the phase
of nodes activated for these rules is still 2.

Finally, we consider C’, the new configuration after the transition from C. If at
least one man has been activated for Reset, C’ is in C1. If nodes have only been
activated for Accept (men), Confirm (men) or Reset (women), C’ is in ({1.5}, {2}, 0)⋃
{1.5, 2}, {2}, 0). Otherwise, if at least one man has been activated for ToPhase2 and

none for Reset, C’ is in ({1.5, 2}, {2}, 0) ⋃ ({2}, {2}, 0).

Lemma 19. Any execution starting from a configuration C in ({1.5}, {1.5}, 0) ⋃
({1.5}, {1.5, 2}, 0) ⋃({1.5}, {2}, 0) ⋃({1.5, 2}, {2}, 0) takes O(n) moves to reach a config-
uration C’ in ({2}, {2}, 0) or in C1 after at least one men’s Reset.

Proof. Let C be in ({1.5}, {1.5}, 0) ⋃ ({1.5}, {1.5, 2}, 0). By Lemma 17, men are eligible
only for Reset and women for Reset and ToPhase2. If at least one man is activated,
the reached configuration is C’ in C1. Otherwise, women are eligible for Reset (each
woman at most once, since women cannot set their pointers) and for ToPhase2 (also
at most once for each woman, since in phase 2 women are not eligible for ToPhase2).
Thus, after O(n) moves, either a configuration in ({1.5}, {2}, 0) or in C1 is reached.

From ({1.5}, {2}, 0) ⋃({1.5, 2}, {2}, 0), by Lemma 18, men are eligible forToPhase2,
Reset, Accept and Confirm and women are eligible only for Reset. If at least one

III. Correctness Proof and Time Complexity Analysis 53

man is activated for Reset, the reached configuration is C’ in C1. Otherwise, at most n
men are eligible for ToPhase2 and then, n−1 for Accept and Confirm. Furthermore,
women are eligible for Reset (each woman at most once, since women cannot set again
their pointers). Thus, after O(n) moves, a configuration in ({2}, {2}, 0) or in C1 is
reached.

In overall, from C, after O(n) moves, a configuration either in ({2}, {2}, 0) or in C1

(if a man is activated for Reset) is reached.

Lemma 20. Let C be a configuration in ({1.5}, {1.5}, X) where X > 0. Any execution
starting from C takes O(n) moves to reach a configuration C’ in C1W .

Proof. Let us consider first a node v in Women. Since v is in phase 1.5 and all men
are in phase 1.5, v is not eligible for Propose1/2, Confirm1/2 or ToPhase1.5. Since
there are X BP(s), some women are involved in these BPs. Women involved in a
BP are eligible for ToPhase1 and the others are eligible for ToPhase2 (because of
BlockingPairW). Once they are in phase 2, while all men are in phase 1.5, they can do
nothing. Node v is also eligible for Reset.

Let us consider now a node v in Men. Since v is in phase 1.5, he cannot be eligible for
Accept, Confirm and ToPhase1.5. ToPhase1 and ToPhase2 are also not enabled:
there are some women in phase 1.5 and others in phase 2 (after ToPhase2). Then v
can only be eligible for Reset.

Thus, after at most n Reset (women) + (n − 1) women’s ToPhase2 the only
enabled rule is ToPhase1 of a woman involved in a BP or a man’s Reset. If only men
are activated, C1 is reached, but, after this shift to phase 1, men that are not involved
in a BP can shift back to phase 1.5 (at most n− 1). Women involved in a BP are still
eligible. Thus, after at most n Reset (women) + (n − X) women’s ToPhase2 + n
men’s Reset + n− 1 ToPhase1.5, women involved in a BP are eligible and activated
for ToPhase1. Then, after O(n) moves, a configuration C’ in C1W is reached.

Lemma 21. Let C be a configuration in ({1.5, 2}, {1.5}, X) ⋃ ({1.5, 2}, {1.5, 2}, X)⋃ ({2}, {1.5}, X) with X ≥ 0. Any execution starting from C takes O(n) moves to
reach a configuration C’ in C1W or in ({1.5}, {1.5}, 0).

Proof. A common feature to the configurations specified in the statement is: ∃ w ∈
Women ∧ ∃ m ∈ Men : w.phase = 1.5 ∧ m.phase = 2

Let us consider first a node v in Men. Independently of phases, Reset can be
enabled. Notice that if a man is activated for Reset, the configuration is immediately
in C1. By lemma 10 and 20, after O(n) moves, the reached configuration is C1W or
({1.5}, {1.5}, 0). Since there exists at least one woman in phase 1.5 and a man in phase
2, AllCoherentPhase(v) is False and Accept and Confirm are not enabled. For the
same reason, ToPhase2 is also not enabled. Since nodes can only be in phase 1.5 or 2,
ToPhase1.5 cannot be activated. Concerning ToPhase1, it can be enabled only if the
node v is in phase 2 (because there exists a woman in phase 1.5) or if v is involved in a
BP. In short, men in phase 1.5 are only eligible for Reset and men in phase 2 are eligible
for Reset or ToPhase1 (any of this two rules is sufficient to reach a configuration in
C1).

Now, let us consider a node v in Women. Independently of phases, Reset may
be enabled. Then v cannot be eligible for Propose1, Confirm1, ToPhase2 and

54 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

ToPhase1.5 because of men in phase 2. Since v and all men are not in phase 2
together, Propose2 and Confirm2 are not enabled. But if v is in phase 2, v may be
activated for BadInit (and then the system reaches a configuration in C1W). Concern-
ing ToPhase1, since there is at least a man in phase 2, all women in phase 1.5 are
eligible. Married women involved in a BP in phase 2 are also eligible for this rule. To
summarize, a woman v is eligible for

• Reset.

• ToPhase1 (if v is in phase 1.5 or in phase 2 with a BP).

• BadInit (if v in phase 2).

So, after at most n Reset (women), women are only eligible for ToPhase1 or
BadInit and men for Reset and ToPhase1. Then, after the next activation, that is
altogether O(n) moves, the configuration is in C1. Furthermore, after lemma 10 and 20,
we know that the execution will reach a configuration in C1W or in ({1.5}, {1.5}, 0).

Lemma 22. Let C be a configuration in ({2}, {1.5, 2}, X ≥ 0). Any execution starting
from C takes O(n) moves to reach a configuration C’ in C1W or in ({1.5}, {1.5}, 0).

Proof. Let us consider first a node u in Men. Independently of phases, Reset can be
enabled. Note that if a man is activated for Reset, the system reaches immediately a
configuration in C1. Since there exists at least one woman in phase 1.5 and no node in
phase 1, AllCoherentPhase(u) is False and then Accept and Confirm are not enabled.
Since men are in phase 2, ToPhase2 and ToPhase1.5 are also not enabled. Concerning
ToPhase1, it may be enabled because a woman is in phase 1.5.

In short, men are only eligible for Reset or ToPhase1. (These two rules lead to a
configuration in C1).

Now, let us consider a node u in Women. Independently of phases, Reset may be
enabled. Let u.phase = 1.5. Then u cannot be eligible for Propose1/2, Confirm1/2,
BadInit and ToPhase1.5 because of the phase of u. Moreover, because men in phase
2, ToPhase2 is also not enabled. Then, u is eligible for ToPhase1.

Now, let u.phase = 2. Then, u cannot be eligible for Propose1, Confirm1,
ToPhase2 and ToPhase1.5 (because of u’s phase). In case of incoherence between
proposal and marriage pointers, u is eligible for BadInit. But if she is activated for this
rule, the system reaches a configuration in C1. Concerning Propose2, Confirm2 and
ToPhase1, there are several cases:

• u is married: Propose2 and Confirm2 are not enabled. However, u can be
activated for ToPhase1 if u is involved in a BP.

• u is single: u cannot be activated for ToPhase1, but for Propose2 and Con-
firm2. We know that men cannot apply Accept or Confirm. But if proposal
pointers are incoherent, a woman may propose to a man u and then confirm to u
the marriage because of u’s incoherent proposal pointer. Each woman may pro-
pose and confirm only once. Otherwise it would mean that m1, a man better
ranked for u, has been discovered after u’s Propose2 or Confirm2. But when u
made her proposal tom, m1 wasn’t interesting for u (better marriage or incoherent

III. Correctness Proof and Time Complexity Analysis 55

pointers). In any case, this means that m1 has been activated for Reset and then
should be in phase 1. That is in contradiction with the fact that all men are in
phase 2 and the system is now in a configuration in C1. Furthermore, this new
marriage between m and u can create a new BP, but we will see later in this proof
that the system will reach a configuration where a node is in phase 1.

To summarize, a woman u is eligible for

• Reset

• BadInit if u is in phase 2 with incoherence between pointers but the system
reaches a configuration in C1.

• ToPhase1 if u is in phase 1.5 or in phase 2 with a BP.

• Propose2 and Confirm2 if u is in phase 2.

So, after at most n Reset (women), and n− 1 Propose2 and Confirm2 (there is
at most one woman in phase 1.5) moves, nodes are only eligible for rules that set their
phase to 1 (ToPhase1, men’s Reset and BadInit).

Then, after at most O(n) moves, the system reaches a configuration in C1. After
Lemmas 10 and 20, from there, a configuration in C1W or in ({1.5}, {1.5}, 0) is reached
in O(n) moves.

Altogether, that is O(n) moves to reach a configuration in C1W or in ({1.5}, {1.5}, 0)
from C.

Lemma 23. Any execution starting from a configuration C in ({1.5}, {1.5, 2}, X > 0)
takes O(n) moves to reach a configuration C’ in C1 ⋃ ({1.5}, {2}, X > 0).

Proof. Let us consider first a node v in Men. Since there is at least one woman in phase
1.5 and one in phase 2, v can be only eligible for Reset. After his move, the reached
configuration is in C1.

Now, let us consider a node v in Women. There are several cases:

• v is eligible for Reset if she has incoherent pointers (IncoherentPointersW(v) =
True).

• If BlockingPairW(v) = True and v.phase ∈ {1.5, 2}: v is eligible for ToPhase1.
This rule change v’ phase.

• If BlockingPairW(v) = False and v.phase = 1.5, she is eligible for ToPhase2.
This rule sets 2 in v.phase.

Let us say first that all women in phase 1.5 (at most n − 1) are not involved in a
BP. They are enabled for ToPhase2. There are two cases:

• All women not involved in a BP (at most n − 1) are activated first for Reset.
Subsequently, women in phase 1.5 (at most n − 1) are activated for ToPhase2.
Thus, a configuration in ({1.5}, {2}, X) is reached after at most 2n−2 moves, that
is O(n) moves.

56 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

• If other nodes are activated in the same transition (of the previous point) that
women are activated for ToPhase2 (i.e. at most n − 1 men for Reset and the
rest of women, i.e. 1 here, for ToPhase1), a configuration in C1 is reached after
at most 3n− 2 moves, that is O(n) moves.

Now, let us say that women in phase 1.5 are involved in a BP. These women cannot
shift to phase 2. As previously, women not involved in a BP (at most n−1) are activated
first for Reset. And after that, in the same time, n − 1 men are eligible for Reset, 1
for ToPhase1 and n− 1 women for ToPhase2. A configuration in C1 is reached after
at most 3n− 2 moves, that is O(n) moves.

Lemma 24. Any execution starting from a configuration C in ({1.5}, {2}, X > 0) takes
O(n) moves to reach a configuration C’ in C1 or in ({1.5, 2}, {2}, X > 0).

Proof. Let us consider first a node v in Men. Since, in C, ∀ w ∈Women, w.phase = 2,
men are eligible for two rules: either Reset or ToPhase2 (if BlockingPairM = False).
Both rules change nodes’ phase (to 2 or 1): if a man is activated for one of these
rules, the reached configuration is either in C1 (one Reset has been executed) or in
({1.5, 2}, {2}, X) (one ToPhase2 and no Reset have been executed).

Now, let us consider a node v in Women. Node v can be eligible for Reset or, if
v’s BlockingPairW is True, ToPhase1, but not for both in the same time. ToPhase1
changes nodes’ phase. After at most n women’s moves, the reached configuration is in
C1 (n− 1 Reset and one ToPhase1).

Then, after at most 3n moves, (n women’s Reset, n women’s ToPhase1 and n
men’s Reset or ToPhase2), that is O(n) moves, the configuration is either in C1 (if at
least a man is activated forReset or a woman forToPhase1) or in ({1.5, 2}, {2}, X > 0)
(if women are only activated for Reset and men for ToPhase2).

Lemma 25. Any execution starting from a configuration C in ({1.5, 2}, {2}, X > 0)
takes O(n) moves to reach a configuration C’ in C1 or in ({2}, {2}, X > 0).

Proof. Let us consider first a node v in Men. If v.phase = 1.5, v is eligible for several
rules: Reset and ToPhase2 if BlockingPairM = True. If v.phase = 2, v is eligible for
several rules: Reset, Accept and Confirm. In fact, if a woman w is proposing to v, v
is eligible for Accept if w is the best proposal regarding his preference lists. In this case,
since w cannot confirm in this configuration (at least one man is in phase 1.5), there is
no new marriage. If v is eligible for Confirm, w.marriage = v and v.proposal = w
i.e. they are already married (Married(w) = True). In any cases, that does not create a
marriage and thereby also not a BP. Moreover, the phase of men activated for these rules
is still 2. After the move of a man with one of these rules, the reached configuration
is in C1 (at least one Reset) or in ({1.5, 2}, {2}, X) (only ToPhase2, Accept and
Confirm).

Now, let us consider a node v in Women. Node v is eligible for Reset or BadInit
if she has incoherent pointers, but not for both. Indeed, if v is activated for Reset, then
her guard of BadInit is False (v.marriage and v.proposal are set to Null). And if
BadInit is applied, that means that Reset was not enabled and after BadInit is still
not enabled. There are two cases for other rules: 1. if BlockingPairW(v): v is eligible for

III. Correctness Proof and Time Complexity Analysis 57

ToPhase1, 2. otherwise, v is eligible for any rule. In any case, since there is at least
one man in phase 1.5, v is not eligible for Confirm2 and Propose2.

Then, after at most n Reset of women, the enabled rules are men’s Reset (at most
n), men’s ToPhase2 (at most n−X), women’s ToPhase1 and BadInit. Then, either
only ToPhase2 of men are applied (at most n− 1) and the reached configuration is in
({2}, {2}, X) or at least one of the following rules are activated: men’s Reset, men’s
ToPhase1, women’s ToPhase1 or BadInit. In this case, the reached configuration is
in C1.

In short, after O(n) moves, the reached configuration is either in ({2}, {2}, X) or in
C1.

Lemma 26. Let C be a configuration in ({2}, {2}, X > 0). Any execution starting from
a configuration C takes O(n2) moves to reach a configuration C’ either in C1 or, if no
man has been activated for Reset or woman for BadInit or ToPhase1, in ({2}, {2}, 0)
.

Proof. Let us consider a woman w with ¬BlockingPairW. There are two cases:

• w is married without BP (i.e. Married(v) ∧ Cv = ∅). Only BadInit can be
executed if w.proposal 6= Null.

• w is single (i.e. v.marriage = Null). Then, w is eligible for theReset, Propose2
and Confirm2.

After her Reset (if she needs one), she is eligible for Propose2. There is now also two
cases. She proposes to m and we assume that w is the best proposal for m. Then m
accepts the proposal and both confirm one after the other. In all cases, because of the
definition of Cv and Pv, m decreases his regret (either he was single and is now married
or he was married and is now with a better ranked spouse). If m was involved in a BP
(w1,m), after this new marriage, the BP may be resolved. Indeed, if w has a better
priority for m than w1, there is no more BP (w1,m). Note that the pair (w,m) was not
a BP because w was single.

If each BP in C is resolved by a single woman, the number of BPs decreases and it
cannot grow since men are only improving their marriage (BestProposal sets). Since there
are O(n2) possible matches, there are O(n2) BPs. If all women make their proposals to
each man in a BP, in at most O(n2) moves, there is no more BPs and the configuration
is then in ({2}, {2}, 0). If before resolving all the BPs, a married woman involved in one
of them is activated (for ToPhase1) or a woman for BadInit or a man is activated for
Reset, the system reaches a configuration in C1.

Consider a subset of configurations C2 in ({2}, {2}, 0) such that no man is eligible for
Reset and ∀w ∈Women, w.proposal = Null ∨ (w.marriage = Null ∧ w.proposal 6=
Null).

Lemma 27. Let C be a configuration in ({1.5}, {1.5}, 0), such that in C no man is
eligible for Reset and ∀w ∈Women: w.marriage.marriage = w ⇒ w.marriage 6=
w.proposal. Every segment of execution starting from C reaches a configuration C’ in
C2.

58 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

Proof. From C, by Lemma 19, a configuration C2 in ({2}, {2}, 0) or in C1 (after the first
man’s Reset) is reached.

Let us first consider that C2 is in C1 after a man’sReset. Thus, there is configuration
C1 such that C1→ C2 and, during this transition, a manm has been activated forReset.
Let us prove by contradiction that it is not possible. First, by definition of C, no man
is eligible for Reset and there is no BP. Thus,

1. in C, m.marriage = Null or m.marriage 6= Null and both
m.marriage.marriage = m and m.marriage 6= m.proposal and

2. in C1, m.marriage 6= Null and either m.marriage.marriage 6= m or
m.marriage = m.proposal.

Consequently, there are several cases. Let w be a woman. Let T be the transition that
reaches C1 from a configuration C0 where:

1. m.marriage = Null. Thus, in T, one of the following actions is made:
(a) m.marriage ← w with w.marriage 6= m or, (b) m.marriage ← w
and m.proposal ← w or, (c) m.marriage ← m.proposal with m.proposal 6=
Null after the transition;

2. m.marriage 6= Null and m.marriage.marriage = m. Thus, in T, one
of the following actions is made: (a) m.marriage.marriage ← Null or,
(b) m.marriage.marriage ← m1 or, (c) m.proposal ← m.marriage.

First case, sub-case 1a, in T, m.marriage ← w with w.marriage 6= m. The
only rule that set the marriage pointer of m is Confirm. But in the guard of this rule,
w.marriage = m must be True. Therefore, the first case cannot happen.
Sub-case 1b, in T, m.marriage ← w and m.proposal ← w. But no rule can set the
two pointers to a value at the same time.
Sub-case 1c, in T, m.marriage ← m.proposal with m.proposal 6= Null after the
transition. Confirm is the only rule that set m.marriage ← m.proposal but also
m.proposal ← Null. Thus, this transition is not possible.

Second case, sub-case 2a, in T, m.marriage.marriage ← Null. The only rule
resulting in this action is the Reset. Thus, in C0, w is eligible for Reset because
(w.marriage = w.proposal) (the condition (w.marriage.proposal = w ∧ prior-
ity(w.marriage,w) > priority(w.marriage,w.marriage.marriage)) cannot be True since
m.marriage.marriage = m in C0). Since in C, this condition is not True for w,
this two cases have been constructed performing one or several actions. The first
case, as previously for men, no rule can set both pointers to the same value at the
same time, or in a consecutive fashion (guard of Confirm1/2). Sub-case 2b, in T,
m.marriage.marriage ← m1. As for the previous sub-sub-case, women can assign a
value to their marriage pointers only if all nodes are in phase 2, and thus, the configura-
tion is already C2. Sub-case 2c, in T, m.proposal ← m.marriage with m.marriage 6=
Null. The only rule that set m.proposal to a value with possibly m.marriage 6= Null
is Accept. But, by definition of BestProposal(m), the value returned by this function
cannot be the value of m.marriage if m.marriage 6= Null.

Thus, by contradiction, C2 is in ({2}, {2}, 0).

III. Correctness Proof and Time Complexity Analysis 59

Now, let us prove that C2 is in C2, i.e. in ({2}, {2}, 0) with the two following condi-
tions: (a) no man is eligible for Reset and (b) ∀ w ∈ Women, w.proposal = Null
∨ (w.marriage = Null ∧ w.proposal 6= Null). Case (a), since there cannot have a
transition to C1 with a man’s Reset before C2, in C1 (such that C1 → C2), no man is
eligible for Reset. Furthermore, men are eligible only for ToPhase2 and women for
no action until all men are in phase 2. ToPhase2 sets only m.proposal to Null. Thus,
m are not eligible for Reset after the transition, in C2 (guard of Reset depend on
m.marriage). Finally, since in phase 2, no woman is eligible for any rule (until all men
are also in phase 2 i.e. in C2) and that the last actions of these women are ToPhase2,
m.proposal = Null.

Thus, C2 is in C2.

Lemma 28. Let C be a configuration in C1W . Every segment of execution starting from
C reaches a configuration D in C2.

Proof. From C, by Lemmas 11, 14, 15 and 16, a configuration C2 in ({1.5}, {1.5}, 0) is
reached.

But since in C, at least one woman w is in phase 1, and since w is in phase 1.5
in C2, she has been activated for ToPhase1.5 in a transition T : C0 → C1 such that
C ∗→ C0 → C1

∗→ C2. Furthermore, since the condition for ToPhase1.5 is ∀ v ∈
N (w) ∪ {w} : v.phase = 1, in C0 all men are in phase 1. Thus, in the sub-execution
C1

∗→ C2, men are activated for ToPhase1.5 (they are in phase 1.5 in C2). Then, C2
is in ({1.5}, {1.5}, 0) and men have been already activated and are no more eligible for
Reset. But, notice that women are possibly eligible for Reset. If a woman is eligible
because of the condition w.marriage.marriage = w ∧ w.marriage 6= w.proposal,
after her Reset, the man w.marriage is eligible for Reset. Other conditions does not
break a reciprocal marriage and, thus, men are not eligible for Reset afterward. Then,
man w.marriage shifts back to phase 1 (possibly with a woman that was in phase 2)
and goes back again to phase 1.5. Thus, there is a loop between these configurations
until there is no more woman eligible for Reset because of this condition. This can
happen at most n times because women’s Reset set pointers to Null. Indeed, after a
Reset, women are in phase 1.5 and cannot set their pointers until phase 2.

Therefore, let us consider the last configuration in ({1.5}, {1.5}, 0) where ∀ w ∈
Women : w.marriage.marriage = w ⇒ w.marriage 6= w.proposal and no man is
eligible for Reset. From this configuration, by Lemma 27, a configuration D in C2 is
reached.

Lemma 29. Every configuration reached from a configuration C in C2 is in C2.

Proof. Let us prove the result by induction. Let T be a transition C → C’. Notice
first that in this transition, no node can change its phase value: men are not eligible
for Reset, women are not eligible for BadInit nor ToPhase1 (there are no BP or
incoherent phases). Other rules (men’s ToPhase1, ToPhase1.5 and ToPhase2) are
not enabled because of nodes’ phases.

Now, let us analyze all possible moves in T and their effect. First, since women are
in phase 2, they are eligible for either Propose2, Confirm2 or Reset.
Let w be a woman. Since there is no BP and if w is (reciprocally) married, she is not

60 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

eligible for any rule.
If w is single, there are two cases for C : either 1. w.proposal = Null or 2. w.marriage =
Null ∧ w.proposal 6= Null.
In case 1, w can be eligible for Reset or Propose2. If w is activated for Reset in C,
w.marriage 6= Null and either the marriage is not reciprocal ((v.marriage.marriage 6=
v) ∧ (v.marriage.proposal 6= v)) or the man has a better marriage (v.marriage.proposal
= v ∧ priority(v.marriage,v) > priority(v.marriage,v.marriage.marriage)) (other con-
ditions cannot be fulfilled since w.proposal = Null). After this move, w.proposal =
w.marriage = Null. Notice that no marriage has been broken: in both cases, the man
is still married or single, but his marriage pointer does not point to w and, thus, man’s
Reset conditions are not True after w’s Reset. Thus, the man is not eligible for Reset
in C’.
If w is not eligible for Reset and is activated for Propose2 after this move, the fol-
lowing conditions are still fulfilled: w.marriage = Null ∧ w.proposal 6= Null (see
conditions of Propose2 (w.marriage = Null) and how this rule sets w.proposal).
In the case 2, w is only eligible for Confirm2. After this move, the reached configu-
ration is in C2 (Confirm2 contains the following action: w.proposal ← Null). Since
BestMarriage(w) = w.proposal is in the guard of the rule, w does not create any BP.
Indeed, because all pointers are coherent, the predicate checks whether w is proposing
to the best choice. If not, w is not eligible for Confirm2, thus, does not create a BP.

Now, let us analyze men’s moves. Men are eligible for Accept and Confirm. Let m
be a man. Notice that both rules cannot create any BP. Indeed, a man involved in a BP
can be married or not. Thus, Accept or Confirm set proposal or marriage pointers
but do not create any BP. But since, by Lemma 32, men are always improving their
marriage, a better one cannot create a new BP.
Furthermore, after a transition where one of these two moves has been applied, Inco-
herentPointersM(m) is still not True. Indeed, in C, m.marriage = Null and, after
Accept, this is still True. And if the move is Confirm, m.marriage 6= Null but
m.marriage 6= m.proposal (effect of the rule: m.proposal is set to Null). And
m.marriage.marriage 6= m is False since in C, m.proposal.marriage = m and
women cannot change their marriage when they are already married.

Thus, C’ is in C2 and by induction, all the reachable configurations from C are also
in C2.

Proposition 2. Every execution takes O(n4) moves to reach a configuration C in
({2}, {2}, 0). Moreover, every configuration reached from C is in ({2}, {2}, X) with
X ≥ 0.

Proof. For each set of configurations C′ = ({1.5, 2}, {1.5, 2}, X)× with X ≥ 0 listed
below, we show how any execution starting from a configuration in C′ reaches a config-
uration in C1 or in ({2}, {2}, 0). For doing that, we indicate the lemmas justifying the
reachability from one set of configurations to another. Note that each such sub-execution
takes O(n2) moves.

1. From ({1.5}, {1.5}, X) to:

• C1W , for X > 0: Lemma 20.

III. Correctness Proof and Time Complexity Analysis 61

• C1 (if there is at least one man’s incoherent pointer) or ({2}, {2}, 0), for
X = 0: Lemma 19.

2. From ({1.5}, {1.5, 2}, X) to C1 or

• ({1.5}, {2}, X), for X > 0: Lemma 23,
• ({2}, {2}, 0), for X = 0: Lemma 19.

3. From ({1.5}, {2}, X) to C1 or :

• ({1.5, 2}, {2}, X), for X > 0: Lemma 24,
• ({2}, {2}, 0), for X = 0: Lemma 19.

4. From ({1.5, 2}, {2}, X) to: C1 or ({2}, {2}, X):

• for X > 0: Lemma 25,
• for X = 0: Lemma 19.

5. From ({1.5, 2}, {1.5}, X) to C1W or ({1.5}, {1.5}, 0), for X ≥ 0: Lemma 21.

6. From ({1.5, 2}, {1.5, 2}, X) to C1W or ({1.5}, {1.5}, 0), for X ≥ 0: Lemma 21.

7. From ({2}, {1.5}, X) to C1W or ({1.5}, {1.5}, 0), for X ≥ 0: Lemma 21.

8. From ({2}, {1.5, 2}, X) to C1W or ({1.5}, {1.5}, 0), for X ≥ 0: Lemma 22.

9. From ({2}, {2}, X) to C1 or ({2}, {2}, 0), for X > 0: Lemma 26.

Now, we consider a configuration C’ in C1. By Lemma 10, any execution starting
from C’ takes O(n) moves to reach a configuration C1 in C1W or in ({1.5}, {1.5}, X)
with X ≥ 0.

If C1 is in ({1.5}, {1.5}, 0), the case is listed above (item 1): by Lemma 19, a config-
uration either in C1 (if there is at least one man’s incoherent pointer) or in ({2}, {2}, 0)
is reached. Note that can lead to cycle between ({1.5}, {1.5}, 0) and C1 because of men’s
incoherent pointers. But since each man can have at most once incoherent pointers, this
cycle can only last until there is no more incoherent pointers, that is n times. After
that, from ({1.5}, {1.5}, 0), the reached configuration is in ({2}, {2}, 0) in O(n) moves,
by Lemma 19.
From C1W , by Lemma 28, a configuration C2 in C2 is reached. Moreover, by Lemmas 11,
14, 15, 16 and 19, this configuration is reached in O(n4) moves.

Thus, starting from C’, any execution reaches a configuration C2 in C2 or in
({2}, {2}, 0). By Lemma 29, from C2 in C2, every configuration is in C2. If C2 is in
({2}, {2}, 0), either a configuration in C1 is reached or all reachable configurations are in
({2}, {2}, X) (with X ≥ 0). Indeed, nodes in phase 2 can only shift to phase 1. Then,
either from C2 all configurations are in ({2}, {2}, X ≥ 0) or there exists a transition
(with either ToPhase1, BadInit or men’s Reset) to C3 ∈ C1 (in O(n4) moves, by
Lemma 3). From C3, a configuration C4 in C2 is reached (see the above case where C’
is in C1) and all reachable configurations are in C2.

62 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

In summary, we have listed above all possible types of configurations and shown
that, in each case, a configuration C” in ({2}, {2}, 0) is reached in O(n4) moves and
that every configurations reached from C” are in ({2}, {2}, X) with W ≥ 0.

III.2.2.2 - Convergence to a Terminal Configuration

Lemma 30. Let E be a sub-execution such that in every configuration of E, all nodes
are in phase 2. Assume that in some transition D0 → D1 in E a woman w executes a
rule.

1. The activated rule belongs to {Reset, Propose2, Confirm2};

2. ¬Married(w) holds in D0;

3. If w.marriage = Null in D0, then the activated rule is either Propose2 or
Confirm2;

4. If w.marriage 6= Null, then the activated rule is Reset.

Proof. Since w is in phase 2 in D0 (by hypothesis), w is not enabled for any rule in
{ToPhase1.5, ToPhase2, Confirm1, Propose1}. Moreover, since w remains in
phase 2 in D1, w cannot execute ToPhase1 and BadInit. If it is the case, then w
will be in phase 1 in D1, which yields a contradiction. This proves point 1.

The point 2 holds according to the guard of Reset, Propose2 and Confirm2.
Assume that w executes a rule in D0 → D1. We consider two cases. First, if

w.marriage = Null in D0, then according to the algorithm, w is eligible for Propose2
and Confirm2 in D0 but not for Reset, which proves the point 3.

Second, if w.marriage 6= Null in D0, then w is not eligible for Propose2 neither
Confirm2 according to the guard of these rules, which proves the point 4.

Lemma 31. Let E be a sub-execution such that in every configuration of E, all nodes
are in phase 2. Assume that in some transition D0 → D1 in E a man m executes a rule.

1. The activated rules is either Accept or Confirm.

2. If AlreadyEngaged(m) holds in D0, then the activated rule is Confirm.

Proof. Assume that m executes a rule in D0 → D1. By definition of E , m does not
execute ToPhase1, ToPhase1.5, ToPhase2 and Reset during D0 → D1.

Assume that AlreadyEngaged(m) holds in D0. According to the Accept guard, m
cannot execute Accept in D0 → D1.

Lemma 32. Let m be in Men. Let E be a sub-execution such that in every configu-
ration of E, all nodes are in phase 2. Let D0 → D1 and F0 → F1 be two transitions
corresponding to two consecutive activation by m of Confirm.
We have: m executes at least one Accept between D1 and F0.

III. Correctness Proof and Time Complexity Analysis 63

Proof. We have: m.proposal = Null in D1 and m.proposal 6= Null in F0 according
to Confirm. So, m has to execute a rule that writes a non-null value in m.proposal
between D1 and F0. Since E is a sub-execution such that for each configuration in E , all
nodes are in phase 2, m can execute only Accept or Confirm by Lemma 31. Among
these two rules, there is only one rule doing that: Accept. Thus, m executes this rule
at least once between D1 and F0. This concludes the proof.

Lemma 33. Let m be in Men. Let E be a sub-execution such that in every configu-
ration of E, all nodes are in phase 2. Let D0 → D1 and F0 → F1 be two transitions
corresponding to two consecutive activations by m of Confirm.
We have: priority(m,m.marriage(D1)) > priority(m,m.marriage(F1)).

Proof. We prove the first point. First, let D0 → D1 and F0 → F1 be two transitions
corresponding to two consecutive Confirm executed by m.

From Lemma 32, there exists at least one transition between D1 and F0 in which m
executes Accept. Let A → B be the last such transition between D1 and F0. Thus,
m only executes some Accept in D1

∗→ A (from Lemma 31 and since m does not
execute any Confirm between D1 and F0). Accept does not write in m.marriage, so
m.marriage remains constant between D1 and F0. Let m.marriage = w1 in D1. Thus
m.marriage = w1 in A. From the definition of Accept, we have: BestProposal(m)
6= Null in A. Let w2 = BestProposal(m) in A. According to the predicate we have:
w2 = min(Pm) and so priority(m,w2) < priority(m,m.marriage) with m.marriage = w1
in A. Thus priority(m,w2) < priority(m,w1). Moreover, since w2 = BestProposal(m) in
A, then m.proposal = w2 in B. Observe that m does not execute any rule between B
and F0. Thus m.proposal = w2 in F0. Since m executes Confirm in F0 → F1 then
m.marriage = w2 in F1.

Finally, we have: m.marriage(D1) = w1 and m.marriage(F1) = w2 and prior-
ity(m,w2) < priority(m,w1) which concludes the proof.

Corollary 1. Letm be in Men. Let E be a sub-execution such that in every configuration
of E, all nodes are in phase 2. Man m can execute at most n+ 1 Confirm in E.

Proof. By Lemma 31, m upgrades its marriage between two consecutive Confirm.
There is at most n distinct possible marriages and there exists a total order among
all these possibilities.

Lemma 34. Let w be in Women and let m be in Men. Let E be a sub-execution
such that in every configuration of E, all nodes are in phase 2. Let A1 and A2 be two
configurations of E such that A1

∗→ A2 and w does not execute any rule between A1 and
A2.

1. If m ∈ Cw in A1 and m 6∈ Cw in A2 then m executes Confirm in A1
∗→ A2;

2. If m 6∈ Cw in A1 and m ∈ Cw in A2 then m executes Confirm in A1
∗→ A2.

Proof.
1. m ∈ Cw in A1 implies that priority(m,w) < priority(m,m.marriage(A1)). Further-

more, m 6∈ Cw in A2 implies that priority(m,w) ≥ priority(m,m.marriage(A2)),
since w does not change its marriage variable. So m changes its marriage value
in A1

∗→ A2. According to Lemma 31, it can only do that executing Confirm.

64 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

2. m ∈ Cw in A2 implies that priority(m,w) < priority(m,m.marriage(A2)). Further-
more, m 6∈ Cw in A1 implies that priority(m,w) ≥ priority(m,m.marriage(A1)),
since w does not change its marriage variable. So m changes its marriage value
in A1

∗→ A2. According to Lemma 31, it can only do that executing Confirm.

Lemma 35. Let w be in Women. Let E be a sub-execution such that in every configu-
ration of E, all nodes are in phase 2. Between two consecutive executions of Propose2
by w, there exists a man m ∈ Men which executes Confirm.

Proof. Let D0 → D1 and F0 → F1 be two transitions corresponding to two consecutive
activations of Propose2 by w. Assume that m2 = BestMarriage(w) in F0. Assume
that m1 = BestMarriage(w) in D0.

There are two cases: either w does not execute any rule between D0 and F0or w
does execute some rules. We start with the first case.

Observe that w.proposal = m1 in D1 and in F0. Moreover according to the
Propose2 guard, BestMarriage(w) 6= w.proposal in F0. Thus BestMarriage(w) 6= m1 in
F0 meaning that m1 6= m2. There are now three sub-cases.

(a) m2 = Null. Then we have: m1 6= Null and m1 ∈ Cw in D1. Moreover, since
m2 = BestMarriage(w) in F0 then m1 6∈ Cw in F0. Thus, according to Lemma 34,
m1 executes Confirm in D1

∗→ F0.

(b) m2 ∈ Cw in D1. Thus priority(w,m1) < priority(w,m2) and so m1 6= Null. Since
m2 = BestMarriage(w) in F0 then m1 /∈ Cw in F0 while m1 ∈ Cw in D1. Thus
according to Lemma 34, m1 executes Confirm in D1

∗→ F0.

(c) m2 = Null and m2 6∈ Cw in D1. Since m2 = BestMarriage(w) in F0 then m2 ∈ Cw

in F0. Thus according to Lemma 34, m2 executes Confirm in D1
∗→ F0.

Lemma 36. Let E be a sub-execution such that in every configuration of E, all nodes are
in phase 2. Let w be in Women. Let C0 → C1, C2 → C3, C4 → C5 be three transitions
corresponding to three consecutive rules executed by w. Then w executes Propose2
once between C0 and C5.

Proof. Using Lemma 30, w can only execute Propose2, Reset, and Confirm2 in these
three transitions.

Assume first that in C0 → C1, w executes Confirm2. Then, in C1, there exists a
man m such that w.marriage(C1) = m.

Since w does not execute any rule between C1 and C2, then in C2, we have
w.marriage(C2) = m. Using point four of Lemma 30, w executes Reset in C2 → C3.
Moreover, since in C3, w.marriage(C3) = Null and w.proposal(C3) = Null, Lemma 30
implies that w executes Propose2 in transition C4 → C5.

Consider the second case in which w executes Propose2 in C0 → C1. In that case,
the lemma holds.

The third case is when w executes Reset in C0 → C1. In configuration C1 we have
that w.proposal = w.marriage = Null. The same holds in configuration C2 since

III. Correctness Proof and Time Complexity Analysis 65

w does not execute any rule between these two configurations, by hypothesis. In C2,
woman w can only execute Propose2 or Confirm2 by point 3 of Lemma 30. Since we
also have that w.proposal = Null in configuration C2 then Response(w) does not hold
in C2 and thus w is only eligible for Propose2, which concludes the proof.

Lemma 37. Let m be in Men. Let E be a sub-execution such that in every configu-
ration of E, all nodes are in phase 2. Let D0 → D1 and F0 → F1 be two transitions
corresponding to two consecutive activations by m of Accept. If m does not execute
any rule between D1 and F0 then there exists a woman which executes a move between
D1 and F0.

Proof. Assume by contradiction that this is not the case. BestProposal(m) 6= Null in D0
so there exists w ∈Women such that w = BestProposal(m) inD0 and so w.proposal = m
in D0. Thus in D1, AlreadyEngaged(m) holds or otherwise w executed a rule in D0 →
D1 which yields a contradiction. By definition of Accept, AlreadyEngaged(m) does not
hold in F0. Since this predicate holds in D1 and since m does not execute any rule
between D1 and F0 then necessarily w executes a rule, which yields a contradiction.

Proposition 3. Let E be a sub-execution such that, in every configuration, all nodes
are in phase 2. Nodes can execute at most O(n4) moves in E.

Proof. Let m be a man and let w be a woman. According to Lemma 31, m can only
execute Confirm or Accept in E . In the same way, according to Lemma 30, w can
only execute Reset, Confirm2 or Propose2 in E . We count the maximum number of
rules that can be executed.

Confirm: according to Lemma 32, between two consecutive executions of Confirm
by m, m updates its marriage preference. Thus a man executes O(n) Confirm. So the
number of Confirm in E is in O(n2).

Propose2: according to Lemma 35, between two consecutive executions ofPropose2
by w, there exists a man that executesConfirm. So, a woman executesO(n2) Propose2.
Thus the number of Propose2 in E is in O(n3).

The Reset and Confirm2: according to Lemma 36, between three consecutive
executions of any rule of w, w executes at least one Propose2. So, a woman executes
O(n2) Reset and O(n2) Confirm2. Thus the number of Reset in E is in O(n3) and
the number of Confirm2 in E is in O(n3).

The Accept: we consider all Accept executed by m in E . They can be divided into
three types: (i) the first Accept, (ii) an Accept such that m executed at least one rule
between this Accept and the previous one and (iii) an Accept such that m did not
execute any rule between this Accept and the previous one.
We count the number of Accept of each type.
First, Accept of type (i) appears once.
Accept of type (ii): By Lemma 31, the rule m executed between this Accept and the
previous one is a Confirm. The number of Confirm executed by a man is in O(n),
thus the number of Accept of type (ii) executed by a man is in O(n) too.
Accept of type (iii): By Lemma 37, between this Accept and the previous one, both
executed by m, there exists a woman that has executed a rule. The number of rules
executed by some woman is in O(n3) so the number of Accept of type (iii) executed

66 Chapter 4. A Solution Based on Ackermann et al. Two-Phased Idea

by men is in O(n3) too.
We finally obtain that the number of Accept executed by men is in O(n3) and so the
number of Accept is in O(n4).

Then the number of rules executed in E is in O(n4).

IV - Conclusion
In this chapter, we presented the first asynchronous self-stabilizing algorithm [LMB+17]
for SMP. This algorithm (Alg. 1 and 2) is a distributed asynchronous self-stabilizing
adaptation of the Ackermann et al.’s algorithm [AGM+11]. Their algorithm works with
two different phases in which different nodes are eligible to perform actions. It implies
that the algorithm needs some synchronization between nodes. This is the main difficulty
especially since the unfair distributed daemon can chose nodes that do not make the
system progress. Thus, useless moves can delay the convergence to the stable marriage.
In particular, we notice that in the first phase women detect blocking pairs and solve
them by local repairs (in getting married with the blocking partner). Since the system is
asynchronous and distributed, O(n2) moves are needed to resolve one BP. An instance
of SMP contains O(n2) BPs. Thus, we proved a time complexity of O(n4) moves and
this is also an upper bound in term of rounds.

The lower bound of Ω(n2) boolean queries [GNOR15] rises the following question: is
it possible to build an algorithm with a better time complexity? This question is relevant
since we show that resolving a BP locally in distributed settings is costly. In an other
hand, the local detection is efficient: in one move, a node is aware of its involvement
in a BP. Since applications need low time complexity, it is pertinent to search time
improvement on BP’s repairs. One way to solve this problem is to repair globally the
system after a local BP detection. This is the subject of the next chapter.

Chapter 5

An Approach by Local
Checkability and Reset

Contents
I Introduction . 68
II Local Checkability . 70
III Towards a Distributed Asynchronous Version of GSA . . . 71

III.1 Distributed Asynchronous Version of GSA: Async-GSA 73
III.1.1 Variables, Constants, Registers and Functions 74
III.1.2 Async-GSA’s Algorithm Predicate 74
III.1.3 Algorithm . 75

III.2 Local Checkability of Async-GSA 77
III.2.1 Local Predicates . 77
III.2.2 Proof of Async-GSA’s Local Checkability. 79

III.3 Time Complexity . 82
IV Reset . 84

IV.1 Tree Algorithm TreeAlg . 85
IV.1.1 Variables, Constants, Registers and Functions 86
IV.1.2 Tree Algorithm Predicate 86
IV.1.3 Algorithm . 87
IV.1.4 Correctness and Complexity Analysis 87

IV.2 Reset Algorithm ResetAlg . 89
IV.2.1 Algorithm . 90
IV.2.2 Correctness Proof Complexity Analysis 94

V Composition . 107
V.1 Composition Algorithm CompAlg 108

V.1.1 Variables and Predicates 108
V.1.2 Algorithm . 109

V.2 Correctness and Complexity Analysis 110
V.2.1 Stabilization of the Tree (to PredT) 112
V.2.2 Convergence after PredT is satisfied 117

VI Conclusion . 118

68 Chapter 5. An Approach by Local Checkability and Reset

The complexity gap between the original Gale and Shapley’s Algorithm (GSA) [GS62]
and the distributed version using Ackermann et al.’s phases is quite large. There would
be multiple reasons for that: distribution, asynchrony and in particular the very ad-
versarial scheduler, self-stabilization or simply a wrong approach to the problem. The
difference between O(n2) and O(n4) is big and it seems important to understand the
real reasons for it. A way for attacking this issue could be to start from the optimal
version, GSA, and to add step by step supplementary constraints in order to localize
where the discrepancies come from. It is what we do in the present chapter. The result
of our investigation is somewhat surprising: as a matter of fact, the gap disappears
when considering the problem in the right way. Indeed, as we show it in the previous
chapter, the cost of the local detection of “errors” (e.g., BPs) is negligible, but the local
resolutions of these “errors” may require a huge (and even infinite) number of actions.
Thus, we now aim at resolving these errors/faults globally.

We adopt the technique introduced in [AKY90, APSVD94] under the name of local
checkability and global repair. As it will be explained later, we were lead at defining a
slightly different definition of local checkability [APSVD94], adapted to our purposes.
It worth noting that the new solution in this chapter works under the more general and
practical communication model of link register (equivalent to message passing; see the
definition in the Model Chapter 3, Section V). A preliminary version of this work has
been published in [BBB+18].

The chapter is organized as follows. We informally present the steps to obtain the
new self-stabilizing solution to SMP in Θ(n2) moves, in Section I. Then, in Section II, we
describe the local checkability scheme and propose our definition. In Section III, the non-
self-stabilizing but distributed asynchronous algorithm solving SMP, called Async-GSA,
is designed and its correctness and local checkability property are proved. Afterward,
in Section IV, we propose a reset algorithm ResetAlg that runs on a tree (built by a
proposed algorithm TreeAlg). Finally, all algorithms are combined in Section V to get
the self-stabilizing algorithm CompAlg, which solves SMP in Θ(n2) moves. We conclude
this chapter in the last Section VI.

I - Introduction
The issue of transforming a classical distributed algorithm, with a particular initializa-
tion, into a self-stabilizing one, has been studied for a very long time and different types
of approaches have been proposed. These approaches focus on the notions of locality
and globality and follow the same pattern. If an algorithm deviates from a correct be-
havior (because of transients faults or bad initialization), the incorrectness has first to
be detected, and then corrected. For most problems, detection can be made locally. It
appears this is also the case for the stable marriage, because an inconsistency implies
either an incoherence between the variables of two neighbors or the existence of a block-
ing pair. Both can be detected by exchanging information only at the local level. Once
an incoherence has been detected, one has to repair it, and the reparation can be either
local or global. In the case of stable marriage, Knuth’s cycle [Knu76] suggests that local
repair does not work. That is why we considered techniques based on local detection

I. Introduction 69

and global repair.

Global repair means that a node detecting an inconsistency is activated for prop-
agating a reset wave, which sets each node in the network into an initial state in a
synchronized way. Then, staring from such a re-initialized configuration a non-self-
stabilizing but distributed algorithm will produce a correct result. However, things are
not so simple, having in mind to get an optimal complexity and to keep the preference
lists private. First, since the final algorithm has to be self-stabilizing, it must detect
faults at any time, in any component of the final combination. Thus, the reset compo-
nent and the distributed version of GSA have to be executed in parallel and each should
stabilize in at most O(n2) moves. Notice that (to our knowledge) there are no studies on
the move complexity of such algorithms in the considered model. So we have to provide
it to achieve our goal.

Moreover, to obtain an efficient move complexity of the whole composition under
an unfair daemon appears to be quite challenging. Such an adversarial scheduler can
choose to activate in priority GSA part of the composition, when a reset is ongoing (and
conversely), resulting in the multiplication of the move complexities of the two sub-
modules. However, the advantage of the bipartite communication graph coupled with a
system of priorities between the algorithm modules allow to propose a combination in
which complexity is additive and not multiplicative.

Our starting point is a well known technique introduced in [AKY90, APSVD94] un-
der the name of local checkability and global repair. It was proven in [APSVD94] that,
if an initialized solution satisfies some specific properties, it can be transformed in a
self-stabilizing solution. Although [APSVD94] assumes the message passing model, the
transformation applies to the link register model. Indeed in [APSVD94] the channel
capacity is 1 message and is equivalent to a register in read/write atomicity ([KK15,
AKY97]). For the transformation to be correct, the non self-stabilizing algorithm has
to be locally checkable [AKY90], i.e., nodes can locally detect if a configuration is in-
correct. Correct configurations are in particular those reached by an execution of the
given non-self-stabilizing algorithm (here Async-GSA) starting from a correct configu-
ration (here CAsync-GSA

init - the initial configuration of Async-GSA). Notice however that a
configuration in which there is any stable marriage is also correct, even if it cannot be
reached by an execution from CAsync-GSA

init (see Figure 5.4 for an example of a stable mar-
riage that cannot be reached by GSA). Checking is made periodically, locally by each
node, verifying the consistency of its state with the values in the shared registers written
by its neighbors. Once an incorrect configuration is locally detected, a global reset is
launched, setting each variable to a predefined initial (reset) value, while ensuring the
required synchronization allowing to reach the initial configuration CAsync-GSA

init . Then the
algorithm behaves as if it has been started from a correct configuration and reaches a
terminal configuration with a stable marriage.

Note that, in Chapter 6, we also study how the proposed algorithm can be useful for
obtaining self-stabilizing solutions to some variants of the stable marriage problem.

70 Chapter 5. An Approach by Local Checkability and Reset

II - Local Checkability
For obtaining a self-stabilizing algorithm computing a stable marriage (or solving any
other problem) in a general communication model under an unfair demon, weaker than
in [APSVD94], we have to strengthen the original definition (property) of their local
checkability in several ways (given in Definition 6 below). By abusing the notation, we
keep the name of local checkability for this more restricted property.

To explain the property and the restrictions we add, let us start with the original
definition. Basically, in [APSVD94], an algorithm Alg is locally checkable for a global
predicate Π if: (i) Π can be defined by local predicates LPi,j (for every directed link
(i, j)) on the state of node i and the shared register value of j that can be read by
i, (ii) no action of Alg can turn LPi,j from being satisfied to not, and (iii) there is a
configuration in the set of configurations of Alg satisfying Π. The conditions (i) and (ii)
correspond to 1 and 3 in Def. 6.

Contrary to (iii), the condition 2 in Def. 6 is restricted to the initial configuration of
Alg. Both conditions provide configurations to be restored by the reset. Notice however
that (iii) is too weak. For example, Alg reaches configurations containing stable marriage
satisfying Π (thus satisfied by (iii)), but it is difficult to reset the variables of every node
to obtain the corresponding configuration with a stable marriage. It requires to solve
the problem itself in advance. On the contrary, since Alg is an initialized algorithm, it is
known how to set the local variables of each node to obtain it, it suffices only to ask that
this configuration satisfies Π. One can chose another such configuration reachable in
Alg, but the local states (values of the variables) of that configuration should be known
in advance (for being able designing the transformer).

The conditions 4 and 5 are completely newly added restrictions in Def. 6, comparing
to those in [APSVD94]. The condition 5 is introduced for dealing with an unfair daemon.
This condition prevents from this adversary to retain the correction process of the reset
module, by constantly privileging the actions of Alg. This becomes impossible with
such a condition, since Alg is asked to be terminating.

Finally, condition 4 ensures that from any configuration satisfied by Π, even one that
cannot be reached in executions of Alg, the problem solved by Alg is nevertheless solved.
This condition is required since a reset is not launched in configurations satisfying Π
and Π is asked to be stable. Put another way, first notice that condition 4 reduces the
class of algorithms to which the reset is applicable. These algorithms must have the
special property to be correct, not only when started from their initial configuration,
but also from any configuration satisfying the predicate Π. Such configurations may
be unreachable from the initial configuration but, as Π is stable, the executions from
them may never activate the reset. Then Alg, on top of being correct from its initial
configuration, must have the supplementary property to be also correct from all con-
figurations satisfying Π. This condition is lacking in [APSVD94], resulting in a weaker
transformation to behaviors of Alg from any configuration in Π, and not necessary for
solving the problem solved by Alg.

Definition 6 (extended from [AKY90, APSVD94]). [Local Checkability] Let Alg be a
solution to a problem specification Prob and Π a global predicate on the configurations
of Alg. Alg is locally checkable for Π iff the following conditions hold.

III. Towards a Distributed Asynchronous Version of GSA 71

1. There exists a set LP of local predicates LPi,j for each i and j where (i, j) ∈ E
such that

Π = ∧
∀(i,j)∈E

LPi,j.

2. The initial configuration of Alg satisfies Π.

3. Each LPi,j is stable, that is, if C is a configuration satisfying LPi,j and C → C’
is a transition of Alg, then C’ satisfies also LPi,j.

4. Any execution from a configuration satisfying Π satisfies Prob.

5. From any configuration, Alg terminates.

III - Towards a Distributed Asynchronous Ver-
sion of GSA

We start by presenting the non-distributed algorithm of Gale and Shapley, on which we
base our distributed solution with initialization. Then, in Sub-section III.1, we present
this non-self-stabilizing distributed solution - algorithm Async-GSA. In Sub-section III.2,
we define the local predicates required to prove the local checkability of Async-GSA,
together with its correctness and the move complexity upper bound.

Gale and Shapley’s algorithm executes successive rounds. In every round, each
woman proposes to her favorite man (Figure 5.1.a, proposals are represented with
turquoise arrows). Doing so ensures that no blocking pair appears in the final matching
(and during the whole execution). Each man who receives proposals accepts the best one
(according to his preferences) and rejects all the others (Figure 5.1.b). On the figures,
accepted marriages are represented with bold edges and names. A woman rejected by a
man crosses out his name on her list.

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,

Anna}

(a) Women make proposals to men

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,

Anna}

(b) Configuration after men’s acceptances

Figure 5.1: First round of Gale & Shapley’s algorithm

Then, the first round is finished and the second starts. Single women propose to
their following choice in their preference list (Figure 5.2.a). Again, men accept their

72 Chapter 5. An Approach by Local Checkability and Reset

best proposals and refuse the others (Figure 5.2.b). If a proposal is better than its
current match, the man rejects its partner and accepts the proposal.

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,

Anna}

(a) The single woman proposes to its next
choice

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,

Anna}

(b) The man accepts the best proposal
.

Figure 5.2: Second round of Gale & Shapley’s algorithm

Then, the second round ends. Proposals and acceptances steps are repeated until
all nodes are matched (Figure 5.3.a & 5.3.b). Notice that a married man stays married
but can possibly improve (regarding his preferences) his marriage. The stable matching
is obtained after at most O(n2) rounds. This method received the name of deferred
acceptance.

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,

Anna}

(a) The single woman proposes to its next
choice

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,
Anna}

(b) Final Matching
.

Figure 5.3: Final round of Gale & Shapley’s algorithm

Note that the obtained matching is not the only stable marriage. There are others
that cannot be obtained by this algorithm. See an example in Figure 5.4.

III. Towards a Distributed Asynchronous Version of GSA 73

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,

Anna}

Zoe
{John,
Scott,
Mark}

Jane
{Mark,
Scott,
John}

Anna
{Mark,
John,
Scott}

Mark
{Zoe,
Jane,
Anna}

John
{Anna,
Zoe,
Jane}

Scott
{Jane,
Zoe,

Anna}

Figure 5.4: Two other stable marriages in the same system

III.1 - Distributed Asynchronous Version of GSA: Async-GSA

Based on the Gale and Shapley’s ideas [GS62], we propose a distributed and asyn-
chronous algorithm Async-GSA that solves the stable marriage problem. This algorithm
is not self-stabilizing, but constitutes a module of the self-stabilizing solution composed
with the scheme described in the previous section. Like GSA, Async-GSA works with
proposals and acceptances, from an initial configuration CAsync-GSA

init defined by variables
set to a specific value (see Sub-section III.1.1).

However, the resulting algorithm works very differently from the original version,
due to asynchrony. In GSA, executions proceed in synchronous rounds. In alternating
rounds, women propose in a round and in the other round men answer. When men
answer, they choose right away the best proposal in GSA. But in the proposed algorithm,
they consider each received proposition separately at each step, not synchronously with
the other received proposals in the same round as in GSA, depending on the particular
schedule chosen by the adversary. Furthermore, since GSA is centralized, if a married
man accepts a better proposal, the previous marriage is canceled right away and the
previous spouse can propose to another man in the next round. With an asynchronous
distributed scheduler, information can be delayed and the proposed solution has to take
care of that.

Regarding the optimally of the solution, it has been proven in [GNOR15] that the
communication complexity ([Yao79]) of the stable marriage problem is Ω(n2) bits. This
result implies an Ω(n2/ logn) bound in moves in our model (assuming constant size
communication registers). This is because in the model here each dedicated link directed
from every participant in one set to another allows to not incorporate identities into
messages. Communication complexity concerns the amount of information that has to
be transferred only over a single bidirectional link between the two parties, called Alice
and Bob. In our case, Alice holds the instance input (preference lists) of women and Bob,
of men. In any algorithm functioning in such a setting it is required to include the ID of
the concerned participant in a transferred message; while this information is encoded in
our setting of bipartite network and thus should not be transferred. Nevertheless, the
algorithm proposed here can be considered as near optimal. Moreover, we believe that
there is a better lower bound of Ω(n2).

74 Chapter 5. An Approach by Local Checkability and Reset

III.1.1 - Variables, Constants, Registers and Functions (for a node v)

Variables & Constants.

• pref : v’s constant list of its n neighbors in preference order. The priority of the
element is the rank, i.e., the ith element has priority i. Thus, the first element is
the most preferred neighbor and its priority is 1.
As before pref is a constant list and is kept secret.

• marriage_pref ∈ N (v) ⋃
Null: if v is a woman, the node to whom v has proposed

(and her spouse if additional conditions are satisfied; see below); if v is a man, his
spouse identifier. In CAsync-GSA

init , for men, the value of marriage_pref is Null and
for women, the first element of v’s pref .

Registers.
Recall that varv,u can be read and written by v but only read by u.

• requestv,u ∈ {None, Proposal, Yes, No}:

– None: initial value of the variable (in CAsync-GSA
init).

– Proposal: only for a woman v to propose to a man u.
– Yes: used by a man to accept a proposal or by a woman to confirm a marriage.

Two nodes v and u are said to be married iff requestv,u = requestu,v = Yes.
– No: used by a man to refuse a proposal or by a woman to confirm a refusal.

Notice that in the algorithm, v may want access to a variable varv,Null or varNull,v.
This variable does not exist and the value None is returned.

Functions

• next(v): returns the element after marriage_pref in the preference list of v and
returns Null if marriage_pref is the last element or if marriage_pref = Null.

• priority(v,u): returns the priority (∈ [1, n]) of u in the preference list of v. Note
that if u is evaluated to Null, priority(v,u) = n+ 1 .

III.1.2 - Async-GSA’s Algorithm Predicate

The matchingM is defined by so-called married pairs (v, u) ∈ E such that requestv,u =
Yes ∧ requestu,v = Yes ∧ marriage_prefv = u ∧ marriage_prefu = v.
The predicate associated to Async-GSA is

PredAsync-GSA ≡ [∀v ∈ V : Married(v) ∧ ¬BlockingPair(v)]

where

• Married(v) ≡ (requestv,marriage_prefv = Yes) ∧ (requestmarriage_prefv ,v = Yes)
∧ (marriage_prefmarriage_prefv = v)

III. Towards a Distributed Asynchronous Version of GSA 75

• BlockingPair(v) ≡ ∃u ∈N (v): priority(v,marriage_prefv) > priority(v,u)
∧ priority(u,marriage_prefu) > priority(u,v).

For a node u that makes BlockingPair(v) satisfied, (v, u) is called a blocking pair.

Proposition 4. A configuration C satisfies PredAsync-GSA iff C contains a stable mar-
riage.

Proof. Let us first prove by contradiction the direct implication: if PredAsync-GSA is
True in C, then C contains a stable marriage.
First, since a node v can only be married with the node marriage_prefv, v cannot be
married twice. Now, let v be single. In this case, requestv,marriage_prefv = Yes ∧
requestmarriage_prefv ,v = Yes is False since requestv,Null = requestNull,v =
None. Then, each node is married with exactly one node. Furthermore, the marriage is
reciprocal. Indeed, since requestmarriage_prefv ,v = Yes and the predicate is True for
the node marriage_prefv, then marriage_prefmarriage_prefv = v.
Now, by contradiction, assume that v participates to a blocking pair. So, there exist
node u and v which are not married together but prefer each other to their current
spouse. But PredAsync-GSA is True, i.e. BlockingPair(v) is False so that u and v do
not prefer each other. This leads to a contradiction and thus there is no blocking pair
in C.
Thus C contains a stable marriage.

Now, we prove that if a configuration C contains a stable marriage, it satisfies
PredAsync-GSA. Two nodes u and v are married if requestv,u = Yes ∧ requestu,v =
Yes ∧ marriage_prefv = u ∧ marriage_prefu = v. So, ∀u ∈ V , Married(v)
is True. Furthermore, in a stable marriage, there is no blocking pair. Then, there is
no pair (u, v) such that u prefer v to its current spouse and vice versa: the predicates
BlockingPair(u) and BlockingPair(v) are false. Hence, PredAsync-GSA is True in C.

III.1.3 - Algorithm

The part of the algorithm executed by women (Algorithm 3) has 3 rules. We start by
describing intuitively what those rules do.

• The rule Propose is executed by a woman to propose to the man in her
marriage_pref pointer.

• The rule Confirm checks if the man marriage_pref to whom the woman has
proposed, has answered positively. If he has, her register is set to Yes.

• The rule Refusal_Management is enabled if the woman’s proposal has been
rejected by the man marriage_pref . In this case, the value No is set in the
register and the marriage_pref pointer is set to the next man in the woman’s
preference list1.

1If the last man refuses the proposal, this rule cannot be enabled.

76 Chapter 5. An Approach by Local Checkability and Reset

Algorithm 3 Async-GSA for w ∈ Women:
1: Propose : (* Proposes to the man pointed by marriage_pref*)
2: {∃m ∈N (w): requestw,m /∈ {Proposal, Yes, No}
3: ∧ marriage_pref = m}
4: requestw,m ← Proposal
5:
6: Confirm : (* Confirms her proposal *)
7: {∃m ∈N (w): requestw,m = Proposal
8: ∧ marriage_pref = m ∧ requestm,w = Yes}
9: requestw,m ← Yes

10:
11: Refusal_Management : (* Manages a refusal *)
12: {∃m ∈N (w): requestw,m ∈ {Proposal, Yes}
13: ∧ marriage_pref = m ∧ requestm,w = No}
14: requestw,m ← No
15: marriage_pref ← next(w)

The part of the algorithm executed by men (Algorithm 4) consists of 2 rules:
• The rule Accept is enabled if a woman is proposing to the man and if this

woman is preferred over the actual spouse of m, i.e., the woman pointed by his
marriage_pref pointer. In this case, the man sets its request variable (in the
shared register) to Yes and updates his marriage_pref pointer to the identifier
of the woman.

• The role of Refuse is the opposite of Accept: if a proposal is received from a
less preferred woman than his actual spouse, the man sets its request variable to
No.

Algorithm 4 Async-GSA for m ∈ Men:
1: Accept : (* Accepts a proposal *)
2: {∃w ∈N (m): requestw,m = Proposal
3: ∧ priority(m,w) < priority(m,marriage_pref)}
4: marriage_pref ← w
5: requestm,w ← Yes
6:
7: Refuse : (* Refuses a proposal *)
8: {∃w ∈N (m): requestw,m ∈ {Proposal, Yes} ∧ requestm,w 6= No
9: ∧ priority(m,w) > priority(m,marriage_pref) }

10: requestm,w ← No

Correctness and complexity. The correctness proof and the complexity analysis
of Async-GSA are in Section III.2, in relation with the proof of condition 4 of local
checkability.

III. Towards a Distributed Asynchronous Version of GSA 77

III.2 - Local Checkability of Async-GSA

We prove that Async-GSA is locally checkable (according to Def. 6), by constructing the
local predicate (named LPm,w) that is checked by each manm. For that, w communicates
to m whether it prefers m to its current spouse. With this information, m is able to
detect a blocking pair on the edge (m,w) but also an incoherence in the variables. We
prove it in Sub-section III.2.2. Notice that the exchange of information between w and
m is limited and respects the privacy: preference lists are not communicated.

III.2.1 - Local Predicates

The local predicate LPm,w must detect any deviation in the execution of Async-GSA.
That is why it is built in relation with the guarded rules of Async-GSA. We use the
specificity of the communication graph to define the local predicate only on the edges
(m,w) where m ∈Men and w ∈Women: LPm,w is checked by (the man) m on his edge
(m,w). We build LPm,w step by step. In the sequel we use the terms “to the right” (rep.
“to the left”) for indicating that the pointer ofmarriage_prefw has been shifted towards
a less (resp. more) preferred man. Note that in the clauses of LPm,w we sometimes have a
term marriage_prefw = m or priority(w,marriage_prefw) < priority(w,m). To enable
man m to evaluate these terms we assume that each woman w shares the result of these
comparisons (for every neighboring man m) in its shared registers. This assumption is
implicit and not implemented in Async-GSA.

The complete local predicate checked by m is:

LPm,w ≡ (P0
m,w ∨ PP ropose

m,w ∨ PAccept
m,w ∨ PConfirm

m,w ∨ PRefuse
m,w ∨ PR_M

m,w) ∧ ¬PBP
m,w

We describe each sub-predicate in the following.
P0

m,w is a predicate satisfied locally in a configuration C where no proposal/refusal/
acceptance has been made by m or w on the registers of the edge (m,w) and in all
configurations reached from it, as long as no rule has been applied by m or w on
the registers. In other words, it is satisfied in a configuration where requestw,m =
requestm,w = None, and in all subsequent configurations as long as no rule is applied
on (m,w). In these latter configurations, requestw,m and requestm,w have not been
modified but marriage_prefw and marriage_prefm may have been updated by rules
applied on other links (marriage_prefw cannot be shifted to the right).

P0
m,w ≡ requestw,m = requestm,w = None

∧ priority(w,marriage_prefw) < priority(w,m)

Notice that P0
m,w is True in CAsync-GSA

init .
PP ropose

m,w is a predicate related to a situation in which a proposal has been made by a
woman w. Proposals are made in a configuration satisfying P0

m,w with Propose. This
rule sets requestw,m to the value Proposal and marriage_prefw to m.

PP ropose
m,w ≡ requestw,m = Proposal ∧ requestm,w = None

∧ marriage_prefw = m

PAccept
m,w is a predicate related to a situation in which a proposal has been made

by w to m and m has accepted, i.e., from a configuration in which PP ropose
m,w is True,

78 Chapter 5. An Approach by Local Checkability and Reset

an acceptance is made by m with Accept. The predicate allows to check the prior-
ity of marriage_prefw: after Accept, either marriage_prefm points to w or, if m
has accepted a new better proposal, to a better ranked woman. Thus, the priority of
marriage_prefm is better than that of w.

PAccept
m,w ≡ requestw,m = Proposal ∧ requestm,w = Yes

∧ priority(m,w) ≥ priority(m,marriage_prefm) ∧ marriage_prefw = m

PConfirm
m,w is a predicate related to a situation in which both nodes have set their

request variable to Yes, meaning that they are married. A configuration, in which
PConfirm

m,w is True is obtained from a configuration satisfying PAccept
m,w after a transition

with Confirm. For the same reason than for PAccept
m,w , the priority of marriage_prefm

is checked.

PConfirm
m,w ≡ requestw,m = Yes ∧ requestm,w = Yes

∧ priority(m,w) ≥ priority(m,marriage_prefm) ∧ marriage_prefw = m

PRefuse
m,w is a predicate related to a situation where m is activated for Refuse to

refuse w’s proposal (from a configuration where PP ropose
m,w was True). The rule Refuse

is enabled in two different kinds of configuration. First if w has a priority worse than
marriage_prefm, then it sets requestm,w to No. Second, from a configuration satisfying
PConfirm

m,w , ifm is activated forRefuse after having accepted. Refuse is enabled if w has
a worse priority than marriage_prefm. It sets requestm,w to No. This case is possible
if, after having accepted the proposal of w, another better ranked woman proposes to
m.

PRefuse
m,w ≡ requestw,m ∈ {Proposal, Yes} ∧ requestm,w = No

∧ marriage_prefw = m ∧ priority(m,w) > priority(m,marriage_prefm)

Recall that, w shares only the result of priority(w,m) < priority(w,marriage_prefw)
to the man m using a bit. PR_M

m,w is satisfied when w is activated for Re-
fusal_Management in a configuration in which PRefuse

m,w is True. Thus, this predicate
is related to a situation in which w and m have both refused to be married together.

PR_M
m,w ≡ requestw,m = No ∧ requestm,w = No
∧ priority(w,m) < priority(w,marriage_prefw)
∧ priority(m,w) > priority(m,marriage_prefm)

PBP
m,w is a predicate used for detecting if the subsystem contains a blocking pair.

Recall that there exists a blocking pair if both marriage_pref of w and m variables are
not pointing to each other but nodes prefer each other to their actual marriage_pref ,
for all values of request.

PBP
m,w ≡ priority(w,m) < priority(w,marriage_prefw)
∧ priority(m,w) < priority(m,marriage_prefm)

Notice that if a woman reaches the end of her preference list with no partner, the
situation is detected by this predicate. Indeed, at least one man is single and so a
blocking pair is formed (since the nodes’ sets are of equal size).

III. Towards a Distributed Asynchronous Version of GSA 79

III.2.2 - Proof of Async-GSA’s Local Checkability.

Now we prove the local checkability of Async-GSA for

Π = ∧
∀(m,w)∈E ∧

m∈Men ∧ w∈Women
LPm,w.

First, we consider the condition 3 of stability in Def. 6. The property that P0
m,w,

PP ropose
m,w , PAccept

m,w , PConfirm
m,w , PRefuse

m,w and PR_M
m,w are stable comes directly from their

construction and their relation to the transitions of Async-GSA. Furthermore, we prove
in the following lemma that ¬PBP

m,w is also stable.

Lemma 38. The predicate ¬PBP
m,w is stable for Async-GSA.

Proof. Assume that there is an edge (w,m) in C that does not satisfy PBP
m,w.

If m is activated for Accept, priority(m,w) < priority(m,marriage_prefm) is
True in C. But, since PBP

m,w is not satisfied in C, we have priority(w,m) >
priority(w,marriage_prefw) in C and this is still True in C’ (Accept does not change
marriage_prefw). Thus, PBP

m,w is also False in C’.
The rules Propose, Confirm and Refuse do not change the value of marriage_pref
of w and m. Thus, in C’, PBP

m,w is still False.
If w is activated for Refusal_Management, in C’ marriage_prefw is shifted to the
next element to the right. This rule is enabled only if requestm,w = No. Thus, in
the previous transition m has set her variable to No with the Refuse rule, i.e., prior-
ity(m,w) > priority(m,marriage_prefm) is False in C and is still True in C’. Hence,
PBP

m,w is still False in C’.

Corollary 2. LPm,w is stable.

Proof. This corollary is the direct consequence of:

1. the construction of P0
m,w, PP ropose

m,w , PAccept
m,w , PConfirm

m,w , PRefuse
m,w and PR_M

m,w (related
to the transitions of Async-GSA) and,

2. the lemma 38 states that ¬PBP
m,w is stable.

Now, we prove the condition 4 of Definition 6.

Lemma 39. From any configuration, a woman w can only shift her pointer
marriage_pref one by one to the right with the rule Refusal_Management.

Proof. The only rule updating marriage_pref of w is Refusal_Management. This
rule sets the pointer to the next element in the list after marriage_pref and if
marriage_pref is the last element, to Null. Notice that if marriage_pref is set to
Null, the rule Refusal_Management is not enabled (∀v ∈ V, Null /∈ N (v)). Thus,
the pointer of the women cannot be moved.

80 Chapter 5. An Approach by Local Checkability and Reset

Corollary 3. From any configuration, a woman w is activated in an execution at most
n times for Refusal_Management.

Proof. By lemma 39, each woman can only be activated once forRefusal_Management
for each element in her preference list. Furthermore, since preference lists have n ele-
ments, each woman can be activated at most n times for Refusal_Management.

Lemma 40. From any configuration, a woman w is eligible in an execution for at
most two moves (one Propose and one Confirm) if she is not activated for any
Refusal_Management.

Proof. The guards of these two rules contain marriage_pref = m, allowing their acti-
vation on the edge (w, m) only (since w is not activated for Refusal_Management).
Furthermore, the condition requestw,m = Proposal in the guards of Confirm, resp.
requestw,m /∈ {Proposal, Yes, No} in Propose’s guard, implies that after its activation,
Confirm, resp. Propose, is no more enabled. Finally, after the activation of w for
Propose, Confirm may be enabled, but after the activation for Confirm, Propose is
not enabled.

Thus, Confirm and Propose are activated at most once each on the edge (w, m)
if w is not activated for Refusal_Management.

Corollary 4. From any configuration, a woman w is activated in an execution for at
most two moves between two activations for Refusal_Management.

Proof. By Corollary 3, w can be activated twice for Refusal_Management and by
Lemma 40, w can be activated only twice between these two Refusal_Management.

Lemma 41. From any configuration, after at most 3n − 2 of her own moves in an
execution, a woman w is no more activated for any Async-GSA’s rule.

Proof. Let w be a woman. Assume by contradiction that there is a cycle of activations.
By Corollary 3 and Corollary 4, this is not possible if Refusal_Management is acti-
vated (after two of her own moves, w is no more eligible). Furthermore, by Lemma 40, w
can be activated for only two moves without being activated forRefusal_Management.

Thus, after at most 3n−2 of her own moves, w is no more eligible for any Async-GSA
rule.

Lemma 42. From any configuration, after at most 2n − 1 of his own moves in an
execution, a man m is not any more activated for any Async-GSA’s rule.

Proof. Let us consider the marriage_pref pointer of m. It can be set only by the
rule Accept and, since in the guard there is the priority condition (priority(m,w) <
priority(m,marriage_pref)), m can only move its pointer to the left. Thus, since there
are n elements in his preference list, m can be activated at most n times for Accept.

Now let us consider the rule Refuse. Since requestm,w 6= No, m cannot be ac-
tivated for Refuse twice in a row. Furthermore, it cannot be activated in alterna-
tion with Accept since priority(m,w) > priority(m,marriage_pref) for Refuse and

III. Towards a Distributed Asynchronous Version of GSA 81

marriage_pref can only be shifted to the left by Accept. That is why m can only be
activated n− 1 times for Refuse.

Thus, after at most 2n − 1 of his own moves, m cannot be activated any more for
any rule of Async-GSA.

Corollary 5. From any configuration, after O(n2) moves in an execution, no rule is
enabled, i.e. the configuration is terminal.

Proof. The corollary is a direct consequence of Lemmas 41 and 42.

Recall that

PredAsync-GSA≡ [∀ v ∈ V : Married(v) ∧ ¬BlockingPair(v)]

where

• Married(v) ≡ (requestv,marriage_prefv = Yes) ∧ (requestmarriage_prefv ,v =
Yes) ∧ (marriage_prefmarriage_prefv = v)

• BlockingPair(v) ≡ ∃ u ∈ N (v): priority(v,marriage_prefv) > priority(v,u) ∧
priority(u,marriage_prefu) > priority(u,v).

Lemma 43. A terminal configuration of Async-GSA satisfying Π, satisfies the algorithm
predicate PredAsync-GSA.

Proof. Let C be a terminal configuration satisfying Π. In C, for all edges (m,w),
PP ropose

m,w , PAccept
m,w and PRefuse

m,w are False (otherwise a rule would be enabled but C is ter-
minal). Thus, since Π is satisfied, ∀(m,w) ∈ E : (PConfirm

m,w ∨ PR_M
m,w ∨ P0

m,w) ∧ ¬PBP
m,w

is necessarily True.
But, since PBP

m,w is false on all edges (m,w), BlockingPair(v) is False for all v. This
implies that no node has marriage_pref = Null. Notice also that if PConfirm

m,w is
satisfied on an edge, we have priority(m,w) = priority(m,marriage_prefm) (and not
priority(m,w)≥ priority(m,marriage_prefm), otherwisem would be eligible forRefuse).
Hence, each man and woman has one and only one incident edge that satisfies PConfirm

m,w ,
i.e., each node satisfy Married.

Thus, a terminal configuration satisfying Π satisfies also the algorithm predicate
PredAsync-GSA of Async-GSA.

Recall that the problem specification Prob defining SMP (defined in Chap. 3, Sec. VI)
is satisfied by an execution iff

a) the execution reaches a terminal configuration (i.e., a configuration in which no
node is eligible), and

b) this configuration contains a stable marriage.

Furthermore, notice that this following lemma proves also the correctness of Async-GSA.

Lemma 44. The point 4 of Definition 6 is satisfied, i.e. from any configuration C0
satisfying Π, any execution of Async-GSA satisfies Prob.

82 Chapter 5. An Approach by Local Checkability and Reset

Proof. By Corollary 5, from any configuration satisfying Π, a terminal configuration C1
is reached. Furthermore from Lemma 38 and the fact that LPm,w is stable, C1 satisfies
Π. Finally, by Lemma 43, C1 satisfies the algorithm predicate PredAsync-GSA, i.e.,
contains a stable marriage by Proposition 4.

Thus, from any configuration satisfying Π, any execution of Async-GSA satisfies
Prob.

Now we can prove that Async-GSA is locally checkable. Recall that the initial config-
uration CAsync-GSA

init is a configuration where ∀(m,w) ∈ E, requestw,m = requestm,w =
None ∧ marriage_prefm = Null ∧ priority(w,marriage_prefw) = 1.

Theorem 2. Async-GSA is locally checkable for Π.

Proof. There are five conditions in Def. 6.
First, the condition 1 is satisfied by definition of Π and LPm,w.
Second, CAsync-GSA

init satisfies the condition 2 (P0
m,w is satisfied for all (m,w)).

Third, by Corollary 2, the condition 3 is satisfied.
Fourth, by Lemma 44, the condition 4 is satisfied.
Finally, by Lemmas 41 and 42, the condition 5 is satisfied.

So, a man can detect, using the local detection detailed in [APSVD94], whether or
not its Async-GSA state satisfies LPm,w. If not (cf. Section IV), it can take some actions.
The global composition is presented in Section V.

III.3 - Time Complexity
Async-GSA’s Time Complexity. Notice that Corollary 5 proves the worst case com-
plexity of the Async-GSA module: O(n2) moves. This induces also a complexity of O(n2)
rounds. Indeed, the definition of a round (see Def. 4) captures the execution rate of the
slowest processor in any computation. Since there is at least one move in each round,
an upper bound for the move complexity is an upper bound for the round complexity.
Thus, the final configuration is reached in at most O(n2) rounds.
In the following, we illustrate an execution scenario that reaches this bound, proving
that our round and move complexity is tight. Consider a system with n women and n
men denoted by w1, w2, . . . , wn and m1,m2, . . . ,mn (Figure 5.5). The preference list of
wx for x > 1 is: [mx, . . . ,mn,m2, . . . ,mx−1,m1] and w1 has the same list as w2. The
preference list of mx is: [wx+1, . . . , w1, wn, . . . , wx+2], with x + 1 = 1 and x + 2 = 2 if
x = n and x+ 2 = 1 if x = n− 1.

III. Towards a Distributed Asynchronous Version of GSA 83

w1
{m2, m3,. . . ,

mn−1, mn, m1}

w2
{m2, . . . ,
mn, m1}

wn−1
{mn−1, mn, m2,
. . . , mn−2, m1}

wn
{mn, m2, . . . ,

mn−1, m1}

m1
{w2, w1, wn,

. . . , w3}

m2
{w3, w2, w1,

wn, . . . , w4}

mn−1
{wn, wn−1,

. . . , w1}

mn
{w1, wn,

. . . , w2}

Figure 5.5: System before running Async-GSA

In the first round each wx proposes to mx except w1 that proposes to m2 (Fig-
ure 5.6.a). Thus, m2 receives two proposals, accepts in the second round w2’s proposal
and refuses that from m1. The other men accept the proposal (Figure 5.6.b).

w1
{m2, m3,. . . ,

mn−1, mn, m1}

w2
{m2, . . . ,
mn, m1}

wn−1
{mn−1, mn, m2,
. . . , mn−2, m1}

wn

{mn, m2, . . . ,
mn−1, m1}

m1
{w2, w1, wn,

. . . , w3}

m2
{w3, w2, w1,
wn, . . . , w4}

mn−1
{wn, wn−1,

. . . , w1}

mn
{w1, wn,
. . . , w2}

(a) Women’s proposals

w1
{m2, m3,. . . ,

mn−1, mn, m1}

w2
{m2, . . . ,
mn, m1}

wn−1
{mn−1, mn, m2,
. . . , mn−2, m1}

wn

{mn, m2, . . . ,
mn−1, m1}

m1
{w2, w1, wn,

. . . , w3}

m2
{w3, w2, w1,

wn, . . . , w4}

mn−1
{wn, wn−1,

. . . , w1}

mn
{w1, wn,

. . . , w2}

(b) After the acceptances

Figure 5.6: First two rounds of Async-GSA

In the (2 · (n− 3)) following rounds w1 proposes to m3, . . . ,mn−1 but is refused each
time (Figure 5.7.a). Hence, in the (2n− 3)th round, w1 proposes to mn and is accepted
in the next round while wn is refused (Figure 5.7.b).

84 Chapter 5. An Approach by Local Checkability and Reset

w1
{m2, m3,. . . ,

mn−1, mn, m1}

w2
{m2, . . . ,
mn, m1}

wn−1
{mn−1, mn, m2,
. . . , mn−2, m1}

wn
{mn, m2, . . . ,

mn−1, m1}

m1
{w2, w1, wn,

. . . , w3}

m2
{w3, w2, w1,

wn, . . . , w4}

mn−1
{wn, wn−1,

. . . , w1}

mn
{w1, wn,

. . . , w2}

(a) w1’s n− 2 next proposals

w1
{m2, m3,. . . ,

mn−1, mn, m1}

w2
{m2, . . . ,
mn, m1}

wn−1
{mn−1, mn, m2,
. . . , mn−2, m1}

wn

{ mn,m2, . . . ,
mn−1, m1}

m1
{w2, w1, wn,

. . . , w3}

m2
{w3, w2, w1,

wn, . . . , w4}

mn−1
{wn, wn−1,

. . . , w1}

mn
{w1, wn,

. . . , w2}

(b) w1 matching

Figure 5.7: Next (2n− 4)th rounds, w1’proposals before finding its partner

Now, wn is single and proposes to m2, . . . ,mn−1 until being accepted by mn−1. So,
after 2 · (n − 2) rounds, wn is married to mn−1 and wn−1 is single. Thus, each woman
makes proposals with the same pattern in 2 · (n−2) rounds and the last woman w2 ends
up (after its own 2 · (n − 2) rounds) by proposing to m1 (Figure 5.8). This leads to a
final complexity of Θ(n2) rounds.

w1
{m2, m3,. . . ,

mn−1, mn, m1}

w2
{m2, . . . ,
mn, m1}

wn−1
{mn−1, mn, m2,
. . . , mn−2, m1}

wn
{ mn, m2, . . . ,

mn−1, m1}

m1
{w2, w1, wn,

. . . , w3}

m2
{w3, w2, w1,

wn, . . . , w4}

mn−1
{wn, wn−1,

. . . , w1}

mn
{w1, wn,

. . . , w2}

Figure 5.8: Final matching

IV - Reset
We propose a self-stabilizing distributed and asynchronous reset algorithm (ResetAlg)
that, upon request of a node, resets globally a requesting algorithm to a specific config-
uration. More precisely, this is ensured only if ResetAlg itself is already stabilized to
a “correct” configurations. Being self-stabilizing, this algorithm reaches such configu-
rations eventually. We prove that these, as well as the following restored configuration
after a reset request, are reached in O(n) moves each. In a similar way to PIF (Propaga-
tion of Information with Feedback) algorithms, ResetAlg works with waves propagating

IV. Reset 85

up and down a rooted tree values and actions to execute, in a way coordinated (syn-
chronized) by the root. When a node requests a reset, a wave goes up to inform the
root. Then, a freeze wave goes down to the leaves to freeze the nodes for the requesting
algorithm (such that they are not eligible for it and also for requesting the reset again,
as long as the ongoing reset operation is accomplished). Once the leaves are reached,
nodes are reset by a wave going up to the root. Finally, the last wave releases the nodes,
which have been all reset, and the specific reset configuration reached.

Although the general ideas described above, concerning the ResetAlg functioning,
apply to any spanning tree, it is necessary to consider a specific tree to obtain such a
low complexity, the issue coming from the adversarial unfair scheduler. Indeed, it has
the capacity of initiating recursively resets in size increasing sub-trees, terminating none
of them but the last one. Thus, the O(n) move complexity is obtained over a bipartite
communication graph justified by the definition of SMP. Nevertheless, we present a
general complexity analysis of ResetAlg, for any given underlying tree.

The section is organized as follows. In Sub-section IV.1, we present and prove a
self-stabilizing spanning tree construction algorithm TreeAlg (Algorithm 5) that builds
in O(n) moves a rooted tree of depth 2 on a bipartite graph Kn,n. Then, the reset
algorithm ResetAlg is presented in Sub-section IV.2. This algorithm is proved to satisfy
the specification of the self-stabilizing reset problem (Definition 7) in O(n) moves on a
tree of depth 2.

IV.1 - Tree Algorithm TreeAlg
Since a node has a complete preference list, it has the identifiers of the nodes in the
opposite set. That allows to build a double fan-shaped tree. The root of the tree is the
woman with the minimum identifier, Wmin. All men are children of Wmin: this is the
first fan. The second fan is composed of the other women that are children of the man
with the minimum identifier: Mmin. Thus the depth of the tree is 2. Since each node
holds the identifiers of the other subset in its preference list, Wmin may learn that she is
the root once all men provide her with the correct information regarding the minimality
of her identifier. Unfortunately, due to a bad initialization, this information may be
incorrect (corrupted). Indeed the construction being an element in the final composition
has to be self-stabilizing. That is why we do not consider that the spanning tree is built
from the start.

The following figure represents the constructed tree on a bipartite graph K3,3. Wmin

is w1 and Mmin is m1. On the left, the tree is represented on the bipartite graph
(bold edges are the links in the tree). On the right, the tree is displayed such that the
double-fan construction is visible.

86 Chapter 5. An Approach by Local Checkability and Reset

w1

w2

w3

m1

m2

m3

w1

m1m2m3

w2 w3

Figure 5.9: Example of a tree on a graph K3,3

IV.1.1 - Variables, Constants, Registers and Functions (for a node v)

Variables & Constants.

• parent: the identifier of the parent of v. If v = Wmin, eventually parentv = v,

• pref : list of n neighbors in preference order (see the variables of the previous
algorithm for more details).

Registers.

• minv,u ∈ {True, False}: True represents the fact that u is the minimum in the
prefv, False otherwise.

Functions.

• min(list) → identifier: returns the minimum identifier in the list list.

IV.1.2 - Tree Algorithm Predicate

The algorithm builds a spanning tree rooted in Wmin. The eventually constructed tree
is encoded in the local variables parent. The root of the tree w has parentw = w.
All women and men are leaves, except Mmin and Wmin. Mmin is on the paths between
Wmin and the other women.

The predicate of the rooted tree construction is:

PredT ≡ ∀ v ∈ V,∀u ∈N (v): minv,u = (u = min(prefv))
∧ [(parentv = min(prefv) ∧ ¬minu,v) À

∨ (parentv = min(prefv) ∧ minu,v ∧ v ∈Men) Á

∨ (parentv = v ∧ minu,v ∧ v ∈Women)] Â

Notice that this definition implies that there is exactly one woman satisfying Â

parentv = v ∧ minu,v, i.e., exactly one Wmin. Thus, the other women satisfy À

parentv = min(prefv) ∧ ¬minu,v and are children ofMmin. Mmin satisfies Á parentv =
min(prefv) ∧ minu,v. Similarly, there is exactly one Mmin. All other men are children
of Wmin and satisfy À. We define the legitimate configurations for the tree algorithm as
the configurations satisfying PredT.

IV. Reset 87

IV.1.3 - Algorithm

The self-stabilizing tree algorithm is composed of three rules:

1. The rule I_am_not_root may be enabled for all men and all women except the
root. It sets the local variable parent to the minimum identifier of the other set.

2. The rule I_am_root may be enabled for v if v ∈Women and if all v’s neighbors
u have their communication variable minu,v set to True. In this case, v knows
that she is the root of the tree, i.e., Wmin, and sets her parent pointer to her own
identifier.

3. The rule Update updates the link register variables of the adjacent links so that
the neighbors could learn whether or not they have the minimum identifier in their
set.

Algorithm 5 Tree construction TreeAlg for v ∈ V
1: I_am_not_root : (* v is not root *)
2: {parent 6= min(pref) ∧ [(∃u ∈N (v): ¬minu,v) ∨ v ∈Men]}
3: parent← min(pref)
4:
5: I_am_root : (* v is Wmin*)
6: {v ∈Women ∧ parent 6= v ∧ (∀u ∈N (v): minu,v)}
7: parent← v
8:
9: Update : (* Updates minv,u *)

10: {∃u ∈N (v): minv,u 6= (min(pref) = u)}
11: ∀u ∈N (v): minv,u ← (min(pref) = u)

Using the constructed tree, the following function computes the children set of a
node. This function can be used by any algorithm running on the tree.

• children(v): returns the set of identifiers: returns the v’s set of children’ identifiers.
if(∀u ∈N (v): minu,v = True)

return N (v)−parent
else

return ∅

IV.1.4 - Correctness and Complexity Analysis of TreeAlg (Algorithm 5)

Lemma 45. In an execution from any configuration C, each man m is activated at
most once for I_am_not_root and at most once for Update.

Proof. A man is eligible only for two rules: Update and I_am_not_root. In-
deed, I_am_root is eligible only for women. If m is activated for I_am_not_root,
parent takes the value min(pref). Notice that Update does not change parent. Thus,
I_am_not_root cannot be enabled once again.
A similar reasoning holds for Update.

88 Chapter 5. An Approach by Local Checkability and Reset

Lemma 46. In an execution from any configuration C, each woman w is activated at
most once for each rule (I_am_not_root, I_am_root and Update).

Proof. First the condition of activation of Update is the existence of a variable minu,v

(for u ∈N (v)) that is not equal to (min(pref) = u). Second Update is the only rule
setting min. Hence, after one activation of Update, no register satisfies the guard
again.

Now, notice that a woman cannot be activated twice in a row for I_am_not_root
because of the conditions on the variable parent (the same argument holds for
I_am_root). Assume that this rules are activated by w more than once but by
alternation. Let I_am_not_root be the first activated rule. Thus, before this ac-
tivation, ∃u1 ∈N (w): ¬minu1,w but when I_am_root is activated, we know that
∀u ∈N (w): minu,w. Furthermore, between the two activations, at least u1 has been
activated for Update. Now assume that w is activated again for I_am_not_root.
This induces that a man u2 (not u1, by Lemma 45) has changed its minu2,w. But,
since u1 has set minu1,v to 1 and all men have the same preference list, u2 cannot be
activated for Update to set the value of minu2,w to 0. Thus, w cannot be activated
again for I_am_not_root. The same contradiction can be found if w is activated
first for I_am_root and then for I_am_not_root.

Recall that configurations satisfying PredT are legitimate configurations for TreeAlg
and that:

PredT ≡ ∀ v ∈ V,∀u ∈N (v): minv,u = (u = min(prefv))
∧ [(parentv = min(prefv) ∧ ¬minu,v)
∨ (parentv = min(prefv) ∧ minu,v ∧ v ∈Men)
∨ (parentv = v ∧ minu,v ∧ v ∈Women)]

Lemma 47. Any terminal configuration satisfies PredT, i.e. it is legitimate.

Proof. In a terminal configuration C, ∀ v ∈ V,∀u ∈N (v): minv,u = (u = min(prefv))
is necessarily True, otherwise Update would be enabled.

Now, assume that C does not satisfy PredT. This implies that at least one edge (v, u)
does not satisfies one of these following conditions:

• parentv = min(refv) ∧ ¬minu,v

• parentv = min(prefv) ∧ minu,v ∧ v ∈ Men

• parentv = v ∧ minu,v ∧ v ∈ Women

Thus (v, u) satisfies at least one of these following conditions:

1. parentv = v ∧ ¬minu,v

2. parentv = min(prefv) ∧ minu,v ∧ v ∈ Women

3. parentv = v ∧ minu,v ∧ v ∈ Men

IV. Reset 89

Case 1 is not possible in a terminal configuration: v would be eligible for
I_am_not_root.

Case 2 is only for women. There are two sub-cases: either all neighbors of v have
their min set to 1 or there is at least one neighbor’s min variable set to 0. In both
sub-cases, a node is eligible: either v is eligible for I_am_root or a neighbor is eligible
for Update (u or an other man).

Finally, in case 3, v is eligible for I_am_not_root.
Hence, a terminal configuration satisfies PredT.

Theorem 3. From any configuration C, after O(n) moves, a terminal and legitimate
configuration is reached.

Proof. By Lemmas 45 and 46, each nodes is eligible at most once for each rule. Thus,
after O(n) moves, a terminal configuration is reached.

Finally, by Lemma 47, this terminal configuration is legitimate.

IV.2 - Reset Algorithm ResetAlg

In this section, we propose a technique for resetting (under some conditions) a given
(so called) basic algorithm BasicAlg into a configuration CBasicAlg

reset . The technique uses
the reset algorithm ResetAlg (Algorithm 6). To request a reset, a reset signal is gen-
erated/launched (at any node) by BasicAlg (or some other module controlling the ex-
ecution of BasicAlg). This triggers the local module of ResetAlg. Launching a signal
represents the writing of True by BasicAlg in a boolean variable shared with ResetAlg
(called here signal). The reception of the signal is the reading of True in this boolean
variable.

Being self-stabilizing, ResetAlg can be started in an arbitrary configuration, but
is designed to reach a set of “good/correct” configurations (see CResetAlg

safe set defined
below). From any such configuration, if finitely many signals are launched by the basic
algorithm (and at least one), then the basic algorithm eventually reaches a configuration
in CBasicAlg

reset .

Remark 3. As it is stated in [KA98], whenever arbitrary states can be reached in the
presence of faults, it is impossible to ensure (to design a resetting algorithm such) that
every “resetting operation” (invoked by the reset signal in our case) is correct, i.e., nec-
essary results in the predefined resetting configuration (CBasicAlg

reset). This is because “the
faults may perturb the resetting module (the reset algorithm) to a configuration where
the reset operation has completed prematurely”. Furthermore, notice that all known self-
stabilizing reset algorithms ([GM91, KA98, Var93, APSVD94, AO94, AH93, DH95])
have a similar specification.

The precise specification of the reset problem that we solve is given below.
Recall that, for a given sub-algorithm Alg, we denote by CAlg the projection of a
configuration C to the variables of Alg.
We assume that there is a non-empty set CResetAlg

normal of terminal configurations contained
in the set of “good” configurations CResetAlg

safe and where each node is in a normal status
(i.e., executing no reset actions locally) - see Def. 8.

90 Chapter 5. An Approach by Local Checkability and Reset

We define a configuration C in CResetAlg
safe satisfying the following conditions: 1. nodes

are consistent (see Sub-section IV.2.1.2 for the definition), 2. either the status of any
node is normal and it has no signal or, the status is reset (just executed a reset locally)
and, 3. any node with the status normal has only parents with status normal and nodes
with status reset have children with only status reset. The formal definition is given in
Definition 9.
We also assume that a configuration CBasicAlg

reset of BasicAlg has been precisely defined.
We give the definition of the problem under the form of conditions on executions.

Definition 7 (Specification of the Self-stabilizing Reset Problem).

1. (Convergence) Starting from an arbitrary configuration, eventually a configuration
in CResetAlg

safe is reached.

2. (Termination) If a finite number of signals are launched, a configuration in CResetAlg
normal

is reached.

3. (Reset) Starting from any configuration in CResetAlg
safe , if a finite number of signals

and at least one are launched, CBasicAlg
reset is reached.

Remark 4. Notice that CResetAlg
safe contains CResetAlg

normal in the current self-stabilizing im-
plementation of ResetAlg. We later prove (Proposition 5) that it contains only one
configuration CResetAlg

normal (Def. 8) and it is terminal (if reset signals, and faults, cease).

IV.2.1 - ResetAlg

In ResetAlg, nodes communicate over a rooted tree. Although we use only the double-
fan tree of depth 2 for solving SMP, we present a reset algorithm for any rooted spanning
tree. Each node has a variable status. BasicAlg launches or generates a signal by setting
a specific boolean variable (signal) to True. When receiving a reset signal, a node, only
if its status is set to normal, changes for initiate to inform its parent that a reset is
in progress, and so on up to the root. Then, successive waves are initialized by the
root. First a freeze wave (changing status to freeze) goes down to the leaves. During
this wave, nodes are inhibited, i.e. they are not eligible for any rule and wait for the
next wave. The second wave goes from the leaves to the root: nodes are activated to
reset the requested values (through a function reset_BasicAlg_variables() provided by
BasicAlg) and switch to reset status to inform their parents. Once the wave reaches the
root, all nodes have been activated for the reset and CBasicAlg

reset configuration is reached
(if the initial reset signal was launched in CResetAlg

safe). Nodes are now ready to return to
the normal status: the third wave (normal status) is initiated by the root. When this
wave ends, all nodes are in the normal status and do not change until a possible next
reset request.

Notice that during this process, when status 6= normal, the rules of BasicAlg
are not enabled, neither request reset signals are accepted. This is important to allow
reaching CBasicAlg

reset . Indeed, if BasicAlg could be executed when a node has its status
variable set to reset (i.e. just after the execution of the reset function), BasicAlg’s
variables could be modified before all nodes were activated for the function (because of
the asynchronous unfair demon). In this case, CBasicAlg

reset would never be reached. Thus,

IV. Reset 91

BasicAlg’s rules can be executed at a node only when this node has its status variable
set to normal.

IV.2.1.1 - Variables, Registers, Predicates, Functions and Procedures
(for a node v)

Variables.

• status: in {normal, initiate, freeze, reset}.

– normal indicates that the node is not aware of any ongoing reset, i.e. the
node may be eligible for BasicAlg.

– initiate is used to inform the parent that a node wants to launch a reset.
This information goes from the initiator of the reset to the root.

– freeze is used by the root to freeze the nodes down to the leaves.
– reset is used to inform the parent (and finally the root) that descendants of

the node v have already performed the reset.

A node with status = normal is called a normal-node. Similarly, we derive a
freeze-node, a reset-node and an initiate-node.

• parent: written by the spanning tree algorithm and only read by the reset algo-
rithm.

• signal: boolean written by the environment (BasicAlg or other external module)
to request a reset (if True). We say that a signal is generated/launched when this
variable is set to True.

Registers.

• stv,u ∈ {normal, initiate, freeze, reset}: aiming to have the copy of the v’s status
value in the shared register read by u.

Predicates.
The three following predicates are used by the node v to distinguish between root,
internal node or leaf :

• I_am_Root ≡ parentv = v.

• I_am_Leaf ≡ children(v) = ∅ (see the next section for the definition of children(v)).

• I_am_Internal ≡ ¬I_am_Root ∧ ¬I_am_Leaf.

92 Chapter 5. An Approach by Local Checkability and Reset

Functions & Procedures.

• reset_BasicAlg_variables(): resets variables of the basic algorithm to their values
in CBasicAlg

reset .

• children(v): returns the set of children of v. Children are determined by the tree
algorithm (Algorithm 5).

• update_variables(new_status): updates the local and shared variables.
status← new_status
if(¬I_am_Root) : stv,parent ← new_status
if(¬I_am_Leaf) : ∀u ∈children(v), stv,u ← new_status

This procedure is used all along the algorithm to propagate the waves over the
tree.

IV.2.1.2 - Additional Definitions

A node v is said consistent (with its shared registers) if ∀u ∈ N (v) : stv,u = status. A
configuration is said consistent if every node is consistent. Notice that this property is
checked by a node using the rule Variables_Consistency.

Definition 8 (CResetAlg
normal). C

ResetAlg
normal is the configuration in which all nodes have status =

normal, are consistent and no boolean signal is True. We denote by PredRTerm be the
predicate defining CResetAlg

normal .

Definition 9 (Safe configurations CResetAlg
safe). The set of ResetAlg’s safe configurations

CResetAlg
safe is defined by the following predicate : (statusroot = normal ∧ ¬signal) ∧

(∀v ∈ V \ {root} : [(statusv = statusparentv = normal) ∨ (∀u ∈children(v):
statusv = statusu = reset)] ∧ [(statusv = normal ∧ ¬signal) ∨ statusv = reset])
and all nodes are consistent.

n

rnr

r r

Figure 5.10: A safe
configuration (assuming that

the configuration is
consistent)

For example, the figure 5.10 represents a safe con-
figuration on a tree of depth 2, assuming that it is also
consistent. Nodes with status = normal are denoted
by letter with a n and those with status = reset are
denoted by a r.

IV.2.1.3 - Algorithm

The reset algorithm (Algorithm 6) is specified by the
rules described below. They are presented by decreas-
ing priority order, Reset_Launch having the highest
priority andBack_Normal the lowest. If several rules
are enabled for the same node v in a configuration C, the node is only eligible for the
rule with the higher priority.

• The rule Reset_Launch is used by a normal-node to check whether the reset
signal has been launched by the composition (if signal is True). In this case,
variables are set to initiate to launch the waves (explained in the beginning of
Section IV).

IV. Reset 93

• The rule Variables_Consistency is used to check whether all shared variables
st of the node contain v’s status, i.e., this rule checks the consistency of the node.
If enabled, the rule sets local and shared status variables to initiate to report the
inconsistency.

• The rule Neighbors_Coherence is used by a non-leaf reset-node to check
whether its children have also status reset, i.e. to check whether the reset wave
is from the leaf to the root. If not, the rule sets local and shared status variables
to initiate to report the incoherence between neighbors.

• The rule Initiate is executed either by the root to register that a reset is requested,
or by internal normal-nodes to transmit to their parents the reset request of a child
by setting its variable stv,parent to initiate.

• The rule Freeze is executed by a node to transmit down the freeze wave. Since
the freeze wave goes from root to leaves, a node checks if its children are not
already in status freeze or reset. Indeed, if a child has status ∈ {freeze, reset}
this means that there is a rest of an older wave and if the node is activated now for
Freeze, there is no guarantee that its children will be activated for Reset. Thus,
the node is blocked until all its children have either normal or initiate status.

• The ruleReset is executed by a freeze-node if either it is a leaf or if all its children
are in the status reset (for the root and internal nodes), i.e., have already been
activated for Freeze. This rule executes the procedure reset_BasicAlg_variables()
of the basic algorithm and propagates the reset wave up to the root.

• The rule Back_Normal is executed by a reset-node to return to the normal
status after the reset wave. Thus, it checks if its children have also status reset.
This unfreeze wave is launched by the root and goes down to the leaves. Notice
that the signal variable is set to False during this transition to delete remaining
signals that have not been receipted.

94 Chapter 5. An Approach by Local Checkability and Reset

Algorithm 6 Reset Algorithm ResetAlg for v ∈ V
1: Reset_Launch :
2: {status = normal ∧ signal}
3: update_variables(initiate)
4:
5: Variables_Consistency : (* Checks local and shared variables’ coherence *)
6: {(¬I_am_Root ∧ stv,parent 6= status)
7: ∨ (¬I_am_Leaf ∧ (∃u ∈children(v): stv,u 6= status))}
8: update_variables(initiate)
9:

10: Neighbors_Coherence : (* Checks the neighbors’ status coherence *)
11: {status = reset ∧ ¬I_am_Leaf ∧ (∃u ∈children(v): stu,v 6= reset)}
12: update_variables(initiate)
13:
14: Initiate : (* Propagates the initiate wave to the root *)
15: {status = normal ∧ ¬I_am_Leaf ∧ (∃u ∈children(v): stu,v = initiate)}
16: update_variables(initiate)
17:
18: Freeze : (* Propagates the freeze wave *)
19: {status /∈ {freeze, reset} ∧ (∀u ∈children(v): stu,v /∈ {freeze, reset}) ∧
20: [(¬I_am_Root ∧ stparent,v = freeze) ∨ (I_am_Root ∧ status = initiate)]}
21: update_variables(freeze)
22:
23: Reset : (* Resets the variables and propagates the reset wave *)
24: {status = freeze ∧ [I_am_Leaf
25: ∨ (¬I_am_Leaf ∧ (∀u ∈children(v): stu,v = reset))]}
26: update_variables(reset)
27: reset_BasicAlg_variables()
28:
29: Back_Normal : (* Returns to the normal status *)
30: {status = reset ∧ ([(∀u ∈children(v): stu,v = reset) ∧ I_am_Root]
31: ∨ [¬I_am_Root ∧ stparent,v /∈ {freeze, reset}])}
32: update_variables(normal)
33: signal← False

IV.2.2 - Correctness and Complexity Analysis of ResetAlg (Algorithm 6)

A sketch of the proof is in Sub-section IV.2.2.1 and the detailed proof in Sub-section IV.2.2.2.

IV.2.2.1 - Sketch

Assume that a rooted spanning tree of any depth has been built. In this section, we
sketch the correctness (see Definition 7 for the self-stabilizing reset specification) and
complexity proofs of ResetAlg. The full proof can be found in Section IV.2.2.2. Recall
that CResetAlg

normal is defined in Definition 8 and CResetAlg
safe is defined in Definition 9.

IV. Reset 95

First, we prove in Sub-section IV.2.2.2.1 Lemmas 48, 49 and Corollary 6 used all
along the proof. These technical lemmas concern some properties of the rules Vari-
ables_Consistency and Neighbors_Coherence.

Then, we prove in Sub-section IV.2.2.2.2 that a configuration is terminal iff no node
has status or its shared variables set to freeze, reset or initiate (Lemmas 51, 52 and 53).
Hence, a configuration is terminal iff nodes have status and shared variables set to
normal (Proposition 5).

After this technical lemmas, the convergence and complexity of ResetAlg are proved.
In Sub-section IV.2.2.2.3, we prove the convergence of ResetAlg from any configu-

ration to CResetAlg
safe . The main idea is to show that the number of moves that a node can

make depends on the moves of its parent, i.e. recursively, the total number of moves
depends on the number of root’s moves. Then, we focus on the root and prove the
properties yielding the convergence to CResetAlg

safe .
Thus, we first show that a node is activated for at most 6 moves between two

activations of its parent (Lemma 54). Hence in an infinite execution (not terminated),
the root is activated infinitely many times too. During such an execution, after the root
is activated twice for Reset, a specific configuration in which all nodes are coherent and
have status reset is reached (Lemma 55 and Corollary 7). From this configuration, after
one root’s Back_Normal, a configuration in CResetAlg

safe is reached. Hence, during this
execution, the root has been activated a constant number of times. Furthermore, since
between each two moves of the root, its children are eligible for 6 moves and, recursively,
its grandchildren are eligible for 62 moves, etc., CResetAlg

safe is reached after O(n ·6p) moves,
where p is the depth of the tree (Lemma 56).

Finally, in Sub-section IV.2.2.2.4, the termination of ResetAlg is proved. Using
some lemmas of the previous section and with similar arguments, we show that, if there
is no signal launched, from any configuration, CResetAlg

normal is reached after O(n · 6p) moves
(Lemma 58). Indeed, from any configuration, after at most O(n · 6p) moves, a terminal
configuration is reached, i.e. CResetAlg

normal is reached by Proposition 5.
In Sub-section IV.2.2.2.5, we focus on the third point of the definition of the reset

problem. Lemma 59 proves that the configuration CBasicAlg
reset is reached in O(n) moves

from any configuration in CResetAlg
safe in which a signal is launched. Indeed, the waves

proceed normally: the initiate wave reaches the root and then, freeze and reset waves
are initiated.

Finally, Theorem 4 concludes by proving that ResetAlg satisfies every condition of
the reset specification in O(n·6p) moves. More precisely, in every of the three conditions,
the configurations specified to be reached are reached in O(n · 6p) moves. Notice that
on a tree of depth 2, this move complexity is of O(n) moves.

IV.2.2.2 - Detailed Proof

Recall that we assume that a rooted tree of any depth has been built. The proof is
divided in five parts.

First, in Sub-section IV.2.2.2.1, technical lemmas (Lemmas 48-50 and Corol-
lary 6) about some properties of the rules Variables_Consistency and Neigh-
bors_Coherence are presented.

Then, in Sub-section IV.2.2.2.2, we establish that in the terminal configuration, all

96 Chapter 5. An Approach by Local Checkability and Reset

nodes are normal-nodes (Lemmas 52 - 53). Thus, Proposition 5 states that CResetAlg
normal is

the only terminal configuration of ResetAlg.
In Sub-sections IV.2.2.2.3, IV.2.2.2.4 and IV.2.2.2.5, we prove the tree conditions of

the reset specification.
Finally, the main Theorem 4 in Sub-section IV.2.2.2.6 states that ResetAlg satisfies

each of the three conditions in the reset specification in O(n · 6p) moves.

IV.2.2.2.1 - Preliminary Lemmas

This sub-section contains basic lemmas used throughout the proof. The first (Lemma 48)
states that any node v is activated at most once for Variables_Consistency in any
execution and, if v is not eligible at some point for Variables_Consistency, it never
becomes such.
Then, we prove that, from a configuration C in which no node has status = initiate and
no node is eligible forVariables_Consistency andNeighbors_Coherence, no node
becomes eligible for these two rules, as long as a reset signal is launched (Corollary 6).
This is done using Lemma 49 in which we prove that, from C, the guard condition of
Neighbors_Coherence’s rule cannot be True.

Finally Lemma 50 proves that nodes cannot be activated more than once for Neigh-
bors_Coherence.

Lemma 48. In any execution,

1. if a node v is not eligible for Variables_Consistency, it will never be eligible
for Variables_Consistency and,

2. a node v is activated at most once for Variables_Consistency.

Proof. The only way for a node to change its status and the values of its shared registers
is to execute the function update_variables(). Any activation of this function makes the
rule Variables_Consistency no more enabled. The function is executed at each rule
activation. Thus a node that is eligible for Variables_Consistency becomes not
eligible for this rule after its activation and a node that is not eligible remains not
eligible after activation of any rule. That proves the lemma.

Lemma 49. Let C be a configuration in which no node is eligible for Vari-
ables_Consistency and Neighbors_Coherence. In any execution from C, the rule
Neighbors_Coherence is never enabled.

Proof. We recall that the condition for Neighbors_Coherence to be enabled is Cond
= ∃v : ¬I_am_Leaf ∧ statusv = reset ∧ (∃c ∈children(v): stc,v 6= reset).

Notice that Variables_Consistency is not enabled in any execution from C (from
Lemma 48 and the lemma’s assumptions). We prove the lemma by contradiction and
consider the first configuration C’ in which Cond is True for a node v.

There are three cases to consider, according to the last move before reaching C’.

1. The child c has statusc 6= reset and v has executed a rule that sets status to
reset,

IV. Reset 97

2. v has statusv = reset and children c has executed a rule that sets its status to
a different value than reset, or

3. both c and v are activated in the same step: v switches to reset while c takes a
status different from reset.

Case 1. The only rule that sets the status to reset is Reset. But v is eligible for
this rule only if all its children are reset-nodes. Thus Case 1 is not possible.

Case 2. Since v is not eligible for Neighbors_Coherence in C, statusc = reset.
The only rules that make c’s status different from reset are Neighbors_Coherence
or Back_Normal. But, Neighbors_Coherence is not enabled in C. Furthermore,
since statusv = reset, c cannot be eligible for Back_Normal. Thus Case 2 is not
possible.

Case 3. The only possibility for v to set status to reset is when executing the rule
Reset with status = freeze. If v is eligible for Reset, statusc = reset. Thus, c is
possibly eligible only for Back_Normal or Neighbors_Coherence. But it cannot
be eligible for Back_Normal because v has status reset and it cannot be eligible
for Neighbors_Coherence because C’ is the first configuration in which this rule is
enabled. Thus Case 3 is not possible.

That ends the proof of Lemma 49.

Corollary 6. Let C be a configuration where ∀v : statusv 6= initiate and no node is
eligible for Variables_Consistency, Reset_Launch and Neighbors_Coherence.
From C, in any execution in which no node is eligible for Reset_Launch, no node is
eligible for Variables_Consistency and Neighbors_Coherence.

Lemma 50. In any execution, a node is activated at most once for Neigh-
bors_Coherence.

Proof. Let us prove this lemma by contradiction: suppose that a node v is activated
twice for Neighbors_Coherence from C1 and C5. Notice that v cannot be a leaf
since leaves are not eligible for Neighbors_Coherence. This implies two facts: a) in
both configurations, at least one v ’s child is an initiate-node and b) between C1 and
C5, v is activated for Freeze and Reset in this order. Let C2 be the configuration
from which v is activated for Freeze and C3 the one from which v is activated for
Reset. In C2, ∀c ∈ children(v), stc,v ∈ {freeze, reset} and in C3, ∀c ∈ children(v),
stc,v = reset. Thus, between C2 and C3, all v’s children are activated for Freeze and
Reset in this order. Recursively, the argument applies up to the leaves: each descendant
(children, grandchildren, etc.) of v is activated for Freeze and Reset, in that order,
between the two activations (Freeze and Reset) of its parent. This implies that all
nodes have been activated at least once before C3, i.e. they are no more eligible for
Variables_Consistency (by Lemma 48).

Let us now focus on the execution between C3 and C5 and suppose that c, a
child of v, is an initiate-child in C5. Since before C3, c has been activated for Re-
set and in C5, c is an initiate-node, c is activated for Neighbors_Coherence be-
fore C5, from C4. Indeed, others rules that set the status to initiate cannot be en-
abled (Back_Normal not enabled). Similarly, at least one c’s child cc has been ac-
tivated for Neighbors_Coherence between c activation for Reset and C4. Recur-

98 Chapter 5. An Approach by Local Checkability and Reset

sively, the argument applies on internal nodes (leaves cannot be activated for Neigh-
bors_Coherence). Thus, the contradiction arises when an internal node has only
leaves as children. It has no child u eligible for Neighbors_Coherence and there is
no other possibility to set its status to initiate in this configuration from the status
reset.

Thus, nodes are not eligible twice for Neighbors_Coherence.

IV.2.2.2.2 - CResetAlg
normal is the Unique Terminal Configuration of ResetAlg

In this sub-section, we prove that, unless a node becomes eligible for Reset_Launch,
CResetAlg

normal is terminal and there is no other terminal configuration. In Lemmas 51 -
53, we prove that nodes in a terminal configuration are not in status freeze, reset or
initiate. This implies Proposition 5: terminal configurations are those with node’s
status and shared variables set to normal. Nodes are consistent, otherwise Vari-
ables_Consistency would be enabled and the configuration wouldn’t be terminal.
CResetAlg

normal is the unique configuration satisfying this properties.

Lemma 51. In a terminal configuration, no node has status = freeze.

Proof. Assume that there exists a node v with statusv = freeze in a terminal config-
uration C. In C, nodes are coherent (i.e. shared and local variables are equal) otherwise
Variables_Consistency would be enabled.

First, let us consider that v is a leaf. Node v is eligible for Reset no matter its
parent’s status. Thus, if statusv = freeze in C, v cannot be a leaf.

Consider now that v is either the root or an internal node. Since C is terminal, v is
not eligible for Reset. Thus, ∃c ∈ children(v) : stc,v 6= reset. There are two sub-cases:
(a) statusc ∈ {normal, initiate} or (b) statusc = freeze.

Case (a) is possible only if c is not eligible for Freeze, i.e. c is an internal node
(if c is a leaf, it would be eligible for Freeze with no condition) with a child cc with
statuscc ∈ {freeze, reset}. If cc is a reset-node, it is eligible for Back_Normal with
no condition on its children. Hence, if c is not eligible for Freeze, a c’s child cc has
statuscc = freeze and is an internal node (leafs cannot have status = freeze, see
the previous paragraph). This leads to the same case as for v, cc is an internal node
with at least one child ccc with : stccc,cc 6= reset. This pattern of status’ values can be
repeated with some case (b) in between, but none of the node of the pattern can be a
leaf. Hence, case (a) is possible only if the branch of freeze-nodes ends with at least
one case (b) (a node and one of its child with status = freeze). But since leafs cannot
have status = freeze, this is not possible.

Similarly, case (b), is not possible. First, c cannot be a leaf by the previous para-
graph. Hence, v has statusv = freeze only if v is the root or an internal node and if
at least one of its children c is an internal node and has statusc = freeze. Recursively,
c has at least one child satisfying also these conditions and so on. But since the tree
has a finite depth, this is not possible: there is at least one internal node with only leaf
children.

Thus, no node has status = freeze in a terminal configuration.

Lemma 52. In a terminal configuration, no node has status = reset.

IV. Reset 99

Proof. Assume that there exists a node v with statusv = reset in a terminal configu-
ration C. In C, nodes are coherent (i.e. shared and local variables are equal) otherwise
Variables_Consistency would be enabled.

First, let us consider that v is the root. Since C is terminal, ∃c ∈ children(v)
: stc,v 6= reset, otherwise v would be eligible for Back_Normal. But c cannot
have status ∈ {normal, initiate, freeze} because of Neighbors_Coherence. Thus,
v cannot be the root in C.

Now, let us consider that v is an internal node or a leaf. Let p be its parent.
stp,v ∈ {reset, freeze}, otherwise Back_Normal would be enabled for v. But, by
Lemma 51, statusp 6= freeze. Hence, v has statusv = reset only if its parent has
statusp = reset. Recursively, p’s parent pp has also statuspp = reset and so on. But
the last parent is the root r and by the previous paragraph, statusr 6= reset. Thus,
this case is also impossible.

Thus, no node has status = reset in a terminal configuration.

Lemma 53. In a terminal configuration, no node has status = initiate.

Proof. Assume that there exists a node v with statusv = initiate in a terminal config-
uration C. In C, nodes are coherent (i.e. shared and local variables are equal) otherwise
Variables_Consistency would be enabled. Furthermore, from Lemmas 51 and 52, no
node has status ∈ {freeze, reset} in a terminal configuration.

If v is the root. v’s children may have only status normal and initiate. In both
cases, v is eligible for Freeze. Thus, v cannot be the root in C.

Now, let us consider that v is an internal node or a leaf. If the parent p of v
has statusp = normal, p is eligible for Initiate. Thus, p has statusp = initiate.
Recursively, p’s parent pp has also statuspp = initiate and so on. But the last parent
is the root r and by the previous paragraph, statusr 6= initiate. Thus, this case is also
impossible.

Thus, no node may have status = initiate in a terminal configuration.

Proposition 5. A configuration C is terminal iff it satisfies PredRTerm ≡ ∀v ∈ V :
statusv = normal ∧ nodes are consistent ∧ ¬signalv, i.e. it is CResetAlg

normal .

Proof. First, notice that CResetAlg
normal is terminal. Indeed, it is easy to see that no rule is

enabled.
Let C be a terminal configuration. Since Variables_Consistency checks the con-

sistency of nodes, they are consistent with there shared registers. By Lemmas 51, 52
and 53 no node has status initiate, freeze or reset. Then they are normal-nodes.
Finally, there is no signal: a normal-node with a signal would be eligible for Re-
set_Launch. Thus, C satisfies PredRTerm i.e., C is CResetAlg

normal .

IV.2.2.2.3 - Convergence Properties of ResetAlg (Condition 1 of Def. 7)

In this section, we focus on the convergence property of ResetAlg as defined in the reset
specification (Definition 7):

(Convergence) Starting from an arbitrary configuration, eventually a configuration in
CResetAlg

safe is reached.

100 Chapter 5. An Approach by Local Checkability and Reset

This part is proved counting the number of moves made by each node. Indeed, we
prove first that a node can be activated at most 6 times before its parent is activated once
(Lemma 54). We also prove that the root can be activated at most 9 times (Corollary 57)
using the fact that it can be activated twice for Reset (Lemma 55). Thus, a node at
depth p can be activated 9 · 6p times. This results in an overall complexity of O(n · 6p)
moves (Lemma 56). From the configuration reached by the second root’s Reset, we
prove that a configuration in CResetAlg

safe is reached in 1 move.
We first prove that if a node is not activated, its children are activated for at most

6 moves.

Lemma 54. Let C be any configuration and C’ be a configuration from which a node
v is activated for any rule. In the execution C ∗→ C’, v’s children are activated for at
most 6 rules.

Proof. Since some rule check the register of the parent and other do not, let us analyze
the longest sequence of activations before C’ of one v’s child c (the figure 5.11 represents
the possible transitions from each status value).

Thus, if stv,c = initiate, c can be activated for at most 3 moves (in the order: Reset
then Back_Normal and then Initiate or Reset_Launch, when statusc = freeze
and c is coherent).

If stv,c = reset, c can be activated for at most 2 moves (first Reset and then
Neighbors_Coherence, when statusc = freeze and c is coherent). Indeed, in these
cases, Back_Normal nor Freeze can be enabled since stv,c = reset satisfies none of
their conditions.

If stv,c = freeze, c can be activated for at most 6 moves (Initiate or Vari-
ables_Consistency or Reset_Launch or Neighbors_Coherence, then Freeze,
then Reset, then Neighbors_Coherence, then Freeze and finally Reset, for any
value of statusc). Notice that after the second Reset, c cannot be activated again for
Neighbors_Coherence. Indeed, since Freeze and Reset check the st values of the
children, between Freeze and Reset, c children have been also activated for Freeze
and Reset. Thus, recursively, all children of c are coherent and have status = reset
when c is activated for Reset, i.e. none of them can change their status to an other
value and allowing its father to be activated for Neighbors_Coherence.

Finally, if stv,c = normal, c can be activated for at most 3 moves (Reset,
Back_Normal and Initiate, when statusc = freeze and c is coherent).

Thus, if v is activated from C, each of its children may be activated for at most 6
moves.

In the following figures, the possible transitions (from a status to another) are de-
picted. Edges represent the transitions and the nodes of this diagram the resulting
status value after a transition. The rules that can be applied to make a transition are
giver over every edge. Some rules are labeled by “4” and “1”. “1” means that the rule
is activated only once (for example Variables_Consistency, by Lemma 48 or Neigh-
bors_Coherence by Lemma 50). “4” means that this transition is not possible for
the leaves.

IV. Reset 101

initiate

freeze

normal

reset
Freeze

Variables_Consistency1

V
ar

ia
bl

es
_

C
on

si
st

en
cy

1

Reset

B
ack_

N
orm

al

Variables_Consistency 1,

Neighbors_Coherence 14

Variables_Consistency1, Initiate4,
Reset_Launch

Figure 5.11: Rules activations of a node depending on its status

We now consider the root r: if r is activated twice for Reset, we can deduce the
configuration reached after r is activated for Reset the second time. In this configura-
tion, all nodes v are coherent and have statusv = reset (Lemma 55 and Corollary 7).
An illustration of the execution mentioned in the following lemma and the corollary is
given in Figure 5.12.

Lemma 55. Let C and C’ two configurations from which the root r is activated for
Reset. Let E be an execution such that C ∗→ C’. Then in C’, any node v but the root r
satisfies statusv = reset ∧ (∀u ∈ children(v): stv,u = reset) ∧ stv,parent = reset
and in consequence, r is the only eligible node in C’.

Proof. Since Reset is enabled at r in C and C’, in both configurations we have (∀c ∈
children(r): stc,r = reset ∧ str,c = freeze) ∧ statusr = freeze.

First, since statusr = freeze in C’, the last activation of r before C’ is for Freeze
in a configuration C1. Thus in C1, ∀c ∈ children(r): stc,r /∈ {freeze, reset} is True but
in C’, ∀c ∈ children(r): stc,r = reset. Hence, between C1 and C’, all children of r have
been activated to change their variables and the last activation of each of them is for
Reset (notice that in C’, children are coherent since they have been activated at least
once). To be activated for Reset, a node must be a freeze-node, then its last activation
before Reset is for Freeze.

Recursively, the children of a r’s child c is also only activated for Freeze and Reset
(in that order) between the two activation of its parent for the same reasons. This
induces that a node is activated for Reset only if its children are in status reset. Thus,
in C’, all nodes are in status reset (Neighbors_Coherence not enabled since one of
its children must be in status initiate and Back_Normal is enabled if its parent is in
status normal and it is in status freeze).

The following execution is depicted in Figure 5.12. For example, let us consider a
tree of depth 2 and a child c of r. Let C2, respectively C5, be the configuration in which

102 Chapter 5. An Approach by Local Checkability and Reset

c is activated for the last time for Freeze, resp., for Reset. If c is a leaf, between C5
and C’ c is not eligible, that is, statusc = reset and c is coherent in C’.

If c is an internal node, in C2 ∀cc ∈ children(c): stcc,c /∈ {freeze, reset} is True and
in C5, ∀cc ∈ children(c): stcc,c = reset is True. As for r, the two last activations of
any child cc of c before C5, are for Freeze and Reset.

As the tree is of depth 2, cc is a leaf. Let C3, respectively C4, be the configuration
from which cc has been activated for Freeze, resp. for Reset. Thus, in C5, statuscc =
stcc,c = reset holds, i.e. cc is coherent. Between C5 and C’, cc is not eligible (no rule
can be enabled). After c’s Reset from C5, c has statusc = reset and is coherent. From
this configuration, it cannot be eligible for any rule.

Corollary 7. In the conditions of Lemma 55, let C” be the configuration reached from
C’ by activating Reset at r. In C”, all nodes v are coherent and have statusv = reset.

Proof. Direct consequence of the r’s Reset activation in C’.

Figure 5.12 is a schematic representation of the necessary successive activations
analyzed in the proof of Lemma 55 and Corollary 7. For simplicity, we illustrate the
scenario only over the double-fan tree, but the proofs work for any rooted tree. The
three levels of the double-fan tree are represented vertically (r stands for the rootWmin,
c for its children and cc for the children of Mmin). Time runs from left to right and
the sequence of configurations considered in the proof are depicted in a chronological
order (on the top of the figure). The conditions allowing the activation of the rules are
indicated vertically in red: re is for reset, f for freeze and i for initiate. Thus, for
example, on the first horizontal line, the first left bended arrow represents r’s activation
for Reset during the transition from C. If the reached configuration is used in the proof,
it appears in the figure, otherwise it is not.

IV. Reset 103

C C1 C2 C3 C4 C5 C’ C”

r

c

cc

statusr = f

statusc = f statusc = re

statuscc = re

st
c
,r

=
re

st
c
,r
/∈
{f
,r
e}

st
c
,r

=
re

st
c
c
,c
/∈
{f
,r
e}

st
c
c
,c

=
re

Reset Freeze

Freeze

Freeze Reset

Reset

Reset

time

Figure 5.12: Illustration of the execution of ResetAlg in Lemma 55 and Corollary 7

Finally, we can prove that ResetAlg converges after O(n · 6p) moves from any con-
figuration to CResetAlg

safe : from the configuration reached by the second root’s Reset (by
Lemma 55 and Corollary 7), CResetAlg

safe is reached after 1 more.

Lemma 56. From any configuration C, any execution of ResetAlg reaches CResetAlg
safe

after O(n · 6p) moves.

Proof. First, by Lemma 55, the root r is activated at most twice for Reset from C. Let
C1 be the configuration from which r is activated the first time and C2 the configuration
from which r is activated the second time (such that C1

∗→ C2). By Corollary 7, all nodes
v (except the root) are coherent and have statusv = reset in C2. This configuration
is reached after at most 8 moves: before C1, r can be eligible for at most 3 moves
(Back_Normal, Initiate or Reset_Launch and then Freeze) and between C1 and
C2, r can be activated at most for the 3 same moves.

Since by Lemma 54, children of a node v are activated at most 6 times before one
v’s activation, each children of r are activated at most 8 · 6 = 48 times. Recursively,
the grand children are activated at most 8 · 6 · 6 = 288 times. More generally, a node at
depth p is activated at most 8 · 6p times.

By Lemma 55, r is the only eligible node in C2. After its activation, all nodes
v (r included) are coherent and have statusv = reset. In this configuration, r is
again the only eligible node (for Back_Normal). After its activation, statusr =
normal ∧ ¬signal ∧ ∀v ∈ V \ {r} : statusv = reset (Back_Normal sets signal
to False) and all nodes are coherent (they all have been activated at least once for a
rule). Hence, this configuration is in CResetAlg

safe .

104 Chapter 5. An Approach by Local Checkability and Reset

This leads to the fact that the algorithm converges to CResetAlg
safe in O(n · 6p) moves

from any configuration.

IV.2.2.2.4 - Convergence Properties of ResetAlg in the Absence of Sig-
nals (Condition 2 of Def. 7)

In this section, we prove the termination property of ResetAlg as defined in the reset
specification (Definition 7):

(Termination) If a finite number of signals are launched, a configuration in CResetAlg
normal is

reached.

Thus, we consider executions in which there is no reset signal launched, i.e., the
environment does not set signal to True. By Lemma 55, the root can be activated twice
for Reset in any execution (with or without signal). Nodes in the reached configuration
after the second Reset’s activation are all reset-nodes and they are coherent. This
allows us to prove that, from any configuration, the root can be activated at most 9
times (Lemma 57 - the figure 5.13 represents the possible transitions after each rule)
if there is no new signal. Using the fact that a node is activated for at most 6 moves
between 2 successive moves of its parent, we show that a node at depth p can be activated
9 · 6p times. This results in an overall complexity of O(n · 6p) moves (Lemma 58). This
implies that ResetAlg converges and thus reaches a terminal configuration (where no
node is eligible), which is necessarily CResetAlg

normal by Proposition 5.

Lemma 57. From any configuration C, the root r is activated for at most 9 rules in
any execution with no new signal.

Proof. By Lemma 55 and Corollary 7, from any configuration, r can be activated twice
for Reset (in C and C1) and after the second activation, all nodes v are coherent and
have statusv = reset. Before C, r can be activated for at most 3 rules (Back_Normal,
Initiate and Freeze - the figure 5.13 represents the possible sequence of rules). Between
C and C1, r is activated for at most 3 rules (Back_Normal, Initiate and Freeze).
From this configuration, this is easy to see that, since there is no new signal, each node is
activated once for Back_Normal. Since no node is anymore eligible, this is a terminal
configuration, i.e. the terminal configuration CResetAlg

normal (Proposition 5).
Thus, from any configuration, the root is activated at most 9 times.

We provide the following figure5.13 adapted to the proof of Lemma 57. It depicts the
sequence of rule’s activations. Similar labels as in Figure 5.11 are used. “1” means that
the rule is only activated once (for example Variables_Consistency, by Lemma 48 or
Neighbors_Coherence by Lemma 50). “4” means that this transition is not possible
for the leaves. We add a label “�” to denote a transition which is not applied to the
root.

IV. Reset 105

Freeze

Reset

Initiate4, Reset_Launch

Back_Normal

Variables_Consistency

Neighbors_Coherence

1,4

�

1

Figure 5.13: Possible sequence of rule’s activations

Finally, we can prove that ResetAlg converges from any configuration to CResetAlg
normal

in O(n · 6p) moves, in the absence of reset signals.

Lemma 58. From any configuration C, any execution of ResetAlg, in which there is
no new reset signal, reaches CResetAlg

normal after O(n · 6p) moves.

Proof. First, by Lemma 55, the root is activated at most twice for Reset from C. Let
C1 be the configuration from which the root is activated the first time and C2 the
configuration from which the root is activated the second time (such that C1

∗→ C2).
By Corollary 7, all nodes v are coherent and have statusv = reset in C2. Altogether,
by Corollary 57, the root is activated at most for 9 rules.

Since by Lemma 54, children of a node v are activated at most 6 times before one v’s
activation, each children of the root are activated at most 9 · 6 = 54 times. Recursively,
the grand children are activated at most 9 · 6 · 6 = 324 times. More generally, a node at
depth p is activated at most 9 · 6p times.

Notice that nodes could be eligible after the last activation of the root but since in
C2 all nodes v are coherent and have statusv = reset, the only possible activation for
each node is once for Back_Normal (in absence of new signal).

This leads to the conclusion that, if there is no new signal, the algorithm converges
to CResetAlg

normal in O(n · 6p) moves from any configuration.

IV.2.2.2.5 - Re-initialization of BasicAlg (Condition 3 of Def. 7)

In this section, we focus on the reset property of ResetAlg as defined in the reset
specification (Definition 7):

(Reset) Starting from any configuration in CResetAlg
safe , if a finite number of signals and

at least one are launched, CBasicAlg
reset is reached.

106 Chapter 5. An Approach by Local Checkability and Reset

Recall that when the variable signal is set to True, we say that a signal is generated.
Possible moves are analyzed in Lemma 59 in order to prove that, if from any configu-
ration in CResetAlg

safe at least one signal is generated, then CBasicAlg
reset is reached (i.e., each

node has executed reset_BasicAlg_variables()). The following lemma is illustrated by
Figure 5.14 on a tree of depth 2, but is proven for any rooted tree.

Lemma 59. From any configuration C ∈ CResetAlg
safe , if at least one reset signal is gener-

ated, then CBasicAlg
reset is necessarily reached after O(n) moves.

Proof. Let v be a node receiving a reset signal and C1 be the configuration reached from
C. In C1, v is necessarily a normal-node and others nodes are normal- or reset-nodes
distributed on the tree as in a configuration in CResetAlg

safe . But notice that C1 is not in
CResetAlg

safe since v has signal set to True. Furthermore, in C1 nodes are consistent (by
Lemma 48, since they are consistent in C).

In C1, v is eligible for Reset_Launch. normal-node are not eligible and reset-
nodes are eligible for Back_Normal if their parent are normal-nodes. Thus, after
at most O(n) Back_Normal, v is activated for Reset_Launch: this is the start of
an initiate wave. If several nodes have received a reset signal and have been activated
for Reset_Launch, the initiate wave comes from several parts of the tree but an
initiate-node cannot be activated several times for Initiate. Since v’s parent are all
normal-nodes, this wave reaches the root after at most O(n) Initiate. Then, if all
children of the root are normal-nodes, the root may transform the initiate wave into
a freeze wave. Notice that, if its children are still reset-nodes, the root waits till its
children are activated forBack_Normal (since there is a finite number of other possible
rules, its children are activated at some point). The freeze wave is broadcasted with
the same mechanism if some children are reset-nodes. When the freeze wave reaches
the leafs, the reset wave begins and is convergecasted. Hence, after O(n) more moves,
a configuration C” in which nodes are all reset-nodes after having executed Reset is
reached. Indeed, reset-nodes are neither eligible for Back_Normal (their parents must
be normal-nodes) nor for Neighbors_Coherence (Lemma 49). Since all nodes have
executed Reset as last rule before C” and that BasicAlg is not eligible while nodes are
not normal-nodes, CBasicAlg

reset is reached in C”.

The following figure illustrates the execution of Lemma 59: from a configuration in
which a node has signal set to True, CBasicAlg

reset is reached. We use the same notations
as in Figure 5.12.

V. Composition 107

C2 C3 C4 C5 C6 C7 C8 C”

r

c

cc

statusr = n

statusc = n
signal = True

statuscc = r

statusr = f

statusc = i statusc = f statusc = re

statuscc = n statuscc = re

Reset_Launch

Initiate Freeze

Back_Normal

Freeze

Freeze Reset

Reset

Reset

CBasicAlg
reset

time

Figure 5.14: Illustration of the execution of ResetAlg in Lemma 59

IV.2.2.2.6 - Main Theorem : ResetAlg Correctness and Complexity

Recall that the self-stabilizing reset specification is in Definition 7, the configuration
CResetAlg

normal in Definition 8 and the safe configuration CResetAlg
safe in Definition 9.

Theorem 4. Assuming that a tree of depth p is built, ResetAlg satisfies the self-
stabilizing reset specification (as specified in Definition 7) in O(n · 6p) moves, i.e., the
configurations specified to be reached in every corresponding condition of this specifica-
tion are each reached in O(n · 6p).

Proof. First, Lemmas 56 proves that from any configuration, a configuration in CResetAlg
safe

is reached in O(n6p) moves, i.e. point 1 (Convergence) of the definition is satisfied.
The Lemma 58 proves that, if there is a finite number of signals, ResetAlg terminates

(in CResetAlg
normal) in O(n6p) moves: point 2 (Termination) is satisfied.

Finally, the point 3 (Reset) is proved to be satisfied by Lemma 59 in O(n) moves.

Though this upper bound is high, assuming that the underlying tree is constructed
by the algorithm TreeAlg proposed in Section IV.1, that is with p = 2, ResetAlg
converges and performs the reset in O(n) moves.

V - Composition
In this section, we explicitly present the final combination of Async-GSA (Alg. 3 and 4)
with the reset module ResetAlg (Alg. 6) composed itself with the tree construction al-

108 Chapter 5. An Approach by Local Checkability and Reset

gorithm TreeAlg (Alg. 5). All this, for obtaining a self-stabilizing version of Async-GSA
(Alg. 7) following the transformation technique by local checking and global reset pre-
sented in Section II. Notice that ResetAlg resets an algorithm BasicAlg to a specific
configuration called CBasicAlg

reset in the previous section. For Async-GSA, this configuration
is CAsync-GSA

init .
The main goal of this section is to analyze the move complexity of the final combina-

tion. This analysis is made especially difficult by the assumption of an unfair scheduler.
When considering rounds (synchronous or not) under a fair scheduler, the analysis is
easier because the notion of round hides the useless actions. That is not the case un-
der an unfair scheduler. A rough worst case analysis in terms of moves results in the
product of the stabilization times of the composition modules taken separately, i.e., in
O(n4). This is because an unfair scheduler may choose as long as possible to activate
nodes in a “wrong order” of modules’ rules they are eligible to execute. That is, it
may constantly privilege activating nodes executing a module A, while A can correctly
execute only after the stabilization of another module B. This “spends” moves which
do not “contribute” to advance the stabilization of the whole composition (and implies
a multiplication of stabilization times of modules). See the following Section V.2 for
more detailed description on this issue.

Despite this difficulty, we make a thorough complexity analysis and obtain, in the
worst case, only Θ(n2) moves till the stabilization to a stable marriage, starting from
any configuration. We obtain this by establishing priorities between the guarded rules
(locally at each node - see Alg. 7), and by relying on the bipartite topology of the
underlying graph.

V.1 - Composition Algorithm CompAlg (Alg. 7)

V.1.1 - Variables and Predicates (for a node v)

Variables.

• status: variable of the reset algorithm ResetAlg (Alg. 6), read only in CompAlg.
status ∈ {initiate, freeze, normal, reset}. CompAlg verify whether or not the
value of this variable is normal. That is, the node does not participate in the
reset procedure. Only in this case, reset signals can be launched and the rules of
Async-GSA executed (lines 12 and 17).

Predicates.

• GuardsTreeAlg: the disjunction of all TreeAlg’s rule guards.

• GuardsResetAlg: the disjunction of all ResetAlg’s rule guards.

• GuardsAsync-GSA: the disjunction of all Async-GSA’s rule guards.

• LPm,w: a predicate defined in Definition 6 to prove the local checkability of
Async-GSA; used by men to trigger a reset signal, whenever not satisfied.

V. Composition 109

• Tree_LC ≡ ∀u1, u2 ∈ N (v): minu1,v = minu2,v. A predicate used to check
the coherence of the shared registers of TreeAlg in all the neighbors of v. This
is to prevent v from executing other than TreeAlg’s rules while tree is not yet
stabilized, thus improving move complexity.

V.1.2 - Algorithm

The composition algorithm manages the activations of its modules through the im-
plementation of priorities. The rules are presented and executed in the decreasing
priority order: the first rule Comp_Tree has priority over the others and the last
rule Comp_SM can be enabled only if neither ResetAlg nor TreeAlg has an enabled
rule. These priorities are implemented by mutually exclusive rule guards. Here are the
guarded rules of CompAlg:

• Comp_Tree is enabled to execute the rules of TreeAlg if the tree is locally
incorrect (i.e., at least on of its rules is enabled), according to GuardsTreeAlg.

• If the tree is locally correct according to GuardsTreeAlg and Tree_LC,Comp_Reset
is enabled if GuardsResetAlg is also satisfied.

• The rule Comp_Local_Check is only enabled for men since LPm,w is only
checked by men. Moreover, it should be with status = normal, with no tree or
reset modules’ rules enabled. Note that the checking “w in Women” is equivalent
to w ∈ N (v) since v is a men.

• Finally, Comp_SM is enabled if all others modules, except Async-GSA’s, are
locally correct (i.e., their rules are not enabled) and if status = normal.

Algorithm 7 Composition algorithm CompAlg for v ∈ V
1: Comp_Tree : (* If a tree’s rule is enabled *)
2: {GuardsTreeAlg}
3: TreeAlg
4:
5: Comp_Reset : (* If a reset’s rule is enabled *)
6: {¬GuardsTreeAlg ∧ Tree_LC ∧ GuardsResetAlg}
7: ResetAlg
8:
9: Comp_Local_Check : (* Only for men: local checking and reset *)

10: {¬GuardsTreeAlg ∧ Tree_LC ∧ ¬GuardsResetAlg
11: ∧(v ∈Men ∧ ∃w ∈Women: ¬LPv,w) ∧ status = normal}
12: launch a reset signal to ResetAlg
13:
14: Comp_SM : (* If no other rule is enabled *)
15: {¬GuardsTreeAlg ∧ Tree_LC ∧ ¬GuardsResetAlg ∧ status = normal
16: ∧((v ∈Men ∧ ∀w ∈Women: LPv,w) ∨ v ∈Women) ∧ GuardsAsync-GSA}
17: Async-GSA

110 Chapter 5. An Approach by Local Checkability and Reset

V.2 - Correctness and Complexity Analysis of CompAlg
(Algorithm 7)

Contrary to the classical time analysis in terms of rounds (asynchronous or synchronous)
where the overall complexity of a composition is normally obtained by summing up the
complexities of the modules, in case of moves, this complexity is upper-bounded by
the multiplication of the modules’ complexities. This is because with a distributed
(asynchronous), and especially unfair, daemon, some nodes can be retained from being
activated for a very long time (even though, they are eligible). Imagine a composition
of two algorithms A1 and A2, stabilizing in O(f1(n)) and O(f2(n)), respectively, while
executed in a stand alone mode. Moreover, to stabilize, A2 assumes that A1 has already
stabilized to a correct configurations (satisfying the specification). That is, the compo-
sition of A1 and A2 stabilizes only after A2 has stabilized, following the stabilization of
A1. Now, notice that the considered daemon may privilege to activate the nodes eligible
for A2 rules, while retaining from the execution those eligible for A1, as long as possible.
In a distributed setting, nodes executed for A2 may not be aware that A1 is not yet
stabilized. Their moves thus may add an overhead of O(f1(n)) to each move executed
by A1 (each such move may restart the computation of A2). That is why the rough move
complexity analysis of the composition results in the multiplication O(f1(n) · f2(n)).

Following this reasoning, the rough move complexity of CompAlg is O(n4) moves
(O(TreeAlg) · O(ResetAlg) · O(Async-GSA) = O(n) · O(n) · O(n2)). We will perform a
tighter time analysis proving an O(n2) move complexity for CompAlg. This analysis is
complex due to several reasons. One is because we cannot ignore moves that are done
out of the order needed by the modules for their respective stabilization (like those of A2
above, executed before A1 has been stabilized). In addition, the communication model
by registers allows nodes to communicate different information to their neighbors, mak-
ing the stabilization analysis more complex.
Another reason is the quite complex interleaving of the CompAlg’s modules:
ResetAlg runs on a stabilized tree (assuming PredT is satisfied) and the rule
Comp_Local_Check checks the variables of Async-GSA (local predicate LP) to trig-
ger a reset signal sent to ResetAlg.

The latter reason leaded us to analyze the CompAlg’s convergence in two parts.
We first prove that, from any configuration C0, a configuration CT in which PredT is
satisfied, i.e., where the tree is stabilized, is reached, while analyzing the corresponding
time complexity. In the second part, we analyze the stabilization time from CT until
a terminal configuration CM in which PredAsync-GSA (global predicate for a stable
marriage with Async-GSA), PredT (global predicate of the tree built by TreeAlg) and
PredRTerm (global predicate of the terminal configuration of ResetAlg), are all satisfied.

In the first part of the analysis, we consider two types of nodes: (1) nodes that will
be activated for TreeAlg between C0 and CT and (2) nodes that are already stabilized
for the tree (they are no anymore eligible for any TreeAlg’s rule). Notice that nodes
which are activated for the last time for a TreeAlg’s rule change from type (1) to type
(2). The main idea of the proof is to analyze how much moves can be made by a node
before CT, depending on its type. Figure 5.15 illustrates (using similar conventions as
in Figure 5.12) a possible coexistence of such types of nodes during the segment between
C0 and CT. The last activated node for TreeAlg is v so, it is of type (1) (during the red

V. Composition 111

execution segment in the figure), while w is of type (1) in the beginning, and of type (2)
after its activation for TreeAlg in some configuration Cx (blue execution segment in the
figure). A node u is of type (2) from the beginning.

C0 Cx CT CResetAlg
safe CBasicAlg

reset CM

u

w

v

last TreeAlg’s rule of w

last TreeAlg’s rule of v

time

O(n2)
TreeAlg, ResetAlg,

Async-GSA

O(n2)
ResetAlg,
Async-GSA

O(n2)
ResetAlg,
Async-GSA

O(n2)
ResetAlg,
Async-GSA

Figure 5.15: Illustration of the execution of CompAlg
Nodes are of type (1) during the red execution segments, and of type (2)

during the blue ones.

We first prove that nodes of type (1) (like w or v) can be activated for a constant
number of moves before their last activation for TreeAlg (Lemmas 60 - 66). Thus, after
a constant number of its own moves, a node switches to type (2) (like w in Cx).

Then, we prove that a node of type (2) (like u or w after its last activation for
TreeAlg) is eligible for O(1) moves of ResetAlg and O(n) moves of Async-GSA before
CT is reached, i.e., till PredT becomes satisfied (Lemma 67). Concerning the O(1) moves
of ResetAlg, the main argument is that ResetAlg proceeds in “waves” (of broadcast
and convergecast) propagated over a tree of depth 2 and coordinated by the root. But
since the tree is not stabilized yet before CT, waves cannot be propagated, leading to
a constant number of ResetAlg’s moves. This implies that each type (2) node can
be activated a constant number of times for O(n) moves of Async-GSA, since a node
can perform O(n) moves in Async-GSA and partial ResetAlg can reset Async-GSA’s
variables of the node a constant number of times. Thus, CT is reached after O(n2)
moves (Lemma 67).

Concerning the second part, after the tree has been built, in the worst case, an
execution is divided into three additional sub-parts: i) an initial sub-part in which a
partial reset (propagated on the tree) is executed, ii) a second sub-part during which
a reset is performed after being triggered in a safe configuration (see Definitions 7

112 Chapter 5. An Approach by Local Checkability and Reset

(self-stabilizing reset problem) and 8 (safe configuration)) and iii) a third sub-part,
which corresponds to an execution of Async-GSA with the correct initialization. We
discuss upper bounds for each of these three parts.

We first consider the sub-part i) with the partial reset. By Lemma 56, ResetAlg
converges to CResetAlg

safe in O(n) moves from any configuration (with stabilized tree of
depth 2). This induces that Reset is executed a constant number of time: Async-GSA
do not start again and again because of the reset of its variables. Thus after O(n2)
moves from CT, CResetAlg

safe is reached.
The sub-part ii) begins from CResetAlg

safe in which the reset can be triggered by some
incoherent nodes (regarding its state and its neighbors’ registers) or nodes involved in
a blocking pair. The other nodes simply execute rules of Async-GSA (Algorithms 3
(women) and 4 (men)). The longest execution segment of this part is obtained when the
unfair scheduler chooses to ignore the incorrect nodes (from executing the enabled rules
of the incoherence detection - rule Comp_Local_Check). This may take at most
O(n2) moves (of the Async-GSA rules): after a partial stable marriage has been built
with the correct nodes (those that do not detect any incoherence) using Async-GSA,
these nodes are no more eligible, at least because no woman can make a new proposal,
as the end of her preference list has been reached or a partner has been found. The
task of building a partial stable marriage takes O(n2), still from Lemma 44. Then,
an incorrect node is activated, triggering a reset. The triggered reset ends after O(n)
moves, resetting Async-GSA to CBasicAlg

reset and Async-GSA can be executed again.
Finally, consider the sub-part iii), Lemma 44 gives the O(n2) moves upper bound in

terms of moves from CBasicAlg
reset . Furthermore, since Async-GSA est locally checkable, no

reset signal can be launched from CBasicAlg
reset . Thus, ResetAlg converges to CResetAlg

normal in
O(n) moves.

Then, from CT, after O(n2) moves, a configuration CM (in which PredAsync-GSA is
satisfied) is reached (Lemma 68).

This justifies the overall complexity of O(n2) moves (Theorem 5). This bound is also
correct in terms of rounds and is tight (see the scenario reaching it in Sub-section III.3).

V.2.1 - Stabilization of the Tree (to PredT)

Lemma 60. From any configuration, a man v is activated for at most 1 move (of
TreeAlg) before its last activation for TreeAlg.

Proof. Let C be any configuration. In C, v is either eligible for TreeAlg or not eligible
for TreeAlg. Notice that, by Lemma 45, men are eligible for at most 2 moves: Update
and I_am_not_root.

If v is not eligible, it cannot become eligible for these two rules. Indeed, these rules
check only v’s variables (for the men): if these variables are already with the ‘good’
values, no other rule can change them. Thus, v is never eligible for these rules.

If v is eligible for TreeAlg’s rules, it is for Update and/or I_am_not_root. If it
is only for one rule, it becomes not eligible after its activation and v is in the previous
case: it cannot become eligible for the other rule. If v is eligible for both, it cannot be
activated for another rule between the activations. This is because, if I_am_not_root
is activated, it is already eligible in C and because the actions of I_am_not_root

V. Composition 113

rule do not affect the variables verified by the guard of Update (and vise versa). Thus,
a man v can be activated for at most 1 move before its last TreeAlg’s activation.

Lemma 61. Let C be any configuration in which there is a woman w not eligible for
TreeAlg and with Tree_LC not satisfied. From C, w is not activated for any move before
its last activation for TreeAlg.

Proof. Since w is not eligible for any TreeAlg’s rule in C, Update is never enabled
for w (shared registers are already consistent and not other rule change their values).
Furthermore, since Tree_LC is not satisfied and v is not eligible for TreeAlg in C,
I_am_not_root is not the first TreeAlg’s move of w.

Hence, w is activated for I_am_root, when all neighbors agree on the min value
True. Between the last Update activation of w’s neighbors and the activation for
I_am_root, Tree_LC is satisfied. But w is already eligible for I_am_root, i.e., w
cannot be activated for any other rule before I_am_root (rules’s priorities). Further-
more, since men have been activated for Update, this induces that their min value
are correct: w is the root. Thus, it cannot be activated for I_am_not_root after
I_am_root. I_am_Root is its last TreeAlg’s activation, after no other move.

Lemma 62. Let C be any configuration in which there is a woman w eligible for
TreeAlg and with Tree_LC not satisfied. From C, w is activated for at most 2 moves
(of TreeAlg) before its last activation for TreeAlg.

Proof. In C, w is eligible for Update and/or for I_am_not_root (Tree_LC not sat-
isfied). After these activations, either w is no more activated for TreeAlg (the last
activation for TreeAlg already happened) or there is a last activation for I_am_root
(women are eligible for at most 3 moves, once for each, by Lemma 46). We consider
the case in which w will be activated for I_am_root. Since in C, Tree_LC is not
satisfied, neighbors are activated for Update and will agree on the min value True in
a configuration C1. Any other rule is enabled for w during this time: Tree_LC is not
satisfied. In C1, w is eligible for I_am_root and this is its last activation for TreeAlg.

Thus, after at most 2 moves of TreeAlg, w’s next activation is for its last TreeAlg’s
rule.

Lemma 63. Let C be any configuration with a woman w that is not eligible for TreeAlg
and that satisfies Tree_LC. From C, before the first activation of one of its neighbors,
w can make at most 5 moves.

Proof. In C, since Tree_LC is satisfied for w, all w’s neighbors agree on a min value.
We analyze first the number of moves that w can make with ResetAlg before any

activation of its neighbors.
If neighbors’ min values are True, w “thinks” that she is the root. The longest se-
quence of ResetAlg’s activations that does not require a shared variable update of the
neighbors is either: i) Reset and then Back_Normal or ii) Reset_Launch or Vari-
ables_Consistency or Initiate and then Freeze Thus, w can be activated at most
for 2 moves.
If neighbors’ min values are False, w “thinks” she is a leaf. Node w can be activated

114 Chapter 5. An Approach by Local Checkability and Reset

for at most 3 moves: for Variables_Consistency or Reset_Launch, for Freeze and
then, for Reset (see Figures 5.11 and 5.13).

Furthermore, if statusw = normal (afterBack_Normal or beforeReset_Launch
or Variables_Consistency or Initiate, for example), v can be activated for 2 moves
of Async-GSA: Refusal_Management and then either Propose or Refuse.

Comp_Local_Check is not enabled since w is a woman.
Thus, after at most 5 moves (3 of ResetAlg + 2 of Async-GSA), w cannot anymore

be activated if its neighbors are not activated.

Lemma 64. Let C be any configuration in which there is a woman w not eligible for
TreeAlg and with Tree_LC satisfied. From C, w is activated for at most 7 moves before
its last activation for TreeAlg.

Proof. Since w is not eligible for TreeAlg’s rules in C, its shared registers are consistent
and thus Update is never enabled for w. Moreover, since Tree_LC is satisfied in C, its
neighbors are coherent: their shared variables min have the same value True or False.
If w’s neighbors are not activated for Update, w is not anymore eligible for TreeAlg.
If some w’s neighbors are activated for Update, this means that all its neighbors’ min
have a wrong value: all w’s neighbors will be activated for Update. In this case, w will
be activated either for I_am_root (if in C the values are False) or I_am_not_root
(if in C the values are True) in a configuration C1. The execution can be divided into
two parts: before the first w’s neighbors’ activation and after this activation. In the
following, we analyze each part.

Before the first neighbor’s activation, by Lemma 63, w can make at most 5 moves.
After at least one w’s neighbors’ activation forUpdate, w is either i) still not eligible

for TreeAlg and with Tree_LC not satisfied (min values were False and not all men
have been activated) or ii) eligible for TreeAlg (I_am_not_root) and with Tree_LC
not satisfied (min values were True and not all men have been activated) or iii) eligible
for TreeAlg (I_am_root or I_am_not_root) and with Tree_LC satisfied (all men
have been activated for Update in the same step). Notice that the case in which w is
still not eligible for TreeAlg and with Tree_LC satisfied is not possible.

If w is in case i), by Lemma 61, it cannot make any move before C1.
If w is in case ii), by Lemma 62, it can make at most 2 moves before C1.
Finally, if w is in case iii), it is eligible either for I_am_root (if min values are

True) or I_am_not_root (if min values are False). Since by Lemma 46 men are
activated once for Update, the min values will not change again. Thus, w’s next
activation can only be for its last TreeAlg’s rule.

Thus, after at most 7 moves, w’s next activation can only be for its last TreeAlg’s
rule.

Lemma 65. Let C be any configuration in which there is a woman w eligible for
TreeAlg and with Tree_LC satisfied. From C, w is activated for at most 9 moves
before its last activation for TreeAlg.

Proof. In C, w is eligible for any of the 3 TreeAlg’s rules and, by Lemma 46, it is eligible
at most once for each rule. The order of activation depends on the neighbors shared
values.

V. Composition 115

In C, w is eligible for at most 2 moves: either one Update and one I_am_root (if
neighbors’ min values are True in C) or Update and I_am_not_root (if neighbors’
min values are False).
Let suppose that w is activated for Update and is also eligible for I_am_root or
I_am_not_root. After this move, Tree_LC may be not satisfied if at least one
neighbor has also been activated for Update in the same transition. In this case,
by Lemma 61 and Lemma 62, after at most 2 moves, w is activated for its last activa-
tion.
If after the w’s activation for Update, Tree_LC is still satisfied, w is still eligible for
either I_am_root or I_am_not_root. Notice that, before the next w’s activation,
Tree_LC can be not anymore satisfied. If so, again by Lemma 61 and Lemma 62, after
at most 2 moves, w is activated for its last TreeAlg’s rule. Consider now that w is
activated for either I_am_root or I_am_not_root. After this activation, there are
several cases.

• Either Tree_LC is still satisfied and w not eligible for TreeAlg (no neighbor’s
Update during the same transition). By Lemma 64, after at most 7 moves, w is
activated for it last TreeAlg’s rule.

• Or Tree_LC is not satisfied and w not eligible for TreeAlg (during the same tran-
sition, w is activated for I_am_not_root and at least one of its neighbors is
(and not all)activated for Update). By Lemma 61, w is only eligible for it last
TreeAlg’s activation.

• Or Tree_LC is not satisfied and w eligible for TreeAlg (during the same transition,
w is activated for I_am_root and at least one of its neighbors (and not all) is
activated for Update). By Lemma 62, after at most 2 moves, w is activated for
it last activation.

• Or Tree_LC is satisfied and w eligible for TreeAlg. This last case is only possible if
during the same transition, w is activated (for I_am_not_root or I_am_root)
and all its neighbors are activated forUpdate. Thus, w is eligible for I_am_root
if it has been activated for I_am_not_root earlier or reciprocally. This move
is the last TreeAlg’s activation since women may be activated at most once for
each TreeAlg’s rule.

Notice that the same argumentation leads to the same result if w is activated first
for I_am_root or I_am_not_root and then for Update.

Thus, after at most 9 moves (2 first TreeAlg’s rules + 7 of Lemma 64), w’s next
activation can only be for its last TreeAlg’s rule.

Lemma 66. From any configuration C, a node v is activated for at most 9 moves before
its last activation for TreeAlg.

Proof. In C, v can be of four different types:

1. Tree_LC is not satisfied but v is not eligible for TreeAlg,

2. Tree_LC is not satisfied and v is eligible for TreeAlg,

116 Chapter 5. An Approach by Local Checkability and Reset

3. Tree_LC is satisfied and v is not eligible for TreeAlg or,

4. Tree_LC is satisfied but v is eligible for TreeAlg.

First, by Lemma 60, if v is a man, no matter the type, it can make at most 1 move
before its last activation.

Now, let v be a woman. Women of type 1, 2, 3 and 4, make 0, 2, 7 and 9 moves
respectively, by Lemma 61, Lemma 62, Lemma 64 and Lemma 65, respectively.

Thus, after at most 9 of it own moves, v is only eligible for its last TreeAlg’s rule.

Lemma 67. Let C be any configuration in which PredT is not satisfied. From C, a
configuration C1 in which PredT is satisfied is reached in at most O(n2) moves.

Proof. Assume that such a configuration C1 is never reached. There are tree possibilities:

1. either no node is eligible for TreeAlg but PredT is not satisfied, or

2. some nodes are infinitely often activated for TreeAlg, but PredT is never reached,
or

3. at least one node u that is eligible (or will be eligible) for TreeAlg, is never
activated.

By Lemma 47 (any terminal configuration (of TreeAlg) satisfies PredT) and the fact
that TreeAlg is activated in Comp_Tree with no restriction (first priority in CompAlg),
case 1 is not possible.

Furthermore, by Lemmas 45 and 46, each node is eligible at most 3 times for TreeAlg
and by Lemma 47, when all nodes have been activated for TreeAlg, C1 is reached. Thus,
case 2 is also not possible.

Now, let us consider case 3. We show that, between C and C1, the set of other
(than u) nodes (those not activated for TreeAlg) are eligible for at most O(n2) moves in
overall. This implies that u cannot stay unactivated, i.e. C1 (in which PredT is satisfied)
is reached.

Let us thus analyze the move complexity, during the execution segment from C till
C1, of the set S of nodes which are never eligible for TreeAlg rules, i.e., for which
GuardsTreeAlg is not satisfied during the whole execution. These nodes form a forest
that is part of the future tree. Other nodes, eligible for TreeAlg, may join the sub-trees
(forest), but a cycle (of parent pointers) can never be formed, since this requires for a
node in S to be activated for TreeAlg. Such joins are made after the last TreeAlg’s move
of those nodes, i.e. after their O(1) moves (of any type). Thus, a leaf v still eligible for
TreeAlg is not in the forest. Notice that ResetAlg uses convergecasts and broadcasts to
propagate the waves. Thus, Mmin and Wmin wait for answers from their children before
being eligible, i.e., v’s parent cannot run the algorithm to convergecast a wave. Similarly,
ifMmin orWmin are not in the tree, broadcast waves cannot be completed. Hence, while
not all nodes are in this tree (PredT is not satisfied), waves are blocked. But when nodes
(eligible for TreeAlg) are activated for their last action (for TreeAlg), they “take their
place” in the tree and participate to the current blocked wave. Furthermore, when
joining the tree, nodes cannot “disturb” the waves: either the nodes already have the
required (by the current wave) status or it shifts to initiate (Variables_Consistency,

V. Composition 117

Reset_Launch or Neighbors_Coherence). In this case, the initiate wave may
possibly reach the root (if it is not blocked at some point) and be transformed in a
freeze broadcast wave. But this wave cannot end and be transformed in a successfully
reset wave since the tree is not complete. Furthermore, the next join cannot shift the
freeze-nodes back to initiate.

Furthermore, women that are activated for TreeAlg may be activated for a constant
number of Async-GSA’s and ResetAlg’s moves before their last TreeAlg’s activation
(men cannot by Lemma 60). But these moves do not influence nodes in S. Indeed, those
women are activated for Async-GSA’s and Reset only in the context of Lemmas 64 and
65, i.e. they are eligible for those moves when men on the other side are all eligible for
TreeAlg thus, are not in S.

Hence, over this (dynamic) forest structure where GuardsTreeAlg is not satisfied
(and thus PredT is satisfied) for every node (in the segment from C to C1), at most
O(n2) moves are executed by the nodes, by Lemma 68 (including the joining nodes after
their own O(1) moves of any type, by Lemma 66). Thus, there is no infinite cycle and
after O(n2) moves, the last eligible node for TreeAlg is activated and a configuration
C1 satisfying PredT is reached.

V.2.2 - Convergence after PredT is satisfied

Lemma 68. Starting from a configuration C where PredT is satisfied, CompAlg reaches
a terminal configuration in O(n2) moves where PredAsync-GSA is satisfied too.

Proof. Since in C PredT is satisfied, by Lemma 56, in O(n) moves, a configuration C1
in CResetAlg

safe is reached.
Between C and C1, men with status = normal and with a local predicate LP false
can be activated for Comp_Local_Check. This new signal does not interrupt the
convergence of ResetAlg to CResetAlg

safe : Lemma 56 is proven with no condition on signals.
Since each node is activated a constant number of times for ResetAlg’s rules and thus
is a constant number of times with status = normal, each man can be activated a
constant number of times for Comp_Local_Check (Comp_Local_Check changes
the status to initiate). That is O(n) additional moves forComp_Local_Check before
C1.
Furthermore, between C and C1, every normal-node (and with all LP True for men)
can also be activated for Async-GSA, and all such nodes together for O(n2) moves (by
Lemmas 42 and 41). Notice that, since ResetAlg is activated only for O(n) moves,
Reset is activated a constant number of times for each node. The activation of a node
for Reset does not influence the Async-GSA’s moves of other nodes: when a man is
activated for Reset, the only incidence is that women may be stuck in the process
of proposal/acceptance (since the request’s value does not correspond anymore to the
process and thus to the rules’ guards) and when a woman is activated for Reset, men
may be eligible for Comp_Local_Check. Hence, a node may not be restarted for
Async-GSA more than a constant number of times. Thus, after O(n2) moves (of all
algorithms together) C1 is reached.

When C1 is reached, if Comp_Local_Check is activated (at most once per man,
since reset signal launch changes the status of a node to initiate and that ResetAlg sat-
isfies the specification 7), a reset is launched and CBasicAlg

reset is reached in additional

118 Chapter 5. An Approach by Local Checkability and Reset

O(n) moves (by Lemma 59). During this convergence to CBasicAlg
reset , normal-nodes

may be activated for Async-GSA for O(n2) moves together (by Lemmas 42 and 41
and the freeze wave is propagated normally - the reset and the tree are stabilized
- from the root to the leafs interrupting all nodes before resetting). By definition of
CBasicAlg

reset (here, CBasicAlg
reset is CAsync-GSA

init), Π is now satisfied and since Async-GSA is lo-
cally checkable, Comp_Local_Check cannot be enabled anymore. Then, in O(n)
moves, CResetAlg

normal - a terminal configuration projected on ResetAlg - is reached. From
CBasicAlg

reset , by Corollary 5, a terminal configuration (a projection on Async-GSA) C3 satis-
fying PredAsync-GSA is reached after O(n2) additional moves (since Async-GSA is locally
checkable and by Lemma 43). At that moment, a terminal configuration of the whole
composition CompAlg is reached.

Theorem 5. The algorithm CompAlg solves the stable marriage problem in O(n2)
moves.

Proof. By Lemma 67, from any configuration in which PredT is not satisfied, after
O(n2) moves, a configuration C in which PredT is satisfied is reached. From C, by
Lemma 68, after O(n2) moves, a terminal configuration where PredAsync-GSA is satisfied
is reached.

VI - Conclusion
In this chapter, we have presented our second asynchronous self-stabilizing algorithm
for SMP. This algorithm is built using the local checkability scheme of [APSVD94]
that we adapted to our model and purpose (Definition 6). Local checkability is a well-
know method allowing to compose a non-self-stabilizing algorithm, a local detector and
a reset components in order to build a self-stabilizing version of the given initialized
algorithm. Though the technique is well known, it had to be adapted in a delicate
way. Moreover, neither it provides the move complexity of the composition, nor the
components themselves are provided automatically.

For being able to use the adapted version of this technique we first designed a
non-self-stabilizing algorithm to be transformed. This is an asynchronous distributed
version of GSA (Async-GSA - Alg. 3 and 4) that solves SMP in Θ(n2) moves. Since no
self-stabilizing reset algorithm running under an unfair daemon in a link register model
was designed and analyzed (for move complexity) before this work, we design also a
reset algorithm (ResetAlg - Alg. 6) executed over an underlying rooted tree. Thus, we
propose also a tree construction algorithm (TreeAlg - Alg. 5) that builds a rooted tree
of depth 2 in O(n) moves. The reset algorithm runs on this tree and its move complexity
is O(n).

Then, we compose those algorithms together (Async-GSA, TreeAlg, ResetAlg and
the detector into CompAlg - Alg. 7) in a way providing a self-stabilizing version of
Async-GSA that solves SMP in Θ(n2) moves. The complexity analysis reaching this
bound is intricate and constitutes one of the main contributions of this thesis. Finally
note that all algorithms use registers of only few bits, and the confidentiality of the
preference lists is always kept.

Chapter 6

Extensions to Variants of SMP

Contents
I Subsets of unequal Size . 120
II Stable Matching with Indifference 121
III Unacceptable Partners . 122
IV Many-to-One (Hospitals-to-Residents Problem) 124
V Many-to-Many . 125

Many variants of the original stable marriage problem were studied. Each corre-
sponds to a particular application domain. We consider some of them and discuss
the possibility to obtain self-stabilizing solutions based on the algorithms we proposed
(Chapters 4 and 5) for the basic problem. In each case, we study how these algorithms
can be adapted. First, the definitions of preference list and consequently of blocking
pair and stable matching must be extended. In some cases, the solution is an easy
adaptation of the solutions for the basic stable marriage. In some other cases, the algo-
rithms must be more deeply modified, as well as their proofs, but stay relevant. Finally,
there are cases where, due to the particularity of the proposed algorithms (e.g., the ex-
tensively used phase breakdown or the local checkability), suitable simple adaptations
are inappropriate and different approaches are required. These cases are discussed as
perspectives in Chapter 7, Section II.

The variants, for which we present a solution, are all mentioned in the reference
book of Gusfield and Irving [GI89]. Their names are: stable matching with unequal
sizes of opposite sets, stable matching with indifference (ties in preference lists), stable
matching with unacceptable partners (incomplete lists), many-to-one matching (Hospi-
tals/Residents problem) and many-to-many matching. In the following, each variant is
considered separately. It is explained and the required changes to the algorithm and
to the proof are indicated. Notice that the modifications for each case are presented in
such a way that they can be simply combined together to obtain a general algorithm
covering all the different variants. It is also interesting to notice that the changes (when
needed) are very similar for both algorithms. This observation comes from the fact that
in both cases we use local checking.

We start by extending the basic definition of stable matching, to have a uniform
framework for the considered variants.

First, to allow many-to-many (and many-to-one) matchings, each node v must be
matched to at most b ≥ 1 partners. In this case, b is called the capacity and v is said to
be b-matched if it is matched with exactly b partners1

1For simplicity, we have a constant b for every node, but this can be easyly adapted to the case where
each node u has its individual capacity bu.

120 Chapter 6. Extensions to Variants of SMP

Then, the definition of preference list is extended to allow unacceptable partners.
Each node v has a preference list of k neighbors (0 ≤ k ≤ n) in preference order. A
node u is acceptable for v iff u is in v’s preference list, i.e., u ∈ v.pref . A node prefers
to stay single rather than to be matched to an unacceptable partner.

The definition of (extended) stable marriage/matching still relies on the absence of
BP, whose definition must be extended too.

Definition 10 (Blocking Pair (BP)). Given an extended matchingM, a pair (w,m) is
a blocking pair iff the following conditions are satisfied:

1. w and m are not matched together, i.e. (w,m) /∈ M;

2. w and m are acceptable for each other;

3. w is not b-matched ∨ w prefers m to at least one of her b partners,
i.e. ∃ m′ : (w, m′) ∈M ∧ priority(w,m) < priority(w,m′);

4. m is not b-matched ∨ m prefers w to at least one of his b partners,
i.e. ∃ w′ : (w′, m) ∈M ∧ priority(m,w) < priority(m,w′).

I - Subsets of unequal Size, b = 1
In this variant, sets of women and men can be of different cardinality. Furthermore, the
nodes’ capacity is 1. As a consequence, some nodes can be single in the final matching.

Jane{Scott,
John}

Anna{John,
Scott}

Zoe{Scott,
John}

John
{Zoe,
Anna,
Jane}

Scott
{Zoe,
Jane,
Anna}

Figure 6.1: Stable marriage in a system with subsets of unequal size

Adaptation of the Two Phase Algorithm. This is the simplest variant, since
there is nothing to change in the basic algorithm. Indeed, if a woman detects no BP
and reaches the end of her preference list without finding any match, she is single and
no more enabled. Symmetrically, if a man does not receive any proposal, he stays single
and not enabled. The time complexity analysis for this extension stays relevant, but
depends on the size of the largest subset.

II. Stable Matching with Indifference 121

Adaptation of CompAlg. This is also the easiest variant for CompAlg since it needs
no change. Indeed, the only problematic point is the the presence of singles (a woman
reaching the end of its list or a man receiving no proposal) in the final matching. In this
situation no reset signal should be launched since matching is stable. In this matching,
nodes in the opposite set of the singles are all matched to a better ranked partner than
the singles (since the matching is stable). Hence, as each time preferences are checked
using the local predicates, no reset signal can indeed be launched.

II - Stable Matching with Indifference (preference
lists with ties), b = 1

In this variant, ordering in the preference lists is not required to be strict. In the
literature studying this variant (e.g., [IMM99, BM06, IMO09]), several sub-variants are
considered. These variants affect the stability of the required matching, and depend on
the definition of BP. There are three ways to extend Definition 10 of a BP (w,m). In
all of them, points 1 and 2 in Def. 10 remain the same. Points 3 and 4 may be kept or
slightly modified:

(a) w and m strictly prefer each other (like in Def. 10),

(b) w strictly prefersm and w is not worse than the actual partner ofm, or reciprocally
(that is replacing in 3 or 4 < should be replaced respectively by ≤),

(c) m is not worse than the actual respective partner of w and reciprocally (that is
replacing in 3 and 4 < by ≤).

Depending on the choice, the type of matching stability changes. With (a) it is called
weakly stable, with (b) strongly stable and with (c) super stable. With (b) and (c), there
is no guarantee that a stable marriage exists [Irv94].

Jane
{Scott,
Mark/
John}

Anna
{John/
Mark,
Scott}

Zoe
{Mark/
Scott,
John}

John
{Zoe,
Anna,
Jane}

Scott
{Zoe/
Jane,
Anna}

Mark
{Zoe,
Anna,
Jane}

Figure 6.2: Weakly stable matching with indifference

122 Chapter 6. Extensions to Variants of SMP

Adaptation of both Algorithms to Condition (a). It suffices to remark that,
when breaking the ties arbitrarily, a matching stable with condition (a) is a stable mar-
riage (as noticed in [Irv94]). Thus only a slight modification of the proposed algorithms
is needed. The ties are arbitrarily broken in advance, and the corresponding preference
lists are appropriately adjusted. There is no change in the complexity analysis of both
algorithms.

Conditions (b) and (c) Both cases raise a general issue concerning problems for
which there is not always a stable matching. If their specification only concerns termi-
nating executions (in a configuration with a stable matching), both solutions are still
relevant. If their specification asks also for detecting the absence of stable matching, the
issue is complicated (in particular, non-terminating executions are possible). We delay
its discussion to the last chapter on perspectives (Chapter 7, Section II).

III - Unacceptable Partners (incomplete prefer-
ence lists), b = 1

In this variant, some partners can be unacceptable for some nodes. This means that a
node prefers to stay single rather than to be matched to an unacceptable partner. This
is expressed in the preference list so that unacceptable partners are absent. In other
words, they are not ranked. As mentionned in [Irv94], some nodes can be single in a
final stable marriage. However, a stable marriage always exists (possibly with single
nodes) [GI89].

Jane
{Scott,
Mark,
John}

Anna{John,
Mark }

Zoe
{Mark,
Scott,
John}

John {Zoe,
Jane}

Scott {Zoe,
Anna}

Mark
{Jane,
Zoe,

Anna}

Figure 6.3: Stable matching with unacceptable partners

Adaptation of the Two Phase Algorithm. Adapting the algorithm to this variant
requires minor changes. First, because to be single is a better choice than to be married
to an unacceptable partner, the priority function (see Chapter 4, Section II) is adjusted:
for a node u ∈N (v), priority(v,u) = n+2 iff u /∈ v.pref (recall that if u = v.marriage =

III. Unacceptable Partners 123

Null, i.e., v is single, priority(v,u) = n+ 1).2 This simple adaptation ensures that, for a
node v, an unacceptable node u always has the lowest possible priority (even comparing
to being single). Thus, u will never be a part of the Cv set (set of mutually preferred
neighbors of v), used in other predicates of the basic algorithm. Notice that the values of
the priority function p are used in Cv (Sect. II). This implies that u will be excluded from
any action contributing to the creation of matchings, in all the rules of type Propose,
women’s Confirm and Accept. Note that Confirm for men does not contribute to
the creation of a matching, since a man eligible for this rule is already considered as
married (m.proposal.marriage = m). Hence, new unacceptable matchings (involving
an unacceptable partner) cannot be created. Thus the proof of the basic solution stays
relevant, if no unacceptable matching exists due to a “bad” initialization. Notice that
the original proof does not make any assumption on the size of the preference list.
Moreover, the part of the proof asserting that a terminal configuration with a stable
marriage is reached is still valid if some nodes end single.

But what if some unacceptable matchings exist at initialization? They have to be
reset using Reset. To ensure that the actions of these rules are launched, the incoherent
pointers’ predicates (constituting the guards of Reset rules) has to be adapted. This
is for detecting whether the pointers of a node v, v.marriage and v.proposal (used to
indicate and create matchings) point to unacceptable partners. Thus, both predicates
IncoherentPointersW(v) and IncoherentPointersM(v) are modified, each in the same way,
by adding the following disjunction:

priority(v,v.marriage) = n+ 2 ∨ priority(v,v.proposal) = n+ 2.

Due to this modification and by the correctness of the original algorithm, in at least
O(n4) moves, every node is activated. Thus, all incoherent pointers are reset and never
become incoherent again (in the way defined above), as it is explained in the previous
paragraphs. Then, a stable matching is reached in at most additional O(n4) moves.

Adaptation of CompAlg. As for the Ackermann et al. based algorithm, the priority
function (see Chapter 5, Section II) must be adapted in the same way to handle un-
acceptable partners. Hence, for a node u ∈N (v), priority(v,u) = n + 2 iff u /∈ v.pref
(recall that if u = v.marriage_pref = Null, i.e., v is single, priority(v,u) = n + 1).
This induces that single nodes prefer to stay single instead of being matched with an
unacceptable node.

Note that Async-GSA cannot build a pair with unacceptable partners: a woman
cannot propose to an unacceptable partner (he is not in her list) and a man cannot
accept a proposition from an unacceptable woman (priority returns n+ 2).

As for the first algorithm, there is still a problem if a pair with an unacceptable
partner is already present in the initial configuration. The local predicate must detect it
but it does not as it is, even with the new value of priority. Hence, we add the following
local predicate in a conjunction with the original LPm,w (as defined in Section III.2).

PUnacceptable
m,w ≡ ¬[(priority(w,m) = n+ 2 ∧ requestw,m 6= None)

2Recall that it is assumed that node u communicates to v ∈N (u) the value of priority(u,v). Thus,
together with the previous assumptions, it is required that u communicates the priority priority(u,v) =
n + 2 to an unacceptable node v.

124 Chapter 6. Extensions to Variants of SMP

∨ (priority(m,w) = n+ 2 ∧ requestm,w /∈ {None, No})]

The first part of this predicate detects the cases where the woman is proposing to an
unacceptable partner. Indeed, if a man is unacceptable for a woman, the woman cannot
propose to this man. Thus, if requestw,m 6= None, this is because of a bad initialization.
The second part allows to detect when men accept unacceptable partners. Note that,
since PUnacceptable

m,w only read local variables or registers and the Async-GSA rules cannot
create states not satisfying this predicate, Async-GSA is still locally checkable. Further-
more, this does not change Async-GSA’s complexity, neither the global complexity of
CompAlg.

IV - Many-to-One (Hospitals-to-Residents Prob-
lem)

This variant, introduced by Gale and Shapley in their seminal work [GS62], considers
two sets of members, hospitals and residents, of different sizes. Each hospital can be
matched with several residents, up to its capacity b ≥ 1, and each resident can be
matched to a single hospital. The sum of capacities has not to be equal to the number
of residents.

Jane
{Scott,
Mark,
John}

Anna
{John,
Mark,
Scott}

Zoe
{Mark,
Scott,
John}

John
{Zoe,
Anna,
Jane}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,

Anna}

Figure 6.4: Many-to-one matching with b = 2

Adaptation for both Algorithms. A reduction from the many-to-one case to the
one-to-one case is known [GI89]. At the algorithm level, each occurrence of a hospital
h in the preference list of a resident is replaced by the sequence h[1], h[2] . . . , h[b] of
hospital instances (the ties between this instances are broken arbitrarily)3. Then, at
each activation of a hospital h with capacity b, b similar instances, h[1], h[2] . . . , h[b],
of the algorithm are executed sequentially. In this transformation, a hospital node is
eligible if at least one of the rules of any of its b instances is enabled. Then, it can
be activated, if chosen by the scheduler. The resulting stable matching corresponds

3One assumes that the capacity b is known in advance by the residents or that they can read it in a
register.

V. Many-to-Many 125

to the many-to-one matching. For the time complexity of this extension, refer to the
complexity of the more general many-to-many variant.

V - Many-to-Many
The many-to-many extension of the stable marriage and its variants have been intensively-
studied in the literature (e.g., [Sot99, BAM03, MMNO04, BAM07, FGS10, EO16]).
Maybe the reason is that the formulation of the problem corresponds to real situations
involving markets. There are many variations of the many-to-many stable matching.
Some formulations use preference lists of subsets and do not assume any compatibility
(for instance the subset {v1} can be more preferred than the larger subset {v1, v2}).
In all generality, a stable matching does not always exist. These variants are far from
the solution that we gave and we will only focus here on the case of responsive pref-
erences [RS90, Alk99], that is when preferences over subsets are consistent with the
individual preferences over nodes (e.g., for example, {v1, v2} is more preferred than {v1}
or {v2} and {v1, v2} is more preferred than {v1, v3} if v2 is more preferred than v3).
Thus, simple sequences of nodes specify preference lists. This also implies that our ex-
tended definition of stable marriage (in this chapter) includes this variant of SMP with
responsive preferences. It is known that a stable marriage always exist with responsive
preferences, and in the case where initialization of the nodes is allowed, an iterative
variant of the Gale and Shapley algorithm can be used (see [Alk99]). Here, we focus on
the basic case having possibly two different size sets and unacceptable partners. Their
members are commonly named workers and firms and each one can be matched multiple
times (up to its capacity b ≥ 1).

Jane
{Scott,
Mark,
John}

Anna
{John,
Mark,
Scott}

Zoe
{Mark,
Scott,
John}

John
{Zoe,
Anna,
Jane}

Scott
{Zoe,
Jane,
Anna}

Mark
{Jane,
Zoe,
Anna}

Figure 6.5: Many-to-many matching with b = 2

Adaptation of the Two Phase Algorithm. The solution we give for this case is
adapted to all the variants presented till now. It is based on a similar transformation
as for the many-to-one case, applied this time on both sides. Basically, each occurrence
of v in the preference list of a member on the opposite side is replaced by the sequence
v[1], v[2] . . . , v[b] of instances. Then, at each activation of a member v with capacity b, b
similar instances of the algorithm are executed one after the other. However, problems

126 Chapter 6. Extensions to Variants of SMP

can appear. For example, let v and u be two members of different sets. Two instances
of v can be or can become matched with two instances of u. If the instances of v are
the most preferred for u, then no BP will ever appear and change the situation, leaving
two same nodes matched twice together.

To avoid this situation, an instance v[i] of v should be prevented to propose to and
become matched with a neighboring instance u[k] already matched or having a proposal
from another instance v[j] of the same node v. For that, each instance of v computes the
set of such “occupied” neighboring instances, denoted Occupied, and excludes them from
the set of mutually preferred instances C (see Chapter 4, Section II), at every activation.
Let us denote the currently considered instance of v by v[this]. Then,

Occupiedv[this] = {u[k] ∈N (v[this]) | ∃j 6= this,∃i : (v[j].marriage =
u[i] ∨ v[j].proposal = u[i])}.

This implies that the set of instances Occupiedv[this] will be excluded from Cv[this] at
any activation of v[this], and thus from any action contributing to creation of match-
ings, in all the rules of type Propose, Confirm and Accept (as is necessary by the
explanation above).

This modification ensures that no new “double” matchings between the same two
nodes are created. However, similarly to the solution for the variant with unacceptable
partners, such “double” matchings, existing at initialization, have to be deleted (using
Reset). Here again, this can be done by adapting IncoherentPointersW(v[this]) and
IncoherentPointersM(v[this]). We present this adaptation together with the adaptation
needed to tolerate unacceptable partners (so that the result works for all the considered
variants). Each of the two predicates are modified in the same way, by adding the
following disjunction:

[priority(v[this],v[this].marriage) = n+ 2 ∨ priority(v[this],v[this].proposal) =
n+ 2] ∨ [∃i 6= this : (v[this].marriage = x[j] ∧ v[this].proposal =

y[k] ∧ v[i].marriage = z[l] ∧ v[i].proposal = w[m]) ∧ {x, y} ∪ {z, w} * {Null}].

Due to this modification and by the correctness of the original algorithm, in at least
O(N4) moves, every node is activated, where N is the overall number of the instances.
Thus, all incoherent pointers are reset (by Reset) and never become incoherent again
(in the way defined above). Then, a stable matching is reached in at most additional
O(N4) moves.

Adaptation of CompAlg. As for the first algorithm, we apply the transformation
described in the previous section to both sides. Hence, each occurrence of v in the pref-
erence list of a member on the opposite side is replaced by the sequence v[1], v[2] . . . , v[b]
of instances. Then, at each activation of a member v with capacity b, b similar instances
of the algorithm are executed one after the other.

The same problem also appears with this algorithm: two instances of a node v may
be matched to two different instances of the same node u. Hence, Async-GSA must be
modified for avoiding such double matches in the same way. For that, each instance
of v computes the set of “occupied” neighboring instances (already matched with v),
denoted Occupied, and excludes them from consideration in the preference list pref and

V. Many-to-Many 127

from N (v) (see Chapter 5, Section III), at every activation. Let us denote the currently
considered instance of v by v[this] and bu be the capacity of b. Then,

Occupiedv[this] = {u[k] ∈N (v[this]) | ∃j 6= this,∃i :
v[j].marriage_pref = u[i]}.

Hence, the set of instances Occupiedv[this] will be excluded from pref and from N (v) at
any activation of v[this] for Async-GSA, and thus from any action contributing to cre-
ation of matchings in particular since next(pref) cannot anymore return these instances.

But, as explained before, this “double matchings” may be already build at initializa-
tion and the local predicate must detect it. Thus, we add the following local predicate in
a conjunction with the original LPm,w (as defined in Section III.2). We include the mod-
ification for unacceptable partners to give a global solution for all the variants treated
till now.

PExtensions
m[i],w[j] ≡ ¬[(priority(w[j],m[i]) = n+ 2 ∧ requestw[j],m[i] 6= None)
∨ (priority(m[i],w[j]) = n+ 2 ∧ requestm[i],w[j] /∈ {None, No})

∨ (∃k 6= i : m[i].marriage_pref = x[j] ∧ m[k].marriage_pref = z[l]
∧ x = z)]

Note that similarly to this predicate, all other local predicates has to be modified using
similar notations to manage the different instances.

Since Async-GSA cannot fall in such a problematic case defined by PExtensions
m[i],w[j] , it

remains locally checkable and thus can be composed into CompAlg. Furthermore, the
analysis complexity is now depend on the total number N of instances but stays of the
same order (since b is constant).

Chapter 7

Conclusion

Contents
I Summary . 129

II Perspectives . 130

I - Summary

During the design of asynchronous self-stabilizing distributed algorithms solving SMP,
we faced different issues. The first is asynchrony, in relation with our goal of efficiency
concerning the proposed algorithms. The second issue is the requirement of privacy for
the participant’s information, leading to keep their preference lists secret. The third
issue is the assumption of a strong adversary, under the form of an unfair demon, still
in relation with the best possible performances.

Nevertheless, we proposed two self-stabilizing distributed algorithms that solves SMP
in an asynchronous communication model with an unfair daemon and respecting the pri-
vacy (only some binary queries and responses about the preference lists are transmitted).

Based on the Ackermann et al.’s idea (of two phases), we proposed a first algorithm
(Chapter 4) that solves SMP in O(n4) moves and rounds in the state reading model.
The two phases mechanism uses local detection and correction of BPs. Hence, when a
partial stable marriage is already obtained, the algorithm may keep the matched pairs.
This can be a huge advantage in the case of a distributed storage of the matching, when
only some sites have been hit by failures. But the counterpart is a rather high worst case
complexity. This work has been published in [LMB+17] and is submitted to a journal.

Since the worst case complexity was far from the theoretical lower bound of Ω(n2/ logn)
moves, our next step was to look for an algorithm with a better complexity. As local
correction appeared to be costly (due to our first solution) costly, we tried to implement
a global correction, by triggering a reset each time a problem was detected locally. For
that, we had to modify the original local detection conditions of [APSVD94], while still
using the same global reset scheme. The resulting algorithm (Chapter 5) solves SMP in
Θ(n2) moves and rounds in the link register model. A preliminary version of this work
has been published in [BBB+18]. The full version is in preparation for submission.

Finally, we studied in Chapter 6 some classical variants of SMP and propose the
minor changes to both algorithms to obtain a self-stabilizing algorithm that solves all
these variants.

130 Chapter 7. Conclusion

II - Perspectives
We now discuss some perspectives related to the results of the thesis.

Complexity. In [GNOR15], it has been proven that the communication complexity
of SMP is Ω(n2) bits inducing a lower bound of Ω(n2/ logn) moves in our model (see
Section III.1 for explanations). In this work, the best algorithm (CompAlg) has a com-
plexity of Θ(n2) moves, letting a gap open between the best know solution and the lower
bound. A natural issue is to close the gap. That can be done either by finding a still
more efficient algorithm in terms of moves or by increasing the lower bound.

In [GNOR15] the lower bound proof uses a particular case of preference lists that can
be represented using only O(n2) bits altogether. However in a general case, the prefer-
ence lists require Θ(n2 logn) bits to be represented in the two-party setting assumed in
the communication complexity analysis (the preference list of each SMP participant is
coded by Θ(n logn) bits). We believe it is possible to provide a proof for a more general
case of preferences represented by Ω(n2 logn) bits, resulting in Ω(n2) lower bound of
moves in our model. Nevertheless, this is still an open question.

Reset Algorithm. Numerous reset algorithms were known before this work, but no
one was precisely designed for the link register model with an unfair scheduler. The
reset algorithm that we proposed is adapted to this model and has a move complexity of
O(n · 6p) (where p is the depth of the rooted spanning tree on which it runs). Hence, if
the depth of the tree is known and does not depend on any system parameter (like our
tree of depth 2), it has a linear complexity. Otherwise, the complexity is exponential.
Natural issues are the questions of the tightness of this bound and the possibility of a
better solution. For the tightness of our algorithm’s bound, we conjecture that it cannot
be improved by other analysis techniques. The reason for the latter is the following.

There are possible cycles of moves that a children of a node in a tree can make from
any configuration. These cycles are due to faults that may cause a node to change for
initiate status several times, before its parent makes a move, leading to the exponential
move complexity. These cycles are not broken until the initiate wave comes to the root
and a freeze wave is launched. Hence, in order to get a better algorithm, an idea would
be to avoid such cycles by using more restricted guards.

Self-stabilizing Transformer. In Chapter 5, we have presented the result of the
composition of TreeAlg, ResetAlg and Async-GSA as a whole algorithm. As TreeAlg
and ResetAlg are largely independent of Async-GSA, one can ask whether such a compo-
sition is applicable to other algorithms than Async-GSA. Underlying this approach, there
can be proven a general composition theorem, stating that if an initialized algorithm
satisfies some properties, related to local checkability, and solves a graph problem Prob,
then it can be automatically (syntactically) transformed into a self-stabilizing version
(self-stabilizing for Prob). Such a composition theorem would establish the existence
of what can be called a self-stabilizing transformer, transforming automatically an al-
gorithm with initialization into a self-stabilizing algorithm solving the same problem.
There already exist several such transformers in the literature ([APSV91, APSVD94],

II. Perspectives 131

...), and we base our second solution on them. The originality of the one that we suggest
is the consideration of the unfair demon, as well as the fact that a tight bound on the
moves complexity for the transformed algorithm could be obtained (as a function of the
move complexity of the initialized algorithm). In the context of this thesis, a privileged
application domain of such a syntactic transformer would be the different variants of
SMP that have been studied, and received solutions, for some of them, in a centralized
setting. Most of them seem to satisfy the local checkability property and thus be liable
for the general transformation. An issue appears with variants that do not always have
a solution. We discuss them in the next paragraph.

Problematic Variants. Beside the variants that we listed in Chapter 6, there are
other variants, for which getting a self-stabilizing solution seems unattainable, with the
techniques that we proposed. We list in the following variants that seem difficult to solve
by a simple adaptation of any of the two types of solutions we gave (two phases and
composition with a reset), thus presenting open questions. These variants are stable
roommates, incomplete bipartite graph, 3-dimensional matching, strongly and super
stable matching with indifference. They appear in the reference book [GI89] and are
among the twelve research directions suggested by Knuth [Knu76]. We explain the
general reasons why the solutions we developed cannot be applied to these variants.

Strongly and super stable matching with indifference. These two variants

Jane
{Scott,
Mark/
John}

Anna
{John/
Mark,
Scott}

Zoe
{Mark/
Scott,
John}

John
{Zoe,
Anna,
Jane}

Scott
{ Zoe/
Jane,
Anna}

Mark
{Zoe,
Anna,
Jane}

Figure 7.1: Strongly but not super
stable marriage

are described in Chapter 4, Sub-section II.
The Figure 7.1 illustrate a strongly but not
super stable marriage (because of the pair
(Zoe, Scott) in red; bold edges and names rep-
resent the marriages).

Recall that, by [Irv94], stable marriage is
not guaranteed in these cases (there is no super
stable marriage in the system of Figure 7.1).
Section II describes a simple self-stabilizing so-
lution that does not detect the case lacking
a stable marriage. Implementing such detec-
tion in a self-stabilizing manner is indeed not
simple and previous existing solutions are not
appropriate.

They are centralized, initialized and detect
the lack of a stable marriage as follows. If a node exhausts all the possible partners
in its preference list during an execution, it reaches a state s, encoding the fact it
can conclude that no stable marriage exists [Irv94]. However, when self-stabilization is
required (convergence from any initial configuration), such an approach is inappropriate.
For example, if a node starts in state s, it can incorrectly conclude that no stable
marriage exists. Hence, both our solutions do not extend to strongly and super stable
matching with indifference (but, if only instances in which a stable matching exists are
proposed, it seems feasible to extend them).

Amira10

132 Chapter 7. Conclusion

Stable roommates problem. Contrary to the stable marriage, this problem is
defined on a complete communication graph, where each node has a preference list over
all other nodes. The problem consists to build a stable matching, which is a complete
matching without blocking pairs. In this context, a pair (u, v) is a blocking pair iff
(u, v) /∈ M and u and v prefer each other to their actual matching, with no restriction
over sets. Building a stable matching is not always possible, like in the following example
(the matching is represented in black and the blocking pairs in red):

Id of node: Preference list
1: 3, 2, 4
2: 1, 3, 4
3: 2, 1, 4
4: 1, 2, 3

Mark

{Jane, John, Anna}

Jane
{John,
Mark,
Anna}

John
{Mark,
Jane,
Anna}

Anna

{Mark, Jane, John}

(a)

Mark

{Jane, John, Anna}

Jane
{John,
Mark,
Anna}

John
{Mark,
Jane,
Anna}

Anna

{Mark, Jane, John}

(b)

Mark

{Jane, John, Anna}

Jane
{John,
Mark,
Anna}

John
{Mark,
Jane,
Anna}

Anna

{Mark, Jane, John}

(c)

Figure 7.2: Stable roommates problem with no stable matching

In [GI89], a centralized algorithm is given to determine whether a given instance
admits a stable matching, and if so finds one. Intuitively, this determination is done
similarly to the technique used in [Irv94] for detecting the lack of stable marriage, by
verifying that a node has exhausted all the possible partners in its preference list. As
before, this approach is inappropriate for self-stabilization.

Moreover, the communication graph being complete, the two phases technique of
Ackermann et al., based on two distinct sets, is not appropriate either.

Jane

Anna

Zoe

Cookie Doggy Spot

John

Scott

Mark

Figure 7.3: 3-D Matching

3-dimensional matching. This last
variant has been proposed by Knuth
in [Knu76] as a generalization of the sta-
ble marriage problem to three dimen-
sions (e.g., to the 3-gender stable match-
ing problem with men, women and dogs).
In [Alk88], Alkan defines the problem
(participants are allowed to express pref-
erences over all pairs they could possibly
join), shows an example for which there is
no solution and generalizes the result to
k-dimensional graphs. Ng and Hirschberg

II. Perspectives 133

in [NH91] prove that this problem is NP-
complete.

As for the stable roommates problem, the communication graph is not bipartite.
Thus, the Ackermann et al.’s technique based on two distinct sets is not appropriate.
Furthermore, there is no known distributed algorithm for this problem, i.e. the basic
element in the composition is missing.

Incomplete bipartite graph. Several types of systems can be considered under
this variant. In the main studied version (considered in [KPS09] for example), pref-
erences are related to the graph topology, in the sense that two non-neighbors are
unacceptable partners. In this case , even if the graph is not connected, a solution
is feasible, but requires an important modification to the given solutions. We start by
describing briefly the modifications to bring to the two phase algorithm of Chapter 4.

Jane
{Scott,
Mark,
John}

Anna{Mark}

Zoe{John,
Scott}

John {Zoe,
Jane}

Scott {Zoe,
Jane}

Mark
{Jane,
Anna}

Figure 7.4: Stable matching in an
incomplete bipartite graph

For ensuring correct transitions be-
tween phases, nodes have to know in
which phases the opposite set nodes are.
But, as a complete broadcast cannot be
directly (in one step) performed if the
graph is incomplete, one solution would
be to combine the presented algorithm
with a self-stabilizing rooted tree con-
struction (e.g., [AG90, AKM+07]) in each
connected component. This is for propa-
gating an information along the tree (up-
ward to and downward from the root), re-
garding the types of phases’ states (for each of the two opposite sets). In this way
every node could have (a possibly outdated) information about the type of phases in
the other set. But the changes in phases cannot be propagated immediately, causing a
different behavior comparing to the original algorithm variant. Neither the proof nor
the complexity analysis of the basic algorithm apply to this case.

Concerning the solution based on local checkability and reset, the main issue is the
tree. Indeed, since the graph is not complete, in the worst case, the tree is of depth n,
increasing considerably the global complexity. Any known spanning tree construction
can be used to obtain this tree.

Bibliography

[ACD+17] K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-
stabilizing leader election in polynomial steps. Information and Compu-
tation, 2017. Preliminary version in SSS 2014. (Cited on page 3.)

[AG90] A. Arora and M. Gouda. Distributed Reset. In Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), 1990.
(Cited on pages 11 and 133.)

[AGL10] N. Amira, R. Giladi, and Z. Lotker. Distributed Weighted Stable Mar-
riage Problem. In International Colloquium on Structural Information and
Communication Complexity (SIROCCO), 2010. (Cited on page 8.)

[AGM+11] H. Ackermann, P. W. Goldberg, V. S. Mirrokni, H. Röglin, and B. Vöcking.
Uncoordinated Two-Sided Matching Markets. SIAM Journal on Comput-
ing, 2011. (Cited on pages 4, 10, 24 and 66.)

[AH93] E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent
failures (extended abstract). In International Workshop on Distributed Al-
gorithms (WDAG), 1993. (Cited on page 89.)

[AKM+07] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Vargh-
ese. A Time-Optimal Self-Stabilizing Synchronizer Using A Phase Clock.
IEEE Transactions On Dependable And Secure Computing, 2007. (Cited
on pages 25 and 133.)

[AKY90] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols
for general networks. In International Workshop on Distributed Algorithms
(WDAG), 1990. (Cited on pages 4, 10, 11, 68, 69 and 70.)

[AKY97] Y. Afek, S. Kutten, and M. Yung. The Local Detection Paradigm and
Its Applications to Self-stabilization. Theoretical Computer Science, 1997.
(Cited on page 69.)

[Alk88] A. Alkan. Nonexistence of stable threesome matchings. Mathematical Social
Sciences, 1988. (Cited on page 132.)

[Alk99] A. Alkan. On the properties of stable many-to-many matchings under re-
sponsive preferences. In Current Trends in Economics: Theory and Appli-
cations, pages 29–39. Springer Berlin Heidelberg, 1999. (Cited on page 125.)

[AO94] B. Awerbuch and R. Ostrovsky. Memory-Efficient and Self-Stabilizing Net-
work RESET (Extended Abstract). In Proceedings of the Thirteenth Annual
ACM Symposium on Principles of Distributed Computing (PODC), 1994.
(Cited on pages 5 and 89.)

[APR05] A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. The New York City
High School Match. American Economic Review, 2005. (Cited on page 8.)

136 Bibliography

[APRS05] A. Abdulkadiroglu, P. A. Pathak, A. E. Roth, and T. Sönmez. The Boston
Public School Match. American Economic Review, 2005. (Cited on page 8.)

[APSV91] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local
checking and correction. In Annual Symposium of Foundations of Computer
Science (FOCS), 1991. (Cited on pages 11 and 130.)

[APSVD94] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self-stabilization
by local checking and global reset. In International Workshop on Distributed
Algorithms (WDAG), 1994. (Cited on pages 4, 11, 68, 69, 70, 82, 89, 118,
129 and 130.)

[BA16] M. W. Baidas and M. M. Afghah. Energy-efficient partner selection in co-
operative wireless networks: a matching-theoretic approach. International
Journal of Communication Systems, 2016. (Cited on page 3.)

[BAM03] V. Bansal, A. Agrawal, and V. S. Malhotra. Stable Marriages with Mul-
tiple Partners: Efficient Search for an Optimal Solution. In International
Colloquium on Automata, Languages, and Programming (ICALP), 2003.
(Cited on page 125.)

[BAM07] V. Bansal, A. Agrawal, and V. S. Malhotra. Polynomial time algorithm for
an optimal stable assignment with multiple partners. Theoretical Computer
Science, 2007. (Cited on page 125.)

[BBB+18] J. Beauquier, T. Bernard, J. Burman, S. Kutten, and M. Laveau. Brief
announcement: Time efficient self-stabilizing stable marriage. In Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), 2018. (Cited on
pages 5, 68 and 129.)

[BDPV07] A. Bui, A. K. Datta, F. Petit, and V. Villain. Snap-stabilization and PIF
in tree networks. Distributed Computing, 2007. (Cited on page 19.)

[Bir17] P. Biró. Applications of Matching Models under Preferences. In Trends
in Computational Social Choice, chapter 18. AI Access, 2017. (Cited on
page 7.)

[BLAK14] R. Bai, J. Li, J. A. D. Atkin, and G. Kendall. A novel approach to inde-
pendent taxi scheduling problem based on stable matching. Journal of the
Operational Research Society, 2014. (Cited on page 7.)

[BM05] I. Brito and P. Meseguer. Distributed stable marriage problem. InWorkshop
on Distributed Constraint Reasoning at IJCAI, 2005. (Cited on pages 4, 9
and 21.)

[BM06] I. Brito and P. Meseguer. Distributed Stable Matching Problems with Ties
and Incomplete Lists. In Principles and Practice of Constraint Program-
ming (CP), 2006. (Cited on page 121.)

Bibliography 137

[BPV04] C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-
stabilization. In Symposium on Principles of Distributed Computing
(PODC), 2004. (Cited on page 25.)

[CCM19] K. Cechlárová, Á. Cseh, and D. Manlove. Selected open problems in Match-
ing Under Preferences. Bulletin of the EATCS, 2019. (Cited on page 7.)

[Cec17] K. Cechlárová. School Placement of Trainee Teachers: Theory and Practice.
In Trends in Computational Social Choice, chapter 19. AI Access, 2017.
(Cited on page 7.)

[Che19] J. Chen. Computational Complexity of Stable Marriage and Stable Room-
mates and Their Variants. Technical report, University of Warsaw, 2019.
(Cited on page 7.)

[CL85] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM Transaction on Computer
Systems, 1985. (Cited on page 10.)

[CL10] J.-H. Chou and C.-J. Lu. Communication requirements for stable mar-
riages. In International Conference on Algorithms and Complexity (CIAC).
Springer Berlin Heidelberg, 2010. (Cited on page 8.)

[Cse17] Á. Cseh. Popular Matchings. In Trends in Computational Social Choice,
chapter 6. AI Access, 2017. (Cited on page 7.)

[Dag] Schloss dagstuhl – leibniz-zentrum für informatik. matching under
preferences: Theory and practice, web document available at https:
//www.dagstuhl.de/en/program/calendar/semhp/?semnr=20301 (ac-
cessed 24/07/19). (Cited on page 7.)

[DES16] J. Doerner, D. Evans, and A. Shelat. Secure Stable Matching at Scale. In
Computer and Communications Security (CCS), 2016. (Cited on page 8.)

[DH95] S. Dolev and T. Herman. SuperStabilizing Protocols for Dynamic Dis-
tributed Systems. In Symposium on Principles of Distributed Computing
(PODC), 1995. (Cited on page 89.)

[Dij74] E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control.
Communication of the ACM, 1974. (Cited on pages 3, 9, 17 and 18.)

[Dij86] E. W. Dijkstra. A belated proof of self-stabilization. Distributed Computing,
1986. (Cited on page 9.)

[DIM93] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems
assuming only read/write atomicity. Distributed Computing, 1993. Prelim-
inary version published in PODC’ 90. (Cited on pages 3, 11 and 17.)

[DIM97] S. Dolev, A. Israeli, and S. Moran. Uniform Dynamic Self-Stabilizing Leader
Election. IEEE Transactions on Parallel Distributed Systems, 1997. Pre-
liminary version published in WDAG’ 91. (Cited on page 19.)

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20301
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20301

138 Bibliography

[DJ16] S. Devismes and C. Johnen. Silent self-stabilizing BFS tree algorithms
revisited. Journal of Parallel and Distributed Computing, 2016. (Cited on
page 3.)

[DJ19] S. Devismes and C. Johnen. Self-Stabilizing Distributed Cooperative Reset.
In International Conference on Distributed Computing Systems (ICDCS),
2019. (Cited on page 5.)

[DLV11a] A. K. Datta, L. L. Larmore, and P. Vemula. An O(n)-time self-stabilizing
leader election algorithm. Journal of Parallel and Distributed Computing,
2011. (Cited on page 3.)

[DLV11b] A. K. Datta, L. L. Larmore, and P. Vemula. Self-stabilizing leader elec-
tion in optimal space under an arbitrary scheduler. Theoretical Computer
Science, 2011. (Cited on page 3.)

[EO16] F. Echenique and J. Oviedo. A Theory of Stability in Many-to-Many Match-
ing Markets. Theoretical Economics, 2016. (Cited on page 125.)

[FGS10] A. Fagebaume, D. Gale, and M. Sotomayor. A note on the multiple partners
assignment game. Journal of Mathematical Economics, 2010. (Cited on
page 125.)

[FKPS10] P. Floréen, P. Kaski, V. Polishchuk, and J. Suomela. Almost Stable Match-
ings by Truncating the Gale-Shapley Algorithm. Algorithmica, 2010. (Cited
on page 8.)

[GHIJ14] C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. Disconnected Compo-
nents Detection and Rooted Shortest-Path Tree Maintenance in Networks.
In Stabilization, Safety, and Security of Distributed Systems (SSS), 2014.
(Cited on page 3.)

[GHIJ19] C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. Disconnected Compo-
nents Detection and Rooted Shortest-Path Tree Maintenance in Networks.
Journal of Parallel and Distributed Computing, 2019. (Cited on page 3.)

[Gho14] S. Ghosh. Distributed Systems: An Algorithmic Approach. Chapman &
Hall/CRC, 2nd edition, 2014. (Cited on page 17.)

[GI89] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and
Algorithms. Foundations of computing series. MIT Press, 1989. (Cited on
pages 2, 8, 47, 119, 122, 124, 131 and 132.)

[GM91] M. G. Gouda and N. J. Multari. Stabilizing Communication Protocols.
IEEE Transactions on Computers, 1991. (Cited on pages 5, 40 and 89.)

[GNOR15] Y. A. Gonczarowski, N. Nisan, R. Ostrovsky, and W. Rosenbaum. A Stable
Marriage Requires Communication. In Symposium on Discrete Algorithms
(SODA), 2015. (Cited on pages 8, 66, 73 and 130.)

Bibliography 139

[Gol06] P. Golle. A Private Stable Matching Algorithm. In International Confer-
ence on Financial Cryptography and Data Security (FC), 2006. (Cited on
page 8.)

[GS62] D. Gale and L. S. Shapley. College Admissions and the Stability of Mar-
riage. The American Mathematical Monthly, 1962. (Cited on pages 1, 7,
13, 15, 68, 73 and 124.)

[GS85] D. Gale and M. Sotomayor. Ms. machiavelli and the stable matching prob-
lem. The American Mathematical Monthly, 1985. (Cited on page 8.)

[HC92] S.-T. Huang and N.-S. Chen. A self-stabilizing algorithm for constructing
breadth-first trees. Information Processing Letters, 1992. (Cited on page 3.)

[IMM99] K. Iwama, S. Miyazaki, and Y. Morita. Stable Marriage with Incomplete
Lists and Ties (Extended Abstract). In International Colloquium on Au-
tomata, Languages, and Programming (ICALP), 1999. (Cited on page 121.)

[IMO09] R. W. Irving, D. F. Manlove, and G. O’Malley. Stable marriage with ties
and bounded length preference lists. In Journal of Discrete Algorithms,
2009. (Cited on page 121.)

[Irv94] R. W. Irving. Stable marriage and indifference. Discrete Applied Mathe-
matics, 1994. (Cited on pages 7, 121, 122, 131 and 132.)

[KA98] S. S. Kulkarni and A. Arora. Multitolerance in Distributed Reset. Technical
report, The Ohio State University, 1998. (Cited on pages 5 and 89.)

[KBW16] M. Kuemmel, F. Busch, and D. Z.W. Wang. Taxi Dispatching and Stable
Marriage. Procedia Computer Science, 2016. (Cited on page 7.)

[KK15] A. Korman and T. Kutten, S.and Masuzawa. Fast and compact self-
stabilizing verification, computation, and fault detection of an MST. Dis-
tributed Computing, 2015. (Cited on page 69.)

[KL14] G. Kim and W. Lee. Stable Matching with Ties for Cloud-assisted
Smart TV Services. In International Conference on Consumer Electron-
ics (ICCE), 2014. (Cited on page 9.)

[KMR16] B. Klaus, D. F. Manlove, and F. Rossi. Matching under Preferences. In
Handbook of Computational Social Choice. Cambridge University Press,
2016. (Cited on page 7.)

[Knu76] D. E. Knuth. Mariages stables et leurs relations avec d’autres problemes
combinatoires. Les Presses de l’Université de Montréal, 1976. English trans-
lation in Stable Marriage and its Relation to Other Combinatorial Problems,
volume 10 of CRM Proceedings and Lecture Notes, American Mathematical
Society, 1997. (Cited on pages 2, 4, 7, 10, 22, 47, 68, 131 and 132.)

140 Bibliography

[KP90] S. Katz and K. Perry. Self-stabilizing Extensions for Message-passing Sys-
tems. In Symposium on Principles of Distributed Computing (PODC), 1990.
(Cited on page 10.)

[KPS09] A. Kipnis and B. Patt-Shamir. A Note on Distributed Stable Matching.
In International Conference on Distributed Computing Systems (ICDCS),
2009. (Cited on pages 8 and 133.)

[KW16] P. Khanchandani and R. Wattenhofer. Distributed Stable Matching with
Similar Preference Lists. In Principles of Distributed Systems (OPODIS),
2016. (Cited on page 8.)

[LMB+17] M. Laveau, G. Manoussakis, J. Beauquier, T. Bernard, J. Burman, J. Co-
hen, and L. Pilard. Self-stabilizing Distributed Stable Marriage. In Stabi-
lization, Safety, and Security of Distributed Systems (SSS), 2017. (Cited
on pages 4, 5, 21, 66 and 129.)

[LT89] N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata.
CWI Quarterly, 1989. (Cited on page 11.)

[Man13] D. Manlove. Algorithmics Of Matching Under Preferences. Theoretical
computer science. World Scientific Publishing, 2013. (Cited on pages 1, 2
and 7.)

[MAT] International work- shop on matching under preferences (match-up), web
document available at http://www.optimalmatching.com/MATCHUP (ac-
cessed 24/07/19). (Cited on page 7.)

[Mat07a] F. Mathieu. Self-stabilization in preference-based systems. Peer-to-Peer
Networking and Applications, 2007. (Cited on page 10.)

[Mat07b] F. Mathieu. Upper bounds for stabilization in acyclic preference-based
systems. In Stabilization, Safety, and Security of Distributed Systems (SSS),
2007. (Cited on page 10.)

[Mat09] F. Mathieu. Autour du pair-à-pair : distribution de contenus, réseaux à
préférences acycliques. Habilitation à diriger des recherches, Université
Pierre et Marie Curie - Paris VI, 2009. (Cited on page 10.)

[MMNO04] R. Martínez, J. Massó, A. Neme, and J. Oviedo. An algorithm to com-
pute the full set of many-to-many stable matchings. Mathematical social
sciences, 2004. (Cited on page 125.)

[MS15] B. M. Maggs and R. K. Sitaraman. Algorithmic Nuggets in Content Deliv-
ery. Computer Communication Review, 2015. (Cited on page 9.)

[NH90] C. Ng and D. S. Hirschberg. Lower Bounds for the Stable Marriage Problem
and Its Variants. SIAM Journal on Computing, 1990. (Cited on page 7.)

[NH91] C. Ng and D. S. Hirschberg. Three-dimensional Stable Matching Problems.
Journal on Discrete Mathematics, 1991. (Cited on page 133.)

http://www.optimalmatching.com/MATCHUP

Bibliography 141

[NRM] The match, national resident matching program, web document available at
http://www.nrmp.org/matching-algorithm (accessed 24/07/19). (Cited
on page 8.)

[OR15] R. Ostrovsky and W. Rosenbaum. Fast Distributed Almost Stable Match-
ings. In Principles of Distributed Computing (PODC), 2015. (Cited on
pages 3, 4 and 8.)

[RS90] A. E. Roth and M. A. O. Sotomayor. Two-sided Matching: A Study in
Game-Theoretic Modeling and Analysis. Cambridge University Press, 1990.
(Cited on pages 2, 7, 24 and 125.)

[RVV90] A. Roth and J. H. Vande Vate. Random Paths to Stability in Two-Sided
Matching. Econometrica, 1990. (Cited on page 10.)

[Seg07] I. Segal. The communication requirements of social choice rules and sup-
porting budget sets. Journal of Economic Theory, 2007. (Cited on pages 7
and 8.)

[Sot99] M. Sotomayor. Three remarks on the many-to-many stable matching prob-
lem. Mathematical Social Sciences, 1999. (Cited on page 125.)

[TST99] C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-shapley stable marriage
problem revisited: Strategic issues and applications (extended abstract).
In Integer Programming and Combinatorial Optimization (IPCO), 1999.
(Cited on page 8.)

[Var93] G. Varghese. Self-stabilization by Local Checking and Correction. PhD
thesis, Massachusetts Institute of Technology, 1993. (Cited on pages 11
and 89.)

[XL11a] H. Xu and B. Li. Egalitarian Stable Matching for VM Migration in Cloud
Computing. In Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), 2011. (Cited on page 9.)

[XL11b] H. Xu and B. Li. Seen as stable marriages. In International Conference on
Computer Communications (INFOCOM), 2011. (Cited on page 9.)

[YAB19] F. Yucel, K. Akkaya, and B. Bulut. Efficient and privacy preserving supplier
matching for electric vehicle charging. Ad Hoc Networks, 2019. (Cited on
page 9.)

[Yao79] A. C.-C. Yao. Some Complexity Questions Related to Distributive Comput-
ing (Preliminary Report). In Symposium on Theory of Computing (STOC),
1979. (Cited on page 73.)

http://www.nrmp.org/matching-algorithm

Aknowledgement

Writing a thesis is a tough process. This is why I would like to thank all those who have
helped me in one way or another in this task. Even more so in this complicated context
of the pandemic, each support has been precious.

First and foremost, I would like to thank my supervisors, Joffroy Beauquier, Janna
Burman and Thibault Bernard, for their unfailing support and their unvaluable advices
during these years. They guided my with patience and taught me the methodology of
many things, from writing research papers, to presenting my ideas and results. Thanks
to them, I learned to always aim better, without being satisfied with what has already
been achieved. I will try in the future to apply their teachings and to produce quality
research.

I would like to express my gratitude to Colette Johnen and Volker Tureau for re-
viewing my manuscript and for their relevant and insightful reviews. I am also thankful
to the others members of my thesis committee, Johanne Cohen, Hugues Fauconnier and
Sébastien Tixeuil, for attending my defense. I would also like to thank Johanne Cohen,
Laurence Pilard and George Manoussakis, the co-authors of my first paper, for our dis-
cussions about the stable marriage and the work we produced. I am extremely grateful
towards Shay Kutten for hosting me twice at the Technion during my thesis and for our
inspiring discussions.
At the beginning of my Master, I wasn’t sure what I wanted to do. Thus, I am very
thankful to Hervé Bredin and Claude Barras for welcoming me at the LIMSI and for
introducing me to research during my first internship.

Also, I would like to thank my family and especially my parents for their unfailing
support and their faith in me and my aunt and uncle in particular for their logistical
support.
I want to express a special thank to Fabien Dufoulon with whom I shared our advisors
but also an office and a coffee machine. We spent (and we still spend) a lot of great
time, from lively political debates to precise technical discussions, from incredible games
to quiet evenings. I want to thank Chuan for taking part of these times and for putting
up with our endless debates.
Furthermore, I would like to thank my colleagues (and friends) Amal, Aygul, Antoine,
Ian, Yushan, Oguz, Laercio, Timothée, David, Pierre, George and Hay and also my
friends “from outside”, Marie B., Hélène, Simon, Lucille, Ye, Margaux, Yohann and
Marie S..

Finally, I would also like to thank all the colleagues of the LRI and especially the
administration team as well the technical support team, for their availability, their
kindness and their help.

Titre : Mariage Stable Asynchrone et Auto-stabilisant

Mots clés : Algorithmes Distribués, Modèles Asynchrones, Auto-stabilisation, Mariage Stable, Complexité
en Moves, Démon inéquitable, Con�dentialité

Résumé : Le Problème du Mariage Stable (SMP)
est un problème d'appariement où les participants ont
des préférences à propos de leurs partenaires poten-
tiels. L'objectif est de trouver un appariement optimal
(stable dans un sens) au regard des préférences. Ce
type d'appariement a de très nombreuses applications
comme les a�ectations d'étudiants à des universités
(APB ou ParcourSup), celles des internes en médecine
aux hôpitaux, les choix des donneurs pour les patients
en attente d'organe, la mise en rapport des taxis et de
leurs clients ou encore la di�usion de contenu sur Inter-
net. Certaines de ces applications peuvent être traitées
de manière centralisée tandis que d'autres, de par leur
nature distribuée et la complexité de leurs données, né-
cessitent un traitement di�érent.

Dans ce contexte, nous proposons deux solutions
distribuées auto-stabilisantes (i.e. qui tolèrent les dé-
faillances transitoires (ou de courte durée) de n'importe
quels noeuds). Pour ces deux algorithmes, les exé-
cutions se déroulent par pas atomiques et un dé-

mon (démon distribué inéquitable) exprime la notion
d'asynchronisme. Avec ce démon, le temps de stabili-
sation peut être borné en terme de moves (pas locaux).
Cette mesure de complexité permet d'évaluer avec pré-
cision la puissance de calcul nécessaire ou l'énergie dis-
sipée par les exécutions de l'algorithme.

Le premier algorithme, basé sur la méthode cen-
tralisée de Ackermann et al. (SICOMP' 2011), résout
le SMP en O(n4) moves.

Le point de départ du deuxième algorithme est le
schéma de détection locale/correction globale de Awer-
buch et al. (DA' 1994). Malheureusement, la dé�ni-
tion de la véri�abilité locale de DA' 1994 ne s'applique
pas à notre cas (en particulier en raison du démon in-
équitable). Nous proposons donc une nouvelle déf-
inition. De plus, nous concevons un algorithme de
réinitialisation (reset) asynchrone, distribué et auto-
stabilisant. L'algorithme résultant résout le SMP en
Θ(n2) moves.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title: Asynchronous Self-stabilizing Stable Marriage

Keywords: Distributed Algorithms, Asynchronous Model, Self-stabilization, Stable Marriage, Move Com-
plexity, Unfair Daemon, Privacy

Abstract: The Stable Marriage Problem (SMP) is
a matching problem where participants have prefer-
ences over their potential partners. The objective is
to �nd a matching that is optimal (stable in certain
sens) with regard to these preferences. This type of
matching has a lot of widely used applications such
as the assignment of children to schools, interns to
hospitals, kidney transplant patients to donors, as well
as taxi scheduling or content delivery on the Internet.
Some applications can be solved in a centralized way
while others, due to their distributed nature and their
complex data, need a di�erent treatment.

In order to handle this challenge, we provide two
distributed self-stabilizing solutions (i.e., that tolerate
transient (or short-lived) failures (e.g., memory or mes-
sage corruptions) of any nodes). The privacy of the
preference lists is guaranteed by the two proposed al-
gorithms: lists are not shared, only some binary queries
and responses are transmitted. For both algorithms,

executions proceed in atomic steps and a daemon (dis-
tributed unfair daemon) conveys the notion of asyn-
chrony. Under this daemon, the stabilization time can
be bounded in term of moves (local computations).
This complexity metrics allows to evaluate the neces-
sary computational power or the energy consumption
of the algorithm's executions.

The �rst algorithm, based on the centralized
method of Ackermann et al. (SICOMP' 2011), solves
the problem in O(n4) moves.

The starting point of the second algorithm is the
local detection/global correction scheme of Awerbuch
et al. (DA' 1994). Unfortunately, local checkability
de�nition of DA '1994 does not apply to our case (in
particular due to the unfair daemon). Consequently, we
propose a new de�nition. Furthermore, we design a dis-
tributed self-stabilizing asynchronous reset algorithm.
Using it, the resulting composed algorithm solves SMP
in Θ(n2) moves in a self-stabilizing way.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Related Work
	Centralized Solutions
	Distributed Solutions
	Synchronous Model
	Asynchronous Model

	Self-stabilizing Solutions
	On the Way to Self-stabilizing Stable Marriage Algorithms
	Transformer to Self-stabilizing Solutions

	Models and Definitions
	The Stable Marriage Problem
	Distributed Systems
	Distributed Algorithms
	Algorithm
	Configurations

	Execution of Distributed Algorithms
	Scheduler
	Execution

	Communication Models
	Self-stabilization
	Time Complexity

	A Solution Based on Ackermann et al. Two-Phased Idea
	Preliminaries and Contribution
	Self-stabilizing Solution to SMP
	Algorithm Implementation
	Variables, Constants, Functions and Predicates
	Algorithm.

	Correctness Proof and Time Complexity Analysis
	Sketch
	Detailed Proofs
	Properties of the Terminal Configurations
	Convergence Proof

	Conclusion

	An Approach by Local Checkability and Reset
	Introduction
	Local Checkability
	Towards a Distributed Asynchronous Version of GSA
	Distributed Asynchronous Version of GSA: Async-GSA
	Variables, Constants, Registers and Functions
	Async-GSA's Algorithm Predicate
	Algorithm

	Local Checkability of Async-GSA
	Local Predicates
	Proof of Async-GSA's Local Checkability.

	Time Complexity

	Reset
	Tree Algorithm TreeAlg
	Variables, Constants, Registers and Functions
	Tree Algorithm Predicate
	Algorithm
	Correctness and Complexity Analysis

	Reset Algorithm ResetAlg
	Algorithm
	Correctness Proof Complexity Analysis

	Composition
	Composition Algorithm CompAlg
	Variables and Predicates
	Algorithm

	Correctness and Complexity Analysis
	Stabilization of the Tree (to PredT)
	Convergence after PredT is satisfied

	Conclusion

	Extensions to Variants of SMP
	Subsets of unequal Size
	Stable Matching with Indifference
	Unacceptable Partners
	Many-to-One (Hospitals-to-Residents Problem)
	Many-to-Many

	Conclusion
	Summary
	Perspectives

	Bibliography

