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Les spécifications basées sur les schémas-blocs et machines à états sont utilisées pour la conception de systèmes de contrôle-commande, particulièrement dans le développement d'applications critiques. Des outils tels que Scade et Simulink/Stateflow sont équipés de compilateurs qui traduisent de telles spécifications en code exécutable. Ils proposent des langages de programmation permettant de composer des fonctions sur des flots, tel que l'illustre le langage synchrone à flots de données Lustre.

Cette thèse présente Vélus, un compilateur Lustre vérifié dans l'assistant de preuves interactif Coq. Nous développons des modèles sémantiques pour les langages de la chaîne de compilation, et utilisons le compilateur C vérifié CompCert pour générer du code exécutable et donner une preuve de correction de bout en bout. Le défi principal est de montrer la préservation de la sémantique entre le paradigme flots de données et le paradigme impératif, et de raisonner sur la représentation bas niveau de l'état d'un programme.

En particulier, nous traitons le reset modulaire, une primitive pour réinitialiser des soussystèmes. Ceci implique la mise en place de modèles sémantiques adéquats, d'algorithmes de compilation et des preuves de correction correspondantes. Nous présentons un nouveau langage intermédiaire dans le schéma habituel de compilation modulaire dirigé par les horloges de Lustre. Ceci débouche sur l'implémentation de passes de compilation permettant de générer un meilleur code séquentiel, et facilite le raisonnement sur la correction des transformations successives du reset modulaire.
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Chapter 1 Introduction

Vélus is a verified prototype compiler, for a synchronous dataflow language with constructs from Lustre [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF]] and Scade [Colaço, Pagano, and Pouzet (2017)]. The main goal in the development of Vélus is to provide an end-to-end proof of correctness in an Interactive Theorem Prover (ITP) from the synchronous dataflow paradigm to the imperative one. This involves specifying the syntax, type systems and clock systems of the source and several intermediate languages, mechanizing their semantic models, implementing the compilation passes that successively transform programs from one language to another, and finding invariants and proofs to establish the corresponding correctness results. We use the Coq ITP [The Coq Development Team (2019)] and extend the proof of correctness to the machine level by building on top of the verified CompCert C compiler [Leroy (2009b)].

This thesis presents, in particular, novel extensions to the original Vélus compiler to incorporate the modular reset construct [START_REF] Hamon | Modular Resetting of Synchronous Data-Flow Programs[END_REF]]. We build on earlier work to formalize the semantics of this construct in Coq. We introduce a novel intermediate language to compile it effectively and show how to adapt existing invariants and proofs to re-establish the end-to-end correctness result.

Synchronous dataflow languages 1.Background

Synchronous programming is a paradigm that was developed in the 1980s concomitantly with the growing importance of real-time embedded software. Such systems run in interaction with the environment, are subject to strict non functional constraints like bounded time and memory resources and are often safety-critical. They belong to the class of reactive systems, as named by [START_REF] Harel | On the Development of Reactive Systems[END_REF], that defines systems that "continuously react to their environment at a speed determined by this environment" [Halbwachs (1993)]. In contrast with the standard approach based on asynchronous execution and interleaving, synchronous languages build on two key concepts: synchrony and deterministic concurrency.

The synchrony hypothesis assumes that synchronous programs "produce their outputs synchronously with their inputs, their reaction taking no observable time" [START_REF] Benveniste | The Synchronous Approach to Reactive and Real-Time Systems[END_REF]]. This simplifying premise decouples the specification of programs logic from the need to ensure that implementations meet real-time constraints. It permits node euler(x0, u: float64) returns (x: float64); let x = x0 fby (x + 0.1 * u); tel node ins(gps, xv: float64) returns (x: float64; alarm: bool); var k: int; let x = merge alarm ((0. fby x) when alarm) (euler ((gps, xv) when not alarm)); alarm = (k >= 50); k = 0 fby (k + 1); tel Lustre

Listing 1.1: A simple inertial navigation system reasoning in a discrete model of time where events are totally ordered relative to one another [START_REF] Benveniste | Hybrid Dynamical Systems Theory and the Signal Language[END_REF]]. In this model, concurrency, that is, parallel composition, is simply the conjunction of synchronous sub-systems. The implementation of these fundamental concepts gave independently birth to three early languages: Esterel [Boussinot and de Simone (1991); [START_REF] Berry | The Esterel Synchronous Programming Language: Design, Semantics, Implementation[END_REF]; [START_REF] Berry | The Constructive Semantics of Pure Esterel[END_REF]Berry ( ,b, 2002))], imperative, event-driven and control-oriented, Signal [START_REF] Benveniste | Hybrid Dynamical Systems Theory and the Signal Language[END_REF]; [START_REF] Benveniste | Synchronous Programming with Events and Relations: The SIGNAL Language and Its Semantics[END_REF]; [START_REF] Le | Programming Real-Time Applications with SIGNAL[END_REF]], declarative and geared towards the specification of whole systems, and Lustre [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF]; [START_REF] Halbwachs | The Synchronous Data Flow Programming Language LUSTRE[END_REF]; [START_REF] Gonthier | Sémantiques et Modèles d'exécution Des Langages Réactifs Synchrones : Application à Esterel[END_REF]; Jahier, [START_REF] Jahier | The Lustre V6 Reference Manual[END_REF]], declarative, time-driven and dataflow-oriented. Besides adopting the synchronous model, all share two major traits: (1) they have a mathematical model, and (2) their implementation must satisfy strong memory and time constraints. The combination of these two aspects results from the twofold origin of the synchronous languages, inspired both by control theory and computer science, and from their targeted application domain. New ideas were introduced in later languages such as Scade [Colaço, Pagano, and Pouzet (2017)], Argos [START_REF] Mandel | The Argos Language: Graphical Representation of Automata and Description of Reactive Systems[END_REF]; [START_REF] Maraninchi | Mode-Automata: A New Domain-Specific Construct for the Development of Safe Critical Systems[END_REF]], Reactive C [Boussinot (1991)], Lucid Synchrone [START_REF] Pouzet | Lucid Synchrone. Tutorial and reference manual[END_REF]], ReactiveML [START_REF] Mandel | The Argos Language: Graphical Representation of Automata and Description of Reactive Systems[END_REF]; [START_REF] Mandel | ReactiveML, Ten Years Later[END_REF]], Zelus [Bourke and Pouzet (2013); [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF]] or SCCharts [START_REF] Reinhard Von Hanxleden | SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications: HW/SW-Synthesis for a Conservative Extension of Synchronous Statecharts[END_REF]].

Lustre

Lustre was inspired by the dataflow programming language Lucid [START_REF] Wadge | LUCID, the Dataflow Programming Language[END_REF]] and by Kahn process networks [Kahn (1974)]. A Lustre program operates on streams, that is, infinite sequences of values. The basic unit of a Lustre program is called a node. A node defines a function of streams via a set of equations. Equations equate variables to expressions, and are to be understood as "temporal invariants" [START_REF] Gonthier | Sémantiques et Modèles d'exécution Des Langages Réactifs Synchrones : Application à Esterel[END_REF]], in the sense that the equation x = e is interpreted as the formula ∀n, x n = e n . Throughout this dissertation, we will refer to the example Lustre program in listing 1.1. The euler node receives two input streams x0 and u, an initial quantity and a derivative, respectively, and outputs stream x, representing an approximate quantity defined by a single equation that implements the forward Euler scheme x n+1 = x n + 0.1u n . Arithmetic operators operate point-wise on streams: x + y defines the stream x 0 + y 0 • x 1 + y 1 • • • . The fby operator is an initialized delay operator: x fby y defines the stream x 0 •y 0 •y 1 • • • . A fby whose first argument is a constant represents a unit delay in control theory, or a register in synchronous circuits. 1Once a node is declared, it can be instantiated in other nodes. In the example, the ins node composes an instance of euler, initialized from a gps input and fed a stream of displacement values xv, with a local counter k used to signal an alarm when the resulting odometric approximation is judged outdated. The order of the equations is inconsequential. The when operator samples a stream: x when y defines the sub-stream of x determined by whether y is true or not. In the example, the arguments of the euler instance are sampled when alarm is false, consequently the instance is not activated when the alarm condition occurs. The x output is defined using a merge operator that combines complementary streams into a faster one. 2 The effect here is to freeze the value of x when alarm occurs. With sampling comes the notion of clock. A clock is an abstract representation of a timescale, that is, a stream of booleans indicating when the values of another stream are present or absent.

The semantics of a node can be represented as a chronogram, that is, a grid associating each variable with a row representing a stream of values. Below is an example of such a chronogram for the ins node, where holes represent absence of value. The Lustre language finds an industrial application in the SCADE3 tool-set used for developing safety-critical embedded software. SCADE evolved from the graphical syntax that it initially provided over a Lustre kernel towards a high-level language, a programming environment and a qualified code generator known as KCG. Released in 2008, the major version SCADE 6 enrich its kernel with more complex features, inspired by concepts from Esterel and Lucid Synchrone, among others. SCADE provides two syntaxes: a Lustre-like syntax, the Scade language [Colaço, Pagano, and Pouzet (2017)] and a graphical syntax [START_REF] Xavier | SCADE 6: A Model Based Solution For Safety Critical Software Development[END_REF]]. Graphical representation is pervasive in synchronous languages and in model-based development in general. In particular, the SCADE graphical syntax can be compared to that of Simulink4 which is the de facto standard tool for non-critical model-based development. The SCADE graphical counterpart of the euler node in listing 1.1 is shown in figure 1.1a: each block represents an operator, and each wire represents a stream. There is a multiplication block, an addition block and a fby block. On the graphical view of the ins node in figure 1.1b, there is again a block for each operator, plus a block instantiating the euler node.

A brief history of the compilation of Lustre

The generation of sequential code from Lustre code has been thoroughly studied from the beginnings of the language. The general idea is to generate a transition function that is repeatedly executed to compute the successive synchronous steps of the system. There are two main approaches to generate such a function.

1. Single-loop compilation is the simplest technique. The idea is to sequentialize the calculations of the variables of the program, in an infinite loop that alternates reads of inputs, calculation of a step of the system, and writes to outputs. Control is realized by tests.

2. Finite automaton generation is based on the idea of reducing the number of conditional structures in the generated code. It works by identifying a subset of state variables from which a finite state automaton can be constructed, whose states and transitions encode control, avoiding unnecessary tests.

An important orthogonal question is whether and when to inline node instantiations. This is not just a question of executable performance. It determines, in fact, which source programs can be compiled. Consider the following example, due to [START_REF] Gonthier | Sémantiques et Modèles d'exécution Des Langages Réactifs Synchrones : Application à Esterel[END_REF]. The two_copies node simply transmits its two inputs and can be sequentialized either as the sequence of assignments y := w; z := x or as z := x; y := w. This node cannot be modularly compiled into a single function because in an instantiation like (a, b) = two_copies(c, a), shown graphically above on the right, the first output must be calculated before it can be provided as the second input, forbidding the second choice of sequentialization. It means that a static scheduling cannot be found for a node independently of the context of its instantiation.

In his thesis, [START_REF] Plaice | Sémantique et Compilation de LUSTRE, Un Langage Déclaratif Synchrone[END_REF] presents the compiler LUSTRE-V2, which generates a finite automaton from a Lustre program. The compiler builds on the approach of [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF]] which, in turn, was inspired by the compilation of Esterel. Plaice remarks that generating a finite automaton produces more efficient code than generating a sequential transition function per node, in particular because the latter generates unnecessary tests at each cycle to distinguish the initial state. He describes a data-driven algorithm that generates the automaton forward by firstly inlining all node instantiations and enumerating a set of boolean variables representing the state vector of the program.

To avoid an explosion in the size of the automaton, minimisation techniques are applied afterward, but in some cases the minimal automaton may be excessively large compared to the source program. Moreover, it may be infeasible to generate the initial automaton which can be very large.

The problem of combinatorial explosion in the size of the generated automaton is studied by [START_REF] Raymond | Compilation Efficace d'un Langage Déclaratif Synchrone : Le Générateur de Code Lustre-V3[END_REF] in his thesis. He proposes a new version of the compiler, LUSTRE-V3, which directly produces a minimal automaton, with new heuristics to choose the set of enumerated control variables based on binary decision diagrams. The approach defines a demand-driven algorithm to generate a minimal automaton that works backward from the outputs of the program. A comparison of execution time and code size between single-loop compilation, data-driven and demand-driven approaches appears in [START_REF] Halbwachs | Generating Efficient Code from Data-Flow Programs[END_REF]]. Raymond notes that inlining all node instantiations is the first source of combinatorial explosion and advocates for separate compilation. Indeed, in prior work [START_REF] Raymond | Compilation Efficace d'un Langage Déclaratif Synchrone : Le Générateur de Code Lustre-V3[END_REF]], he presents a method to rewrite a Lustre program into a network of finite automata, following a static analysis that avoids the problem exemplified by Gonthier's two_copies program.

Right from the beginnings of SCADE in the mid-nineties, it appeared that modular compilation was mandatory, despite its relative inefficiency. As it is an industrial tool that targets critical embedded systems, it cannot rely on the generation of finite automata because of the loss of traceability between source programs and generated code, and because of the complexity of the generation process. The choice in the SCADE code generator was thus to generate a single main loop, and a step function per node, even if that meant proscribing causal loops like the one in Gonthier's example. In Scade, each feedback loop must cross an explicit delay, but inlining can be requested explicitly by the programmer. Starting from 1999, the prototype compiler ReLuC of Jean-Louis Colaço developed as a reference compiler for future versions of Scade implements a simpler and more efficient compilation method than earlier versions of Scade. This method is formalized in [START_REF] Biernacki | Clock-Directed Modular Code Generation for Synchronous Data-Flow Languages[END_REF]] and relies on source-to-source transformations and compilation toward a minimal kernel on which several static analysis are defined (initialization, causality, clocking and typing). The code generator for the latest version of SCADE, SCADE 6, follows these principles.

Rather than generate a single step function per node, an alternative modular approach is to decompose a node into sets of step functions with associated scheduling constraints. This avoids the restrictions that Scade imposes on feedback loops. [START_REF] Lublinerman | Modular Code Generation from Synchronous Block Diagrams: Modularity vs. Code Size[END_REF] formalize this problem as optimal graph clustering and show that it is NP-complete using a reduction of the clique cover problem. They propose a SAT-solver-based iterative algorithm to found the optimal number of functions and the scheduling constraints. Several trade-offs between modularity (number of interface functions generated), reusability (usability in different contexts), and code size are studied. [START_REF] Pouzet | Modular Static Scheduling of Synchronous Data-Flow Networks: An Efficient Symbolic Representation[END_REF] give an equivalent formalization of the problem as an optimal static scheduling problem. They propose a solution that simplifies the problem over an input / output dependency relation inspired from [START_REF] Raymond | Compilation Efficace d'un Langage Déclaratif Synchrone : Le Générateur de Code Lustre-V3[END_REF]]. They define a polynomial algorithm that is able to find optimal solutions in most cases and otherwise give a lower start bound to use iterative SAT-solver-based solutions like the one of [START_REF] Lublinerman | Modular Code Generation from Synchronous Block Diagrams: Modularity vs. Code Size[END_REF]].

In this work, we focus on the single-loop modular compilation scheme described in [START_REF] Biernacki | Clock-Directed Modular Code Generation for Synchronous Data-Flow Languages[END_REF]]. This is the simplest scheme, and the basis of the current Scade code generator. Technically, it is also well suited to induction-based proof techniques.

Verified compilation

Compilers are complex programs and, as such, particularly prone to bugs. Compiler correctness is an old topic that dates back to the first published pen-and-paper proof of [START_REF] Mccarthy | Correctness of a Compiler for Arithmetic Expressions[END_REF]. [START_REF] Maulik | Compiler Verification: A Bibliography[END_REF] surveys about one hundred articles about compiler verification. Since then, some promising achievements have been made: a byte-code compiler from a subset of Java to a subset of the Java Virtual Machine [START_REF] Klein | [END_REF]] verified in the Isabelle ITP, the Verisoft project [Leinenbach, Paul, and Petrova (2005)] and its compiler for a subset of C verified in Isabelle, the C compiler CompCert [START_REF] Blazy | Formal Verification of a C Compiler Front-End[END_REF]; [START_REF] Blazy | Formal Verification of a C Compiler Front-End[END_REF]Leroy ( , 2009b))], verified in Coq,

Verified compilation

Pilsner [START_REF] Neis | Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language[END_REF]], a compositional compiler for an ML-like language verified in Coq, the CakeML project [START_REF] Kumar | CakeML: A Verified Implementation of ML[END_REF]; [START_REF] Kiam Tan | A New Verified Compiler Backend for CakeML[END_REF]] and its compiler for a subset of Standard ML verified in HOL4. The different techniques used in these various endeavours can be summarized in the three following categories, that may be combined.

1. Verified compilers are proved correct directly: if compilation succeeds, the correctness proof provides a formal guarantee that the semantics is preserved.

2. Verified validators, following the translation validation approach [START_REF] Pnueli | Tools and Algorithms for the Construction and Analysis of Systems[END_REF]], check after the compilation that the semantics of the source and generated programs coincide.

3. Certifying compilers, following the proof-carrying code approach [START_REF] Necula | Proof-Carrying Code[END_REF]], generate both compiled code and a proof, or certificate, checked by an independent verified checker, that the code satisfies a given specification.

Our main challenge is to pass from a dataflow semantics to an imperative one. This distinguishes our work from other verified compilers that either treat imperative languages like C (CompCert) or that normally require a managed runtime like ML (CakeML). In the following, we present some existing works on the formalization and verified compilation for synchronous languages, then describe our approach.

Existing approaches for synchronous languages

Several synchronous languages have been formalized in ITPs, including synchronous circuits in Coq [Paulin-Mohring (1996); [START_REF] Coupet | Hardware Verification Using Co-Induction in COQ[END_REF]], a variant of Esterel in HOL [START_REF] Schneider | Embedding Imperative Synchronous Languages in Interactive Theorem Provers[END_REF]], a shallow embedding of Lucid Synchrone in Coq [START_REF] Boulmé | Certifying Synchrony for Free[END_REF]] and Kahn networks in Coq [Paulin-Mohring (2009)]. There are many partial formalizations of Simulink and its Statecharts-like graphical formalism Stateflow. [START_REF] Hamon | An Operational Semantics for Stateflow[END_REF] and [START_REF] Hamon | A Denotational Semantics for Stateflow[END_REF] formalize the semantics of Stateflow and show that it is essentially an imperative language with a graphical syntax. Several other works propose formalizations, but that are oriented towards formal verification of Simulink/Stateflow continuous-time models. None of these works treats code generation.

There are several proposals around verified compilation for synchronous languages. An unpublished report about the development of a Scade 3 compiler verified in Coq focuses on semantics and clocking [Giménez and Ledinot (2000)]. The GeneAuto project aimed at developing a qualified code generator from a subset of Simulink and showed the correctness of the scheduling of dataflow equations in Coq [START_REF] Toom | Gene-Auto: An Automatic Code Generator for a Safe Subset of Simulink/Stateflow and Scicos[END_REF]; [START_REF] Toom | Towards Reliable Code Generation with an Open Tool: Evolutions of the Gene-Auto Toolset[END_REF]; [START_REF] Izerrouken | Développement prouvé de composants formels pour un générateur de code embarqué critique pré-qualifié[END_REF]]. In his PhD thesis, [START_REF] Auger | Compilation certifiée de SCADE/LUSTRE[END_REF] describes the development of a Lustre compiler with reset partially verified in Coq, based on a semantic model for finite lists rather than for streams. Recent work introduces a compilation pass from Signal to an intermediate representation verified in Coq [START_REF] Yang | Towards a Verified Compiler Prototype for the Synchronous Language SIGNAL[END_REF]]. There is ongoing unpublished work by Gérard Berry and Lionel Rieg to verify the translation of Esterel to digital circuits in Coq. None of these works gives an end-to-end proof of correctness for the generation of executable code. Several passes of the Lustre compiler of [START_REF] Shi | A Formally Verified Sequentializer for Lustre-like Concurrent Synchronous Data-Flow Programs[END_REF] and [START_REF] Shi | A Formally Verified Transformation to Unify Multiple Nested Clocks for a Lustre-like Language[END_REF] have been verified in Coq. Their dataflow semantics is defined sequentially in an imperative fashion, which makes reasoning on dataflow transformations like scheduling difficult. They do not support the reset operator. Finally, their proof states the correctness of the execution only for a finite number of steps.

Translation validation is another approach that was applied to synchronous languages, firstly by [START_REF] Pnueli | Tools and Algorithms for the Construction and Analysis of Systems[END_REF]. Starting from the initial proposal of [START_REF] Pnueli | Tools and Algorithms for the Construction and Analysis of Systems[END_REF]], recent work integrate this technique into Signal compilers. It has also been applied to a subset of Simulink [START_REF] Ryabtsev | Translation Validation: From Simulink to C[END_REF]]. Translation validation can provide formal guarantees as strong as verified compilation if the validators are formally verified, but this is not the case for recent work on Signal.

Our approach

For safety-critical software, the most dreaded compiler bugs are those that are silently introduced by the compiler into code generated from a correct source. Studies [START_REF] Xavier | SCADE 6: A Model Based Solution For Safety Critical Software Development[END_REF]; [START_REF] Yang | Finding and Understanding Bugs in C Compilers[END_REF]; [START_REF] Vu Le | Compiler Validation via Equivalence Modulo Inputs[END_REF]] have shown various crashes or miscompilations in C compilers. Yet, the motivations for formalizing C and verifying a C compiler do not transfer automatically to languages like Lustre and Scade which benefit from a mathematical model that C lacks. Moreover, the code generator that SCADE embeds, KCG, is qualified under the avionic norms DO-178B (1992) and its replacement DO-178C (2012), among others. Qualification is a rigorous process that gives strong correctness guarantees in practice. Qualification and formal correctness are distinct topics, as [START_REF] Gonthier | Sémantiques et Modèles d'exécution Des Langages Réactifs Synchrones : Application à Esterel[END_REF] writes: Let's say at once that such a qualification has nothing to do with formal proof of the compiler, but is rather a matter of design process, test coverage, quality of the documentation, requirements traceability, etc. Thus our goal is not to propose a replacement for Scade but rather to experiment with mechanized verification. We consider this approach as a complement to qualification, that raises interesting scientific questions but whose efficiency and industrial applicability remains uncertain.

What is a correct compiler? The standard notion of compiler correctness asserts that a compiler is correct if any property that holds on the source program also holds on the compiled program. This property, called refinement [START_REF] Abadi | The Existence of Refinement Mappings[END_REF]], is usually stated in terms of semantics preservation: observable behaviors of the compiled program must also be observable behaviors of the source program. Leroy (2009b) gives a well summarized overview of the notions of semantic preservation and associated proof techniques.

The observable behavior of a Lustre program S is the list of streams ys obtained by feeding the main node of S with a given list of input streams xs. The generated program runs in an infinite loop alternating the consumption of inputs and the production of outputs. Such operations are observable through an infinite sequence of events, that is, a trace T recording the values read or written. We state the correctness of our compiler as a simulation [START_REF] Lynch | Forward and Backward Simulations -Part I: Untimed Systems[END_REF]] from the source semantics to the target semantics5 . The correctness proof consists in establishing (1) that such a trace T exists and (2) that it represents the same behavior as the pair of lists of streams (xs, ys). This is described schematically in figure 1.2 in the form of a simulation diagram. The hypotheses are on the left of the dashed line, while the proof obligations are on the right.

Remark that this simulation result is the reverse of refinement: it states that observable behaviors of the source program are also observable behaviors of the compiled program. Nonetheless, the two directions are equivalent provided that the target semantics is deterministic, which is the case here, and this direction is easier to prove than the converse.

The modular reset

The ability to reinitialize the state of a node is important for modular programming. Consider the example in listing 1.2a that implements a general counter. Listing 1.2b, inspired from [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF]], is a rewriting of the counter node with an additional input stream reset that indicates when the counter must restart. This node can then be instantiated, for example, by the equation n = counter(0, 1, r). Unfortunately, this non-modular rewriting approach generates poor imperative code. A modular approach was expressed by Caspi (1994, §4.1) with block diagrams. [START_REF] Hamon | Modular Resetting of Synchronous Data-Flow Programs[END_REF] introduced a modular reset construct in Lucid Synchrone, that was later adapted for SCADE. In Scade, one writes n = (restart counter every r)(0, 1) in a modular way, using the counter version of listing 1.2a. The syntax expresses that the counter instance is reset every time r is true. A similar feature, called Resettable Subsystem,6 exists in Simulink.

In control system design, sophisticated applications are often best expressed using Listing 1.3: Simplified compilation of a state machine state machines, or automata. Hierarchical state machines have been introduced by [START_REF] Harel | Statecharts: A Visual Formalism for Complex Systems[END_REF] with the StateCharts formalism. [START_REF] Mandel | The Argos Language: Graphical Representation of Automata and Description of Reactive Systems[END_REF][START_REF] Mandel | The Argos Language: Graphical Representation of Automata and Description of Reactive Systems[END_REF] designed the Argos language that gives a synchronous interpretation of the composition of automata. Later, ideas from Argos were adapted to propose an extension of a kernel of Lustre with state machines, within the mode-automata formalism [Maraninchi and[START_REF] Maraninchi | Mode-Automata: A New Domain-Specific Construct for the Development of Safe Critical Systems[END_REF]]. Finally, building on these ideas, [START_REF] Colaço | A Conservative Extension of Synchronous Data-Flow with State Machines[END_REF] and [START_REF] Colaço | Mixing Signals and Modes in Synchronous Data-Flow Systems[END_REF] propose a conservative modular extension of Lustre with state machines, with associated compilation techniques. This extension exploits the modular reset construct to reset states on entry and has been adapted to Scade. Continuing our previous example, figure 1.3 presents a graphical representation of a state machine representing a simple embedded navigation system. An s input toggles between two modes: GPS, where the x output position is defined directly by the gps signal; and INS, where the ins node is instantiated to approximate the position. The signal s represents the loss of the GPS signal, that could occur, for example, inside a tunnel. When entering a mode, the fbys and node instances within must be reinitialized. While fbys are reinitialized by adding conditionals, treating node instances modularly requires a modular reset construct. A simplified compilation of the example state machine is shown in listing 1.3. Sampling and merging operators are used to encode the different states, or modes, and the transitions between them. We do not describe in detail the equations that define the clocks c and r: c is true when the GPS mode is active and false when the INS mode is active, and r is true only at the instant that follows an entry into INS mode. This last stream is used by the restart operator to reinitialize the ins node instance in a modular way.

We propose an original formalization of this operator and show that it is suitable for verifying compiler correctness. Our approach builds on the idea that the modular reset can be expressed recursively. Caspi and Pouzet (1997, §A.1) gave a formalization in a co-iterative Kahn semantics, that was later adapted in [START_REF] Hamon | Modular Resetting of Synchronous Data-Flow Programs[END_REF]] where a node instantiation "acts as a totally new function" whenever it is reset; the authors remark that this can be given a recursive interpretation. This idea is exploited by [START_REF] Cohen | Programming Parallelism with Futures in Lustre[END_REF]] for the generation of parallel code from Lustre. [START_REF] Auger | Compilation certifiée de SCADE/LUSTRE[END_REF] adapts unpublished work [START_REF] Auger | A Formalization and Proof of a Modular Lustre Code Generator[END_REF]], that builds on similar ideas, to give a mechanized formalization of the modular reset in Coq.

Vélus: an overview

The Vélus compiler is written in Coq with the exception of the lexer, the main application, the intermediate printers and the validated scheduling pass which are written in OCaml. It follows the modular approach of [START_REF] Biernacki | Clock-Directed Modular Code Generation for Synchronous Data-Flow Languages[END_REF]]. We focus on dataflow synchronous languages and their compilation, and therefore take advantage of the abstract low-level machine model provided by CompCert and its verified algorithms for producing assembly code. The reason for choosing Coq over other ITPs is that CompCert is written in Coq. All passes are verified in the sense that their correctness is stated and proved within Coq. Figure 1.4 gives an overview of the compiler architecture, and we briefly describe its elements below. Menhir [START_REF] Pottier | Menhir Reference Manual[END_REF]] tool with the --coq option. With this flag, the generated parser comes with a Coq proof of correctness [START_REF] Jourdan | Validating LR(1) Parsers[END_REF]]. i-translation represents the first change of paradigm: the code is translated from NLustre to Stc which is a transition system language introduced in this dissertation, and where synchronous reactions are modeled as transitions between states.

scheduling of dataflow equations in order to determine the order of future generated imperative instructions is performed on Stc: this allows, in particular, to schedule modular reset equations independently. fusion optimization aims at reducing the amount of conditional statements introduced by the translation of clocked equations.

argument initialization is a stage where the compiler adds initialization values and validity assertions to ensure that function calls arguments are always initialized (as required by Clight but not otherwise guaranteed by the compilation scheme).

generation of Clight code, a C-like language from the frontend of CompCert, is the last pass of Vélus which relies on CompCert for the rest of the compilation chain.

To verify that the generated assembly code correctly implements the source language semantics, we establish relations for each transformation, like the one presented in figure 1.2, and compose them, as shown in figure 1.5.

We organized the development to mirror as much as possible the architecture pictured in figure 1.4. In appendix A, we outline concrete details of this organization.

Figure 1.6 on the next two pages shows hows the Vélus compiler transforms a simple Lustre program. The example uses the counter node of listing 1.2a with shorter names to save space. The counter_rst node uses the modular reset construct to restart the counter every time r is true. The first transformation is normalization, which we perform here manually. Two equations are introduced to define the fby with a constant value and an initialization clock i that is tested at each cycle to detect the initial instant. The next transformation, i-translation, produces Stc code where nodes have become systems. State is made explicit: state variables are distinguished with the init keyword and sub-systems are declared with the keyword sub. Stc is a language that defines transition systems. A system has one default transition that is defined by declarative equations that we call transition constraints, and an implicit reset transition that reinitializes state variables to their initial values. At the level of transition constraints, reset and default transitions are made distinct. The scheduling transformation orders the transition constraints in anticipation of the next transformation, s-translation, where each system is translated into a class, with a step method corresponding to the default transition and a reset method corresponding to the implicit reset transition. The transition constraints are translated into imperative statements, that is, sequences of assignments to variables or state variables, conditionals and method calls. The final transformation (fusion optimization and argument initialization do not change the Obc code in this example) produces Clight code. The state is held by structures passed by reference, and the entry point of the program is defined by an infinite single loop that alternates reads of inputs, calculation of outputs by the main step transition function, and writes to outputs. From this point, CompCert compilation function is applied to produce assembly code, that we do not show here.

Organization

Chapter 2 presents the formalization of the Lustre dialect treated by Vélus. In particular, we give a semantics to the modular reset construct. We motivate the need for two equivalent semantics for the normalized NLustre language, based on whether streams are represented coinductively or as functions from N to values.

Chapter 3 diverges from the usual modular compilation scheme: before being translated to imperative code, the NLustre program is transformed into the Stc intermediate transition system language. We show the interest of this approach, in terms of semantic reasoning and efficiency of the generated code.

Chapter 4 describes the first step into the imperative paradigm. Stc code is translated into Obc code where each node is represented as a class that encapsulates its state and two methods that act on this state: a step method that implements one step of the execution and a reset method that reinitializes the state. Before being translated, the dataflow equations are scheduled to fix the imperative sequential order of execution. We describe how the generated Obc code is optimized.

Chapter 5 presents how we extend correctness to the machine level by using CompCert. The low-level memory model of CompCert is intricate and we use Separation Logic to facilitate the proof of correctness of the translation from Obc to Clight.

Figure 1.5 gives references to the various chapters and sections where the corresponding proofs are described.

Remarks

About proofs Every lemma, corollary or theorem presented in this dissertation is proved in Coq. Thus I do not provide detailed descriptions of the proofs in this dissertation. A version with outlines of the proofs can be found at: www.leliobrun.net/files/thesis-with-proofs.pdf

Remarks

Source code Besides lemmas, every definition that appears in the text is associated with a reference to the actual development, indicating the corresponding file and line numbers. In the electronic PDF version, these references are links to files in the following public repository: github.com/INRIA/velus/tree/lelio-thesis Common notations Throughout this dissertation, we use some common notations. To indicate a list, we use the bold face x. The empty list is written ε, and h • t is the consing operation of the head h to the tail t. We also write [h] for the singleton h • ε. When relevant, we use the ellipsis notation x 1 • • • x n where x i is the standard projection notation, and the range notation (x i ) i∈ [1,n] . Since we work a lot with composite lists, we may write, for example, x y for the list of tuples x y 1 1 • • • x yn n . Finally, we write x + y for the concatenation of the two lists x and y.

Let E be an environment that maps identifiers to elements of a given type A, we write E(x) to describe the lookup operation. In particular we write E(x) = a to mean that x is bound to a in E. We write x / ∈ E to mean that x does not appear in E. We use the symbol . = as a general convention to designate the result of such partial operations but environments have a special treatment for convenience. We will also write E{x → a} for the standard update operation, and ∅ for the empty environment. These notations extend to lists:

E(x) is the list E(x 1 ) • • • E(x n ), and E{x → a} is the environment E{x 1 → a 1 } • • •{x n → a n }.
Related publications [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF]] This work presents the first version of Vélus on which I started my work, without modular reset and coinductive-based semantics. Chapter 5 describes in detail the generation of Clight code from Obc code that the article briefly presents.

[ [START_REF] Bourke | Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset[END_REF]] This work presents the initial version of the formalization of the semantics of the modular reset further described in chapter 2. [START_REF] Bourke | Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset[END_REF]] This work presents the second version of Vélus, in which the compilation chain is adapted to handle the modular reset in a way that is described in chapters 3 and 4 with the addition of Stc.

In this chapter we present the formalization of the Lustre dialect used in Vélus. In section 2.1 we will explain how the formalization is made abstract over the operators of the target language, and how absence and streams are modeled. Section 2.2 presents the syntax and the formal coinductive-based semantics of Lustre. In particular, we show how to give a semantics to the modular reset construct.

After the elaboration stage that produces annotated Lustre code, the first code transformation pass is normalization, needed for the sequential code generation modular approach that we follow. In section 2.3 we focus on NLustre (for normalized Lustre) which is a syntactic variant of Lustre. NLustre is given two provably equivalent semantics: the first models streams coinductively while the second models streams as functions from natural numbers to values. The former is used to prove correct the transcription pass that transforms a normalized Lustre program into an NLustre program, and the latter is used for further compilation correctness proofs. 
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Preliminary definitions

Before presenting the semantic model of Lustre, we describe several fundamental modeling choices, namely on the integration of values, types and operators from the underlying target language, the representation of presence and absence, and the modeling of streams.

Abstraction layer

In Lustre, the definition of constants, types and operators depend on the target language [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF]]. We follow the same approach in Vélus, where the target language is made abstract throughout most of the development. The front-end, that is, the lexer and parser, are not abstracted, but directly adapted from those used by CompCert (see appendices B and C). In principle, it should be possible to instantiate our development for a different target language, though we are not aware of any suitable formalization.

To achieve this abstraction, we use functors over a signature, the abstraction layer, that abstracts the constants, types and operators of the target language. Each development unit-be it a function implementing a pass of the compiler, a correctness proof, or an internal library-is encapsulated within a functor over this signature, instantiated in only one place for the Clight code generation pass.

The key parameters of this signature, named OPERATORS, are shown in listing 2.1. The parameters val, type and const represent, respectively, the semantic values, the types, and the constants of the target language. Note that val and type contain booleans. The parameters unop and binop represent, respectively, unary operators and binary operators. More generally, generic operators with parametric arity could have been used instead of hard-coded unary and binary arity, but this approach, taken initially, was abandoned for the sake of simplicity. The function type_const gives the type of an arbitrary constant, init_type gives a constant inhabiting a type, which is needed to initialize variables, and sem_const is a total function defining the semantics of a constant. The sem_unop and sem_binop functions give the semantics of the application of an operator. Note that both functions are partial: they return an optional value, and have to be given not only their evaluated arguments but also the types of these arguments. Indeed, citing CompCert's documentation [Leroy (2019)]:

Most C operators are overloaded (they apply to arguments of various types) and their semantics depend on the types of their arguments. [. . .] Since operators are overloaded, the result [of an operator application] depends both on the static types of the arguments and on their run-time values.

The semantics of operators is partial because some operations can fail or yield an undefined behavior in C. For example, the integer division-by-zero is undefined behavior, as well as the less known division of the smallest signed integer by minus one.1 While partiality is something that we want to be able to model, to allow the possibility to target complex non-total operators, we could have chosen to forbid overloading and to only allow type-specific operators. Finally, type_unop and type_binop are responsible for resolving (partially again) the result type of an operator application, given the argument types. Table 2.1 lists useful corresponding notations that will be used throughout this dissertation.

Besides the aforementioned parameters, the signature also contains various axioms about well-typing and decidability. An axiom in a signature is a fact for modules that use the signature and a proof obligation for modules that implement it. To explain how the development is affected by the way the abstraction layer is set up, we take a toy example in appendix D. This example, that also serves as an introduction to useful Coq basics, is very simple but the whole Vélus development relies on exactly the same model: each unit is enclosed in a functor with an argument for each unit it depends on. The caveat is that it is rather cumbersome to duplicate the dependence graph into the call graph when the number of dependencies and separate libraries grows. Indeed some functors having more than 15 parameters, it becomes quite tedious to maintain and modify, but otherwise works well in practice.

Absent and present values

As we have seen, in Lustre, a synchronous value is either present or absent at each instant. This principle is the base of the clock system and at the core of the semantics of the language. We will write ‹v› to designate the present value v, and ‹ › to represent the absence of value. Note that, as explained, v is an abstract value to be implemented by the target language semantics: the type val is provided by the abstraction layer.

In the Coq implementation we define value as an inductive type with two constructors: absent for ‹ › and present v for ‹v›.

Inductive value := | absent | present (v: val).
Coq (src/Operators.v:175-177)

Modeling infinite sequences

Lustre is a language of streams, that is, infinite sequences, of present or absent values. Mathematically, a sequence can be defined as a function. For infinite sequences, the domain of such a function is the set of natural numbers N. In Coq, when faced with the task of formalizing a system based on infinite sequences, there are two main choices:

1. using Coq's functions over nat, which is the set of Peano natural numbers, or 2. using coinductive definitions, which allow to describe and reason about infinite objects.

In Vélus we did both. Indeed, in the early life of the project, the choice was made to use functions, for three reasons. First by elimination: proofs about coinductive objects can involve technical difficulties, namely the guardedness condition on proof terms and a lack of dedicated tactics. Secondly, functions are well-known objects that are rather easy to use and reason about in Coq. Lastly, this choice allows to describe the dataflow synchronous semantics in a practical way inspired by the initial formalization [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF]]: as a generalization of an instantaneous behavior. The problem is that the definition of this semantics is rather cumbersome and somewhat different from modern presentations [START_REF] Colaço | Clocks as First Class Abstract Types[END_REF]; [START_REF] Auger | A Formalization and Proof of a Modular Lustre Code Generator[END_REF]].

The decision is thus to somehow hide this particular semantics by restricting it to the internal passes-that is, those involving NLustre, presented in section 2.3-while giving the Lustre frontend a semantics based on coinductive streams, that is easier to read and closer to the literature. Still the notoriously hard proof-handling of coinduction remains, as we will see.

Indexed streams in Coq

A stream of elements of type A can be represented as a function N → A, that we term an indexed stream. In Coq:

Coinductive streams in Coq

As [START_REF] Bertot | CoInduction in Coq[END_REF] notes, the addition of coinductive types has been studied during the first half of the nineties. For example, [START_REF] Leclerc | Towards the Formal Verification of a C0 Compiler: Code Generation and Implementation Correctnes[END_REF]; Paulin-Mohring (1996)] use an encoding in Coq of coinductive types based on greatest fixpoints to model infinite streams. Native coinduction support was finally added to Coq by [START_REF] Giménez | An Application of Co-Inductive Types in Coq: Verification of the Alternating Bit Protocol[END_REF], based on his extension of the Calculus of Inductive Constructions (CIC) [Giménez (1995)].

Thus in our implementation, we base our definitions on the standard library Streams2 which defines the coinductive type Stream as follows.

CoInductive Stream : Type := Cons : A -> Stream -> Stream.

Coq

That is, an infinite stream of elements of type A is made by infinitely consing values of type A. The library also provides the projections hd to access the head, that is, the first element of a stream, and tl to access the tail, that is, the stream after the head. We will write x • s to designate the stream whose head is x and tail is s. Also, Str_nth n s, where n is a natural number, that we write s n in this dissertation and s # n in our Coq development, accesses the nth element of the stream s.

Equality

What does it mean for two infinite objects to be equal? This question has to be tackled whatever model we choose, be it functions or coinductive streams. Indeed, even if functions are not formally considered infinite objects, we can still ask: what does it mean for two functions to be equal? The intuitive answer, for both models, is a kind of pointwise equality, or more precisely observational equality. We say that two functions are observationally equal if they have the same graph, that is, if their graphs are equal.

Two streams are observationally equal if their elements are pairwise equal. Now one may think that observational equality implies equality, but not in type theory. For example, the following assertion of "Leibniz equality"-that is, syntactic equality modulo reduction-cannot be proved in Coq:

λ x. 2 × x = λ x. x + x
However, those two functions are observationally equal. In Coq, observational equality does not imply Leibniz equality, at least not without including the axiom of functional extensionality. The FunctionalExtensionality3 library provides this axiom, stated for the more general case of dependent functions:

Axiom functional_extensionality_dep : forall {A} {B : A -> Type},
forall (f g : forall x : A, B x), (forall x, f x = g x) -> f = g.

Coq

We prefer not to use this axiom in Vélus-as it could lead to inconsistency-and choose to use the observational equality as the default equality for infinite objects. That is, our definitions and proofs are based on observational equality rather than Leibniz equality. For indexed streams, observational equality, written s 1 ≈ s 2 , means pointwise Leibniz equality.

Definition 2.1.1 (eq_str, src/IndexedStreams.v:49)

s 1 ≈ s 2 ↔ ∀n, s 1 n = s 2 n
For coinductive streams, observational equality, also named bisimilarity, is defined in the Streams library.

CoInductive EqSt (s1 s2: Stream) : Prop := eqst : hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.

Coq

It is also essentially Leibniz equality applied pointwise, although the predicate itself is defined coinductively. We will write s 1 ≡ s 2 to indicate that the coinductive streams s 1 and s 2 are bisimilar.

Lustre

In this section we present the Lustre dialect used in Vélus. We describe the syntax and the semantics of the language, and particularly focus on the semantics of the modular reset.

Abstract syntax

In figure 2.1, we present the-lightly sugared-syntax of Lustre as it is defined the Vélus development. This syntax is parameterized over the abstraction layer described before. Hence, c, , ⊕ and τ represent the abstracted constants, unary operators, binary operators and types respectively, as summarized in Note that we focus here on a dialect that is closer to Scade 6 [Colaço, Pagano, and Pouzet (2017)] than to early Lustre [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF] [Colaço, Pagano, and Pouzet (2017)] 2.2 Lustre drop the operators pre and current as they cause problems with initialization. More precisely, pre is not yet treated since extra formalization and proofs are required to ensure that it is used correctly [START_REF] Colaço | Towards a Higher-Order Synchronous Data-Flow Language[END_REF]]. As a replacement, we focus on the fby and merge operators. For convenience, we use a special notation for the sampling operation: the concrete code e when x is written e when (x = true) and e whenot x, or e when not x are written e when (x = false). The same convention is used for clocks.

Named clocks are introduced to track dependencies that occur with nested node applications. This is beyond the scope of this work, so we omit the details. More generally, we postpone the description of the clocks ck, as a simpler clock system will be explained later, for the normalized form NLustre.

Remark also that there exist two types of annotations in our syntax: the single flow annotation (a) and the synchronized multiple flows annotation (la). This distinction is used to annotate lists of sub-expressions. The single flow annotation is simply a pair of a type and a named clock and is used to annotate sub-expressions that do not need to be synchronized on the same clock. The multiple synchronized flows annotation pairs a list of types with a single clock: it is used to annotate a list of sub-expressions that must be on the same clock.

We will use the notations n. name, n.in, n.out, n.vars, n.eqs to indicate, respectively, the name, the input variables, output variables, local variables and equations of the node n.

In the following, we present the implementation of selected parts of the abstract syntax of Lustre in the Coq development. Recall that the syntax definitions and-unless specified-every piece of Coq development of Vélus is parameterized over the OPERATORS signature described in section 2.1.1. Consequently, every occurrence of const, unop, binop and type refers to this abstract signature.

Expressions Listing 2.2a presents the implementation of expressions: the inductive type exp corresponds to e in figure 2.1. The Ewhen constructor possesses a boolean parameter which is used to distinguish between when if the parameter is true and when not otherwise. The modular reset, as it shares most of its syntax with the regular application, is not given its own constructor. Rather, we add an optional expression parameter to the Eapp constructor signaling the presence of a reset. We work with possibly empty lists because they are easier to manipulate, and use independent predicates to ensure that they are not empty.

Equations

The implementation of equations shown in listing 2.2b is straightforward: an equation pairs a list of variables and a list of expressions.

Nodes

The abstract syntax for a node is defined using a dependent record, as shown in listing 2.2c. Such records have three main advantages: 

Lustre

3. When building an object of record type, Coq allows omitting some of the fields, if they can be inferred or left as a proof obligation using the Coq Program standard library [START_REF] Sozeau | Subset Coercions in Coq[END_REF][START_REF] Sozeau | Subset Coercions in Coq[END_REF]].

The boolean field n_hasstate encodes the statefulness of a node: it is false for nodes that are purely combinatorial and true for nodes that may be stateful, that is, that may contain fby's or recursively stateful node instances. For now, this distinction is not used in Vélus.

Using dependent records means that we can encode some basic well formedness predicates directly with the node definition. Namely that a node has at least one input, n_ingt0; at least one output, n_outgt0; that equations define all outputs and local variables, n_defd (the vars_defined function gathers variables from the left-hand sides); that input, local and output variable declarations do not overlap and are unique, n_nodup (the NoDupMembers predicate ensures that an association list has no duplicates relative to the keys, that is, the list represents a map); and that the name of a node and its variable declarations are valid identifiers, n_good (an identifier is valid if it is not a reserved keyword and if it does not use reserved special characters).

Formal semantics

Synchronous streams operators

To formalize the semantics of Lustre, it is usual [Caspi and Pouzet (1998); [START_REF] Colaço | Clocks as First Class Abstract Types[END_REF]; [START_REF] Auger | A Formalization and Proof of a Modular Lustre Code Generator[END_REF]] to define synchronous streams operators specifying the behavior of the primitive constructs of the language. The first operator defines the stream associated to a constant. To indicate when the stream is present or absent, the operator takes a clock stream argument, that is, a stream of booleans giving the tempo. The constant c is evaluated using the semantics for constants provided by the abstraction layer (the function sem_const in listing 2.1 on page 23) and written c .

Figure 2.3 displays the semantics of the other operators. Note that as they are all partially defined-they impose stream synchronization-we decide to define them as relations rather than as functions, hence the inference rules. This is, I think, easier to define because it avoids optional result or error monad, easier to reason about because unwanted cases just do not exist, and more elegant. To make the predicates easier to read, we add the . = symbol in front of their last arguments. This symbol has no formal value. Moreover, all of these are defined in Coq as coinductive predicates, a fact which we represent using doubled horizontal lines in the style of [START_REF] Leroy | Coinductive Big-Step Operational Semantics[END_REF]], to distinguish from the presentation of inductive predicates with single-lined inference rules. Thus the definitions all follow the same pattern: there is one inference rule by definition case, each one stating that the relation holds for consed streams, given that it holds coinductively for their tails.

Figure 2.3a shows how unary and binary operators semantics are lifted up to pointwise application on streams of values. The notation ↑ τ is to be read "the lifting of the unary operator for type τ ". Taking the binary operation case, the operation is defined on only two cases: either (1) all heads are absent, and the relation must hold for the tails, either (2) all heads are present, the relation must hold for the tails and the result value must be the the result of the semantics of the operator on the two input values. Taking the usual addition operator on 32-bit integers, for example, the rule formalizes the following example, where white spaces represent absence of value.

x 1 2 3 4 5 • • • y 2 4 6 8 10 • • • x + y 3 6 9 12 15 • • • Figure 2
.3b describes the synchronous streams operator responsible for specifying the conditional behavior. In Lustre, the conditional branching construct can be seen as a multiplexer applied point-wise. Hence, it behaves as a ternary operator, as shown on the chronogram below.

Figures 2.3c and 2.3d show the behavior of the synchronous operators we will use to define the semantics of the temporal operators when and merge. The subtlety is the boolean parameter of the when operator: it represents the distinction between the complementary behaviors of when, when it is true, and when not otherwise. Consider the b = true case, the result stream is the sampled version of the first stream operand, according to the boolean values of the second. Thus the result stream has present values only when the variable stream outputs true boolean values, and absent values everywhere else. The merge operator takes two complementary streams as second and third operands and combines them according to its first stream operand to output a stream that combines the complementary values. The behavior of the synchronous operators for when and merge is illustrated below.

c T T F T F • • • x 1 2 3 4 5 • • • y 2 4 6 8 10 • • • u = x when c 1 2 4 • • • v = y when not c 6 10 • • • merge c u v 1 2 6 4 10 • • •
The behavior of the operator describing the semantics of the fby unit delay, as presented in [START_REF] Colaço | Clocks as First Class Abstract Types[END_REF]], is more involved. As shown in figure 2.3e, it can be seen Coq (src/CoindStreams.v:317-332)

2.2 Lustre ↑ τ xs . = vs ↑ τ (‹ › • xs) . = ‹ › • vs ↑ τ xs . = vs τ x . = v ↑ τ (‹x› • xs) . = ‹v› • vs ⊕ ↑ τ 1 ×τ 2 xs ys . = vs ⊕ ↑ τ 1 ×τ 2 (‹ › • xs) (‹ › • ys) . = ‹ › • vs ⊕ ↑ τ 1 ×τ 2 xs ys . = vs ⊕ τ 1 ×τ 2 x y . = v ⊕ ↑ τ 1 ×τ 2 (‹x› • xs) (‹y› • ys) . = ‹v›
Listing 2.3: The synchronous stream operator for the when construct as a state machine with two states: the initial state is described by the fby synchronous operator, and the other one by fby1. At the first occurrence of present values on the operands of the fby, the state machine outputs the initial value found on the first operand and switches once and for all to the state described by fby1. This operator implements the delay implied by the fby using its first operand as a memory. Note that besides providing an initial value, the second operand is constrained to remain synchronous with the third one. Note that the only role of the second parameter, the initial stream, is then to guarantee the synchronization. The overall behavior is displayed in the example below.

x 1 2 3 4 5

• • • y 2 4 6 8 10 • • • x fby y 1 2 4 6 8 • • •
As an example of the implementation, listing 2.3 presents the Coq definition of the when operator. Compare to figure 2.3c: the operator is defined as a coinductive relation that has one constructor per valid case.

Semantics of Lustre

Now that we have defined the synchronous stream operators that define the behavior of the core constructs of Lustre, we can give a semantics to the language. The first challenge is to formalize the chronograms seen until now. We choose to represent such grids with a stream environment, that we call a history. A history is a partial map from identifiers to streams of present and absent values. Thus for a node to have a semantics, there must exist a history that associates every variable with a stream (row) in a way that satisfies all the equations of the node. The semantics of equations and expressions is parameterized by the base clock of the enclosing node, that is, the fastest clock at which the node is activated. This choice is to express the semantics of constants without having to rely on the semantics of their clock annotations. Indeed this way, a constant is always evaluated on the base clock. In other semantics presented in the literature [Caspi and Pouzet (1998); [START_REF] Colaço | Clocks as First Class Abstract Types[END_REF]; [START_REF] Auger | A Formalization and Proof of a Modular Lustre Code Generator[END_REF]], constants are annotated with their clock and the semantics is based on these annotations. In our case, elaboration automatically adds when's to constants if required. Our approach has the advantage of formally separating clocking, typing and semantics. Therefore we omit the annotations in the semantic rules.

Figure 2.4a shows the semantics for expressions. We write G, H, bs e ⇓ s to mean that in the program G, under the history H and with base clock bs the expression e is associated to the list of streams s. Note that the semantics is not presented in a constructive fashion: it rather imposes constraints on the history rather than describing how to build it. This is why the semantics rules are inductive, not coinductive: they follow the structure of a term and use the coinductive operators already introduced. This design is mainly to formalize the semantics independently of the order of the equations of a node. Moreover it allows for easy isolation and case analysis (inversion) of predicates.

We now describe each rule. A constant c is associated with a single stream calculated from the base clock using the function const defined before.

A variable x is associated with any stream bisimilar to the one specified for x in H. In this particular context, the notation H(x) thus designates a lookup modulo bisimilarity. This helps writing more readable and concise rules.

An operator application is evaluated using the lifting operators presented in the previous section, provided that the expression operands are recursively associated with single streams. The function types retrieves the list of types that annotates an expression.

Given the synchronous streams operators fby, when, merge and ite, the corresponding semantics rules are straightforward. We lift semantic predicates and synchronous stream operators to lists, writing:

• G, H, bs e ⇓ s as a shorthand for ∀i, G, H, bs e i ⇓ u i ∧ s = concat u (recall that the semantics associates an expression with a list of streams, so each u i is a list, hence the concat) The semantics of an equation is given by a third dedicated sequent presented in figure 2.4b: it simply constrains the history to bind the left-hand side variables to streams resulting from the semantics of the right-hand side expressions. Note that the three presented sequents for expressions, equations and nodes are mutually recursive.

The modular reset

The rules presented in the previous subsection are an original formalization of Lustre in a proof assistant (we make several different choices to [START_REF] Auger | Compilation certifiée de SCADE/LUSTRE[END_REF]]), but they more or less directly implement the standard rules (see, for example, [START_REF] Colaço | Clocks as First Class Abstract Types[END_REF]]). In this section, we present a new way to formalize the modular reset in a "predicate style"-whether in an ITP or not.

As already explained in the introduction, the intuitive behavior of the reset is highly imperative: it effectively restarts a dataflow node by recursively resetting all fbys to their initial values. A node instantiation of f(x) reset by a boolean expression r is written (restart f every r)(x), following the Scade syntax. The challenge is to give a formal dataflow semantics within an ITP.

Our starting point is the recursive intuition expressed by the program in listing 2.4 [START_REF] Hamon | Modular Resetting of Synchronous Data-Flow Programs[END_REF]]-not valid in actual Lustre because of forbidden recursion. Listing 2.4: A (forbidden) recursive specialized reset node [START_REF] Hamon | Modular Resetting of Synchronous Data-Flow Programs[END_REF]]

Lustre

The application reset_f(x, r) behaves as f(x) until r is true for the first time, then it recursively behaves as reset_f(x , r ) where x and r are x and r taken starting from this very instant. This behavior is illustrated on the example below.

x x 0 x 1 x 2 x 3 x 4 x 5 x 6 • • • r F F T F F T F • • • c T T F F F F F • • • x when c x 0 x 1 • • • f (x when c) y 0 y 1 • • • x x 2 x 3 x 4 x 5 x 6 • • • r T F F T F • • • c T T T F F • • • x when c x 2 x 3 x 4 • • • f (x when c ) y 2 y 3 y 4 • • • x x 5 x 6 • • • r T F • • • c T T • • • x when c x 5 x 6 • • • f (x when c ) y 5 y 6 • • • . . . reset_f (x, r) y 0 y 1 y 2 y 3 y 4 y 5 y 6 • • •
With this idea, a new instance of the node f comes into being on an accordingly sampled input each time r is true. Each of theses instances is activated only on the temporal window from when the instant r is true until just before the next instant where r is true, and forever if r is never true again. As a consequence of the semantics of the fby, and because all node signals are absent when all the inputs are, each such instance begins in its initial state, that is, all its fbys have their initial values. This is precisely what models the imperative reset: instead of resetting the current instance itself, we simply start a new instance.

Rather than try to express this recursion directly in Coq, we take another approach: we formalize the semantics of the reset by infinitely unrolling the recursion. We define a special mask operator that filters its input by defining a window where its input is transmitted directly, and outside of which its value is absent. The mask operator has three parameters: an instance number k, a reset stream rs and a stream to filter, xs. Intuitively, mask k rs xs counts at each instant n the number of reset ticks on the boolean stream rs seen so far and compares the result to k: if equal then it outputs the (absent or present) value of the stream xs at n, otherwise it outputs ‹ ›. Below is shown the behavior of mask on the previous example, count r being the number of true ticks seen so far on the boolean stream r.

x x 0 x 1 x 2 x 3 x 4 x 5 x 6 • • • r F F T F F T F • • • count r 0 0 1 1 1 2 2 • • • mask 0 r x x 0 x 1 • • • f ( mask 0 r x) y 0 y 1 • • • mask 1 r x x 2 x 3 x 4 • • • f ( mask 1 r x) y 2 y 3 y 4 • • • mask 2 r x x 5 x 6 • • • f ( mask 2 r x) y 5 y 6 • • • . . . (reset f every r)(x) y 0 y 1 y 2 y 3 y 4 y 5 y 6 • • •
We use the mask operator to formalize the semantics of the modular reset. First, recall the rule for the node application equation:

G, H, bs e ⇓ xs G f (xs) ⇓ ys G, H, bs f (e) ⇓ ys
The rule for application with reset is very similar, we keep the predicate on the inputs of f . Additionally we have to give a semantics to the reset condition and to replace the premise on node application: = b • bs The overall result is consequently constrained as shown on the chronogram above: when the kth instance is applied to the k-masked inputs, its outputs are the k-masked part of the overall outputs. This approach works very well in Coq and is modular: the use of a universal quantifier allows for reasoning inductively about instances. Moreover, the semantics of the rest of the language is independent of our formalization of the reset operator.

This approach differs from the semantics proposed by [START_REF] Hamon | Modular Resetting of Synchronous Data-Flow Programs[END_REF], where clocks are modeled as pairs of boolean streams indicating the presence and the resetting. The semantics of the fby is adapted to take this "semantic wire" into account, where our model treats the reset orthogonally.

In the formalization given in [START_REF] Caspi | [END_REF]], the Kahn semantics are defined co-iteratively using a transition function and an explicit state. For the reset, the transition function explicitly reinitializes the state whenever a reset occurs. Our solution does not expose state.

Our model resembles the semantics of Auger (2013, Figure 5.7, Every rule), but as his models treats lists rather than streams, the recursion is unrolled only for a finite number of instances, using an explicit sequencing operator to build the input and output lists of values.

NLustre: normalized Lustre

We present NLustre, an intermediate Lustre language that encodes the normalized form necessary for further compilation. We describe two semantic models based on the two models of streams: a coinductive semantics where streams are defined coinductively as in our formalization of Lustre, and an indexed semantics where streams are modeled as functions. The former is used to prove the correctness of the transcription pass that transforms a normalized Lustre program into an NLustre program, while the latter is used to prove the correctness of the i-translation pass that transforms an NLustre program into an Stc program.

Normalization and transcription

Normalization is a standard stage in the modular approach for compiling Lustre. The aim is to rewrite the code into a form that can be directly translated into imperative code. This objective is mainly realized by identifying the state of a node by introducing specific equations for stateful computations, that is, for unit delays and consequently, by recursion, for node instantiations. Extracting the state facilitates both the scheduling of dataflow equations and their compilation to imperative code.

As stated by Auger et al. (2012, Remark 1), normalization can be implemented in two ways: by a source-to-source transformation along with a dedicated invariant, or by a translation towards a dedicated intermediate language. In Vélus, we choose to mix both approaches. The normalization process is a source-to-source transformation in Lustre, which has yet to be implemented and proved correct. Then, the normalized code is translated directly into NLustre, which encodes in its syntax the invariants obtained by normalization. Hence, we keep the advantages of both approaches: the correctness proof itself is easier since the semantics remains the same, but we use a simpler language with simpler semantics for the subsequent compilation pass.

As already mentioned, currently, normalization is not implemented. Consequently, Lustre code that is not in normalized form is simply rejected by the compiler, and only the transcription pass, that generates NLustre code from Lustre code is implemented. A version of the transcription without modular reset was proved correct by [START_REF] Jeanmaire | Propriétés Dynamiques Du Système d'horloges de Lustre[END_REF] during his Master's internship. We present nonetheless briefly the goals of the normalization pass, so as to provide the context necessary to understand the overall compilation scheme. As explained, the main objective is to unveil the basic equations that define the state of the node and to untangle conditional statements. Ultimately, the clock-directed compilation scheme recursively associates persistent variables to represent the delays of a node. Normalization achieves five goals, whose motivation details will become clearer in the next chapters. We describe them referring to the normalization in listing 2.5b of our Lustre example repeated in listing 2.5a.

1. Normalization extracts the equations whose compilation requires the introduction of persistent state. Consequently, the delays have to be named: the fby operator must appear only at top-level in the equations. Consider, for example, the expression (0. fby x) at line 9 in listing 2.5a, normalization introduces the local variable px that is defined by the equation at line 16 in listing 2.5b. The same holds recursively for node instantiations, in order to identify sub-states: the expression euler((gps, xv) when not alarm) at line 10 is given its own equation defining the fresh variable xe at line 14.

2. The compilation scheme uses clocks as guards: each equation is turned into a statement that is executed only when its associated clock is true. Operations that introduce branching, that is, the merge and conditional if/then/else operations, must also only occur at the top of expressions. For example, the merge expression at line 20 is extracted to a dedicated equation at line 25. Listing 2.5: Normalization of the example 3. To simplify the initialization of the state of a node, expressions at left of a fby operator are required to be constants rather than arbitrary expressions. The idea of the transformation is that the expression e0 fby e can be rewritten into if (true fby false) then e0 else (c fby e) where c is any constant of the right type. This expression is then normalized following the first point. The equation at line 3 is hence normalized into the three equations at lines 4-6.

4. An output variable must not be defined directly with a fby, that is it cannot be transformed into a persistent variable.

5. Finally, the reset condition expression of a node application with modular reset must be a variable, to facilitate compilation.

Abstract syntax

Figure 2.5 shows how the syntax of NLustre enforces the normal form:

• Two classes of expressions are defined: basic expressions which may not contain merge or if/then/else constructs, and control expressions which may.

• Stateful operations are available only at toplevel. Equations are divided into three main categories: basic equations, node instantiations with or without reset, and fby equations.

• Unit delay definitions are normalized: only constants can appear on the left of a fby.

• Except for node instantiation equations, the left-hand sides of equations are not lists anymore.

• The condition of a node application with reset is a variable rather than an expression.

Furthermore, the language remains annotated with (1) types, because every intermediate language is parameterized over the abstraction layer (see section 2.1.1), and (2) clocks, at equation level, following [START_REF] Biernacki | Clock-Directed Modular Code Generation for Synchronous Data-Flow Languages[END_REF]] and to give a deterministic semantics to fby equations, as we will see. Additionally, the reset variable condition of a node application with modular reset is annotated with its clock: this is to avoid an unnecessary lookup in further code generation. The Coq implementation is similar of that of Lustre described in section 2.2.1. Listings 2.6a and 2.6b show the implementation of expressions and control expressions as inductive types. The three kinds of equations are also represented as an inductive type, as shown by listing 2.6d. Finally, nodes are modeled as before using the dependent record presented in listing 2.6e. Compared to the predicates for a Lustre node, note the extra condition that forbids defining an output variable directly with a fby. 

NLustre code elaboration

In the Vélus compiler, the lexing and parsing stages (see appendices B and C) transform a Lustre source file into a raw abstract syntax tree (AST), without type and clock annotations (see src/Lustre/Parser/LustreAst.v). As Lustre elaboration, normalization and transcription are not complete yet, we directly elaborate NLustre code from manually normalized Lustre source code. The n-elaboration stage implements type-checking and clock-checking that enrich the AST with type and clock annotations. Since the syntax of nodes in Coq embeds some well-formedness invariants, elaboration must check them too. Type checking and clock checking are done simultaneously, because it is not only more efficient but also simplifies the proofs. The whole process, implemented by a function named n-elab (elab_declarations, src/NLustre/NLElaboration.v:2672), is not described in this dissertation.

Clock system

The clock system is a static calculus ensuring that a program can be executed synchronously [START_REF] Caspi | LUSTRE: A Declarative Language for Programming Synchronous Systems[END_REF]; Caspi and Pouzet (1996)]. The idea is to statically reject programs that would not have a semantic model due to incorrect combinations of present and absent values, for example, those where a merge would have two stream arguments that are present at the same time. Each construct is associated with a clock, that gives its execution tempo, that is, it specifies the instant when the construct is absent or present. Consider the category ck in figure 2.5: a clock is either the base clock denoted •, that is, the fastest pace at which the node is activated, or a sub-clock that indicates sampling on a condition variable. The corresponding implementation appears in listing 2.6c.

The clock system is shown in figure 2.6. Figure 2.6a presents the clocking of expressions. The rules are parameterized over a clocking environment Ω that maps identifiers to clocks. We write Ω e :: ck to mean that under the clocking environment Ω, the expression e has clock ck. A constant always has the base clock. The clock of a variable is looked up in the environment. Unary and binary operations have the same clock as their operands. A sub-clock is introduced by the sampling when construct: the sub-expression and the condition variable must have the same clock.

The clocking rules of control expressions are shown in figure 2.6b. A merge expression on variable x has clock ck if the two sub-expressions have complementary sub-clocks deriving from ck with condition x, that must have clock ck. A conditional construct has the same clock as its branches. The clock of a basic expression does not change when it becomes a control expression. For example, consider line 15 in listing 2.5b, the replacement merge alarm px xe would not be well-clocked, because px is on the base clock •, while the operator expects an expression on clock • on (alarm = true). 

Ω(x) = ck Ω c e :: ck G, Ω x = ck e Ω(x) = ck Ω e :: ck G, Ω x = ck c fby e node(G, f ) . = n σ(x) var = e σ(y) = z Ω e :: σ ck [ck x ] Ω(z) = σ ck [ck y ] G, Ω z = ck f (e) where n.in = x τ x ,ck x n.out = y τ y ,ck y node(G, f ) . = n σ(x) var = e σ(y) = z Ω e :: σ ck [ck x ] Ω(z) = σ ck [ck y ] Ω(r) = ck r G, Ω z = ck (restart f every r ckr )(e)
where n.in = x τ x ,ck x n.out = y τ y ,ck y (c) Equations (wc_equation, src/NLustre/NLClocking.v:52) rule is more involved. The idea is to exhibit a substitution σ, a map from identifiers to identifiers, that is used to instantiate the formal declared clocks of the node interface with the actual inferred clocks of the arguments and defined variables, following [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF]]. This encodes within Coq the generalization/substitution mechanism of the clock calculus described in [START_REF] Colaço | Clocks as First Class Abstract Types[END_REF]]. The rule uses the following two definitions. The first definition extends the substitution lookup to expressions: if the substitution maps a declaration x in the node interface to a variable y in the context of the instantiation, then the corresponding argument expression must be the variable y; otherwise any argument expression is acceptable.

Definition 2.3.1 (SameVar, src/CoreExpr/CEClocking.v:31) σ(x) = y σ(x) var = y τ x ∈ σ σ(x) var = e
The second definition is a function that applies the substitution to a formal clock. We write σ ck ck to designate the clock derived from ck by substituting variables with σ and replacing the base clock by ck.

Definition 2.3.2 (instck, src/ClockDefs.v:27) σ ck [•] ck σ ck ck on (x = b) σ ck ck on (σ(x) = b)
Both definitions are lifted to lists: σ(x) var = e stands for ∀i, σ(x i ) var = e i ; and σ ck ck for ∀i, σ ck ck i . The rule for the node application with modular reset only adds the requirement that the clock annotation of the reset variable match its declared clock in the environment. As an example, consider the node interface: node f(a : bool; b : int when a) returns (x : int on y; y : bool) and the equation:

u, v = f(w, (10 when i) when w); Assume that the variables v and w are declared with clock ck = • on (i = true), and u with clock ck on (v = true). That is, we consider a clocking environment Ω = {i :: •, v :: ck, w :: ck, u :: ck on (v = true)}. Hence the clock annotation of this equation is ck. The second two antecedents of the node instantiation rule constrain σ to contain the substitution {a → w, x → u, y → v}. The fourth antecedent ensures that the arguments are well-clocked, relative to the substitution:

1. The expression w must have clock σ ck [•], that is, ck. We do have Ω(w) = ck.

The expression (10 when

i) when w must have clock σ ck [• on (a = true)], that is, ck on (w = true), since σ(a) = w.
Using the clocking rule for constants and when expressions, this is also verified.

The last antecedent ensures that the clocks of right-hand side variables are correctly instantiated: 1. We do have Ω(u) = ck on (v = true), and

Ω • Ω(x) = ck Ω ck Ω ck on (x = b) (d) Clocks (wc_clock, src/Clocks.v:90) Ω ∀x, Ω(x) = ck → Ω ck (e) Environments (wc_env, src/Clocks.v:101) G, Ω n.eqs Ω ∅{x → ck x } ∅{x → ck x }{y → τ y } G wc n where n.in = x τ x ,ck x n.out = y τ y ,ck y n.vars = z τ z ,ck z Ω = ∅{x → ck x }{y → ck y }{z → ck z } ( 
σ ck [• on (y = true)] = ck on (v = true), since σ(y) = v.
2. We do have Ω(v) = ck, and

σ ck [•] = ck.
To extend the clock calculus to nodes, we introduce the notion of clock consistency, as shown in figure 2.6d. The idea is to verify that the declared clocks of the interface of a node are well defined. The base clock is consistent. A sub-clock is consistent if its sampling variable is associated to the parent clock in the environment and if this parent clock is consistent. In figure 2.6e we define a clocking environment to be consistent if all clocks that appear in it are consistent. Finally, as shown in figure 2.6f, a node is well-clocked if all its equations are well-clocked under the consistent clocking environment obtained from the input, output and local variable declarations of the node. Moreover we also require that the environments obtained from input declarations and from input and output declarations are consistent. A program is well-clocked if all of its nodes are well-clocked.

NLustre is also given a type system. In Vélus, well typing is only used to prove the correctness of the Clight code generation pass. Type systems are not central to this dissertation, but the reader may refer to appendix E.2 for the details.

The coinductive semantics

The coinductive semantics of NLustre is similar to the one of Lustre described in section 2.2.2. The corresponding inference rules are shown in figure 2.7. Most synchronous operators are reused, namely, const, the lifting of unary and binary operations, when, Figure 2.7b presents the semantics of control expressions. We write H, bs c e ⇓ s to distinguish control expressions from simple expressions. Compared to the rules presented in figure 2.4a on page 37, there is no G parameter since in normalized form, node instantiations no longer appear at expression level. The rules are also simpler in the sense that normalized expressions cannot be lists and consequently are associated with single streams instead of lists of streams. Nonetheless, the behavior formalized by the rules is essentially the same as for Lustre.

s ≡ const bs c H, bs c ⇓ s H, bs x ⇓ H(x)
bs ≡ bs 

H, bs • ⇓ bs H, bs ck ⇓ true • bck H(x) ≡ ‹v› • xs val-to-bool v . = b tl H, tl bs ck on (x = b) ⇓ bs H, bs ck on (x = b) ⇓ true • bs H, bs ck ⇓ true • bck H(x) ≡ ‹v› • xs val-to-bool v . = ¬b tl H, tl bs ck on (x = b) ⇓ bs H, bs ck on (x = b) ⇓ false • bs H, bs ck ⇓ false • bck H(x) ≡ ‹ › • xs tl H, tl bs ck on (x = b) ⇓ bs H, bs ck on (x = b) ⇓ false • bs

Clocking constraints

Before presenting the semantics of equations, we must first introduce some details about clock annotations. As noted earlier, the left-hand side of a fby equation in NLustre is a constant. This has a non trivial consequence on the associated semantic rule. To see why, consider the following equation:

x = true fby (not x); In Lustre, the true expression denotes a stream whose clock is obtained from the expression. Here it is the base clock since there is no when. Consequently, the associated stream is always present with the boolean value T. Now, the same equation is also valid in NLustre. But in NLustre, the constant true does not yield a stream, therefore one can no longer give a unique clock to the stream associated to x. The solution to the resulting introduction of non-determinism is explained in [START_REF] Caspi | [END_REF], §4.3]: the semantics must rely on clocks. Here, the variable x is a declared variable, so its clock is statically known and available locally since fbys in NLustre only appear at equation level and equations are annotated with their clock. Therefore, in NLustre the semantics relies on clock annotations, unlike in Lustre.

Figure 2.7c presents the semantics of clocks. The base clock • is associated with the base stream parameter of the semantics (up to bisimilarity). The semantics for sampled clocks ensures that the sampling variable x yields a present value if and only if the sampled clock ck is true. Indeed, it means that x must have clock ck. This is guaranteed by the clocking rule for when (see figure 2.6a on page 48). The overall sub-clock is associated with a boolean stream which is false when ck is false, and true only if ck is true and the sampling condition is met. Note that the rules for subclocks are corecursive: they are instantiated on the tail of the base stream and on the tail of the history to constrain the tail of the overall result stream. We overload the tl notation for streams to histories-which are environments of streams-in the following way: we write tl H for the environment resulting from the composition tl •H.

Figure 2.7d shows how the semantics for clocks and for (control) expressions are combined to enforce clocking constraints on the semantics of (control) expressions. The rules ensure that an expression evaluated stream yields present values if and only if its annotated clock yields true values. In Lustre this relation is a property of the semantics.

Here, it is directly encoded in our semantics rules but "discharged" by the proof of correctness for the transcription pass. The theorem was shown by [START_REF] Jeanmaire | Propriétés Dynamiques Du Système d'horloges de Lustre[END_REF], again without reset.

Equations and nodes

Figure 2.7e shows the dedicated semantics rules for each kind of equation. A basic equation x = ck e has a semantics if its left-hand side and its right-hand side are evaluated to the same stream (up to bisimilarity). The left-hand side x is looked-up in the history H, while the right-hand side expression e is constrained together with the clock annotation ck, as described in the previous section. This may seem odd: we just explained that we need clock annotations to give the rhythm of a fby equation, but do we need it for a basic

H, bs c e :: ck ⇓ H(x) G, H, bs x = ck e H, bs e :: ck ⇓ s H(x) ≡ fby c s G, H, bs x = ck c fby e H, bs e ⇓ xs H, bs ck ⇓ base-of xs G f (xs) ⇓ H(x) G, H, bs x = ck f (e) H, bs e ⇓ xs H, bs ck ⇓ base-of xs bools-of (H(y)) . = rs ∀k, G f mask k rs xs ⇓ mask k rs H(x) G, H, bs x = ck (restart f every y)(e) (e) Equations (sem_equation, src/NLustre/NLCoindSemantics.v:187) node(G, f ) . = n H(x) ≡ xs H(y) ≡ ys bs = base-of xs respects-clock H bs Γ ∀eq ∈ n.eqs, G, H, bs eq G f (xs) ⇓ ys where n.in = x τ x ,ck x n.out = y τ y ,ck y Γ = ∅{x → ck x } (f) Nodes (sem_node, src/NLustre/NLCoindSemantics.v:216) Figure 2.

(III):

The coinductive semantics of NLustre equation? Ideally the clocking constraints, the consistency of the synchrony, should be a consequence of the semantics and of a well clocking static predicate. But, by using clock annotations for one kind of equation, we already lose the independence of the semantics: we embedded this particular synchrony result directly into the semantics. As we need this result anyway, we might as well embed it further, that is for other kind of equations. This is essentially a matter of design choice, as NLustre is an intermediate language whose semantics is essentially used for internal proofs and the Lustre semantics is already shown to satisfy the property. Similarly, a fby equation has a semantics if the left-hand side variable is associated in the history with a stream that is bisimilar to the stream obtained using the fby function on the stream associated with the delayed expression.

For a node application with or without reset, the input expressions are associated with a list of streams that must be related by the semantics of the node with streams associated with the left-hand side variables in the history (up to bisimilarity). Note that the clock annotation must correspond to the actual clock of activation of the node. The only particularity for the node application with reset is the use of the mask operator, exactly as described in section 2.2.2.3 for Lustre.

As for Lustre, the node instantiation semantics uses a dedicated sequent presented in figure 2.7f. In comparison to the judgment in figure 2.4c on page 38, we just add the respects-clock predicate, which embeds the clocking constraints, as we have seen for expressions, at the node input level. It expresses the alignment between the streams resulting from the evaluation of the input variables and of their clock annotations. We give its formal definition below. 

The indexed semantics

Having presented the coinductive semantics for NLustre, used to show the correctness of the transcription pass (Lustre to NLustre), we now present the indexed semantics used for the proof of correctness described in the next chapter. In the indexed model, streams are represented as functions from natural numbers to values. The main idea of the model is to describe the instantaneous behavior of the expressions, and to generalize it over multiple instants at the equation level. Therefore, with chronograms in mind, we give a specification to each column in the semantics of expressions, and the semantics for equations "glues" the columns into a grid. In changing from the coinductive semantics to the indexed semantics, we reflect a first step of compilation from a model where each variable is associated with a stream-a row of a chronogram-towards a sequential model where calculation is performed on a state cycle-by-cycle-the columns of a chronogram. In this way, the coinductive semantics facilitates the proof of transcription while the indexed semantics facilitates the proof of the generation of imperative code.

Instantaneous semantics

To describe the semantics at one particular instant, we have to consider the current value of the base clock stream b, and a slice R of the history. This slice is an environment mapping identifiers to absent or present values. As outlined above, using indexed streams and an instantaneous environment is fundamental in this approach: the idea is to reason instant-by-instant as easily as possible. The inference rules are presented in figure 2.8. Although there are no surprises compared to the behavior modeled by the coinductive semantics presented in section 2.3.5, we give a short explanation of the rules. The main difference is the absence of extra synchronous stream operators: here their behavior is directly inlined in the rules.

Figure 2.8a shows the inference rules for the instantaneous semantics of expressions. We write R, b e ↓ v to mean that in the environment R, with current base clock value b, the expression e evaluates to v. A constant is present and has the value assigned by the target language semantics when b is true, and is absent otherwise. A variable x is evaluated to the value it is bound to in R, provided that x actually belongs to the domain of R. Unary and binary operations simply use the abstracted semantics for operators when their operands are present. If the operands are absent then the overall result is also absent. A sampled expression e when (x = k) is absent if e and x are also absent.

R, true c ↓ ‹ c › R, false c ↓ ‹ › R, b x ↓ R(x) R, b e ↓ ‹v e › type e v e . = v R, b e ↓ ‹v› R, b e ↓ ‹ › R, b e ↓ ‹ › H, bs e 1 ⇓ ‹v 1 › H, bs e 2 ⇓ ‹v 2 › ⊕ type e 1 ×type e 2 v 1 v 2 . = v R, b e 1 ⊕ e 2 ↓ ‹v› H, bs e 1 ⇓ ‹ › H, bs e 2 ⇓ ‹ › R, b e 1 ⊕ e 2 ↓ ‹ › R, b e ↓ ‹v› R(x) = ‹v x › val-to-bool v x . = k R, b e when (x = k) ↓ ‹v› R, b e ↓ ‹v› R(x) = ‹v x › val-to-bool v x . = ¬k R, b e when (x = k) ↓ ‹ › R, b e ↓ ‹ › R(x) = ‹ › R, b e when (x = k) ↓ ‹ › (a) Expressions (sem_exp_instant, src/CoreExpr/CESemantics.v:93) R(x) = ‹T› R, b c e t ↓ ‹v› R, b c e f ↓ ‹ › R, b c merge x e t e f ↓ ‹v› R(x) = ‹F› R, b c e t ↓ ‹ › R, b c e f ↓ ‹v› R, b c merge x e t e f ↓ ‹v› R(x) = ‹ › R, b c e t ↓ ‹ › R, b c e f ↓ ‹ › R, b c merge x e t e f ↓ ‹ › R, b e ↓ ‹T› R, b c e t ↓ ‹v t › R, b c e f ↓ ‹v f › R, b c if e then e t else e f ↓ ‹v t › R, b e ↓ ‹F› R, b c e t ↓ ‹v t › R, b c e f ↓ ‹v f › R, b c if e then e t else e f ↓ ‹v f › R, b e ↓ ‹ › R, b c e t ↓ ‹ › R, b c e f ↓ ‹ › R, b c if e then e t else e f ↓ ‹ › R, b e ↓ s R, b c e ↓ s (b) Control expressions (sem_cexp_instant, src/CoreExpr/CESemantics.v:143) Figure 2.8 (I): Instantaneous semantics of NLustre R, b • ↓ b R, b ck ↓ true R(x) = ‹v› val-to-bool v . = k R, b ck on (x = k) ↓ true R, b ck ↓ true R(x) = ‹v› val-to-bool c . = ¬k R, b ck on (x = k) ↓ false R, b ck ↓ false R(x) = ‹ › R, b ck on (x = k) ↓ false (c) Clocks (sem_clock_instant, src/CoreExpr/CESemantics.v:65) R, b (c) e ↓ ‹v› R, b ck ↓ true R, b (c) e :: ck ↓ ‹v› R, b (c) e ↓ ‹ › R, b ck ↓ false R, b (c) e :: ck ↓ ‹ › ( 
If e and x are both present, then the sampled expression depends on the present value of x, that must be a boolean, and on k. If x evaluates to k, then the overall expression is evaluated to the present value of e, otherwise it is absent.

Figure 2.8b shows the instantaneous semantics of the control expressions. Again, we write R, b c e ↓ v to distinguish control expressions from regular expressions. The merging operation is defined if its expression operands are complementary: if one is present, the other one has to be absent. The choice is made using the boolean value of the condition variable. The semantics of the conditional is similar except that the operands must both be present or absent at the same time.

As explained before, the semantics of NLustre relies on clock annotations at equation level to ensure clocking constraints. Figure 2.8c shows the instantaneous semantics of clocks. The base clock • always evaluates to the current value b of the base stream clock. The semantics for sampled clocks ensures that the condition variable x is present if and only if the sampled clock ck is recursively evaluated to true. The sampled clock is then evaluated to false when ck is false and to true only if ck is true and the condition on x is met.

The semantics for expressions and clocks are combined in figure 2.8d to ensure instantaneous clock alignment between a (control) expression and its clock annotation. 

H, bs

. = rs ∀k, G f mask k rs xs mask k rs H * (x) G, H, bs x = ck (restart f every y)(e)

Stream semantics

Once the instantaneous semantics is defined, we can derive the stream semantics by a simple generalization. Unlike the coinductive semantics, the history H we use here is not an environment of streams but a stream of environments. Again, this choice follows from the slicing idea described before: having a stream of instantaneous environments facilitates instant-by-instant reasoning on a set of equations.

We lift the previous definitions as follow:

H, bs (c) e s ∀n, H n, bs n (c) e ↓ s n H * (x) λ n. (H n)(x)
Thus, we write H, bs (c) e s to mean that under the stream of environments H and base clock stream bs the (control) expression e is associated with the stream s. The notation H * (x) represents the stream of successive values associated to x in the stream of environments H. As for other lookup notations, we use it for clarity of the presentation while ignoring partiality. Figure 2.9a gives the semantics for equations. The structure of the rules is all but identical to that of the coinductive semantics rules presented in figure 2.7e on page 54. The main difference is that the semantics of a node does not use lists of streams of values but instead streams of lists of values. Again this choice reflects the instant-by-instant behavior that we model: slicing a stream of lists is simpler than slicing every stream of a list of streams. Therefore the overloadings of notations for lists do not have the same meanings as before. While H, bs e ⇓ xs was a shorthand for ∀i, H, bs e i ⇓ xs i , now H, bs e xs is a shorthand for ∀n i, H n, bs n e i ↓ (xs n) i . Similarly, while we wrote H(x) as a shorthand for the list of streams H(x 1 ) • • • H(x i ), we now write H * (x) as a shorthand for the stream of lists λ n.

(H n)(x 1 ) • • • (H n)(x i ).
Working in a proof assistant like Coq helps to track such tedious but inevitable details.

The operators base-of, bools-of and fby are re-defined. The first two are equivalent to their coinductive counterparts: base-of computes the compound clock stream which is true whenever at least one element of the given list is present and bools-of projects a stream of values into a stream of Coq booleans.

Definition 2.3.5 (clock_of, src/CoreExpr/CESemantics.v:281) base-of-now v exists B (‹ › = B ) v base-of vs λ n. base-of-now (vs n) Definition 2.3.6 (bools_of, src/CoreExpr/CESemantics.v:284) bools-of xs . = rs ↔ ∀n, if rs n then (xs n = ‹T›) else (xs n = ‹F› ∨ xs n = ‹ ›)
Compare with definitions 2.2.2 and 2.2.4 on page 38 and on page 41.

The new fby definition is more intricate than the straightforward coinductive definition 2.3.3 on page 51 and uses an auxiliary function hold.

Definition 2.3.7 (fby, src/NLustre/NLIndexedSemantics.v:59)

hold v 0 vs 0 v 0 hold v 0 vs (n + 1) if (vs n = ‹v›) then v else hold v 0 vs n fby v 0 vs λ n. if (vs n = ‹ ›) then ‹ › else ‹ hold v 0 vs n›
Basically the fby definition just describes the reaction to absence and presence, the actual recursive behavior is implemented by the hold function. In fact, this hold function describes the content of a memory register: indeed it could be seen as yielding the stream of successive values-without presence nor absence-that a register corresponding to a fby-defined variable will take. Its behavior is to output its first argument at the first instant, then at each instant the previous present value of its second argument. If the previous value is absent, then the register just holds its value, without updating it. The following chronogram gives a visual intuition.

y 2 4 6 8 10 • • • hold 1 y 1 1 1 2 4 6 6 6 8 • • • fby 1 y . = 1 2 4 6 8 • • • 1 fby y 1 2 4 6 8 • • •
The auxiliary definitions introduced for the modular reset, explained in section 2.2.2.3, are adapted in the indexed model. This means rewriting the mask operator, this time in a more intuitive way than for its coinductive definition 2.2.3 on page 40. where c = if (n = 0) then 0 else count rs (n -1)

mask k rs xs λ n. if (count rs n = k) then xs n else absent-list xs 0 Where absent-list i ‹ › • • • ‹ › i
The definition uses the auxiliary count function which calculates the cumulative sum of the values on the rs clock stream. This auxiliary function encodes the intuition that was given to explain the coinductive version of mask (see the associated chronogram page 40). The subtlety compared with the coinductive version of mask is the output in the case where k = count rs n: here we deal with streams of lists instead of lists of streams, as explained before. The opaque output must thus be a list of absent values. Since this operator is only used in the context of the semantics rules, we know that the stream of lists xs has the same length at each instant. That is, we have:

∀i j, xs i = xs j
Thus we arbitrarily choose the length of the list at the first instant. We could have taken the length at the current instant n but that is slightly less convenient in the proofs.

Finally, figure 2.9b gives the semantics of nodes: again, there are no structural differences with the coinductive version. The coinductive definition 2.3.4 on page 55 of respects-clock is re-defined as follow: Definition 2.3.9 (sem_clocked_var, src/CoreExpr/CESemantics.v:233)

respects-clock-now R b x ck R, b ck ↓ true ↔ ∃v, R(x) = ‹v› ∧ R, b ck ↓ false ↔ R(x) = ‹ › respects-clock H bs ∀n, respects-clock-now (H n) (bs n)

Relating the coinductive and indexed semantics

Now that NLustre is given two different semantics, a coinductive one for the correctness of the transcription pass and an indexed one for further compilation, we have to show that the former is included in the latter. First we have to set up a way of comparing coinductive streams with indexed streams. We do so by defining a straightforward notion of equivalence between the two kinds of streams.

Definition 2.4.1 (Observational equivalence)

A coinductive stream u is observationally equivalent to an indexed stream v, written u ∼ v, if and only if ∀n,

u n = v n
We also need a version for comparing lists of coinductive streams with indexed streams of lists.

Definition 2.4.2 (Generalized observational equivalence)

A list of coinductive streams u is observationally equivalent to an indexed stream of lists v, written u ∼ v, if and only if

∀n k, (u k ) n = (v n) k
Then we want to prove that the indexed semantics of NLustre is included in the coinductive semantics. Even if the result is not needed in our compilation correctness proof, we also show the converse: the coinductive semantics of NLustre is included in the indexed semantics. We describe the proofs over the following two sections.

From the coinductive semantics to the indexed semantics

The inclusion result is presented in lemma 2.4.1 in an existential manner. For the proof, we define a function that translates coinductive streams into indexed streams and use it to provide witnesses for the existential variables. The function ensures the observational equivalence, and we show that it is a morphism with respect to the two semantics.

First we define the function that translates a single coinductive stream into an indexed stream. Finally, we propose a function hist-to-idx for translating a history. This function transforms an environment of coinductive streams of values into an indexed stream of environments of values. Building such a stream is straightforward: at each instant, we extract a snapshot of the history by indexing all streams appearing in it. The definition can be written as follows, using function composition, if we represent the environments as functions.4 Definition 2.4.5 (tr_History, src/NLustre/NLCoindToIndexed.v:75)

hist-to-idx H to-idx •H

We must now show that the semantics is preserved by our family of functions. In other words, we must show that these functions are morphisms with respect to the two semantics, for each syntactic class of NLustre: expressions, control expressions, equations and nodes. Eventually, the main result states that to-idx is a morphism with respect to the two semantics for a node. The proof follows by mutual induction over nodes and equations, using intermediate results about expressions and control expressions. In the following, we detail a complication that seems unavoidable and some results of interest.

The technical complication comes from the different nature of the hypotheses and of the goals in the proofs of some intermediate results. Consider the following intermediate result stating the semantics preservation for expressions.

Lemma 2.4.4 (sem_exp_impl, src/NLustre/NLCoindToIndexed.v:277) Given a coinductive history H, a base clock stream bs, an expression e and a coinductive stream s such that H, bs e ⇓ s, then hist-to-idx H, to-idx bs e to-idx s.

In the coinductive semantics, e is evaluated using coinductive operators like the synchronous streams operator when, for example. As we saw in section 2.2.2.1, such operators constrain their input and output streams by constraining their heads and then passing coinductively into their tails. However, we saw that the indexed semantics is a lifting of an instantaneous behavior. Eventually, we are left with a coinductive hypothesis specifying coiteratively the semantics of e while we have to show that the instantaneous behavior of e holds for all instants n. In Coq, we cannot directly do a proof by coinduction here, since the result we want to prove is not coinductive, only the hypothesis is. I solved this problem by stating intermediate results giving a generalized instantaneous equivalent specification of each coinductive synchronous stream operator and judgment. These results can be seen as independent inversion lemmas. For example, consider the Coq lemma presented in listing 2.7: it simply expresses the coinductive behavior of the when operator in terms of instantaneous behavior. It states that the relation when k xs cs rs is equivalent to the given instant-by-instant specification: at each instant n, either the three streams are absent, or the value of the output stream rs is given by sampling xs according to cs. It is proved by induction on n without any difficulty and can be used as an inversion result in the proof of lemma 2.4.4, by induction over the kinds of expressions.

Interestingly, as the fby operator is a total function in both semantics, we can directly state the following result.

Lemma 2.4.5 (fby_impl, src/NLustre/NLCoindToIndexed.v:374) Given a coinductive stream of values s and a constant v 0 ,

to-idx (C.fby v 0 s) ≈ I.fby v 0 (to-idx s)
where C.fby is the Coinductive operator, and I.fby the Indexed one.

Another point of interest is the conversion of the mask operator, involved in the proof of preservation for the semantics of the modular reset. Recall the intricacy of the coinductive definition of mask, given in definition 2.2.3 on page 40. This kind of coinductive definition is rather unpractical in the proofs, so the idea is to give the operator a specification following the intuitive behavior, as does its definition in the indexed model. The point is to define a coinductive version of count and use it to state the specification. We define count-from to count coinductively the number of true ticks, starting from an initial number. Then count is a simple specialization that we can use to express the specification of the coinductive mask operator. 

From the indexed semantics to the coinductive semantics

The proof of semantics inclusion in the other direction essentially follows the same structure as the preceding proof: we define morphisms to pass from the indexed model to the coinductive model. We first define a function that translates an indexed stream into a coinductive stream.5 

Definition 2.4.7 (tr_stream, src/NLustre/NLIndexedToCoind.v:74)

to-coind-from n s s n • to-coind-from (n + 1) s to-coind s to-coind-from 0 s

Building a list of coinductive streams from a stream of lists is more intricate than in the original direction. This is expected: while passing from lists of coinductive streams to indexed streams of lists is simply slicing, we need a well-formedness property on the length of the lists to go the other way. The idea follows three steps:

1. find a way to extract each kth indexed stream from a stream of lists, 2. translate each of those obtained streams into coinductive streams, and, 3. gather them into the resulting list.

The first step is to define the following function to extract the kth stream from a stream of lists s. The subtlety in Coq is that the indexing operation on a list will fail if the index is out of bounds, so we have to provide a default value for the operation to be total. This detail is ignored in this dissertation but in the development we give up polymorphism for simplicity and specify the absent value as the default.

Secondly, we can combine to-coind-from and streams-nth to define a function which translates the kth stream of a stream of lists s into a coinductive stream.

Definition 2.4.9 (nth_tr_streams_from, src/NLustre/NLIndexedToCoind.v:87) nth-to-coind-from n s k to-coind-from n (streams-nth k s) Finally, we need a way to build a list of each kth translated stream. We begin by defining a function that builds a list of streams by iterating a function over a range of integers [0, m). 6 Definition 2.4.10 (seq_streams, src/NLustre/NLIndexedToCoind.v:77)

seq-streams f m (f k) k∈[0,m)
Then we can use seq-streams with nth-to-coind-from as an iterator function to build the function. We need to provide an upper bound m for the integer range, so we use the length of the list in the stream at a given instant n. As mentioned, we will need the well-formedness property on the lengths of the lists in the stream s: ∀i j, s i = s j Definition 2.4.11 (tr_streams, src/NLustre/NLIndexedToCoind.v:97) to-coind-from n s seq-streams (nth-to-coind-from n s) s n to-coind s to-coind-from 0 s

The function for translating a history, that is, a stream of environments, into an environment of streams is also not trivial to define in Coq: we must reconstruct (1) coinductive streams from values found in sliced instantaneous environments, and (2) a domain of definition from sliced domains. The idea to solve the second point is to rely on the semantics constraints to ensure that the domains remain consistent at each instant. This way it suffices to use the domain of a given environment at a given instant, for example, the very first instant n = 0. The first problem is solved by performing lookups at each instant into the corresponding environment: here again thanks to the semantics constraints, we can deduce that the lookup cannot fail. In this dissertation, these technical details are hidden behind the convenient function composition notation.

Definition 2.4.12 (tr_history_from, src/NLustre/NLIndexedToCoind.v:105)

hist-to-coind-from n H (to-coind-from n) • H * hist-to-coind H hist-to-coind-from 0 H
The structure of the proof is essentially the converse of that of section 2.4.1. We show that the previous functions are morphisms with respect to the two semantics, for each syntactic class and arrive at the following result: to-coind is a morphism with respect to the two semantics of a node. As before, the proof follows by mutual induction on equations and nodes, using intermediate results on expressions and control expressions, sometimes requiring proofs by coinduction. In the following we outline some difficulties and interesting results. To prove some intermediate results we must solve a difficulty, arguably more involved than for the converse proof. Consider again the intermediate inclusion result for expressions.

Lemma 2.4.9 (sem_exp_impl, src/NLustre/NLIndexedToCoind.v:630) Given an environment stream H, a base clock stream bs, an expression e and an indexed stream of values s such that H, bs e s, then hist-to-coind H, to-coind bs e ⇓ to-coind s.

This time when doing an induction on the expression e, we are left with some coinductive sub-goals, while the hypotheses are not coinductive. Precisely, recall that the hypothesis H, bs e s actually stands for ∀n, H n, bs n e ↓ s n. Thus when dealing with constructs like the when, for example, one cannot perform inversion (elimination) on the hypothesis directly. In other words, from the indexed semantics of an expression e when x, one cannot exhibit the indexed streams associated with the semantics of the sub-expressions e and x. Yet, to pass the induction, we actually need these streams, so that we can use the induction hypothesis on the sub-expressions. Intuitively, it seems obvious that exhibiting sub-streams from the semantics of an expression is possible, but the practical details are not trivial. Consider, for example, the particular intermediate result we want to prove for the semantics of the when construct, shown in listing 2.8. The lemma simply states in an inversion-like fashion the specification of the behavior of the constructs as described by the instantaneous semantics. That is, if we know that the indexed semantics for the expression Ewhen e x k associates a stream es to it, then we can exhibit two indexed sub-streams ys and xs that are associated by the semantics to the sub-expressions e and x respectively. Moreover, these streams are constrained according to the semantics for the when operator. To prove this intermediate lemma, we would like to have the following general result:

∀H bs e s, (∀n, ∃v, H n, bs n e ↓ v) → ∃s, ∀n, H n, bs n e ↓ s n

That is, if the instantaneous semantics associates a value to an expression e at each instant, then there exists a stream s that is associated to e by the stream semantics. This is clearly an instance of the axiom of functional choice:

∀R, (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x)
There are two obvious solutions to this goal. The first is to apply the axiom of functional choice, but, in Coq, this means importing a non-trivial axiom, as it is not a property of the core theory. We preferred not to do this. The second solution is to explicitly describe how to calculate the instantaneous values needed to build the witness stream. In other words, the solution is to construct the choice function, which is what we did. It is possible to design an interpreter for NLustre, at least for the expressions. This interpreter precisely follows the instantaneous semantics rules described in section 2.3.6.1 to produce instantaneous values-the absent value being used as default value to make it total. The interpreter is proved complete, in the sense that it produces the value expected by the semantics. For example, consider the instantaneous interpreter interp-now e that produces values for expressions, we show that the instantaneous interpreter for expressions is correct.

Lemma 2.4.10 (interp_exp_instant_complete, src/CoreExpr/CEInterpreter.v:173) Given a value environment R, a base clock b, an expression e and a value v such that R, b e ↓ v, then v = interp-now e R b e.

We lift the instantaneous interpreter to define an interpreter giving streams of values.

For example, we can define the following stream interpreter for expressions: Now we can use this interpreter as a choice function to prove the result expressed by listing 2.8 without relying on an external axiom. The same technique works to obtain similar results for the other operators and to complete the proof of lemma 2.4.9.

Interestingly, for the fby operator, the correspondence result which is the converse of the one presented in the previous section, relies on the following intermediate result where the indexed hold operator appears.

Lemma 2.4.11 (fby_impl_from, src/NLustre/NLIndexedToCoind.v:819) Given an indexed stream of values s and a constant v 0 , then, for all instants n,

to-coind-from n (I.fby v 0 s) ≡ C.fby (hold v 0 s n) (to-coind-from n s)
This result emphasizes the fact that the hold function is fundamental to both semantics: it explicitly encodes the register-like nature of the fby operator.

Chapter 3

From dataflow nodes to transition systems We introduce a novelty in the usual modular compilation scheme of Lustre. Before being translated to imperative code, the NLustre program is transformed into an intermediate transition system language, called Stc, for Synchronous Transition Code. This language is designed to allow better code optimization when the modular reset is used.

Motivation

Syntactic granularity

The next step in the modular compilation approach is normally to schedule the dataflow equations and then to generate imperative code directly from NLustre. To explain why we introduce a new intermediate language, we anticipate a little the next chapter. The idea of the compilation scheme is to associate each node of a program with a persistent state and methods that act on its state: (1) a reset method that is responsible for setting the 2) a step method that implements a step of the synchronous execution of the node, updating the state of the node for the next instant. Scheduling is necessary to sequentialize correctly the generated imperative calculations.

Consider the node driver in figure 3.1a, that uses the ins node from our running example. The ins node is instantiated twice and both instances are reset by the variable r. If we generate Obc imperative code (presented in the next chapter) directly from this NLustre node, which is already well scheduled (there are no data dependencies between the equations), we obtain the Obc step method in figure 3.1b. Two instance variables that designate sub-states are introduced: ins(x) and ins(y). Each node instantiation equation with reset is translated into a sequence of two instructions: a guarded call to the reset method, then a call to the step method of the corresponding instance. The problem is that this code is not optimal since the conditional calls to the reset methods cannot be fused together. Indeed we would want the instructions to be sequentialized as in figure 3.1c, allowing further fusion optimization (described in the next chapter) to produce the code shown in figure 3.1d.

Our solution to this problem is the introduction of an intermediate language where the modular resets appear independently from instantiations, while keeping a declarative presentation. The idea is to have a semantics that still does not depend on the order of equations while allowing a finer scheduling that takes resets into account.

Semantic granularity

Besides the performance issue raised by the compilation of the modular reset, we failed anyway to directly adapt the proofs between NLustre and Obc [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF]] to handle this construct. Intuitively, the reason is that the NLustre semantic models are not fine enough to allow establishing a correspondence to track the changes to the persistent state when a reset occurs. Indeed, while it is straightforward to describe in an imperative paradigm ("reset then step"), it is not trivial to model in a synchronous dataflow paradigm where reactions are atomic ("reset-step").

Thus the second fundamental goal of the new intermediate language is to describe what we call transient states, that is, states that a node may reach during a single time-step, but that are not observable from the outside.

From NLustre to Stc

The goal of the Stc language is to increase the granularity in both the syntax and semantics. In the syntax, it allows considering node instantiations and resets as separate constructs. In the semantics, it exposes transient states. The solution proposed here can be considered a proof-of-concept developed to solve our particular issues. But we would expect the model to generalize to support reasoning about modes and scheduling policies in the spirit of [START_REF] Caspi | Synchronous Objects with Scheduling Policies: Introducing Safe Shared Memory in Lustre[END_REF]].

The dataflow semantics of NLustre is based on composing stream functions, and consuming and producing streams. In contrast, Stc is based on composing state transitions, and consuming and producing values. Given input values at a given instant, a transition imposes constraints between two states and determines output values. Individual transitions are either composed in sequence, encoding a reset followed by a step, or in parallel, to encode simultaneous constraints. Composite transitions are built-up recursively from transitions on local state memories. Each composite transition is synchronous: seen from outside, it is a single atomic constraint between two states.

Before presenting the syntax, we show in listing 3.1b the result of translating the NLustre running example recalled in listing 3.1a. The translation function will be detailed later. Note the appearance of the distinction between regular variables and state variables with the keywords init and next, the appearance of sub-instance variables with the keyword sub, and the separation of the node instantiation with reset of ins in the node nav into two distinct transition constraints. To simplify the translation and the proof, we avoid generating fresh identifiers, and instead reuse variable names from NLustre equations to name instances. In particular, remark how the single NLustre condition variable r is combined with the (implicit) clock of the source equation. 

s ::= system x { system [sub (x x ) + , ] [init (x c,ck ) + , ] transition(d + , ) returns (d * , ) [var d + , ] { tc + ; } } p ::= s + program Figure 3.2:
The Stc abstract syntax As explained, a system only possesses two transitions: an explicit default transition, which is defined by a list of transition constraints, and an implicit reset transition. In this language, state variables and instances are made explicit in the syntax through the init and sub declarations, respectively. Transition constraints, as for dataflow equations in NLustre, are annotated with their activation clock. Standard variables are constrained by basic constraints and state variables by next constraints. A default transition x = ck f <i, k>(e) constrains the state of the instance i declared with system f . The integer parameter k equals 1 if the list of transition constraints also contains a reset transition on the same instance i and 0 otherwise. Its precise role will be explained later. A state variable is declared at system level with its initial value as a constant, and a sub-system instance is declared with its system name. Listing 3.2 shows the Coq implementation of systems. We do not show the implementation of transition constraints, as it is very similar to that of listing 2.6d on page 46 for NLustre equations. Again, we use a dependent record to model the syntactic elements of a system together with some syntactic invariants. As for NLustre, an Stc default transition must have at least one input (s_ingt0); the declarations of a system must be unique (s_nodup and s_nodup_init_subs); the sub-instance variables, state variables and non-input variables appearing in the transition constraints must be declared (s_subs_calls_of, s_inits_in_tcs, and s_vars_out_in_tcs); the reset transitions are 

Syntax of Stc

(x = ck e) [x = ck e] i-tr eq (x = ck c fby e) [next x = ck e] i-tr eq (ε = ck f (e)) ε i-tr eq (i • x = ck f (e)) [i • x = ck f <i, 0>(e)] i-tr eq i • x = ck (restart f every r ckr )(e)
[reset f <i> every (ck r on (r = true)) always associated with corresponding default transitions (s_reset_incl); the transition constraints are reset consistent (s_reset_consistency, see below); and the identifiers are valid (s_good).

; i • x = ck f <i, 1>(e)]
We introduce the notion of reset-consistency that expresses the expected meaning of the integer parameter k of default transitions. Definition 3.2.1 (reset_consistency, src/Stc/StcSyntax.v:69) A list of transition constraints tc is reset-consistent if for each default transition (-= -<i, k>(-)) in tc, a reset transition (reset -<i> every -) appears in tc if and only if k = 1.

The translation function

The translation of an NLustre program into Stc is relatively direct. In particular because expressions and control expressions are unchanged. Two major modifications are made: state variables and instances are distinguished in declarations (but not in expressions), and node instantiations with reset are split into distinct reset and default transitions.

Programs are translated node-by-node by a function named i-tr. A node n is translated into a system s with the same name by a function called i-tr node . A declaration is added to s.inits for each fby equation and to s.subs for each node instantiation, with or without reset, using the first defined variable as an instance identifier. For instance names, as mentioned, it avoids handling fresh identifiers. The n.in and n.out declarations are transferred, respectively, to s.in and s.out without modification, and n.vars is filtered into s.vars by removing variables defined by fby equations. The translation to the transition constraints s.tcs is defined by concat-map i-tr eq n.eqs. In the Coq development, the function i-tr node translates a dependent record representing an NLustre node into a dependent record representing an Stc system. As already explained, we use the Program library that allows us to omit the dependent predicates while writing the function, and to prove them interactively to complete the definition. Some of these obligations are almost trivial but others require intricate reasoning and intermediate results. Unfortunately, a Ω(x) = ck Ω c e :: ck

P, Ω x = ck e Ω(x) = ck Ω e :: ck P, Ω next x = ck e system(P, f ) . = s, P σ(x) var = e σ(y) = z Ω e :: σ ck [ck x ] Ω(z) = σ ck [ck y ] P, Ω z = ck f <i, k>(e)
where s.in = x τ x ,ck x s.out = y τ y ,ck y Ω ck P, Ω reset f <i> every ck classical pitfall with ITPs, these difficult-to-prove results are also not very interesting, so I do not go further into details. The translation function for equations i-tr eq is shown in figure 3.3. It maps an equation into a list of transition constraints. Basic equations are translated directly, as are fby equations but with the elision of the initial constant, which is shifted to the corresponding declaration of x in s.inits. Node instantiations without reset are translated into default transitions; the existence of at least one defined variable is guaranteed by a syntactic predicate, presented earlier (see listing 2.6e on page 46). Each node instantiation with reset is translated into two transitions on the same instance: a default transition and a reset transition.

Clock system of Stc

We present the clock system of Stc, directly adapted from the clock system of NLustre presented in section 2.3.4. Figure 3.4 presents the clocking rules for the transition constraints: expressions and control expressions keep the same rules as for NLustre. As they are very similar to the clocking rules for NLustre (see figure 2.6c on page 48), we do not go into details. Notice that the rule for the reset transition only requires that the clock condition is consistent. For other transition constraints, it can be shown that the consistency of the clock annotations is a property of the clock calculus. The clocking rules for systems and programs are essentially the same as for NLustre.

The type system of Stc is presented in appendix E.3.

Semantics of Stc

The semantics of Stc defines a notion of state. We model states by memory trees that are recursively defined by the following generic record type. There are three important things to understand about this model:

S S S[insr] I[insr] S [insr]

I[insr][xe] I [xe] S [insr][xe] nav default ins reset ins default ∼ ∼ ∼ euler default initial initial S S S[insr] I[insr] S [insr] I[insr][xe] I [xe] S [insr][xe] nav default ∼ ∼ ∼ ins default ∼ ∼ ∼ euler default
1. The scheme presented in the example diagrams in figure 3.5 can be repeated an arbitrary number of times within any default transition, following the structure of the sub-systems. Consequently, in this model, a single time-step can be subdivided an arbitrary number of times, modeling the simultaneity of an ordered sequence of events.

2. The transient states are only exposed in the internals of a system. From the outside, the activation of the default transition of a system is atomic.

3. The positions of states that a transition constrains are fixed: a reset transition always constrains a start state with a transient state, while a default transition always constrain a transient state with an end state.1 

Before presenting the formal rules, we stress a fundamental property that we want the semantics to satisfy. So far, the presented dataflow semantic models are constraints systems: the semantics are not operational in the sense that the environment is not built sequentially, transition constraint by transition constraint-or equation by equation for Lustre or NLustre. Rather, the semantics are relational and constrain the environment to satisfy the semantics of the transition constraints independently of their order. The fact that the semantics does not depend on the order of the equations is a strength of these models: it facilitates reasoning and makes the proof of semantics preservation by scheduling trivial. Another consequence is that these systems of constraints are convenient when working in Coq: the manipulated data structures are only loosely specified, which makes the reasoning about them very flexible. The drawback is that having only a loose specification on the domain of these structures makes it difficult to state correspondences between states. Eventually it is easier to state these correspondences as an observational one-to-one equivalence, defined below. Definition 3.2.3 (equal_memory, src/VelusMemory.v:105) We define the observational equivalence between two memory trees M and M by the following relation.

2 ∀x, M (x) = M (x) ∀i, M [i] ∼ ∼ ∼ M [i] M ∼ ∼ ∼ M Figure 3
.6 shows the semantic rules for Stc. As mentioned, unlike NLustre, Stc is not a language of streams but one of values. Since Stc and NLustre share the same expressions, we can directly reuse the instantaneous semantics defined in section 2.3.6.1. This choice permits a lightweight formalization of Stc in Coq: we reuse many existing definitions and lemmas.

Figure 3.6a presents the semantics of transition constraints. It is parameterized by a program P , an environment of values R, a base clock b, and three memory trees: a start state S, a transient state I and an end state S .

A basic constraint does not impose anything on the states, it only ensures that the value for x in the environment coincides with the value of the expression e.

A next constraint specifies the value that the state variable x will take in the end state: if the constraint is activated, the state variable is updated with the value of the expression e, otherwise the value in the start state is maintained. If the transition constraint is activated, the current value of the state variable in the environment is taken from the start state, otherwise, it is absent.

A default transition constrains the transient sub-state I[i] and an end sub-state S [i], using the dedicated predicate shown in figure 3.6b. The input expressions are evaluated to a list of values and the environment is constrained to hold the output values for the defined variables. The role of the parameter k becomes clearer: if it equals 0, meaning that no reset transition is present then we need a way to ensure that the transient sub-state is always (observationally) equal to the start sub-state. 3For a reset transition, we have to consider two cases. If the reset transition is activated then we constrain the transient sub-state to be initial, that is, it must contain the declared initial values of its state variables (recursively). The initial-state predicate will be presented shortly. If it is not activated, then we constrain the transient sub-state to be copied from the start sub-state. Our model can be compared to the semantics of Auger (2013, Figure 8.8, rules EqAppAbs and EqAppPres). This semantics for a version of NLustre, defined at a single instant, constrains two memories for tracking the pre-and post-states of fbys and node instantiations, and introduces for the reset an intermediate memory that must equal either an initial memory or the existing instance memory according to the reset stream.

The semantics of a system is shown in figure 3.6b. The system lookup in the program is different from NLustre: we write system(P, f ) . = (s, P ) to mean that the system s R, b c e :: ck ↓ R(x) P, R, b, S, I, S

x exists with name f in the program P and that P is the list of system declarations that come after it. This is to ensure the well-foundedness of recursive predicates. As for NLustre, the local environment R is constrained to hold the values for the inputs and outputs of the node, and the inputs are constrained to be clock-aligned with their declared clocks. Along with R, the local start state S, transient state I and end state S are constrained by the semantics of each transition constraint of the system. The order of these constraints is immaterial. The s-closed predicate restrains the domains of the memory trees S, I and S .

= ck e R, b e :: ck ↓ ‹v› R(x) = ‹S(x) › S (x) = v P, R, b, S, I, S next x = ck e R, b e :: ck ↓ ‹ › R(x) = ‹ › S (x) = S(x) P, R, b, S, I, S next x = ck e R, b e ↓ v R, b ck ↓ base-of-now v k = 0 → I[i] ∼ ∼ ∼ S[i] P, I[i] , S [i] f (v) R(x) P, R, b, S, I, S x = ck f <i, k>(e) R, b ck ↓ true initial-state P f I[i] P, R, b, S, I, S reset f <i> every ck R, b ck ↓ false I[i] ∼ ∼ ∼ S[i] P, R
Definition 3.2.4 (state_closed, src/Stc/StcSemantics.v:50)

system(P, f ) . = s, P ∀x v, S(x) = v → x -,-∈ s.inits ∀i Si, S[i] = Si → ∃g, i g ∈ s.subs ∧ s-closed P g S i s-closed P f S
The statement s-closed P f S expresses that each variable in the values field of the tree S appears as a state variable declaration of the system f , and that each sub-instance of the tree S corresponds to a sub-system declaration in f and is also recursively closed. This predicate facilitates stating and reasoning about memory equivalence. Without it, an equivalence between two memories would be relative to a domain-the state variables and instance variables that are constrained-which changes as one descends into the tree.

Including it in the intermediate model captures a property of the system that is exploited and transmitted by later proofs. Now we can explain the initial-state predicate.

Definition 3.2.5 (initial_state, src/Stc/StcSemantics.v:73) system(P, f ) . = s, P ∀x c,ck ∈ s.inits, S(x) = c ∀i g ∈ s.subs, initial-state P g S [i] initial-state P f S Whereas s-closed P f S expresses the inclusion of the domain of S in the domain of the declarations of f , initial-state P f S expresses the converse. A tree S is initial if and only if all state variables of f appear in S with their initial values and all sub-systems of f correspond to initial sub-trees in S.

Finally, figure 3.6c presents the coinductive rule implementing the endless iteration of a system. At a given instant n, the system f is activated between an entry state S and a local end state S , taking its input and output values from the streams xs and ys. The loop is repeated at the next instant n + 1 with S as the start state.

Correctness

Even before the introduction of the modular reset in Vélus, a direct proof between NLustre and Obc could not be done, because the statement of the desired result is too weak to be proved directly by induction. To solve this issue, an alternative memory semantics for NLustre was proposed in [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF]]. This model exposes the state of a node in the semantics, that is, its state variables (variables defined by a fby equation) and its sub-instances (the sub-parts of the state for instantiated child nodes). Hence we were able to do the proof in two steps:

1. A proof of correctness between the indexed semantics of NLustre and its memory semantics. This step is relatively easy: for a node it boils down to showing the existence of a memory satisfying the memory semantics, with the same input and output streams as the standard semantics.

2. A much more involved proof of correctness between the memory semantics and the generated imperative Obc code.

We adapt this approach for the proof between NLustre and Stc. We begin by presenting the memory semantics of NLustre and its extension to handle the modular reset.

3.3.1

The memory semantics for NLustre

The memory model and the modular reset

The main idea of the memory semantic is to expose the state of the nodes. In a sense, it reflects the syntactic exposition of state performed by the normalization pass. In this model, the semantics is additionally parameterized by a stream of memory trees. The semantic model constrains the leaves of successive memory trees to reflect the successive values to be memorized (without absence) when implementing the fbys. The sub-trees of the memories are recursively constrained by the node instantiations.

As explained, the introduction of this alternative semantics allowed [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF] to complete the correctness proof between NLustre and Obc in two steps. The challenge concerning is to adapt this model to take the modular reset into account.

A flawed approach: explicitly resetting the memory

To explain the ideas behind the memory model, let us consider the simple example below.4 node nat(i: int) returns (x: int) let x = 0 fby (x + 1); tel Lustre

The node nat simply outputs the sequence of successive integers. We show its behavior on the chronogram below, where b denotes the activation clock of the node and M represents its associated memory.

b T T T F T T T • • • M (x) 0 1 2 3 3 4 5 • • • x 0 1 2 3 4 5 • • • x + 1 1 2 3 4 5 6 • • • nat(i) 0 1 2 3 4 5 • • •
The value of x at each instant is obtained from the memory content M (x), according to the clock. Observe that the memory is causal: for each instant n > 0, the content of M depends only on values of x + 1 at instants strictly before n. This property is a consequence of the semantics of fby. Indeed, we can verify that for each instant, the value for M is obtained from preceding instants. In particular, at the fifth instant, it is the absence of x at the fourth instant which constrains the value to be maintained in the memory. This causality property is essential to the proof of correctness of imperative code generation: it allows to formulate a state correspondence just before the current reaction. That is, at the end of the previous reaction, when the update is performed in the imperative code, the memory is guaranteed to contain the values available for the current reaction.

Directly extending this model with the modular reset breaks the causality property, and the proof of correctness. The modular reset we want to formalize is strong, meaning that the state of the reset node is actually reinitialized at the very same instant the reset condition is true.5 Consequently, if we define the memory behavior of the reset naively as depicted below, the memory is not causal anymore: its content can be modified without delay by a reset.

b T T T F T T T

• • • r F F F T F F • • • M (x) 0 1 2 3 0 1 2 • • • x 0 1 2 0 1 2 • • • x + 1 1 2 3 1 2 3 • • • (restart nat every r)(i) 0 1 2 0 1 2 • • •
Here the reset fires just after the absence, to show the consequence on the crucial memory invariant that the memory is left unchanged when the node is not activated. This is not true anymore, because at the fifth instant after the absence of the fourth instant, the reset reinitializes the memory. Thus this model complies with the fact that the value of x coincides with the value in M (x), but not with the fact that the values in the memory are the values before the current reaction. In particular, the value of M (x) at the fifth instant is 0, which matches the expected value of x, but the value at the end of the previous reaction should be 3. Practically, this is a matter of constraint conflict: one constraint says what the next value should be, and another (later) one says that it should be reset.

A causal model with strong reset

The solution to the causality problem raised by the modular reset is to re-establish the delayed behavior of the memory, in order to keep the properties of the memory. With this approach, the effect of the reset on the memory is delayed by one instant, as shown below.

b

T T T F T T T • • • r F F F T F F • • • M (x) 0 1 2 3 3 1 2 • • • x 0 1 2 0 1 2 • • • x + 1 1 2 3 1 2 3 • • • (restart nat every r)(i) 0 1 2 0 1 2 • • •
Here we can check the fact that each value of M (x) actually depends on previous values of x + 1, and that the causality property holds. In particular, the essential property that the memory is left unchanged when the node is not activated is now ensured. There is still an inevitable discontinuity in the model: the value of x at the fifth instant does not match the value of M (x) anymore. This is not a problem though, given the way we define the formal semantics, as described in the next section.

Formal rules

The essence of the memory model is to expose the state of the nodes, thus only the semantics of equations differs from the standard indexed semantics presented in section 2.3.6.2. We only deal with indexed streams and not with coinductive streams from now on. Thus, since there is no longer any risk of ambiguity between the indexing notations for coinductive streams and that for indexed streams, we will use the former notation xs n in place of the latter xs n since it is more readable. In particular, we will keep the lambda notation for building streams, so we may mix notations as in λ n. xs n to designate λ n. (xs n). Figure 3.7a shows this new semantics of the equations. The judgments now have an additional parameter M which is a stream of memory trees.

A basic equation has exactly the same semantics as in the standard model (see figure 2.9a on page 58), since it does not involve the state.

The semantics for an equation x = c fby e is the core of the model. It is not given by a synchronous stream operator fby anymore but by a set of constraints on the memory stream M . First, the expression e is associated with a stream s. The second antecedent of the rule constrains the initial content of the memory stream to be equal to the semantics of the constant c. Then, the third antecedent constrains both the current slice of the stream of environments H and the next slice of the stream of memories M . At each instant n, there are two cases: (1) if s is absent, then x is absent and the memory stutters: its current value is held for the next instant (n + 1), or (2) if s is present with value v, then x is given the current value from the memory, and the memory content is updated to v for the next instant.

For a node instantiation, the only change is to expose the corresponding instance in the memory tree. A convenient way to do this is to name it after the first variable of the left-hand side of the equation. We know that this variable is uniquely defined from the syntactic requirements on nodes, and we know that it exists since in Vélus, nodes must have at least one output. Indeed, in our setup, nodes without output make no sense practically. 6 We write M * [i] as a shorthand for λ n. M n [i], for the stream of sub-memories associated with the instance named i.

H, bs c e :: ck H * (x) G, H, bs, M x = ck e H, bs e :: ck s M 0 (x) = c ∀n, H n (x) = ‹ › ∧ M n+1 (x) = M n (x) if s n = ‹ › H n (x) = ‹M n (x) › ∧ M n+1 (x) = v if s n = ‹v› G, H, bs, M x = ck c fby e H, bs e xs H, bs ck base-of xs G, M * [i] f (xs) H * (x) G, H, bs, M i • x = ck f (e) H, bs e xs H, bs ck base-of xs bools-of (H * (y)) . = rs ∀k, ∃M k , G, M k f mask k rs xs mask k rs (H * (x)) ∧ m-masked k rs (M * [i]) M k G, H, bs, M i • x = ck (restart f every y)(e)
The corresponding mutually inductive rule for the semantics of a node is shown in figure 3.7b. It is more or less a direct adaptation of the standard rule (see figure 2.9b on page 58). We keep the crucial property that the semantics for a node is independent from the order of its equations. There is an additional antecedent, though, requiring that for any identifier defined in the values field there is a corresponding fby equation, and that any identifier defined in the instances field is the first variable in some node instantiation with or without reset.

Definition 3.3.1 (memory_closed, src/NLustre/NLMemSemantics.v:134) m-closed M eq ∀n, (∀x, (∃v, M n (x) = v) → x = -fby -∈ eq) ∧ ∀i, (∃Mi, M n [i] = Mi) → i • -= -(-) ∈ eq
Compared to the definition 3.2.4 on page 84 of s-closed, there are two differences:

1. In Stc, state variables and instances are retrieved in the s-closed predicate via their explicit declarations within the enclosing system, but here we use the list of equations of the node.

2. Unlike the s-closed predicate, m-closed is not recursive. The fact that a whole memory M is closed is thus ensured here by the semantics itself, by recursively imposing m-closed at each level of M . This is an arbitrary choice.

The rule for the modular reset also uses the first defined variable as an instance name. As for the coinductive and indexed standard semantics models, we use a universal quantification together with the mask operator to model the idea of shifting to a fresh instance whenever a reset occurs. Here, each instance k must have its own memory M k , that satisfies a recursive invocation of the rule for nodes. These local memories are, in turn, combined to constrain the overall memory of the instance, that is, to constrain M * [i]. To do this, we adapt the masking idea used for input and output streams, to guarantee the causality property discussed in 3.3.1.1 and avoid conflicting constraints at instants of reset. We introduce the following predicate:

Definition 3.3.2 (memory_masked, src/NLustre/NLMemSemantics.v:107) m-masked k rs M N ∀n, count rs n = (if rs n then k + 1 else k) → M n = N n
This predicate differs from mask in a rather subtle way. First, it is a predicate, rather than a function. Indeed, while an instance k can satisfy the semantics rule for nodes by producing absent outputs before and after its interval of activation, the treatment of memories is more intricate. Even when not activated, constant memories must satisfy the stuttering property, that is, their contents must be held. This is ensured by the memory semantics for fbys. Second, the masking for streams lets the underlying stream values appear until just before the next reset. On the contrary, the masking for memories lets the underlying memory content appear until the very instant of reset. This is to ensure the causality property on the memory stream. This will become clearer by studying the trace of the previous nat example depicted in figure 3.8. The count r row gives the active instance over time, below it are presented both the M k (x) values and the result of the application of nat on a masked input7 for k = 0, 1, and 2. The dotted lines correspond to stream masking. The dashed lines show the intervals selected by the m-masked predicate. Note the stuttering of the instances' memory streams and the shift between the intervals selected by stream masking and by memory masking.

r F F F T F F F T F F • • • (restart nat every r)(i) 0 1 2 0 1 2 3 0 1 2 • • • M (x) 0 1 2 3 1 2 3 4 1 2 • • • count r 0 0 0 1 1 1 1 2 2 2 • • • nat(mask 0 r i) 0 1 2 • • • M 0 (x) 0 1 2 3 3 3 3 3 3 3 • • • nat(mask 1 r i) 0 1 2 3 • • • M 1 (x) 0 0 0 0 1 2 3 4 4 4 • • • nat(mask 2 r i) 0 1 2 • • • M 2 (x) 0 0 0 0 0 0 0 0 1 2 • • • . . .

Properties of the memory model

From the standard indexed semantics to the memory semantics The fundamental property that the memory model satisfies is that it is implied by the standard indexed model. The crucial step is to prove the result at the level of equations.

Lemma 3.3.1 (sem_msem_eq, src/NLustre/NLMemSemantics.v:639) Given a program G, a base clock stream bs, an environment stream H, an equation eq such that G, H, bs eq, and the induction hypothesis for nodes:

∀f xs ys, G f (xs) ys → ∃M, G, M f (xs) ys
Furthermore, assume the following induction hypothesis for a list of equations eqs and a stream of memories M :

1. the variables defined by the equations eqs and the equation eq are distinct, 2. m-closed M eqs, and 3. ∀eq ∈ eqs, G, H, bs, M eq . Then there exists a new memory stream M such that:

1. ∀eq ∈ eq • eqs, G, H, bs, M eq , and 2. m-closed M (eq • eqs).

The proof is by cases on the four possibilities for eq. In each case, one has to construct a witness for the new memory stream M . The reset case i

• x = ck (restart f every y)(e)
is arguably one of the most problematic proof obligations in Vélus, in terms of logical principles. As for the node instantiation case, we would like to exhibit a well-defined Mi in order to give the witness By combining these two hypotheses, we deduce the following:

M = λ n. M n [i → Mi n ].
∀k, ∃M k , G, M k f mask k rs xs mask k rs ys
We must construct the function Mi from the potentially infinite sequence of instance memory streams M k , whose existence of each is given by the combined hypothesis above. One way to solve the problem is to postulate a function F = λ k. M k allowing us to choose the kth instance's memory stream M k . To account for the masking predicate m-masked, a good choice for Mi would be the following:

Mi = λ n. (F (if rs n then count rs n -1 else count rs n)) n
That is, Mi is composed of the M k memory streams, chosen by F according to the cumulative number of reset ticks at an instant n. So clearly the proof boils down to constructing F . Unfortunately, our proof obligation here is another instance of the axiom of functional choice:

∀R, (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x)
Using this axiom is the only way I found to solve the problem. Still, the trick used in section 2.4.1 could be repeated here: indeed, it should be possible to define an interpreter at equations/nodes level for the memory model that would build both the environment stream and the memory stream. We could then use it to explicitly construct the choice function F . The definition of this interpreter is current work in the project and beyond the scope of this thesis.

To prove the result at node level, we proceed by induction on the program. This induction relies on the following ordering predicate.

Definition 3.3.3 (Ordered_nodes, src/NLustre/NLOrdered.v:50) NL-Ordered ε NL-Ordered G ∀n ∈ G, n.name = n .name ∀f, -= [restart] f [every -](-) ∈ n.eqs → f = n.name ∧ ∃n , node(G, f ) . = n NL-Ordered (n • G)
The statement NL-Ordered G expresses that (1) all nodes in G are uniquely defined, (2) recursion is forbidden, and (3) each node instantiation in an enclosing node corresponds to a later declaration in the program. This unusual order is more convenient in proofs simply implies that the parsed program has to be reversed before further compilation. • Given a base clock stream bs, an environment stream H, a memory stream M , and an equation eq such that G, H, bs, M eq, then

G, H, bs eq

The equivalence of the two models follows directly from theorem 3.3.2 and lemma 3.3.6. The following two lemmas transfer key properties from NLustre to Stc. First, the wellordering is preserved by the i-translation, this is a basis to prove more involved properties about translated programs. The well-ordering predicate of is extended straightforwardly for Stc. This predicate expresses exactly the same kind of properties than those of the wellordering predicate for NLustre of definition 3.3.3 on page 92. The only difference is that here again we directly use the declarations of the sub-systems of a considered system rather than a scan of the equations of the considered node.

Lemma 3.3.9 (Ordered_nodes_systems, src/NLustreToStc/Correctness.v:65) Given a well-ordered program G, the translated program i-tr G is well-ordered.

Second, the memory semantics of a node, by ensuring the m-closed predicate at each depth level in the structure of the program guarantees the s-closed property on the translated node. Then, we follow the classical proof scheme to show the correctness theorem. We start by proving an intermediate result for a single equation. The goal is to exhibit a transient state I that satisfies the Stc semantics of the translated equation and also those of already translated equations. This lemma and its proof are very similar in spirit to lemma 3.3.1 and its proof.

Lemma 3.3.11 (equation_correctness, src/NLustreToStc/Correctness.v:389) Given a well-ordered program G, a base clock stream bs, an environment stream H, a memory stream M , a clocking environment Ω such that respects-clock bs H Ω, a well-clocked equation eq such that G, H, bs, M eq, and the node induction hypothesis:

∀f xs ys M, G, M f (xs) ys → ∀n, i-tr G, M n , M n+1 f (xs n ) ys n
Let tcs be a list of transition constraints, subs a list of sub-systems declarations and I a memory stream such that:

1. the variables defined by the transition constraints tcs and the equation eq are distinct,

2. at each instant the values field of I is empty and its sub-instances are closed relative to the declarations in subs, and 3. ∀n, ∀tc ∈ tcs, i-tr G, H n , bs n , M n , I n , M n+1 tc.

Then there exists a new memory stream I such that:

1. ∀n, ∀tc ∈ (i-tr eq eq + tcs) , i-tr G, H n , bs n , M n , I n , M n+1 tc, and 2. at each instant the values field of I is empty and its sub-instances are closed relative to the declarations in subs.

We directly generalize the result to a list of equations.

Corollary 3.3.11.1 (equations_correctness, src/NLustreToStc/Correctness.v:579) Given a well-ordered program G, a base clock stream bs, an environment stream H, a memory stream M , a clocking environment Ω such that respects-clock bs H Ω, a list of well-clocked equations eqs such that the variables defined by the equations eqs are distinct and ∀eq ∈ eqs, G, H, bs, M eq, and the node induction hypothesis:

∀f xs ys M, G, M f (xs) ys → ∀n, i-tr G, M n , M n+1 f (xs n ) ys n
Then there exists a memory stream I such that:

1. ∀n, ∀tc ∈ (concat-map i-tr eq eq) , i-tr G, H n , bs n , M n , I n , M n+1 tc, and 2. at each instant the values field of I is empty and its sub-instances are closed relative to the declarations in subs.

We can finally state the main correctness result.

Theorem 3.3.12 (correctness, src/NLustreToStc/Correctness.v:628) Given a well-ordered and well-clocked program G, a name f , two streams of lists of values xs and ys, and a memory stream M such that G, M f (xs) ys, then

∀n, i-tr G, M n , M n+1 f (xs n ) ys n
This result states that, at each instant, the default transition of the translated node constrains the current memory of the node and its next memory, consuming and producing, respectively, the current values of the input and output streams. We use it to show semantics preservation of the repeated activation of the default transition of the translated node, starting from the initial state. After having introduced explicit manipulation of the state in the transformation to Stc, we turn to the problem of fixing the execution order of the operations, and assignments, necessary to calculate the behaviour described by the original program. The target language Obc represents the first step into the imperative paradigm. Obc is a version of the imperative object-oriented language used in the clock-directed modular compilation scheme [START_REF] Biernacki | Clock-Directed Modular Code Generation for Synchronous Data-Flow Languages[END_REF]]. In this approach, each node is modularly translated into a class with fields for state variables and sub-instances, and two methods: a step method that calculates a single cycle of the original node, and a reset method that is used whenever the node state has to be (re)initialized. Within a node, equations are scheduled to fix the evaluation order and then translated into a sequence of conditional statements whose guards reflect the activation clocks of the dataflow equations.

The translation from Stc to Obc is all but identical to the standard scheme, whose verification is described in [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF]]. Only minor adaptations are required to treat the distinction between reset and default transitions. To understand the need for scheduling, we begin by describing the Obc language. Then we explain how to schedule the Stc transition constraints in order to generate a correct imperative program. The translation function from Stc to Obc and its proof of correctness are described in the two subsequent sections. Last, we present the fusion optimization performed on generated Obc programs. Each method has a name, a list of input parameters, a list of output parameters and a list of local variables. The body of a method is a single statement. A statement is an assignment to a (local or output) variable of an expression; an assignment to a state variable; a conditional branching statement; a method call x := i c .f (e) specifying the list of variables x to receive the results, if any, a class name c, an instance variable i, a method name f and a list of expressions e for the inputs; the sequence of two statements or a no-operation statement. An expression is a constant, a standard variable, a state variable, a unary or binary operation or a validity assertion. A validity assertion is a syntactic decoration that is used in method call arguments to indicate that the enclosed expression is initialized. This will be explained later.

Obc: Object Code language

Syntax of Obc

Listing 4.1 shows the Coq implementation of Obc syntax for methods and classes. Both are implemented using dependent records, allowing the direct embedding of syntactic properties into the syntax itself. We ensure that input, local and output variables of methods are uniquely declared (m_nodupvars), as well as state variable and sub-instance (c_nodup) and methods (c_nodupm). As usual, identifiers must be valid (m_good and c_good).

The type system of Obc is described in appendix E.4.

Semantics of Obc

The semantics of Obc is defined, as for the other languages, as a relation, but this time the semantics is not by constraints. It is a classical big-step operational semantics-or natural semantics, as introduced by [START_REF] Kahn | Natural Semantics[END_REF]. The notion of variable validity is introduced in Obc to mediate between presence and absence in the dataflow model and the undefinedness of variables in the imperative model. [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF] propose a semantics for expressions that relates them directly to values. This approach is not sufficient to handle nodes inputs with different clocks. Indeed, the method calls generated for such nodes may involve expressions containing variables that have not been written to because the corresponding streams are absent at particular instants in the source dataflow program. [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF] to account for undefined values in the semantics and to indicate explicitly in the sub-expressions when a variable is valid, that is, guaranteed to be defined. The importance of this feature to the generation of Clight will be explained with more details later.

Before presenting the semantic rules, it is necessary to introduce the following notations.

1. We write v to indicate that the value v is defined, and to indicate the undefined value. In the implementation, we use the standard option type.

2. We keep the notations me(x → v) and me[x → me x ] to denote the update operation in the values and instances fields, respectively, of a memory tree me. Recall that we use the notation ve{x → v} to denote the update operation in a standard environment ve, that is, a map from identifiers to values.

3. We use the notation ve{x → v} to denote the update operation for when v is either defined or undefined:

ve{x → v } ve{x → v} ve{x → } ve 4.
Recall that, for the sake of simplicity, we have chosen not to emphasize the partiality of maps. For example, when we write ve(x) = v to state that v is bound to x in ve, we assume that x is in the domain of ve. That is, this functional notation itself has a sense only on the actual domain of definition. Now that we need to treat partiality more precisely, we will write ve((x)) = v, with double parentheses, in order to explicitly represent failure:

ve((x)) if x ∈ ve ve(x) otherwise
The semantics of expressions is shown in Figure 4.2a. We write me, ve e v to state that in the memory tree me and value environment ve, the expression e evaluates to a defined or undefined value v. An Obc constant always evaluates to a defined value, calculated through the abstracted semantics for constants. A variable is looked up in the environment: if the lookup succeeds, then the variable is evaluated to the corresponding defined value, otherwise it evaluates to the undefined value. Consequently the semantics of a variable is always defined, even if the value of the variable is not. A state variable should always be defined in the memory tree. Its value is simply looked up in the values field of me. Its semantics is not defined if the variable is not in the domain of me, unlike for standard variables. The semantics of unary and binary operations is defined recursively. The semantics of these operations on undefined values is not defined. Indeed, the undefined value is not propagated through expressions: only a variable can evaluate to an undefined value. In contrast to the rule for a "naked" variable, the semantics of a variable wrapped in a validity assertion is only defined when the variable has a value in the environment ve. p, the statement s updates the memory me and the environment ve to me and ve , respectively. A variable assignment updates the content of the environment with the value of the expression, provided that it is defined. Similarly, an assignment to a state variable updates the corresponding field of the memory. A conditional statement is evaluated to the result of the recursive evaluation of one of its branches, according to the value of the first expression. The sequence and no-operation statements semantics is self-explanatory. After the evaluation of its arguments to defined or undefined values v, a call to a method named f on an instance i of class name c is defined using a mutually inductive semantic predicate. This predicate, described in details later, evaluates the call itself, updating the sub-memory of the instance if it exists or the empty memory if it does not exist (yet) to a new memory me i resulting from the call, and producing a list of return values w. We define the following function, responsible for extracting a sub-memory. Definition 4.1.1 (instance_match, src/Obc/ObcSemantics.v:48)

sub i me {∅} if i ∈ me.

instances me[i] otherwise

The memory before the call is updated with the produced sub-memory me i , while the environment is updated with left-hand side variables associated to the returned values w.

The returned values, as well as the input values, may be undefined. Figure 4.2c presents the predicate responsible for evaluating a method call. First the program p is searched for a class cls together with the class declarations that come before p .1 Then we check that the method name f corresponds to an actual method m in the list of methods cls.methods of the class cls. the body of the method is evaluated starting from the provided memory and a fresh environment created by binding the formal parameters m.in of m to the list of defined or undefined values v. The evaluation of the body produces an updated sub-memory me and a new environment ve from which the output parameters m.out are looked up to retrieve the list of defined or undefined return values w.

Finally, figure 4.2d presents a coinductive predicate that co-iterates a method call over streams of input and output (defined or undefined) values.

Scheduling the transition constraints of Stc

While the order of transition constraints in an Stc system is unimportant from a semantic point-of-view, the translation presented in the next section works syntactically to produce Obc statements where the order of evaluation is significant, as we have seen. Thus, translation is preceded by a scheduling pass that orders the transition constraints to ensure the correctness of the generated Obc code and also the efficacy of the subsequent fusion optimization. The fact that our semantic models for Lustre, NLustre and Stc do not depend on the order of the dataflow equations / transition constraints is fundamental: it makes verifying the correctness of the scheduling trivial.

In the usual modular compilation scheme, Lustre equations are scheduled so that the variables defined by basic equations and node instantiations are written before being read, and the variables defined by fby equations are read before being written. Additionally, the scheduler tries to group together equations with similar clock annotations and control expressions to maximize the later fusion of adjacent conditional statements. Here, scheduling is adapted readily to Stc. Listing 4.2b shows the result of scheduling on the running example recalled in listing 4.2a.

We adapt the approach of [START_REF] Auger | A Formalization and Proof of a Modular Lustre Code Generator[END_REF] and [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF], which applies a heuristic implemented in OCaml to find a suitable ordering, a sorting function in Coq whose output is guaranteed to be a permutation of its input, and a verified translation validator to establish the required well-scheduling predicate or signal an error. The only non-trivial change for Stc is to ensure that reset transitions are executed before corresponding default transitions, reflecting the hard-coded scheduling policy in the semantics of Stc (see section 3.2).

The well-scheduling predicate

Before presenting the well-scheduling predicate, we first need to define some useful sets.2 Note that for all the sets we define, we overload the notation for lists in the natural way, that is, we write S(a) for the set a∈a S(a). We begin by defining the set of free variables of a transition constraint.3 

WellSch ins regs ε

WellSch ins regs tcs ∀x ∈ Free (tc) ,

x ∈ Def (tcs) if x ∈ regs x ∈ Var (tcs) ∪ ins otherwise ∀ (i, k) ∈ Sub (tc) k , i, k ∈ Sub (tcs) → k < k
WellSch ins regs (tc • tcs) definition of the predicate. The empty list is well scheduled. For tc • tcs, tcs must be well scheduled, and for every free variable x in tc, if x is a state variable, then it must not be defined in tcs-variables defined by nexts must be read before being written,-otherwise, x must be defined by a basic or default transition constraint, or as an input-other variables must be written before being read. Finally if tc is a transition on i then tcs cannot contain another transition on i with a greater or equal level. In our model with only reset and default transitions, this boils down to forbidding the presence of a default transition on i in tcs if tc is a reset transition on i.

The verified scheduling validator

The approach that we take for scheduling the transition constraints is that of translation validation. To prove a function in an ITP, there are two basic approaches:

1. Write the function within the ITP and prove that the function respects a specification.

2. Implement the function in another language and write a verified validator in the ITP, that returns true on the result of the function if and only if that result satisfies the specification.

These two approaches give the same confidence for the result, so the choice depends, among other criteria, on what is easier to implement and prove.

Usually in Vélus, we adopt the first technique: the translation functions of most passes are directly proved in Coq. This is because the compilation scheme is simple enough so that it is particularly suitable to be implemented in Gallina, the purely functional language of Coq, and because we do not know how the translation validation approach could be adapted to these passes. Now, the scheduling function is precisely a counterexample: the scheduling problem is NP-complete and we want to implement a heuristic which is easier to do in OCaml, whereas a validator for the well-scheduling predicate is rather straightforward to write in Coq and not difficult to prove. 

Implementation

Basically the validator is a direct implementation of the well-scheduling predicate as it is presented in figure 4.3. Listing 4.3 presents the Coq implementation: it fits in only about 35 lines of code. The function well_sch at line 29 folds the check_tc function backwards over the list of transition constraints. The check_tc function (line 14) takes a single transition constraint tc and checks that it is well-scheduled with regard to the accumulator acc. This accumulator is a 4-tuple composed of a boolean holding the result of the validation so far and the sets of defined variables, standard variables and pairs of instances variables and levels of already processed transition constraints. 4 If the boolean is true, we begin (line 18) to check that all the free variables of the transition constraints respect the scheduling rules, using the function check_var. This function (line 1) checks that an identifier is not in the set of defined variables if it is a state variable and that it is in the set of standard variables otherwise. Compared to the corresponding antecedent in figure 4.3, note that the inputs are not present: this is because they are directly included in the set of standard variables. Then (lines 19 and 20), we update the defined and standard variables sets with the corresponding variables of the current transition constraint, for the next iteration of the fold. The last step is to check that no reset transition can occur after a default transition. The sub_tc function (line 4) determines the instance and level of the transition, if it is a default or reset transition. In that case, we additionally check that no transition occurs in the sub-instances set with the same instance name and a greater level, using the function check_sub 5 (line 11) and update the sub-instances set.

Proof of correctness

The validator must be verified, that is, we have to prove that it respects the specification given by the well-scheduling predicate. We establish the following theorem, that states that the validator is a decision procedure for the well-scheduling predicate. composite list is then reverse-sorted6 with the Mergesort7 from the standard library, using comparison on the first positive projection of the pairs. Once the composite list is sorted, the now sorted list of transition constraints is obtained by stripping away the positive indexes. We show the following property.

Lemma 4.2.2 (schedule_tcs_permutation, src/Stc/StcSchedule.v:160)

The list of scheduled transition constraints is a permutation of the initial list of transition constraints.

We directly extend the scheduling function to systems and programs and show that scheduling preserves the semantics. We write sch P to designate the scheduled program obtained from P by scheduling the transition constraints of all its system declarations. 

The OCaml implementation

The algorithm used to sort the transition constraints of Stc is a direct adaptation of the topological sort variant used in [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF]]. The OCaml implementation is about 400 lines of code (LoC) (src/Stc/stclib.ml), that is, about ten times larger than the Coq checker, confirming our choice of the translation validation approach. The algorithm is a variant of the well-known topological sort algorithm [START_REF] Kahn | Topological Sorting of Large Networks[END_REF]] that uses a particular queue structure based on activation clock sub-dependencies.

A heuristic tries to group together transition constraints that are on the same clock, in order to maximize the fusion optimization that we describe later. Essentially this optimization tries to fuse adjacent conditionals statements on the same guard, in order to reduce the number of branching constructs in the generated code.

To cope with reset and default transitions scheduling, the only modification is in the construction of the dependency graph where we add a dependency edge from a default transition to a reset transition on the same instance. The core of the algorithm does not change.

Translating Stc to Obc

The translation function, named s-tr, generates an Obc class for each Stc system. The class has the same name as the system, a register field for each system state variable, an instance field for each sub-system declaration and two methods reset and step. The step method is obtained by translating the system transition constraints into guarded assignments, with NLustre/Stc control expressions translated into conditional statements and expressions into Obc expressions.

We will now explain in detail the formal definitions of the translation functions. To facilitate the understanding, we rely on the running example recalled in listing 4.5a and its translation in listing 4.5b.

In figure 4.4a, we can see how the bodies of the reset and step methods are generated. The body of the reset method is the composition of two statements: (1) a sequence of assignments to the declared state variables with their initial constant values, and (2) a sequence of calls to the reset methods of the declared sub-systems. Consider the generated reset method for the class ins, at line 29 in listing 4.5b: the state variables k and px are assigned with their initial values declared at lines 12 in the original Stc program in listing 4.5a, then the reset method of the sub-instance xe, corresponding to the Stc sub-system declared at line 13, is called.

The body of the step method is obtained by sequencing-in reverse order for consistency with the scheduling pass-the list of translated transition constraints s.tcs of a system s. The folded function translates a single transition constraint with s-tr-tc and composes the result before the accumulated result of previous translations. The two parameters regs and Ω are instantiated with, respectively, the names of the state variable declarations of s and the clocking environment obtained from the input, output and local variable declarations. They are used in the translation of expressions. case for each of the four forms of transition constraint. Each case applies the ctrl function to transform the clock annotation ck into a nesting of conditional statements that will control the activation of an assignment or method call. A basic transition constraint is translated into an assignment of the translation of its expression to a standard variable. For example, the basic transition constraint at line 17 is translated into the assignment at line 22. A next transition constraint is translated into an assignment of the translation of its expression to a state variable. A default transition is translated into a call to the step method of the corresponding instance whose class is taken from the name of the Stc system. In the example, the default transition at line 19 is translated into the step method call at line 24 wrapped into a conditional introduced by the ctrl function since the original transition constraint is activated only when alarm is false. A reset transition is translated into a call to the reset method. For example, the reset transition at line 31 is translated into the conditional reset method call at line 40. In the translation of the arguments of a method call, we do not directly use s-tr-exp but rather s-tr-arg generalized to lists. This function adds validity assertions around standard variables with the same clock as the transition constraint. We know that such variables are defined when the method is called. This detail has no impact on the correctness proof between Stc and Obc: it is in anticipation of the correctness proof between Obc and Clight. Note, though, that this function is responsible for the addition of the clocking environment parameter Ω. Control expressions are translated by the s-tr-cexp function shown in figure 4.4c, which takes a variable to be assigned as first parameter. This variable is taken from the lefthand side of a basic transition constraint, the only kind of transition constraint to allow control expressions on the right-hand side. The merge and if/then/else constructs are translated into conditional statements, propagating recursively the assignment variable through both branches until a simple expression is translated and assigned to the variable. For example, the basic transition constraint at line 35 is translated into the conditional s-tr-tc regs Ω (x = ck e) ctrl regs ck (s-tr-cexp regs (x, e)) s-tr-tc regs Ω (next x = ck e) ctrl regs ck (state(x) := s-tr-exp regs e) s-tr-tc regs Ω (x = ck f <i, k>(e)) ctrl regs ck x := i f .step( s-tr-arg regs Ω (ck, e) )

s-tr-tc regs Ω (reset f <i> every ck) ctrl regs ck i f .reset() at line 44. In particular, notice how the body of the step method of the nav class reveals the need for the fusion optimization further described in section 4.5: the translation generates a lot of successive conditionals that have the same guard, because of the heavy use of sampling and merging operations in the original Lustre source node (encoding a state machine). Figure 4.4d presents the translation of expressions. The only technicality is the explicit distinction between standard variables and state variables in Obc. The s-tr-var function makes the choice according to membership in the set of state variables regs. Note that when conditions are outright dropped since conditional activation is now addressed at the statement level.

ctrl regs • s s ctrl regs (ck on (x = true)) s ctrl regs ck if s-tr-var regs x bool { s } else { skip } ctrl regs (ck on (x = false)) s ctrl regs ck if s-tr-var regs x bool { skip } else { s } s-tr-arg regs Ω (ck, e) [x] τ if e = x τ ∧ x ∈ regs ∧ Ω(x) =

Translation correctness

In this section we describe the proof of translation correctness, that is, the proof of semantics preservation between an Stc system and its translation in Obc.

First, we present a fundamental property of the semantic model of Stc that is crucial to further proofs. Then we show the definition of correspondence predicates that relate an Stc state with an Obc state. The proof of correctness is split in two sub-sections: first we state the correctness result for a call to the generated reset method, then for the step method.

Fundamental property of Stc

The Obc conditional statements introduced by the ctrl function ensure that the expressions and assignment statements generated for a transition constraint are only executed when the associated Stc clock is true. In particular, for default transitions, this means that the corresponding instance field in the generated code is not changed when the clock is false. We must thus show that this is the behaviour specified by the Stc semantics. We do this by following the same proof scheme as for theorems 3.3.4 and 3.3.5 on page 93 for the NLustre memory semantics.

We 

State correspondence relations

As usual when stating a proof of correctness for a compilation function between two languages, a state correspondence relation must be defined. In the proof for Stc code generation, this relation was direct since the same objects are used to describe states in both languages. Here, although the objects are still essentially the same (environments and memory trees), the respective semantics of the two languages do not constrain them in the same way. Hence, the relation is more involved, in particular to handle transient states.

We must relate present and absent values in Stc to defined or undefined values in Obc. We use two distinct relations. First we define a predicate that equates a present value with a defined value but allows absent to be related to any value. That is, when a value is absent in Stc, there is no constraint on the corresponding value in Obc. 

R D ⇐= =⇒ regs (me, ve) ∀x ∈ D, R(x) ‹=› me((x)) if x ∈ regs ve((x)) otherwise
The predicate has a parameter regs which is a set of state variables to determine where the variable is to be constrained: in the values field of the memory tree me or in the environment ve. The D parameter specifies the variables that are constrained, we exploit it in inductive proofs to gradually expand the domain of the correspondence relation. 

x)) = S ((x)) if (next x = -) ∈ tcs S((x)) otherwise ∧ ∀i, me[[i]] ∼ ∼ ∼                S[[i]] if (reset -<i> every -) ∈ tcs ∧ (-= -<i, ->(-)) ∈ tcs I[[i]] if (reset -<i> every -) ∈ tcs ∧ (-= -<i, ->(-)) ∈ tcs S [[i]] if (-= -<i, ->(-)) ∈ tcs
The predicate is parameterized by a list of transition constraints tcs. The idea is to relate me to the Stc specification under the assumption that it results from executing the Obc code generated for the constraints in tcs. A variable x is defined in me if and only if it is defined with the same value in either S , if tcs contains the corresponding next constraint, or S otherwise. We use the double parentheses to explicitly take failure into account: it expresses the "if and only if" part. Similarly, an instance is defined in me if and only if it is defined with an equivalent value either in S, if tcs contains neither the corresponding reset or default transition, in I, if tcs contains the reset transition but not the default transition, or in S , if tcs contains the default transition. Here we extend the double parentheses notation to brackets to model failure in the same way. Consequently, we use the notation ∼ ∼ ∼ to lift the memory equivalence in the following way. 

∼ ∼ ∼ M ∼ ∼ ∼ M M ∼ ∼ ∼ M

The reset method call

A reset method comprises two phases. The first, generated by reset-inits, initializes state variables to their initial values. The second, generated by reset-subs, resets sub-instances by calling their generated reset methods. To reason about a call to a reset method and state properties about it, we focus on this composite nature.

We introduce the following specification function to describe the expected state of the memory after having initialized the state variables declarations given by an inits parameter.

Definition 4.4.6 (add_mems, src/StcToObc/Correctness.v:315) add-inits inits me fold-l λ me x t,c . me(x → c ) inits me

We can now state the correctness of the Obc statement generated by reset-inits.

Lemma 4.4.3 (reset_mems_spec, src/StcToObc/Correctness.v:385) Given a program p, a memory tree me, an environment ve and a list of state variables declarations inits, then p, me, ve reset-inits inits (add-inits inits me, ve)

Then we can extend the specification to the statement generated by the reset-body function which combines the results of reset-inits and reset-subs. Lemma 4.4.4 (translate_reset_comp, src/StcToObc/Correctness.v:397) Given a program p, a system s, memory trees me and me and environments ve and ve , then p, me, ve reset-body s (me , ve ) if and only if:

• p, me, ve reset-inits s.inits (add-inits s.inits me, ve)

• p, add-inits s.inits me, ve reset-subs s.subs (me , ve ).

We state the correctness result for a call to a reset method.

Theorem 4.4.5 (reset_spec, src/StcToObc/Correctness.v:700) Given a well-ordered program P containing a system s with name f , then for any memory tree me there exists a memory tree me such that:

1. s-tr P, me f.reset (ε)

ε me 2. initial-state P f me 3. if s-closed P f me then s-closed P f me

The step method call

The proof of correctness for the step method is more involved than for the reset method. We describe it over the next few pages. We start with the correctness for expressions, extend it for the special case of transition arguments, present the invariants and reasoning for transition constraints and then extend the results to systems.

Expressions

Since Obc code is only executed when the source corresponding clock is true, we restrict ourselves to the case where the base clock is indeed true. The idea is to assume that the correspondence relation holds for all the free variables in an expression and then to show that the same result is obtained by both Stc and Obc. For control expressions, the correctness result involves the semantics of statements since control expressions are translated into conditional statements. 

Default transitions arguments

The correctness lemma 4.4.6 about expressions is rather restricted: it only holds when the base clock is true and the expression has a present value in Stc. This suffices for basic, next and reset transition constraints. For the first two since their translations into Obc give guarded (state) assignments and translated (control) expressions are only ever evaluated when they would have a present value in the original Stc constraint, and for the last one since it contains no expression. But for default transitions, the arguments can be on different clocks, that is, a Stc system can be instantiated on values that may be absent when the transition clock is true. This is the very reason why the semantics of Obc takes undefined values into account. But, as we saw, the possibility of being undefined is limited to variables, that is, when the variable x is not defined, the expression x has a semantics, but 3 / x does not. Now consider the following Stc default transition: y = f<i,0>(ck, (3 when ck) / x) Assume that y and ck are on the base clock, and x is on clock ck. The translation to Obc involves two cases. First, if x is not a state variable then we obtain: y := (i:f).step(ck, 3 / x) When ck is false, the Stc transition constraint has a semantics since 3 / x evaluates to the absent value, but the Obc statement does not, since 3 / x has no meaning when x is not defined. Thus it is impossible to show translation correctness in this case. Second, if x is a state variable: y := (i:f).step(ck, 3 / state(x)) This time when ck is false, the Obc expression 3 / state(x) has a semantics in general since a state variable is always defined given that its previous value is available in the memory. But, what if this previous value is zero? Then the expression has no meaning either, and a division by zero that never occurs in the source semantics does occur in the generated code, making it not possible to show translation correctness in this case either.

Figure 4.5 presents the normalization condition,8 introduced in [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF]] that the arguments passed to a NLustre node instantiation must meet to avoid the problem described above. It relates an expression passed as an argument to the corresponding clock declaration in the instantiated node. Any expression on the base clock is accepted since the base clock is the fastest execution clock of the instantiated node. A constant is always defined, and so is a variable. Finally, a sampled expression is recursively checked: for each level of sampling present in the node declaration, there must be a corresponding level of sampling in the argument expression. This condition eliminates all the expressions that can lead to unmeaningful computations in the generated imperative code and suffices to prove the corresponding obligations in the correctness proof.

This syntactic condition is checked on the source NLustre program and readily propagated trough the translation to Stc and the scheduling of Stc transition constraints. This result is a generalization of an intermediate result about a single expression verifying the normalization condition, rather than a list. The first hypothesis, as for the previous results on expressions and control expressions, guarantees the correspondence for variables and state variables between R and the pair (me, ve). The second one expresses that all variables in regs are defined in me. The third one ensures that ck is true, that is, the transition is activated. Finally, the last hypothesis is the main one: all the Stc argument expressions have a semantics that is not constrained to present values. This lemma shows the importance of the ‹=› relation: while we might expect the witness list to be v , this would contradict the semantics in the case of state variables. Consider, for example, the following Stc default transition, which respects the normalization condition on the arguments of default transitions: y = f<i,0>(ck, x) Assume as before that y and ck are on the base clock and that x is on clock ck. Then, if x is a state variable, the following Obc code is generated: y := (i:f).step(ck, state(x)) If ck is false, then the Stc variable x is evaluated to the absent value ‹ ›, but the state variable state(x) is not evaluated to the undefined value = ‹ › , but rather to the previous value available in the memory.

Transition constraints

Transition constraints are translated into conditional statements guarded by the source clock by the ctrl function (see figure 4.4b on page 116). We show the following two key results that relate the semantics of clocks in Stc to the execution of such statements. The first one expresses the fact that the conditional statement is not executed when the clock is false. The proof of the correctness result for transition constraints is rather complex. We have to show both the preservation of the semantics and the preservation of the correspondence predicates. The sequential nature of Obc makes it impossible to reason about a single transition constraint and then to generalize to a list of transition constraints. Indeed, the memory correspondence given by definition 4.4.4 on page 119 is relative to a list of transition constraints, since it reflects the successive execution of the sequence of generated statements. Hence we start by considering the head element tc in a list of transition constraints tcs. We want to show that, starting from an Obc program state (me, ve) in correspondence with an Stc environment R and states S, I and S , relative to the list tcs, we can expose a new pair (me , ve ) that is the result of executing the translated tc statement, and that the new pair remains in correspondence with R, S, I, and S . While the environment correspondence for standard variables remains relatively easy to prove, the memory correspondence requires more work. We start by stating intermediate results tailored to each kind of transition constraint, in case of activation and non-activation.

Memory correspondence results

For the following lemmas (4.4.13 to 4.4.19) we fix an Stc state (S, I, S ) and an Obc memory tree me, and we make the hypothesis that the correspondence holds between them, relative to a given list of transition constraints tcs. The first result states that the memory correspondence is preserved by the addition of a basic transition constraint, activated or not, as it does not modify the memory. For a next transition constraint, there are two cases. Either the transition constraint is activated, that is, S holds the next value for the defined state variable, and we show the correspondence with an updated memory tree; or it is not activated, that is, the value in S is repeated in S and the memory tree is not changed. In the case of default and reset transitions, additional hypotheses on the presence of transitions on the same instance in the list of transition constraints are needed in some cases to properly apply hypothesis 4.4.1. These hypotheses are later discharged by reasoning from the well-scheduling predicate and some syntactic invariants.

For a default transition on an instance i, if the transition is activated, then the correspondence must hold for the memory tree updated with a sub-tree that is observationally equivalent to the corresponding sub-state in S . If the transition is not taken, that is, the sub-state in S is observationally equivalent to the sub-state in I, then the correspondence holds for an unchanged memory tree. A bit more work and some extra hypotheses are needed in this case to show that me [[i]] ∼ ∼ ∼ S [[i]], since the presence of a reset transition on i in the list of transition constraints tcs has an impact on the conclusion obtained from hypothesis 4.4.1. Finally, for a reset transition on an instance i, the reasoning is similar to that of default transitions. If the transition is taken, then the correspondence must hold for the memory tree updated with a sub-tree that is observationally equivalent to the corresponding sub-state in the transient state I. If the transition is not taken, that is, the sub-state in I is observationally equivalent to the sub-state in S, then the correspondence holds for an unchanged memory tree. 

Correctness results for transition constraints

The overall correctness result uses the already presented proof scheme: an induction on the program and the application of intermediate results on transition constraints that themselves use the induction hypothesis for the case of default transitions. Thus, before presenting these intermediate results, we fix the correctness induction hypothesisthat has exactly the same shape as the final correctness result-that holds for a given well-ordered Stc program P . This correctness hypothesis states that if the Stc system named f in P has a semantics relating the states S and S as well as the lists of present or absent values xs and ys, then we can expose a memory tree that is observationally equivalent to the state S , and the result of executing the corresponding translated step method on a memory tree that is observationally equivalent to the state S, with inputs related to xs by the ‹=› relation and producing defined or undefined values that are directly mapped from ys.

Lemma 4.4.20 (trconstr_cons_correct, src/StcToObc/Correctness.v:903) Given a well-clocked transition constraint tc that respects the normalization condition, Stc states S, I and S , an Stc environment R, a set of state variables regs, a clocking environment Ω, a memory tree me, an environment ve, a list of additional transition constraints tcs and a list of input names ins such that: ≡ me .

1. P, R
We deduce the correctness result for a list of transition constraints directly by instantiating lemma 4.4.21 with tcs 1 = ε. 

Systems

We extend the semantics preservation result to systems by induction on the program P , fixed from the induction hypothesis 4.4.2 on page 125 through corollary 4.4.21.1. In order to satisfy the hypothesis in the inductive case, we need a way to pass from the memory correspondence tailored for lists of transition constraints to the plain observational equivalence between memory trees. We can show that under some structural hypotheses, we can deduce the latter from the former. 

Obc fusion optimization

The translation of Stc to Obc generates code with needlessly many conditional statements. The fusion optimization is a pass that is used to fuse adjacent conditionals that have the same guard expression. It is effective because the scheduling pass is designed to group transition constraints with identical or related clocks and guards from which the conditionals are generated. Incorporating this optimization directly into the translation pass would complicate both compilation and proof, so it is a separate source-to-source transformation, as in [START_REF] Biernacki | Clock-Directed Modular Code Generation for Synchronous Data-Flow Languages[END_REF]].

For example, the result of fusion on the running example, recalled in listing 4.6a, is shown in listing 4.6b. Note that the two successive conditionals in the step method of the ins class have been fused into one, and similarly for the four successive conditionals in the step method of the nav class. Remark that we do not optimize useless copies in Vélus. For instance, we could eliminate the cm variable from the step method of nav. This optimization is common in Lustre compilers and will be considered in future work. In this particular case, though, the register allocation from CompCert does further optimize this code.

The optimization function

The optimization can be described in terms of two functions. Definition 4.5.1 (fuse, src/Obc/Fusion.v:84)

fuse-stmt (s 1 ; s 2 ) zip s 1 s 2 fuse-stmt s s zip (if e { t 1 } else { f 1 }) (if e { t 2 } else { f 2 }) if e { zip t 1 t 2 } else { zip f 1 f 2 } zip (s 1 ; s 2 ) t s 1 ; zip s 2 t zip s (t 1 ; t 2 ) zip (zip s t 1 ) t 2 zip skip t t zip s skip s zip s t s ; t
The fuse-stmt function operates on a composition of two statements by calling zip to fuse them. The zip function implements the actual optimization, by trying to fuse its two arguments. When it encounters two conditionals on the same guard expression, it fuses them into a single conditional and recursively optimizes in the branches. For sequential compositions, it simply acts recursively. There are two further remarks to make.

1. The second rule of zip seems to lack a recursive call, one would expect

zip (s 1 ; s 2 ) t zip s 1 (zip s 2 t) Fusible-stmt (x := e)
Fusible-stmt (state(x) := e) Fusible-stmt (x := i c .f (e))

Fusible-stmt skip

Fusible-stmt s 1 Fusible-stmt s 2 Fusible-stmt (s 1 ; s 2 ) Fusible-stmt s 1 Fusible-stmt s 2 ∀x ∈ Free (e) , ¬ MayWrite s 1 x ∧ ¬ MayWrite s 2 x Fusible-stmt (if e { s 1 } else { s 2 }) Figure 4.6:
The "fusible" predicate on Obc statements (Fusible, src/Obc/Fusion.v:250) 

MayWrite (x := e) x MayWrite (state(x) := e) x x ∈ x MayWrite (x := i c .f (e)) x MayWrite s 1 x ∨ MayWrite s 2 x MayWrite (s 1 ; s 2 ) x MayWrite s 1 x ∨ MayWrite s 2 x MayWrite (if e { s 1 } else { s 2 }) x

Eligibility of generated Obc code for fusion optimization

To show that the fusion optimization preserves the semantics of the generated code, it suffices to prove that this code is eligible for fusion. During the generation of Obc code, statements are produced from both control expressions and transition constraints. The translation of control expressions is parameterized by the variable to be assigned: we show that the generated statement is fusible if this variable is not free in the expression. Lemma 4.5.4 (Fusible_translate_cexp, src/StcToObc/Stc2ObcInvariants.v:69) Given a control expression e, a variable x ∈ Free (e) and a set of state variables regs, then Fusible-stmt (s-tr-cexp regs (x, e)).

For transition constraints, guards are recursively added by the ctrl function, following the structure of the clock annotation of the transition constraint. We show that this function preserves the Fusible-stmt predicate provided that no free variable of the clock is written in the enclosed statement.

Lemma 4.5.5 (Fusible_Control, src/StcToObc/Stc2ObcInvariants.v:92) Given a statement s, a clock ck and a set of state variables regs such that Fusible-stmt s and for all variables x ∈ Free (ck), ¬ MayWrite s x, then Fusible-stmt (ctrl regs ck s).

We state that the translation of a list of transition constraints produces a fusible statement, provided that it is well-scheduled and well-clocked. We do not present this intermediate result, but note that it is proved by induction on the list of transition constraints, using lemmas 4.5.4 and 4.5.5. Eventually we prove that the translation of an Stc program generates an Obc program that is eligible for the fusion optimization. Even though Obc is much more operational than the dataflow semantics of Lustre, it is still quite far from the level of detail needed to execute on a real machine. In particular, Obc does not treat data representation, stacking needed for function calls, or generation of assembly instructions for a given architecture. All these issues are not specific to the compilation of Lustre, and they are already addressed by CompCert, that we interface with: (1) we generate Clight abstract code and let the algorithms of CompCert do the remaining of the compilation to assembly code, and (2) we chain the proofs of Vélus and CompCert together to get an end-to-end correctness proof.

In this chapter we present the generation of Clight code from Obc code. We begin by describing the argument initialization transformation, which is necessary prior to generating Clight code. Then, we present the Clight language and the generation function. In order to present the proof of correctness, we describe a subset of the formal semantic model of Clight. We present in the fourth section, how we use separation logic (SL) in the proof of correctness, described in the last section. The main challenge is to establish a correspondence between the tree-shaped memory model of Obc and the intricate machine-level memory model of CompCert. 

Obc argument initialization

We have seen the introduction of validity assertions in Obc (section 4.1.2). These assertions are used to denote that the value of a variable is guaranteed to be defined at a given point in a program. In Obc, a method may be invoked even if some arguments (variables only) are undefined, but method calls will be translated into Clight function calls in which, as we will see, all arguments must be defined.

The Obc code generated from Stc already contains validity assertions for argument variables known to be defined at call time (see the s-tr-arg function, section 4.3 on page 112). Now the idea is to wrap all other variable arguments with validity assertions, which in turn have to be justified by initializing those variables before the call. [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF] present the corresponding compilation pass and its proof of correctness in detail, so I will only present the key aspects here. A recursive function is introduced to add validity assertions and initialization assignments. This function implements a compromise between adding useless initialization assignments and the minimal number of assignments to perform.

We prove that the code produced by the argument initialization function satisfies the predicate NoNakedVars shown in figure 5.1. This predicate simply expresses that no variable appears as an argument of a method call. It is generalized to methods, classes and programs: we write init-args p to designate the program obtained from p by applying the argument initialization function to the bodies of the methods of all of its classes. The NoNakedVars predicate is used in the correctness proof of the Clight generation function to show that the arguments of method calls are always defined.

We must also show that the argument initialization function preserves the semantics. Unlike earlier source-to-source transformations, namely, the scheduling of Stc transition constraints and fusion optimization, the values of variables in the transformed program may differ from those in the original one. That is, at a given point in the program, the environment can be more defined than the environment of the source program. Thus, [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF] introduce a refinement relation between environments.

Obc argument initialization

NoOverwrites (x := e) NoOverwrites (state(x) := e) NoOverwrites skip

NoOverwrites (x := i c .f (e))
NoOverwrites 

s 1 NoOverwrites s 2 NoOverwrites (if e { s 1 } else { s 2 }) NoOverwrites s 1 NoOverwrites s 2 ∀x, MayWrite s 1 x → ¬ MayWrite s 2 x ∀x, MayWrite s 2 x → ¬ MayWrite s 1 x NoOverwrites (s 1 ; s 2 )
ve 2 ve 1 ∀x v, ve 1 (x) = v → ve 2 (x) = v
We say that ve 2 refines ve 1 and write ve 2 ve 1 if any variable defined in ve 1 is also defined in ve 2 with the same value, leaving the possibility for variables not defined in ve 1 to be defined in ve 2 with any values. The notation differs slightly from that used in [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF]], , because this way operands in ve 2 ve 1 are in the same order than in the sentence "ve 2 refines ve 1 ".

This relation is used to define a notion of semantic refinement for statements. Intuitively we want to express that the statement t resulting from the argument initialization transformation applied to a statement s produces an environment that refines the environment produced by s: additional variable assignments performed by t do not matter as long as all variables defined by s are defined by t with the same values.

Definition 5.1.2 (stmt_refines, src/Obc/Equiv.v:224)

s 2 p 1 ,p 2 P s 1 ∀me me ve 1 ve 2 ve 1 , P ve 1 ve 2 → ve 2 ve 1 → p 1 , me, ve 1 s 1 me , ve 1 → ∃ve 2 ve 1 , p 2 , me, ve 2 s 2 me , ve 2
This definition uses a precondition P , needed for the proof of semantics preservation. This semantic refinement relation is extended to methods, classes and programs, and [START_REF] Bourke | A Synchronous-Based Code Generator for Explicit Hybrid Systems Languages[END_REF] eventually show that the arguments initialization function init-args preserves the semantics relative to program refinement, under a well-chosen precondition and three additional hypotheses: (1) well-typing, (2) the methods do not assign to their inputs, and (3) the program is in a kind of static single assignment form (SSA). The third hypothesis is expressed using a NoOverwrites predicate, shown in figure 5.2. This predicate ensures that, in a sequential composition s 1 ; s 2 , if a variable may be written in s 1 , it is never written in s 2 , and likewise for s 2 and s 1 .

It can be shown that program refinement implies method call semantics preservation in the strict sense, expressing that a method call with refined inputs (more defined) in a refined program produces refined outputs. We specialize this result to the case of generated Obc code where both the inputs and outputs of a method call are defined.

Theorem 5.1.1 (stmt_call_eval_add_defaults, src/Obc/ObcAddDefaults.v:1994) Given a well-typed SSA program p whose method inputs are never assigned, a class name c, a method name f , memory trees me and me and lists of defined values written v and w such that p, me c.f ( v )

w me , then init-args p, me c.f ( v ) w me .
The result extends to the looping execution of a method. 

From Obc to Clight

Clight overview

Clight [START_REF] Blazy | Mechanized Semantics for the Clight Subset of the C Language[END_REF]] is "a simplified version of CompCert C where all expressions are pure and assignments and function calls are statements, not expressions" [Leroy (2019)]. We use it as our target language for the following reasons:

1. Its memory model and its semantics are precise, low-level and close enough to the machine to reason about executable code. (1988)], to which compilation from Lustre is well-known.

It is very close to C [Kernighan and Ritchie

3. It is part of the frontend of CompCert: as such, its semantics is fully specified in Coq, and we can rely on both the compilation algorithms of CompCert and their proof of correctness for the remaining of the compilation chain.

The abstract syntax of the subset of Clight used for code generation is presented in figure 5.3. The class of expressions1 comprises four forms of constants, local variables, temporary variables, unary and binary operations, pointer dereference, adress-of operation, and field access. Temporary variables are a special class of local variables which do not reside in memory-i.e., registers. They are declared in the concrete syntax with the

e ::= expression | i | l | f | d (constants (int, long, float, double)) | x (local variable) | x (temporary variable) | C a (unary operation) | a ⊕ a (binary operation) | *a (pointer dereference) | &a (address-of operator) | a.x
(field access)

a ::= e τ (typed expression) | τ (a)
(type cast) register keyword, we distinguish them by adding an overbar. The class of annotated expressions comprises expressions annotated with their types and explicit type casts. In the following, we will write ae->x as an abbreviation for (*ae).x. For statements2 , Clight distinguishes two kinds of assignments with different semantics: (1) assignment of an r-value to an l-value, (2) assignment of an r-value to a temporary variable. In addition, the return value of a function call can only be assigned to a single temporary variable. Clight does not provide for-loops or while-loops, but only an infinite loop, loop {s1} {s2}, which executes s1 then s2 forever. In the full language, there is a break statement which can be used to interrupt infinite loops, but we do not need it, since the only loop we generate is the main one which is never interrupted. Finally, we use two compiler builtin operations: a load from a volatile variable and a store to a volatile variable. Both take a parameter κ, a memory chunk, that is, an annotation "indicating the type, size and signedness of the chunk of memory being accessed" [Leroy (2019)]. Both also have additional type annotations that indicate statically how the parameters must be cast before the call.

s ::= statement | a = a (assignment) | x = a (assignment to a temporary variable) | if (a) {s} else {s} (conditional) | [x =] a(a * , ) (function call) | s ; s (sequence) | skip (do nothing) | return [a] ( return 
A Clight program is a list of declarations: global variables, possibly with volatile attribute (and initialization data, that we omit here), structures and functions. A program must have an entry point, usually named main. A function declaration consists of a return type, a name, formal parameters, local-temporary and classic-variables, and a body as a single statement.

Generation function

We present the translation function before presenting the semantics of the target language. This is for two reasons: first, the C language is sufficiently well-known for the syntax of Clight to be understood intuitively, and second, our presentation of the intricate and complex mechanized semantics of Clight will be restricted to the subset that we use.

Obc and Clight are both sequential imperative languages, so compilation can translate the former's control structures fairly directly. Some care is needed, however, to implement encapsulation and multiple return values of Obc. The state of a Lustre node instance is represented in Clight as a structure generated from the instantiated Obc class. The structure has the same name as the class, and fields for register and instance fields of the class. Obc methods are translated, in general, into void functions with two additional parameters:

1. A self pointer toward the structure representing the object on which the method is called. This is standard way of implementing objects in C.

2. An out pointer toward a special structure used as an output parameter to store the return values of the call. The structure has one field for each output parameter of the translated method.

As we will see in the next section, method input declarations are encoded as declarations of temporaries. The body of a method is translated into a Clight statement preceded by a list of temporary variables declarations corresponding to the local variables of the method, and followed by a return statement. As a specialization to generate more idiomatic code, the out pointer and the output structure type declaration are omitted if the method returns a single value or no value at all. In the first case, the corresponding function is not void but rather returns a value using a single additional temporary variable declaration. Recall the Obc running example in listing 5.1a, we present its translation into Clight code in three steps. First, listing 5.1b shows the declarations of the various structures: euler, ins and nav are the structure types that represent the state of the corresponding Obc classes, while fun$ins$step and fun$nav$step are the structure types to hold the return values of the functions generated from the step methods of the classes ins and nav-such a structure is not needed for euler since its step method produces only one output. Listing 5.1c shows the translation of the methods of the classes. Note the temporary declaration at line 2 corresponding to the unique output of the generated function for the step method of the euler class. In contrast, at line 16, see how the alarm output of the step method of the ins class is assigned through the use of the out pointer. On lines 45 and 46, we can observe the special sequence of assignments that occurs after a call to a function with multiple return values.

A simplified abstract version of the generation algorithm-in particular, we omit some type annotation details-is presented in figure 5.4. The translation of expressions by the gen-exp function in figure 5.4a is rather direct. A variable is translated using gen-var. If it is a local variable or the only output variable, then it is translated into a temporary variable, otherwise, it is accessed through the output structure out. A state variable is translated into a field access on the self pointer representing the state. A type cast operation, considered as an unary operation in Vélus, is distinguished from regular Clight unary operations and translated into a Clight type cast towards the type annotation τ of the whole expression: well-typing will ensure that τ = τ anyway. Translation of other unary and binary operations is direct. Finally, validity assertions are dropped.

The translation of statements by gen-stmt in figure 5.4b is also rather direct as the control flow is preserved. As for expressions, the only complication comes from the handling of multiple return values. First, assign works like gen-var, but for generating assignments. Second, it complicates method call translation, by funcall. There are three cases, that we illustrate using the running example in listings 5.1a and 5.1c.

1. If the method has no output, the call is translated into a function call without return value. Nonetheless, this cannot happen in Obc code that we generate.

2. If the method has a unique output, we use an intermediate fresh temporary variable to store the result, and the call is followed by an assignment to the appropriate local variable or output field. For example, the call at line 25 Listing 5.2: Generated entry point of the example 3. If the method has several outputs, then we use an additional locally declared output structure passed to the callee as a return pointer parameter, and the call is followed by a sequence of assignments from the fields of the structure, named according to the corresponding output declarations, to the proper locations. The implicit lifting of assign works as a fold left. For example, the call at line 49 insr, alr := ins(insr).step([gps], [xv]);

assign(x, a) x = a if outs ≤ 1 ∨ x ∈ outs out->x = a otherwise funcall(ε, c, i, f, a) f c (&self->i, a) funcall([x] , c, i, f, a) x = f c (&self->i,
is translated into the sequence at lines 43 to 45 fun$ins$step(&self->insr, &out$insr$step, gps, xv); insr = out$insr$step.x; alr = out$insr$step.alarm;

After translating the Obc classes one-by-one into a lists of structure and function definitions, the generation pass, named gen in the following, produces a global entry point. The resulting "main" function implements the general reactive scheme for a specific Lustre node, whose name, designated main-node in the following, is a parameter of the generation function. This name is nav in listing 5.2 which shows the generation of the global volatile input and output variables and of the entry point from the original Obc example program. The body of the entry point is shown in figure 5.5, where s main and r main designate the step and reset methods, respectively, of the main class that corresponds to the main node. First, the function corresponding to r main , named reset main-node , is called on a globally declared self structure. Then, the infinite main loop alternates (1) a sequence of volatile loads from globally declared input variables into local temporaries, (2) a call to the main step function, named step main-node , with these temporaries as inputs, and (3) a sequence of volatile stores to globally declared output variables. Note that we omit the second statement of the loop construct since we do not use it-it is actually skip. The call to the main step function is also subject to the technicalities around the handling of return values.

Clight semantics

CompCert provides two semantic variants for Clight based on whether function parameters are considered as local variables3 (Clight 1 ) or as temporary variables4 (Clight 2 ). Since we never need to take the address of a function parameter, we use the Clight 2 variant, as it has one less level of indirection, which facilitates reasoning about programs.

CompCert also provides two styles of semantics: a small-step continuation-based operational semantics5 and a big-step operational semantics6 . The latter is described in [START_REF] Blazy | Mechanized Semantics for the Clight Subset of the C Language[END_REF]] and proved sound with respect to the former. In the correctness proofs for the reset and step functions, we choose to work with the big-step semantics because (1) the generated code for these functions always terminates and never diverges, and (2) it is easier to reason between two big-step semantics. In the original version of CompCert, the big-step semantics, unlike the small-step one, is only defined for the Clight 1 variant, but we adapted it to handle the Clight 2 variant as well.

In the correctness proof of the entry point and thus of the overall program, we must, however, reason with the small-step semantics because the big-step one is not fine-grained enough to describe the observable behavior of the generated program. A generated Clight program runs forever, but the big-step semantics for programs cannot distinguish between divergence ("at some point, the program runs forever without doing any I/O" [Leroy (2019)]) and reactive divergence ("the program performs infinitely many I/O operations separated by finite amounts of internal computations").

Regardless of the variant and style, a single model is used to describe the state of a program's memory. The memory model is described in [START_REF] Leroy | Formal Verification of a C-like Memory Model and Its Uses for Verifying Program Transformations[END_REF]]. A memory state M is a collection of contiguous blocks, each identified by an integer b. Within a block, byte offsets δ within a fixed range are mapped to values. Hence, a memory M is a (partial) mapping from locations (b, δ) to values. Table 5.1 lists the basic memory operations that CompCert defines. Note that the alloc function never fails as CompCert models an infinite memory.

Big-step semantic rules for code generated from Obc classes

The big-step semantic rules for Clight are parameterized by: Table 5.1: Operations over memory states [START_REF] Blazy | Mechanized Semantics for the Clight Subset of the C Language[END_REF]; Leroy (2019)] alloc(M, i, j) = (M , b) Allocates a fresh block of bounds [i, j) and returns the updated memory and the identifier of the allocated block. free (M, b, i, j) . = M Deallocates the range of offsets [i, j) in the block b and returns, if the addresses are freeable, the updated memory. load(κ, M, l) . = v Reads a quantity of consecutive bytes (as determined by the memory chunk κ) starting from the location l and returns, if the addresses are readable, the value read. store (κ, M, l, v) . = M Writes the value v as a quantity of consecutive bytes (as determined by κ) at location l and returns, if the addresses are writable, the updated memory.

• a global environment G that maps global variables to locations (with zero offset), function pointers to function definitions and structure names to their definitions,

• a local environment E that maps local variables to memory locations and types,

• a temporary environment L that directly maps temporaries to values, and

• a memory M .

We only present the semantics rules required for the subset of Clight used by the generation function, and, to further simplify the presentation, our rules are often combinations of the actual rules described in [START_REF] Blazy | Mechanized Semantics for the Clight Subset of the C Language[END_REF]],7 from which we keep the notations. Since we use only a restricted syntax subset of Clight, we only use an adapted relevant subset of the semantics rules. We present rules for the following restrictions of the subset of Clight presented in figure 5.3:

e ::= c | x | x->x | &x | &(x->x) | x.x | C e | e ⊕ e s ::= x->x = a | x = a | if (a) {s} else {s} | [x =] x(a * , ) | s ; s | skip | return [a]
A generated expression is a constant, a temporary, an indirect field access on a temporary (the self pointer or the out pointer), a reference to a local output structure, a reference to an indirect field access on a temporary (a sub-state reference), a field access on a variable (a local output structure), or a unary or binary operation. A generated statement is an assignment to an indirect field access on a temporary, an assignment to a temporary, a conditional, a function call where the function expression is a variable, a sequence, the no-operation statement, or a return statement.

Adapting the notation of [START_REF] Blazy | Mechanized Semantics for the Clight Subset of the C Language[END_REF]], we write G, E, L a, M ⇒ v to denote that in the global environment G, environment E, temporary environment L and memory M , the expression a evaluates to a value v. The rules for the evaluation of generated expressions in r-value position are shown in figure 5.6a. A constant is evaluated using the dedicated constant semantics (e.g, rules (5) and ( 6) in [START_REF] Blazy | Mechanized Semantics for the Clight Subset of the C Language[END_REF], Fig. 6, p. 9]). A temporary is simply looked up in the temporary environment. An indirect field access on a temporary is evaluated using temp-ind-field-loc, that we describe in the next paragraph, to get back the corresponding memory location, and load to return the stored value in the memory (rule ( 8)). The address of a variable x is evaluated to a pointer to the block associated with x in the environment (rules ( 9) and ( 1)). A reference to an indirect field access on a temporary is evaluated to a pointer to the location given by temp-ind-field-loc (rule ( 9)). A field access on a variable is evaluated to a value loaded from the location calculated by combining the block identifier looked up in E and the offset obtained by field-offset (rules ( 8), ( 3) and ( 1)). Unary, cast and binary operations recursively evaluate their arguments and use dedicated partial semantics functions, respectively eval-unop, cast and eval-binop (rules ( 10), ( 14) and ( 11) respectively). All these functions take the memory M as parameter, and eval-binop takes the global environment G as additional parameter to handle pointers.

G, E, L c, M ⇒ c G, E, L x, M ⇒ L(x) temp-ind-field-loc(G, L, x, y) . = l load κ type(x->y) , M, l . = v G, E, L x->y, M ⇒ v E(x) = (b, type x) G, E, L &x, M ⇒ Vptr (b, 0) temp-ind-field-loc(G, L, x, y) . = l G, E, L &(x->y), M ⇒ Vptr l E(x) = (b, struct s) type x = struct s comp(G, s) . = ϕ field-offset(G, y, ϕ) . = δ load κ type(x.y) , M, (b, δ) . = v G, E, L x.y, M ⇒ v G, E, L a, M ⇒ v a eval-unop C , v a , type a, M . = v G, E, L C a, M ⇒ v G, E, L a, M ⇒ v a cast(v a , type a, τ, M ) . = v G, E, L τ (a), M ⇒ v G, E, L a 1 , M ⇒ v 1 G, E, L a 2 , M ⇒ v 2 eval-binop(G, ⊕, v 1 , type a 1 , v 2 , type a 2 , M ) . = v G, E, L a 1 ⊕ a 2 , M ⇒ v
Figure 5.6b presents a relation-we use our partiality notation-that we define to obtain the location of an indirect field access on a temporary x->y. This relation is a combination of formal semantic rules ((3), ( 8) and ( 2), plus a rule for temporaries evaluation) that evaluates x->y to a location. The block identifier b is obtained by looking up x in the temporary environment, verifying that the obtained value is a pointer to a location (b, δ x ). The offset is the sum of δ x and δ y , the relative offset of the field y in structure s (field-offset is described in [START_REF] Blazy | Mechanized Semantics for the Clight Subset of the C Language[END_REF], §3.2, p 10]). The comp function retrieves the field declarations ϕ from the global declaration of s.

We write G, E, L s, M t = =⇒ out, L , M to denote that in the global environment G, environment E, temporary environment L, the statement s terminates its execution in an updated temporary environment L and memory M , with outcome out, producing an event trace t. There are only three possible outcomes in our subset of the semantics: Normal, the statement has terminated normally, Return, a function body has terminated, and Return (v, τ ), similarly but the result of the function is the value v with type τ . The semantics for generated statements is presented in figure 5.6c. An assignment of an expression to an indirect field access on a temporary updates the memory by storing the properly cast value of the evaluated expression to the appropriate location given by temp-ind-field-loc (rule (20) in Fig. 8,p. 11). An assignment to a temporary simply updates the temporary environment with the result of the evaluated expression. A conditional statement recursively executes one of its branches according to the boolean projection of the evaluated condition. The projections are realized by the is-true and is-false predicates presented in [Blazy and Leroy (2009), §3.2, p. 11], that take M as additional parameter again for handling pointers. A function call is evaluated in several steps (rules (30) in Fig. 10,p. 13, (8), and (1)). The function variable f is not defined in the environment E but associated in the global environment G with a block identifier b (function pointer), which is in turn resolved in G to a function definition F d . The type of f is checked against the prototype of F d that must be a function type, composed of a list of argument types τ args , a return type τ res and a calling convention cc. The arguments are evaluated and cast to the corresponding types in τ args . Then, the call is evaluated using a dedicated mutually defined judgment presented later in figure 5.6d, producing temp-ind-field-loc (G, L, x, y) . = (E, L, M 1 ) the overall trace t, the overall updated memory M and a return value v. If a return temporary is supplied, the temporary environment is updated with the return value. A sequence of statements is executed recursively: either the first part terminates normally producing an intermediate state from which the second is executed, or it does not and the execution is interrupted. The skip statement does nothing, while the return statement yields a Return outcome with an optional pair of an evaluated value and a type. Figure 5.6d gives two dedicated rules used for function call evaluation (rule (32) in Fig. 10,p. 13). The first presents a function-entry predicates that defines how the memory and environments are allocated at the entry of a function. The memory M is updated by the function alloc-vars that allocates blocks (using alloc) for each local variable declaration in the function definition F d . It returns the allocated memory M 1 and the corresponding environment E. The temporary environment is created in two steps: first the register declarations are all bound to the undefined value Vundef, then the formal parameters are bound to the values v args since we use the variant where parameters are temporaries. Finally, function-entry also ensures that no duplicates are found in the variable names. The second rule defines the evaluation of a function: the body of the function is evaluated in the state given by function-entry, the return value is computed from the return type of the function and the outcome of its body evaluation (we use the notation M, out, τ #v of [Blazy and Leroy (2009), Fig.10, p. 13]), and the blocks in the environment E that were allocated for the local variables are freed by free-env (using free).

= l G, E, L a, M ⇒ v a cast(v a , type a, type (x->y) , M ) . = v store κ type(x->y) , M, l, v . = M G, E, L x->y = a, M ε = =⇒ Normal, L, M G, E, L a, M ⇒ v G, E, L x = a, M ε = =⇒ Normal, L{x → v} , M G, E, L a, M ⇒ v is-true(v, type a, M ) G, E, L s 1 , M t = =⇒ out, L , M G, E, L if (a) { s 1 } else { s 2 }, M t = =⇒ out, L , M G, E, L a, M ⇒ v is-false(v, type a, M ) G, E, L s 2 , M t = =⇒ out, L , M G, E, L if (a) { s 1 } else { s 2 }, M t = =⇒ out, L , M f ∈ E symbol(G, f ) . = b funct(G, b) . = F d type f = type-of-fundef F d = τ args , τ res , cc G, E, L τ args (a), M ⇒ v args G F d (v args ) , M t = =⇒ v, M G, E, L [x =]f (a), M t = =⇒ out, L{x → v} if x is given L otherwise , M G, E, L s 1 , M t1 = =⇒ Normal, L 1 , M 1 G, E, L 1 s 2 , M 1 t 2 = =⇒ out, L 2 , M 2 G, E, L s 1 ; s 2 , M t1+t 2 ===⇒ out, L 2 , M 2 G, E, L s 1 , M t = =⇒ out, L , M out = Normal G, E, L s 1 ; s 2 , M t = =⇒ out, L , M G, E, L skip, M ε = =⇒ Normal, L, M G, E, L return, M ε = =⇒ Return, L, M G, E, L a, M ⇒ v G, E, L return a, M ε = =⇒ Return (v, type a) , L, M (c) Statement evaluation
function-entry(F d , v !args , M ) . = (E, L, M 1 ) G, E, L F d .body, M 1 t = =⇒ out, L , M 2 M 2 , out, F d .return#v free-env(M 2 , E) . = M G F d (v args ) , M t = =⇒ v, M (d) Function call evaluation

Semantic rules for the generated program

The generated main function requires three additional statements:

s ::= . . . | x = vload(κ,&x) | vstore(κ,&x,a) | loop {s}
The volatile load and store operations always take the address of a global volatile variable, and we elide the type annotations, since we ensure that the types are the same for the formal and actual parameters of these operations.

y ∈ E symbol(G, y) . = b volatile(G, b) = true w κ G v G, E, L x = vload(κ,&y), M [E vload (κ,y,0,w)] =========⇒ Normal, L{x → v κ } , M y ∈ E symbol(G, y) . = b volatile(G, b) = true G, E, L a, M ⇒ v w κ G v κ
G, E, L vstore(κ,&y,a), M

[Evstore(κ,y,0,w)]

= ======== =⇒ Normal, L, M The statements we consider in the previous section do not produce events. Indeed, the only observable events in the generated program are produced by the volatile operations whose semantics is shown in figure 5.7. In both cases, the variable that is being read or written must be globally declared with the volatile attribute. The operation produces a single event E vload or E vstore parameterized by the chunk, the address (global name and offset) and the value being read or stored. The carried value is an event value w, that is, to simplify, the subset of standard values minus the undefined value and pointers that do not address global variables. We use the notation w κ G v to denote the correspondence between the standard value v and the event value w (see eventval_match, CompCert/common/Events.v:269). This relation ensures a kind of well-typing property by using the type information of the chunk κ. We also write v κ to model the normalization that may occur when reading a stored value, depending on the chunk and on the type of the value (see load_result, CompCert/common/Values.v:910).

As previously explained, to treat the infinite evaluation of the main loop of the generated program, we use the small-step semantics. The small-step semantics of Clight in CompCert is formalized as a state-transitions system that consists of a step relation, an initial state, a final state and a global environment. The rules that we present here are adapted from those of Cminor, that is, the next intermediate language after Clight in CompCert, and presented in [START_REF] Appel | Separation Logic for Small-Step Cminor[END_REF]; Leroy (2009a)], from which we keep the notations. We give the rules for the evaluation of the statements that we use in figure 5.8a. A Clight regular state, written S(F d , s, k, E, L, M ), comprises the current function F d , the current statement s, a continuation k, an environment E, temporary environment L and memory M . We do not present the continuation system in detail, but simply note that s ; k reads "continue with s, then do as k" [Leroy (2009a)], which is enough to understand the first three rules that we use for sequences and loops. The last rule asserts a transition between a call state, written C(F d , v args , k, M )-that comprises the function F d to be called, the list of argument values v args , a continuation k and a memory M -and the regular state built from the body of the function and the allocated environments and memory.

Figure 5.8b presents the rules defining the reflexive transitive closure and the rule for infinite reactive execution. In [START_REF] Appel | Separation Logic for Small-Step Cminor[END_REF]; Leroy (2009a)], T is a finite

G S(F d , (s 1 ; s 2 ) , k, E, L, M ) ε - -→ S(F d , s 1 , (s 2 ; k) , E, L, M ) G S(F d , skip, (s ; k) , E, L, M ) ε - -→ S(F d , s, k, E, L, M ) G S(F d , loop { s }, k, E, L, M ) ε - -→ S(F d , s, (loop { s } ; k) , E, L, M ) function-entry(F d , v args , M ) . = (E, L, M 1 ) G C(F d , v args , k, M ) ε - -→ S(F d , F d .body, k, E, L, M 1 ) (a) Selected rules for statement evaluation G S ε - -→ * S G S t 1 - -→ S 1 G S 1 t 2 - -→ * S 2 G S t 1 +t 2 ---→ * S 2 G S t - -→ * S t = ε G S T - -→ ∞ G S t ++ T ----→ ∞ (b)
Reflexive transitive closure and infinite reactive transition or infinite trace, while here it may only be infinite. Indeed, T is akin to an infinite stream, in the sense that it must be productive. This leads to a different definition of the relation G S T --→ ∞: in the current development of CompCert, the finite prefix trace t is checked to be non empty to ensure that the resulting concatenated infinite trace is productive. This permits the distinction between divergence, where an infinite trace is not produced, and reactive divergence, where an infinite trace is produced.

G S t 1 - -→ * S 1 G S 1 t 2 - -→ S 2 G S t 1 +t 2 ---→ * S 2 G S t - -→ * S G S T - -→ ∞ G S t ++ T ----→ ∞ ( 
Figure 5.8c presents additional rules, that are derived in CompCert as lemmas. The first one asserts that the reflexive transitive closure can also be derived with a step on the right rather than on the left. The second one is like the definition rule of the infinite reactive execution, without the constraint on the productivity.

The presented small-step rules are not sufficient for the whole generated program. We instead use the big-step rules presented in the last section for all of the proof except the execution of the main function. We rely on the fact that the big-step semantics is sound with respect to the small-step semantics. Finally, figure 5.8d gives the rule for the infinite reactive execution of a program. The globalenv and initmem functions are described in [Leroy and Blazy (2008), Fig.5, p. 8]: globalenv builds a global environment from a given program, and initmem constructs an initial memory for executing the given program. The initial state is a call state on the main entry point of the program with no input values, the initial continuation stop and the initial memory.

Interfacing Vélus with CompCert

Recall that Vélus is entirely parameterized over an abstraction layer consisting of values, types and operators (see section 2.1.1). Before translating Obc code to Clight code, this abstraction layer must be instantiated with definitions from Clight.

Listing 5.3 shows the instantiations for values and types. Values are directly instantiated with CompCert values. CompCert values (see val, CompCert/common/Values.v:36) comprise the undefined value, machine integers, floating-point numbers and pointers to memory locations. We have already seen some of them in the presented semantic rules. Types are not directly instantiated with Clight types, as they are too rich: we do not need the void, pointer, array, structure or function types in the models of NLustre, Stc, and Obc. Hence we define our own set of types and a conversion function cltype to translate them to Clight types. Our types comprise only integer and floating-point types. This function was ignored when presenting the Clight generation function, and will often be in the following to facilitate the presentation. We saw in the generation function (see figure 5.4a) that Vélus unary operators are instantiated with Clight unary operators and the type cast operator, while Vélus binary operators are directly instantiated with Clight binary operators. The corresponding semantic functions are instantiated in the following way, safely providing the empty memory and empty global environment as additional parameters of the CompCert functions:

C τ v = eval-unop C , v, cltype τ, ∅ ⊕ τ 1 ×τ 2 v 1 v 2 = eval-binop(∅, ⊕, v 1 , cltype τ 1 , v 2 , cltype τ 2 , ∅)
For a type cast, the function is instantiated by the corresponding semantic rule in figure 5.6a. We follow the same approach for the typing functions of the operators.

Separation logic and key invariants

The central challenge in reasoning about the correctness of Clight generation is the change of memory model. In Obc, the memory is modeled as a tree of environments where the separation of individual values is manifest. In contrast, Clight has a memory model that maps addresses to the bytes that comprise values, and the details of type sizes, alignment, and aliasing through pointers cannot be ignored. We apply SL [START_REF] Samin | BI as an Assertion Language for Mutable Data Structures[END_REF]; [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF]] to cope with these complications which otherwise quickly overwhelm the proof effort. We use an SL library that is already designed within CompCert for the correctness of one of its backend passes.

SL is an extension of Floyd-Hoare logic [START_REF] Floyd | Assigning Meanings to Programs[END_REF][START_REF] Antony | An Axiomatic Basis for Computer Programming[END_REF]] that facilitates reasoning about programs that manipulate pointers and complex data-structures. The main innovation is the separating conjunction operator * , that enables to write program assertions like {x → v * y → w} that describes a memory state where the variable x holds the address of a memory location where the value v is stored, and separately where the variable y holds the address of a memory location where the value w is stored. The "and separately" differs from a classical "and" in that it asserts that both components describe distinct areas of the memory: the bytes comprising the values of x and y are distinct. A second operator, the separating implication -- * [O' Hearn and Pym (1999)], or "magic wand", is sometimes useful. The assertion P -- * Q means that given a separate memory area satisfying P , the combined memory area satisfies Q.

A dedicated rule, called frame rule, is added to the logic to extend local reasoning on a statement to a larger separate context by stating that unmentioned area in the memory remains unchanged:

{P } s {Q} {P * R} s {Q * R}
where no free variable in R is modified by the statement s O'Hearn ( 2019) gives an introduction and overview of SL.

Separation Logic in CompCert

Citing its documentation [Leroy (2019)], the SL that CompCert provides "is not a fullfledged separation logic because there is no program logic (Hoare triples) to speak of. Also, there is no general frame rule; instead, a weak form of the frame rule is provided by the lemmas that help us reason about the logical assertions." A memory assertion is composed of four components, gathered in a Coq dependent record:

1. A predicate over the memory, that is, the logical content of the assertion.

2. The memory footprint of the assertion, that is, the set of locations it concerns.

3. A proof that the logical content is invariant under changes to locations outside the footprint, thus capturing the essence of the frame rule.

4. A proof that the blocks of the footprint are allocated.

Following CompCert notation, we write M P to designate the predicate of the memory assertion P , applied to the memory M , and we add the notation P to designate its footprint. In typical SL presentations, one writes s, h P where s is a store mapping identifiers to values (containing addresses), and h is a heap mapping addresses to values.

In the CompCert SL library however, only the heap is used, therefore assertions do not mention identifiers but only memory locations, that is, addresses. The CompCert library, that we slightly modify, builds on this definition to define useful SL operators and special assertions:

implication The usual implication is lifted over memory assertions and adjusted to account for footprints. We write P Q if and only if, for any memory M, M P → M Q and Q ⊆ P . The associated equivalence is written P Q. Implication is shown to be a reflexive and transitive relation, while the equivalence is shown to be an equivalence relation. 

1. ∀M, M P * Q ↔ (M P ∧ M Q ∧ P ∩ Q = ∅) 2. P * Q = P ∪ Q
We see here that the CompCert model for memory assertion allows to model the separating conjunction without explicitly exposing heaplets, that is, separated parts of the memory, like other mechanizations of SL do [START_REF] Klein | Mechanised Separation Algebra[END_REF]; [START_REF] Appel | Program Logics for Certified Compilers[END_REF]].

pure assertion A pure assertion is a memory assertion that ignores the memory. We write pure(P ) where P is a predicate to designate the memory assertion such that:

1. ∀M, M pure(P ) ↔ P 2. pure(P ) = ∅ range CompCert allows to assert that a range of consecutive bytes in the memory is allocated with a given permission8 and unspecified content. We write b : [i, j) p , where b is a block identifier, p a permission and i, j are integers, for the memory assertion such that:

1. ∀M, M b : [i, j) p ↔ 0 ≤ i ∧ j ≤ 2 N
∧ ∀δ ∈ [i, j), the location (b, δ) has permission p where N is the target architecture word size.

b :

[i, j) p = {(b , δ) | b = b ∧ δ ∈ [i, j)}
Table 5.2 lists the permissions, or access rights, that CompCert defines, with the memory operations that they allow. In the following, we will write b : [i, j) for a range of bytes with freeable permission.

contains CompCert provides a way to assert that a memory area with a given permission 9 contains a value with a given specification. We write l : P p κ where l = (b, δ) is a memory location, κ is a memory chunk, P is a predicate over values and p a permission, for the memory assertion such that: 4. local variables of m in the Obc environment and corresponding variables in the Clight temporary environment.

Definitions

Most of the correspondence predicates rely on a relation between a defined or undefined value in Obc and a value in Clight. The idea is to use this relation as a specification for variables found in the memory. When a variable is undefined in Obc, its value in Clight is unconstrained, otherwise it has the same value in Clight. We denote this predicate with the notation v where v is a defined or undefined value.

Definition 5.4.1 (match_value, src/ObcToClight/SepInvariant.v:51)

v v = v v v

Class state correspondence

The following predicate relates the memory tree me for a class with name c in Obc and the block holding the corresponding state in Clight at location l self . It iterates through the program p until it finds the class named c and constructs a separating conjunction over state variables and recursively over sub-instances. That is, it follows the tree structure and asserts at the leaves that the Clight memory contains corresponding values.

Definition 5.4.2 (staterep, src/ObcToClight/SepInvariant.v:73)

We define the memory assertion s-rep p G c me l self by cases on p as follows:

s-rep cls•p G c me l self      * cls.regs r-rep G cls me l self * * cls.insts i-rep p G cls me l self if cls.name = c s-rep p G c me l self otherwise s-rep ε G c me l self ⊥ where r-rep G cls me (b self , δ self ) λ x τ . (b self , δ self + δ x ) : me((x)) writable κ τ if field-offset(G, x, fields cls) . = δ x ⊥ otherwise i-rep p G cls me (b self , δ self ) λ i c . s-rep p G c (sub i me) (b self , δ self + δ i ) if field-offset(G, i, fields cls) . = δ i ⊥ otherwise
The r-rep function asserts the correspondence for state variables within the memory tree. For each state variable of the current class, it ensures that a value is found at the proper address, using the offset in the structure, given by field-offset applied to a list of fields calculated from the class definition by fields (make_members, src/ObcToClight/Generation.v:279). This value must be equal to the one found in the Obc memory tree if it is defined and unconstrained otherwise. Since the overall state structure is stored in a static variable, the expected permission is writable rather than freeable.

The i-rep function asserts the correspondence for sub-trees. For each sub-instance of the current class, it recursively asserts s-rep at the proper offset in the structure.

Figure 5.9 shows the s-rep instantiation on the running example. In figure 5.9a, the me tree on the left represents the memory tree of an instance of the class nav. Thin edges represent the state variables, while thick edges represent sub-instances. On the right is a representation of the memory layout of the generated Clight structure at location (b self , δ self ). Each field is accessed through a relative offset: given a class cls named c, we write δ c

x for the offset calculated by field-offset(G, x, fields cls). The Obc tree and the Clight memory are related by the s-rep predicate, shown by gray dashed arrows. The displayed equation recursively unveils this correspondence, descending the tree on the left and adding offsets on the right-we omit the p and G parameters for clarity. The final result is a set of primitive separated conjuncts asserting correspondence with the values in the tree. This set of conjuncts together with the memory layout they specify is shown in figure 5.9b, where we write b = b self , δ self = 0, since a global variable holds the main structure, and assume a 64 bit architecture. The gray area represents the memory locations that are allocated and specified by the separating assertions, and the white area is padding, that ensures correct alignment.

We combine s-rep with an assertion that the pointer self is declared as a temporary parameter. We also ensure that the size of the structure corresponding to the class cls does not exceed the maximum machine integer, but we omit this constraint in this presentation. The f-rep function is similar to r-rep, but there is no initial offset in the location (it is zero), and it uses the environment ve to give a specification on the memory variable. Moreover, the accessed memory must be freeable rather than only writable.

If m has only one output however, the value is stored in a temporary. In this case, we relate local variables of m with the temporaries of the corresponding Clight function.

Now we can define the memory assertion asserting the correspondence for the outputs of the considered method m. Definition 5.4.5 (outputrep, src/ObcToClight/SepInvariant.v:1184) 

out-rep G cls m ve L bco out                            emp if m.out = ε pure( ve((x)) L(x)) if m.out = [x τ ] pure(L(out) = Vptr (b out , 0)) * pure(comp(G, f c ) . = ϕ out ) * fs-rep G ve ϕ out b out if 1 < m.out and bco out = Some (b out , ϕ out ) ⊥ otherwise
This function produces different assertions according to the number of outputs of m:

• If m has no output, there is no correspondence; the memory assertion is simply the empty heap.

• If m has a unique output x τ then we assert the correspondence between the local Obc variable x and the Clight temporary x.

• If m has strictly more than one output, then we ensure that (1) the output pointer parameter out is declared as a temporary, (2) the corresponding structure is globally declared and (3) the structure pointed to by the pointer out is in correspondence with the according output values in ve.

In the third case, the output structure is named f c : for simplicity, it has the same name as the generated function corresponding to m. In the actual development, we use the special symbol '$' to create fresh unique names. In particular, each method named f of a class named c is translated into a function named fun$c$f , and the same name is used for a corresponding output structure declaration. One limitation of the CompCert SL library is that we cannot define existential memory assertions. Indeed, in the third case above, rather than provide an optional parameter bco out from the outside, we would have preferred that b out and ϕ out were existentially quantified within the definition.

Sub-instances outputs correspondence

Our handling of multiple outputs in Clight necessitates that we maintain a correspondence between multiple output values returned by method calls appearing in the body of m and Clight output structures declared in the environment E (see item 3 on page 148 about the translation of function calls). Definition 5.4.6 (subrep, src/ObcToClight/SepInvariant.v:835)

os-rep G m E * mult-outs m o-rep G E where o-rep G E λ x τ . fs-rep G ∅ ϕ b if E(x) = (b, τ ) ∧ τ = struct s ∧ comp(G, s) . = ϕ ⊥ otherwise
The idea is to assert that for each sub-call in m with strictly more than one output, there exists a corresponding output structure s and a local Clight variable that points to an instance of it in the memory with unspecified content-the content is only specified after a method call. We use the function mult-outs to retrieve the names and types of these (fresh) local variables. The function satisfies the following property.

x τ ∈ mult-outs m ↔ ∃i c f , y := i c .f (-) appears in m with 1 < y ∧ x = i f ∧ τ = struct f c
The os-rep predicate asserts that memory is allocated with enough room to hold the return values of sub-calls. The fs-rep function does not account for fields alignment, consequently it only asserts that a relevant data area is allocated, but it does not assert anything about necessary padding area. This is a problem, not because the padding is ever read or written, but rather because we must prove that the whole structure can be freed when the enclosing function returns. Technically, we must justify the free-env predicate in the rule shown in figure 5.6d on page 155, which requires invoking the "free rule" (lemma 5.4.2 on page 162), which, in turn, requires "ownership" of that area of memory as expressed in a memory assertion. This is also the reason we extend the SL library of CompCert with a separating implication operator. We define a memory assertion that asserts the allocation of enough room to hold a whole structure. Definition 5.4.7 (subrep_range, src/ObcToClight/SepInvariant.v:870)

os-range G E * bindings E λ (x, (b, τ )) . b : [0, sizeof(G, τ ))
The function bindings turns an environment into the corresponding association list. Now we can define a memory assertion that uses the separating implication to express ownership over the locations used to store field values (os-rep G f E) and keep the possibility of relinquishing this ownership to assert ownership over the whole range (os-range G E), without ever having to detail exactly where the padding is. 

outs-rep

G m E os-rep G f E * (os-rep G f E -- * os-range G E)
In the actual development we add an additional pure assertion ensuring that variables of the domain of E are all of the form out$-$-, to make sure that generated function names, of the form fun$-$-cannot be found in E (see the rule for function calls in figure 5.6c).

Local variables correspondence

The last correspondence is between local Obc variables that are not outputs, and Clight temporaries. The corresponding memory assertion is entirely pure since temporaries are directly bound to values. Definition 5.4.9 (varsrep, src/ObcToClight/SepInvariant.v:1057) vars-rep m ve L pure(∀x τ ∈ m.in + m.vars, ve((x)) L( x))

The correspondence predicate

The whole state correspondence predicate can then be defined as a memory assertion by separately combining all the independent assertions. Definition 5.4.10 (match_states, src/ObcToClight/SepInvariant.v:1298)

match-state p G cls m (me, ve) (E, L) l self bco out self-rep p G cls me L l self * out-rep G cls m ve L bco out * outs-rep G m E * vars-rep m ve L
This memory assertion is the key invariant of the correctness proof: it provides all the information needed while ensuring the separation in the Clight side.

Properties

Loading operations

We use s-rep and fs-rep to prove dedicated extensions of the "load rule" (lemma 5.4.3 on page 162) for looking up values of expressions like self->x, out->x or i.x in the memory. 

Storing operations

Similarly, we specialize the "store rule" (lemma 5.4.4 on page 162) for the s-rep invariant.

As storing operation updates the memory, so we must show the preservation of the invariant used as an hypothesis.

Lemma 5.4.8 (match_states_assign_state_mem, src/ObcToClight/SepInvariant.v:1465) Given a program p, a name c, a memory tree me, a memory M , a global environment G, a temporary environment L, a location (b self , δ self ) and an assertion R such that M s-rep p G c me (b self , δ self ) * R, then, for any state variable declaration x τ ∈ cls.regs and value v of type τ , there exists a memory M such that:

1. store(κ τ , M, (b self , δ self + field-offset(G, x, fields cls)) , v) . = M , and 2. M s-rep p G c me(x → v) (b self , δ self ) * R,
In practice, we lift this result over the match-state predicate, as it prevents tedious reasoning with the frame rule, and as assignments to state variables always occur in a context where match-state holds anyway.

The second type of assignment is to an output variable of m.

Lemma 5.4.9 (outputrep_assign_gt1_mem, src/ObcToClight/SepInvariant.v:1378) Given a class cls, a method m, an environment ve, a memory M , a global environment G, a temporary environment L, an optional pair of a structure location and fields bco out and an assertion R such that M out-rep G cls m ve L bco out * R, if m has strictly more than one output, then there exist a block identifier b out and fields ϕ out such that bco out = Some(b out , ϕ out ), and, for any output declaration x τ ∈ m.out and value v of type τ , there exist a memory M such that:

1. store(κ τ , M, (b out , field-offset(G, x, fields cls)) , v) . = M , and

2. M out-rep G cls m ve{x → v} L bco out * R

Allocating operations

We also extend the "allocation rule" (lemma 5.4.1 on page 162) to show that the memory allocated at function entry corresponds with the output structure declarations used for sub-calls with strictly more than one output. The following lemma relies on several technical results that are not presented.

Lemma 5.4.10 (alloc_result, src/ObcToClight/SepInvariant.v:1687) Given a memory M and a memory assertion R such that M R, then there exist an environment E and a memory M such that, for any method m, alloc-vars(G, M, mult-outs m) .

= (E, M ) and M outs-rep G m E * R.

Now we generalize this extended allocation rule to function entry specifications. The idea is to show that starting from an accordingly specified pre-call memory state, a function is entered with a memory state that satisfies match-state. The following result has two different cases, depending on the way outputs are handled. If the source Obc method has zero or one output, then we only need a pre-call memory that satisfies only s-rep (the self pointer), otherwise we also need an assertion fs-rep (the out pointer). For this particular result, we must require that p is well-typed and successfully translated into a generated Clight program P, with associated global environment G P = globalenv(P).

Lemma 5.4.11 (function_entry_match_states, src/ObcToClight/SepInvariant.v:1761) Given a class cls named c, declared in p, having a method m named f ; a list of values v whose types are input types of m; a memory tree me and a function definition F d generated from m, then:

• If m has zero or one output, then, for any memory M, memory assertion R and location l such that M s-rep p G P c me l * R, there exist an environment E f , a temporary environment L f and a memory M f such that:

1. function-entry(F d , (Vptr l) • v, M ) . = (E f , L f , M f ) 2. M f match-state p G P cls m me, ∅ m.in 1 → v (E f , L f ) l None * R
• If m has strictly more than one output, then, for any memory M, memory assertion R, location l, block identifier b and structure fields ϕ such that comp(G P , f c ) .

= ϕ and M s-rep p G P c me l * fs-rep G P ∅ ϕ b * R, there exist an environment E f , a temporary environment L f and a memory M f such that:

1. function-entry(F d , (Vptr l) • (Vptr (b, 0)) • v, M ) . = (E f , L f , M f ) 2. M f match-state p G P cls m me, ∅ m.in 1 → v (E f , L f ) l (Some(b, ϕ)) * R

Freeing operation

Finally, we extend the "free rule" (lemma 5.4.2 on page 162).

Lemma 5.4.12 (free_exists, src/ObcToClight/SepInvariant.v:1036) Given a memory M , a global environment G, an assertion R and an environment E such that M os-range G E * R, then there exists a memory M such that free-env(M, E) . = M and M R.

Correctness of the generation function

The proof of correctness of the generation of Clight code is the longest of the whole Vélus development. It is divided in four steps:

1. Static structural properties about the generated program upon success of the generation function, involving results about generated functions, structures or global variables.

2. State correspondence predicates defined as memory assertions.

3. Correctness at the level of execution of a method in a given class.

4. Correctness of the behavior of the whole generated program.

As for previous passes, the first step will not be discussed since the structural properties follow more or less directly from the generation function definition. The second step was presented in section 5.4.3. The last two steps are the subjects of the two following sections, where we assume that the translation of a well-typed Obc program p succeeds, generating a Clight program P with associated global environment G P = globalenv(P).

Local correctness

The two following sections describe the intermediate results concerning generated expressions, assignments and function call evaluation. We assume in these two sections that p contains a class cls with a method m. Moreover, we fix me, ve, M , E, L, l self = (b self , δ self ), bco out and R such that the following hypothesis holds.

Hypothesis 5.5.1

M match-state p G P cls m (me, ve) (E, L) l self bco out * R
The idea is to work in the context of Obc and Clight states that are in correspondence.

We first show that the value of an Obc expression is correctly calculated by the Clight expression generated from it. We then extend this result for statements.

Expressions

Locations of indirect field accesses

The following two lemmas ensure the evaluation of fields accesses of out and self pointers to memory locations. The first one below guarantees that whenever out-rep holds, then for any output variable x of the Obc method, the Clight expression out->x evaluates to a valid memory location. The states bound by hypothesis 5.5.1 are not used here because of assignments to output fields that can occur after a function call. Indeed, in this particular case, as we will see later, the generic predicate match-state does not hold.

Lemma 5.5.1 (evall_out_field, src/ObcToClight/Correctness.v:230) Given an environment ve 1 , a temporary environment L 1 , a memory M 1 and a memory assertion R 1 such that M 1 out-rep G P cls m ve 1 L 1 bco out * R 1 , assume that m has strictly more than one output, then there exist a block identifier b out and structure fields ϕ out such that bco out = Some (b out , ϕ out ), and, for any output variable x τ ∈ m.out, temp-ind-field-loc(G P , L 1 , out, x) . = (b out , field-offset(G P , x, ϕ out )).

The second lemma below guarantees that for any Obc state variable x in the current method, the Clight expression self->x evaluates to a valid memory location under hypothesis 5.5.1. Lemma 5.5.2 (evall_self_field, src/ObcToClight/Correctness.v:336) For any state variable x τ ∈ cls.regs, temp-ind-field-loc G P , L, self, x . = (b self , δ self + field-offset(G P , x, fields cls)).

Local variable assignments

We show a key invariant preservation result for assignments generated by the assign function (see figure 5.4b on page 147). We do not use the whole match-state assertion, but rather a stripped-down version mentioning only out-rep for assignments to output variables, and vars-rep for assignments to unique output or other local variables. Consequently, we state the following result in a different context than that of hypothesis 5.5.1. If the defining expression evaluates to a value v in Clight, the lemma below states that the generated assignment to x evaluates to give a new state that corresponds to a suitably updated Obc environment.

Lemma 5.5.6 (exec_assign, src/ObcToClight/Correctness.v:480) Given an environment ve 1 , a memory M 1 , a temporary environment L 1 , a memory assertion R 1 , a variable declaration x τ of method m, a Clight expression a of type τ and a value v of type τ such that:

1. M 1 out-rep G P cls m ve 1 L 1 bco out * vars-rep cls ve 1 L 1 * R 1 , and 2. G P , E, L 1 a, M 1 ⇒ v,
then there exist a memory M and a temporary environment L such that:

1. G P , E, L 1 assign(x, a) , M 1 ε = =⇒ Normal, L , M 2. M out-rep G P cls m ve 1 {x → v} L bco out * vars-rep cls ve 1 {x → v} L * R 1
For this lemma, the vars-rep component of the invariant is not used to prove the semantic evaluation of the statement; we only use it to show that it is preserved by evaluation of the statement.

Transfers of output variables after a function call

When a method named f of a sub-instance i has strictly more than one output, the generation function adds a sequence of special assignments after the function call to copy the values of the output structure to the appropriate locations. As those statements do not appear in the source Obc program, we need to adapt our invariants. Looking at the definition 5.4.6 on page 168 of os-rep that appears in the outs-rep part of match-state, recall that the idea is to assert that for each pair (i, f ) there exists a locally declared structure whose address is held by a local variable i f and whose content is not specified. We express this assertion using fs-rep with an empty environment. After the function call, this environment should associate the output parameters of the Obc method to the values returned by that method, the fs-rep assertion then guarantees that the fields of the Clight output structure contain the same values. After a function call with multiple outputs, match-state does not hold since the output variables in Obc are updated directly, but the corresponding variables in Clight are not. We re-establish match-state by reasoning that the sequence of Clight assignments after the function call correctly transfers the values defined by fs-rep before we weaken the fs-rep assertion by forgetting its content.

For the following two lemmas, assume that there exist:

1. a callee method m with name f and strictly more than one output, of a class with name c that is declared in p, 2. an Obc environment ve f representing the return environment of the method m after the call, 3. a Clight variable i f and a block identifier b such that E i f = (b, struct f c ), that is, i f holds the address of the corresponding output structure, and 4. structure fields ϕ of the output structure such that comp(G P , f c ) . = ϕ.

We begin by proving an intermediate result that states the correctness of the evaluation of a field access to the output structure when the content of the structure is known.

Lemma 5.5.7 (eval_inst_field, src/ObcToClight/Correctness.v:592) Given a memory M 1 , a temporary environment L 1 such that M 1 fs-rep G P ve f ϕ b, then, for any output declaration

x τ ∈ m .out, G P , E, L 1 i f .x, M 1 ⇒ ve f (x).
Now we can show that the sequence of assignments after a function call preserves the specialized invariant. 

. G P , E, L assign x, i f .y , M 1 ε = =⇒ Normal, L , M 2. M fs-rep G P ve f ϕ b * out-rep G P cls m ve{x → v} L bco out * vars-rep m ve{x → v} L * R 1

Function calls

The main challenge in reasoning about the correctness of function calls is to formulate a lemma that can be proved by mutual induction over the Obc semantics. In particular, as we have to handle three distinct cases relative to the number of outputs of the method being called, the induction hypothesis is a bit involved. The following definition is not the induction hypothesis per se, but rather a specification on the execution of a call. Indeed, it does not mention the semantics of Obc function calls but directly states the expected execution of a call and the expected state after the call, given a state on function entry (as given by lemma 5.4.11 on page 171). 

. G P F d ((Vptr l) • v) , M ε = =⇒ Vundef, M 2. M s-rep p G P cls.name me l * R
• If m has only one output and M s-rep p G P cls.name me l * R, then there exist a memory M and a value r such that: The first two are similar: when the method has zero or one output, we do not use an output structure, therefore we only need s-rep. The idea is to recursively select the sub-structure in the memory which is in correspondence with the sub-tree me, and to assert that the invariant is preserved by the call, with updated M and me . In both cases, the first value passed to the call is a pointer towards the sub-structure. In the second case, the function does return a value that must equal the single Obc return value. In the third case, when m has strictly more than one output, in addition to s-rep, we must ensure that memory for the output structure is allocated-even if its contents are unspecified. Then, after the call, the state representation is updated, and the output structure is constrained to contain the Obc return values w. Now, recall the match-state context given by hypothesis 5.5.1 and assume additionally that there exists a callee method m named f of a class cls named c that is declared in p, and that i c is the corresponding sub-instance declaration of cls. We express the correctness result for the whole translation of a method call (see the funcall function in figure 5.4b on page 147), using call-spec as the induction hypothesis.

1. G P F d ((Vptr l) • v) , M ε = =⇒ r, M 2. w = [r]
Lemma 5.5.9 (exec_binded_funcall, src/ObcToClight/Correctness.v:748) Given a list x of local variables of m with the same types as the outputs of m , a list of values v, a list of values w well-typed relative to the outputs of m , a memory tree me i and a list of Clight expressions a with the same types as the inputs of m , such that G P , E, L (type a) (a), M ⇒ v and call-spec cls , m , v, w, (sub i me) , me i holds, then, under some extra well-typing and well-formedness constraints, there exist a memory M and a temporary environment L such that:

1. G P , E, L funcall(x, c , i, f , a) , M ε = =⇒ Normal, L , M 2. M match-state p G P cls m (me[i → me i ] , ve{x → w}) (E, L ) l self bco out * R

General statements

Now that all key intermediate results have been presented (expressions, assignments and function calls evaluation), we can show the main correctness result. In other correctness proofs, for instance from NLustre to Stc and from Stc to Obc, we proceed in two steps:

(1) we show the correctness of the evaluation of statements under the hypothesis that its calls are correct, then (2) we show the correctness of calls by induction on the program using the correctness result on statements. While sometimes a bit cumbersome, this scheme usually works well. But not for the generation of Clight, because the translation function is not recursive and is monadic. While in Lustre, NLustre, Stc and Obc, a program is a bare list of nodes, systems and classes, respectively, the Clight generation function produces a list of function and structure declarations plus a main entry point, so it is not possible to reason directly by induction on the program being translated. Still, we adapt the same idea: using the well-formedness predicate that specifies the order of declarations in the translated Obc program p, we apply a mutual induction scheme on both the semantics of statements and of method calls on suffixes of p. In the development, the Coq mutual induction scheme that we use requires that both parts are stated as a single conjunction. We fix the following hypothesis (both statements are satisfied by any Obc program processed by the argument initialization pass described in section 5.1). 

Program correctness

In this section, we present the specifications and proofs for the generated main function that resets the global program state and then repeatedly reads input values, passes them to the step function, and writes the resulting output values. By virtue of the generation function, we know that there exists a class c main named main-node in p, and that this class has two methods s main and r main named step and reset respectively.

Volatile operations

The volatile reads of inputs and writes of outputs are the only operations in the generated program that produce events. We start by defining the result traces that correspond to the execution of the read and write statements described in figure 5.5 on page 149.

E F step (xs) , M n+1 ys G P F step (Vptr (b self , 0) • xs n ) , M ε = =⇒ Vundef, M E F step (xs) , M n ys if s main .out = 0 E F step (xs) , M n+1 ys G P F step (Vptr (b self , 0) • xs n ) , M ε = =⇒ w, M ys n = [w] E F step (xs) , M n ys if s main .out = 1 E F step (xs) , M n+1 ys symbol(G P , step main-node ) . = ϕ E(out step ) = (b, struct step main-node ) G P F step (Vptr (b self , 0) • Vptr (b, 0) • xs n ) , M ε = =⇒ Vundef, M M fs-rep G P ve ϕ b ve(y) = w E F step (xs) , M n ys if s main .out > 1,
where s main .out = y τ 

Evaluation of the main loop

For the correctness of the body of the main function, we introduce a coinductive predicate that specifies the looping execution of the main step function. We use the same style of looping semantic judgments in Stc (figure 3.6c on page 83) and Obc (figure 4.2d on page 103). We use this predicate for the intermediate correctness results as it can be directly related to the looping execution semantics of Obc. Assume, as a property of the generation function that there exists a Clight function F step , named step main-node , that corresponds to the translation of the method s main . Similarly, assume that the variable self is globally declared, that is, there exists a block identifier b self such that symbol(G P , self) . = b self . The predicate is presented under these assumptions in figure 5.10. We write E F step (xs) , M n ys to mean that, in the context of the environment E, the function F step is executed repeatedly, taking successive inputs from the stream of lists of values xs from instant n onwards and constraining the stream ys of lists of outputs values from instant n onwards. Depending on the number of outputs of s main , the predicate specifies, the memory state after each call.

We show that this predicate simulates one step of the main loop body, that we designate main-loop-body, described in figure 5.5 on page 149, with the according trace obtained from the concatenation of the trace of the loads with the trace of the stores. In the following, we fix xs and ys as two streams of lists of values that are well-typed (at each instant) relative to the input and output types of s main respectively. Lemma 5.5.13 (exec_body, src/ObcToClight/Correctness.v:1700) Given an integer n, an environment E, a memory M n and a temporary environment L n such that E F step (xs) , M n n ys, then there exist a temporary environment L n+1 and a memory M n+1 such that:

1. G P , E, L n main-loop-body, M n t n = =⇒ Normal, L n+1 , M n+1 where t n = read-trace xs n s main .in + write-trace ys n s main .out

2. E F step (xs) , M n+1 n+1 ys
We must use the small-step semantics of Clight (presented in section 5.3.1.1), to show that generated programs diverge reactively. We coinductively define a function that builds an infinite trace from input and output streams of lists of values and input and output variable declarations. The condition on read-trace and write-trace ensures that the infinite trace is productive. To fulfill this requirement, we need to prove that ∀n, xs n = ins , ∀n, ys n = outs , and that ins and outs are not simultaneously empty. We show that the looping predicate represents the infinite execution of the main loop, using the small-step semantics. This is important for the final proof. 

G P S(F d , main-loop, k, E, L n , M n ) T n --→ ∞
where T n = trace-step n xs ys (s main .in) (s main .out).

Correctness of the main entry point body

In addition to the previous assumptions on F step , xs, ys, self and b step , we will assume that F reset is the Clight generated function named reset main-node that corresponds to the r main method. We also fix a context where the main step method is executed repeatedly on the streams xs and ys and on a memory tree me 0 that is initialized by a unique call to the main reset method. Finally, we also assume a Clight environment E main , a temporary environment L main and a memory M main that represent the state at the entry of the main entry point of the Clight program. We specify this state according to the number of outputs of the s main method. If it has zero or one output then we only assert s-rep for the global self variable, and if it has strictly more than one output we add a fs-rep assertion that corresponds to the locally declared structure named out step .

Hypothesis 5.5.4

• If s main has zero or one output, then M main s-rep p G P main-node ∅ (b self , 0).

• Otherwise, there exist a block identifier b and structure fields ϕ such that:

1. comp(G P , step main-node ) . = ϕ 2. E(out step ) = (b, struct step main-node ) 3. M main s-rep p G P main-node ∅ (b self , 0) * fs-rep G P ∅ ϕ b
We begin by showing that the main reset call in the body of the main entry point function, as shown in figure 5.5 on page 149, evaluates correctly and initiates the looping execution of the main step function. = F main . Using the semantics of Clight programs (figure 5.8d on page 157), to show that P diverges reactively producing an infinite trace T , we must show that there exists a memory M init that satisfies the two following antecedents, where

C main = C(F main , ε, stop, M init ): 1. initial-state(P, C main ) 2. G P C main T - -→ ∞
To show the existence of M init , we show the following intermediate result that additionally specifies the memory.

Lemma 5.5.16 (init_mem, src/ObcToClight/SepInvariant.v:1977) There exists a memory M init such that initmem(P) . = M init and

M init s-rep G P G p main-node ∅(b self , 0).
As a direct consequence, we know that the witness M init of lemma 5.5.16 satisfies the memory initialization predicate. For the sake of simplicity, we exhibit the existential witnesses progressively, whereas we cannot in the Coq proof.

Corollary 5.5.16.1 (initial_state_main, src/ObcToClight/Correctness.v:2051) initial-state(P, C main ) holds.

We must still prove the reactive divergence of the call to the main entry point function, that is,

G P C main T - -→ ∞.
To show the correctness of the trace, we want T = T 0 = trace-step 0 xs ys s main .in s main .out. The first step is the entry step into the actual main function.

Lemma 5.5.17 (main_entry, src/ObcToClight/Correctness.v:1340) There exist an environment E main , a temporary environment L main , and a memory M main such that function-entry(F main , ε, M init ) .

= (E main , L main , M main ) and they satisfy hypothesis 5.5.4.

Finally, we show the correctness result for the whole generated program, in a context that satisfies hypotheses 5.5.2 and 5.5.3 on page 177 and on the preceding page. Chapter 6

Conclusion

The previous chapters have presented a sequence of languages, semantic models, compilation passes, and correctness results. We now describe how they are combined to give an end-to-end correctness proof (section 6.1), before summarizing the presented work (section 6.2) and outlining future possibilities (section 6.3).

6.1 End-to-end correctness

The compilation function

The overall compilation function combines the individual transformations described in previous chapters and integrates a CompCert function that compiles Clight into assembly code. The elaboration pass, the scheduling validator, and the CompCert function may all fail in one way or another. This possibility is treated formally by an error monad (res, CompCert/common/Errors.v:46). A result, of type res A, is either OK r where r is of type A, or an error Error-actually the Error constructor carries an error message that we omit for simplicity. We use the following notations, inspired from the programming language Haskell, for the usual monadic binding, mapping and sequencing operators. Their roles is essentially to propagate Error. The binding operator > >= : res A → (A → res B) → res B takes a result and applies a partial function on it. The mapping operator < $ > : res A → (A → B) applies a total function on a result. The sequencing operator > > : res A → res B → res B sequentializes partial operations. It is defined with the > >= operator.

OK r > >= f f r

Error > >= f Error OK r < $ > f OK (f r)

Error < $ > f Error r 1 > > r 2 r 1 > >= λ -. r 2
We combine the source transformations described in the previous chapters and recalled in figure 6.1 into a monadic compilation function. The compilation function takes a list of parsed raw declarations and the name of the main node, and returns the elaborated NLustre program and the generated assembly program, in the error monad. The is-well-sch function lifts the test is-well-sch-tcs (listing 4.3 on page 109) into the error monad, generalizing over the whole program. Definition 6.1.2 (is_well_sch,src/Velus.v:54) is-well-sch-system r s r > > if is-well-sch-tcs (set-of-list y) x s.tcs then OK() else Error where s.in = x τ x ,ck x and s.inits = y c y ,ck y is-well-sch P fold-l is-well-sch-system P (OK()) > > OK P

The proof of correctness

For the compile function to be correct, the generated assembly program must run forever and produce an infinite trace that alternates volatile load and store events that correspond to the values in the input and output streams of the main node in the source NLustre program.

To prove this, we first define a function that builds an infinite trace from a node and its input and output coinductive streams. where n.in = x τ x ,ck x and n.out = y τ y ,ck y This function uses trace-step (definition 5.5.4 on page 181), that builds an infinite trace from indexed streams of lists of values and variable declarations, and to-idx (definition 2.4.4 on page 62) that turns a list of coinductive streams into an indexed stream of lists. The definition, as for trace-step, needs additional hypotheses, namely xs = n.in , ys = n.out and n.in, and n.out are not both empty, which is guaranteed by syntactic invariants.

We define a predicate that relates a node, its input and output streams, and a given infinite trace. Proof. Inversion on the compilation hypothesis suffices to show that each pass succeeds.

Let n be the main node such that node(G, f ) .

= n, n.in = x τ x ,ck x its input declarations and n.out = y τ y ,ck y its output declarations. We then proceed step-by-step, as represented in figure 6.2.

1. We apply theorem 2.4.3 (page 62) to deduce the indexed semantics of the node. P ⇓ asm Reacts trace-step 0 (to-idx xs) (to-idx ys) x τ x y τ y Now that we have a witness for the trace T , it remains to show that it satisfies bisim-IO.

All antecedents are discharged easily but for the bisimilarity obligation. We must show that trace-node 0 xs ys n ≡ trace-step 0 (to-idx xs) (to-idx ys) x τ x y τ y . Even if it seems to be a direct consequence of the definition 6.1.3 of trace-node, we need an intermediate result shown by coinduction to get around difficulties about proof irrelevance, since trace-node and trace-step have non-represented parameters that are proofs.

Summary

In chapter 2, we presented the formalization of the Lustre dialect treated by Vélus, and in particular, the formalization of the semantics of the modular reset. Our model of the modular reset requires only one additional semantic rule. We also presented two equivalent semantic models for NLustre, the normalized version of Lustre, based on two representations for streams: as coinductive objects, and as functions.

Chapter 3 introduced the Stc language that permits improved code generation and facilitates semantic reasoning after the addition of the modular reset. In Stc, a node is translated into a system that has a state and transitions. The proof of correctness from NLustre to Stc is based on a third semantic model for NLustre where the state of a node is made explicit.

In Chapter 4, we described the generation of imperative Obc code. Each Stc system is translated into an Obc class with fields and two methods step and reset. Before being translated, the Stc transition constraints are scheduled to fix the sequential order of execution in the generated imperative code. We showed how to optimize the generated Obc code to reduce the number of conditionals.

Chapter 5 presented the generation of Clight. The proof of correctness relies on separation logic to relate the tree-like memory model of Obc with the realistic low-level memory model that is used in CompCert.

Finally, in the previous section, we showed how we combine everything to establish an end-to-end correctness proof for a compilation function from NLustre to assembly code. This function is extracted from Coq to OCaml and integrated into a compiler from a normalized dialect of Lustre with modular reset to an executable binary.

Outlook

This thesis shows the feasibility of a verified compiler for a subset of Lustre with modular reset. Its components also have value individually. Our ideas and definitions may provide a useful starting point for formalizing other reactive languages in an ITP. The semantic rule for the reset construct is novel and interesting independently of the Coq development. The intermediate language Stc seems to be a useful compromise between NLustre and Obc for expressing and reasoning about optimizations. Like Lustre, it provides a language modeling transition systems with function abstraction and composition, but it also explicitly specifies the manipulation of states. The integration of Clight into all our languages and the techniques used to compile Obc into Clight could serve as a model for other verified compilers.

The Vélus experiment continues. In the short term, we aim to complete the elaboration and transcription passes and to implement normalization. Optimization and efficiency of generated code has always been part of the design of Lustre [START_REF] Halbwachs | Generating Efficient Code from Data-Flow Programs[END_REF]; [START_REF] Gérard | A Modular Memory Optimization for Synchronous Data-Flow Languages: Application to Arrays in a Lustre Compiler[END_REF]] and synchronous languages in general. Beside the fusion optimization that we implement, some other optimizations could be formalized and added on dataflow and imperative programs, for instance, dead-code elimination, common 6.3 Outlook sub-expression elimination, and copy elimination. An interesting question is to determine which optimizations can be left to CompCert and whether optimizations performed upstream in a synchronous compiler interfere with those implemented downstream in CompCert. The way we handle multiple outputs in the translation from Obc to Clight makes the compilation function and its correctness proof rather intricate: we could investigate another common approach where outputs are stored in the same structure that holds the state of the node. Additionally, remark that the correctness result of theorem 6.1.1 is conditioned by the existence of a semantics for the NLustre node. Ideally, we would like a stronger statement where the existence of the semantics is deduced from the well-formedness analyses; this question is the subject of ongoing research. Moreover, our final theorem states a simulation from the source NLustre semantics to the target Assembly semantics, but to achieve refinement, we need the converse direction. It can be shown, provided the source program has a semantics, that if the target semantics is deterministic, then refinement can be deduced. In our case, the Assembly semantics of CompCert is deterministic, so it only remains to solve the problem of the existence of the semantics for an NLustre program.

A longer term goal is to mechanize the syntax, semantics, and compilation algorithms for state machines. The modular reset is a prerequisite for compiling state machines, but we also need variant types and switch expressions [START_REF] Colaço | A Conservative Extension of Synchronous Data-Flow with State Machines[END_REF]]. Such additions will require generalizations of the type systems, the semantic models and the compilation algorithms. Other features provided by compilers like SCADE [Colaço, Pagano, and Pouzet (2017)] and Heptagon [START_REF] Delaval | Heptagon/BZR manual. PARKAS (ENS) and Ctrl-A (LIG/Inria)[END_REF]], which support far richer languages than our compiler, could also be investigated:

• The distinction between nodes that have a state and purely combinatorial functions is only a matter of specializing the compilation algorithms. Purely combinatorial functions can be compiled without requiring a local state and methods.

• Adding the pre construct requires implementing an initialization analysis to ensure that a value is only used when it is defined [START_REF] Colaço | Towards a Higher-Order Synchronous Data-Flow Language[END_REF]]. The -> operator requires the introduction of initial states per clock.

• Arrays [START_REF] Gérard | A Modular Memory Optimization for Synchronous Data-Flow Languages: Application to Arrays in a Lustre Compiler[END_REF]], whose integration into Vélus seems difficult both in terms of semantics and of code optimization.

• Activation conditions could be given a semantics in Lustre and compiled into NLustre using the when, fby and merge operators.

• We could adapt the Lustre semantics to handle the generalized 3-arguments fby of Scade. Its efficient compilation into NLustre would require arrays and index manipulations (using chained fby equations would give the same effect but may induce excessive copying).

• Parametricity of nodes, that allows a node to take static parameters, requires specific work. a The common expression kernel language between NLustre and Stc.

b End-to-end compilation, common specifications and standard library extensions.

• Records could be implemented with variant types, but they require work to adapt the type systems, find a way to model in-place modifications and to compile them efficiently into Clight.

• External calls could be used to implement abstract data types. CompCert handles external calls and we could take inspiration from the way it models them.

• Side effects would require our semantic models to be adapted to take effects into account. How to do this is unclear and it may be preferable to maintain a purely functional language.

The experiment of using translation validation in combination with fully verified algorithms to implement scheduling in Stc shows the applicability of this approach. In particular it could be applied to type and clock checking, that are currently part of elaboration, making this pass very intricate. In general, we learned that simplicity is a valuable goal when working in an ITP.

Finally, we hope that our formalization could be used to do Lustre program verification directly in Coq. The idea would be to adapt our framework in order to be able to state properties on the source Lustre programs and use our verified algorithms to show the preservation of these properties on generated code.

The executable algorithms in Vélus are neither large nor complicated, yet a lot of effort was required to prove them correct. Table 6.1 gives an overview of the size of the Coq code base of Vélus: of roughly 42 000 lines of Coq code, only 3% define compilation algorithms, the rest are used for specification (e.g., syntax, semantics, type and clock systems, syntactic predicates) and correctness proofs. In CompCert, the compilation algorithms make up 14% of the code base [Leroy (2009b)]. There is thus room for 6.3 Outlook improvement in Vélus, bearing in mind, however, that one of the main challenges is to specify and relate fundamentally different semantic paradigms. [START_REF] Kästner | CompCert: Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Compiler[END_REF] report on a promising experiment on integrating CompCert into a safety-critical industrial application. The beneficial outcome of the experiment both in terms of confidence in the generated code and of performance shows that the approach of verified compilation may be worth the effort. But the rationale for a verified compiler for C does not transfer automatically to a verified compiler for Lustre. Our work does not address the question of apply ITP-based formal methods in the context of the development of certified application such as SCADE. This is an important and interesting topic in itself.

The goal of mechanizing a compiler and its end-to-end correctness proof in an ITP imposed a discipline that led us to take a fresh look at questions that are otherwise easily overlooked and to develop the key contributions of this thesis. First, to reason effectively about the modular reset, we had to design a semantic rule that is suitable for reasoning within an ITP, well suited for compilation correctness proofs, and simpler than previous models. Second, to generate reasonable code, we had to introduce a novel intermediate language and formulate a suitable semantic model. Third, to connect the proofs to CompCert, we had to to propose a solution for relating an abstract tree-like memory model with a machine-level memory model. Implementing a verified compiler in an ITP is difficult, time-consuming and fastidious, but it is also a fruitful source of challenges and ideas. Note that the escape sequence \e, which represents the escape character, is non-standard but is supported in e.g. GCC or Clang.

Stc

Comments §6.4.9 Vélus supports Scade-like comments, that is single line --comments and multi-lines /* -*/ comments.2 In addition, to be the most general possible, to C-like comment single line // comments and OCaml-like nested multi-lines comments (* -*) are also supported.

pair (e, t) belongs to the relation when one of the constructors can be applied to it and its antecedents are satisfied. The constructors of wt can express arbitrarily complex logical content. Here WTconst simply states that a constant is always well typed with type type_const c, implementing ι c . And the chain of implications stated by WTop is to be read as a list of premises before the last arrow-saying in order that e 1 is well typed, e 2 is well typed, the return type of the operator can be resolved given the types of its operands-and a conclusion after. 1Now consider the semantics of the language, given by the following inference rules (where the symbol . = is used to denote the result of a partial function):

Sconst c ⇓ c Sop e 1 ⇓ v 1 e 2 ⇓ v 2 ⊕ v 1 v 2 . = v e 1 ⊕ e 2 ⇓ v
And their implementation in Coq:

Require Import Operators FooSyntax. must all be well typed, the instantiated node must exist in the program, and the call input and output type signatures must match the static declaration type signatures. The type checking of a modular reset simply adds to the node instantiation that the reset expression must be well typed and of boolean type.

Module

In sub-figure E.1d, we see that the typing of an equation is straightforward: an equation is well typed if its right hand-side expressions are all well typed and if the variables of the left hand-side are bound to the types of the expressions. The typing of a node, presented in sub-figure E.1e, is more intricate. The input, output and local variables clocks have to be type-checked, but with different typing environments. Input clocks are type-checked over input variables, no matter the order. Then output clocks are typed-checked over input and output variables, and finally local clocks are type-checked over all variables, as well as the equations. A program is well typed as described by the sub-figure E.1f if all of its nodes are well typed and have distinct names.

Even if I will not reproduce all the Coq definitions implementing this type system, I still give a piece of it on the listing E.1: the typing of a when expression. This piece of Coq code shows the definition of the constructor wt_Ewhen of the inductive predicate wt_exp. This predicate is defined in a section in which two variables G of type global (a program G of category g in the sub-figure E.1c) and vars of type list (ident * type) (a typing environment Γ) are defined and act as implicit parameters for all subsequent definitions, including wt_exp which appears here as a unary predicate over expressions. Note that Γ is implemented as an association list, because it is the simplest map data structure possible and that we do not need performance here since this code is purely where n.in = x τ 

E.2 NLustre Γ c Γ x Γ(x)

E.4 Obc

The type system of Obc is rather straightforward, yet as the approach is different from what is done for Stc and NLustre, it is more informative. As for the type system of Stc, the typing of annotated expressions shown in figure E.4a uses two different typing environments Γ v and Γ sv for variables and state variables respectively. Figure E.4b gives the typing rules for statements. They are all self-explanatory but the rule for method calls. Indeed, compared to the typing rule for Stc default transitions or NLustre node instantiations, we have more structural antecedents:

1. we require the defined variables to be all distinct, and 2. an additional parameter E i , that holds the sub-instances declarations, is used to check that the pair (i, c) is declared.

Both properties were guaranteed syntactically in upstream languages. Apart from the fact that those languages were designed at relatively distant times, one of the reason is
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  Figure 1.6 (II): Successive transformations of an example Lustre program

  Definition ann : Type := (type * nclock)%type. Definition lann : Type := (list type * nclock)%type. Inductive exp : Type := | Econst : const -> exp (* constant *) | Evar : ident -> ann -> exp (* variable *) | Eunop : unop -> exp -> ann -> exp (* unary operator *) | Ebinop : binop -> exp -> exp -> ann -> exp (* binary operator *) | Efby : list exp -> list exp -> list ann -> exp (* unit delay *) | Ewhen : list exp -> ident -> bool -> lann -> exp (* sampling *) | Emerge : ident -> list exp -> list exp -> lann -> exp (* merging *) | Eite : exp -> list exp -> list exp -> lann -> exp (* conditional *) | Eapp : ident -> list exp -> option exp -> list ann -> exp. (* application / reset *) Coq (src/Lustre/LSyntax.v:44-58) (a) Expressions Definition equation : Type := (list ident * list exp)%type.

  const, src/CoindStreams.v:290) const (true • bs) c ‹ c › • const bs c const (false • bs) c ‹ › • const bs c
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 2 Figure 2.3 (II): The semantic synchronous streams operators

  node true_until(r: bool) returns (c: bool) let c = true -> if r then false else (pre c); tel node reset_f(x: int; r: bool) returns (y: int) var c: bool; let c = true_until(r); y = merge c (f(x when c)) (reset_f((x, r) when not c)); tel Lustre

  node euler(x0, u: float64) returns (x: float64); let x = x0 fby (x + 0.1 * u); tel node ins(gps, xv: float64) returns (x: float64; alarm: bool); var k: int; let x = merge alarm ((0. fby x) when alarm) (euler((gps, xv) when not alarm)); alarm = (k >= 50); k = 0 fby (k + 1); tel node nav(gps, xv: float64; s: bool) returns (x: float64; alarm: bool); var c: bool; r: bool; let (x, alarm) = merge c (gps when c, false) ((restart ins every r) ((gps, xv) when not c); c = true fby (merge c (not s when c) (s when not c)); r = false fby (s and c); tel Lustre (a) Before node euler(x0, u: float64) returns (x: float64); var i: bool; px: float64; let i = true fby false; x = if i then x0 else px; px = 0.0 fby (x + 0.1 * u); tel node ins (gps: float64, xv: float64) returns (x: float64, alarm: bool) var k: int32, px: float64, xe: float64 when not alarm; let k = 0 fby k + 1; alarm = (k >= 50); xe = euler(gps when not alarm, xv when not alarm); x = merge alarm (px when alarm) xe; px = 0. fby x; tel node nav (gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool) var r: bool, c: bool, cm: bool, insr: float64 when not c, alr: bool when not c; let (insr, alr) = (restart ins every r)(gps when not c, xv when not c); x = merge c (gps when c) insr; alarm = merge c (false when c) alr; cm = merge c (not s when c) (s when not c); c = true fby cm; r = false fby (s and c);
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 2 6c presents the rules for equations. Unlike expressions, equations are annotated with their activation clock. One goal of the calculus is thus to check that the clocks of the left-hand side and of the right-hand side of an equation match the annotation. This is what the rules for basic and fby equations implement. For a node instantiation, the Ω c :: • Ω x :: Ω(x) Ω e :: ck Ω e :: ck Ω e 1 :: ck Ω e 2 :: ck Ω e 1 ⊕ e 2 :: ck Ω e :: ck Ω(x) = ck Ω e when (x = b) :: ck on (x = b) (a) Expressions (wc_exp, src/CoreExpr/CEClocking.v:41) Ω(x) = ck Ω c e t :: ck on (x = true) Ω c e f :: ck on (x = false) Ω c merge x e t e f :: ck Ω c e :: ck Ω c e t :: ck Ω c e f :: ck Ω c if e then e t else e f :: ck Ω e :: ck Ω c e :: ck (b) Control expressions (wc_cexp, src/CoreExpr/CEClocking.v:64)
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  Figure 2.6 (I): The clock system of NLustre

  Figure 2.6 (II): The clock system of NLustre
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 2 Figure 2.7 (I): The coinductive semantics of NLustre

( c )

 c Figure 2.7 (II): The coinductive semantics of NLustre

  Figure 2.8 (II): Instantaneous semantics of NLustre
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 a29 Figure 2.9: Indexed semantics of NLustre

  Definition 2.3.8 (mask, src/IndexedStreams.v:217) count rs n if rs n then c + 1 else c

  Given a program G, a name f , two lists of coinductive streams of values xs and ys such that G f (xs) ⇓ ys, then there exist two indexed streams of lists of values xs and ys such that G f (xs ) ys , xs ∼ xs , and ys ∼ ys .

  Given a program G, a name f , two streams of lists of values xs and ys such that G f (xs) ys, then there exist two lists of coinductive streams of values xs and ys such that G f (xs ) ⇓ ys , xs ∼ xs, and ys ∼ ys.

  Definition 2.4.3 (tr_Stream, src/NLustre/NLCoindToIndexed.v:65) to-idx s λ n. s n We lift this definition to the translation of lists of coinductive streams into streams of lists. Definition 2.4.4 (tr_Streams, src/NLustre/NLCoindToIndexed.v:69) to-idx s λ n. (to-idx x n) x∈s

  Theorem 2.4.3 (implies, src/NLustre/NLCoindToIndexed.v:660) Given a program G, a name f , two lists of coinductive streams of values xs and ys such that G f (xs) ⇓ ys, then G f (to-idx xs) to-idx ys Lemma when_spec: forall k xs cs rs, when k xs cs rs <-> (forall n, (xs # n = absent /\ cs # n = absent /\ rs # n = absent) \/ (exists x c, xs # n = present x /\ cs # n = present c /\ val_to_bool c = Some (negb k) /\ rs # n = absent) \/ (exists x c, xs # n = present x /\ cs # n = present c /\ val_to_bool c = Some k /\ rs # n = present x)). Coq (src/CoindStreams.v:479-497)Listing 2.7: Inversion result for the coinductive when operator

  Definition 2.4.6 (count, src/CoindStreams.v:392) count-from c (r • rs) c • count-from c rs where c = if r then c + 1 else c count rs count-from 0 rs

  Definition 2.4.8 (streams_nth, src/NLustre/NLIndexedToCoind.v:82) streams-nth k s λ n. (s n) k

  Theorem 2.4.8 (implies, src/NLustre/NLIndexedToCoind.v:1116) Given a program G, a name f , two streams of lists of values xs and ys such that G f (xs) ys, then G f (to-coind xs) ⇓ to-coind ys

  Lemma when_inv: forall H b e x k es, CESem.sem_exp b H (Ewhen e x k) es -> exists ys xs, CESem.sem_exp b H e ys /\ CESem.sem_var H x xs /\ (forall n, (exists sc xc, val_to_bool xc = Some k /\ ys n = present sc /\ xs n = present xc /\ es n = present sc) \/ (exists sc xc, val_to_bool xc = Some (negb k) /\ ys n = present sc /\ xs n = present xc /\ es n = absent) \/ (ys n = absent /\ xs n = absent /\ es n = absent)). Coq (src/NLustre/NLIndexedToCoind.v:417-439) Listing 2.8: Inversion result for the semantics of the when construct
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 31 Figure 3.1: Scheduling and compiling the modular reset

  node euler(x0, u: float64) returns (x: float64); var i: bool; px: float64; let i = true fby false; x = if i then x0 else px; px = 0.0 fby (x + 0.1 * u); tel node ins (gps: float64, xv: float64) returns (x: float64, alarm: bool) var k: int32, px: float64, xe: float64 when not alarm; let k = 0 fby k + 1; alarm = (k >= 50); xe = euler(gps when not alarm, xv when not alarm); x = merge alarm (px when alarm) xe; px = 0. fby x; tel node nav (gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool) var r: bool, c: bool, cm: bool, insr: float64 when not c, alr: bool when not c; let (insr, alr) = (restart ins every r)(gps when not c, xv when not c); x = merge c (gps when c) insr; alarm = merge c (false when c) alr; cm = merge c (not s when c) (s when not c); c = true fby cm; r = false fby (s and c); tel NLustre (a) Before Listing 3.1 (I): Translation of the example system euler { init i = true, px = 0.; transition(x0: float64, u: float64) returns (x: float64) { next i = false; x = if i then x0 else px; next px = x + 0.1 * u; } } system ins { init k = 0, px = 0.; sub xe: euler; transition(gps: float64, xv: float64) returns (x: float64, alarm: bool) var xe: float64 when not alarm; { next k = k + 1; alarm = (k >= 50); xe = euler<xe,0>(gps when not alarm, xv when not alarm); x = merge alarm (px when alarm) xe; next px = x; } } system nav { init c = true, r = false; sub insr: ins; transition(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool) var cm: bool, insr: float64 when not c, alr: bool when not c; { (insr, alr) = ins<insr,1>(gps when not c, xv when not c); reset ins<insr> every (. on r); x = merge c (gps when c) insr; alarm = merge c (false when c) alr; cm = merge c (not s when c) (s when not c); next c = cm; next r = s and c; } } Stc (b) After Listing 3.1 (II): Translation of the example tc ::= transition constraint | x = ck ce (basic constraint) | next x = ck e (next constraint) | x * , = ck x<x,k>(e + , ) (default transition) | reset x<x> every ck (reset transition) d ::= x τ,ck variable declaration
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 3 Figure3.2 presents the syntax of Stc. Expressions and control expressions are shared with NLustre: this allows to simplify both the translation function and its proof of correctness. As explained, a system only possesses two transitions: an explicit default transition, which is defined by a list of transition constraints, and an implicit reset transition. In this language, state variables and instances are made explicit in the syntax through the init and sub declarations, respectively. Transition constraints, as for dataflow equations in NLustre, are annotated with their activation clock. Standard variables are constrained by basic constraints and state variables by next constraints. A default transition x = ck f <i, k>(e) constrains the state of the instance i declared with system f . The integer parameter k equals 1 if the list of transition constraints also contains a reset transition on the same instance i and 0 otherwise. Its precise role will be explained later. A state variable is declared at system level with its initial value as a constant, and a sub-system instance is declared with its system name.Listing 3.2 shows the Coq implementation of systems. We do not show the implementation of transition constraints, as it is very similar to that of listing 2.6d on page 46 for NLustre equations. Again, we use a dependent record to model the syntactic elements of a system together with some syntactic invariants. As for NLustre, an Stc default transition must have at least one input (s_ingt0); the declarations of a system must be unique (s_nodup and s_nodup_init_subs); the sub-instance variables, state variables and non-input variables appearing in the transition constraints must be declared (s_subs_calls_of, s_inits_in_tcs, and s_vars_out_in_tcs); the reset transitions are
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 33 Figure 3.3: Translation of NLustre equations (translate_eqn, src/NLustreToStc/Translation.v:57)

Figure 3 . 4 :

 34 Figure 3.4: The clock system of Stc: transition constraints
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 35 Figure 3.5: Example transition diagrams
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 36 Figure 3.6: Semantics of Stc
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 a37 Figure 3.7: Memory semantics of NLustre
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 38 Figure 3.8: Masking with memories explained on an example

  sem_msem_node, src/NLustre/NLMemSemantics.v:772) Given a well-ordered program G, a name f , and two streams of lists of values xs and ys such that G f (xs) ys, then ∃M, G, M f (xs) ysDeterminism of the initial memoryNow we can state a property ensuring a kind of determinism of the memory semantics relative to the initial memory. That is, we show that the initial content of the memory only depends on the node itself. We follow the same scheme described in the previous section, combining an induction on the program G and an intermediate result on equations. Lemma 3.3.3 (msem_eqs_same_initial_memory, src/NLustre/NLMemSemantics.v:813) Given a program G, a list of equations eqs, two base clock streams bs and bs , two environment streams H and H , and two memory streams M and M such that: 1. the variables defined by the equations eqs are distinct, 2. ∀eq ∈ eqs, G, H, bs, M eq and G, H , bs , M eq, 3. m-closed M eqs and m-closed M eqs. and assuming the induction hypothesis: ∀f xs ys xs ys M M , G, M f (xs) ys → G, M f xs ys → M 0 ∼ ∼ ∼ M 0 Then M 0 ∼ ∼ ∼ M 0 . Theorem 3.3.4 (same_initial_memory, src/NLustre/NLMemSemantics.v:914) Given a well-ordered program G, a name f , four streams of lists of values xs, ys, xs and ys , and two memory streams M and M such that G, M f (xs) ys and G, M f (xs ) ys , then M 0 ∼ ∼ ∼ M 0 Initial memory until the first presence Another important property that we show about the memory model is the persistence of the initial memory until the first activation of the considered node. Theorem 3.3.5 (msem_node_absent_until, src/NLustre/NLMemSemantics.v:1076) Given a well-ordered program G, a name f , a natural integer n 0 , two streams of lists of values xs and ys, and a memory stream M such that G, M f (xs) ys and where for all instants strictly before n 0 , all values in xs are absent, then ∀n ≤ n 0 , M n ∼ ∼ ∼ M 0 Equivalence of the semantic models It is rather easy to show the reverse inclusion of the semantic models. Lemma 3.3.6 (msem_sem_node_equation, src/NLustre/NLMemSemantics.v:1130) For a program G, • Given a name f , two streams of lists of values xs and ys, and a memory stream M such that G, M f (xs) ys, then G f (xs) ys

  equivalence, src/NLustre/NLMemSemantics.v:1173) Given a well-ordered program G, a name f , two streams of lists of values xs and ys, then G f (xs) ys ↔ ∃M, G, M f (xs) ys3.3.2 The proof of correctnessThe proof of correctness of the i-tr translation function between NLustre and Stc consists in showing that the semantics of the source program is preserved. The memory semantics for NLustre allows us to directly state a correspondence between the memory stream M of NLustre and the memory states S and S of Stc.The first step is to show that the NLustre memory stream is indeed initial, in the terms of Stc, at the very first instant. Lemma 3.3.8 (msem_node_initial_state, src/NLustreToStc/Correctness.v:135) Given a well-ordered program G, a name f , two streams of lists of values xs and ys, and a memory stream M such that G, M f (xs) ys, then initial-state (i-tr G) f M 0 .

  Definition 3.3.4 (Ordered_systems, src/Stc/StcOrdered.v:32) Stc-Ordered ε Stc-Ordered P ∀s ∈ P, s.name = s .name ∀i f ∈ s.subs, f = s.name ∧ ∃s P , system(P, f ) s P Stc-Ordered (s • P )

  Lemma 3.3.10 (msem_node_state_closed, src/NLustreToStc/Correctness.v:359) Given a well-ordered program G, a name f , two streams of lists of values xs and ys and a memory stream M such that G, M f (xs) ys, then ∀n, s-closed (i-tr G) f M n .

Figure 4 .

 4 Figure 4.1 presents the syntax of Obc. Working from the bottom up, an Obc program is a list of classes. Each class has its own state variables declared with their names and types, sub-instances i c , each declared with its name i and class c, and a list of methods. Each method has a name, a list of input parameters, a list of output parameters and a list of local variables. The body of a method is a single statement. A statement is an assignment to a (local or output) variable of an expression; an assignment to a state variable; a conditional branching statement; a method call x := i c .f (e) specifying the list of variables x to receive the results, if any, a class name c, an instance variable i, a method name f and a list of expressions e for the inputs; the sequence of two statements or a no-operation statement. An expression is a constant, a standard variable, a state variable, a unary or binary operation or a validity assertion. A validity assertion is a syntactic decoration that is used in method call arguments to indicate that the enclosed expression is initialized. This will be explained later.Listing 4.1 shows the Coq implementation of Obc syntax for methods and classes. Both are implemented using dependent records, allowing the direct embedding of syntactic properties into the syntax itself. We ensure that input, local and output variables of methods are uniquely declared (m_nodupvars), as well as state variable and sub-instance (c_nodup) and methods (c_nodupm). As usual, identifiers must be valid (m_good and c_good).The type system of Obc is described in appendix E.4.
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  Figure 4.2 (II): Semantics of Obc
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 43 Figure 4.3: Well-scheduled Stc transition constraints (Is_well_sch, src/Stc/StcWellDefined.v:49)

Definition

  check_var (defined: PS.t) (variables: PS.t) (x: ident) : bool := if PS.mem x mems then negb (PS.mem x defined) else PS.mem x variables. Definition sub_tc (tc: trconstr) : option (ident * nat) := i: ident) (k: nat) (ik : ident * nat) : bool := negb (ident_eqb (fst ik ) i) || Nat.ltb (snd ik ) k. Definition check_tc (tc: trconstr) (acc: bool * PS.t * PS.t * PNS.t) : bool * PS.t * PS.t * PNS.t := match acc with | (true, defs, vars, subs) => let b := PS.for_all (check_var defs vars) (free_in_tc tc PS.empty) in let defs := ps_adds (defined_tc tc) defs in let vars := ps_adds (variables_tc tc) vars in match sub_tc tc with | Some (i, k) => (PNS.for_all (check_sub i k) subs && b, defs, vars, PNS.add (i, k) subs) | None => (b, defs, vars, subs) The scheduling validator (mems is a global section variable)

  well_sch_spec, src/Stc/StcSchedulingValidator.v:384) Given a list of inputs ins, a set of state variables regs and a list of transition constraints tc, then is-well-sch-tcs regs ins tc = true ↔ WellSch regs ins The idea is to provide a generic way to use an external scheduler, written in OCaml, that interfaces with the Coq development. Thus the Coq functors responsible for the scheduling stage are parameterized over a module containing a single function schedule whose declaration is given in listing 4.4a. This function takes the name of the Stc system (only used for error reporting) and the list of transition constraints to be scheduled, and returns a list of positive integers that give the absolute position of each transition constraint in the ordering. This external scheduler function is used within the schedule_tcs Coq function shown in listing 4.4b. The function ocombine combines the list of positives resulting from the call to the external scheduler Sch.schedule with the initial list of transition constraints giving a list of pairs, or failing with None if the lists are of different lengths. This Parameter schedule : ident -> list trconstr -> list positive. Coq (src/Stc/StcSchedule.v:66) (a) The parameterized scheduling function Definition schedule_tcs (f: ident) (tcs: list trconstr) : list trconstr := let sch := Sch.schedule f tcs in match ocombine sch tcs with | None => tcs | Some schtcs => map snd (SchSort.sort schtcs) end. Coq (src/Stc/StcSchedule.v:153-158) (b) The scheduling wrapper Listing 4.4: The Coq interface

Figure 4 .

 4 Figure 4.4 (I): Translation of Stc to Obc

  Figure 4.4 (II): Translation of Stc to Obc

  Definition 4.4.1 (eq_if_present, src/StcToObc/Correctness.v:42) ‹v› ‹=› v ‹ › ‹=› v The second relation, stronger, is a direct function. Definition 4.4.2 (value_to_option, src/StcToObc/Correctness.v:51) ‹v› v ‹ › The state correspondence is organized around two key predicates. The first one compares an Stc environment R with an Obc memory tree me and environment ve. It uses the relation ‹=› only to require the correspondence for present values in R. Definition 4.4.3 (equiv_env, src/StcToObc/Correctness.v:57)

  Definition 4.4.5(orel, src/Common/Common.v:1019) 

  Lemma 4.4.6 (exp_correct, src/StcToObc/Correctness.v:201) Given an expression e, a value v, a set of state variables regs, an Stc environment R, a memory tree me and an environment ve such that R Free(e) ⇐= = =⇒ regs (me, ve) and R, true e ↓ ‹v›, then me, ve s-tr-exp regs e v .

Figure 4 . 5 :

 45 Figure 4.5: Normalization condition between an argument and its clock (noops_exp, src/CoreExpr/CESyntax.v:47)

  Lemma 4.4.8 (translate_normal_args, src/NLustreToStc/NL2StcNormalArgs.v:57) Given an NLustre program G that respects the normalization condition on node instantiation arguments, then so does the translation to Stc i-tr G. Lemma 4.4.9 (scheduler_normal_args, src/Stc/StcSchedule.v:478) Given an Stc program P that respects the normalization condition on default transition arguments, then so does the scheduled program P . Then, we can state and prove a dedicated correctness result for arguments of default transitions that accounts for absent/undefined values. Lemma 4.4.10 (TcCall_check_args_translate_arg, src/StcToObc/Correctness.v:848) Given a well-clocked default transition x = ck f <i, k>(e) respecting the normalization condition on its arguments, a list of present or absent values v, a set of state variables regs, a clocking environment Ω, an Stc environment R, a memory tree me and an environment ve such that: 1. R Free(ck)∪Free(e) ⇐= ======= =⇒ regs (me, ve), 2. ∀x ∈ regs, ∃v, me(x) = v, 3. R, b ck ↓ true, and 4. R, true e ↓ v, then 9 there exists a list of defined or undefined values w such that v ‹=› w and me, ve s-tr-arg regs Ω (ck, e) w.

  show the preservation of the correspondence by the addition of a transition constraint on top of tcs. They are proved by systematic inspection of the involved definitions and simple applications of the hypotheses. Most hypotheses are relevant pieces of the Stc semantics of the added transition constraint.

  Lemma 4.4.13 (Memory_Corres_Def, src/StcToObc/StcMemoryCorres.v:69) Given a basic transition constraint x = ck e, we have (S, I, S ) (x= ck e)•tcs ≡≡≡≡≡ me.

  Lemma 4.4.14 (Memory_Corres_Next_present, src/StcToObc/StcMemoryCorres.v:93) Given a next transition constraint next x = ck e and a value v such that S (x) = v, then (S, I, S ) (next x= ck e)•tcs ≡≡≡≡≡≡≡≡≡ me(x → v). Lemma 4.4.15 (Memory_Corres_Next_absent, src/StcToObc/StcMemoryCorres.v:130) Given a next transition constraint next x = ck e, if S ((x)) = S((x)), then (S, I, S ) (next x= ck e)•tcs ≡≡≡≡≡≡≡≡≡ me.

  Lemma 4.4.16(Memory_Corres_Call_present, src/StcToObc/StcMemoryCorres.v:232) Given a default transition x = ck f <i, k>(e) and a memory tree me i , ifme i ∼ ∼ ∼ S [i], then (S, I, S ) (x= ck f <i,k>(e))•tcs ≡≡≡≡≡≡≡≡≡≡≡ me[i → me i ].Lemma 4.4.17 (Memory_Corres_Call_absent, src/StcToObc/StcMemoryCorres.v:271) Given a default transition x = ck f <i, k>(e), if S [i] ∼ ∼ ∼ I[i]; I[i] ∼ ∼ ∼ S[i] whenever k = 0; (-= -<i, ->(-)) ∈ tcs; and (reset -<i> every -) ∈ tcs if and only if k = 1, then (S, I, S ) (x= ck f <i,k>(e))•tcs ≡≡≡≡≡≡≡≡≡≡≡ me.

  Lemma 4.4.18(Memory_Corres_Reset_present, src/StcToObc/StcMemoryCorres.v:158) Given a reset transition reset f <i> every ck and a memory tree me i , if me i ∼ ∼ ∼ I[i] and(-= -<i, ->(-)) ∈ tcs, then (S, I, S ) (reset f <i> every ck)•tcs ≡≡≡≡≡≡≡≡≡≡≡≡≡≡ me[i → me i ].Lemma 4.4.19 (Memory_Corres_Reset_absent, src/StcToObc/StcMemoryCorres.v:199) Given a reset transition reset f <i> every ck, if I[i] ∼ ∼ ∼ S[i] and (reset -<i> every -) ∈ tcs, then (S, I, S ) (reset f <i> every ck)•tcs ≡≡≡≡≡≡≡≡≡≡≡≡≡≡ me.

  Hypothesis 4.4.2 (Induction hypothesis) Given a name f , a list of values xs which are not all absent, a list of values ys, two states S and S such that P, S, S f (xs) ys, a list of defined or undefined values xs such that xs ‹=› xs and a memory tree me ∼ ∼ ∼ S, then there exists a memory tree me ∼ ∼ ∼ S such that s-tr P, me f.step (xs ) ys me .

  trconstrs_correct, src/StcToObc/Correctness.v:1295) Given a list of well-clocked transition constraints tcs that respects the normalization condition, Stc states S, I and S , an Stc environment R, a set of state variables regs, a clocking environment Ω, a memory tree me ∼ ∼ ∼ S, an environment ve, and a list of input names ins such that ∀tc ∈ tcs, P, R, true, S, I, S tc, then (again, omitting some common hypotheses for clarity) there exists a memory tree me and an environment ve such that: 1. s-tr P, me, ve fold-l (λ st tc. s-tr-tc regs Ω tc ; st) tcs skip (me , ve ), 2. ∀x ∈ Var (tcs) , ve ((x)) = R(x) , and 3. (S, I, S ) tcs ≡ me .

  (Memory_Corres_equal_memory, src/StcToObc/Correctness.v:1340) Given a program P ; a list of transition constraints tcs; states S, I and S ; a memory tree me; a list of state variables inits and a list of sub-systems declarations subs corresponding, respectively, to the state variables and instances appearing in tcs; assuming that (S, I, S ) tcs ≡ me, S and S are closed relative to inits and subs, and no reset transition appears in tcs without an associated default transition, then me ∼ ∼ ∼ S . Now we can prove the correctness of translation of an Stc system. Theorem 4.4.23 (correctness, src/StcToObc/Correctness.v:1427) Given a well-clocked and well-scheduled program P that respects the normalization condition, a name f , a list of values xs that are not all absent, a list of values ys, states S and S such that P, S, S f (xs) ys, a list of defined or undefined values xs such that xs ‹=› xs and a memory tree me ∼ ∼ ∼ S, then there exists a memory tree me such that s-tr P, me f.step xs ys me and me ∼ ∼ ∼ S We can then deduce the correctness of the endless execution of the translated step method call after a call to the reset method. Corollary 4.4.23.1 (correctness_loop_call, src/StcToObc/Correctness.v:1564) Given a well-clocked and well-scheduled program P that respects the normalization condition, a name f , a stream of lists of values xs that at each instant are not all absent, a stream of lists of values ys, a state S such that initial-state P f S and P, S f (xs) 0 ys, a stream of lists of defined or undefined values xs such that at each instant n, xs n ‹=› xs n , then there exists a memory tree me such that: 1. me ∼ ∼ ∼ S 2. s-tr P, {∅} f.reset (ε) ε me 3. s-tr P, me f.step (xs ) 0 λ n. ys n
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 47 Figure 4.7: The "may write" predicate on Obc statements (Can_write_in, src/Obc/ObcInvariants.v:33)
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NoNakedVarsFigure 5 . 1 :

 51 Figure 5.1: The NoNakedVars predicate (No_Naked_Vars, src/Obc/ObcInvariants.v:175)
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 52 Figure 5.2: The NoOverwrites predicate (No_Overwrites, src/Obc/ObcInvariants.v:138)

  loop_call_add_defaults, src/Obc/ObcAddDefaults.v:2016) Given a well-typed SSA program p whose method inputs are never assigned, a class name c, a method name f , a memory tree me, streams of lists of defined values written xs and ys and an integer n such that p, me c.f ( xs ) n ys , then init-args p, me c.f ( xs ) n ys .
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 53 Figure 5.3: Clight subset abstract syntax

  xe := euler(xe).step([gps], [xv]); is translated into the sequence at lines 19 and 20 step$x = fun$euler$step(&self->xe, gps, xv); xe = step$x; gen-var x τ x τ if outs ≤ 1 ∨ x ∈ outs (out->x) τ otherwise gen-exp c c type-const c gen-exp x τ gen-var x τ gen-exp (state(x) τ ) self->x τ gen-exp τ (e) τ τ ( gen-exp e) gen-exp C e τ C gen-exp e τ gen-exp (e 1 ⊕ e 2 ) τ (gen-exp e 1 ⊕ gen-exp e 2 ) τ gen-exp [x] τ gen-var x τ (a) Translation of expressions (translate_exp, src/ObcToClight/Generation.v:88)
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 54 Figure 5.4: Translation function from Obc to Clight (p and outs represent the Obc program and the outputs of the translated Obc method)

  Figure 5.6 (I): Big-step semantics of Clight

Figure 5 . 6 (

 56 Figure 5.6 (II): Big-step semantics of Clight

Figure 5 . 6 (

 56 Figure 5.6 (III): Big-step semantics of Clight
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 57 Figure 5.7: Volatile load and store operations evaluation
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 58 Figure 5.8: Small-step semantics of Clight

  Definition val: Type := Values.val. Inductive type : Type := | Tint: Ctypes.intsize -> Ctypes.signedness -> type | Tlong: Ctypes.signedness -> type | Tfloat: Ctypes.floatsize -> type. Definition cltype (ty: type) : Ctypes.type := match ty with | Tint sz sg => Ctypes.Tint sz sg Ctypes.noattr | Tlong sg => Ctypes.Tlong sg (Ctypes.mk_attr false (Some (Npos 3))) | Tfloat sz => Ctypes.Tfloat sz Ctypes.noattr end. Coq (src/ObcToClight/Interface.v:39-53) Listing 5.3: Instantiation of values and types
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 59 Figure 5.9: The s-rep predicate on the example

  Definition 5.4.8 (outputsrep, src/ObcToClight/SepInvariant.v:1293)

  staterep_deref_mem, src/ObcToClight/SepInvariant.v:455) Given a program p containing a class cls named c, a memory tree me and a memory M such that M s-rep p G c me (b self , δ self ), then, for any state variable declaration x τ ∈ cls.regs, load(κ τ , M, (b self , δ self + field-offset(G, x, fields cls))) . = me(x). Lemma 5.4.7 (fieldsrep_deref_mem, src/ObcToClight/SepInvariant.v:595) Given a memory M , a list of fields ϕ, and a block identifier b such that M fs-rep G ve ϕ b, then, for any field x τ ∈ ϕ, load(κ τ , M, (b, field-offset(G, x, ϕ))) . = ve(x).

  Lemma 5.5.8 (exec_funcall_assign, src/ObcToClight/Correctness.v:669) Given a memory M 1 , a memory assertion R 1 , a list of values v that are well-typed relative to the output types of m such that: 1. ve f (y) = v, where m .out = y τ and 2. M 1 fs-rep G P ve f ϕ b * out-rep G P cls m ve L bco out * vars-rep m ve L * R 1 then, for any list x of local variables of m, there exist a memory M and a temporary environment L such that: 1

  p G P cls.name me l * R • If m has strictly more than one output, and given a block identifier b and structure fields ϕ such that comp(G P , f c ) . = ϕ where f and c are the names of m and cls, respectively, and M s-rep p G P cls.name me l * fs-rep G P ∅ ϕ b * R, then there exist a memory M and an environment ve f such that: 1. G P F d ((Vptr l) • (Vptr (b, 0)) • v) , M ε = =⇒ Vundef, M 2. ve f (y) = w where m.out = y τ 3. M s-rep p G P cls.name me l * fs-rep G P ve f ϕ b * R Let us explain each case.
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 510 Figure 5.10: Big-step looping predicate

  Definition 5.5.4 (mk_trace, src/Traces.v:120) Given a natural integer n, two streams of lists of values xs and ys and two lists of variable-type declarations ins and outs, trace-step n xs ys ins outs read-trace xs n ins + write-trace ys n outs ++ trace-step n+1 xs ys ins outs provided that read-trace xs n ins + write-trace ys n outs = ε.

  Lemma 5.5.14(reactive_loop, src/ObcToClight/Correctness.v:2006) Given a natural number n, an environment E, and a memory M n such that E F step (xs) , M n n ys, then for any function F d , temporary environment L n and continuation k,

  , ∅ main-node.reset (ε) ε me 0 2. p, me 0 main-node.step ( xs ) 0 ys

  Lemma 5.5.15(exec_reset, src/ObcToClight/Correctness.v:1948) There exists a memory M 0 such that:1. G P , E main , L main reset main-node (&self), M main ε = =⇒ Normal, L main , M 0 2. E F step (xs) , M 0 0 ys5.5.2.4 Correctness of the generated programWe know, as a property of the generation function, that the main entry point of the generated program P exists, that is, there is a block identifier b main and a function definition F main such that symbol(G, P.main) . = b main and funct(G, b) .

  Theorem 5.5.18 (correctness, src/ObcToClight/Correctness.v:2105) Given xs and ys, two streams of lists of values that are well-typed (at each instant) relative to the input and output types of s main , respectively, and a memory tree me 0 such that:1. p, ∅ main-node.reset (ε) ε me 0 2. p,me 0 main-node.step ( xs ) 0 ys Then we have P ⇓ Reacts trace-step 0 xs ys s main .in s main .out

  Figure 6.1: The architecture of Vélus

  Definition 6.1.3 (trace_node, src/Correctness.v:131) Given a natural number i, a node n and lists of coinductive streams of values xs and ys, trace-node i xs ys n trace-step i (to-idx xs) (to-idx ys) x τ x y τ y

Figure 6 . 2 :

 62 Figure 6.2: Simulation diagrams composition with lemmas (L), theorems (T) and corollaries (C) references

  G f (‹ to-idx xs›) ‹ to-idx ys› 2. Theorem 3.3.2 (page 92) gives a memory stream M such that the NLustre memory semantics holds. G, M f (‹ to-idx xs›) ‹ to-idx ys› 3. The first compilation step is i-translation, that is, translation to Stc. We apply corollary 3.3.12.1 (page 96) to obtain that M 0 is initial with respect to the semantics of Stc, and that the semantics of the repeated activation of the default transition of the translated node is preserved.initial-state (i-tr G) f M 0 i-tr G, M 0 f (‹ to-idx xs›) 0 ‹ to-idx ys› 4. Corollary 4.2.3.1 (page 111) ensures that scheduling preserves the semantics. An intermediate result ensures that initial-state is preserved by scheduling. Moreover, another intermediate result shows that the scheduled program sch(i-tr G) is indeed well-scheduled, since is-well-sch succeeds. initial-state (sch (i-tr G)) f M 0 sch (i-tr G), M 0 f (‹ to-idx xs›) 0 ‹ to-idx ys› 5.The next pass is s-translation, that is, translation to Obc. Corollary 4.4.23.1 (page 128) shows the existence of a memory tree me 0 ∼ ∼ ∼ M 0 that is produced by an initial call to the reset method of the translated class, and such that the semantics of the endless repeated execution of the step method is preserved.s-tr (sch (i-tr G)), {∅} f.reset (ε) ε me 0 s-tr (sch (i-tr G)), me 0 f.step ( to-idx xs ) 0 to-idx ys 6. We apply lemma 4.5.3 and corollary 4.5.3.1 (page 135) to show that the fusion optimization preserves the Obc semantics. fuse (s-tr (sch (i-tr G))), {∅} f.reset (ε) ε me 0 fuse (s-tr (sch (i-tr G))), me 0 f.step ( to-idx xs ) 0 to-idx ys 7. The semantics preservation for the argument initialization is given by theorem 5.1.1 and corollary 5.1.1.1 (page 140). These results need the hypotheses that the Obc program is in SSA form and that its methods inputs are never assigned. A first intermediate result ensures the former for the translation of any well-scheduled Stc program, and another one ensures the latter for the translation of any Stc program. These hypotheses are proved to be preserved by the fusion optimization, so they are satisfied. init-args (fuse (s-tr (sch (i-tr G)))), {∅} f.reset (ε) ε me 0 init-args (fuse (s-tr (sch (i-tr G)))), me 0 f.step ( to-idx xs ) 0 to-idx ys 8. The next pass is the generation of Clight code. Let P cl be the generated program. We apply theorem 5.5.18 (page 183) to obtain an infinite trace that corresponds to the execution of the generated Clight program. P cl ⇓ Reacts trace-step 0 (to-idx xs) (to-idx ys) x τ x y τ y 9. The correctness lemma about cl-to-asm, that compiles the Clight program P cl into the assembly program P , states that it preserves the reactive behavior of the program (reacts_trace_preservation, src/ClightToAsm.v:224).
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  Figure E.1 (II): The type system of Lustre

  Γ e : type e → τ Γ ( e) τ Γ e 1 Γ e 2 ⊕ : type e 1 × type e 2 → τ Γ (e 1 ⊕ e 2 ) τ Γ(x) = bool Γ e Γ e when (x = b) (a) Expressions (wt_exp, src/CoreExpr/CETyping.v:44) Γ(x) = bool Γ c e t Γ c e f type e t = type e f Γ c merge x e t e f type e = bool Γ e Γ c e t Γ c e f type e t = type e f Γ c if e then e t else e f Γ e Γ c e (b) Control expressions (wt_cexp, src/CoreExpr/CETyping.v:71) Γ(x) = type e Γ c e Γ ck G, Γ x = ck e Γ(x) = type-const c = type e Γ e Γ ck G, Γ x = ck c fby e node(G, f ) . = n type e = τ x Γ(z) = τ y Γ e Γ ck G, Γ z = ck f (e) where n.in = x τ x ,ck x n.out = y τ y ,ck y node(G, f ) . = n type e = τ x Γ(z) = τ y Γ e Γ(r) = bool Γ ck r Γ ck G, Γ z = ck (restart f every r ckr )(e)
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 b4 Figure E.4: Type system of Obc

Table 2 .1: Abstract notations

 2 

	Coq name	notation
	type	

• vs

  

	merge xs ts fs (a) Unary and binary operators lifting (lift1, src/CoindStreams.v:293 and lift2, src/CoindStreams.v:305) . = vs merge (‹ › • xs) (‹ › • ts) (‹ › • fs) . = ‹ › • vs
	ite cs ts fs	. = vs merge xs ts fs	. = vs
	ite (‹ › • cs) (‹ › • ts) (‹ › • fs) merge (‹T› • xs) (‹v› • ts) (‹ › • fs) . = ‹ › • vs	. = ‹v› • vs
	ite cs ts fs	. = vs merge xs ts fs	. = vs
	ite (‹T› • cs) (‹v› • ts) (‹f › • fs) merge (‹F› • xs) (‹ › • ts) (‹v› • fs) . = ‹v› • vs	. = ‹v› • vs
	ite cs ts fs ite (‹F› • cs) (‹t› • ts) (‹v› • fs) . = vs (d) Merging operator (merge, src/CoindStreams.v:334) . = ‹v› • vs fby1 v xs ys . = vs fby1 y xs ys = vs .
	(b) Conditional (ite, src/CoindStreams.v:351) fby1 v (‹ › • xs) (‹ › • ys) . = ‹ › • vs fby1 v (‹x› • xs) (‹y› • ys)	. = ‹v› • vs
	when b xs cs fby xs ys . = vs	. = vs	fby1 y xs ys	. = vs
	when b (‹ › • xs) (‹ › • cs) fby (‹ › • xs) (‹ › • ys) . = ‹ › • vs	. = ‹ › • vs fby (‹x› • xs) (‹y› • ys)	. = ‹x› • vs
	when b xs cs (e) Unit-delay operator (fby1, src/Lustre/LSemantics.v:45 and fby, src/Lustre/LSemantics.v:56) . = vs val-to-bool c . = ¬b
	when b (‹x› • xs) (‹c› • cs)	. = ‹ › • vs
	when b xs cs	. = vs val-to-bool c	. = b
	when b (‹v› • xs) (‹c› • cs)	. = ‹v› • vs
	(c) Sampling operator (when, src/CoindStreams.v:317)
	Figure 2.3 (I): The semantic synchronous streams operators

• fby s 0 s . = vs for ∀i, fby s 0i s i

  

				2.2 Lustre
	s ≡ const bs c
	G, H, bs c ⇓ [s]	G, H, bs x ⇓ [H(x)]
	G, H, bs e ⇓ [s] types e = [τ ] ↑ τ s	. = vs
			G, H, bs	e ⇓ [vs]
	G, H, bs e 1 ⇓ [s 1 ] G, H, bs e 2 ⇓ [s 2 ] types e 1 = [τ 1 ] types e 2 = [τ 2 ] ⊕ ↑ τ 1 ×τ 2 s 1 s 2 = vs .
			G, H, bs e 1 ⊕ e 2 ⇓ [vs]
	G, H, bs e 0 ⇓ s 0 G, H, bs e ⇓ s fby s 0 s	. = vs
			G, H, bs e 0 fby e ⇓ vs
	G, H, bs e ⇓ s when b s (H(x))	. = vs
		G, H, bs e when (x = b) ⇓ vs
	G, H, bs e t ⇓ ts G, H, bs e f ⇓ fs merge (H(x)) ts fs	. = vs
		G, H, bs merge x e t e f ⇓ vs
	G, H, bs e ⇓ [s] G, H, bs e t ⇓ ts G, H, bs e f ⇓ fs ite s ts fs	. = vs
	G, H, bs if e
				. = vs i
	• when b s u	. = vs for ∀i, when b s i u	. = vs i
	• merge s ts fs	. = vs for ∀i, merge s ts i fs i	. = vs i
	• ite s ts fs	. = vs for ∀i, ite s ts i fs i	. = vs i
	The semantics of a node application uses a dedicated predicate G	f (xs) ⇓ ys
	presented in figure 2.4c. The predicate relates input streams xs to output streams ys. We write node(G, f ) . = n to mean that the node n appears with the name f in the
	program G: it is a lookup of f in G. The predicate is defined internally in terms of a

then e t else e f ⇓ vs G, H, bs e ⇓ xs G f (xs) ⇓ ys G, H, bs f (e) ⇓ ys (a) Expressions without modular reset (sem_exp, src/Lustre/LSemantics.v:80) Figure 2.4 (I): The semantics of Lustre

  

		G, H, bs e ⇓ H(x)	
		G, H, bs x = e	
	(b) Equations (sem_equation, src/Lustre/LSemantics.v:152)
	node(G, f )	. = n H(x) = xs H(y) = ys	
	∀eq ∈ n.eqs, G, H, base-of xs eq G f (xs) ⇓ ys	where	n.in =

x τ x ,ck x n.out = y τ y ,ck y

  The semantics of Lustre history H that must match the input and output streams and satisfy the constraints given by the semantics of the equations. Importantly, the universal quantification over n.eqs is invariant under permutation of n.eqs. In other words, the semantics of a node does not depend on the order of its equations. The base clock used to defined the semantics of the equations is obtained from the input streams with the function base-of. The boolean stream base-of xs is the base clock for the node activation: it is true only when at least one input is present, that is, not absent.

	(c) Nodes (sem_node, src/Lustre/LSemantics.v:159)
	Figure 2.4 (II): Definition 2.2.2 (clocks_of, src/CoindStreams.v:368)

base-of xs exists

B (‹ › = B ) (map hd xs) • base-of (map tl xs)

n + program Figure 2.5: The NLustre abstract syntax

  

	e ::= | c | x t | ( e) τ | (e ⊕ e) τ | e when (x = b) ce ::= | merge x ce ce | if e then ce else ce | e ck ::= | • | ck on (x = b) eq ::= | x = ck ce | x = ck c fby e | x + , = ck x(e + , ) | x + , = ck (restart x every x ck )(e + , ) d ::= x τ,ck n ::= node x(d + , ) returns (d + , ) [var d + , ] let eq + ; tel | Econst : const -> exp | Evar : ident -> type -> exp | Ewhen : exp -> ident -> bool -> exp | Eunop : unop -> exp -> type -> exp | Ebinop : binop -> exp -> exp -> type -> exp. Coq (src/CoreExpr/CESyntax.v:23-28) (a) Expressions Inductive clock : Type := | Cbase : clock | Con : clock -> ident -> bool -> clock. (* subclock *) control expression expression (constant) (variable) (unary operator) (binary operator) (sampling) (merging) (conditional) (simple expression) clock (base clock) (sub-clock) equation (basic equation) (fby equation) (node instantiation) (modular reset) variable declaration node Inductive cexp : Type := | Emerge : ident -> cexp -> cexp -> cexp | Eite : exp -> cexp -> cexp -> cexp | Eexp : exp -> cexp. Coq (src/CoreExpr/CESyntax.v:32-35) (b) Control expressions (* base clock *) Coq (src/ClockDefs.v:22-24) (c) Clocks Inductive equation : Type := | EqDef : ident -> clock -> cexp -> equation | EqApp : list ident -> clock -> ident -> list exp -> option (ident * clock) -> equation | EqFby : ident -> clock -> const -> exp -> equation. Coq (src/NLustre/NLSyntax.v:35-38) (d) Equations Record node : Type := mk_node { n_name : ident; (* name *) n_in : list (ident * (type * clock)); (* inputs *) n_out : list (ident * (type * clock)); (* outputs *) n_vars : list (ident * (type * clock)); (* local variables *) n_eqs : list equation; (* equations *) n_ingt0 : 0 < length n_in; n_outgt0 : 0 < length n_out; n_defd : Permutation (vars_defined n_eqs) (map fst (n_vars ++ n_out)); g ::= Inductive exp : Type := n_vout : forall out, In out (map fst n_out) ->
		~In out (vars_defined (filter is_fby n_eqs));
	n_nodup : NoDupMembers (n_in ++ n_vars ++ n_out);
	n_good	: Forall ValidId (n_in ++ n_vars ++ n_out) /\ valid n_name
	}.	
		Coq (src/NLustre/NLSyntax.v:74-90)

(e) Nodes Listing 2.6: Implementation of NLustre syntax

  

  Definition 2.3.4 (sem_clocked_var, src/NLustre/NLCoindSemantics.v:98) respects-clock H bs x ck (∀xs, H(x) ≡ xs → ∃bs, H, bs ck ⇓ bs ∧ clock-aligned xs bs) ∧ ∀bs, H, bs ck ⇓ bs → ∃xs, H(x) ≡ xs Having respects-clock H bs x ck means that x has a semantics xs if and only if ck has a semantics bs such that xs and bs are clock aligned. That is, as we previously saw for the expressions, xs yields present values if and only if bs yields true values.

	where	
	clock-aligned vs bs	clock-aligned vs bs
	clock-aligned (‹v› • vs) (true • bs)	clock-aligned (‹ › • vs) (false • bs)

  This specification result is very similar to the indexed definition 2.3.8 on page 60. Now we use this similarity to show the following correspondence.

	Lemma 2.4.7 (mask_impl, src/NLustre/NLCoindToIndexed.v:561)
	Given a natural integer k, a boolean coinductive stream rs and list of coinductive streams
	of values xs,
	to-idx C.mask k rs s

Lemma 2.4.6

(mask_nth, src/CoindStreams.v:419) 

Given a natural number k, a boolean coinductive stream rs and a coinductive stream of values s, then for all instants n,

mask k rs s n = if ((count rs) n = k) then xs n else ‹ › s∈xs ≈ I.mask k to-idx rs (to-idx xs)
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	xs and ys, and a memory stream M such that G, M f (xs) ys, then
	initial-state (i-tr G) f M 0 and i-tr G, M 0 f (xs)	0	ys
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  The statement m.body constituting

	me, ve e	v			me, ve e	v
	p, me, ve x := e (me, ve{x → v})	p, me, ve state(x) := e (me(x → v) , ve)
		me, ve e	T p, me, ve s t	me , ve
	p, me, ve if e { s t } else { s f }	me , ve
		me, ve e	F p, me, ve s f	me , ve
	class(p, c)	. = cls, p	method(cls, f )	. = m
	p , me, ∅{x → v} m.body	me , ve	ve ((y)) = w
		p, me c.f (v)	
			ys n	me p, me	c.f (xs)

p, me, ve if e { s t } else { s f } me , ve p, me, ve s 1 (me 1 , ve 1 ) p, me 1 , ve 1 s 2 (me 2 , ve 2 ) p, me, ve s 1 ; s 2 (me 2 , ve 2 ) p, me, ve skip (me, ve) me, ve e v p, sub i me c.f (v) w me i p, me, ve x := i c .f (e) me i → me i , ve{x → w} (b) Statements (stmt_eval, src/Obc/ObcSemantics.v:115) w me where m.in = x τ x m.out = y τ y (c) Method calls (stmt_call_eval, src/Obc/ObcSemantics.v:145) p, me c.f (xs n ) n+1 ys p, me c.f (xs) n ys (d) Loop (loop_call, src/Obc/ObcSemantics.v:161)

  We extend the intermediate result from lists of transition constraints to systems. (sem_system_absent, src/Stc/StcSemantics.v:768) Given a well-ordered program P , a name f , lists of values xs and ys such that all values in xs are absent, and memory trees S and S such that P, S, S f (xs) ys, then S ∼ ∼ ∼ S, and all values in ys are absent.

	Theorem 4.4.2

first show an intermediate result on transition constraints. Lemma 4.4.1 (sem_trconstrs_absent_states, src/Stc/StcSemantics.v:636) Given a program P , a list of transition constraints tcs, an environment R, and Stc states S, I and S such that: 1. S and S are closed relative to the state variables and instances appearing in tcs, 2. if a default transition on any instance i appears in tcs with parameter k, then k = 1 if and only if a reset transition on i also appears, 3. ∀tc ∈ tcs, P, R, false, S, I, S tc, and assuming the system induction hypothesis: ∀f xs ys S S , P, S, S f (xs) ys ∧ (∀v ∈ xs, v = ‹ ›) → S ∼ ∼ ∼ S then S ∼ ∼ ∼ S.

  The next predicate relates the Stc states S, I and S to an Obc memory tree me.

	Definition 4.4.4 (Memory_Corres, src/StcToObc/StcMemoryCorres.v:45)
	S, I, S

tcs

≡ me ∀x, me((

  Lemma 4.4.11 (stmt_eval_Control_absent', src/StcToObc/Correctness.v:293) Given a clock ck, a statement s, a set of state variables regs, an Stc environment R, a memory tree me and an environment ve such that R then for any program p, p, me, ve ctrl regs ck s (me, ve). second result expresses the converse: the conditional statement is executed when the clock is true. Given a clock ck, a statement s, a base clock b, a set of state variables regs, an Stc environment R, memory trees me and me , environments ve and ve and a program p

		Free(ck) ⇐===⇒
	The Lemma 4.4.12 (stmt_eval_Control_present', src/StcToObc/Correctness.v:301)
	such that R	Free(ck) ⇐===⇒

regs (me, ve) and R, true ck ↓ false, regs (me, ve); R, true ck ↓ true; and p, me, ve s (me , ve ); then p, me, ve ctrl regs ck s (me , ve ).

  The Stc semantics (see figure3.6a on page 83) constrains R to associate x to the previous value held for x in S. The correspondence predicate before executing the Obc statement guarantees the consistency for the free variables, in this case, x: its value is in me (since it is a state variable). Now, at the end of the execution, the memory tree is updated with the next value, giving me = me(x → me(x) + 1). Obviously me is no longer in correspondence with R for x. Thus we propagate a correspondence relation that restricts the correspondence to standard variables that are defined by tc. Indeed, in Obc, state variables are not bound in the environment ve anyway, and what we want to ensure after the generated statement executes, is that the variable assignment is consistent with the equational definition of the source transition constraint. State variable correspondence is expressed by the third conclusion.Now we want to generalize the result to a list of transition constraints by induction. Unfortunately one hypothesis, needed to discharge the environment equivalence hypothesis of lemma 4.4.20 when we apply it in the induction step, is too weak for the induction. This hypothesis states that the set of state variables regs is included in the set of state variables defined by a next transition constraint in the list of transition constraints. We apply a simple trick to solve this technicality, and state a stronger invariant which is inductive. The idea is to cut the list of transition constraints into the appending tcs = tcs 1 + tcs 2 and to perform the induction on tcs 2 . Given lists of transition constraints tcs 1 and tcs 2 that respect the normalization condition, Stc states S, I and S , an Stc environment R, a set of state variables regs, a clocking environment Ω, a memory tree me ∼ ∼ ∼ S, an environment ve, and a list of input names ins such that:

		, true, S, I, S	tc,
	2. R	Free(tc) ⇐===⇒ regs	(me, ve),
	3. (S, I, S )	tcs ≡ me,
	4. the transition constraints in tc • tcs are well-scheduled,
	5. the list of transition constraints tc • tcs is reset-consistent (see definition 3.2.1 on
	page 78), Lemma 4.4.21 (trconstrs_app_correct, src/StcToObc/Correctness.v:1204)
				Free(tc) ⇐===⇒

6. standard variables defined by tc • tcs and ins are mutually distinct, 7. standard and state variables defined by tc • tcs are all distinct, 8. any identifier x defined in ve is either in ins or defined by tcs, 9. for all reset transitions (reset f <i> every -) in tc • tcs, we have s-closed P f S

[i]

, and 10. for all reset transitions (reset f <i> every -) in tc • tcs, we have s-closed

P f I[i],

then (some hypotheses being omitted, notably clocking constraints, for the sake of brevity) there exists a memory tree me and an environment ve such that:

1. (semantics preservation) s-tr P, me, ve s-tr-tc regs Ω tc (me , ve ), 2. (environment correspondence) ∀x ∈ Var (tc) , ve ((x)) = R(x) , and 3. (memory correspondence) (S, I, S ) tc•tcs ≡≡ me . A clarification: why is the second conclusion not R regs (me , ve )? That is, why is the correspondence predicate not preserved for the new pair (me , ve )? The answer lies in the differences in the semantics of Stc and Obc for state variable definition / assignment. Consider the transition constraint next x = x + 1 and its translation into the Obc statement state(x) := state(x) + 1. 1. ∀tc ∈ (tcs 1 + tcs 2 ) , P, R, true, S, I, S tc, 2. each identifier in regs is defined by a next transition constraint in tcs 1 + tcs 2 , 3. no identifier in ins is defined in tcs 1 + tcs 2 , ins is exactly the domain of ve and present values in R for identifiers in ins coincide with those in ve, and 4. straightforward extensions of hypotheses 4 to 7, 9 and 10 from lemma 4.4.20 to the list tcs 1 + tcs 2 , then there exists a memory tree me and an environment ve such that: 1. s-tr P, me, ve fold-l (λ st tc. s-tr-tc regs Ω tc ; st) tcs 2 skip (me , ve ), 2. ∀x ∈ Var (tcs 2 ) , ve ((x)) = R(x) , and 3. (S, I, S ) tcs 2

  Lemma 5.3.1 (exec_stmt_steps, CompCert/cfrontend/ClightBigstep.v:494) Given a global environment G, a statement s, an environment E, two temporary environments L and L , two memories M and M , a trace t and an outcome out such that G, E, L s, M L , M , then, for any function F d and continuation k, there exists a state S such that G S(F d , s, k, E, L, M ) S and S is a regular state on F d that is compatible with out, E, L and M .

	t = =⇒ out,

t --→ *

Table 5 . 2 :

 52 Memory permissions in CompCert [Leroy (2019)] We write P * Q to designate the memory assertion such that:

	free store load pointer comparison
	Freeable
	Writable
	Readable
	Nonempty
	Empty
	separating conjunction

  Given a class cls, a method m, lists of values v and w and memory trees me and me , the predicate call-spec(cls, m, v, w, me, me ) is defined as follows. For any location l, memory M and memory assertion R, there exists a function definition F d generated from m, and:

	Definition 5.5.1 (call_spec, src/ObcToClight/Correctness.v:706)
	• If m has no output and M memory M such that:	s-rep p G P cls.name me l * R, then there exists a
	1	

  Assume that p satisfies the NoNakedVars predicate and that any Obc method call on defined values only returns defined values.• Given a program p that is a suffix of p, a class cls declared in p that has a method m, a statement s that occurs in the body of m, environments ve and ve , memory trees me and me , a memory M , a memory assertion R, an environment E, a temporary environment L, a location l self and an optional pair bco out of a block identifier and structure fields such that:1. p , me, ve s (me , ve )2. M match-state p G P cls m (me, ve) (E, L) l self bco out * R Then there exist a memory M and a temporary environment L such that:1. G P , E, L gen-stmt p,m.out s, M P cls m (me , ve ) (E, L ) l self bco out * R • Givena program p that is a suffix of p, a class cls of name c declared in p that has a method m of name f , a list of values v that are well-typed relative to the input types of m, a list of values w, and memory trees me and me such that

	Theorem 5.5.10 (mutual_correctness, src/ObcToClight/Correctness.v:1011)
		ε = =⇒ Normal, L , M
	2. M	match-state p G
	Hypothesis 5.5.2	

p , me c.f ( v ) w me , then call-spec(cls, m, v, w, me, me ) holds.

We then directly deduce the main correctness result. Corollary 5.5.10.1 (stmt_call_correctness, src/ObcToClight/Correctness.v:1267) Given a class cls named c, declared in p, and that has a method m named f , a list of values v that are well-typed relative to the input of m, a list of values w, and memory trees me and me such that p, me c.f ( v ) w me then call-spec cls, m, v, w, me, me

Table 6 . 1 :

 61 Lines of Coq code in Vélus (comments and blanks excluded)

		compilation specification	proofs	other	total
	Lustre		2071			2071
	CoreExpr a		2204			2204
	NLustre	567	4360	3621		8548
	Stc	65	2708	750		3523
	Obc	105	2555	2352		5012
	NLustre to Stc	71		1553		1624
	Stc to Obc	137		2590		2727
	Obc to Clight	434	2052	5097		7583
	Common b	59	3825	388	4605	8877
	Total	1438 (3%) 19775 (47%) 16351 (39%) 4605 (11%) 42169

  / the intermediate transition system language

	StcSyntax.v		abstract syntax	§3.2.1
	StcOrdered.v		enforcing the order of declarations
	StcIsInit.v		state variables
	StcIsVariable.v		defined variables which are not state variables
	StcIsDefined.v		defined variables
	StcIsFree.v		free variables
	StcIsSystem.v		called blocks
	StcTyping.v		typing rules	§E.3
	StcClocking.v		clocking rules	§3.2.3
	StcSemantics.v		instantaneous transition semantics	§3.2.4
	StcClockingSemantics.v enforcing synchronous execution
	StcWellDefined.v		well scheduled, ordered and normalized programs	§ §4.2.1 and 4.4.4.2
	StcSchedule.v		scheduler specification	§4.2.3.1
	StcSchedulingValidator.v	verified scheduling validator	§4.2.2
	Stc.v		meta-library
	stclib.ml		OCaml generic printer and external scheduler for
			Stc
	Obc/ the intermediate imperative language
	ObcSyntax.v	abstract syntax	§4.1.1
	ObcInvariants.v	syntactic invariants	§ §4.5.2 and 5.1
	ObcAddDefaults.v	argument initialization	§5.1
	Fusion.v	fuse adjacent conditionals on the same guard	§4.5
	ObcTyping.v	typing rules	§E.4
	ObcSemantics.v	operational big-step style semantics	§4.1.2
	Equiv.v	quotient set of programs by semantics equivalence	§5.1
	Obc.v	meta-library
	obclib.ml	OCaml generic printer for Obc
	NLustreToStc/ translation from NLustre to Stc
	Translation.v		i-translation	§3.2.2
	NL2StcTyping.v		typing preservation
	NL2StcClocking.v		clocking preservation
	NL2StcNormalArgs.v	normalization results preservation	§4.4.4.2

τ y ,ck y

  E.4 ObcΓ v , Γ sv c Γ v , Γ sv x Γv(x) Γ v , Γ sv state(x) Γsv(x) Γ v , Γ sv e : type e → τ Γ v , Γ sv ( e) τ Γ v , Γ sv e 1 Γ v , Γ sv e 2 ⊕ : type e 1 × type e 2 → τ Γ v , Γ sv (e 1 ⊕ e 2 ) τ Γ v , Γ sv [x] Γv(x)(a) Expressions (wt_exp, src/Obc/ObcTyping.v:50)Γ v (x) = type e p, E i , Γ v , Γ sv x := e Γ sv (x) = type e p, E i , Γ v , Γ sv state(x) := e Γ v , Γ sv e type e = bool p, E i , Γ v , Γ sv s 1 p, E i , Γ v , Γ sv s 2 p, E i , Γ v , Γ sv if e { s 1 } else { s 2 } E i (i) = c class(p, c) . = cls, p method(cls, f ) . = m all names in z are distinct Γ v (z) = τ y type e = τ x Γ v , Γ sv e p, E i , Γ v , Γ sv z := i c .f (e) where m.in = x τ x m.out = y τ y p, E i , Γ v , Γ sv s 1 p, E i , Γ v , Γ sv s 2 p, E i , Γ v , Γ sv s 1 ; s 2 p, E i , Γ v , Γ sv skip

x ,ck x n.out = y

In this dissertation, we do not treat the uninitialized delay operation pre x, that defines the stream nil • x0 • x1 • • • , where nil denotes an undefined value, nor the initialization operation x -> y, that defines the stream x0 • y1 • y2 • • • . Indeed, x fby y defines the same stream as x -> pre y, with the advantage of avoiding the complications related to possibly undefined values.

We do not treat current x, that oversamples x, because it can introduce uninitialized values.

www.ansys.com/products/embedded-software/ansys-scade-suite

www.mathworks.com/products/simulink.html

There is an unfortunate diversity in the terminology used for qualifying such simulation results. For example, in the verified micro-kernel sel4[START_REF] Klein | seL4: Formal Verification of an OS Kernel[END_REF]], the term forward simulation is used to mean a simulation from a concrete model to an abstract model, while in CompCert[Leroy (2009a)], it is used to mean a simulation from source (abstract) semantics to target (concrete) semantics. Despite this difference in terminology, both works refer to the same notion of refinement. In this dissertation we will only use the unqualified term of simulation, specifying the direction to avoid the confusion.

mathworks.com/help/simulink/ug/reset-block-states-in-a-subsystem.html

The operation indeed overflows[START_REF] Seacord | [END_REF]], which is also undefined behavior.

coq.inria.fr/stdlib/Coq.Lists.Streams.html

coq.inria.fr/stdlib/Coq.Logic.FunctionalExtensionality.html

We can refer to their elements using named fields.

Fields may be propositions that refer to other fields.

Internally, as mentioned already, environments are modeled as trees, but in this dissertation we prefer the representation as functions for convenience.

Implemented in Coq with a CoFixpoint.

In Coq, we use the standard library function seq.

This loss of generality is assumed: we wanted a working model to fit our needs and to simplify the formalization and its presentation. The language could potentially be extended to allow multiple, ordered transitions within a system and the semantic model would then involve a corresponding number of successive transient states.

The way the relation is depicted could be misleading for identifiers that are not in the domains. Recall that, for the sake of simplicity, we omit the details on failing lookups, so assume that the relation implies that the domains are exactly the same.

This is an ad-hoc way of simulating the presence of a reset transition that never fires.

Note that in Vélus, nodes must have at least one input to give the base clock. Also in NLustre an output cannot be defined by a fby equation, but this is not relevant for this simple example.

We borrow the terminology from state machines, where a strong transition is taken immediately, while a weak transition is delayed.

They would if we handled side-effects, but this is not the case.

Recall that in this example, the i input only serves to give the activation tempo.

As usual in the implementation, the list is in reverse order of declaration.

In this presentation, we use the usual set notation for readability but the actual Coq implementation uses inductive relations for convenient reasoning.

We do not give the definitions of the set of free variables of clocks, expressions and control expressions; they are unsurprising.

These sets are implemented using the MSetPositive (coq.inria.fr/library/Coq.MSets.MSetPositive. html) library for the first two and MSetList (coq.inria.fr/library/Coq.MSets.MSetList.html) for the last one. Thus PS.t designates a set of positive integers-whose type ident is an alias to-while

PNS.t denotes a set of positive * nat pairs. 5 The Coq functions negb, ident_eqb and Nat.ltb are respectively the boolean negation, the boolean equality between two positive and the boolean less-than comparison.

We want the transition constraints in descending order to match the specification of the well-scheduling predicate.

coq.inria.fr/library/Coq.Sorting.Mergesort.html

Here presented as an inductive relation for legibility, it is implemented as a Coq recursive function.

Under additional omitted clocking constraints, notably on Ω.

compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#expr

compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#statement

compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#function_entry1

compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#function_entry2

compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html

compcert.inria.fr/doc/html/compcert.cfrontend.ClightBigstep.html

Note that at the time, no temporaries were used.

For any permission in the original version of CompCert.

Only Freeable in the original version.

Contrary to C and Scade, multi-lines comments can be nested.

Actually a list of nodes or functions, where a function is a purely combinatorial node, i.e, a node without fby. Said differently, a node is a stateful function.

Indeed, recall that A → B → C ↔ A ∧ B → C

coq.inria.fr/library/Coq.Lists.List.html

(c) Equations (wt_equation, src/NLustre/NLTyping.v:45) Figure E.2: The type system of NLustre

NLustre node: all transition constraints must be well-typed, using the input, output and local variables declarations as typing environment for variables and the state variables declarations as typing environment for state variables.

option val := match op

Free (x = ck e) Free (ck) ∪ Free (e) Free (next x = ck e) Free (ck) ∪ Free (e) Free (reset f <i> every ck) Free (ck)

Free (x = ck f <i, k>(e)) Free (ck) ∪ Free (e)

We also define the set of defined variables, that is, the set of standard variables or state variables that appear on the left-hand sides of transition constraints. Finally, we define the set of sub-instances that appear with a parameter indicating their level in a transition constraint. The level indicates the position in the scheduling policy: here our ad-hoc model fixes the reset transition to have level 0 and the default transition to have level 1, but we wanted to prepare scheduling for a more general model. Definition 4.2.4 (Is_sub_in_tc,src/Stc/StcSyntax.v:46) Sub (x = ck e) ∅ Sub (next x = ck e) ∅ Sub (reset f <i> every ck) (i, 0)

The well-scheduling predicate itself is shown in figure 4.3. It is relative to a list of inputs ins and a set of state variables regs, that are both readily constructed for a system s from, respectively, s.in and s.inits. Note that the transition constraints must be sorted in the reverse order of their realization in the generated code, as it simplifies the Indeed, with the actual definition we have:

Obc

The first conditional is not fused with the subsequent ones. But, in fact, we do not generate code with this form: statement composition always occurs to the right. We take advantage of this particularity to save an extra recursive call and the associated proof effort.

2. The third rule makes two recursive calls, as expected, but the outer one is not on a syntactically smaller first argument, as are the other recursive calls. Coq rejects such definitions because they are not supported by the syntactic criterion used to check well foundedness. The classical nested fixpoints approach does not apply either, so we choose to implement zip as two distinct fixpoints.

We will write fuse p to designate the program obtained from p by applying fuse-stmt in all methods of all of its classes.

Parts of the example (see the NLustre original program in listing 2.5b on page 43) can be re-used to highlight the need for independent scheduling of the modular reset, mentioned in section 3.2. Consider the following driver node that simply instantiate twice the ins node with reset. node driver(gps, xv, yv: float64; r: bool) returns (x, y: float64); var alarmx, alarmy : bool; let

x, alarmx = (restart ins every r)(gps, xv); y, alarmy = (restart ins every r)(gps, yv); tel

Lustre

Without the introduction of Stc and its independent reset construct, we would generate the following Obc code, translating an NLustre node instantiation with reset directly into a sequence of a guarded reset method call and a step method call. Since the fusion optimization only fuses adjacent conditionals and does not reorder statements, it will not change this program. We can see, however, that reordering is possible without changing the overall effect of the method. The fact that the translation from NLustre to Stc introduces distinct transition constraints for resetting and stepping allows the subsequent scheduling pass to group the reset transition constraints together, as in the following Stc default transition. 

Correctness of the optimization

In general the fusion optimization does not preserve the semantics of an arbitrary program, as shown on the example below:

In this section we show that it does for the code generated from Stc. We define a Fusible-stmt predicate, presented in figure 4.6, that is, a sufficient condition for an Obc statement for its semantics to be preserved by the fusion optimization. The interesting case is that for a conditional: a conditional is eligible for fusion if its branches are and if every free variable of the guard is never written in the branches.

To express the fact that a variable may-we say may because of conditionals-be written in a statement, we introduce the MayWrite predicate presented in figure 4.7. The variable x may be written by an assignment to x (regular assignment, state variable assignment or method call assignment). It may be written in a sequence of two statements if it may be written in one of them. Finally, it may be written in a conditional if it may be written by one of its branches.

We write Fusible p to express the fact that the whole program p is eligible for fusion, that is, that the body of each method of each class satisfies Fusible-stmt.

We start by showing that zip preserves the Fusible-stmt predicate. We can now show that the optimization on a program preserves the semantics of a method call. We extend this result to the looping execution of a method call. Where, given s main .in = x 1

.5: Generation of the entry point body (main_body, src/ObcToClight/Generation.v:389)

where |κ| is the size information of the chunk κ.

(b, δ)

CompCert provides several results giving a SL specification to the memory operations of table 5.1 on page 151. Given a memory M , a location l, a chunk κ, a permission p that is at least readable and a value specification P such that M l : P p κ , then there exists a value v such that load(κ, M, l) . = v and P v holds.

Lemma 5.4.4 (store_rule, CompCert/common/Separation.v:604) Given a memory M , a location l, a chunk κ, a permission p that is at least writable, a value v, value specifications P and P and an assertion R such that M l : P p κ * R and P v κ , then there exists a memory M such that store(κ, M, l, v) .

= M and M l : P p κ * R.

All these results except the load-related one include an additional assertion R: this implements the "weak form of the frame rule". With a separate frame rule, those lemmas could be written in the usual SL triplet-style as axioms, assuming in-place modification of the memory and abusing the notation:

if p is at least writable

Vélus extensions

To fit our needs, we extend the SL library of CompCert with additional operators and abbreviations:

empty heap (sepemp, src/ObcToClight/MoreSeparation.v:644)

We define the shorthand emp pure( ). We also show that emp is a neutral element for the separating conjunction * . false assertion (sepfalse, src/ObcToClight/MoreSeparation.v:739)

The bold shorthand ⊥ pure(⊥) simply asserts contradictory cases in memory assertions.

separating implication (sepwand, src/ObcToClight/MoreSeparation.v:98)

We write P -- * Q for the assertion such that: We show the fundamental property about separating implication.

Lemma 5.4.5 (sep_unwand, src/ObcToClight/MoreSeparation.v:182) Given two assertions P and Q such that the membership of P is decidable, then P * (P -- * Q) Q.

Separation invariants for the proof of correctness

The proof of correctness at method-execution level is based on a state correspondence predicate that relates an Obc state and a Clight state. The correspondence uses SL to relate the tree-like Obc model with explicit separation of data to the contiguous blocks memory model of Clight. Given a complete Obc state, that is, a program p, a class cls with name c, a method m, a memory tree me and an environment ve, and a complete Clight state, that is, a global environment G, a location l self = (b self , δ self ) that contains the current state values (the pointer self ), an optional pair bco out of a block identifier and the fields of the structure that holds the output values (the out pointer if it exists), an environment E and a temporary environment L, there are four elements that we want to relate:

1. the state of the class cls and the data stored at l self , 2. the output values of m and the corresponding output representation in Clight (nothing if there are no output, a temporary if there is only one and the structure otherwise), 3. the output values of sub-instance method calls appearing in the body of m with local output structures or temporary declarations,

Local variables

The following results relate variable values in Obc to the evaluation of these variables in Clight.

Lemma 5.5.3 (eval_out_field, src/ObcToClight/Correctness.v:252) Assume that m has strictly more than one output, then, for any output variable x τ ∈ m.out, G P , E, L out->x, M ⇒ ve(x).

Corollary 5.5.3.1 (eval_var, src/ObcToClight/Correctness.v:297) For any declaration x τ that belongs to the input, output or local variable declarations of m, G P , E, L gen-var x τ , M ⇒ ve(x).

State variables

The following lemma guarantees that for any Obc state variables x with value in me, the Clight expression self->x evaluates to the same value.

Lemma 5.5.4 (eval_self_field, src/ObcToClight/Correctness.v:358) For any state variable declaration x τ ∈ cls.regs, G P , E, L self->x, M ⇒ me(x).

General expressions

Now that translated variables are shown to evaluate correctly, we can proceed to state the general theorem about the correct evaluation of the translation of an Obc expression.

Theorem 5.5.5 (expr_correct, src/ObcToClight/Correctness.v:406) Given a well-typed Obc expression e and a value v such that me, ve e v , then

We generalize this result to the evaluation of a list of translated expressions as function parameters with type casts.

Corollary 5.5.5.1 (exprs_correct, src/ObcToClight/Correctness.v:446) Given a list of well-typed expressions e and a list of values v such that me, ve e v , then G P , E, L (type e) ( gen-exp e), M ⇒ v

Statements

At the end of this section, we present the correspondence theorem for statements generated from Obc statements. We work towards this result by first presenting the three main base cases needed to prove it by induction: (1) assignments to local variables, (2) transfers of outputs after a function call, and (3) function calls themselves. Definition 5.5.2 (load_events, src/Traces.v:70) Given a list ins = x 1 write-trace w outs E vstore κ τ y 1 , y 1 , 0, event-val w 1 • • • E vstore κ τ y j , y j , 0, event-val w j

Each function maps values and variable declarations to a list of events. The event-val function translates a standard value into an event value, such that event-val v κ G v holds for any G-we do not need the global environment since we do not deal with pointer values here-provided that v is well-typed relative to the type information of κ. Recall (see section 5.3.1.1) that we write w κ G v to denote the correspondence between the standard value v and the event value w.

We show that the execution of the read and write statements yields the corresponding traces. We begin with the volatile loads, which produce the expected trace whatever the memory state.

Lemma 5.5.11 (exec_read, src/ObcToClight/Correctness.v:1391) Given a list of values v that are well-typed relative to the inputs of s main , an environment E, a temporary environment L and a memory M , then

The volatile writes occur after the call to the main step function and their correctness relies on the program state at this point. We have to distinguish the cases where s main has zero, one, or strictly more than one output. In the last case, recall that a structure type named step main-node is globally declared and that the main function declares a local variable out step with this type.

Lemma 5.5.12 (exec_write, src/ObcToClight/Correctness.v:1513) Given a list of values w that are well-typed relative to the outputs of s main , an environment E, a temporary environment L and a memory M such that:

• If s main has one output y τ , then there exists a single value w such that w = [w] and L(y) = w.

• If s main has strictly more than one output then there exist an environment ve, a block identifier b and structure fields ϕ such that comp(G P , step main-node ) . 

The \012 character denotes the form feed in OCaml syntax. In the standard, the vertical tab is mentioned instead of the carriage return character. ID represents a token carrying an identifier as described in the appendix B, translated into a Coq positive using a CompCert internal function. 2

Integer constants

Variable declarations

Variable are declared along with a type annotation type_name taken among the supported type names and an optional clock annotation.

var_decl ::= ID + , : type_name declared_clock local_var_decl ::= var var_decl + ; ; 

Appendix D Functorizing the development

Let Foo be a typed language that we want to formalize, containing only constants and binary operations, with the following syntax:

Assume that Foo is parametric over a simple abstraction layer, that we implement as a module signature OPERATORS in the file Operators.v (note that here, we do not require the semantics of operators to be type-dependent): First, let us describe the abstract syntax of the language in a FooSyntax.v file. As we want it to be parametric, we encapsulate the definitions in a functor parameterized by the OPERATORS signature. Unfortunately, because of restrictions of the module system of Coq, we have to reflect the dependency graph of each abstracted functor directly in its call-graph. Consequently, we have to explicitly define both a signature and an actual functor for each unit. Fortunately in Coq a module signature can contain actual implementations, so at the end the actual functor can just include directly the signature.

Module

Require Import Operators.

Module Type FOOSYNTAX (Import Op: OPERATORS).

Inductive expr: Type := | Econst: const -> expr | Eop: binop -> expr -> expr -> expr.

End FOOSYNTAX.

Module FooSyntaxFun (Op: OPERATORS) <: FOOSYNTAX Op.

Include FOOSYNTAX Op. End FooSyntaxFun.

Coq (toy/FooSyntax.v)

The syntax is defined using the inductive Coq definition expr, made of two constructors Econst for the constants and Eop for operator applications. The typeof definition is a function used to retrieve the type of an expression: it uses the parameter type_const to get the type of a constant or returns the type annotation in case of an operator application.

Hence, consider the following typing rules, which judge whether that an expression is well typed:

We can formalize these rules the same way in Coq, using a functor:

Require Import Operators FooSyntax.

Module Type FOOTYPING

(Import Op: OPERATORS) (Import Syn: FOOSYNTAX Op).

Inductive wt: expr -> type -> Prop := | WTconst: forall c, wt (Econst c) (type_const c) | WTop: forall op e1 e2 t1 t2 t, wt e1 t1 -> wt e2 t2 -> type_binop op t1 t2 = Some t -> wt (Eop op e1 e2) t.

End FOOTYPING.

Module FooTypingFun (Op: OPERATORS) (Syn: FOOSYNTAX Op) <: FOOTYPING Op Syn. Include FOOTYPING Op Syn. End FooTypingFun.

Coq (toy/FooTyping.v)

The well typedness is encoded by the inductive predicate wt with one case per syntactic class of expr, which is made accessible by instantiating the functor FooSyntaxFun defined in the imported library FooSyntax (the above file FooSyntax.v) with the Op parameter. The predicate wt is a relation between expressions (expr) and types (type), that is a We need both semantics and typing to state the lemma, so in Coq, we write the following in a separate FooProgress.v file:

Require Import Operators FooSyntax FooTyping FooSemantics. We proceed as before, importing relevant library and instantiating according functors with the Op parameter. The lemma is placed into a section in which an hypothesis named binop_progress is stated. This hypothesis basically extends the progress result to the operators, allowing to prove the relevant case when doing the induction in the proof of the lemma. The section mechanism is often used in the development of Vélus because it helps to organize the content and reduces code duplication when several lemmas share the same hypotheses. The bunch of code between the Proof and Qed keywords is a proof script. It consists of tactics applications that are used to build the corresponding proof term.

Module

layer it becomes possible to, for example, prove the progress-like lemma as we stated it the first time. Here is the actual proof script, for the interested reader:

Require Import Operators FooSyntax FooTyping FooSemantics FooProgress. Open Scope bool_scope. The type system of Lustre formalized in Vélus is shown in figure E.1. This type system is well understood. While higher-order polymorphic variants have been formalized [START_REF] Colaço | Towards a Higher-Order Synchronous Data-Flow Language[END_REF]; [START_REF] Colaço | A Conservative Extension of Synchronous Data-Flow with State Machines[END_REF]] we focus on a simpler monomorphic first order setup à la ML. We use the standard inference rules layout, for example, the judgment Γ a reads "under the typing environment Γ, the construct a is well typed". As our Lustre internal dialect is annotated, the type system presented here does not describe directly a type inference algorithm: it is strictly speaking a type checking calculus, that is a predicate asserting the well-typedness of a construct relatively to its type annotation.

Module

Figure E.1a present the typing of clocks and named clocks. The base clock • is always well typed, while a sub-clock is well typed if its parent clock is well typed and if its condition variable has type bool (the boolean type that the abstraction layer must provide, see section 2.1.1) in the environment.

Figure E.1c introduces the type system for expressions. A constant is always well typed. A variable is well typed if it is bound to its type annotation in the environment and if its clock annotation is well typed. Here, and in all the other rules, we require that the clock annotation be well typed. Unary and binary operations are well typed if their operands are, if their type annotations match with the input signature of the operator and if the type annotation of the whole expression matches with the output signature of the operator. The operator types takes an expression and strips its annotation into a list of types. Refer to table 2.1 on page 22 for the type resolution of operators. A fby expression is well typed if both its operands are and if their types match with the type annotation of the expression. Several notations are lifted to lists in an intuitive way. Γ α a is a shortcut for ∀a ∈ a, Γ α a. For types, types e indicates the flattened concatenation of all the types of all the expressions in e. Γ(x) = τ expresses that each element of x is bound in Γ to the element of τ of the same rank, assuming that both lists have the same length. A sampling when expression is well typed if the condition variable is a boolean, its sampled expression is well typed, and if its types match with the type annotation of the whole expression. The typing of the merge operation operation is similar. The hypotheses for the well typing of a conditional expression are almost the same as for a merging operation, except that the variable is replaced by a single expression which must also have a boolean type. For a node instantiation to be well typed, the arguments : Forall wt_exp es implements G, Γ e e using the Forall predicate from the List 1 Coq standard library which is satisfied if its first predicate argument is satisfied by every elements of its second list argument.

typesof es = tys corresponds to types e = t. The typesof function uses the flat_map function from the standard library to lift over the function typeof which strips the annotation of an expression to the list of its types (both of them are defined in the file src/Lustre/LSyntax.v).

In (x, bool_type) vars is a simple lookup in the association list vars, implementing Γ(x) = bool. We use the In standard predicate which is satisfied when its first argument actually appears in its second list argument. The type bool_type is the one defined in the OPERATORS signature (see section 2.1.1).

wt_nclock nck encodes the antecedent Γ nck nck asserting that the clock nck is well typed. It uses the inductive predicate wt_nclock defined above in the file and implementing the rules of figure E.1b.

wt_exp (Ewhen es x b (tys, nck)) corresponds to the conclusion of the corresponding rule, G, Γ e (e when (x = b)) τ ,nck , stating that the when expression is well typed.

E.2 NLustre

The type system of NLustre is shown as inductive rules on figure E.2. As for Lustre, NLustre is an annotated language, in consequence the well-typed predicate simply checks that the type annotation is consistent. Figures E.2a and E.2b present the type system for expressions an control expressions. Compared to the typing of Lustre expressions (see figure E.1c), the rules are much simpler: (1) expressions are not annotated with

where s.in = x τ The well-typing predicate for a single node is similar to Lustre: it boils down to checking that all the equations of the node are well-typed, using the input, output and local variables declarations as typing environment.

The typing for a program is exactly identical as for Lustre, ensuring that each node in the program is well-typed and that all nodes in the program have distinct names.

E.3 Stc

The type system of NLustre is directly adapted to Stc, in particular because expressions are shared between the two languages. The only major difference is that two environments are used for the typing: Γ v for standard variables and Γ sv for state variables. The reason is to anticipate the translation to imperative Obc code so as to facilitate the well-typing preservation proof.

Figure E.3 presents the well-typing rules of Stc transition constraints. As they are highly similar with the rules for NLustre equations, we do not repeat here the explanations already given.

The well-typing predicate for a system is similar to the well-typing predicate of an that the structures of systems or nodes in Stc and NLustre, that is lists of transition constraints or equations, are easier to analyze and reason about that arbitrarily nested composed statements in Obc.

To type programs, we introduce the typing of methods and classes. In this thesis we present Vélus, a Lustre compiler verified in the interactive theorem prover Coq. We develop semantic models for the various languages in the compilation chain, and build on the verified CompCert C compiler to generate executable code and give an end-to-end correctness proof. The main challenge is to show semantic preservation between the dataflow paradigm and the imperative paradigm, and to reason about byte-level representations of program states. We treat, in particular, the modular reset construct, a primitive for resetting subsystems. This necessitates the design of suitable semantic models, compilation algorithms and corresponding correctness proofs. We introduce a novel intermediate language into the usual clock-directed modular compilation scheme of Lustre. This permits the implementation of compilation passes that generate better sequential code, and facilitates reasoning about the correctness of the successive transformations of the modular reset construct.
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