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Abstract

In this thesis we present a study of transport properties of a proposed lateral graphene-

based spintronic device comprising two identical magnetic regions induced by proximity

of magnetic insulators on top of a graphene sheet. We investigate in detail the spin-

dependent transport properties of the device in both collinear and non-collinear config-

uration of the magnets. In particular, we focus on the magnetoresistance phenomena

induced by various magnetic insulators, as well as, the impact of ferroelectricity when

the magnets are made of the multiferroic material BFO. We demonstrate the existence

of proximity magnetoresistance phenomena (PMR) generating spin polarized currents

without direct injection through the ferromagnet and present promising results at room

temperature. Furthermore, the possibility of tuning of the magnetoresistance by the elec-

trical polarization of BFO is demostrated. Namely, the extra degree of freedom allows

defining two extra physical quantities: the proximity electroresistance (PER) and prox-

imity multiferroic resistance (PMER). In addition, we provide a theoretical derivation of

the spin current conservation equation for the case when the Hamiltonian of the system

has spin dependent hoppings and sublattice potential. Lastly, we study in detail the spin

transfer phenomena (STT) in the proposed spin valve device considering magnets made

of yittrium iron garnet (YIG) including STT dependence with respect to size dimensions.

We calculate the corresponding phase diagram, from which it is possible to estimate the

order of magnitude of the current needed to switch the magnetization of thin magnet

adjacent to graphene





Résumé

Dans cette thèse, nous présentons une étude des propriétés de transport d’un vanne de

spin lateral a basse de graphène constitue de deux régions magnétiques identiques in-

duite avec isolant magnétiques par effets de proximité sur une feuille de graphène. Nous

étudions en détail le transport de spin dans deux configurations magnétiques différentes

de les aimants: colinéaires et non colinéaires. En particulier, nous nous concentrons sur les

phénomènes magnétorésistence, ainsi que l’impact de la ferroélectricité lors des aimants

fait de le multiferröıque BFO. Nous démontrons l’existence d’une magnétorésistance de

proximité (PMR) en générant une polarisation du courant de spin sans injection directe

à travers le ferromagnet et présentent des résultats prometteurs à température ambiante.

De plus, nous démontrons la possibilite de manipule la magnétorésistance par la polari-

sation électrique du BFO. En raison du degré de liberté supplémentaire, nous définissons

deux quantités physiques supplémentaires: la électrorésistance de proximité (PER) et la

résistance multiferröıque de proximité (PMER). De plus, nous fournissons une dérivation

théorique de l’equation de conservation du courant de spin pour le cas où le hoppings et le

potentiel de sous-réseau de l’hamiltonien du système sont dépendant du spin. Enfin, nous

étudions en détail les phénomènes de couple de transfert de spin dans le vanne de spin

proposé en regardant des aimants fait de YIG, sa dépendance par report le dimensions

de system et fait le calcul correspondant pour obtenir leur diagramme de phase, à partir

duquel il est possible estimer l’ordre de grandeur du courant nécessaire pour commuter

la magnetization d’un aimant fin adjacent à graphène.



CHAPTER 1

Introduction

In the operation of conventional electronic devices the charge of the electron is considered

only and “0” and “1” states are defined by letting or not to flow charge current through

a particular gate. The advent of the miniaturization of devices and the demand of more

efficient devices, has permitted to remain in accordance with the Moore’s law of expo-

nential increase of transistor per square inch in integrated circuits. The transistors are

essentially an electrically driven switch that permits or denies the flow of electrons. A

transistor is composed by a source, a drain and a gate. Depending on the voltage in the

gate, current can be transmitted from the source to the drain.

The number of transistors in a chip determine its capacity. To increase the number

of transistors in a chip, basically two approaches are followed, either novel transistor

designs are developed in order to shrink the transistor’s size, or novel chip architectures

are proposed in order to pack more transistors per area unit. As more and more transistors

are included in the chips, the greater becomes the Joule heating in the device, decreasing

its performance. Shrinking the transistor’s size also present technical limitations, being

the most important, the efficiency reduction of the electrical current blocking by the gate,

due to the quantum tunneling, whose probability is enhanced as the separation of the

drain and the source is decreased. So, within few years the chips capacity will reach a

technical limit imposed by physics.

One option to overcome these issues is to increase the information carried by the

electrons, adding new functionalities and capabilities to the already existing devices, or

to create devices that explore a quantum property called spin in addition to electron’s

charge. The use of this extra degree of freedom can be the solution to the stagnant

challenge we will face within few years, as we get closer to the end of the Moore’s law.

1
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1.1 Magnetism

Since ancient times humanity have been captivated by the magnet’s ability to attract

ferrous objects from the distance. Perhaps the most remarkable use of magnetism was

in the compass, a device invented in China in the XI century that is composed by a free

to rotate metallic piece with magnetized tip. Because the tip was able to align with the

earth’s magnetic field, pointing always north (south), the compass was a very important

tool for the orientation during navigation, that is still in use nowadays.

Regardless of the numerous experiences carried out the following centuries after the

compass invention, no much understanding on the nature of magnetism was achieved.

Things started to change in the late 18th century, when ideas about the connection be-

tween magnetism and electricity spread over Europe stimulating different scientific com-

munities. The first prove of this connection was found in 1820, when Hans-Christian

Oersted discovered by accident that a current in a wire was able to deflect the compass

needle. Almost at the same time Ampére showed that when electrical current travels in a

coil, this system behaves as a magnet. In 1821 Michael Faraday discovered the magnetic

induction and some time later (1845), proved the relation between magnetism and optics

with the magneto-optic Faraday effect [1]. All these discoveries where summarized in four

equations by Clerk Maxwell, that completely revolutionized physics and unified forever

light, electricity and magnetism. The famous equations are the following:

∇ ·B = 0,

ε0∇ · E = ρ,

∇×B

µ0

= j + ε0
∂E

∂t
,

∇× E = −∂B

∂t
(1.1)

E and B are the electric and magnetic field respectively, ρ indicates the charge distri-

bution and j is the current density. The first equation is the Gauss’s law for magnetism

and physically indicates that it is not possible to have magnetic monopoles, the second

equation is the “usual” Gauss’s law and relates the electric flux across surface S with the

charge in the volume V, that enclose the surface S. The third equation is the Ampére

law that relates the generation of a magnetic field by currents in circuits as well as by

time dependent electrical fields and the last equation is the Faraday’s law of induction

that explains how a time dependent magnetic field can induce an electrical current. From

these equations the connection with magnetism is not obvious. To make it evident, let

us use the displacement field D and the magnetizing field H in the Maxwell equations
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instead of B and E. These quantities are defined as:

H =

(
1

µ0

B−M

)
(1.2)

D = (ε0E−P) , (1.3)

where M is the magnetization and P is the electrical polarization density. The Maxwell’s

equations are then written as:

∇ ·H = 0,

∇ ·D = ρf ,

∇×H

µ0

= Jf +
∂D

∂t
,

∇× E = −∂B

∂t
, (1.4)

where ρf and Jf are the free charge and free current respectively. These equations are

known as the Maxwell’s equations in matter. For more details please see Ref. [2].

Despite the Maxwell equations were able to explain the interaction between currents

and magnetic dipoles, and predicted the existence of electromagnetic waves, a satisfactory

explanation for the ferromagnetic phenomenon was still missing. The explanation only

came after two key discoveries, the electron in 1897 by Joseph John Thompson and the

electron’s intrinsic momentum (spin) in 1925 by George Uhlenbeck and Samuel Goudsmit.

Thanks to these findings and the development of quantum mechanics and relativity theory

in the XX century, it became possible to explain the spontaneous magnetization.

The spontaneous magnetization is a phenomenon of pure quantum mechanical origin

and is a direct consequence of the Pauli’s principle. Pauli’s principle enforces the fermions

wave functions to be antisymmetric. Let us consider the wave function of a system

composed by two hydrogen atoms, and considering the Born-Oppenheimer approximation

we will care only about the 2 electrons of the system, so that their wave function can be

written as:

ψ(1, 2) = χ(σ1, σ2)ϕ(~r1, ~r2),

where χ is the spin function part while φ is the particle position part. ψ is antisymmetric

if ψ(1, 2) = −ψ(2, 1), so either χ is antisymmetric or φ is antisymmetric. In this situation

we can construct the following spin wave functions:

χA =
1√
2

(| ↑↓〉 − | ↓↑〉), for S=0 (1.5)

χS =
1√
2

(| ↑↓〉+ | ↓↑〉); | ↑↑〉; | ↓↓〉, for S=1, (1.6)
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where χA and χS are the spin wave function of the antisymmetric and symmetric case,

respectively. Eqs. (1.5) and (1.6) are known as singlet and triplet state spin functions,

respectively. The reason for these labels is that there is only one state in the former one

due to the fact there is only one magnetic quantum number ml = 0, while in the latter

one there are 3 states because its magnetic quantum number ml can be any value in the

set {−1, 0, 1}. The corresponding spatial wave functions are:

ϕS =
1√
2

(φA(~r1)φB(~r2) + φA(~r2)φB(~r1)), for S=0 (1.7)

ϕA =
1√
2

(φA(~r1)φB(~r2)− φA(~r2)φB(~r1)), for S=1, (1.8)

where Eq. (1.7) and Eq. (1.8) correspond to a symmetric and antisymmetric spatial

wave function respectively. Usually the spins in the materials point randomly, so the

average magnetization is zero, this magnetic configuration or phase is known as paramag-

netic state. The magnetic ordering emerges in materials where this phase is energetically

advantageous for the atoms in the lattice, that is why not all the materials are ferromag-

netic [3]. This feature gives rise to the well-known exchange interaction, which at the

core, is nothing more than electrostatic interaction, of particular relevance the Coulomb

repulsion [4]. So, just considering the latter, the exchange interaction can be written as:

H = H0 +Hrepulsion, (1.9)

with H0 = p1
2m1

+ p2
2m2
− e2

|~r1| −
e2

|~r2| and Hrepulsion = e2

|~r1−~r2| , being p the momentum, m the

mass of the electron and e its charge. The effective interaction is then:

∆E = EA − ES =〈ϕA|H|ϕA〉 − 〈ϕS|H|ϕS〉, (1.10)

where EA and ES are the energy of the triplet and single state, respectively. Substituting

Eq. (1.9) into the previous equation we get:

∆E = Jex, (1.11)

where we have defined

Jex = e2
∫
d3r1

∫
d3r2

φ∗A(~r1)φ
∗
B(~r2)φA(~r2)φB(~r1)

|~r1 − ~r2|
. (1.12)

Jex is the well-known exchange integral. This integral do not have a simple physical

interpretation, but it is known is related to the exchange constant of the Heisenberg model.

For more details please see Ref. [3]. A simplified model to explain ferromagnetic ordering

is the Stoner theory, which uses mean field theory to solve the Hubbard Hamiltonian and

can be written as:
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HU = U
∑
i

n↑i 〈n
↓
i 〉+ n↓i 〈n

↑
i 〉 − 〈n

↑
i 〉〈n

↓
i 〉, (1.13)

where n
↑(↓)
i is the local spin up (down) electronic density. This quantity can be rewritten

as:

n↑i =
1

2
(ρci + ρsi )

n↓i =
1

2
(ρci − ρsi ) , (1.14)

with ρci = n↑i + n↓i being the electronic density in the site i and ρsi = n↑i − n
↓
i being the

spin density in the site i. For a metallic system (parabolic dispersion) it is easy to show

that a small perturbation in the number of majority and minority electrons leads to

∆E = ∆EK −∆EU ≈
2〈ρs〉2

g(EF )
− U〈ρs〉2, (1.15)

where EK is the kinetic energy (∝ p2), EU is the mean field Hubbard energy, U represents

the strength of the electron repulsion and g(EF ) is the density of states at the Fermi

energy. To have ferromagnetism is necessary to have ∆E negative, what happens when

U >
2

g(Ef )
. (1.16)

This equation is the well-known Stoner criterion. This criterion is only satisfied by 3d

metals like Fe, Co and Ni. The main limitation of this model is that it does not take into

account the correlated spin excitations. More information about the Stoner model can be

found in Ref. [3]. A more accurate model that includes the correlated spin excitations is

the Heisenberg model. In 1929 Heisenberg aiming to explain ferromagnetism, proposed

the following Hamiltonian that describes a direct interaction of magnetic moments in a

crystal:

H = −
∑
i,j

JSi · Sj, (1.17)

where J is the exchange constant and Si(j) represents the spin of an atom in the i(j)

position. If J is negative, the spins in the system point in opposite directions. The system

is antiferromagnetic if the magnetic moments have the same magnitude, in contrast if their

magnitude differ, the system presents a non-zero magnetization and the system is called

ferrimagnetic. When J is positive, all the spins points to the same direction, giving rise

to a non-zero magnetization. This state is known as ferromagnetic [1]. Fig. 1.1 illustrates

the different magnetic states discussed.

The magnetic ordering is temperature dependent. The ferromagnetic, antiferromag-

netic and ferrimagnetic phases disappear at a certain critical temperature value, below it
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Figure 1.1: From left to right, paramagnetic, antiferromagnetic, ferromagnetic and ferri-
magnetic states with their respective magnetization M .

the material keeps its magnetic ordering and above the material becomes paramagnetic.

This temperature is known as Curie temperature for ferromagnets and ferrimagnets and

as Néel temperature for antiferromagnets.

1.2 Spintronics

Understanding the interaction of the electron’s spin in addition to its charge in mesoscopic

systems is the main subject of study of spintronics. There are two ways of creating a spin

current, either we pass a current through a ferromagnet so the current gets polarized

or we generate a pure spin current and as its name indicates, it is a chargeless current

where only spin is transferred. The latter does not required a magnetic material for its

generation, but a material with a suitable spin-orbit coupling (SOC) value in order to

convert the unpolarized charge current into a pure spin current through the spin Hall

effect. The ability to create and manipulate spin currents can trigger the development of

faster and more energetically efficient devices. The field of spintronics is very promising

for the development of novel devices, in applications that goes from data storage, classical

and quantum computation, communications, optics, sensing, etc. Key experiments prior

the genesis of spintronics, relating ferromagnetism with electrical currents, can be tracked

down to 1856 when the magnetoresistance effect was discovered. This effect consist on the

change of the electrical resistance of ferromagnets when subjected to an external magnetic

field [5].

Other effects include, the detection of a spin polarized current outside a ferromagnetic

electrode in 1971 [6] and the tunneling magnetoresistance (TMR) discovered in 1975 [7].

The birth of spintronics is the discovery of the giant magnetoresistance (GMR) in 1988 [8,

9], whose differences from to the already known magnetoresistance, are first, it is several

orders of magnitude higher than the latter, and second, it appears in systems with typical

dimensions around 50 nm or less. Indeed, for such dimensions the electron’s spin play

a decisive role in the transport properties of the system as was suggested by Mott in

1936 [10]. The GMR was only achieved after 1988 thanks to the advent of novel fabrication

techniques, of particular importance, the molecular beam epitaxy (MBE), that permitted
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to create multilayers composed of individual layers of just few nanometers [11].

GMR brought an intense research in spintronics, that continue nowadays mainly be-

cause of its industrial applications. Important advancements have been made in the

growth and nanopatterning of magnetic heterostructures and new physical phenomena

have been discovered like the spin-transfer torque, the spin-orbit torque, the spin Hall

effect, the spin Seebeck effect, among others, but despite all these advancements, until

now (2019) the major contributions have been done in data storage applications like GMR

heads, TMR heads and MRAMs. At the same time devices like spin transistors or mi-

crowave generators that will certainly revolutionize the electronics remains challenging to

realize.

1.2.1 Tunnel magnetoresistance

A magnetic tunnel junction is a spin valve composed by two ferromagnetic films separated

by a non-magnetic insulator. It was discovered in 1975 by M. Julliere studying Fe/Ge/Co

junctions at low temperatures [7]. He found that the conductance of the system was

dependent on the relative orientation of the magnetization of the ferromagnetic films. The

relative conductance variation found for this system was about 14% and this effect did

not get the attention it deserved during the time it was published. To explain the origin

of TMR phenomena, Julliere proposed that this effect was due to the spin polarization

acquired by the conduction electrons when interacting with the ferromagnetic metals.

In his description it is considered the central idea from Mott’s two current model, that

considers each spin species as traveling along independent channels [10]. Thus, the relative

conductance variation (TMR factor) can be expressed as:

TMR =
∆G

G
=
RAP −RP

RP

=
2P1P2

1− P1P2

, (1.18)

with Pα being the spin polarization of the ferromagnet α and defined as:

Pα =
D↑α(EF )−D↓α(EF )

D↑α(EF ) +D↓α(EF )
, (1.19)

where Dσ
α is the spin σ density of states of the ferromaget α. More accurate models, like

the Slonczewski’s model [12], include the effects of the tunnel barrier. The polarization

in this model is defined as:

P =

(
kF↑ − kF↓
kF↑ + kF↓

)(
κ20 − kF↑kF↓
κ20 + kF↑kF↓

)
, where (1.20)

κ0 =±
√

2m

~2
(U − EF ). (1.21)

kF↑ (kF↓) is the Fermi wavevector of the spin up (down) bands and U is the barrier height.

These new equation is obtained when the band structure details of the ferromagnets are



8

taken into account, as well as, the height of the barrier.

The discovery of GMR in 1988 brought back attention to the TMR phenomena and

thanks to the 20% value found at room temperature in CoFe/Al2O3/Co MTJ in 1995 by

Moodera et al. [13], the research on TMR became very active. In 2001 it was predicted

that employing of MgO barriers in the magnetic tunnel junctions (MTJ’s) could improve

the performance of these devices [14, 15], what attracted a lot of attention, mainly be-

cause of its potential applications. In 2004 it was achieved an important breakthrough

when was found a TMR value of around 200% at room temperature in a single-crystal

of Fe/MgO/Fe [16, 17]. Since then, these TMR values have progressively improved and

nowadays it can be find values up to 500% at room temperature and 1000% at 5 K can

be found [18].

1.2.2 Giant magnetoresistance GMR

Let us consider a spin valve, that is, a multilayered ferromagnetic system, composed by two

metallic ferromagnets separated by a non-magnetic metal, whose relative magnetizations

are collinear (parallel or antiparallel) with one magnetic layer easier to switch. If a

current is applied in the system and its resistance is measured as a function of the relative

magnetic orientation of the magnetic layers, a drastic change in the resistance is observed.

This was simultaneously found by the groups of A. Fert [8] and P. Grünberg [9] in Fe/Cr

and Fe/Cr/Fe multilayer structures. This system presents a higher resistance when the

magnetization of the adjacent layers was antiparallel as is shown in Fig. 1.2.

In the following two subsections theories explaining differences in conductances be-

tween parallel and antiparallel configurations are presented in the framework of the two-

current model.

1.2.3 Two-current model

This model was developed by Sir Nevill Mott in 1936 to explain the electrical conductiv-

ities found in transition metals and their alloys, where the spin plays an important role

in their transport properties [10, 19]. It is useful for understanding the GMR and TMR

phenomena. In this model it is considered that the current inside a system is carried by

two independent spin channels and the spin flip effects are disregarded. This approxima-

tion is valid for materials with small atomic number, because with a high atomic number,

the Coulomb field increases what could lead to a relativistic effect that couples the elec-

tron’s spin with the orbital angular momenta known as spin-orbit coupling [20]. Let us

consider that a current is applied to a system, this current carry both up and down spin

contributions, so the total current density can be written as:

J = (σ↑ + σ↓)E, (1.22)
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Figure 1.2: Magnetoresistance of three Fe/Cr superlattices at 4.2 K. Figure taken from
Ref. [8].

where σ↑ and σ↓ are the conductances in the up and down channels, respectively. Re-

membering that the electric field is defined as the potential difference per distance units

|E| = ∆V/td, and using Eq. (1.22), we have:

I = (σ↑ + σ↓)
A∆V

td
, (1.23)

where A is the transverse area and td the thickness. The expression for the resistance is

then obtained:

R =
∆V

I
=

1

(σ↑ + σ↓)
A
td

=
1

1
R↑

+ 1
R↓

=
R↑R↓
R↑ +R↓

, (1.24)

which is the well-known expression for the parallel resistor configuration. This permits

to represent the difference in the resistance for the parallel and antiparallel magnetic ori-

entation with a circuit whose resistances are arranged in parallel as illustrated in Fig. 1.3.

The resistances r/2 and R/2 are defined for the majority and minority spin channel re-

spectively, with r < R. Note that in Fig. 1.3(a) for the parallel case, the resistance in

the spin up channel has the lowest possible value r, while in the spin down channel the

electrons experience the highest resistance R. So, the total resistance for this magnetic

configuration, with R−1T = 1/R1 + 1/R2, as:

RP =
Rr

R + r
. (1.25)
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Figure 1.3: Schematic representation of a spin valve with its respective two current
model in (a) parallel magnetic configuration and (b) in antiparallel magnetic configu-
ration. The spin valves are composed by two ferromagnets (FM) separated by a non-
magnetic material (NM).

For the antiparallel magnetic configuration, Fig. 1.3(b) shows that both spin channels

have the same resistance (r +R)/2, so we get that the resistance in this configuration is:

RAP =
R + r

4
, (1.26)

and the GMR can be written then:

GMR =
RAP −RP

RP

=
(R− r)2

4Rr
(1.27)

Looking at the values of RAP and RP it is not straightforward to see that RAP > RP , so

let us demonstrate it. By contradiction

R + r

4
<

Rr

R + r

(R + r)2 < 4Rr, so

(R− r)2 < 0, (1.28)

what is impossible because any squared real number is bigger than zero, so RAP > RP .
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1.2.4 s-d model

This model describes the interaction of conduction electrons with the magnetization of

metallic ferromagnets [21]. It assumes that scattering with defects does not flip the elec-

tron’s spins and the spin orientation is preserved. In addition, it considers the electrons in

the d band as magnetized and localized to the crystal lattice sites, thus their contribution

to electronic transport is negligible, while the s (p) electrons are considered delocalized

and responsible for conductance [22]. Electrons from both band “types” interact with

each other via exchange field. In this situation, an external magnetic field H couples

mainly with the spins of the d band electrons, then we can write for the delocalized s

electrons the exchange interaction as:

Hsd = − Jsd
2Ms

M (r) · σ, (1.29)

where Jsd is the splitting of the spin up and spin down sub-bads of the d bands, Ms

saturation magnetization and M(r) is the magnetization of the d band electrons. Ferro-

magnetism is understood is this model as follows. Due to exchange splitting the d band

splits and as a consequence, depending on the Fermi energy position (if it intersects one

or both d sub-bands), one of the sub-bands will have more electrons than the other, cre-

ating an unbalance of spin species, driving to the more energetically favorable, magnetic

ordered state. The density of states in ferromagnets is schematically depicted in Fig. 1.4.

1.3 2D materials in spintronics

Graphene was the first truly 2D material synthesized in history. Followed by the real-

ization of other 2D materials. These materials are usually allotropes of various elements

compounds and are obtained after the isolation of a single atomic layer. Examples of such

materials include hexagonal boron-nitride (hBN), silicene that is a silicon allotrope, ger-

manene, an allotrope of germanium and phosphorene, an allotrope of phosphorus. Other

2D materials include the transition metal dichalcogenides (TMDCs), which are semicon-

ducting materials of the type MX2, where M could be a transition metal atom and X

is a chalcogen, so TMDCs monolayers include molybdenum disulfide (MoS2), Tungsten

disulfide (WS2), molybdenum diselenide (MoSe2), among others.

Most of these materials have promising applications in spintronics, for example,

graphene’s high electron conductivity, weak spin-orbit coupling, long spin relaxation time

and length up to room temperature, offers an optimal platform for spin manipulation.

The 2D TMDCs, due to their unique spin-valley coupling provides and extra degree of

freedom to manipulate spins [24, 25]. Silicene, germanene and 2D TMDCs, are serious

candidates to display quantum spin Hall effect (QSHE) [25].

In addition to being able to induce ferromagnetism, spin-orbit coupling in 2D materials
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Figure 1.4: Scheme of the spin dependent bands in the s-d model. The figure shows the
density of states g(E) in ferromagnets. EF is the Fermi energy, the d bands are splitted
by a factor Jsd and the s bands remains unchanged. The spin majority and spin minor-
ity in this illustration corresponds to the spin up and spin down respectively. Figure
adapted from Ref. [23].

is fundamental to manipulate spin currents on them. In the next subsection we will

describe spin-orbit coupling phenomenon.

1.3.1 Spin-orbit coupling (SOC)

The SOC is a relativistic effect that couples the electron’s spin with its spatial motion.

To have a clearer picture of what is going on, let us consider a system with SOC under

the presence of an electric field with no external magnetic field applied. The electrons

of the system will move because of the influence of the electric field and due to SOC are

going to experience, a magnetic field in their frame of motion, that couples with their

spin [26]. The presence of SOC in physical systems is a key ingredient for the emergence

of a great variety of phenomena, like the magnetocrystalline anisotropy or the spin Hall

effect. Likewise, it is important for the spin manipulation, as well as, the generation and

detection of pure spin currents.

The impact of SOC on the band structure of either an atom or a crystalline lattice

is a splitting in the bands or a shift of them. Despite this similar feature, the physics of

both systems is quite different. In an atom the coupling happens between the electron’s

spin and the atomic orbital and can described by L ·S, where L is the angular momentum

and S is the electron’s spin. In a crystal the SOC happens between conduction electrons

and the lattice potential. SOC only happens in crystals that intrinsically exhibit an
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Figure 1.5: (a) Schematic of the energy dispersion of a 1D free electron gas in the pres-
ence of either Rashba or Dresselhaus type SOC. The red and blue parabolas indicates
how were the spin bands before “turning on” the SOC interaction. Spin texture at the
Fermi surface when is present Rashba SOC (b), Dresselhaus SOC (c) and when both
are present with equal magnitude (d). Figure adapted from Ref. [26].

asymmetric lattice potential, due to its structure. Fig. 1.5(a) shows a schematic of the

energy dispersion of a 1D electron gas in the presence of SOC, where it is clearly seen the

shifting in the bands due to SOC. There are two ways structural characteristic can give

rise to SOC, either the crystal has an uniaxial symmetry, like wurtzite, or is composed

by the junction of two different crystals that creates an spatial inhomogeneity right at

the interface, in which case the SOC displayed will be of Rashba type [27] or the crystal

is non centro-symmetric, in whose case the SOC displayed will be of the Dresselhaus

type [28]. The corresponding spin texture of both types are presented in Fig. 1.5(b) and

(c) respectively. Fig. 1.5(c) shows the spin texture when both SOC effect are present and

have the same magnitude. In this thesis, due to the nature of our system we will consider

only SOC of the Rashba type.

1.3.2 2D materials in spintronic devices

There are basically two architectures in which a spintronic device can be arranged, verti-

cally and laterally. In this subsection we will discuss these two configurations and their

applications using 2D materials.

Vertical devices are characterized by the vertical stacking of two ferromagnets sepa-

rated by a non-magnetic spacer. Spin valves in this configuration can have two different

geometries depending on how is wanted the current to be applied into the system, current

in plane (CIP), in which the current flows parallel to the interface of the layers as shown

Fig. 1.6 (a), and current perpendicular to plane (CPP), where the current flows perpen-

dicular to the plane of the layers as shown in Fig. 1.6(b). In both geometries, interfacial

scattering plays a dominant role in transport for small layer thicknesses, even though,

it is possible to create systems where the bulk effects are dominant, but this evidently

requires larger layer thicknesses [19]. The main applications with 2D materials using CPP

configuration are the spin filters and spin valves where it has been studied materials such
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Figure 1.6: (a) Vertical spin valve in CIP configuration. (b) Vertical spin valve in CPP
configuration. (c) Spin valve in lateral configuration. Figure adapted from Refs. [19]
and [36].

as graphene [29–31], TMDCs and a combination of hBN with graphene [32, 33]. Also, it

has been demonstrated the possibility to control electrically the magnetoresistance of a

magnetic tunnel junction which uses graphene as spacer as reported in Ref. [34].

In lateral devices the two ferromagnets are separated laterally, as is shown in

Fig. 1.6(c). Among its advantages, there is the generation of pure spin currents, which is

impossible to achieve in vertical structures, because in this configuration the spin current

cannot be completly uncoupled from the charge current [19]. Also, the lateral configura-

tion is more suitable to study spin relaxation, via Hanle measurements for instance, due

to the fact that this setup permits optical access to the non-magnetic spacer region [19].

The use of 2D materials in this configuration opens new opportunities for the study of

novel spintronic devices. Indeed, spin propagation and spin detection in graphene has

already been studied using this configuration experimentally, as in Ref. [35] or Ref. [36].

This is the configuration we considered for our investigations, without injecting electron

current through the ferromagnets.

1.4 Graphene spintronics

1.4.1 Graphene

Graphene is a 2D material composed of carbon atoms arranged in a honeycomb lattice.

Close to the Fermi level, it has a linear dispersion energy characteristic of massless Dirac

fermions. It has no gap and the valence and conduction bands touch each other in only one

point known as Dirac point. Graphene can be considered as a semiconductor of zero gap,

whose lowest energy particles have relativistic behavior. It was synthesized for the first

time in 2005 in Manchester by Andre Geim and Konstantin Novoselov and brought with

it a real 2D materials revolution. Graphene has a very high charge mobility, for example

when encapsulated in hexagonal boron nitride (hBN) it can reach 3× 106 cm2/(Vs) [37],

a weak spin-orbit coupling [35, 36, 38–45] and a long spin relaxation time and lengths

even at room temperature. These physical properties among others have attracted a lot of

interest in view of its potential applications in diverse fields such as electronics, spintronics
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and quantum computing [46–48].

Graphene properties

Carbon is part of IV group and has four valence atoms. Carbon has the following electronic

configuration: 1s2 2s2 2p2, where the p orbital is partially filled. When graphene is formed,

the s and p orbitals hybridize, giving rise to three sp2 orbitals, that results in σ bonds,

which are the strongest type of covalent bond. The remaining 2pz electrons, are weakly

bound to the carbon atoms and can be considered as delocalized [49]. These electrons

play an important role in the high conductivity of the material.

In graphene the carbon-carbon length is approximately aCC ≈ 1.42 Å and its Bravais

lattice has two atoms per basis, so the unit cell has two pz electrons, that contribute to

the electronic properties of graphene. In Fig. 1.7 are shown the vectors that form its unit

cell, whose values are:

a1 =

(
a

2
,

√
3a

2

)
, a2 = (a, 0) , (1.30)

being a =
√

3aCC . Each carbon atom has 3 nearest neighbors, whose vectors are given

by:

δ1 =

(
0,

a√
3

)
, δ2 =

(
−a
2
,
−2a√

3

)
, δ3 =

(
a

2
,
−2a√

3

)
(1.31)

The reciprocal vectors can be obtained using the formula A = B · (BT ·B)−1, where B is

a matrix whose columns are the lattice vectors and A is a matrix that describes the dual

lattice (reciprocal space). So,

b1 = 2π

(
0,

2√
3a

)
, b2 = 2π

(
1,
−
√

3

3a

)
(1.32)

The graphene energy dispersion will be derived in detail in section 2.2, but let us briefly

introduce it and discuss its properties. The energy dispersion is given by the following

expression:

E(kx, ky) = ±t

√
1 + 4 cos

√
3a

2
kx cos

a

2
ky + 4 cos2

a

2
ky, (1.33)

where t = 2.7 eV is the graphene hopping parameter and kx and ky are moment values

inside the First Brillouin zone. Using Eq. (1.33) we plotted the band structure shown

in Fig. 1.8. The zoom highlights the linear behavior of the bands close to the K points.

In fact, this characteristic is the most striking feature of graphene. Because of this, the

electrons in graphene behave as relativistic particles and as a consequence for example, its

quantum Hall effect is different from that one measured in 2D gases. For example, it has
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Figure 1.7: Honeycomb graphene lattice showing the primitive vectors a1 and a2 and
the nearest neighbor δ1, δ2 and δ3.

a zero Landau level and its cyclotron mass depends on the square root of the electronic

density [46], and its charge carriers can tunnel an infinite potential barrier with perfect

transmission due to the Klein tunneling [50]. From the Hamiltonian of Eq. (2.11) it is

possible to get the Dirac equation for energies close to the K points. Without loss of

generality, let us consider the K point with coordinate
(

0, 4π
3a
√
3

)
to do so, let us write the

corresponding Hamiltonian operator of the eigenenergies from Eq. (2.11)

H(kx, ky) = t

(
0 f(kx, ky)

f ∗(kx, ky) 0

)
(1.34)

where f(kx, ky) is defined as:

f(kx, ky) = e−ia(kx)+2e
ia(kx)

2 cos

(√
3a

2
a(ky)

)
. (1.35)

Because we are interested to get the energy dispersion close to the chosen K point, let us

consider the following:

f(qx +Kx, qy +Ky) = e−ia(qx+Kx)+2e
ia(qx+Kx)

2 cos

(√
3a

2
a(qy +Ky)

)
,

with Kx = 0, Ky = 4π
3a
√
3

and qx, qy << 1. Rewriting this equation using the identity

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) we get

f(kx, ky) = e−ia(qx+Kx) + 2e
ia(qx+Kx)

2 cos

(√
3a

2
(0)

)
cos

(√
3a

2

(
4π

3a
√

3

))
−

sin

(√
3a

2
(0)

)
sin

(√
3a

2

(
4π

3a
√

3

))
,
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approximating the functions for small values and keeping those of order smaller than 2

we get

= (1− iaqx) + 2

(
−1

2

(
1 +

iaqx
2

)
− 3

4
aqy

)
= −3a

2
(iqx + qy), so the new Hamiltonian can be written as:

H(kx, ky) = −3at

2

(
0 iqx + qy

−iqx + qy 0

)
= −3at

2~
σ · p, (1.36)

which is the Dirac equation, probing the relativistic nature of the electrons close to the

K points.

Figure 1.8: Band structure of graphene showing the six Dirac points. The inset zooms
one Dirac point showing the linear dispersion of the bands close to it. Figure obtained
by plotting Eq. (1.33)

Graphene edges

It is well-known that the edge terminations of graphene nanoribbon (GNR) affects the

electronic properties of graphene. The most common edge terminations are the armchair

and zigzag types. The GNR with armchair edges displays insulating or metallic behavior

depending on graphene nanoribbon (GNR) width [51, 52], while the GNR with zigzag

edges can show half-metallicity, due to the antiferromagnetic interaction of the edges [53].

If a cut is performed in a graphene GNR at an intermediate angular direction between

these high symmetric cases (armchair and zigzag), this edge will be characterized by a

chirality angle θ [54] and as a function of its value the band structure will change. In Fig.
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Figure 1.9: (a) GNR nanoribbon showing armchair and zigzag edges. The angle θ shows
the new edge termination obtained doing a cut at this particular angle. (b) GNR with
rough edges.

(c)

ka ka

(b)(a)

E
n

e
rg

y
 (

e
V

)

ka

Figure 1.10: Band structure for (a) a metallic armchair GNR of width N=17 (1.97 nm)
(b) a semiconducting armchair GNRs of width N=21 (2.46 nm). (c) zigzag GNR of
width N=32 (3.44 nm). The band structures were obtained by using Kwant.

1.9(a) it is depicted the edge termination of the already discussed edges. If θ = 30◦ the

GNR will have zigzag edges, otherwise if θ = 0◦ the GNR will have armchair edges.

The effects of the armchair and zigzag edges in a GNR on its band structure are shown

in Fig. 1.10(a) and (b) both show the band structure of an armchair GNR. It is well-

known that the number of atoms across the armchair GNR width determines its electronic

behavior. If the number of atoms N follows the formula N = 3∗p+2, where p can be any

integer number, the armchair GNR is metallic like (a), otherwise it is semiconducting [55]

like (b). The zigzag GNR electronic behavior does not depend on its width and is always

metallic. Its band structure is shown in Fig. 1.10(c).

It is very difficult to have a GNR with perfect edges in the laboratory. Because defects

change the edge format, they can also affect the electronic properties of graphene. Among

the defects at the edges one can find vacancies, impurities, etc. In Fig. 1.9(b) it is shown

a GNR with vacancies in its edges, for which it has been demonstrated a decrease in the

charge conductance of the GNR like in Ref. [56] or can exhibit a nonzero spin conductance

as reported in Ref. [57].
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1.4.2 Applications of graphene in spintronics

Graphene is a diamagnetic material, so in order to make it useful in spintronics one needs

to find methods to induce a ferromagnetic order in it. There have been several methods to

achieve this, for example functionalization with adatoms, a process that consist on adding

extra atoms of a particular species on the graphene surface [58]. Of particular interest

is the hydrogen functionalization of graphene, for which it have been demostrated the

presence of ferromagnetism, as a consequence of the interaction of the localized states of

the hydrogenated graphene and the silicon dangling bonds of the bottom buffer layer [59].

The addition of defects, either vacancies or impurities, is another method that has been

explored recently, in order to induce ferromagnetism on graphene [60–62]. Experimen-

tally, the addition of defects can be achieved by means of lithography or by bombardment

with electrons. Inducing magnetism by proximity effects via an adjacent ferromagnet, has

been also explored [63–68]. The mechanism behind this effect is the hybridization between

pz orbitals in graphene with those of the neighboring substrate. In addition to inducing

magnetism, proximity effects can lead to superconductivity, SOC strength enhancement

and even induce topological properties. The advantage of inducing a ferromagnetic or-

dering by proximity effects over aforementioned methods, lies in the fact that it is more

robust and less invasive, i.e. it is not necessary to change the lattice structure that can

result in a reduction of the electronic conductivity or an unwanted increase of the SOC.

Applications and prospectives of graphene in spintronics range from spin devices,

like spin transistors, spin interconnects; storage devices like hard disks, magnetic random

access memory (MRAM) to optical devices like lasers [69, 70]. Beyond the aforementioned

applications, there is opportunity to find new physical effects combining graphene with

other 2D materials, new topological phases inducing SOC on graphene to have quantum

anomalous Hall effect (QAHE), or doping the system to obtain high temperature robust

spin Hall effect (SHE), that can be used to generate pure spin current [25]. These effects

could be used for the design of new device concepts not only in spintronics, but in other

fields as well.

1.5 Motivation

In the near future the capacity of our integrated circuits will reach a technical limit

imposed by physics. Spintronics aims to find a solution to circumvent this problem, but

there are still many challenges to overcome towards the realization of a fully spintronic

device, despite the numerous applications already developed, like hard disk memories or

magnetic random-access memories (MRAM). Thus, further investigations are required

in order to find materials with relevant spin-dependent properties like spin lifetime and

spin diffusion length. Transport measurements performed on graphene and some metals,
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like Cu, Ag, Al and some semiconductors like Si, GaAs, and Ge have demonstrated the

superiority of the former over the mentioned materials [71]. Even more astonishing is the

fact that graphene preserves its high spin lifetimes and long spin diffusion lengths even

at room temperatures, what converts it in a suitable platform for spin control and for the

development of novel devices. Even though, the graphene’s advantages are well-known,

it remains a challenge finding ways to enhance its SOC, necessary for spin manipulation,

while keeping the efficiency and robustness of spin polarization.

1.6 Objectives and contributions

With the aim of studying in detail the magnetoresistance phenomena in graphene-based

spin valves, in this thesis we propose a device composed of a graphene nanoribbon and

two identical magnetic stripes that induce magnetism in graphene by proximity effects. A

systematic study is performed, changing the material type of the magnets. Four different

magnetic insulators (MI), as well as, one multiferroic material, are used as magnetic

inductors. In addition, we study the physics of the spin transfer torque (STT) when

considered a non-collinear magnetic configuration in the proposed spin valve. Uncovering

the physics of the studied phenomena can lead to the development of new devices and the

improvement of existing ones.

In Chapter 2 we briefly review the density functional theory (DFT) and the tight-

binding approach. Then we apply the tight-binding technique to graphene and present

the Hamiltonian of our system. Later, the transport formalism is review focusing on the

scattering matrix method. Finally, we introduce the main observables studied in this

thesis. In Chapter 3, we address the physics of spin transport in the aforementioned

graphene-based spin valve. We demonstrate the existence of proximity magnetoresistance

phenomena (PMR) generating spin current polarization without direct injection through

the ferromagnet and present promising results on its robustness. In addition, we explore

the control of spin currents via the ferroelectrical properties of multiferroic magnets. We

show that besides PMR it is possible to define new effects, i.e. proximity electroresistance

(PER) and proximity multiferroic resistance (PMER), that are of vital importance for

clarifying the role of the electrical polarization in the tuning of the magnetic proximity

effects in graphene-based spin valves with multiferroic BFO. In Chapter 4, we give a brief

introduction of the spin transfer torque (STT) phenomena and present a derivation of the

spin conservation equation in the steady state when the system’s Hamiltonian has spin

dependent hoppings and spin dependent sublattice potential as in our case. With this

model in hand, we proceed to study the transport in the proposed graphene-based spin

valve with magnets made of YIG in non-collinear magnetic configuration. We identify

four typical energy zones of big importance for the understanding of the STT behavior.

Also, we investigate the dependence of STT with respect to the size of the system and
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present an estimation of the order of magnitude of the critical current, which is the current

needed to switch the magnetization of the immediate graphene region in contact with the

magnet, that for suitable thicknesses may eventually switch the magnetic orientation of

the whole magnet. In Chapter 5, we present our conclusions and perspectives.
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CHAPTER 2

Theory and methodology: tight-binding quantum transport

formalism

The size of a system determines the properties it can display. Saying so, we can divide

physical systems into three different regimes depending on their size, namely macroscopic,

mesoscopic and nanoscopic. There is not consensus on the exact dimensions defining these

regimes, but it is widely accepted that macroscopic systems can include systems as large

as galaxies (1021 m) and as small as bacteria (10−6 m), while nanoscopic system as its

name indicates are systems whose size is of the order of few nanometers, comparable to the

size of atoms. Systems in the mesoscopic regime are larger than atoms but still are small

enough to be affected by quantum effects. As its name indicates it is an intermediate

regime. Systems in this regime comprise few hundreds of atoms, so their typical sizes

are about 100 nm. Examples of these systems are transistors, genes and viruses. The

access to mesoscopic and nanoscopic systems was achieved thanks to great progress in

experimental techniques in recent decades. Being able to control matter at atomic scale,

made available phenomena that before were simply disregarded or unknown. The need

for understanding mesoscopic systems led to new theoretical techniques to properly treat

them.

There are several tools to study mesoscopic and nanoscopic systems, and their appli-

cability depends on the characteristic length scales of the system. Among the analytical

tools to simulate mesoscopic systems, there are the ab initio methods, like density func-

tional theory (DFT), quantum Monte Carlo (QMC) or the Hartree-Fock methods, that

derive the physical behavior of a system from first principles. Other approaches include

semi-empirical methods in which empirical potentials are fitted from experimental data

to describe accurately systems. When the required properties of a material are obtained

23
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Figure 2.1: Hierarchy tree showing the steps that preceded the transport phenomena
study done in this thesis. In this work it was fitted the band structure obtained from
DFT calculations in order to obtain parameters that permitted the study of the trans-
port properties of a lateral spin valve using the scattering matrix method.

(band structure, phase transition diagrams, etc), prototypical devices using this material

can be designed and investigated. A hierarchy tree presenting the process of theoretical

description of devices is presented in Fig. 2.1.

In this thesis we systematically investigated the transport phenomena of a spintronic

device. For the description of transport phenomena of mesoscopic spintronics systems,

it is of vital importance five characteristic lengths: the mean free path, the de Broglie

wavelength, the phase relaxation length, the spin coherence length and the (Larmor) spin

precession length. The mean free path ` is the distance traveled by an electron before it

collide, the de Broglie wavelength defined as λF = h/p relates the particle wavelength to

its momentum p. This quantity naturally rises from the wave-particle duality. Systems

whose size is comparable with this quantity present quantum effects, so they should be

treated with quantum methods [72, 73]. The phase-relaxation length `φ is the distance

for which the electron waves conserve their coherence. Processes that can cause phase re-

laxation (coherence loss) are those that break the time-reversal symmetry, like magnetic

fields, or inelastic collisions. Finally, when the transverse spin current is not fully ab-

sorbed by the system, like in the current driven domain wall motion, or the spin transfer

torque decays while oscillating [74] the spin coherence length `⊥ and precession length

`L become essential for the understanding of that phenomena. Physically, `⊥ represents

the transverse spin accumulation decay length and `L the transverse spin accumulation

traveled distance while precessing inside a ferromagnet [75].

Systems whose phase-relaxation length is bigger than their size L, `φ >> L, Green

function methods, scattering matrix and Kubo formula are applicable. If the de Broglie

wavelength is smaller than the mean free path and the phase-relaxation length is smaller

than the system, it is λF << ` and `φ << L, the description of the system via Boltz-

mann equation is more suitable [73]. In this chapter I will derive all the theoretical tools
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necessary to investigate the spin dependent transport and the spin transfer torque.

2.1 Density functional theory (DFT)

In this section we will describe briefly the theoretical basis of the DFT. The DFT is

a powerful formalism used in chemistry, physics and materials science to model many-

body systems. It aims to solve the Schrödinger equation by employing a mean field

approximation including several particle interaction in a term called exchange-correlation

potential, that will be described with more detail later. With DFT it can be handled

reasonable large systems in shorter time when compared with other quantum methods.

For its development Walter Kohn earned the Nobel prize in chemistry in 1998. DFT is

based on two theorems known as Hohenberg-Kohn theorems [76], that states the following:

� The ground state energy of a system is a unique functional of the electron density

E0 = E[ρ]

� When E[ρ] reach the minima, the electron density corresponding to this energy

minima is the true electron density of the ground state from the Schrödinger equation

of the system.

The first theorem permits to replace the wave function of N particles with 3N degrees

of freedom by the electronic density, decreasing the number of degrees of freedom to 3.

The second one implies that while minimizing the energy of the system with respect to

the electronic density, we get at the end the exact solution of the ground state of the

Schrödinger equation. The trick to minimize the functional E[ρ] is to solve the following

auxiliary equation, known as Kohn-Sham equation:[
−~2

2m
∇2 + Veff

]
φi(r) = εiφi(r), (2.1)

where εi and φi(r) are the eigenenergies and eigenfunctions of the non interacting system.

Another useful quantity is the following:

ρ(r) =
occ∑
i

|φi(r)|2, (2.2)

which is the the sum of the squared Kohn-Sham eigenfunctions. This quantity is known as

Kohn-Sham electron density. Similarly to what happens with the Kohn-Sham eigenfunc-

tions this expression lacks of physical meaning, but in this case, this quantity do reproduce

correctly one physical quantity, the ground state electron density. The effective potential
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Veff Eq. (2.1) can be written as [77]:

Veff (r) = V (r) + e2
∫

ρ(r′)

|r − r′|
dr′ + Vxc(r), (2.3)

The first term V (r) is an external potential, the second one is the Hartree potential,

that takes into account the Coulomb repulsion and the last term Vxc is the exchange-

correlation potential that contain all the remaining many-particle interactions, including

the electron-electron interaction. Vxc is the most important term from all the DFT theory

and its exact form is unknown, that is why is usually approximated. Several methods

to approximate the exchange-correlation potential do exist including, the local density

approximation (LDA), that assumes a constant density and approximate the system as

a homogeneous electron gas. The generalized gradient approximation (GGA), considers

variations at each site of the lattice and then include a gradient term. LDA+U and

GGA+U methods are suitable for highly correlated systems, among other methods. In

this section we will focus only on the most commonly used. More details on exchange-

correlation potentials can be found in Ref. [78]. Once an approximation for Vxc is adopted,

Eq. (2.1) can be solved self-consistently, following the procedure depicted in Fig. 2.2.

2.1.1 Local density approximation (LDA)

This method is widely used and is the simplest one to approximate the exchange-

correlation potential Vxc. It consists in treating the system as it were a homogeneous

electron gas of the same density ρ(r), that

V LDA
xc =

∫
vxc[ρ(r)]ρ(r)dr, (2.4)

where the term vxc[ρ(r)] is the exchange-correlation per particle and can be computed

using the data from the QMC calculations from Ref. [79] for the ground state of an

electron gas. This approximation works fine in systems weakly correlated, that is, when

the density varies slowly like in group-IV semiconductors. Otherwise, the results are

very inaccurate, like for Mott insulators. Until now we have not mention how to get the

energies of excited states. From DFT we get only the ground state of a system. The

functional of excited states cannot be obtained using the ground state functional because

this can lead to inaccurate results. One way to solve this issue, is to expand the zero order

LDA approximation to higher orders using perturbation theory as described in Ref. [80].

2.1.2 LDA+U and GGA+U

When the system is highly correlated, it is convenient to use LDA or GGA + U approaches

with an extra term to the LDA to model “explicitly” the strong electron-electron inter-
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Figure 2.2: Chart showing the self consistent process needed to find the minima of E[ρ].
Chart adapted from Ref. [84]

action in this kind of systems, generally referred in the literature as “U”. This method

is inspired by the Hubbard model and its implementation in usual DFT codes do not de-

mand significant effort, or significant computational power. The U term can be obtained

from ab initio calculations or empirically from experimental data [81]. This method is

appropriate to treat systems such as complex oxides like in Refs. [63], [82] and [83].

2.2 Tight-binding approach

In this section we discuss the tight-binding technique, the backbone of this thesis, and

derive the dispersion energy equation for a pure graphene infinite sheet. For pedagogical

purposes we show how is built the graphene nanoribbon tight-binding Hamiltonian and

compare the results obtained for different edge terminations with simulations from the

transport calculation python package Kwant [85]. The tight-binding technique is an ap-

proximation used to describe the behavior of electrons in crystalline lattices. Developed

in 1928 by Bloch, the technique approximates the electronic band structure by super-

posing the wave functions of each atom. It neglects the particular atomic structure of

the atoms that compose the crystal, as well as, the electron-electron interactions. Its use

is appropriate in materials where the electrons are tightly bound to their atoms, like in

semiconductors or insulators. The energy of the tight-binding wave function in crystal ψ~k
can be obtained using the Schrödinger equation, thus

Hψ~k = Eψ~k (2.5)
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Using the bra-ket notation, it is easy to see that the energy is obtained after the diago-

nalization of the Hamiltonian H

〈φn|H|ψ~k〉 = E〈φn|ψ~k〉, (2.6)

where φn is the valence orbital of the n atom. Due to its accuracy, and the fact that the

tight-binding Hamiltonian parameters can be obtained from experiments or adjusted from

first principles calculations, the TB method can be used on a great variety of systems,

what have made it so popular.

2.2.1 Tight-binding description of graphene

Let us consider the following Hamiltonian for a spinless graphene

H =
∑
α

εα|φα〉〈φα|+
∑
αβ

tαβ|φα〉〈φβ|, (2.7)

where ε represents the onsite energy, tαβ is the hopping energy. The corresponding tight-

binding wave function is:

ψ~k(~r) =
1√
N

∑
j

ei(
~k·~δj)(c1φ

A(~r − ~δj) + c2φ
B(~r − ~δj)), (2.8)

where φA(B)(~r − ~δj) = 〈~r − ~δj|φA(B)〉, N is the number of unit cells in the crystal, j runs

over the nearest neighbors δ and A and B denote the graphene sublattices. Supposing

without loss of generality εα = 0 and tαβ = t, the Schrödinger equation gives

〈φA|H|ψ~k〉 = E〈φA|ψ~k〉

〈φB|H|ψ~k〉 = E〈φB|ψ~k〉, (2.9)

for the graphene nearest neighbors (Eq. (1.31))

−tc1
(
e−i~r·

~δ1 + e−i~r·
~δ2 + e−i~r·

~δ3
)

= Ec2

−tc2
(
ei~r·

~δ1 + ei
~k·~δ2 + ei~r·

~δ3
)

= Ec1, (2.10)

so the tight-binding Hamiltonian can be written as

H(kx, ky) =

 0 e−iakx + 2e
iakx
2 cos

(√
3a
2
aky

)
eiakx + 2e−

iakx
2 cos

(√
3a
2
aky

)
0

 , (2.11)
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whose eigenenergies are given by the following energy dispersion:

E(kx, ky) = ±t

√
1 + 4 cos

√
3a

2
kx cos

a

2
ky + 4 cos2

a

2
ky,

the same result as in equation Eq. (1.33)

Graphene nanoribbon

Graphene nanoribbons present boundaries in one direction and translational symmetry in

the other, i.e. is periodic. In the direction of translation symmetry, the Bloch theorem is

applicable, so the hoppings in this direction should be multiplied by a phase of the form

ei
~k·~d. The graphene edge terminations changes the band structure of the system, that is

why, as we will see, the Hamiltonian is different for armchair and zigzag edges. To prove

this, let us consider the graphene lattices from Fig. 2.3. Both systems are small, but the

implementation of a bigger system is straightforward.

Note that in Fig. 2.3(a) we can link along the translational symmetry the sites whose

positions follow the equations 4n and 4n − 1, for n = 1, 2, 3, ..., N . In our case N = 10,

then the extra factor should be added to the sites 4 and 3, 7 and 8, as well as to their

reciprocal values, thus the Hamiltonian can be expressed as:

H =

1 2 3 4 5 6 7 8 9 10



0 t 0 t 0 0 0 0 0 0 1

t 0 t 0 0 0 0 0 0 0 2

0 t 0 teikx 0 t 0 0 0 0 3

t 0 te−ikx 0 t 0 0 0 0 0 4

0 0 0 t 0 t 0 t 0 0 5

0 0 t 0 t 0 t 0 0 0 6

0 0 0 0 0 t 0 teikx 0 t 7

0 0 0 0 t 0 te−ikx 0 t 0 8

0 0 0 0 0 0 0 t 0 t 9

0 0 0 0 0 0 t 0 t 0 10

(2.12)

The diagonalization of this Hamiltonian gives us the band structure of an armchair

graphene nanoribbon of 5 atoms width (semi-metallic behavior) shown in Fig. 2.4(a).

For the zigzag edges case, the linking along the translational symmetric direction is

trickier due to graphene lattice geometry. Note that the extra factor is added when one

needs to link a site in one boundary to a site in the opposite boundary respecting the

symmetry of the lattice. For the zigzag graphene nanoribbon of Fig. 2.3(b) where N=8,

the sites 1 and 2 are linked by a hopping t, but they are as well boundary sites, so a link

is possible. One can see that site 1 is equivalent to site γ, that makes necessary to add in
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Figure 2.3: (a) unit cell of an armchair graphene nanoribbon of width 5 atoms. (b) unit
cell of a zigzag graphene nanoribbon. The black circles (open circles) represent atoms of
sublattice A (B). The direction of translation symmetry for both nanoribbons is along
x.

its Hamiltonian the extra factor when linking site 1 and 2. Thus, the factor e−ikx should

be added to the sites whose positions follow 2n − 1 and 2n, i.e. for sites 1 and 2, 3 and

4, 5 and 6, 7 and 8, so we can write the Hamiltonian as:

H =

1 2 3 4 5 6 7 8



0 t+ teikx 0 0 0 0 0 0 1

t+ te−ikx 0 t 0 0 0 0 0 2

0 t 0 t+ teikx 0 0 0 0 3

0 0 t+ te−ikx 0 t 0 0 0 4

0 0 0 t 0 t+ teikx 0 0 5

0 0 0 0 t+ te−ikx 0 t 0 6

0 0 0 0 0 t 0 t+ teikx 7

0 0 0 0 0 0 t+ te−ikx 0 8

(2.13)

When diagonalized this Hamiltonian gives the band structure shown in Fig. 2.4(b).

2.3 Tight-binding model for graphene with proximity

induced magnetism

In this work we propose a tight-binding Hamiltonian that fits the band structure obtained

from a DFT method. We show how proximity magnetic effects are included in the tight-
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Figure 2.4: Band structure for the graphene nanoribbons of Fig. 2.3 for a system with
(a) armchair edges and (b) zigzag edges. The figure shows a comparison between the
solid line (black) bands that were obtained using the python package Kwant and the
open circle (red) bands that were obtained from direct diagonalization of the matrices
from Eq. (2.12) and Eq. (2.13).

binding Hamiltonian. In order to derive it, for pedagogical reasons, let us consider the

band structure from Fig. 2.5(a). An infinite graphene sheet do not have gap and the spin

up and spin down bands are degenerate. The presence of a magnet on top of graphene,

breaks the spin bands degeneracy and depending on the properties of the neighboring

magnetic material, it can open a band gap. To build the Hamiltonian it is necessary to

take into account the following band parameters: the Dirac cone energy with respect the

Fermi energy ED, the energy gap EG, the spin up band splitting ∆↑, the spin down band

splitting ∆↓, the electrons band splitting δe and the holes band splitting δh. All these

parameters have been sketched in Fig. 2.5. It is easy to show that

EG = ∆↓ − δe = ∆↑ − δh
∆↓ −∆↑ = δe − δh,

so, there are only 4 independent parameters. From Fig. 2.5(a) it is possible to obtain the

following set of equations:

Ee↓ − Eh↑ = ∆↓ (2.14)

Ee↑ − Eh↓ = ∆↑ (2.15)

Ee↓ − Ee↑ = δe (2.16)

Eh↑ − Eh↓ = δh, (2.17)

where Ee↑(↓), Eh↑(↓) are the energy minima of the up(down) spin electron band and
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Figure 2.5: (a) Sketch of a magnetic graphene band structure. ED is the Dirac energy,
EG is the gap energy, ∆↑, ∆↓ is the gap energy of the spin up band and spin down band
respectively. δe, δh is the spin splitting of the the electrons band and holes band respec-
tively. (b) Diagram showing the spin dependent components (ε↑ and ε↓) of the sublat-
tice potentials and the spin dependent hoppings of a graphene hexagon.

the up(down) spin hole band, respectively. Solving for Ee↑, Ee↓, Eh↑, Eh↓, we get

Ee↓ =
1

2
(∆s + δ +∆δ)

Ee↑ =
1

2
(∆s − δ −∆δ)

Eh↑ =
1

2
(−∆s + δ −∆δ)

Eh↓ =
1

2
(−∆s − δ +∆δ), (2.18)

where we have defined

δ =
δe + δh

2
(2.19)

∆s =
∆↑ +∆↓

2
(2.20)

∆δ =
δe − δh

2
=
∆↓ −∆↑

2
. (2.21)

δ can be interpreted as the strength of the exchange spin splitting, ∆s is the strength of the

spin dependent staggered sublattice potential and ∆δ can be interpreted as the strength

of the spin-sublattice interaction. Using these parameters we can write a continuous
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Hamiltonian for the band structure of Fig. 2.5(a) as:

H(q) =

(
vfσ · q +

δ

2
(s ·m) +

∆s

2
σz
)
⊗ 1 +

∆δ

2
σz ⊗ (s ·m), (2.22)

vf is the Fermi velocity, σ is a spin operator that acts on the sublattice space, s is a

vector of Pauli matrices that acts on the spin space and m is the magnetization vector.

The first term corresponds to the kinetic energy which is of Dirac type, i.e. describes

massless fermions and q is the momentum measured relative to the Dirac point. Let us

now discretize Eq. (2.22) in order to obtain the Hamiltonian of a finite system, then

H = t
∑
〈i,j〉σ

c†iσcjσ +H.c.+
∑
n∈A

∑
σ,σ′

V A
σ,σ′c

†
nσcnσ′ +

∑
n∈B

∑
σ,σ′

V B
σ,σ′c

†
nσcnσ′ , with (2.23)

V A = ED1 +
∆s

2
1 +

(
∆δ

2
+
δ

2

)
(s ·m)

V B = ED1−
∆s

2
1 +

(
−∆δ

2
+
δ

2

)
(s ·m),

where t is the hopping parameter, c†iσ (ciσ) creates (annihilates) an electron with spin σ

in the site i. V A and V B are the spin dependent sublattice onsite potential, that appears

as a consequence of the neighboring magnetic material. In the systems considered in

this thesis, the hoppings found to fit the bands are spin dependent, so changes in the

Hamiltonian of Eq. (2.23) have to be included in order to take into account this feature.

Fig. 2.5(b) shows a diagram representing on a graphene hexagon the spin dependent

components (ε↑ and ε↓) of the sublattice potentials V A and V B and the spin dependent

hoppings t↑ and t↓. Note that we have the following 4 degrees of freedom A ↑, A ↓, B ↑,
B ↓, so the hopping for any pair of sites should look like:

A ↑ A ↓ B ↑ B ↓


0 0 t↑ 0 A ↑
0 0 0 t↓ A ↓
t↑ 0 0 0 B ↑
0 t↓ 0 0 B ↓

A Hamiltonian that reproduce the previous values is:

H1 =
∑
σ

tσc
†
1σc0σ +H.c., (2.24)

where σ can be either ↑ or ↓, c†µσ (cµσ) creates (annihilates) an electron of the type A

(µ = 0) or B (µ = 1) with spin σ, and tσ is a spin dependent hopping that connects

nearest neighbors sites. In addition to the spin dependent hopping, there are cases where

one needs to use anisotropic hoppings in order to model properly the band structure,
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therefore this Hamiltonian can be expressed as:

H1 =
∑
iσ

∑
l

tlσc
†
(i+l)1σci0σ +H.c., (2.25)

where tlσ represents the anisotropic hopping connecting unit cells i to their nearest neigh-

bors cells i+ l. The full Hamiltonian of our system is then:

H =
∑
iσ

∑
l

tlσc
†
(i+l)1σci0σ +H.c.+

∑
iσσ′

1∑
µ=0

[δ + (−1)µ∆δ] c
†
iµσ[~m.~σ]σσ′ciµσ′

+
∑
iσ

1∑
µ=0

[ED + (−1)µ∆s] c
†
iµσciµσ,

(2.26)

2.4 Transport formalism

In this section we discuss the scattering matrix method, as well as its mathematical

properties. Later, we present the Landauer formalism where we derive the conductance

formula for transport in mesoscopic systems. In the last part, we present a brief description

of Kwant and how this package is employed for the calculation of the transport properties

of systems using the scattering matrix method and the Landauer formula.

2.4.1 Scattering matrix

In a coherent conductor whose dimensions are smaller than its mean free path `, the

transmission function can be calculated solving the Schrödinger equation at each energy.

This process can be characterized by relating the incoming and outgoing modes through a

matrix known as scattering matrix (S-matrix). Without loss of generality, let us consider

a 1D system, as the depicted in Fig. 2.6, where the electron wave function Ψ1 can be

written as:

Ψ1(x, y) =

Nch∑
n=1

(a+nψ
+
n (x, y) + a−nψ

−
n (x, y)) (2.27)

with

ψ±n (x, y) = φn(y)e±iknx (2.28)

where Nch is the total number of channels, kn is the wave vector and + (−) indicates if

the wave moves to the right(left). Similarly Ψ2:

Ψ2(x, y) =

Nch∑
n=1

(b−nψ
−
n (x, y) + b+nψ

+
n (x, y)) (2.29)
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Rearranging the incoming(outgoing) modes

cin = (a+1 , a
+
2 , ...b

+
Nch

, b−1 , b
−
2 , ...b

−
Nch

) (2.30)

cout = (a−1 , a
−
2 , ...b

−
Nch

, b+1 , b
+
2 , ...b

+
Nch

) (2.31)

so that cin and cout can be related using the matrix S as follows:

cin = Scout, (2.32)

where S has the block structure

S =

(
r t′

t r′

)
(2.33)

The S-matrix is a 2Nch × 2Nch matrix, where Nch represents the number of channels

in the system. The matrices t and r are both Nch × Nch and represent the transmission

and reflection amplitudes, respectively [86]. They differ from the primed matrices t′ and

r′ on the wavefunction propagation direction. From the S-matrix construction it is easy

to see that the t and r matrices represent the amplitudes of the wavefunction propagates

from left to right, while t′ and r′ that from right to left.

Figure 2.6: Sketch of incoming(outgoing) waves moving toward(away) a scattering re-

gion. The sign +(−) indicates that the wave moves to the right(left).

Scattering matrix properties

In order to preserve the current conservation equation, it is required the scattering matrix

S to be unitary, so that

S†S = SS† = 1, and (2.34)

Nch∑
m=1

|Smn|2 =

Nch∑
m=1

|Snm|2 = 1, (2.35)

2.4.2 Landauer formula for conductance

The conductance of mesoscopic systems cannot be described with the ohmic law G =

σW/L, because as the dimensions of the system become smaller, the conductance stops

following a linear behavior as a function the width W and becomes independent of the
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Figure 2.7: (a) Conductor attached to two leads which are connected to two reservoirs
(contacts 1 and 2). The contacts have different chemical potentials so there is current I
flowing through the conductor. (b) Bands in a narrow conductor. The square indicates
the states that can carry current. The number of modes in this hypothetical system are
the number of intersections of the energies µ1 and µ2 with the bands, in this case both
have 3 modes. Figures adapted from [72].

length L [72]. Let us consider a narrow conductor attached to two leads at zero tem-

perature, and consider this system in the ballistic regime, i.e., there is no scattering.

Connected to the leads there are two contacts considered reflectionless, it is, the electrons

from the contacts enter or exit to the leads without reflection and do not suffer scattering.

This situation is depicted in Fig. 2.7(a), where µ1 and µ2 are chemical potentials in lead

1 and 2, respectively. Considering Nch as the number of modes in the lead and an applied

bias µ1 − µ2 between the contacts, the current from the lead 1 can be expressed as:

I+1 =
2e2

h
Nch

(µ1 − µ2)

e
(2.36)

where number of modes Nch depends on the dimensionality of the system, so

Nch =
S

λ2F/2π

∣∣∣∣
3D

=
W

λF/2

∣∣∣∣
2D

, (2.37)

where λF is the Fermi wavelength. For 3D conductors the number of modes Nch is

directly proportional to their transversal section S, while in 2D conductors it is directly

proportional to their width W . Graphically, the modes can be much better understood

when depicted in a band structure. Fig. 2.7(b) shows three active modes of a hypothetical

conductor at energies µ1 and µ2, according to the number of bands between them.

When the conductor and leads of a system are treated as waveguides for the electrons,

it is possible to describe the transport properties of a device by solving a scattering

problem. In this approach, we can write the outflow current from the conductor as:

I+2 =
2e2

h
NchT (E)

(µ1 − µ2)

e
, with T (E) ∈ R+ (2.38)
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where T (E) is the transmission probability of an electron with energy E going from lead

1 to lead 2. The reflected current in the conductor that goes back to the contact 1 can

be written as:

I−1 =
2e2

h
Nch(1− T (E))

(µ1 − µ2)

e
, (2.39)

so that the net current at any point in the device becomes:

I = I+1 − I−1 =
2e2

h
NchT (E)

(µ1 − µ2)

e
. (2.40)

The conductance G = I/V can be expressed then:

G =
2e2

h
NchT (E), (2.41)

which is the famous Landauer formula for spin-degenerate systems. This expression as-

sumes that the transmission in all Nch channels is the same, in a more general way we

can write the previous equation as:

G =
2e2

h

Nch∑
n

Tn(E), (2.42)

where we sum the transmission of each mode Nch. The transmission function is a quantity

that allows describing the current passing through a conductor and can be obtained using

different methods, for example using Green functions or the scattering matrix formalism.

For the latter, the transmission can be obtained using the following formula:

T = Tr(tt†), (2.43)

where t is a coefficient of the S-matrix from Eq. (2.33) and t† its conjugate transpose.

2.4.3 Kwant formalism

In this work to perform transport calculations we used the python package Kwant. This

numerical calculation tool aims to solve the scattering problem of physical systems that

can be described by a tight-binding model in a robust and efficient way [85]. Kwant has

embedded various methods to calculate the conductance, such as scattering matrix and

non-equilibrium Green functions. Both methods are equivalent, but the non-equilibrium

Green’s function is less stable, and due to this fact Kwant is based on the wave function

approach.

A structure to model transport is composed by a scattering region and leads with

translational symmetry. An arbitrary system modeled with Kwant is shown in Fig. 2.8.
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Figure 2.8: Tight-binding system modeled using Kwant. The semi-infinite lead are rep-
resented by using red dots and the scattering region by black dots. Figure taken from
Ref. [85].

Without loss of generality, let us consider a scattering problem where there is only one

lead attached to the system. A solution for two leads systems can be found in [87]. The

generalization to systems with more leads is straightforward. A Hamiltonian composed

by one semi-infinite lead and a scattering region has the following form:

H =


. . . VL 0 · · ·
V †L HL VL

0 V †L HL VLS

V †LS HS

 , (2.44)

where HS and HL are the Hamiltonians of the scattering region and lead respectively. VL

connects internally the neighboring unit cells in the lead and VLS is the hopping matrix

that connects the closest unit cell of the lead to the scattering region. The eigenvectors

of this Hamiltonian has the form (..., ψL(2), ψL(1), ψL(0), ψS), where ψL(i) is the wave

function in the i-th unit cell of the lead and ψS represents the wave function in the

scattering region. Making use of the translational symmetry of the lead, let us expand

the eigenstates as

φn(j) = (λn)jχn, (2.45)

in order to make them obey the Schrödinger equation

(HL + VLλ
−1
n + V †Lλn)χn = Eχn, (2.46)

where χn indicates the n-th lead unit cell eigenvector, and λn is the n-th eigenvalue. Let
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us now find the eigenvectors by introducing the following auxiliary vector

χ′
n ≡ λ−1n VLχn, (2.47)

so that Eq. (2.46) can be written in matricial form as:(
HL − E 1

VL 0

)(
χ
n

χ′
n

)
= λn

(
−V †L 0

0 1

)(
χ
n

χ′
n

)
, (2.48)

Note that λn = eikn because of the Bloch theorem, where kn is the longitudinal momentum

of the mode n. With this, previous equation can be easily solved by means of numerical

algorithms. Because of the wave function normalization |λn| ≤ 1. For |λn| < 1 the modes

will be evanescent and propagating for |λn| = 1. The group velocity, for the n-th mode

can be written as:

vn =
−2

~
Im(χ†nVLλnχn). (2.49)

The modes are incoming if vn > 0, outgoing if vn < 0 and evanescent if vn = 0. Let us

now expand the scattering states of the lead for each type of mode:

ψLn (i) = φinn (i) +
∑
m

Smnφ
out
m (i) +

∑
p

S̃pnφ
ev
p (i), (2.50)

where φinn , φoutm , φinp are the eigenstates for the incoming, outcoming and evanescent modes,

respectively. Smn is the scattering matrix and S̃pn represents a non unitarian matrix

proportional to the scattering matrix Smn [72]. The scattering matrix and the wave

function in the scattering region can be obtained by solving Hψn = Eψn, for Eq. (2.48).

This gives the following set of equations:

V †LSψ
L
n (0) + (HS − E)ψSn = 0 (2.51)

V †Lψ
L
n (1) + (HL − E)ψLn (0) + V LSψSn = 0. (2.52)

By substituting Eq. (2.50) into Eq. (2.52)

V †L

(
φinn (1) +

∑
m

Smnφ
out
m (1) +

∑
p

S̃pnφ
ev
p (1)

)
+

(HL − E)

(
φinn (0) +

∑
m

Smnφ
out
m (0) +

∑
p

S̃pnφ
ev
p (0)

)
+ VLSψ

S
n = 0,

(2.53)
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using the definition φn(j) = (λn)jχn and rearranging the terms we get:

(
V †Lχ

in
n + (HL − E)χinn

)
+

(
V †L
∑
m

Smnλ
−1
m
χout
m + (HL − E)

∑
m

S̃mnχ
out
m

)
+(

V †L
∑
p

S̃pnλ
−1
p
χev
p + (HL − E)

∑
p

S̃pnχ
ev
p

)
+ VLSψ

S
n = 0.

(2.54)

Using Eq. (2.46) to rewrite each term inside the parenthesis, we then get:

−λ−1n VLχ
in − VL

∑
m

Smnλ
−1
m
χout
m − VL

∑
p

S̃pnλ
−1
p
χev
p + VLSψ

S
n = 0, (2.55)

note that the first three terms of this expression resembles Eq. (2.50), so after using Eq.

(2.45) we get:

VLSψ
S
n =VLψ

L
n (−1). (2.56)

Using Eq. (2.50) to evaluate ψn(−1) and substituing Eq. (2.47) we get finally:

VLSψ
S
n = χ′in

n −
∑
m

Smnχ
′out
m −

∑
p

S̃pnχ
′ev
p (2.57)

Using Eq. (2.57) and Eq. (2.51), and substituting ψLn (0) = χin
n +

∑
m Smnχ

out
m +

∑
p S̃pnχ

ev
p

we can build for each mode n a matrix of the form

(
HS − E V †LSχ

out V †LSχ
ev

VLSχ
out
n −χ′out −χ′ev

)ψ
S
n

Sn

S̃n

 =

(
−V †LSχinn
χ′in
n

)
, (2.58)

where we have defined χη = (χη1, χ
η
2, ..., χ

η
N), with η = in, out, ev modes. Here N = Np for

incoming and outgoing modes andM = Nev for evanescent ones, so in total there areMT =

Np + Nev modes in the lead with Sn = (S1n, S2n, ..., SNpn) and S̃n = (S̃1n, S̃2n, ..., S̃Nevn).

Accounting for all the modes in the system, the full scattering matrix S is of Np × Np

size, S̃ has dimensions Nev × Np, while ψS is of Ns × Np size, where Ns is the number

of sites of the scattering region. The scattering matrix S and the scattering region wave

function ψS are the main outputs obtained with Kwant.

2.5 Observables

In order to investigate the spin transport properties of a lateral graphene-based spintronic

device, we analyzed five physical quantities: conductance, charge current density, spin

density, spin current density and spin transfer torque. The expectation values of each
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quantity were obtained using the scattering matrix formalism. All these quantities were

obtained using Kwant, so for each quantity the corresponding Kwant function will be

presented.

2.5.1 Conductance G

Our system has spin structure, and it is necessary therefore to include this feature in the

scattering matrix from Eq. (2.48), i.e.
r↑↑ r↑↓ t′↑↑ t′↑↓
r↓↑ r↓↓ t′↓↑ t′↓↓
t↑↑ t↑↓ r′↑↑ r′↑↓
t↓↑ t↓↓ r′↓↑ r′↓↓

 (2.59)

where tσσ′ are Nch × Nch matrices, composed by the transmission amplitudes between σ

and σ′ states [86]. At zero temperature conductance can be calculated using Eq. (2.42)

can be used. When T 6= 0 K one needs to sum up over all the energies according to

G =
e2

h

∑
σ

∫
T σ
(
− ∂f
∂E

)
dE, (2.60)

where f = 1/(e(E−µ)/kBT +1) is the Fermi-Dirac distribution and T σ is the spin dependent

transmission, which can be expressed as:

T ↑ = |t↑↑|2, T ↓ = |t↓↓|2. (2.61)

These formulas are valid for collinear magnetic configurations, but not for the non-

collinear case. Let us discuss another very important case, when spin-orbit coupling is

included. The presence of SOC mix the spin channels, so it is not possible to separate

each spin contribution, moreover, it is necessary to add spin mixing terms to correctly

calculate the transmission. A meaningful physical quantity for this kind of systems is the

total transmission, that can be calculated using the formula:

T tot = |t↑↑|2 + |t↓↓|2 + |t↓↑|2 + |t↑↓|2, (2.62)

where the last two terms correspond to the added spin mixing terms.

In Kwant the transmission for each energy can be calculated as follows, after building

the tight-binding Hamiltonian of the system, the scattering matrix is calculated using the

function kwant.smatrix. With this result in hand, the second and final step is to calculate

the transmission for an energy E, to do so, it is necessary to use the function transmission.

A snippet of how this code look is showed below, for more information please see Kwant

documentation from Ref. [88]
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# Energy window of i n t e r e s t

en e r g i e s = np . l i n s p a c e (=1.2 ,1 ,300)

# Hf i s the Hamiltonian o f the system

smat r i c e s = [ kwant . smatr ix (Hf , energy ) for energy in en e r g i e s ]

gs AP . append ( [ smatr ix . t r an smi s s i on ( ( 1 , 0 ) , ( 0 , 0 ) ) for smatr ix in smat r i c e s ] )

2.5.2 Charge density response ρc and spin density response ρsz

We can define the response function ηres of a quantity ζ at the site i with energy µ as

follows:

ηres =
dζi(µ)

dµ
=
∑
σ,σ′

ψS†iσ (µ)Mσ,σ′ψ
S
iσ′(µ), (2.63)

where ψSi (µ) is an eigenstate of the Hamiltonian and M is a quantum operator. In

order to calculate this quantity, it is necessary to find the scattering wave function of the

system. First, let us from now on, simplify the notation of the scattering wave function

ψS by removing the S upper script, so ψ will be the always the wave function unless

mentioned otherwise. Kwant gives the wave function for a given system with the function

kwant.wave function, that returns the desired quantity for each mode for a given lead.

For our purposes it is just necessary to calculate the wave function in one of the leads. A

code snippet is shown below:

# Hf i s the Hamiltonian o f the system and EE i s the energy o f i n t e r e s t

wf = kwant . wave funct ion (Hf , energy=EE)

# 0 ind i c a t e s the l ead number and i t i n e r a n t i the mode de s i r ed

phiw = wf ( 0 ) [ i ]

The n-th mode of the charge density response at energy µ for a system with spin

degree of freedom is written as:

ρn(µ) = e
∑
i

|ψni↑(µ)|2 + |ψni↓(µ)|2

so, the total charge density response is

ρc(µ) = e
∑
n

ρn(µ). (2.64)

Note that in this case the quantum operator M = 1. The units of this quantity are

coulombs per unit of energy.

In order to obtain the spin density response a similar procedure is followed. To obtain,

the z-projected spin density response, we should replace M by the Pauli matrix σz. In a

general form we have:

ρnsM (µ) =
∑
i

(
ψn†i↑ (µ)

ψn†i↓ (µ)

)T

M

(
ψn†i↑ (µ)

ψn†i↓ (µ)

)
(2.65)
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To calculate the z-projected spin density by replacing M = σz we get:

ρnsz(µ) =
∑
i

|ψni↑(µ)|2 − |ψni↓(µ)|2, (2.66)

the total z-projected spin density is then

ρsz(µ) =
∑
n

ρnsz(µ) (2.67)

where we have to sum up over all n modes of the lead. For the spin density response in x

and y direction the procedure is the same, but M should be replaced by σx in the former

one and σy in the latter. This quantity is measured in units of inverse energy.

In Kwant the charge density and spin density response are easily calculated using the

function kwant.operator.Density, that gives an object from which these quantities can be

calculated. A code snippet is shown below.

# Hf i s the Hamiltonian o f the system and sz i s a Pau l i matrix

s p i n z = kwant . operator . Density (Hf , sz )

# phiw i s a s c a t t e r i n g wave func t i on from a determined l ead and mode

r e s s z = sp i n z ( phiw )

2.5.3 Spin current per unit energy js

In order to obtain the spin current expression, let us consider the time dependent

Schrödinger equation, as well as its complex conjugate, so:

i~∂tψi =
∑
j

Hijψj (2.68)

−i~∂tψ†i =
∑
j

ψ†jHji. (2.69)

Multiplying Eq. (2.68) by ψ†iσ and Eq. (2.69) by σψi we get

iψ†iσ~∂tψi =
∑
j

ψ†iσHijψj (2.70)

−i~∂tψ†iσψi =
∑
j

ψ†jHjiσψi, (2.71)

and by substracting Eq. (2.70) and Eq. (2.71), we find [89]:

(ψ†iσ∂tψi + ∂tψ
†
iσψi) =

1

i~
∑
j

(ψ†iσHijψj − ψ†jHjiσψi), (2.72)
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where σ = (σx, σy, σz) is a vector composed by the Pauli matrices. This equation is the

starting point to calculate the spin transfer torque, but for the moment let us consider

only the right side of it, which is the spin current. Rewriting this expression we get

jsMab (µ) =
1

i

∑
n

(
ψn†a (µ)MHabψ

n
b (µ)− ψn†b (µ)HbaMψna (µ)

)
, (2.73)

where we have summed up over all the modes of ψ. jsMab is the M -projected spin current per

unit energy from site b to site a. In the simplest cases M is a Pauli matrix. Remember

that ψn†a (µ) =
(
ψn†a↑(µ), ψn†a↓(µ)

)
and ψna (µ) =

(
ψna↑(µ), ψna↓(µ)

)T
. Considering the spin

current in along the y-direction without loss of generality, the components of the total

spin current per unit energy through the region of interest are:

jsxy =
∑
b,a

jsxab , jsyy =
∑
b,a

j
sy
ab and jszy =

∑
b,a

jszab , (2.74)

where jsij are the components of the tensor js with i = x, y, z running in spin space and
j = x, y, z in real space. Note that this quantity is unitless. In Kwant the total spin current
per unit energy per spin projection is obtained using the function kwant.operator.Current.
A code snippet is shown below.

# Hf i s the Hamiltonian o f the system and sz i s a Pau l i matrix

cu r z = kwant . operator . Current (Hf , sz )

# phiw i s a s c a t t e r i n g wave func t i on from a determined l ead and mode

cu r s z = cur z ( phiw )

2.5.4 Spin transfer torque τ and generalization to spin depen-

dent hoppings

In the steady state the spin density does not depend on time so the “usual” spin transfer

equation can be written as [89, 90]:∑
M,i′

(jsMi′ − j
sM
i′−1)êM = 2J

∑
i′

(mi′ × Si′), (2.75)

where jsMi is the M -projected spin current per unit energy between the site i and i− 1, J

is the magnetic exchange, mi is the magnetization of the site i and Si is the spin density

response vector at the site i. This equation needs to be modified for a system with spin

dependent hoppings, as in our case. In this section we derive in detail the STT equation

of a linear chain with spin dependent hoppings and in Chapter 5 it will be generalized for

a graphene system with spin dependent hoppings and sublattice potential considered in

this thesis.

The left part of Eq. (2.72) can be obtained from ∂t(ψ
†
i (σ ·mi)ψi). So, let us define the
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spin density in the site i′ as Si′ = ψ†i′σψi′ . For this section, we will use second quantization

notation, i.e. ψ†i = (c†i↑, c
†
i↓) and ψi = (ci↑, ci↓)

T , where c†iσ (ciσ) creates (annihilates) an

electron with spin σ in the site i. The time derivative can be easily solved using the

Ehrenfest theorem that states that ∂tA = 1
i~ [A,H], so let’s do it!

Linear chain with spin dependent hoppings

Figure 2.9: Infinite linear chain system composed by two magnetic regions separated by
a non-magnetic region. The magnetic sites are represented in red and the non-magnetic
ones are represented with black open circles.

In order to derive the extra terms from the spin current conservation equation when

the system has spin dependent hoppings, let us consider the simplest possible system, the

linear chain shown in Fig. 2.9, where the black (open) circles are non-magnetic sites and

the red circles are magnetic sites that have magnetization m. Because we are interested

in the STT we are going to consider that the magnetizations of both magnetic regions are

non-collinear. In this configuration we can write the system’s Hamiltonian as:

H = H0 +H1 +H2 +H3 (2.76)

with,

H0 =
∑
iα

εic
†
iαciα

H1 = J
∑
iαβ

c†iα(σ ·mi)αβciβ

H2 = t
∑
〈ij〉α

c†iαcjα + c.c.

H3 = t′
∑
〈ij〉αβ

c†iα(σ ·mi)αβcjβ + c.c.,

where H0 is the onsite Hamiltonian and εi is the onsite potential in the site i, H1 is the s-d

Hamiltonian and J is magnetic exchange, H2 is hopping Hamiltonian and t is the usual

hopping term and H3 is a Hamiltonian that models the spin dependent effects in the

system, being t′ the magnitude of the effect. Let us calculate now the commutator of the

spin density Si′ for each term in Eq. (2.76). The commutator with H0 is zero because both

operators commute. Considering σ = σxêx + σyêy + σz êz and mi = mx
i êx +my

i êy +mz
i êz,
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we get:

[Si′ , H] = [Si′ , H1] + [Si′ , H2] + [Si′ , H3].

The commutator of the first term on the right hand side is:

[Si′ , H1] =

[∑
α′β′

c†i′α′σα′β′ci′β′ , J
∑
iαβ

c†iα(σ ·mi)αβciβ

]
. (2.77)

Using the identity [AB,CD] = A[B,C]D + [A,C]BD + CA[B,D] + C[A,D]B and con-

sidering, without loss of generality, only the first term of the spin density along the x

direction we can expand Eq. (2.77) as:∑
iα′β′αβ

c†iασ
x
α′β′ [ci′α′ , c

†
iα(σ ·mi)αβ]ciβ + [c†iα′σ

x
α′β′ , c

†
iα(σ ·mi)αβ]ci′β′ciβ+ (2.78)

+ c†iα(σ ·mi)αβc
†
iα′σ

x
α′β′ [ci′β′ , ciβ] + c†iα(σ ·mi)αβ[c†iα′σ

x
α′β′ , ciβ]ci′β′ .

To solve these commutators, let us consider the fermionic commutator relations:

[ai, a
†
j] = δij,

[a†i , a
†
j] = [ai, aj] = 0. (2.79)

The second and third terms of Eq. (2.78) are zero and the rest give Kronecker deltas,

then

=J
∑

iα′β′αβ

c†iασ
x
α′β′δi′,iδβ′α(σ ·mi)αβciβ − c†iα(σ ·mi)αβσ

x
α′β′δi′,iδα′,βci′β′

=J
∑
α′αβ

c†i′α′σ
x
α′α(σ ·mi′)αβci′β − c†i′α′(σ ·mi′)α′ασ

x
αβci′β. (2.80)

Remembering that σ ·mi′ = mx
i′σ

x +my
i′σ

y +mz
i′σ

z, one can express Eq. (2.80) in matrix

form:

Jψ†i′{êx(σ
x(mx

i′σ
x +my

i′σ
y +mz

i′σ
z)− (mx

i′σ
x +my

i′σ
y +mz

i′σ
z)σx)}ψi′ (2.81)

and using the Pauli’s matrices identity [σa, σb] = 2iεabcσ
c, we get:

ψ†i′{2iJêx(m
y
i′σ

z −mz
i′σ

y)}ψi′ , (2.82)
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so finally, we can write

[Si′ , H1] = 2iJêx · (mi′ × Si′), or more generally

[Si′ , H1] = 2iJ(mi′ × Si′). (2.83)

To obtain [Si′ , H2] a similar procedure is followed. Let us consider again the spin density

along the x direction:

[Si′ , H2] =

∑
α′β′

c†i′α′σ
x
α′β′ci′β′ , t

∑
〈ij〉α

c†iαcjα + c.c.

 , (2.84)

following the steps of Eq. (2.78), we get

=t
∑
α′β′

∑
〈ij〉α

c†iασ
x
α′β′ [ci′α′ , c

†
iα]cjβ + [c†iα′σ

x
α′β′ , c

†
iα]ci′β′cjβ+

+ c†iαc
†
iα′σ

x
α′β′ [ci′β′ , cjβ] + c†iα[c†iα′σ

x
α′β′ , cjβ]ci′β′ . (2.85)

Using the commutator relations of Eq. (2.79) we get:

=t

(∑
αα′

c†i′α′σ
x
α′αcjα −

∑
αβ′

c†iασ
x
αβ′ci′β′ + c.c.

)
. (2.86)

Defining the spin current jsdn as jsdn = it(
∑

αβ c
†
nασ

d
αβcn−1β +c.c.) and considering i = i′−1

we get

[Si′ , H2] =
1

i
(jsxi′ − j

sx
i′−1). (2.87)

Let us solve the last commutator

[Si′ , H3] =

∑
α′β′

c†i′α′σα′β′ci′β′ , t
′
∑
〈ij〉αβ

c†iα(σ ·mi)αβcjβ

 .
Following the steps of Eq. (2.77) we get:

[Si′ , H3] =t′
∑
α′β′

∑
〈ij〉αβ

c†iασα′β′ [ci′α′ , c
†
iα(σ ·mi)αβ]cjβ + [c†iα′σα′β′ , c

†
iα(σ ·mi)αβ]ci′β′cjβ+

+ c†iα(σ ·mi)αβc
†
iα′σα′β′ [ci′β′ , cjβ] + c†iα(σ ·mi)αβ[c†iα′σα′β′ , cjβ]ci′β′ , (2.88)

Using the fermionic commutator relations of Eq. (2.79) and after some algebra we get:

[Si′ , H3] = t′
(
c†i′α′σα′α(σ ·mi′)αβcjβ − c†iα(σ ·mi′)αα′σα′β′ci′β′ + c.c.

)
. (2.89)
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Let us rewrite the right part of Eq. (2.89) in matrix notation and ignore for the moment

the constant t′, so

ψ†i′σ(σ ·mi′)ψi − ψ†i (σ ·mi′)σψi′ + h.c. (2.90)

The matrices inside the fermionic operators do not commute, so cannot be directly used

the spin current expression. In addition, they cannot be combined because the fermionic

operators act on different sites. The trick to overcome this issue is to realize that

[(σ ·mi′),σ] = (σ ·mi′)σ − σ(σ ·mi′) = −2i(mi′ × σ), (2.91)

so we can rewrite Eq. (2.90) as:

ψ†i′σ(σ ·mi′)ψi − ψ†iσ(σ ·mi′)ψi′ + ψ†i (2i(mi′ × σ))ψi′ + h.c. (2.92)

where the first two terms corresponds to a spin current along the direction σ(σ ·mi′)

that we will name as jsλ . The third term is very similar to what we found in Eq. (2.83),

but this time the spin density depends on different sites of the magnetic region. Then we

can write:

[Si′ , H3] =
1

i
(jsλi′ − j

sλ
i′−1) + 2it′

∑
i

(mi′ × Sii′). (2.93)

Summing up all the values obtained for H1, H2 and H3, finally we get that

1

i~
[Si′ , H] =

2J

~
(mi′ × Si′)−

1

~
∑
M

(jσMi′ − j
σM
i′−1)êM−

1

~
∑
λ

(jsλi′ − j
sλ
i′−1)êλ +

2t′

~
∑
i

(mi′ × Sii′).
(2.94)

When summing over all the i′ sites in the magnetic regions and its boundaries, to obtain

the total torque, the term
∑
λ,i′

jsλi′ −j
sλ
i′−1 goes to zero because it depends on mi′ and outside

the ferromagnets this term is zero, so we can disregard it, then

1

i~
∑
i′

[Si′ , H] =
2J

~
∑
i′

(mi′ × Si′)−
1

~
∑
M

(jσMi′ − j
σM
i′−1)êM +

2t′

~
∑
i,i′

(mi′ × Sii′). (2.95)

If the spin density is constant, it is ∂tS = 0, we find the following equation

τ =
∑
M,i′

(jσMi′ − j
σM
i′−1)êM = 2J

∑
i′

(mi′ × Si′) + 2t′
∑
i,i′

(mi′ × Sii′), (2.96)

that relates spin transfer torque τ calculated using the spin current per voltage with that

one using the spin density response. When there is not spin dependent hopping the second

term in the right is zero and it is obtained the usual STT expression.
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Because both terms are equivalent, its calculation in Kwant can be done using any

of them. If is chosen to get the torque using the spin current responses equation, the

currents should be calculated using the function kwant.operator.Current. Conversely if

it is used the equation with the spin density response, this quantity most be calculated

using the function kwant.operator.Density and then perform the cross product with the

magnetization m. Both results have to be exactly the same. The torque found with any

of these methods is energy-dependent and unitless.

2.6 Spin dynamics, LLG equation

When applied an electrical current to a spin valve whose magnetic layers have non-collinear

magnetizations as shown in Figure 2.10(a), the system will experience a torque due to

the uncompensated component acquired when the electron changes its polarization when

passing successively through the ferromagnets. This effect will be described in more detail

in Chapter 4 and here we will just focus on the dynamical description of this effect. These

torques are important for applications because depending on its magnitude, it allows to

alter the magnetization direction by electrical means. In order to describe this process let

us consider the Landau-Lifshitz-Gilbert (LLG) equation

∂M2

∂t
= M2 ×

1

~S0

∂E

∂M2

+ αM2 ×
∂M2

∂t
+

I

eS0

g(M2 ·M1)M2 × (M1 ×M2), (2.97)

where e is the electron charge, I the current flowing through the system, α is the Gilbert

damping parameter and S0 the total spin of the magnet considered. E is the magnetic

energy, M1 and M2 are the magnetization of the magnetic layers and g(M2 ·M1) is a

function that mimics the torque created in the system. The first term is related to the

external effects that have to be taken into account in the system, like an external electric

field, anisotropy, demagnetization, etc. That is why we can replace the magnetic energy

time derivative by an effective field Heff , with Heff = 1
~S0

∂E
∂M2

. This substitution permits

to obtain the usual expression of the LLG equation. The second term is a phenomeno-

logical damping term that takes into account the dissipation in the system and the last

term is the well-known Slonczewski’s spin transfer torque (STT) term and models the

damping-like torque.

Figure 2.10(b) shows the direction of the different terms of Eq. (2.97). It shows that

the STT is collinear to the damping term and that the effective field generate a term

which is orthogonal to both. The STT direction depends on the direction of the current

applied to the system. If the STT is in the same direction as the dumping term, the

magnetic moments will shortly precess and rapidly decay to a more stable state. If the

current is such that the STT is opposite to the dumping term but smaller than it, the

magnetic moments will precess again but its decaying to a more stable state will take



50

Figure 2.10: (a) Schematic representation of a spin valve with whose magnets have non-
collinear magnetization. (b) Magnetic moment subject to a magnetic field and an elec-
trical current. The STT term is collinear to the damping term and that the effective
field generate a term which is orthogonal to both

longer. If both terms equilibrate each other, the system will reach a stable precession

state, very useful for the generation of high frequency signals. If the STT term is bigger

than the dumping term, then the system will precess in a sphere and the direction of the

magnetic moments can be reversed completely. This property is very useful to achieve

magnetic moment switching, a vital effect for the development of MRAM memories.



CHAPTER 3

Spin-dependent transport in lateral device with collinear

magnetizations

In this chapter we present the results obtained for a graphene-based spintronic device. We

demonstrate the existence of the proximity magnetoresistance (PMR) effect in graphene

for four different MIs: YIG, CFO, EuO, EuS and the possibility of tuning this PMR by

changing the electrical polarization of the multiferroic BFO. We found that in the case

of MIs the systems are robust with respect to size dimensions and edge type termination

and that the Rashba spin-orbit coupling does not significantly affect the results found for

the Rashba parameters found in the literature. When considered BFO, we demonstrate

that it is possible to tune the PMR by changing the electrical polarization of the material

as well as, that the spin-orbit coupling do not affect greatly the PMR phenomena.

3.1 State of the art

Recent studies on inducing magnetism in graphene by proximity effects have shown that

magnetic insulators (MI) are very suitable for this task. MIs are materials that exhibit

some sort of magnetic ordering and are bad electrical conductors. The first work in

this direction proposed the use of europium oxide (EuO) to induce ferromagnetism on

graphene. H. Haugen and coworkers studied the conductance of a spin dependent square

barrier, in order to mimic the presence of a MI on top of graphene and predicted a

spin splitting value of 5meV [91]. EuS possesses a wide band gap around 1.65 eV and

large exchange coupling J ∼ 10 meV [66], that makes it a suitable material to induce

ferromagnetism in graphene. The first experimental integration of EuO on graphene was

achieved by molecular beam epitaxy using EuO layers with (001) orientation [92]. Even
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though, it was missing the demonstration of the actual spin splitting on graphene due to

EuO that would confirm the graphene magnetization. The interest has been reinforced

after a first principles calculations work on the spin-dependent properties of graphene

in contact with EuO. H. X. Yang and coworkers found a bigger exchange splitting than

the predicted of about 36 meV [63]. In addition, they found that the band structure

preserved the linear band structure behavior of graphene, as well as, that depending on

gating potential (Fermi energy position) the spins could be fully polarized what would give

rise to a half metallic system. The experimental realization of the system Graphene/EuS

showed that effectively graphene gets magnetized by EuS and field exchange values up to

100 T were reported. In addition, Shubnikov–de Haas oscillations proved the presence of

quantum Hall states in the system, indicating a well-preserved Dirac band structure [66].

Other MIs attracted attention from the scientific community. For instance Y3Fe5O12

(Yttrium iron garnet) has attracted significant attention. YIG is a ferrimagnetic com-

pound that has a high Curie temperature, along with an intrinsic chemical stability at

atmospheric conditions, what make it very suitable for the development of spintronic

devices. Leutenantsmeyer and coworkers found changes in the non-local resistance of a

graphene spin valve using Hanle precession and spin transport modulated with an in-plane

exchange field that allow them to quantify a exchange splitting in graphene of 0.2 T [67].

In 2017 Hallal and coworkers published a systematic first principles study on magnetism

induction in graphene by proximity effects, considering four MIs and their impact on the

graphene band structure. The MIs considered were EuO, CoFe2O4 (cobalt ferrite), EuS

(europium sulfite) and YIG. They found that all these materials can induce exchange

splitting in graphene and presented magnitudes that ranges from tens to hundreds meV.

In addition, they demonstrated the independence of the chalcogenides’s spin splittings

with respect to their thicknesses [82]. The spin splittings, energy gaps, and dopings re-

ported in Ref. [82] were used in this work to create a mathematical model, that later was

applied to a graphene spin valve to simulate electronic transport on it. We present the

results of this calculation in section 3.2.2.

Other approaches to induce magnetism via proximity effects include the use of usual

magnets and screen their conductivity interposing boron nitride layers (hBN). In Ref. [64]

a first principles study of Gr/insulator/FM structures were proposed. Two different fer-

romagnets were considered, Cobalt (Co) and Nickel (Ni), as well as a different number

of hBN layers. They found that this configuration also gives rise to spin splitting and

reported that a spin switch as a function of the electric field, when Co is considered and

is separated by two layers of hBN from graphene. The control of this switching can lead

to the development of novel spintronic devices exploiting this phenomenon.

Another material of interest to consider is the multiferroic BFO, which has been possi-

ble to grow on graphene and for which has been found experimentally proximity exchange

fields up to hundreds of Tesla [93]. In addition, tunability of the graphene-BFO system
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by adjusting the magnetic field was also demonstrated [94]. In our group this material

has been studied to elucidate the role of the electric polarization in graphene-based spin-

tronic devices. DFT calculations were performed to study the impact of BFO in the

graphene band structure and transport calculations were performed to study electronic

control of magnetic properties of this material. In this chapter we present the correspond-

ing transport calculations to demonstrate a concept of multi-resistive device tunable via

ferroelectric and magnetic control.

3.2 Proximity magnetoresistance induced by mag-

netic insulators on graphene

The advantage of using MIs over metallic ferromagnets to induce ferromagnetism, is due

to conductivity mismatch present in magnetic metallic substrates that influences the spin

injection and hamper the design of novel types of spin switches [82]. In this section

we present the results corresponding to four different magnetic insulators: YIG, CFO,

EuO and EuS. YIG is a ferrimagnetic material with low dumping and Curie temperature

around 560 K. CFO is a ferrite with strong coercivity and is arranged in cubic spinel

structure. It is a ferrimagnet and has a Curie temperature of 790 K. Both YIG and CFO

present magnetic phase transition above room temperature. EuO has a crystal structure

with a face centered cubic (FCC) and present ferromagnetism for temperatures below

77 K. EuS is arranged in a face centered cubic lattice like EuO and has a ferromagnetic

behavior below 16.6 K. In Ref. [82] a graphene layer on top of any of the aforementioned

materials is considered and it is necessary therefore increase the number of graphene unit

cells in order to deal with the lattice mismatch. For a 2× 2 EuO cell and a
√

(3)×
√

(3)

EuS cell 3× 3 graphene unit cell was considered. To fit a 1× 1 YIG cell a 7× 7 graphene

unit cell and for a 1× 1 CFO cell a 5× 5 graphene unit cell were used. These values will

be very important in order to fit correctly the DFT band structures reported in Ref. [82]

and for our tight-binding model. Side views and top views of a graphene layer on top of

the MIs under consideration with their respective number of cells is shown in Fig. 3.1.

3.2.1 Band structure fitting

The proof that graphene has been magnetized, is evidenced by spin splitting in its band

structure. Hallal and coworkers demonstrated the possibility of achieving this by con-

sidering four different MIs: EuO and EuS that are low Curie temperature chacolgenides

and two high Curie temperature ferrimagnetic insulators YIG and CFO [82]. They re-

ported the different band structures obtained with its respective bands parameters, i.e.

the energy separation of the spin up and spin down gaps, the spin splitting of the electron

and hole bands and the doping energy. To fit their bands, let us first of write down the
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Figure 3.1: Side and top views of the system graphene MI using (a) EuO, (b) CoFe2O4

(c) EuS and (d) Y3Fe5O12. Figure taken from Ref. [82].

Hamiltonian

H =
∑
iσ

∑
l

tlσc
†
(i+l)1σci0σ +H.c.+

∑
iσσ′

1∑
µ=0

[δ + (−1)µ∆δ] c
†
iµσ[~m.~σ]σσ′ciµσ′

+
∑
iσ

1∑
µ=0

[ED + (−1)µ∆s] c
†
iµσciµσ,

(3.1)

It is the same Hamiltonian presented in Eq. (2.26). Parameters δ, ∆δ, ∆s are defined

via exchange spin-splittings δe (δh) of the electrons (holes) and spin-dependent band gaps

∆σ, ED indicates the Dirac cone position with respect to the Fermi level. δ = δe+δh
2

,

∆s =
∆↓+∆↑

2
and δ = δe−δh

2
=

∆↓−∆↑
2

. The corresponding parameters for all the MIs

considered are summarized in Table 3.1. c†iµσ (ciµσ) creates (annihilates) an electron of

type µ = 0 for A and µ = 1 for B sites on the unit cell i with spin σ =↑ (↓) for up (down)

electrons. ~m and ~σ respectively represent a unit vector that points in the direction of the

magnetization and the vector of Pauli matrices, so that ~m · ~σ = mxσ
x + myσ

y + mzσ
z.

The anisotropic hopping tlσ connects the i cell with its nearest neighbor one i + l with

spin σ.

It is important to mention that in order to get the correct value for the hoppings it

is necessary to consider separately each spin contribution, so the hoppings are spin de-

pendent. For the particular case of graphene on top of CFO, it is necessary to consider

presence of superficial tension in the interface between graphene and CFO, that creates

anisotropy in the hoppings, so they will depend on the hopping direction. Besides the

number of graphene cells and its lattice parameter for each magnetic insulator, it is impor-

tant to include units conversion from SIESTA’s default units (Bohr units) to angstroms
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Table 3.1: Extracted energy gaps and exchange splitting from Ref. [82]. ∆↑ and ∆↓ are
the spin up and spin down gaps, δe and δh are the spin splitting of the electron and hole
bands. ED is the doping of the bands.

Structure ∆↑ (eV) ∆↓ (eV) δe (eV) δh (eV) ED (eV) Package Scale factor

Gr/EuS 0.192 0.16 0.023 -0.01 -1.3 SIESTA 3× 1.889×
2.445

Gr/EuO 0.134 0.098 0.084 -0.048 -1.37 SIESTA 3× 1.889×
2.42

Gr/YIG 0.116 0.052 -0.052 -0.115 -0.78 SIESTA 7× 1.889×
2.54

Gr/CFO 0.012 0.008 -0.045 -0.049 0.49 VASP 5× 1× 2.46

(1 Å= 0.5292 Bohrs). Finally, the scale factor for the bands obtained with SIESTA (EuS,

EuO, YIG) is Ncells×Ufactor×a′cc, where Ncells is one side of the graphene cell units, Ufactor

is the conversion factor from inverse Bohr units to inverse angstroms equal to 1.889 and

a′cc is the graphene lattice constant found after relaxation. For the band structure ob-

tained using VASP (CFO) Ufactor = 1. This information is summarized as well in Table

3.1. Taking this into account it is possible to get the correct velocities of the electrons

and the corresponding hoppings used in Hamiltonian of Eq. (3.1) which are reported in

Table 3.2. Because the hopping parameters in YIG, EuS and EuO are not anisotropic in

the Hamiltonian from Eq. (3.1) the subindex l can be disregarded and consider tlσ = tσ.

By other hand, CFO has anisotropic hoppings, so for each nearest neighbor we have a

different hopping parameter that we represent as t1, t2 and t3. A cartoon showing the

different hoppings in a graphene lattice is shown in the inset from Fig. 3.2(b).

Table 3.2: Hopping parameters used in Eq. (3.1) for each magnetic insulator consid-
ered.

Material Hopping
direction

spin up
(eV)

Average
R-squared

spin down
(eV)

Average
R-squared

YIG t 3.6 0.971 3.8 0.966

CFO
t1 1.38 0.946 1.44 0.962
t2 1.41e−i0.01 1.48e−i0.01

t3 1.36e−i0.02 1.44e−i0.02

EuS t 4.5 0.985 4.8 0.985
EuO t 4.9 0.958 4.3 0.958

The results of the fitting are shown in Fig. 3.2 for (a) YIG, (b) CFO, (c) EuS, (d) EuO.

It can be seen a good agreement with respect to the bands obtained with DFT (dotted

bands). The corresponding error analysis will be presented in the next subsection.
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Figure 3.2: Band structure obtained using the tight-binding Hamiltonian defined by Eq.
(3.1) (solid lines) fitted to the band structure from DFT spin-majority (green open cir-
cles) and spin-minority (black filled circles) data for the cases with (a) YIG, (b) CFO,
(c) EuS, and (d) EuO from Ref. [82]. The inset in (b) shows the anisotropic hoppings
reported in Table 3.1.

Error analysis

In order to quantify the fitting quality we calculated the R-squared value for each curve

and averaged over the same spin species. Having R2 close to 1 indicates good fit. On the

contrary if it is close to 0 the fitting is not good at all. Mathematically this coefficient is

defined as:

R2 = 1−
∑

i(yi − y
f
i )2∑

i(yi − ȳ)2
, (3.2)

where y are the theoretical values, yf are the fitted ones and ȳ is the average of the

y values. The corresponding R2 values obtained for each material and spin species are

presented in Table 3.2.
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Figure 3.3: Lateral spintronic device comprising two magnetic insulators on top of a
graphene sheet. The magnetic graphene regions have a length L, width W, and they are
separated by a distance d.

3.2.2 Towards proximity magnetoresistance (PMR) effect

In order to be able to use graphene in spintronics, it is crucial to achieve methods to

magnetize it, without harming its high conductivity or its long spin relaxation time and

lengths. The method should be robust, preserve the integrity of the graphene lattice

structure and the magnetization produced should be uniform. In addition, it is desired

to induce a suitable SOC interaction into the system, essential for the spin manipulation.

All these conditions can be met using MI proximity induced magnetism and this is the

only mechanism considered in this thesis. We will now explore this proximity induced

magnetism in order to propose a novel type of transport phenomenon called proximity

magnetoresistance.

Proximity magnetoresistance (PMR) [95] is demonstrated and studied in the graphene-

based lateral valve shown in Figure 3.3. The system comprises two identical proximity-

induced magnetic regions of width W and length L resulting from insulators with magne-

tizations M1 and M2, separated by a distance d of the non-magnetic region of a graphene

sheet with armchair edges. Both magnetic graphene regions are separated from the leads

L1 and L2 by a small pure graphene region.

In order to simulate the system shown in Fig. 3.3, we employ Kwant for the different

MIs under consideration. It is important to take into account the different energy ranges

for which our Hamiltonian is valid, which is close to the Fermi energy. Second, when one

wants to calculate the conductance at different temperatures it is essential to remember

that each material has different Curie temperatures for which below it the materials

still induce magnetism on graphene. With the aim to calculate the conductance for

temperatures different from zero we use Eq. 2.60

G =
e2

h

∑
σ

∫
T σP (AP )

(
− ∂f
∂E

)
dE,
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where T σP (AP ) indicates the spin-dependent transmission probability for paral-

lel(antiparallel) magnetization configurations. In Figure 3.4 presents the band structure,

the transmission at T = 0 K and the corresponding conductance for different temper-

atures, considering temperatures below the Curie temperature of (a1-a3) YIG (b1-b3)

CFO (c1-c3) EuS and (d1-d3) EuO. The band structures were calculated considering

fully magnetized semi-infinite systems (a1-d1), while the transmissions and conductances

were obtained considering a system with dimensions L = 49.2 nm, W = 39.6 nm, and

d = 1.5 nm, for two different magnetic configurations, parallel (P) and antiparallel (AP)

was considered. One can see that in the energy range between −0.88 and −0.78 eV there

is no majority-spin state present and the only contribution to transmission is T ↓P from

the minority-spin channel. Similarly, between −0.72 and −0.75 eV, but this time the

only contribution T ↑P is from the majority-spin channel. This transmission behavior cor-

responds to the band structure calculated showed in Fig. 3.4(a1). The corresponding

conductances for the parallel (GP ) and antiparallel (GAP ) magnetic configurations at T

= 300 K are shown in Fig. 3.4(a3). Since the gaps are much smaller for both spin chan-

nels in CFO resulting in much narrower/vanishing regions with half-metallic behavior in

contrast with YIG case as seen in Fig. 3.4(b1-b2) for zero temperature. At room tem-

perature the smearing makes these half-metallic regions vanish similar to YIG as seen in

Fig. 3.4(b3). For the EuS, the transmission in the energy range from -1.22 to -1.37 eV

shows no any contribution to conductance (Fig. 3.4(c2)) in agreement with band structure

in Fig. 3.4(c1). The temperature chosen to calculate the conductance is 16 K, very close

to the Curie temperature of the material. One can see that the corresponding conduc-

tance look similar to that at 0 K as shown in Fig. 3.4(c3). For the EuO case, presented in

Fig. 3.4(d2), the minority-spin channel T ↓P does not contribute to the transmission in the

energy range between -1.34 and -1.42 eV. Similarly, in the energy range between −1.26

and −1.38 the majority-spin channel T ↑P does not contribute to the transmission. In the

cross-section of both regions (from −1.34 to −1.38 eV) there is no transmission because

there is a gap, that can be seen as well in the band structure in Fig. 3.4(d1). When

considered the conductance at temperature T= 70 K, one can see that the conductance

smoothened and that both parallel and antiparallel conductances (GP and GAP ) conserve

its zero value around the gap.

Using these findings, we can now introduce the proximity magnetoresistance as a

function of energy comparing for all this cases in Fig. 3.5 at T=0 K and at T=300 K for

YIG and CFO, 16 and 70 K for EuS and EuO, respectively. This quantity is defined using

conductances from the parallel and antiparallel case according to the following definition:

PMR =

(
GP −GAP

GP +GAP

)
× 100% (3.3)
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Figure 3.4: Comparison of band structures, transmissions and conductances for (a1)-

(a3) YIG, (b1)-(b3) CFO, (c1)-(c3) EuS and (d1)-(d3) EuO. The band structures were

reproduced using the DFT parameters from Ref. [82] for graphene in proximity to the

MI under consideration. The transmission probabilities for majority (dashed lines) and

minority (solid) spin channel for parallel (red) and antiparallel (blue) magnetization

configurations were calculated for a system with dimensions L = 49.2 nm, W = 39.6

nm, and d = 1.5 nm at T = 0 K. The conductance was for a system at 300 K for YIG

and CFO and 16 K and 70 K for EuS and EuO respectively. The parallel and antipar-

allel magnetization configurations are presented in red circles and blue squares respec-

tively.



60

Figure 3.5: Proximity magnetoresistance defined by Eq. 3.3 as a function of energy with

respect to the Fermi level for YIG (blue circles), CFO (red squares), EuS (black dia-

monds), and EuO (green triangles) at (a) T = 0 K and (b) using temperature smeared

conductances at T = 300, 300, 16, and 70 K, respectively. System dimensions are L =

49.2 nm, W = 39.6 nm, and d = 1.5 nm.

At T= 0 K all cases present a value close to 100 % at energies showing half-metallic

behavior discussed above as shown in Fig. 3.5(a). Only EuS and EuO conserved their

maximum value due to the fact that the temperature is still low as seen in Fig. 3.5(b).

At room temperature, for a YIG-based structure we found a maximum PMR value of

77%, while for CFO it is 22%. We can conclude that among all materials considered,

YIG represents the most suitable candidate for lateral spintronic applications due to both

high Curie temperature and a considerably large PMR value at room temperature. In

order to demonstrate the PMR robustness with respect to system dimensions, in the next

subsection we will present results regarding the influence of the length L the separation

d and the width W on the PMR.

Robustness of PMR with respect to system dimensions

It is well-known that the size of the graphene nanoribbon affects its electronic behavior,

that is why this study is mandatory in order to understand the limit of our predictions.

In Fig. 3.6 we present the PMR dependences with respect to length L, width W , and

separation d for a system with armchair edges for (a1)-(a3) YIG, (b1)-(b3) CFO, (c1)-(c3)

EuS and (d1)-(d3) EuO. When L is increased the PMR has a clear tendency to increase

for all cases until it saturates. With respect to the width W the PMR present oscillations,

but they vanish for wide enough systems. These oscillations depend on edge termination

type, and they are more pronounced for a system with armchair edges compared to zigzag

or rough edges (not shown). These oscillations are due to quantum confinement, so it is

expected to have smaller oscillations for larger W as can be clearly seen in the figure. On
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the contrary, the PMR shows almost constant behavior as a function of separation between

the magnets d due to the fact that transport is in a ballistic regime. In Fig. 3.6(a4-d4),

we summarize this dependencies at energies when PMR is maximum as a function of L,

W and d. These energy values are highlighted by the dashed line presented in the panels

and are for (a4) YIG at -0.81 eV, for (b4) CFO at 0.49 eV, for (c4) EuS at -1.286 eV

and for (d4) EuO at -1.286 eV. Of vital importance is the green square in each figure

that denotes the region where the PMR is independent of the system dimensions. This

statement is valid for bigger systems limited by the spin diffusion length of graphene.

Figure 3.6: PMR profiles as a function of L, W, and d for a system with armchair

edges, as well as, the dependence of PMR for the energy outlined by a dashed line as

a function of L (black circles), W (red squares), and d (blue triangles) for (a1)-(a4) YIG

(b1)-(b4) CFO (c1)-(c4) EuS and (d1)-(d4) EuO. The green square highlights the re-

gion where PMR becomes independent of system dimensions.

Robustness of PMR with respect to edge terminations and spin-orbit coupling

SOC

Now that we have demonstrated the robustness of the PMR with respect to system di-

mensions, another important aspect to take into account is edge termination, which is

a well-known feature that modifies the graphene electronic behavior as has been already
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presented in section 1.4.1. In addition, we consider the impact of spin-orbit coupling on

the PMR. Despite weak SOC within graphene, the proximity of adjacent materials can

induce the interfacial Rashba SOC [39]. As a matter of simplicity and to highlight its

potential for applications, we will focus our study on the PMR spin valve system with

magnets made of YIG. Fig. 3.7(a) shows the dependence of PMR with respect to arm-

chair, rough and zigzag edges. To create the rough edges we randomly removed the atoms

at the edges and averaged over 20 different systems. The PMR maximum value shifts

with respect to the edge termination is the result of the influence of the edge on the

conductance of the system. It is clear that the maximum PMR value does not present

a significant variation, maintaining for all three cases PMR values around 75%. With

this result at hand, we can claim that the PMR is indeed robust with respect to edge

termination type.

Figure 3.7: (a) PMR for a device of dimensions L = 49.2 nm, W = 39.6 nm and

d = 1.5 nm with armchair (blue circles), rough (red squares) and zigzag (black tri-

angles) graphene edge termination. (b) PMR dependencies for three values of Rashba

SOC parameter λR defined by Eq. (3.4) for YIG-based system with armchair edges.

The dashed line is a guide to the eye that shows the maximum value when λR = 0 eV.

SOC is a key effect for spin manipulation, i.e. for the generation of spin current from

charge current and vice versa through Edelstein effects [96, 97]. Different materials have

been considered to enhance the SOC strength in graphene and the variety ranges from

metals [98, 99], semiconductors like the transition metals dichalcogenides (TMDCs) [100–

102] and even topological insulators [103–105]. Due to its high Curie temperature, YIG

is a very promising material and experimentally it has been found an enhanced SOC

parameter λR < 12 meV [106]. In order to calculate the effect of Rashba SOC into our

system it is necessary to add to our Hamiltonian from Eq. 2.26 the following term:

HSO = iλR
∑
iσσ′

∑
l

c†(i+l)1σ[σxσσ′d
x
l − σ

y
σσ′d

y
l ]ci0σ′ +H.c., (3.4)
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where λR is the Rashba spin-orbit coupling strength and the vector ~dl = (dxl , d
y
l ) connects

the two nearest neighbors. The values of λR generally lie in the range between 1-10 meV

(see, for instance, in Ref. [107]). Keeping in mind this information, we present in in

Fig. 3.7(b) the PMR dependences for three values of Rashba SOC. One can see that

increasing the strength of SOC λR lower the PMR. This behavior is expected and could

be attributed to the fact that Rashba SOC mixes the spin channels. These dependencies

allows us to conclude that PMR is quite robust also against SOC and even in the worst

scenario remains of the order of 50 %, what make it very suitable for the experimental

realization of the system proposed.

3.3 Multiferroic control of transport: proximity

electro- (PER), magneto- (PMR) and multifer-

roic (PMER) resistances

By definition multiferroic materials combine a ferroic characteristic as ferromagnetism,

which is the spontaneous magnetization ordering and whose orientation can be changed

with a magnetic field, ferroelectricity, which is the spontaneous ordering of electric dipoles

and can be changed by an electrical current, and ferroelasticity, which is the presence

of spontaneous strain in the material and whose phase can be changed by applying

stress [108]. Just a while ago, it was thought that using this kind of materials to create

magnetic tunnel junction (MTJs), devices comprising two magnetic materials separated

by an insulator, were not possible due to size device discrepancy as a result of the typical

dimensions where occurs the quantum tunneling and the ferroelectricity [109]. However,

recent studies have demonstrated the possibility of having ferroelectricity phenomenon at

atomic scales, permitting the realization of MFTJ devices and attracting attention for its

use in other kind of devices.

In this thesis we considered BFO, a multiferroic that presents ferromagnetism as well

as ferroelectricity. BFO is a material arranged in perovskite type structure and both

ferromagnetism and ferroelectricity phases are present above room temperature. It is

an antiferromagnetic material whose Néel temperature is 643 K and its ferroelectricity

properties can be conserved up to 1100 K [108]. In BFO the antiferromagnetism appears

because of the unpaired electrons of the d shells of the iron atoms (Fe3+). The ferroelec-

tricity is the result of the existing shift of the Fe3+ atoms with respect to the Bi3+ in

the unit cell [110]. Our aim is to study the multiferroic-induced proximity effect (MFPE)

in graphene in the same system configuration from Fig. 3.3 used for the MIs. The use

of this kind of spintronic devices opens the possibility of manipulating electrons through

the intrinsic electric polarization present in the multiferroic, gaining another degree of

freedom.
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To obtain the DFT band structure for BFO in contact with graphene is necessary

to proceed carefully. In order to simulate both electrical polarization states (up and

down), one graphene sheet was placed at the bottom and upper interfaces perpendicular

to the BFO electrical polarization as shown in Fig. 3.8(a). When considered the a BFO

(111) the mismatch found between the lattice parameters of graphene and BFO was

around 1.5%. For the sake of assuring no interaction between graphene layers and to

maintain the polarization in the ferroelectric slabs, a thick BFO slab was considered [83].

In this configuration it is possible to obtain simultaneously the band structure for both

electrical polarizations by performing only one calculation. For more details on the DFT

calculations, please see reference [83].

Before starting the modeling our spintronic device we need to find first the best fitting

parameters for our tight-binding model, exactly the same procedure followed in the previ-

ous section. The bands to fit are presented in Fig. 3.8 (b) in the shaded region. The top

shaded region corresponds to the tail graphene layer while the bottom one to the head

graphene region. From this figure it is possible to see the spin splitting caused by the

presence of BFO. Both graphene sheets have negative doping due to the accumulation of

negative charges as a response to the positive bound charges at both BFO interfaces. The

electrostatic interaction of the head interface is stronger than that of the tail interface,

this is reflected by the doping value found for the former one. In the next subsection we

present the tight-binding band fitting of the DFT results.

3.3.1 Band structure fitting

Our Hamiltonian model is once again given by Eq. (2.26):

H =
∑
iσ

∑
l

tlσc
†
(i+l)1σci0σ +H.c.+

∑
iσσ′

1∑
µ=0

[δ + (−1)µ∆δ] c
†
iµσ[~m.~σ]σσ′ciµσ′

+
∑
iσ

1∑
µ=0

[ED + (−1)µ∆s] c
†
iµσciµσ,

(3.5)

where parameters δ, ∆δ, ∆s are defined via exchange spin-splittings δe (δh) of the

electrons (holes) and spin-dependent band gaps ∆σ, ED indicates the Dirac cone position

with respect to the Fermi level. δ = δe+δh
2

, ∆s =
∆↓+∆↑

2
and δ = δe−δh

2
=

∆↓−∆↑
2

as in the

previous section.

In order to simulate spin-orbit coupling in the system will be used again Eq. 3.4

HSO = iλR
∑
iσσ′

∑
l

c†(i+l)1σ[σxσσ′d
x
l − σ

y
σσ′d

y
l ]ci0σ′ +H.c.,

Fig. 3.9 shows the fitting of our tight-binding model for both GrP.tail and GrP.head

without SOC (a) and (b), and with SOC (c) and (d), respectively. One can see that
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Figure 3.8: (a) Top view and lateral view of the GrP.head/BFO/GrP.tail supercell. The
magenta, gold and red balls designate Bi, Fe and oxigen atoms. (b) Band structure cal-
culated of the GrP.head/BFO/GrP.tail supercell without spin-orbit coupling. The cones
that appear one on top of the other in the shaded region are a consequence of the pres-
ence of the two graphene layers at the interfaces of the BFO slab. The top and bottom
shaded regions correspond to GrP.tail and GrP.head, respectively.

GrP.tail band in (a) conserves its linear band structure behavior, while GrP.head in (b)

do not. This behavior is due to its proximity with the BFO slab. In addition, another

signature of this proximity is the fact that in order to fit the GrP.head bands, we needed

to include anisotropic hoppings, that indicates a strong influence of the BFO slab on it.

When SOC is included the main feature we see is the additional band gap opening shown

in (c) and (d) that we denote by γSOC at the spin up/spin down crossings. The gaps

values 4 and 5 meV for GrP.head and GrP.tail correspond to a Rashba spin-orbit strength

of 8.7× 10−3 and 7.5× 10−3, respectively. The fitted values are presented in Table 3.3 for

GrP.head and GrP.tail, as well as, when SOC is included. The values obtained permitted to

get a good agreement to the DFT bands reflected by the average R-squared (R2) found

for each using Eq. 3.2 whose values are reported in Table 3.4. With these results in hands,

let us now perform transport calculations in our spin valve.

3.3.2 Proximity induced phenomena: Proximity magnetore-

sistance (PMR), proximity electroresistance (PER) and

proximity multiferroic resistance (PMER)

To properly use Kwant to calculate the conductance of multiferroic spintronic device, we

need to include the new degree of freedom besides the effect of the temperature at which
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EG ∆↑ ∆↓ δe δh ED γsoc

GrP.head −4.86×10−2 5.5×10−2 2.6×10−2 1.04× 10−1 7.5×10−2 -0.85 4×10−3

GrP.tail −3.4× 10−2 6× 10−3 1.5×10−3 −3.5×10−2 −4×10−2 -0.47 5×10−3

Table 3.3: DFT extracted energy gaps and exchange splitting parameters of GrP.head
and GrP.tail at Dirac point for Gr/BFO/Gr heterostructure. EG is the band-gap of the
Dirac cone, ∆↑ and ∆↓ are the spin-up and spin-down gaps respectively. δe and δh are
the spin-splitting of the electron and hole bands at the Dirac cone respectively. ED is
the Dirac cone position with respect to Fermi level. γsoc denotes the spin-orbit band
opening at the avoided crossing of the spin-up and spin-down bands. All the values pre-
sented are given in eV.

Material Hopping
direction

spin up
(eV)

Average
R-squared

spin down
(eV)

Average
R-squared

λR

GrP.head

t1 2.66 0.985 2.3 0.883 8.7× 10−3

t2 2.66 2.28
t3 2.61 2.32

GrP.tail t 2.42 0.984 2.5 0.985 7.5× 10−3

Table 3.4: Hopping parameters used to fit the tight-binding Hamiltonian to the DFT
calculated band structure. t↑ and t↓ are the spin up and spin down contributions.
GrP.head have directional dependent hoppings and its three values are listed. λR is the
strength of the Rashba spin-orbit coupling obtained from fitting. All the values are
given in eV.

we desire to calculate the conductances. In Fig. 3.10 we present calculated conductances

at room temperature using a generalized version of Eq. 2.60 that includes the electric

polarization degree of freedom.

Gσ,σ′

α,α′ =
e

h

∑
σ

∫
T σ,σ

′

α,α′

(
−∂f
∂E

)
dE, (3.6)

where T σ,σ
′

α,α′ indicates spin-dependent transmission probability with (α, α′) and (σ, σ′) be-

ing, respectively, the relative polarization and magnetization configurations in the multi-

ferroic regions, f = 1
e(E−µ)/kBT+1

is the Fermi-Dirac distribution in which µ and T indicate

electrochemical potential and temperature, respectively. Note in Fig. 3.10(a) the different

notations used to indicate the different magnetic states and electrical polarizations of the

system. Pαβ indicates an electrical polarization α in the magnet M1 and β in magnet

M2. Similarly, Mαβ indicates a magnetization α in the magnet M1 and β in the magnet

M2. For all the systems considered it was used the same doping energy, in order to be

able to compare the results obtained. Experimentally this can be achieved by gating the

device.

In total, 16 combinations of electrical polarizations and magnetizations, but 8 of them
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Figure 3.9: Fitted band structure for (a) GrP.tail and (b) GrP.head layers without spin-
orbit. (c) and (d) are the bands calculated including spin-orbit coupling for GrP.tail and
GrP.head, respectively.

are complete equivalents. The different combinations give rise to three different types of

proximity resistances: proximity electroresistance (PER), where the magnetizations are

fixed and the electrical polarization are changed, proximity magnetoresistance (PMR),

where the electrical polarization is fixed and the magnetizations are changed and proxim-

ity multiferroic resistance(PMER) in which the electrical polarization and magnetization

remain the same in one of the magnets while in the other both quantities are changed

simultaneously. These quantities can be defined mathematically as:

PERσ,σ′

α =
Gσ,σ′
α,α −G

σ,σ′

α,−α

Gσ,σ′
α,α +Gσ,σ′

α,−α
(3.7)

PMRσ
α,α′ =

Gσ,σ
α,α′ −G

σ,−σ
α,α′

Gσ,σ
α,α′ +Gσ,−σ

α,α′

(3.8)

PMERσ
α =

Gσ,σ
α,α −G

σ,−σ
α,−α

Gσ,σ
α,α +Gσ,−σ

α,−α
, (3.9)

where Gσ,σ′

α,α′ indicates the conductance from the magnet M1 with electrical polarization α

and magnetization σ to M2 with has electrical polarization α′ and magnetization σ′. With

this notation it is possible to create 16 states, of particular interest note thatGσ,−σ
α,α′ = G−σ,σα,α′

and Gσ,σ′

α,−α = Gσ,σ′

−α,α and, consequently, we end up with six conductance states Gσ,σ′

α,α′ .

Fig 3.10(b)-(d) show the calculated PER, PMR and PMER. The filled symbols cor-
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Figure 3.10: (a) Conductances for a system without SOC with two identical proxim-
ity induced multiferroic regions of length L = 49.2nm, width W = 39.6 nm separated
a distance d = 1.6 nm. (b), (c) and (d) correspond to the calculated proximity elec-
tro (PER), magneto (PMR) and multiferroic (PMER) magnetoresistances. The filled
symbols corresponds to a calculation without considering SOC and the open symbols
corresponds to the system where SOC was included. The maximum values of the PER,
PMR and PMER are presented for a system with SOC (e) and without SOC (f).

responds to a calculation without considering SOC and the open symbols corresponds to

the system where SOC is included. As a consequence of the extra two degenerate conduc-

tance states, we obtain one (two) degenerate PMR (PMER) curves, correspondingly. We

found that the PER values range from −44% to +33%, PMR has values from −22% to

+48%, whereas PMER ranges between +7% and +13%. As for the case of MIs we found

that including SOC change the conductance values but its magnitude is not enough to

change qualitatively the maximum values of the different proximity resistances as can be

seen in Fig. 3.10(e) and (f).

Robustness of PMR, PER and PMER with respect to system dimensions

As expected the PMR behavior using multiferroics is very similar to what was found for

MIs, being its main difference that when both electrical polarizations are parallel, the

PMR is positive according to Fig. 3.11 (a1)-(b4), while when they are antiparallel, PMR

values are negative as can be seen in Fig. 3.11 (c1)-(d4) independently of the value of the

multiferroic length L, multiferroic width W or the separation between the multiferroic

regions d. Four different ferroelectric polarization configurations where considered (a)

(1,2) the up parallel configuration, (b) (3,4) the down parallel configuration, (c) (5,6) the

up-down antiparallel configuration and (d) (7,8) the down-up antiparallel configuration,

following the notation of Fig. 3.10. The dashed lines indicate the energy chosen to plot



69

Figure 3.11: PMR profiles as a function of the multiferroic length L, its width W , and
the separation among multiferroic regions d for a spintronic device with armchair edges
for the system configurations of Fig. 3.10 (a1)-(a3) (1,2) (b1)-(b3) (3,4) (c1)-(c3) (5,6)
and (d1)-(d3) (7,8). The dashed line shows the energy chosen to plot the dependence
of PMR as a function of L (black circles), W (red squares), and d (blue triangles) in
Figs. (a4), (b4), (c4), (d4). The green square highlights the region where PMR becomes
independent of system dimensions.

PMR dependence with respect to the dimensions of the system shown in the rightmost

panels, i.e. In Fig. 3.11(a4) E = −0.453, (b4) E = −0.441, (c4) E = −0.416 and

(d4) E = −0.465 eV. For all the cases considered PMR increases as a function of the

multiferroic length L increase until it saturates. PMR oscillates as a function of W for

narrow systems and becomes constant for wide enough systems. These oscillations depend

on edge termination type, and they are more pronounced for a system with armchair edges

compared to zigzag or rough edges (not shown). The PMR exhibits an almost constant

behavior as the separation between the multiferroic regions d increase. In order to have

a size-independent PMR, it is necessary to develop systems of the order of those sizes

enclosed in the green box of Figs. 3.11(a4), (b4), (c4), (d4) or bigger. With this we

conclude that in multiferroics PMR is robust as well, with respect to the dimensions of

the system.

Similar behavior are found for PER and PMER as a function of the dimensions of the
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Figure 3.12: PER profiles as a function of the multiferroic length L, its width W , and
the separation among multiferroic regions d for a spintronic device with armchair edges
for the system configurations of Fig. 3.10 (a1)-(a3) (1,5) (b1)-(b3) (3,7) (c1)-(c3) (2,6)
and (d1)-(d3) (4,8). The dashed line shows the energy chosen to plot the dependence of
PER as a function of L (black circles), W (red squares), and d (blue triangles) in Figs.
(a4), (b4), (c4), (d4). The green square highlights the region where PER becomes inde-
pendent of system dimensions.

device as shown in Figs. 3.12 and 3.13. Similar to PMR, PER present positive values for

parallel magnetizations as shown in Figs 3.12(a1)-(b4), while PER present negative values

when the magnetizations are antiparallel, as shown in Fig. 3.12 (c1)-(d4). The energy

values chosen to plot the rightmost panel highlighted by a dashed line for Fig. 3.12(a4) are

E = −0.459, (b4) E = −0.41, (c4) E = −0.465, (d4) E = −0.404. Four different magnetic

configurations were considered: (a) (1,5) the up parallel configuration, (b) (3,7) the down

parallel configuration, (c) (2,6) the up-down antiparallel configuration and (d) (4,8) the

down-up antiparallel configuration, following the notation of Fig. 3.10. In contrast to

PMR and PER, the PMER shows always positive values for all configurations. The

energy values chosen to plot the rightmost panel highlighted by a dashed line in Fig. 3.13

are for (a4) E = −0.453 eV, (b4) E = −0.422 eV, (c4) E = −0.441 eV, (d4) E = −0.441

eV. The four different configurations considered in Fig. 3.13 are (a) (1,6), (b) (3,8), (c)

(1,8) and (d) (3,6), following the notation of Fig. 3.10. In order to avoid the dependence on
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the size of the system of PER and PMER, the device should have at least the dimensions

of the order of the values enclosed by green square in Figs. 3.12 and 3.13. With this we

can claim that PER and PMER as robust with respect to the dimension of the system as

well.

Figure 3.13: PMER profiles as a function of the multiferroic length L, its width W , and
the separation among multiferroic regions d for a spintronic device with armchair edges
for the system configurations of Fig. 3.10 (a1)-(a3) (1,6) (b1)-(b3) (3,8) (c1)-(c3) (1,8)
and (d1)-(d3) (3,6). The dashed line shows the energy chosen to plot the dependence
of PMER as a function of L (black circles), W (red squares), and d (blue triangles) in
Figs. (a4), (b4), (c4), (d4). The green square highlights the region where PMER be-
comes independent of system dimensions.

3.4 Conclusion

We presented the proximity-induced phenomena in a graphene-based lateral system com-

prising regions with proximity-induced magnetism, by four different magnetic insulators:

YIG, CFO, EuS and EuO, and later by the multiferroic BFO. For YIG- and CFO-based

devices, we found proximity magnetoresistance (PMR) ratios of 77% and 22% at room

temperature, respectively. For EuS and EuO based systems, we found PMR values of

100% for both at 16 and 70 K, respectively. Very importantly, we demonstrated that
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the PMR is robust with respect to system dimensions being limited by the graphene spin

diffusion length. Due to its potential for application, the robustness of the PMR with

respect to edge-type termination and SOC was analyzed for YIG-based systems, finding

it decreasing only by about half even for considerably large SOC strength values.

In the presence of a multiferroic material a new degree of freedom is added to the

spin valve: the electrical polarization. We demonstrated that the device is tunable via

ferroelectric and magnetic control and studied two quantities, besides PMR, that appear as

a consequence of addition of ferroelectric polarization: proximity electroresistance (PER)

and proximity multiferroic resistance (PMER). We found values for PMR from -22% to

+48%, for PER from -44% to +33% and for PMER from +7% to +13%. In addition,

we showed that the SOC does not affect greatly the values of these quantities. PMR,

PER and PMER in BFO-based system are robust with respect to system dimensions and

present a similar dependence as PMR in MI based ones.



CHAPTER 4

Non-collinear transport calculations

4.1 Physics of spin transfer torque

Until now, we have considered collinear magnetic configurations. The non-collinear orien-

tation of the magnetizations in a spin valve can lead to the appearance of a phenomenon

known as spin transfer torque (STT). This effect allows the control and manipulation of

magnetic moments and domain walls of a magnetic material by using an electrical current

and is essential in different device applications.

The STT can be considered as the inverse effect of GMR, where the magnetic state of

the ferromagnet affects the electrical resistance of the system [19]. The first insights on the

STT phenomenon appeared from studies on domain walls and magnetic tunnel junctions in

the 70’s and 80’s but the consolidation of the STT concept was only achieved in 1996, when

independently, Slonczewski [111] and Berger [112] predicted the spin angular momentum

transfer from a spin polarized current to a ferromagnet. The STT was demonstrated

experimentally for the first time in cobalt/copper multilayers by Tsoi and coworkers [113].

They found that the resistance variation of the multilayers induced by electrical current

was due to magnetic excitations. Other works include studies done on Co/Cu/Co pillars,

where it was found that thanks to the STT induced in the pillar under the presence of

a magnetic field, switching of one of the magnetic layers is possible as reported in Refs.

[114, 115]. Thereafter, STT has been found in other systems, that include metallic spin

valves, MTJ’s, antiferromagnets, semiconductor devices, among others.

A typical spin valve setup is composed by two ferromagnetic layers separated by a

non-magnetic material that can be either an insulator or a metal. In order to fix the

magnetization of one of the layers, the layer is grown thicker and/or its magnetization is

pinned by exchange bias with an antiferromagnet. This magnetic layer is known in the

73
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literature as fixed layer. The other magnetic layer is free to change its magnetization and

is known as free layer. These kind of systems have been studied extensively to explain their

behavior. Semiclassical approaches include generalizations of the Valet-Fert theory [116]

to non-collinear cases as presented in Ref. [117, 118] or a generalization of the Kirchoff’s

laws as in Refs. [119, 120]. Broader theories to include quantum coherent effects, very

important in the ballistic transport regime, have used non equilibrium Green functions

like in Refs. [74, 90, 121, 122] and the random scattering matrix theory as reported in

Ref. [123].

In order to understand the STT mechanism, let us consider the graphene lateral spin

valve shown in Fig. 4.1(a) with the magnetization of M1 fixed along the z-axis, while the

angle θ, that corresponds to the magnetic orientation of M2, can be rotated between 0

and π. If the current flows in the y direction from L1 the system charge and longitudinal

spin currents in ballistic regime are conserved, while transverse spin current components

induce torque on both magnetic layers as depicted in Fig. 4.1(b). Depending on the

magnitude of the transferred STT to the magnetic layers, this can change the magnetic

orientation of both magnets, but because the magnetization of M1 is fixed, only M2 is

affected. The switching of the magnetization depends on the intrinsic damping parameter

of the system as well as the polarity of the current applied, as was explained in Chapter

2, Sec. 2.6.

What is the physical origin of this torque? Let us look again at the system depicted in

Fig. 4.1(a). When the current enters the first magnetic layer (M1), the flow of electrons

will acquire the spin polarization of the ferromagnet. When it reaches the central region

it does not change its magnetization, but when it gets to the free layer (M2), the spins of

the electrons interact with the spins of the electrons in this ferromagnet, changing again

the polarization of the current. Because the angular momentum should be conserved, the

lost component of spin is transferred to the magnets in the form of torque [124].

The first experimental demonstration of STT in a graphene-based systems, was found

in a lateral nonlocal spin valve composed of permalloy contacts on top of a graphene

sheet as reported in Ref. [125]. For this system, in order to switch the magnetization

orientation between parallel and antiparallel configurations, besides the electrical current,

it was necessary to apply a suitable in-plane external field. In fact, the switching depends

on the magnitude of both quantities.

In this chapter we study the STT phenomena generated in a graphene-based valve

using the ferromagnet insulator YIG as a magnet and analyze the robustness of this

quantity with respect to the dimension of the system at room temperature. In addition,

we investigate the possibility to switch the magnetization’s orientation by proximity effects

and estimate the current necessary to achieve this.
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Figure 4.1: (a) Graphene lateral spin valve composed of two magnetic regions M1 and
M2 with non-collinear magnetizations. The magnetization of M1 points along the z-
direction, while that one of M2 makes an angle θ with respect to the z-axis. The mag-
nets have width W , length L and are separated a distance d. The spin valve is then
connected to two leads L1 and L2. (b) Schematic representation of the torque direction
with respect to the magnetization of the magnets when a current flows in the graphene
sheet. For simplicity, the uncompensated spin angular momentum transferred as torque
is only sketched on M2. The field-like torque τ‖ is perpendicular to the magnetization
and the out of plane component τ⊥ is perpendicular to both.

4.2 Graphene with spin dependent hoppings and spin

dependent sublattice potential

Graphene has two sublattices A and B, that in our proximity induced system, behave

differently due to the presence of a magnetic insulator. To calculate the STT in graphene

it is necessary to take into account this degree of freedom. The objective of this section

is to find the spin current conservation equation for graphene in the presence of the

neighboring magnetic material.

In Eq. (2.23) we defined the sublattice potential due to the presence of a magnetic

insulator as:

VA =

(
ED +

∆s

2

)
1 +

(
δ +∆δ

2

)
(σ ·m)

VB =

(
ED −

∆s

2

)
1 +

(
δ −∆δ

2

)
(σ ·m),

where the first term of the right represents a regular onsite potential. The second one is

a spin dependent term responsible for the changes required for STT equation obtained in

Eq. (2.96). Let us ignore for the moment the onsite potential and define:

JA =
δ +∆δ

2
(4.1)

JB =
δ −∆δ

2
, (4.2)
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so we can rewrite our Hamiltonian as:

H = H1 +H2 +H3

with,

H1 = JA
∑
iαβ

cA†iα (σ ·mi)αβc
A
iβ + JB

∑
iαβ

cB†iα (σ ·mi)αβc
B
iβ

H2 = t
∑
〈ij〉α

cA†iα c
B
jα + c.c.

H3 = t′
∑
〈ij〉αβ

cA†iα (σ ·mi)αβc
B
jβ + c.c. (4.3)

Note that H2 and H3 are not affected by the presence of the spin dependent sublattice

potential, so Eqs. (2.87) and (2.93) remain unchanged

[Si′ , H2] =
1

i
(jσi′ − jσi′−1) (4.4)

[Si′ , H3] =
1

i
(jsλi′ − j

sλ
i′−1) + 2it′

∑
i

(mi′ × Sii′) (4.5)

For H1, we have to calculate the following commutator:

[Si′ , H1] =

[
Si′ ,

(
JA
∑
iαβ

cA†iα (σ ·mi)αβc
A
iβ + JB

∑
iαβ

cB†iα (σ ·mi)αβc
B
iβ

)]
(4.6)

=

[
Si′ , JA

∑
iαβ

cA†iα (σ ·mi)αβc
A
iβ

]
+

[
Si′ , JB

∑
iαβ

cB†iα (σ ·mi)αβc
B
iβ

]
. (4.7)

Note that

Si′ =
∑
α′β′

cA†i′α′σα′β′c
A
i′β′ + cB†i′α′σα′β′c

B
i′β′ . (4.8)

Solving the first term of Eq. (4.7) and considering the spin density in the x direction with

the same identity as in Eq. (2.78)

JA
∑

iα′β′αβ

cA†iα σ
x
α′β′ [c

A
i′α′ , c

A†
iα (σ ·mi)αβ]cAiβ + [cA†iα′σ

x
α′β′ , c

A†
iα (σ ·mi)αβ]cAi′β′c

A
iβ (4.9)

+ cA†iα (σ ·mi)αβc
A†
iα′σ

x
α′β′ [c

A
i′β′ , c

A
iβ] + cA†iα (σ ·mi)αβ[cA†iα′σ

x
α′β′ , c

A
iβ]cAi′β′ .

Using the fermionic relations of Eq. (2.79) and after some algebra we get:

JA
∑
α′αβ

cA†i′α′σ
x
α′α(σ ·mi′)αβc

A
i′β − c

A†
i′α′(σ ·mi′)α′ασ

x
αβc

A
i′β. (4.10)
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Note the similarities with Eq. (2.83) and following a similar procedure we find[
Si′ , JA

∑
iαβ

cA†iα (σ ·mi)αβc
A
iβ

]
= 2iJA(mi′ × SAi′ ), (4.11)

and [
Si′ , JB

∑
iαβ

cB†iα (σ ·mi)αβc
B
iβ

]
= 2iJB(mi′ × SBi′ ). (4.12)

Finally, gathering all the terms obtained for H1, H2 and H3, we can write the steady state

spin conservation equation as:∑
i′

(jσi′ − jσi′−1) = 2JA
∑
i′

(mi′ × SAi′ ) + 2JB
∑
i′

(mi′ × SBi′ ) + 2t′
∑
i,i′

(mi′ × Sii′). (4.13)

4.3 Spin transfer torque calculation using Kwant

The STT τ can be obtained using any side of Eq. (4.13). For example the torque τx can

be obtained as:

τx =
∑
i′

(jσ
x

i′ − jσ
x

i′−1) (4.14)

τx = 2JA
∑
i′

(mi′ × SAi′ ) · êx + 2JB
∑
i′

(mi′ × SBi′ ) · êx + 2t′
∑
i,i′

(mi′ × Sii′) · êx. (4.15)

Using Eq. (4.14) in Kwant the spin current can be obtained using the function

kwant.operator.Current. Let us consider the lateral spin valve from Fig. 4.1(a). To

calculate the torque in M1, it is necessary to get the contribution from each atomic row

and sum them up. The torque in one atomic row is the subtraction of the spin current

per voltage that enters a ferromagnetic region, measured at any point in the left side

graphene region with respect to M1 and that one that comes out, measured at any point

in the right side graphene region. It does not matter which point is chosen inside of any

of the pure graphene regions because the spin current values are the same due to their

conservation. Later, the STT contribution from each atomic row in the magnetic region is

summed-up and with this we obtain the total STT in M1. The procedure for the magnet

M2 is exactly the same, but one step is added. Due to the angle between M2 and the

z-axis, the STT value obtained for M2 should be adjusted with respect to the coordinate
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system fixed in M1 using the rotation matrix in spherical coordinates as:

R(θ) =

cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ),

 (4.16)

with θ being the angle between the magnetization in M2 with the z axis. In principle the

rotation matrix can have as well the coordinate φ, but because we do not consider SOC,

that would break the symmetry in φ, for simplicity we define φ = 0.

To calculate the STT using Eq. (4.15), several terms should be calculated. All of

them include the calculation of the spin density response that in Kwant is obtained

using the function kwant.operator.Density. Its first term only takes into account sites

from the A sublattice, while in the second term only B sublattice sites are considered.

The spin density response is calculated for each site of the sublattice required inside

one ferromagnet, let say M1 and then summed-up to get the total STT. To obtain the

third term, the spin density response has to be calculated for neighboring sites inside the

ferromagnet without distinction of the sublattice type. Once all terms are calculated the

last step is to sum them all the get the STT in the magnet M1. The STT in M2 can

be calculated applying a similar procedure but it should be adjusted using the rotation

matrix from Eq. (4.16).

Let us now test if Eqs. (4.14) and (4.15) give us the same results. First of all, it is

important to find the expression for the new spin dependent hoppings, so we can include

the effect of the magnetic angle. This new hopping term can be expressed as:

tp =

(
t↑ + t↓

2

)
1 +

(
t↑ − t↓

2

)
(σxmx

p + σymy
p + σzmz

p), (4.17)

where the subindex p indicates the magnet under consideration. Fig. 4.2 shows the com-

parison of the different torque components using both Eqs. (4.14) and (4.15). It can be

seen that both curves coincide as expected. This calculation was done for the spin valve

from Fig. 4.1 with L = 49.2 nm, W = 39.4 nm and d = 1.5 nm at the energy E = −0.81

eV, using magnets made of YIG. Let us define the auxiliary parameter t′ as:

t′ =
t↑ − t↓

2
(4.18)

The corresponding values of the parameters JA and JB from Eqs. (4.1) and (4.2), respec-

tively and t′ from Eq. (4.18) for YIG are presented in Table 4.1. The magnitude of the

exchange JB is more than twice the value of that one of JA, what reflects the effect of the

different spin sublattice potential on the torque.

The component along the x axis is known as in-plane or dumping-like torque and is
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Table 4.1: parameters JA, JB, t′ obtained for YIG using Eqs. (4.1), (4.2) and (4.18)

Structure JA (eV) JB (eV) t′ (eV)

Gr/YIG -0.026 -0.0575 -0.01

Figure 4.2: STT calculated using Eqs. (4.14) and (4.15) for a system with L = 49.2 nm,
W = 39.4 nm and d = 1.5 nm at energy E = −0.81 eV. The top figures correspond to
the STT in the magnet M1 as a function of the magnetization angle θ for each non-zero
torque component (a) τx, (b) τy. (c) and (d) show the STT dependence with respect to
θ but in the magnet M2. Note that the STT values in (c) and (d) have been adjusted to
the local coordinate system in M1, so τx = τ ′x and τy = −τ ′y as expected [126].

parallel to the plane formed by the magnetizations of M1 and M2

τ‖ ∝M2 × (M2 ×M1). (4.19)

The component along the y axis is known as out of plane component or field-like

torque and is perpendicular to the plane formed by the magnetization of M1 and M2

τ⊥ ∝M1 ×M2. (4.20)

The proportionality constants depend on the voltage applied to the system, as well

as, the properties of the system. For instance, if the system is half-metallic the in-plane

torque is linear with the voltage, while the out of plane is purely quadratic in the voltage
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when both magnets are symmetric. For a wider discussion, please see Ref. [74].

4.4 Spin transfer torque in proximity induced

graphene-based spin valve

The purpose of this section is to study the behavior of STT within lateral device shown

in Fig. 4.1(a), with proximity induced magnetism based on YIG. We will focus on the

dependence of the STT with respect the size of the system on angle between magnetiza-

tions and system size dimensions for different energies with respect to splitted graphene

bands. For convenience we will start from angular dependence of transmission.

4.4.1 Transmission analysis

To start our analysis, let us look first at a quantity we already understand, the transmis-

sion. Fig. 4.3 shows the band structure (a) and corresponding transmission for each spin

channel in the collinear magnetic configuration (b) along with the number of channels Nch

per spin (c) and that in a pure graphene sheet (d). We consider several energy regions.

The green regions (top and bottom) indicates those with contribution from both spin

channels, the pink region indicates the region where there is only contribution of the spin

minority and while the blank one shows only spin majority contributions according to

panel (a). One can note that the higher conductance present for a and d energies from

Fig. 4.4 (b) can be understood as a consequence of where the higher number of channels

is available that can transmit with respect to the b and c.

Figure 4.3: (a) YIG band structure, (b) Transmission per spin channel for the collinear
case, considering the parallel and antiparallel configuration for the system of Fig.4.1
with L = 49.2 nm, W = 39.4 nm and d = 1.5 nm. (c) and (d) shows the energy as a
function of the number of channels Nch for the magnetic system and a pure graphene
lead respectively. The green shaded regions correspond to zones where there are con-
tributions from both spin channels according to the band structure in (a). The pink
shaded region shows a half-metallic zone where there is only contribution of the minor-
ity spin, while the blank region highlights a half-metallic region where there is only con-
tribution from the majority spin.

Let us now calculate the conductance as a function of the angle θ. To get it we need
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to use Eq. (2.42) and including angular dependence of the hoppings given by Eq. (4.17).

Fig. 4.4(a) shows the YIG band structure with four dashed lines crossing aforementioned

energy regions in Fig. 4.3 and indicated by italic letters from a to d. For each energy chosen

the corresponding conductance as a function of θ at T = 0 K is plotted in Fig. 4.4(b). For

energies b and c that corresponds to E = −0.725 eV and E = −0.81 eV, respectively the

conductance is smaller, as expected, compared to a and d corresponding to E = −0.675

eV and E = −0.9 eV respectively. This can be explained by difference in number of

available channels for transport (cf. Fig. 4.3). We note, however, another difference in

behavior of conductance angular behavior at energies corresponding to half-metallic blank

and pink regions vs those regions with both channels open. Namely, it is the absence of

expected conductance maximum at θ = 0 according to section 1.2.2 from Chapter 1. So

the next step is to understand this unusual behavior of the conductance in these energy

regions.

Figure 4.4: (a) YIG band structure where it has been highlighted with dashed lines four
energies that corresponds to the different energy zones defined in Fig. 4.3. The energy
chosen in a is E = −0.675 eV, in b is E = −0.725 eV, in is c E = −0.81 eV and in
d is E = −0.9 eV. (b) Conductance as a function of the angle θ at T = 0 K, for the
4 different energies highlighted in with dashed lines in (a). Each color correspond to a
different energy.

Let us go back to the analysis of the transmissions, and take advantage from the fact

that we can obtain the transmission per spin species. Due to the non-collinearity of the

system, it is necessary to include in the transmission per spin channel additional terms,

defining:

T↑↑ = |t↑↑|2, T↓↓ = |t↓↓|2, T↓↑ = |t↓↑|2, T↑↓ = |t↑↓|2, (4.21)

where tσσ′ , with σ, σ′ =↑ (↓), are the transmission amplitudes from Eq. (2.59) the trans-

missions per spin channel are:

T ↑ = T↑↑ + T↑↓ and T ↓ = T↓↓ + T↓↑, (4.22)
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so the total transmission can be written as:

T tot = T ↑ + T ↓. (4.23)

With the aim to understand what happens in the half-metallic regions in Fig. 4.5 we

plot each spin contribution that comes into play as a function of angle θ, T↑↑, T↓↓, T↓↑ and

T↑↓, given by Eq. 4.21, for four different energies, (a) E = −0.675 eV, (b) E = −0.725 eV,

(c) E = −0.81 eV and (d) E = −0.9 eV. We know that experimentally it is not possible

to separate each term in Eqs. (4.22) but we do it for analysis purpose. Fig. 4.5(a)

and (d) correspond to the case with both spin channel contribution and as expected the

dominant spin contribution for the former ones are T↑↑ and T↓↓. In half-metallic case,

with no contribution from the spin up channel and the only non-zero contribution are T↓↓

and T↑↓ (Fig. 4.5(c)). The shape of these two curves perfectly explain the behavior of

the corresponding conductance in Fig. 4.4(b). Fig. 4.5(b) displays unexpected non half-

metallic behavior because in the energy region it is located (blank region in Fig. 4.3) there

should be no transmission to the spin down channel according to the band structure in

Fig. 4.3(a). Nevertheless, there are still some contributions from this channel that might

be due to tunneling to evanescent states minority states due to its much smaller band gap

as seen in Fig. 4.3. The shape of conductance in Fig. 4.5(b) can then be easily understood

if one looks at the energy chosen. The spin majority electrons transport tunnel is affected

by the tunneling effect, evidenced in the huge value of T↑↓ and the non-zero transmission

of T↑↑ at θ = π (antiparallel magnetic configuration), contrary to what happens in (c)

with T↓↓. The tunneling probability through a minority band gap is not vanishing here as

this gap is smaller compared to that in Fig. 4.5(c), with majority band gap twice larger

compared to the minority one case of Fig. 4.5(b). The existence of four different energy

regions will serve understanding of the torque behavior in this section.

4.4.2 Numerical results

For lateral spin valve proximity device shown in Fig. 4.1 we calculated the STT by using

Eq. (4.14) at T = 0 K. Fig. 4.6 shows the torque response transferred to M2 as a

function of the angle θ for four characteristic energies for chosen energies in the YIG

band structure presented again in Fig. 4.6(a) for convenience. In Fig. 4.6(b) and (c) we

present the STT in-plane and out of plane components, respectively. One can see that the

in-plane component has an usual sinus-like behavior and that the out of plane component

shows more complicated behavior. While the curves corresponding to a and d display

a normal angular dependence as well, the other two curves present higher torque values

and behave differently from the rest. They correspond to the energies E = −0.725 eV

and E = −0.81 eV ( b and c cases in Fig. 4.6(a)). As we have already noted in previous

section, this case is a particular one lying in a region where the system is a half-metal
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Figure 4.5: Transmission contributions defined by Eqs. (4.21) as a function of the angle
θ for (a) E = −0.675 eV, (b) E = −0.725 eV, (c) E = −0.81 eV, (d) E = −0.9 eV.

allowing the quantum tunneling of the other spin species, that could provide a hint for

the unusual oscillations it displays as a function of θ, while the c energy is in an energy

region where the system is purely half-metallic with less surprising behavior.

Spin transfer torque dependence with respect the system size

In this section we devote our analysis to the size dependence of the spin transfer torque.

We compare the variations in the STT when changed the length L, the width W and the

separation of the magnets d for θ = π/4, π/2 and 3π/4. Because we are interested in the

robustness of the STT we focus on results considering systems at T = 300 K. To calculate

the torque at 300 K we considered the following equation:

τ (T ) =

∫
τ (0)

(
−∂f
∂E

)
dE, (4.24)

where τ (0) is the torque at T = 0 K and f = 1
e(E−µ)/kBT+1

is the Fermi-Dirac distribution

in which µ and T indicate electrochemical potential and temperature, respectively. We

include again for convenience in all figures presented in this section the YIG band structure
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Figure 4.6: (a) YIG band structure for which four different energy values are high-
lighted with dashed lines, a, b, c, d correspond to the energies -0.675, -0.725, -0.81 and
-0.9 eV respectively. (b) and (c) are the in-plane τ‖ and out of plane τ⊥ STT compo-
nents as a function of the angle θ for the four chosen energies in (a).

showing the corresponding energy regions, discussed earlier. The green shaded regions

correspond to regions where both spin channels are present as in Fig. 4.3, while the green

dashed line separates the half-metallic regions white and pink regions. Fig. 4.7(a), (b)

and (c) show the dependence of the STT with respect to the length L for three different

angles, θ = π/4, θ = π and θ = 3π/4 for each torque component, in-plane (a2), (b2) and

(c2) and out of plane (a3), (b3) and (c3). Let us focus first on the in-plane components

presented in panels (a2), (b2) and (c2). We see that the in-plane torque does not present

appreciable variations when θ is changed. We see that for big enough L, around 20 nm, the

torque becomes positive for electron bands and remain negative for the hole bands. This

behavior can be understood as the system needs a minimum length in order to polarize

the electrons, something similar to what happened with the PMR L dependence (see for

example Fig. 3.6(a4)). The behavior of the out of plane components (panels (a3), (b3)

and (b4)) will be discussed later.

Fig. 4.8 shows the dependence of the STT as a function of the width W for the same

angles considered previously. We see that the in-plane shape do not change qualitatively

when the angle is changed. For small widths the torques are small and there is not a clear

difference between the electron and the hole bands contributions. This difference becomes

noticeable after around W = 20 nm. Most importantly, one can clearly notice that the

in-plane component of STT oscillates as a function of W . The origin of these oscillations

is related to quantum well states and the channel number available for transport in the

nanoribbon. The out of plane component shows a huge dependence on the angle and

present strong resonant-like peaks especially for energies corresponding to half-metallic

behavior (cases b and c) with few channels available for transport. An interpretation for

this behavior will be given later.

Fig. 4.9 shows the dependence of the STT as a function separation between the mag-

nets d. We see in this case again that there is not a qualitative dependence of the in-plane

component of the torque with respect the angle, remaining of the same order regardless
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Figure 4.7: (1) YIG band structure, (2) in-plane STT component as a function of en-
ergy and magnet’s length L and (3) out of plane STT as a function of energy and L for
three different angles (a) π/4, (b) π/2 and (c) 3π/4. The green shaded regions indicates
the energy regions where there are both contributions of spin channels and the dashed
line separates the half-metallic regions according to Fig. 4.3.

of the value of d. The torque in the electron bands is always positive, while in the hole

bands is negative. In fact, this is a common feature of the figures presented. This behav-

ior is understood as a change in the polarization, due to the higher number of minority

channels in the electron bands when compared with the majority channels and the reverse

situation in the hole bands.

The main question of this section is why the in-plane and out plane components behave

so differently. Let us consider the free electron model to understand what is happening.

This is studied using a very simple model with one ferromagnet and one barrier like in

Ref. [127] or a more elaborated, considering two ferromagnets and a barrier as in Ref. [74].

For pedagogical purposes, we consider the STT expression obtained from Ref. [127]:

τ =
A

Ω

~2k
2m

sin θ[1−Re(t↑t∗↓ + r↑r
∗
↓)]êx −

A

Ω

~2k
2m

sin θIm(t↑t
∗
↓ + r↑r

∗
↓)êy, (4.25)

where Ω is a normalization volume, m is the electron mass and the parameters tσ, rσ,

are the transmission and reflection amplitudes for the electron with spin σ =↑ (↓). The

component along the x axis correspond to the in-plane torque, while the component

along the y-axis to the out of plane torque. It can be seen that the in-plane torque
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Figure 4.8: (1) YIG band structure, (2) in-plane STT component as a function of en-
ergy and magnet’s width W and (3) out of plane STT as a function of energy and W
for three different angles (a) π/4, (b) π/2 and (c) 3π/4. The green shaded regions in-
dicates the energy regions where there are both contributions of spin channels and the
dashed line separates the half-metallic regions according to Fig. 4.3.

depends on the real part of the sum of the transmission and reflection mix components,

in contrast with the out of plane, which depends on the imaginary part. We hypothesize

that the real part of the mix transmission is dominant in the in-plane torque component,

what would explains qualitatively its connection with the transmission. While in the out

of plane torque, the imaginary part of the mix reflection is dominant, what lead us to

speculate that the huge peaks found in Figs. 4.7, 4.8 and 4.9 are a consequence of multiple

reflections that eventually leads to constructive interferences. To prove this hypothesis

further research is needed.

4.5 Critical current estimation

The STT phenomena allowing to switch the magnetization orientation of magnets have

been extensively used in the development of memories as MRAM [128]. In order to create

viable devices it is necessary to minimize the current necessary to generate switching.

The STT phenomena were studied mainly in semiconductor devices [129], as well as, with

transition metal magnets, for which it has been found values as low as 9 µA in Fe-based

low-damping perpendicular structures [130]. In this section we will calculate the critical
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Figure 4.9: (1) YIG band structure, (2) in-plane STT component as a function of en-
ergy and magnet’s separation d and (3) out of plane STT as a function of energy and
d for three different angles (a) π/4, (b) π/2 and (c) 3π/4. The green shaded regions in-
dicates the energy regions where there are both contributions of spin channels and the
dashed line separates the half-metallic regions according to Fig. 4.3.

current Ic for the graphene-based lateral spin valve presented in Fig. 4.1 considering

magnets made of YIG.

4.5.1 In-plane torque fitting via Slonczewski’s formula

Let us now, analyze the behavior of the in plane torque, that is the one responsible for the

switching. With this objective in mind we fitted the values obtained with the following

formula:

τ(θ) =
β sin θ

Λ cos2 θ
2

+ 1
Λ

sin2 θ
2

, with Λ 6= 0, (4.26)

which is the Slonczewski’s formula for the reduced torque [131]. Λ depends on the length

of the magnet and affects the amplitude and angular dependence of the torque, while β is

related to the current polarization and only affects the amplitude of the torque [131] and

by consequence has torque units (e). Fig. 4.10 shows the corresponding fitting for (a) E

= -0.675 eV, (b) E = -0.725 eV, (c) E = -0.81 eV, (d) E = -0.9 eV. The curves overlap

for a and d, while for b and c we start to see deviations indeed. Of great interest is to

determine whether the torque is bigger near θ = 0 or θ = π. This will give us valuable

information about the existence of different critical currents to switch the free layer. To
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do so we can use the following relation from Ref. [131]

Λ2 = χ+ 1. (4.27)

If χ < 0 it implies we will have larger in-plane torque near θ = π, while if χ > 0 the

in-plane torque will be larger near θ = 0. Table 4.2 summarizes the fitted parameters Λ

and β and the corresponding χ for each energy. From the obtained χ values we see that

for the energies -0.725 eV, -0.81 eV and -0.9 eV the torque is larger near θ = π, while for

E = -0.675, the torque is larger near to θ = 0, so qualitatively, there are different critical

current to switch to 0 or π the magnetization of M2.

Table 4.2: fitted parameters Λ, β and χ obtained for YIG using Eqs. (4.26) and (4.27)
for four different energies

Energy
(eV)

β Λ χ

-0.675 0.102 -1.198 0.434
-0.725 0.38 0.342 -0.883
-0.81 0.308 0.528 -0.721
-0.9 0.73 0.92 -0.154

Figure 4.10: In-plane STT as a function of the angle θ and the corresponding fitting
with Eq. (4.26) for the energies (a) -0.675 eV, (b) -0.725 eV, (c) -0.81 eV and (d) -0.9
eV.
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4.5.2 Phase diagram from the LLG equation

Let us study the different phases of our system. To obtain the phase diagram we need to

solve the LLG equation from Eq. (2.97) substituting M by M1 and m by M2

∂M2

∂t
= M2 ×

1

~S0

∂E

∂M2

+ αM2 ×
∂M2

∂t
+

I

eS0

g(M2 ·M1)M2 × (M1 ×M2), (4.28)

where e is the electron charge, I the current flowing through the system, α is the Gilbert

damping parameter and S0 the total spin of the magnet considered. E is the magnetic

energy, M1 and M2 are the magnetizations of the magnetic layers and g(M2 ·M1) is

a function that mimics the torque created in the system. Without loss of generality the

magnetic energy is

E(M2) = −κS0(M2 ·M1)2 − gµBS0H ·M2, (4.29)

where the first term corresponds to the uniaxial anisotropy and the second one to the

coupling of the moment M2 with the external field H (Zeeman coupling). For M2 along

the x-z plane and M1 along the z-axis with |M1| = |M2| = 1 and H = Hêz, we obtain

the following expression for the time derivative of the magnetic energy:

∂E

∂M2

=

(
−2κS0 cos θ + gµBS0H

~

)
êz (4.30)

Following the procedure presented in Ref. [132] we solve the LLG equation in spherical

coordinates and find:

θ̇ = −αφ̇ sin θ − I

eS0

g(θ) sin θ (4.31)

φ̇ sin θ = αθ̇ +
2κ

~
cos θ sin θ + γH, (4.32)

where γ = gµB/~. In our case we express g(θ) as:

g(θ) =
Λβ

(Λ2 + 1) + (Λ2 − 1) cos θ
, (4.33)

which is the basically the denominator of Eq. (4.26) after the use of some trigonometrical

identities. Using the previous equation and substituting Eq. (4.32) into Eq. (4.31) we

obtain:

θ̇ =

(
−2κα

~

)
1

1 + α2

(
cos θ sin θ +

~γH
2κ

sin θ +
~I

2καeS0

Λβ sin θ

(Λ2 + 1) + (Λ2 − 1) cos θ

)
,

(4.34)
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and we can rewrite this equation as:

u̇ =

(
−2κα(1− u2)
~(1 + α2)

)(
u+ H̄ +

q′Ī

1 + qu

)
(4.35)

where we have defined u = cos θ, H̄ = ~γH
2κ

, Ī = ~Iβ
2καeS0

, q = Λ2−1
Λ2+1

and q′ = Λ
Λ2+1

. The phase

diagram is constructed from the analysis of stability of zeros in the equation R(u) = u̇

and their corresponding derivatives ∂uR(u) < 0. It is straightforward to see that Eq.

(4.35) is zero when u = ±1 (θ = 0, π), so we can write down the corresponding stability

equations as:

for u= +1

Ī >
−H̄ − q − (qH̄ + 1)

q′
(4.36)

for u= -1

Ī <
−H̄ − q + (qH̄ + 1)

q′
(4.37)

The other two zeros are obtained by solving the equation u+ qu2 + H̄ + qH̄ + q′Ī = 0, so

u =
−(qH̄ + 1)±

√
(qH̄ + 1)2 − 4q(q′Ī + H̄)

2q
, (4.38)

from where two roots are obtained, u1 for the (+) case and u2 for the (−) case. We get

as well from Eq. (4.38) the following condition:

Ī <
(qH̄ − 1)2

4qq′
, (4.39)

After numerical implementation we find that u2 is stable and u1 is not by using the criteria

∂uR(u) < 0. Employing this analysis and Eqs. (4.36), (4.37) and (4.38) we build the phase

diagram shown in Fig. 4.11. We see that there are five different regions: (−1) and (+1)

regions correspond to stable fixed points for u = −1 and u = 1, respectively. In the (−1, 1)

region we have the unstable fixed point u1, as well as, the fixed points u = −1 and u = 1.

In the (SP ) region there is the intermediate point −1 < u2 < 1 that correspond to a spin

precession state. In the (SP,+1) region (in gray) we have the coexistence of two stable

fixed points, u = 1 and u2, and one unstable fixed point u1. The existence of this region

removes the possibility of switching the magnet without hysteresis [132], what implies we

will have different currents to switch to the parallel state and to the antiparallel state.

Let us now estimate the order of magnitude of the critical current, to do so let us

calculate the phase diagram for a thin YIG magnet using parameters reported in the

literature. For our calculation we used damping α = 9×10−5 [133], perpendicular uniaxial

anisotropy Hk = −3.75×10−3 T [134], saturation magnetization Ms = 0.176 (T/µ0) [133]

and gyromagnetic ratio γ = 1.79× 1011 T−1s−1 [133]. The dimension of the magnets are:
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Figure 4.11: Phase diagram of the LLG Eq. (4.28). Each region is denoted differently
according to the stability and number of fixed points on it. The different intersections

of the curves have coordinates A =
(
−2− 1

q
, (q+1)2

qq′

)
, B =

(
2− 1

q
, (−q+1)2

qq′

)
and C =(

−1
q
, 1−q
qq′

)
.

thickness t = 20 nm, length L = 49 nm, width W = 39 nm. To obtain κ we need to use

the following formula:

κ =
HkMs

2
, (4.40)

so κ = −2.57 × 102 J/m2. Very important to say is that κ depends on temperature and

magnet’s thickness, and can even change its sign depending on the configuration of the

system [134]. This is crucial while analyzing the phase diagram. The last parameter we

need is the total spin S0. To do so we can use the following formula [135]:

S0 =
|M |
~γ

, (4.41)

where M is the total magnetic moment of the magnet. We can get the value of M by

multiplying the total number of unit cells in the magnet by the magnetic moment of a

single unit cell of YIG, whose magnetic moment is 40 µB [136, 137]. The total spin in the

ferromagnet is then

S0 =
20× 39× 49

(1.238)3
× 40µB

~γ
≈ 3.96× 106, (4.42)

where we have used 1.238 nm as the YIG’s lattice parameter [136]. Fig. 4.12 shows the

phase diagram obtained for YIG at E = −0.81 eV, an energy in a half-metallic region
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(pink region according to Fig. 4.3) were the transmission has low values. It is well-known

that the critical current is inversely proportional to the STT efficiency defined as η = τ
T tot

,

so the smaller the transmission the higher η and as a consequence the smaller the current.

One can see that the diagram conserves qualitatively the same shape as Fig. 4.11, so

the discussions done there for each region are valid here too. The main difference is the

position of the (+1) and (-1) zones that in Fig. 4.12 are inverted with respect to Fig. 4.11

due to the negative κ value. Note that the magnetic field values necessary to access some

regions of the phase diagram are of the order of 1×103 T what makes them experimentally

inaccessible. So, let us focus on low field cases. An estimation of the critical currents to

switch either to the (+1) or (-1) state at H = 0 T(red dashed line) can be done looking

at the crossing with the curves that separates different phases. For (+1) and (-1) states

the critical currents are -0.084 and 0.024 A, respectively. Further research is necessary to

confirm if total switching of the magnet is possible and more accurate models should be

developed to confirm the values estimated.

Figure 4.12: Phase diagram of YIG obtained by solving the LLG Eq. (4.28). Each re-
gion is denoted differently according to the stability and number of fixed points on it.
The different intersections of the curves have coordinates A = (−1.85× 103, 0.065),
B = (252, 0.018) and C = (−3.9× 103, 0.23). The red dashed line highlights the field
H = 0 T.
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4.6 Conclusion

The STT phenomena in a graphene-based lateral spintronic device with YIG magnets

have been studied theoretically using the tight-binding model. We have derived the cor-

responding steady state spin current conservation equation for the graphene case when

the system has spin dependent hoppings and sublattice potential. This equation allowed

to simulate the in-plane and out of plane STT components, for which an angular and

size dependence study was made. Our results show that the in-plane torque present a

sinus-like behavior at any energy value, while the out plane one behaves differently de-

pending on the energy region where the torque is calculated. We explain this behavior as

a consequence of the number of channels available and quantum tunneling. In connection

with these results found that the out of plane torque component is highly dependent on

the size of the system showing peaks at some particular dimension values as consequence

of constructive interference and number of channels in play at different energies. Further

studies are necessary in order to confirm this hypothesis. Finally, for a thin YIG layer of

20 nm we calculated the STT phase diagram of a graphene-based spin valve and found

currents of the order of 0.1 A. If the switching is possible in this device, according to our

estimation, the critical current is of the order of 10 mA.
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CHAPTER 5

Conclusions and perspectives

In this thesis we have provided a detailed study of the magnetoresistance and spin transfer

torque phenomena in a proposed graphene-based lateral spin valve system. By using

the tight-binding approach, we derived the Hamiltonian of the device and employed the

scattering matrix method, implemented in the python quantum transport package Kwant,

to systematically investigate transport properties of the system.

We demonstrated the existence of the proximity magnetoresistance (PMR) effect

in graphene in the proximity of different MIs: Yttrium Iron garnet(YIG), Cobalt fer-

rite(CFO), Europium oxide(EuO) and Europium sulfide(EuS). We showed that PMR is

robust with respect to the dimensions of the system and presented a study on PMR de-

pendence of YIG-based device on edge termination and SOC at room temperature, due

to its potential for applications. Furthermore, we investigated the interplay of electrical

polarizations and magnetizations on the proposed device based on the multiferroic ma-

terial bismuth ferrite (BFO) and studied the conductance for different combinations of

these quantities that appeared as a consequence of the new degree of freedom. In order

to quantify these combinations, we introduced two novel phenomena PER and PMER

and studied their dependence with respect to the size of the system. We demonstrated

that it is possible to tune the magneto-transport properties of the system by changing

the electrical polarization of the material.

To study the STT phenomenon in the aforementioned device with magnets made of

YIG, we derived the steady state spin current conservation equation for graphene when

it has spin dependent hoppings and sublattice potential. This equation allowed us to

simulate the in-plane and out of plane STT components, for which an angular and size

dependence study was performed. We found that the in-plane torque is well behaved,

while the out of plane component behavior depends on the energy regime it is calculated.
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Also, we showed the dependence of the torque components as a function of the dimension

of the system and found unexpected behaviors. We hypothesized that there is a strong

relation between the real part of the mix transmission with the in-plane, as well as the

imaginary part of the mix reflection with the out of plane torque component. Finally,

we presented STT switching diagrams and estimated critical currents of the order of 10

mA, being the latter the current needed to switch the magnetization of the immediate

graphene region in contact with the magnet that may switch eventually the magnetic

orientation of the whole magnet.

The findings of this work can be used for the development of new devices, for instance,

proximity magnetoresistance memories and devices with four logical gates instead of two.

Most importantly, we have introduced several novel phenomena in graphene-based lateral

device with proximity-induced magnetism. There are many open problems that can be

studied with a similar setup, for example simulate Hanle measurements in the system,

study transport in the quantum anomalous Hall effect (QAHE) regime or in twisted bilayer

graphene. Graphene has still a lot of potential!
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[99] J. S lawińska and J. I. Cerdá, “Spin–orbit proximity effect in graphene on metallic

substrates: decoration versus intercalation with metal adatoms,” New Journal of

Physics 21, 073018 (2019).

[100] A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. K. W. Koon, Y. Yeo,

J. Lahiri, A. Carvalho, A. S. Rodin, E. C. T. O’Farrell, G. Eda, A. H. Castro Neto,
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[101] M. Gmitra, D. Kochan, P. Högl, and J. Fabian, “Trivial and inverted dirac bands

and the emergence of quantum spin hall states in graphene on transition-metal

dichalcogenides,” Phys. Rev. B 93, 155104 (2016).

[102] T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J. van Wees, “Large proximity-

induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene het-

erostructures,” Nano Letters 17, 7528 (2017).

[103] K.-H. Jin and S.-H. Jhi, “Proximity-induced giant spin-orbit interaction in epitaxial

graphene on a topological insulator,” Phys. Rev. B 87, 075442 (2013).

[104] P. Lee, K.-H. Jin, S. J. Sung, J. G. Kim, M.-T. Ryu, H.-M. Park, S.-H. Jhi, N. Kim,

Y. Kim, S. U. Yu, K. S. Kim, D. Y. Noh, and J. Chung, “Proximity effect induced

electronic properties of graphene on Bi2Te2Se,” ACS Nano 9, 10861 (2015).

[105] J. Zhang, C. Triola, and E. Rossi, “Proximity effect in graphene–topological-

insulator heterostructures,” Phys. Rev. Lett. 112, 096802 (2014).

[106] Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, “Proximity-induced ferromag-

netism in graphene revealed by the anomalous hall effect,” Phys. Rev. Lett. 114,

016603 (2015).

[107] Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, and Q. Niu,

“Quantum anomalous hall effect in graphene proximity coupled to an antiferromag-

netic insulator,” Phys. Rev. Lett. 112, 116404 (2014).

[108] N. A. Spaldin, S.-W. Cheong, and R. Ramesh, “Multiferroics: Past, present, and

future,” Physics Today 63, 38 (2010).

http://dx.doi.org/10.1038/s41567-018-0112-1
http://dx.doi.org/10.1021/acsnano.6b05982
http://dx.doi.org/10.1021/acsnano.6b05982
http://dx.doi.org/10.1088/1367-2630/ab2bc7
http://dx.doi.org/10.1088/1367-2630/ab2bc7
https://doi.org/10.1038/ncomms5875
https://doi.org/10.1038/ncomms5875
http://dx.doi.org/10.1103/PhysRevB.93.155104
http://dx.doi.org/ 10.1021/acs.nanolett.7b03460
http://dx.doi.org/10.1103/PhysRevB.87.075442
http://dx.doi.org/10.1021/acsnano.5b03821
http://dx.doi.org/ 10.1103/PhysRevLett.112.096802
http://dx.doi.org/ 10.1103/PhysRevLett.114.016603
http://dx.doi.org/ 10.1103/PhysRevLett.114.016603
http://dx.doi.org/ 10.1103/PhysRevLett.112.116404
http://dx.doi.org/ 10.1063/1.3502547


106

[109] J. P. Velev, C.-G. Duan, J. D. Burton, A. Smogunov, M. K. Niranjan, E. Tosatti,

S. S. Jaswal, and E. Y. Tsymbal, “Magnetic Tunnel Junctions with Ferroelectric

Barriers: Prediction of Four Resistance States from First Principles,” Nano Letters

9, 427 (2009).

[110] S. K. Gore, S. S. Jadhav, V. V. Jadhav, S. M. Patange, M. Naushad, R. S. Mane,

and K. H. Kim, “The structural and magnetic properties of dual phase cobalt ferrite,”

Scientific reports 7, 2524 (2017).

[111] J. Slonczewski, “Current-driven excitation of magnetic multilayers,” Journal of

Magnetism and Magnetic Materials 159, L1 (1996).

[112] L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,”

Phys. Rev. B 54, 9353 (1996).

[113] M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder,

“Excitation of a magnetic multilayer by an electric current,” Phys. Rev. Lett. 80,

4281 (1998).

[114] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph,

“Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pil-

lars,” Phys. Rev. Lett. 84, 3149 (2000).

[115] J. Grollier, V. Cros, H. Jaffrès, A. Hamzic, J. M. George, G. Faini, J. Ben Youssef,

H. Le Gall, and A. Fert, “Field dependence of magnetization reversal by spin trans-

fer,” Phys. Rev. B 67, 174402 (2003).

[116] T. Valet and A. Fert, “Theory of the perpendicular magnetoresistance in magnetic

multilayers,” Phys. Rev. B 48, 7099 (1993).

[117] M. D. Stiles and A. Zangwill, “Anatomy of spin-transfer torque,” Phys. Rev. B 66,

014407 (2002).

[118] A. Shpiro, P. M. Levy, and S. Zhang, “Self-consistent treatment of nonequilibrium

spin torques in magnetic multilayers,” Phys. Rev. B 67, 104430 (2003).

[119] A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, “Finite-element theory of transport

in ferromagnet–normal metal systems,” Phys. Rev. Lett. 84, 2481 (2000).

[120] A. Brataas, G. E. Bauer, and P. J. Kelly, “Non-collinear magnetoelectronics,”

Physics Reports 427, 157 (2006).

[121] P. M. Haney, D. Waldron, R. A. Duine, A. S. Núñez, H. Guo, and A. H. Mac-
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