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Abstract

Typically present in logistics and telecommunications domains, the Fixed-

Charge Multicommodity Capacitated Network Design Problem remains challeng-

ing, especially when large-scale contexts are involved. In this particular case, the

ability to produce good quality solutions in a reasonable amount of time leans

on the availability of e�cient algorithms. In that sense, the present thesis pro-

posed Lagrangian approaches that are able to provide relatively sharp bounds for

large-scale instances of the problem. The e�ciency of the methods depends on

the algorithm applied to solve Lagrangian duals, so we choose between two of

the most e�cient solvers in the literature: the Volume Algorithm and the Bun-

dle Method, providing a comparison between them. The results showed that the

Volume Algorithm is more e�cient in the present context, being the one kept for

further research.

A first Lagrangian heuristic was devised to produce good quality feasible so-

lutions for the problem, obtaining far better results than Cplex, for the largest

instances. Concerning lower bounds, a Relax-and-Cut algorithm was implemented

embedding sensitivity analysis and constraint scaling, which improved results. The

increases in lower bounds attained 11%, but on average they remained under 1%.

The Relax-and-Cut algorithm was then included in a Branch-and-Cut scheme,

to solve linear programs in each node of the search tree. Moreover, a Feasibility

Pump heuristic using the Volume Algorithm as solver for linear programs was

implemented to accelerate the search for good feasible solutions in large-scale

cases. The obtained results showed that the proposed scheme is competitive with

the best algorithms in the literature, and provides the best results in large-scale

contexts. Moreover, a heuristic version of the Branch-and-Cut algorithm based on

the Lagrangian Feasibility Pump was tested, providing the best results in general,

when compared to e�cient heuristics in the literature.

Keywords: Multicommodity Network Design, Lagrangian Relax-

ation, Volume Algorithm, Bundle Method, Relax-and-Cut, Branch-

and-Cut.
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Résumé

Typiquement présent dans les domaines de la logistique et des télécommunica-

tions, le problème de synthèse de réseau multi-flot à charge fixe reste di�cile,

en particulier dans des contextes à grande échelle. Dans ce cas, la capacité à

produire des solutions de bonne qualité dans un temps de calcul raisonnable repose

sur la disponibilité d’algorithmes e�caces. En ce sens, cette thèse propose des

approches lagrangiennes capables de fournir des bornes relativement proches de

l’optimal pour des instances de grande taille. L’e�cacité des méthodes dépend de

l’algorithme appliqué pour résoudre les duals lagrangiens, nous choisissons donc

entre deux des solveurs les plus e�caces de la littérature: l’algorithme de Volume

et la méthode Bundle, fournissant une comparaison entre eux. Les résultats ont

montré que l’algorithme de Volume est plus e�cace dans le contexte considéré,

étant celui choisi pour le développement du projet de recherche.

Une première heuristique lagrangienne a été conçue pour produire des solutions

réalisables de bonne qualité pour le problème, obtenant de bien meilleurs résultats

que Cplex pour les plus grandes instances. Concernant les limites inférieures,

un algorithme Relax-and-Cut a été implémenté intégrant une analyse de sensi-

bilité et une mise à l’échelle des contraintes, ce qui a amélioré les résultats. Les

améliorations des bornes inférieures ont atteint 11%, mais en moyenne, elles sont

restées inférieures à 1%.

L’algorithme Relax-and-Cut a ensuite été inclus dans un schéma Branch-and-

Cut, pour résoudre des programmes linéaires dans chaque nœud de l’arbre de

recherche. De plus, une heuristique Feasibility Pump lagrangienne a été implémentée

pour accélérer la recherche de bonnes solutions réalisables. Les résultats obtenus

ont montré que le schéma proposé est compétitif avec les meilleurs algorithmes de

la littérature et fournit les meilleurs résultats dans des contextes à grande échelle.

De plus, une version heuristique de l’algorithme Branch-and-Cut basé sur le Feasi-

bility Pump lagrangien a été testée, fournissant les meilleurs résultats en général,

par rapport aux heuristiques de la littérature.

Mots-clés: Synthèse de réseau multi-flot, Relaxation lagrangienne,

Algorithme de Volume, Bundle, Relax-and-Cut, Branch-and-Cut.
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Resumo

Tipicamente presente nas áreas de loǵıstica e telecomunicações, o problema

de śıntese de redes multi-fluxo de custo fixo e capacitada permanece desafiador,

especialmente quando contextos de grande escala estão envolvidos. Nesse caso, a

capacidade de produzir soluções de boa qualidade em um tempo computacional

praticável depende da disponibilidade de algoritmos eficientes. Nesse sentido, a

presente tese propõem abordagens lagrangianas capazes de fornecer limites rela-

tivamente próximos ao ótimo para instâncias de grande escala. A eficiência dos

métodos depende do algoritmo aplicado para resolver duais Lagrangianos, por-

tanto escolhemos entre dois dos solvers mais eficientes da literatura: o Algoritmo

de Volume e o Método Bundle, proporcionando uma comparação entre eles. Os

resultados mostraram que o Algoritmo de Volume é mais eficiente no contexto

considerado, sendo o escolhido para o desenvolvimento do projeto de pesquisa.

Uma primeira heuŕıstica Lagrangiana foi desenvolvida para produzir soluções

viáveis de boa qualidade para o problema, obtendo resultados muito melhores

do que Cplex, para as maiores instâncias. Em relação aos limites inferiores, um

algoritmo Relax-and-Cut foi implementado incorporando análise de sensibilidade

e uma normalização das restrições, o que melhorou os resultados. Os aumentos

nos limites inferiores atingiram 11%, mas em média permaneceram abaixo de 1%.

O algoritmo Relax-and-Cut foi então inclúıdo em um esquema Branch-and-

Cut, para resolver programas lineares em cada nó da árvore de busca. Além disso,

uma heuŕıstica de Feasibility Pump lagrangiana foi implementada para acelerar a

busca por boas soluções viáveis. Os resultados obtidos mostraram que o esquema

proposto é competitivo com os melhores algoritmos da literatura, e fornece os mel-

hores resultados em contextos de larga escala. Além disso, foi testada uma versão

heuŕıstica do algoritmo Branch-and-Cut baseado no Feasibility Pump lagrangiano,

proporcionando os melhores resultados em geral quando comparada às heuŕısticas

mais eficientes da literatura.

Palavras-chave: Śıntese de rede multi-fluxo, Relaxação lagrangiana,

Algorithmo de Volume, Método de Bundle, Relax-and-Cut, Branch-

and-Cut.
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Chapter 1

Introduction

A classic topic in combinatorial optimization, network design problems have

been attracting much interest for almost six decades in the Operational Research

community, according to Minoux [171]. In those problems, networks are usually

modeled by graph structures containing nodes and arcs, so design decisions need

to be made in order to satisfy a set of requirements, in such a way as to optimize a

given function. Here we are especially interested in cases where flow requirements

are involved, whereas problems like the Minimum Spanning Tree, Steiner Tree, and

Facility Location can also be considered as network design problems. Generally,

integer variables are used to model network decisions, which results in integer

programs (IP), or mixed integer programs (MIP).

Typically NP-hard [136, 164], this class of problems arises in various levels

of decision-making processes in logistics, transportation, and telecommunications

sectors (see [6, 5, 171, 164]). In freight transportation systems, one may have to

deal with network problems involving infrastructure, selection of transportation

services, and their frequencies [60]. Airline companies, for example, may have to

deal with service network design (see [60] for a review on the subject), having

to determine the routing pattern for planes and the frequency of flights, given

the aircraft and crew availability [135, 154], to satisfy the demand. Similarly,

companies like UPS and FedEx have tried to optimize the design of their service

networks for delivering express packages [11, 10]. In those contexts, networks

may be represented by time-space graphs, each node being a certain moment in a

certain location, with the arcs meaning the possible movements.

Moreover, with the advances in manufacturing, and just-in-time supply chain

management, the network design has a big impact on logistics activities, in both

operational and economical aspects [55]. Recently in the telecommunications field,

network design problems arose while planning fiber optical networks [212]. Other

applications in telecommunications can be found in the survey [98].
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The present work addresses the fixed-charge multicommodity capacitated net-

work design problem. In this case, arcs represent facilities (optical fibers, electric

lines, roads, pipelines, etc.), each with a given capacity, that may be installed to

accommodate the flow of multiple commodities, notably data packets, physical

goods, people, etc., given the origin-destination pairs of points [57]. Particularly,

only one type of facility is available, and at most one facility is installed per arc.

Given its complexity and characteristics, large-scale instances of the problem

present a great number of variables and constraints, which may be very time

and memory consuming, especially when approaching it with linear programming

methods. Indeed, for some of the instances tested here, even the linear relaxation

program (LP) took days to be solved by Cplex (a state-of-the-art linear program-

ming software). In that sense, we tend to look for relaxations and decomposition

methods that may help to find a near-optimal feasible solution. In other words,

we search for good-quality feasible solutions, and tight bounds to measure their

distance from the optimal.

In the literature, much e↵ort has been focused on heuristic approaches to

determine near-optimal solutions. However, a bounding procedure is often missing

in those kinds of methods. In this regard, cutting-plane algorithms have been

proposed, but at the expense of further increasing the size of linear programs.

Other methods like Benders decomposition [31] and Dantzig-Wolfe decomposition

[69] were applied with relative success [57], but on instances not as large as the

ones considered here.

Alternatively, schemes based on Lagrangian relaxation have also been used to

generate tight bounds for di�cult large scale problems. The early works about

Lagrangian relaxation applied to combinatorial problems were published by Held

and Karp, for the Traveling Salesman problem [121, 122], and a general theory was

developed by Geo↵rion in his seminal paper [109]. Since then, such an approach

has been proved to be an interesting alternative to deal with hard integer (or

mixed-integer) programs, for example in scheduling [84, 85], assignment problems

[194, 138], and facility location problems [39, 75]. Other applications can be found

in [118, 86], and the references therein.

Given the promising results obtained with Lagrangian schemes in network

design and other fields, we developed solution methods for the considered problem,

having the Lagrangian relaxation as a central feature. Indeed, it was observed that

the use of such a technique was crucial to devise e�cient algorithms, especially in

terms of time consumption when very large-scale instances were involved.

This thesis has the main goal of producing tight bounds for very large-scale

instances of the fixed-charge multicommodity capacitated network design prob-
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lem, with the help of e�cient Lagrangian schemes. The contributions of this

thesis include: i) a comparison between two state-of-the-start nondi↵erentiable

optimization algorithms: Volume [26] and Bundle [155] methods, in the context

of Lagrangian dual optimization; ii) a Lagrangian heuristic capable of providing

near-optimal feasible solutions to large-scale instances; iii) a relax-and-cut algo-

rithm, with two strategies to enhance performances, along with a new heuristic

procedure for cutset separation; and iv) a Volume-based branch-and-cut algo-

rithm, combined with a Lagrangian Feasibility Pump heuristic [80].

The following five chapters present the studies carried out during the doctoral

program. In chapter 2, the considered problem is presented along with a literature

review about solution approaches and closely related problems. A brief discussion

about some characteristics of hard instances is presented, based on numerical

experiments. At the end of that chapter, the most relevant types of cut inequalities

and constraint relaxations for the problem are discussed.

Chapter 3 presents Lagrangian relaxations for the problem, along with a com-

parison between two state-of-the-art nonsmooth (nondi↵erentiable) optimization

solvers: the Volume Algorithm and the Bundle Method. In fact, the Lagrangian

decomposition methods implemented here are based on the fact that, by La-

grangian relaxation, the problem can be decomposed into simpler smaller sub-

problems. However, such relaxation results in the Lagrangian dual problem,

which is concave and generally nonsmooth. In that sense, the choice of e�cient

nonsmooth optimization algorithms is crucial for the development of e�cient La-

grangian schemes. In the same chapter, the Lagrangian heuristic is proposed. A

paper entitled ‘Lagrangian bounds for large-scale multicommodity network design:

a comparison between Volume and Bundle methods’ [199] was published in the

‘International Transactions in Operational Research’ journal, containing the main

results presented in the chapter.

Since the Volume Algorithm proved to behave better than the Bundle Method

in most large-scale instances, in chapter 4, a Volume-based Relax-and-Cut algo-

rithm is proposed. Sensitivity analysis and constraint scaling are used to improve

performances, which indeed provided better results. In chapter 5, the Relax-and-

Cut algorithm is then included in a Branch-and-Cut scheme, in an attempt to

close optimality gaps. A Volume-based Feasibility Pump heuristic is proposed

to accelerate finding better feasible solutions for large-scale instances. Finally, a

conclusion closes the thesis in chapter 6, presenting the next steps and suggesting

future research.
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Chapter 2

Fixed-Charge Multicommodity

Capacitated Network Design

In this chapter, the Fixed-Charge Multicommodity Capacitated Network De-

sign problem is presented, along with a literature review and an initial discus-

sion about complicating features of the problem. In section 2.1, the problem is

described and formulations are presented, followed by the discussion about the

problem instances in section 2.2. The literature review is presented in section 2.3,

and relaxations and valid inequalities for the problem are given in section 2.4.

Finally a conclusion is made in section 2.5.

2.1 Introduction

The Fixed-Charge Multicommodity Capacitated Network Design Problem (FC-

MC) consists in determining a minimal cost network, with enough installed ca-

pacity to satisfy the multicommodity flow demands. In the present case, the cost

function includes, for each arc and commodity, transportation costs and installa-

tion costs on each arc, the latter being associated with a single facility of given

capacity.

The FCMC is usually modeled as a MIP, based on either arcs or paths. Con-

sidering that all costs, demands, and capacities are nonnegative real values, for

a given directed graph G = (N,A), N being the set of nodes, and A the set of

arcs, the capacities for each a 2 A are denoted by wa, and fixed costs represented

by fa. Moreover, for a given set K of commodities, O(k), D(k) and qk denote

respectively, for each k 2 K, the origin, the destination, and the demand quan-

tity. Finally, let transportation costs for each commodity k 2 K on arc a 2 A be

denoted by ck
a
.

For the arc-based formulation we introduce variables xk

a
� 0 for the amount
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of flow k 2 K in the arc a 2 A, and binary variables ya for all a 2 A, ya = 1 if

the single facility is installed, ya = 0 otherwise. Given that an arc a = (i, j) for

i, j 2 N , N+
i
= {j 2 N |(i, j) 2 A} is the set of nodes j having an arc arriving from

node i, and N�
i
= {j 2 N |(j, i) 2 A} is the set of nodes j having an arc arriving

into node i. The values bk
a
= min{wa, qk} define upper bounds on the commodity

flow k 2 K through arc a 2 A. The model is presented as follows [164]:

Minimize
P
k2K

P
a2A

ck
a
xk

a
+

P
a2A

faya (2.1)

P

j2N+
i

xk

ij
�

P

j2N�
i

xk

ji
=

8
><

>:

qk, if i = O(k)

�qk, if i = D(k)

0, otherwise

8i 2 N, k 2 K (2.2)

P
k2K

xk

a
 waya 8a 2 A (2.3)

xk

a
 bk

a
ya 8a 2 A, k 2 K (2.4)

xk

a
� 0 8a 2 A, k 2 K (2.5)

ya 2 {0, 1} 8a 2 A (2.6)

Alternatively, in the path-based formulation the multicommodity flow is mod-

eled by variables representing commodity paths, namely a sequence of arcs p =

{a1, . . . , al := (O(k), j1), (j1, j2), . . . , (jl�1, D(k))}, k 2 K. Likewise, variables

xk

p
� 0 represent the amount of flow of k in path p 2 P (k), the set of all possible

paths for commodity k.

Minimize
P
k2K

P
p2P (k)

ck
p
xk

p
+

P
a2A

faya (2.7)

P
p2P (k)

xk

p
= qk 8k 2 K (2.8)

P
k2K

P
p2P (k):a2p

xk

p
 waya 8a 2 A (2.9)

P
p2P (k):a2p

xk

p
 bk

a
ya 8a 2 A, k 2 K (2.10)

xk

p
� 0 8k 2 K, p 2 P (k) (2.11)

ya 2 {0, 1} 8a 2 A

The equations (2.2) and (2.8) guarantee the conservation of flow in the network,

and inequalities (2.3) and (2.9) define capacity constraints. One can note that the

strong forcing constraints (2.4) and (2.10) are redundant for the MIPs, but they

considerably increase the quality of the lower bound when solving their linear

relaxation [105]. Indeed, according to Cornuejols et al. [56] those constraints

define facets of the convex hull of (2.12), derived from the arc-based formulation
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(a similar construction can be made using the path-based formulation). Finally,

the domain of the variables are defined in (2.5), (2.11) and (2.6).

{x, y 2 R|A||K|
+ ⇥ B|A| | (2.3), xk

a
 qk 8a 2 A, k 2 K} (2.12)

The relation between the two formulations was studied by Tomlin [204], who

stated they are equivalent, and that the path-based model may be viewed as a

Dantzig-Wolfe decomposition approach (see [69]) for the arc-based formulation.

Such relation was further explored by Jones et al. [137]. Nevertheless, it is stated

in [105] that in case the problem is uncapacitated, the linear relaxation of the arc-

based formulation provides tighter bounds than the path-based one. In addition,

works on the polyhedral structure of each model have been published by Balakr-

ishnan et al. [20], for the path-based formulation, and by Bienstock and Günlük

[38], for the arc-based one. Alternative formulations based on metric inequalities

[18] and on cutsets [25], have also been considered when flow costs are not present.

The feasibility of FCMC is completely linked to the existence of a feasible

multicommodity flow in the considered network, for the set of flow requirements.

Onaga and Kakusho [180] (see also [134]) have discussed propositions on feasibility

conditions of multicommodity flows, showing that a multicommodity flow of a

given set of demands is feasible if and only if, for every cutset, the capacity is

greater or equal to the transpassing flow requirements. More works addressing

the feasibility of multicommodity network flows were presented for special cases

like the two-commodity case [195, 132, 196], and the case where a planar graph is

considered [178, 120].

In summary, two sources of infeasibility may occur: the first related to con-

nectivity and the second related to a lack of capacity, both traduced in the metric

inequality (2.13), in which ↵a � 0, a 2 A represent the dual values of capacity

constraints, and ⇡k

D(k), k 2 K, the values of the lengths of the shortest paths

between O(k) and D(k), having ↵ as arc lengths.

X

a2A

↵awa �
X

k2K

qk⇡k

D(k) (2.13)

In that sense, a multicommodity flow is feasible if and only if (2.13) are satisfied

for all ↵ � 0, considering that if no path exists between O(k) and D(k), for some

k 2 K, then ⇡k

D(k) is set to infinity. Costa et al. [58], defined metric inequalities

as a special case of Benders inequalities.

Finally, remark that if a design configuration (topology) is provided, fixing

binary variables to 1 or 0, the FCMC is resumed to a Minimum Capacitated

Multicommodity Flow (MCMF) problem (see [12, 146] for surveys on the subject).
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In that sense, FCMC is feasible if considering a configuration ya = 1, 8 a 2 A,

the corresponding MCMF problem is feasible. Moreover, in the remainder of this

document, we say that any given topology is feasible if and only if the respective

MCMF problem is feasible too. Such considerations are widely used throughout

this document.

Although real-life network design problems often require additional features to

be added to the formulation, the FCMC as described above is su�ciently challeng-

ing. With NP-Hard problems like the Falicity Location, as special cases [164, 136],

the presented problem is NP-Hard itself. Moreover, it contains interesting decom-

posable substructures, likely to be present in practical situations, and that are

quite suitable to the current purpose.

The surveys written by Magnanti & Wong [164], Minoux [171] and Ahuja et.

al. [6] present a number of practical applications in which the FCMC is involved,

as well as similar problems related to network design aspects. Some applications,

specifically in the field of rail freight transportation planning, can be found in

[208]. Next, a discussion about the di�culty of instances is presented, followed by

the benchmark instances most used currently in the literature.

2.2 Hard instances

The discussion about di�cult features of an instance is itself a complete re-

search area, and an extensive literature on the subject exists for combinatorial

problems like the ones surveyed in [201]. More closely related to the FCMC, pa-

pers have been published about hard instances for the knapsack problem [52, 51,

187, 139], and the facility location problem [152]. In addition, Bienstock [37] has

discussed the di�culties while having to deal with a network design problem where

node degrees are imposed. However, a clear characterization of hard instances of

the FCMC problem is still not available in the literature.

Even though the size of instances may be a di�cult aspect at a first sight,

other properties may be very complicating, making small-sized instances very

challenging too. In this subsection, we try to elucidate some characteristics of

a potentially hard instance, while being solved by a state-of-the-art MIP solver.

We stress that this is a preliminary numerical experiment and further research is

needed on the subject.

In that manner, a series of instances considering complete digraphs of n = 10

nodes (and 90 arcs) were conceived with a maximum of 90 commodities (the

complete pattern of commodities). On those digraphs, no parallel arcs are allowed,

and commodities do not share the same origin-destination pair. The values of
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transportations costs, fixed costs, and demands are randomly generated inside an

interval given as a parameter. In their turn, arc capacities are set to a fraction

1/u of the sum of commodity demands that may pass in that arc, u being a

parameter. The origin-destination commodity pairs are generated according to

a given parameter d, such that in a matrix of binary values K = [kij]n⇥n, i, j =

1, ..., n each column and row have exactly d items equal to 1, while the others are

null (the same procedure is adopted for arcs, in [152]). Then each item kij = 1

correspond to a commodity with origin i and destination j. Note that d = 5

correspond to a number of 50 commodities, d = 3 to 30 commodities, and so on.

The instances are solved by the Branch-and-Cut algorithm implemented in

Cplex (version 12.8), with all parameters set as default, and a time limit of 24

hours, running in a single thread on an Intel Xeon E7-8890 v3, 2.50 GHz Linux

machine, with 30Gb of RAM. The results are shown in Tables 2.1, 2.2 and 2.3,

where column ‘|K|’ presents the number of commodities of instances in that line

(10 instances per line), ‘Num Opt’ presents the number of instances solved to

optimality, ‘Avg Gap’ presents the final gap on average provided by Cplex, and

‘Avg Nodes’ presents the average number of evaluated nodes in the Branch-and-

Cut tree.

The first testbed aimed at verifying the impact of parameter u to the hardness

of an instance. At this first moment, high values of fixed costs were considered,

in the interval [1e5, 2e5], while low values of transportation costs were selected,

in the interval [1, 15]. In their turn, commodity demands were generated in the

interval [1, 10].

As shown in the first three lines of Table 2.1, as u increases tightening the arc

capacities, the number of nodes needed to solve instances increases too, resulting

in more computational time, and in a reduced number of instances solved to

optimality. However, at a certain point of tightness, capacities are so tight that

one may expect to open almost all arcs, which makes the problem easier, as one

can notice in the last three lines of Table 2.1. Observe too that FCMC solution

gets close to the min-max solution when congestion increases (see [35] for details).

Moreover, it can be seen in lines with u = 10 that the number of commodities

also impacts the di�culty of instances, since instances got harder as the number

of commodities increased. In the remainder of this subsection, all tests were

performed with instances built with u = 10.
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|K| Avg Gap (%) Avg Nodes Avg Time (sec) Num Opt

u = 2 50 0.0 2436 132 10

u = 5 50 0.0 189382 23450 10

u = 10 50 2.9 828443 70241 2

u = 10 30 0.0 185417 6558 10

u = 10 90 4.4 318208 86400 0

u = 50 90 0.3 796370 61895 5

u � 60 90 0.0 29363 1637 10

Table 2.1: Impact of arc tightness

Provided the same cost and demand intervals, in a second moment we verified

the impact of fixed-charges as a complicating feature. In that sense, we test

the impact of having some of the arcs with a reduced fixed-charge. So given

a parameter value fc, and considering the same procedure as for commodities,

each column and row of the {0, 1}-valued matrix A = [aij]n⇥n will present a fc

number of items aij = 1, corresponding to the arc (i, j) for which the fixed-charge

is reduced. Values are decreased in two degrees of magnitude.

From the results in Table 2.2, one can observe that in general the presence of

small fixed-charges makes instances easier, even for a low frequency as for fc = 1

(10 arcs). Note that such statements can be made regardless if we refer to instances

of 50 or 90 commodities. In addition, once more we notice that a higher number

of commodities implies harder instances.

|K| Avg Gap (%) Avg Nodes Avg Time (sec) Num Opt

fc = 0 50 0.0 185417 6558 10

fc = 1 50 0.0 46543 1280 10

fc = 5 50 0.0 39259 468 10

fc = 0 90 4.4 318208 86400 0

fc = 1 90 1.7 237080 60227 4

Table 2.2: Impact of fixed charges grid pattern

In a third moment, we tested the impact of intervals in which cost values

were generated. The results are presented in Table 2.3, in which three additional

columns were added, presenting the intervals for fixed-charges (‘Fixed Charge’),

transportation costs (‘Transp Cost’) and demands (‘Demands’).

It can be observed in Table 2.3 that a generalized reduction on fixed-charges

may lead to easier instances since, from the first to the second line, the fixed-

charge on all arcs have lost two degrees of magnitude, which resulted in less hard

instances. Moreover, observe in the two lines of the middle that the relation
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between transportation costs and fixed-charge may be important to define how

hard an instance may be. Given the same interval of fixed-charges, instances with

bigger demands and transportation costs were easier to be solved. As a matter of

fact, that could be expected, since transportation costs are given per unit of flow,

so as those costs and the amount of flow become bigger, more importance is given

to the linear part of the objective function, rather than to the design (integer)

part.

Fixed Transp Avg Avg Avg Num

Charge Cost Demands |K| Gap (%) Nodes Time (sec) Opt

[1e5, 2e5] [1, 15] [1,10] 90 4.4 318208 86400 0

[1e3, 2e3] [1, 15] [1,10] 90 2.4 307373 73433 2

[3e5, 5e5] [100,500] [100,500] 90 0.2 134519 23998 8

[3e5, 5e5] [1,200] [1,200] 90 4.9 321538 86400 0

[2e5, 1e6] [1,100] [1,100] 90 0.1 71858 20608 9

[2e5, 3e5] [1,100] [1,100] 90 6.9 308976 86400 0

Table 2.3: Impact of cost intervals

In the fifth line, even though fixed-charges could attain the biggest overall

values of the testbed, the instances in that configuration were the easiest to be

solved. However, note that the range of values in [2e5, 1e6] is much larger, thus

the results in that line correspond indeed to what was perceived in Table 2.2, since

with a larger interval, instances may present arcs with fixed-charge much smaller

than others. That is reinforced by results in the last line, where the upper bound

on fixed-charges was significantly reduced and the di�culty increased.

Finally, remark that in fact, even relatively small FCMC instances may be

challenging to one of the best solvers in the market. For several instances, Cplex

could not solve them before 24 hours of computation. In the following subsection

benchmark instances currently used in the literature are presented. In the past,

other instances were considered to be hard, but with the advances in computational

resources and software implementations, they no longer can be considered in that

way [43, 35].

2.2.1 Benchmark instances

With the characteristics discussed above, medium to large-sized randomly gen-

erated problem instances have been used in the literature. Available for down-

load at http://www.di.unipi.it/optimize/Data/MMCF.html, a more detailed

description can be obtained in [103, 104, 61]. In short, for a given number |N | of
nodes, a given number |A| of arcs, and a given number |K| of commodities, two
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nodes are randomly connected until the number of arcs is achieved, parallel arcs

not allowed. A similar procedure is adopted for the commodities. In addition, the

origin of a commodity is never equal to its destination.

Costs, capacities, and demands are uniformly distributed in intervals given

also as parameters. However, costs and capacities are recomputed in order to

obtain di↵erent di�culty levels among the instances. Two ratios are used to do

so: one for the capacities, C, and another for fixed costs, F . Only integer values

are generated.

C = |A|
P

k2K qk/
P

(i,j)2A wij

F = |K|
P

(i,j)2A fij/(
P

k2K qk
P

k2K
P

(i,j)2A ck
ij
)

In general, for low values of C, the network is lightly constrained, but it be-

comes more congested as C increases. Moreover, for low values of F , fixed costs

lose relevance in the objective function, while the converse happens if F is su�-

ciently increased. Benchmark instances are divided into three groups: Canad-C,

Canad-R, and Canad-N, with a number of 43, 153, and 48 instances in each group

respectively.

2.3 Literature review

In this section we first present exact approaches proposed in the literature for

the FCMC, followed by problems closely related to it. At the end of the section,

metaheuristics previously implemented for the problem are presented. Here, the

focus is on multicommodity flows related to fixed charge design aspects. However,

the field of network design is much larger, and we refer the reader to the work of

Contreras and Fernández [54], for a wider view on the network design subject.

2.3.1 Exact approches

Even though interesting results have been obtained with metaheuristics, find-

ing near-optimal solutions to hard large-scale instances of the FCMC is still very

challenging. In a further e↵ort to tackle these instances exact approaches have

been proposed, some of them combined with heuristic features.

One of the most widely used methods to solve mixed-integer programs, the

Branch-and-Bound [174, 153], was considered by Holmberg and Yuan [130] to solve

the considered problem. In essence, in a tree-like structure, the method repeatedly

partitions the space of feasible solutions into smaller subsets, and computes bounds

on the cost of solutions of each subset. As the subsets become smaller and smaller,
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the tendency is for the bounds to get tighter, and converge to an optimal solution.

In the work presented by Holmberg and Yuan, a Lagrangian heuristic was used

to produce upper bounds, while lower bounds were obtained through Lagrangian

relaxation. The results showed that the method struggled to solve large instances,

but a heuristic procedure of variable fixing managed to produce good quality

solutions quickly. In [129], the authors applied the same procedure to other similar

network design problems.

Gendron et al. [105, 103, 104] discussed relaxation techniques for the consid-

ered problem, including types of linear constraint relaxations (see section 2.4) and

Lagrangian relaxations (see section 3.4). A theoretical comparison between two

di↵erent Lagrangian relaxations is made in [102]. Crainic et al. [61] applied the

Bundle Method (section 3.3) to solve the Lagrangian dual programs of those same

two relaxations. In addition, decomposition methods have been applied to obtain

tight bounds for the FCMC through Lagrangian relaxation in [94, 96].

Polyhedral approaches were presented by Chouman et al. [46, 47, 48, 49]. In

their work, a series of cutting-plane algorithms were implemented, which consists

in generating valid inequalities, called cuts, that are violated by the solution of the

linear relaxation of the problem. At each iteration, the linear relaxation is solved,

and cuts that are violated by the solution are added to the formulation, strength-

ening the bound given by the relaxed problem. With the use of cutset-based

inequalities (to be seen in section 2.4), the authors managed to obtain promising

results, what encouraged us to use such inequalities in the present work. Their

cutting-plane procedure was afterwards embedded into a matheurisitc described

in [45].

Also involving cut generation, Kliewer and Timajev [150] presented a Relax-

and-Cut algorithm, which considers Lagrangian relaxation, with cuts being added

dynamically, in a Lagrangian relaxed way. Applying the proposed algorithm to

solve LPs in a Branch-and-Bound scheme, the authors obtained encouraging re-

sults with the use of cover inequalities, and local cuts based on Lagrangian reduced

costs.

In fact, cut generation procedures can be embedded into Branch-and-Bound

algorithms to improve bounding aspects. Such variation, called Branch-and-Cut,

was implemented by, Sellman et al. [197] with the addition of local valid cardinality

cuts. Still employing such a scheme, Chouman et al. [50] applied a filtering process

to fix variables while exploring the search tree. Besides the variable fixing feature,

using cover inequalities and minimal cardinality inequalities (section 2.4.1), the

authors obtained favourable results when compared to Cplex, one of the most

popular and e�cient mathematical programming solvers in the market.
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Similarly, resulting in a Branch-and-Price algorithm, the Branch-and-Bound

method may embed column generation procedures to improve computational ef-

forts when solving large scale problems. In fact, column generation is based on

the fact that one may not need all the variables of a program to solve it. In that

sense, the procedure starts with a restricted program that considers only a subset

of variables, and iteratively add to this program only variables that improve the

current solution value. Given that improvements are measured by reduced costs,

the search for an improving variable (column) corresponds to the pricing problem,

which explains the term Branch-and-Price.

Further in that matter, embedding column and cut generation within a Branch-

and-Bound scheme, Gendron and Larose [107] proposed a Branch-and-Price-and-

Cut algorithm to e�ciently solve large-scale FCMC instances, obtaining better

performances in comparison to Cplex. In that work, taking the weak arc-based

formulation into account (without forcing constraints), the restricted program,

solved at each column generation iteration, considered all the design variables,

but only a subset of the multicommodity flow variables. In its turn, the cut

generation step was used to identify violated forcing inequalities to be added.

The same type of procedure was implemented by Barnhart et al. [28], for the

unsplittable multicommodity flow case.

From another perspective, Costa [57] presented a survey on several works where

benders decomposition is applied to approach fixed-charge network design prob-

lems (see [190] for a state-of-the-art on the subject). The method, first presented

in [31], decomposes the problem into a master program, corresponding to the orig-

inal one without a group of constraints (usually complicating), and a subproblem,

solved to generate optimality and feasibility cuts to the master. In [58], a ben-

ders decomposition is applied with the use of metric inequalities. With the aim

of improving lower bounds, Sridhar and Park [202] proposed a Benders-and-cut

algorithm, adding to the master problem cutset-based inequalities besides Ben-

ders cuts. Another alternative to enhance benders decomposition performances

was proposed by Costa et al. [59], where heuristic solutions were used to generate

extra benders cuts per iteration.

Moreover, Hewitt et al. [127] combined exact and heuristic approaches to

provide upper and lower bounds for the problem, exploiting both arc-based and

path-based formulations. Based on local search, at each iteration, a subset of arcs

is chosen, and the corresponding restricted integer problem is solved considering

the arc-based formulation to obtain a primal solution. On the other side, a cut

and column generation procedure was adopted to obtain a lower bound using the

path-based formulation. The computational experiments demonstrated that the
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proposed approach is a good alternative to quickly produce good quality primal

solutions, but the lower bounds obtained were relatively weak.

The same authors present, in [126], a new strategy for solving integer programs,

including the FCMC. The approach considers an extended formulation that intro-

duces new columns as restrictions to the model. In addition, binary variables are

introduced, modelling the restriction activation in such a way that a solution to

the extended formulation leads to a restricted integer program to be solved next.

In the FCMC case, a restriction may be a fixed network topology, so one just have

to route the multicommodity flow. In that sense, a branch-and-price algorithm

is used to solve the extended problem, with restrictions being produced by col-

umn generation. When compared to a state-of-the-art MIP solver, the proposed

algorithm was able to produce better quality solutions in less time.

More recently, Gendron et. al [106] presented a matheuristic based on iterative

linear programming, that was capable of finding new best solutions for some hard

benchmark instances. The method iteratively solves the linear relaxation of the

model, and uses the relaxed solution to select a set of integer variables to be fixed.

The corresponding restricted integer model is then solved, and a pseudo-cut is

added to the formulation for the next iteration. Such pseudo-cut excludes the

solutions that satisfy the fixed values, allowing the algorithm to explore the whole

set of solutions.

2.3.2 Related problems

We now discuss problems related to the FCMC that may be encountered in

the literature. A well-known variant is the uncapacitated version, where the values

of w, for every arc, are greater or equal to the sum of all demands to be routed.

Considered as an easier version, notably because of the quasi-integrality of its

polytope [124], e�cient procedures have been proposed to solve it, for example

the dual ascent procedure, by Balakrishnan et al. [21]. An attempt to produce

a dual ascent procedure for the capacitated case was made by Herrmann et al.

[125]. However, a note on this work was published by Gendron, showing that the

procedure is not e↵ective [100].

Remark that depending on the problem characteristics, it might be preferable

to work with a ‘normalized’ domain of variables. So, instead of having flow vari-

ables defined as nominal amounts of flow, one may consider them as percentages

of a commodity demand passing through a certain arc or path.

In terms of modeling, the flow variables are bounded in the interval [0, 1], and

multiplied by the demand whenever the amount of flow is needed, namely in the

cost function and in the capacity constraints (2.9) and (2.3). Moreover, one might
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set to 1 the flow bounds b in the forcing constraints (2.4) and (2.10), and the

right-hand-side of the flow balancing constrainsts (2.2) and (2.7) might be equal

to 1, 0 or -1, accordingly.

The use of percentages to represent flow is very common for example in the

unsplittable variation, in which the flow of a given commodity must follow a single

path. In this case, the problem becomes a pure IP, with the flow represented by

binary variables. A work on both splittable and unsplittable flow, as a substructure

of capacitated network design problems, was published by Atamtürk and Rajan

[17].

A di↵erent version of the problem also appears when the network is undirected,

meaning that, instead of one-way node connections, the links are represented by

two-way connections called edges. In this case, the installed capacity is shared by

the flow in both senses, which means that, for an edge e = (i, j), the capacities

constraints in the arc-based formulation might be rewritten as
P

k2K(x
k

ij
+ xk

ji
) 

weye. Alternatively, edges can be replaced by pairs of arcs in both directions to

obtain a directed graph.

Another closely related problem arises when the domain of arc variables y, is

enlarged to Z+, so they can assume any nonnegative integer value. In this case,

multiple facilities can be installed on the arcs, with di↵erent capacities and costs in

case more than one type of facility is available. For this variant, generally known

as the network loading problem [163, 36], several authors have dealt with objective

functions based only on fixed costs.

Practical instances of the network loading case were tackled by Barahona [25],

using a relaxation approach based on cutset inequalities. With a di↵erent perspec-

tive, Magnanti et al. [162] investigated the polyhedral structure of this problem,

presenting a strengthened formulation. Moreover, using binary variables, Fran-

gioni and Gendron [93] formulated network loading as a multiple-choice model

with piecewise linear design costs, so on any given arc, each part of its cost func-

tion represents the number of facilities to install (similar models were surveyed in

[172]). Indeed, Croxton et al. [66] reported on three alternative models to this

kind of problem, the multiple-choice formulation included, showing that their lin-

ear relaxations are equivalent, and that they three approximate the lower convex

envelope of the cost function. The same authors, in [67], investigated an extended

formulation based on variable disaggregation, obtaining better polyhedral descrip-

tions of the solution space. An alternative, not involving the addition of binary

variables is explored by Keha et al. in [144, 143]

A number of works have considered commodity-independent transportation

costs, that enables the aggregation of commodities sharing the same destination
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or the same origin, consequently reducing the problem size. Recently, Chouman

et al. [49] published a comparison between these two commodity representations:

aggregated and disaggregated, finally concluding that the disaggregated formula-

tion presents stronger results for the FCMC. Previous results about commodity

aggregation/disaggregation can be found in [37, 191].

Note that an installed capacity may already exist on the network, leading

the loading problem to be considered as the capacity expansion problem [119].

Minoux considered those types of network loading problems as simplified versions

of a larger class of discrete cost multicommodity network optimization problems.

In [172], the author discusses a general model that captures aspects like economy

of scale, for example. Moreover, existing exact methods to approach those cases

are surveyed in the same paper.

Other variants may appear with the addition of side constraints, typically im-

posing budget and topological restrictions. More precisely, the budget constraints

might restrict the total design or routing costs to a limited budget or financial

resource, while the topological constraints might impose rules on the network con-

figuration, including relations of precedence and multiple choice [164]. Holmberg

and Yuan [131], for example, dealt with side constraints on paths, specifying that

commodities must follow paths with a cost less than or equal to a maximum

value. Another example can be found in [206], where additional design-balance

constraints are imposed.

An interesting textbook about potential function methods applied to minmax

or maxmin formulations (minimal congestion or maximum throughput) was given

by Bienstock in [35], with theory and practical algorithms. Bektaş et al. [29]

worked with the possibility of violation of additional constraints at the expense

of some penalty costs, resulting in a nonlinear multicommodity network design

program. Related to that, another example of nonlinear program was exposed by

Paraskevopoulos et al., in [185], where besides transportation and fixed costs, the

objective function explicitly adds congestion features, represented by a (nonlinear)

delay-cost function. A survey on nonlinear multicommodity flow problems was

published by Ouorou et al. [181], focused on convex models

A particular case of the capacity expansion problem also consider congestion

resulting in nonlinear costs (see [167]). Luna and Mahey [161] provided, along

with lower bound results, a modelling framework for this problem, using piecewise-

convex arc functions. With such a framework, a heuristic method was proposed

by Souza et al. in [72], based on local optimality conditions discussed in [166]. In

addition, exact approaches were proposed in [79] and [165].

Finally, more specific variations may appear in the literature. In [128], Holm-
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berg et al. dealt with a problem of transportation planning of empty freight cars

in the context of a rail operator, with fixed-charges related to paths. Another

particular case arises with capacities and fixed costs concerning nodes instead of

links. For those cases, depending on the cost figure, a reduction to an edge capac-

ity problem is possible by splitting nodes into two, forming a link on the network.

Belotti et al. [30] present a case where such reduction is not possible and propose

a method to solve it.

2.3.3 Metaheuristics

Given the di�culty of solving large-scale FCMC problems to optimality, much

e↵ort has been dedicated to develop e�cient heuristic and metaheuristic proce-

dures to find good feasible solutions to realistically sized instances. Crainic et al.

[63] proposed a tabu seach metaheuristic [112], which consists of a local search

procedure, and a tabu list serving as memory, to prevent performing repeated

movements. The algorithm iteratively tries to improve the current solution by

moving to a neighbor one in a defined neighborhood, each visited solution being

stored in the tabu list, so the same solution is not visited again for a specific

number of iterations. In their work, the authors made use of the path-based for-

mulation and defined a simplex based neighborhood, so the local search is done

exchanging path variables in a simplex pivot-like fashion. A second neighborhood

is defined relative to the design variables and is used to modify drastically the

network configuration and to diversify the search. When compared to the solu-

tions obtained with the software Cplex, the procedure yielded better solutions in

significantly less time.

A tabu search was also implemented by Ghamlouche et al. [110], however with

a neighborhood structure based on low-cost cycles present in the residual graph.

The main idea was to reroute the flows around a cycle, eventually modifying the

network configuration as a consequence. The results given by this cycle-based

tabu search showed a significant improvement over the simplex pivot based one.

In order to explore at best the strength of cycle-based neighborhoods, the

same authors embedded such structure in a path relinking procedure [111], which

provided better performances in comparison with the tabu search. The main idea

of such a procedure is to produce a path between initial and guiding solutions

present in a reference set. In other words, it produces intermediary solutions,

progressively introducing into the current solution, attributes of the guiding one.

That may improve the reference set, and eventually the overall best solution.

Both simplex-based and cycle-based neighborhoods were tested with paral-

lel schemes. A multi-thread cooperative parallel procedure was implemented
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by Crainic and Gendreau [62], where each process independently executes the

simplex-based tabu search, and exchange information with the others, in order

to improve the searches and to increase the chances of obtaining high-quality

solutions. Indeed, better solutions were found using parallelism. With similar

principles, Crainic et al. [65] implemented the cycle-based tabu search procedure

in a multilevel cooperative algorithm, also improving previous results.

Recently, parallel computational architectures were used by Mungúıa et al.

[176], who derived multiple independent neighborhoods that were explored in par-

allel, by a local search procedure. In the algorithm, once the processes are finished,

the improvements identified in parallel are recombined to generate good quality

solutions. The authors consider the problem in both splittable and unsplittable

cases, claiming that the proposed technique is compatible with both variants.

Similar to the path relinking already mentioned, a scatter search procedure

was proposed by Alvarez et al. [8], for the undirected version of the FCMC. The

main idea of the algorithm is to construct a reference set of solutions, that are

combined with each other, in order to produce better solutions and then evolve

such a reference set (see [113] for more details in path relinking and scatter search).

The same authors, in [7], embedded a greedy randomized adaptive search procedure

(GRASP) [78] into the scatter search to produce a better initial set of solutions.

Briefly, at each iteration of GRASP, a greedy solution is constructed, followed by

a local search to produce one initial solution. The computational tests showed

that the algorithm produces good quality solutions, but tends to be less e�cient

for instances with a large number of commodities and high fixed costs.

Another heuristic approach, based on slope scaling, was proposed by Crainic et

al. [64] (inspired by the work of Kim and Pardalos [148] for the single-commodity

version). The procedure consists in solving the linear multicommodity flow prob-

lem associated with the original formulation, with costs iteratively changed in or-

der to reflect the marginal fixed cost and the transportation cost simultaneously.

Moreover, intensification and diversification phases were performed using informa-

tion stored in long-term memory, in order to explore a wider region of the solution

space. The results showed that the slope scaling procedure was competitive with

other state-of-the-art algorithms.

With a di↵erent perspective, Katayama et al. [141] presented a capacity scaling

heuristic. The method iteratively solves the linear relaxation of the FCMC, with

arc capacities changed accordingly to the amount of arc flow, present in the relaxed

solution of the previous iteration. Using benchmark instances, the computational

experiments showed that the capacity scaling algorithm managed to provide one of

the best results at that point in the literature. In one of his later work, Katayama
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[140] combined the capacity scaling procedure with the local branching method,

improving the results.

A local branching approach is also proposed by Rodŕıguez-Mart́ın and Salazar-

González [193], providing good results on benchmark instances. The principle be-

hind the method is to explore solution neighborhoods by adding linear inequalities,

called local branching constraints, that delimit the neighborhood to be explored,

and exclude the current solution. Although the local branching is originally pre-

sented as an exact solution strategy, one may interpret it as a heuristic procedure,

by setting time and node limits as stopping criteria.

Yaghini et al. [209] presented a cutting-plane neighborhood structure that

follows the relaxation induced neighborhood search (RINS). As the name suggests,

this procedure takes into account the solution given by the current continuous

relaxation of the problem, besides the current integer solution. At each iteration,

arc variables with the same values in both solutions are fixed, and the sub-MIP on

the remaining variables is solved by local branching to obtain a neighbor integer

solution. In the work by Yaghini et al., the continuous relaxation problems were

strengthened with valid inequalities (discussed in section 2.4), and a tabu search

algorithm using the proposed neighborhoods was implemented, providing better

results for some benchmark instances when compared to other algorithms in the

literature.

Concurrently, Paraskevopoulos et al. [184] worked with chains of ine�cient arcs

to define neighbor solutions, aiming to reroute the flow present in those ine�cient

arcs. The authors treated the structure as an enhanced cycle-based neighborhood,

and implemented an evolutionary algorithm consisting of a scatter search phase,

and a iterated local search phase. The first phase generates descendent solutions

of a reference set, and the second tries to increase the quality of the descending

solutions, performing a series of local searches and perturbations based on ine�-

cient chains. The computational experiments showed that the proposed algorithm

was able to produce high-quality solutions for benchmark instances.

Momeni and Sarmadi [175] implemented a genetic algorithm cooperative local

branching procedure, presenting better solutions for some benchmark instances.

The procedure applied the principles of combining solutions in a reference set, to

explore the neighborhood of the current best solution, while local branching was

used for diversification, in a RINS fashion.

The simulated annealing (see [149]) was also tested for the FCMC. The par-

ticularity of this metaheuristic is that, starting from an initial solution, one may

accept movements to low-quality neighbor solutions, with a certain probability of

acceptance, in order to escape from local minima. In that sense, with the help
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of a parameter called temperature, the probability of accepting worse solutions is

initially high, and then it is decreased throughout iterations. E�cient simulated

annealing algorithms were implemented by Yaghini et al. in [211], considering the

path-based formulation, and by the same first author and others in [210], this time

working with simplex-based neighborhoods applied to the arc-based formulation.

2.4 Relaxations and valid inequalities

We now discuss cutset-based relaxations, and valid inequalities derived from

them, for the FCMC. Here we do not intend to survey the whole literature on cutset

polyhedra, but to present what has best worked for the FCMC in particular, based

on the work by Chouman et al. [46, 47, 48, 49] (we refer to [14] and the references

therein for further reading on the subject). In this section, the considerations are

related to the arc-based formulation, thus the relaxations refer to the set P , the

feasible set defined by the constraints (2.2) to (2.6):

P = {(xk

a
, ya)a2A,k2K : (2.2)� (2.6)}

Namely, a cutset is the set of arcs (S, S̄) = {(i, j) 2 A : i 2 S, j 2 S̄}, defined
for a given partition of nodes S ⇢ N and its complement S̄ = N \S, connecting a

node in S to a node in S̄. Furthermore, associated with each cutset, there is a set

of crossing commodities KSS̄ = {k 2 K : O(k) 2 S,D(k) 2 S̄}, and the reverses:

(S̄, S) and KS̄S defined analogously.

With the aim of improving readability, we define the following notations: for

any cutset (S, S̄) and any subset L ✓ K, the crossing demand is defined as

qL
SS̄

=
P

k2KSS̄\L
qk, and for any arc a 2 A, xL

a
=

P
k2L x

k

a
. Finally, define

bL
a
= min{wa,

P
k2L q

k}, (v)+ = max{0, v} and co(F) the convex hull of the solu-

tions in the set F. The equivalent notation is defined also for the reverse cutsets.

Following such notation, given a cutset (S, S̄) and commodity set L ✓ K, we

define PL to guide further discussions. Being a cutset-based relaxation itself, PL is

the solution space subjected to (2.14) the sum of flow conservation equalities for all

i 2 S and k 2 L, and (2.15) the forcing constraints related to commodities k 2 L

for all arcs a 2 (S, S̄)+ := (S, S̄) [ (S̄, S), together with integrality of variables y.

In fact, considering that xL

a
 xK

a
 waya, one can state that xL

a
 bL

a
ya for all

a 2 A. The next sections present special cases of PL.

PL = {(xL

a
, ya)a2(S,S̄)+ :

P

a2(S,S̄)
xL

a
�

P

a2(S̄,S)
xL

a
= qL

SS̄
� qL

S̄S
, (2.14)

0  xL

a
 bL

a
ya, ya 2 {0, 1}, 8a 2 (S, S̄)+ } (2.15)
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Remark that constraints (2.14) and (2.15) are redundant for P , so adding those

constraints to the problem and relaxing constraints (2.2) to (2.6), one obtain the

relaxation PL, with a correct change on dimensions.

2.4.1 Cutset relaxation

A special case of PL refers to the fixed charge problems studied by Padberg

et al. [183]. Indeed, taking L = KSS̄, one has qL
S̄S

= 0 by definition, and (2.14)

reduces to
P

a2(S,S̄) x
L

a
= qL

SS̄
+
P

a2(S̄,S) x
L

a
. Since flow variables are nonnegative,

the resultant equality constraint can be relaxed to inequality (2.16), and PL can

be relaxed to Pc.

Pc = {(xL

a
, ya)a2(S,S̄) :

P

a2(S,S̄)
xL

a
� qL

SS̄
(2.16)

0  xL

a
 bL

a
ya, ya 2 {0, 1}, 8a 2 (S, S̄) }

Padberg et al. provide valid cover inequalities for co(Pc), considering also the

cases with (2.16) as an equality (P=
c
), and as a ()-inequality (P

c
). Moreover,

a discussion about the properties relating those polytopes is made, resulting in

observations like Proposition 1.

The authors let a set C ⇢ (S, S̄) to be a cover if � =
P

a2C bL
a
� qL

SS̄
> 0, and

define the valid inequality (2.17) for C+ = {a 2 C : (bL
a
� �) > 0}, D ✓ (S, S̄) \C

and b̄ = max{bL
a
: a 2 C}, which is facet-defining for co(P=

c
) if 0 < b̄�� < bL

a
 b̄

for all a 2 D.

X

a2C[D

xL

a
+

X

a2C+

(bL
a
� �)(1� ya)  qL

SS̄
+
X

a2D

(b̄� �)ya (2.17)

For L = ;, (2.17) gives origin to the famous flow cover inequalities which are

also facet defining for co(P=
c
) under certain conditions. Very recently, new inequal-

ities were introduced in [157, 158], that are valid for P
c
. Moreover, according to

Proposition 1, inequality (2.18) is automaticaly facet-defining for co(Pc), under

the same conditions. Hence, it is also a valid inequality for P .

X

a2(S,S̄)\{C[D}

xL

a
+

X

a2C+

(bL
a
� �)ya +

X

a2D

(b̄� �)ya �
X

a2C+

(bL
a
� �) (2.18)
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Proposition 1. [183] If ⇡x + µy � v is a nontrivial facet of co(P=
c
), then (⇡ �

t1)x+µy � v�tqL
SS̄

is a nontrivial facet of co(Pc), where t = min{⇡a : a 2 (S, S̄)}

From another perspective, one can define a pack R to be such that µ = qL
SS̄
�

P
a2R bL

a
> 0, with C = (S, S̄) \ R being its complement. Hence, the inequality

(2.19) is valid for co(Pc), since at least one arc in C must be open to meet the

demand.

X

a2C

ya � 1 (2.19)

Alternatively, considering that bL
a
ya � xL

a
for all arcs in the cutset, one can

define the minimum knapsack cutset relaxation Pkc. With respect to inequality

(2.19), If bL
a
� µ for all a 2 C, the cover is minimal and a lifting procedure

(discussed in section 4.4.3) can be used to derive facets of co(Pkc)[22]. See [15] for

a survey on cover and pack inequalities for other types of knapsack polytopes.

Pkc = {(ya)a2(S,S̄) :
P

a2(S,S̄)
bL
a
yL
a
� qL

SS̄
(2.20)

ya 2 {0, 1}, 8a 2 (S, S̄) }

Apart of minimal cover inequalities, Chouman et al. [49] and Martello and

Toth [169] have worked with minimum cardinality inequalities (2.21) (valid for

co(Pkc)). The first worked with the FCMC problem, and the second with the

0-1 Knapsack Problem. On the right-hand-side of (2.21), the value m(S,S̄) gives

the minimum number of arcs that must be opened to satisfy the demand (the

computation of m(S,S̄) is discussed in section 4.4.2).

X

a2(S,S̄)

ya � m(S,S̄) (2.21)

As discussed in section 4.4, one can strengthen cutset relaxations using a metric

to redefine the amount of demand that must cross the cutset, obtaining stronger

inequalities for P . In the network loading problem case, Avella et al. [18] defined

metric inequalities that completely define the convex hull of feasible solutions.
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Finally, it is worth noting the possibility of working with k-partitions, which

means to divide the set N into k disjoint sets of nodes, instead of only two as it is

considered here. Indeed, several works have used such an approach for cases where

an undirected graph is considered, for example [4, 3, 25], deriving similar valid

inequalities for that context. The next section presents the cutset flow relaxation

and valid inequalities derived from it.

2.4.2 Cutset flow relaxation

The cutset flow relaxation for the FCMC is known as the single node flow set,

for which several polyhedral studies have been published, including the one written

by Van Roy and Wolsey [205] presented as an extension to [183]. Considering any

set L ✓ K, and dL
SS̄

= qL
SS̄
� qL

S̄S
, such relaxation consists in dropping equality in

(2.14) to define P f

L
.

P f

L
= {(xL

a
, ya)a2(S,S̄)+ :

P

a2(S,S̄)
xL

a
�

P

a2(S̄,S)
xL

a
 dL

SS̄
, (2.22)

0  xL

a
 bL

a
ya, ya 2 {0, 1}, 8a 2 (S, S̄)+ }

In their work, Van Roy and Wolsey presented a generalization of inequalities

(2.17), defining a flow cover as a pair of sets (C1, C2), such that � =
P

a2C1
bL
a
�

P
a2C2

bL
a
� dL

SS̄
> 0, C1 ✓ (S, S̄) and C2 ✓ (S̄, S). For D2 ✓ (S̄, S) \ C2 and

R2 = (S̄, S) \ {C2 [ D2}, the (generalized) flow cover inequality is defined by

(2.23).

X

a2C1

(xL

a
+ (bL

a
� �)+(1� ya))�

X

a2D2

min{bL
a
,�}ya �

X

a2R2

xL

a


X

a2C2

bL
a
+ dL

SS̄

(2.23)

According to Theorem 6 of [205], if dL(S,S̄) > 0, maxa2C1b
L

a
> � and C2 = ;,

(2.23) is facet-defining for co(P f

L
). Moreover, Gu et al. [116] propose a sequence

independent lifting procedure to obtain higher-dimensional inequalities based on

superadditive functions (a similar lifting procedure is proposed for inequalities

(2.17) too). Recently, three-partition flow cover inequalities were proposed in [16].

Complementarily, Stallaert [203] presents valid inequalities for the case that

� < 0. Atamtürk [13] later present a special case of those inequalities denoted
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flow pack inequalities, along with a lifting procedure also sequence independent

and using superadditive functions. According to Stallaert, those inequalities must

be viewed as cover flow inequalities for a relaxation of P f

L
, when a slack variable

s is added to (2.22) (
P

a2(S̄,S) x
L

a
�

P
a2(S,S̄) x

L

a
� s  �dL

SS̄
).

A flow pack is defined as a pair (C1, C2), such that µ =
P

a2C2
bL
a
�
P

a2C1
bL
a
+

dL
SS̄

> 0, C1 ✓ (S, S̄) and C2 ✓ (S̄, S). For D1 ✓ (S, S̄) \C1 and R2 = (S̄, S) \C2,

the flow pack inequality is defined by (2.24). According to Atamtürk [13], under

certain conditions, flow pack inequalities are facet-defining for the convex hull of

the restriction of P f

L
when ya = 1 8 a 2 C1.

X

a2C1

xL

a
+

X

a2D1

(xL

a
�min{bL

a
, µ}ya) +

X

a2C2

(bL
a
� µ)+(1� ya)

�
X

a2R2

xL

a


X

a2C1

bL
a

(2.24)

Finally, cutset inequalities were presented in [46, 49], which served in fact as a

first step for the separation of flow cover and flow pack inequalities. Other cutset

inequalities have been proposed in [14, 189]. Most recently, in [157], based on the

results given by Proposition 1, the authors discussed the possibility of rotating

inequalities identified for a knapsack polytope obtained from a restriction of P f

L
,

to devise valid inequalities for P f

L
.

2.5 Conclusion

As discussed in the previous sections, much work has been done for the devel-

opment of the best approaches to solve the FCMC and related problems, but some

instances, especially the large ones, remain unsolved by the current methods. As

shown in section 2.2, high fixed-charge values when compared to transportation

costs, generated in a tight interval may be a complicating feature, as well as su�-

ciently tight arc capacities. In that sense, e�cient methods able to provide tight

gaps for hard large-scale FCMC instances are still needed to be devised.

For this purpose, Lagrangian schemes combined with the generation of valid

inequalities like the ones presented in section 2.4 seem to be a good alternative.

Specifically in chapter 4, following previous works in the literature, the inequalities

most successfully implemented for the FCMC, among the ones presented in the

last section, are considered for the development of a Relax-and-Cut algorithm.
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Chapter 3

Lagrangian Bounds and

Volume-Bundle Comparison

A part of this chapter content has been published in the o�cial journal of the

International Federation of Operational Research Societies (IFORS): International

Transactions in Operational Research. Here, we compare the performances of the

Bundle method and the Volume algorithm (two of the most e�cient techniques

to obtain accurate Lagrangian dual bounds for hard combinatorial optimization

problems). The comparison is made on very large-scale Fixed-Charge Multicom-

modity Capacitated Network Design problems. The motivation is not only the

quality of the approximation of these bounds as a function of the computational

time, but also the ability to produce feasible primal solutions and thus to re-

duce the gap for very large instances for which optimal solutions are out of reach.

Feasible solutions are obtained through the use of Lagrangian information in con-

structive and improving heuristic schemes. We show in particular that, if the

Bundle implementation has provided great quality bounds in fewer iterations, the

Volume algorithm is able to reduce the gaps of the largest instances, taking profit

from the low computational cost per iteration compared to the Bundle method.

3.1 introduction

Lagrangian Relaxation has been widely used for long to generate lower bounds

for di�cult constrained minimization problems and to serve as a basis for devel-

oping e�cient approximation schemes, see [109, 156, 90] for the basic theory. As

the resulting Lagrangian dual functions are generally nonsmooth and concave, the

ability to lean on e�cient subgradient algorithms is a crucial issue for the success

of Lagrangian Relaxation.

The reason for using Lagrangian Relaxation to obtain lower bounds for the
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FCMC problem is justified when large-scale instances are involved. These in-

stances will generally be out of reach for the general-purpose MIP solvers like

Cplex, even if they are indeed able to exploit the block structure of the underlying

Linear Programs (LP) at each node of their branching search tree.

Resuming the main features of Lagrangian Relaxation, we start from a primal

problem (P) in Rn, supposed to be linear with mixed-integer variables, defined as:

Minimize c.x s.t. Ax = b, x 2 S

where Ax = b represent the di�cult constraints we want to relax (A is a (p⇥n)
matrix). The set S may be discrete and defined by linear constraints. The con-

tinuous (or linear) relaxation lower bound is defined as ZL = minx c.x s.t. Ax =

b, x 2 S̄, where S̄ is the continous set defined by constraints of S with integrality

constraints dropped. Moreover, considering the convex hull co(S) of the set S, if

co(S) = S̄ then the integrality property holds [109].

For a given vector of Lagrange multipliers u 2 Rp associated with the di�cult

constraints, the Lagrangian subproblem defines a lower bound for the optimal

value of the primal problem:

L(u) = inf
x2S

(c� ATu).x+ b.u

The dual problem is thus to search the best lower bound, i.e. to maximize the

dual function L on Rp which is indeed concave on any convex subset of its domain

(see [155] for example). That function is generally nonsmooth and piecewise a�ne

(with a huge number of pieces, theoretically up to the number of extreme points

of the polyhedral set co(S)). This motivates the search for e�cient algorithms of

nonsmooth optimization. These take profit of the fact that, for any solution x(u)

of the Lagrangian subproblem, a subgradient of L at u is easily computed, indeed

g(u) = b�Ax(u) 2 @L(u), where @L(u) denotes the set of subgradients of L at u.

Finally, we recall that the best lower bound ZR = sup
u
L(u) is finite if the primal

problem is feasible and satisfies ZL  ZR  Z⇤, where Z⇤ is the optimal value of

the primal problem. Moreover, ZL = ZR if the Lagrangian subproblem has the

integrality property.

Subgradient algorithms have been studied early by Shor and Polyak in the

sixties [188] and first applied to the Lagrangian Relaxation of hard combinatorial

problems by [122] in their seminal paper about the Traveling Salesman problem.

Further improvements have been proposed later, either by the Russian school

[147, 200] or by western researchers [123]. These variants try to improve the

search direction like in the conjugate gradient method or change the metric of

the direction-finding step (Khachian’s ellipsoid algorithm is indeed a subgradient
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method).

In this chapter, we compare two classical versions of these algorithms, namely

the Bundle method, early proposed by Wolfe and Lemaréchal [155], and the Vol-

ume algorithm proposed by Barahona and Anbil [26]. As we will see below, Bundle

methods and the Volume algorithm share the same strategy as early methods, ex-

tending the direction-finding step to more than two former subgradients. Such

a comparison e↵ort is inspired by the work of Lemarechal [156] and Frangioni et

al [92] who contributed to the present success of modern Bundle methods, which

remain the most successful approach to treat small or medium scale combinatorial

problems by Lagrangian relaxation. Our claim is that the Volume algorithm can

do as well or even better when dealing with large-scale network design problems.

Other methods like analytic center [114] or proximal cutting planes, deflected [198]

or majorize-minimize mean [133] subgradient algorithms, exist in the literature.

However, a state-of-the-art review about nondi↵erentiable optimization (NDO)

methods is out of the scope of the present work, and we refer to [40] for a broad

history and practical guide on the subject.

Papers comparing nonsmooth optimization algorithms can be found in the

literature [42, 95], but a direct comparison of these two algorithms applied to

large-scale combinatorial models is missing, and our work is an attempt to fill

this gap. An interesting paper was written by Briant et al.[42], where the au-

thors compare di↵erent algorithms including Bundle, Column Generation, and

the Volume, for five di↵erent problems. With respect to the Volume-Bundle com-

parison, the results have shown that they behaved similarly, but Bundle enjoyed

more reliable stopping criteria, even though it might be fairly expensive to reach

them. According to that paper, the Bundle method obtained better bounds with

fewer iterations, though we believe that its average time per iteration is fairly

more expensive than the Volume one. Considering that, the present work focus

the comparison on the computational total time, rather than on the number of

iterations.

The next sections will present an explanation about the considered algorithms.

Then, in Section 3.5 constructive and improving heuristic schemes using La-

grangian information is proposed to provide upper bounds for the FCMC, as well

as to serve as a basis to compare the primal fractional solutions obtained with

the two algorithms being tested. The computational experiments and results are

reported in Section 3.6. Finally, conclusions are made in section 3.7.
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3.2 Volume

Observing that the dual function, as a piecewise a�ne concave function, can

be written as the infimum of a finite set of a�ne functions associated with the

potential solutions of the Lagrangian subproblems xj, j 2 J , i.e. the extreme

points of co(S), the dual problem can be written as :

Maximize Z

s.t.: Z  c.xj + u.(b� Axj) 8j 2 J

u 2 Rp, Z 2 R

(3.1)

a linear program with a generally exponential number of constraints which,

dualized in its turn, yields the following so-called master program (of the Dantzig-

Wolfe decomposition, see [155]) :

Minimize
X

j2J

(c.xj)�j

s.t.:
X

j2J

(Axj � b)�j = 0

X

j2J

�j = 1

�j � 0, 8j 2 J

(3.2)

Cutting planes algorithms use a subset Jt of J at each outer iteration t cor-

responding to part of the extreme points already generated by the Lagrangian

subproblems, thus yielding a restricted master problem where the primal vari-

ables �j are the weights of the extreme points xj, j 2 Jt in a primal solution

x̄ =
P

j2Jt �jxj, feasible for the polyhedral constraint set {Ax = b, x 2 co(S)}.
The Volume algorithm attempts to find an approximate solution of that master

problem by computing at each iteration t a stability center ū, a step st
v
and a

subgradient-based direction dt
v
. The stability center represents a point that has

provided significant improvement with respect to the optimization process. In its

turn, the step represents how far one may move in the direction of dt
v
= (b�Ax̄),

so that a new trial point ut = ū+ st
v
· dt

v
is obtained. The stability center ū will be

updated whenever L(ut)� L(ū) > 0 and dt
v
· (Axt � b) > 0 (we get then a ‘green

iteration’ or ‘serious step’).

The directions are updated at each iteration according to the primal vector

estimate x̄ such that :
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x̄ ✓xt + (1� ✓)x̄

The parameter ✓ 2 [0 1] is itself updated in order to force an ascent direction,

i.e. such that

gt · (✓gt + (1� ✓)dt
v
) � 0

As stated in [19, 26], at the end of an iteration t, the coe�cients {✓, (1 � ✓)✓,

(1�✓)2✓, ... , (1�✓)t✓} can serve as an approximation for the primal variables �1,

... , �t of the Dantzig-Wolfe’s master problem, with respect to the dual constraints.

So x̄ can be interpreted as an approximate primal solution. Furthermore, those �

could be approximated by the volume between the active faces of (3.1) and the

current lower bound Z̄, which explains the name of the method. The choice of the

key parameters is detailed in Section 3.6.2.

3.3 Bundle

Bundles were initially presented as extensions of the method of ✏-subgradients

[155, 207], nevertheless recent versions include di↵erent backgrounds. It is usual

to say that bundle methods are stabilized versions of the cutting plane algorithm

[145], since they have the same idea of computing models to approximate functions.

Bundle methods usually present better performance than Kelley’s algorithm since

they avoid going too far from the current point, thanks to the stabilization term

added to the objective function. [179] presented a brief survey about it. [89]

introduced a generalized Bundle method and a version for cases in which the

Lagrangian dual can be decomposed.

The main idea is to gather information throughout iterations in order to build

a model to approximate the dual function L(u). Indeed, if g is a subgradient of

the concave function L at ū, then L(u)  L(ū) + g.(u � ū) 8 u 2 Rp (extending

the dual value with �1 if the Lagrangian subproblem is unbounded). Assuming

that there exists an initial bundle � = {i | gi 2 @L(ui)}, L̂(u) is the piecewise

a�ne concave function such that:

L(u)  L̂(u) := min{L(ui) + gi.(u� ui) : i 2 �} 8u 2 Rp (3.3)

The model at this point is represented by a group of a�ne functions that to-

gether form an easier nondi↵erentiable optimization problem. The Moreau-Yosida

regularization comes then as an alternative to this problem since the function and

its regularized function share the same maximum. The regularized concave func-

tion is defined by:
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Ls(ū) = maxu L̂(u)� 1

2sb
||u� ū||2 (3.4)

where sb is the step size in the Bundle method.

Assuming the bundle has m parts, thanks to the information transfer property

[155], it is convenient to rewrite the bundle in terms of linearization errors com-

puted at ū, such as ei := L(ui)�L(ū)+ gi.(ū�ui) 8i = 1, ...,m. Then rewriting

the calculation of Ls(ū) as a constrained program with an auxiliary scalar variable

⌘ :

Maximize ⌘ � 1

2sb
||u� ū||2

⌘  L(ū) + gi(u� ū) + ei 8i 2 � (3.5)

u 2 Rp, ⌘ 2 R

Further dualizing (3.5) with the dual coe�cients ↵i � 0, i 2 �, one obtains:

(1�
�X

i=1

↵i)⌘ �
1

2sb
||u� ū||2 +

�X

i=1

↵i[L(ū) + ei + gi(u� ū)]

Assuming that (1 �
P

�

i=1 ↵i) = 0, for any given vector ↵, the optimal solution

must present (u� ū) = sb
P

�

i=1 ↵igi. Hence, the dual of (3.5) may be formulated

as:

Minimize sb
2 ||

P
i2�

↵igi||2 +
P
i2�

↵iei + L(ū)

P
i2�

↵i = 1 (3.6)

↵i � 0 8i 2 �

The main search procedure is to get, at each iteration t, the solution ↵t of (3.6)

and a new trial point along the direction of dt
b
=

P
i2� ↵

t

i
gi with a step of size st

b
.

Furthermore, the strong duality property of the pair of quadratic programs allows

to estimate the increase in the current solution value if such step is performed, i.e.

denoting ut the current solution of (3.5) :
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�� = L̂(ut)� L(ū) = st
b
||
X

i2�

↵t

i
gi||2 +

X

i2�

↵t

i
ei (3.7)

A weaker version can be obtained considering Ls(ū) the solution value of (3.6)

and taking �� = Ls(ū)� L(ū) as an estimation (see Section 3.6.2 for more imple-

mentation issues about the role of these estimates).

Bundle methods are now known to be very e�cient while solving the La-

grangian dual problem, however with the drawback of the need to solve a quadratic

subproblem at each iteration, which can significantly decrease the performance of

the method. [87] introduced a specially tailored algorithm to solve such quadratic

programs (3.6) in a way to reduce the computational cost and we have used his

software in our experiments.

So we conclude that short presentation by observing that both algorithms rely

on similar features, namely a combination of subgradients from which we should

build at the same time a stability center for the dual problem and a tentative

primal solution converging to a feasible (but generally fractional) solution. In

addition, note that an approximation for the primal solution can be obtained by

setting x̄ =
P

i2� ↵ixi. Convergence issues will not be discussed here (see [89] for

instance for the bundle method). We just mention that the Volume algorithm

can be slightly modified to be interpreted as a bundle method and thus inherit its

convergence properties [19].

3.4 Lagrangian relaxations for the multicommod-

ity network design

Di↵erent choices to relax subsets of constraints of FCMC have been considered

in the literature. The most common are

• Relaxing the capacity constraints (including the strong inequalities) (2.3)-

(2.4) inducing a decomposition by commodity of the pricing step into shortest-

path subproblems.

• Relaxing the flow conservation constraints (2.2) inducing a decomposition

by arcs into knapsack subproblems.

Most recently Kazemzadeh et al. [142] presented node-based Lagrangian re-

laxations for the FCMC problem, where the Lagrangian subproblem decomposes

by nodes. By reformulating the problem, the authors managed to devise three
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node-based relaxations which, contrarily to the common ones, do not present the

integrality property and may improve over the linear relaxation bound. The re-

sults were promising, but the relaxations struggled with time consumption, since

the resulting subproblems are hard-to-solve MIPs like the Facility Location. That

being said, such node-based relaxations were not tested in the present work, given

the size of instances considered (see 3.6.1).

Direct comparisons on the two first alternatives have been made in di↵erent

works [105, 61, 101] as well as combinations of both, in the so-called ‘total’ re-

laxation, which has been used successfully for the ‘proximal decomposition’ of

convex-cost multicommodity flow problems [181] and also considered by [107] for

presentation purposes in the present case of FCMC.

Even if it depends on the type of instances, the relaxation of flow conservation

constraints has shown a better behaviour, and these comparisons are generally

combined with discussions about the possibility to aggregate commodities by ori-

gins (or by destinations), or to force other valid inequalities in the model. We will

focus on the arc-based model FCMC of Chapter 2, thus only including the strong

forcing inequalities (2.4).

We denote the dual multipliers by

• ↵e � 0, e 2 A for the capacity constraints (2.3),

• �k

e
� 0, e 2 A, k 2 K for the strong forcing inequalities (2.4),

• ⇡k

i
2 R, i 2 N, k 2 K for the flow conservation equations (2.2).

and we need to compare the trade-o↵ between the number of dual variables and

the potential splitting into smaller subproblems.

3.4.1 Solving the pricing subproblem

As it is generally considered in the literature to be the most e↵ective strategy,

we can choose the relaxation of the flow conservation constraints for illustration

purposes. In section 3.6.3, previous results were resumed to reinforce our choice.

The Lagrange multipliers associated with each node i and each commodity k

are denoted by ⇡k

i
2 R, 8 i 2 N, k 2 K. The dual space is thus in R|N |⇥|K| which

can be huge for a full set of commodities (of order |N |2). The complete Lagrangian

dual function is given by :

L(⇡) = min
y

X

e2A

[fe + ge(⇡)]ye +
X

k2K

qk(⇡k

D(k) � ⇡k

O(k)) (3.8)

ye 2 {0, 1}, 8e 2 A (3.9)
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where, for each arc e = (ij) 2 A :

ge(⇡) = min
x

X

k2K

(ck
ij
+ ⇡k

i
� ⇡k

j
)xk

ij
(3.10)

X

k2K

xk

ij
 wij (3.11)

0  xk

ij
 bk

ij
, 8k 2 K (3.12)

Thus, the computation of ge(⇡) is given by a continuous knapsack problem

defined separately for each arc e 2 A, and very simple to be solved. It su�ces

to fill up the arc with the commodities having the most negative reduced costs

(ck
e
+ ⇡k

i
� ⇡k

j
)  0 if any, until the arc flow equals the capacity. The Lagrangian

dual problem is then defined as the maximization of the Lagrangian function L(⇡)

on ⇡ 2 RN⇥K as discussed in the previous sections.

3.5 Upper bounds

We propose a heuristic scheme to obtain upper bounds for the FCMC problem.

The main idea, employed repeatedly, is to select arcs to compose a topology and

then optimize the routing of multicommodity flows over the topology set down.

The heuristic makes use of (i) perturbations on a given topology to build a pool

of topologies, and (ii) arc combinations between pairs of topologies from the pool.

A key element of the heuristic is the use of information collected throughout the

Lagrangian optimization process to guide topology construction, in particular the

frequency in which an arc is opened when solving the subproblem (3.8) - (3.12) at

each Lagrangian iteration.

3.5.1 Initial solution

We now describe the construction of a first feasible topology, which is done

after the procedure to obtain the Lagrangian lower bound. Let ycf 2 R|A|, with

values 0  ycf
e
 1, 8e 2 A, be the frequency vector of opening arcs, i.e., the ratio

between the number of Lagrangian iterations where arc e was opened, and the

total number of Lagrangian iterations.

Algorithm 1 describes the procedure to get an initial solution. After solving

the Lagrangian dual, we use the frequency value trying to identify attractive arcs

to compose a topology. Thus, all arcs with frequency ycf
e
� 0.3 are fixed to

1, forming the topology A0, and all arcs with ycf
e
 0.001 are discarded. The

set � contains the unfixed arcs that will be later evaluated according to their

frequency in further solutions of restricted Lagrangian subproblems. Preliminary
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computational experiments have shown that topologies composed strictly with arcs

such that ycf
e
� 0.3 often do not support feasible routing of the multicommodity

flows. So, in the while-loop we try to identify attractive arcs that remained in set

�. We successively solve Lagrangian subproblems (3.8) - (3.12) with ye fixed to

1 if e 2 A0, ye unfixed if e 2 �, and ye fixed to 0 if e /2 A0 [ �. Since restricted

subproblems have fewer arcs and some of them are already set to 1, we expect

that some unfixed arcs may no longer be necessary, while others may become more

requested. We get a new vector of frequencies yf for arcs in � solving the FCMC

Lagrangian dual with respect to �[A0. The new frequencies serve as basis to fix

arcs in �, such that the arc is opened if yf
e
� 0.3, or closed if yf

e
< b, where b is a

threshold value. We increase the value of b every time there is no change in �.

Algorithm 1 First Feasible Topology

Given ycf , the vector of frequency

A0 = {e 2 A : ycf
e
� 0.3}

� = {e 2 A : 0.001  ycf
e

< 0.3}
b = 0.01

while b  0.05 do

Set ye = 1, 8e 2 A0

Solve Lagrangian Dual for set � [ A0 (i.e., (3.1) if using Volume, or (3.5) if

using Bundle)

Given yf , the vector of frequency

A0 = A0 [ {e 2 � : yf
e
� 0.3}

� = � \ {e : yf
e
< b or yf

e
� 0.3}

if No changes in � then

b = b+ 0.01

Check/Restore feasibility of A0

Solve the multicommodity flow problem over topology A0

return A0

Given the topology A0 ✓ A obtained at the end of the while-loop, we try to

satisfy all the multicommodity demands subject to the installed arc capacities. If

such demand can be satisfied, the topology is feasible, otherwise either there is no

path for a flow to go from its origin to its destination, or there are paths for all

k 2 K but the capacities installed are not su�cient. The checking procedure adds

artificial flow variables xk

od
� 0 with high transportation costs for each commodity

k 2 K, such that o = O(k) and d = D(k). The simplex algorithm is applied until

the first basic feasible solution is obtained (Phase I of the method). If all artificial

variables have value zero, the topology is feasible and the optimization phase takes
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place to solve the multicommodity flow problem using column generation (similar

to what is described in [107]). Otherwise, a restoring procedure takes place.

To restore feasibility, the procedure consists in rerouting the flow present in

each artificial variable through the shortest path between the origin and the des-

tination of the corresponding commodity, using Dijkstra’s algorithm. To ensure

that, for a given k, the computed path can accommodate q = xk

od
> 0 units of

flow, only arcs with enough residual capacity are considered, i.e., the original arc

capacity minus the total flow in the arc must be greater than or equal to q. The

costs are recomputed accordingly to the amount of flow to be routed, so for a

given k, if e 2 A0 then ck
0

e
= ck

e
q, otherwise ck

0
e
= ck

e
q + fe(1 � ycf

e
) (e 2 A \ A0).

To summarize, for each commodity with a positive artificial slack, the capacities

and costs are recomputed and an O-D shortest path is obtained. The flow is then

rerouted and the same process is repeated until all artificial variables have zero

value. Finally, all arcs not in A0, but carrying some flow, are added to the topology

and the optimal flow is computed using column generation. The commodities are

examined in an increasing order of q. Once the solution is obtained, opened arcs

e 2 A0 with no flow are deleted from the topology and its fixed cost subtracted

from the solution value.

Although in our computational experiments we have always found a feasible

solution with this procedure of successive shortest-paths, it is important to note

that there is no guarantee for a feasible solution to be found. Since the shortest-

paths are computed successively, it may occur that the only possible path for a

certain commodity has been already blocked by previously routed ones. If the

procedure to restore feasibility fails, an alternative would be to set A0 = A which

is likely to produce a high-cost solution. As mentioned, we did not face that

situation in our computational experiments.

The cost of a feasible topology A0 returned by Algorithm 1 is given by the sum

of the fixed charges of the arcs in A0, plus the transportation costs of routing the

multicommodity flow through that topology.

3.5.2 Searching for a high quality solution

The search for a high-quality solution is performed in two phases. In the first

phase, we apply perturbations to the topology leading to the best solution found

so far to build a pool of topologies. In a second phase, we generate combinations

of arcs from pairs of topologies belonging to the pool in an attempt to obtain

improved solutions. The heuristic performs 10 rounds of such scheme, and returns

the best solution found.

Algorithm 2 presents the heuristic. The topology leading to the best solution
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found so far is kept as Abest, which is initially set to the first feasible solution

obtained with Algorithm 1 described in the previous section. Let c⇤(A0) be the

optimal cost of a multicommodity flow problem over a topology A0 ✓ A (optimal

routing cost), and UB is the best upper bound known so far.

The perturbation phase builds a new pool in each round by applying pertur-

bations to Abest. A perturbation consists in replacing a percentage of the arcs

in Abest. The procedure of perturbation will be described later. For each value

p = 2%, 4%, 6%, 8%, 10% of |Abest| we generate n = 1, . . . , 5 topologies An. Let

L(An) be the value computed with Lagrangian relaxation for the optimal routing

cost over topology An, n = 1, . . . , 5. Lagrangian relaxation is used to compute the

routing cost in order to speed up the algorithm. The corresponding Lagrangian

dual is obtained with the relaxation of the flow conservation constraints, and the

subproblem is defined by (3.8) - (3.12) with variables ye fix to 1, if e 2 An, 0

otherwise. For each value of p, we add to the pool the topology of minimum cost

among the 5 generated. Thus, at the end of the perturbation phase, the pool has

5 topologies, each one generated with a di↵erent value of p.

The combination phase generates topologies considering pairs of topologies

from the pool. For each unordered pair {A0, A00} of the pool we generate n = 1, 2, 3

topologies An, such that An ✓ A0 [ A00 and An ◆ A0 \ A00. The frequency vector

ycf defined above is used as the probability for an arc e 2 A04A00 to be inserted

in An, so arcs with a high frequency have more chances to be selected. Again,

Lagrangian relaxation is used to compute the routing cost over An, and Around is

updated if it is the case.

At the end of each round we have a new topology Around. If its cost improves

UB, we apply the procedure to check and restore feasibility if needed as described

in the previous section. The actual routing cost over the feasible topology Around

is computed, and Abest and the corresponding UB are updated if it is the case.

The heuristic returns Abest and UB, which is used to compute an optimality gap

with respect to the lower bound provided by Lagrangian relaxation.
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Algorithm 2 Two Phase Searching

Set Abest = A0 and UB =
P

e2A0
fe + c⇤(A0)

for round = 1 to 10 do

Pool ;

for p = 2%, 4%, 6%, 8%, 10% of |Abest| do . Perturbation Phase

for n = 1, . . . , 5 do

Generate An by perturbation of p arcs to Abest . Algorithm 3

Compute L(An)

Pool = Pool [ {argminn=1,...,5{
P

e2An
fe + L(An)}}

Around = argminA02Pool{
P

e2A0 fe + L(A0)}

for each unordered pair {A0, A00} of Pool such that A0 6= A00 do .

Combination Phase

for n = 1, 2, 3 do

An = A0 \ A00

for all e 2 A04A00, i.e., in the symmetric di↵erence of the sets A0 and

A00 do

Select a random number q 2 [0, 1]

if q  ycf
e

then

An = An [ {e}

Compute L(An)

Update Around if
P

e2An
fe + L(An) <

P
e2Around

fe + L(Around)

if
P

e2Around
fe + L(Around) < UB then

Check/Restore feasibility of Around

Solve the multicommodity flow problem over Around

Update Abest and UB if
P

e2Around
fe + c⇤(Around) < UB

return Abest and UB

Algorithm 3 describes the perturbation phase. The inputs are the topology

Abest, the frequency vector ycf , and the number p of arcs to be replaced. We use

a threshold of 0.05, as in Algorithm 1, to select a set � ✓ A \ Abest of unfixed

arcs. Initially, topology An is set to Abest, and then in the while-loop p arcs are

removed from An. Given a randomly chosen arc e 2 An, the frequency value ycf
e

is used as the probability for e to be kept in An, so arcs with a high frequency

have less chance to be removed. The procedure to insert arcs in An is similar to

37



the one used in Algorithm 1. We compute new arc frequencies yf while solving

the FCMC Lagrangian dual defined over �[An with the arcs in � unfixed. Note

that the p arcs that were removed from An do not belong to �. We select at most

p arcs with the highest yf values to be included in An, given that it must not be

inferior to 0.3.

Algorithm 3 Perturbations

Given Abest, the frequency vector ycf , and p

� = {e 2 A : ycf
e
� 0.05} \ Abest

An = Abest

while less than p arcs were removed from An do

Randomly choose an arc e 2 An

Select a random number q 2 [0, 1]

if q � ycf
e

then

An = An \ {e}

Set ye = 1, 8e 2 An

Solve Lagrangian Dual for set � [ An (i.e., (3.1) if using Volume, or (3.5) if

using Bundle)

Given yf , the frequency vector

Insert in An at most p arcs of � with the largest values of yf , yf � 0.3

return An

3.6 Computational experiments

To solve the Lagrangian dual, the two algorithms were implemented in C++,

compiled with g++ version 4.8.5, using the flag -O3. Tests were run on a CentOS

Linux 7 3.1 machine, Intel Xeon E5-2687W v3 3.10GHz, with 60 Gb RAM. The

linear programs were solved with Cplex 12.7.0.0. The Volume implementation has

been provided by the COIN-OR project https://projects.coin-or.org/Vol

and the Bundle implementation by [91].

3.6.1 Instances

Instances were elaborated using the same generator used to generate bench-

mark instances of section 2.2.1, available at http://www.di.unipi.it/optimize/

Data/MMCF.html. Eight groups of very-large-scale instances were generated for ex-

periments in this work. Table 3.1 describes the features of each group of instances.

The first column identifies the group. The second to the fourth columns show the

network size. The fifth column shows the (C - F) ratios considered, 5 randomly
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instances were generated for each (C - F) ratio. For example, Group A has 15

instances of 100 nodes, 1000 arcs, and 2000 commodities, 5 of them for each of

the three cluster (C - F) ratios. Then, the sixth to the eighth columns show the

number of binary variables, of continuous variables, and constraints, respectively,

generated in the model given by (2.1) - (2.6) for each instance of the group. The

goal has been to test large scale instances with di↵erent levels of di�culty. The

higher are the ratios, the higher is the expectation to get a di�cult instance, due

to the large importance of fixed charges and capacity restrictions.

Group Nodes Arcs Comm. (C - F) ratios Binary Var Continuous Var Constraints

A 100 1000 2000 (10 - 0.5), (8 - 0.5), (14 - 0.5) 1.0e3 2.0e6 2.2e6

B 100 1000 500 (10 - 10), (6 - 10), (14 - 10) 1.0e3 5.0e5 5.5e5

C 100 1000 800 (2 - 10), (2 - 0.001), (14 - 0.001) 1.0e3 8.0e5 8.8e5

D 100 1200 1000 (1 - 20), (14 - 12), (20 - 0.001) 1.2e3 1.2e6 1.3e6

E 100 2000 2000 (1 - 20), (1 - 0.001), (20 - 0.001) 2.0e3 4.0e6 4.2e6

F 100 5000 7000 (1 - 20), (1 - 0.001), (20 - 20) 5.0e3 3.5e7 3.6e7

G 100 8000 8000 (20 - 0.001), (1 - 0.001), (20 - 20) 8.0e3 6.4e7 6.5e7

H 200 12000 10000 (1 - 20), (1 - 0.001), (20 - 20) 1.2e4 1.2e8 1.2e8

Table 3.1: Characteristics of the instances generated for this study

In addition, the benchmark group Canad-N with 48 instances was also tested,

corresponding to medium-size randomly generated problem instances. These in-

stances were introduced by [96] and are available for download at http://www.

di.unipi.it/optimize/Data/MMCF.html. In particular, there are 12 di↵erent

network sizes, and 4 instances with di↵erent capacities and fixed-charge ratios

were generated for each size. Table 3.2 presents these instances, a more detailed

description can be found in [96]. Analogously to the previous table, in Table 3.2

the first column identifies the group. The second to the fourth columns show the

network size, and the fifth to the seventh columns show the number of binary

variables, of continuous variables, and constraints, respectively, generated in the

model given by (2.1) - (2.6) for each instance of the group.

Instances Nodes Arcs Commodities Binary Var Continuous Var Constraints

cN/ 01-04 20 299 100 3.0e2 3.0e4 3.2e4

cN/ 05-08 20 298 200 3.0e2 6.0e4 6.4e4

cN/ 09-12 20 297 400 3.0e2 1.2e5 1.3e5

cN/ 13-16 20 300 800 3.0e2 2.4e5 2.6e5

cN/ 17-20 30 599 100 6.0e2 6.0e4 6.3e4

cN/ 21-24 30 599 200 6.0e2 1.2e5 1.3e5

cN/ 25-28 30 598 400 6.0e2 2.4e5 2.5e5

cN/ 29-32 30 597 800 6.0e2 4.8e5 5.0e5

cN/ 33-36 50 1200 100 1.2e3 1.2e5 1.3e5

cN/ 37-40 50 1200 200 1.2e3 2.4e5 2.5e5

cN/ 41-44 50 1200 400 1.2e3 4.8e5 5.0e5

cN/ 45-48 50 1200 800 1.2e3 9.6e5 1.0e6

Table 3.2: Characteristics of the benchmark instances considered in this study
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3.6.2 Computational settings

The subgradient algorithms were tuned in order to obtain the best trade-o↵

between good-quality bounds and fast convergence. We have set a limit of 1000

iterations and a time limit of 10000 seconds. Di↵erent calibrations were tested

to keep the best one on average. The chosen configuration was then applied

to the whole testbed. Parameters not discussed here were not crucial for the

performances of the algorithms and so they were left as its default value.

To calibrate the Bundle implementation, the discussion made by [61] was taken

as reference. In that paper, a few suggestions are made for parameters related to

the bundle administration and the stepsize choice. Indeed, the settings proposed

by the authors performed well, even for the newly generated instances. Further-

more, despite the absence of a similar study for the Volume, the best settings were,

somehow, similar to the Bundle ones as precised below.

Concerning the Volume algorithm, the stepsizes are computed by st
v
= ⇢(L⇤�

L(ū))/||dt
v
||2 as stated by [188], given that L⇤ is a target value for the Lagrangian

bound L⇤ > L(ū), which is updated as the bound L(ū) increases. An initial value

is given to ⇢, which is then updated accordingly to each iteration label, namely red,

yellow, or green. In short, if no improvement is detected, the iteration is labeled

red, on the contrary, the scalar µv = gt · dt
v
is computed. If µv � 0 the iteration is

called green, otherwise it is called yellow. On the other hand, in the case of the

Bundle method, the step st
b
is set to an initial value and updated accordingly to

the type of iterations classified as null or serious steps. Normally, a serious step

happens if the real increase in the current bound matches some fraction of the

predicted one, i.e. if L(ut)� L(ū) � 0.1��, and a null step occurs in the opposite

case. Good results were obtained fixing s0
b
= 1.0 and ⇢0 = 0.1, with the slightly

better bounds on average.

Usually, stepsizes are reduced after a series of iterations without improvements

and can be enlarged when a profitable search direction is available. In the specific

case of the Bundle implementation, the decrease also depends on whether et 
0.3

P
i2� ↵iei, or not. If the condition is true, the decrease is inhibited, assuming

that accurate first-order information has been gathered.

A minimum of 4 consecutive iterations without improvement before reducing

the stepsize was established in both algorithms. It means that ⇢ is diminished

after nrv = 4 red iterations and st
b
after nnb = 4 null steps. Inversely, both ⇢

and st
b
are increased after every green iteration and serious step. Even though

yellow iterations in the Volume algorithm represent a gain in the current solution,

the scalar product µv < 0 indicates that the current subgradient may not be that

interesting, so then, a more cautious rule might be preferable. It was also set a
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minimum of 4 consecutive yellow iterations before ⇢ is increased. Moreover, it

might be important to point out the fact that, in both implementations, better

bounds were obtained setting higher values for nrv and nnb (for example 10), but

significantly more computational time was needed to achieve those bounds.

With respect to the procedure of increasing/reducing stepsizes, the Volume

algorithm simply multiplies ⇢ by a factor 0 < r < 2, which can be 0.66, 1.1 and 2,

for red, yellow and green iterations respectively, while the Bundle method presents

a more complex rule, see [88] for a detailed explanation. Indeed, to update st
b
,

we have used the maximizer of the quadratic one-dimensional function �(s) =

L(ū + sdt
b
) which satisfies �(0) = L(ū), �(st

b
) = L(ut) and �

0
(st

b
) = gt · dt

b
= µb.

That maximizer will be greater than st
b
if and only if µb > 0, which resembles the

yellow step policy present in the Volume algorithm. Practically the same function

is used to perform stepsize decreases, but with the derivative in the current point

�
0
(0) = ��.

The red-yellow-green scheme for stepsize updates has been successfully adapted

to classical subgradient-based methods, providing them better performances in

terms of solution quality and number of iterations. In a stochastic optimization

context, [76] obtained interesting results applying such a scheme to the Subgradi-

ent Algorithm. When compared to other NDO solvers, it managed to provide the

best performance overall.

Still concerning the Bundle method, useful information can be derived from

the solution of the quadratic problem (3.6), which can be helpful in the choice

of st
b
. Sophisticated heuristics exploiting those informations have been developed

by [88]. For the present work, the heuristic implemented tends to increase st
b

whenever �� is not great enough, compared to an ideal improvement: �⇤ =

s⇤||
P

i2� ↵
t

i
gi||2 +

P
i2� ↵

t

i
ei, given the parameter s⇤, considered as the longest

step it can be taken. In other words, if �� < 0.001�⇤ the latest step performed

is now useless and a larger one might be preferable. Sensitive analysis is used in

order to ensure that �� � �⇤ in the next iteration.

In addition to step-control parameters, we need to consider too the ones related

to the search direction management, which are closely related to how the bundle

is updated in the Bundle method and how the value of ✓ is chosen throughout

the Volume algorithm. Concerning the bundle �, a maximum size has been set

to 10 items. In order to respect that limit, some old subgradients need to be

discarded when a new one is proposed; indeed, a subgradient gi is called active

if the dual variable ↵i belongs to the optimal basis of the dual subproblem (3.6).

Thus, we automatically discard items after 20 consecutive iterations being inactive.

Moreover, If there is no removable item and an active one must be replaced, an
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aggregation is done so that the information is not lost. In other words, a convex

linear combination of the |�| items is kept, using the current optimal vector ↵ as

multiplier.

Back to the Volume algorithm, a heuristic is used to choose the value for ✓t at

each iteration t. In the intention to obtain an ascent direction, ✓t is set in order

to have (✓tgt + (1 � ✓t)dtv) · gt � 0 which can be estimated compared to ✓0kgtk2.
This is done keeping ✓t 2 [0, 1] by:

✓t =

✓0, if ⌧ > 1

✓0/10, if ⌧ < 0

⌧, otherwise

⌧ = max{✓0,
✓0||gt||2 � dt

v
gt

||gt||2 � dt
v
gt

} (3.13)

The parameter ✓0 is initially set to 1.0 and then decreased. More precisely, ✓0 is

multiplied by a factor 0.3, every time the current solution value has not improved

by at least 1%. Accordingly to [26], the reductions are made in order to enhance

the precision of the primal solution. A lower bound set to 0.01 allows the algorithm

to stop decreasing ✓t.

Finally, a third stopping criterium as stated by [95] was put in practice for both

algorithms. At an iteration t, if the current search direction dt and its respective

linearization error êt, w.r.t. the current point ū, are such that s⇤||dt||2 + êt 
✏|L(ū)|, the algorithm stops. As described before, s⇤ is an estimate of the largest

step that can be performed along dt, and an interesting value for it was found to be

one or two degrees of magnitude from the initial value set to st
b
. Such observation

has been made within the Bundle method context. Nevertheless, s⇤ was set to 10

and ✏ to 10�4 in both implementations. The rationale behind this criterium is to

stop the iterations if the maximum estimated improvement is less than a fraction of

the current solution value. Alternatively, one can say that the condition indicates

that both ||dt||2 and êt are relatively small enough. Although some modifications

needed to be done in the Volume algorithm for the computation of the linearization

error, they did not represent a significant loss in performance.

The settings concerning the Lagrangian heuristic discussed in Section 3.5 were

almost all presented during the explanation of the algorithm. In general, a priority

was given to the computational time performance, due to the very large scale

instances. Therefore, the combinations were limited to 3 for each pair of topology,

and for each percentage p of arcs, only 5 perturbations are performed. The number

of rounds was set to 10, with a computational time limit of 24h for the heuristic

to run.

Still aiming the time consumption, the results obtained with the first relaxation

(presented in 3.6.4) showed that the most crucial steps were usually performed in

the first quarter of the optimization process, which led us to set a reduced limit
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of 250 iterations to the NDO optimizers to solve each routing subproblem. When

the solution value is not important and the solvers are only used in the interest

of computing the frequency of unfixed arcs, the limit is set to 100 iterations. In

addition, attempting to boost those secondary Lagrangian optimizations, the first

dual solution obtained with the FCMC Lagrangian relaxation was used as hotstart.

3.6.3 Choice of relaxation

The main reason for choosing the ‘knapsack’ relaxation is that it provided the

best overall numerical results in terms of time and quality solution. Using the

Volume algorithm to solve Lagrangian duals, Figures 3.1 and 3.2 exemplify the

results of previous tests that lead us to that choice. The same calibration, discussed

previously, was used for the three relaxation approaches. In those figures, the

average bound progression for each group of large-scale instances is given, related

to the best bound obtained for each instance. The ‘shortest path’ relaxation

provided good quality bounds, but it spent much more computational time, which

damages the performances when dealing with very large instances as one can see

in Figure 3.2d, where the values did not attain 80% of the best bound within the

limit of time.

With respect to the ‘total’ relaxation, the computational times were lower than

the ‘knapsack’ relaxation ones, for the largest instances. However, the quality of

bound was worse in general, especially for the Bundle method. Furthermore, the

same observations made in terms of the methods comparison with the ‘knapsack’

relaxation were also valid for the ‘total’ relaxation. See appendix A for additional

information.
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(a) Group A (b) Group B

(c) Group C (d) Group D

Figure 3.1: Average bound progression with respect to computation time, using

Volume Algorithm for large instances of groups A-D
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(a) Group E (b) Group F

(c) Group G (d) Group H

Figure 3.2: Average bound progression with respect to computation time, using

Volume Algorithm for large instances of groups E-H

3.6.4 Computational results

We first analyse the computational performance of the Volume and Bundle

methods to obtain lower bounds for the FCMC. Then, we analyse optimality gaps

we can get with the lower and upper bounds procedures.

Computational performance of the Volume and Bundle methods

We compare Volume and Bundle methods in terms of the quality of the lower

bound they provide, and in terms of time consumption. Because the Lagrangian

subproblem resulting from the flow conservation constraints relaxation, i.e., (3.8)

- (3.12), has the integrality property, the Lagrangian bound is theoretically equal

to the linear relaxation bound. Thus, it means that in case the linear program

is solved to optimality, one has a good quality proof for the lower bounds. We

ran the Cplex Dual-Simplex algorithm in an attempt to get the linear relaxation
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value. Unfortunately, we were not able to solve the linear relaxation for the large

instances with 2000 or more commodities. Thus, we have the linear relaxation

bound for instances Canad-N and for the groups B, C, and D. The linear relaxation

of instances with low fixed costs C 02 001, C 14 001, and D 20 001, could be solved

in a few minutes, whereas it can take a few days to solve the others.

A brief comparison in terms of memory consumption was also made. As ex-

pected, the Volume algorithm is more e�cient in terms of RAM consumption,

since the Bundle might have approximately |�| times more data to store. Espe-

cially for group H, while the Volume algorithm consumed 3Gb on average for that

group, the Bundle needed 14Gb of RAM, which can be an obstacle depending on

the machine available to solve problem instances of that size.

Although [61] discusses the dynamic generation of Lagrangian variables aiming

to decrease levels of time and RAM consumption, the same scheme can also be

adapted to the Volume, as discussed by [95]. Moreover, results have shown that

such a mechanism is not e�cient for the decomposition considered here. The pro-

cedure tries to work only with the variables related to violated relaxed constraints,

which leaves the possibility of saving time and memory, excluding variables that

would have zero value throughout most part of the optimization process. That

works very well when the capacity inequalities are being relaxed, but in the present

case, it is very expected that all variables might be generated, given that equality

constraints are more likely to be violated.

Table 3.3 presents average computational results. The first column indicates

the group of instances. The line of instances Canad-N corresponds to average

results for 48 instances, while the remaining lines correspond to average results

for 5 instances with each (C - F) ratio in each group, see Table 3.1. Then, for each

method, we report in column ‘Deviation’ the average deviations in percentage

between the lower bound obtained with the method and the best lower bound

obtained. In the case of instances of groups Canad-N, B, C, and D, the best lower

bound is the linear relaxation value. Otherwise, the best lower bound is the best

one given by either Volume or Bundle. Thus, for instances A, E, F, G, and H, a

0.00% deviation means that the method obtained the best lower bounds for all 5

instances with the given (C - F) ratio in that group. The best average results for

each group of instances are highlighted in boldface. We report in column ‘Time’

the computational time in seconds.

For the experiments conducted, Table 3.3 shows that, on average, the Vol-

ume algorithm had better performance in terms of lower bound quality and time

consumption than the Bundle method. The di↵erences in computation times be-

come evident when large instances are involved, which confirms that the fact of
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Group (C F) Bundle Volume

Deviation(%) Time(s) Deviation(%) Time(s)

Canad-N 0.16 26.8 0.10 11.3

A 08 05 0.66 171.8 0.00 89.3

A 10 05 0.69 154.7 0.00 96.0

A 14 05 0.80 161.2 0.00 111.6

B 14 10 2.07 46.1 0.26 31.4

B 10 10 2.53 46.0 0.28 30.6

B 06 10 3.02 45.3 0.26 29.0

C 02 10 1.59 65.0 0.22 40.2

C 02 001 0.03 45.0 0.05 16.0

C 14 001 0.04 46.6 0.05 16.1

D 14 12 0.99 108.4 0.22 85.9

D 20 001 0.10 73.9 0.05 26.2

D 01 20 1.43 108.2 0.22 66.4

E 01 001 0.09 300.9 0.01 100.2

E 20 001 0.06 307.1 0.01 100.6

E 01 20 0.81 438.4 0.00 229.1

F 01 20 0.47 3508.3 0.00 2376.9

F 20 20 0.40 4070.7 0.14 2989.5

F 01 001 0.59 2436.3 0.00 947.0

G 20 001 0.75 4717.4 0.00 2024.1

G 20 20 0.10 6567.1 0.00 4430.3

G 01 001 0.87 4614.1 0.00 2115.0

H 01 20 0.60 9624.8 0.00 7217.5

H 20 20 0.53 10006.8 0.00 9078.0

H 01 001 1.62 9493.7 0.00 4152.1

Table 3.3: Average computational performance of the Lagrangian methods.

dealing with a quadratic problem at each iteration can be a bottleneck for the

Bundle method. For example in group H, since the average time per iteration is

much higher, the method performed fewer iterations due to the time limit, what

consequently impacted the bound quality.

In general, taking as reference the cases in which the linear optimal could be

obtained, the Lagrangian bounds were very close to the theoretical one, but with-

out reaching the required precision. For almost all the testbed, both algorithms

stopped because of either the time or the iteration limits were attained.

We plot in Figure 3.3 the bound progression by the computation time for the

larger instances. The curves indicate the ratio between the current value LBt

x
and

LBbest measured every 5 iterations and the respective computation time at that

precise moment. The curves for groups E-H (Figures 3.3a-3.3d, see appendix B

for the other groups of instances) confirm the already known fast convergence of

the Bundle method. However, even though Bundle provides higher values in the

very beginning, the Volume manages to follow and rapidly overtake it. In others

words, we observed that the gain obtained at each step of the Bundle method is

quite worthful at the beginning of the optimization process, but thanks to the

faster iterations, the Volume manages to perform more steps in the same period

of time, presenting better solutions already in the first quarter of the total elapsed

time.
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(a) Group E (b) Group F

(c) Group G (d) Group H

Figure 3.3: Average bound progression for the largest instances with respect to

computation time

Optimality gaps

From another perspective, we consider the impact of embedding the Lagrangian

methods in the heuristic schemes proposed in Section 3.5 to produce feasible pri-

mal solutions for the FCMC. Table 3.4 presents results for the benchmark set of

instances Canad-N. Since, to the best of our knowledge, there are no upper bounds

reported in the literature for instances Canad-N, we ran Cplex with a time limit

of 24 hours of CPU time, using 10 threads and all other parameters set as default.

The first column indicates the instance. Then, for each method, we report (i)

the optimality gap (UB � LB)/UB in percentage between the upper bound UB

obtained with Algorithm 1 (the first feasible solution) and the lower bound LB

obtained with the Lagrangian method, (ii) the time in seconds to obtain the first

upper bound, (iii) the optimality gap in percentage between the best upper bound

with Algorithm 2 and the lower bound obtained with the Lagrangian method,

(iv) the time in seconds to obtain the best upper bound, and (v) the deviation
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(UB�UBCplex)/UBCplex in percentage of the best upper bound UB obtained with

the method with respect to the upper bound UBCplex obtained with Cplex in 24

hours. Negative values of deviation mean that the heuristic managed to provide

a better upper bound than the one obtained with Cplex, which is clearly outper-

formed for the largest Canad-N instances. Moreover, it is important to note that

the computational times reported include the elapsed CPU time for the resolution

of the FCMC Lagrangian dual to obtain the lower bound, plus the CPU time

spent in the heuristic procedure. Thus, the total time to obtain the optimality

gap reported.

It is interesting to see that for the largest Canad-N instances, from cN/29 to

cN/48, the optimality gaps between the first feasible solution and the Lagrangian

bound, obtained in few minutes, are much better than those obtained with Cplex

in 24 hours for almost all such instances. The use of perturbations and combi-

nations in Algorithm 2 lead much better solutions, but at the expense of higher

computational times. Nevertheless, in less than 4 hours, the heuristic with both

Volume and Bundle obtained optimality gaps of less than 15% for all instances,

whereas Cplex in 24 hours obtained optimality gaps of more than 20% for 18 out

of 48 instances, including gaps larger than 50% for 8 instances, and up to 84%.

Therefore, regardless of the Lagrangian method used, the heuristic has been able

to provide good quality solutions, being 6 times faster than Cplex in the worst

case.

With respect to the comparison of the heuristic versions, the running times

were relatively close. In terms of solution quality, the Bundle version did better

for half of the instances, while the Volume version provided the best solutions for

the other half of the Canad-N group. Indeed, the di↵erences between each method

become evident while working with groups A-H, when the large (and very large)

instances are considered.

The results for the groups of large instances are presented in Tables 3.5, 3.6,

and 3.7, using the same column nomenclatures as in Table 3.4, except for the

columns of deviation with respect to Cplex. Given the very large size of instances

in these groups, Cplex was not able to provide feasible solutions for them, even

after 24 hours, so the optimality gap is the only solution quality measure.

Very small optimality gaps were obtained for instances with low values of

F-ratio, i.e. C/2 001, C/14 001, and D/20 001. In addition, especially with the

Volume version, good quality bounds were provided for lightly congested instances,

i.e., D/1 20, F/1 001, and almost all instances of group E, since optimality gaps

between 5% and 13% were obtained. Inversely, the hardest instances were the

ones having high levels of F and C ratios.
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Instance Bundle Volume Cplex

1st Sol Time 2nd Sol Time Dev 1st Sol Time 2nd Sol Time Dev Gap

Gap(%) (s) Gap(%) (s) (%) Gap(%) (s) Gap(%) (s) (%) (%)

cN/01 15.75 1 4.11 25 1.98 7.78 2 2.56 23 0.36 0.00

cN/02 17.50 1 3.24 23 2.42 3.67 1 2.01 27 1.13 0.00

cN/03 17.02 2 3.58 38 2.24 7.20 1 2.63 23 1.30 0.00

cN/04 16.37 2 4.67 38 1.48 8.02 2 4.61 27 1.51 0.00

cN/05 17.43 4 5.23 95 0.31 12.15 4 5.29 88 0.40 3.15

cN/06 18.52 4 7.14 102 1.71 6.26 3 5.71 62 0.31 3.32

cN/07 20.91 6 6.75 95 0.21 12.82 4 7.59 70 1.21 4.17

cN/08 19.36 5 7.23 129 2.37 8.88 4 5.34 77 0.37 3.25

cN/09 25.07 14 5.79 293 0.07 18.58 10 7.31 218 1.78 5.07

cN/10 27.19 12 9.21 326 4.30 16.04 9 7.31 243 2.20 4.32

cN/11 12.70 18 5.15 452 2.34 12.51 12 4.58 335 1.74 2.42

cN/12 11.19 16 6.02 477 1.45 10.94 13 4.32 368 -0.35 4.20

cN/13 12.58 34 3.53 1098 0.10 11.27 30 3.76 747 0.35 3.10

cN/14 17.42 43 3.33 1098 -1.33 9.94 30 3.18 803 -1.47 4.37

cN/15 13.35 42 3.07 1355 0.36 12.54 30 3.41 948 0.72 2.50

cN/16 12.08 45 6.19 1287 0.40 11.17 35 4.27 1103 -1.62 5.57

cN/17 15.59 6 8.43 84 2.38 14.31 4 8.23 80 2.19 5.51

cN/18 13.39 7 6.47 83 1.47 8.63 3 6.87 59 2.03 3.56

cN/19 20.53 5 9.53 69 2.25 16.24 3 10.09 65 3.01 6.43

cN/20 14.76 8 6.08 75 2.27 6.61 3 5.81 51 2.11 2.11

cN/21 26.62 13 9.25 232 -2.98 19.45 10 10.23 195 -1.86 11.42

cN/22 26.59 12 14.25 254 4.19 20.59 10 11.93 204 1.50 10.19

cN/23 19.12 15 8.61 351 0.44 15.70 13 9.28 288 1.24 7.73

cN/24 18.52 14 13.04 361 5.61 15.19 12 8.87 293 0.84 7.69

cN/25 10.42 62 3.82 1576 -20.02 10.13 62 3.60 944 -20.23 22.89

cN/26 9.19 70 3.41 1880 -2.37 9.68 67 3.90 1180 -1.91 5.44

cN/27 9.39 63 3.35 1536 0.43 10.47 53 3.55 942 0.62 2.72

cN/28 10.28 61 3.64 1586 0.41 9.24 59 3.69 1026 0.43 3.01

cN/29 16.99 110 5.01 2106 -83.51 12.06 93 5.29 1843 -83.46 84.33

cN/30 12.79 139 3.65 2729 -25.20 10.66 116 4.53 2081 -24.49 27.85

cN/31 17.57 101 4.22 2940 -72.29 10.42 100 4.15 2125 -72.31 73.44

cN/32 10.91 130 4.19 2364 -81.52 10.98 103 4.33 1891 -81.48 82.27

cN/33 17.84 22 11.27 386 1.10 16.35 13 12.21 266 2.19 8.07

cN/34 15.43 28 11.62 402 -16.42 14.87 17 10.45 262 -17.51 24.14

cN/35 15.22 26 11.51 522 -0.79 14.51 17 11.60 346 -0.70 10.24

cN/36 15.68 33 10.10 518 -1.76 15.07 18 9.90 303 -1.98 9.50

cN/37 24.44 28 17.18 560 -31.48 19.07 24 12.26 426 -35.27 42.74

cN/38 15.67 56 9.69 536 -27.52 13.36 29 8.90 375 -28.04 34.01

cN/39 29.32 22 19.83 431 -37.01 19.14 22 14.51 352 -40.83 49.13

cN/40 15.62 88 9.30 657 -48.77 10.53 55 8.14 335 -49.30 53.20

cN/41 12.09 185 5.94 3452 -27.22 11.28 185 5.47 2461 -27.51 31.29

cN/42 21.39 66 12.62 1418 -42.44 15.44 57 10.28 1101 -43.85 49.46

cN/43 16.02 95 8.04 1778 -39.64 15.15 78 8.01 1582 -39.58 44.29

cN/44 19.51 85 13.82 1913 -38.62 14.41 85 9.36 1659 -41.48 46.82

cN/45 17.23 358 6.44 6087 -83.68 16.04 250 6.44 5050 -83.67 84.71

cN/46 11.80 743 4.16 13098 -66.97 10.94 655 4.34 10775 -66.90 68.30

cN/47 15.13 725 4.85 9138 -80.28 12.45 719 5.06 8573 -80.23 81.21

cN/48 14.85 471 5.31 10840 -82.86 14.32 738 6.06 9655 -82.71 83.74

Table 3.4: Feasible solutions for benchmark instances Canad-N.
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Instance Bundle Volume

1st Sol Time 2nd Sol Time 1st Sol Time 2nd Sol Time

Gap(%) (s) Gap(%) (s) Gap(%) (s) Gap(%) (s)

A/8 05a 33.30 547 20.94 8349 27.60 213 18.11 4884

A/8 05b 33.49 477 17.69 8513 31.06 220 18.70 4941

A/8 05c 33.39 539 19.04 8498 29.86 221 18.00 5292

A/8 05d 31.73 284 23.59 7857 37.58 218 26.58 5558

A/8 05e 27.30 262 15.90 7975 28.88 208 17.11 5654

A/10 05a 33.89 541 20.09 8841 31.69 252 20.52 5775

A/10 05b 33.32 642 20.15 9015 32.67 283 21.25 6053

A/10 05c 33.68 557 20.72 9237 32.65 273 21.51 6071

A/10 05d 33.80 306 26.46 9081 39.08 240 26.36 5980

A/10 05e 29.12 340 20.70 8537 32.09 272 18.93 6130

A/14 05a 32.01 587 24.08 10660 38.77 296 25.75 7279

A/14 05b 33.10 585 23.06 10577 38.12 357 25.22 7274

A/14 05c 33.31 637 25.68 11218 39.88 308 25.01 7337

A/14 05d 39.53 673 28.08 9568 40.32 432 29.87 7391

A/14 05e 36.99 389 20.42 9540 32.48 497 19.60 7448

Avg 33.20 491 21.77 9164 34.18 286 22.17 6204

B/14 10a 43.40 75 34.24 1542 36.59 57 28.78 1248

B/14 10b 45.11 63 31.02 1531 43.47 52 27.11 1308

B/14 10c 40.90 60 35.71 1830 34.22 62 27.68 1276

B/14 10d 46.18 62 36.03 1941 45.12 51 30.28 1281

B/14 10e 44.88 67 37.51 1800 41.38 53 30.48 1302

B/10 10a 45.51 61 39.21 1735 40.88 50 28.67 1130

B/10 10b 37.97 60 32.98 1208 42.90 49 26.14 1113

B/10 10c 36.94 58 34.39 1192 43.27 46 29.37 1190

B/10 10d 44.06 65 35.44 1702 38.87 52 28.22 1163

B/10 10e 42.73 63 35.76 1662 38.97 62 27.67 1220

B/6 10a 39.11 57 34.80 1512 36.11 47 24.01 1044

B/6 10b 33.72 57 31.80 1018 37.41 46 18.92 987

B/6 10c 36.76 57 28.99 1127 38.09 44 23.15 996

B/6 10d 37.89 59 30.34 1455 39.90 44 23.34 1055

B/6 10e 38.67 57 33.60 1262 40.40 52 21.49 1081

Avg 40.92 61 34.12 1501 39.84 51 26.35 1160

C/2 10a 26.10 89 19.77 1215 21.74 69 9.73 1372

C/2 10b 25.48 84 8.36 1744 18.86 62 4.39 1495

C/2 10c 28.57 91 24.40 1514 27.79 73 15.27 1568

C/2 10d 28.88 90 12.36 1978 24.01 67 8.17 1305

C/2 10e 39.39 84 34.55 1614 29.14 65 21.53 1519

C/2 001a 6.03 207 0.39 4320 0.86 70 0.45 2146

C/2 001b 5.79 162 0.29 4197 0.76 84 0.36 2218

C/2 001c 5.99 235 0.48 4394 0.88 67 0.29 2170

C/2 001d 5.35 101 1.74 4366 2.01 136 1.19 3540

C/2 001e 3.26 190 0.29 4026 0.72 88 0.31 3064

C/14 001a 5.34 249 0.57 4311 1.10 96 0.37 2704

C/14 001b 5.70 188 0.32 4012 0.87 103 0.30 2446

C/14 001c 5.52 190 0.34 4295 0.77 97 0.19 2393

C/14 001d 5.49 98 1.55 4657 2.00 74 1.28 3313

C/14 001e 2.81 165 0.25 4563 0.70 100 0.38 3188

Avg 13.31 148 7.04 3414 8.81 83 4.28 2296

Table 3.5: Computational results for large scale instances with 100 nodes and 1000

arcs.
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Instance Bundle Volume

1st Sol Time 2nd Sol Time 1st Sol Time 2nd Sol Time

Gap(%) (s) Gap(%) (s) Gap(%) (s) Gap(%) (s)

D/14 12a 44.76 166 35.95 4384 39.07 174 25.64 2793

D/14 12b 42.39 213 29.07 3490 40.72 157 27.35 2631

D/14 12c 41.07 164 34.82 2746 26.45 217 24.10 2292

D/14 12d 38.94 229 33.44 2878 40.70 170 29.88 2436

D/14 12e 35.56 132 35.14 2486 39.64 166 26.70 2758

D/20 001a 5.99 317 0.52 6161 1.25 155 0.47 3564

D/20 001b 5.86 382 0.39 5761 1.12 129 0.24 3020

D/20 001c 5.13 263 0.34 5387 0.48 102 0.20 2862

D/20 001d 4.73 181 1.83 5988 2.41 201 1.75 5646

D/20 001e 2.59 312 0.55 6383 0.89 188 0.31 3972

D/1 20a 19.77 129 16.79 1325 15.63 93 5.19 1454

D/1 20b 21.27 127 16.49 1462 16.79 95 4.93 1464

D/1 20c 25.51 128 21.60 1474 15.29 95 6.47 1422

D/1 20d 24.32 125 16.37 1403 14.56 91 4.42 1399

D/1 20e 24.03 129 16.06 1429 17.35 95 9.20 1441

Avg 22.80 200 17.29 3517 18.16 142 11.12 2610

E/1 001a 10.47 872 4.98 17327 5.22 321 4.03 8848

E/1 001b 10.83 1022 2.25 13132 2.19 246 1.02 5152

E/1 001c 13.37 1503 2.79 16202 2.16 269 1.33 5848

E/1 001d 10.58 1580 4.48 17786 3.66 637 3.25 11458

E/1 001e 14.87 800 6.73 20827 5.00 285 3.97 8143

E/20 001a 10.46 936 4.89 16657 5.32 424 3.76 9224

E/20 001b 8.36 1256 2.11 13114 2.64 317 1.51 6378

E/20 001c 13.04 1269 2.85 15457 2.47 242 1.61 6130

E/20 001d 9.91 1615 4.45 18267 3.62 912 3.23 13154

E/20 001e 13.75 903 6.20 20110 5.09 294 3.71 8090

E/1 20a 33.06 469 23.17 4043 17.37 322 8.49 3046

E/1 20b 34.00 479 23.90 4108 21.98 309 13.41 3043

E/1 20c 31.88 463 24.19 3904 15.60 317 6.10 3092

E/1 20d 33.43 449 21.17 3856 15.77 314 9.05 3089

E/1 20e 49.55 401 41.52 5220 24.74 257 19.55 2969

Avg 19.84 934 11.71 12667 8.86 364 5.60 6511

Table 3.6: Computational results for large scale instances with 100 nodes and 1000

and 1200 arcs.
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Instance Bundle Volume

1st Sol Time 2nd Sol Time 1st Sol Time 2nd Sol Time

Gap(%) (s) Gap(%) (s) Gap(%) (s) Gap(%) (s)

F/1 20a 39.40 5190 24.03 25285 23.91 3115 12.74 18025

F/1 20b 36.39 5575 28.37 24076 17.11 3771 9.28 18502

F/1 20c 30.76 4691 23.63 19545 23.57 3984 12.78 20478

F/1 20d 54.91 3947 42.46 30138 22.87 2516 21.10 15588

F/1 20e 53.40 4188 41.74 30421 26.68 2797 21.17 16941

F/20 20a 53.50 7533 46.00 64773 46.82 7573 39.07 45601

F/20 20b 57.76 5583 47.09 73930 61.81 5945 46.01 53075

F/20 20c 49.10 8214 39.07 88295 43.27 7389 31.29 65425

F/20 20d 55.91 6374 47.85 52991 59.87 6047 47.69 45614

F/20 20e 54.59 6082 46.42 52949 49.85 5864 39.74 42237

F/1 001a 21.89 5509 11.10 61139 10.58 2431 9.87 27260

F/1 001b 21.41 6140 11.71 71669 9.97 2429 9.91 27203

F/1 001c 18.70 6522 9.52 49269 7.86 2163 7.31 22922

F/1 001d 21.89 4758 10.92 55667 10.58 2282 9.87 25699

F/1 001e 23.11 9239 13.47 92924 10.93 16835 10.63 82305

Avg 39.52 5354 29.56 46677 28.38 5009 21.90 35125

G/20 001a 29.37 12259 14.01 100695 15.87 5036 15.19 37794

G/20 001b 27.99 11625 14.62 101960 17.49 5979 17.24 45540

G/20 001c 49.45 8115 31.82 87603 16.58 7403 15.85 57861

G/20 001d 35.54 12027 17.87 89948 20.79 5294 20.03 40918

G/20 001e 43.86 9253 23.51 86630 21.55 8014 20.59 61858

G/20 20a 61.62 10484 53.00 73758 55.75 10605 44.54 53434

G/20 20b 50.13 14308 43.20 91850 49.46 11756 40.90 70321

G/20 20c 58.04 10021 47.05 93149 54.08 6705 43.86 46828

G/20 20d 57.31 12358 48.36 89119 61.14 11047 43.25 73745

G/20 20e 56.79 9380 45.60 71617 45.37 8538 36.86 46055

G/1 001a 31.36 8826 15.69 74962 25.86 5453 23.88 37899

G/1 001b 31.17 11190 15.46 77377 25.27 4477 24.16 33981

G/1 001c 27.95 10582 13.97 77408 20.65 4483 18.53 32896

G/1 001d 27.95 10855 13.91 76142 20.65 4576 18.53 32530

G/1 001e 42.34 7417 24.85 90230 16.75 5439 16.29 57802

Avg 42.06 10580 28.19 85497 31.15 6987 26.65 48631

H/1 20a 36.85 10642 35.07 105030 17.25 11086 13.11 58245

H/1 20b 29.47 10775 10.95 96943 13.70 11161 7.99 57296

H/1 20c 39.34 10761 37.26 71769 15.30 11090 13.40 59788

H/1 20d 60.46 10447 54.78 87719 22.40 11455 22.40 62955

H/1 20e 62.99 9511 59.82 88810 23.63 9362 23.63 56172

H/20 20a 48.73 22538 45.55 86904 48.37 20747 43.09 90358

H/20 20b 46.82 37007 37.82 90910 44.54 22426 35.52 90787

H/20 20c 45.43 12363 42.75 89430 52.11 14826 46.22 92250

H/20 20d 60.05 10923 54.96 87368 51.63 14838 45.37 88430

H/20 20e 67.52 11109 63.59 88644 52.41 13720 49.81 92306

H/1 001a 57.13 19209 53.71 96211 38.60 19091 36.88 90135

H/1 001b 53.72 26888 50.04 100843 21.31 14250 20.48 86912

H/1 001c 60.18 21270 54.21 94343 45.42 16653 45.19 88491

H/1 001d 39.88 33522 32.31 87016 31.70 16574 29.97 88221

H/1 001e 41.50 23836 37.88 96031 17.24 76101 17.24 89783

Avg 50.00 18053 44.71 91198 33.04 18892 30.02 79475

Table 3.7: Computational results for large scale instances with 100 and 200 nodes

and up to 12000 arcs.
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Time consumption can be considered satisfactory having in mind the size of the

instances. At each round, a total of 55 Lagrangian duals may be optimized (5 per

perturbation, being 5 di↵erent percentages of perturbation and 3 per combination,

being 10 combinations given a pool of 5 topologies) with 250 iterations allowed,

what would have been impracticable if one had to deal with LPs. Moreover, we

remind that after the first phase (Algorithm 1), arcs with low frequency were

neglected, leading to a reduced set of unfixed variables to be explored, what also

reduced computational times. We observe that the Volume version of the heuristic

is noticeably faster, taking the average as reference (lines ‘Avg’). We note that,

except for group H, it was able to perform all the rounds before the time limit,

while the Bundle version struggled to complete the rounds already for instances

in group G and F (with smaller instance sizes than in H).

With respect to the gaps obtained, the Volume version of the heuristic clearly

outperforms the Bundle version. Except for group A, and some instances of group

G, the heuristic with the Volume algorithm obtained better results on average and

quite often significantly smaller gaps. The Volume version of the heuristic was able

to provide optimality gaps within 30% for all instances of groups A, B, C, D, and

E. For the very large instances of group F, G, and H, the average optimality

gaps obtained by the Volume version of the heuristic are within 30%, and for less

than half of instance in these groups, 17 out of 45, the optimality gaps exceeded

30% remaining below 50%. We remark that, to the best of our knowledge, this

is the first study in the literature to deal with such large instances, which are

by far larger than the benchmark instances Canad-N. We also remark that the

gap between lower and upper bounds include the potentially high ‘natural’ gap

between the linear relaxation value and the optimal one. Therefore, even though

we have gaps reaching 40%, the deviation to the optimal value is possibly smaller.

For example, the heuristic solution using Volume for cN/01 in Table 3.4 has a gap

of 2.56%, but it is only 0.36% away from the optimal.

Finally, we make some remarks about the constructive Algorithm 1 and the

operations put in practice on the search for an improving solution. With respect

to the procedure implemented to build a first feasible solution, the results obtained

showed that it is able to produce in a fast manner a solution within 50% for almost

all instances. We point out the case of instance H/1 001e, for which the Volume

version of Algorithm 1 ran for a much longer period, leaving practically no time

for further improvements in phase two. However, in this case the Volume version

of Algorithm 1 obtained a good quality solution with an optimality gap of 17%.

We conclude this section by noticing that in the improving phase Algorithm 2

managed to significantly reduce gaps, especially when the time limitation was not
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an issue.

Comparisons with state-of-the-art heuristics

A third experiment was conducted to compare the performance of the heuristic

schemes proposed in Section 3.5 with state-of-the-art heuristics from the litera-

ture for the FCMC. For such purpose, sets Canad-C and Canad-R of instances

introduced by [63] were used, since these smaller instances have been served as

benchmark for several heuristics proposed in the literature. Groups Canad-C and

Canad-R have 43 and 153 instances, respectively. These instances are also avail-

able for download at http://www.di.unipi.it/optimize/Data/MMCF.html.

We compare our approach with the following heuristics and metaheuristics: (i)

CYCLE, the cycle-based tabu search by [110]; (ii) RELINK, the path relinking

by [111]; (iii) MULTI, the multilevel cooperative search by [65]; (iv) SCALE, the

capacity scaling heuristic by [141]; and (v) LCBR, the local branching heuristic

by [193].

Table 3.8 presents results for the group Canad-C. The results are presented as

the gap in percentage between the upper bound obtained with the heuristic and the

best upper bound among all the 7 heuristics used in this comparison. A gap of zero

means that the heuristic obtained the best result, and are highlighted in boldface.

The first column in Table 3.8 identifies the instances. The size corresponds to

the number of nodes |N |, arcs |A|, and commodities |K|. The letters stand for

tight (T) or loose (L) capacities, and high fixed charges are indicated by F and

the contrary by V. Then, the second to the sixth columns present results for

each heuristic from the literature. The solution values obtained with CYCLE,

RELINK, MULTI, and SCALE are reported in [141], and the ones obtained with

LCBR are reported in [193]. The seventh and eighth columns present results of the

best solutions obtained with the heuristic schemes proposed in Section 3.5 using

Volume and Bundle to solve the Lagrangian problems, respectively. The last line

of Table 3.8 presents the average gap. Table 3.9 presents results for instances

of group Canad-R. For each size, there is a number of instances with di↵erent

capacity and cost ratios. As far as we know, only [110] and [141] have reported

solution values for this group. Table 3.9 presents, for instances of the same size,

average gaps in percentage between the upper bound obtained with the heuristic

and the best upper bound among the 4 heuristics used in this comparison.

For group Canad-C, average and maximal running times of the heuristic scheme

with Volume were 90 and 439 seconds, respectively, and with Bundle 150 and 709,

respectively. For group Canad-R, average and maximal running times with Volume

were 30 and 337 seconds, respectively, and with Bundle 29 and 299, respectively.
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The proposed heuristic scheme had a similar performance using Volume or Bundle,

the former obtaining better results on average for group R and the latter for group

C. Results have shown that both versions of the proposed heuristic scheme are

competitive with the state-of-the-art-heuristics. Indeed, it was able to find new

best upper bounds for some cases and outperformed most of them in terms of

average gaps to the best solution. We note that SCALE due to [141] comes out of

our experiments as the best performing heuristic in terms of average gaps to the

best solution.

Instance CYCLE RELINK MULTI SCALE LCBR Volume Bundle

20,230,40, VL 0.22 0.13 0.67 0.05 0.00 0.26 0.00

20,230,40, VT 0.11 0.09 0.00 0.12 0.00 0.10 0.04

20,230,40, FT 0.43 0.39 1.51 0.22 0.00 0.27 0.35

20,230,200, VL 4.80 6.13 4.40 0.00 1.10 0.91 0.54

20,230,200, FL 6.07 6.99 3.85 0.00 4.05 0.51 0.87

20,230,200, VT 6.48 6.42 3.98 0.00 0.07 0.28 0.23

20,230,200, FT 7.64 7.74 3.58 0.00 3.54 1.15 0.68

20,300,40, VL 0.03 0.00 0.10 0.00 0.00 0.00 0.00

20,300,40, FL 1.22 0.74 1.26 0.29 0.00 0.46 0.59

20,300,40, VT 0.05 0.00 0.32 0.01 0.00 0.03 0.00

20,300,40, FT 0.48 0.95 2.42 0.00 0.00 0.00 0.00

20,300,200, VL 7.31 4.18 4.22 0.00 1.91 0.14 0.09

20,300,200 , FL 6.13 6.24 5.06 0.00 2.82 0.79 0.39

20,300,200, VT 5.42 4.52 2.52 0.00 1.14 0.09 0.91

20,300,200, FT 6.08 5.34 3.28 0.31 2.08 0.65 0.00

30,520,100, VL 1.70 1.60 3.10 0.11 0.00 0.35 0.16

30,520,100, FL 4.80 7.11 5.03 0.00 1.51 0.15 0.47

30,520,100, VT 1.62 1.67 2.58 0.29 0.00 0.37 0.95

30,520,100 , FT 6.43 6.97 3.65 0.11 2.34 0.00 0.29

30,520,400, VL 6.47 5.50 2.44 0.00 1.33 0.42 0.64

30,520,400, FL 7.23 8.38 4.57 0.00 5.25 0.91 0.63

30,520,400, VT 5.71 4.60 5.24 0.00 0.52 0.22 0.20

30,520,400, FT 9.05 6.68 4.66 0.00 9.38 0.53 0.85

30,700,100, VL 1.64 2.30 2.59 0.07 0.00 0.10 0.07

30,700,100, FL 3.64 4.59 5.59 0.00 0.13 0.73 1.46

30,700,100, VT 2.38 2.76 3.27 0.57 0.00 0.83 0.59

30,700,100, FT 4.81 2.60 3.17 0.46 0.00 0.24 0.60

30,700,400, VL 8.25 6.80 4.54 0.00 5.60 0.67 0.70

30,700,400, FL 9.32 6.87 6.20 0.00 20.44 0.45 0.43

30,700,400, VT 6.26 5.84 3.92 0.00 1.42 0.45 0.85

30,700,400, FT 8.85 7.70 5.87 0.00 10.20 0.41 1.25

25,100,10, FL 0.00 0.00 0.00 0.64 0.00 6.64 6.64

25,100,10, FT 0.00 0.00 0.08 1.72 0.00 2.67 2.85

25,100,10, VL 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25,100,30, FL 0.69 0.87 0.75 0.39 0.00 4.18 1.33

25,100,30, FT 0.89 1.04 1.08 0.32 0.00 0.40 0.00

25,100,30, VT 0.03 0.03 0.03 0.00 0.00 0.40 0.11

100,400,10, FL 0.00 0.30 0.30 2.09 3.00 8.60 2.23

100,400,10, FT 2.59 0.00 1.52 11.27 3.09 7.98 10.35

100,400,10, VL 0.89 0.22 0.46 0.01 0.00 0.28 0.28

100,400,30, FL 3.26 2.83 1.16 4.01 0.00 2.77 3.40

100,400,30, FT 2.61 0.00 2.99 2.05 0.19 5.22 2.72

100,400,30, VT 0.18 0.03 0.12 0.02 0.00 2.34 3.13

Avg 3.53 3.19 2.61 0.58 1.89 1.25 1.11

Table 3.8: Comparisons for benchmark instances of group C.
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|N| |A| |K| Number of Instances CYCLE SCALE Volume Bundle

10 25 10 6 0.00 0.62 0.07 0.00

10 25 25 6 0.77 0.11 0.02 0.00

10 25 50 6 1.59 0.07 0.02 0.02

10 50 10 9 0.08 0.42 0.78 1.06

10 50 25 9 0.23 0.27 0.66 0.73

10 50 50 9 2.26 0.06 0.10 0.37

10 75 10 9 0.05 0.88 0.06 1.18

10 75 20 9 0.60 0.48 0.45 0.70

10 75 50 9 2.65 0.20 0.37 0.30

Avg 0.93 0.36 0.31 0.54

20 100 40 9 2.22 0.21 0.53 0.93

20 100 100 9 2.44 0.02 0.12 0.27

20 100 200 9 4.62 0.00 0.32 0.43

20 200 40 9 2.51 0.40 0.66 0.95

20 200 100 9 5.98 0.06 0.75 0.75

20 200 200 9 6.83 0.04 0.49 0.96

20 300 40 9 2.28 0.17 0.73 0.79

20 300 100 9 5.25 0.01 0.68 0.76

20 300 200 9 9.34 0.17 0.80 1.07

Avg 4.61 0.12 0.56 0.77

Table 3.9: Comparisons for benchmark instances of group R.

3.7 Conclusion

In summary, the Bundle and the Volume have both provided good quality

bounds. Both methods computed similar ‘best’ lower bounds for large to very large

network instances, but they mostly reached the time limit or the max iteration

counter set by the user without the possibility to prove convergence within a given

accuracy. In other words, the question of defining a reliable stopping criterion

which takes profit of the behavior of both algorithms remains a di�cult issue.

With respect to the comparison of the lower bounds, one can say that, for

the tests put in practice, the Volume algorithm has performed well no matter

the instance characteristics, while the Bundle has performed worse for a specific

group. One can conclude that the Volume algorithm manages to be more robust,

in the sense that it might be successful for a wider range of di↵erent instance

configurations. Moreover, in a large scale context, the time consumption may be

a bottleneck for the Bundle method, but its ability to provide good solutions in

the early iterations can be very profitable for small problems. We remark that

such conclusions are drawn upon results obtained with Volume and Bundle for the

FCMC, which is a structured problem, and therefore should not be immediately

extrapolated for other types of problems. As future research, it is suggested to

extend the computational comparisons to a set of non-structured problems.

Regarding the estimation of good upper bounds, one can say that the results

obtained with the Volume were better on average. Finally, we provide the first

feasible solutions for the very large scale instances considered and not solved in

the literature. Furthermore, the heuristic using Lagrangian information within a

57



perturbation and combination scheme could obtain good quality solutions (with

reduced gaps) for some benchmark instances.

Provided that, for the largest instances, the best performances were obtained

with the Volume Algorithm, in the next chapter we present a Relax-and-Cut

algorithm that uses the Volume as NDO solver for the ‘knapsack’ relaxation. This

same solver is used for the development of a feasibility pump heuristic in chapter

5.
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Chapter 4

Volume-Based Relax-and-Cut

Here, we present the Relax-and-Cut algorithm implemented using the Volume

Algorithm. We considered the cover inequalities, minimum cardinality inequal-

ities, and the flow pack and flow cover inequalities of section 2.4 to be added

on-the-fly to Lagrangian dual in a relaxed way. Unfortunately, the gains with the

addition of such inequalities were not expressive on average, but it can be worthful

for some instances. Moreover, two additional features were considered to enhance

performances, which indeed provided improvements in all cases.

4.1 Introduction

Based on Lagrangian relaxation, Relax-and-Cut algorithms attempt to improve

Lagrangian bounds, by dynamically introducing valid inequalities as violated con-

straints, to strengthen the current relaxed model. The addition of such inequalities

can be done after the relaxation is solved (and the problem is then reoptimized),

or during the optimization process, what Lucena [160] called, Delayed Relax-and-

Cut and Non-Delayed Relax-and-Cut, respectively. Moreover, the new constraints

are usually relaxed in a Lagrangian fashion, to avoid having to deal with harder

subproblems.

The main principles of the Relax-and-Cut were earlier discussed by Balas and

Christofides [23] for the traveling salesman problem, and later by Gavish [97],

for a centralized network design problem. Since then, successful Relax-and-Cut

implementations have been proposed for di↵erent problems in the literature (see for

example [44, 68, 77, 159, 70, 151, 9, 83]). Moreover, Guignard [117] discusses the

e�ciency of violated cuts in improving Lagrangian bounds, concluding that cuts

using integer information are more likely to be helpful, while surrogate constraints

cannot improve bounds.

As mentioned in section 2.3.1, Kliewer and Timajev [150] proposed, for the
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FCMC problem, a Relax-and-Cut procedure dedicated to solve node LPs in Branch-

and-Bound schemes. In their work, only cover inequalities were used, with the

addition of another type of locally valid cuts. In the present work, however, we

implement 4 types of globally valid inequalities, with the intention of producing a

bounding procedure on its own. Moreover, we propose two alternatives to boost

performances and an e↵ective cutset separation procedure.

In the implemented algorithm, cutset based inequalities valid for the FCMC

problem are identified (see section 2.4) and added to the Lagrangian problem.

Since the number of cutsets is exponential, and so is the number of inequali-

ties, e�cient cutset and constraint separation procedures are necessary. We start

describing the Relax-and-Cut algorithm itself, then the following four sections

explain the separation procedures for cutsets and inequalities. In sequence, we

present the two propositions to enhance performances, and at the end of this

chapter, the results obtained with the proposed algorithm are shown, followed by

a conclusion.

4.2 The Relax-and-Cut algorithm

In the present case, violated cover, minimal cardinality, flow pack, and flow

cover inequalities (described in section 2.4) are dynamically added to the knapsack

relaxation (see 3.4) every iteration where a better dual solution (in terms of bound

value) is found. Although other types of valid inequalities could be separated, here

we follow the results obtained in [47, 49], specifically for the case of the FCMC

problem.

According to Lucena [159], the addition of inequalities in a non-delayed routine

is often preferable, being our natural choice for implementation. In this work, the

strong arc formulation (2.1)-(2.6) is considered throughout the whole discussion,

except in section 4.8.4, where the weak formulation (which excludes the strong

forcing constraints (2.4)) is used to compare the cutset generation capability of

producing strong cover inequalities, in comparison to the one proposed in [49].

Moreover, considering that the Volume Algorithm provides us a linear relax-

ation approximate solution (x̃, ỹ), we also test the case where, to be introduced,

inequalities must be violated by both the current Lagrangian subproblem solution

(x̂, ŷ) (which is mixed-integer), and the approximate one (which is continuous). In

this later case, a simple inspection procedure takes place after the inquality is iden-

tified, to check if it is violated or not by (x̃, ỹ). Hence, the procedures to identify

violated inequalities (separation procedures) take into account the mixed-integer

vector (x̂, ŷ), only.
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Algorithm 4 The Volume-based Relax-and-Cut Algorithm

Given an inicial �̄

Compute L(�̄), to get solution x̂ and subgradient g0.

x̃ x̂, t 1, h g0

do

Compute stepsize st  ⇢UB�L(�̄)
||h||2

Take step: �t  �̄+ sth

Solve L(�t) to get the solution x̂

Sensitivity Analysis:

If(flag) then maximize L(�) given x̂, to get �t0

else �t0  �t

Separate and add violated cuts.

Compute subgradient gt

Check if green, yellow or red iteration

Update ⇢ and UB target

if L(�t0) > L(�̄) then

�̄ �t0; L(�̄) L(�t0)

Compute ↵

x̃ ↵x̂+ (1� ↵)x̃

h ↵gt + (1� ↵)h

Look for removable cuts.

t t+ 1

while Stopping criteria not reached

The implemented Relax-and-Cut scheme is formally presented in the Algorithm

4. The procedure is quite the same as the Volume Algorithm described in section

3.2: for a given initial dual point, the Lagrangian subproblem is solved, and a

subgradient is obtained, being used as first search direction. At each iteration, the

subproblem is solved for a new trial point, obtained with a previously computed

stepsize and search direction. Once the subproblem is solved, a sensitivity analysis

procedure (to be discussed in section 4.7) may take place, according to the flag,

considering flag = true if sensitivity analysis must be executed, or flag = false

if it must not.

After obtaining the solution for the Lagrangian subproblem, cutsets and cutset-

based inequalities are separated. The violated inequalities are then added to the

problem. In addition, the new entries of vector h (the search direction) are set

to the value obtained from the di↵erence between the left and right-hand sides of

the newly inserted inequalities; that, considering vector x̃, the linear relaxation
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approximate solution. Afterwards, the usual Volume operations take place. At the

end of each iteration, based on what is discussed in [68] about active sets of dual

variables, cuts that have not been violated after a certain number of consecutive

iterations are deleted, along with their respective dual variable.

4.3 Cutset generation

Recall that a cutset is defined as a set of arcs (S, S̄) = {(i, j) 2 A : i 2
S, j 2 S̄}, given a partition of nodes S ⇢ N and its complement S̄ = N \ S.

Furthermore, associated with each cutset, there is a set of crossing commodities

KSS̄ = {k 2 K : O(k) 2 S,D(k) 2 S̄}, and the reverses: (S̄, S) and KS̄S, defined

analogously.

The cutsets are generated during the Volume iterations, using the solutions

from the Lagrangian subproblem. In fact, considering an interval of 50 iterations,

we use the best solution (x̂, ŷ), in terms of value, produced in that interval, to

generate new cutsets to be added to a collection CS. The procedure for the

cutset generation is described by Algorithm 5. The main goal of this heuristic

separation is to obtain cutsets with low installed capacity and high amounts of

crossing demand, increasing the chances of finding violated valid inequalities.

The algorithm starts with a single node (singleton), having its respective in-

stalled capacity USS̄ =
P

a2(S,S̄):ŷa=1 wa and transpassing demand qSS̄ =
P

k2KSS̄
qk,

recalling that ŷ 2 {0, 1}|A|. The goal is to move nodes from S̄ to S, in order to

obtain a cutset with high �SS̄ = qSS̄ � USS̄.

Node movements are done accordingly to its benefit to the value of�SS̄, namely

how much it may increase that value. To measure �j the benefit of node j 2 S̄,

we compute q+
SS̄
: the amount of demand to be added to qSS̄, minus the amount

of demand to be retrieved from it, once moving j from S̄ to S. The same is done

for the installed capacity, in order to obtain U+
SS̄
, and to compute �j = q+

SS̄
�U+

SS̄
.

Then, the most increasing node is moved, and the values of qSS̄ and USS̄ are

updated. This procedure is repeated until no increasing node is encountered. An

example reproducing a node movement is given in Figure 4.1.
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n1q1 = 10

q2 = 5

n2

�q2 = �5

q3 = 10

n3�q1 = �10

n4

q4 = 3

n5 �q3 = �10

�q4 = �3

15

10

5

5

5

10

5

5

An example of 5 nodes, 8 arcs, and 4 commodities. The demands q
k are given next to the origins, while

their negative value is given next to their destinations. The capacities are given next to the arcs. The current

Lagrangian subproblem solution is represented by dashed (closed) and solid (opened) arcs.

(a) Graph example

S S̄
qSS̄ = 15

�SS̄ = �5

n1

n2

n3

n4

n5

We first set an initial singleton. The candidate

nodes are n2 and n4. For n2 one have q
+
SS̄

(n2) =

10� 5 and U
+
SS̄

(n2) = 5� 15, so �n2 = 15

(b) Initial cutset

S S̄
qSS̄ = 20

�SS̄ = 10

n1

n2

n3

n4

n5

Note that n2 is chosen, since for n4 one have

q
+
SS̄

(n4) = 3 and U
+
SS̄

(n4) = 10� 5, so �n4 = �2

(c) Cutset after first iteration

Figure 4.1: Example of an iteration of the cutset generation, Algorithm 5

Note that the nodes to be evaluated are only the ones corresponding to the

endpoint of an installed arc in the cutset. Moreover, as the movements are per-

formed, every current configuration presenting positive �SS̄ is added to the cutset

collection. However, if only �SS̄-negative configurations are obtained, the last one

generated is kept.

Once a cutset (S, S̄) is identified, the reverse cutset (S̄, S) is also added to

collection CS, since for a node separation S and S̄, the cutset containing arcs

with start-point in S̄ and end-point in S is automatically available. Furthermore,

the same procedure of Algorithm 5 is implemented from the perspective of S̄, that

is to say it starts with S̄ as a singleton and S = N \ S̄. It su�ces to modify the

inner ‘for all’ loop to

for all j 2 S : 9 i 2 S̄, ŷji = 1 do

and to multiply by �1 the computed values: q+
SS̄

and U+
SS̄
. The S and S̄ updating

steps are then restated accordingly to traduce the nodes movements from S to
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S̄. In that way, we intend to generate a larger and more diversified collection of

cutsets.

Algorithm 5 Cutset Generation

Given the collection of cutsest CS

Given the solution (x̂, ŷ)

for all n 2 N do

S  {n}, S̄  N \ S
qSS̄  

P
k2KSS̄

qk

USS̄  
P

a2(S,S̄):ŷa=1 wa

while true do

for all j 2 S̄ : 9 i 2 S, ŷij = 1 do

q+
SS̄
 

P
k2K:O(k)=j,D(k)2S̄ q

k �
P

k2K:O(k)2S,D(k)=j
qk

U+
SS̄
 

P
v2S̄:ŷjv=1 ujv �

P
i2S:ŷij=1 uij

�j  q+
SS̄
� U+

SS̄

Get j⇤ with the greatest �j, �j � 0

break if no such j⇤

S̄  S̄ \ {j⇤}
S  S [ {j⇤}
qSS̄  qSS̄ + q+

SS̄
(j⇤)

USS̄  USS̄ + U+
SS̄
(j⇤)

�SS̄  qSS̄ � USS̄

if �SS̄ > 0 then

CS  CS [ {(S, S̄)}
CS  CS [ {(S̄, S)}

Add the current (S, S̄) (and (S̄, S)) to CS if not added yet.

return CS

In the following three sections we discuss the cutset-based inequalities sep-

aration procedures. We first describe the separation of minimal cardinality in-

equalities and cover inequalities. Then, the two following sections describe the

separation of flow cover and flow pack inequalities, respectively.

4.4 Minimal cardinality and cover separation

methods

Before discussing about the constraint separation procedures, we note that

given a cutset (S, S̄), one can redefine the set of transpassing commodities KSS̄
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with the use of a metric, setting arc lengths equal to 1, if in (S, S̄), otherwise

equal to 0. If the shortest path between the origin and destination of commodity

k 2 K has value ⇡k > 0, the commodity is included in KSS̄. Consequently, the

total demand value may be modified to q⇡
SS̄

=
P

k2KSS̄
⇡kqk. One must consider

this redefinition in the remainder of this section.

4.4.1 Cover inequalities

Given the total crossing demand q⇡
SS̄
, for any cutset (S, S̄), a cover can be found,

or proven to be nonexistent by solving (4.1), where z 2 {0, 1}|(S,S̄)| represents the
characteristic vector of the cover C.

Z = min
P

a2(S,S̄) ŷaza
P

a2(S,S̄) wa(1� za) < q⇡
SS̄

(4.1)

za 2 {0, 1}, 8 a 2 (S, S̄)

Since, ŷ is binary vector, the solution of the separation problem is easily com-

puted by a greedy algorithm. We first define R = {a 2 (S, S̄) : ŷa = 0} and

C1 = {a 2 (S, S̄) : ŷa = 1}, and compute �C = q⇡
SS̄
�

P
a2C1

wa. Note that a

cover C must correspond to a subset of R, since a violated cover inequality must

present ŷa = 0 8 a 2 C, and �C must be positive.

With the aim of producing inequalities (2.19) more likely to be violated through-

out the Volume iterations, thus to keep a non-zero Lagrangian multiplier, a restric-

tion over R is applied. Such restriction is performed by artificially opening arcs

in the set, i.e., moving arcs from R to C1, guaranteeing that �C remains positive.

In the present case, we chose to sequentially open arcs with ỹa � 0.9, a 2 (S, S̄),

in a nonincreasing order of ỹ. Remind that ỹ comes from the linear relaxation

approximate solution provided by the Volume, and ŷ comes from the solution of

the Lagrangian subproblem.

Finally, to form a minimal cover C, the arcs in the restricted set R are sequen-

tially examined, also in a nonincreasing order of ỹ, so that an arc a 2 R with

wa > �C is included in the cover C. Otherwise it is moved to C1, which conse-

quently decreases, by the arc capacity, the value of �C that is updated. Figure

4.2 presents an example of cover, based on the cutset obtained in Figure 4.1c.
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S S̄
q⇡
SS̄

= 20

�C = 5

n1

n2

n3

n4

n5

0.7

}C

0.9

0.5

0.8

Values of ỹa are given next to the arcs. Applying the cover generation Algorithm 6 on the cutset of Figure 4.1c,

one obtains the cover C identified in this figure.

Figure 4.2: Example of cover obtained from the cutset of Figure 4.1c

The Algorithm 6 describes de whole separation procedure. Note that, only

minimal covers are considered, and that a lifting procedure must take place for

global validity, since inequalities are defined for restrictions on the cutsets. The

lifting procedures are discussed below, in subsection 4.4.3.

Algorithm 6 Cover generation

Given (x̃, ỹ), the current linear relaxation approximate solution.

Given (x̂, ŷ), the solution to the Lagrangian subproblem.

Let CI be the collection of covers

Let (S, S̄) be the cutset

Let R = {a 2 (S, S̄) : ŷa = 0}
Let C1 = {a 2 (S, S̄) : ŷa = 1}
Let the cover C  ;
�C  q⇡

SS̄
�

P
a2C1

wa

if �C < 0 then return CI

for all a 2 R in nonincreasing order of ỹa do

if ỹa � 0.9 and �C � wa > 0 then

R R \ {a}
C1  C1 [ {a}
�C  �C � wa

for all a 2 R in nonincreasing order of ỹa do

if wa � �C then

C  C [ {a}
else

C1  C1 [ {a}
�C  �C � wa

CI  CI [ C

return CI
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4.4.2 Minimal cardinality inequalities

The separation procedure for minimal cardinality inequalities (2.21) is gener-

ally trivial. It su�ces to compute m(S,S̄) = 1 + max{i :
P

j=1...i waj < q⇡
SS̄
},

having arcs aj 2 (S, S̄), j = 1, ..., |(S, S̄)|, in a nonincreasing order of waj , and to

verify whether
P

a2(S,S̄) ŷa �m(S,S̄) � 0. Nevertheless, the same restriction as for

cover inequalities is performed in this case too.

In other words, the sets R and C1 are defined as for the cover inequalities, and

the same restriction procedure is applied on R, originating the set C. Then, the

minimal cardinality mC is defined over the restricted set C, giving
P

a2C ya � mC .

As well as in the cover case, the separated minimal cardinality inequalities must

be lifted for them to be globally valid.

4.4.3 Lifting

In the present context, the lifting technique consists in elevating an inequality

to a higher dimension by introducing outer variables into it. Consider the general

valid inequality (4.2), where C may represent either a cover or a restricted cutset.

In the case of cover inequalities b = 1, while b = mC for minimal cardinality

inequalities.

X

a2C

ya � b (4.2)

According to Proposition 2, given the set C and set C1 = (S, S̄) \C, with arcs

in C1 considered to be open, the following inequality is also valid:

X

l2C1

�lyl +
X

a2C

ya � b+
X

l2C1

�l (4.3)

Proposition 2. Consider P = {x 2 Bn : Ax � b}, L = P \ {x 2 Bn : x1 = 0},
S = P \ {x 2 Bn : x1 = 1}, and that

nP
i=2

⇡ixi � ⇡0 is valid for S. If L = ;, x1 � 1

is valid for P . If L 6= ;, then for any �1  Z � ⇡0,

�1x1 +
nP

i=2
⇡ixi � ⇡0 + �1

is valid for P , where Z = min{
nP

i=2
⇡ixi : x 2 L}.

Proof. For a solution x̄ 2 P , If x̄ 2 L, since by definition �1  Z � ⇡0:
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�1x̄1 +
nP

i=2
⇡ix̄i =

nP
i=2

⇡ix̄i � Z � ⇡0 + �1.

If x̄ 2 S, since
nP

i=2
⇡ix̄i � ⇡0 is valid for S:

�1x̄1 +
nP

i=2
⇡ix̄i = �1 +

nP
i=2

⇡ix̄i � ⇡0 + �1.

As discussed in [24], one has to solve a sequence of binary knapsack problems

to define coe�cients �l, l 2 C1, for the lifted inequalities (4.3). Namely, for a set

of already lifted variables B, and M = C1 \ {B}, in case of lifting a variable yl,

l 2M , the following integer program need to be solved:

Z = min
P

a2B �aya +
P

a2C ya
P

a2B[C waya � q⇡
SS̄
�

P
a2M wa + wl (4.4)

ya 2 {0, 1}, 8 a 2 C [ B

Still according to Proposition 2, the coe�cient �l = Z � b �
P

a2B �a, if a

solution is found. However, if no feasible solution exists, yl = 1 is valid, which is

equivalent to set �l = |C| (as stated in [46]). Indeed, if one rewrite inequality (4.2)

for the group of already lifted variables B, and the variable yl being lifted, the

inequality (4.5) is obtained. Since �l = |C| � (
P

a2B �aya +
P

a2C ya �
P

a2B �a),

yl must be 1, so (4.5) can be satisfied.

�lyl + (
X

a2B
�aya +

X
a2C

ya �
X

a2B
�a) � b+ �l (4.5)

Remark that the inequality resulting from the lifting procedure described de-

pends on the sequence in which variables are lifted. According to Gu et al. [115],

given a feasible fractional point y⇤, and a minimal cover C, the problem of decid-

ing if there exists a violated lifted cover inequality is NP-complete. In the present

case, a binary point is provided, and only already violated inequalities are consid-

ered for lifting. Moreover, note that the variables to be lifted can only contribute

to the violation.

In that sense, the lifting order is defined heuristically, using the approximate

solution ỹ given by the Volume, to drive the sequence. Variables yl, l 2 C1 are
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lifted in a nonincreasing order of ỹl. Moreover, even though the sequential lift-

ing procedure is more commonly employed for the present case, in [213], Zemel

discussed the simultaneous lifting procedure, which adds the possibility to gen-

erate more than one lifted cover inequality at a time, but presenting a higher

computational cost.

Despite the fact that 0-1 knapsack programs must be solved, several dynamic

programming algorithms, for example the ones proposed in [186, 168], exist in the

literature, that can e�ciently tackle these problems. This technique consists in

breaking down a problem into simpler subproblems, solving them recursively from

the smallest to the biggest, while storing the solutions to avoid recomputations.

In the present case, a dynamic programming algorithm based on the recursion

(4.6) was implemented, considering u the right-hand-side of the knapsack con-

straint, its maximal value U , and that �a = 1, 8 a 2 C. The Algorithm 7 details

the procedure. By abuse of notation, consider am = m, so wm stands for wam , for

example.

�m(u) =

(
min{�m,�m�1(u)}, if u = 1, ..., wm

min{�m�1(u),�m�1(u� wm) + �m} if u = wm + 1, ..., U
(4.6)
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Algorithm 7 Dynamic Programming Lifting Procedure

Let n = |C| the number of cover variables, with indexes {1, ..., n}
Let n1 = |C1| the number of variables to be lifted, with indexes {n+ 1, ..., n2 =

n+ n1} in nonincreasing order of ỹ;

Let max w = max{wl : n+ 1  l  n2}
Let max u = q⇡

SS̄

L ;; m 1; W  wm; v  min{wm,max u}
for u = 1 to v do

�m(u) �m

for u = v + 1 to min{W +max w,max u} do

�m(u) 1

strt 2; end n

for l = n+ 1 to n2 do

for m = strt to end do

W  W + wm

v  min{wm,max u}
v2  min(W,max u)

v3  min(W +max w,max u)

for u = 1 to v do

�m(u) min{�m,�m�1(u)}

for u = v + 1 to v2 do

�m(u) min{�m�1(u),�m�1(u� wm) + �m}

for u = v2 + 1 to v3 do

�m(u) 1

U = q⇡
SS̄
�

P
a2C1\B wa + wl

if U  0 then Z  0

else if W � U then Z  �end(U)

else Z  �1
if Z � 0 then �l = Z � b�

P
a2B �a

else �l = |C|

B  B [ {l}
strt end l

return Lifted coe�cients ↵l, l 2 L

The main idea of the algorithm is to start considering only one variable of

index m = 1 in the 0-1 knapsack problem, and to solve it for all possible values of

u, one by one, that is u = 1, ..., w1. For higher values of u, the problem becomes

currently infeasible, and the solution value is set to1. Then, the second variable
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of index m = 2 is inserted, and the problem is solved for u = 1, ..., w1 +w2, which

will need the already computed values of m = 1. In that manner, variables keep

being inserted sequentially, until all of them have been considered. The insertion

of a variable m in the problem corresponds to a stage, and �m(u) correspond to

the solution value of stage m for a certain u.

Note that to solve the first lifting problem, one has to compute the values

of stages m = 1, ..., |C|, while only stage m = |C| + 1 need to be computed, to

solve a second lifting problem. In other words, lifting a variable l1 2 C1 means to

automatically solve subproblems of the lifting problem of variable l2 2 {C1 \{l1}}.
Finally, observe that the complexity of the algorithm in the worst case is O(nq⇡

SS̄
),

n being the total number of variables.

4.5 Flow cover separation method

To identify violated flow cover inequalities (2.23), given a mixed-integer point

(x̂, ŷ), one have to separate a flow cover (C1, C2), C1 ✓ (S, S̄) and C2 ✓ (S̄, S),

such that µ =
P

a2C1
bL
a
�

P
a2C2

bL
a
� dL

SS̄
> 0. In this work, we follow what was

proposed by Nemhauser and Wolsey in [177]. As stated by the authors in section

II.6.4, separating flow cover inequalities is equivalent to solving a series of equality

knapsack problems, which are hard to solve. Hence, a heuristic solution may be

preferable: it consists of solving (4.7), a relaxation of the separation problem,

taking ↵ 2 {0, 1}|(S,S̄)| and � 2 {0, 1}|(S̄,S)| as the characteristic vectors of sets C1

and C2 respectively.

max
P

a2(S,S̄)(ŷa � 1)↵a +
P

a2(S̄,S) ŷa�a

P
a2(S,S̄) b

L

a
↵a �

P
a2(S̄,S) b

L

a
�a > dL

SS̄
(4.7)

↵ 2 {0, 1}|(S,S̄)|, � 2 {0, 1}|(S̄,S)|

The set L ✓ K is defined as all commodities {k 2 K : x̂k

a
> 0, a 2 (S, S̄)},

to increase the chances of finding a violated inequalities. Then, solving (4.7) is

equivalent to put into C1, all arcs {a 2 (S, S̄) : ŷa = 1}, and to sequentially insert

into C2, arcs {a 2 (S̄, S) : ŷa = 1} in a nondecreasing order of bL
a
, while µ > 0.

Finally, D2 = {a 2 (S̄, S)\C2 : bLa > µ}, and if the obtained inequality is violated,

the sequence independent lifting procedure proposed by Gu et al. [116] is applied,

to produce a lifted flow cover inequality, according to the Theorem 12 of that same

paper.
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4.6 Flow pack separation method

As well as for flow cover inequalities, as discussed by Stallaert [203], the separa-

tion problem for flow pack inequalities (2.24) is equivalent to an equality knapsack

problem. Therefore, a similar heuristic procedure as for flow covers is applied to

separate flow packs (C1, C2), C1 ✓ (S, S̄), C2 ✓ (S̄, S) and µ < 0. Such a heuristic

consist in solving problem (4.7), however with constraint (4.8) insuring µ < 0

instead of µ > 0.

X
a2(S,S̄)

bL
a
↵a �

X
a2(S̄,S)

bL
a
�a < dL

SS̄
(4.8)

In that manner, given the point (x̂, ŷ), C2 = {a 2 (S̄, S) : ŷa = 1}, and arcs

{a 2 (S, S̄) : ŷa = 1} are sequentially inserted into C1, in a nondecreasing order

of bL
a
, while µ < 0. Also with the aim to increase the chances of finding violated

inequalities, the set L ✓ K is defined as all commodities {k 2 K : x̂k

a
> 0, a 2

(S, S̄)}. Finally, D1 = {a 2 (S, S̄) \ C1 : bLa > �µ}.
If the obtained inequality is violated, the sequence-independent lifting proce-

dure proposed by Atamtürk [13] is applied, to produce a lifted flow pack inequality.

The procedure is based in a superadditive lifting function, which can also be used

to obtain a lifted flow cover inequality, however weaker than the one proposed in

[116].

4.7 Volume and Sensitivity Analysis for Relax-

and-Cut scheme

In this section, we present the sensitivity analysis step of Algorithm 4, which

aims to further explore the dual space of new dualized valid constraints, identified

in Relax-and-Cut schemes. Indeed, the motivation for this new procedure comes

from the fact that, even though some interesting cover and minimal cardinality

inequalities were being identified, the benefits to the bound value were not being

perceived.

4.7.1 Sensitivity analysis

The sensitivity analysis, in this case, is based on the fact that, given a pri-

mal solution for the Lagrangian subproblem, one has a range of values that the

72



Lagrangian multipliers may assume, so that the solution remains optimal. For ex-

ample, let consider the integer problem P : min{f(x) | c(x) � 0, x 2 X}, X the

set of integer solutions, f(x) the objective function and c(x) � 0 a complicating

constraint, which can be dualized, resulting in (4.9), for � � 0. Moreover, for ease

of simplicity, assume that the convex hull co(X) has integrality property.

L(�) = minx2X f(x)� �c(x) (4.9)

Figure 4.3 illustrates the set of all pairs

⌦X = {(c(x), f(x)) | x 2 X}

supposed to be finite (given by the black points), and its convex hull co(⌦X),

shown with thick black lines. A similar geometric interpretation was proposed in

section 5.3 of [41].

The feasible solutions of P are inside the shaded region, satisfying c(x) � 0.

The point named opt represents the optimal pair (c(x⇤), f(x⇤)) for problem P , and

lp⇤ is the optimal value for the linear relaxation of P , i.e. the best lower bound

associated with the relaxation of the constraint c(x) � 0.

For a given multiplier �1, the dual function value L(�1), obtained solving (4.9),

corresponds to point A= (c(x�1), f(x�1)) since c(x) has been relaxed, and defines

a supporting hyperplane at A

H1 = {(↵, �) 2 R2 | � � �1↵ = L(�1)}

with a positive slope �1 (H1 is orthogonal to vector [��1 1]T ). The dual function

value, L(�1)  lp⇤ is obtained for ↵ = 0 at point v1 in Figure 4.3.

Observe now that a greater scalar �
0
1 > �1 may increase the lower bound as

long as the relaxed solution x(�
0
1) does not move. Indeed, the orthogonal vector

to hyperplane H 0
1, i.e. u = [��0

1 1] turns to the left when slightly increasing the

multiplier from �1 to �0
1 and the ‘best’ possible increase occurs when H 0

1 supports

the polyhedron on the whole segment [A B], B defining an alternative solution

x(�0
1), with the corresponding lower value at a higher value v01. Observe too,

however, that a still higher slope for �00
1 > �0

1 can correspond to another solution

at point C with a smaller dual value v001 < v1.

On practical instances, careless modifications of Lagrangian multipliers are

very likely to produce only worse bound values. Therefore, the sensitivity analysis

comes as an alternative to modify the current Lagrangian multipliers, so that L(�)

can be maximal for a given fixed primal point.
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Figure 4.4 illustrates the same example from a dual point of view. It is well

known that the dual function L(�) is concave and non-di↵erentiable, and each

piece corresponds to a primal point in Figure 4.3. In addition, gA and gB are

the subgradients of L associated with the supporting hyperplanes HA, HB of the

corresponding segments. As it can be seen in Figure 4.4, one can maximize L(�)

restricted to segment A, moving from �1 to �0
1, which is also in segment B. That

new dual point is related to a non-di↵erentiable point of the Lagrangian function

L(�), and more than one subgradient can be derived from it, that is to say gA, gB

and all convex combinations of them.

lp⇤

opt

c(x)

f(x)

f(x)� �1c(x)

�u(�1)

A

v1

f(x)� �0
1c(x)

�u(�0
1)

B

v01

f(x)� �00
1c(x)

C

�u(�00
1)

v001

Figure 4.3: Primal view
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�

L(�)

A

B

C

(gA,�1)
(gB,�1)

�0
1

L(�0
1)

�1

L(�1)

�00
1

L(�00
1)

Figure 4.4: Dual view

Hence, the procedure can be applied in every iteration of the Volume Algorithm

to reach possibly better bounds, as well as to identify possibly better subgradients

for the next search direction. That may result in better lower bounds for the

original problem and might accelerate the optimization process.

4.7.2 Implementation issues

Considering what has been said, we embed the sensitivity analysis into the

Volume Algorithm (described by Algorithm 4). More precisely, at each iteration

t, after solving the subproblem for the new trial point �t, we fix the solution x̂

and recompute L(�), maximizing it over the �-space, to obtain �t0 the redefined

trial point.

In the case of the FCMC, the problem of max��0{L(�) : x = xt} may be

described by (4.10)-(4.20). The dual variables �k

i
, i 2 N, k 2 K correspond to the

flow constraints (2.2), while dual variables µi, i 2 CI correspond to inequalities

in collection CI, the set of cover and minimal cardinality inequalities, with the

general form:
P

a2Ci
�aya � b.

Assuming A+ the set of opened arcs, and A� the set of closed arcs, the reduced

costs f̄a (defined in (4.16)) of arcs a 2 A+ must be nonpositive, while for arcs

a 2 A�, f̄a must be nonnegative. The notation CI(a) means the set of inequalities

i 2 CI that include arc a 2 A.

In terms of flow, for all arcs a 2 A, consider K+(a) the set of commodities k

with positive flow in arc a, andK�(a) the set of commodities k with no flow in that

arc a. When
P

k2K+(a) q
k � wa, a critical commodity (a) = argmax

k2K+(a){c̄ka :

c̄k
a
 0} exists, otherwise (a) = 0. In the first case, the non-critical commodities

75



in K+(a) must present reduced costs smaller than or equal to c̄(a)a , while com-

modities k 2 K�(a) must present reduced costs greater than or equal to c̄(a)a .

Moreover, c̄(a)a must be nonpositive in case (a) > 0.

Max
X

a2A+

f̄a +
X

i2CI

bµi +
X

k2K

qk(�k

D(k) � �k

O(k)) (4.10)

c̄k
ij
= ck

ij
+ �k

i
� �k

j
8 (i, j) 2 A, k 2 K (4.11)

c̄k
a
 c̄(a)

a
8 a 2 A, k 2 K+(a) \ {(a)} (4.12)

c̄k
a
� c̄(a)

a
8 a 2 A, k 2 K�(a) (4.13)

c̄(a)
a
 0 8 a 2 A, (a) > 0 (4.14)

c̄(a)
a

= 0 8 a 2 A, (a) = 0 (4.15)

f̄a = (fa+
X

k2K+(a)

c̄k
a
x̂k

a
�

X

i2CI(a)

�aµi) 8 a 2 A (4.16)

f̄a  0 8 a 2 A+ (4.17)

f̄a � 0 8 a 2 A� (4.18)

�k

n
2 R 8 n 2 N, k 2 K (4.19)

µi � 0 8 i 2 CI (4.20)

Remark that solving sensitivity analysis problem (4.10)-(4.20) may be, com-

putationally, as expensive as solving the linear relaxation of the original problem,

which is pointless to our purposes. Instead, one may solve it for the CI dual

variables exclusively, leaving � = �t. In addition, since there is no need for an

optimal solution, the sensitivity analysis problem might be solved heuristically,

in order to further reduce computational times. For this purpose, we propose a

heuristic focused on the CI dual variables only.

As explained in subsection 4.7.1, it might be interesting to decrease potentially

high-valued dual variables; therefore the heuristic tries to decrease some values of

µi, i 2 CI, then increase others. Algorithm 8 describes how to decrease variable

values, and Algorithm 9 how to increase them. Indeed, decreases are performed on

dual values of satisfied inequalities, while increases are performed on dual values

of violated inequalities.

Assume CI� to be the index set of satisfied inequalities, CI+ the index set

of violated inequalities, AC� the set of arcs present in some inequality of index

i 2 CI�, and AC+ the set of arcs present in some inequality of index i 2 CI+.

Note that sets CI+ and CI� are disjoint sets, so a decreased multiplier is not

increased afterwards, and vice-versa. As for CI(a), CI+(a) correspond to the
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index sets of inequalities i 2 CI+ that include arc a 2 A, being CI�(a) defined

analogously.

First, Algorithm 8 is applied on the current dual vector [�, µ], more specifically

on the variables corresponding to satisfied inequalities. In this procedure, we aim

to increase f̄a  0, a 2 AC�, by decreasing values of µi, i 2 CI�. That is because,

for satisfied cover inequalities: µi(b�
P

a2Ci
�aŷa)  0, i 2 CI�, what deteriorates

the objective function (4.10).

Algorithm 8 Decrease cover multipliers

Let vector [�, µ] be the current trial point.

Let c̄k
a
= ck

a
+ �k

i
� �k

j
8 a = (i, j) 2 A, k 2 K

f̃a = fa +
P

k2K+(a) c̄
k

a
x̂k

a
8 a 2 AC�

f̄a  (f̃a �
P

i2CI(a) �aµi) 8 a 2 AC�

AC�
1 = {a : a 2 AC�; f̄a < 0; f̃a > 0}

AC�
2 = {a : a 2 AC�; f̄a < 0; f̃a  0}

ma  
P

i2CI�(a) µi 8 a 2 AC�

for all a 2 AC�
1 then for all a 2 AC�

2 do

if a 2 AC�
1 then m f̄a

else m f̄a � f̃a

for all i 2 CI�(a) do

�  m(µi/(ma�a))

if µi + � < 0 then �  µi

e = argmaxe2Ci{f̄e : f̄e < 0}
if f̄e � �e� > 0 then �  f̄e/�e

ma  ma � µi

µi  µi � �

Update f̄e, 8e 2 Ci

Return [�, µ]

Decreases must happen in such a way that f̄a  0, a 2 AC� do not become

positive. Moreover, two situations may occur: either fa +
P

k2K+(a) c̄
k

a
x̂k

a
is by

itself nonpositive, or the nonpositive value of f̄a is due to the decrement of CI

dual values to that sum. In the first case, values will remain below or equal to

zero, no matter how much one decreases CI duals values, what contrasts with the

second case, which needs more attention. Therefore, the algorithm starts iterating

over arcs of the second case, passing to the other arcs in a second moment.

The decrement is initially set to a fraction of the current value of f̄a. If such a

decrease produces an infeasible µi < 0, the decrement is set to the current value

(the maximal decrease). Afterwards, we check if such a decrement is possible for all
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arcs present in the corresponding inequality, whose dual value is being decreased.

In other words, we exclude the possibility of increasing too much the f̄a value

of some opened arc of that inequality, to the point it becomes positive. In that

sense, it su�ces to check for the maximal value f̄a such that f̄a < 0, a 2 Ci, if

f̄a � �a� > 0, for which case the decrement � is set to f̄a/�a.

Finally, Algorithm 9 is applied on the current dual vector [�, µ], more specifi-

cally on the variables corresponding to violated CI inequalities. In this procedure,

we aim to increase values of µi, i 2 CI+. That is because, for violated inequalities:

µi(b�
P

a2Ci
�aŷa) > 0, i 2 CI+, what raises the objective function (4.10).

In their turn, increases must happen in such a way that f̄a � 0, a 2 AC+ remain

nonnegative, since higher values of µi, i 2 CI+, mean reductions on f̄a, a 2 AC+.

For this purpose, we compute li, the minimum value of f̄a for each inequality of

index i 2 CI+, that correspond to the maximum increase that µi can assume

without resulting in a negative f̄a, a 2 Ci.

The algorithm starts setting the increment values �i to their maximum: �i =

li, 8 i 2 CI+, then checks for each arc a 2 AC+ if such increment is possible.

If not, it sets �i equal to a fraction of f̄a, trying to keep the same proportions

between the µi, i 2 CI+(a), as it was originally. In the end, the increases to µi

are made, and the new dual vector is entire returned.

Algorithm 9 Increase cover multipliers

Let vector [�, µ] be the modified trial point returned by Algorithm 8.

Let �i  0 the value to be added to µi, i 2 CI+

f̄a  (fa +
P

k2K+(a) c̄
k

a
x̂k

a
�

P
i2CI(a) �aµi) 8 a 2 AC+

ma  
P

i2CI+(a) µi 8 a 2 AC+

�i  li = min{f̄a : a 2 Ci, f̄a > 0} 8 i 2 CI+

for all a 2 AC+ : f̄a > 0 do

M  
P

i2CI+(a) �a�i

if f̄a �M < 0 then

for all i 2 CI+(a) do

�i  min{�i, f̄a(µi/(ma�a))}

for all i 2 CI+ do

µi  µi + �i

Update f̄a, 8a 2 AC+

Return [�, µ]0  [�, µ]

Observe that the changes in the CI dual variables may produce reduced costs

f̄a = 0 for some arcs a 2 A, enabling those arcs to be opened or closed without

changing the value of the Lagrangian function, what explains why one has optimal
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solutions A and B, on Figure 4.3. Therefore, changing the current status of an

arc with zero reduced cost implies making a movement from the optimal solu-

tion to another optimal solution. Moreover, in terms of the Volume Algorithm

this movement is equivalent to the choice of which subgradient gt to take on the

nondi↵erentiable point [�, µ]0.

That being said, to compute the subgradient on Algorithm 4, we analyse the

impact of opening arcs with zero f̄a over the factor gth, with the aim of obtaining

gth > 0. In that way, the chances of performing green or yellow steps may aug-

ment. To estimate such impact, we compute the product gt
a
h, being gt

a
the partial

subgradient corresponding to the arc a, considering that the arc is open, otherwise

one has a partial vector of zeros. Therefore, for each arc with zero reduced cost,

if gt
a
h > 0 and ỹa � ✏1, the arc is opened, and if gt

a
h  0 and ỹa  ✏o, the arc is

closed.

Finally, the solution value is computed, as well as the whole subgradient, giving

place for the usual operations of the Volume Algorithm. To conclude, remark that

for Bundle methods, there is the possibility of adding more than one subgradient at

a time to the bundle. In order to test that feature, we also embedded the sensitivity

analysis into the Bundle method, and pass to the bundle both subgradients at

the same iteration: the original one, not considering the factors gt
a
h, and the

alternative one, obtained with the procedure described.

4.7.3 Constraint scaling

We noticed that one of the reasons why the addition of relaxed cover and min-

imal cardinality inequalities was not being beneficial to the bound quality is that

the magnitude of values in the dimension of dual flow variables was much bigger

than the magnitude of values in the dimension of dual cover and minimal car-

dinality variables. That is because, considering a subgradient vector, the entries

related to flow constraints, in general, may admit values in a much larger interval,

while the entries corresponding to the cover and minimal cardinality inequalities,

might vary between 0 and values close to 1. Note that since such dual variables

are nonnegative, negative values are not interesting. Such di↵erence of magnitude

can result in a stepsize that may be su�cient in the dimension of dual flow vari-

ables, but insignificant in the dimension of the dual cover and minimal cardinality

variables.

In order to verify the validity of those remarks, we implemented the Volume-

based Relax-and-Cut algorithm applied to the normalized formulation of the prob-

lem. In that way, flow variables are defined in the interval [0, 1], while flow balance

constraints are scaled down, resulting in (4.21). That results in a more balanced
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subgradient, with all entries in the same magnitude of values.

P

j2N+
i

xk

ij
�

P

j2N�
i

xk

ji
=

8
><

>:

1, if i = O(k)

�1, if i = D(k)

0, otherwise

8i 2 N, k 2 K (4.21)

4.7.4 Pertubation function

We now stablish a relation between the approaches presented in the last two

sections, and the pertubation function presented by Geo↵rion in [108, 109]. Still

considering the example of section 4.7.1, recall that the dual function is, with

appropriate changes of signs, the conjugate function of the useful perturbation

function [192]

w(p) = inf
x2X

{f(x) : c(x) � p}

which is a monotone increasing step function, in general nonconvex. w(0) = f(x⇤)

and the dual approach tries to minimize the gap between w(0) and co[w(0)], the

greatest convex function lower than w. Figure 4.5 shows the shape of the epigraph

of the perturbation function for the same toy example as in section 4.7.1, with

the convex envelope in dashed lines. The convex envelope is indeed defined by the

same supporting hyperplanes as in Figure 4.3.
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lp⇤

opt

D

p

w(p)

A

B

C

Figure 4.5: Perturbation function

To complete the present analysis, we present an example on a small FCMC

instance, graphically shown in Figure 4.6. The instance is composed of 5 nodes,

8 arcs, and 2 commodities. The demands qk are given next to the origins, while

their negative value is given next to their destinations. For every arc, the values

of transportation cost, capacity, and fixed charge, in that order, are given on the

right of the graph. Transportation costs do not vary on the same arc.

n1q1 = 50

q2 = 50

n2

�q2 = �50n3�q1 = �50

n4

n5

arc 1 : (n1, n3), [1 50 20000]

arc 2 : (n1, n5), [1 50 20000]

arc 3 : (n1, n2), [1 100 15000]

arc 4 : (n2, n3), [1 49 10000]

arc 5 : (n2, n4), [1 98 5000]

arc 6 : (n2, n5), [1 49 10000]

arc 7 : (n4, n3), [1 49 5000]

arc 8 : (n4, n5), [1 49 5000]

Figure 4.6: Small instance graph example

The solution value for that instance is 40100, while the linear relaxation gives

a bound of value 30706, approximately. The cover inequality (4.22) is violated by
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the linear relaxed solution, and can be added to the formulation, which results in

a better bound of value approximately 33057.

y1 + y2 + y4 + y6 � 1 (4.22)

We define X, the set of points restricted to the flow conservation constraints,

and Y , the set of points restricted to the binary domain, and capacity and forcing

constraints. Considering that, for all i 2 N and k 2 K, qk
i
= qk if i is the origin

of commodity k, qk
i
= �qk if i is the destination of commodity k, and qk

i
= 0

otherwise, the sets X and Y are formally defined as follows:

X = {x 2 R|A||K|
+ :

X
j2N+

i

xk

ij
�

X
j2N�

i

xk

ji
= qk

i
, 8i 2 N, k 2 K}

Y = {x 2 R|A||K|
+ , y 2 B|A| :

X
k2K

xk

a
 waya; xk

a
 bk

a
ya, 8a 2 A, k 2 K}

Then, for C = {1, 2, 4, 6}, the pertubation function can be defined as (4.23).

Finally, for di↵erent values of p, Figure 4.7 illustrates the function w(p), given by

the black staircase line, and its convex envelope co[w(p)], given by the densely

dotted black line. Remind that the supporting hyperplans of co[w(p)] defined by

[�µ 1]T , give, at p = 0, �w⇤(µ) the negative of the conjugate function, which is

indeed equal to the Lagrangian function at point µ. In this case, note that µ = 0

provide the best value, while it becomes deteriorated for higher values of µ.

w(p) = inf(x,y)2X\Y {f(x, y) :
X

c2C

yc � 1 � p} (4.23)
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Figure 4.7: Perturbation function for the FCMC example

4.8 Computational experiments

For the computational experiments, the instances considered were the bench-

mark groups Canad-C, Canad-R, and Canad-N. Computational times are given

in seconds, and Cplex 12.8 was used to solve the LPs, when necessary. To avoid

adding inequalities that will rapidly become satisfied for the rest of the optimiza-

tion process, no addition is performed before 100 iterations. Furthermore, added

inequalities not violated after 10 consecutive iterations are removed.

The tests were run in a 60Gb RAM, Intel(R) Xeon(R) CPU E5-2670, 2.60

GHz Linux computer. The parameters of the Volume Algorithm and the Bundle

Method were set accordingly to the calibration made in section 3.6.2. A time limit

of 3600 seconds and a limit of 1000 iterations were set.

This section starts with the results obtained with the performances of the

standard Relax-and-Cut algorithm, followed by the results with the sensitivity

analysis and constraint scaling. At the end of the section, we compare the cutset

generation procedure, discussed in section 4.3, to the one proposed by Chouman

et al. [49].

Before discussing the results, the notation used in the remainder is presented:

considering zl the bound given by the Lagrangian knapsack relaxation, solved by

the regular Volume Algorithm, and z̄ the bound provided by the respective Relax-

and-Cut method, the deviation ‘Dev’ measures the benefit of the given procedure,

relative to zl:

Dev = (z̄ � zl)/zl ⇤ 100 (4.24)
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Therefore, in every Table, columns ‘Max Dev %’ present the maximum devia-

tion obtained for that related group of instances, while columns ‘Avg Dev %’ give

the average deviation for that group. Furthermore, the average computational

times are given in columns ‘t’, measured in seconds, and columns ‘Num’ present

the average number of cuts added during the optimization processes.

4.8.1 Cutset-based inequalities

The first set of tests aim to verify the benefits of each type of cutting in-

equalities considered. The results are shown in Tables 4.1, aggregated by group

of instances: Table 4.1a presents the average results for group N, Table 4.1b for

group C, and Table 4.1c for group R. The first 4 lines of each table give the results

for each type of cut, being added solely, while lines ‘All’ give the results when all

types of cuts are considered, simultaneously.
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(a) Benchmark Instances N

Short Term Violation Long Term Violation

Max Avg Max Avg

Dev % Dev % Num t Dev % Dev % Num t

Cover 0.01 0.00 1141 16.6 0.01 0.00 3 16.8

Min Card 0.02 0.00 1178 18.4 0.01 0.00 3 17.0

Flow Cover 0.00 0.00 4267 21.3 0.01 0.00 0 19.0

Flow Pack 0.03 0.00 3995 21.6 0.04 0.00 1 19.2

All 0.01 0.00 8458 40.5 0.02 0.00 8 22.5

(b) Benchmark Instances C

Short Term Violation Long Term Violation

Max Avg Max Avg

Dev % Dev % Num t Dev % Dev % Num t

Cover 8.55 0.48 567 6.6 8.99 0.53 20 6.6

Min Card 9.50 0.51 702 6.6 8.68 0.46 19 6.5

Flow Cover 1.72 0.10 1623 7.9 2.55 0.18 12 7.0

Flow Pack 4.44 0.35 1207 7.5 5.67 0.45 10 7.0

All 7.71 0.46 3247 12.9 9.46 0.78 54 7.6

(c) Benchmark Instances R

Short Term Violation Long Term Violation

Max Avg Max Avg

Dev % Dev % Num t Dev % Dev % Num t

Cover 0.25 0.02 391 0.9 0.28 0.02 10 0.9

Min Card 0.25 0.02 465 0.9 0.28 0.02 11 0.9

Flow Cover 1.43 0.07 923 1.2 1.62 0.07 2 1.0

Flow Pack 4.13 0.16 770 1.2 4.44 0.18 3 1.0

All 3.35 0.14 1853 3.2 4.91 0.19 27 1.3

Table 4.1: E�ciency of cuts in the Relax-and-Cut algorithm

Columns under ‘Short Term Violation’ label present the results considering

that, to be added, inequalities have to violate only the current Lagrangian sub-

problem solution, while ‘Long Term Violation’ label makes reference to the fact

that inequalities may also violate the historical linear solution (vector x̃ in Algo-

rithm 4) provided by Volume. As one can notice in the tables, the number of added

inequalities is drastically reduced, without deteriorating performances in terms of

quality of bound, with ‘Long Term Violation’. Especially when all cut types are

allowed, the gains in computational times, with a reduced number of added cuts
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is clearly perceived. Nevertheless, despite the significant quantity of cuts inserted

with ‘Short Term Violation’, the computational times remain competitive, thanks

to the removing procedure of non-violated cuts.

Still regarding ‘Short Term Violation’, one can deduce that most of the iden-

tified violated cuts were not improving with respect to the bound value, since the

results obtained with that approach were not better than the ones obtained with

‘Long Term Violation’, sometimes even worse. Indeed, the addition of irrelevant

cuts may disturb the search direction and stepsize, resulting in bounds a bit worse

than the one expected. In that manner, only the ‘Long Term Violation’ approach

is considered for the rest of the computational experiments.

With respect to each type of cut independently, the flow pack inequalities

provided the best results for instances in groups R and N, while for group C,

cover and minimal cardinality inequalities were more e�cient. At first glance, the

best overall performances were obtained with the ‘All’ configuration. However,

the same cannot be a�rmed with the consideration of sensitivity analysis and

constraint scaling. Unfortunately, even though better results were obtained when

those two additional features are considered, the average bound improvements

were not significant for the majority of the instances, presenting small increments

on average.

4.8.2 Sensitivity analysis

We now present the results obtained when sensitivity analysis is applied in

Algorithm 4, i.e. considering flag=true. The results, also aggregated by group of

instances, as in precedent tables, are presented in Table 4.2. Since the ‘All’ config-

uration provided the best overall results in the previous section, its performances

are compared to the cover and minimal cardinality configurations. A third case is

considered, allowing the addition of both cover and minimal cardinality cuts (lines

‘Cover & Min Card’).

As one can observe, the sensitivity analysis improved the performances of the

Volume-based Relax-and-Cut algorithm for all groups of benchmark instances,

providing better of equal quality solutions on average. Especially for group R,

that gain was greater than 6% considering the maximum deviation in that group.

For group C, average results reached 1% of bound improvement, while it could

reach no better than 0.8%, before.

As mentioned, the benefits of considering all types of cuts are no longer evident

when sensitivity analysis is applied. In this case, it may be preferable to consider

only cover and minimal cardinality cuts, noting that for group C, the ‘Cover & Min

Card’ configuration performed better, while for group R the ‘Cover’ configuration
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presented better results on average.

(a) Benchmark Instances N

flag = false flag = true

Max Avg Max Avg

Dev % Dev % t Dev % Dev % t

Cover 0.01 0.00 16.8 0.42 0.05 21.1

Min Card 0.01 0.00 17.0 0.42 0.05 21.6

All 0.02 0.00 22.5 0.42 0.05 28.9

Cover & Min Card 0.01 0.00 21.7 0.42 0.05 22.3

(b) Benchmark Instances C

flag = false flag = true

Max Avg Max Avg

Dev % Dev % t Dev % Dev % t

Cover 8.99 0.53 6.6 10.82 0.99 7.5

Min Card 8.68 0.46 6.5 10.68 0.93 7.4

All 9.46 0.78 7.6 10.38 0.97 8.9

Cover & Min Card 10.31 0.63 7.6 11.18 1.01 7.7

(c) Benchmark Instances R

flag = false flag = true

Max Avg Max Avg

Dev % Dev % t Dev % Dev % t

Cover 0.28 0.02 0.9 6.85 0.66 0.7

Min Card 0.28 0.02 0.9 6.34 0.58 0.7

All 4.91 0.19 1.3 6.89 0.65 0.8

Cover & Min Card 0.59 0.03 1.1 6.60 0.65 0.7

Table 4.2: Sensitivity Analysis Results

In a second moment, the performances of sensitivity analysis are measured

considering a predefined set of cover inequalities to be added in a Lagrangian

fashion to the strong formulation, before start solving the Lagrangian dual. Here,

the goal is to observe if the good results obtained previously are related only to

the strength of the cuts inserted, or if the sensitivity analysis may really boost

the Lagrangian optimization process, given that the set of on-the-fly added cuts

is probably di↵erent, when running the Relax-and-Cut with and without the ad-

ditional feature.

We also test the e↵ect of solving the problem (4.10)-(4.20) to optimality, re-
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stricted to the space of added dual variables, leaving the flow dual variables fixed to

their current values. Moreover, the optimal solution value for the strong linear re-

laxation, including the set of additional cuts, is also computed, with results shown

in Table 4.3b, serving as reference, since the Lagrangian subproblem presents the

integrality property. In that sense, to avoid having to deal with too big linear

programs, only cover inequalities are considered in this second test set.

The results are presented in Table 4.3, aggregated by groups of instances ar-

ranged in lines. In 4.3a, the last three columns under ‘flag=true, exact’ present the

results obtained with the exact approach of sensitivity analysis, while the three

columns in the middle correspond to the heuristic approach, and the first three

ones to the Relax-and-Cut algorithm without such a feature.

(a) Relax-and-Cut

flag=false flag=true flag=true, exact

Max Avg Max Avg Max Avg

Dev % Dev % t Dev % Dev % t Dev % Dev % t

N 0.02 0.01 7.9 0.39 0.05 7.9 0.41 0.05 9.3

C 7.85 0.28 1.6 11.24 1.02 1.6 6.12 0.45 2.8

R 0.05 0.01 0.9 5.20 0.01 0.9 5.12 0.01 1.7

(b) LP Bound

Max Dev % Avg Dev %

N 0.51 0.13

C 12.17 1.20

R 5.23 0.78

Table 4.3: Sensitivity Analysis with Exact Approach

As one can notice, the results show that, indeed, the procedure of sensitivity

analysis significantly improved the performances of the regular Relax-and-Cut

algorithm, also providing better bounds for all groups of instances in this second

set of tests. Remark that the heuristic procedure provided bounds less than 1%

lower than the bound obtained solving the strengthened linear relaxation (Table

4.3b). In its turn, for the standard procedure, a margin of more than 4%, when

compared the LP value, is observed.

Furthermore, the exact approach did not present an expressive improvement

with respect to the heuristic one, performing better only for group N. In fact,

the proposed heuristic tries to get a modified trial point that is closed to the
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current search direction, while the exact approach, do not take such an aspect

into account, which may cause a convergence issue.

In terms of computational times, the heuristic sensitivity analysis did not cause

an increase in computational costs, while solving an LP at each iteration in the

exact approach, may be costly in terms of time consumption, according to the

results in Table 4.3a. Moreover, note that these second computational tests cor-

respond to one iteration of a Delayed Relax-and-Cut procedure [159]. That is to

say, cuts were identified after a run of the regular Volume Algorithm, and a second

run took place with the set of identified cuts added. The dual solution of the first

run was used as hotstart to the second one. Therefore, it can be concluded that

the proposed feature of sensitivity analysis may improve Relax-and-Cut scheme

performances, both in Delayed and Non-Delayed versions, without increasing com-

putational times too much.

Bundle Method

Finally, remind that more than one subgradient can be included at a time into

the bundle of Bundle Methods. Therefore, two versions of the Bundle-based Relax-

and-Cut procedure using heuristic sensitivity analysis were implemented. The

first one computes only one subgradient, following the same procedure described

in section 4.7.2. The second one computes two subgradients: one corresponding

to the trial dual point before sensitivity analysis, and another one after sensitivity

analysis, computed like in the first version.

The results are presented in Table 4.4, aggregated by groups of instances ar-

ranged in lines, considering only cover inequalities. The last three columns under

‘flag=true, 2 items’ present the results obtained with the addition of 2 items per

iteration, while the three columns in the middle correspond to the unique item

approach, and the first three ones to the version without sensitivity analysis.

flag=false flag=true flag=true, 2 items

Max Avg Max Avg Max Avg

Dev % Dev % t Dev % Dev % t Dev % Dev % t

N 0.05 0.00 33.0 0.39 0.06 29.4 0.20 0.03 32.2

C 6.15 0.30 8.9 10.85 0.97 8.2 9.93 0.82 8.9

R 3.19 0.10 1.0 5.96 0.53 1.1 6.59 0.41 1.2

Table 4.4: The Bundle Method and Sensitivity Analysis

According to Table 4.4, the use of sensitivity analysis is also beneficial for the
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Bundle-based Relax-and-Cut scheme, providing better solutions for every instance

group, when compared to the regular version. Moreover, it can be seen that the

possibility of adding more than one subgradient at a time is not necessarily an

advantage for the optimization process. Except for some instances of group R,

the single-item approach provided better bounds within less time, also giving the

best average results overall.

Comparing the Volume and Bundle versions (‘flag=true’ columns of Table 4.4

and ‘Cover’ lines of Table 4.2), Volume provided the best performances in general,

with respect to time consumption. In terms of quality of bound, the Bundle version

managed to be slightly better for group N, on average. However, for groups C and

R the Volume version presented the best improvements on average, especially for

group R, where the di↵erence was bigger.

4.8.3 Constraint scaling

We now present the results obtained with the constraint scaling, which consid-

ers the ‘normalized’ formulation of the FCMC problem. The sensitivity analysis

was also tested in this case. The results are shown in Tables 4.5 and 4.6. Table

4.5 shows results aggregated by group of instances, as in precedent tables. Like

in Table 4.1, the first 4 lines of each subtable give the results for each type of

cut, being added solely, while lines ‘All’ give the values when all types of cuts are

considered.
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(a) Benchmark Instances N

Max Dev % Avg Dev % t

Cover 0.43 0.06 21.1

Min Card 0.44 0.07 21.4

Flow Cover 0.05 0.01 24.0

Flow Pack 0.05 0.01 23.7

All 0.43 0.06 28.1

(b) Benchmark Instances C

Max Dev % Avg Dev % t

Cover 11.75 1.13 7.4

Min Card 11.69 1.10 7.6

Flow Cover 1.19 0.06 8.0

Flow Pack 2.06 0.07 8.1

All 7.35 0.44 8.7

(c) Benchmark Instances R

Max Dev % Avg Dev % t

Cover 7.03 0.73 1.0

Min Card 7.02 0.69 1.0

Flow Cover 0.66 0.03 1.2

Flow Pack 0.66 0.02 1.2

All 4.30 0.37 1.5

Table 4.5: Constraint Scaling Results

As can be observed in the first table, the ‘Cover’ and ‘Min Card’ configurations

provided the best performances in both aspects: time consumption and quality

of bound. Like in section 4.8.2, no benefits in including flow pack and flow cover

inequalities were perceived. Moreover, comparing Tables 4.2 and 4.5, constraint

scaling turned out to be the best alternative to the Relax-and-Cut scheme, pro-

viding notably better results than the sensitivity analysis alone.

Still, it can be observed in Tables 4.5 and 4.1 (‘Long Term Violation’ columns)

that the ‘Flow Cover’ and ‘Flow Pack’ configurations were sometimes worse, when

constraint scaling is considered. Mainly for groups C and R, the losses in bound

improvement attained almost 3.8%, indicating that constraint scaling may be use-

ful for the flow pack and flow cover inequalities too, although such a procedure

seems not to be as simple as for flow balance constraints. In addition, a sensitiv-

ity analysis can be attempted in the dimension of the flow cuts dual variables, for
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which case a more complex procedure is needed too. We leave these considerations

for further research.

(a) Benchmark Instances N

flag = false flag = true

Max Avg Max Avg

Dev % Dev % t Dev % Dev % t

Cover 0.43 0.06 21.1 0.43 0.07 21.1

Min Card 0.44 0.07 21.4 0.44 0.07 21.6

Cover & Min Card 0.43 0.07 21.9 0.44 0.07 21.9

(b) Benchmark Instances C

flag = false flag = true

Max Avg Max Avg

Dev % Dev % t Dev % Dev % t

Cover 11.75 1.13 7.4 11.79 1.15 7.6

Min Card 11.69 1.10 7.6 11.93 1.15 7.5

Cover & Min Card 11.39 0.83 7.6 11.65 1.09 7.5

(c) Benchmark Instances R

flag = false flag = true

Max Avg Max Avg

Dev % Dev % t Dev % Dev % t

Cover 7.03 0.73 1.0 7.04 0.74 1.0

Min Card 7.02 0.69 1.0 7.04 0.72 1.1

Cover & MinCard 6.05 0.68 1.1 6.76 0.70 1.1

Table 4.6: Constraint Scaling with Sensitivity Analysis Results

Finally, Table 4.6 presents the results obtained combining constraint scaling

and sensitivity analysis, with values arranged such as in Table 4.2. Only cover

and minimal cardinality inequalities are considered, since they provided the best

results in the previous table.

According to Table 4.6, the use of sensitivity analysis is always beneficial in

general. However, the gains in bound quality are not as high as it was observed

in Table 4.2. Furthermore, for this combined approach, observe that the ‘Cover’

configuration performed generally better, except for the group N, for which ‘Min

Card’ configuration presented slightly better results.
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4.8.4 Cutset generation

In order to test the e�ciency of the heuristic proposed to define cutsets, we

solve, for each instance, the weak relaxation of the present problem, including cover

inequalities obtained with the separated cutsets. We measure the proportional

increase�zw to the weak relaxation bound zw, due to the addition of the generated

cover inequalities. Therefore, the value of z̄ in equation (4.25) is given by the weak

linear relaxation with the cover inequalities added. We take the cover inequalities

as example, to measure performances.

�zw = (z̄ � zw)/zw ⇤ 100 (4.25)

The Table 4.7 show the results. The cutsets and covers were generated during

two runs of the Relax-and-Cut procedure, with 1000 iterations each. The first

run used the standard algorithm, and the second one embedded sensitivity anal-

ysis. Then, the collection of generated covers inequalities was added to the weak

relaxation, and the LP was solved with Cplex.

�zw % Metaheuristic %

N 0,7 -

C 11,8 -

R 10,2 -

(C, R) 11,0 8,54

Table 4.7: Cutset generation for benchmark Instances C, N and R

We compare our results to the ones obtained by Chouman et al. [49], on the

same set of instances (C and R). The authors proposed a metaheuristic-based pro-

cedure for cutset generation. The column ‘Metaheuristic’ shows the average value

of �zw provided in [49], stressing that only the overall average result was provided.

As one can notice, the procedure proposed here produced interesting cutsets, that

enabled the identification of better cover inequalities than the metaheuristic-based

one.

4.9 Conclusion

In this chapter we presented a Volume-based Relax-and-Cut scheme, using

cutset-based inequalities as cuts to be added in a ‘Non-Delayed’ fashion to the
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Lagrangian relaxation of the FCMC problem. Unfortunately, the improvements

on the lower bound maximal values were not much bigger than 1% on average, but

for some instances a gain of 11% could be achieved using additional features to

enhance performances: Constraint Scaling and Sensitivity Analysis. In addition,

the best results were obtained with cover and minimal cardinality inequalities.

Considering the best Relax-and-Cut configuration, the average results for very

large scale instances (groups A to H of section 3.6.1) are shown in the appendix

C. The same conclusions can be made for those instances, such that lower bounds

increases remained under 1%, with the exception of instances in group B, for which

improvements attained 1.25%.

Moreover, a new procedure to separate cutsets was proposed, proving to be

competitive to another successful approach in the literature. Remark that the

presented procedure can be used in the LP context too. Since, with available dual

values, it su�ces to solve the Lagrangian subproblem to get an integer vector used

in Algorithm 5.

Future research may aim at proposing di↵erent cuts that are able to further

improve bounds, and the implementation of sensitivity analysis in other contexts,

for which constraint scaling is not trivial. In the next chapter, the present Relax-

and-Cut algorithm is embedded in a Branch-and-Cut scheme. It is used as a solver

to each node LP of the search tree.
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Chapter 5

Volume-Based Branch-and-Cut

As a final contribution of the present thesis, in this chapter, we present the

Branch-and-Cut algorithm, which embeds the Relax-and-Cut procedure discussed

in the previous chapter. Moreover, a Lagrangian Feasibility Pump heuristic is used

to accelerate finding better upper bounds. A Branch-and-Cut heuristic version is

also tested. The results were promising for both exact and heuristic approaches.

5.1 Introduction

As mentioned in section 2.3.1, the Branch-and-Cut algorithm is based on

Branch-and-Bound schemes, where cutting planes are added to the formulation, at

each search tree node, in order to strengthen the linear relaxation of the problem.

In that sense, the Relax-and-Cut method discussed in the previous chapter is now

embedded in the search tree to help solving the linear restriction of FCMC at

each node. Moreover, we consider that a good initial feasible solution is available,

which is a completely plausible statement, given the good e�ciency of the heuris-

tics present in the literature (see 2.3.3). The same is considered by [50], while

developing an LP-based Branch-and-Cut algorithm for the FCMC. In section 5.8,

we compare our results to their algorithm.

The best Relax-and-Cut implementation, according to the results presented in

subsection 4.8, was considered, inclusive the parameters setting, the stopping cri-

teria and the constraint scaling features (see 4.7.3), as well as the cover inequalities

being included in a non-delayed fashion. Minimal cardinality inequalities and the

sensitivity analysis are not considered since their inclusion in the Relax-and-Cut

algorithm did not improve performances significantly, which may lead to losses in

time-consuming aspects.

For the remainder of this section, let consider (A1, A0, A⇤) an arbitrary node,

where A1 is the set of 1-fixed arcs {a 2 A : ya = 1}, A0 is the set of 0-fixed arcs
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{a 2 A : ya = 0}, and A⇤ is the set of nonfixed arcs A \ {A1 [ A0}. Note that

A1 \ A0 \ A⇤ = ; and A1 [ A0 [ A⇤ = A. Moreover, let consider Z̄ the value

of the best known feasible solution, zL the Lagrangian final objective value of a

node, and f̄a, a 2 A⇤, the reduced costs of the arcs, given the final dual solution

on that node. As in the previous chapter, here we keep notating (x̃, ỹ): the linear

relaxation approximate vector provided by the Volume Algorithm, and (x̂, ŷ): the

solution for the current Lagrangian subproblem.

The next sections discuss implementation aspects of the Branch-and-Cut al-

gorithm, such as local and global cuts (section 5.2), variable fixing (section 5.3),

branching, and pruning (sections 5.4 and 5.5 respectively). Most of the imple-

mented features are based on strategies successfully implemented in previous works

in the literature, mainly in [197, 27, 150, 50, 128]. However, a specially tailored

Volume-based Branch-and-Cut algorithm for the FCMC is a new contribution.

Moreover, a Feasibility Pump heuristic [80] for the FCMC is presented, using

Volume as a solver for LPs. In fact, a Branch-and-Cut algorithm with heuristic

variable fixing, based on Feasibility Pump is also tested. Upper bounds and the

heuristic procedure are presented in section 5.6. At the end of this chapter, the

computational experiments are reported in section 5.8, followed by a conclusion

in section 5.9.

5.2 Local and global cuts

The terms local and global, in the present context, make reference to the validity

of an added cut w.r.t the nodes of the search tree. Local cuts are only valid for

some node and its descendants (the subtree), while the global ones are valid in

the whole tree.

In that sense, cover inequalities generated in the root node may be considered

as global cuts, while for a given node (A1, A0, A⇤), only variables in A⇤ will be

used to generate covers inequalities, thus they must be considered as local cuts.

Remark that a local cut can be made globally valid by a lifting procedure (see

4.4.3). According to Mitchell [173], that may represent a gain in terms of memory

storage requirements, since one can avoid storing the same inequality in di↵erent

subtrees. However, remind that a binary knapsack problem must be solved for

each lifting variable, which may represent a loss in time performances. Given the

large size of instances considered, we choose not to apply such a procedure, giving

preference to a faster algorithm.

In addition to cover inequalities, in the next subsections, we present other

cuts considered to be added, taking advantage of the problem structure and the
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information provided by the search tree. That is a very advantageous strategy

for accelerating the convergence of the Branch-and-Cut algorithm, being widely

applied in the literature as one can see in surveys [170, 173, 73].

5.2.1 Local Lagrangian cardinality cuts

The second type of local cut considered is related to inequalities presented by

Sellman et al. [197], and the reduced cost variable fixing procedure discussed in

subsection 5.3.1. It comes from the fact that, given a feasible solution, one can

set bounds on the number of arcs in a defined set, that has to be present in any

improving solution.

According to Kliewer and Timajev [150], at a given node, inequality (5.1) is

locally valid, for T+ ✓ {a 2 A⇤ : f̄a > 0}, such that zL + f̄a + f̄b � Z̄, 8 a, b 2 T+,

i.e. the set of nonfixed arcs, such that every pair of arcs in the set satisfies that

inequality. That means that feasible solutions in the subtree of the current node

must present at most one opened arc from T+, so it can be an improving solution

over Z̄. Similarly, inequality (5.2) is locally valid, for T� ✓ {a 2 A⇤ : f̄a < 0},
such that zL� f̄a� f̄b � Z̄, 8 a, b 2 T�, which means that any improving solution

existing in that subtree must have at most one arc in T� closed.

X

a2T+

ya  1 (5.1)

X

a2T�

ya � |T�|� 1 (5.2)

5.2.2 Global feasibility cuts

Remark that any feasible solution in a certain subtree (A1, A0, A⇤) must satisfy

the multicommodity flow system (5.3)-(5.5), where node sets N+
i

and N�
i
, i 2 N ,

are defined for the arc set A \ A0 as in section 2.1.

P

j2N+
i

xk

ij
�

P

j2N�
i

xk

ji
=

8
><

>:

qk, if i = O(k)

�qk, if i = D(k)

0, otherwise

8i 2 N, k 2 K (5.3)

P
k2K

xk

a
 wa 8a 2 A \ A0 (5.4)

xk

a
� 0 8a 2 A \ A0, k 2 K (5.5)
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Hence, the global feasibility cuts come from the fact that, if the multicommod-

ity flow system is infeasible for the arc set A \ A0, then inequality (5.6) is valid

not only in that subtree but for the whole problem.

X

a2A0

ya � 1 (5.6)

Since only closed arcs can cause infeasibility, the global feasibility cut prevents

an infeasible topology to be generated again. Moreover, such inequality was im-

plemented by Chouman et al. [50] as a filtering strategy for the same problem,

obtaining good results.

In the Branch-and-Cut algorithm, the cuts (5.6) are generated during the

heuristic procedure, or when node infeasibility is detected either by the Volume

Algorithm, or by solving the multicommodity flow system exactly. Indeed, the La-

grangian dual bound tends to infinity when the node is infeasible, but in practice,

this is not always detectable, due to stopping criteria such as time and iterations

limits. In that sense, the multicommodity flow system has to be solved to ensure

the feasibility of each node. Note that this corresponds to find any feasible so-

lution, which is less costly than finding the minimum-cost multicommodity flow

(problem (5.7)).

5.2.3 Local optimality cuts

Similar to the feasibility cuts, optimality cuts also aim to prevent undesired

topologies to be repeatedly generated. Indeed, considering the subproblem (5.7),

given a topology (Ā0, Ā1), A = Ā0 [ Ā1 and Ā0 \ Ā1 = ;, where Ā1 is the set of

opened arc, and Ā0 is the set of closed arcs, if Z01 =
P

a2Ā1
fa + c̄(Ā0, Ā1) � Z̄,

then that topology is not desired, and inequality (5.8) must be included.

c̄(A0, A1) = min{
X

k2K

X

a2A1

ck
a
xk

a
: (5.3)� (5.5)} (5.7)

In fact, such inequality has been proposed as combinatorial Benders cut, by

Codato and Fischetti [53]. However, in the context of Benders decomposition, cuts
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of type (5.8) are generated to break infeasibility. Note that the global feasibility

cut (5.6) is indeed a stronger combinatorial Benders cut.

X

a2Ā1

(1� ya) +
X

a2Ā0

ya � 1 (5.8)

Given that they exclude feasible solutions, thus treated as pseudo-cuts for the

problem, inequalities (5.8) are not valid for the entire set of integer solutions of

the problem, but one can be sure that the optimal point is not cut o↵. Note that

the same statement can be done for (5.1) and (5.2). In contrast to combinatorial

Benders cut, local optimality pseudo-cuts intend to cut o↵ solution areas that have

already been explored and are known not to contain better solutions. In that sense,

the proposed pseudo-cuts are similar to the local branching constraints [81], for

k = 0 neighborhoods. In the present work, inequalities (5.8) are separated only

when a feasible solution is already available, provided by the upper bounding

procedures of section 5.6.

5.3 Variable fixing

Another important feature to improve performances of the Branch-and-Cut

algorithm is the variable fixing strategy, which includes reductions in the bounds

of variables. Indeed, much information can be extracted from feasibility, added

cuts and reduced costs, to make inferences about the actual possible variable

values.

5.3.1 Reduced cost fixing

A very classical type of variable fixing regards the reduced costs of binary

variables (see [182]). We use the Lagrangian reduced costs to infer if a variable

can be fixed to either 0 or 1. Considering the reduced costs f̄ at the final solution

given by the Volume at a certain node of the tree, one can say that:

If f̄a < 0 and z̄L � f̄a � Z̄ then one can fix ya = 1

If f̄a > 0 and z̄L + f̄a � Z̄ then one can fix ya = 0

5.3.2 Flow upper bound fixing

As reduced cost were previously used to determine binary variable fixing, one

can consider c̄k
a
, a 2 A \ A0, k 2 K, the reduced costs of flow variables, to set
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reductions in the upper bound of these variables. According to Chouman et al.

[50], given (x̂, ŷ) the optimal solution to a Lagrangian subproblem, if for an arc

a 2 A \A0 and commodity k 2 K, x̂k

a
= 0, c̄k

a
> 0 and zL + f̄a(1� ŷa) + c̄k

a
bk
a
> Z̄,

then xk

a
 dk

a
< bk

a
, where:

dk
a
=

Z̄ � zL � f̄a(1� ŷa)

c̄k
a

(5.9)

The reasoning behind this domain reduction is based on the consequences,

to the current lower bound, of the addition of constraint xk

a
> dk

a
. If the new

lower bound exceeds the current best integer solution value Z̄, then the constraint

xk

a
 dk

a
must be added.

Note that if no lower bounds are imposed on the flows, c̄k
a
> 0 implies x̂k

a
= 0,

however if lower bounds xk

a
� lk

a
, lk

a
> 0 exist for some a 2 A \ A0 and k 2 K,

then it is possible to encounter c̄k
a
> 0, while x̂k

a
> 0. Such a situation may occur

due to the flow lower bound fixing strategy proposed in section 5.3.3. Hence, we

extend the proposition provided in [50], to the case where x̂k

a
� 0 and c̄k

a
> 0.

Corollary 5.3.1. given (x̂, ŷ) the optimal solution to the Lagrangian subprob-

lem, if for an arc a 2 A \ A0 and commodity k 2 A \ A, x̂k

a
� 0, c̄k

a
> 0 and

zL + f̄a(1� ŷa) + c̄k
a
(bk

a
� x̂k

a
) > Z̄, then xk

a
 x̂k

a
+ dk

a
< bk

a
.

Proof. If x̂k

a
= 0 then the proof resumes to what is presented in Proposition 1

of [50]. For x̂k

a
> 0, let consider that the constraint xk

a
> dk

a
is added to the

problem. The new solution value for the Lagrangian subproblem must be greater

than z0
L
= zL + c̄k

a
(dk

a
), thus if z0

L
� Z̄, (which is true, given the definition of dk

a
)

then xk

a
 dk

a
.

5.3.3 Flow lower bound fixing

From another perspective, one may determine lower bounds on the flow of

opened arcs considering the optimal solution (x̂, ŷ) of value zL to the current La-

grangian subproblem, and the reduced costs c̄k
a
, a 2 A \ A0, k 2 K. Remind that,

for all a 2 A1, x̂k

a
� 0 if c̄k

a
< 0, and x̂k

a
= lk

a
if c̄k

a
> 0, being lk

a
� 0 the current

lower bound on the corresponding flow.
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Proposition 3. For all arc a 2 A1, let consider the reduced costs in a non-

decreasing order: c̄k1
a
 c̄k2

a
 ...  c̄kn

a
< 0, such that n = |C̄|, C̄ the set of

indices of commodities with negative reduced costs in that arc. If for a certain

a 2 A1, ki, i 2 C̄, one have zL� c̄ki
a
(x̂ki

a
� lki

a
) > Z̄, and

P
n

j=(i+1) c̄
kj
a (b

kj
a � x̂

kj
a ) = 0,

then xki
a
� x̂ki

a
�mki

a
can be added, and x̂ki

a
�mki

a
 bk

a
.

mki
a
= �(Z̄ � zL)/c̄

ki
a

(5.10)

Proof. Since we are dealing with a minimization function, only negative reduced

costs need to be taken in consideration. Moreover, if the restriction xki
a
< x̂ki

a
�mki

a

is added to the problem, the new solution value to the subproblem must be greater

than:

z0
L
= zL � c̄ki

a
mki

a
+

nP
j=(i+1)

c̄
kj
a (b

kj
a � x̂

kj
a )

Since zL � c̄ki
a
mki

a
= Z̄, thus z0

L
� Z̄ if

P
n

j=(i+1) c̄
kj
a (b

kj
a � x̂

kj
a ) = 0. Hence, if

z0
L
� Z̄, so we can state that xki

a
� x̂ki

a
� mki

a
, since smaller values of xki

a
would

only increase the value of z0
L
.

5.3.4 Constraint propagation

In the present case, remark that a reduction on the domain of a binary vari-

able, due to branching or variable fixing, may result in more variables being fixed

to satisfy local and global constraints. A concept proper to the constraint pro-

gramming area, constraint propagation is a process in which a reduction in the

domain of a decision variable is propagated to all of the other constraints being

related to that variable, maybe resulting in more domain reductions [34].

For a constraint generally formulated as
P

a2B �aya � b, where B ✓ A and

�a > 0 8 a 2 B, given the configuration A0
1, A

0
0 and A0

⇤:

• If
P

a2{B\A0
⇤} �a = b�

P
a2{B\A0

1}
�a, then ya = 1, 8 a 2 A⇤

• If
P

a2{B\A0
⇤} �a < b�

P
a2{B\A0

1}
�a, then the node can be pruned

For a constraint generally formulated as
P

a2B �aya  b, where B ✓ A and

�a > 0 8 a 2 B:

• If
P

a2{B\A0
1}
�a = b, then ya = 0, 8 a 2 A⇤
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• If
P

a2{B\A0
1}
�a > b, then the node can be pruned

In the case of constraints (5.8), if A0
1 = Ā1 and A0

0 = Ā0, then the node can

be pruned. However, if A0
1 ✓ Ā1, A0

0 ✓ Ā0 and |A0
⇤| = 1, then for a 2 A0

⇤, ya = 1

if a 2 Ā0, otherwise ya = 0.

5.3.5 Connectivity-based fixing

Another type of constraint propagation may concern the flow balance con-

straints, especially when arcs have been closed. In [50], Chouman et al. proposed

an algorithm to test connectivity, based on graph traversal procedures, that for ev-

ery node, performs complete forward and backward traversals of the graph, while

labeling arcs. At the end of the labeling procedure, one is able to tell if an arc

makes part of some path for a given commodity, or not at all. Moreover, for an

outgoing arc starting from a commodity origin, one can infer if all possible paths

for that commodity include that arc. The same can be inferred for an incoming

arc ending into a commodity destination.

With the connectivity test, one can conclude that xk

a
= 0, if arc a 2 A\A0 does

not belong to any path between the origin and destination of commodity k 2 K.

In contrast, if an arc a belongs to all possible paths for k, then xk

a
= qk, and if

a 2 A⇤, ya = 1. Moreover, if an arc a 2 A⇤ do not belong to any possible path for

any commodity, then ya = 0. Note that for a closed arc, the corresponding flow

upper bounds are consequently equal to zero.

In addition, considering the flow lower bounds l, and the flow upper bounds

b, at every node i 2 N , and for commodities k 2 K, such that i 6= O(k) and

i 6= D(k):

• If
P

j2N�
i
bk
ji
< bk

ih
, then bk

ih
=

P
j2N�

i
bk
ji
, for h 2 N+

i
;

• If
P

j2N+
i
bk
ij
< bk

hi
, then bk

hi
=

P
j2N+

i
bk
ij
, for h 2 N�

i
;

• If
P

j2N�
i
lk
ji
>

P
h2N+

i
bk
ih
, then the node must be pruned;

• If
P

j2N+
i
lk
ij
>

P
h2N�

i
bk
hi
, then the node must be pruned;

• If
P

j2N�
i
lk
ji
>

P
h2N+

i \{r} b
k

ih
, then

lk
ir
= max{lk

ir
,
P

j2N�
i
lk
ji
�

P
h2N+

i \{r} b
k

ih
} and yir = 1, for r 2 N+

i
;

• If
P

j2N+
i
lk
ij
>

P
h2N�

i \{r} b
k

hi
, then

lk
ri
= max{lk

ri
,
P

j2N+
i
lk
ij
�

P
h2N�

i \{r} b
k

hi
} and yri = 1, for r 2 N�

i
;
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The first two points express the fact that a commodity flow in a outgoing (incom-

ing) arc is at most the sum of maximum flow arriving into (leaving) the trans-

shipment node i. The following two points are related to flow conservation, and

the two final ones are derived from the fact that if the minimum flow entering

(leaving) a node is greater than the maximum possible flow that can leave (enter)

that node, after artificially closing an outgoing (incoming) arc, then that arc must

be open, and its flow will be at least the exceeding amount of flow that cannot be

satisfied by the other arcs.

5.3.6 LP-based fixing

A final type of variable fixing was considered, based on how an artificially fixed

arc may impact the current node linear program. Indeed, as mentioned before,

if a configuration (A0
0, A

0
1, A

0
⇤) is not feasible, or a computed lower bound on its

optimal value is greater than Z̄, then such an arc configuration is not interesting

and may be discarded.

Hence, the variable fixing procedure considers an arc whose value ỹ is close

to either its lower or upper bounds, and fix it to the opposite bound value, e.g.

an arc a 2 A⇤ presents ỹa ⇡ 1, so we fix ya = 0, then the modified LP is solved

with the Volume Algorithm (with a reduced limit of iterations), using the current

solution as warmstart. If the obtained lower bound is greater than Z̄, then the

arc must be fixed to 1.

In fact, this variable fixing is most likely to occur when the gap is already

sharp, so the procedure may contribute to close it. Therefore, the LP-based fixing

procedure is called when the current relative gap is less than or equal to 1.0%. In

that case, we compute, for every arc a 2 A⇤ presenting ỹa  0.1 (ỹa � 0.9), the

Lagrangian lower bound zL for the LP considering ya = 1 (ya = 0). If zL � Z̄,

then arc a is fixed to ya = 0 (ya = 1).

5.4 Branching

For the present problem, branching is performed on design variables, resulting

in two branches (0-child and 1-child nodes) each time. Here, an adaptive rule

is implemented, where the strong branching strategy (see [2] and the references

therein) is turned on and o↵ accordingly to the lower bound evolution.

The strong branching strategy implemented selects five arcs as branching can-

didates. Namely, such a branching strategy consists in solving, with a limit of

a few iterations, every candidate child, choosing the best variable to branch on,

provided a certain score function. Being C the set of branching candidates, the
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chosen one will be the best, w.r.t maxa2C{min(z1(a), z0(a))}, where z1(a) and

z0(a) are the computed objective values for the 1-child and 0-child of candidate

a 2 C, respectively. To select set C, we use the linear relaxation approximate

vector ỹ, provided by the Volume Algorithm, to take the five variables with the

greatest values of wa ⇤min{ỹa, 1� ỹa} as candidates, a 2 A⇤. In that manner, we

intend to evaluate arcs that are close to 0.5 and that have great capacities.

Even if such a branching strategy has provided good results in the present

work and in other contexts, its drawback may be to spend a considerable amount

of computational time solving the candidate children (10 in this case). In that

sense, we switch to a faster strategy every time the gap reduction starts to tail

o↵. Namely, if the current nominal gap (Z̄ minus the current lower bound) has

not improved at least 0.1% for more than 5 iterations, then the list of candidates

is set to 1, and a di↵erent rule to select the candidate is applied. The algorithm

returns to strong branching after a 1% improvement is perceived in the nominal

gap, compared to the last iteration where strong branching was performed.

When a single candidate must be selected for branching, the reliability branch-

ing proposed in [2] is applied. In this case, we compute an average gain per unit,

obtained selecting a certain branching variable, and use a score function based

on those averages to choose the next candidate. In fact, that is called pseudo-

cost branching [32], but a reliability parameter � is introduced to exclude those

variables that have not been selected for branching at least � times.

As described in [2], for a variable a 2 A⇤, let �0a and �1
a
be the increase in the

objective values from the parent node to the 0-child and the 1-child, respectively;

their gain per unit is then: ⇢0
a
= �0

a
/ỹa and ⇢1

a
= �0

a
/(1� ỹa). Furthermore, let ⌘0

a

and ⌘1
a
be the number of times that �0

a
and �1

a
were computed and their respective

child was feasible. Hence, the average gain per unit ⇢̄h
a
is given by the sum of the

⌘h
a
values of �h

a
divided by ⌘h

a
, h = 0, 1. Then, the candidate variable ā is chosen

accordingly to the score function:

ā = argmaxa2A⇤{min[ỹa⇢
0
a
, (1� ỹa)⇢

1
a
] : min(⌘1

a
, ⌘0

a
) � �}

If no reliable variable exists, then we select the variable whose ỹ is the closest to

0.5. The reliability parameter � was set to 10.

5.5 Pruning

In its turn, the pruning strategy is extremely important to reduce the size of

the search tree. Here, we discuss some rules that enable us to prune subtrees that

are known to not contain an optimal solution. As one can predict, a first intuitive
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common rule is to fathom infeasible nodes and the ones that provide a lower bound

higher than the current upper bound. Furthermore, even though it rarely occurs, if

a solution provided by the Volume-based Relax-and-Cut is feasible, then it is also

optimal to that subtree, and no further exploration is needed, thus that branch is

pruned.

Remark that while performing strong branching, one can extract information

leading to pruning or variable fixing in the current node. Indeed, if both 0-child

and 1-child are infeasible or have their solution value greater than the current

upper bound, the current node can be pruned, since no optimal solution can be

obtained with the present (A1, A0, A⇤)-configuration. Furthermore, if only the

0-child a candidate a 2 C is infeasible or provided a too high solution value, the

arc candidate can be opened, i.e ya = 1. The same can be stated for the 1-child.

Obviously, if any child node fits in some pruning situation, the corresponding

branch is not included in the tree.

Moreover, note that more pruning occasions may happen during the constraint

propagation of section 5.3.4. Regarding the connectivity-based fixing of section

5.3.5, if no connected path exists for a certain commodity, the node can be fath-

omed. In addition, pruning must occur if a flow variable xk

a
must be set to the

corresponding demand, and the current upper bound bk
a
is inferior to that quantity,

i.e. bk
a
< qk. The same must be done if it is detected that an arc can be closed,

while it is currently fixed opened.

Finally, proposed by Holmberg and Yuan [128], if for a node (A0, A1, A⇤),

c̄(A0, A1 [ A⇤) +
P

a2A1
fa � Z̄ (see equation (5.7)) then the node is fathomed,

since it cannot lead to a better solution than the current one. Additionally, ac-

cording to [128], if Ā0 ✓ {A1[A⇤}, the set of arcs not used in the optimal solution

of c̄(A0, A1 [ A⇤), is such that Ā0 ◆ A⇤, then no better primal solutions can be

found by further branching, thus the node can be fathomed. Such a pruning

occasion may occur while computing upper bounds, as in the next section.

5.6 Integer feasible solutions

A first way of obtaining a feasible solution is to solve the multicommodity flow

system (5.3)-(5.5) every time all arcs are fixed, more precisely the problem (5.7),

for a better quality solution. The system once solved, we add to the solution

value the fixed cost of arcs containing some amount of flow, closing the others to

construct the entire solution. As mentioned before, the Volume Algorithm rarely

provides a feasible solution, thus a linear programming solver is needed to solve

the multicommodity flow system.
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Actually, in the implemented algorithm, every time |A⇤|  0.3|A|, we solve

problem c̄(A0, A1 [ A⇤), and an integer feasible solution is constructed as dis-

cussed above. In this case, observe that the pruning rules defined at the end of

section 5.5 may be applied. Moreover, if the obtained integer solution is not better

than the current best one, an optimality cut can be added. Observe that an opti-

mality cut can be globally considered, but given the structure of a binary search

tree, it can only be of some interest in the local subtree, since it will be satisfied

everywhere else. If infeasibility is detected, global feasibility cuts are added.

In case A⇤ 6= ;, and the solution x̄ of c̄(A0, A1 [ A⇤) is such that x̄k

a
> bk

a
,

for some arc a and commodity k, the current flow bounds are added to (5.7) i.e.

x̄k

a
 bk

a
, 8 a 2 A \ A0, k 2 K, and the problem is reoptimized (the same is done

with the flow lower bounds). That surely will not produce a better solution, but

may increase the chances of pruning.

5.6.1 Feasibility pump

Additionally, a heuristic based on the Feasibility Pump algorithm proposed

by Fischetti et al. [80] was implemented. Originally, the method was proposed

as a solution approach for the problem of finding a feasible solution for a generic

MIP. Later, several other works have proposed improvements to the algorithm

[82, 1, 33, 71, 99]. The procedure keeps ỹ a feasible solution to the linear relaxation

of the problem, and an integer point y⇤. At each iteration, those vectors are

updated, trying to reduce their distance as much as possible.

The Feasibility Pump algorithm is formally presented in Algorithm 10. Con-

sidering P̄ the continuous space defined by the constraints of the problem, the

heuristic initializes with the linear relaxation vector ỹ, and a rounding procedure

is applied to get the initial integer vector y⇤. Then, at each iteration the integer

(infeasible) point is projected onto P̄ , with the computation of argminy{�(y, y⇤) :

x, y 2 P̄}. That generates the next ỹ point, which is rounded to provide, in its

turn, an updated y⇤. The function �(y, y⇤) measures the distance of y⇤ from P̄ ,

to be minimized.

According to Fischetti et al., the algorithm has the tendency to stall, cycling

over the same integer points. In that case, a perturbation step is performed in

the attempt of exploring other regions of the solution space. The procedure stops

either when an integer feasible solution has been returned, or when some stopping

criteria have been reached (time or iterations limit).
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Algorithm 10 The Feasibility Pump

Initialize ỹ := argminy{cx+ fy : x, y 2 P̄}
If ỹ is integer, return(ỹ, x̃);

y⇤  Round (ỹ)

while Stopping-criteria not reached do

Compute ỹ := argminy{�(y, y⇤) : x, y 2 P̄}
If ỹ is integer, return(ỹ, x̃);

y⇤  Round (ỹ)

Perturb y⇤ if cycling is detected.

In the implemented Branch-and-Cut scheme, the Feasibility Pump algorithm

runs in every node whose depth level d level in the search tree is divisible by 20

(d level mod 20 = 0), since running it more often may be too time consuming.

Therefore, for a node with proper depth, the heuristic considers only the arcs in

A0
⇤ = {a 2 A⇤ : 0.01  ỹa  0.99}, artificially setting to 1, arcs {a 2 A⇤ : ỹa >

0.99} and to 0, the arcs {a 2 A⇤ : 0.01 < ỹa}. This may prevent having to deal

with too large projection problems. The initial vector ỹ is then the approximate

solution provided by the Volume, while solving the current node LP.

The rounding procedure consists in setting y⇤
a
= 1 for arcs in A1

⇤ = {a 2 A0
⇤ :

ỹa � ✏}, and setting y⇤
a
= 0 for arcs in A0

⇤ = {a 2 A0
⇤ : ỹa < ✏}. Considering

A0
1 = A1 [ {a 2 A⇤ : ỹa > 0.99}, and A0

0 = A0 [ {a 2 A⇤ : ỹa < 0.01} the function

�(y, y⇤) was set to:

�(y, y⇤) :=
X

a2A0
⇤[A1

⇤[A0
1

X

k2k

ck
a
xk

a
+

X

a2A0
⇤

faya

In that manner, note that the new continuous solution ỹ tends to present values

close to 1 for arcs in A⇤
1, since no fixed cost is imposed on those arcs. In contrast,

for arcs in A⇤
0, the values tend to be close to 0, due to the presence of fixed costs.

The projection problem is solved by the Volume Algorithm, and the new ỹ is set

to the linear approximate solution provided by the solver.

Besides returning when an integer ỹ is obtained, the implemented heuristic

stops when a limit of 5 iterations has been reached or when cycling is detected.

Indeed, no perturbation is performed in the present feasibility pump algorithm,

however since it is executed in di↵erent nodes, we may consider each di↵erent

node configuration as a perturbed integer point. As a matter of fact, for every

heuristic run, the initial integer vector y⇤ is constructed as follows: in the presence

of random values 0  ra  1, 8a 2 A0
⇤, y

⇤
a
= 1 if ra  ỹa, otherwise y⇤

a
= 0 (the

reasoning behind this procedure is commented in section 3.5.2). Moreover, if a

precomputed integer feasible solution is available, up to 0.01|A| arcs are randomly
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chosen, so y⇤
a
= ȳa, the value of those arcs in that feasible solution.

As one is not certain to obtain a feasible solution with the Volume Algo-

rithm, problem c̄(A0
0 [ A0

⇤, A0
1 [ A1

⇤) is solved, and a feasible integer solution is

constructed as described at the beginning of this section. The rounding parame-

ter ✏ is initially set to 0.3 and then it is multiplied by 0.8 every time a heuristic

run finishes with an infeasible pair (A0
0 [ A0

⇤, A0
1 [ A1

⇤), and multiplied by 1.8

every time it returns a feasible integer solution worse than the current one if any.

However, ✏ is forced to stay in the interval [0.3, 0.7].

5.7 The algorithm

The Branch-and-Cut algorithm is formally presented below. In Step 1, the

upper bound is initialized by a heuristic procedure ad hoc, being the node pool

� initialized with the root node, which is set as the current one. In its turn,

Step 2 regards the tree search strategy. In fact, performances may depend on the

order in which the nodes stored in the pool are evaluated. Some strategies are the

breadth-first and the depth-first approaches, where the ordering is based on the

depth levels of the search tree. The former prioritizes nodes in a horizontal way,

while the latter prioritizes deeper nodes in the tree.

Another option is the best-first approach, which provided a score function,

the ordering is established according to the node score given by that function.

Moreover, hybrid strategies are possible, switching between approaches, as the

search goes through. In the implemented algorithm, the best-first approach is

implemented, prioritizing nodes with the smallest preprocessed LP solution values.

Remind that a number of Volume iterations are performed for every child node

before being inserted into the pool, thus a preprocessed bound value exists for

every child.

In fact, the best-first approach is combined with a diving strategy, that becomes

active when the value computed for a child node (provided a selected branching

variable) did not increase at least 0.1% w.r.t the bound value zL of the parent

node. In this case, the child with the least solution value is automatically set as

the next node to be evaluated. That same strategy occurs, if one of the selected

children is fathomable, in which case the algorithm dive in the search tree, setting

the other child as the next node to be evaluated.

The whole rationale behind the present tree search strategy is to focus on

raising lower bounds as fast as possible. Since the current lower bound corresponds

to the smallest solution value in �, the best-first strategy seems to be the most

appropriate to increase the lower bound quickly. In its turn, diving is performed
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in the attempt to prevent the algorithm from tailing o↵, which happens when �

has too many items with values very close to the current lower bound. Moreover,

to accelerate the algorithm, when diving is performed or when it starts to tail o↵,

a reduced iteration is considered: reliability branching is performed, rather than

strong branching (only one candidate variable is evaluated); and time-consuming

features, such as LP-based fixing and heuristics, are not allowed to run.

We take into consideration the fact that the solution value provided by the

Volume Algorithm may be up to 1% smaller than the linear relaxation value.

Hence, If the algorithm has dived 3 times or more, the current node is solved

exactly, by the simplex algorithm. The same happens at a not reduced iteration,

when the relative gap between the current node value zL and the upper bound Z̄

is less than or equal to 1%. A similar strategy is considered in [27].

The main operations performed on each node are listed in Step 3. Before being

solved, in Step 3(a) the node is preprocessed in order to verify if some variable can

be fixed by constraint propagation and connectivity, provided that branching has

already fixed one. We stress that connectivity-based fixing is performed only if

arcs have been closed previously. Afterwards, the node LP is solved by the Relax-

and-Cut procedure described in section 4.1 (Step 3(b)). More variable fixing is

attempted in Step 3(c), followed by the separation of Lagrangian cardinality cuts

for the current subtree, in Step 3(d).

Even though cuts may be removed from the Relax-and-Cut procedure (accord-

ing to section 4.1), the removed cuts are not completely deleted from that node,

remaining available for the corresponding subtree. Nevertheless, if a local cut be-

comes satisfied in some node, due to the changes in variable bounds performed by

branching or variable fixing, the cut is deleted for the rest of the subtree of that

node.

In order to enhance the algorithm performances, the Volume iterations are

stopped if the current dual solution value reaches the current upper bound. An-

other implemented feature aiming better performances is the utilization of previous

dual points as warmstarts for the Volume Algorithm. In that manner, the dual

solution of a certain node is taken as warmstart in strong branching preprocessing

iterations. In their turn, the preprocessed dual points work as warmstart in the

node evaluation.

In Step 4 we look for feasible solutions as discussed in section 5.6. Note that if

a feasible integer solution is obtained, an optimality cut is always available, since

either the current or the new solution will represent an undesired topology.

Finally, strong branching is performed in Step 5, as described in section 5.4.

Once the branching variable is selected, the feasibility of the children nodes is
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checked by solving the multicommodity flow system. Remark that feasibility cuts

(5.6) are only globally valid if the detected infeasibility is due to closed arcs,

regardless of updated flow bounds. In case the current design is infeasible only if

flow bounds are imposed, then those cuts are just locally valid, and there is no need

to add them since the subtree is pruned anyways. For that reason, we first solve

(5.3)� (5.5), adding flow bounds afterwards, if violated, and the multicommodity

flow system is resolved. The algorithm is stated as follows:

Step 1. Initialize the upper bound Z̄, and the root node (A1, A0, A⇤), A1 = A0 =

;, A⇤ = A. � (A1, A0, A⇤).

Step 2. Tree strategy: If � = ; Stop. Otherwise, select a node node from �.

Step 3. Node evaluation:

(a) Perform variable fixing: constraint propagation and connectivity-based

fixing, until no more arcs can be fixed. If infeasibility is identified, then

fathom, and add feasibility cut. Go to Step 2.

(b) Solve the LP node with the Relax-and-Cut algorithm. Get zL, (x̂, ŷ)

and (x̃, ỹ). If zL � Z̄, fathom and go to Step 2

(c) Perform variable fixing: first reduced cost fixing. Then, if some arc

was fixed, perform constraint propagation and connectivity-based fixing

until no more arcs can be fixed. Afterwards, check for flow bounds

fixing. If infeasibility is identified, then fathom, add feasibility cut, and

go to Step 2. Otherwise, perform LP-based fixing if allowed.

(d) Perform cut separation for Lagrangian cardinality cuts

Step 4. Upper bound:

(a) If |A⇤|  0.3|A| solve c̄(A0, {A1 [ A⇤}). If a new feasible solution (x̄, ȳ)

of value Z can be obtained, then for Z < Z̄ update the current best

solution. Add optimality cut. If the problem is infeasible, add feasibility

cut, fathom and go to Step 2.

(b) If c̄(A0, {A1 [ A⇤}) +
P

a2A1
fa � Z̄, or Ā0 ◆ A⇤ such that Ā0 = {a :

P
k2K x̄k

a
= 0}, then fathom and go to Step 2.

(c) Perform Feasilibity Pump heuristic if allowed. Add optimality cut if a

feasible solution is obtained.

Step 5. Branching:

(a) If A⇤ = ; go to Step 2. Otherwise, select candidates set C ✓ A⇤
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(b) Perform Volume iterations for the 0-child and 1-child, for each candi-

date in a 2 C, to get z0(a) and z1(a) the respective preprocessed values.

Fix variables according to feasibility and lower bounds. If pruning can

be applied: fathom and go to Step 2.

(c) Select the best candidate and verify feasiblity, computing:

{(xk

a
)a2A\A0,k2K : lk

a
 xk

a
 bk

a
, (5.3)� (5.5)}

for each selected children. If infeasibility is detected add feasibility cut

if applicable. If both children are infeasible, fathom and go to Step 2.

If only one of the children is infeasible, then set the other child node as

the current node and (dive) go to Step 3.

(d) If min{z0(a), z1(a)} is close to the current lower bound, then set the

corresponding child as the next node, and put the other one into �.

Dive: go to Step 3. Otherwise, insert both selected children nodes into

�. Go to Step 2.

5.8 Computational experiments

We now report the computational experiments carried out with the Volume-

based Branch-and-Cut. At the first moment, we evaluate the e↵ectiveness of

the cuts implemented, as well as the e�ciency of variable fixing features. The

small to medium-sized benchmark instances Canad-C and Canad-R were used

in this first testbed. The results for the best configuration are presented right

afterwards. A comparison to the results presented by Chouman et al. in [50]

is also provided (their work only considered Canad-C and Canad-R instances).

The final computational experiments involved a Branch-and-Cut heuristic version,

based on the Feasibility Pump algorithm (see section 5.8.3 for mode details).

The tests were all run in single thread. The largest instances Canad-N and

groups A to H were tested on a 60Gb RAM, Intel(R) Xeon(R) CPU E7-8890

v3 at 2.50 GHz, Linux machine. Especially for the comparison with literature

results, the instances Canad-C and Canad-R were tested on a 30Gb RAM, In-

tel(R) Xeon(R) CPU E5-2687W v3 at 3.10GHz Linux machine, since the for-

mer is not present in the PassMark CPU Database used for time comparisons.

Indeed, to compare performances in terms of computational times considering

di↵erent CPUs, we apply the approach of [74], taking into account the CPU

scores from https://www.cpubenchmark.net. The normalized time is obtained

by t̄ = t(Pl/P0), where Pl is the PassMark CPU score of the computer used in the

literature work, and P0 is the score of the computer used in the present work.
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The Relax-and-Cut algorithm was allowed to run for a time limit of 3 hours

and a limit of 1000 iterations for the root node, and 250 iterations in the rest

of the Branch-and-Cut algorithm. Cutsets are separated in the root node only.

Furthermore, an additional stopping criterion stops the solver if the solution value

has not increased for 100 Volume iterations. In the case where the current Branch-

and-Cut iteration is a reduced one that limit is set to 50, however that criterion is

checked only after 100 Volume iterations. The initial upper bounds were set to the

best heuristic solution existing in the literature. Moreover, the COIN-OR BCP

framework (available at https://projects.coin-or.org/Bcp) was used for the

implementation of the present Branch-and-Cut algorithm.

The software Cplex version 12.8 was used to solve multicommodity flows and

LPs, when required. Many other e�cient software for multicommodity flows exist

in the literature (and surveyed in [88]), but Cplex remains competitive, being the

chosen one to simplify the implementation.

5.8.1 Cuts and variable fixing e�ciency

In order to check the e�ciency of cuts and variable fixing procedures, here it is

presented the results obtained while disabling each type of cut, and in how many

nodes the variable fixing procedures were successful in fixing variables indeed.

Actually, it is shown in [50] that this latter feature can be worthful to enhance

the performance of Branch-and-Cut schemes for the present problem, so we just

focus on the e�ciency of the mentioned procedures themselves in the implemented

algorithm.

The impact of solving the minimum cost multicommodity flows for pruning

purposes like described at the end of section 5.5 is also tested. We call it the

‘pruning heuristic’ (Step 4a and 4b of the algorithm in section 5.7). It is provided

the number of times an improving solution is obtained or pruning has happened,

w.r.t the number of times those subproblems were solved.

The Feasibility Pump heuristic is not considered for instances Canad-R and

Canad-C, since the provided initial upper bounds are already near-optimal for

those instances. In that sense, performing Feasibility Pump would likely represent

a loss in speed performance. However, such a heuristic is tested for those instances

in section 5.8.3, where no initial upper bound is provided.

The Canad-R instances were divided into two groups: RI, the smallest ones,

and RII, the greatest ones. In that manner, Table 5.1 reports the average opti-

mality gaps ‘Avg Gap (%)’, the minimum optimality gap ‘Min Gap (%)’, and the

maximum optimality gap ‘Max Gap (%)’ observed in each group of instances. All

those values are given in percentages. Moreover, the average computational times,
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in seconds, and the average number of nodes are reported in columns ‘Avg Time

(s)’ and ‘Avg Nodes’, respectively. The ratio giving the average time per node

is given in column ‘Avg Time/Node’. A time limit of 10 hours was set for this

current testbed.

Then, each subtable presents the performance for each di↵erent cut configu-

ration. The first, ‘All cuts’, is related to the case where all mentioned cuts are

considered, and the following three subtables refer to configurations where the

respective type of cut is uniquely disabled. Namely, ‘(-) Opt cuts’ refers to the

configuration where only optimality cuts are disabled, ‘(-) Lag cuts’ refers to the

case where only Lagrangian cardinality cuts are disabled, and ‘(-) Feas cuts’ to

when solely feasibility cuts are disabled. We also tested the case where no cuts,

apart from cover inequalities, are allowed to be separated (subtable ‘No cuts’),

and the case where they are all considered, but only for constraint propagation,

not being included in dual programs (subtable ‘All cuts not in Dual’).

As can be seen in Table 5.1, the average time per node does not vary too much

from a configuration to another. Even when no cuts are separated, the times did

not decrease significantly, instead it was sometimes greater. That must indicate an

advantage of constraint propagation in terms of computational times since, when

no cuts are available, such variable fixing procedure can not be applied (only for

cover inequalities). Indeed, fixing binary variables may significantly reduce the

size of node LPs, especially when they are fixed to zero.

Table 5.2 shows the average number of cuts separated throughout the whole

search tree, considering all di↵erent Branch-and-Cut runs. Columns ‘Lag cuts’,

‘Feas cuts’, and ‘Opt cuts’ present, in that order, the average numbers for La-

grangian cardinality cuts, feasibility cuts, and optimality cuts. As shown in Table

5.2, the largest numbers of added cuts correspond to instances in RII, which ex-

plains the gains in computational times per node for that group, particularly when

‘Lag cuts’ are disabled.

In terms of optimality gaps, again a quite small variation is perceived. However,

one can notice that the absence of extra cuts in the dual program can be beneficial

for the algorithm. As shown in subtables ‘No cuts’ and ‘All cuts not in Dual’,

the optimality gaps of the hardest instances in C and RII reduced when only

cover inequalities were added to the dual program. Actually, the addition of too

many cuts to the dual program may excessively penalize the arcs while solving

the Lagrangian subproblem (reduced arc costs more negative), which results in

the deterioration of bound values (see section 3.4.1 for details on the Lagrangian

subproblem).
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All cuts

Canad Avg Min Max Avg Avg Avg

instances Gap (%) Gap (%) Gap (%) Time (s) Nodes Time/Node

C 0.57 0.00 6.43 19708.7 12357 1.59

RI 0.00 0.00 0.00 10.2 74 0.14

RII 0.18 0.00 1.50 12633.4 14737 0.86

(-) Opt cuts

C 0.57 0.00 6.43 19670.1 12382 1.59

RI 0.00 0.00 0.00 10.1 75 0.14

RII 0.18 0.00 1.49 12627.7 14755 0.86

(-) Lag cuts

C 0.57 0.00 6.43 19573.6 12256 1.60

RI 0.00 0.00 0.00 10.3 73 0.14

RII 0.18 0.00 1.49 12635.6 15002 0.84

(-) Feas cuts

C 0.57 0.00 6.43 19660.1 12442 1.58

RI 0.00 0.00 0.00 10.2 75 0.14

RII 0.18 0.00 1.49 12611.2 14609 0.86

No cuts

C 0.57 0.00 6.59 19627.6 12372 1.59

RI 0.00 0.00 0.00 10.5 77 0.14

RII 0.17 0.00 1.45 12823.8 16884 0.76

All cuts not in Dual

C 0.57 0.00 6.42 19793.3 12506 1.58

RI 0.00 0.00 0.00 10.1 76 0.13

RII 0.18 0.00 1.46 12528.2 14682 0.85

Table 5.1: Average results for di↵erent cut configurations

Canad instances Lag cuts Feas cuts Opt cuts

C 8021 6 429

R-I 38 5 7

R-II 18413 16 477

Table 5.2: Average total number of separated cuts

Comparing the ‘No cuts’, and ‘All cuts not in Dual’ configurations, one can see

that, although it might be better not to dualize extra cuts other than covers, their

separation for constraint propagation purposes can be fruitful for hard instances.

For example, in the Canad-C group, the ‘Max Gap’ was 6.59, while with constraint

propagation, it reduced to 6.42 for practically the same computational time.

In fact, the gains with constraint propagation were quite good considering the

number of times it managed to fix variables. Figure 5.1 provides a chart show-

ing the e�ciency of each variable fixing procedure. Given by percentages, the

bars correspond to the average number of nodes where the respective fixing proce-
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dure managed to fix variables, w.r.t the total average number of nodes processed.

Specifically for the LP-based fixing and the ‘pruning heuristic’ (Step 4a and 4b of

the algorithm in section 5.7), the percentages were computed w.r.t the number of

times they were performed.

Even though the constraint propagation was e↵ective in less than 10% of the

nodes in all groups of instances, it proved to be worthful by the results in Table

5.1. However, a tighter limit on the number of separated cuts must be imposed,

taking profit of variable fixing without increasing too much the times spent on

each node.

Figure 5.1: Variable fixing and pruning e�ciency

As one can conclude, most of the fixed arcs were obtained by reduced cost

fixing and by LP-based fixing. In fact, the LP-based fixing was performed in

2.79%, 27,05%, and 2,70% of the total number of processed nodes, respectively for

instances in Canad-C, Canad-RI, and Canad-RII. However, it was very e↵ective in

fixing variables each time it was run. We stress that we do not count the number

of variables fixed per time, so the impact of LP-based fixing and reduced cost

fixing might be greater. The same can be told for constraint propagation.

Finally, as shown by the chart in Figure 5.1, the flow upper bound fixing pro-

cedure was the most e↵ective in sharpening flow bounds, followed by connectivity-

based fixing. Nevertheless, the flow lower bound fixing was quite e↵ective consid-

ering that it depends on the number of opened arcs. In its turn, the ‘pruning

heuristic’ was worthless given the amount of computational e↵ort demanded.

The next subsection presents the results obtained with the best configuration

according to the previous discussion. That means Step 4b is not performed, and

the condition in Step 4a was restricted to A⇤ = ;. Moreover, all cuts are separated

but only cover inequalities are added to the dual programs. The other steps of

the algorithm are performed as stated in section 5.7.
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5.8.2 The algorithm performances

In this subsection, we report the optimality gaps obtained for each instance,

with the Volume-based Branch-and-Cut algorithm, identified as VA-B&C. The

first results are shown for benchmark instances Canad-N. A comparison with Cplex

performance is provided. Both algorithms were let to run for 24 hours, and the

initial upper bound was set to the best-known solution value.

Table 5.3 presents those results. The column ‘Z̄0’ indicates the initial upper

bound for each instance, while columns ‘Gap (%)’ show the final optimality gap

provided by each algorithm, in percentages. We follow the measure adopted by

Cplex, which is

Gap = (Z̄ � zl)/Z̄ ⇤ 100

where Z̄ is the final upper bound, and zl the final lower bound. The total pro-

cessed nodes are given in columns ‘Nodes’, followed by the computational times

in seconds. The columns ‘UB’ report the relative di↵erences between the initial

and the final upper bounds: (Z̄ � Z̄0)/Z̄ ⇤ 100. In the final row, the averages are

shown.
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Cplex VA-B&C

Instance Z̄0 Gap (%) UB Nodes Time (s) Gap (%) UB Nodes Time (s)

pN01 2122239 0.00 0.00 447 881 0.00 0.00 1311 3131

pN02 1664693 0.00 0.00 151 80 0.00 0.00 182 263

pN03 2139957 0.00 0.00 196 519 0.00 0.00 135 275

pN04 2840339 0.00 0.00 9092 33823 0.00 0.00 6068 14635

pN05 125255 3.27 -0.08 2901 86400 1.49 0.00 21152 86602

pN06 81932 3.48 0.00 5339 86400 2.15 0.00 31896 86836

pN07 120638 4.33 -0.24 3101 86400 2.26 0.00 24141 86831

pN08 83565 3.07 -0.11 6138 86400 1.68 0.00 29576 86886

pN09 374989 4.92 0.00 458 86400 2.77 0.00 7981 86581

pN10 603615 4.58 0.00 423 86400 2.68 0.00 6525 86478

pN11 473897 2.38 -0.18 651 86400 1.69 0.00 6755 86464

pN12 828747 3.57 0.00 530 86400 2.65 0.00 6019 86522

pN13 354007 3.22 0.00 29 86401 2.07 0.00 4754 86542

pN14 416131 2.93 -0.01 11 86401 1.91 0.00 4033 86511

pN15 378156 2.44 0.00 84 86401 1.71 0.00 5033 86514

pN16 598857 3.70 -0.15 22 86401 2.87 0.00 4113 86508

pN17 407057 5.27 0.00 3321 86400 4.32 0.00 31938 86649

pN18 159099 2.59 -0.35 5410 86400 2.79 0.00 48881 86823

pN19 358984 6.43 0.00 2192 86400 4.52 0.00 33629 86670

pN20 149918 2.19 0.00 5007 86400 1.40 0.00 40050 86646

pN21 314877 8.11 -0.68 346 86400 7.19 0.00 10719 86552

pN22 555984 8.54 -0.63 203 86400 7.60 0.00 9767 86550

pN23 435738 7.26 0.00 586 86400 6.51 0.00 10334 86550

pN24 804561 7.05 -0.05 549 86400 6.39 0.00 9536 86540

pN25 1685350 3.40 0.00 117 86401 3.03 0.00 6572 86537

pN26 2509613 3.19 0.00 51 86401 2.90 0.00 5172 86495

pN27 1545679 2.82 0.00 54 86401 2.30 0.00 6463 86502

pN28 2246542 2.92 0.00 45 86401 2.48 0.00 5445 86490

pN29 972311 4.92 -0.01 0 86403 3.95 0.00 2438 86507

pN30 857118 3.55 0.00 0 86402 2.94 0.00 2344 86489

pN31 572552 4.07 0.00 0 86403 3.39 0.00 2981 86544

pN32 926792 3.71 -0.38 0 86402 3.33 0.00 2407 86515

pN33 2129079 6.57 -0.74 1311 86400 8.63 0.00 9640 86482

pN34 1061480 5.77 -0.63 1468 86400 8.05 0.00 11300 86462

pN35 2519584 5.96 -0.56 2016 86400 7.80 0.00 9737 86481

pN36 1223827 5.44 -0.80 2189 86400 7.59 -0.06 10904 86466

pN37 1189320 10.06 0.00 0 86401 9.00 0.00 4408 86518

pN38 182726 7.93 0.00 14 86401 7.38 0.00 5867 86536

pN39 995193 13.65 0.00 0 86401 12.26 0.00 4361 86518

pN40 100499 7.44 0.00 26 86401 6.82 0.00 6799 86556

pN41 273748 5.37 0.00 0 86402 5.04 0.00 2672 86507

pN42 1605884 10.18 0.00 0 86403 9.28 0.00 2085 86493

pN43 921440 7.28 -0.58 0 86403 7.25 0.00 2253 86497

pN44 1983636 9.26 0.00 0 86403 8.72 0.00 1982 86496

pN45 1070118 6.31 0.00 0 86406 5.93 0.00 1192 86528

pN46 580398 4.04 0.00 0 86406 3.84 0.00 1063 86525

pN47 1298479 4.71 0.00 0 86406 4.47 0.00 798 86517

pN48 2236171 5.11 0.00 0 86406 4.88 0.00 751 86458

Avg 4.85 -0.13 1135 79937 4.33 0.00 9670 79722

Table 5.3: Optimality gaps for benchmark instances Canad-N

As one can notice in Table 5.3, except for instances ‘pN01’ to ‘pN04’, both

algorithms have run until the time limit, with the VA-B&C algorithm providing

the best gaps in general. Given in boldface, for more than 80% of the instances

(39/48), the proposed method provided better optimality gaps. In addition, for

the first four instances, both methods have proven optimality, and for two of them,

VA-B&C was faster.

For the largest instances, Cplex has struggled with the size of LPs, spending
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the whole computational time in the root node running its cutting plane algorithm.

Moreover, much e↵ort is applied by Cplex in the first node trying to find a better

feasible solution. Indeed, the negative values in ‘UB’ indicate an improvement in

upper bounds, which is achieved by Cplex for 17 instances, providing better upper

bounds on average.

We now report, in Tables 5.4 to 5.7, the results obtained with benchmark

instances Canad-C and Canad-R. The performances were compared to the results

presented in [50] for Cplex and the LP-based Branch-and-Cut algorithm (B&C)

proposed in that paper. We stress that the authors did not consider Canad-N

instances. Like in precedent tables, the initial upper bound, the optimality gaps,

and the times in seconds are provided, along with the number of processed nodes

for VA-B&C (see [50] for the number of processed nodes for the other methods).

No improvements in upper bounds were perceived in any case, so columns ‘UB’

were omitted. Moreover, the last row of each table presents averages, and the gap

values in boldface indicate that VA-B&C provided a better optimality gap for that

instance.

Since the computational times reported in [50] are related to a di↵erent pro-

cessor (Intel Xeon ES-2609 v2 @ 2,50 GHz, according to the authors), we present

normalized times, computed as explained at the beginning of this section. Given

that all methods were run in single-threaded mode, we use the PassMark Single

Thread Rating of each CPU, which corresponds to 1298 for the CPU used in [50],

and 1915, for the CPU used in this experiment. In that sense, the times reported

by the authors were multiplied by 0.68, and the time limit was set to 6.8 hours,

which is equivalent to the limit of 10 hours set in their work.

First analyzing the results obtained for Canad-C instances in Table 5.4, it

can be seen that the computational times were similar on average, and the VA-

B&C provided the best average optimality gap. For 29/43 instances, VA-B&C

presented the best gaps, while for 10 of those instances, the given gap was strictly

better. Moreover, optimality have been proved for instances ‘c38’ and ‘c74’, whose

optimality gaps were strictly positive before.

In general, for easier instances, Cplex and B&C perform better than VA-B&C,

providing the best gaps in less time. That is confirmed by the Canad-R results

presented in Tables 5.5 to 5.7.
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Cplex B&C VA-B&C

Instance Z̄0 Gap (%) Time (s) Gap (%) Time (s) Gap (%) Nodes Time (s)

c33 423848 0.00 0 0.00 0 0.00 25 3

c35 371475 0.00 0 0.00 3 0.00 350 64

c36 643036 0.00 2 0.00 224 0.00 9166 1288

c37 94213 1.98 24480 0.00 9612 0.00 3692 11473

c38 137642 2.84 24480 0.39 24482 0.00 5369 19975

c39 97914 0.00 2424 0.00 4308 0.00 1316 3165

c40 135863 2.55 24480 0.69 24481 0.32 9054 24530

c41 429398 0.00 0 0.00 0 0.00 14 4

c42 586077 0.00 2 0.00 7 0.00 267 67

c43 464509 0.00 1 0.00 9 0.00 722 134

c44 604198 0.00 1 0.00 2 0.00 126 31

c45 74811 1.92 24480 0.36 24481 0.40 9162 24523

c46 115525 3.46 24480 1.56 24484 0.99 8733 24564

c47 74991 0.00 2109 0.00 1671 0.00 2029 4587

c48 107102 2.46 24480 0.64 24481 0.53 8531 24531

c49 53958 0.62 24480 0.00 8050 0.11 29704 24569

c50 93922 3.36 24480 0.82 24481 0.54 12162 24536

c51 52046 0.60 24480 0.15 24480 0.51 13413 24585

c52 97098 2.49 24480 1.39 24480 1.13 12986 24578

c53 112774 0.66 24480 0.15 24485 0.43 946 24495

c54 149094 1.31 24480 0.82 24497 0.97 199 24547

c55 114640 0.30 24480 0.04 24482 0.25 909 24509

c56 152414 1.53 24480 1.06 24496 0.98 736 24558

c57 47603 0.00 21 0.00 25 0.00 108 170

c58 59958 2.50 24480 0.74 24480 0.64 8483 24538

c59 45872 0.91 24480 0.33 24480 0.56 6534 24545

c60 54904 1.35 24480 0.61 24481 0.84 7011 24550

c61 97845 1.08 24480 0.59 24489 0.66 445 24503

c62 133976 2.64 24480 1.92 24496 1.02 805 24818

c63 95250 1.07 24480 0.69 24485 0.94 172 24539

c64 129869 1.53 24480 0.92 24494 0.99 500 24863

c65 14941 0.00 3 0.00 5 0.00 117 11

c66 49899 0.00 1 0.00 7 0.00 276 21

c67 14712 0.00 0 0.00 0 0.00 2 0

c68 37055 0.00 21 0.00 104 0.00 604 165

c69 85530 0.00 4 0.00 41 0.00 1387 168

c70 365272 0.00 0 0.00 0 0.00 1070 54

c71 23949 0.00 96 0.00 5672 0.00 1542 1498

c72 63753 5.03 24480 7.13 24480 6.58 91888 24592

c73 28423 0.00 0 0.00 48 0.00 1386 1422

c74 49018 2.31 24480 0.09 24481 0.00 3515 11579

c75 136621 5.22 24480 7.09 24480 6.52 64214 24614

c76 384802 0.00 20 0.35 24480 0.55 50634 24672

Avg 1.16 13773 0.66 13789 0.62 8611.72 13875

Table 5.4: Optimality gaps for benchmark instances Canad-C
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Cplex B&C VA-B&C

Instance Z̄0 Gap (%) Time (s) Gap (%) Time (s) Gap (%) Nodes Time (s)

r01.1 74079 0.00 0 0.00 0 0.00 1 0

r01.2 92403 0.00 0 0.00 0 0.00 1 0

r01.3 115304 0.00 0 0.00 0 0.00 3 0

r01.4 84908 0.00 0 0.00 0 0.00 12 0

r01.5 113036 0.00 0 0.00 0 0.00 12 0

r01.6 147599 0.00 0 0.00 0 0.00 26 1

r02.1 232239 0.00 0 0.00 0 0.00 11 0

r02.2 322453 0.00 0 0.00 0 0.00 15 0

r02.3 419503 0.00 0 0.00 0 0.00 4 0

r02.4 316437 0.00 0 0.00 0 0.00 10 0

r02.5 431250 0.00 0 0.00 0 0.00 18 0

r02.6 559578 0.00 0 0.00 0 0.00 7 0

r03.1 484830 0.00 0 0.00 0 0.00 3 0

r03.2 703362 0.00 0 0.00 0 0.00 4 1

r03.3 944990 0.00 0 0.00 0 0.00 5 0

r03.4 704247 0.00 0 0.00 0 0.00 27 1

r03.5 932897 0.00 0 0.00 0 0.00 7 0

r03.6 1188638 0.00 0 0.00 0 0.00 11 1

r04.1 31730 0.00 0 0.00 0 0.00 1 0

r04.2 48920 0.00 0 0.00 0 0.00 1 0

r04.3 63767 0.00 0 0.00 0 0.00 1 0

r04.4 33740 0.00 0 0.00 0 0.00 11 0

r04.5 53790 0.00 0 0.00 0 0.00 7 0

r04.6 74030 0.00 0 0.00 0 0.00 8 0

r04.7 68292 0.00 0 0.00 0 0.00 144 3

r04.8 113004 0.00 0 0.00 0 0.00 54 2

r04.9 163208 0.00 0 0.00 0 0.00 23 1

r05.1 123003 0.00 0 0.00 0 0.00 2 0

r05.2 170060 0.00 0 0.00 0 0.00 2 0

r05.3 221486 0.00 0 0.00 1 0.00 7 0

r05.4 131608 0.00 0 0.00 0 0.00 19 1

r05.5 204157 0.00 0 0.00 1 0.00 18 2

r05.6 286524 0.00 1 0.00 4 0.00 63 8

r05.7 278372 0.00 0 0.00 0 0.00 93 3

r05.8 445810 0.00 0 0.00 0 0.00 18 1

r05.9 625879 0.00 0 0.00 0 0.00 65 2

r06.1 245936 0.00 0 0.00 0 0.00 9 1

r06.2 401685 0.00 2 0.00 2 0.00 32 6

r06.3 559477 0.00 5 0.00 12 0.00 58 15

r06.4 286682 0.00 0 0.00 1 0.00 147 14

r06.5 498266 0.00 8 0.00 29 0.00 339 90

r06.6 734414 0.00 108 0.00 88 0.00 495 128

r06.7 682921 0.00 0 0.00 0 0.00 35 4

r06.8 1030479 0.00 0 0.00 0 0.00 16 2

r06.9 423316 0.00 1 0.00 1 0.00 34 6

r07.1 32807 0.00 0 0.00 0 0.00 1 0

r07.2 47252 0.00 0 0.00 0 0.00 1 0

r07.3 62962 0.00 0 0.00 0 0.00 2 0

r07.4 37432 0.00 0 0.00 0 0.00 79 2

r07.5 56475 0.00 0 0.00 1 0.00 83 3

r07.6 77249 0.00 0 0.00 3 0.00 121 4

r07.7 59947 0.00 0 0.00 1 0.00 157 8

r07.8 99194 0.00 0 0.00 2 0.00 107 9

r07.9 141692 0.00 1 0.00 5 0.00 184 15

Avg 0.00 2 0.00 3 0.00 48 6

Table 5.5: Optimality gaps for benchmark instances Canad-R, part I
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Cplex B&C VA-B&C

Instance Z̄0 Gap (%) Time (s) Gap (%) Time (s) Gap (%) Nodes Time (s)

r08.1 102531 0.00 0 0.00 0 0.00 7 0

r08.2 143894 0.00 0 0.00 0 0.00 2 0

r08.3 182793 0.00 0 0.00 0 0.00 2 0

r08.4 109325 0.00 0 0.00 0 0.00 13 1

r08.5 157047 0.00 0 0.00 0 0.00 9 1

r08.6 207540 0.00 1 0.00 1 0.00 36 3

r08.7 154160 0.00 1 0.00 6 0.00 256 26

r08.8 274867 0.00 4 0.00 39 0.00 374 54

r08.9 415793 0.00 6 0.00 35 0.00 426 61

r09.1 171512 0.00 0 0.00 0 0.00 17 1

r09.2 296712 0.00 1 0.00 1 0.00 20 3

r09.3 424266 0.00 12 0.00 6 0.00 49 15

r09.4 192736 0.00 0 0.00 1 0.00 33 3

r09.5 357318 0.00 3 0.00 6 0.00 98 14

r09.6 522187 0.00 29 0.00 34 0.00 313 79

r09.7 345057 0.00 0 0.00 2 0.00 207 22

r09.8 646579 0.00 1 0.00 3 0.00 151 16

r09.9 951136 0.00 5 0.00 14 0.00 883 88

r10.1 200087 0.00 0 0.00 0 0.00 13 1

r10.2 346814 0.00 22 0.00 8 0.00 66 19

r10.3 488015 0.00 22 0.00 10 0.00 30 14

r10.4 229196 0.00 2 0.00 28 0.00 715 106

r10.5 411664 0.00 10620 0.00 324 0.00 1082 442

r10.6 609103 1.27 24480 0.00 1486 0.00 1958 937

r10.7 486895 0.00 3 0.00 63 0.00 3261 433

r10.8 951056 0.00 7 0.00 58 0.00 2789 308

r10.9 1421746 0.00 9 0.00 71 0.00 48162 3711

r11.1 714431 0.00 5 0.00 5 0.00 234 65

r11.2 1263713 1.38 24480 0.00 913 0.00 2218 1323

r11.3 1843610 2.34 24480 0.00 3418 0.00 2379 2167

r11.4 870451 0.00 46 0.00 201 0.00 3739 1218

r11.5 1623640 0.00 9521 0.00 703 0.00 2144 1091

r11.6 2414060 0.00 8529 0.00 1715 0.00 2425 1552

r11.7 2294912 0.00 1 0.00 1 0.00 375 123

r11.8 3507100 0.00 1 0.00 2 0.00 26400 6003

r11.9 4579353 0.00 1 0.00 1 0.00 262 55

r12.1 1639443 0.00 64 0.00 261 0.00 542 435

r12.2 3396050 1.78 24480 0.00 13166 0.00 5972 8804

r12.3 5228710 2.02 24480 0.00 15391 0.00 2865 5255

r12.4 2303557 0.00 18 0.00 68 0.00 154 183

r12.5 4669799 0.00 32 0.00 50 0.00 119 127

r12.6 7100019 0.00 19 0.00 20 0.00 171 124

r12.7 7635270 0.00 1 0.00 1 0.00 79 69

r12.8 10067742 0.00 1 0.00 1 0.00 8 9

r12.9 11967768 0.00 1 0.00 0 0.00 1 2

r13.1 142947 0.00 0 0.00 0 0.00 6 2

r13.2 263800 0.00 38 0.00 37 0.00 128 87

r13.3 365836 0.00 87 0.00 76 0.00 135 152

r13.4 150977 0.00 1 0.00 9 0.00 434 73

r13.5 282682 1.45 24480 0.00 261 0.00 973 517

r13.6 406789 3.30 24480 0.00 791 0.00 1370 1217

r13.7 208088 0.00 13311 0.00 2136 0.00 92623 16025

r13.8 444826 1.76 24480 0.00 12775 0.01 108616 24635

r13.9 697966 2.25 24480 0.39 24480 0.71 71223 24595

Avg 0.32 4866 0.01 1457 0.01 7159 1894

Table 5.6: Optimality gaps for benchmark instances Canad-R, part II
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Cplex B&C VA-B&C

Instance Z̄0 Gap (%) Time (s) Gap (%) Time (s) Gap (%) Nodes Time (s)

r14.1 403414 0.00 7 0.00 9 0.00 96 34

r14.2 749503 2.90 24480 0.00 2171 0.00 2314 3697

r14.3 1063097 3.66 24480 0.00 8106 0.00 2053 5069

r14.4 437607 0.00 10 0.00 32 0.00 551 229

r14.5 849163 2.61 24480 0.00 7953 0.00 10021 7765

r14.6 1214608 2.70 24480 0.00 7215 0.00 2357 4194

r14.7 668216 0.56 24480 0.08 24480 0.34 39396 24600

r14.8 1613429 1.98 24480 0.73 24480 0.99 27809 24538

r14.9 2602689 0.51 24480 0.07 24480 0.00 39848 21832

r15.1 1000787 0.00 784 0.00 112 0.00 615 758

r15.2 1966206 2.97 24480 0.55 24481 0.23 10611 24537

r15.3 2876628 4.45 24480 2.01 24485 0.91 12073 24529

r15.4 1148604 0.44 24480 0.00 6706 0.00 23595 22880

r15.5 2476246 2.79 24480 1.11 24481 0.77 11657 24530

r15.6 3826956 3.24 24480 1.60 24484 1.18 11354 24510

r15.7 2297919 0.00 13087 0.00 10341 0.34 18737 24513

r15.8 5573413 0.00 48 0.00 443 0.07 18767 24520

r15.9 8696932 0.00 7 0.00 14 0.00 178 237

r16.1 136161 0.00 1 0.00 0 0.00 1 0

r16.2 239500 0.00 161 0.00 163 0.00 308 400

r16.3 325671 0.00 220 0.00 393 0.00 365 575

r16.4 138532 0.00 1 0.00 1 0.00 6 3

r16.5 241801 0.00 23 0.00 22 0.00 22 28

r16.6 337762 2.27 24480 0.00 173 0.00 103 139

r16.7 169233 1.51 24480 0.15 24480 0.49 83242 24627

r16.8 348167 3.23 24480 1.25 24480 1.24 63354 24603

r16.9 529988 4.66 24480 2.06 24481 1.59 55833 24567

r17.1 354138 0.00 6 0.00 4 0.00 17 14

r17.2 645488 2.29 24480 0.00 3832 0.00 815 2869

r17.3 910518 5.58 24480 0.00 24481 0.00 5482 16258

r17.4 370590 0.00 35 0.00 97 0.00 750 407

r17.5 706747 2.79 24480 0.00 5104 0.00 5044 8577

r17.6 1019758 5.61 24480 1.00 24481 0.26 27802 24570

r17.7 501635 0.85 24480 0.26 24480 0.52 28044 24575

r17.8 1105083 2.36 24480 1.07 24480 1.13 23794 24560

r17.9 1777763 3.17 24480 1.62 24481 1.52 18910 24520

r18.1 828117 0.95 24480 0.00 3548 0.00 11248 17021

r18.2 1533675 0.00 2974 0.00 3977 0.00 395 3442

r18.3 2174276 3.78 24480 0.94 24483 0.44 2018 24523

r18.4 919325 1.31 24480 0.24 24480 0.30 10712 24526

r18.5 1823766 3.11 24480 1.13 24483 0.76 6877 24576

r18.6 2701286 4.21 24480 2.40 24487 1.17 8762 24524

r18.7 1477395 1.17 24480 0.78 24481 0.98 9966 24513

r18.8 3887637 2.12 24480 0.53 24481 0.71 2789 24508

r18.9 6361906 1.19 24480 0.23 24481 0.36 9100 24517

Avg 1.80 17250 0.44 13311 0.36 13506 14587

Table 5.7: Optimality gaps for benchmark instances Canad-R, part III

Table 5.5 reports the results for the easiest instances. For that group, the VA-

B&C is clearly outperformed by Cplex and B&C, in terms of times. Nevertheless,

optimality is achieved in all cases by the three algorithms. For instances in Table

5.6, however, VA-B&C managed to be faster in some occasions like ‘r12.2’ and

‘r12.3’. For this last group, B&C was more e�cient, but VA-B&C did better than

Cplex on average.

In Table 5.7, larger instances are considered. In this case, with slightly higher

computational times, VA-B&C provided the best optimality gap on average. For
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35/45 instances the proposed algorithm returned the best gaps, and for 12 of

those instances, the gaps provided by VA-B&C were strictly better. Moreover,

new optimality proof was obtained for ‘r14.9’.

Finally, the results for the very large instances of groups A to E are presented

in Tables 5.8 and 5.9. The instances F to H could not be tested due to limits in

memory space. No comparison is made since Cplex could not provide any gaps

for those instances within a time limit of 24 hours. Considering they are new,

no literature results exist at this moment. Columns are identified as in precedent

tables, and the averages results for each group are shown after its last instance.

As one can notice from the tables, instances in A and B are the most di�cult,

which was expected given the ratios of capacity tightness and fixed costs of those

instances (see section 3.6.1 for details). Good quality gaps were obtained for

instances C, D/20 001, D/14 001, and E, and optimality has been proved for

instances C/02 001c, C/02 001e, and C/14 001e. Moreover, new better feasible

solutions were found for 11 instances.

Instance Z̄0 Gap (%) UB Nodes Time (s)

A/08 05a 143957028 17.08 0.00 434 86692

A/08 05b 142543732 16.21 0.00 436 86607

A/08 05c 144182939 16.93 0.00 418 86673

A/08 05d 497221 21.94 0.00 425 86708

A/08 05e 13923307 14.09 0.00 383 86694

A/10 05a 147903153 18.60 0.00 399 86596

A/10 05b 148076489 18.64 0.00 406 86661

A/10 05c 149823462 19.16 0.00 382 86645

A/10 05d 522125 24.84 0.00 378 86654

A/10 05e 14807132 17.72 0.00 404 86637

A/14 05a 158128681 21.72 0.00 362 86691

A/14 05b 157377772 21.24 0.00 361 86557

A/14 05c 164424149 23.85 0.00 348 86628

A/14 05d 551592 26.46 0.00 374 86713

A/14 05e 15575836 18.08 0.00 340 86671

Avg 19.77 0.00 390 86655

B/14 10a 69846114 26.46 0.00 1575 86577

B/14 10b 65989759 25.28 0.00 1596 86559

B/14 10c 70551393 25.12 0.00 1583 86534

B/14 10d 75213876 27.91 0.00 1600 86588

B/14 10e 51353874 28.31 0.00 1640 86549

B/10 10a 65168024 26.37 0.00 1681 86552

B/10 10b 61131120 24.40 0.00 1664 86535

B/10 10c 67824166 27.02 0.00 1664 86522

B/10 10d 68211559 25.81 0.00 1671 86518

B/10 10e 46137950 25.33 0.00 1674 86516

B/06 10a 58116298 22.17 0.00 1730 86557

B/06 10b 53688788 17.74 0.00 1754 86557

B/06 10c 59078527 21.32 0.00 1736 86523

B/06 10d 60776805 21.59 0.00 1761 86645

B/06 10e 40429256 19.74 0.00 1746 86552

Avg 24.30 0.00 1672 86552

Table 5.8: Optimality gaps for very large instances of groups A and B
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Instance Z̄0 Gap (%) UB Nodes Time (s)

C/02 10a 72920073 8.69 0.00 1051 86569

C/02 10b 45385926 3.44 0.00 575 86526

C/02 10c 32494545 8.46 0.00 1015 86581

C/02 10d 198264021 7.22 0.00 1024 86539

C/02 10e 811852234 17.99 0.00 1463 86563

C/02 001a 287761 0.01 -0.06 4856 86791

C/02 001b 189967 0.01 -0.03 4852 86805

C/02 001c 958652 0.00 -0.15 2995 49447

C/02 001d 3755127 1.06 0.00 2749 86660

C/02 001e 1618977 0.00 -0.21 740 25848

C/14 001a 292105 0.09 -0.12 4615 86694

C/14 001b 190411 0.05 -0.03 4991 86685

C/14 001c 957281 0.02 0.00 5219 86678

C/14 001d 3754341 1.05 0.00 2702 86674

C/14 001e 1617510 0.00 0.00 2461 49641

Avg 3.21 -0.04 2754 77647

D/14 12a 142895040 23.47 0.00 801 86558

D/14 12b 95045495 25.91 0.00 590 86594

D/14 12c 206994417 22.56 0.00 780 86509

D/14 12d 132884404 28.47 0.00 631 86562

D/14 12e 97150719 25.21 0.00 625 86568

D/20 001a 347368 0.13 -0.14 2678 86673

D/20 001b 226417 0.07 -0.13 3419 86705

D/20 001c 524614 0.06 -0.02 3714 86675

D/20 001d 441022 1.34 0.00 1931 86660

D/20 001e 302521 0.04 -0.18 2177 86655

D/01 20a 166196678 4.64 0.00 556 86582

D/01 20b 107499361 2.47 0.00 576 86633

D/01 20c 202610339 4.00 0.00 426 86611

D/01 20d 146654963 3.77 0.00 422 86534

D/01 20e 5624598 5.83 0.00 692 86606

Avg 9.86 -0.03 1335 86608

E/01 001a 20885 3.48 0.00 384 86711

E/01 001b 860538 0.82 0.00 97 87320

E/01 001c 649314 1.13 0.00 360 86746

E/01 001d 828565 3.15 0.00 509 86771

E/01 001e 1022024 3.03 -0.05 367 86708

E/20 001a 20878 3.38 0.00 348 86814

E/20 001b 879399 1.23 0.00 314 86660

E/20 001c 651077 1.44 0.00 354 86746

E/20 001d 828518 3.16 0.00 498 86868

E/20 001e 1026167 3.46 0.00 383 86802

E/01 20a 161978808 7.97 0.00 143 86677

E/01 20b 302985811 12.98 0.00 173 86789

E/01 20c 29259370 5.61 0.00 78 86662

E/01 20d 72555417 8.52 0.00 156 86605

E/01 20e 299822209 19.44 0.00 326 86854

Avg 5.25 0.00 299 86782

Table 5.9: Optimality gaps for very large instances of groups C to E

5.8.3 Feasilibity Pump embedded heuristic Branch-and-

Cut

As mentioned earlier, a heuristic Branch-and-Cut algorithm was tested too. In

this version, binary variables are fixed heuristically according to their values of ỹ,

provided by the Volume while solving each node LP. Namely, for all a 2 A⇤, we set

variables to one, if ỹa > 1� �, or to zero, if ỹa < �, at each search tree node. The

parameter � is initially set to zero, and it is increased as the algorithm goes deeper

124



in the tree, in such a way that � = 1e�30(10dl), where dl is the depth level of the

current node. A maximum value is considered, such that �  1e�4. Then, the

Feasibility Pump procedure, described in section 5.6.1, is applied in every node

whose depth dl is impair.

To accelerate node evaluations, no presolving step for child nodes is performed,

and no strong or reliability branching is considered. Instead, the branching vari-

able is chosen as the argmaxa2A⇤{wa ⇤min{ỹa, 1� ỹa}}. Moreover, node LPs are

never solved exactly by simplex algorithm.

We first present, in Tables 5.10 and 5.11, the results obtained for the large

benchmark instances Canad-N, and the very large instances of groups A to E.

Like in the previous section, the instances F to H could not be tested due to limits

in memory space. The solutions obtained with the heuristic version were compared

to the previous results presented in section 3.6.4. The best feasible solution found

for each instance is shown in columns ‘Z̄’ of Tables 5.10 and 5.11. Therefore, the

distance ‘Dev’ of the solution value z, given by each method, w.r.t. the best value

is shown in columns ‘Cplex’, ‘LH’, and ‘FP’, respectively for the Cplex solver,

running 24h, the Lagrangian heuristic (LH), and the Feasibility Pump Branch-

and-Cut heuristic (FP), also running 24h. The lines ‘Avg’ report the averages

concerning all instances in the table.

Dev = (Z̄ � z)/z ⇤ 100

Considering the best value obtained with either the Volume or the Bundle

version of LH, results have shown that, in general, the Lagrangian heuristic LH

remains the best approach for the set of large instances, providing good quality

bounds in less computational time. However, when compared to Cplex, the FP

heuristic is clearly more e�cient on average. Except for the first four Canad-N

instances, for which both methods found the optimal value, the algorithms stopped

due to the time limit. Thus, for the same computational times, the FP algorithm

provided far better solutions on average. For 31 Canad-N instances, FP performed

better, and the distance to the best feasible solution remained under 8%, while

Cplex provided more than 80% worse solutions in some cases. Moreover, new best

feasible solutions could be found with the FP heuristic for 19 Canad-N instances.

The values in boldface, in Tables 5.10 and 5.11, indicate when the FP algorithm

was the unique method to provide the ‘Z̄’ value.
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Instance Z̄ Cplex LH FP Instance Z̄ Cplex LH FP

pN01 2122239 0.00 0.36 0.00 pN25 1685350 20.23 0.00 0.00

pN02 1664693 0.00 1.12 0.00 pN26 2509613 2.38 0.01 0.00

pN03 2139957 0.00 1.28 0.00 pN27 1545679 0.00 0.43 0.61

pN04 2840339 0.00 1.46 0.00 pN28 2246542 0.20 0.61 0.00

pN05 125255 0.00 0.31 0.40 pN29 972205 83.51 0.01 0.00

pN06 81932 0.00 0.31 0.31 pN30 857118 25.20 0.00 0.94

pN07 120638 0.00 0.21 1.20 pN31 572552 72.31 0.00 0.00

pN08 83565 0.00 0.37 0.37 pN32 923267 81.59 0.38 0.00

pN09 374989 0.00 0.07 1.75 pN33 2129079 0.53 1.62 0.00

pN10 603615 0.00 2.15 2.15 pN34 1061480 18.63 1.36 0.00

pN11 473897 0.00 1.71 0.24 pN35 2519584 3.62 2.86 0.00

pN12 828747 0.70 0.35 0.00 pN36 1223827 3.16 1.20 0.00

pN13 354007 0.00 0.10 0.34 pN37 1189320 36.59 2.03 0.00

pN14 416131 1.47 0.00 0.00 pN38 182726 28.40 0.50 0.00

pN15 378156 0.00 0.36 0.71 pN39 995193 41.29 0.78 0.00

pN16 598857 1.98 0.36 0.00 pN40 100499 49.46 0.31 0.00

pN17 407057 0.00 2.15 1.13 pN41 273748 27.51 0.00 0.50

pN18 159099 0.33 1.78 0.00 pN42 1605884 43.85 0.00 0.00

pN19 358984 0.00 2.20 1.99 pN43 916144 39.99 0.57 0.00

pN20 149918 0.00 2.07 0.93 pN44 1983636 41.48 0.00 0.14

pN21 314877 2.98 0.00 0.58 pN45 1070118 83.68 0.00 0.04

pN22 555984 1.21 2.68 0.00 pN46 580398 66.97 0.00 0.21

pN23 435738 0.24 0.67 0.00 pN47 1298479 80.28 0.00 0.29

pN24 804167 0.18 1.01 0.00 pN48 2236171 82.86 0.00 0.92

Avg 19.63 0.72 0.33

Table 5.10: Branch-and-Cut heuristic results for benchmark instances Canad-N

Remind that Cplex could not find any feasible solution for instances A to E, so

the comparison, in this case, is made only between LH and FP. Again, considering

the times presented in section 3.6.4, LH provided better performance, presenting,

on average, better solutions in less time. Nevertheless, a new best solution was

obtained with the FP algorithm for 25 instances among the 75 present in groups

A-E. Moreover, a considerable improvement was obtained for instances C/02 10c

and C/02 10e, as can be seen in Table 5.11.
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Instance Z̄ LH FP Instance Z̄ LH FP

A/08 05a 143957028 0.00 3.47 C/02 001d 3755127 0.00 0.20

A/08 05b 142543732 0.00 6.26 C/02 001e 1618977 0.07 0.00

A/08 05c 144182939 0.00 7.15 C/14 001a 292105 0.11 0.00

A/08 05d 497221 0.00 2.25 C/14 001b 190411 0.17 0.00

A/08 05e 13923307 0.00 7.22 C/14 001c 957281 0.12 0.00

A/10 05a 147903153 0.00 2.38 C/14 001d 3754341 0.10 0.00

A/10 05b 148076489 0.00 3.70 C/14 001e 1617510 0.21 0.00

A/10 05c 149823462 0.00 4.12 D/14 12a 142895040 0.73 0.00

A/10 05d 522125 0.00 9.07 D/14 12b 95045495 0.00 3.37

A/10 05e 14807132 0.00 11.38 D/14 12c 206994417 0.00 3.83

A/14 05a 158128681 0.82 0.00 D/14 12d 132884404 0.00 0.59

A/14 05b 157377772 0.00 3.08 D/14 12e 97150719 0.00 2.95

A/14 05c 164424149 0.00 1.31 D/20 001a 347368 0.14 0.00

A/14 05d 551592 0.00 5.31 D/20 001b 226417 0.00 0.01

A/14 05e 15575836 0.00 6.84 D/20 001c 524614 0.09 0.00

B/14 10a 69846114 0.00 10.28 D/20 001d 441022 0.30 0.00

B/14 10b 65989759 0.00 6.18 D/20 001e 302521 0.05 0.00

B/14 10c 70551393 0.00 5.64 D/01 20a 166196678 0.00 1.70

B/14 10d 75213876 0.00 5.04 D/01 20b 107499361 1.96 0.00

B/14 10e 51353874 0.00 0.42 D/01 20c 202610339 1.99 0.00

B/10 10a 65168024 0.00 6.18 D/01 20d 146654963 0.00 2.83

B/10 10b 61131120 0.00 4.92 D/01 20e 5624598 2.89 0.00

B/10 10c 67824166 0.00 11.94 E/01 001a 20885 0.32 0.00

B/10 10d 68211559 0.00 4.26 E/01 001b 860538 0.00 0.30

B/10 10e 46137950 0.00 5.86 E/01 001c 649314 0.00 0.33

B/06 10a 58116298 0.00 5.50 E/01 001d 828565 0.00 1.67

B/06 10b 53688788 0.00 3.01 E/01 001e 1022024 0.67 0.00

B/06 10c 59078527 0.00 7.44 E/20 001a 20878 0.11 0.00

B/06 10d 60776805 0.00 6.26 E/20 001b 879399 0.00 0.10

B/06 10e 40429256 0.00 10.17 E/20 001c 651077 0.00 0.19

C/02 10a 72920073 0.00 2.41 E/20 001d 828518 0.00 1.74

C/02 10b 45385926 0.00 3.17 E/20 001e 1026167 0.00 0.08

C/02 10c 32494545 5.64 0.00 E/01 20a 161978808 0.00 1.79

C/02 10d 198264021 0.00 0.94 E/01 20b 302985811 0.05 0.00

C/02 10e 811852234 3.99 0.00 E/01 20c 29259370 0.00 4.02

C/02 001a 287761 0.24 0.00 E/01 20d 72555417 0.00 6.17

C/02 001b 189967 0.20 0.00 E/01 20e 299822209 0.10 0.00

C/02 001c 958652 0.09 0.00 Avg 0.28 2.77

Table 5.11: Branch-and-Cut heuristic results for large instances A to E

We now report the results for smaller benchmark instances Canad-C and

Canad-R. The performances in terms of solution values were compared to other

heuristics present in the literature, namely the ones considered in section 3.6.4:

the capacity scaling heuristic (SCALE) [141], the path relinking algorithm (RE-

LINK) [111], the multilevel cooperative algorithm (MULTI) [65], the local branch-

ing heuristic (LCBR) [193], and the LH heuristic proposed earlier (we stress that

it is considered the best value obtained with either the Volume or the Bundle

version of LH). Moreover, we add the relatively recent work of Paraskevopoulos et

al. [184], who proposed an evolutionary algorithm (EVOL). For this second set of

instances, the FP heuristic was let to run for 10 hours, and the solution obtained
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after 5 hours of computation is also reported, if applicable. Those intermediary

values were reported aiming to reduce the e↵ect of computational time limits on

di↵erent processors. The values related to the limit of 5 hours are identified by

‘FP 5h’, and ‘FP 10h’ identifies the ones related to the limit of 10 hours.

Remind that for the Canad-R instances, only solution values obtained with

CYCLE, SCALE and LH can be found in the literature, so Tables 5.12 and 5.13

present the average deviation ‘Dev’ of the solution values obtained with each of

those heuristic approaches, w.r.t. the best one among them (the detailed results

are presented in the appendix D ). The average computational times are shown

in column ‘Time’, in seconds, and the results are grouped by instance sizes, like

in Table 3.9 of section 3.6.4.

As one can see in Table 5.12, for the smallest Canad-R instances (r01 to r09),

the FP heuristic found the best solutions in less than 60 seconds. The values in

boldface point out that the procedure was able to provide strictly better values

in 7 out of 9 instance groups, and for the other two it provided the same quality

solutions on average.

Instances CYCLE SCALE LH FP Time

r01.1-r01.6 0.00 0.63 0.00 0.00 0.24

r02.1-r02.6 0.77 0.11 0.00 0.00 0.51

r03.1-r03.6 1.59 0.07 0.01 0.00 0.81

r04.1-r04.9 0.10 0.44 0.41 0.00 1.51

r05.1-r05.9 0.48 0.51 0.60 0.00 2.95

r06.1-r06.9 2.39 0.20 0.16 0.00 44.55

r07.1-r07.9 0.41 1.23 0.42 0.00 9.88

r08.1-r08.9 0.89 0.78 0.49 0.00 21.18

r09.1-r09.9 2.76 0.31 0.31 0.00 49.02

Table 5.12: Branch-and-Cut heuristic results for benchmark instances Canad-RI

: r01 to r10

In its turn, Table 5.13 presents the results for the greatest Canad-R instances

(r10 to r18). For instances in ‘r14’, ‘r15’, ‘r17’, and ‘r18’, the algorithm ran for

more than 5 hours, so the results at this point were reported in those cases. As

one can observe, for all groups, given by the values in boldface, strictly better

solutions on average were provided by the FP algorithm, within 5 hours or less, as

for ‘r10’, ‘r11’, ‘r12’ and ‘r16’. Moreover, better solutions on average were obtained

by letting the algorithm run for bigger amounts of time.
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Instances CYCLE SCALE LH FP 5h FP 10h Time

r10.1-r10.9 2.67 0.68 0.77 0.00 0.00 594.07

r11.1-r11.9 2.61 0.19 0.28 0.00 0.00 5973.02

r12.1-r12.9 4.78 0.18 0.42 0.03 0.00 3107.05

r13.1-r13.9 3.28 1.20 1.15 0.00 0.00 13178.43

r14.1-r14.9 6.50 0.62 1.07 0.06 0.02 17854.29

r15.1-r15.9 6.91 0.13 0.53 0.05 0.04 28264.11

r16.1-r16.9 3.16 1.08 1.32 0.00 0.00 12386.27

r17.1-r17.9 5.85 0.65 1.13 0.38 0.00 23473.50

r18.1-r18.9 9.64 0.51 0.94 0.25 0.01 31623.60

Table 5.13: Branch-and-Cut heuristic results for benchmark instances Canad-R :

r10 to r18

Finally, Table 5.14 presents the results for each Canad-C instance. Like in

precedent tables, the deviation ‘Dev’ of the solution value obtained with each

heuristic approach, w.r.t. the best one among them is shown under the respective

column. Again, column ‘Time’ reports the computational times in seconds. The

solution nominal values are presented in the appendix D.

Regarding the averages presented in the last line of Table 5.14, the FP heuristic

remains competitive for Canad-C instances too, providing within a time limit of 5

hours the best solutions on average, which are generally improved by letting the

algorithm run for 10 hours. Given in boldface, ‘FP 5h’ uniquely provided the best

solution for instances ‘c47’, ‘c68’, and ‘c72’, and for other 5 instances, it could

provide strictly better solutions within 10 hours. In total, for 17/43 instances the

‘FP 5h’ heuristic provided better or equal quality solutions. The same can be

a�rmed for a total of 23/43 instances, considering ‘FP 10h’.
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Instance SCALE RELINK MULTI LCBR EVOL LH FP 5h FP 10h Time

c33.dow 0.05 0.13 0.67 0.00 0.00 0.00 0.00 0.00 42

c35.dow 0.12 0.09 0.00 0.00 0.00 0.04 0.00 0.00 413

c36.dow 0.22 0.39 1.51 0.00 0.02 0.27 0.20 0.00 36435

c37.dow 0.04 6.17 4.43 1.14 0.27 0.57 0.06 0.00 33791

c38.dow 0.00 6.99 3.85 4.05 0.94 0.51 0.44 0.44 36089

c39.dow 0.06 6.47 4.03 0.13 0.30 0.28 0.74 0.00 23801

c40.dow 0.00 7.74 3.58 3.54 0.73 0.68 0.36 0.36 36082

c41.dow 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 11

c42.dow 0.29 0.74 1.26 0.00 0.00 0.46 0.00 0.00 560

c43.dow 0.01 0.00 0.32 0.00 0.00 0.00 0.00 0.00 818

c44.dow 0.00 0.95 2.42 0.00 0.00 0.00 0.00 0.00 200

c45.dow 0.00 4.18 4.22 1.91 0.49 0.09 0.83 0.03 36124

c46.dow 0.21 6.43 5.26 3.02 1.08 0.60 0.80 0.00 36113

c47.dow 0.41 4.91 2.93 1.54 0.60 0.50 0.00 0.00 9994

c48.dow 0.31 5.34 3.28 2.08 0.02 0.00 0.15 0.15 36101

c49.dow 0.11 1.60 3.10 0.00 0.13 0.16 0.21 0.21 36138

c50.dow 0.62 7.69 5.62 2.13 0.43 0.78 0.34 0.00 36129

c51.dow 0.29 1.67 2.58 0.00 0.10 0.37 0.35 0.29 36162

c52.dow 0.99 7.80 4.51 3.21 0.00 0.89 1.78 1.78 36120

c53.dow 0.00 5.50 2.44 1.33 0.31 0.42 0.50 0.50 36121

c54.dow 0.00 8.38 4.57 5.25 1.12 0.63 0.94 0.84 36050

c55.dow 0.00 4.60 5.24 0.52 0.91 0.20 0.60 0.57 36072

c56.dow 0.00 6.68 4.66 9.38 1.09 0.53 0.84 0.62 36108

c57.dow 0.07 2.30 2.59 0.00 0.00 0.07 0.00 0.00 1185

c58.dow 0.00 4.59 5.59 0.13 0.57 0.73 0.74 0.74 36179

c59.dow 0.57 2.76 3.27 0.00 0.38 0.59 0.65 0.65 36180

c60.dow 0.46 2.60 3.17 0.00 0.06 0.24 0.18 0.06 36163

c61.dow 0.00 6.80 4.54 5.60 0.77 0.67 0.89 0.89 36083

c62.dow 0.00 6.87 6.20 20.44 1.49 0.43 1.29 1.23 36049

c63.dow 0.00 5.84 3.92 1.42 0.86 0.45 0.76 0.68 36160

c64.dow 0.00 7.70 5.87 10.20 1.72 0.41 1.15 0.71 36125

c65.dow 0.64 0.00 0.00 0.00 0.00 6.64 0.00 0.00 11

c66.dow 1.72 0.00 0.08 0.00 0.00 2.67 0.00 0.00 16

c67.dow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1

c68.dow 1.11 1.59 1.47 0.72 0.72 2.05 0.00 0.00 191

c69.dow 0.32 1.04 1.08 0.00 0.00 0.00 0.00 0.00 174

c70.dow 0.00 0.03 0.03 0.00 0.00 0.11 0.00 0.00 16

c71.dow 2.09 0.30 0.30 3.00 0.00 2.23 0.00 0.00 1035

c72.dow 12.24 1.10 2.60 4.15 1.53 8.99 0.00 0.00 36241

c73.dow 0.01 0.22 0.46 0.00 0.00 0.28 0.00 0.00 935

c74.dow 5.65 4.49 2.85 1.71 0.91 4.44 0.65 0.00 23001

c75.dow 3.31 1.29 4.25 1.48 0.00 3.97 0.36 0.36 36144

c76.dow 0.02 0.03 0.12 0.00 0.05 2.34 0.12 0.12 36216

Avg 0.74 3.35 2.77 2.05 0.41 1.05 0.37 0.26 22409

Table 5.14: Branch-and-Cut heuristic results for benchmark instances Canad-C

5.9 Conclusion

In this chapter, a Volume-based Branch-and-Cut algorithm was proposed, em-

bedding a Lagrangian Feasibility Pump heuristic. The results have shown that

the exact method is competitive with the most e�cient algorithms available in

the literature. Indeed, for the largest instances, the proposed method performs

130



better, providing better optimality gaps on average, for practically the same com-

putational time. Moreover, the gaps of three unsolved benchmark instances could

be closed in the present work. With respect to very large-scale instances, the

proposed scheme was the only one able to provide sharp optimality gaps. Three

very large-scale instances were solved to optimality.

With respect to the Feasibility Pump embedded Branch-and-Cut heuristic ver-

sion, the results have shown that the procedure is competitive to other e�cient

heuristics in the literature, providing better solution values on average, for bench-

mark instances. Moreover, new upper bounds could be obtained for some large-

scale instances, with the Feasibility Pump heuristic as part of the exact approach.
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Chapter 6

Conclusion

The present thesis addressed the fixed-charge multicommodity capacitated net-

work design, a typical problem of telecommunications, logistics, and transporta-

tion fields. Already known to be NP-Hard, we have shown in chapter 2 that even

small instances of the problem can be very di�cult for one of the best solvers in

the market. In that same chapter, a discussion about some complicating aspects

of the problem was included. It was shown that su�ciently tight capacities, com-

bined with high fixed-charges belonging to a not too wide range of values, can

be complicating features for small instances of 10 nodes and complete patterns of

arcs and commodities.

Further in this document, Lagrangian decomposition methods were proposed

to produce good quality solutions for large and very large scale instances of the

problem. We take profit from the fact that, by Lagrangian relaxation, one can

decompose the problem into smaller subproblems, to accelerate the optimization

process. Indeed, it is known that, with the capacity and forcing constraints re-

laxed, the problem decomposes into shortest-path subproblems, one for each com-

modity. A second alternative is to relax flow balancing constraints to obtain

knapsack subproblems, one per arc. Moreover, those two approaches can be com-

bined in a ‘total’ relaxation, so the problem decomposes into simple inspection

subproblems, one for each arc-commodity pair. As mentioned, other Lagrangian

relaxations have been proposed in the literature, that decompose by nodes, but

resulting in harder subproblems. It has been shown that for the current purposes,

the ‘knapsack’ relaxation was the most suitable.

As discussed, the Lagrangian relaxation results in the so-called Lagrangian

dual problem, whose objective function is a nondi↵erentiable piecewise function.

The performances of two state-of-the-art NDO solvers: the Volume Algorithm and

the Bundle Method were compared while solving the dual Lagrangian problems.

The important contribution of such a comparison was the surprising overall perfor-
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mance of the Volume Algorithm, compared extensively to the Bundle-based best

solver on very large-scale instances of FCMC (cf. [199]). The results have shown

that for large-scale FCMC instances, the Volume Algorithm performed better,

providing on average equal or better bounds in less computational time. There-

fore, the whole development of methods presented in this document was based on

Lagrangian relaxation and the Volume Algorithm.

The main goal of this thesis was to provide tight optimality gaps for large scale

FCMC instances. In that sense, a Lagrangian heuristic was proposed, providing

relatively good quality upper bounds for large-scale instances, far better than the

ones provided by Cplex.

From another perspective, a Relax-and-Cut procedure was implemented in

chapter 4, aiming at improving lower bounds. Two alternative ways to enhance

performances were presented: sensitivity analysis and constraint scaling. Indeed,

those features have provided better bounds for all instances, with practically no

losses in time-consuming aspects. On average, the obtained lower bounds were

close to 1% better than the ones obtained with the standard Volume Algorithm.

Nevertheless, in some cases the bound improvements were up to 11% for bench-

mark instances.

Finally, the Relax-and-Cut algorithm was embedded into a Branch-and-Cut

scheme to further improve lower and upper bounds. The proposed method could

provide optimal bounds for three of the unsolved benchmark instances, and it was

able to provide sharp bounds for some very large-scale instances, solving three of

them to optimality. Moreover, a heuristic version based on a Lagrangian Feasibility

Pump algorithm was tested, obtaining competitive results, when compared to the

best heuristics in the literature.

We conclude the thesis presenting the next steps and future research avenues

for the considered problem and related ones. Given the promising results obtained

with the Volume-based Branch-and-Cut algorithm, a more fine-tuned set of pa-

rameters, which includes the Feasibility Pump heuristic, is being tested. A paper

submission is contemplated to publish the whole study on the Branch-and-Cut

algorithm detailed in chapter 5.

Future research avenues may include the development of fast Lagrangian Branch-

and-Cut schemes in similar problems, for example with side constraints involved.

Moreover, the application of sensitivity analysis along with relax-and-cut schemes

for other problems, in which constraint scaling is not trivial, might be an interest-

ing topic. In the presence of near-optimal solutions, the variable fixing procedures

used in the Branch-and-Cut scheme could be applied to relax-and-cut contexts,

possibly improving performances. Furthermore, the comparison between NDO
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solvers may be enlarged to englobe other e�cient algorithms, taking di↵erent prob-

lems into consideration too. Finally, the combination of Lagrangian relaxation and

the Feasibility Pump heuristic could be tested on other integer problems, where

integer variables are not binary.
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Appendix A

Additional results for ‘total’

relaxation

We plot in Figures A.1 and A.2 the bound progression by the computation

time for the larger instances. As in section 3.6.4, the curves indicate the ratio

between the current value LBt

x
and LBbest measured every 5 iterations and the

respective computation time at that precise moment. Note that, LBbest is the best

know lower bound for a given instance, obtained with either Volume or Bundle,

and either ‘knapsack’ relaxation or ‘total’ relaxation.

Indeed, the curvers confirm that the ‘total’ relaxation provided worse bounds

in average, since they remain relatively far form the best lower bound (1.00 in

the graphics). That is even more perceivable with the Bundle Method. Morever,

analysing those graphics, the same statements made in section 3.6.4 can be inferred

in the present case.
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(a) Group A (b) Group B

(c) Group C (d) Group D

Figure A.1: ‘Total’ relaxation average bound progression with respect to compu-

tation time, for large instances of groups A-D
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(a) Group E (b) Group F

(c) Group G (d) Group H

Figure A.2: ‘Total’ relaxation average bound progression with respect to compu-

tation time, for large instances of groups E-H
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Appendix B

Additional results for ‘knapsack’

relaxation

We plot in Figures B.1 and B.2 the bound progression by the computation time

for the instances A, B, C, D and Canad-N. As in section 3.6.4, the curves indicate

the ratio between the current value LBt

x
and LBbest measured every 5 iterations

and the respective computation time at that precise moment. Note that, LBbest is

the best know lower bound for a given instance, obtained with either Volume or

Bundle. As one can notice, the remarks made in section 3.6.4 are valid for these

instances too.

Figure B.1: ‘Knapsack’ relaxation average bound progression with respect to com-

putation time, for large instances of group Canad-N

138



(a) Group A (b) Group B

(c) Group C (d) Group D

Figure B.2: ‘Knapsack’ relaxation average bound progression with respect to com-

putation time, for large instances of groups A-D
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Appendix C

Relax-and-Cut results for very

large scale instances

Here, we present in Table C.1 the average results for very large scale FCMC

instances (see section 3.6.1 for a detailed description of those instances). The

notation used is the same as in section 4.8 : considering zl the bound given by the

Lagrangian knapsack relaxation, solved by the regular Volume Algorithm, and z̄

the bound provided by the Relax-and-Cut method, the deviation ‘Dev’ measures

the benefit of the given procedure, relative to zl. Therefore, columns ‘Max Dev %’

present the maximum deviation obtained for that related group of instances, while

columns ‘Avg Dev %’ give the average deviation for that group. Futhermore, the

average computational times are given in columns ‘t’, measured in seconds, and

columns ‘Num’ present the average number of cuts added during the optimization

processes. Column ‘Iters’ show the average number of iterations performed before

the algorithm stops.

A time limit of 3 hours, and a limit of 1000 iterations were set. In its turn,

the Relax-and-Cut configuration chosed for this testbed adds only cover and min-

imum cardinality inequalities, and sensitivity analysis and constraint scaling were

applied.
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Max Avg Cover Min Card

Dev % Dev % Num Num t Iters

A/08 05 0.00 0.00 245 249 1674 1000

A/10 05 0.13 0.03 227 226 1792 1000

A/14 05 0.10 0.00 194 193 2027 1000

B/14 10 1.17 0.79 219 215 503 1000

B/10 10 1.25 0.92 266 258 445 1000

B/06 10 0.70 0.51 249 251 390 1000

C/02 10 0.57 0.13 270 268 497 1000

C/02 001 0.01 0.00 0 0 271 1000

C/14 001 0.02 0.01 0 0 284 1000

D/14 12 0.20 0.12 217 216 1024 1000

D/20 001 0.01 0.00 0 0 354 1000

D/01 20 0.20 0.10 249 251 1424 1000

E/01 001 0.01 0.01 0 0 2166 1000

E/20 001 0.04 0.01 1 1 2284 1000

E/01 20 0.07 0.04 264 266 1764 1000

F/01 20 0.01 0.00 302 302 9305 991

F/20 20 0.05 0.00 196 195 10132 834

F/01 001 0.04 0.00 2 2 10190 750

G/20 001 0.00 0.00 5 3 10111 670

G/20 20 0.01 0.00 204 203 10157 654

G/01 001 0.00 0.00 7 7 10203 597

H/01 20 0.00 0.00 0 0 19687 50

H/20 20 0.00 0.00 0 0 19809 50

H/01 001 0.00 0.00 0 0 20472 50

Table C.1: Relax-and-Cut results for instances groups A to H

As one can observe, the average deviations remained under 1%, with the excep-

tion of group B/14 10 and B/10 10, for which slightly better improvements were

obtained. For groups A to E the computational times did not reached 1 hour, and

the algorithm stopped because of the limit of iterations, which reinforce the fact

that sensitivity analysis do not increase computational times too much.

For the largest instances (groups F to H), the algorithm stopped because of the

time limit, what deteriorated lower bound improvements, especially for group G.

In fact, the most time-consuming feature in those cases was the cutset separation

heuristic. Since it was runned for every node, every 50 iterations, given the size

of the intances, such procedure turned out to be too demanding. In that sense, a
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less extensive cutset separation method is preferable in those cases.
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Appendix D

Branch-and-Cut detailed results

for benchmark instances

In this appendix, the detailed results for the Feasibility Pump embedded

Branch-and-Cut heuristic are presented for instances Canad-R, in Tables D.2 to

D.5 (see section 5.8.3 for a description of the tables). The columns ‘Z̄’ show

the nominal value of the best feasible solutions found, serving as basis for the

computation of deviations ‘Dev’.

For all instances ‘r01’ to ‘r11’, the ‘FP 5h’ heuristic have provided the best

solutions, while for the remaining instances, in 49/63 cases it could provide the

best soltuions. That number raises to 57/63, when ‘FP 10h’ is considered.

Furthermore, the nominal values for the the best solutions found for the Canad-

C instances are given in Table D.1. Again columns ‘Z̄’ show those values.

Instance Z̄ Instance Z̄ Instance Z̄

c33 423848 c48 107521.5 c62 135064

c35 371475 c49 54026 c63 95306

c36 643036 c50 94209.5 c64 130148

c37 94213 c51 52129 c65 14941

c38 137642 c52 97856 c66 49899

c39 97914 c53 112846 c67 14712

c40 136130 c54 149446 c68 37055

c41 429398 c55 114641 c69 85530

c42 586077 c56 152744 c70 365272

c43 464509 c57 47603 c71 23949

c44 604198 c58 60194 c72 64562

c45 74913 c59 45905 c73 28423

c46 115539 c60 55104 c74 49018

c47 74991 c61 97972 c75 139535

c76 384809

Table D.1: Best heuristic solution values for Canad-C instances
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Instance Z̄ CYCLE SCALE LH FP Time

r01.1 74079 0.00 0.00 0.00 0.00 0.0

r01.2 92403 0.00 0.00 0.00 0.00 0.0

r01.3 115304 0.00 0.00 0.00 0.00 0.1

r01.4 84908 0.00 0.28 0.00 0.00 0.4

r01.5 113036 0.00 1.33 0.00 0.00 0.4

r01.6 147599 0.00 2.14 0.00 0.00 0.5

r02.1 232239 0.00 0.00 0.00 0.00 0.5

r02.2 322453 1.69 0.43 0.00 0.00 0.8

r02.3 419503 1.72 0.00 0.00 0.00 0.4

r02.4 316437 0.00 0.00 0.00 0.00 0.5

r02.5 431250 0.51 0.23 0.00 0.00 0.6

r02.6 559578 0.71 0.00 0.00 0.00 0.4

r03.1 484830 0.00 0.00 0.00 0.00 0.5

r03.2 703362 1.21 0.22 0.00 0.00 0.9

r03.3 944990 3.74 0.00 0.00 0.00 0.7

r03.4 704247 0.28 0.00 0.00 0.00 0.7

r03.5 932897 2.20 0.00 0.09 0.00 1.0

r03.6 1188638 2.10 0.20 0.00 0.00 1.1

Table D.2: Branch-and-Cut heuristic detailed results for benchmark instances

Canad-R : r01 to r03
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Instance Z̄ CYCLE SCALE LH FP Time

r04.1 31730 0.00 0.00 0.00 0.00 0.0

r04.2 48920 0.00 0.00 0.00 0.00 0.0

r04.3 63767 0.00 0.00 0.00 0.00 0.0

r04.4 33740 0.00 0.06 1.31 0.00 0.5

r04.5 53790 0.00 0.00 0.93 0.00 0.5

r04.6 74030 0.00 1.44 1.26 0.00 0.5

r04.7 68292 0.00 0.32 0.00 0.00 5.8

r04.8 113004 0.20 0.20 0.20 0.00 4.4

r04.9 163208 0.74 1.95 0.00 0.00 1.9

r05.1 123003 0.00 0.00 0.22 0.00 0.7

r05.2 170060 0.24 0.24 2.39 0.00 0.5

r05.3 221486 0.00 0.64 0.80 0.00 1.1

r05.4 131608 0.00 0.14 0.01 0.00 0.9

r05.5 204157 0.78 0.21 0.00 0.00 3.0

r05.6 286524 1.96 1.99 1.95 0.00 15.5

r05.7 278372 0.00 0.00 0.00 0.00 1.6

r05.8 445810 0.82 0.02 0.02 0.00 2.1

r05.9 625879 0.50 1.39 0.00 0.00 1.1

r06.1 245936 1.08 0.00 0.00 0.00 5.5

r06.2 401685 2.57 0.00 0.00 0.00 14.8

r06.3 559477 3.33 0.00 0.00 0.00 17.5

r06.4 286682 0.62 0.31 0.07 0.00 33.6

r06.5 498266 3.43 0.69 0.39 0.00 135.1

r06.6 734414 4.83 0.66 0.86 0.00 174.3

r06.7 682921 0.10 0.02 0.00 0.00 3.1

r06.8 1030479 2.03 0.00 0.00 0.00 8.8

r06.9 423316 3.54 0.09 0.09 0.00 8.3

r07.1 32807 0.00 0.00 0.00 0.00 0.0

r07.2 47252 0.00 0.00 0.00 0.00 0.0

r07.3 62962 0.00 0.00 0.00 0.00 0.1

r07.4 37432 0.00 0.00 0.00 0.00 8.7

r07.5 56475 0.20 0.77 0.20 0.00 9.6

r07.6 77249 2.06 2.38 2.07 0.00 6.3

r07.7 59947 0.00 0.27 0.23 0.00 27.4

r07.8 99194 0.96 4.77 1.28 0.00 13.3

r07.9 141692 0.44 2.91 0.00 0.00 23.5

r08.1 102531 0.02 0.11 0.00 0.00 0.7

r08.2 143894 0.00 0.00 0.00 0.00 0.1

r08.3 182793 0.00 0.00 0.00 0.00 0.2

r08.4 109325 0.00 0.00 0.09 0.00 2.2

r08.5 157047 0.71 0.43 0.83 0.00 1.5

r08.6 207540 0.29 0.44 1.52 0.00 6.9

r08.7 154160 0.79 1.28 0.10 0.00 45.5

r08.8 274867 2.92 2.14 1.56 0.00 56.4

r08.9 415793 3.28 2.60 0.30 0.00 77.1

r09.1 171512 0.48 0.24 0.00 0.00 2.0

r09.2 296712 3.36 0.48 0.00 0.00 4.0

r09.3 424266 2.60 0.00 1.34 0.00 22.8

r09.4 192736 0.26 0.05 0.01 0.00 6.9

r09.5 357318 3.95 0.00 0.48 0.00 22.7

r09.6 522187 6.07 0.78 0.37 0.00 144.5

r09.7 345057 0.93 0.17 0.13 0.00 38.8

r09.8 646579 3.47 0.09 0.09 0.00 50.9

r09.9 951136 3.73 0.95 0.39 0.00 148.6

Table D.3: Branch-and-Cut heuristic detailed results for benchmark instances

Canad-R : r04 to r09
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Instance Z̄ CYCLE SCALE LH FP 5h FP 10h Time

r10.1 200087 0.26 0.00 0.16 0.00 0.00 1.9

r10.2 346814 1.07 1.24 2.03 0.00 0.00 158.6

r10.3 488015 3.77 0.89 0.72 0.00 0.00 45.7

r10.4 229196 1.41 0.14 0.37 0.00 0.00 269.7

r10.5 411664 4.91 1.61 0.03 0.00 0.00 1282.2

r10.6 609104 4.92 0.57 1.03 0.00 0.00 2142.8

r10.7 486895 0.38 0.19 0.28 0.00 0.00 711.6

r10.8 951056 2.95 0.99 1.34 0.00 0.00 265.4

r10.9 1421862 4.40 0.46 1.00 0.00 0.00 468.8

r11.1 714431 1.51 0.00 0.05 0.00 0.00 182.2

r11.2 1263713 3.24 0.36 0.64 0.00 0.00 4961.4

r11.3 1843611 3.68 0.60 1.05 0.00 0.00 5758.2

r11.4 870451 0.73 0.09 0.09 0.00 0.00 2963.2

r11.5 1623640 4.20 0.11 0.22 0.00 0.00 1412.9

r11.6 2414060 7.43 0.54 0.37 0.00 0.00 2284.5

r11.7 2294912 0.04 0.02 0.05 0.00 0.00 42.7

r11.8 3507100 1.72 0.00 0.04 0.00 0.00 36127.7

r11.9 4579353 0.92 0.00 0.00 0.00 0.00 24.4

r12.1 1639443 4.33 0.09 0.09 0.00 0.00 877.3

r12.2 3396050 9.35 0.44 1.17 0.26 0.00 21869.4

r12.3 5228711 13.86 1.04 1.97 0.00 0.00 4289.7

r12.4 2303557 0.97 0.07 0.19 0.00 0.00 289.3

r12.5 4669799 6.00 0.00 0.31 0.00 0.00 290.4

r12.6 7100019 7.04 0.00 0.02 0.00 0.00 224.1

r12.7 7635270 0.03 0.00 0.03 0.00 0.00 76.7

r12.8 10067742 0.53 0.00 0.00 0.00 0.00 33.8

r12.9 11967768 0.92 0.00 0.00 0.00 0.00 12.9

r13.1 142947 0.83 0.06 0.00 0.00 0.00 1.7

r13.2 263800 2.41 0.47 0.78 0.00 0.00 404.4

r13.3 365836 2.44 1.19 1.26 0.00 0.00 310.2

r13.4 150977 0.35 0.13 0.21 0.00 0.00 370.1

r13.5 282682 3.03 0.54 0.80 0.00 0.00 4129.6

r13.6 406790 3.15 1.28 3.69 0.00 0.00 4572.4

r13.7 208533 1.84 0.50 0.46 0.00 0.00 36303.2

r13.8 446675 7.73 3.60 1.69 0.00 0.00 36266.9

r13.9 699806 7.76 3.03 1.49 0.00 0.00 36247.3

r14.1 403414 2.82 0.22 0.00 0.00 0.00 82.6

r14.2 749503 6.70 0.52 0.70 0.00 0.00 12180.8

r14.3 1063098 8.02 0.45 1.21 0.00 0.00 4657.0

r14.4 437607 3.44 0.15 0.17 0.00 0.00 1854.8

r14.5 850816 6.76 0.75 0.70 0.37 0.00 36172.4

r14.6 1214609 8.91 0.15 2.64 0.00 0.00 16302.1

r14.7 669847 4.61 0.00 0.27 0.20 0.20 36123.1

r14.8 1615125 7.65 0.97 0.68 0.00 0.00 36085.3

r14.9 2606942 9.57 2.34 3.31 0.00 0.00 17230.7

Table D.4: Branch-and-Cut heuristic detailed results for benchmark instances

Canad-R : r10 to r14
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Instance Z̄ CYCLE SCALE LH FP 5h FP 10h Time

r15.1 1000787 4.63 0.00 0.17 0.00 0.00 1637.8

r15.2 1974403 8.54 0.17 0.00 0.07 0.07 36067.0

r15.3 2895321 7.67 0.47 0.28 0.00 0.00 36155.7

r15.4 1148604 5.47 0.06 0.22 0.05 0.00 36086.6

r15.5 2484342 9.88 0.00 1.05 0.29 0.21 36065.3

r15.6 3834074 12.56 0.42 1.13 0.00 0.00 36093.8

r15.7 2301798 2.29 0.00 0.61 0.07 0.07 36031.3

r15.8 5579451 5.85 0.04 0.91 0.01 0.00 36029.5

r15.9 8696932 5.27 0.00 0.37 0.00 0.00 210.1

r16.1 136161 0.28 0.00 0.00 0.00 0.00 0.1

r16.2 239500 3.30 0.30 1.11 0.00 0.00 782.2

r16.3 325671 3.88 0.05 0.85 0.00 0.00 1251.8

r16.4 138532 1.03 0.00 0.00 0.00 0.00 17.4

r16.5 241801 1.71 0.00 1.24 0.00 0.00 174.8

r16.6 337762 5.02 1.42 1.56 0.00 0.00 584.3

r16.7 169336 1.70 2.34 0.81 0.00 0.00 36272.0

r16.8 348167 4.67 3.03 3.24 0.00 0.00 36205.0

r16.9 530911 6.84 2.56 3.09 0.00 0.00 36189.1

r17.1 354138 4.31 0.02 0.00 0.00 0.00 94.4

r17.2 645488 6.25 1.50 2.86 0.00 0.00 2225.3

r17.3 910518 6.24 1.04 1.64 3.12 0.00 28647.2

r17.4 370590 2.69 0.01 0.34 0.00 0.00 1586.0

r17.5 706747 6.17 0.78 1.25 0.00 0.00 34188.6

r17.6 1022696 7.71 0.98 0.93 0.00 0.00 36139.7

r17.7 502144 4.18 0.49 1.34 0.00 0.00 36110.9

r17.8 1110945 7.04 0.03 0.38 0.00 0.00 36116.0

r17.9 1787898 8.08 0.98 1.41 0.27 0.00 36153.5

r18.1 828119 5.13 0.40 0.32 0.35 0.00 36113.6

r18.2 1533675 10.66 0.84 0.31 0.00 0.00 7880.1

r18.3 2182638 8.20 1.01 0.11 0.00 0.00 36071.0

r18.4 923609 5.31 0.00 0.48 0.06 0.06 36098.1

r18.5 1829317 10.24 0.19 0.43 0.00 0.00 36085.6

r18.6 2704287 8.84 1.22 1.53 1.71 0.00 36088.5

r18.7 1483219 8.59 0.00 0.56 0.15 0.05 36186.5

r18.8 3898384 14.82 0.40 2.85 0.00 0.00 36049.5

r18.9 6376813 15.02 0.51 1.90 0.00 0.00 24039.5

Table D.5: Branch-and-Cut heuristic detailed results for benchmark instances

Canad-R : r14 to r18
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[76] Escudero, L. F., Gaŕın, M. A., and Unzueta, A. Cluster Lagrangean

decomposition in multistage stochastic optimization. Computers & Opera-

tions Research 67 (2016), 48–62.

[77] Escudero, L. F., Guignard, M., and Malik, K. A Lagrangian relax-

and-cut approach for the sequential ordering problem with precedence rela-

tionships. Annals of Operations Research 50, 1 (1994), 219–237.

[78] Feo, T. A., and Resende, M. G. C. Greedy randomized adaptive search

procedures. Journal of global optimization 6, 2 (1995), 109–133.

[79] Ferreira, R. P. M., Luna, H. P. L., Mahey, P., and Souza, M.

C. d. Global optimization of capacity expansion and flow assignment in

multicommodity networks. Pesquisa Operacional 33, 2 (2013), 217–234.

154



[80] Fischetti, M., Glover, F., and Lodi, A. The feasibility pump. Math-

ematical Programming 104, 1 (2005), 91–104.

[81] Fischetti, M., and Lodi, A. Local branching. Mathematical program-

ming 98, 1-3 (2003), 23–47.

[82] Fischetti, M., and Salvagnin, D. Feasibility pump 2.0. Mathematical

Programming Computation 1, 2-3 (2009), 201–222.

[83] Fischetti, M., and Salvagnin, D. A relax-and-cut framework for Go-

mory mixed-integer cuts. Mathematical Programming Computation 3, 2

(2011), 79–102.

[84] Fisher, M. L. Optimal solution of scheduling problems using Lagrange

multipliers: Part i. Operations Research 21, 5 (1973), 1114–1127.

[85] Fisher, M. L. A dual algorithm for the one-machine scheduling problem.

Mathematical programming 11, 1 (1976), 229–251.

[86] Fisher, M. L. The Lagrangian relaxation method for solving integer pro-

gramming problems. Management science 27, 1 (1981), 1–18.

[87] Frangioni, A. Solving semidefinite quadratic problems within nonsmooth

optimization algorithms. Computers & Operations Research 23, 11 (1996),

1099–1118.

[88] Frangioni, A. Dual-ascent methods and multicommodity flow problems.

PhD thesis, Dipartimento di Informatica, Università di Pisa, 1997.
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R. On cut-based inequalities for capacitated network design polyhedra.

Networks 57, 2 (2011), 141–156.

[190] Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. The

Benders decomposition algorithm: A literature review. European Journal of

Operational Research 259, 3 (2017), 801–817.

[191] Rardin, R. L., and Wolsey, L. A. Valid inequalities and projecting

the multicommodity extended formulation for uncapacitated fixed charge

network flow problems. European Journal of Operational Research 71, 1

(1993), 95–109.

[192] Rockafellar, R. T. Convex analysis. No. 28 in Princeton Landmarks

in Mathematics and Physics. Princeton university press, Princeton, New

Jersey, 1970.
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