Je remercie également Diego Puschini et Julien Mottin qui ont encadré une partie de cette thèse et m'ont rapporté plein de conseils utiles et ont su me pousser à travailler dur.

Je tiens aussi à remercier les membres du jury d'avoir accepté d'examiner la présente thèse et pour leur temps consacré à lire le manuscrit et à participer à la soutenance de thèse.

Je voudrais adresser mes remerciements à tous mes collègues du LIALP. C'était un grand plaisir de travailler avec une équipe aussi sympa et dynamique. Remerciements particuliers à Vincent Olive, ex-

2, 3): the dot (resp. square, diamond) is the robot position with its heading equal to 30 • (resp. 0

Context

Autonomous vehicles differ from traditional ones by their capability to handle the driving features without the intervention of the driver. Depending on the degree of automation, six levels of automation have been defined by the Society of Automotive Engineers (SAE) international classification [SAE 2014] (see figure 1.1):

• level 0 groups most of the vehicles on the road today. These vehicles cannot handle any automated driving feature;

• level 1 designates the vehicles where only one driving feature is automated such as controlling the acceleration or the steering;

• in level 2, an advanced driving assistance system allows to handle the steering, acceleration/deceleration and braking. In case of any dis-functionality in the system, the driver still has to take control of the driving;

• in level 3, the vehicle can handle the driving under certain traffic conditions but the driver has still to be present. From level 3, the automated system is able to monitor the driving environment;

• in level 4, vehicles can drive fully autonomously without the intervention of the driver. However, the automation is restrained to the operational design domain of the vehicle, i.e., it cannot drive in any circumstance (usually limited to urban environments with low top speeds);

• finally, level 5 groups fully autonomous vehicles that can drive in any circumstance, without restriction. Despite all the technological progress done in the autonomous driving field, level 5 is still not reached yet. Moreover, even if the vehicle industry was able to produce level 4 prototypes, these vehicles are still not present on the market. This is mainly due to the fact that they do not meet the standard road safety requirements. Therefore, the research effort put on self-driving vehicles has drastically increased over the last years, the main goal being to ensure the required safety standards.

Self-localization and mapping are among the most studied topics in this domain. In fact, accurate and reliable maps and positioning knowledge are essential to decrease the risk of wrong automated decisions that can lead to road accidents and cost people lives.

The present PhD thesis deals with mapping (i.e., environment perception) and localization (i.e. positioning) using grids, more precisely, pose grids and occupancy grids respectively. Moreover, we focus on the integration of the proposed algorithms on light-weight embedded platform, thus the use of integer arithmetic.

Mapping

Autonomous vehicles and more generally speaking, autonomous robots, require a digital environment model in order to navigate safely in their surroundings and avoid obstacles. The environment model helps to identify empty and occupied areas around the robot.

Autonomous vehicles and robots rely on multiple sensors allowing them to sense eventual obstacles in their surroundings. Range sensors are typically used for this purpose such as ultrasonic sensors, laser-based sensors, cameras and radars. These sensors allow to estimate the distance to an obstacle by computing the time difference between the emission of a signal and its return to the sensor; this is called the "time-of-flight" (ToF). However, due to sensor imperfections, the observations returned by these sensors are uncertain. Thus, a processing of these measurements is done before using them for generating the environment model. Their uncertainty is taken into account and translated back into the map, i.e., the environment model. The model allowing this translation is called the perception model: it represents a primordial step for map building.

Two types of framework are used to represent the digital environment model: topological and metric. Topological maps represent a graph-like description of the environment. The nodes correspond to distinguishable places or landmarks around 1.1. Context the robot and the edges correspond to possible connections between the nodes. Metric maps represent a fine-grained description of the robot or vehicle environment.

In the present thesis, we use the metric representation, more specifically the occupancy grid paradigm [Elfes 1989a]. Occupancy grids represent a partition of the space surrounding the robot, composed of a finite number of disjoint cells. Each cell is associated to a probability of occupancy by an obstacle. If this probability is high, the cell is most likely occupied; if it is low, the cell is most likely empty; if it is near 0.5, the cell has most likely an unknown state of occupancy.

Localization

Knowing the robot or vehicle pose accurately is mandatory for creating reliable maps of the environment, for path planning and navigation. In the sequel, "pose" represents the position and the heading of the robot or vehicle, in 2-dimensions or 3-dimensions, depending on the application context.

Despite the existence of Global Navigation Satellite Systems (GNSS) integrated in most of modern vehicles, these systems cannot be used alone to determine accurately the vehicle pose. In fact, their positioning quality reduces drastically in dense urban areas, where the position estimation error can reach more than 10 meters. Such an error is high enough to be considered threatening the safety requirements. Consequently, autonomous vehicles must rely on localization algorithms that estimate the vehicle pose within decimeters. When indoor navigation is considered, localization techniques based on for instance, Ultra-Wide Band technology, can be used.

Localization algorithms can use two types of sensors, namely interoceptive and exteroceptive sensors. Interoceptive sensors such as odometers, wheel encoders and IMUs allow to estimate the robot or vehicle motion. Since measurements issued by these sensors have errors, the pose estimate itself is uncertain and the error might grow each time a new observation is taken into account. Hence, exteroceptive sensors, such as range sensors, are used. These sensors allow the robot or vehicle to perceive the environment and the surrounding obstacles. The localization consists in minimizing the pose error by matching the exteroceptive observations into a partially/totally known map. The latter can be either generated by the robot or vehicle itself or downloaded from external sources.

When the localization consists in reducing the pose error corrupted by motion sensors, it is known as position tracking. Otherwise, if it consists in determining the pose of the robot or vehicle within a completely unknown prior pose knowledge, the localization is known as global localization.

Different representations of the pose are found in the literature. For instance, particles are used when using particle filters for localization [Dellaert 1999]. They represent points in the space corresponding to possible positions and headings of the robot or vehicle. Grid-based representations are used when using histogram filter [START_REF] Burgard | [END_REF]]. They are composed of disjoint cells representing regions in the space where the robot or vehicle can be possibly located. When using Kalman filter approaches, the pose is represented by a mean estimate vector and a covariance matrix [START_REF] Kalman | [END_REF]]. Graph-based representations are commonin optimization-based localization techniques [START_REF] Thrun | The graph SLAM algorithm with applications to large-scale mapping of urban structures[END_REF]].

In the present thesis, the grid-based framework is used to represent the pose.

Simultaneous localization and mapping

Simultaneous Localization And Mapping, known as SLAM, consists in determining simultaneously the robot or vehicle pose and the environment map [START_REF] Smith | [END_REF]]. It is indeed a chicken-and-egg problem. In fact, as seen in the previous sections, in order to localize a robot or vehicle, the map of the environment should be partially/totally known. On the other hand, in order to create the map of the environment, the pose should be known. This chicken-and-egg relationship highlights the difficulty of SLAM and explains the extensive research work done on this topic over the last decades.

Problematic

The main drawback of using grid-based representations for SLAM and for global localization is the required exponential computational complexity in terms of the grid size (of the map and the pose maps). The required grid size for modeling the environment surrounding a robot or of a vehicle can be in the order of thousands of millions of cells. For instance, a 2D square-shape space of size 100m × 100m, with a cell size of 10cm is modelled with a grid of 1 million cells. If we include a 2 m of height to represent the third dimension, 20 millions of cells are required. Consequently, classical grid-based SLAM and global localization approaches require a parallel computing unit in order to meet the latency imposed by safety standards. Such a computation is usually done over workstations embedding Graphical Processing Units (GPUs) and/or a high-end CPUs. However, autonomous vehicles cannot handle such platforms for cost reason, and certification issues. Also, these platforms require a high power consumption that cannot fit within the limited source of energy available in some robots. Embedded hardware platforms are commonly used as an alternative solution in automotive applications. These platforms meet the low-cost, low-power and small-space constraints. Moreover, some of them are automotive certified 1 , following the ISO26262 standard. However, most of them are not equipped with a floating-point unit, which limits the computational performance.

The sigma-fusion project team in the LIALP laboratory at CEA-Leti has developed an integer-based perception method suitable for embedded devices. This 1 see for instance the Aurix platform from Infineon 1.3. Contributions 7 method builds an occupancy grid via Bayesian fusion using integer arithmetic only, thus its "embeddability" on embedded computing platforms, without floating-point unit. This constitutes the major contribution of the PhD thesis of Tiana Rakotovao [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF].

The objective of the present PhD thesis is to extend the integer perception framework to SLAM and global localization problems, thus offering solutions "embeddable" on embedded systems.

Contributions

The contributions of this PhD thesis are threefold:

• to use the integer occupancy grid framework introduced by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] in this thesis, a complementary study was mandatory.

In fact, the approach presented by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] requires the computation of a so-called inverse sensor model used in the perception model. The computational complexity of such a model as found in the literature is exponential with the grid size. In [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF], a linear complexity inverse sensor model is proposed for narrow field-of-view range sensors, having a nearest-target behavior (i.e., the measurements returned by the sensor are caused by the nearest obstacle to the sensor). However, range sensors can have large field-of-views and multiple obstacles can be located in their field-of-view, at different distances or at the same one. The respective angular position and size of each obstacle can affect the returned measurements. Thus, an extension of the computation of inverse sensor model is proposed for large field-of-view range sensors, under the hypothesis of a nearest-target behavior. The computational complexity of our proposed inverse sensor model is also linear;

• the linear complexity inverse sensor model for nearest target sensors is used in our grid-based SLAM proposal. This allows to overcome the exponential complexity of traditional grid-based localization and mapping techniques. In addition, an integer implementation of the grid-based SLAM is proposed. It is inspired by the integer occupancy grid framework initially introduced by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF]. Our proposal is suitable for an implementation on embedded systems because no floating-point operations are required.

Only integer arithmetic is used;

• a linear complexity grid-based global localization with respect to the pose grid size is proposed. The global localization problem is re-defined as a mapping one from sources located in the environment map. Therefore, the integer occupancy grid paradigm introduced by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] can be directly applied allowing an integer implementation of our grid-based global localization method. Such an implementation is suitable for embedded systems. Moreover, our method demonstrates a high robustness to noisy measurements and occlusions compared to the state-of-the-art solutions.

Manuscript organisation

As stated above, this PhD thesis presents an integer framework for grid-based SLAM and for global localization. It also proposes a linear complexity inverse sensor model for large field-of-view sensors. This model is used in the environment perception framework based on occupancy grids.

The rest of this manuscript is organized as follows.

Chapter 2 introduces the concept of occupancy grids and gives a review on the existing approaches for computing these grids. It also presents our first contribution related to the linear computational inverse sensor model for large field-of-view sensors.

Chapter 3 introduces the integer framework for grid-based SLAM and reviews the state-of-the-art in this field. It also presents some experimental results and performance analyses for a scenario in simulation. Comparison between the floatingpoint version of our method and the integer version is also given.

Chapter 4 presents the integer framework for grid-based global localization and reviews the state-of-the-art in this domain. Experimental results in simulation are also given. They include a comparison of the accuracy of our approach and its resistance to occlusions with respect to a solution found in the literature.

Finally, chapter 5 concludes this manuscript and gives the future work directions of the work done during this PhD thesis.

Chapter 2

Occupancy grids for environment perception: an overview In this chapter, we summarize the concepts behind the occupancy grid framework. We review the theoretical and algorithmic foundations of occupancy grids. We also address the integer occupancy grid framework recently introduced in [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF]. This latter is essential for formulating the integer framework we proposed for the Global Localization and the Simultaneous Localization And Mapping (SLAM) algorithms and that are presented in the next chapters.

We also show the link between the grid resolution, the sensor precision and the maximal probability exhibited by the inverse sensor model. We finally propose a new inverse sensor model for large Field-Of-View sensors that presents a linear complexity. This chapter is organised as follows. Section 2.1 introduces the concept of occupancy grids. Section 2.2 defines the sensor model. The inverse sensor model and its related state-of-the-art are then presented in section 2.3. Importance of the link between the sensor model and the inverse sensor model is shown in section 2.4. Section 2.5 presents a new inverse sensor model for large Field-Of-View nearest-target sensors. This constitutes the contributions of this PhD thesis. Basically, the general complexity for generating the inverse sensor model is exponential. The formulation presented in this section, however, breaks it down to a linear one. Section 2.6 details the procedure allowing to deduce the occupancy grid from the inverse sensor model. Finally, section 2.7 presents the integer occupancy grid framework.

Introduction to occupancy grids

An occupancy grid, initially introduced by [Elfes 1989a], is used for modeling the environment of, for instance, a mobile robot. Depending on the application, the dimensionality of an occupancy grid can vary (typically, 1D, 2D or 3D). The grid representation, which is composed of a finite number of disjoint cells, models and indeed tessellates the space around the robot. Depending on the coordinate system in use, a grid can have a specific type, namely cartesian, polar, spherical, etc.

A probabilistic estimate of the possible state is assigned to each cell. A cell can have two possible states: "occupied" or "empty". It is considered occupied if an obstacle is present, partially or totally, in the cell. It is considered empty otherwise. An obstacle can be any possible body in the scene, for example cars, human beings, animals, plants, buildings, traffic signs, etc. The occupancy state of each cell is estimated through a perception model evaluated for each measurement returned by the range sensors. Note that a range sensor is a device that allows to sense the presence of obstacles around the robot. The most commonly used range sensors in robotics are time-of-flight sensors, ultrasound sensors, laser scanners, vision sensors and radars. Since every sensor embodies uncertainties and errors, the estimation of each cell state incorporates uncertainties. This uncertainty is represented through a probability of occupancy assigned to each cell, hence the name occupancy grid.

In this thesis, to compute the probability of occupancy of each cell by exploiting the sensor measurements, we follow three main steps commonly used in the literature:

1. the sensor uncertainty is captured through the so-called sensor model. This is done by modeling, in different scenes, the uncertainty associated to the sensor outputs;

2. the probability of occupancy of each cell is updated through the so-called inverse sensor model. This latter takes into account the sensor model and one measurement acquired by a range sensor;

3. Bayesian fusion is performed of two or more measurements coming from range sensors (either the same one or different sensors).

This procedure is detailed in the next sections, after the mathematical definition of the grid and of the occupancy grids are given (these definitions can be found in [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF]).

Grid definition

Definition 2.1.1. Consider a bounded "region-of-interest" within a spatial world. A grid is a subdivision of the region-of-interest into a finite number of adjacent-butdisjoint subregions. The subregions are called cells.

Let R denote the region-of-interest, G the grid, N the number of cells, and c i the i-th cell. Therefore,

G = {c i }, i = 1, . . . N ∀i = j : c i ∩ c j = ∅ R = N i=1 c i
A grid possesses two main parameters: the size and the resolution. The size refers to the length in a 1D grid, the surface in a 2D grid or the volume in a 3D grid. The resolution is the density of cells within a grid. For instance, for a 2D grid, the resolution is the number of cells per square meter.

If all the cells in the grid have the same size, the grid is said to be uniform. Without loss of generality, in this thesis, we consider uniform cartesian grids.

Occupancy Grid definition

Let G be a grid and c i a cell of G. The occupancy state of cell c i is defined as a binary random variable s i which value is o i if c i is occupied and e i otherwise. Since the occupancy state s i is a discrete random variable, the sum of the probability of its values is equal to 1:

P (o i) + P (e i) = 1 (2.1)
An occupancy grid can be defined as follows.

Definition 2.1.2. Let z 1 , . . . , z K be the measurements returned from K sensors. An Occupancy Grid (OG) is a function that maps a collection of measurements z 1 , . . . , z K to the set of the occupancy probabilities of all cells of G:

OG(z 1 , . . . , z K) = {P (o i |z 1 ∧ . . . ∧ z K), ∀c i ∈ G} (2.2)
Particularly, an occupancy grid OG(z) built from a single measurement z is called mono-sensor occupancy grid.

Sensor model

As introduced in the previous section, range sensors are used to perceive the obstacles surrounding the "user", where the user can be a vehicle (aerial or terrestrial), a robot or even a human being. For simplicity, in the sequel, the user is named "robot". Unfortunately, external conditions, the nature of the observed obstacles or even imperfections in the sensor design introduce noise in the measurement returned by a sensor. The sensor model translates this uncertainty into a probabilistic distribution. This latter gives the likelihood of getting a specific sensor measurement knowing (one or several) information about the obstacles in the sensor Field-Of-View (FOV). For instance, these information can be the distance from each obstacle to the sensor, but also the angular position of each obstacle in the FOV, its size, its physical composition, etc. The sensor model is defined as follows.

Definition 2.2.1. Let z be a measurement returned by a range sensor and I the set of all the possible information that might affect z. The sensor model is the conditional density function that gives the likelihood of getting z knowing I. In other terms, the sensor model is represented by the Probability Density Function (PDF) p(z|I).

For building the sensor model, one can employ the frequentist technique. For a given observation scenario (and its associated set of information I), we generate several measurements from the sensor. Then, we perform a statistical interpretation of the observed measurements in order to get the PDF of the sensor model.

Example Assume that the sensor in use has a Field-Of-View (FOV) which is composed of a unique line-of-sight. This kind of FOV is called narrow FOV (otherwise, it is called large FOV). In addition, assume that the sensor has a nearest-target behavior, i.e., its output is caused by the nearest obstacle in its FOV. For instance, a common range sensor having these two properties is a LiDAR. The typical sensor model associated to this kind of sensors is represented by the PDF p(z|d), where d is the distance to the nearest obstacle in its FOV. Hence, no matter how many obstacles are present in this sensor FOV, only the distance d to the nearest one counts. Thereby, the set of information I is represented by I = {d} in this case, where d is the distance to the nearest-target. This is illustrated in figure 2.2. As a consequence, and in order to build the PDF of the sensor model, an obstacle should be placed in front of the sensor at a known distance d. Then, multiple measurements are generated from the sensor with respect to this specific scenario. In the end, the PDF of the sensor model can be built based on the observed measurement distribution.

Inverse sensor model

Definition of the inverse sensor model

The inverse sensor model (ISM) is a function allowing to compute the probability of occupancy of each cell c ∈ G given a single measurement z returned by the range sensor. This function takes into account the sensor uncertainty captured by the sensor model and translates it into a probability of occupancy in each cell. Hence, this is where the name "inverse sensor model" comes from. The mathematical definition of the inverse sensor model is the following. Definition 2.3.1. Let P z denotes the inverse sensor model associated to the single range sensor measurement z. P z is defined as follows:

P z : G → [0, 1] c i → P (o i |z) (2.3)
An example of the inverse sensor model of a narrow FOV nearest-target sensor is illustrated in figure 2.3.

Existing approaches for computing the inverse sensor model

Different approaches allow to compute the inverse sensor model. They can be split in three main types, namely "Bayesian approaches", "Analytic approaches" and "Neural network-based approaches". A review on each of these techniques is hereafter given.

Bayesian approach

The Bayesian approach, introduced by [Elfes 1989b], uses the sensor model in order to deduce the inverse sensor model by following a Bayesian reasoning [START_REF] Bayes | An Essay Towards Solving a Problem in the Doctrine of Chances[END_REF]]. Hereafter, the theoretical formulation of the inverse sensor model, as presented in this approach, is detailed.

First, by applying Bayes theorem, P (o i |z) for c i ∈ G can be computed as follows:

P (o i |z) = p(z|o i)P (o i) p(z|o i)P (o i) + p(z|e i)P (e i) (2.4)
In this equation, P (o i) and P (e i) are the prior values. Assuming the noninformative prior hypothesis, P (o i) = P (e i) = 1/2, eq. (2.4) becomes:

P (o i |z) = p(z|o i) p(z|o i) + p(z|e i) (2.5)
Thus, computing the inverse sensor model becomes equivalent to computing p(z|s i) for s i = o i (and s i = e i resp.).

Elfes proposed to compute p(z|s i) for s i = o i (and s i = e i resp.) by utilizing the sensor model. This is done by summing over all the possible grid configurations where s i = o i (and s i = e i resp.). A grid configuration is defined as follows.

Definition 2.3.2. Let G be a grid and N the number of cells in this grid. A grid configuration g is a conjunction of the state of the cells in G:

g u 1 ∧ . . . ∧ u N
where u j ∈ {o j , e j } (2.6)

Since each cell can be either occupied or empty, G can have utmost 2 N possible grid configurations.

The computation of p(z|s i) for s i ∈ {o i , e i } as stated by Elfes, can therefore be done by applying the Theorem of Total Probability over the set of all possible grid configurations denoted by Ω. Thus, the term p(z|s i) becomes:

p(z|s i) = g∈Ω p(z|g ∧ s i)P (g|s i) (2.7)
Denote by Ω s i the set of grid configurations where the state of cell c i is set to s i and by Ω s i the set of grid configurations where the state of cell c i is set to s i . Thus, Ω can be written as a union of these two disjoint sets. Therefore equation (2.7) can be written as:

p(z|s i) = g∈Ω s i p(z|g ∧ s i)P (g|s i) + g∈Ω s i p(z|g ∧ s i)P (g|s i) (2.8)
For g ∈ Ω s i , the state of cell c i is s i . Thus, p(z|g ∧ s i) = p(z|g) and P (g|s i) = P (g). On the other hand, for g ∈ Ω s i , the state of cell c i is s i . Therefore P (g|s i) = 0 in this case. Equation (2.8) becomes:

p(z|s i) = g∈Ω s i p(z|g)P (g) (2.9)
The term p(z|g) is directly deduced from the sensor model (Definition 2.2 (page 13)).

In fact, one has p(z|g) = p(z|I(g)) where I(g) is the set of information affecting the Chapter 2. Overview on OG for environment perception measurement z. The term P (g) is the probability of having the cell states defined in g. In other terms:

P (g) = N i=1 P (u i (g)) (2.10)
where u i (g) is the state of cell c i as defined in g (Definition 2.3.2 (page 15)) and P (u i (g)) is the prior probability of this cell having a state u i (g).

Since the number of possible grid configurations in Ω s i is 2 N -1 , the sum in equation 2.9 is exponential. To reduce the complexity burden, some "direct" solutions 1 have been proposed in the literature. For instance, [START_REF] Pathak | [END_REF]] assumed that the cell states are conditionally independent given a sensor observation. Under this assumption, the proposed inverse sensor model is computed in a linear complexity. [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] and [Kaufman 2016] propose a linear inverse sensor model for narrow FOV sensors with a nearest-target behavior. Instead of considering all the grid configurations, only those with different nearest occupied cells are considered.

2.3.2.1.1 Benefits. An appealing property of this approach is that it naturally transfers the sensing precision to the occupancy evaluation. The uncertainty captured by the sensor model is directly converted into an equivalent uncertainty in the inverse sensor model. Consequently, the state of the environment is estimated with the same precision of the sensor.

On the other hand, the inverse sensor model formulation as defined in this approach takes into account the grid subdivision and its resolution. The latter has a direct impact on the inverse sensor model, which is usually neglected in the stateof-the-art (this is going to be detailed in section 2.4).

Finally, the Bayesian approach allows to easily update the inverse sensor model with respect to any change in the sensing error. For instance, in noisy environments or in case of occlusions, one has to update the sensor model only. The inverse sensor model will directly follow this update.

Limitations.

The main drawback of this approach is its computational complexity. As mentioned, this complexity is exponential in the general case. A real-time implementation of this approach is therefore impractical. Moreover, in some solutions proposed in the literature for reducing the complexity, strong assumptions have been made. For instance, the cell states are considered conditionally independent in [START_REF] Pathak | [END_REF]], which is theoretically incorrect.

In fact, knowing that one cell is occupied can influence the probabilities of occupancy of other cells, given a sensor measurement.

Analytic approach

This kind of approach proposes either to model directly the inverse sensor model (i.e., P (o i |z)) by a continuous function, or approximate the term p(z|s i), s i ∈ {o i , e i } needed to compute the inverse sensor model (equation 2.5).

In the first group, some researchers model the inverse sensor model by a Gaussian distribution if the sensor noise follows a Gaussian distribution too [START_REF] Payeur | [END_REF], Gartshore 2002, Einhorn 2011, Adarve 2012a]. For instance, a specific analytic inverse sensor model for stereo-cameras is proposed in [Li 2013, Nguyen 2012a] and for laser scanners in [START_REF] Weiss | [END_REF]]. In [START_REF] Hornung | [END_REF][START_REF] Wurm | [END_REF]], a simpler representation of the inverse sensor model is used. The proposed model can take only three possible values reflecting empty, occupied and unknown regions respectively.

In the second group, [Konolige 1997] modeled the term p(z|s i) as a Gaussian function centered on the distance d i to cell c i from the sensor. Whereas [START_REF] Yguel | [END_REF]] used a power function centered on d i .

2.3.2.2.1 Benefits. Analytic approaches allow to directly evaluate the inverse sensor model P (o i |z) for a given cell c i ∈ G. Therefore, the complexity does not depend on the grid size and it is O(1). This allows to efficiently implement these models in real-time.

2.3.2.2.2 Limitations. First, the notion of the grid subdivision is ignored in these approaches. The grid resolution, which has a high impact on the inverse sensor model (as will be shown in section 2.4) is not taken into account. The probability of occupancy of each cell depends only on its position and its size is neglected.

Second, by giving a direct formulation of the inverse sensor model, the link with the sensor model is broken. Therefore, if any change in the sensor uncertainty occurs, it will not be transmitted to the inverse sensor model.

Neural network-based approach

Neural network-based approaches use learning algorithms to approximate the inverse sensor model, see for instance [Thrun 1993[START_REF] Burgard | [END_REF][START_REF] Thrun | Learning metric-topological maps for indoor mobile robot navigation[END_REF], Kortenkamp 1998, Thrun 2001b].

First, several robot poses, maps and sensor observations are simulated or collected. Then a neural network is trained in order to give a function of the inverse sensor model. This function takes as inputs the robot pose, the map and the observations and returns the probability of occupancy.

Benefits.

Once the neural network is trained, the inverse sensor model can be directly evaluated. Therefore, as in the case of the analytic approach, the complexity becomes O(1), which is the main advantage of this approach.

Chapter 2. Overview on OG for environment perception 2.3.2.3.2 Limitations. The accuracy of the learned inverse sensor model depends directly on the number of samples used in the training process. In order to ensure a safe model, a huge number of samples is required. Collecting and processing the samples remain a hard and an unclear task. Furthermore, performing the learning algorithms over a high number of maps, poses and sensor observations can be seriously challenging.

Summary

Table 2.1 summarizes the benefits and limitations of the approaches used to evaluate the inverse sensor model and that have been reviewed in this subsection. The following properties are considered:

• Sensor model: does the approach keep the link between the sensor model and the inverse sensor model?

• Grid resolution: is the grid resolution taken into account? It can be seen from the table that the Bayesian approach possesses nice benefits for computing the inverse sensor model. First, it keeps the link between the sensor model and the inverse sensor model. Second, it takes the grid resolution into account. As will be seen in the following section 2.4, these two criteria have a high impact on the inverse sensor model.

Consequently, in this thesis, we adopt the Bayesian approach for computing the inverse sensor model, even if its complexity is higher than the one of the analytic and neural network approaches. Moreover, we only consider nearest-target sensors. Thus:

• in the case of a narrow Field-Of-View (FOV), the complexity of the Bayesian approach for computing the inverse sensor model is linear [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF];

• for large FOV sensors, we propose a linear-complexity inverse sensor model formulation in section 2.5 [Dia 2018b, Dia 2018a].

2.4 Link between the "Sensor Model" and the "Inverse Sensor Model"

In this section, we adopt the linear-complexity inverse sensor model (ISM) proposed by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] for nearest-target narrow FOV sensors. First, we study the impact of the grid resolution and the sensor precision on the inverse sensor model. Then, we prove the existence of a mathematical relation between these three parameters. These results have been published in [Dia 2017].

Impact of the grid resolution and of the sensor precision on the occupancy estimation

The inverse sensor model is now evaluated in different scenarios in order to show the impact of the grid resolution and of the sensor precision on its computation. Consider a 1D uniform grid G having a length of 50 cm with N cells. Since the sensor has a nearest-target behavior, the sensor model is represented by p(z|d), where d is the distance to the nearest obstacle and z is the measurement (refer to the example in Definition 2.2 (page 13)). We assume that the sensor noise follows a Gaussian distribution. Thus, the sensor model is given by:

p(z|d) = 1 σ √ 2π e -(z-d) 2 2σ 2 (2.11)
where σ is the standard deviation.

The inverse sensor model presented in [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] has the following form. For c i ∈ G, P (o i |z) is computed as follows:

P (o i |z) = i-1 k=1 p(z|d k) 2 k+1 + p(z|d i) 2 i N k=1 p(z|d k) 2 k (2.12)
where d k is the distance to cell c k . Notice that p(z|d k) can be directly computed from the sensor model.

We start by studying the influence of the grid resolution on the inverse sensor model. Consequently, the inverse sensor model is evaluated for different cell sizes s and for a fixed sensor measurement z = 25 cm and a fixed sensor noise standard deviation σ = 0.2 cm. As can be seen, the inverse sensor model shape depends on the value of s. When a higher resolution is chosen, the inverse sensor model reflects less the occupancy. Intuitively, this can be interpreted in the following way. When the grid challenges the sensor model at a high resolution, it is hard to derive a strong opinion. Whereas, it is more easy to express strong opinions on coarse grids. Then, we study the impact of the sensor precision on the inverse sensor model. We fix the cell size to s = 0.3 cm and evaluate the inverse sensor model for three values of σ, namely σ = 0.1 cm, σ = 0.2 cm and σ = 0.3 cm. The sensor measurement z still equals 25 cm in this experiment. Results, given in figure 2.5, show that, when the sensor uncertainty increases, the sensor imprecisely detects occupied and empty regions. This is an evident result that is usually considered in most of the existing approaches for modeling the inverse sensor model.

The last experiment is the most significant: we now study both the impact of the sensor precision and the grid resolution on the inverse sensor model. This experiment allows finding an invariant relation between the sensor precision and the grid resolution. As will be seen, this relation has a particular impact on the inverse sensor model, in particular on the maximal occupancy probability. We consider different values of σ and s for each test. In fact, it can be observed that, if the ratio s/σ is kept, the inverse sensor model exhibits the same shape. An example of this observation is illustrated in figures 2.5a and 2.6 where the ratio s/σ equals 3. Table 2.2 summarizes the results of extra tests performed to verify this observation.

We tested 48 combinations of σ and s. Three values of σ have been considered, namely σ = 0.1 cm, σ = 0.2 cm and σ = 0.3 cm. For each one of these σ values, we tested 16 possible values of the cell size s. The first column of table 2.2 gives the value of the ratio s/σ. The second (resp. third, fourth) column provides the maximum probability of occupancy of the inverse sensor model P max for σ = 0.1 cm (resp. σ = 0.2 cm, σ = 0.3 cm). As expected, for the same ratio s/σ, the maximum occupancy probability remains quite the same (columns 2, 3 and 4).

Conclusion.

These results show that there is an invariant relation between

3.8 1 1 1 4.2 1 1 1 5 1 1 1 6 1 1 1
the sensor precision and the grid resolution, which has a particular impact on the inverse sensor model. This is usually neglected in the approaches that break the link between the sensor model and the inverse sensor model. In the next subsection, we show how to choose the right grid resolution for a desired maximum probability of occupancy, given a sensor precision. This can be used to improve the analytic models of the inverse sensor model proposed in the literature.

Choice of the grid resolution associated to a sensor precision

for reaching a desired maximum probability of occupancy

m =        E(z s) if z -d m < d m+1 -z E(z s) + 1 otherwise (2.13)
where E(.) denotes the floor function, and

d k denotes the distance to cell c k , i.e, d k = k.s.
Proof From eq. (2.12) and by denoting the denominator A, for i ∈ {1, ..., N -1}, it comes:

P (o i+1 |z) -P (o i |z) = 1 A p(z|d i+1) 2 i+1 - p(z|d i) 2 i+1 = 1 2 i+1 Aσ √ 2π e -(z-is-s) 2 2σ 2 -e -(z-is) 2 2σ 2 (2.14) First, let us prove that ∀ i < E(z s), P (o i+1 |z) -P (o i |z) > 0, and ∀ i ≥ E(z s) + 1, P (o i+1 |z) -P (o i |z) < 0. Since s > 0, it is clear that: z -is -s < z -is (2.15)
We consider now two cases in order to know when (z -is -s) 2 is smaller than (z -is) 2 and when it is bigger.

In the first case, assume 0 < i < E(z s). We know from the floor function properties that:

E(z s) ≤ z s (2.16)
Chapter 2. Overview on OG for environment perception Thus, since i < E(z s):

i < z s i ≤ z s -1 -is ≥ -z + s z -is -s ≥ 0 (2.17)
Therefore, from equations (2.17) and (2.15), one can deduce that

(z -is -s) 2 < (z -is) 2 if 0 < i < E(z s). Consequently, P (o i+1 |z) -P (o i |z) > 0 in this case.
In the second case, assume that i ≥ E(z s) + 1. We also know from the floor function properties that:

E(z s) + 1 > z s (2.18) Thus, since i ≥ E(z s) + 1: i > z s -is < -z z -is < 0 (2.19)
Therefore, from equations (2.19) and (2.15), one can deduce that

(z -is -s) 2 > (z -is) 2 if i ≥ E(z s) + 1. Consequently, P (o i+1 |z) -P (o i |z) < 0 in this case.
We have just shown that

P (o i+1 |z) -P (o i |z) > 0 if i < E(z s) and P (o i+1 |z) - P (o i |z) < 0 if i ≥ E(z s)+1
. This implies that P max can only be equal to two possible values:

P (o m 1 |z) or to P (o m 2 |z), with m 1 = E(z s) and m 2 = E(z s) + 1 respectively. However, it is clear that if z -d m 1 < d m 2 -z, then P (o m 1 |z) > P (o m 2 |z), and otherwise P (o m 2 |z) ≥ P (o m 1 |z)
. Thus, we conclude that P max = P (o m |z) for m defined in eq. (2.13).

Generalization. The previous lemma is generalized to a wider type of sensors that have a sensor model represented in the following theorem.

Theorem 1.

Consider a uniform 1D grid G having N cells of size s. Let z be a measurement returned from a narrow FOV nearest-target sensor. Assume that the sensor model p(z|d) has the following properties (for instance, these properties are followed by a Gaussian sensor model):

• Increasing for z < d.

(P 1)

• Decreasing for z ≥ d.

(P 2) • For c ∈ R + , p(z|d) = p(z + c|d + c). (P 3)
Consider the Bayesian inverse sensor model formulation presented in eq. (2.12). The maximum probability of occupancy P max of the inverse sensor model takes place in cell c m for:

m =        E(z s) if p(z|d m) > p(z|d m+1) E(z s) + 1 otherwise (2.20)
where E(.) denotes the floor function, and

d k denotes the distance to cell c k , i.e, d k = k.s.
Proof For i ∈ {1, ..., N -1}, eq. (2.14) is valid:

P (o i+1 |z) -P (o i |z) = 1 2 i+1 A [p(z|d i+1) -p(z|d i)]
Using (P 3) for c = s yields to:

P (o i+1 |z) -P (o i |z) = 1 2 i+1 A [p(z|d i+1) -p(z + s|d i + s)] But d i + s = d i+1 , then P (o i+1 |z) -P (o i |z) = 1 2 i+1 A [p(z|d i+1) -p(z + s|d i+1)] • if i < E(z s), then d i+1 ≤ s.E(z s) ≤ z Using (P 2), p(z|d i+1) -p(z + s|d i+1) ≥ 0 and therefore P (o i+1 |z) -P (o i |z) ≥ 0 in this case; • if i ≥ E(z s) + 1
, a similar reasoning is applied to prove that:

z < d i < d i+1
And then, using (P 1), P (o i+1 |z) -P (o i |z) ≤ 0.

Thus, the maximum probability of occupancy takes place either in cell c m 1 or in cell c m 2 for m 1 = E(z s) and m 2 = E(z s) + 1, respectively. But,

P (o m 2 |z) -P (o m 1 |z) = 1 2 m 2 A [p(z|d m 1) -p(z|d m 2)]
We can deduce, finally, that the maximum probability of occupancy takes place in cell c m for m chosen as in eq. (2.20).

Conclusion

In Lemma 2.4.1, we demonstrate that for a given grid resolution, a sensor measurement and a sensor model defined in eq. (2.11) (for instance a Gaussian sensor model), one can deduce the maximum probability of occupancy of the inverse sensor model based on eq. (2.13).

Similarly, in theorem 1, we show that the maximum probability of occupancy of the inverse sensor model can be computed based on eq. (2.20) for a more general sensor model verifying the properties mentioned in the theorem.

These results allow for a given sensor precision, to choose the adequate grid resolution for reaching the maximum probability of occupancy that we desire. This can be done by searching for the minimal cell size s that gives the maximum probability of occupancy that we want, based on equations (2.11) and (2.20), respectively.

Inverse sensor model with linear complexity for a nearest-target large FOV sensor

As mentioned in section 2.3.2, the Bayesian computation of an inverse sensor model exhibits an exponential complexity in its standard formulation. This complexity was reduced to a linear one in the case of narrow Field-Of-View (FOV) nearest-target sensors [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF], Kaufman 2016]. Unfortunately, these approaches did not cover large FOV sensors.

In this section, we propose a linear-complexity inverse sensor model for these sensors, assuming a nearest-target behavior.

Our proposal relies on different hypotheses, in particular factors that affect the sensor measurement. We start by defining the set of information I that affects the sensor model and that was introduced in section 2.2. Then, we present the mathematical formulation of the inverse sensor model we propose for large FOV sensors. These results have been published in [Dia 2018b].

Information influencing the sensor model in the case of a nearest-target large FOV sensor

In section 2.2, we showed that for nearest-target narrow FOV sensors, the set of information I only includes the distance to the nearest obstacle in the sensor FOV. However, large FOV nearest-target sensors involve more factors in this set. In fact, since the FOV is no more considered as a unique line-of-sight, multiple obstacles might be present at the nearest occupied distance to the sensor. In such a situation, their combined size and angular position, in addition to their distance to the sensor, affect the sensor reading (see figure 2.7a). In general, for the same obstacle, the sensor output is less accurate when the obstacle is farther from the sensor (see figures 2.7b and 2.7c). This illustrates the impact of the distance to the sensor on the sensor model. The angular position of the obstacle also affects the sensor output. A measurement resulting from an obstacle located on the principle axis of the sensor is, in general, more accurate than when the obstacle is located towards the side of the FOV (see figures 2.7b and 2.7d). Finally, a larger obstacle provides a higher measurement quality than a smaller one (see figures 2.7b and 2.7e). This illustrates the impact of the size of the Chapter 2. Overview on OG for environment perception obstacle on the sensor model. As a consequence, the set of information I affecting the sensor model is expressed by:

I = {d, {θ 1 , ..., θ N d }, {ζ 1 , ..., ζ N d }} (2.21)
where d is the nearest occupied distance to the sensor, N d is the number of obstacles in the sensor FOV, all being located at distance d. θ i is the angular position of the i th obstacle with respect to the principle axis of the sensor (one angle value in 2D and two angle values in 3D). ζ i is the obstacle size (its area in 2D and its volume in 3D). Therefore, the sensor model of large FOV nearest-target sensors is given by:

p(z|I) = p(z|d ∧ θ 1 ∧ ... ∧ θ N d ∧ ζ 1 ∧ ... ∧ ζ N d) (2.22)

Formulation of an inverse sensor model for a nearest-target large FOV sensor

We consider a uniform grid G with N cells: c 1 , ..., c N . We do not impose a particular choice on the dimension of the grid nor on its type. Let z be a sensor measurement.

The inverse sensor model P (o i |z), i ∈ {1, ..., N } computed using the Bayes theorem is given in eq. (2.5). Computing p(z|s i) for s i = o i (and s i = e i resp.) allows to evaluate P (o i |z). As demonstrated in eq. (2.9), p(z|s i) can be computed as follows:

p(z|s i) = g∈Ω s i p(z|g)P (g) (2.23)
where Ω s i is the set of grid configurations where the state of cell c i is set to s i and g is a grid configuration. Hereafter, we demonstrate how to reduce the number of terms in eq. (2.23) to reach a linear complexity in the case of nearest-target large FOV sensors. First, notice that for each grid configuration g, the term p(z|g) can be directly deduced from the sensor model. In fact, since the state of each cell in g is known, it is evident to deduce the set of information I(g) associated to g as defined in section 2.5.1. This set includes, in this case, d g which is the distance from the sensor to the nearest occupied cell in g. In addition, it contains the angular position and size of occupied cells in g having a distance d g to the sensor. Once I(g) is determined, p(z|g) can be directly evaluated from the sensor model definition. In fact, from the nearest-target hypothesis p(z|g) = p(z|I(g)).

However, also notice that different grid configurations might share the same set of information I, as illustrated on Figure 2.8. Therefore, these configurations can be gathered in the sum in eq. (2.23). In this case, instead of summing over all the possible grid configurations in Ω s i , we sum over all the possible set of information I associated to Ω s i . This is done as follows.

Let D(G) be the set of all the possible distances from the sensor to the cells in G. For d ∈ D(G), let Γ s i (d) be the set of all the possible states of the cells having By applying the law of total probability, p(z|s i) can be written as:

p(z|s i) = d∈D(G) Γ∈Γ s i (d) p(z|I(d, Γ))P (I(d, Γ)) (2.24)
where I(d, Γ) is the set of information associated to Γ at d as defined in section 2.5.1.

It is composed of the distance d, the angular position and the size of the occupied cells in Γ. This new expression of p(z|s i) is however still exponential in terms of N . In fact, N d can be in the order of √ N and in this case the complexity of this sum is 2

√ N (induced by the size of Γ s i (d)).
To reduce this complexity, we introduce the sectoral decomposition.

Sectoral decomposition

We divide the sensor FOV into N s sectors. At each distance d ∈ D(G), we define J s i (d) as the set containing all the possible sector states at d, knowing that the state of cell c i is s i . A sector is considered occupied at d if there exists at least one occupied cell located at distance d to the sensor in this particular sector. Otherwise, Chapter 2. Overview on OG for environment perception it is considered empty. In this case, the number of possible elements in

J s i (d) is 2 Ns if d = d i (see figure 2.10).
In the case where d = d i , two possibilities exist:

• if s i = o i , one of the sectors is then occupied and the number of elements in

J s i (d) is therefore equal to 2 Ns-1 (see figure 2.11);
• if s i = e i , the sector containing c i can still be occupied if other cells are occupied in this sector. Therefore in this case, the number of elements in With this sectoral decomposition, we can re-write eq. (2.24) as follows:

J s i (d) is equal to 2 Ns .
p(z|s i) = d∈D(G) J∈J s i (d) p(z|I(d, J))P (I(d, J)) (2.25)
where I(d, J) is the set of information associated to J at d as defined in section 2.5.1. It is composed of the distance d, the angular position and the size of all the cells located in the occupied sectors of J. Therefore, p(z|I(d, J)) can be directly deduced from the sensor model. On the other hand, P (I(d, J)) is the probability of having the first occupied cell in G at a distance d and having the sector states defined in J.

In other terms:

• all the cells having a distance less than d should be empty;

• cells located in the empty sectors in J should be empty;

• cells located in the occupied sectors in J are considered occupied.

Thus, P (I(d, J)) is computed as follows:

P (I(d, J)) = k; d k <d P (e k) . k; c k ∈E(J) & c k =c i P (e k) . k; c k ∈O(J) & c k =c i P (o k)
(2.26) where E(J) (resp. O(J)) is the set of empty sectors in J (resp. occupied sectors in J).

Complexity evaluation for the sectoral decomposition

By applying the sectoral decomposition, the complexity of computing p(z|s i) based on eq. (2.25) is O(N D .2 Ns), where N D is the number of elements in D(G). Since N s is constant, the complexity is therefore O(N D). The maximum value of N D is N . This happens when all the cells in G have different distances to the sensor. However, this situation can be considered as "rare" and N D N . But in the worst case scenario, the complexity is O(N). As can be seen, when N s increases, the inverse sensor model more likely reflects the occupancy. Moreover, it looks like the shape of the inverse sensor model computed without the sectoral decomposition, as presented in section 2.5.2. In fact, this is due to the following reasons:

• the sectoral decomposition technique assumes that the sensor model obtained when only one cell is occupied in a sector is identical to the one where all the cells in the sector are occupied. The occupancy evaluation is therefore shared by all the cells in each sector. This reduces the unique cell visibility, especially when N s is low because the number of cells in each sector becomes high. This is quite the same situation that occurs when the inverse sensor model is evaluated in a high resolution grid as shown in section 2.4.1;

• when N s increases, the number of cells located in each sector decreases. In this case, the sectoral decomposition tends to the exponential formulation of the inverse sensor model presented in section 2.5.2. Indeed, when N s is high, the inverse sensor model looks almost the same as in the case without sectoral decomposition.

The main advantage of the sectoral decomposition is that, depending on the degree of occupancy that we want to detect, we can tune the number of sectors in order to avoid unnecessary complex computations. This trade-off can be useful when free space detection is considered. In this case, detecting occupied regions with a high precision is not crucial. As a consequence, one can choose small values of N s , leading to a low-complexity computation. This approach also helps keeping the link between the sensor model and the inverse sensor model for multi-target sensors. This link is important for the accuracy of the inverse sensor model as discussed in section 2.4.

From the inverse sensor model to the occupancy grid

So far, we showed how to compute the inverse sensor model given a sensor measurement z. In this section, we show how to build the occupancy grid from the inverse sensor model (Definition 2.1.2 (page 11)). We consider two cases: in the first one, we assume that only one range sensor is used while, in the second one, multiple sensors are considered.

Local vs. global occupancy grids

In practice, the grid computed from the inverse sensor model is a local grid2 , i.e., attached to the sensor. The grid used for the occupancy model is the global grid, obtained via the fusion of several measurements. Therefore, in order to compute the (global) occupancy grid, we follow in this thesis a standard approach from the literature, composed of two steps [Elfes 1989b[START_REF] Payeur | [END_REF][START_REF] Fairfield | Robotics Institute: Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels[END_REF], Homm 2010, Nguyen 2012b]:

• first, the inverse sensor model is computed in a local grid. The dimension, the type, and the form of the grid can be different from those of the global grid. The computation of the inverse sensor model can be based on any of the presented approaches in sections 2.3. The two figures in 2.13 (II) illustrates this step for two sensors with a narrow FOV and a large FOV, respectively (the real scene is represented in Figure 2.13 (I));

• second, a range mapping is applied. Range mapping consists in finding the cells in the local grid which intersect with the cells in the global grid [Bresenham 1965[START_REF] Miller | [END_REF][START_REF] Fairfield | Robotics Institute: Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels[END_REF], Nguyen 2012b, Souza 2015[START_REF] Amanatides | A Fast Voxel Traversal Algorithm for Ray Tracing[END_REF][START_REF] Cleary | [END_REF], Rakotovao 2016b]. Once those cells are determined, their probability of occupancy is mapped to their match in the global grid. Some techniques allow to take into account the intersection size between each local and global cell [START_REF] Roldao | [END_REF]]. For instance, a smaller probability of occupancy is mapped to the global grid if a smaller part of the local cell intersects the global one. In this thesis, we assume that the same probability of occupancy is transferred independently from the intersection size. Figure 2.13 (III) illustrates this step.

Mono-sensor occupancy grid computation

The definitions of an occupancy grid and of an inverse sensor model built in the same grid from a unique sensor measurement are identical, (see Definition 2.3.1 (page 14) and Definition 2.1.2 (page 11), respectively).

Multi-sensor occupancy grid computation

Building a multi-sensor occupancy grid OG(z 1 , ..., z K) given K measurements z 1 , . . . , z K from K sensors (K > 1) leads to the computation of P (o i |z 1 , . . . , z K) ∀c i in the grid (the global one in this case).

Various approaches can be found in the literature. They can be classified into two groups. The first one treats each measurement independently from the other. In a first step, a mono-sensor occupancy grid is generated for each measurement (Figure 2.13 (III)). Then, the fusion of the information in each mono-sensor occupancy grid is applied [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF], Elfes 1989b, Thrun 1993, Adarve 2012b]. The second step is called multi-sensor fusion (Figure 2.13 (IV)). In the second group, all the measurements are processed simultaneously in order to build the occupancy grid. Hence, no intermediate mono-sensor occupancy grid is computed. The paradigm allowing to compute the occupancy grid in this case is called forward sensor model [Thrun 2001a].

In this thesis, we adopt the multi-sensor fusion for building a multi-sensor occupancy grid. More precisely, we adopt the Bayesian fusion for the multi-sensor fusion. The next section summarizes this technique.

Bayesian fusion for occupancy grid calculation

The Bayesian fusion was initially presented in [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF]]. It is a probabilistic multi-sensor fusion which allows to fuse for each c i in the grid, P (o i |z 1) with P (o i |z 2), . . . , and P (o i |z K) in order to obtain P (o i |z 1 , . . . , z K). It is based on the theorem of Bayes and the hypothesis of sensor measurements independence. Assume for instance that K = 2. Instead of computing P (o i |z 1 ∧ z 2), consider the odd ratio form:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1 ∧ z 2) P (e i |z 1 ∧ z 2) (2.27)
Applying the theorem of Bayes on P (s i |z 1 ∧ z 2), s i ∈ {o i , e i } gives:

P (s i |z 1 ∧ z 2) = p(z 2 |s i ∧ z 1)P (s i |z 1) p(z 2 |z 1) (2.28)
Thus, eq. (2.27) can be written as:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1) P (e i |z 1) p(z 2 |o i ∧ z 1) p(z 2 |e i ∧ z 1) (2.29)
By considering that the sensor measurement is conditionally independent of the cell state, p(z

2 |s i ∧ z 1) = p(z 2 |s i), s i ∈ {o i , e i }.
Consequently, (2.29) becomes:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1) P (e i |z 1) p(z 2 |o i) p(z 2 |e i) (2.30)
Applying the theorem of Bayes on p(z 2 |s i), s i ∈ {o i , e i } allows to write:

p(z 2 |s i) = P (s i |z 2)p(z 2) P (s i) (2.31)
Hence, by substituting eq. (2.31) in eq. (2.30), and noticing that P (e i |z 1) = 1 -P (o i |z 1) and P (e i) = 1 -P (o i), we get:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1) 1 -P (o i |z 1) • P (o i |z 2) 1 -P (o i |z 2) • 1 -P (o i) P (o i) (2.32)
Finally, we can deduce:

P (o i |z 1 ∧z 2) = P (o i |z 1) • P (o i |z 2) • [1 -P (o i)] P (o i |z 1) • P (o i |z 2) • [1 -P (o i)] + [1 -P (o i |z 1)] • [1 -P (o i |z 2)] • P (o i)
(2.33) Equation (2.33) is the mathematical formulation of the Bayesian fusion for two measurements z 1 and z 2 . It allows to generate the multi-sensor occupancy grid and compute P (o i |z 1 , z 2) from each of the intermediate mono-sensor occupancy grids that give P (o i |z 1) and P (o i |z 2), respectively. If the non-informative hypothesis is assumed (i.e., P (o i) = P (e i) = 1/2), the Bayesian fusion is equivalent to the Independent Opinion Pool ([Berger 1985]). The formula of Independent Opinion Pool allows to combine two evidences x and y from two independent sources. It is defined as follows:

F (x, y) = xy xy + (1 -x)(1 -y) (2.34)
In this thesis, we assume the non-informative hypothesis. Therefore, the Bayesian fusion of two independent probabilities of occupancy associated to a particular cell is given by the following definition. Definition 2.6.1. The fusion operator allowing to combine two probabilities of occupancy p and q associated to a particular cell obtained under the non-informative hypothesis is defined as follows:

: [0, 1] × [0, 1] → [0, 1] (p, q) → p q = F (p, q) (2.35)
where F (., .) is defined in eq. (2.34) if (p = 0 and q = 1) and if (q = 0 and p = 1), and to 0.5 otherwise.

2.6.3.2 Computing OG(z 1 , ..., z K)

The definition of the fusion operator , introduced above, can be extended at the level of the grid. We denote by * this extension.

Definition 2.6.2. Let G denote the grid. For two sensor measurements z 1 and z 2 , we define the operator * which allows to combine two mono-sensor occupancy grids OG(z 1) and OG(z 2) in order to get OG(z 1 , z 2) as follows:

OG(z 1 , z 2) = OG(z 1) * OG(z 2) = {P (o i |z 1) P (o i |z 2), c i ∈ G} (2.36)
Therefore, to obtain OG(z 1 , ..., z K) from K measurements, an incremental application of the fusion operator * can be performed. Consequently OG(z 1 , ..., z K) can be computed as follows:

OG(z 1 , ..., z K) = OG(z 1) * ... * OG(z K) (2.37)

Integer occupancy grid framework

The integer occupancy grid framework was proposed by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF].

This framework allows to compute occupancy grids using integer arithmetic only. It is one of the preliminary tools for the rest of this work. Hereafter, we give a short review on the basic definitions and properties of this framework. The interested reader may refer to the complete study in [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] for further details.

Set of probabilities

The concept of set of probabilities closed with respect to the fusion operator has been initially introduced in [Rakotovao 2016a]. Definition 2.7.1. A set of probabilities S is a set of real-numbers verifying the following conditions:

(Inclusion into]0, 1[) S = {p n ∈]0, 1[, ∀n ∈ Z} (2.38a) (Countability) ∀m, n ∈ Z : p m = p n ⇔ m = n (2.38b)
For each element p n ∈ S, the integer n is called index of the probability p n . The set of probabilities is closed with respect to the fusion operator if ∀p m , p n ∈ S, p m p n ∈ S.

Since each element of S has a unique integer index, there exists a bijection between S and Z. Moreover, the closure with respect to the operator implies that the fusion of two probabilities in S returns a probability that also belongs to S.

In order to evaluate the fusion of two probabilities in S using integer arithmetic only, the index fusion operator is applied. It is defined as follows.

Chapter 2. Overview on OG for environment perception Definition 2.7.2. Let S be a set of probabilities closed with respect to the fusion operator . Let p m and p n be two elements of S. The index fusion operator is defined as follows:

: Z × Z → Z (m, n) → m n = k; p k = p m p n (2.39)
The operator allows to combine two integer indexes m, n in order to get the index of the probability resulting from the fusion of p m and p n evaluated by the operator . Since m n is an integer, p m n is a unique element of the set S. Therefore, the operator mirrors the operator from S to Z:

p m p n = p k ⇔ m n = k (2.40)
Consequently, evaluating the fusion using the index fusion operator is equivalent to evaluate it using . In addition, [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] also proved that the index fusion operator is associative and commutative as the operator is.

2.7.1.1 Particular case: the recursive set of probabilities over [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] presented a particular form of the set of probabilities called the recursive set over . The particularity of this set is that the index fusion m n for m and n in this set becomes equivalent to m + n. Therefore, only an integer addition of the indexes is required in order to perform the fusion. The recursive set over is defined as follows.

Definition 2.7.3. Let ε be a real number such that ε ∈]0, 1 /2[. Let (a n) n∈N and (b n) n∈N be infinite sequences of numbers defined as follows:

a n =    1 /2 if n = 0 1 /2 + ε if n = 1 a n-1 a 1 otherwise b n =    1 /2 if n = 0 1 /2 -ε if n = 1 b n-1 b 1 otherwise
A recursive set over denoted by S ε is defined with:

S ε = {p n , n ∈ Z} ; where: p n = a n if n ≥ 0 b -n otherwise
This set is called "recursive over " since its elements are defined by recursion and their definition involves the operator .

This set satisfies the following property, already mentioned above.

Property 2.7.1. Let p m and p n be two elements of the recursive set S ε . The Bayesian fusion of p m and p n using the operator can be directly deduced from the addition of m and n. In fact, in this case, the index fusion m n gives:

m n = m + n (2.41) Therefore, p m p n = p m+n (2.42)
The particularity of this property is that the index fusion requires only an addition of integers, whereas the Bayesian fusion requires an addition, subtraction, multiplication and division of real3 numbers. Hence, this property allows to implement efficiently the fusion on low-computational power devices such as embedded platforms.

From the set of probabilities to integer occupancy grids

Let G be a grid and z 1 , ...z K the measurements from K > 1 sensors. Let S be a set of probability closed with respect to . This set can be the recursive one defined above or any other set of probabilities. Denote by IOG(z 1 , ..., z K) the occupancy grid computed using integer arithmetic only. Hereafter we detail the steps to be followed in order to build IOG(z 1 , ..., z K) from the set of probabilities. We also include the case of the recursive set.

As shown previously, the first step for building occupancy grids is to compute the inverse sensor model(s). This model allows to compute the probability of occupancy P (o i |z) for c i ∈ G using a unique measurement z. Once this model is defined, the mono sensor occupancy grids OG(z 1),...,OG(z K) are deduced from the range mapping process. Finally the Bayesian fusion using operator * is applied in order to get OG(z 1 , ..., z K).

For integer occupancy grids the same steps are followed.

• First step. One has to define the equivalent form of the inverse sensor model over the indexes of the elements in S. This new form is called the Occupancy Index and is now defined.

Definition 2.7.4. Let G be a grid, z a sensor measurement and S a set of probabilities. The Occupancy Index is a function I z defined over G as follows:

I z : G → Z c i → n; P (o i |z) . = p n ∈ S.
(2.43)

P (o i |z) .
= p n means that the element p n approximates at best the numerical value of P (o i |z) in S. One can choose for instance the nearest element in S to approximate P (o i |z). For the sake of simplicity I(o i |z) is used to designate I z (c i).

• Second step. Once the occupancy index is defined, the mono-sensor occupancy grid IOG(z) can be defined.

Definition 2.7.5. Let G be a grid. The mono-sensor Integer Occupancy Grid (IOG), given measurement z, is defined as follows:

IOG(z) = {I(o i |z), ∀c i ∈ G} (2.44)
The mono-sensor occupancy grid can be directly deduced from the occupancy index definition and from the range mapping, as seen in section 2.6.2.

• Third step. Finally, for computing the multi-sensor integer occupancy grid IOG(z 1 , ..., z K), an index fusion on the mono-sensor integer grids is applied.

In fact, IOG(z 1 , ..., z K) = {I(o i |z 1 , ..., z K), ∀c i ∈ G}. [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] demonstrated that I(o i |z 1 , ..., z K) can be computed from the index fusion operator :

I(o i |z 1 , ..., z K) = I(o i |z 1) ... I(o i |z K) (2.45)
Hence, an extension of the index fusion operator over the entire grid is defined.

Definition 2.7.6. Let G denotes the grid. For two sensor measurements z 1 and z 2 , we define the operator * which allows to combine two mono-sensor integer occupancy grids IOG(z 1) and IOG(z 2) in order to get IOG(z 1 , z 2) as follows:

IOG(z 1 , z 2) = IOG(z 1) * IOG(z 2) = {I(o i |z 1) I(o i |z 2), c i ∈ G} (2.46)
Consequently, in order to obtain IOG(z 1 , ..., z K) from K measurements, an incremental application of the fusion operator * is performed. Finally, OG(z 1 , ..., z K) can be computed with:

IOG(z 1 , ..., z K) = IOG(z 1) * ... * IOG(z K) (2.47)

Particular case: the recursive set of probabilities over

When the set of probabilities is the recursive set over defined in Definition 2.7.3 (page 38), eq. (2.45) becomes:

I(o i |z 1 , ..., z K) = I(o i |z 1) + ... + I(o i |z K) (2.48)
while the operator * defined in eq. (2.46) becomes:

IOG(z 1 , z 2) = IOG(z 1) + IOG(z 2) = {I(o i |z 1) + I(o i |z 2), c i ∈ G} (2.49)
Consequently, to compute IOG(z 1 , ..., z K), one has to proceed as follows:

IOG(z 1 , ..., z K) = IOG(z 1) + ... + IOG(z K) (2.50)

Conclusion

The integer occupancy grid framework ensures faster execution and less power consumption than traditional occupancy grid algorithms based on floating point arithmetic. These criteria are essential to embed such fusion techniques, since a fast data processing ensures more data aggregated in real time with a high number of cells in the grid.

The recursive set definition allows to compute integer occupancy grids while only involving simple integer additions.

This integer occupancy grid framework is an essential pillar for the rest of the work which will be presented in the next chapters.

Summary

In this chapter, we introduced the occupancy grid framework. We started by defining the mathematical context and giving the definition of an occupancy grid. Then, we detailed the procedure allowing to build the occupancy grid. The sensor model is required in this process. Hence, we provided a mathematical definition of this latter. Then, we presented the concept of "inverse sensor model". This model is central for estimating the occupancy of the cells in the grid. We gave a review of the state-ofthe-art regarding the computation of the inverse sensor model. We also presented a study that shows the importance of keeping the link between the sensor model and the inverse sensor model. This study motivates our choice for using the Bayesian formulation of the inverse sensor model in this thesis. Moreover, we showed the link between the grid resolution, the sensor precision and the maximal probability exhibited by the inverse sensor model, see section 2.4. We also pointed out a drawback in the existing approaches for computing the Bayesian inverse sensor model for large Field-Of-View sensors. The complexity of this latter being exponential, we proposed a new linear complexity inverse sensor model, assuming the nearest-target hypothesis, see section 2.5. Then, we explained how to obtain the occupancy grid from the inverse sensor model thanks to the Bayesian fusion. Finally, we presented the integer occupancy grid framework proposed by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF]: we revisited each step involved in the process for building the occupancy grid in this particular framework. This framework is essential to our developments, as will be seen in the sequel.

Chapter 3

Integer framework for solving the grid-based Simultaneous Localization And Mapping problem This chapter proposes a grid-based Simultaneous Localization And Mapping (SLAM) approach, the objective being to construct a model of the environment while at the same time localizing the robot thanks to the application of Bayes rule. An occupancy grid is used to model the environment while a probability distribution over a pose grid models the robot pose uncertainty. The linear complexity Inverse Sensor Model (ISM) for nearest target sensors introduced in chapter 2 is used in our SLAM formulation. This allows to overcome the exponential complexity of traditional grid-based localization and mapping techniques.

In addition, an integer implementation of the grid-based SLAM is proposed. It is inspired by the integer occupancy grid framework presented in chapter 2 and initially introduced by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF]. The same concept of set of probabilities is used, allowing to pair the probabilities with integers. This integer grid-based SLAM proposal is suitable for implementation on low-cost and low-power (embedded) computing platforms that are usually not equipped with a floating-point accelerator. This constitutes an added value when compared to the approaches found in the literature. This chapter is organized as follows. Section 3.1 defines the SLAM problem. Then, section 3.2 summarizes the state-of-the-art on SLAM and the main differences between the approaches found in the literature and our contribution. Our grid-based SLAM formulation is detailed in section 3.3. Section 3.4 presents a particular set of probability used in the integer implementation of our grid-based SLAM. The reformulation of the grid-based SLAM over the indexes of the set of probabilities is detailed in section 3.5. Finally, section 3.6 presents simulation results for our integer grid-based SLAM and a performance comparison with its floating version.

Introduction to SLAM

The Simultaneous Localization And Mapping problem (SLAM) is one of the most studied problems in the field of mobile autonomous systems [START_REF] Smith | [END_REF]]. It consists in mapping the environment surrounding the mobile robot while localizing this latter simultaneously. When talking about localization, we distinguish between global localization (GL, also called absolute localization) and position tracking. Global localization assumes that the robot initial pose is completely unknown and aims to find the true pose while position tracking requires a known initial pose and aims to reduce the error occurred when the robot moves to explore its environment. In SLAM, the localization problem refers to the position tracking one. Two main types of sensors are used. The first one includes interoceptive sensors such as odometers, wheel encoders and IMUs. These sensors allow to take into account the movement of the robot in its pose estimate. Since their measurements have possible errors, the pose estimate itself is uncertain and the error grows each time a new measurement is taken into account. Thus, the robot cannot rely only on intero-ceptive sensors. Hence it uses a second kind of sensors, known as exteroceptive sensors, such as lasers, sonars, radars and cameras. These sensors allow the robot to perceive the environment and create the corresponding map. In addition, the robot tries to match these measurements with the partially-created map in order to correct its pose estimate.

In a more formal way, the SLAM problem can be defined as follows.

Definition 3.1.1. Let z t = {z 1 , . . . , z t } and u t = {u 1 , . . . , u t } be two vectors of t consecutive measurements acquired from exteroceptive and interoceptive sensors respectively. Let x be the robot pose and m the map of the environment.

The SLAM problem consists in determining the probability distribution of the pose and the map simultaneously knowing z t and u t . If only the current pose x t is considered, the problem is known as online SLAM and it consists in determining the following distribution:

p(x t , m|z t , u t) (3.1)
If all the trajectory of the robot x t = {x 1 , ..., x t } is considered, the problem is known as full SLAM and it consists in determining:

p(x t , m|z t , u t) (3.2)
In the sequel, we consider the problem of online SLAM.

Related work

Different SLAM solutions can be found in the literature. They are classified with respect to specific criteria such as the type of map, the pose representation [Bresson 2017] or the algorithm that is used. For this latter, the SLAM solution can be split in four categories, namely:

• the Kalman filter based one and its variants;

• the Particle Filter based one;

• the optimization based one;

• the hybrid solutions.

In the rest of this section, we shortly review different algorithms used in SLAM and discuss the above mentioned criteria.

SLAM based on the Kalman filter and on its variants

The Kalman filter (KF) derives from the Bayes filter [START_REF] Kalman | [END_REF]]. The latter operates in two steps. First, thanks to the prediction model (also called transition model), the belief of the state s t (possibly a vector) is predicted given the controls u t and the previous state belief bel(s t-1):

b el(s t) = p(s t |u t , s t-1) • bel(s t-1) d s t-1 (3.3)
Then, their estimation is corrected thanks to the observation model (also called correction model) by integrating the observation z t :

bel(s t) = η • p(z t |s t) • b el(s t) (3.4)
where η is a normalization factor.

In the Kalman filter, the state is assumed to have a Gaussian noise and the models (prediction, correction) are linear. This allows a simple implementation of the Bayes filter where only the mean and the covariance matrix of the state are updated. When applied to SLAM, the state represents the position of the landmarks and the robot pose [START_REF] Dissanayake | [END_REF]]. Despite the simplicity of this algorithm, it was rarely used in SLAM since the linearity and the Gaussian assumption do not usually hold in reality. Hence, variants of the Kalman filter were introduced. For instance, the extended Kalman filter (EKF) releases the linearity assumption of the Kalman Filter by linearizing nonlinear functions in the existing motion and perception models using a first order Taylor expansion [Kalman 1961]. It has been shown that this algorithm has good convergence properties when the estimates are close to their true values [Huang 2008]. However, when it is not the case, it showed serious inconsistency [START_REF] Julier | [END_REF][START_REF] Bailey | [END_REF]]. Moreover, when highly non-linear models are considered, this approach does not perform as expected [Castellanos 2004]. To solve this issue, the Unscented Kalman filter (UKF) was introduced [Wan 2000]. The latter generates pondered sample points, called sigma points, around the mean value of the states. These points are then used by the non-linear models in order to estimate a new mean and covariance for the state [START_REF] Holmes | [END_REF], Chekhlov 2006]. Nevertheless, this method suffers from a high computational complexity, limiting its use.

Another variant of the Kalman filter is the Information filter [Maybeck 1982]. The latter computes an information matrix instead of computing the covariance one, which is the inverse of the latter. The main advantage of this filter is the simplicity of the update when new measurements are integrated. This update requires a simple addition of the information matrix. However, this algorithm remains rarely used due to the costly conversion of each measurement to its inverse match.

Two common non-mentioned drawbacks of the Kalman filter variants applied to SLAM are the pose representation and the type of the map:

1. In fact, the map is typically feature-based and a feature-extraction is necessary before the update step. Thus, a data association has to be made in order to associate the measurement to an existing landmark or to define a new one [Nieto 2003, Neira 2001, Cox 1993]. Despite the intensive research in data association techniques, this topic still has serious issues. In fact, a wrong or missed detection of a landmark can highly affect the convergence of the filter [Aulinas 2008];

2. due to the Gaussian assumption, the pose is represented with a single mean value. This representation does not allow to handle two different possible poses that may occur (in symmetric environment for example).

To deal with this latter issue, the multi-hypothesis Kalman filter has been introduced [START_REF] Kwok | [END_REF], Arras 2003a]. It represents the probability distribution using a weighted sum of multiple Gaussian distribution models. Unfortunately, this algorithm did not perform as well as the previously mentioned variants of the Kalman filter. Moreover, the number of Gaussians representing the unknown initial state can be very high, leading to an intractable computational workload. Also, the choice of the number of Gaussians is heuristic and not detailed in the literature

SLAM based on the Particle filter

The Particle filter is also an implementation technique of the Bayes filter [Dellaert 1999]. It represents the state (here, the pose and the map) with a set of weighted samples, called particles. The map being considered feature-based, the data association problem also exists in this approach.

In the prediction step, the particles are shifted thanks to the transition model. Then, in the correction step, the particles are re-sampled and their corresponding weights are updated according to the observations. Despite the robustness of this algorithm when used for localization [Fox 1999], its use for SLAM exhibits some drawbacks [Sim 2005, Törnqvist 2009, Grisetti 2007b]. In fact, in the re-sampling phase, particles with low weights are eliminated. Unfortunately, these particles might correspond to the true pose of the robot. This leads to an erroneous pose estimation that might diverge from the true pose [START_REF] Kootstra | Tackling the premature convergence problem in Monte-Carlo localization[END_REF]]. Thrun et al. proposed the Augmented Monte Carlo Localization to overcome this drawback [Thrun 2005]. It consists in adding random particles to the particle set in order to cover a wider vicinity where the robot can possibly be located. However, this approach suffers from a high computational complexity overhead.

Another limitation of the particle filter is the high number of particles needed to represent each landmark for each robot pose particle. In large maps, the number of landmarks can be very high and the number of particles increases exponentially.

In order to solve this issue, some solutions proposed to combine the particle filter with other approaches, allowing this way to represent only the robot pose by particles, the map being represented by the form imposed by the second approach. These solutions lie in the hybrid approaches and will be discussed further in section 3.2.4.

Optimization-based SLAM approaches

Among the most known optimization-based SLAM approaches is the Graph SLAM [START_REF] Thrun | The graph SLAM algorithm with applications to large-scale mapping of urban structures[END_REF]] that latter uses a graphical representation to illustrate the relation between the pose and the map. The nodes represent the robot poses and the edges represent the sensor readings. An energy function is associated to each edge and defined over all the nodes connected to this edge. This function reflects the error between the nodes poses and the expected poses as observed by the sensor. A minimization of this error function is then performed to correct these poses.

The existing Graph SLAM approaches differ from each other in the type of algorithms used to solve the optimization problem. For instance, the TORO algorithm uses a stochastic gradient descent variant [Grisetti 2007a]. [Grimes 2010] applies full linearized solvers and a stochastic relaxation. The differential evolution technique is used in [Garrido 2011]. Finally, [START_REF] Vallvé | [END_REF]] uses a factor descent and non-cyclic factor descent.

Another well-known optimization-based SLAM approach is the bundle adjustment [Triggs 1999[START_REF] Eudes | [END_REF]] that deals with vision-based sensor measurements. It consists in minimizing a reprojection error, allowing to deduce the best landmark and camera positions (consequently the robot position).

Finally, approaches using the maximum-likelihood technique are also considered among the most known optimization-based SLAM solutions. For instance, [START_REF] Alsayed | [END_REF]] uses probabilistic maximum likelihood framework based on occupancy grids and horizontal laser sensors to build a real-time SLAM implementation.

Optimization-based SLAM techniques tend to give accurate results. However, they have two main drawbacks. First, as any optimization algorithm, their convergence speed depends on the initial guess that is usually difficult to determine. Second, they require advanced processing resources and their computational complexity can be very high as shown in [Strasdat 2010].

Hybrid SLAM approaches

Researchers combined the benefits of two or more of the previous approaches in an hybrid one.

For instance, to reduce the quadratic complexity of the extended Kalman filter, Montemerlo et.al introduced the FastSLAM [Montemerlo 2002]. This approach uses the particle filter for localization and the extended Kalman filter for mapping. The complexity is reduced to O(M logK) (when using a tree-based data structure), where M is the number of particles and K the number of landmarks.

To avoid the problem of data association, grid-based FastSLAM was then introduced [Stachniss 2005]. As in the case of feature-based FastSLAM, the particle filter is used for localization. For mapping, an occupancy grid, associated to each particle, is created based on the fact that the robot pose (represented by the particle) is known. However this comes with a high memory footprint and computational cost since each particle has to maintain and update an occupancy grid. The Distributed Particle SLAM allows to avoid this problem [START_REF] Eliazar | [END_REF]]. In this approach, a single occupancy grid is maintained based on an ancestry tree storage.

To avoid the inability of FastSLAM to handle diverse particles over time, [Brooks 2009] proposed to combine it with the extended Kalman filter. The authors proposed to extract a single Gaussian from the particles posterior computed by the FastSLAM, before the trajectory length becomes too long. [Conte 2010] proposed to combine an extended information filter with an optimization-based approach. When the non-linearity in the models is negligible, the information filter is used. Otherwise, the authors switch to a non-linear optimizer. This alternation reduces the error introduced by the linearization step in the extended information filter, especially when the system is non-linear.

Difference between the literature and our contribution

In our SLAM proposal, we represent the environment and the robot pose with some grids. The mechanism to update the robot pose grid and the occupancy grid is based on a Bayesian reasoning. This comes with several advantages:

• since the environment is represented by an occupancy grid, the problem of data association and feature extraction does not occur. As seen in chapter 2, range measurements are directly processed through a probabilistic Inverse Sensor Model in order to update the probability of occupancy of each cell in the occupancy grid;

• the grid-based representation of the robot pose allows to take into account the case where two or more poses are possible (for instance, in a symmetric environment). This is not the case of the Kalman filter based approaches that can take only one possible pose (with a Gaussian noise). On the other hand, the grid-based representation allows to avoid the problem of sample impoverishment that occurs when using a particle filter;

• no assumption is made on the models used in the update or in the correction of the robot pose and of the grid. This is not the case, for example, when using Kalman filter approaches where a Gaussian error is assumed and linear models are typically used;

• since the update is based on a Bayesian reasoning, the common problem of the optimization-based techniques on the choice of the adequate initial guess does not occur.

• Moreover, an integer implementation of our grid-based SLAM is proposed. This allows an efficient implementation of our approach on low-power computing platforms such as embedded devices.

Formulation of the Grid-Based Simultaneous Localization And Mapping problem

Let G be a cartesian grid and G the associated occupancy grid of the environment.

It can be of any dimension depending on the application.

Let Π be a grid representing all the possible robot poses that the robot can take. The dimension of such a grid depends on the case studied. For instance, if one estimates the position of a robot moving on a line, a 1D grid is chosen (corresponding to figure 3.1a). If the position and the heading are estimated, Π is chosen in 2D (for the position and the heading), as shown in figure 3.1b. If the robot moves in a 2D space, Π should be considered in 2D if only the position is estimated (corresponding to figure 3.1b). If both the robot position and the heading are estimated, the pose grid should be considered in 3D (corresponding to figure 3.1c). And so on for higher dimensions.

The robot pose belief is represented by a probability distribution P (x), x ∈ Π, which is the probability of the robot being in x. Let z t = {z 1 , . . . , z t } and u t = {u 1 , . . . , u t } be two vectors of t consecutive measurements acquired from exteroceptive and interoceptive sensors respectively. Our grid-based SLAM operates as follows:

• Motion update: When the robot starts exploring, the pose distribution P 0 (x), x ∈ Π is given. Every time a motion measurement u t is received, a prediction of the new pose distribution P t (x) is performed. The evolution model takes into account the error encompassed in u t and integrates it to the current pose distribution P t-1 (x). For instance, figure 3.2 illustrates a simple scenario where the robot moves over a 1D line. Its position is estimated,

Formulation of the Grid-Based Simultaneous Localization And Mapping problem 51

therefore the pose distribution is defined over a 1D position grid. The length of the cells x in Π is 10 cm. The robot is 100% sure about its position in x 3 = 30. At time t, a measurement u t = 10 cm is received. When integrating this measurement, the pose distribution is shifted by 10 cm in the robot direction, but an error is added (figure 3.2b). This error translates the motion sensor uncertainty. The mechanism allowing this update is explained in detail in section 3.3.1; • when the robot receives a range measurement z t , two scenarios are possible -Mapping: the measurement is used to update the occupancy grid G. In our SLAM formulation, only one occupancy grid G is maintained. It is created by taking into account the pose distribution P t-1 (x) over all x ∈ Π (or simply denoted by P (x) to refer to the last pose distribution). An example is illustrated in figure 3.3 where a range measurement z = 30 cm is received. The robot has three possible poses, namely x 1 , x 2 and x 3 , with a probability of P 1 = 0.25, P 2 = 0.5 and P 3 = 0.25, respectively (see figure 3.3a). Instead of computing one occupancy grid for each pose as in figure 3.3b (this update was discussed in detail in the previous chapter), a global occupancy grid, biased by the robot pose distribution, is computed (see figure 3.3c). The process allowing this update is explained in section 3.3.2;

-Localization: the measurement is used, along with the occupancy grid G, to correct the robot pose P (x), x ∈ Π. For instance, in figure 3.4a, the robot can have three possible poses, namely x 1 , x 2 and x 3 , with a probability of P 1 = 0.25, P 2 = 0.5 and P 3 = 0.25, respectively. Given the occupancy grid G and a range measurement z = 30 cm, the robot Having the possibility to use the range measurement to localize or not (respectively to map or not) is a particular advantage of our SLAM approach. For instance, one does not need to localize the robot each time a range measurement is received, if the pose error is small. Similarly, mapping an area which has been already mapped from an accurate pose is not mandatory each time a range measurement is received. This event-based implementation allows to avoid unnecessary updates that may come with additional operations and workload, as will be seen in section 3.6.

The event-based SLAM approach presented in this section is given in figure 3.5. Hereafter, we detail the three mechanisms used in our SLAM formulation and summarized above, namely, the motion update, the mapping and the localization.

Motion update mechanism

In Simultaneous Localization And Mapping, it is assumed that the robot initial distribution P 0 (x) for x ∈ Π is known. Each time a motion measurement/control u t is received, this distribution is updated. For the purpose of simplicity, we replace u t by u in the sequel. This section shows how to update the robot pose distribution P t (x|u) taking into account its previous distribution P t-1 (x) and u.

Let x * ∈ Π. In order to compute P t (x * |u), the total probability law is applied. Thus, we sum over all the possible poses x ∈ Π:

P t (x * |u) = x∈Π P (x * |x, u).P (x|u)
(3.5) P (x|u) can be deduced from the prior pose distribution computed at t -1 (u does not affect the latter since it was received after t -1). Equation (3.5) becomes:

P t (x * |u) = x∈Π P (x * |x, u).P t-1 (x) (3.6) P (x * |x, u
) can be directly deduced from the motion sensor model. In fact, the motion model represents the likelihood of getting u knowing a change in the pose (denoted by ∆ x), i.e., p(u|∆ x). On the other hand, P (x * |x, u) can be written as p(∆ * x |u) where ∆ * x = x * -x. From the Bayes' rule, it comes:

P (∆ * x |u) = p(u|∆ * x) • P (∆ * x) p(u) (3.7) P (∆ * x
) is assumed to be constant since no biased information on the pose variation is imposed. On the other hand, p(u) is constant for a given measurement u. Thus, one can deduce that:

P (∆ * x |u) ≡ p(u|∆ * x) (3.8)
Figure 3.5: Event-grid-based SLAM. At t 1 : motion update; at t 2 : mapping; at t 3 : localization, at t 4 : motion update.

Replacing equation (3.8) in equation (3.6), it follows:

P t (x * |u) = x∈Π p(u|∆ * x).P t-1 (x) (3.9)
Implementation remark.

Notice that, in equation (3.9), the term p(u|∆ *

x).P t-1 (x) equals to zero when P t-1 (x) = 0. Therefore, the sum in equation (3.9) is defined over a small bounded region where the prior poses have non-null probabilities. On the other hand, equation (3.9) can be seen as a convolution, requiring a simple convolution matrix implementation, when the motion model follows a Gaussian distribution. To illustrate this, an example is given in appendix A.1.

Mapping mechanism

In chapter 2, we showed how to create an occupancy grid, with the implicit assumption that the robot pose is known. However, when the robot pose is uncertain and represented by a grid-based distribution, how can we deal with the mapping mechanism?

The objective of this section is to generate a single global occupancy grid G by integrating measurements z t and taking into account the grid-based pose distribution P (x) for x ∈ Π.

From the occupancy grid definition 2.1.2, creating G means that the probability of occupancy of each cell c i ∈ G (denoted by P (o i |z t)) is computed. From the total probability law and by considering all the possible poses x ∈ Π, P (o i |z t) can be computed as follows:

P (o i |z t) = x∈Π P (o i |z t , x) • P (x|z t)
(3.10)

Formulation of the Grid-Based Simultaneous Localization And Mapping problem 55

In the map update step, the pose distribution is assumed to be known. Therefore, P (x|z t) = P (x), and equation (3.10) becomes:

P (o i |z t) = x∈Π P (o i |z t , x) • P (x) (3.11)
In this equation, P (x) is the prior probability of the robot being at pose x: it can be deduced from the prior pose distribution. The term P (o i |z t , x) is evaluated from the global occupancy grid obtained by integrating measurements z t when the robot is located at x. The computation of this occupancy grid is performed as detailed in chapter 2, section 2.6 where x was omitted because it was implicitly assumed that the pose was known. Thus, one should create t global mono-sensor occupancy grids for each measurement, then a fusion is applied:

P (o i |z t) = x∈Π P (o i |z 1 , x) ... P (o i |z t , x) • P (x) (3.12)
where is the fusion operator defined in equation 2.35.

From equation (3.12), it can be seen that the computation of the global occupancy grid by taking into account all the possible poses is performed in two steps, namely:

1. compute of the occupancy grid associated to each pose; 2. compute a weighted sum over all the occupancy grids taking into account the probability of the poses.

Implementation remark. Notice that, in equation (3.12), the term (P (o i |z 1 , x) ... P (o i |z t , x))•P (x) equals to zero when P (x) = 0. In general, since the problem of localization in SLAM is a position tracking one, most of the x ∈ Π verify P (x) = 0, which means that the poses associated to non-null probabilities, are distributed in a bounded area around the true pose. Therefore, the sum in equation (3.12) is related to a small bounded region where the poses have non-null probabilities. The occupancy grids are thus computed only over these poses.

Localization mechanism

The grid-based localization problem was initially introduced by [START_REF] Burgard | [END_REF]]. In our SLAM formulation, we use the very same problem definition, see 3.3.3.1. Then, section 3.3.3.2 summarizes how this problem is solved by [START_REF] Burgard | [END_REF]]. Unfortunately, this solution has an exponential complexity. Therefore, section 3.3.3.3 introduces our modified grid-based localization solution, which exhibits a linear complexity.

Definition of the grid-based localization problem

In [START_REF] Burgard | [END_REF]], G is considered to be 2D. The robot is assumed to move in G only. Its 2D position and heading are estimated. Therefore, Π is a 3D grid representing the robot position and its heading (given by a unique angle).

The grid-based localization problem assumes that G is known. It aims to correct/update the robot pose distribution, given z t . In other terms, it allows to compute for every robot pose defined over each cell x ∈ Π, the probability:

P (x|z t , G) (3.13)
while satisfying x∈Π P (x|z t , G) = 1.

Standard solution to the grid-based localization problem [Burgard 1996]

The solution proposed in [START_REF] Burgard | [END_REF]] is based on Bayes' rule and the Markov assumption. Based on these assumptions, it comes:

P (x|z t , G) = 1 η .p(z t |x, G).P (x|z t-1 , G) (3.14)
where η normalizes the sum of the pose probabilities over all x up to 1. Let P * (x|z t , G) be defined as follows:

P * (x|z t , G) = p(z t |x, G) • P (x|z t-1 , G) (3.15)
Then, η can be computed with:

η = X∈Π P * (X|z t , G) (3.16) P (x|z t-1 , G)
is the prior probability of the pose in x while p(z t |x, G) can be directly evaluated from the sensor model defined in section 2.2. [START_REF] Burgard | [END_REF]] uses the approach presented by [Elfes 1989b] to compute this term for the inverse sensor model, as presented in detail in section 2.3.2.1. Remind that the complexity of this evaluation is exponential (with the number of cells) because one has to consider all the possible cell states in the grid.

The complexity burden can be reduced if we consider the nearest-target hypothesis. This hypothesis has already been used by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] to compute the inverse sensor model for narrow field-of-view sensors and we made use of it in section (2.5) for large field-of-view sensors.

Solution of the grid-based localization problem with linear complexity

Our solution is also based on the Bayes' rule and the Markov assumption. The objective is to compute P (x|z t , G) based on equation (3.14). The occupancy grid G

Formulation of the Grid-Based Simultaneous Localization And Mapping problem 57

that we use for localization is the one computed at step t -1. The difference with [START_REF] Burgard | [END_REF]] is the way we evaluate p(z t |x, G).

First, we define G x as a local grid to the sensor located at x. Thanks to the range mapping, we define G x as the local occupancy grid of the sensor. Therefore, the probability of occupancy of each cell in G x is inherited from the cell with which it intersects in G. This is the opposite scenario to the one described in figure 2.13(II) allowing to pass from the inverse sensor model to mono-sensor occupancy grids. The probability p(z t |x, G) can be then redefined over the local grid as follows:

p(z t |x, G) = p(z t |G x) (3.17)
As done in section 2.3.2.1, the total probability law is applied. Define Ω x the set that contains all the possible grid configurations of G x . Equation (3.17) can be then written as:

p(z t |G x) = g∈Ωx p(z t |G x , g) • P (g|G x) (3.18)
Since the grid configuration g encompasses the exact state of each cell, it comes G x ∧ g = g. Therefore, equation (3.18) becomes:

p(z t |G x) = g∈Ωx p(z t |g) • P (g|G x) (3.19)
Notice that p(z t |g) can be directly evaluated from the sensor model. In fact, this very same term appears in the evaluation of the inverse sensor model in equation (2.9). In section 2.5.2 we gave a detailed explanation on how to deduce p(z t |g) from the sensor model with a linear complexity under the nearest-target hypothesis for large field-of-view sensors while [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] addressed the case of narrow field-of-view sensors.

Moreover, since G x represents an occupancy grid, each cell c ∈ G x has a probability of occupancy P (o(c)). Therefore, P (g|G x) can be evaluated from the cells occupancy probabilities defined in G x . In fact, P (g|G x) can be computed as follows:

P (g|G x) = c∈Gx P (s g (c)) (3.20) where s g (c) is the state of cell c imposed in g. If s g (c) = o(c), P (s g (c)) = P (o(c))
and if s g (c) = e(c), P (s g (c)) = 1 -P (o(c)), both being deduced from G.

Implementation remark. As seen above, when correcting the robot pose, one has to evaluate p(z t , G x). However, G x might correspond to a part of G that is not mapped yet (see figure 3.6). In this case, p(z t , G x) does not make sense since G x is composed of unknown cells only. For this reason, we define for each cell c ∈ G, a label ρ(c) which allows to state whether (or not) the probability of occupancy of c has been updated. The value of ρ(c) is initialized to zero, which means that the probability of occupancy of cell c is not updated yet. Once the probability of occupancy of cell c has been updated by a "probable robot pose", ρ(c) becomes equal to 1. "Probable robot pose" stands for a pose whose probability is larger than or equal to a given threshold P ρ . Finally, for a given N ρ ∈ N * , if c∈Gx ρ(c) > N ρ , we consider that G x has been mapped and that it can be used for evaluating p(z t , G x).

Choice of a particular set of probabilities when solving the Simultaneous Localization And Mapping problem

In this section, we present a particular set of probability for performing the integer SLAM. A second set presented in annex A.12 can be also used, requiring less memory storage but larger approximation error.

Let γ ∈ N * and denote by U γ a finite set of probabilities defined as follows:

U γ = {p n = n γ ; n ∈ {0, ..., γ}}
As in section 2.7, we redefine the operators used in the SLAM over the indexes of the elements of the set U γ . The equations used in our SLAM formulation are (3.9), (3.12), (3.14), (3.19) and (3.20). Note that the operators are:

• the multiplication that appears in all these equations;

• the division, which is used for evaluating the normalization factor η in equation (3.14);

• the addition that appears in the sum loop of equations (3.9), (3.12) and (3.19);

• the additive inversion, which is used when evaluating P Gx (s g (c)) in equation (3.20) in the case when s g (c) ≡ e(c). In this case, P (e(c)) = 1 -P (o(c));

Choice of a particular set of probabilities when solving the Simultaneous Localization And Mapping problem 59

• the fusion that is used in equation (3.12)

Hereafter, we present the definition of these operators over the indexes of the elements of the set U γ .

Index addition

Let p m and p n be two elements of the set U γ . The index addition operator over U γ , denoted by ⊕, is defined as follows:

⊕ : {0, ..., γ} × {0, ..., γ} → {0, ..., γ} (m, n) → m ⊕ n = k; p k = p m + p n ; p k ∈ U γ (3.21)
By evaluating p m + p n for p m , p n ∈ U γ , one gets:

p m + p n = m γ + n γ = m + n γ (3.22)
Two situations can appear:

• S 1 : m + n ≤ γ (equivalent to p m + p n ≤ 1). In this case, p m+n ∈ U γ , and from equations (3.22) and (A.12), it follows:

p m + p n = p m+n (3.
m ⊕ n = m + n (3.24)
• S 2 : m + n > γ (equivalent to p m + p n > 1). In this case, there is no k ∈ {0, ..., γ}, such that:

p m + p n = p k (3.25)
and therefore, ⊕ is not defined in this case.

We will demonstrate in section 3.5 that in our SLAM formulation, the second possibility does not occur. As a consequence, ⊕ is always defined. Moreover, ⊕ is equivalent to a simple addition of indexes without any additional error (see equation (3.24)).

Index additive inversion

Let p m be an element of U γ . The index additive inversion operator over U γ , denoted by 1 , is defined as follows:

1 : {0, ..., γ} → {0, ..., γ} m → 1 m = k; p k = 1 -p m ; p k ∈ U γ (3.26)
Chapter 3. Grid-based integer SLAM For m ∈ {0, ..., γ}, 1 -p m is expressed by:

1 -p m = 1 - m γ = γ γ - m γ = γ -m γ (3.27)
Since γ -m ∈ {0, ..., γ} for m ∈ {0, ..., γ}, equation (3.27) can be rewritten as:

1 -p m = γ -m γ = p γ-m (3.28)
Therefore, from equations (3.28) and (3.26), one can deduce that 1 m can be computed as follows:

1 m = γ -m (3.29)
Thus, 1 m is equivalent to a simple subtraction between γ and the index m, see equation (3.29), without any error.

Index multiplication

Let p m and p n be two elements of U γ . The index multiplication operator over U γ , denoted by ⊗, is defined as follows:

⊗ : {0, ..., γ} × {0, ..., γ} → {0, ..., γ} (m, n) → m ⊗ n = k; p k = p m • p n ; p k ∈ U γ (3.30)
For m, n ∈ {0, ..., γ}, p m • p n is computed with:

p m • p n = m γ • n γ = m • n γ 2 (3.31)
In order to find the index k ∈ {0, ..., γ}, such that p k = p m • p n , k γ = m•n γ 2 is solved for k, and its solution is:

k = m • n γ (3.32)
It is trivial to show that 0 ≤ k ≤ γ. However, k is not necessarily an integer. For this reason, we use an approximation of (3.32), namely, the floor value of the solution, which gives a value in {0, ..., γ}. As a consequence, k is given by:

k = m • n γ (3.33)
where . stands for the floor operator. Therefore, m ⊗ n is expressed by:

m ⊗ n = m • n γ (3.34)
This approximation may introduce an error that is bounded by 1/γ. It is clear that the index multiplication operator cannot be represented by a simple operation over the indexes (as in the case of the addition and the additive inversion). For this reason, we store in matrix M U LT of dimension γ(γ +1)/2 (since the multiplication is commutative). The result of m⊗n as defined in equation (3.34) for all m, n ∈ {0, ..., γ}. Therefore, computing ⊗ requires a simple call from M U LT :

m ⊗ n = M U LT (m, n) (3.35)
3.4. Choice of a particular set of probabilities when solving the Simultaneous Localization And Mapping problem 61

Index division

Let p m and p n be two elements of U γ . The index division operator over U γ , denoted by , is defined as follows:

: {0, ..., γ} × {1, ..., γ} → {0, ..., γ}

(m, n) → m n = k; p k = p m /p n ; p k ∈ U γ (3.36)
For m ∈ {0, ..., γ} and n ∈ {1, ..., γ}, p m /p n is expressed by:

p m p n = m γ ÷ n γ = m • γ n • γ (3.37)
In order to find the index k ∈ {0, ..., γ}, such that p k = p m /p n , one has to solve for k:

k γ = m • γ n • γ (3.38) whose solution is: k = m • γ n (3.39)
which is not necessarily an integer in {0, ..., γ}. As in the multiplication case, we use the floor operator to approximate (3.39), which leads to:

k = m • γ n (3.40)
Therefore, m n can be computed as follows:

m n = m • γ n (3.41)
Note that two cases affect the approximation error:

• Case 1: m ≤ n (equivalent to p m ≤ p n). In this case, 0 ≤ k ≤ γ. Therefore, as in the multiplication case, the approximation in (3.41) comes with an error bounded by 1/γ;

• Case 2: m > n (equivalent to p m > p n). In this case, k > γ and the approximation error is unbounded (it can be infinite).

However, we will demonstrate in section 3.5 that, in our SLAM formulation, the second case does not occur. Therefore, the approximation error for the operator is always bounded by 1/γ.

Similarly to the multiplication case, we store in matrix DIV the results of m n as defined in (3.41), for m ∈ {0, ..., γ}, n ∈ {1, ..., γ}, and m ≤ n (thus of dimension γ(γ + 1)/2). Therefore, computing requires a simple call from DIV :

m n = DIV (m, n) (3.42)

Index fusion

Let p m and p n be two elements of U γ . The index fusion operator over U γ , denoted by , is defined as follows:

: {0, ..., γ} × {0, ..., γ} → {0, ..., γ}

(m, n) → m n = k; p k = p m p n ; p k ∈ U γ (3.43)
For m, n ∈ {0, ..., γ}, p m p n can be computed from (2.35) and (2.34) with:

p m p n = p m • p n p m • p n + (1 -p m) • (1 -p n) (3.44)
From (3.26), it comes:

p m p n = p m • p n p m • p n + p 1 m • p 1 n (3.45)
Then, with (3.30), one gets:

p m p n = p m⊗n p m⊗n + p (1 m)⊗(1 n) (3.46) In appendix A.2, we show that m ⊗ n + (1 m) ⊗ (1 n) ≤ γ.
Therefore, S 1 in section A.12.1 is verified and ⊕ is defined with:

p m p n = p m⊗n p m⊗n ⊕ (1 m)⊗(1 n) (3.47) Finally, in appendix A.3, we demonstrate that m ⊗ n ≤ m ⊗ n ⊕ (1 m) ⊗ (1 n) .
Therefore, the first case in section 3.4.4 is verified and can be applied with a bounded error:

p m p n = p m⊗n m⊗n ⊕ (1 m)⊗(1 n) (3.48)
From the comparison of equations (3.43) and (3.48), one can deduce that:

m n = m ⊗ n m ⊗ n ⊕ (1 m) ⊗ (1 n) (3.49)
Then, from (3.24), (3.29), (3.35), and (3.42), it comes:

m n = DIV M U LT (m, n) , M U LT (m, n) + M U LT (γ -m, γ -n) (3.50)
Therefore, the index fusion can be evaluated from a simple addition, subtraction and calls to M U LT and DIV .

From the set of probabilities to the integer SLAM

In the integer SLAM framework, we deal with integer indexes instead of floatingpoint probabilities (for instance, of type float). Similarly to the integer framework for the occupancy grids computation presented in section 2.7, we define first a function that allows to map each probability to its corresponding index in U γ (see section 3.5.1). Then in sections 3.5. 2, 3.5.3, and 3.5.4, we describe the integer version of the three steps used in our SLAM, namely, localization, mapping and motion update.

3.5. From the set of probabilities to the integer SLAM 63 3.5.1 Probability index in U γ Definition 3.5.1. Let E be a probabilistic event and P (E) its probability. Let U γ be the finite probability set defined in 3.4. The probability index of E in U γ denoted by I γ (E) is defined as follows:

I γ : [0, 1] → {0, ..., γ} P (E) → I γ (E); P (E) =p Iγ (E) ∈ U γ .
(3.51)

where P (E) =p Iγ (E) means that p Iγ (E) is the nearest probability to P (E) in U γ with p Iγ (E) ≤ P (E). In other terms:

p Iγ (E) ≤ P (E) < p Iγ (E)+1 (3.52)
In the rest of this chapter, we will use I instead of I γ for the sake of simplicity.

Motion update using integer arithmetic

Motion update using integers consists in updating the integer robot pose distribution I t (x), x ∈ Π at time t based on its previous distribution I t-1 (x), x ∈ Π and taking into account a motion measurement u. We assume that the integer motion model I(u|∆ * x) is known. To deduce the integer motion update formulation from equation (3.9), we proceed as follows:

• the multiplication is replaced by its integer correspondence ⊗;

• since x∈Π I(u|∆ *

x) ⊗ I t-1 (x) ≤ γ (see proof in appendix A.9), S 1 in section A.12.1 is satisfied and the addition can be replaced with ⊕. Thus, we obtain:

P t (x * |u) = x∈Π I(u|∆ * x) ⊗ I t-1 (x) (3.53)

Mapping using integer arithmetic

Mapping using integer arithmetic with uncertain pose consists in creating a global integer occupancy grid IG by integrating measurements z t and the integer gridbased pose distribution I(x) for x ∈ Π.

Consider the occupancy indexes and apply the operator ⊗ on (3.12). Taking into account that x∈Π I(o i |z t , x) ⊗ I(x) ≤ γ, allows also to use operator ⊕, (see the proof in appendix A.8). It comes:

I(o i |z t) = x∈Π I(o i |z t , x) ⊗ I(x) (3.54)
where I(x) is the prior probability index of the robot being at pose x. It can be deduced from the prior integer pose distribution. The term I(o i |z t , x) is deduced from equation (3.12) by applying the operator :

I(o i |z t , x) = I(o i |z 1 , x) ... I(o i |z t , x) (3.55)

Localization using integer arithmetic

The integer probability distribution of the pose is represented by I(x), x ∈ Π. Gridbased localization using integer arithmetic consists in updating the probability index I(x|z t , IG) for each x ∈ Π taking into account measurements z t and the integer occupancy grid IG. The latter associates an occupancy index I(o(c)) with each cell c ∈ G. From section 3.3.3, the localization is given by equations 3.14 (computed from (3.15) and (3.16), (3.19) and (3.20)). Using the probability index representation and the operator ⊗, equation (3.15) becomes:

I * (x|z t , IG) = I(z t |IG x) ⊗ I(x|z t-1 , IG) (3.56)
Knowing that x∈Π I * (x|z t , IG) ≤ γ (see proof in appendix A.6), S 1 in section A.12.1 is verified and the operator ⊕ can be applied on (3.16). It comes:

η * = x * ∈Π I * (x * |z t , IG) (3.57)
On the other hand, knowing that I * (x|z t , IG) ≤ η * (see proof in annex A.7), the first case in section 3.4.4 is verified and the operator can be applied with a bounded error on (3.14). Thus, I(x|z t , IG) can be computed as follows:

I(x|z t , IG) = I * (x|z t , IG) η * = I(z t |IG x) ⊗ I(x|z t-1 , IG) x * ∈Π I * (x * |z t , IG) (3.58)
The evaluation of I(z t |IG x) is also deduced from the sensor model. In this case, the sensor model is given through a probability index distribution. From (3.19), using the operator ⊗ and proving that g∈Ωx I(z t |g) ⊗ I(g|IG x) ≤ γ, the operator ⊕ can be also applied (S 1 in section A.12.1 is verified), and I(z t |IG x) can be computed as follows:

I(z t |IG x) = g∈Ωx I(z t |g) ⊗ I(g|IG x) (3.59)
where I(g|IG x) is deduced from (3.20) and the use of the operator ⊗:

I(g|IG x) = c∈Gx I(s g (c)) (3.60)

Experiments

Experimental setup

We tested the integer SLAM in a 2D simulated environment. The environment having a surface of 937 m 2 is depicted in figure 3.7. The red dotted line represents the robot trajectory. The occupancy grid G has 512 × 183 cells of side 10 cm each.

The grid pose Π has the same dimension and number of cells as G: each cell x ∈ Π represents a possible robot position in the environment (the heading is assumed to be known). For each pose, 360 measurements are returned by a narrow Field-of-View (FoV) range sensor (typically a laser scanner). These measurements correspond to a 360 • scan with a shift of 1 • between two consecutive measurements. The sensor model is supposed to be a Gaussian distribution with the nearest-target hypothesis.

It is given by:

p(z|d) = 1 σ √ 2π exp(- (z -d) 2 2σ 2) (3.61)
where z is the measurement and d is the distance to the nearest obstacle. The standard deviation σ is set to 4 cm. The index sensor model I(z|d) can be directly deduced from p(z|d), see appendix A.10, for γ = 10 5 . The motion sensor measures the displacement u = (u X , u Y) in X and Y between two consecutive poses. The motion sensor model is given by:

p(u|∆) = 1 2πσ X σ Y exp - (u X -∆ X) 2 2σ 2 X + (u Y -∆ Y) 2 2σ 2 Y (3.62)
where ∆ = (∆ X , ∆ Y) is the true displacement, and σ X , σ Y are the standard deviations in X and Y , respectively. Here, we choose σ X = σ Y = 30 cm. The index motion sensor model I(u|∆) can be directly deduced from p(u|∆), see appendix A.11. All the performance results are obtained as follows:

• The same experiment is run ten times1 ;

• the results are obtained by averaging the values of these 10 runs.

Note that we do not change the original algorithm nor re-order the instructions.

The experiments have been conducted on an X86 HW architecture implementing an Intel Xeon E3-1270 v4 processor with a l3 cache (LLC) containing a total of 8M Bytes made of 128 Bytes per cache line and implementing the LRU cachereplacement policy. A Debian (4.9.2) operating system has been used based on the Linux (3.16.0-4) kernel. The g++ (4.9.2) compiler (with the -03 optimization option) has been used to compile the considered computation-kernels. The Perfmon2 library [Eranian 2006] has been used to access the performance management unit of the processor in order to measure the execution times.

Analysis of the event-based aspect of the integer SLAM

We tested first the event-based property of our integer SLAM. Namely, we studied the effect of not localizing the robot each time a range measurement is received. Thus, we define λ ∈ N * as the number of times a range measurement is acquired before localizing the robot. For instance, λ = 3 means that after 3 range measurements are acquired, the localization is performed (otherwise, the measurement is used for mapping).

Similarly, we tested the effect of varying the frequency of mapping. Thus, we define ξ ∈ N * as the number of times a range measurement is acquired before the mapping is performed.

In each case, we evaluate the average estimated pose error (over all the poses in the trajectory), the obtained occupancy grid and the execution time. The pose error is defined with two indicators, namely, the mean distance error E(d) and the standard deviation E(σ). E(d) represents the distance between the true robot pose and the mean of the robot pose distribution over Π. σ(d) represents the standard deviation of the robot pose distribution over Π.

Effect of the localization frequency λ

We chose λ ∈ {1, 3, 6, 9, 15}. The results are summarized as follows:

• the average of E(d) for the 5 tests is approximately equal to 0.03 cm. For the majority of the trajectory poses, the mean of the robot pose distribution coincides with the true pose. When it is not the case, the maximum mean distance error obtained is 10 cm. However, the average of E(σ) is highly affected by the choice of λ. This is illustrated in figure 3.8. It is clear that when λ increases, E(σ) increases reflecting the fact that the estimated positions are spread out over a wider space around the mean value. But even in the worst case scenario, when λ = 15, E(σ) is equal to 12.87 cm, which can be still considered low enough to deduce that the robot is able to localize itself;

• the occupancy grids obtained for the 5 tests are illustrated in figure 3.10. One can notice that the quality of the obtained maps is satisfying. A minor non smooth detection of the walls is visible in the two last rooms visited by the robot when λ = 15. This is mainly due to the high value of E(σ); • the execution time for each of the 5 tests is illustrated in figure 3.9. As predicted, the execution time is longer when λ is smaller. This is due to the fact that when λ increases, less operations have to be executed since the localization is not done at each step. Notice that this allows to gain more than 2 times in time when λ increases from 1 to 15.

From these tests, one can deduce the advantage of tuning λ with respect to the accuracy required and the execution time. Indeed, the execution time decreases when λ increases but this can come at the cost of the decrease in the accuracy when λ is too high.

This ability to tune the localization frequency is one of the advantages of our event-based SLAM.

Effect of the mapping frequency ξ

We chose ξ ∈ {1, 3, 6, 9, 15}. Notice that ξ = 1 is equivalent to the case where λ = 1. The results are summarized as follows: • the average of E(d) is represented in figure 3.11. It is clear that the accuracy decreases when ξ increases. This is due to the fact that fewer parts of the map are used for localization when ξ increases. In fact, when ξ increases, the mapping process is done less frequently and the map will contain a wider non-mapped area (discussed in the next point). The average of the standard deviation E(σ) is represented in figure 3.12. As can be seen, it is less affected by the change in ξ than E(d) (compared to the previous experiment). This is due to the fact that the localization process is done more frequently than in the previous experiment and therefore the vicinity of the possible poses around the true pose is smaller;

(a) (b) (c) (d) (e) (f) (g) (h) (i)
• the occupancy grids obtained for the 5 tests are illustrated in figure 3.10. One can notice that the quality of the obtained maps decreases drastically when ξ increases. This is due to the fact that the mapping update is done less frequently;

• the execution time for each of the 5 tests is illustrated in figure 3.13. As predicted, the execution time is longer when ξ is smaller. This is due to the fact that when ξ increases, less operations have to be executed since the mapping is not done at each step. This allows to gain 1.3 times in time when ξ increases from 1 to 15.

Similarly to the localization experiments, one can deduce that it is possible to tune ξ with respect to the accuracy required and the execution time. However, as can be seen in the experiments, tuning the factor ξ has more effect on the quality of the map and the error E(d) than tuning λ. In fact, updating the map is crucial since the space is completely unknown. However localizing the robot when the pose error is too small can be postponed, and this affects less the quality of the map and the localization accuracy.

Comparison between the execution times of the SLAM computed with integer and with floating point arithmetics

In the last experiment, we compared the execution time when the SLAM algorithm is run with integer arithmetic and with floating-point (float) arithmetic for different grid sizes. The grid size is 2 2•Depth for Depth ∈ {5, 6, 7, 8, 9, 10}. In these experiments λ and ξ are both fixed to 1. Results are shown in figure 3.14. The gain in time with the integer implementation is revealed for large size grids. For instance, for Depth = 9, the gain in time with the integer implementation is 2 times the one obtained with the float implementation. This gain reaches a factor of 3 when Depth = 10. These results show the effectiveness of the integer implementation of our grid-based SLAM.

Summary

This chapter proposed an integer grid-based SLAM paradigm. The main results are summarized as follows:

• a comparison of our integer grid-based SLAM approach with the state-of-theart was first presented;

• the formulation of the grid-based SLAM was detailed,the nearest-target hypothesis being assumed;

• a particular set of probability U γ used for the integer grid-based SLAM was defined;

• operators used in SLAM (addition, additive inversion, multiplication, division and fusion) have been redefined over the set of probability U γ and their relative error was studied;

• the integer formulation of our grid-based SLAM was detailed;

• the event-based aspect of our integer grid-based SLAM was tested. Both the effect of tuning the localization frequency and the mapping frequency were studied. For each test, the pose error, the quality of the map and the execution time with respect to the frequency were studied. The tests highlighted the advantage of tuning the frequency of the localization and/or the mapping in order to decrease the execution time (but at the cost of the accuracy);

• a comparison between the execution time of the integer implementation and of the floating-point (float) implementation of our grid-based SLAM was presented. Different grid sizes were considered. Results highlight the effectiveness of the integer grid-based SLAM with a decrease in the execution time (up to 3 times) when compared to the floating-point implementation for large grids.

Global Localization is crucial for mobile robot navigation. It estimates the robot most probable pose in a known environment map, taking into account noisy measurements provided by exteroceptive and/or interoceptive sensors. Global Localization still faces major challenges, i.e. its computational complexity burdens and the sensitivity to noisy measurements and occlusions. Grid-based localization methods are effective in terms of robustness and ability to deal with any kind of sensor uncertainty. Unfortunately, they suffer from an exponential complexity in terms of the grid size, which has limited their use.

In this chapter, we present a linear complexity grid-based Global Localization algorithm with respect to the pose grid size. We redefine the Global Localization problem as a mapping one from sources located in the environment map. We also propose an integer-based implementation of our algorithm that is suitable to low computing power devices such as embedded devices. Finally, we show by experimenting our method on a medium-large map that it is highly robust to noisy measurements and occlusions when compared to state-of-the-art solutions.

This chapter is organized as follows. Section 4.2 reviews the most common techniques used in mobile robot Global Localization. Section 4.3 presents our lowcomputational grid-based Global Localisation algorithm. The integer-based implementation is then detailed in section 4.4. Finally, the experiments and results are discussed in section 4.5.

Introduction

Global Localization, also known by absolute localization, considers that the robot pose is globally uncertain, and aims to estimate it, given the map of the environment and sensor measurements [Thrun 2000[START_REF] Se | Vision-based global localization and mapping for mobile robots[END_REF]]. The map can be acquired via a previous mapping (leading to a map with uncertainties) or it can be perfectly known (for instance, if the robot has at its disposal the architectural map of the indoor environment where it navigates). Two types of sensors can be used, namely exteroceptive and interoceptive sensors.

When exteroceptive sensors are used, their measurements are "matched" with the map in order to estimate the most possible poses where the robot can be. This is known as the hypothesis generation. Figure 4.1 illustrates a 1D Global Localization situation where a measurement of z = 3 m is acquired with a narrow Field-of-View (FoV) range sensor. The heading of the robot is assumed to be known in this example: the problem of Global Localization consists then in determining the position of the robot. A pose grid is used to represent the robot (uncertain) pose (see sub-figure 4.1a). An occupancy grid is used to represent the environment (see subfigure 4.1b). When taking into account the measurement z, the global uncertainty over the pose grid is reduced to a few cells where the robot is possibly located (see sub-figure 4.1c). In fact, these cells are located in a zone around 3 m away from the occupied cell in the occupancy grid (with respect to the robot heading).

In some situations, exteroceptive sensors are not sufficient to determine the robot pose. This is due, for example, to the high symmetry in the environment where the robot navigates. In these situations, interoceptive sensors can be used in order to eliminate wrong hypotheses over the robot pose when taking into account the robot motion. This is known as the hypothesis elimination. Figure 4.2 illustrates such a situation. In sub-figures 4.2a and 4.2b, the initial pose grid, respectively the occupancy grid, are represented. The hypothesis generation allows to deduce two possible zones where the robot can be located taking into account a range measurement z 1 = 2 m (see on sub-figure 4.2c, the zones H 1 and H 2). Since the two zones have the same likelihood of containing the robot, the localization is considered not complete. Nevertheless, if the robot moves 5 m to the left (an on sub-figure 4.2d) and then a range measurement of z 2 = 7 m is acquired, the hypothesis H 2 can In our work, we use only exteroceptive sensors. Therefore, the problem of Global Localization with hypothesis generation is addressed.

Dealing with occlusions and noisy measurements is one of the serious challenges Global Localization is still facing. This can occur, for instance, when a target is not detected by a sensor, and instead, an erroneous measurement is acquired. In this situation, the pose estimate can be completely wrong. Figure 4.3 shows the result of Global Localization in such a situation.

Grid-based Global Localization approaches seem to be less sensitive to occlusions [START_REF] Fox | Bayesian filtering for location estimation[END_REF], Borenstein 1991a, Borenstein 1991b]. However, they suffer from an exponential complexity with respect to the grid size in terms of the number of cells. In this chapter, we propose a linear complexity grid-based Global Localization method, implemented using integer arithmetic only. This method is an extension of the integer occupancy grid framework introduced by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF], and summarized in section 2.7. We also show that our approach is highly robust to occlusions when compared to the state-of-the-art.

Related work

The literature distinguishes four main techniques used for Global Localization: the multi-hypothesis Kalman filter, the Particle filter, Grid-based estimators and

Multi-hypothesis Kalman filter

Variants of the Kalman filter are widely used in mobile robot self-localization such as the Extended Kalman filter, the Unscented Kalman filter and the Information filter. They are simple to implement and offer high computational speed [START_REF] Leonard | [END_REF], Gutmann 1998[START_REF] Jensfelt | Active global localization for a mobile robot using multiple hypothesis tracking[END_REF]]. However, since the initial pose is assumed to be normally distributed, they are suitable only for the problem of re-localization and cannot be applied to Global Localization where the initial pose is uniformly distributed over the entire space. To deal with this issue, the Multi-hypothesis Kalman filter has been introduced. It represents the probability distribution of the pose using a weighted sum of multiple Gaussian distribution models [Arras 2003b[START_REF] David | Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization[END_REF][START_REF] Jensfelt | Active global localization for a mobile robot using multiple hypothesis tracking[END_REF][START_REF] Roumeliotis | [END_REF], Cox 1994, Jochmann 2011]. Unfortunately, despite its robustness, this algorithm does not perform as well as the previously mentioned variants of the Kalman filter: the number of Gaussians representing the unknown initial state can be very high, leading to an intractable computational workload. Also, the choice of the number of Gaussians is heuristic and, to the best of our knowledge, not detailed in the literature.

Particle filter

This approach, already summarized in the previous chapter, shows a better robustness compared to the Multi-hypothesis Kalman filter and offers a "nice" performance when used for re-localization [Fox 1999]. However, when used for Global Localization, the number of particles needed is high to avoid the so-called sample impoverishment, especially in large maps [START_REF] Li | [END_REF]]. This comes with a high computational cost that grows drastically with the size of the map.

Some solutions have been proposed in the literature to reduce this cost. The Self-Adaptive Monte Carlo Localization algorithm [Zhang 2010] implements a precaching technique to reduce the on-line computational cost. However, this comes at the cost of the robustness the filter being sensitive to wrong measurements. It is also highly sensitive to occlusions because the particles can only survive near the most likely pose. Thrun et al. proposed the Augmented Monte Carlo Localization algorithm to overcome this drawback [Thrun 2005]. It consists of adding random particles to the particle set in order to cover a wider vicinity where the robot can possibly be located. However, this approach also suffers from a high computational complexity overhead.

Grid-based localization estimators

Grid-based localization estimators compute and update the robot pose distribution represented by an histogram filter over a grid decomposition of the pose space [START_REF] Burgard | [END_REF], Borenstein 1991b, Borenstein 1991a]. They seem to be less used despite their robustness, ability to deal with occlusions and suitability to any kind of statistical distribution [START_REF] Fox | Bayesian filtering for location estimation[END_REF]]. In fact, they suffer from an intractable computational complexity that is exponential with the grid size, therefore limiting their use to small grids. This is explained hereafter.

In section 3.3.3, we presented in details the definition and solution of the gridbased localization. Denote Π the pose grid of size M , G the occupancy grid of size N and z t t consecutive sensor measurements. The update of the likelihood of the robot to be in pose x ∈ Π is given in (3.14):

P (x|z t , G) = 1 η .p(z t |x, G).P (x|z t-1 , G) (4.1)
We showed that computing the term p(z t |x, G) in (4.1), based on the standard approaches found in the literature, requires a sum over all the possible grid configurations of the local grid in x denoted by G x (as shown in (3.19)). The number of possible grid configurations is exponential in terms of the number of cells in G x , which can reach N . Therefore, the computational complexity of the standard gridbased Global Localization techniques is O(2 N), which is exponential with the size of G. To reduce this complexity, we discussed in section 3.3.3.3 how to compute the term p(z t |x, G) in (4.1) with a linear complexity in terms of N by assuming the nearest-target hypothesis. Nevertheless, if this was quite efficient for localization, it is no more the case for Global Localization. In fact, when localization (position tracking) is considered in SLAM, the robot pose uncertainty is limited to a small zone around the true pose. Therefore, to correct the robot pose distribution, one needs to compute (4.1) over the cells x ∈ Π where P (x) = 0. The number of these cells is usually smaller than M . However, in the case of Global Localization, the robot pose uncertainty is uniformly distributed over Π. Therefore, (4.1) has to be computed over all x ∈ Π (M terms). In addition, the computation of p(z t |x, G) in (4.1) requires a sum over N . It comes finally that the computational complexity of classical grid-based Global Localization techniques is O(M.N), which is quadratic in terms of the pose grid size and the occupancy grid size. As a consequence, applying grid-based Global Localization techniques to large grids is clearly intractable, hence the necessity of the work presented in this chapter.

Optimization-based methods

These methods represent the robot pose by a set of possible estimates, called population. A weight (computed with a fitness function) is associated to each estimate. Global Localization boils down to the minimization of the predefined fitness of fit function in each motion-perception cycle. The methods in this approach differ in the definition of their fitness function and in the stochastic search algorithm. For the fitness function, [Moreno 2006, Martín 2012] used the quadratic cost function that represents the difference between the received observations and the simulated ones for each estimate. [Martín 2014] used the Kullback-Leibler divergence to deal with occlusions. [Moreno 2011] used the Manhattan distance in order to deal with dynamic obstacles. For the stochastic search algorithms, [Moreno 2006] and [Martín 2012] used the Differential Evolution algorithm and [START_REF] Mirkhani | [END_REF]] used the Harmony Search algorithm [START_REF] Geem | [END_REF]].

Even if these methods may show an improved robustness and ability to deal with occlusions in medium-large maps [Martín 2014], drawbacks still limit their use. First, a large population size is needed in order to properly converge to the true pose.

Second, these methods are usually hard to implement and the convergence conditions are in general heuristic and parameter-dependent. Lastly, local minima can be found especially if the environment map has a high degree of similitude.

Hybrid approaches

Researchers combined the benefits of two or more of the previously summarized approaches in a hybrid one. For instance, [START_REF] Prestes | [END_REF]] combined the Boundary Value Problem path planner and Monte Carlo Localization to assist a robot in its Global Localization task in sparse environments. Their algorithm generates particles in specific regions, then leads the robot along these regions using the numerical solution of a Boundary Value Problem. [START_REF] Röwekämper | On the position accuracy of mobile robot localization based on particle filters combined with scan matching[END_REF]] combined Monte-Carlo Localization, Kullback-Leibler distance sampling and scan matching in order to gain in accuracy. In [START_REF] Gasparri | [END_REF]], a Particle filter generating hypotheses on the possible pose. Then, an extended Kalman filter monitors and validates these hypotheses. the occupancy grid of its environment, see figure 4.4(b), with a linear complexity in terms of the number of cells in the grid.

Suppose now that the robot perfectly knows the map of its environment but it ignores its own pose. Suppose that its range sensor senses an obstacle located at 1.1m. Our proposal is to use a reverse way of thinking for the proposed grid-based Global Localization technique: the environment is supposed to be equipped with (virtual) sensors (called hereafter "sources") that sense the robot in their surroundings. If each source builds an occupancy grid, the robot can use all of them to determine its most probable position, which is the cell having highest probability of occupancy (see figure 4.4(c)).

The main advantage of moving from a Global Localization problem to a mapping one is that the computational complexity is drastically reduced. It becomes linear in terms of the number of cells in the pose grid. In fact, as discussed in section 4.2.3, the quadratic complexity of the grid-based Global Localization technique based on the nearest-target hypothesis is mainly due to the fact that the probability of the robot being in each cell of the pose grid is updated separately (linear complexity in terms of the number of cells in the pose grid) and each update requires a sum over all the possible grid configurations (linear complexity with respect to the occupancy grid size). However, when applying the proposed Global Localization technique, the mapping source (here the box) will update the entire pose grid at once with a linear complexity (thanks to the linear inverse sensor model for nearest-target sensors, see chapter 2). Indeed, assimilating the problem of Global Localization to a grid mapping one encompasses some assumptions. This will be explained in details in the next section.

From pose grids to pose occupancy grids

The so-called pose occupancy grid is a modified version of the pose grid defined with the same concept as occupancy grids. The pose occupancy state of a cell reflects the fact the cell is occupied by the robot, and not by an obstacle in this case. It is defined formally as follows.

Definition 4.3.1. Let Π be a grid and x i a cell of Π. The pose occupancy state of cell x i is defined as a binary random variable w i which value is ∃ i if x i is occupied by the robot and i otherwise. Since the occupancy state w i is a discrete random variable, the sum of the probability of its values is equal to 1:

P (∃ i) + P (i) = 1 (4.2)
It follows that a pose occupancy grid can be defined as follows.

Definition 4.3.2. Let z 1 , . . . , z K be the measurements provided from K sensors. A Pose Occupancy Grid (POG) is a function that maps a collection of measurements z 1 , . . . , z K to the set of the pose occupancy probabilities of all cells of Π:

P OG(z 1 , . . . , z K) = {P (∃ i |z 1 ∧ . . . ∧ z K), ∀x i ∈ Π} (4.3)
Particularly, a pose occupancy grid P OG(z) built from a single measurement z is called a mono-sensor pose occupancy grid.

Notice that assimilating a pose grid to an occupancy grid implies considering that the pose occupancy of a cell x i ∈ Π is independent of another cell x j ∈ Π. This is a strong assumption because knowing that the robot is located in cell x i decreases the likelihood of it being located in a different cell x j (since the robot can only be located in one place at once). The concept used in standard localization techniques, where the robot pose distribution is defined over the pose grid and verifies x∈Π P (x) = 1, does not hold any more. In fact, since the pose occupancy state is a binary random variable defined over each cell separately, it may happen that x i ∈Π P (∃ i) = 1. This assumption is more realistic when several robots are being localized simultaneously. However, we found out that by considering this assumption, the Global Localization is more resistant to occlusions and noisy measurements, and that it performs better with pose occupancy grids than pose grids. This will be explained in section 4.4.1.

Method Formulation

Let G and Π be two cartesian grids. Let OG be the occupancy grid of the environment defined over G and P OG the pose occupancy grid defined over Π. Our Global Localization method performs as follows.

Initialization

Since the pose state occupancy is unknown over all the pose grids Π, we initialize it as follows:

P (∃ i) = 0.5; ∀x i ∈ Π (4.4)

Defining the mapping sources and dead sources

A mapping source is a cell in OG that can perform the mapping in the pose occupancy grid P OG (for instance the box in the example in Fig. 4.4). It has to satisfy the following properties:

• it is a most likely occupied cell in OG (i.e., its probability of occupancy is larger than a given threshold);

• it can be at the origin of the returned measurements by the sensor (i.e., it can be detected by the sensor).

For example, in Fig. 4.4, c 11 is considered a mapping source. In fact, it is the most likely occupied cell in front of the robot at the origin of the measurement.

An occupied cell in OG is not necessarily a mapping source. Consider figure 4.5 as an example. Under the nearest-target hypothesis, the occupied cell in the green box cannot be considered a mapping source. In fact, it is hidden by the 2 other occupied cells around it. Thus, since the sensor has a nearest target behaviour, it will not detect the cell in the green box but would detect instead one of the two cells around it (considered as mapping sources). We call the cell in the green box a dead source. Therefore, a dead source verifies the following properties:

• it is a most likely occupied cell in OG;

• it cannot be at the origin of the returned measurements by the sensor.

One can conclude that mapping and dead sources can be defined as follows when the nearest-target hypothesis holds. 4.3.3. A mapping source s m , defined when the nearest-target hypothesis holds, is as a cell in OG that verifies:

• s m is most likely occupied, i.e. its probability of occupancy is greater than a threshold;

• s m possesses at least one empty neighbor cell. • s d , defined when the nearest-target hypothesis holds, is a cell most likely occupied, i.e. its probability of occupancy is greater than a threshold;

• s d is surrounded only by occupied cells.

Selection of the active mapping sources given a sensor measurement

Let z be a measurement returned by range sensor under the a nearest-target hypothesis. A mapping source is not necessarily used to update the pose occupancy grid P OG. It is eligible to perform the update in P OG only if it is possibly at the origin of measurement z returned by the sensor and it is called in this case an active mapping source. Otherwise, it is called an offline mapping source. Thus, deciding if the mapping source is active or offline depends on the measurement returned by the sensor. More precisely, it depends on the angle with which the ray, at the origin of the measurement, was sent by the sensor. The ray denotes here the principle axis of the sensor Field-of-View. To understand why the angle of the ray issued by the sensor affects this choice, consider Fig. 4.5 as an example.

Example The robot senses an obstacle on its left side (the ray issued by the sensor makes 180 • with the x-axis). Let ĉ be a mapping cell in OG. To know whether ĉ is active or not, one should know if it is possibly at the origin of the measurement returned by the sensor. Since the robot pose is not known, the only information that one can deduce is that ĉ should have its right side visible by the robot. This means that the cell on the right of ĉ has to be empty (the first cell in the ray issued by ĉ with an angle of -180 •). Otherwise, the sensor having a nearesttarget behaviour, and scanning the left side of the robot, would not be able to detect ĉ. Hence, only cell c 12 is considered as possibly hit by the sensor ray, and therefore, it is called an active mapping source. Cell c 10 is called an offline mapping source. Now, if the robot senses an obstacle on its right, the opposite scenario would occur. This is depicted in Fig. 4.6, where cell c 10 is now considered an active mapping source and cell c 12 is considered an offline mapping source.

Consequently, to know whether a mapping source ĉ is active or not, we proceed as follows:

1. (S 1): We denote by α(z) the angle with which the ray at the origin of z was issued by the sensor.

2. (S 2): We compute the angle with which the ray will be sent back by the obstacle to the sensor, denoted by α(z). This latter can be directly deduced from α(z). For instance, in a 1D or 2D case, α(z) = 180 + α(z) in degrees (see figures 4.7a and 4.7b). In a 3D case, if α(z) is represented by the inclination and azimuth, respectively denoted by (φ(z), θ(z)), then α(z) is represented by (φ(z), θ(z)) computed in degrees as follows: φ(z) = 180 + φ(z) and θ(z) = 180 -θ(z) (see Fig. 4.7c).

(S 3):

We issue a ray from ĉ with an angle of α(z). If the first cell intersecting this ray (starting from ĉ) is empty, then, the mapping source ĉ is active. Otherwise, it is offline.

Remark

The angle α(z) depends on:

• the heading of the robot, denoted by α;

• the angle that the sensor ray makes with the robot, denoted by α s (z).

In fact, from Fig. 4.8, one can deduce that:

α(z) = α + α s (z) (4.5)
However, in Global Localization, α is usually unknown. Therefore, how can we compute α(z) in step S 1 ? We give the example below to answer this question.

Example Suppose that the robot moves in a 2D space. If the position and the heading are unknown, the pose grid Π used to represent the position of the robot in 2D and its heading is in 3D. If the heading of the robot α is discretized with K values {α 1 , ..., α K }, Π can be seen as the union of K 2D position grids Π k , k = 1, ..., K. Each Π k represents the positions of the robot in 2D corresponding to a heading of α k (see Fig. 4.9). Let z be a measurement returned by a range sensor and α s (z) the angle that the sensor makes with the robot. In this case, α(z) can take K possible values, if we Figure 4.9: Three-dimensional pose occupancy grid representing the position and heading of a robot moving in a 2D space. replace in equation (4.5) all the possible values of α, i.e., α k , k = 1, ..., K. Thus, for k ∈ {1, ..., K}, we denote by α k (z) the value of α(z) computed with α = α k . One can deduce, that if each possible value of α(z) (i.e., α k (z), k = 1, ..., K) is tested in S 1 , a mapping source ĉ can be active or offline, but only for a part of Π, which is Π k .

Consequently, we can deduce that if the heading of the robot is unknown, all the possible headings α k , k = 1, ..., K in the pose grids are tested to compute α k (z). Then, for each k ∈ {1, ..., K}, α k (z) is tested in S 1 to know whether a mapping source ĉ is active or not, only in the part of the pose grid where α = α k .

Update of the pose occupancy grid with active mapping sources

Let z t = {z 1 , ..., z t } be t consecutive measurements returned by a range sensor under the nearest-target behaviour. The update of the pose occupancy grid by active mapping sources follows the same concept as the one of the update of occupancy grids presented in chapter 2. First, each measurement in z t is processed separately by every active mapping source in order to create the so-called mono-measurement mono-source pose occupancy grid. Then, all the mono-measurement monosource pose occupancy grids computed with the same measurement are fused in order to create the so-called mono-measurement multi-source pose occupancy grid. Finally, the mono-measurement multi-source occupancy grids corresponding to all the active mapping sources are fused for all the measurements to create the so-called multi-sensor multi-source pose occupancy grid. Hereafter, we briefly explain the process previously presented in details in chapter 2 to the current problem.

Mono-measurement mono-source pose occupancy grid

Let z i be one measurement in z t , issued with an angle of α(z i) from the sensor. Let s k m , k = 1, ..., J be all the active mapping sources. The mono-measurement mono-source P OG computed from s j m for j ∈ {1, ..., J} and from z i is denoted by P OG(z i , s j m). It encompasses the pose probability of occupancy of the cells in Π; i.e., P OG(z i , s j m) = {P (∃ k |z i , s j m), x k ∈ Π} . In order to compute P OG(z i , s j m), we proceed as for computing a mono-sensor occupancy grid, as presented in section 2.6.2 in chapter 2:

• first, the inverse sensor model is computed from measurement z i in a local grid to s j m . The inverse sensor model evaluates the probability of pose occupancy of every cell c in the local grid denoted by P (∃(c)|z i , s j m) (it is similar to definition 2.3.1, but s j m was omitted because there was only one source of mapping, which is the robot). The local grid issued from s j m makes an angle of α(z i) with the x-axis (α(z i) as defined in S 2 in section 4.3.3.3). Note that if the local grid contains another mapping source s l m (active or offline), only the cells having a range smaller than the range of s i m will be updated (see Fig. 4.10 (II)). In fact, since the nearest-target hypothesis holds, it is not possible for the robot to be located after s i m . If it was the case, then the robot would have seen s l m instead of s j m ;

• second, a range mapping is applied in order to find the cells in the global grid Π that intersects with the local grid. Their probability of pose occupancy is inherited from the cells with which they intersect in the local grid (see Fig. 4.10 (III)).

Mono-measurement multi-source pose occupancy grid

In this step, we fuse all the pose occupancy grids P OG(z i , s k m), k ∈ {1, ..., J}, computed with measurement z i to obtain P OG(z i). This step is depicted in Fig. 4.10 (IV). Using the Bayesian fusion operator defined in 2.6.1, it follows: As seen in the previous section, the pose occupancy grid computation is identical to the occupancy grid one. Thus, the integer occupancy grid paradigm introduced by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] and reviewed in section 2.7 can be directly applied to pose occupancy grids. We use the recursive set of probabilities over denoted by S ε and defined in section 2.7.1.1 for ε ∈]0, 1 /2[. We also use the concept of occupancy indexes defined in 2.7.4. Thus, the following changes are applied on the pose occupancy grid formulation introduced in the previous section in order to obtain an integer implementation.

P OG(z i , s 1 m , ..., s J m) = P OG(z i , s 1 m) * ... * P OG(z i , s J m) = {P (∃ n |z i , s 1 m) ... P (∃ n |z i , s J m), x n ∈ Π} (
First the initialization of the integer pose occupancy grid (presented for the float version in section 4.3.3.1) becomes:

I(∃ i) = 0; ∀x i ∈ Π (4.8)
since the index 0 represent the probability 0.5 in S ε .

Then, the integer mono-measurement mono-sensor pose occupancy grid is computed (the equivalent form to the float version presented in section 4.3.3.4). It is denoted by IP OG(z i , s j m) = {I(∃ k |z i , s j m), x k ∈ Π} for a range measurement z i and a mapping source s k m . The only difference with the steps presented in section 4.3.3.4 is that, instead of using the inverse sensor model in step 1, its equivalent occupancy index is used. It allows to compute I(∃(c)|z i , s j m) for every cell c in the local grid.

Based on the fact that the index fusion over S ε is equivalent to an addition (section 2.7.2.1), it follows that the integer mono-measurement multi-source pose occupancy grid can be computed as follows:

IP OG(z i , s 1 m , ..., s J m) = IP OG(z i , s 1 m) + ... + IP OG(z i , s J m) = {I(∃ n |z i , s 1 m) + ... + I(∃ n |z i , s J m), x n ∈ Π} (4.9)
Finally, the integer multi-measurement multi-source pose occupancy grid can be computed, based on the same property, as follows:

IP OG(z t , s 1 m , ..., s J m) = IP OG(z 1 , s 1 m , ..., s J m) + ... + IP OG(z t , s 1 m , ..., s J m) = {I(∃ n |z 1 , s 1 m , ..., s J m) + ... + I(∃ n |z t , s 1 m , ..., s J m),
x n ∈ Π} (4.10) Consequently, as for the integer occupancy grid paradigm, the integer Global Localization can be implemented using integer arithmetic and it requires the use of the addition operator only.

Resistance to occlusion

Despite the ability of traditional grid-based Global Localization techniques to deal with occlusions, in some situations they tend to completely lose the information on the robot pose estimation. This is mainly due to floating-point overflow which occurs when highly erroneous measurements are received. The proposed integer pose occupancy grid Global Localization technique allows to overcome this drawback and exhibits more robustness in such cases. In order to show this property, the following experiment is done.

Example A robot is located at 2 m away from an obstacle (see Fig. 4.12(a)). The robot heading is to the left and is supposed known. The problem of grid-based Global Localization is restrained to determining the robot position in a 1D grid. A narrow Field-of-View nearest-target sensor is mounted on the robot (for instance, a laser scanner). We assume that the sensor heading is identical to the robot heading. The sensor model is given by a Gaussian distribution:

p(z|x) = 1 σ √ 2π exp(- (z -x) 2 2σ 2) (4.11)
with σ = 0.04 m. In this equation, z denotes the sensor measurement and x the true distance from the sensor to the obstacle.

In a first scenario, the sensor provides a measurement z 1 = 2.1 m. Figure 4.12(f) illustrates the updated pose grid by traditional grid-based Global Localization techniques when integrating z 1 . The mechanism allowing this update using traditional approaches is summarized in Fig. 4.12(d). As seen in section 4.2.3, one has to multiply the prior robot pose distribution (given in Fig. 4.12(b)) by the sensor model p(z|x) defined in equation (4.11) for z = z 1 = 2.1 m and normalize the resulting distribution, see equation (4.1). On the other hand, Fig. 4.12(g) illustrates the updated integer pose occupancy grid using our integer grid-based Global Localization technique where the parameter ε of the recursive set S ε is set to 0.50001. Figure 4.12(e) summarizes the mechanism allowing this update. It is done by mapping the occupancy index model from the source (i.e., the obstacle) to the grid and fusing it with the prior integer pose occupancy grid (given in Fig. 4.12(c)).

In a second scenario, the sensor reads a highly erroneous measurement z 2 = 18 m. When traditional techniques are used to update the pose grid , they lead to a completely wrong estimation: the whole pose grid becomes empty (4.12(j)). In fact, the floating-point values of the sensor model in zone L 1 (see Fig. 4.12(h)) are way smaller than 3.4 * 10 -38 , which is the smallest absolute floating point value that may be stored in a memory word of a 64 bit processor. Thus, these values are considered as zero in a traditional grid-based localization implementation. Therefore, multiplying the sensor model in zone L 1 by the pose probabilities in zone L * 1 leads to zero. The same problem occurs when multiplying zone L 2 with zone L * 2 . The pose probabilities in zone L * 2 are smaller than 3.4 * 10 -38 and considered as zero. The real mathematical multiplication of these zones is however non zero, and after normalization, the pose occupancy in the two zones should be visible in the updated pose grid. This is however not the case due to the floating-point overflow (exceeding the floating-point's precision). This problem does not occur when using our technique, see Fig. 4.12(k)). In fact, the fusion of the integer pose occupancy grid obtained from measurement z 2 (top one in Fig. 4.12(i)) with the one obtained from measurement z 1 (bottom one in Fig. 4.12(i)) involves an addition of integer indices in an order of magnitude that fits the memory word of a 64 bit processor. Hence, the result in Fig. 4.12(k) which shows two possible zones were the robot can be possibly located.

This example shows also that our Global Localization method can also be suitable to solve the problem of kidnapped robot [START_REF] Sean | Error correction in mobile robot map learning[END_REF], Delobel 2018]. In fact, one of the main challenges of this problem is to localize the robot when its true pose is located in regions having the lowest (and even null) likelihood of the robot being there. Updating the likelihood of such regions usually results in similar likelihood (i.e. null or low likelihood). For instance, if the prior probability of the robot being in its true position x is null (i.e. P (x) = 0), then whatever the measurement received by the robot, the updated probability P (x) will remain 0 and the robot will not be able to localize itself (see equation 4.1). However, since our method uses the principle of Bayesian fusion, this problem does not occur. In fact fusing a null probability with a non-null one does not necessarily lead to a null probability. In fact, denote by N * the integer index representing the null probability in S ε , and by n the integer index representing a chosen non-null probability, higher than 1/2 in S ε . Since n represents the integer index of a probability that is higher than 1/2 in S ε , then n > 0. Thus, the integer fusion of n and N * which is n + N * is higher than N * , and therefore represents a non-null probability.

Experimental results

We tested our integer grid-based Global Localization method on a real floorplan of 2621m 2 with a high degree of similitude (see Fig. 4.13a) and on a learned cluttered map (see Fig. 4.13b). The parameter ε of the recursive set S ε is set to 0.50001. The 2D occupancy grid contains 512 × 512 cells of size 10 cm × 10 cm.

We aim to find the robot position in a 2D space and its heading using our integer Global Localization approach. Thus, the pose grid Π is 3D. The possible heading of the robot α are discretized with K = 360 values {α 1 , ..., α K } and Π is the union of K 2D position grids Π k , k = 1, ..., K. Each Π k , representing the positions of the robot, contains 512 × 512 cells of size 10 cm × 10 cm.

A rotating laser, fixed on the robot, acquires µ ∈ N * equi-distributed range measurements per turn, each one having a Gaussian noise distribution.

Three different poses are considered:

• Pose 1 (dot), the robot is at the position (118, 63) in cells and has a heading of 30 • . This corresponds to a corridor, which is usually considered the hard- Three scenarios are studied. Section 4.5.1 analyses the influence of the number of measurements provided by the laser on the pose estimate. Section 4.5.2 evaluates the sensor noise influence on the pose estimate. In sections 4.5.3 and 4.5.4, occlusions are considered. They can originate, for instance, from moving or unmodelled obstacles, a high noise, and erroneous measurements. Note that occlusions are seldom studied in the literature. In the experiments, we follow [Martín 2014] that considers two situations: a uniform noise and unmodelled small and large obstacles.

Influence of the number of observations on the estimated pose

Assume that the sensor noise distribution is Gaussian with a standard deviation of 3%. Consider µ ∈ {20, 25, 30, 35, 40, 60} equi-distributed measurements are acquired per turn of the rotating laser, which corresponds to a sparse scanning of the environment. Define the success rate as the number of experiments where the robot is able to localize itself over the total number of experiments. Similarly to [Martín 2014] where the matching position error is 50 cm, we consider that the robot localized itself if the estimated position matches the true one with an error less or equal to 40 cm. Note that our approach encompasses a hidden error of discretization that can reach the cell size. Thus, we decided to fix the more challenging matching error of 40 cm.

The results in Fig. 4.14 show that our algorithm performs well even with a very low number of measurements: 25 measurements are required to reach a success rate of 100% for the three tested poses.

In the sequel, we will consider that 60 measurements are acquired per laser full turn.

Influence of the sensor noise

Consider now that the sensor noise level takes its value in {3%, 6%, 8%, 10%, 12%, 15%}. Figs. 4.15 (floorplan) and 4.16 (learned map) show our algorithm success rate and the position and orientation mean errors computed for the successful experiments.

For the largest sensor noise (15 %), our position error is nearly halved (7.5 cm) when compared to [Martín 2014] (14 cm) for a similar success rate of 70%.

Contamination modelled with a uniform noise

We now consider a contamination that can occur when unmodelled static or moving objects exist in the map, leading to the so-called occlusions. Similarly to [Martín 2014], assume that an additive uniform noise, modelling this contamination, alters the measurement: z * = (1 -ε)N (z, σ) + εU (0.25z, 0.75z) (4.12) where ε is the contamination rate, N (z, σ) is the sensor noise distribution with σ its standard deviation, and U (0.25z, 0.75z) is a uniform probability distribution In our experiments, the percentage of contamination is chosen in {10%, 30%, 50%, 70%, 80%, 85%}, the sensor noise level is equal to 3 %. Results given in Fig. 4.17 (floorplan) and 4.18 (learned map) show that our algorithm localizes the robot even in the presence of a high uniform noise. As expected, the success rate is better for Pose 2 than Poses 1 and 3 because the degree of similitude is lower. Moreover, our algorithm always outperforms the solutions from the literature ([Martín 2014], [Moreno 2016]) with position and orientation errors in the worst cases smaller with our proposed algorithm.

Unmodelled obstacles

Unmodelled obstacles are classical occlusions that are considered in the literature to evaluate the performance of Global Localization techniques. Following [Martín 2014], we now evaluate if our algorithm is able to localize the robot in the presence of many small obstacles (Fig. 4.19(a)) and of a large unmodelled obstacle (Fig. 4.19(b)). While [Martín 2014]) considered a sensor noise of 1%, we adopt 3%.

The robot is located in Pose 1, which is challenging from a localization point-of-view because this location presents a high degree of similitude (corridor). The number of unmodelled obstacles in the robot surroundings is taken in {10,20,30,40,50,55}. Results in Fig. 4.20 and 4.21 show that even in the presence of 40 unmodelled obstacles, our algorithm performs very well, with 100% of success rate when [Martín 2014] reaches 100% for 17 unmodelled obstacles. Moreover, when less than 50 unmodelled small obstacles are considered, our position mean error is less than 8cm and our orientation mean error is less than 1 • . The distance from the robot to the large obstacle is taken in {10, 15, 20, 25} (in cells). Results in Fig. 4.22 and 4.23 show that even when the unmodelled obstacle is placed close to the robot (15 cells, i.e., 1.5 m), this latter localizes itself with a success rate of 100% while [Martín 2014] obtained a similar success rate with an obstacle located at around 5 m (i.e., 50 cells). Moreover, our position mean error is less than 0.7 cm and our orientation mean error is less than 0.14 •

Summary

In this chapter:

• we proposed a grid-based Global Localization method, which is formulated in terms of a mapping problem performed with "mapping sources" spread in the environment. This shift in the point-of-view reduces the computational complexity of standard grid-based Global Localization approaches from exponential to linear with respect to the number of cells in the pose grids;

• we proposed an implementation of our algorithm that requires only addition of integer pre-defined indices in order to update the pose grids;

• we analysed the performance of our algorithm with respect to the number of measurements required to estimate the pose (i.e., robot position and heading), both for a flooplan and a learned map. We demonstrated that a smaller number of measurements is needed when compared to the state-of-the-art;

• we tested our algorithm in the presence of sensor noise and occlusions and we showed its capability to deal with a high level of noise and some occlusions in the form of unmodelled obstacles, either small or large ones.

Chapter 5 This chapter summarizes and concludes the work presented in the present thesis and exposes the future perspectives.

Conclusion and future work directions

Conclusion

In the present thesis, we first proposed a linear complexity inverse sensor model for large FOV range sensors under the nearest-target hypothesis while the complexity of state-of-the-art approaches is exponential. This model is essential for the generation of Bayesian occupancy grids. Our proposal represents a completion of the study done in [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF] that covered narrow FOV range sensors only.

Second, an integer grid-based SLAM method was presented. Our method is event-based i.e., one can tune the required localization and mapping frequency for a desired accuracy. This can be quite advantageous for gaining in the execution time. Moreover, our integer grid-based is suitable for an implementation on low-power and low-consumption embedded platforms. In fact, no floating-point operations are involved; instead integer arithmetic is used.

Finally, we presented a grid-based Global Localization method that has a linear complexity with respect to the pose grid size while standard grid-based Global Localization approaches found in the literature exhibit an exponential complexity. Our Global Localization approach is defined as a mapping problem from sources located in the occupancy grid allowing the use of the integer occupancy grid paradigm introduced by [START_REF] Andriamahefa | Tiana Rakotovao Andriamahefa. Integer Occupancy Grids: a probabilistic multi-sensor fusion framework for embedded perception[END_REF]. Therefore, an integer implementation of the proposed grid-based Global Localization is possible and suitable for embedded systems. Moreover, we demonstrated that our method is highly robust to noisy measurements and occlusions compared to state-of-the-art solutions.

Perspectives

The work presented in the present manuscript can be completed by a list of envisioned perspectives detailed hereafter.

• In this thesis, the range sensors are assumed to have a nearest-target behaviour. Even if this assumption holds for the majority of range sensors, it

Chapter 5. Conclusion and future work directions is not always true. Thus, future work may focus on integrating the effect of multiple targets placed at different ranges on the measurements returned by range sensors.

• In the SLAM proposal, we pointed out the possibility of tuning the frequency of the map update and the pose correction. We showed experimentally how tuning this frequency represents a trade-off between the execution time and the accuracy. A further study may consist in investigating how the algorithm itself could automatically choose the right frequency depending on the pose uncertainty or the map quality.

• In the Global Localization proposal, we presented a solution to the hypothesis generation sensors where the robot is assumed to be static. The hypothesis elimination is not treated. Only range sensors are used with no motion model or motion sensor taken into account. However, in some situations, the hypothesis elimination is essential for determining the unique pose of the robot; for instance, in highly symmetric places. Thus, a completion of our study should take into account the robot motion.

• All the simulations done in this thesis and related to the SLAM and Global Localization proposals were launched using narrow Field-of-View sensors. In fact, in the implementation of these proposals, we rely on the integer occupancy grid implementation used in our laboratory. At the time this work has been performed, this implementation encompassed an integer mapping (raycast) suitable for narrow field(of-view) sensors only. Future work may extend the integer range mapping and the simulations to large field-of-View sensors.

• In the Global Localization proposal, the environment is assumed to be static.

In automotive applications, this is clearly not the case due to the dynamic environment (moving pedestrians and vehicles). Thus, the given map used by the robot for global localization should be updated with the information regarding the moving obstacles.

• Occupancy grids and pose grids are used, in the present thesis, to model the environment and the pose distribution respectively. However, these representations are considered too dense in automotive applications. In fact, they contain too much information and require a large memory workload. A more abstract representation model should be considered as a future perspective, for instance, 2 d -trees.

• In the present thesis, we proposed integer SLAM and Global Localization algorithms, designed specifically for an implementation in embedded platforms, without floating-point arithmetic. However, the experimental results were made on general-purpose desktop processors. A further experimentation consists in implementing these proposals on embedded devices and comparing the performance and the accuracy with the one presented in this manuscript.

Localization and mapping are primordial tasks performed by autonomous cars and allowing them to navigate safely in their surroundings. In order to deal with these tasks, a prerequisite step consists in modeling the environment perceived by the car. A grid-based representation is among the ones used to model these environments. However, the main drawback of using grid-based representations for localization and mapping is the required exponential computational complexity in terms of the grid size. Thus, a parallel computing unit is usually the solution opted to meet the latency imposed by safety standards. Nevertheless, and for cost and power-consumption reasons, autonomous vehicles tend to prefer the use of embedded systems instead of parallel-computing platforms nowadays. In this context, the present PhD thesis deals with the adaptation of grid-based localization and mapping algorithms to be suitable to embedded platforms. Since most of these systems are not equipped with a floating-point unit, we propose an integer grid-based framework for localization and mapping for autonomous cars. First, we propose a linear complexity inverse sensor model for large field-of-view range sensors under the nearest-target hypothesis. Second, we present an integer grid-based Simultaneous Localization And Mapping (SLAM) method. Our method is event-based i.e., one can tune the required localization and mapping frequency for a desired accuracy. This can be quite advantageous for gaining in the execution time. Moreover, our integer grid-based is suitable for an implementation on embedded platforms. Finally, we propose a grid-based Global Localization method that has a linear complexity with respect to the pose grid size while standard grid-based Global Localization approaches found in the literature exhibit an exponential complexity. An integer implementation of our method which is suitable for embedded platforms is also proposed. Moreover, we demonstrate that our method is highly robust to noisy measurements and occlusions compared to state-of-the-art solutions.

La localisation et la cartographie sont des tâches primordiales effectuées par les voitures autonomes et leur permettant de naviguer en toute sécurité dans leur environnement. Pour accomplir ces tâches, une étape préalable consiste à modéliser l'environnement perçu par la voiture. La représentation à base de grilles fait partie des représentations utilisées pour modéliser cet environnement. Cependant, le principal inconvénient de l'utilisation de représentations à base de grilles pour la localisation et la cartographie est la complexité de calcul exponentielle requise en termes de taille de grille. Ainsi, un calcul parallèle est généralement utilisé afin de répondre à la latence imposée par les normes de sécurité. Néanmoins, et pour des raisons de coût et de consommation d'énergie, les véhicules autonomes ont tendance à préférer l'utilisation des systèmes embarqués plutôt que les plates-formes de calcul parallèle. Dans ce contexte, la présente thèse de doctorat traite de l'adaptation d'algorithmes de localisation et de cartographie à base de grilles aux systèmes embarqués. La plupart de ces systèmes n'étant pas équipés d'unité à virgule flottante, nous proposons une implémentation entière de la localisation et la cartographie à base de grilles pour les voitures autonomes. En premier lieu, nous proposons un modèle de capteur inverse à complexité linéaire pour les capteurs à large champ de vision sous l'hypothèse de la cible la plus proche. Deuxièmement, nous présentons une méthode SLAM (localisation et cartographie simultannées) à base de grilles et en nombres entiers. Notre méthode est événementielle, c'est-à-dire que l'on peut régler la fréquence de localisation et/ou de cartographie exigée pour atteindre une précision souhaitée sur la pose estimée. Cela peut être très avantageux pour gagner en temps d'exécution. De plus, notre méthode en nombres entiers est adaptée à une implémentation sur les systèmes embarqués. Enfin, nous proposons une méthode de localisation globale à base de grilles de complexité linéaire en fonction de la taille de la grille de pose (les approches de localisation globale à base de grilles trouvées dans l'état de l'art étant de complexité exponentielle). Une implémentation en nombres entiers de notre méthode est également proposée. De plus, nous démontrons que notre méthode est robuste aux mesures bruyantes et aux occlusions comparée aux solutions de l'état de l'art.

 of a particular set of probabilities when solving the Simultaneous Localization And Mapping problem 58 3.4.1 Index addition . 59 3.4.2 Index additive inversion . 59 3.4.3 Index multiplication . 60 3.4.4 Index division . 61 3.4.5 Index fusion . 62 3.5 From the set of probabilities to the integer SLAM 62 3.5.1 Probability index in U γ . 63 3.5.2 Motion update using integer arithmetic 63 3.5.3 Mapping using integer arithmetic 63 3.5.4 Localization using integer arithmetic 64 3.6 Experiments . 64 3.6.1 Experimental setup . 64 3.6.2 Analysis of the event-based aspect of the integer SLAM . . . 66 3.6.3 Comparison between the execution times of the SLAM computed with integer and with floating point arithmetics 71 3.7 Summary . 71 List of Figures 1.1 Driving automation levels inspired by [syn 2019]. 4 2.1 Example of a driving scene and its corresponding occupancy grid. (FOV: Field-Of-View) . 12 2.2 Sensor model of a nearest-target narrow FOV sensor. 13 2.3 Inverse Sensor model of a nearest-target narrow FOV sensor. 14 2.4 Influence of the grid resolution on the inverse sensor model for s = 0.5 cm (a), s = 0.25 cm (b) and s = 0.1 cm (c). The sensor precision is constant σ = 0.2 cm and the sensor measurement is z = 25 cm. . . 20 2.5 Influence of the sensor precision on the inverse sensor model for σ = 0.1 cm (a), σ = 0.2 cm (b) and σ = 0.3 cm (c). The grid resolution is constant s = 0.3 cm and the sensor measurement is z = 25 cm. . 21 2.6 Influence of both the sensor precision and the grid resolution on the inverse sensor model for σ = 0.2 cm, s = 0.6 cm (a) and σ = 0.3 cm, s = 0.9 cm (b). The sensor measurement is z = 25 cm. 22 2.7 Effect of the obstacle size, its range and angular positions on the sensor model for a large FOV sensor. In each subfigure, the left part illustrates the scene with the obstacles present in the sensor FOV and the right part illustrates the PDF of the sensor model. 27 2.8 Four grid configurations that share the same set of information I (here, I is composed of the distance to the nearest occupied cell, surrounded by a red circle in the sensor FOV). 29 2.9 Representation of Γ s i (d) for i = 16, s i = o 16 and d equals the distance to c 16 (which is also equal to the distance to c 17 and c 18). 30 2.10 Representation of J s i (d) for i = 27, s i = o 27 and d equals the distance to c 48 (which is also equal to the distance to c 47 , c 49 , c 50 , c 51 , c 52 and c 53). 30 2.11 Representation of J s i (d) for i = 48, s i = o 48 and d equals the distance to c 48 (which is also equal to the distance to c 47 , c 49 , c 50 , c 51 , c 52 and c 53). 31 2.12 Effect of the number of sectors N s on the inverse sensor model.

Figure 2 .

 2 12a represents the scene, figure2.12b the associated inverse sensor model when no sectoral decomposition is applied.2.12d, 2.12e and 2.12f represent the inverse sensor model when N s = 1, N s = 3, N s = 5 and N s = 10, respectively. 33 viii List of Figures 2.13 (I): real scene where an obstacle is placed in front of sensor A (with narrow FOV) and sensor B (with large FOV), both sensors having a nearest-target behavior. (II): inverse sensor model for each sensor in its local grid. (III): mono-sensor occupancy grid associated to each sensor and obtained thanks to range mapping. (IV): resulting multisensor occupancy grid obtained thanks to the Bayesian fusion. . . . 35 3.1 Different types of pose grids. 50 3.2 Illustration of the motion update over a 1D pose grid Π. Only the position is estimated; the robot heading (to the right) is assumed to be known. 51 3.3 Illustation of the mapping mechanism from uncertain poses. 52 3.4 Illustration of the localization mechanism. 53 3.5 Event-grid-based SLAM. At t 1 : motion update; at t 2 : mapping; at t 3 : localization, at t 4 : motion update. 54 3.6 Example of a scan in an unmapped zone in the occupancy grid G. . 58 3.7 Environment map with occupied (resp. empty) cells in black (resp.white). Robot trajectory in red dotted line. The units are in cells (each cell having a side of 10 cm). 65 3.8 Average pose standard deviation E(σ) with respect to the localization frequency λ. 67 3.9 Execution time with respect to the localization frequency λ. 67 3.10 Occupancy grid computed when λ = 1 (equivalently ξ = 1) (fig. 3.10a), λ = 3 (fig. 3.10b), λ = 6 (fig. 3.10c), λ = 9 (fig. 3.10d), λ = 15 (fig. 3.10e), ξ = 3 (fig. 3.10f), ξ = 6 (fig. 3.10g), ξ = 9 (fig. 3.10h) and ξ = 15 (fig. 3.10i). 68 3.11 Average mean distance error E(d) with respect to the mapping frequency ξ. 69 3.12 Average pose standard deviation E(σ) with respect to the mapping frequency ξ. 70 3.13 Execution time with respect to the mapping frequency ξ. 70 3.14 Execution time of the integer and float implementations of the gridbased SLAM with respect to different grid sizes (the grid size being 2 2•Depth). 71 4.1 Example of Global Localization with hypothesis generation. 75 4.2 Example of Global Localization with hypothesis elimination. 76 4.3 Example of Global Localization with an erroneous measurement. . . 77 4.4 (a) real scene: a robot located at 1m from a box. (b) the robot knows its pose; it constructs the occupancy map from sensor reading. (c) the robot knows its environment map; the box is the mapping source: it constructs the occupancy grid used by the robot to estimate its position. 81 4.5 Example of active mapping sources, offline mapping sources and dead sources. 83 List of Figures ix 4.6 Example of active mapping sources, offline mapping sources and dead sources. 4.7 Computing α(z) from α(z) in 1D (a), 2D (b) and 3D (c). 4.8 Computing α(z) from α and α s (z). 4.9 Three-dimensional pose occupancy grid representing the position and heading of a robot moving in a 2D space. 4.10 Step (I) represents the OG, the mapping sources and the ground truth. Step (II) represents the local pose occupancy grids created by each of the mapping sources from z 1 . Step (III) represents the mono-measurement mono-source pose occupancy grids created by each of the mapping sources from z 1 . Step (IV) represents the monomeasurement multi-source pose occupancy grid created by fusing the mono-measurement mono-source pose occupancy grids created by each of the mapping sources from z 1 4.11 The upper left (resp. right) figure represents the mono-measurement multi-source pose occupancy grid generated from z 1 (resp. z 2). The process being described in Fig. 4.10. The bottom figure represents the multi-measurement multi-source pose occupancy grid obtained by the fusion of the upper left and right grids. 4.12 Resistance to occlusions: traditional pose grids vs. integer pose occupancy grids. 4.13 (a): floorplan and (b): learned map (all units in cells). Pose 1 (resp.

Figure 1 . 1 :

 11 Figure 1.1: Driving automation levels inspired by [syn 2019].

Figure 2 .

 2 Figure 2.1 illustrates a probabilistic occupancy grid for a driving scene.

Figure 2 . 1 :

 21 Figure 2.1: Example of a driving scene and its corresponding occupancy grid. (FOV: Field-Of-View)

Figure 2 . 2 :

 22 Figure 2.2: Sensor model of a nearest-target narrow FOV sensor.

Figure 2 .

 2 Figure 2.3: Inverse Sensor model of a nearest-target narrow FOV sensor.

Figure 2 .

 2 4 presents the inverse sensor model P (o i |z = 25), ∀i ∈ {1, ..., N }, for three different cell sizes, namely s = 0.5 cm, s = 0.25 cm and s = 0.1 cm.

 (a) s = 0.5 cm and σ = 0.2 cm. (b) s = 0.25 cm and σ = 0.2 cm. (c) s = 0.1 cm and σ = 0.2 cm.

Figure 2 . 4 :

 24 Figure 2.4: Influence of the grid resolution on the inverse sensor model for s = 0.5 cm (a), s = 0.25 cm (b) and s = 0.1 cm (c). The sensor precision is constant σ = 0.2 cm and the sensor measurement is z = 25 cm.

 (a) s = 0.3 cm and σ = 0.1 cm. (b) s = 0.3 cm and σ = 0.2 cm. (c) s = 0.3 cm and σ = 0.3 cm.

Figure 2 . 5 :

 25 Figure 2.5: Influence of the sensor precision on the inverse sensor model for σ = 0.1 cm (a), σ = 0.2 cm (b) and σ = 0.3 cm (c). The grid resolution is constant s = 0.3 cm and the sensor measurement is z = 25 cm.

 (a) s = 0.6 cm and σ = 0.2 cm. (b) s = 0.9 cm and σ = 0.3 cm.

Figure 2 . 6 :

 26 Figure 2.6: Influence of both the sensor precision and the grid resolution on the inverse sensor model for σ = 0.2 cm, s = 0.6 cm (a) and σ = 0.3 cm, s = 0.9 cm (b). The sensor measurement is z = 25 cm.

Figure 2 . 7 :

 27 Figure 2.7: Effect of the obstacle size, its range and angular positions on the sensor model for a large FOV sensor. In each subfigure, the left part illustrates the scene with the obstacles present in the sensor FOV and the right part illustrates the PDF of the sensor model.

Figure 2 .

 2 Figure 2.8: Four grid configurations that share the same set of information I (here, I is composed of the distance to the nearest occupied cell, surrounded by a red circle in the sensor FOV).

 Figure 2.9 illustrates an example of Γ s i (d).

Figure 2 . 9 :

 29 Figure 2.9: Representation of Γ s i (d) for i = 16, s i = o 16 and d equals the distance to c 16 (which is also equal to the distance to c 17 and c 18).

Figure 2 .

 2 Figure 2.10: Representation of J s i (d) for i = 27, s i = o 27 and d equals the distance to c 48 (which is also equal to the distance to c 47 , c 49 , c 50 , c 51 , c 52 and c 53).

Figure 2 .

 2 Figure 2.11: Representation of J s i (d) for i = 48, s i = o 48 and d equals the distance to c 48 (which is also equal to the distance to c 47 , c 49 , c 50 , c 51 , c 52 and c 53).

Chapter 2 .

 2 Overview on OG for environment perception2.5.3.2 Effect of the sectoral decomposition on the occupancy evaluationWe tested the inverse sensor model based on the sectoral decomposition for different values of N s . The sensor model used is the one presented in[Dia 2018b]. Results are shown in figure2.12.

Figure 2 .

 2 Figure 2.12: Effect of the number of sectors N s on the inverse sensor model. Figure 2.12a represents the scene, figure 2.12b the associated inverse sensor model when no sectoral decomposition is applied. Figures 2.12c,2.12d, 2.12e and 2.12f represent the inverse sensor model when N s = 1, N s = 3, N s = 5 and N s = 10, respectively.

 Figure 2.12: Effect of the number of sectors N s on the inverse sensor model. Figure 2.12a represents the scene, figure 2.12b the associated inverse sensor model when no sectoral decomposition is applied. Figures 2.12c,2.12d, 2.12e and 2.12f represent the inverse sensor model when N s = 1, N s = 3, N s = 5 and N s = 10, respectively.

Figure 2 .

 2 Figure 2.13: (I): real scene where an obstacle is placed in front of sensor A (with narrow FOV) and sensor B (with large FOV), both sensors having a nearest-target behavior. (II): inverse sensor model for each sensor in its local grid. (III): monosensor occupancy grid associated to each sensor and obtained thanks to range mapping. (IV): resulting multi-sensor occupancy grid obtained thanks to the Bayesian fusion.

3. 1

 1 Introduction to SLAM . 44 3.2 Related work . 45 3.2.1 SLAM based on the Kalman filter and on its variants 46 3.2.2 SLAM based on the Particle filter 47 3.2.3 Optimization-based SLAM approaches 48 3.2.4 Hybrid SLAM approaches . 48 3.2.5 Difference between the literature and our contribution 49 3.3 Formulation of the Grid-Based Simultaneous Localization And Mapping problem . 50 3.3.1 Motion update mechanism . 52 3.3.2 Mapping mechanism . 54 3.3.3 Localization mechanism . 55 3.4 Choice of a particular set of probabilities when solving the Simultaneous Localization And Mapping problem 58 3.4.1 Index addition . 59 3.4.2 Index additive inversion . 59 3.4.3 Index multiplication . 60 3.4.4 Index division . 61 3.4.5 Index fusion . 62 3.5 From the set of probabilities to the integer SLAM 62 3.5.1 Probability index in U γ . 63 3.5.2 Motion update using integer arithmetic 63 3.5.3 Mapping using integer arithmetic . 63 3.5.4 Localization using integer arithmetic 64 3.6 Experiments . 64 3.6.1 Experimental setup . 64 3.6.2 Analysis of the event-based aspect of the integer SLAM 66 3.6.3 Comparison between the execution times of the SLAM computed with integer and with floating point arithmetics 71 3.7 Summary . 71

Figure 3 . 1 :

 31 Figure 3.1: Different types of pose grids.

Figure 3 .

 3 Figure 3.2a illustrates the pose distribution at time t -1 denoted by P t-1 (x).The robot is 100% sure about its position in x 3 = 30. At time t, a measurement u t = 10 cm is received. When integrating this measurement, the pose distribution is shifted by 10 cm in the robot direction, but an error is added (figure 3.2b). This error translates the motion sensor uncertainty. The mechanism allowing this update is explained in detail in section 3.3.1;

Figure 3 . 2 :

 32 Figure 3.2: Illustration of the motion update over a 1D pose grid Π. Only the position is estimated; the robot heading (to the right) is assumed to be known.

Figure 3 . 3 :

 33 Figure 3.3: Illustation of the mapping mechanism from uncertain poses.

Figure 3 . 4 :

 34 Figure 3.4: Illustration of the localization mechanism.

Figure 3 . 6 :

 36 Figure 3.6: Example of a scan in an unmapped zone in the occupancy grid G.

 23) Finally, by substituting equation (3.23) in equation (3.21), one gets:

Figure 3 . 7 :

 37 Figure 3.7: Environment map with occupied (resp. empty) cells in black (resp. white). Robot trajectory in red dotted line. The units are in cells (each cell having a side of 10 cm).

Figure 3 . 8 :

 38 Figure 3.8: Average pose standard deviation E(σ) with respect to the localization frequency λ.

Figure 3 . 9 :

 39 Figure 3.9: Execution time with respect to the localization frequency λ.

Figure 3 .

 3 Figure 3.10: Occupancy grid computed when λ = 1 (equivalently ξ = 1) (fig. 3.10a), λ = 3 (fig. 3.10b), λ = 6 (fig. 3.10c), λ = 9 (fig. 3.10d), λ = 15 (fig. 3.10e), ξ = 3 (fig. 3.10f), ξ = 6 (fig. 3.10g), ξ = 9 (fig. 3.10h) and ξ = 15 (fig. 3.10i).

Figure 3 .

 3 Figure 3.11: Average mean distance error E(d) with respect to the mapping frequency ξ.

Figure 3 .

 3 Figure 3.12: Average pose standard deviation E(σ) with respect to the mapping frequency ξ.

Figure 3 .

 3 Figure 3.13: Execution time with respect to the mapping frequency ξ.

Figure 4 .

 4 Figure 4.1: Example of Global Localization with hypothesis generation.

Figure 4 . 2 :

 42 Figure 4.2: Example of Global Localization with hypothesis elimination.

Figure 4 .

 4 Figure 4.3: Example of Global Localization with an erroneous measurement.

Figure 4 . 4 :

 44 Figure 4.4: (a) real scene: a robot located at 1m from a box. (b) the robot knows its pose; it constructs the occupancy map from sensor reading. (c) the robot knows its environment map; the box is the mapping source: it constructs the occupancy grid used by the robot to estimate its position.

Figure 4 .

 4 Figure 4.5: Example of active mapping sources, offline mapping sources and dead sources.

Figure 4 .

 4 Figure 4.6: Example of active mapping sources, offline mapping sources and dead sources.

Definition

Definition 4 .

 4 3.4. A dead source s d in OG satisfies:

Figure 4 .

 4 Figure 4.10: Step (I) represents the OG, the mapping sources and the ground truth. Step (II) represents the local pose occupancy grids created by each of the mapping sources from z 1 . Step (III) represents the mono-measurement mono-source pose occupancy grids created by each of the mapping sources from z 1 . Step (IV) represents the mono-measurement multi-source pose occupancy grid created by fusing the mono-measurement mono-source pose occupancy grids created by each of the mapping sources from z 1 .

Figure 4 .

 4 Figure 4.11: The upper left (resp. right) figure represents the mono-measurement multi-source pose occupancy grid generated from z 1 (resp. z 2). The process being described in Fig. 4.10. The bottom figure represents the multi-measurement multisource pose occupancy grid obtained by the fusion of the upper left and right grids.

4. 4 . 4 . 4

 444 Integer grid-based Global Localization 91 Integer grid-based Global Localization

Figure 4 .

 4 Figure 4.12: Resistance to occlusions: traditional pose grids vs. integer pose occupancy grids.

Figure 4 .

 4 Figure 4.13: (a): floorplan and (b): learned map (all units in cells). Pose 1 (resp. 2, 3): the dot (resp. square, diamond) is the robot position with its heading equal to 30 • (resp. 0 • , 90 •).

Figure 4 .

 4 Figure 4.14: Influence of the number of observations on our method success rate. Left: real floorplan. Right: learned map.

Figure 4 .

 4 Figure 4.15: Influence of the sensor noise on the pose estimates (floorplan case): success rate vs. sensor noise (left). For successful estimates: position error mean value vs. sensor noise (centre), orientation error mean value vs. sensor noise (right).

Figure 4 .

 4 Figure 4.16: Influence of the sensor noise on the pose estimates (learned map case): success rate vs. sensor noise (left). For successful estimates: position error mean value vs. sensor noise (centre), orientation error mean value vs. sensor noise (right).

Figure 4 .

 4 Figure 4.17: Influence of contamination (uniform noise) on the pose estimates (floorplan case): success rate vs. noise level (left). For successful estimates: Position mean error vs. noise level (centre), orientation mean error vs. uniform noise (right).

Figure 4 .

 4 Figure 4.18: Influence of contamination (uniform noise) on the pose estimates (learned map case): success rate vs. uniform noise (left). For successful estimates: Position mean error vs. uniform noise (centre), orientation mean error vs. uniform noise (right).

Figure 4 .

 4 Figure 4.19: Unmodelled obstacles. (a): 55 unmodelled small obstacles. (b): large unmodelled obstacle.

Figure 4 .

 4 Figure 4.20: Influence of small unmodelled obstacles on Pose 1 estimate (floorplan case). Success rate vs. nb. of unmodelled obstacles left). Position mean error vs. nb. of unmodelled obstacles (centre). Orientation mean error vs. nb. of unmodelled obstacles (right).

Figure 4 .

 4 Figure 4.21: Influence of small unmodelled obstacles on Pose 1 estimate (learned map case). Success rate vs. nb. of unmodelled obstacles left). Position mean error vs. nb. of unmodelled obstacles (centre). Orientation mean error vs. nb. of unmodelled obstacles (right).

Figure 4 .

 4 Figure 4.22: Influence of a large unmodelled obstacle on Pose 1 estimate (floorplan case). Success rate vs. distance to the unmodelled obstacle (left). Position mean error vs. distance to the unmodelled obstacle (centre). Orientation mean error vs. distance to the unmodelled obstacle (right).

Figure 4 .

 4 Figure 4.23: Influence of a large unmodelled obstacle on Pose 1 estimate (learned map case). Success rate vs. distance to the unmodelled obstacle (left). Position mean error vs. distance to the unmodelled obstacle (centre). Orientation mean error vs. distance to the unmodelled obstacle (right).

5. 1

 1 Conclusion . 101 5.2 Perspectives . 101

 Introduction to SLAM . 44 3.2 Related work . 45 3.2.1 SLAM based on the Kalman filter and on its variants 46 3.2.2 SLAM based on the Particle filter 47 3.2.3 Optimization-based SLAM approaches 48 3.2.4 Hybrid SLAM approaches . 48 3.2.5 Difference between the literature and our contribution 49 3.3 Formulation of the Grid-Based Simultaneous Localization And Mapping problem . 50 3.3.1 Motion update mechanism . 52 3.3.2 Mapping mechanism . 54 3.3.3 Localization mechanism . 55 3.4 Choice

	3 Integer framework for solving the grid-based Simultaneous Local-	
	ization And Mapping problem	43
	3.1	

 .16 Influence of the sensor noise on the pose estimates (learned map case): success rate vs. sensor noise (left). For successful estimates: position error mean value vs. sensor noise (centre), orientation error mean value vs. sensor noise (right). 4.17 Influence of contamination (uniform noise) on the pose estimates (floorplan case): success rate vs. noise level (left). For successful estimates: Position mean error vs. noise level (centre), orientation mean error vs. uniform noise (right). 4.18 Influence of contamination (uniform noise) on the pose estimates (learned map case): success rate vs. uniform noise (left). For successful estimates: Position mean error vs. uniform noise (centre), orientation mean error vs. uniform noise (right). Influence of small unmodelled obstacles on Pose 1 estimate (floorplan case). Success rate vs. nb. of unmodelled obstacles left). Position mean error vs. nb. of unmodelled obstacles (centre). Orientation mean error vs. nb. of unmodelled obstacles (right). 99 4.21 Influence of small unmodelled obstacles on Pose 1 estimate (learned map case). Success rate vs. nb. of unmodelled obstacles left). Position mean error vs. nb. of unmodelled obstacles (centre). Orientation mean error vs. nb. of unmodelled obstacles (right). 99 4.22 Influence of a large unmodelled obstacle on Pose 1 estimate (floorplan case). Success rate vs. distance to the unmodelled obstacle (left). Position mean error vs. distance to the unmodelled obstacle (centre). Orientation mean error vs. distance to the unmodelled obstacle (right). 99 4.23 Influence of a large unmodelled obstacle on Pose 1 estimate (learned map case). Success rate vs. distance to the unmodelled obstacle (left). Position mean error vs. distance to the unmodelled obstacle (centre). Orientation mean error vs. distance to the unmodelled obstacle (right).100 Introduction 1.1 Context . 3 1.1.1 Mapping . 4 1.1.2 Localization . 5 1.1.3 Simultaneous localization and mapping 6 1.2 Problematic . 6 1.3 Contributions . 7 1.4 Manuscript organisation . 8

	x	List of Figures
	4.20	

• , 90 •). 4.14 Influence of the number of observations on our method success rate. Left: real floorplan. Right: learned map. 4.15 Influence of the sensor noise on the pose estimates (floorplan case): success rate vs. sensor noise (left). For successful estimates: position error mean value vs. sensor noise (centre), orientation error mean value vs. sensor noise (right). 44.19 Unmodelled obstacles. (a): 55 unmodelled small obstacles. (b): large unmodelled obstacle. .

 2.1 Introduction to occupancy grids . 10 2.1.1 Grid definition . 11 2.1.2 Occupancy Grid definition . 11 2.2 Sensor model . 12

2.3 Inverse sensor model . 13 2.3.1 Definition of the inverse sensor model 13 2.3.2 Existing approaches for computing the inverse sensor model 14 2.3.3 Summary . 18 2.4 Link between SM and ISM . 19 2.4.1 Impact of the grid resolution and of the sensor precision on the occupancy estimation . 19 2.4.2 Choice of the grid resolution associated to a sensor precision for reaching a desired maximum probability of occupancy 23 2.4.3 Conclusion . 26 2.5 Linear complexity ISM for nearest-target large FOV sensor 26 2.5.1 Information influencing the sensor model in the case of a nearesttarget large FOV sensor . 26 2.5.2 Formulation of an inverse sensor model for a nearest-target large FOV sensor . 28 2.5.3 Sectoral decomposition . 29 2.6 From ISM to OG . 32 2.6.1 Local vs. global occupancy grids . 33 2.6.2 Mono-sensor occupancy grid computation 34 2.6.3 Multi-sensor occupancy grid computation 34 2.7 Integer occupancy grid framework 37 2.7.1 Set of probabilities . 37 2.7.2 From the set of probabilities to integer occupancy grids 39 2.7.3 Conclusion . 41 2.8 Summary . 41

Table 2

 2

	.1: Comparison of the three reviewed approaches for computing the inverse
	sensor model. N denotes the number of cells in the grid.

Table 2 .

 2 2: Influence of having the same ratio s/σ on the maximum probability of occupancy of the inverse sensor model P max .

	s/σ	P

max for σ = 0.1 cm P max for σ = 0.2 cm P max for σ = 0.

 Lemma 2.4.1. Consider a uniform 1D grid G having N cells of size s. Let z be a measurement returned from a narrow FOV nearest-target sensor and σ the standard deviation of the sensor model as defined in 2.11. Consider the Bayesian inverse sensor model formulation presented in eq. 2.12. The maximum probability of occupancy P max of the inverse sensor model takes place in cell c m for:

This is to differentiate them from the analytic and learning approaches that also try to reduce the complexity burden of the inverse sensor model computation.

This was implicitly assumed in all the techniques presented in the previous section

On a computing platform, these operations are performed using floating point numbers.

Between two consecutive experiments, we make sure to flush all the considered data-caches using the CFLUSH instruction from the ISA of our Intel processor.

(a) (b)

Acknowledgments

Je tiens à remercier, et en premier lieu, Dieu pour toute la force et les bénédictions qu'il m'a apportées. J'aimerais, ensuite, remercier ma famille, précisément mon père Khodor et ma mère Taghrid ainsi que mes soeurs Nana et Touta, pour m'avoir toujours soutenu malgré toute la distance qui nous sépare. Ma famille a été ma première source de motivation et a toujours été à l'écoute de mes hauts et bas pendant cette thèse.

J'aimerais exprimer ma gratitude à mes deux directeurs de thèse Suzanne Lesecq et Ioannis Parissis pour leurs précieux conseils et soutien tout au long de cette thèse. Suzanne, merci pour toute l'énergie positive que tu propageais dans le laboratoire et qui me motivait à surpasser tout sorte de problème. Merci pour les jours et nuits que tu as passés pour que cette thèse aboutisse aux meilleures attentes possibles. Ioannis, merci pour toutes les réunions fructueuses qu'on a passées ensemble et toutes tes remarques pertinentes.

(+,0 and -represent good, neutral, and weak, respectively (some information are taken from [START_REF] Fox | Bayesian filtering for location estimation[END_REF]).

Finally, [Moreno 2016] combined the Markov Chain Monte Carlo algorithm with the Differential Evolution method to develop a Global Localization optimization-based filter.

Summary and motivation

Table 4.1 summarizes the performance of each of the methods presented in section 4.2 above: grid-based estimators are the most efficient when it comes to robustness, the ability to deal with occlusions, noise and sensor variety. However, their main drawback is the computational complexity, which is exponential for standard techniques and quadratic when the nearest-target hypothesis is assumed (see section 4.2.3).

We decrease this computational burden by proposing a low computational (i.e. of linear complexity) grid-based method for Global Localization. We also present an integer implementation of this method, making it suitable for resource-constrained platforms.

Linear complexity grid-based Global Localization method

Main concept

We provide the following example to explain the main concepts in which our Global Localization approach are rooted.

Example Figure 4.4(a), depicts a 1-dimension scene with a robot placed at 1m away from an obstacle (here a box). The robot is equipped with a range sensor that provides measurement to the nearest target in its environment, with a narrow Field-of-View.

Suppose first that the robot knows its true pose but ignores the map of its environment. The range sensor senses an obstacle at 1.1m from the robot. Using the grid-based Bayesian mapping technique presented in chapter 2, the robot can build

Publications

The present thesis has lead to the following publications and patents.

5.

A.1 Example of a 1D motion update

Assume that the robot pose is defined over a 1D space. Therefore, only its position over an axe is considered. In this case, the grid pose Π is 1D and each cell represents a possible robot position. Assume that the motion model is defined through a normal distribution:

where σ is its standard deviation and û is the position displacement of the robot. In equation 3.9, û = ∆ * x = x * -x; therefore it comes:

where D * = {X; X = x * -x for x ∈ Π}.

Then by defining the variables x and U as follows: x = x * -u and U = û -u, equation A.2 becomes:

where

Notice that this function represents the normal distribution N (0, σ). Equation A.3 can be written as:

From this equation, one can notice that P t (x * |u) can be approximated by f * P t-1 (x) (where * represents the convolution product). In fact, based on the 3 sigma rule, the values of U within three standard deviations account for about 99.7%. Therefore, instead of summing over all values of U , one can consider the values in D * u as an approximation.

This example shows how to assimilate the problem of pose prediction in 1D to a convolution problem. An extension to a higher pose dimension follows directly from the same reasoning.

A.2 Proof 1

Let m, n ∈ {0, ..., γ}. We want to prove that m

Proof From equation 3.34, we have:

Using the floor operator property: a ≤ a, ∀a ∈ R, it comes:

Similarly, using equations 3.29, 3.34 and the floor operator property, it comes:

It follows from equations A.6 and A.7 that:

On the other hand, we have:

Using the fact that n ≤ γ and that γ -n ≤ γ, it comes :

Finally, from equation A.8 and A.10, it follows:

Proof From the definition of ⊗ (3.30), we know that:

It follows that:

A.4 Lemma 1

Let E and F be two probabilistic events. We prove that:

Proof From equations A.12 and 3.34:

By applying the floor operator property (a ≤ a), we get:

From equation A.12 it follows:

Finally, from equation 3.52, one can deduce that

and therefore:

A.5 Lemma 2

Let E and F be two probabilistic events. We prove that:

Proof The proof follows directly from equation A.12. In fact:

Therefore, if p I(E) + p I(F) ≤ 1, it follows from equation A.21 that:

which is equivalent to

A.6 Proof 3

We want to prove that x∈Π I * (x|z t , IG) ≤ γ where:

Proof For x ∈ Π, we have from equation A.24

But from lemma 1 in section A.4, one can deduce that:

Therefore, from equation A.25 w A.26 it follows:

Since the pose distribution sums to 1 over Π, we have: A.7 Proof 4

For x ∈ Π, we want to prove that I * (x|z t , IG) ≤ η * for:

Proof

The term η * can be written as follows:

Since I * (x * |z t , IG) is a positive integer (it takes a value in {0, ..., γ}), then:

It follows finally from equations A.32 and A.33 that:

A.8 Proof 5

We want to prove that

Proof

From lemma 1 in section A.4, we know that

Since the pose distribution sums to 1 over Π, we have:

On the other hand, since P (o i |z t , x) ≤ 1, it comes that:

Therefore from equation A.36 it follows:

Finally from lemma 2 in section A.5, one can deduce that:

A.9 Proof 6

We want to prove that x∈Π

Proof

From lemma 1 in section A.4, we know that

Since the pose distribution sums to 1 over Π, we have:

On the other hand, since p(u|∆ * x) ≤ 1, it comes that:

Therefore from equation A.42 it follows:

Finally from lemma 2 in section A.5, one can deduce that:

A.10. Index range sensor model

A.10 Index range sensor model

In this section, we show how to define the index range sensor model from the float sensor model defined in section 3.6 by:

where z is the sensor measurement, d is the distance to the nearest obstacle and σ is the standard deviation.

Since the sensor model is represented by a Gaussian distribution, 99.73% of the data is represented in the interval A = [d -3σ, d + 3σ]. We subdivides the interval A into T uniform parts, and A becomes:

where

for 1 < i < T . Then we compute for i ∈ {1, ..., T }, the value of p(A i |d) from equation A.47 and we store it in P (A):

This table constitutes 99.73% of the non-zero probabilities of the sensor model. From equation 3.51, we compute the index probability of A denoted by I(A) as follows:

Note that in order to be able to compute the index probability, p(A i |d) for i ∈ {1, ..., T } has to be normalized first.

The table I(A) represents a discretized version of the index range sensor model. Therefore, we can finally define I(z|d) for z ∈ R, as follows:

A.11 Index motion sensor model

In this section, we show how to define the index motion sensor model given in section 3.6 by:

where u = (u X , u Y) is the displacement in X and Y returned by the sensor, ∆ = (∆ X , ∆ Y) is the true displacement, and σ X , σ Y are the standard deviations in X and Y .

Similarly to the previous section, since the sensor model is represented by a Gaussian distribution, 99.73% of the data is represented in the interval

We subdivides the intervals A X and A Y into T X (resp. T Y) uniform parts. It comes:

and

where

Then we compute for i ∈ {1, ..., T X }, j ∈ {1, ..., T Y }, the value of p(A X i , A Y j |∆) from equation A.52 and we store it in P (A):

This table constitutes 99.73% of the non-zero probabilities of the sensor model. From equation 3.51, we compute the index probability of A denoted by I(A) as follows:

A.12. Second set of probabilities for the Integer SLAM 113

Note that in order to be able to compute the index probability, p(A X i , A Y j |∆) for i ∈ {1, ..., T X }, j ∈ {1, ..., T Y } have to be normalized first.

The table I(A) represents a discretized version of the index motion sensor model. Therefore, we can finally define

A.12 Second set of probabilities for the Integer SLAM

The set of probability U β presented in this section requires less memory storage than U γ which was presented in section 3.4. However, the error of approximation generated by U β can be much higher than the one generated by using U γ . Since the SLAM accuracy is important for safety reasons, we preferred to use U γ in chapter 3.

Hereafter we define U β .

Let β ∈ N * and ε ∈]0, 1[. Denote by U β a finite set of probabilities defined as follows:

where, p n is defined as follows:

As in section 3.4, we redefine the operators used in the SLAM over the indexes of the elements of the set U β , namely the addition, additive inversion, multiplication, division and fusion.

Hereafter, we present the definition of these operators over the indexes of the elements of the set U β .

A.12.1 Index addition

Let p m and p n be two elements of the set U β . The index addition operator over U β , denoted by ⊕, is defined as follows:

⊕ : {0, ..., β} × {0, ..., β} → {0, ..., β}

In all other cases (i.e., if m = 0 and n = 0), the index addition is obtained by approximating p m + p n . In fact, p m + p n gives the following:

In order to find the index k ∈ {0, ..., β}, such that k = m ⊕ n, the following equation is solved for k:

its solution is:

However, since k is not necessarily an integer, we use as we did in section 3.4 for the multiplication and division, an approximation (the floor value of the solution in this case). As a consequence, k is given by:

Since the index addition operator cannot be represented by a simple operation over the indexes we store in matrix ADD of dimension β(β + 1)/2. This matrix contains the result of m ⊕ n which equals n if m = 0, m if n = 0 and finally as defined in equation (A.64) if m, n ∈ {1..., γ}, . Therefore, computing ⊕ requires a simple call from ADD: m ⊕ n = ADD(m, n) (A.65)

A.12.2 Index additive inversion

Let p m be an element of U β . The index additive inversion operator over U β , denoted by 1 , is defined as follows:

In other cases (i.e., for m ∈ {1, ..., β}), 1 -p m can be computed as follows:

In order to find the index k ∈ {0, ..., β}, such that 1 m = k, the following equation is solved for k:

its solution is:

However, since k is not necessarily an integer, we use an approximation (the floor value of the solution in this case). As a consequence, k is given by:

Since the additive operator cannot be represented by a simple operation over the indexes we store in a matrix ADIN V of dimension β. This matrix contains the result of 1 m which is β if m = 0, and the result in equation (A.70) otherwise . Therefore, computing 1 m requires a simple call from ADIN V :

A.12.3 Index multiplication

Let p m and p n be two elements of U β . The index multiplication operator over U β , denoted by ⊗, is defined as follows:

In all other cases, i.e, if m, n ∈ {1, ..., β}, p m • p n is computed with:

In order to find the index k ∈ {0, ..., γ}, such such that p k = p m •p n , the equation m+n-β) is solved for k, and its solution is:

It is trivial to show that k ≤ β. However, k can be negative, meaning that 0 < p k < p 1 = (1 -ε) β-1 . In this case, p k is approximated by 0 (therefore k is also approximated by 0). The error of this approximation is bounded by (1-ε) β-1 . Therefore, m ⊗ n can be expressed by a simple addition and substraction of integers. For m, n ∈ {0, ..., β}, m ⊗ n is defined as follows: In other cases, i.e., if m ∈ {1, ..., γ}, p m /p n is expressed by: .77) In order to find the index k ∈ {0, ..., β}, such that p k = p m /p n , one has to solve for k:

(1 -ε) β-k = (1 -ε) β-(β+m-n) (A.78) whose solution is:

It is trivial to show that 0 ≤ k ≤ β. Therefore, m n can be expressed by a simple addition and substraction of integers. For m, n ∈ {0, ..., β}, m n is defined as follows:

Then, from (A.65), (A.71), (A.75), and (A.80), the index fusion can be evaluated from simple additions and subtractions of integers and calls to ADD and ADIN V .