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Titre: Méthodes topologiques et apprentissage statistique pour l'actimétrie du piéton à partir de données de mouvement Mots clés: Apprentissage statistique, Analyse topologique des donnéees, Reconnaissance d'activité, Séries temporelles multivariées, Unité de mesure inertielle Résumé: Cette thèse s'intéresse à la détection de mouvements spécifiques à partir du dispositif ActiMyo développé par la société Sysnav, système de capteurs inertiels miniatures bascoût pouvant se porté à la cheville et au poignet. En particulier, une approche d'apprentissage statistique supervisé vise à détecter les foulées dans les enregistrements cheville. Ce premier travail, combiné avec un algorithme breveté par l'entreprise Sysnav, permet de reconstruire la trajectoire du piéton. Cette trajectoire est ensuite utilisée dans une nouvelle méthode d'apprentissage supervisé pour la reconnais-sance d'activité qui est une précieuse information notamment dans un contexte médical. Ces deux algorithmes proposent une approche innovante basée sur l'alignement des signaux inertiels et l'extraction d'intervalles candidats qui sont ensuite classés par l'algorithme de Gradient Boosting Trees. Le manuscrit présente également une architecture de réseaux de neurones combinant des channels de convolution et d'analyse topologique des données pour la détection de mouvements caractéristiques de la maladie de Parkinson tels que les tremblements et crises de dyskinésie.

Title: Topological Data Analysis and Statistical Learning for measuring pedestrian activities from inertial sensors Keywords: Machine Learning, Topological data analysis, Activity recognition, Multivariate time series, Inertial measurement unit Abstract: This thesis focuses on the detection of specific movements using ActiMyo, a device developed by the company Sysnav. This system is composed by low-cost miniature inertial sensors that can be worn on the ankle and wrist. In particular, a supervised statistical learning approach aims to detect strides in ankle recordings. This first work, combined with an algorithm patented by Sysnav, allows to compute the trajectory of the pedestrian. This trajectory is then used in a new supervised learn-ing method for the activity recognition, which is valuable information, especially in a medical context. These two algorithms offer an innovative approach based on the alignment of inertial signals and the extraction of candidate intervals which are then classified by the Gradient Boosting Trees algorithm. This thesis also presents a neural network architecture combining convolutional channels and topological data analysis for the detection of movements representative of Parkinson's disease such as tremors and dyskinesia crises. Ce premier chapitre vise à contextualiser les enjeux majeurs de cette thèse et de présenter une vue d'ensemble des algorithmes existants qui ont été intiallement développés pour répondre à ces problématiques. En Section I.1 nous décrivons les Unités de Mesure Inertielle (IMUs) et leur utilisation pour la reconstruction de trajectoire et des applications médicales. En particulier, nous présentons en Section I.2 le dispositif ActiMyo développé par Sysnav, destiné à être porté à la chevillet ou au poignet. En Section I.5 et Section I.3 nous décrivons les variables calculées par Sysnav visant à caractériser l'évolution de la santé des patients pendant les études cliniques pour deux maladies : Parkinson et la Dystrophie Musculaire de Duchenne (DMD). Les variables cliniques DMD sont basées sur la reconstruction de trajectoire du dispositif positionné à la cheville. En Section I.4 nous introduisons les notions de reconstruction de trajectoire pour un piéton équipé d'un IMU posé directement sur la chaussure. Cette approche a été adaptée au dispositif ActiMyo qui est positionné à la cheville. Que ce soit pour les variables cliniques DMD ou Parkinson, Sysnav a développé des algorithmes montrant plusieurs limitations pour lesquelles nous apporteront des solutions au long de cette thèse. En Section I.6 nous décrivons brièvement notre travail, divisé en trois applications utilisant du Machine Learning : la détection de foulées, la reconnaissance d'activité et la détection d'évènements parkinsoniens.

I Introduction (English)

Contexte général et enjeux majeurs de la thèse

Dans cette section nous présentons deux types d'application utilisant des Systèmes de Mesure Inertiels (IMUs). En Section I.1.1 nous décrivons les avantages d'utiliser les IMUs pour la reconstruction de trajectoire, répondant notamment à plusieurs limitations de la Géolocalisation et Navigation par un Système de Satellites (GNSS) qui apparaissent dans les bâtiments par exemple. Ces dispositifs sont également de plus en plus utilisés dans un contexte médical pour mesurer l'évolution de la santé des patients à domicile. De part leur petite taille, il est en effet facile de les intégrer dans la vie de tous les jours.

1.1 Unité de Mesure Inertielle pour la reconstruction de trajectoire L'émergence de la Géolocalisation et Navigation par un Système de Satellites (GNSS) dans les années 2000 a changé la perception du grand public de la géolocalisation. Alors que les systèmes GNNS sont beaucoup utilisés, dans de nombreuses situations ils ne parviennent pas à fournir une position précise à cause d'une mauvaise réception de signal (tunnels, parking sous-terrain, en forêt, à l'intérieur des bâtiments etc.). Cependant être capable de géolocaliser avec précision peut s'avérer vital pour les travailleurs isolés, pompiers ou des applications militaires.

Dans ce contexte les Unités de Mesure Inertielle (IMUs) peuvent être utilisés dans un Système de Navigation Inertielle (INS). L'avantage majeur de ces dispositifs est qu'ils ne dépendent d'aucune infrastructure externe une fois que le point d'initialisation est fixé. Ceci les rend particulièrement robustes aux perturbations extérieures ou sabotages, à l'inverse des architectures basées sur la GNSS. C'est pour cette raison que les INS sont largement utilisés dans des applications où une précise géolocalisation est critique comme pour les avions, bateaux, sousmarins, missile, fusées, satellites. Ils ont été de plus en plus développés pour ces applications industrielles et militaires au début des années 1950. La trajectoire est estimée par "navigation à l'estime" : un signal IMU (accélération et vitesse angulaire) est intégré afin de calculer la position actuelle à partir d'une position initiale connue. Pour ce genre d'application, cette méthode demande d'utiliser des capteurs à haute précision qui sont très volumineux et très cher. Il est impossible d'en équiper un piéton. Dans ce cas, pour estimer la position avec des capteurs inertiels légers et peu coûteux comme ceux des téléphones portables par exemple, des méthodes différentes doivent être implémentées.

1.2 Unité de Mesure Inertielle pour des applications médicales D'autres travaux à partir de données inertielles sont également entrepris dans un contexte médical. L'utilisation des INS en ingénierie biomédicale s'est rapidement popularisée pour l'analyse de mouvement. Les IMUs sont discrets et simples à porter à l'aide d'une sangle, les rendant faciles à intégrer dans diverses technologies portatives destinées aux applications de santé et bien-être à domicile. En effet ils sont capables de mesurer et de suivre les activités pour permettre ensuite d'évaluer la qualité de vie d'un individu. Ils peuvent être utilisés par exemple pour la détection de chute et de symptômes de patients souffrant de troubles du mouvement. Bien que la médecine promeut ce genre d'innovation, les études cliniques qui évaluent l'efficacité de nouveaux traitements sont réalisées dans des environnement très contrôlés. Jusqu'à 2019, aucun système n'avait été approuvé par l'Agence Européenne du Médicament (EMA) comme outil pour mesurer l'évolution de la santé des patients.

Dans ce contexte Sysnav a développé un système de capteurs magnétoinertiels destinés à être porté à la cheville et au poignet. Ce dispositif a pour but de permettre le calcul de variables de trajectoire pour des patients souffrant de troubles du mouvement. Par exemple il est pertinent d'étudier la trajectoire de la cheville pour des maladies provoquant une perte progressive de la marche.

2 ActiMyo: système de capteurs magnéto-inertiels L'ActiMyo est composé d'un accéléromètre et d'un gyromètre enregistrant les données (respectivement γ et ω) dans son propre référentiel (qu'on appelle référentiel "body") avec une fréquence de 130 Hz et une autonomie sur batterie de 16 heures. L'accéléromètre mesure à la fois l'accélération produite par le mouvement (a) mais mesure également en continue l'accélération de la gravité terrestre. Les capteurs inertiels commencent à enregistrer dès que la dispositif est retiré de son boîtier. Lorsqu'il est remis en place, les données sont transférées sur un serveur cloud auquel nous avons accès. 

IMU à composants liés

Le système de mesure inertiel utilisé dans ce dispositif appelé "à composants liés" est décrit en [START_REF] Savage | Stapdown analytics[END_REF]. Dans ce type de IMU, l'accéléromètre et le gyromètre sont fixés de manière rigide sur une plate-forme solide, contrairement à une plate-forme gyrostabilisée où l'orientation de l'accéléromètre est stabilisée dans le référentiel inertiel. Ceci a une implication majeure : l'attitude n'est pas donnée directement par le gyroscope mais doit être intégrée à partir de la vitesse angulaire. Cela est fortement corrélé aux problèmes d'attitude et de position et représente une la majeure difficulté de la navigation inertielle. Cependant, de nos jours, les systèmes de navigation inertielle à composants liés suscitent un intérêt particulier. En effet ils sont plus faciles à construire mécaniquement, sont plus petits et plus légers. On les retrouve par exemple dans l'ensemble des smartphones du marché.

Calibration des capteurs inertiels

Les capteurs inertiels triaxiaux de l'ActiMyo sont conçus pour émettre un signal proportionnel à la quantité d'intérêt (vitesse angulaire pour le gyromètre et accélération pour l'accéléromètre). Cependant, leurs modèles doivent être calibrés individuellement avant de les utiliser comme mesures d'accélération ou de vitesse de rotation. De plus, la combinaison des trois axes n'est jamais totalement orthogonale en raison de la précision de l'assemblage mécanique. L'étalonnage peut également être influencé par des facteurs environnementaux comme la température et ces effets doivent également être pris en compte. Sysnav a développé un module interne qui calcule une erreur de compensation de calibration (facteur d'échelle, biais, non orthogonalité, etc.) pour chaque système fabriqué. ActiMyo a été conçu pour être facile à utiliser pour les patients. Il nécessite peu de manipulation et peut être connecté directement à la station d'accueil afin que les données collectées chaque jour soient automatiquement envoyées à un serveur dédié pour une analyse hors ligne.

Variables cliniques pour la Dystrophie Musculaire de Duchenne

Dans cette section, nous présentons l'impacte de la maladie dans la vie quotidienne pour des patients souffrant de la dystrophie musculaire de Duchenne (Section I.5.1) ainsi que les variables "officielles"qui sont calculées à l'hôpital pour mesurer les symptômes pendant les études cliniques (Section I.3.2). Cependant, ces tests effectués à l'hôpital présentent de nombreux inconvénients ue Sysnav vise à surpasser avec l'ActiMyo (Section I.3.3).

Présentation de la maladie

la dystrophie Musculaire de Duchenne est une maladie génétique qui provoque une perte progressive de la fonctionnalité des fibres musculaires ce qui affecte la mobilité. Les dernières années ont vu une augmentation de l'intérêt des sociétés pharmaceutiques pour le lancement de recherche et développement dans de nouveaux traitements. On peut penser que de nouvelles thérapies permettront de ralentir la progression de la maladie afin de maintenir des bonnes conditions de vie. Les études cliniques ciblent des patients myopathes qui sont suffisamment âgés pour être évalués de manière fiable et qui ont encore suffisamment de fibre musculaires pour démontrer une bénéfice sur la durée usuelle d'un essai clinique (autour d'un an).

Tests en hôpital

Durant les dernières années, des dizaines de milliards de dollars ont été investis pour créer des nouvelles molécules dans des laboratoires afin de développer des traitements innovants. Mais un aspect n'a jamais changé : les méthodes de mesures pour évaluer l'efficacité du traitement (variables cliniques). À ce jour, les variables cliniques consistent à chronométrer le temps minimal du patient pour monter marches (test des marches), le temps minimal du patient pour courir 10 mètres (test des 10 mètres de course) ou la distance maximale parcourue sur 6 minutes de marche. Le problème principal de ces variables cliniques est qu'elles peuvent être biaisées par la motivation du patient. En effet les résultats peuvent être impactés par la condition physique du jour sans pour autant être corrélés avec l'état de santé général. De plus, les erreurs humaines peuvent apparaître dans la prise de mesure. Par exemple, le test des 4 marches est parfois effectué en moins de deux secondes et la mesure prise sur le même test par deux docteurs peut varier de manière significative. Enfin, ces tests sont usants et parfois compliqués à réaliser pour des patients qui ne vivent pas proche de l'hôpital.

Variables à domicile avec l'ActiMyo

Il y a un fossé entre l'investissement mis dans les traitements comparés au besoin de définir des nouvelles variables cliniques plus robustes. Le but de l'ActiMyo est de calculer des variables cliniques corrélés avec les tests précédemment mentionnés mais dans un environnement non contrôlé : c'est à dire à domicile, à l'école, sur n'importe quel lieu du quotidien. Il est important de calculer des variables qui traduisent la véritable activité du patient sur plusieurs mois, et non pas sur des tests ponctuels réalisés en hôpital. Les variables proposées correspondent à la longueur des foulées, la vitesse des foulées et la distance des foulées [START_REF] Denis | Assessment of lower limbs in fshd: The actimyo as a new outcome for home-monitorin[END_REF][START_REF] Moraux | A movement monitor based on magneto-inertial sensors for non-ambulant patients with duchenne muscular dystrophy: A pilot study in controlled environment[END_REF]. Afin de relier ces résultats aux tests des 4 marches et des 10 mètres de course, nous avons besoin de Reconnaissance l'Activité (AR).

Pour la longueur des foulée calculée à part d'IMU, la navigation à l'estime pour le piéton a montré qu'on pouvant atteindre des bonnes précisions dans de nombreuses applications industrielles. Dans ce qui suit, nous allons introduire les bases de la navigation à l'estime pour le piéton avec un IMU positionné sur la chaussure ainsi que l'algorithme innovant développé par Sysnav qui adapte la méthode utilisée pour un IMU sur la chaussure.

Navigation à l'estime pour le piéton avec un IMU sur la chaussure

Le principe de la navigation inertielle peut être résumée de manière très simple : estimer l'évolution de la position, l'orientation et la vitesse d'un objet dans un référentiel inertiel. Cette approche repose essentiellement sur l'intégration des accélérations et des vitesses angulaires pour estimer la position suivante au cours du temps. Contrairement aux systèmes dépendant d'infrastructure extérieure comme le map matching, Wi-Fi [START_REF] Chen | Signal strength based indoor geolocation[END_REF], l'identification par radiofréquence [START_REF] Renaudin | Uwb and mems based indoor navigation[END_REF], ou la technologie à bande ultralarge [START_REF] Swzyslo | Hybrid localization using uwb and inertial sensors[END_REF], Les IMUs peuvent être déployés rapidement et facilement (Figure 3). Cependant, tous les IMUs à composants liés sont soumis à une dérive et les intégrations accumulent rapidement des erreurs importantes. Pour résoudre ce problème, la technique zero velocity update technique (ZUPT) [START_REF] Abdulrahim | Understanding the performance of zero velocity updates in mems-based pedestrian navigation[END_REF]5,[START_REF] Foxlin | Pedestrian tracking with shoe-mounted inertial sensors[END_REF][START_REF] Bamberg | Gait analysis using a shoe-integrated wireless sensor system[END_REF] est souvent utilisée. Le but de cette méthode est de détecter quand le ppied est complètement à plat par rapport au sol. En Section I.4.1 et Section I.4.2 nous introduisons deux principes pour détecter ces instants : les méthodes basées sur des valeurs seuil prédéfinies et celles utilisant de l'apprentissage automatique. À partir de cette détection, l'intégration des données inertielles se fait uniquement lorsque le pied est en mouvement en l'air (Figure 4) au lieu d'être réalisée sur l'ensemble de la durée de l'enregistrement. La procédure est décrite en Section I.4.3. Cependant, cette techniques n'est pas directement ultilisable avec 

Détection des instants de vitesse nulle basée sur des valeurs seuil

Plusieurs études dans la littérature ont proposé d'optiiser des valeurs seuil pour les données inertielles (accélérations proche de 1 g et petites valeurs de vitesses angulaires) [START_REF] Castaneda | An improved shoe-mounted inertial navigation system[END_REF][START_REF] Carrera | A real-time indoor tracking system by fusing inertial sensor, radio signal and floor plan[END_REF][START_REF] Norrdine | Step detection for zupt-aided inertial pedestrian navigation system using foot-mounted permanent magnet[END_REF]. Un limitation bien connue de ces approches est qu'elles ne parviennent pas à être efficaces face à la grande variété de déplacements et mouvements. Il est vrai que ces approches fonctionnent bien dans des situations de marche classique mais échouent pour des pas atypiques comme dans des escaliers ou des piétinements. Dans [START_REF] Tedesco | Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults[END_REF], plusieurs systèmes inertiels portés à la cheville ou poignet ont été testées pour détecter les foulées et la distance parcourue pendant la marche, dans des escaliers et durant des activités du quotidien en intéreieur. Tous les dispositifs ont montré une baisse de performance lorsque la marche était ralentie, en ratant un nombre important de foulées. Les mauvaises performances pour le calcul des distances ont aussi été démontrées pour des marches lentes ou des escaliers. Les approches récentes visent à améliorer la détection des foulées en adaptant les valeurs seuil vis à vis des accélérations observées [START_REF] Ren | A novel pedestrian navigation algorithm for a foot-mounted inertial-sensor-based system[END_REF][START_REF] Walder | Context-adaptive algorithms to improve indoor positioning with inertial sensors[END_REF] ou de la fréquence du signal [START_REF] Tian | A novel zero velocity interval detection algorithm for self-contained pedestrian navigation system with inertial sensors[END_REF]. Cependant, modéliser une détection de foulées précise durant les phases d'escaliers ou la course reste un challenge [START_REF] Rantakokko | Scenario-based evaluations of high-accuracy personal positioning systems[END_REF].

Apprentissage automatique pour la détection des vitesses nulles

Dans le but de répondre aux limitations des approches basées sur des valeurs seuil, des récents travaux utilisent l'apprentissage automatique dans des détections de foulées avec une approche de fenêtre glissante [START_REF] Park | Actions for military drill using foot-mounted imu[END_REF]6]. Ces méthodes consistent à construire une fonction de prédiction qui fournit une sortie binaire pour chaque échantillon de l'enregistrement : 1 si l'échantillon correspond à un instant de vitesse nulle, 0 sinon. La principal inconvénient de cette approche est que ces fonctions présentent un bon taux de détection mais avec beaucoup de fauux positifs lorsque le dispositif est en mouvement. Cela peut engendrer des erreurs importantes dans la reconstruction de la trajectoire. Pour maintenir des performances acceptables, les algorithmes de la littérature ajuste la sortie de la fonction de prédiction, par exemple en éliminant les instants de vitesse nulle prédits sans grande confiance (valeur seuil optimisée). Ce genre de compensation montre des bons résultats quand on sait que le piéton est en train de marche mais n'est pas robuste à la grande variété des activités du quotidien. En effet plusieurs foulées sont détectées à tort lorsque le pied bouge alors que la personne est assise ou fait du vélo etc. L'étude présentée en [START_REF] Tedesco | Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults[END_REF] montre que l'ensemble des dispositifs testés pour la détection des foulées comportent beaucoup de faux positifs pendant des activités basiques effectuées à domicile comme la lecture, les jeux de cartes etc.

Reconstruction de trajectoire à partir des instants de vitesse nulle

Dans le but de calculer la trajectoire, la stratégie qui consiste à intégrer les accélérations et vitesses angulaires enregistrées par les capteurs inertiels dérivent rapidement. La méthode de détection des instants de vitesse nulle limite les erreurs en nécessitant d'intégrer uniquement pendant les foulées détectées, en faisant l'hypothèse que la vitesse nulle apparaît au début et à la fin de la foulée. La détection des instants de vitesse nulle est incluse dans un filtre de Kalman étendu [START_REF] Ribeiro | Kalman and extended kalman filters: Concept, derivation and properties[END_REF] avec une approche de navigation à l'estime (Figure 5). Ce filtre permet de réduire significativement les erreurs au cours du temps. Le filtre peut par exemple inclure un état à 6 degrés de liberté pour la vitesse et l'attitude. D'autres états peuvent être ajoutés comme la position, le biais du capteur etc. Il permet aussi de mesurer la confiance des états estimés.

La méthode de détection des instants de vitesse nulle (ZUPT) améliore la qualité de reconstruction de trajectoire mais repose sur une contrainte assez forte : le placement du dispositif sur la chaussure. Cet emplacement est très sensible

Reconnaissance d'activité (AR)

Ce travail vise à être appliqué pour calculer des statistiques pertinentes durant des études cliniques, reliées aux différents tests déjà en place et présentés en Section I.3.2 (test des 4 marches, 10 mètres de course, 6 minutes de marche). Durant les dix dernières années, le reconnaissance d'activité a constitué un sujet de recherche important dans un contexte médical. Alors que les solutions à base d'analyse d'image sont très intrusives [START_REF] Poppe | A survey on vision-based human action recognitiont[END_REF], l'émergence des accéléromètres et gyromètres dans les objets connectés du quotidien (smartphones) permet d'effectuer des analyse de données inertielles pour la reconnaissance d'activité. La plupart des articles de la littérature utilise des algorithmes à fenêtre glissante combinée avec des chaînes de Markov [START_REF] Van Laerhoven | Adl recognition based on the combination of rfid and accelerometer sensing[END_REF] ou de l'apprentissage automatique [START_REF] Mannini | Machine learning methods for classifying human physical activity from on-body accelerometers[END_REF][START_REF] Kulic | Exercise motion classification from large-scale wearable sensor data using convolutional neural networks[END_REF][START_REF] San | Deep convolutional neural networks on multichannel time series for human activity recognition[END_REF]. Cependant, ces méthodes sont généralement non robustes aix phases de transition. En effet, elles montrent souvent des erreurs au début ou à la fin des activités, quand la fenêtre superpose la fin d'une activité et le début de la nouvelle. Ces algorithmes montrent aussi des mauvaises performances lorsque la taille de la fenêtre est trop petite et ne contient pas assez d'information. De plus, ils ne sont pas adaptés à la détection des foulées car dans le quotidien on peut changer rapidement et régulièrement de types de foulée (escaliers avec des plateforme par exemple). Le travail réalisé dans cette thèse utilise la trajectoire reconstruite des foulées détectées, information précieuse, afin de reconnaître l'activité. Comme les utilisateurs peuvent avoir des âges et physiques différents, nous n'appliquons pas des techniques basées sur des valeurs seuil de la longueur ou vitesse de la foulée. Nous préférons construire un algorithme d'apprentissage automatique. D'autres travaux traitant des données inertielles sont appliqués dans un contexte médical. Par exemple dans [START_REF] Ali | Machine learning and similarity network approaches to support automatic classification of parkinson's diseases using accelerometer-based gait analysis[END_REF], un dispositif porté à la chaussure est utilisé pour analyser la démarche et détecter automatiquement la maladie de Parkinson en utilisant des algorithmes d'apprentissage automatique. Cependant leur étude présente plusieurs limitations : elle est basée sur un petit jeu de données qui a été construit dans un environnement contrôlé. Les utilisateurs marchent 10 mètres quatre fois à un rythme confortable et en ligne droite sans obstacle. La segmentation est donnée par une approche valeur seuil sur le gyromètre et des techniques classiques de traitement du signal (moyenne, variance, maximum, minimum). Cette approche ne serait robuste pour la détection de foulées dans des enregistrement à domicile, ils ont d'ailleurs admis que le modèle avait des difficultés à généraliser sur d'autres jeux de données. élimination en ne gardant uniquement les phases avec des mouvements suffisament importants mais n'étant pas associés à des déplacements (marche, course etc.).

Cette approche a été testée pendant des enregistrements effectués en hôpital, où les patients doivent réaliser des actions particulières pour la mesure du score UPDRS. Les algorithmes ont montré des résultats encourageants dans ce genre d'environnement contrôlé mais ne parviennent pas à généraliser suur des enregistrements à domicile face à la grande variété de mouvements. En effet, une comparaison des détections peut être faite à partir des enregistrements de volontaires, non atteints par la maladie, qui ont accepté de porté le dispositif. Ils ont souvent le même âge, les conjoint(e)s par exemple et servent de patient "contrôle" pour les étude. Nous avons pu observer beaucoup de faux positifs dans la détection des évènements parkinsoniens.

Contributions générales de la thèse

Dans la section précédente, nous avons décrit les algorithmes développés par Sysnav pour la reconstruction de trajectoire et la détection des évènements parkinsoniens (respectivement en Section I.4.4 et Section I.5.3). Nous avons montré plusieurs limitations que nous visons à résoudre dans le travail de cette thèse avec des algorithmes d'apprentissage statistique supervisé. En Section I.6.1 nous introduisons les concepts de l'apprentissage supervisé et comment l'utiliser aux données enregistrées par l'ActiMyo pour la tâche de détection des foulées (Section I.6.2 and Section I.6.3), activity recognition in Section I.6.4 et la détection des évènements parkinsoniens en Section I.6.5. Ces travaux sont basés sur des algorithmes innovants dont nous présentons les principales idées dans ce qui suit. Considérons un vecteur aléatoire (X, Y ) à valeurs dans R p × Y dont la distribution de probabilité P X,Y est inconnue. Les algorithmes d'apprentissage supervisé vise à estimer le lien entre les covariables X = (X 1 , . . . , X u , . . . , X p ) (qui correspondent aux données inertielles des intervalles dans notre cas) et une variable à prédire Y (évènements parkinsoniens par exemple). L'estimation de la fonction de prédiction f définie sur R p et à valeurs dans Y repoose sur un jeu de données D n = {(X 1 , Y 1 ), . . . , (X i , Y i ), . . . , (X n , Y n )} de n couples indépendants et identiquement distribués suivant la distribution P X,Y . Un estimateur f de f permet de prédire une nouvelle valeur Y n+1 à partir d'une nouvelle observation X n+1 .

En pratique X i correspond aux données du gyromètre et accéléromètre de l'intervalle i (fourni par la fenêtre glissante ou l'extraction d'un intervalle candidat). Les algorithmes d'apprentissage supervisés nécessitent que pour tout i, X i soit à valeurs dans R p avec p un entier fixé. Une approche par fenêtre glissante permet d'extraire des intervalles à taille fixe mais l'approche innovante d'extraction d'intervalles candidats n'assure pas d'obtenir une taille constante. Pour répondre à cette problématique, on peut calculer des variables depuis les données inertielles X i (comme la moyenne, la variance etc.). Cette procédure est appelée features engineering. Au final, cela permet de calculer Z i à valeurs dans R d quel que soit la taille de l'intervalle extrait. Nous observons alors un couple (Z, Y ) à valeurs dans R d × Y où d correspond au nombre de features calculées. Les algorithmes d'apprentissage statistique supervisé peuvent alors être utilisés quelle que soit la méthode d'extraction d'intervalles.

Extraction d'intervalles candidats basée sur le contact au sol

Le dispositif ActiMyo doit être positionné à la cheville ou au poignet, comme illustré en Figure 11. Dans cet emplacement par défaut, les capteurs enregistrent les données inertielles dans le référentiel défini par un axe Z aligné avec la jambe et l'axe X aligné avec le pied. Cependant nous avons observé que le système pouvait être placé à l'envers et pouvait tourner autour de la cheville au cours de l'enregistrement. Typiquement, en Figure 7, l'axe Y est aligné avec la jambe (accélérations proches de -g quand le pied est au sol). C'est pourquoi à ce stade nous n'avons aucune information de la direction des différents axes des données inertielles. Pour répondre à ce problème en Chapitre III, les normes des signaux sont utilisée. Nous avons observé que les foulées produisent un pic dans la norme des accélérations quand le pied entre en contact avec le sol. Puis le début et la fin de l'intervalle sont définis par des minima locaux de la norme du gyromètre autour des pics d'accélération. En effet, quand le pied entre en contact avec le sol, les vitesses angulaires de la cheville sont plus faibles que quand le pied est en phase de balancement. Cependant cette approche extrait également des intervalles qui ne correspondent pas à des foulées quand par exemple l'utilisateur est en train de faire du vélo. The but est alors de sélectionner parmi les intervalles extraits ceux qui sont réellement des foulées. Nous appliquons une méthode d'apprentissage statistique supervisé pour répondre à ce problème grâce à une base de donnéees que nous avons préalablement construites.

La procédure de features engineering repose sur le calcul d'une rotation appliquée sur les données inertielles afin de travailler dans un référentiel commun entre les enregistrements. Cette étape clef de notre algorithme est basée sur un ensemble de modèles géométriques à trois dimensions des vitesses angulaires calculés depuis la base de données. Ensuite le balancement du pied vers l'avant, qui intervient juste avant le contact avec le sol, est étudié. Il fournit des précieuses informations pour la fonction de prédiction calculé à partir de l'algorithme Gradient Boosting Trees (Section II.2.2).

Ce premier algorithme de détection des foulées montre des résultats encourageants et des améliorations comparé à la méthode existante développée par Sysnav et introduite en Sectioin I.4.4 tout particulièrement pour les foulées atypiques. Cependant, il montre également des limitations lors de pas chassés rapides ou des descentes rapides d'escaliers. De plus, cet algorithme est coûteux en temps de calcul car le nombre de pics d'accélération peuvent être créés par de nombreux mouvements qui ne correspondent pas à des foulées. En conséquence le calcul des features et l'appel de la fonction de prédiction sont effectués de nombreuses fois en parcourant les enregistrement.

Extraction d'intervalles candidats de fouléees basée sur une pseudo-vitesse

En Chapitre IV, l'idée principale repose sur le fait que dans un référentiel inertiel, l'intégration des accélérations pendant une période ∆t est égale à la différence de la vitesse de la cheville (quelques mètres par seconde pour un piéton) ce qui est petit devant l'intégration de la gravité 

1 ∆t t+∆t t γ t (u)du = 1 ∆t t+∆t t a t (u)du + g t = v t (t + ∆t) -v t (t) ∆t + g t ≃ g t ,
où g t est une constante. En supprimant la gravité des données accéléromtètre projetées dans le référentiel terrestre qui est aligné avec la gravité identifiée, nous pouvons calculer une pseudo-vitesse vW qui est une features importante pour détecter le début et la fin des foulées. Cette procédure qui vise à obtenir les données dans un référentiel terrestre, est appelée filtre d'attitude. La quantité de vitesse calculée est appelée pseudo-vitesse vW car ce n'est pas la quantité utilisée dans la reconstruction de trajectoire construite par le filtre de Kalman étendu qui est plus précise. Par contre son calcul est très rapide.

Cet algorithme vise à aligner les capteurs dans un référentiel commun (référentiel terrestre) afin de tirer profit des trois dimension de l'accéléromètre et gyromètre, principe similaire à celui présenté auparavant en Section I.6.2. Cependant, la pseudo-vitesse calculée est plus robuste dans les situations critiques et fournit, par intégration, une pseudo-trajectoire qui apparaît comme une variable clef pour la décision de la fonction Gradient Boosting Trees (Section II.2.2). En effet, cette approche extrait des intervalles qui ne correspondent pas à des foulées quand par exemple l'utilisateur tient le dispositif dans sa main le temps de l'installation. La sélection des foulées réelles parmi les intervalles extraits est fournie par la fonction de prédicion.

Reconnaissance d'activité à partir de la trajectoire reconstruite

Sysnav a développé un algorithme introduit en Section I.4.4 qui permet de calculer la trajectoire pour chaque foulée détectée. Cet algorithme nécessite une estimation précise des débuts et fins des foulées avant d'appliquer l'estimation de la vitesse du système par le modèle de bras de levier. L'estimation de la vitesse est intégrée dans un filtre de Kalman étendu avec l'intégration des accélérations, fournissant la trajectoire reconstruite.

Pendant les études cliniques, la reconnaissance d'activité est une précieuse information pour évaluer la santé des patients souffrant de troubles du mouvement. Nous concentrons notre travail sur trois activités particulières en relation avec les variables cliniques usuelles pour la myopathie : les escaliers, la marche, et la course. Cependant, définir la frontière entre la course et la marche rapide au travers de la trajecctoire est un véritable challenge. En effet, la différence d'âge entre les patients en étude clinique peut être assez grande, et leur démarche très différente. De plus, détecter les escaliers pour des patiients souffrant de myopathie s'avère difficile car ils ont tendance à monter les marches une par une ce qui aboutit à une faible différence d'altitude notamment. C'est pourquoi en Chapitre V nous avons mise en place un algorithme d'apprentissage supervisé pour construire une fonction de classification qui reconnaît l'activité des foulées via leur trajectoire avec un calcul des features basé l'analyse des données fonctionnelles.

Réseau de neurones pour la détection des évènements parkinsoniens

Le Chapitre VI présente une approche de deep-learning innovante et générique pour des problématiques issues de données inertielles. Au travers de ce travail, nous concentrons notre attention sur la détection des tremblements et des crises de dyskinésie, en parallèle de la reconnaissance d'activité. Notre travail est basé sur un réseau multi-channel, utilisant en particulier des réseaux de neurones à convolution et un channel d'analyse topologique des données (TDA) pour le traitement de séries temporelles multivariées. L'analyse topologique des données est un domaine récent qui a émergé de divers travaux de géométrie computationnelle notamment, visant à fournir des méthodes mathématiques, statistiques et algorithmiques bien définies pour exploiter les structures géométriques et topologiques dans les données.

Part I Introduction (English)

This first chapter aims to contextualize the main problems of the thesis and to give an overview of the existing algorithms that have been developed to overtake them. In Section I.1 we describe the Inertial Measurement Units (IMUs) and their use for trajectory reconstruction and healthcare application. In particular we present the ActiMyo device developed by Sysnav in Section I.2, designed to be worn at the wrist and at the ankle. In Section I.5 and Section I.3 we describe the variables computed by Sysnav aiming to characterize the evolution of the health condition of patients during clinical studies for two diseases: Parkinson and Duchenne Muscular Dystrophy (DMD). The DMD clinical outcomes are based on the trajectory reconstruction of the device worn at the ankle. In Section I.4 we introduce the notions of trajectory reconstruction for a pedestrian with shoemounted IMU that have been adapted to the ActiMyo device. Whether for DMD or Parkinson's clinical variables, Sysnav developed algorithms with several limitations that we will try to overtake in this thesis. In Section I.6 we briefly describe the content of our work divided into three machine learning applications: the stride detection, the activity recognition and the Parkinson's event detection.

General context and main issues of the thesis

In this section we present two types of application using Inertial Measurements Units (IMUs). In Section I.1.1 we describe the advantage of using IMUs for trajectory reconstruction which overtakes several limitations of Global Navigation Satellite Systems (GNNS) in indoor positioning as an example. These devices are also increasingly used in a medical context to measure the living conditions of patients at home. Indeed their small size makes them particularly easy to integrate into daily life situations.

Inertial Measurement Unit for Trajectory Reconstruction

The emergence of Global Navigation Satellite System (GNSS) receivers in the 2000s changed the perception of navigation. While they are commonly used in outdoor environments, in many situations they fail to produce accurate localization due to poor reception (e.g., tunnels, indoor parking, forests, inside buildings, etc.). However, reliable localization may be vital in situations where a continuous position estimate is needed to ensure safety, for instance for isolated workers, firefighters or military applications.

In this context, Inertial Measurement Units (IMUs) can be utilized as part of an Inertial Navigation System (INS). The main advantage of these systems is that they do not rely on external references once the initialization point has been given to the INS, which makes them highly robust to external disturbances or sabotage, especially compared to architecture based localization systems, such as the GNSS. For this reason, INS are extensively used in products relying critically on their position estimate such that aircraft, boat, submarines, missile, spaceship, satellites. Being critical for these military and industrial applications, INS have been extensively developed after the beginning of the second half of the 20th century. The trajectory is estimated by dead reckoning technique: an IMU signal (acceleration and rotation speed) is integrated to predict one's current position by using a previously determined position. It is known that for this kind of applications, using classical navigation method requires to use high precision sensors that are too bulky and too expensive to be carried by a pedestrian. To be able to estimate a trajectory with light and low cost inertial sensors such as those used in mobile phones, for example, different methods hast to be implemented.

Inertial Measurement Unit for Healthcare Application

Other works with inertial wearable devices are applied in a medical context. The use of INS in medical engineering has been rapidly spreading for human motion tracking and analysis. IMUs are noninvasive and relatively easy to integrate into a wearable strap, making them appropriate sensors to utilize in a diverse variety of portable technologies aimed at home healthcare and wellness applications since they are capable of assessing and monitoring activities and subsequently enabling the evaluation of an individual's quality of life. They can be used for instance in activity monitors, fall detection and symptoms detection of patient suffering from pathologies associated with movement disorders. Although medicine promotes this kind of innovation, clinical trials that evaluate the effectiveness of new treatment take place in a highly regulated environment. Until 2019, no system has been approved by the European Medicine Agency (EMA) as representative of the physical conditions of the patient and can be used in clinical studies. This topic has thus become a major issue.

In this context Sysnav developed ActiMyo, a system to be worn at the ankle and the wrist, based on magneto-inertial sensors to compute relevant trajectory measures for patients suffering from movement disorders. In particular, for pathologies involving difficulties of walking, it is crucial to precisely analyse the trajectory of the ankle-mounted device.

ActiMyo: magneto-inertial sensors system

Actimyo is composed of one accelerometer and one gyrometer recording data (respectively γ and ω) in its own reference frame (called body reference frame) at 130 Hz with about 16 hours of battery autonomy. The accelerometer is measuring both the linear acceleration due to motion (a) and the acceleration caus ed by gravity (g): γ = a + g. The inertial sensors start recording data when the device is taken from its case. When put back, the recorded data are transferred to a cloud server we have access to. 

Strapdown IMU

The IMU used in this device is a strapdown kind described in [START_REF] Savage | Stapdown analytics[END_REF]. In this kind of IMU, the accelerometer and gyrometer are rigidly attached on a solid platform, in contrast to a gyrostabilized platform where accelerometer orientation is stabilized in the inertial frame. This has one major implication: the attitude is not given by the gyroscope directly, but has to be integrated from the angular velocity. This strongly correlates the problems of attitude and position and one of the reasons for the difficulty of doing inertial navigation. However nowadays, Inertial Navigation Strapdown systems are of particular interest. The majority of IMUs are strapdown montage because they are easier to build mechanically, are smaller and lighter, the best example being the smartphones.

Inertial sensors calibration

The triaxial inertial sensors in ActiMyo are designed to output a signal proportional of the quantity of interest (angular velocity for gyrometer and acceleration for accelerometer). However, their models have to be calibrated individually before using them as measurements of acceleration or rotational velocity. Moreover, the combination of the three axis is never totally orthogonal because of the precision of the mechanical assembly. The calibration can also be influenced by environmental factors such as the temperature, this effects also have to be taken into account. Sysnav has developed an intern module that computes one unique calibration compensating errors (scale factor, biais, nonorthogonality etc.) for each manufactured system. ActiMyo has been designed to be easy to use for patients. It requires little manipulation and can be connected directly to the docking station so that the data collected each day is automatically sent to a dedicated server for offline analysis.

Clinical outcomes for Duchenne Muscular Dystrophy

In this section, we present the effects on patients life, suffering from Duchenne muscular dystrophy (Section I.3.1) and the "official" variables calculated at hospital for measuring symptoms during clinical trials (see Section I.3.2). However, these hospital tests have several drawbacks that Sysnav wants to overtake with the ActiMyo device (see Section I.3.3).

Presentation of the disease

Duchenne muscular dystrophy (DMD) is a genetic disorder that results in a progressive loss of functional muscle fibers and weakness affecting mobility. The past several years have seen increased interest by biopharmaceutical companies in conducting research and development into novel treatment agents for DMD. There is hope that new therapies will slow disease progression and maintain quality of life. The clinical trials target DMD patients who are old enough to be assessed reliably and still have sufficient muscle fibers available for therapeutics to demonstrate a measurable benefit over the typical 1-year clinical trial duration.

Hospital tests

Over the last 50 years, tens of billions of dollars have been invested to bring new molecules from the laboratory for develop the most innovative drugs. But one aspect has never changed: how to judge the effectiveness of treatments, by variables called "endpoint". The existing measured variables are the time taken by the patient to climb 4 steps (4-stairs test), the time for running 10 meters (10 meters run test) or the distance traveled when the patient is asked to walk for 6 minutes around two cones in the hallway of a hospital (6 minutes walk test). The main problem is these clinical outcome measures can be biased by the motivation of the patient. The results can indeed be impacted by the fitness condition of the day without being correlated with patient health. In addition, human errors may appear in the measurement. For instance, the 4-stairs test can be performed in less than two seconds and the measures taken by two different doctors can vary consistently. Finally it is tiring and sometimes complicated for patients to regularly go to the hospital.

Home variables with ActiMyo

There is a gap between the investment in the therapies compared to effort for designing new endpoints to judge the efficacy of treatments in clinical trials. The goal of ActiMyo is to compute new outcome measures correlated with the previous mentioned tests in uncontrolled environments: at home, at school, playing outside or resting inside etc. It is important to compute outcomes that describe the actual daily activity during months compared to punctual measures performed at hospital. The proposed variables are aiming at the motor function domain and include the stride length, stride velocity and distance walked [START_REF] Denis | Assessment of lower limbs in fshd: The actimyo as a new outcome for home-monitorin[END_REF][START_REF] Moraux | A movement monitor based on magneto-inertial sensors for non-ambulant patients with duchenne muscular dystrophy: A pilot study in controlled environment[END_REF]. In order to connect these results to 4-stairs test or 10 meters run test, Activity Recognition (AR) must be applied.

For stride length estimation with IMU, Pedestrian Dead Reckoning (PDR) has been shown to yield positioning accuracy adequate for many end applications. In the following we will introduce the basics of PDR algorithm with shoe-mounted IMU and the innovative Sysnav algorithm that adapted the technique for an anklemounted device.

Introduction to PDR with shoe-mounted IMU

The problem of inertial navigation can be summarized in a very simple way: to estimate the evolution of the position, orientation and speed of an object it is attached to, with respect to another reference frame. This approach mainly relies on integrating the linear acceleration and the angular velocity data to yield position updates over time. Unlike infrastructure-dependent localization systems such as map matching, Wi-Fi [START_REF] Chen | Signal strength based indoor geolocation[END_REF], radio frequency identification [START_REF] Renaudin | Uwb and mems based indoor navigation[END_REF], or ultrawideband [START_REF] Swzyslo | Hybrid localization using uwb and inertial sensors[END_REF], body-mounted IMUs are lightweight and can be rapidly and easily deployed (see Figure 13).

However, all strapdown IMUs are subject to drift, and the integrations rapidly accumulate large errors. To overcome this issue, the zero velocity update technique (ZUPT) [START_REF] Abdulrahim | Understanding the performance of zero velocity updates in mems-based pedestrian navigation[END_REF]5,[START_REF] Foxlin | Pedestrian tracking with shoe-mounted inertial sensors[END_REF][START_REF] Bamberg | Gait analysis using a shoe-integrated wireless sensor system[END_REF] is traditionally used. The goal of this method is to detect when the foot is flat on the ground and stationary relative to the surface. In Section I.4.1 and Section I.4.2 we introduce two kinds of detection: respectively threshold-based and with machine learning. Knowing these time moments, integration of the inertial data is required only during the intervals between footfalls (see Figure 14) instead of along an entire trajectory. The procedure is described in Section I.4.3. However, this technique is not directly usable to the ActiMyo device as it is worn on the ankle and not on the foot. Sysnav develop a new inspired ZUPT approach presented in Section I.4.4 that presented several limitations. Finally in Section I.4.5 we described how to take advantage of the ankle reconstructed trajectory in a medical activity recognition application.

Threshold-based Zero Velocity Update Detection

Several studies in the literature have proposed to tune thresholds on the inertial data (linear velocity close to one g and small values of the angular velocity) [START_REF] Castaneda | An improved shoe-mounted inertial navigation system[END_REF][START_REF] Carrera | A real-time indoor tracking system by fusing inertial sensor, radio signal and floor plan[END_REF][START_REF] Norrdine | Step detection for zupt-aided inertial pedestrian navigation system using foot-mounted permanent magnet[END_REF]. A known limitation of these fixed-thresholds-based detectors is they fail to perform reliably across a variety of gait motions. These methods show good results for classical gait, but fail for atypical strides such as stairs and small steps. In [START_REF] Tedesco | Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults[END_REF], several inertial devices worn at the ankle or wrist have been tested for estimating steps and travelled distance during walking, stairs, and simulated household activities. Every tracker showed a decreasing accuracy with slower walking speed, which resulted in a significant under-counting of steps. Poor performance in travelled distance estimation was also evident during walking at low speeds and climbing up/down stairs. Recent approaches aim to improve detection by implementing adaptive techniques that are dependent on velocity [START_REF] Ren | A novel pedestrian navigation algorithm for a foot-mounted inertial-sensor-based system[END_REF][START_REF] Walder | Context-adaptive algorithms to improve indoor positioning with inertial sensors[END_REF] or gait frequency [START_REF] Tian | A novel zero velocity interval detection algorithm for self-contained pedestrian navigation system with inertial sensors[END_REF]. However, modeling zero-velocity detection during motions such as stair climbing and crawling, while maintaining accurate detection during walking and running, is fundamentally challenging [START_REF] Rantakokko | Scenario-based evaluations of high-accuracy personal positioning systems[END_REF].

unimodal wearable sensors or even audio sensors. However, most papers were restrained either to a controlled environment, the characterization of parkinsonian patients [START_REF] Tarvainen | Analysis of surface emg signal morphology in parkinson's disease[END_REF], the detection of freezing of gait periods [START_REF] Tröster | Gait, wrist, and sensors : Detecting freezing of gait in parkinson's disease from wrist movement[END_REF][START_REF] Möller | Predictors of freezing in parkinson's disease : A survey of 6620 patients[END_REF], the detection of tremors [4,[START_REF] Lemoyne | Wireless accelerometer configuration for monitoring parkinson's disease hand tremor[END_REF] and bradykinesia [START_REF] Gu | Automatic classification of early parkinson's disease with multi-modal mr imaging[END_REF], the physical activity of patient [START_REF] Vingerhoets | An ambulatory system to quantify bradykinesia and tremor in parkinson's disease[END_REF], the limited detection of dyskinesia crises in specific life activities [START_REF] Gielen | Ambulatory motor assessment in parkinson's disease[END_REF], or to a correlation with the UPDRS [START_REF] Brokaw | Continuous assessment of levodopa response in parkinson's disease using wearable motion sensors[END_REF] score given by doctors. Others tried the characterization of ON-OFF states, while detecting dyskinesia based on a thresholding of the spectrum [START_REF] Gielen | Automatic assessment of levodopainduced dyskinesias in daily life by neural networks[END_REF]. Nonetheless, some papers [START_REF] Romagosa | Dyskinesia and motor state detection in parkinson's disease patients with a single movement sensor[END_REF] implemented a way of doing automatic detection in everyday life environments by learning patterns. To the best of our knowledge, none did really extend their detection out of controlled areas, to test their robustness and generalization ability. It also seems like none did claim to provide an accurate detection of the beginning and the end of a dyskinesia crisis.

Automatic detection of ankle tremors and dyskinesia with Ac-tiMyo

The system ActiMyo has been worn at the ankle by 14 patients suffering from Parkinson disease during a proof of concept in 2014 and a clinical study in 2017, both dealing with the Levodopa drug. These recordings have been used to develop an automatic detection of two parkinsonian events: tremors and dyskinsia. First, the algorithm described in Section I.4.4 is used to detect when a stride occurs in the recording. It allows to exclude intervals during which the patient is walking. Motionless intervals are also excluded as they could not correspond to these two events. Tremors have been characterised by repeated movements in frequencies: a peak in a tuned range of frequencies has to be detected in one of the axes of the accelerometer and gyrometer. Then dyskinesia are detected in the ankle proceeding by elimination keeping only phases with a long and strong enough move but which is not associated to walking or tremors. When the ankle moves, it usually implies lifting the foot before returning it rapidly to the floor, eg when walking. So looking at the acceleration and angular velocity at the ankle, for most regular moves, a peak in acceleration is regularly noticeable. So if the amplitude remains large enough during the studied interval, a candidate dyskinesia is considered. If there is a tremor or normal looking leg movements in the phase, then the phase is discarded as not a dyskinesia. The remaining phases are the dyskinesia output.

This approach has been tested during hospital recordings where they are asked to realize specific actions to attest for their UPDRS score. It provides promising result in this kind of controlled environment but fail to perform reliably across a variety of gait motions during home recordings. Indeed, an available comparison was provided by healthy volunteers, who were merely partners of those patients that accepted to wear the device as well. All of them were matching age, and could thus serve as controls for the study. We observed a a lot of false symptom detections.

General Contributions and Thesis Outline

In the previous sections we described the algorithms developed by Sysnav for trajectory reconstruction and Parkinson's envent detection (respectively Section I.4.4 and Section I.5.3). They had several limitations we want to overtake in the work of this thesis with supervised statistical learning algorithms. In Section I.6.1 we introduce the concepts of supervised statistical learning and how to adapt this approach to the data recorded by ActiMyo for stride detection (see Section I.6.2 and Section I.6.3), activity recognition in Section I.6.4 and Parkinson's event detection in Section I.6.5. These works are based on innovative algorithms whose we present the main ideas in the following.

Supervised Learning for stride detection and Parkinson's events

Due to the complexity of our application framework, the problem in our study is difficult to describe with simple deterministic models, and thus we adopted a machine learning approach. This first section aims to introduce the general concepts of statistical supervised learning for times series. These methods are applied to ActiMyo recordings that contains inertial data: acceleration and angular velocity in three axes. Traditionally, for event detection in time series, the sliding window approach is used to select intervals that are classified by the prediction function previously built with supervised learning. We adopt this technique for tremor and dyskinesia detection and develop an innovative approach for stride detection based on candidate intervals extraction. The principle is to select relevant intervals that may correspond to stride and select among them the true strides by machine learning. Indeed, many intervals are wrongly selected when the wearer is moving its ankle but not walking or even when the device is not worn at the ankle (in a pocket, backpack). This intervals exaction allows to reduce the number of classifications by the prediction function and reduce the statistical complexity.

Let's consider a random vector (X, Y ) taking values in R p × Y whose the probability distribution P X,Y is unknown. Supervised learning algorithms aim to estimate the link between the covariates X = (X 1 , . . . , X u , . . . , X p ) (corresponding to the inertial data of an interval in our case) and a variable to be predicted Y (Parkinson's event for example). The estimation of the prediction function f defined on R p and taking values in Y relies on a dataset D n = {(X 1 , Y 1 ), . . . , (X i , Y i ), . . . , (X n , Y n )} of n independent and identically distributed couples following the P X,Y distribution. One estimator f of f allows to predict a new output value Y n+1 knowing an new observation X n+1 .

In practice X i corresponds to the gyrometer and accelerometer data of the interval i (given by sliding window or candidate intervals extraction). The supervised learning algorithms require that for all i, X i takes its values in R p with p a fixed integer. A sliding window approach allows us to extract fixed-size interval but the innovative candidate stride extraction does not ensure the same size for all intervals. To overtake this issue, one can compute relevant variables from the inertial data X i (such as the mean, standard deviation etc.). This procedure is called the features engineering process. Finally it allows to compute Z i taking values in R d regardless of the interval size. We observe now a couple (Z, Y ) taking values in R d × Y where d corresponds to the number of computed features. The supervised learning algorithms can thus be adapted to any interval extraction approach.

Candidate stride interval extraction based on ground contact

The ActiMyo system should be worn at the ankle, as illustrated in the Figure 11. In this default placement, the sensors record the inertial data in the reference frame defined by the Z axis aligned with the leg and the X axis aligned with the foot. However we observed that the device may be worn upside down and may turn around the ankle during the recording. Typically, in Figure 7, the Y axis is aligned with the leg (acceleration close to -g when the foot is on the ground). Thus at this stage, we have no information about the direction of the different axes of inertial data. To overtake this issue in Chapter III, the norms of the signals are used. We observed that strides induce a peak in the norm of the acceleration when the foot touches the ground. Then the beginning and the end of the interval are defined by local minima of the gyrometer norm around the acceleration peak. Indeed, when the foot is on the ground, the angular velocity of the ankle is lower than during the swing phase. However this approach also extract intervals that do not correspond to stride when for example the user is bicycling. The goal is to select among these intervals which ones are true strides. We adopt a statistical learning approach to answer this problem thanks to a database we have built.

The features engineering process relies on the calculation of a rotation applied on the inertial data in order to work in the same reference frame for all records. This key stage is based on fitting the gyrometer data with 3D reference geometric patterns computed from the database. Then the forward swing movement that occurs just before the foot contact with the ground is studied, providing precious information for the prediction function built from the Gradient Boosting Trees algorithm (see Section II.2.2).

This first stride detection algorithm shows promising performance improvement compared to the existing method developed by Sysnav introduced in I.4.4 especially for atypical strides. However it shows limitations in situations such as fast side stepping and prompt descent of stairs. In addition, this algorithm is computationally expensive as the number of acceleration peaks are in practice caused by a lot of device movements that do not correspond to strides. Consequently the features and the classifications by the prediction function are computed a lot of times along the recording.

Candidate stride interval extraction based on pseudo-speed

In Chapter IV, the main idea lies in the fact that in an inertial reference frame, the integration of the accelerometer data during a period ∆t is equal to the difference of the ankle speed (a few meters per second for a pedestrian) that is small compared to the integration of the gravity. With angular velocity integration during t and t + ∆t, we can compute the rotation matrices R t+dt t , R t+2dt t , . . . , R t+∆t t . It allows by composition of the rotation matrices to project the acceleration in the body frame of time t. Indeed by definition

R t+2dt t = R t+dt t R t+2dt
t+dt . Then the integration of γ t during t and t + ∆t is given by:

1 ∆t t+∆t t γ t (u)du = 1 ∆t t+∆t t a t (u)du + g t = v t (t + ∆t) -v t (t) ∆t + g t ≃ g t ,
with g t a constant. By removing the gravity from the accelerometer data projected in the world frame that is aligned with the identified gravity, we can compute a pseudo-speed vW which is a good feature to detect the beginning and the end of strides. This procedure aims to have a representation of the data in a world frame which is called attitude filter. The computed speed quantity is called pseudo-speed vW because it is not the quantity used for trajectory reconstruction given by the extended Kalman filter that is more accurate. The advantage of this described attitude filter is its computation efficiency.

This algorithm aims to align the sensors in a common reference frame (world frame) in order to take advantage of the three dimensions of the accelerometer and gyrometer, as the previous one briefly described in Section I.6.2. However the computed pseudo-speed is more robust in critical situations and provides, by integration, a pseudo-trajectory that appears to be a key variable for the Gradient Boosting Trees decision function (see Section II.2.2). Indeed, this approach extracts intervals that are not strides when for example the wearer is moving the device in the hand during the required time to install or uninstall the system from the docking station. The selection of the true stride intervals among them is given thanks to this decision function.

Activity recognition from computed stride trajectory

Sysnav developped an algorithm introduced in Section I.4.4 that allows to compute the trajectory of each detected stride. This algorithm requires a precise estimation of the stride start and stride end before applying a speed estimation of the device based on a lever arm model. Then, the speed estimation is fused with inertial integration in an extended Kalman filter, providing the computed trajectory.

During clinical studies, activity recognition is precious information to evaluate the health of patients suffering from movement disorders. In this work, we focus on three activities related to the primary outcomes for DMD: stairs, walking, and running. However, defining the difference between running and fast walking regarding the trajectory is a challenging task. Indeed, the age difference of patients in clinical studies can be very large, and their gaits very dissimilar. Moreover, detecting stairs is difficult for patients suffering from DMD who can hardly take them and go up the stairs one by one (the difference in the computed altitude is small). Thus, in Chapter V we adopted supervised machine learning algorithm to build a classifier that recognizes the activity of the performed stride given its computed trajectory with features engineering process based on functional data analysis.

Neural Network for Parkinson's events detection

Chapter VI presents an innovative and generic deep-learning approach for issues based on inertial data recordings. Throughout this work, we focused our attention on the detection of tremors and dyskinesia, concurrently to the issue of activity recognition. The models have been built in order to precisely detect the time boundaries of such Parkinson's events or activities. Our work is based on multi-channel networks, using in particular Convolutional Neural Networks and one Topological Data Analysis (TDA) channel for multivariate time series that improved the performances. Topological Data Analysis is a recent field that emerged from various works in applied topology and computational geometry, aiming at providing well-founded mathematical, statistical and algorithmic methods to exploit the topological and underlying geometric structures in data (see Section II.3.4). The proposed methodology involves converting the multivariate time series to point cloud and applying methods for findings topological structure that allow to compute features for our Neural Network. Our approach proved its efficiency on activity recognition and Parkinson's event detection, with scores reaching the performances of state of the art methods.

Due to the complexity of our applications, the problem we study is difficult to describe with simple deterministic models, and thus we adopted machine learning approaches. In this thesis, machine learning techniques are used at three different stages: for stride detection, activity recognition and Parkinson's events detection. In Section II.1 we describe the principles of supervised statistical learning [START_REF] Vapnik | The nature of statistical learning theory[END_REF][START_REF] Friedman | The elements of statistical learning[END_REF] and in particular the Gradient Boosting Trees (Section II.2) and the Neural Network algorithms (Section II.3). We then explain in Section II.4 how these methods can be applied to our setting.

Introduction to Statistical supervised learning

Let's consider a random vector (X, Y ) taking values in R p ×Y whose the probability distribution P X,Y is unknown. Supervised learning algorithms consists of defining an efficient prediction rule between the covariates X = (X 1 , . . . , X u , . . . , X p ) and a variable to be predicted Y . Namely a prediction function f defined on R p with values in Y. For instance, for stride interval detection, X is a vector inertial data quantity and Y = {-1, 1}, with 1 for a stride and -1 otherwise. The error for a prediction rule f is given by:

R(f ) = E X,Y ℓ(f (X), Y ),
where ℓ is a loss function. The best prediction function f * , called Bayes estimator, is then the one that minimizes the previous expression of R, called risk, for the set of measurable functions in C defined on R p with values in Y :

f * ∈ argmin f ∈C R(f ).
However, as the joint distribution P X,Y is unknown we can not compute directly f * . The technique lies in the estimation of such a function from a dataset D n = {(X 1 , Y 1 ), . . . , (X i , Y i ), . . . , (X n , Y n )} of n independent and identically distributed couples following the P X,Y distribution.

Empirical Risk Minimization

From the dataset D n the empirical risk noted R is given by:

R = 1 n n i=1 ℓ(f (X i ), Y i ).
The function that is zero everywhere except at X i taking the value Y i is a minimizer of the empirical risk. This kind of function is not satisfying as it would achieve poor generalization performance (overfitting). Let consider a binary classification problem with Y i ∈ {-1, 1}. A new observation X n+1 that do not belongs to the dataset D n , would be always wrongly classified zero. Hence, we choose the f that minimizing the empirical risk over some class of functions F, such as parametric models, histogram classifiers, decision trees or linear/polynomial functions, etc.:

f ∈ argmin f ∈F R(f ) = argmin f ∈F 1 n n i=1 ℓ(f (X i ), Y i ).
To justifiy this empirical risk minimization method, we need to know how similar the R(f ) and R(f ) are. When F contains only finite number of classifiers, say N classifiers, then for bounded loss ℓ Hoeffding's inequality shows that with probability at least 1 -δ for all f in F :

|R(f ) -R(f )| ≤ logN + log 2 δ 2n ,
Now let consider F contains infinite number of classifiers. As long as its Vapnik-Tchervonenkis (VC) dimension d [START_REF] Vapnik | The nature of statistical learning theory[END_REF] is strictly smaller than n, the VC theory tells us that with probability 1 -δ we have:

|R(f ) -R(f )| ≤ d log 2n d + 1 -log δ 4 n .

Bias-Variance Trade-Off in Machine Learning

The performance of f based on the empirical risk minimization depends on the class F. One of the main goals of statistical analysis of supervised learning algorithms is to understand how the excess risk defined by the difference between R(f * ) and R( f ) depends on the sample size n, on the complexity of the class F and on the underlying complexity of the prediction problem itself. Indeed, the excess risk can be expressed by:

R( f ) -R(f * ) = R( f ) -R(f * F ) + (R(f * F ) -R(f * )) , where f * F ∈ argmin f ∈F R(f ).
The first term in the equation, corresponding to the variance, measures the estimation error in the F. The second term, corresponding to the bias, measures the error based on the restriction the class F. Consequently, the more the complexity of F is big, the more the variance is large and the biais is small. The class F has to be chosen carefully to reach the best trade-off between the bias and the variance. Namely, the class F has to be not too large to avoid over-fitting but also not to restrictive in order to approach f * . The phenomenon can be illustrated for a polynomial regression. In this case, the complexity of F corresponds to the polynomial degree. By increasing the degree, the prediction error decreases until zero, meaning the observations of D n are all exactly predicted by the interpolation. But in Figure 12, it shows also that the predictions performed outside the set D n can reach extreme values and thus large errors. One solution to find the best f with good bias-variance trade-off compromise is to add a penalization into the empirical risk minimization. Namely, we can consider:

argmin f ∈F { R(f ) + pen λ (f )},
where pen λ (f ) allows to penalize the complexity of the models. One challenge is to tune the parameter λ that could yield to a strong overfitting. An alternative method is cross-validation that shows good model selection performances in (almost) any framework. Nevertheless, universality has a price: compared to procedures designed to be optimal in a specific framework, the model selection performances of cross-validation can be less accurate, while its computational cost is higher.

Risk Estimation

The simplest method to estimate the risk consists in using an independent subset that did not participate to the estimation of the model. It requires to build three sets respectively called learning, validation and test set.

• The training set aims to find the best prediction function for a fixed model (for example a model of fixed polynomial degree).

• The validation set is used to compare models (for example polynomial regression with several degrees).

• The test set allows to compare the best prediction functions of the different tested models.

However this solution requires a large initial dataset size n. In practice, the labelling for the three tasks we consider in this thesis (stride detection, activity recognition, Parkinson's events detection) is costly in time and effort. Consequently the total size of observations with label is small. Several strategies have been proposed to estimate the risk with low bias in this situation. The most popular is cross-validation. The risk estimation is iteratively computed before average in order to reduce the variance and increase the precision. The K-fold cross-validation is described in the Algorithm 1. It consists in randomly splitting the dataset into K subsets and then they iteratively are considered as validation set whereas the K -1 others constitute the training set.

Algorithm 1: K-fold cross-validation Input : K random subsets Output: Estimation by cross-validation

1 foreach k ∈ 1, K do 2
Consider the k th subset as test set.

3

Estimate the model on the K -1 subsets remaining.

4

Compute the error on the k th subset.

5 end 6 Mean of K errors.

The choice of the K value is generally taken between 5 and 15. If K is small (K = 5), the variance is lower but the bias increases. This choice corresponds again to a trade-off and its optimization is to complicated or requires too many observations to be in practice performed, hence the default value equals to 10. This technique can be repeated several times in order to get the variance of the resulting error score. It is called the Monte Carlo cross validation.

Ensemble methods

The initial idea of Freund and Schapire in [START_REF] Freund | Experiments with a new boosting algorithm[END_REF] described the original algorithm of AdaBoost (Adaptative Boosting) for the prediction of a binary variable. Several studies have been published that adjust this algorithm to other situations: multi class, regression etc. These tests have shown that this kind of algorithm reduce drastically the variance but also the bias of prediction. This algorithm have been considered as the best method of-the-shell meaning that does not require a long pre-treatment of data neither a fine tuning of parameters during learning. Nonetheless, the evolution towards new versions (extrem gradient boosting) with better performances lead to grow the number of tuned parameters.

Boosting algorithm adopts the same general principle of bagging: building a family of models that are finaly aggregated thought a weighted mean of estimations/votes. But it is different in terms of building the family that is in this case recursively: each model is an adaptative version of the previous ones, by given more weight to observations wrongly estimated for the next estimation. This section aims to describe boosting algorithms, from AdaBoost (Section II.2.1) to Gradient Boosting Trees (Section II.2.2).

Introduction to Boosting Algorithm through Adaboost

Let describe the original version of boosting for a binary problem with δ the prediction function with values in {-1, 1}. It is also possible to adapt this version to a regression, namely with a real target values.

The weights of each observation are initialized to 1 n for the estimation of the first model and then change for each iteration. The weight of an observation is noted w i is unchanged if it is correctly classified. In the opposite, it grows proportionally to the error made by the model. The final aggregation of the predictions for a X in R p is a sum of the different models weighted by their performance:

M m=1 c m δ m (X).
This kind of algorithm is used with decision tree (CART) as weak learner (decision tree with accuracy just a little bit better than random guessing). Several applications have shown that if the weak learner is a trivial decision tree with only two leafs, AdaBoost reaches better performance compared to a sophisticated tree for a same amount of computational cost: same number of leafs in the sophisticated tree as number of AdaBoost iteration. The goal of boosting algorithm is to find an approximation of f such as:

f (X) = M m=1 c m δ(x; β m ),
where c m is a parameter depending on the quality of the weak learner of iteration m, δ the weak learner with β m parameters fonction of x. With ℓ the loss function, the goal is to solve at each stage:

(c m , β m ) = argmin (c,β) n i=1 ℓ(y i , fm-1 (x i ) + cδ(x i ; β)).
The estimation fm given by fm (x) = fm-1 (x) + c m δ(x; β m ) is then an amelioration of the previous iteration.

With Adaboost, the loss function is defined by ℓ(y, f (x)) = exp[-yf (x)]. Namely, the goal is to solve:

(c m , β m ) = argmin (c,β) n i=1 exp[-y i ( fm-1 (x i ) + cδ(x i ; β))] = argmin (c,β) n i=1 w m-1 i exp[-y i cδ(x i ; β))],
with w m-1 i = exp[-y i fm-1 (x i )] independent of c and β. The solution to this optimization problem is computed in two steps: finding the best weak classifier δ m (namely finding β m ) and then the optimization of the parameter c m .

β m = argmin β n i=1 w m-1 i 1{y i = δ(x i ; β)}, (1) 
c m = 1 2 log 1 -ǫm ǫm , ( 2 
)
where ǫm is the weighted classification error defined by:

ǫm = n i=1 w m-1 i 1{δ m (x i ) = y i } n i=1 w m-1 i . (3) 
The weights w i for i in 1, n are updated with:

w m i = w m-1 i exp[-c m 1{δ m (x i = y i }]. (4) 
We described in this section the boosting algorithm for Adaboost (pseudo-code in Algorithm 2), with exponential loss function. Other loss functions can be used such as ℓ(y, f (x) = log 2 (1 + exp[-2yf (x)] for LogitBoost. It depends on the dataset D n , if it presents outliers for example. Update the weights (Equation 4). Assuming the trees at each iteration are weak learners (a little bit better than random guessing) it is possible to prove that the training error of AdaBoost's final prediction function fM decreases to zero. Furthermore, we can measure the complexity of the final hypothesis using the VC-dimension which can be computed [START_REF] Schapire | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF]. By analyzing both the complexity and training fit of the final hypothesis, one can immediately apply the VC theory to obtain a bound on its generalization error. As noted above, we expect training error to drop very quickly, but at the same time, the VC-dimension of the final hypothesis is increasing roughly linearly with the number of iterations M . Thus, with a large value of M , the final prediction function becomes overly complex and leads to overfitting behavior.

Gradient Boosting Trees

With the same adaptive approach, Freidman proposed in [START_REF] Friedman | Stochastic gradient boosting[END_REF] a familiy of Gradient Booting Models (GBM) with a loss function ℓ that is convex and differentiable. Based on the same idea of Adaboost, the goal of Gradient Boosting Trees algorithm is to build a sequence of models that combined together estimate better and better f , but the main innovation is that we use the gradient of ℓ estimated by a regression tree at each step (to avoid overfitting). The previous presented model fm (x) = fm-1 (x) + c m δ(x; β m ) is now changed in a gradient descent:

fm (x) = fm-1 (x) -β m n i=1 ∇ f m-1 ℓ(y i , f m-1 (x i )).
Despite finding the best weak learner δ m in Adaboost, the optimization problem is based on finding the descent step. This requires computation of the derivatives

∇ f m-1 ℓ(y i , f m-1 (x i )), for i ∈ {1, . . . , n}. The quantities r i,m := -∇ f m-1 ℓ(y i , f m-1 (x i ))
are also called pseudo residuals. Now, the problem is that a naive gradient descent approach would yield a predictor that could only be computed on the training set. The solution is to fit a weak learner in the direction of the gradient. The Algorithm 3 summarizes the different steps for a regression problem for regression but it can be adapted to a classification problem. 

1 foreach m ∈ 1, M do 2 Compute the pseudo residuals r i,m := -∇ f m-1 ℓ(y i , f m-1 (x i )); i = 1, . . . , n.
3 Fit a regression tree δ m to the couples (x i , r i,m ) i=1,...,n .

4

Compute β m by solving: Friedman also proposed in [START_REF] Friedman | Stochastic gradient boosting[END_REF] a version named Stochastic Gradient Boosting including a random under-sampling inspired from bagging methods. An other proposition consists in add a learning rate coefficient ν that penalizes the update of the new model in the aggregation:

argmin β∈R n i=1 ℓ(y i , f m-1 (x i ) + βδ m (x i )).
fm (x) = fm-1 (x) + νβ m δ m (x).
A small value of ν requires to increase the number of trees M but in practise it generally improves the final result. These two parameters have to be tuned by cross validation on the training set. More recetnly Chen and Guestrin [START_REF] Chen | Xgboost : A scalable tree boosting system[END_REF] proposed XGBoost algorithm (Extreme Gradient Boosting). It is a specific implementation of the Gradient Boosting Trees algorithm which uses more accurate approximations to find the best tree model:

• Computing second-order gradients, namely second partial derivatives of the loss function (similar to Newton's method), which provides more information about the direction of gradients and how to get to the minimum of the loss function.

• Advanced regularization (L1 and L2), which improves model generalization. 

Transfer function for MLP

An artificial neuron is a function h of the input x = (x 1 , . . . , x p ) weighted by a vector of connection weights w = (w 1 , . . . , w p ), completed by a neuron bias b and associated to an activation function φ. Namely, the output is defined by h(x) = φ(w T x + b). Several activation functions can be considered, the most popular are the identity function

(φ(x) = x), sigmoid function (φ(x) = 1 1+exp(-x) ), hyperbolic tangent function noted "tanh" (φ(x) = exp(2x)-1 exp(2x)+1
), threshold function (φ β (x) = 1{x ≥ β}) and the Rectified Linear Unit activation function noted "ReLu" (φ(x) = max(0, x)). The Figure 13 illustrates the activation function of one artificial neuron where = w T x. A multilayer perceptron (or neural network) is a structure composed by several hidden layers of neurons where the output of a neuron of a layer becomes the input of a neuron of the next layer (without backfeed loop). On last layer, called ouput layer, different activation function are applied depending on the type of problems (regression or classification). The Figure 14 represents a neural network with three input variables, one output variable and two hidden layers. The parameters of the architecture are the number of hidden layers and of neurons in each layer. The activation functions are also chosen by the user for each layer. Usually for regression task, the last layer is defined by one neuron with the identity activation function. For binary classification, the output neuron is defined with the sigmoid activation function whereas for a classification problem of M classes, the last layer contains M neurons (one neuron per class) with a

Parameters Optimization through Backpropagation

The set of parameters to be tuned is noted θ, composed of the weights and biases. As usual, the estimation is obtained by minimizing a loss function with a gradient descent algorithm. For multi-class classification problem with M number of classes, we consider loss function defined by:

ℓ(θ) = -E X,Y [ K j=1 1 Y =j ln f (X, θ)].
In order to estimate the parameters θ, we use a training sample (X i , Y i ) 1≤i≤n and we minimize the empirical risk:

R = 1 n n i=1 ℓ(f (X i ), Y i ).
We can add a regularization term to penalize the empirical risk, that leads to minimize the following empirical loss:

L n (θ) = 1 n n i=1 ℓ(f (X i ), Y i ) + λΩ(θ).
Usually, L2 regularization is used:

Ω(θ) = k i j (W (k) ij ) 2 = k ||W (k) || 2 F ,
where ||W || F denotes the Frobenius norm of the matrix W . Only the weights are penalized here, not the biaises. This penalization is used because we can compute its gradient during the gradient descent algorithm by the following equation:

∇ W (k) Ω(θ) = 2W (k) .
In order to minimize the empirical loss L n (θ), a stochastic gradient descent is used. It computes the gradient for the loss function at each step of the algorithm but only on a subset B of cardinality m (called a batch) taken randomly without replacement. A large m value allows to speed up the algorithm but it leads to poor generalization. An iteration over all the training samples is called an epoch.

The number of epochs is a parameter to be fixed by the user. The total number of iterations N equals the number of epochs times the sample size n divided by m. This procedure is called batch learning and is presented in Algorithm 4. As we can compute the gradient of the loss function, the gradient vector of the loss function indicated the direction of a growing error. Thus to decrease the loss value, we need to get the inverse direction of the gradient. The learning rate τ can be fixed by the user, its choice is crucial for the convergence of the SGD algorithm. Variations of the algorithm have been proposed to update its value during the learning. Intuitively, at first we an take a large value to speed up the process until decreasing the value when the system is close to a solution.

The parameters update consists in an iterative algorithm that modify the weights for each neuron, called backpropagation algorithm that has 

θ = θ -τ 1 m i∈B [∇ θ ℓ(f (X i , θ, Y i ) + λ∇ θ Ω(θ)] 3 end 4 Return θ.
been introduce in [START_REF] Hinton | Learning internal representations by error propagations[END_REF].

It is summarized in Algorithm 5 with no regularization term to simplify the equations, but it can be easily added.

Algorithm 5: Backpropagation algorithm

Input : the values of the current fixed weights of iteration r :

θ (r) = (W (1,r) , b (1,r) , . . . , W (L+1,r) =, b (L+1,r) )). Output: Update of θ Forward pass: 1 Compute the predicted values f (X i , θ (r) ). 2 Store all the intermediate values a (k) (X i ), h (k) (X i ) = φ(a (k) (X i )) 1≤k≤L+1 .
Backpropagation algorithm:

3 Compute the output gradient ∇ a (L+1) (x) ℓ(f (x), y) 4 foreach k ∈ {L + 1, L, . .

. , 1} do

Compute the gradient at the hidden layer k :

5 ∇ W (k) ℓ(f (x), y) = ∇ a (k) ℓ(f (x), y)h (k-1) (x) T , 6 ∇ b (k) ℓ(f (x), y) = ∇ a (k) ℓ(f (x), y).
Compute the gradient at the previous layer k -1:

7 ∇ h (k-1) (x) ℓ(f (x), y) = (X (k) ) T ∇ a (k) ℓ(f (x), y), 8 ∇ a (k-1) ℓ(f (x), y) = ∇ h (k-1) (x) ℓ(f (x), y) ⊙ (. . . , φ(a (k-1) (x) j ) T , . . .) T ,
where ⊙ is the element-wise product. 9 end 10 Return θ.

For some types of data, especially for images, multilayer perceptrons are not well adapted. Indeed, they are defined for vectors as input data, hence, to apply them to images, we should transform the images into vectors, losing the spatial information.

Convolutional Neural Networks

The Convolutional Neural Networks (CNN) introduced in [START_REF] Boser | Handwritten digit recognition : Applications of neural networks chipsand automatic learning[END_REF] are widely used for image classification, object recognition etc. They have revolutionized image processing as they act directly on matrices or even tensors for images with three RGB color chanels. Indeed a black and white picture is defined by a matrix with values corresponding to the pixel intensity. But a colored image has three chanels, namely, we have three values for each pixel that represent the lel of red, green and blue.

Kernel

As a image, the kernel is a matrix but with generally smaller dimensions (in R 3×3 ). It allows to capture the characteristics of an image (color, luminosity, bounds etc.). It is applied iteratively step by step along the considered image (see Figure 15) by computing the convolution. At each kernel position, we get the convolution between the kernel and the part of the image that is currently treated (see Figure 16). For 2-dimensional signals such as images, we consider the 2D-convolutions:

(K * I) ij = m,n K mn I i+n,j+m .
The kernel moves by a number s of pixels, called step. When the step is small we get redondant information. Sometimes, zero padding is used that is a margin of size p adding zero values around the image in order to control the size of the ouput. Let consider an image in R W 0 ×H 0 ×C 0 where W 0 denotes the width, H 0 the height and C 0 the number of channels (typically C 0 = 3 for RGB images). With a kernel in R k×k , the size of the ouput is in R W 1 ×H 1 ×C 1 and we have:

W 1 = W -k + 2p s + 1 
H 1 = H 0 -k + 2p s + 1.
The value of C 1 corresponds to the number of kernels that we used, called depth. This defines the number of characteristics we want to detect. The Figure 17 shows two different transformations with two kernels traditionally used for bounds detection and blurring. These parameters have to be tuned empirically regarding the type of data. Taking small value of k or a number of C 1 too large will usually lead to over-fitting. On the contrary, using few kernels with big size may not provide sufficient details from the treated image. The strength of a convolution layer consists in learning the kernels that are the most useful for the task. mean of the window, stochastic pooling that keeps one value under probability.

Reducing the dimension is also achievable by the convolutional layer, considering a step size s larger than 1 and without zero padding. But the main advantage of pooling layer is that it is less sensitive to small translations of the input images. The particularity of these two layers is that their outputs can be directly considered as new images which can be treated as the initial input ones. At each stage, the outputs become more and more complex. In the most classical CNN, we chain several times a convolution layer followed by a pooling layer and we add at the end fully connected layers (MLP). The famous LeNet network, proposed in [START_REF] Bengio | Gradient-based learning applied to document recognition[END_REF], developed to digit recognition, is composed only on few layers and few filters due to the computer limitations at that time. The Figure 19 shows in details the resulting outputs of each stage. 

Learning and tuning the whole model

The hyperparameters to be tuned by the user are the number of kernels for each convolutional layer, their size and the type of pooling to apply. For fully connected layers, the number of layers and number of neurons is crucial. To a higher level, one has to chose the basic architecture, namely the number of convolutional layers etc. The learning phase is similar to the described one in Section II.3.2. We need a data base of labelled images. They are passed through the CNN and the resulting errors inform about the quality of the weights and biases of each neuron in the convolutional of fully connected layers. They are updated through backpropagation in order to reduce the errors. The elements that appear rarely into the images are skipped with small weight value whereas relevant patterns that are found regularly in the set of images are combined with high weight value.

Beyond images

Although CNNs were used at first for images classification, their success has motivated research to adapt them to other types of data. For multivariate time series of W 0 dimensions, we can split the overall signal into smaller parts with smaller fixed duration H 0 . We obtain matrix in R W 0 ×H 0 where the lines correspond the W 0 variables data and the columns correspond to the time samples. Keeping the notations introduce in Section II.3.3, we can consider this matrix as an image with pixels indicating the intensity of the signal values. The higher is the signal data, the higher is the pixel value. Typically, with inertial data in three dimensions provided by ActiMyo recordings, we can build "images" in R 3×H 0 . For 1D signals, one method is to consider a split time duration equals to W 0 × H 0 and build the matrix with the first line corresponding to the H 0 first sample values, then the interval [H 0 , 2 × H 0 ] correspond to the second line of the matrix etc. However, An alternative version of 2D CNNs called 1D Convolutional Neural Networks have been developed for 1D signals (for example in ECG classification [START_REF] Hamila | Convolutional neural networks for patient-specific ecg classification[END_REF]). Several studies have shown that for certain applications 1D CNNs are advantageous and thus preferable to their 2D counterparts in dealing with 1D signals due to several reasons. Indeed rather than matrix operations, the backpropagation require simple array operations, reducing the computational complexity. In addition recent studies show that 1D CNNs with relatively shallow architectures (small number of hidden layers and neurons) are able to reach good performances when 2D CNNs usually require deeper architectures to handle the same scores.

Other techniques allow to extract relevant information from multivariate time series that feed the last fully connected layer in the architecture presented above. One can compute variables from signal processing techniques such as maximum, mean, standard deviation, root mean square, inter-quantile range, Fast Fourier Transform, 3 rd and 4 th order moments, auto-correlation and correlations between signals etc. In this thesis, we developed a framework for analyzing multivariate time series using topological data analysis (TDA) methods. The proposed methodology involves converting the multivariate time series to point cloud data and exploit the underlying geometric structures through persistent homology. The experimental results on "DB1" and "DB2" has shown that it allow to compute features that are missed by traditional signal processing techniques. In the following section, we briefly introduce the basics of persistence used in this thesis. We refer the reader to [START_REF] Edelsbrunner | Computational topology: An introduction[END_REF][START_REF] Silva | Persistence stability for geometric complexes[END_REF][START_REF] Bubenik | Statistical topological data analysis using persistence landscapes[END_REF] for more details.

Topological Data Analysis Channel

Topological Data Analysis (TDA) refers to a collection of methods for findings topological structure in data ( [START_REF] Carlsson | Topology and data[END_REF][START_REF] Chazal | An introduction to topological data analysis: fundamental and practical aspects for data scientists[END_REF]). The input is a dataset drawn from a probability measure supported on an unknown set X. The ouput is a collection of data summaries that are used to describe the topological features of X. Homology, or more precisely persistent homology ( [START_REF] Boissonnat | Geometric and Topological Inference[END_REF]), appears as a fundamental tool for TDA. It associates to any topological space X, a family of vector spaces (the so-called homology groups) H k (X), k = 0, 1, . . . , each of them encoding topological features of X. The k th Betti number of X, denoted β k , is the rank of H k (X) and represents the number of k-dimensional features of X : for example, β 0 is the number of connected components of X, β 1 the number of independent cycles or "tunnels", β 2 the number of "voids", etc. (see [START_REF] Hatcher | Algebraic topology[END_REF]). Persistent homology ( [START_REF] Letscher | Topological persistence and simplification[END_REF][START_REF] Zomorodian | Computing persistent homology[END_REF][START_REF] Barannikov | The framed morse complex and its invariants[END_REF]) provides a framework and efficient algorithms to encode the evolution of the homology of families of nested topological spaces indexed by a set of real numbers that may often be seen as scales, such as the union of growing balls, or nested family of simplicial complexes built on top of the data. The obtained multiscale topological information is then represented in a simple way as a barcode or persistence diagram, providing relevant information about the data ( [START_REF] Herbert Cohen-Steiner | Stability of persistence diagrams[END_REF][START_REF] David Glisse | Proximity of persistence modules and their diagrams[END_REF]). Persistence diagrams coming as sets of intervals are not well-suited for direct use to standard machine learning method and need to be converted into a vector representation to design a neural network architecture that can take them as input features. Several approaches and methods have been recently proposed to achieve this task (see [START_REF] Hofer | Learning representations of persistence barcodes[END_REF][START_REF] Umeda | Time series classification via topological data analysis[END_REF]3,[START_REF] Meryll Dindin | Topological data analysis for arrhythmia detection through modular neural networks[END_REF][START_REF] Mathieu Carrière | Perslay: A simple and versatile neural network layer for persistence diagrams[END_REF] ). In this work, we use the functional summary called a persistence landscape ( [START_REF] Bubenik | Statistical topological data analysis using persistence landscapes[END_REF]). These landscapes are the data summaries that we focus on this section and are used to compute inputs of the last fully connected layer in the neural net architecture.

Simplicial complexes

To compute the persistent homology from a set of data we need to construct a set of structures called simplicial complexes. We use the point cloud {x α in a metric space (Euclidean space in practice) as the vertices of a combinatorial graph whose edges are determined by proximity (vertices within some specified distance ǫ). We complete the graph to a simplicial complex, a space built from simple pieces (simplicies) identified combinatorially along faces. The choice of how to fill in the higher dimensional simplices of the proximity graph allows for different global representations. In the following we present two methods for doing so given a collection of points {x i } in a Euclidean space E n :

• The Cech complex, C ǫ , is the abstract simplicial complex chose k-simplices are determined by unordered (k + 1)-tuples of points {x i } k 0 whose closed ( ǫ 2 )ball neighborhoods have a point of common intersection.

• The Vietoris-Rips complex, R ǫ , is the abstract simplicial complex whose ksimplices correspond to unordered (k + 1)-tuples of points {x i } k 0 which are pairwise within distance ǫ.

Note that these two complexes are related by R ǫ ⊆ C ǫ ⊆ R 2ǫ . In Figure 20 we represent a set of points completed to a Cech complex and Vietoris-Rips complex (Figure 21). 20 (source: [START_REF] Ghrist | Barcodes: The persistent topology of data[END_REF]).

Filtrations

Converting a point cloud data set into a global complex (whether Vietoris-Rips, Cech, or other) requires a choice of parameter ǫ. For a value of ǫ sufficiently small the complex is a discrete set, for ǫ sufficiently large the complex is a single highdimensional simplex. The optimal choice for ǫ which best captures the topology of the dataset is a challenging task. Consider the point cloud data set and a sequence of Vietoris-Rips complexes as illustrated in Figure 22. This point cloud is a sampling of points on a planar annulus. From the figure, it appears that an ideal choice of ǫ is difficult: by the time ǫ is increased so as to remove small holes from within the annulus, the large hold distinguishing the annulus from the disk is filled in.

Figure 22: A sequence of Vietoris-Rips complexes for a point cloud data set representing an annulus (source: [START_REF] Ghrist | Barcodes: The persistent topology of data[END_REF]).

Each family described above is non-decreasing with ǫ : for any ǫ ≤ α, there is an inclusion of R ǫ in R α , and similarity for the Cech complex. These sequences of inclusions are called filtrations.

Examining the homology for one specific value of ǫ is insufficient. The counts of the number and types of holes appearing at each parameter value, namely Betti numbers, is not relevant. Indeed one requires a means of declaring which holes are relevant and which can be ignored. The Figure 23 shows the effect of outliers. Adding just a few outliers to a point cloud may dramatically change the topology of its offsets. In the following, we let F ilt ǫ (X) denotes a filtration of the metric space X corresponding to one of the parameterized complexes defined above.

Persistence diagrams

We saw that the topology of F ilt ǫ (X) changes as ǫ increases: new connected components can appear, existing connected components can merge, cycles and cavities can appear or be filled etc. Persistent homology tracks these changes, identifies features and associates an interval or lifetime (from birth b to death d) to them. For instance, a connected component is a feature that is born at the smallest ǫ such that the component is present in F ilt ǫ (X), and dies when it merges with an older connected component. A barcode allows a graphical representation of this procedure. It is a collection of horizontal line segments in a plane whose horizontal axis corresponds to the parameter ǫ and whose vertical axis represents an (arbitrary) ordering of homology generators. Equivalently, the lifetime of a feature can be represented as a point in the plane with coordinates (b, d). The obtained set of points (with multiplicity) is called the persistence diagram D(F ilt(X)) (and we will abuse terminology slightly by denoting it D X ). Note that the diagram is entirely contained in the half-plane above the diagonal since death always occurs after birth.

As an example, in Figure 24 we consider the filtration given by a union of growing balls centered on the finite set of points: a) For the radius ǫ = 0, the union of balls is reduced to the initial finite set of point, each of them corresponding to a 0-dimensional features, namely a connected component. An interval is created for the birth for each of these features at ǫ = 0.

b) Some of the balls started to overlap resulting in the death of some connected components that get merged together. The persistence diagram keeps track of these deaths, putting an end point to the corresponding intervals as they disappear.

c) New components have merged giving rise to a single connected component and all the intervals associated to a 0-dimensional feature have been ended, except the one corresponding to the remaining components. Two new 1dimensional features have appeared resulting in two new intervals (in blue) starting at their birth scale.

d) One of the two 1-dimensional cycles has been filed, resulting in its death in the filtration and the end of the corresponding blue interval.

e) All the 1-dimensional features have died, it only remains the long (and never dying) red interval. As in the previous stages, the final barcode can also be equivalently represented as a persistence diagram where every interval (b, d) is represented by the point of coordinate (b, d) in R 2 .

Intuitively the longer is an interval in the barcode, or equivalently the farther from the diagonal is the corresponding point in the diagram, the more persistent ,and thus relevant, is the corresponding homological feature across the filtration.

Notice also that for a given radius ǫ, the k-th Betti number of the corresponding union of balls is equal to the number of persistence intervals corresponding to kdimensional homological features and containing ǫ. So, the persistence diagram can be seen as a multiscale topological signature encoding the homology of the union of balls for all radii as well as its evolution across the values of ǫ.

Figure 24: The sublevel set filtration of the distance function to a point cloud and the "construction" of its persistence barcode as the radius of balls increases and its persistence diagram.

To avoid technical difficulties, we restrict our attention to diagrams D such that (b, d) ∈ [0, T ] × [0, T ] for all (b, d) ∈ D, for some fixed T > 0. We denote D T the space of all such persistence diagrams and we endow it with a metric called the bottleneck distance d b . Given two persistence diagrams, the bottleneck distance is defined as the infimum of the δ for which we can find a matching between the diagrams, such that two points can only be matched if their distance is less than δ and all points at distance more the δ from the diagonal must be matched.

A fundamental property of persistence diagrams proven in [START_REF] Chazal | The structure and stability of persistence modules[END_REF] is their stability. The Hausdorff distance between two compact subsets X, Y of a metric space (X, ρ) is H(X, Y ) = max{max 

d b (D X , D X) ≤ 2d GH (X, X), (5) 
where d GH (X, X) denotes the Gromov-Hausdorff distance.

Persistence Landscapes

The persistence landscape, introduced in [START_REF] Bubenik | Statistical topological data analysis using persistence landscapes[END_REF] is a collection of continuous, piecewise linear functions λ : Z + × R → R that summarizes a persistence diagram. To define the landscape, consider the set of functions created by tenting each point p = (x, y) = b+d 2 , d-b 2 representing a birth-death pair (b, d) as follows:

Λ p (t) =              t -b t ∈ b, b + d 2 , d -t t ∈ b + d 2 , d , 0 otherwise. (6) 
We obtain an arrangement of piecewise linear curves by overlaying the graphs of the functions {Λ p (t)} p . The persistence landscape is a summary of this arrangement. Formally, the persistence landscape of the persistence diagam D is the collection of functions

λ D (k, t) = kmax p Λ p (t), t ∈ [0, T ], k ∈ N, ( 7 
)
where kmax is the k th largest value in the set. In particular 1max is the usual maximum function. In Figure 25 (pink). Namely, the x-coordinate is the average parameter value over which the feature exists, and the y-coordinate is the half-life of the feature. The cyan curve is the landscape α(1, .). This representation is convenient for machine learning algorithm as the persistence landscapes can be used as 1D signals. In Chapter VI we will see how we use them as inputs of our Neural Network for Parkinson's event detection.

Applications to ActiMyo data

The work of this thesis includes three uses of supervised machine learning algorithms: stride detection, activity recognition and Parkinson's event detection. In the previous sections we introduced the mathematical tools and the main supervised statistical learning algorithms used for these three tasks. They require labeled databases that we present in Section II.4.1.

For stride detection, we have seen in Section I.4.3 that threshold based algorithms do not perform well for atypical strides (stairs, small steps...). In addition, in Section I.4.2 the state of the art machine learning algorithms only achieve good performance when it is known that the wearer is walking but do not perform well in uncontrolled environments, namely at home. These methods consist of building a prediction function that outputs binary zero velocity classifications for every sample of the recording. In this thesis we develop an innovative approach for stride detection based on candidate intervals extraction. The following Section II.4.2 describes this task that can be sum up in two stages:

• Extract candidate intervals from the ActiMyo data that may correspond to strides.

• Select among the extracted intervals the true strides by machine learning with a binary classification function.

This procedure allows to compute the trajectory of each detected stride that is a main feature for activity recognition (Section II.4.3). Indeed, faced to the variety of gait motions, we adopted supervised machine learning algorithm to build a classifier that recognizes the activity of the performed stride from the ActiMyo data and its computed trajectory that greatly helps the decision.

In Section II.4.4 we present our sliding window approach for Parkinson's event detection with machine learning. We also present our use of topological data analysis (TDA) introduced in Section II.3.4, a recent field aiming to exploit the topological and underlying geometric structures in data. Applying this newly spreading method to our problematic seemed relevant when looking at the 3D point clouds representation of inertial data. It will feed one channel in our Neural Network merged with CNNs for tremors and dyskinesia detection.

Databases description

Our three supervised learning tasks require labelled datasets to compute the corresponding prediction functions (see Section II.1). In the following, we describe the recordings that have been used to build the databases for the model selection and recordings that have not been used in the learning but still with ground truth for the validation of the three algorithms.

Parkinson's event dataset "DB1"

The system ActiMyo has been worn at the ankle by 14 patients suffering from Parkinson disease during a proof of concept in 2014 and a clinical study in 2017, both dealing with the Levodopa. This drug aims to ease the symptoms such as tremors but has a main drawback: induced dyskinesia crises (Section I.5.1). Those patients underwent a Levodopa test at the hospital, while wearing the sensors at the ankle and the wrist, so that every record made could be annotated by the doctors through real-time observation. The resulting labelled database per patient is represented in Figure 26. The first observation is that all patient do not show all Parkinson's events, whether on the ankle or on the wrist. Among the labelled events, we focused our effort for tremor detection and more actively on dyskinesia crisis detection. Ten of the patients did wear the devices at home as well, enabling us to gather the corresponding data. An available comparison was provided by healthy volunteers, who were merely partners of those patients that accepted to wear the device as well. All of them were matching age, and could thus serve as controls for the study.

One major problem we faced is the annotation confidence. Typically we realized for example that some of tremors events labelled on wrist could occur only to perform a set of six basic activities (standing, sitting, lying, walking, upstairs and downstairs). Inertial data about those activities and their transition were recorded by a smartphone placed on their waist, sampling the 3-axial acceleration and the 3-axial angular velocity at a frequency of 50 Hz. As one may notice in Tabular 1 and Tabular 2, this database is also linked to imbalance learning due to the poor amount of gathered events for transition activities. In addition, the activity recognition task is very similar to Parkinson's event detection as we can consider tremors or dyskinesia as particular activities of patients that we want to detect among all the other daily activities. The total recordings duration is about 4 hours which makes it easier to test different approaches compared to Parkinson's database. With 50 Hz frequency, it corresponds to 720 thousands recording points versus billions for dataset "DB1". 

Walking

Co-workers at Sysnav "DB3"

A dozen of co-workers of various ages and heights were filmed practicing several activities while wearing the system at the ankle and the wrist at Sysnav company under video control. At the ankle, the device has been carefully fixed with the default placement (see Figure 11), namely the X axis of the body frame is aligned with the foot and the Z axis is aligned with the leg. This precision is important for our first algorithm presented in Chapter III. With synchronisation between the video and ActiMyo data time scales, it is easy to annotated when a stride occurs in the ankle recordings and precise the activity of the performed stride among "atypical steps", "walking", "running", "upstairs" and "downstairs". This dataset will be used to build algorithms for stride detection and activity recognition both. These recordings contain about 6000 strides balancedly distributed among the activities. Depending on the activity, one stride corresponds to approximately 130 recorded points by ActiMyo. Hence, these recordings require a labelling process with video control of almost one million points.

Co-workers in Motion Capture (MOCAP) environment "DB4"

A group of seven people wore the ActiMyo with infrared markers during MOCAP sessions in a 25 m 2 room (Figure 27). Several cameras were set in order to film the whole scene. They broadcast infrared radiation that was reflected by the markers. This allowed the camera to record the position of the markers with sub-millimeter accuracy. We faced three issues here. Firstly the tracking system samples the data at 240 Hz whereas ActiMyo sensors samples at 130 Hz. Secondly the triangulation of the markers position do not correspond to the position of the ActiMyo sensors. Finally, the data provided by the optical tracking system notated thanks to the MOCAP altitude defining when the foot is on the ground.

In addition, we can compare the difference between the computed stride length with the ground truth (MOCAP stride length) for each detected stride.

DMD hospital tests "DB5"

During hospital tests for DMD clinical trials (see Section I.3.2), several patients were wearing the ActiMyo system at the ankle under video control. We have access to the recordings of 10 patients performing the 10 meters run test and 6 minutes walk test. Moreover, 8 patients performed the 4-stairs test. As one goal of this thesis is to compute statistics on strides trajectory and strides activity on home recordings of patients suffering from Duchenne muscular dystrophy, this dataset is particularly important. It will allow us to test our stride detection and activity recognition algorithms on patients recordings with ground truth. All recordings together provide hundreds of walking strides, more than one hundred of running and upstairs strides. With 130 Hz frequency, one stride length can vary between few dozens of points to more than several hundreds. They have been manually labelled with the video control.

Candidate intervals extraction for stride detection

In this thesis, the stride detection task results in a binary classification problem. Indeed, we developed an approached based on candidate intervals extraction that may correspond to stride. The stride selection among them is given by a binary classifier that has been computed with a supervised learning algorithm.

In the following we introduce the notations defining the extracted intervals and their labelling procedure that allow to build a dataset for supervised learning algorithms.

Interval extraction

We develop two algorithms for candidate stride interval extraction. To define the beginning and the end in the intervals, the first approach described in Chapter III uses the inertial data norm whereas the second one in Chapter IV is based on a pseudo-speed norm computation. However due to the complexity of our application framework, the problem in our study is difficult to describe with simple deterministic models for both extraction methods. Indeed the combination of criteria to apply on the inertial norm or pseudo-speed norm have to be sufficiently wide to detect all types of strides (atypical strides, running, stairs etc.). Consequently, when these two extraction algorithms are launched on the recordings from the database "DB3", it leads to build a family of candidate intervals with several intervals that may not correspond to strides. They are defined by one start and one end, and we note the family of intervals ÎDB3 = {(ŝ 1 , ê1 ), . . . , (ŝ i , êi ), . . . , (ŝ n , ên )}1 . In the following we will consider a generic ÎDB3 without introducing notations defining the extraction method but the number of extracted intervals can change along with. Some of the intervals in the family ÎDB3 correspond to real strides, with correct start and end times tying in moments when the foot is on the ground. Others come from movements that are not strides and that we want to exclude (wrist movements, bicycling etc.).

end before applying a speed estimation of the device based on a lever arm model. Then, the speed estimation is fused with inertial integration in an extended Kalman filter, providing the computed trajectory. This algorithm has been launched on the database "DB3" from the annotation of the strides indices of the family ĪDB3 . With video control, we affected a label y a (exponent a for activity) defining the activity of the performed stride among "atypical strides" (label 1), "walking" (label 2), "running" (label 3), "upstairs" (label 4) and "downstairs" (label 5). Thus we have a family of intervals corresponding to strides ĪDB3 = {(s 1 , ē1 , y a 1 ), . . . , (s i , ēi , y a i ), . . . , (s n , ēn , y a n )} where y a i ∈ {1, 2, 3, 4, 5}. The goal is to compute a prediction function f a from Gradient Boosting Trees algorithm, for multi-class classification task, that allows to predict the target y a i from the inertial data and the computed trajectory of the stride intervals in ĪDB3 . We faced the same problem as in Section II.4.2, the length of the strides is not a constant whereas the GBT algorithm requires the input variables to be the same for all observations. In addition to the features computed from the inertial data based on functional data analysis, relevant variables are computed from the trajectory that allow to enrich considerably the features for the activity recognition task. It provides a set of observations {(x a 1 , y a 1 ), . . . , (x a n , y a n )} with x i ∈ R p a for the GBT algorithm. The overall procedure is sum up in the following Algorithm 8. Then for the recordings in "DB5" for example, we can apply the activity recognition with Algorithm 9.

Algorithm 8: Learning a prediction function for activity recognition

1 Affect a label defining the activity for the family of extracted strides in "DB3": ĪDB3 = {(s 1 , ē1 , y a 1 ), . . . , (s i , ēi , y a i ), . . . , (s n , ēn , y a n )} where y a i ∈ {1, 2, 3, 4, 5} 2 Compute the trajectory from the strides in ĪDB3 .

3 Compute the features from inertial data and computed trajectory based on functional data analysis. it provides the set: {(x a 1 , y a 1 ), . . . , (x a n , y a n )} with x a i ∈ R p a . 4 Tune the parameters of GBT algorithm with 10-fold cross validation providing the prediction function f a defined on R p a taking values in {1, 2, 3, 4, 5}.

Algorithm 9: Activity recognition in "DB5" recordings 

Parkinson's event detection with sliding window

The parkinsonian events detection was one of the most difficult tasks of this thesis. As far as we know, there is no robust algorithm for detecting dyskinesia crises and tremors from inertial home recordings. Indeed, faced to the variability of daily movements, especially on the wrist, it is impossible to describe with deterministic models these events. Thus, we adopted a machine learning approach.

Topological Data Analysis Features

It is a recent field that emerged from various works in applied topology and computational geometry (see Section II.3.4). It aims at providing well-founded mathematical, statistical and algorithmic methods to exploit the topological and underlying geometric structures in data based on persistence homology. It is a method aimed at computing topological features of a space at different spatial resolutions. By construction, those features are more likely to represent true characteristics of the underlying space (rather than artifacts of sampling, noise, or particular choice of parameters) as they are intrinsically linked to the spatial relationships of the data points.

To compute the persistence homology of a space, it must first be represented as a nested family of simplicial complex (basically a graph made of a set of points and their relationships: lines and triangles in a two-dimensional space). This family is called a filtration. Generally, the construction of this filtration is based on the definition of a distance function, whose values are used to index the complexes in the family.

The theory of persistence homology allows us to uniquely represent the persistence homology of a filtered simplicial complex with a persistence barcode or persistence diagram. A barcode diagram represents each persistence generator with a horizontal line beginning at the first filtration level where it appears, and ending at the filtration level where it disappears, while a persistence diagram plots a point for each generator with its x-coordinate the birth time and its y-coordinate the death time.

In practice, the 3 dimensions raw signals are converted into point cloud with a sliding window approach and then we build a ball of increasing radius around those points until finding some intersections (birth time). Pursuing this method leads to cover some points and destroy some of the previously created structures (death time). Finally it ends up with components (date of birth and death), which are represented through persistence diagram and barcode.

One problem is that one window does not ensure to compute the same amount of topological features. To overtake this issue we compute the persistence landscapes that is a convenient representation for machine learning algorithm as they can be used as 1D signals. In Chapter VI we will see how we use them as inputs of our Neural Network for Parkinson's event detection.

This chapter aims to present a first stride detection algorithm. It is based on the extraction of candidate intervals from the inertial norms recorded by the ActiMyo device. Among these intervals, some are true strides and others correspond to movements that are not strides. Thanks to the labeled databases presented in Section III.4.1, we can compute a prediction function calculated by Gradient Boosting Trees algorithm (see Section II.2.2). It allows, with relevant features calculation (see Section III.2), to select from the set of candidate intervals the true strides. In Section III.3, we present its learning performances and the overall algorithm performances on recordings in motion capture environment. The work of this chapter has been published in [START_REF] Grelet | Stride detection for pedestrian trajectory reconstruction: a machine learning approach based on geometric patterns[END_REF], IEEE conference paper.

Intervals Extraction Method

The ActiMyo device records along time the acceleration and the angular velocity in its body reference frame with 130 Hz frequency (respectively γ t (t) and ω t (t)). The device should be worn at the ankle as illustrated in the Figure 31. In this default placement, the sensors record the inertial data in the reference frame defined by the Z axis aligned with the leg and the X axis aligned with the foot. However we observed that the device may be worn upside down and may turn around the ankle during the recording. Typically, in Figure 7, the Y axis is aligned with the leg (acceleration close to -g when the foot is on the ground). To overtake the unknown device position that does not allow the interpretation of the inertial data between the three axes, we decided to study the norm of γ t (t) and ω t (t). We observed that strides induce a peak in the norm of the acceleration when the foot touches the ground. Then the beginning and the end of the interval are defined by local minima of the angular velocity norm or when the acceleration norm is close to 9.81 (the gravity value in m/s 2 ). Indeed, when the foot is on the ground, the angular velocity of the ankle is lower than during the swing phase and the specific ankle acceleration is close to zero: the accelerometer sensors record only the gravity. However, the choice among the minima of the angular velocity norm is challenging. In addition, during non walking activities such as bicycling, the same type of patterns in the inertial norm happens. To illustrate the complexity of our application we represent in Figure 32 the end of an ankle recording (inertial norms in blue). The user performed three strides highlighted in green before removing the device and carrying it in his hands (in red). In the red part, the intervals extraction algorithm selected several intervals as it faced lot of acceleration peaks surrounded by angular velocity minima or acceleration values close to 9.81. The Figure 33 shows two extracted intervals, one corresponding to classify the considered interval: if it is a stride or not. One could only compute features from the norms of the signals but it misses a lot of relevant information contained in each axis. That is why during the features engineering process the main idea is to project the inertial data in a reference frame with the same definition for each interval.

Features engineering

The database "DB3" (see Section II.4.1) contains a dozen of co-workers recordings of various ages and heights practicing several activities under video control. At the ankle, the device has been carefully fixed with the default placement, ensuring that the system was placed as defined in Figure ??. With synchronisation between the video and ActiMyo data time scales, the performed strides have been annotated among "atypical steps", "walking", "running", "upstairs" and "downstairs".

Activity Atypical steps Walking Running Upstairs Downstairs Label y a 1 2 3 4 5

Table 3: Activity labels definition.

From these records, the gyrometer data of ĪDB3 (extracted intervals that are true strides, see Section II.4.2) were used to define a reference pattern Ω y a in R 3×n for each activity. In Section III.2.1, the goal is to fit the gyroscope data of a new candidate stride interval to each reference pattern by allowing a rotation. Then, if the considered extracted interval is a stride, the swing phase (see Figure 14) is visible on the Y axis of the gyrometer data. The aim of Section III.2.2 is to model the forward swing by computing a 1D reference pattern for the five considered activities presented in Table 3. The variables computed along the previous stages are combined with features based on functional data analysis (Section III.2.3).

Sensors alignment

Let Ω y s = (Ω y s 1 , . . . , Ω y s n ) with Ω y s i ∈ R 3 the 3D reference pattern data of size n on the three gyrometer axes and (ω 1 , . . . , ω N ) the gyroscope data of a new candidate stride interval. The first step is to bring the observed data to the same number of samples as the reference pattern by a cubic spline interpolation [START_REF] Dikshit | Discrete cubic spline interpolation[END_REF] on each axis. Let ω = (ω 1 , . . . , ωn ) be the vector of the interpolated data. We want to compute the rotation matrix R * that minimizes n i=1 w i ||R ωi -Ω y s i || 2 2 with R a rotation matrix in R 3×3 . The coefficients w 1 , . . . , w n are the weights given to the samples of the pattern ( n i=1 w i = 1). In practice we set empirically higher weight values to the samples in the middle of the stride to avoid side effects. Indeed, data in the end can be noisy by the contact of the foot with the ground. Moreover, the foot movement on the ground during the stance phase is less specific to the activity than during the swing phase. Hence, the weights are set close to zero when the foot is on the ground and increase linearly over time until the foot is in the air before decreasing linearly with time when the foot approaches the ground.

Property 1. -Given ω i ∈ R 3 and Ω y s i ∈ R 3 for all i in [[1, n]]. The solution of the problem R * = argmin RR T =I 3 ,det(R)=1 n i=1 w i ||R ωi -Ω y s i || 2 2 ,
is given by

R * = V U T ,
where I 3 is the identity matrix in R 3×3 , V and U are the unitary matrices of the decomposition into singular values of ωW (Ω y a ) T , and W = diag(w 1 , . . . , w n ) with

n i=1 w i = 1. Proof 1. - ||R ωi -Ω y a i || 2 2 = (R ωi -Ω y a i ) T (R ωi Ω y a i ) = (ω T i R T -(Ω y a i ) T )(R ωi -Ω y a i ) = ωT i R T R ωi -ωT i R T Ω y a i -(Ω y a i ) T R ωi + (Ω y a i ) 2 = (ω i ) 2 -ωT i R T Ω y a i -(Ω y a i ) T R ωi + (Ω y a i ) 2 Therefore, argmin RR T =I 3 , det(R)=1 n i=1 w i ||R ωi -Ω y a i || 2 2 = argmin RR T =I 3 , det(R)=1 - n i=1 w i ( ωT i R T Ω y a i -(Ω y a i ) T R ωi ).
In addition for all i in 1, n we have ωT

i in R 1×3 , R T in R 3×3 and Ω y a i in R 3×1 . Thus ωT i R T Ω y a i is a scalar and ωT i R T Ω y a i = (ω t i R T Ω y a i ) T = (Ω y a i ) T R ωi . We can write, R * = argmin RR T =I 3 , det(R)=1 -2 n i=1 w i (Ω y a i ) T R ωi = argmax RR T =I 3 , det(R)=1 n i=1 w i (Ω y a i ) T R ωi = argmax RR T =I 3 , det(R)=1 w 1 (Ω y a 1 ) T R ω1 + . . . + w n (Ω y a n ) T R ωn = argmax RR T =I 3 , det(R)=1 T r(W (Ω y a ) T R ω) Indeed, W (Ω y a ) T RX =    w 1 . . . w n       (Ω y a 1 ) T . . . (Ω y a n ) T    R ω1 , . . . , ωn =    w 1 (Ω y a 1 ) T . . . w n (Ω y a n ) T    R ω1 , . . . , R ωn =    w 1 (Ω y a 1 ) T R ω1 . . . w n (Ω y a n ) T R ωn    Hence n i=1 w i (Ω y a i ) T R ωi = T r((W (Ω y a ) T )(R ω)) = T r((R ω)(W (Ω y a ) T ).
Let the decomposition into singular values of ωW (Ω y a ) T : ωW (Ω y a ) T = U ΣV T , therefore we have

R * = argmax RR T =I 3 , det(R)=1 T r(W (Ω y a ) T R ω) = argmax RR T =I 3 , det(R)=1 T r(R ωW (Ω y a ) T ) = argmax RR T =I 3 , det(R)=1 T r(RU ΣV T ) = argmax RR T =I 3 , det(R)=1
T r(ΣV T RU )

However the matrices V T , R and U are orthogonal matrices. If we write O = V T RU we can deduce that the matrice O is orthogonal too:

(V T RU ) -1 = U -1 R -1 (V T ) -1 = U T R T V = (V T RU ) T We write O = (O 1 , O 2 , O 3 ). As O is orthogonal, we have for all i in 1, 3 O T i O i = 1 which is equivalent to 3 j=1 O 2 ij = 1.
Hence for all i and j in 1, 3

|O ij | ≤ 1, in particular |O ii | ≤ 1. By writing Σ = diag(σ 1 , σ 2 , σ 3 ) we have, T r(ΣV T RU ) = T r(ΣO) = 3 i=1 σ i O ii ≤ 3 i=1 σ i Thus the maximum of T r(ΣV T RU ) is reached for all i in 1, 3 O ii = 1. As O is orthogonal, it is equivalent to consider 0 = I 3 . O = I 3 ⇔ V T RU = I 3 ⇔ R = (V T ) -1 U -1 ⇔ R = V U T
Thus the solution is given by: R = V U T

We compute this rotation matrix for the five 3D reference patterns to be sure that at least one good alignment has been computed. In the following of this Section 4.2.2, we assume that the rotated data of the extracted strides are in the default reference frame defined in Figure ??.

Swing modelling

We saw (see Figure 29) that the cycle of a stride is divided into two phases: swing and stance. During the swing phase, moving the foot forward creates a distinctive pattern in the Y axis (with default device placement assumption) of the angular Property 2. -Given Λ l = (α l1 , . . . , α lp ) T and the symetric matrix A defined by

A ij = l α l,i α l,j ||Λ l || 2 2
, the solution of the problem (P) is given by:

ĥy a = ± p u=1 θ pu e u , (12) 
and

ây a l = p u=1 α lu βu p u=1 α 2 lu , ( 13 
)
where θ p is the eigenvector of A associated to its greater eigenvalue.

Proof 2. -The definition of ây a l is given by the minimization of the expression ||a y a l h y a l -ĥy a || that is equivalent to minimize ||a y a l h y a l -ĥy a || 2 . Considering the notations of Equation 10and Equation 11we have:

||a y a l h y a l -ĥy a || 2 = p u=1 (a y a l α lu -βu ) 2 = p u=1 (a y a l ) 2 (α lu ) 2 + ( βu ) 2 -2a y a l α lu βu = (a y a l ) 2 p u=1 (α lu ) 2 -2a y a l p u=1 α lu βu + p u=1 ( βu ) 2 .
By derivating with respect to a y a l we have:

2a y a l p u=1 (α lu ) 2 -2 p u=1 α lu βu > 0,
that is equivalent to:

a y a l > p u=1 α lu βu p u=1 (α lu ) 2 .
Thus the solution of Equation 9is given by:

ây a l = p u=1 α lu βu p u=1 α 2 lu .
The estimator ây a l is well defined because its denominator p u=1 α 2 lu is equals zero if and only if for all u in 1, p we have α lu = 0.

By equivalence of the norms in finite dimension, such a function is the null function defined in [0, 1] (if we consider in particular the norm ||.|| 2 ). However the studied functions have strictly negative values (negative angular velocity values on the Y axis between two zero crossings).

The solution of Equation 8is the function ĥy a that minimizes the expression

|| N y a l=1 ||â y a l h y a l -h y a || 2 .
Considering the notations of Equation 10and Equation 11we have: 

N y a l=1 ||â y a l h y a l -h y a || 2 = N y a l=1 (â y a l ) 2
α lu β u = N y a p u=1 β 2 u + N y a l=1 ( p u=1 α lu β u ) 2 ( p u=1 α 2 lu ) 2 -2 N y a l=1 p u=1 α lu β u p u=1 α 2 lu = N y a p u=1 β 2 u - N y a l=1 ( p u=1 α lu β u ) 2 p u=1 α 2 lu .
Thus we want to minimize the expression

N y a p u=1 β 2 u -N y a l=1 p u=1 α lu βu ( p u=1 α 2 lu ) 2 under the constraint ||h y a || = 1 that is equivalent to p u=1 β 2 u = 1.
With the notation in the canonical basis of R p , Λ l = (α l1 , . . . , α lp ) T , X = (β 1 , . . . , β p ) T and X = ( β1 , . . . , βp ) T we have:

X = argmin ||X|| 2 2 =1 N y a p u=1 β 2 u - N y a l=1 ( p u=1 α lu β u ) 2 p u=1 α 2 lu = argmin ||X|| 2 2 =1 N y a - N y a l=1 ( p u=1 α lu β u ) 2 p u=1 α 2 lu = argmax ||X|| 2 2 =1 N y a l=1 ( p u=1 α lu β u ) 2 p u=1 α 2 lu = argmax ||X|| 2 2 =1 N y a l=1 < X, Λ l > 2 2 ||Λ l || 2 2 = argmax ||X|| 2 2 =1 N y a l=1 X T Λ l Λ T l X ||Λ l || 2 2 = argmax ||X|| 2 2 =1 X T N y a l=1 Λ l Λ T l ||Λ l || 2 2 X = argmax ||X|| 2 2 =1
X T AX.

The matrix A in R p×p is defined for all i and for all j in 1, p by

A ij = N y a l=1 α li α lj ||Λ l || 2 2
. It is a symetric matrix with values in R, thus its eigenvectors are defined in R. We note λ 1 ≤ . . . ≤ λ p its eigenvalues. As A is symetric, it is diagonalizable in the orthonormal basis of its eigenvectors (w 1 , . . . , w p ) associated to λ 1 , . . . , λ p . The expression of X in the basis (w 1 , . . . , w p ) is given by X = p u=1 β w u w u . Then we have:

X T AX = p u=1 λ u (β w u ) 2 ≤ p u=1 λ p (β w u ) 2 ≤ λ p p u=1 (β w u ) 2 ≤ λ p . Indeed, ||X|| 2 2 = 1 is equivalent to p u=1 (β w u ) 2 = 1.
But if we take X = ±w p , we have ||X|| 2 2 = 1 and

X T AX = w T p Aw p = α p w T p w p = α p .
We can deduce that w p is solution and thus:

ĥy a = ± p u=1 w pu e u .
We chose ĥy a among these two solutions in order to have positive values for ây a l , namely

p u=1 α lu βu p u=1 α 2 lu > 0.
From the above, we want to express the functions defined in [0, 1] taking values in R in a finite orthonormal basis. Let assume that the functions h y a and h y a l belong to the space R[X], the basis composed by the polynomials of Lagrange fulfil the criteria and the expression of a function is easy. Let assume that the space E of the studied functions h y a and h y a l are the set of polynomials defined on [0, 1], with real coefficients and with degrees smaller or equal to d. Let the regular subdivision of [0, 1] :

0 = 0 d = x 0 < 1 d = x 1 < . . . < x d = d d = 1.
The Lagrange polynomials associated to these points are the polynomials defined for all t in [0, 1] and for all u in 0, d , l u (t) = d z=0,d =u t-xz xu-xz . They constitute a basis of the space E. In addition, for the scalar product < P, Q >= d i=0 P (x u )Q(x u ), this basis is orthonormal. In this basis we write the functions h y a l for all t in [0, 1] by the following:

h y a l (t) = d u=0 h y a l (x u )l u (t).
However we saw that the gyrometer sensors record data with 130 Hz frequency. We note t y a l,1 < t y a l,2 < . . . < t y a l,n the n recording times during the l th forward swing of the database "DB3" (see Section II.4.1) performed with the activity y a . As in this database the ActiMyo device has been set carefully with the default placement, the forward swing values associated with the recordings time are given by the Y axis of ω t . We note them ω y a l,1 , . . . , ω y a l,n . We consider the n couples (0, ω y a l,1 ), ( 1n , ω y a l,2 ), . . . , (1, ω y a l,n ). this subdivision does not necessarily correspond to the one defined by the x u . Thus, we compute a cubic splines interpolation ( [START_REF] Dikshit | Discrete cubic spline interpolation[END_REF]) on the couples (0, ω y a l,1 ), . . . , (1, ω y a l,n ) that estimates the values of h y a l (x u ). The quality of Lagrange polynomials interpolation depends on the d value (the more d is large better is the interpolation). However considering a d value too large would be too much time consuming for the computation of the eigenvectors of A (see Property 2) with O(d 3 ) dimension complexity. In practice, d = 99 leads to sufficient precision. For illustration we represent in Figure 35 the forward swing for a walking stride with the n recordings times (resized in [0, 1]) and its interpolation by Lagrange polynomials in dimension 100. The 5 functions ĥy a are computed once for all and the procedure is sum up in the following Algorithm 10.

Algorithm 10: Computation of the 1D forward swing pattern for activity y a .

1 Compute the matrix A such as for all i, j in 0, 99 :

A ij = N y a l=1 h y a l (x i )h y a l (x j ) d u=0 . h y a l (x u ) 2 2
Compute the eigenvalues (in R) of A.

3 Consider the greatest eigenvalue associated with the eigenvector θ d ∈ R d+1 .

4 Compute the 1D reference pattern for the activity y a define in [0, 1] :

ĥy a (t) = -| 99 u=0 θ du l u (t)|.
For a an extracted interval, after sensors alignment with the method presented in Section III.2.1, if negative values are detected in the Y axis of gyrometer data between two zero crossings, we compute the function g defined in [0, 1] with values in R in the Lagrange polynomials basis:

g(t) = 99 u=0 g(x u )l u (t).
Then for each class y a we compute the multiplier coefficient a y a (Equation 13) and compare a y a g(t) it to the 1D reference pattern ĥy a . If the residuals ||a y a g(t) -ĥy a || 2 are small for one 1D reference pattern, it means that g probably corresponds to the forward swing of a stride of activity y a . On the other hand, it the residuals are large for every 1D reference patterns, it means the extracted interval probably does not correspond to a stride.

Functional data analysis

From the norm and each axis of both acceleration and angular velocity, features were computed in the time and frequency domains: maximum, mean, standard deviation, root mean square, inter-quantile range, Fast Fourier Transform, 3 rd and 4 th order moments, auto-correlation and correlations between signals etc.

Following the strategy explained in this section for each element of our extracted intervals algorithm, 2695 features are computed. The overall procedure is described in a pseudo-code in Algorithm 11. At this stage, we want to build a binary classifier that decides if one extracted interval is a stride or not. 

Intervals classification with GBT

This section describes the performance of the GBT classifier on the extracted intervals from the database "DB3" (Section III.3.1) and the performance of the overall stride detection algorithm during experimental tests in Motion Capture environment "DB4" (Section III.3.2). As a reminder, the descriptions of "DB3" and "DB4" are given in Section II.4.1.

Cross-validation performance

A dozen of co-workers of various ages and heights were filmed practicing several activities while wearing the system at the ankle and the wrist at Sysnav company under video control, composing the database of recordings "DB3". From this database, the extraction algorithm built the family ÎDB3 with 6213 intervals that do not correspond to strides (label -1) and 5964 stride intervals divided into 5 different activities (label 1): "atypical step" that includes small step, side step, backward walking etc., "normal walking", "running", "upstairs" and "downstairs". We computed the features following the Algorithm 11 for each element in ÎDB3 and then we launched the 10-fold cross-validation method testing several set of GBT parameters. We focused the tuning procedure for important parameters that can lead to overfitting such as the number of trees, the learning rate, the maximum depth of the trees and subsampling proportion. The cross-validation results of the best parameters are presented in the following confusion matrix (Table 4).

Predicted -1 Predicted 1 Actual -1 6195 18 Actual 1 19 5945

Table 4: Confusion matrix.

The global error is about 0.3%. The distribution of the false negatives is presented in the Table 6. Our algorithm made no mistake on the "walking", "running", "upstairs" and "downstairs" strides. On "atypical" strides, it achieved a detection error rate of 1.5%. They are the most difficult kind of strides to detect because the associated 3D and 1D patterns are less specific. Consequently the sensors alignment procedure sometimes leads to an wrong orientation, namely different to the default one. Moreover a small step can be performed without a forward swing which makes the features engineering in Section III.2.2 useless.

Atypical steps Walking Running Upstairs Downstairs FN

The performance of the cross-validation depends on the interval extraction algorithm. Indeed, the extraction procedure may not select true strides in the "DB3" recordings that would have been wrongly classified by the GBT prediction function and then would have deteriorated the cross-validation score. In order to better analyze the performances of our algorithm, in the following we study the results of our stride detector in MOCAP environments "DB4".

False negative rate in MOCAP

A group of seven people wore the ActiMyo with infrared markers during MOCAP sessions in a 25 m 2 , composing the databse of recordings "DB4". Several cameras were set in order to film whole scene. They broadcast infrared radiation that was reflected by the markers. This allowed the camera to record the position of the markers with sub-millimeter accuracy. We launched the stride detector algorithm (Algorithm 7), with stage 2 corresponding to the features engineering process described in Algorithm 11, on the recordings of "DB4". It provides a family of intervals detected as strides ĨDB4 = {(s 1 , ẽ1 ), . . . , (s i , ẽi ), . . . , (s n , ẽn )}. With the MOCAP altitude (see Figure 28), we can note precisely when the foot is in contact with the ground during the stance phases in "DB4". We note

I DB4 = {(s 1,1 , s 1,2 , e 1,1 , e 1,2 ), . . . , (s n,1 , s n,2 , e n,1 , e n,2
)} the family of strides with (s i,1 , s i,2 )

Contributions

This section described an algorithm that allows to detect when a stride occcurs with its start and end times from inertial sensors worn at the ankle. This work is divided in four main stages:

• The selection of candidate intervals that may correspond to strides.

• The calculation of a rotation applied on the data in order to work in the same frame for all records. This step is built on fitting the gyroscope data with 3D geometric patterns.

• The extraction of the forward swing on the gyroscope axis y. These data are then fitted with 1D reference patterns.

• The binary classification of the intervals using the Gradient Boosting Trees algorithm with features computed along the previous steps.

For normal walking it has shown good results achievable with existing algorithms. But the method described in this section also has a good sensitivity for atypical strides such as small steps, side steps and backward walking contrary to most algorithms proposed in the literature. In Table 7 and Table 8 we present the atypical strides detection rates for the threshold based algorithm developed by Sysnav and for the machine learning (M.L.) approach described in this Section, both launched on the "DB4" recordings. The ActiMyo device is a strapdown IMU (see Section I.2), thus the inertial data are recorded in its reference frame that we called body frame. Consequently, the rotation matrix that allows to express the acceleration (including the gravity) and the angular velocity in a world frame is not given directly. The general problem of reference coordinate frames was introduced in Figure 1 with the associated notations. One major consequence is that the speed of the device is difficult to estimate. However, we believe that this feature would be particularly relevant for detecting strides. Indeed when the foot is on the ground, namely during the stance phase, the speed of the ankle is small compared to the swing phase, whatever the activity. Even if during running for example, the ankle speed can reach more than 4 m/s when the foot is on the ground, it is still much greater during the swing. The idea is that studying the minima around the maxima of the ActiMyo speed would give the beginning and the end of the strides. But still, it requires to estimate the speed in the world frame.

Small steps

In this chapter we propose a method removing the gravity from the acceleration and computing a terrestrial reference frame (Section IV.1). Then the integration of the projected linear velocity leads to the ankle pseudo-speed computation, noted vW (Section IV.2). This is a rough estimation of the ActiMyo speed that is less accurate than the one computed in the extended Kalman filter (see Chapter V) but it allows to proposed relevant candidate stride intervals and shows fast computation.

Thanks to the labeled databases presented in Section II.4.1, we can compute a prediction function calculated by Gradient Boosting Trees algorithm (see Section II.2.2). It allows, with relevant features calculation (see Section IV.3), to select from the set of candidate intervals the true strides. In Section IV.4, we present its learning performances and the overall algorithm performances on recordings in motion capture environment. The work of this chapter has been published in Sensor journal [START_REF] Grelet | Robust stride detector from ankle-mounted inertial sensors for pedestrian navigation and activity recognition with machine learning approaches[END_REF] and in [START_REF] Grelet | Robust pedestrian trajectory reconstruction from inertial sensor[END_REF] IEEE conference paper.

Terrestrial Reference Frame Computation

The main idea of the terrestrial reference frame computation lies in the fact that in an inertial reference frame, the integration of γ is equal to the difference of the ankle speed (a few meters per second for a pedestrian) that is small compared to the integration of the gravity. At any time t in [0, T ], the device records the acceleration and angular velocity data (respectively γ t (t) and ω t (t) in R 3 ) in the body reference frame of the system. For all u in [t, t + ∆t] we compute the rotation matrix R t u between the body reference frame at time t and u by angular velocity integration. The matrix R t u is the solution of Equation ( 14):

dR t u du = -R t u Skew(ω u (u)), (14) 
with R t t = I 3 and the Skew operator defined for all vectors n in R 3 , n = (n x , n y , n z ) T :

Skew(n) =   0 -n z n y n z 0 -n x -n y n x 0   .
Let a u (u) be the acceleration of the ActiMyo system without gravity g u : γ u (u) = a u (u) + g u . Then, the mean of the recorded acceleration projected in the body reference frame at time t, on an interval ∆t, is given by:

1 ∆t t+∆t t R t u γ u (u)du = 1 ∆t t+∆t t R t u (a u (u) + g u )du.
We assume that for a sufficiently small ∆t, the integration of the angular velocity produces no error. As a result, R t u g u is a constant g t on this interval. We have:

1 ∆t t+∆t t R t u γ u (u)du = 1 ∆t t+∆t t R t u (a u (u) + g u )du = 1 ∆t t+∆t t R t u a u (u)du + g t .
Let v t (u) be the speed of the ankle in the reference frame at time t for all u in [t, t + ∆t]. From the equation above we can write:

1 ∆t t+∆t t R t u γ u (u)du = v t (t + ∆t) -v t (t) ∆t + g t .
For a sufficiently long duration of integration ∆t, we assume that the speed difference of the ankle, between ∆T and t, divided by ∆t is small relative to the gravity:

v t (t + ∆t) -v t (t) ∆t ≪ g t . (15) 
Thus, we can deduce the following equation:

1 ∆t t+∆t t R t u γ u (u)du ≈ g t . (16) 
The assumption in Equation ( 15) is valid for large ∆t. However, this approach requires that the mean of the acceleration in an inertial reference frame is computed. Due to the integration drift with time (caused by lack of precision and noise of inexpensive sensors in ActiMyo), if ∆t is too large, we have no guarantee that R t u provides a rotation between the body reference frame at time u and t. In practice, we found a compromise by setting ∆t = 15 s.

Thanks to Equation ( 16) we can identify the gravity in the body reference frame at time t : g t . If the angular velocity integration did not produce any error, for all t > 0, g t would be equal to R t t+dt g t+dt . In practice, we observe variations due to the integration drift. For all t > 0 we can correct this by computing the rotation matrix R gt that aligns g t over time. We introduce the vector a as follows:

a = lim dt→0 g t /||g t || × R t t+dt g t+dt /||R t t+dt g t+dt || dt .
Then the rotation matrix R gt is the solution of the following equation:

dR gt dt = -R gt Skew(a). (17) 
As a result, we can project the inertial data to have g constant and equal to g t=0 . Finally, we define and project the data into a terrestrial reference frame W by considering the vectorg 0 ||g 0 || as the new Z W axis and arbitrarily choosing X W and Y W axes in order to build an orthonormal basis. The overall procedure is described in the pseudo-code Algorithm 12.

We now have access to the acceleration of the ankle for all t by removing the gravity (≈ 9.81 m/s) from the Z W axis:

âW (t) = γ W (t) -   0 0 9.81   . ( 18 
)
Algorithm 12: Terrestrial reference frame computation with gravity identification. Input : Recording of the system worn at the ankle Output: Inertial data projected in a terrestrial reference frame with gravity identification

1 foreach t ∈ [0, T ] do 2
Computation of R t u by gyrometer integration during ∆t.

3

Integration of R t u γ u (u) during ∆t that we assume to be close to gravity.

4

Alignment of the computed gravity with the previous ones.

5 end 6 Alignment of the gravity with the Z W axis of the final terrestrial reference frame and projection of the inertial data.

The advantage of this attitude filter is the efficiency of its computation. This characteristic is necessary as we use âW to compute a pseudo-speed introduced in Section IV.2 that is one of the main features in our stride detector. It allows to extract a family of candidate intervals that may correspond to stride and provides, by integration, a pseudo-trajectory that appears to be a key variable for the Gradient Boosting Trees decision function. Indeed, this approach extracts intervals that are not strides when for example the wearer is moving the device in the hand during the required time to install or uninstall the system from the docking station.

Pseudo-speed Computation

In the previous section, we described the projection of the inertial data recorded by the device into a terrestrial reference frame. In this procedure, the gravity is removed from the acceleration, which can be integrated to compute the pseudospeed of the ankle during the recording with an unknown initial condition. The first step of our algorithm is to detect phases of inactivity where we assume the ankle velocity as null. Let {(t 0 1 , t 1 1 ), . . . , (t 0 i , t 1 i ), . . . , (t 0 n , t 1 n )} the n detected couples of inactivity instants with the ankle in motion in between. We can integrate âW between t 0 i and t 1 i chronologically and in the reverse-time direction to compute what we call respectively forward speed (v f W ) and backward speed (v b W ). We introduce here their general expression between two instants a and b, with a < b :

       vf W (t; a, b) = t-a 0 âW (a + u)du + vf W (a; a, b), vb W (t; a, b) = b-t 0 âW (b -u)du + vb W (b; a, b). (19) 
In particular, the instants t 0 i and t 1 i are defined as moments where the ankle is motionless, so we assume vf

W (t 0 i ; t 0 i , t 1 i ) = 0 and vf W (t 1 i ; t 0 i , t 1 i ) = 0.
As a result we have:

         vf W (t 0 i , t 1 i )(t) = t-t 0 i 0 âW (t 0 i + u)du, vb W (t 0 i , t 1 i )(t) = t 1 i -t 0 âW (t 1 i -u)du. (20) 
Since the integration drift accumulates errors over time, we make the assumption that for all t in [a, b], the closer t is to b, the more vf W (t; a, b) produces errors and on the opposite, the closer t is to a, the more vb W (t; a, b) produces errors. That is why we compute the pseudo-speed vW (t; a, b) as a weighted mean between a and b :

vW (t; a, b) = vf W (t; a, b) b -t b -a + vb W (t; a, b) t -a b -a . (21) 
We note t 0 is the first index of inactivity detected and t n+1 is the last one. For all t < t 0 we can only compute the backward speed, as we do not know the initial condition for t = 0 :

vb W (t; 0, t 0 ) = t 0 -t 0 âW (t 0 -u)du. (22) 
In contrast, for all t > t n+1 we can only compute the forward speed between t n+1 and T because we do not have any information on the speed of the ankle at the end of the recording:

vf W (t; t n+1 , T )(t) = t-t n+1 0 âW (t n+1 + u)du. (23) 
We can now define the pseudo-speed vW during the entire recording. The pseudocode of vW calculation is presented in Algorithm 13. For all t in [0, T ] we have:

vW (t) =          vb W (t; 0, t 0 ) if t < t 0 , vW (t; t 0 i , t 1 i ) if t 0 i < t < t 1 i , ∀i ∈ 1, n , vf W (t, t n+1 , T ) if t n+1 < t, 0 otherwise. (24) 
Algorithm 13: Pseudo-speed computation.

Input : Inertial data projected in a terrestrial reference frame with gravity removed Output: Pseudo-speed 1 Detection of inactivity. 2 Definition of intervals with device in motion: {(t 0 1 , t 1 1 ), . . . , (t 0 i , t 1 i ), . . . , (t 0 n , t 1 n )}. 3 Backward integration between t 0 and t 0 1 (Equation 22). 4 Forward integration between t 1 n and t f inal (Equation 23).

5 foreach interval [t 0 i , t 1 i ] do 6 
Forward and backward integration between t 0 i and t 1 i (Equation 20).

7

Weighted mean of the forward speed and backward speed (Equation 21).

8 end

Pseudo-speed norm extrema for interval extraction

As inertial criteria (acceleration norm close to one g and local minima of angular velocity) described in Chapter III for extracting candidate stride intervals, the norm of vW is a good variable to detect the start and the end of a stride during walking. This characteristic is illustrated in Figure 40, the stride segmentation is given by minima around a maximum. Yet, while the previous extraction algorithm has shown its limits in situations such as fast side stepping, prompt descent of stairs or during small steps with soft foot contact, the pseudo-speed norm criteria uations to learn. In the following we present a new rotation matrix around Z W that projects any interval in a terrestrial reference frame invariant to the initial X W and Y W axes. It is based on a speed estimation at the end and the start of the extracted interval (see Section IV.3.1), then the alignment procedure is described in Section IV.3.2. Finally we present in IV.3.3 the computed features from functional data analysis techniques on the time series we have access to for each considered interval.

Speed estimation at extracted interval boundaries

With the notations introduced in Section II.4.2, the family Î of one recording represents the set of n intervals extracted from the algorithm described in Section IV.2.1. The intervals are defined by one start and one end: Î = {(ŝ 1 , ê) , . . . , (ŝ i , êi ), . . . , (ŝ n , ên )}. Inspired by the Sysnav algorithm developed for trajectory reconstruction of an ankle-mounted IMU pedestrian in Section I.4.4, we assumed that during the beginning and the end of a stride, when the foot is flat on the floor, the ankle is in rotation around the heel. Then, if the ith interval is a true stride we assumed that the ankle speed at ŝi and êi is given by a lever arm model:

               vW (ŝ i ) = ω W (ŝ i ) ×   0 0 r   , vW (ê i ) = ω W (ê i ) ×   0 0 r   , (25) 
with r the device's height relative to the ground. In practice, we set the value of r to 8 cm. From Equation [START_REF] Chazal | An introduction to topological data analysis: fundamental and practical aspects for data scientists[END_REF] we can compute the forward speed vf W (t; ŝi , êi ) and the backward speed vb W (t; ŝi , êi ) for t in [ŝ i , êi ]. If the interval i is a stride, these two speeds are close because we integrate the acceleration during a short period so that the drift stays small. However if i is a non stride interval, ŝi and êi do not necessarily correspond to the ankle rocker. That is why we observed differences in the residuals |v b W (t; ŝi , êi ) -vf W (t; ŝi , êi )| for t in [ŝ i , êi ] as features. The residuals can indeed be much larger for movements that are not strides. This phenomenon is illustrated in Figure 44 where the computed forward speed norm ||v f W || 2 (in green) and backward speed norm ||v b W || 2 (in red) have been represented for two extracted intervals that are characterized with very similar inertial norms patterns. The interval on the left is a stride and the interval on the right correspond to a device movement that is not a stride. We can see that the gap between the forward and backward speed is larger for the non stide interval.

Pseudo-trajectory and sensors alignment

Then, thanks to Equation [START_REF] Chesneau | Magneto-inertial dead-reckoning in inhomogeneous field and indoor applications[END_REF], we compute vW (t; ŝi , êi ) from vf W (t; ŝi , êi ) and vb W (t; ŝi , êi ) on each studied interval. By integrating this pseudo-speed, we compute a pseudo-trajectory in the terrestrial reference frame W , starting from the origin (0, 0, 0) and ending in (x êi , ŷê i , ẑê i ) T :

  xê i ŷê i ẑê i   = êi ŝi vW (u; ŝi , êi )du. ( 26 
)

Functional data analysis

The GBT algorithm requires the observations features of the learning set ÎDB3 = {(ŝ 1 , ê1 , y s 1 ), . . . , (ŝ i , êi , y s i ), . . . , (ŝ n , ên , y s n )} to be the same variables for all i. However, the size of the extracted intervals [ŝ i , êi ] are not all the same. As a consequence, the 3D interval data (pseudo-speed norm, pseudo-trajectory, acceleration, angular velocity etc.) projected in the terrestrial reference frame W i are not directly suitable for the GBT algorithm. To face this problem, we computed features for each axis from signal processing techniques in time and frequency domains such as maximum, mean, standard deviation, root mean square, inter-quantile range, Fast Fourier Transform, 3 rd and 4 th order moments, auto-correlation and correlations between signals etc. In the end, the number of features was equal to 1657. This allow us to apply the GBT algorithm to compute the classifier that will identify the strides among the extracted intervals. Its performance is evaluated in Section IV.4.

Intervals classification with GBT

The following section describes the performance of the GBT classifier on the extracted interval from the database "DB3" (Section IV.4.1) and the performance of the overall stride detection algorithm during experimental tests in Motion Capture environment "DB4" (Section IV.4.2). As a reminder the definition of these databases are described in Section II.4.1. We also present results in challenging situations, namely when the device is moving but not during walking, such as bicycling, car ride, carried in a pocket etc. (Section IV.4.3).

Cross-validation performance

In the database "DB3", a dozen of co-workers of various ages and heights were filmed practicing several activities while wearing the system at the ankle at Sysnav company under video control. From this database, the extraction algorithm based on pseudo-speed norm (Section IV.2.1) and the features engineering process (Section IV.3) built the family of intervals ÎDB3 = {(ŝ 1 , ê1 , x s 1 ), . . . , (ŝ i , êi , x s i ), . . . , (ŝ n , ên , x s n )} with x s i ∈ R 1657 . The video control allowed us to affect a label to each extracted interval leading to a annotated family ÎDB3 = {(ŝ 1 , ê1 , x s 1 , y s 1 ), . . . , (ŝ n , ên , x s n , y s n )} with the label variable y s that takes the value 1 is the interval is a stride, -1 if not. The set ÎDB3 contains 6213 stride interval and 6085 intervals extracted from device movements that are not strides. We launched the 10-fold cross-validation method testing several set of GBT parameters (see Section II.2.2). We focused the tuning procedure for important parameters that can lead to overfitting such as the number of trees, the learning rate, the maximum depth of the trees and subsampling proportion. The cross-validation results of the best parameters are presented in the following confusion matrix (Table 9). Table 9: Confusion matrix.

The mean error is around 3%, namely ten times more than the cross-validation score reached in Chapter III. However this score depends on the difficulty of the set of extracted intervals from the recordings in "DB3". In this Section, the extraction method based on the pseudo-speed norm only selects a few non strides interval when the wearer is walking (whatever the activity). Thus many device movements coming from challenging situations (hand-carried, bicycling etc.) labelled -1 that looked like true strides from inertial data point of view were included in the learning set. As a result, the final score was slightly deteriorated but it led to a more robust classifier. In order to better analyze the performances of our algorithm, in the following we study the results of our stride detector in controlled environments, meaning we know where strides occurred in the recordings. Two kinds of error were considered: the false negatives (FNs) corresponding to missing strides, and the false positives (FPs) corresponding to non-stride intervals wrongly classified with the label 1.

False Negative Rate in MOCAP

We launched the stride detector algorithm on the "DB4" recordings. They are providing by a group of seven people who wore the ActiMyo with infrared markers during MOCAP sessions in a 25 m 2 room. Several cameras were set in order to film the whole scene. They broadcast infrared radiation that was reflected by the markers. This allowed the camera to record the position of the markers with sub-millimeter accuracy. The stride detector algorithm provides a family of intervals detected as strides ĨDB4 = {(ŝ 1 , ẽ1 ), . . . , (s i , ẽi ), . . . , (s n , ẽn )}. With the MOCAP altitude (see Figure 28), we can note precisely when the foot is in contact with the ground during the stance phases in "DB4". We note I DB4 = {(s 1,1 , s 1,2 , e 1,1 , e 1,2 ), . . . , (s n,1 , s n,2 , e n,1 , e n,2 )} the family of strides with (s i,1 , s i,2 ) and (e i,1 , e i,2 ) delimiting the first and last stance phase of the stride i. In this Section we focus on the False negative rate, namely the strides in I DB4 that are not detected by our stride detector (FN). We consider that a stride i in I DB4 is not detected if there is no element j in ĨDB4 such as sj ∈ [s i,1 , s i,2 ] and ẽj ∈ [e i,1 , e i,2 ]. The final results are presented in Table 10. All walking strides with various stride lengths and stride durations (see Figure 36) are detected. This means that our detection achieved 100% accuracy for walking phases with various paces. Our algorithm did not detect all atypical strides, but shows very good results while most existing methods described in the literature do not detect them. In particular, our stride detector do not presents weakness whatever the wearer.

False Positive Rate

A good score for the false negative rate is important, but in return it may lead to an increased false positive rate. We have to pay attention to this type of error, as our algorithm is designed for daily evaluation of the physical conditions of subjects suffering from pathologies associated with movement disorders. Falsely detected strides could deteriorate the statistics during clinical trials. We tested our algorithm on several typical situations that may produce errors: when the ActiMyo system is worn at the ankle but the wearer is not walking (e.g., sitting on a chair and moving the ankle, bicycling, in a car) and when the device is not worn at the ankle (e.g., carried in the hand, in a backpack, in a pocket). The results of several tests are presented in Table 11.

Movement

Walking Our stride detector produced almost no mistakes during these situations. We can see in Table 11 that the most difficult situation is when the ActiMyo device is manipulated in the hand. Some hand movements may look a lot like strides (displacing the system on a table) that even an expert can hardly differentiate by looking at the data we have access to. With 130 Hz frequency, one hour of ActiMyo recording corresponds to 468 thousands data points. The number of extracted non stride intervals depends on the activity intensity. But as an example, one hour of "Hand-Carried" movements can lead to thousands of extracted intervals. Thus, reaching dozens of wrongly predicted intervals still remains a good performance.

Contributions

This section described a stride detector algorithm for ActiMyo recordings. The first step of our algorithm consists of a procedure that removes gravity from the linear acceleration. It allows the computation of a pseudo-speed in a terrestrial reference frame that finally provides a family of candidate intervals that may correspond to strides. Some of these intervals are true strides, while others come from recorded movements that are not strides and we want to exclude. We use a gradient boosting trees algorithm to choose the intervals that we consider as true strides. The stride detection given by the GBT classifier showed 100% stride detection success for more than 5600 walking strides and about 98% detection success for more than 2000 atypical strides such as small steps and side steps. In Table 12 and Table 13 we present the atypical strides detection rates from "DB4" recordings for the threshold based algorithm developed by Sysnav and for the two machine learning (M.L.) approaches described in this thesis (Chapter III and Chapter IV). We can see that the limitations observed with the previous M.L. algorithm in Chapter III are much better handled by the algorithm of this chapter. These improvements are mainly due to the new interval extraction procedure that allows to extract the stride intervals even for small steps with light foot contact (see Figure 42) and also during fast side steps (see Figure 41). Moreover, our stride detector showed its robustness by presenting no error for several critical daily situations such as bicycling, sitting in a car or on a chair, and walking with the device in a backpack or pocket while existing methods in the literature do not consider them. Indeed, they evaluate false positive errors only when the device is correctly worn (on the foot) and the wearer is walking (still generating FP). As our algorithm aims to compute outcomes based on stride trajectory for daily home recordings during clinical, it is important not to produce false positives for stride detection which would distort the medical findings.

The proposed clinical variables are aiming at the motor function domain and include the stride length, stride velocity and distance walked. In order to connect these results to the DMD hospital tests (4-stairs test or 10 meters run test) we want to recognize the activity of each detected strides. In Chapter V we present the algorithm developed by Sysnav that allows to compute the trajectory of a pedestrian wearing the ActiMyo device. This computed trajectory turned out to be a main feature for activity recognition that we describe in Section V.3.

Part V Activity Recognition from Computed Trajectory 2 Trajectory reconstruction performance

For the evaluation of the trajectory reconstruction algorithm, we used the recordings of "DB4" performed in the MOCAP environment that provides the ground truth ActiMyo trajectory. We also validated the algorithm with a test performed in an uncontrolled environment. A co-worker was wearing the system during several hours at Sysnav free to move in the office as he wanted.

Stride length performance in MOCAP

We launched on the database "DB4" (See Section II.4.1) our stride detector presented in Section IV. The "DB4" recordgins a providing by a group of seven people wore the ActiMyo with infrared markers during MOCAP sessions in a 25 m 2 room. Several cameras were set in order to film the whole scene. They broadcast infrared radiation that was reflected by the markers. This allowed the camera to record the position of the markers with sub-millimeter accuracy. We saw in Section IV.4.2 that this algorithm allows to detect 100% of the walking strides and more than 98% of the atypical strides. Then we applied the trajectory reconstruction algorithm in order to compare the results with the trajectory provided by the MOCAP infrared infrastructure. As one of the clinical variables for Duchenne Muscular Dystrophy (DMD) is based on daily statistics of stride lengths (see Section I.3.3), we studied the difference between the computed stride length and the ground truth in absolute value. The results are presented in Table 14 and Table 15. Our algorithm achieved similar performance to existing methods [START_REF] Ho | Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone[END_REF][START_REF] Hannink | Stride length estimation with deep learning[END_REF] for normal walking but also achieved good results for atypical strides (around 5 cm video control. The four-stairs test consists of DMD patients climbing four stairs as quickly as possible. During one session, they performed the test several times with the ActiMyo device at the ankle. We studied the performance of our activity recognition algorithm (see Algorithm 14) by counting the number of true stairs strides that were missing (FN). One FN stride was either classified as another activity or not detected at all. The results are presented in Table 18. The algorithm performed well for all patients except one (patient 5). This can be explained by the difficulty this patient had in climbing the stairs. In Figure 53 we show the video recording during one stairs step every half second. The patient took 5 seconds to climb it for a small altitude variation. This kind of stride does not exist in the learning dataset built from "DB3" recordings where stairs were performed by healthy adults co-workers. Thus, it is not surprising that the GBT prediction function for activity recognition classified the stride as "atypical stride". In addition, several patients performed a run in a 10-m hospital corridor with the ActiMyo device at the ankle. We adopted the same evaluation, by counting the number of missing running strides defined as classified as another activity or not detected (FN). The results are presented in Table 19. The success rate was about 97.4% less than the 99.4% presented in Table 17. This is due to the fact that most of the labeled strides for activity recognition were performed by Sysnav employees. As a result, the GBT classifier for AR achieved better results for adult recordings. Moreover, the classification of DMD activities may be a more challenging task from a statistical point of view.

Slow walking

During the 6-minute walk tests, DMD patients performed hundreds of strides. Our algorithm produced no error for these walking phases. Several running strides were detected but validated by the video control. This again shows that this kind of test is not relevant to measure the health of the patients because those who run while they have to walk skew the results.

We validated our algorithm during another test with a Sysnav employee that performed 139 walking strides and 79 running strides with various speeds. The classification results are presented in Figure 54. We can see that several running strides speed were below walking strides. Nevertheless, the GBT predictions for activity recognition produced only one error (ID = 51, stride duration ≈ 0.8 s, stride length ≈ 1 m). This shows the benefits of having a supervised learning approach rather than setting empirical thresholds for the stride length, duration, or speed that would not work here.

In this section, we validated our algorithm for activity recognition in controlled environments. The wearers were asked to perform the activities we wanted to test. However, our algorithm was designed to be applied for home recordings during clinical trials. In uncontrolled environments, the activity recognition is more challenging. In the following section we present the stairs detection for one home recording.

Activity Recognition for One Healthy Child Recording in Uncontrolled Environment

The child of one coworker agreed to wear the ActiMyo device at home for one day as a DMD patient would do during a clinical trial. He is not affected by the This section described the overall algorithm for inertial sensors worn at ankle that enables trajectory computation and activity recognition for each detected strides in the recordings. Our approach is divided into four main stages with two machine learning predictions (see Figure 55). The first step of our algorithm is described in Chapter IV. It consists of a procedure that removes gravity from the linear acceleration, allowing the computation of a pseudo-speed in a terrestrial reference frame that finally provides a family of candidate intervals that may correspond to strides. Some of these are real strides, while others come from recorded movements that are not strides and we want to exclude. We use a gradient boosting trees algorithm to choose the intervals that we consider as real strides.

From the stride detection, trajectory reconstruction is computed with an inspired ZUPT technique (see Section I.4). As the ankle speed is not null when the foot is on the ground, we used a speed estimation based on a lever arm model that is fused with inertial integration in an extended Kalman filter. It achieved around 3 cm absolute mean error for the walking stride length and about 5 cm for atypical strides. In the literature, existing methods [START_REF] Ho | Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone[END_REF][START_REF] Hannink | Stride length estimation with deep learning[END_REF] achieved similar performances for walking strides but do not even study atypical strides (as they faced difficulties to detect them). Our algorithm aims to be applied for daily recordings during clinical trial. In home situations, a majority of small steps are performed. In Section V.2.2, we showed the good performance of the trajectory reconstruction in a difficult environment with narrow areas, small rooms, corridors and stars. In this context, the computed trajectory almost never crossed the walls of the house and regarding the altitude we could easily identify when the wearer was taking the stairs.

More generally we use the computed stride trajectory to recognize the activity with a machine learning approach which was robust to the gait variety. Indeed, the age difference of patients in clinical studies can be very large, and their gaits very dissimilar. Our algorithm performed well for adult recordings (more than 99% success) and also recordings of patients suffering from Duchenne Muscular Dystrophy (more than 97% success), which is a challenging task. This original approach allows classification of the detected strides into five main labelled activities: "atypical stride", "walking", "upstairs", "downstairs" and "running". We believe that our methodology is ready to be applied to home recordings over long periods to compute clinical outcomes related to hospital tests (four stairs, 10-m run) in clinical trials. This chapter presents an innovative and generic deep-learning approach for issues based on inertial data recordings. Throughout this chapter, we focused our attention on the detection of parkinsonian symptoms, concurrently to the issue of activity recognition (see Section VI.1). The models have been built in order to precisely detect the time boundaries of specific movements (tremors, dyskinesia, activities) with a sliding window approach. Our work is based on multi-channel networks (Section VI.2), using in particular Convolutional Neural Networks and one Topological Data Analysis channel that improved the performances (see Section VI.2.4). Finally in Section VI.3 we launch our algorithm for Parkinson's event detection with home recordings of several patients allowing to compute interesting statistics.

Data Background

In this section we describe the dataset that allowed us to build our neural network model. The HAPT dataset firstly described in Section VI.4.1 and reintroduced in Section VI.1.1 was used to optimize our neural network architecture that has been adapted for Parkinson's event detection through a sliding window approach presented in Section VI.1.2.

Parkinson's event dataset and HAPT dataset

The Parkinson's event dataset "DB1" is composed by 13 patients who underwent tests at the hospital while wearing the ActiMyo device at the ankle and the wrist. The recordings have been annotated by the doctors through real-time observation. We described in Section VI.1.1 the issues related to the confidence in the labeling. As an example, we noticed that pauses in a long diskynesia crisis are often not considered and are wrongly annotated the same as the rest of the event. Among the encountered problematics of ground truth, this database presents two particularities that add difficulty for the supervised learning approach. The amount of healthy daily home recordings from the controls are enormous (several months of studies) whereas the total tremors and dyskinesia crises duration is several hours. Thus this database is large (heavy to learn with supervised learning algorithms) and unbalanced, namely proportions between the targeted classes are very different. Indeed, one daily recording of 8-9 hours with ActiMyo 130 Hz frequency provides almost 4 millions of data points in three dimensions for acceleration and angular velocity (both ankle and wrist). Hence, several months of clinical study correspond to billions of labelled data points recorded by controls. Instead, the annotated events by the doctors represent barely 2 millions of annotated data points on the ankle and wrist. This motivated us to build our algorithm on another database of activity recognition from inertial sensors, presenting the same unbalanced particularity but with smaller amount of data.

The open-source HAPT dataset is a newest version of the UCI HAR Dataset. The data is made of 30 volunteers who were asked to perform a set of six basic activities (standing, sitting, lying, walking, upstairs and downstairs). Inertial data about those activities and their transition were recorded by a smartphone placed on their waist, sampling the 3-axial acceleration and the 3-axial angular velocity at a frequency of 50 Hz. This database is also linked to imbalance learning due to the poor amount of gathered events for transition activities. In addition, the activity recognition task is very similar to Parkinson's event detection as we can consider tremors or dyskinesia as particular activities of patients that we want and has the same imbalance in classes proportion, but with much smaller overall number of tagged intervals.

The Table 21 represents the performances of the tuned model on the testing set of the HAPT dataset. We specified here the mean accuracy on both basic activities and postural transitions as these last are underrepresented. Indeed, the imbalance learning characteristic is one of the main reasons we chose to consider this dataset. Our model achieved more than 97.2% mean accuracy on the basic activities that is achieved by the best result of the literature for this dataset. It also presented good performances for the transition activities with more than 86% accuracy that most of the paper in the literature do not even consider in their validation. Still, these classes are more difficult to detect as they are in minority compared to basic ones.

For the Parkinson's event detection task, the model quickly achieved 100% performance for the "tremor" class for both wrist and ankle recordings. As the results in Table 22 we focused on the results including "dyskinesia" and "other" classes. The difficulty behind the detection of dyskinesia crises is the difference between the controlled environment at the hospital and the home environment of those patients, as well as the generalization to new patients. Knowing the validation accuracy had a mean of 99.8% for every step of our cross-validation protocol, we may observe in Figure 59 the intrinsic difficulty of generalizing the dyskinesia detection of the studied patients to a patient for which the model was blind. Even if we use a validation set to stop the learning phase when the validation performance starts decreasing, it seems that the model still leads to a kind of overfitting.

In the following we add new channels in order to improve the results of this model keeping the same strategy: tuning the hyperparameters on the HAPT dataset and then compute the optimization through backpropagation with Parkinson's inputs.

Handcrafted Features Channel

Inspired by the literature concerning the detection of symptoms of Parkinson's patients [START_REF] Sankar | Gait and tremor assessment for patients with parkinson's disease using wearable sensors[END_REF], we built statistical features such as mean, correlation, kurtosis etc. We also computed signal theory features such as spectral power, harmonics, Fourier transform, Wavelet transform etc. We computed features from the freezing index [START_REF] Calatroni | The role of wrist-mounted inertial sensors in detecting gait freeze episodes in parkinson's disease[END_REF], which has been proved to be strongly correlated to the presence of freezing of gait. We computed features based on the chaos theory and We observed that the TDA channel has also increased the performance of detection of dyskinesia crises. In particular, we have a gain of almost 7% for sensitivity score on the wrist without decreasing too much the specificity score.

Parkinson's statistics for home recordings

To quantify our ability to detect dyskinesia crises at home without ground truth, our statistical results are indicative. However, one main goal had to be fulfilled: reducing the amount of false positives on healthy people. For an entire recording, we apply the same sliding window approach with overlap presented in Section VI.1.2. Hence, one data point is extracted several times and is associated to several a posteriori probabilities predictions of the neural network. They are averaged to compute the final prediction. We assign the predicted class that corresponds to the highest mean of the probabilities. The Table 27 It is promising to detect tremors and dyskinesias in home recordings for patients and only little for controls (healthy people). According to these results, there are many more events in hospitals than at home. Indeed the protocol at the hospital is programmed to induce dyskinesia or tremors in order to record them.

Contributions

In this chapter we have presented an architecture of neural networks constructed and tuned iteratively for activity recognition (HAPT dataset) and for the detection of Parkinson's events. The use of the HAPT dataset is justified by the fact that it is a multi-class classification problem on specific movement detection with inertial data and it has the same characteristic as our Parkinson's database: it is unbalanced. Indeed, we have access to a very large number of home control records (healthy people) and very few parkinsonian events tagged in the hospital. The HAPT dataset is composed of a set of basics activities which represents almost 95% of the global dataset (completed by the postural transitions which are therefore the underrepresented activities). The small size of the HAPT dataset compared to the parkinsonian dataset allowed us to test several architectures and quickly tuned the structure of the convolutional networks and the dense networks present in our model. The final architecture is then used for the backpropagation learning phase on the parkinsonian data.

The architecture of our network is composed of 1D convolutional network for the inertial norms and 2D convolutional networks for the three axial acceleration and angular speed, extracted with a sliding window (with overlaps). We also compute handcrafted features from chaos theory and signal processing techniques creating a dense network channel. Finally we use the topological data analysis theory introduced in II.3.4 to compute silhouettes that can be considered as 1D signal in our network. All the channels are merged in a dense network providing a posteriori probabilities for the considered multi class classification. For each sample, they are averaged (considering all the crossing windows) providing the final prediction.

At each iteration we estimated the performances of the model which allows us to assess their contribution. The results are represented in Table 28 for the activity recognition with scores reaching the performances of state of the art methods, and above. In Table 29 Thus this architecture is modular and allows adding relevant channels which improve the results. In particular, the innovative channels TDA has greatly improved the sensitivity for the detection of dyskinesia on the wrist. In addition, the model achieved 100% accuracy for tremor detection task.

This final model has been applied on home recordings of patients and controls who are healthy people (see Table 31). It is promising to detect more Parkinson's event for patients recordings but as we do not have the ground truth is it hard to conclude. Still, our model detects false positive events that may be eliminated with new channels in a future work. 

Part VII General Conclusions

In this chapter, we first describe the general context of the thesis, the main issues that arise from it and the developed algorithms that propose methods to overtake them with machine learning approaches (Section VII.1). In Section VII.2 we describe two industrial applications which were inspired by our work but requiring some specific modifications or adaptations. Finally in Section VII.3, we introduce the general principles of domain adaptation which has shown interesting results for activity recognition.

Summary of main contributions with machine learning approaches

In this section, we briefly describe the main works of this thesis. The challenges were guided by the medical use of the inertial system Actimyo in clinical studies for Duchenne Muscular Dystrophy (DMD) and Parkinson's disease. The device has been developed to be worn at the wrist and the ankle by patients suffering from movement disorders in order to evaluate their health condition along clinical trials. The DMD clinical variables proposed by Sysnav are based on the trajectory and the activity recognition (see Section VII.1.2) of strides in ankle home recordings. The developed algorithms for the calculation of these variables depend initially on the detection and precise segmentation of the stride indices in the records (Section VII.1.1). For Parkinson, we aim to detect movements characteristic of the disease, that is to say tremors and dyskinesia crises, in both wrist and ankle records (Section 1.3). All the solutions proposed can hardly be relied on robust deterministic models from the inertial data. This is why the proposed algorithms are all based on a prediction functions built beforehand by statistical supervised learning procedures dedicated to the considered task.

Stride detection from candidate intervals extraction

Stride detection with precise segmentation of the start and end indices is a key step in our thesis. Indeed, the trajectory reconstruction algorithm that we introduced in Section V.1 aims to estimate the speed of the ActiMyo around these indices with a model that is valid only when the foot is on the ground. Thus, poor segmentation, for example a detected end of stride when the foot is in the air, can lead to large errors in trajectory reconstruction. On the opposite, not detecting a stride immediately causes as much error as the distance traveled by this stride.

In this thesis, we adopted an innovative approach which consists in selecting candidate stride intervals from the inertial recordings. Some of the selected intervals are true strides, others are movements of the ActiMyo device resulting for example from a manipulation by hand or from activities without strides like bicycling. The choice among the candidate stride intervals is given by a prediction function computed by a binary gradient boosting trees algorithm (stride or not stride). As the annotation is time consuming, because it has to be done manually, we have to compute relevant features for this classification task and in particular robust at any positioning of the ActiMyo sensors around the ankle. During the thesis we developed two extraction methods presented in Chapter III and Chapter IV. The last one which leads to the best performances is based on the identification of the gravity in the acceleration recorded by the ActiMyo accelerometer. It allows to project the inertial data into a terrestrial reference frame and to compute a pseudo-speed that is used for the extraction of relevant candidate intervals and is one of the main features for the gradient boosting trees learning. ://www.overleaf.com/project/5e1200f610a3b3000132f758 This innovative approach for stride detection has improved the performance of the existing algorithm developed by Sysnav that presented good detection for classic walking strides but suffered from limitations for atypical strides (small steps, side steps, fast stairs) with only a detection rate of 50%. Our algorithm detects more than 98% of atypical strides and is also much more robust in situations where the system ActiMyo is in motion that does not correspond to strides.

Activity Recognition from the computed trajectory

We introduced in Section V.1 the principles of trajectory reconstruction for an inertial system worn at the ankle. This block developed by Sysnav takes as input the stride indices detected by our algorithm described in Chapter IV. We validated it in a motion capture room which allows a precise evaluation of the error produced for each stride length. With an error about 3 cm for walking and about 5 cm for atypical strides, we are able to compute the trajectory of a pedestrian in three dimensions, even in narrow and challenging places.

The trajectory is a key variable for recognizing the activity of detected strides. Indeed, we have access to the trajectory, in particular the altitude, but also the speed which a priori allows to differentiate running strides and stairs strides. However, we want to apply this activity recognition algorithm for children suffering from Duchenne Muscular Dystrophy. These children are at very different stages of the disease and present a wide variety of gait motion. It is difficult to develop a deterministic model. We have therefore adopted a machine learning approach aiming in particular to recognize running strides and stairs strides which are precious information in a medical context. The features computed from the trajectory and the inertial data allows the gradient boosting trees algorithm to compute a robust prediction function for healthy adult and children recordings (more than 99% success), but also for DMD patient recordings (more than 97% success).

Dyskinesia and tremor detection

The Levodopa drug aims to ease the symptoms of Parkinson's disease, such as tremors, but has a main drawback: induced dyskinesia crises. Thus, the detection of these two events is essential to measure the quality of life of patients. In this context, the ActiMyo device was used in clinical trials that we can use to build our algorithm. Faced to the variety of movement (especially on the wrist) it is impossible to simply describe the dyskinesia. We opted for a machine learning approach with a sliding window that chronologically extracts time intervals of a few seconds, and which we aim to classify among the following events: "tremors", "dyskinesia", "other".

The database build from the recordings of clinical trials is highly unbalanced (few tremors and dyskinesia annotated compared to the amount of healthy home recording) and very large (hundreds of home recordings). This last characteristic makes the tuning phase of a machine learning model very time consuming. We decided to proceed with the development of our model from the HAPT dasaset, composed by inertial recordings for activity recognition. It has the particularity of presenting the same problem of imbalance learning (with under-represented transition activities) but is much smaller. In addition, the detection of tremors and dyskinesia can be considered as recognition of activity among all other daily activities.

We ended up with a neural network composed by several relevant channels merged in a dense network, the overall architecture is described in Chapter VI. During the procedure, we added iteratively the channels in order to measure their respective contribution. The convolutional networks for the inertial time series and the handcrafted features channel inspired by signal processing techniques allowed to achieve results better than the literature for the HAPT dataset. In the end, we build a topological data analysis (TDA) channel that remarkably improved the scores, especially for the underrepresented classes. The principles of TDA introduced in Section Topological Data Analysis ChannelII.3.4 aims to capture geometric structures into point cloud. In our case, we applied this techniques on angular velocity data extracted by the sliding window. the validation of the parkinsonian model has shown 100% success for the tremor detection but limitations for the generalization of dyskinesia detection on recordings of patients who have not been used for the learning. On the other hand, for patients already seen in the learning base, we obtain around 98% of accuracy. Even if we do not have the ground truth for home recordings, we tested false positives on control recordings (healthy people). It is encouraging to detect less than 2 minutes of Parkinson's events throughout the day while for patients it detects several tens of minutes (which is coherent).

Extensions to industrial applications

In this section we describe two applications that were inspired by the work developed in this thesis. In Section VII.2.1, the algorithm for trajectory reconstruction using the stride detection of Chapter III is extended to beacon data. In Section VII.2.2, we describe the adaptations of the algorithm described in Chapter IV to online constraints in an embedded system.

Beacons for trajectory reconstruction

In Chapter III, we presented a stride detection algorithm that allows to reconstruct the pedestrian trajectory thanks Sysnav methods introduced in Section V.1. The advantage of these algorithms is that they do not require any additional infrastructure-dependent localization systems to compute the trajectory. However, it is represented in an arbitrary reference frame whose the definition of the axes is unknown in the pedestrian environment.

A beacon is a small system that continuously sends a radio signal incorporating its identifier. A device equipped with a receiver is then able to "see" the beacon when it enters its emission radius. Depending on the strength of the received signal, we can then estimate the distance between the receiving device and the beacon. Their advantage in industrial applications is that they are not expensive and can be installed quickly in any environment. However, the signals are often disturbed by the walls, machines, etc. Thus computing the trajectory only as a function of the intensity of the signals received by a triangulation method for example is not reliable.

The device ActiMyo has therefore been adapted so that it can read the signals sent by beacons. The proposed solution is to firstly compute the trajectory without using the beacon information. Then we modify the trajectory in order to correspond with the beacon data only when the strength of the received signal is large. That is to say when we are sure that the pedestrian is very close to the transmitting beacon. In practice we consider the signals to modify the trajectory which indicate a position less than one meter from the beacon.

The proposed algorithm consists in processing the beacon data chronologically. The principle is to apply a rotation between two successively detected beacon so that the resulting trajectory fit at best with their position. Then we force the trajectory capturing the beacons to enter into the corresponding emission zone (applying as little modification as possible on the initial trajectory). This overall algorithm is currently used by an industrial Sysnav client in order to optimize worker movements between machines.

Stride detection algorithm in embedded system

The stride detection algorithm described in Chapter IV is used offline. That is to say, the ActiMyo recordings are first loaded into a cluster and then the algorithm is launched. It is therefore not suitable for online use which would consist of processing inertial signals directly when they are recorded. In many industrial applications, this functionality is requested, in particular for isolated workers, firefighters or military, whose position must be known "in live" to ensure safety.

In this context, Sysnav modified the ActiMyo device to develop an embedded system. The goal is to adapt our stride detection algorithm to launch it on this system. The principle of this algorithm remains the same: identifying the gravity in the accelerations recorded by the sensor, computing a pseudo-speed that allows to extract candidate stride intervals, then selecting among them the intervals that are true strides. The offline identification of the gravity could be directly transcribed for online algorithm. However we had to restrict the number of extracted candidate stride intervals to reduce the number of prediction function launches. In addition, the procedure for computing the features presented in Section IV.3 and the prediction of the gradient boosting trees function requires too much resources for the embedded microprocessor. We opted for the construction of a neural network with 2D Convolutional Neural Networks channels (with only two layers) for each 3D times series that need no more computation at this stage (acceleration, angular velocity, pseudo-speed). The three channels are finally merged in a last fully connected layer.

These modifications provide a good compromise between execution time and performance. This work was supported by the French Délégation Générale de l'Armement (DGA) and by ANR project TopData ANR-17-MALN-0003. It is currently used in the final solution of Sysnav competing for the MALIN challenge.

Future work: Domain Adaptation for Activity Recognition

The work described along this thesis has resulted in performances good enough to be used in several solutions proposed by Sysnav. However during our research we have been studying the domain adaptation by optimal transport which showed interesting results for the activity recognition. In the following we introduce this work that deserves to be studying further. In this thesis, the work for activity recognition aims to be used in a medical context, that is to say for home recordings of patients suffering from Duchenne Muscular Dystrophy (DMD). We saw in Section V.3 that the algorithm achieved good performance except for one patient with a very particular gait motion for We can count 19 errors essentially between running and walking. In the following we will study if a domain adaptation between the source and the target with JDOT can improve this score. We obtain the confusion matrix presented in Table 35. Table 35: Confusion matrix after applying JDOT algorithm.

Thus, optimal transport allowed to achieve 9 errors from 19 errors, by removing all the errors between walking and running. However it can be noted that no error was initially made between climbing and descending stairs before transport, but here one false descent was transported on the observations of stair climbing. In addition, JDOT requires the proportion of strides in each class (namely in each activity) to be identical in the source and the target. This is one of the main drawbacks of JDOT agorithm in our application framework. Indeed we can organize the learning base for activity recognition so that it is balanced, however it is very likely that the DMD home recording on which we want to apply JDOT is not exactly composed of the same stride number of walking, running and stairs etc.

A difference in decision rule between source and target observations can be observed in many industrial applications. The algorithm for optimal transport introduced by Cuturi in 2013 with entropy regularization greatly accelerated the calculation of optimal transport. However it is still time consuming in large dimension such as our application settings.

The JDOT algorithm allows to take into account the labels of the source in the transport and has shown particularly interesting results in our framework for activity recognition (adaptation of healthy adult strides to DMD strides). However, this algorithm requires a complicated choice for the parameters of regularization and labels penalization. In addition, it requires the proportion of the classes in the target and the source to be the same. From JDOT algorithm, We started research for the estimation of classes proportion in the target (in order to adjust them on the source) and for the selection of variables based on the quality of transport and learning to improve the prediction on the target. It could also provide a dimension reduction easing the use of optimal transport algorithm in JDOT that is time consuming in large dimension. These works could be continued in the future.
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 2 Figure 2: ActiMyo connecté à la station (a), positionné à la cheville (b) et au poignet (c).
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 3 Figure 3: PERSY (Predestrian Reference SYstem) développé par IFSTTAR.
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 12 Figure 12: ActiMyo connected to the docking station (a), worn at the ankle (b) and the wrist (c).
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 13 Figure 13: PERSY (Predestrian Reference SYstem) developed by IFSTTAR.
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 14 Figure 14: Walking gait cycle and measurement update cycle.
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 12 Figure 12: Polynomial regression in two dimensions: (a) degree 1, (b) degree 5, (c) degree 10.

Algorithm 2 :

 2 AdaBoost algorithm Input : Training set D n , Weights initialization w 0 = {w i = 1 n ; i = 1, . . . , n}, Number of iteration M . Output: Prediction function fM , estimation of f . 1 foreach m ∈ 1, M do 2 Estimation of δ m on the training set weighted by w m-1 (Equation 1).

3

  Compute the error ǫm (Equation3).

4

  Compute c m (Equation2).

5

 5 

6 end 7

 67 Resulting prediction function fM (x) = sign[ M m=1 c m δ m (x)].

Algorithm 3 :

 3 Gradient Boosting Trees algorithm Input : Training set D n , Prediction function initialization f0 = argmin β∈R n i=1 ℓ(y i , β) Number of iteration M . Output: Prediction function fM , estimation of f .

5

  Update the prediction function fm (x) = fm-1 (x) + β m δ m (x).

6 end 7

 67 Return fM .

Algorithm 4 :

 4 Stochastic Gradient Descent (SGD) algorithmInput : Initialization of θ = (W(1) , b(1) , . . . , W (L+1) ), b (L+1) Number of epochs Batch size m Number of iterations N . Output: Optimization of θ 1 for N iterations do 2 Parameters update:
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 15 Figure 15: Schematic representation of a kernel applied on an image.
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 16 Figure 16: Example of a convolution between the kernel and one part of the image.
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 17 Figure 17: Example of one convolution layers provided by two different kernels.
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 18 Figure 18: Example of one max pooling layer.
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 19 Figure 19: Example of the layers outputs for digit recognition with LetNet network.
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 20 Figure20: A fixed set points with proximity parameter ǫ (source:[START_REF] Ghrist | Barcodes: The persistent topology of data[END_REF]).
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 21 Figure 21: Cech complex C ǫ (left) and Vietoris-Rips complex (right) computed from the point clouds in Figure 20 (source: [33]).
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 23 Figure 23: Outliers effect on the topology.

  x∈X min y∈Y ρ(x, y), max y∈Y min x∈X ρ(x, y)}. If X and X are two compact metric spaces, then one has:

  , we use the rotated axes to represent a persistence diagram D. A feature (b, d) ∈ D is represented by the point b+d 2 , d-b 2
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 25 Figure 25: Example of persistence landscapes.
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 31 Figure 31: Default device placement.
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 35 Figure 35: Example of a walking forward swing with Lagrange interpolation (blue) on n recording points ω y a l,i (red).

Algorithm 11 : 5 if negative values on y gyroscope axis then 6 foreach 1D reference pattern do 7 8

 115678 Features computation 1 Compute the frequency domain features from the inertial data norms. 2 Compute the rotations (Property 1). 3 foreach activity rotation do 4 Compare the rotated angular velocity with the 3D reference pattern Compute the multiplying coefficient (Equation13).Compare the resulting multiplied negative values with the 1D reference pattern.

Table 5 :

 5 False negatives distribution.

Predicted - 1

 1 
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 53 Figure 53: Example of one stairs step progression every half second of patient 5.
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 55 Figure 55: The four main algorithm stages with machine learning uses (red).
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Table 1 :

 1 Basic Activities Ratios of 4 hours recording.

			Upstairs Downstairs	Sitting Standing	Laying
	Ratio	15%	14%	13%	14%	16%	18%
	Stand						

to Sit Sit to Stand Sit to Lie Lie to Sit Stand to Lie Lie to Stand

  

	Ratio	1%	1%	1%	1%	1%	1%

Table 2 :

 2 Transition Activities Ratios of 4 hours recording.

Total Threshold based detection M.L. Section III

  

	Wearer 1	88	75%	100%
	Wearer 2	67	68.7%	100%
	Wearer 3	107	63.6%	95.3%
	Wearer 4	145	55.2%	97.9%
	Wearer 5	65	10.8%	69.2%
	Wearer 6	90	40.7%	94.8%
	Wearer 7	48	39.6%	89.6%
	Total	610	52.9%	93.8%

Table 7 :

 7 Detection rate for small steps.

			Side steps	
		Total Threshold based detection M.L. Section III
	Wearer 1	287	50.7%	97.9%
	Wearer 2	265	56.5%	85.5%
	Wearer 3	143	52.9%	84.2%
	Wearer 4	301	59.7%	98.7%
	Wearer 5	246	36.1%	100%
	Wearer 6	150	51.4%	96.2%
	Wearer 7	200	44.4%	51.5%
	Total	1592	50.6%	91.7%

Table 8 :

 8 Detection rate for side steps.

Table 10 :

 10 False negative rates in MOCAP sessions.

Table 11 :

 11 False positive (FP) rates during daily activities.

Table 12 :

 12 Detection rate for small steps.

			Side steps	
		Total	Threshold based detection	M.L. Chapter III	M.L. Chapter IV
	Wearer 1	287	50.7%	97.9%	99.3%
	Wearer 2	265	56.5%	85.5%	97.4%
	Wearer 3	143	52.9%	84.2%	96.5%
	Wearer 4	301	59.7%	98.7%	100%
	Wearer 5	246	36.1%	100%	100%
	Wearer 6	150	51.4%	96.2%	99.2%
	Wearer 7	200	44.4%	51.5%	99.3%
	Total	1592	50.6%	91.7%	98.9%

Table 13 :

 13 Detection rate for side steps.

Table 14 :

 14 Absolute computed stride length error for walking phases.

				Medium walking	Fast walking
		Mean (m) Std (m) Mean (m) Std (m) Mean (m) Std (m)
	Wearer 1	0.024	0.038	0.020	0.022	0.029	0.036
	Wearer 2	0.026	0.039	0.016	0.018	0.025	0.034
	Wearer 3	0.023	0.021	0.028	0.024	0.036	0.023
	Wearer 4	0.028	0.020	0.028	0.021	0.023	0.022
	Wearer 5	0.061	0.091	0.025	0.020	0.032	0.029
	Wearer 6	0.018	0.016	0.024	0.024	0.043	0.039
	Wearer 7	0.014	0.026	0.014	0.012	0.023	0.044
	Total	0.028	0.048	0.022	0.021	0.032	0.034
			Small steps	Side steps	
			Mean (m) Std (m) Mean (m) Std (m)	
	Wearer 1	0.027	0.070	0.044	0.106	
	Wearer 2	0.039	0.048	0.071	0.168	
	Wearer 3	0.057	0.082	0.070	0.177	
	Wearer 4	0.025	0.024	0.048	0.056	
	Wearer 5	0.049	0.082	0.022	0.046	
	Wearer 6	0.074	0.061	0.133	0.170	
	Wearer 7	0.039	0.055	0.053	0.116	
		Total	0.048	0.069	0.056	0.129	

Table 15 :

 15 Absolute computed stride length error for atypical strides.

Table 18 :

 18 Activity recognition for DMD recordings: false negative rates during four-stairs tests.

Table 19 :

 19 Activity recognition for DMD recordings: false negative rates during four-stairs tests.

Table 21 :

 21 Testing scores for HAPT dataset with CNN channels model.

Table 22 :

 22 Testing scores for dyskinesia detection with CNN channels model.

Table 26 :

 26 Testing scores for dyskinesia detection with CNN, handcrafted features and TDA channels model.

  represents the statistics of detected events in home recordings.

		Wrist Ankle
	Hospital 14.3% 13.5%
	Home	3.6%	9.5%
	Healthy	0.2%	0.1%

Table 27 :

 27 Parkinson's event rates.

  and Table30are described the results for respectively the dyskinesia detection on ankle and wrist recordings.

		Basic Activities Postural Transitions
	CNNs	97.2%	86.35%
	+ Handcrafted Features	97.3%	88.15%
	+ TDA	98.4%	90.2%

Table 28 :

 28 Mean accuracy on the testing HAPT set.

		Sensitivity Specificity
	CNNs	41.2%	95.8%
	+ Handcrafted Features	41.3%	96.5%
	+ TDA	41.5%	96.9%

Table 29 :

 29 Testing scores for dyskinesia detection on ankle recordings.

		Sensitivity Specificity
	CNNs	21%	90.6%
	+ Handcrafted Features	24.7%	91.1%
	+ TDA	31.4%	90.8%

Table 30 :

 30 Testing scores for dyskinesia detection on wrist recordings.

Table 31 :

 31 Parkinson's event rates.

Variables cliniques pour la maladie de ParkinsonParmi les troubles neurodégénératifs courants liés à l'âge, la maladiie de Parkinson est la deuxième plus présente. En France on compte plus de 200 000 personnes atteint de la maladie. Des traitements sont en cours de développement et plusieurs présentent des résultats encourageants mais l'analyse de leur efficacité reste un véritable challenge, dûe notamment à la complexité des symptômes. En Section I.5.1 nous présentons rapidement les symptômes et le traitement Levodopa. En Section hyperlinkAutomatic detection of Parkinson's eventsfrI.5.2 nous présentons les algorithmes à la pointe de l'état de l'art pour la détection des évènements parkinsoniens. Puis nous concentrons notre étude en Section I.5.3 sur les algorithmes utilisant l'ActiMyo développés par Sysnav pour la détection des tremblements et crises de dyskinésie, ainsi que leurs limitations.

Note to the reader that Î does not defined an estimation here although conventionally we use hat for estimated version of a quantity.
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Part II Supervised learning for stride detection and Parkinson's events detection contained in each axis. In Section III.2, the sensors alignment is based on the computation of a rotation matrix fitted with geometric patterns built from the database. In Section IV.3, we compute a terrestrial reference frame with gravity identification that allows to compute a pseudo-trajectory. Then the data are projected to have the Z axis aligned with the gravity and X axis is defined by the beginning and the end of the pseudo-trajectory.

From the features engineering procedure, the family of extracted intervals is now defined by {(x s 1 , y s 1 ), . . . , (x s n , y s n )} where x s i ∈ R p s with p s the number of computed features. With the same notations introduced in this Section, we can tune the parameters of the GBT algorithm by 10-fold cross validation (Algorithm 1). This provides a prediction function f s that can be applied for a new extracted interval (after features computation). The overall procedure is sum up in the following Algorithm 6. Then for the recordings in "DB4" for example, we can detect the strides with Algorithm 7.

Algorithm 6: Learning a binary prediction function for interval classification 

The beginning and the end of the detected strides are given by { ÎDB4 | ŷs i = 1, i = 1, . . . , n} := ĨDB4 . In order to simplify the notation in the following, we introduce { ÎDB3 | ŷs i = 1, i = 1, . . . , n} := ĨDB3 and { ÎDB3 | y s i = 1, i = 1, . . . , n} := ĪDB3 . Namely, The symbol ĪDB3 represents the detected strides that are true strides and ĨDB3 represents all the detected strides. Consequently ĪDB4 ⊂ ĨDB4 and a perfect stride classification on "DB4" leads to ĪDB4 = ĨDB4 .

Activity Recognition from computed trajectory

Sysnav developped an algorithm introduced in Section I.4.4 that allows to compute the trajectory of each detected stride that is a main feature for activity recognition. This algorithm requires a precise estimation of the stride start and this context, the computed trajectory almost never crossed the walls and we could identify which room the wearer was in at any given time or when he was taking the stairs. In Figure 49 we can see a difference in the computed altitude of 3.4 m for both stairs phases that were composed of 21 stair treads of 15.4 cm height. The true altitude of the first ground is 3.234 m, so the altitude mean error was less than 1 cm for each stair tread. In addition, the starting points of the second and third walking periods correspond to the ending point of the previous ones. This means that no stride was wrongly detected when the wearer was on his chair and moving his ankle. The computed altitude allowed to detect when the wearer was walking on stairs during the recording. More generally, the computed trajectory of a stride is a relevant feature to recognize the activity. In the following, we describe a supervised learning approach for activity recognition based on the computed trajectory of the detected strides.

Activity Recognition of the Detected Strides with Machine Learning from the Computed Trajectory

During clinical studies, activity recognition is a precious information to evaluate the health of patients suffering from movement disorders. In this work, we focus on three activities related to the primary outcomes for Duchenne Muscular Dystrophy (DMD): stairs, walking, and running (See I.3.2). However, defining the difference between running and fast walking regarding the trajectory is a challenging task. Indeed, the age difference of patients in clinical studies can be very large, and their gaits very dissimilar. Moreover, detecting stairs is often more difficult than in Section V.2.2. Some patients suffering from DMD can hardly take them and go up the stairs one by one (the difference in the computed altitude is small). Thus, we adopted supervised machine learning algorithm to build a classifier that recognizes the activity of the performed stride given its computed trajectory.

Cross-validation performance with GBT

We launched the stride detector (see Algorithm 7) in "DB3" recordings with the interval extraction approach described in Chapter IV. The "DB3" database is composed by recordings performed by a dozen of co-workers of various ages and heights were filmed practicing several activities while wearing the system at the ankle at Sysnav company under video control (See Section II.4.1). The stride detector provides a family of classified intervals ÎDB3 = {(ŝ 1 , ê1 , x s 1 , ŷs 1 ), . . . , (ŝ i , êi , x s i , ŷs i ), . . . , (ŝ n , ên , x s n , ŷs n )} where x s i defines the features computed following the procedure described in Section IV. 3 

and ŷs

i defines the prediction (1 if it is a stride, -1 if not). This allows to compute the trajectory with the algorithm presented in Section V.1.

Keeping the notations introduced in Section II.4.2, the family ĨDB3 defines the extracted intervals classified as strides (ŷ s i = 1). With the video control, we keep among the elements in ĨDB3 the intervals that are true strides and we affected a label y a defining the activity of the performed stride among "atypical strides" (label 1), "walking" (label 2), "running" (label 3), "upstairs" (label 4) and "downstairs" (label 5). Thus we have a family of intervals corresponding to strides ĪDB3 = {(s 1 , ē1 , x s 1 , y a 1 ), . . . , (s i , ēi , x s i , y a i ), . . . , (s n , ēn , x s n , y a n )} where y a i ∈ {1, 2, 3, 4, 5} (see Table 16).

Activity Atypical Stride Walking Running

Table 16: Label definitions for activity recognition.

One could at this stage compute a prediction function from GBT algorithm (See Section II.2.2), for multi-class classification in order to predict the target y a i from x s i . However we wanted to take advantage of the computed trajectory that turned out to be a main feature for the activity recognition task. As you can see in Figure 48 the algorithm described in Section V.1 computes the trajectory in an arbitrary reference but we can extract information by considering the relative evolution. This technique also provides the speed in the three dimensions and the angle evolution of the device, which have characteristic patterns according to the activity performed. In the end, we computed 510 extra features for each interval in ĪDB3 leading to a set {(x a 1 , y a 1 ), . . . , (x a n , y a n )} with x a i ∈ R p a . We tested several supervised learning algorithms with several hyperparameters for multi-class classification (five classes for five activities). Once again, GBT provided the best results using the 10-fold cross-validation. The confusion matrix is presented in Table 17. The global score was about 99.4%. The difference between "atypical stride" and "walking" is difficult to define, especially for a small forward step. As even the labelling decision by the video viewer is difficult, it is not surprising that most errors were between these two classes.

Algorithm Overview

We can now compute the entire algorithm for activity recognition on clinical study recordings and especially on the recordings on "DB5" (See Section II.4.1) containing several episodes of walking, running and stairs performed by DMD patients at hospital. The overall algorithm (see Algorithm 14) is described in pseudo-code.

Step 14 of Algorithm 14 is important to counter the integration drift if the ankle movement period [t 0 i , t 1 i ] is large. In that case, the weighted mean of forward speed and backward speed (see Equation 20 and Equation 21) may not overtake the integration errors for t far from t 0 i and t 1 i . With the pseudo-speed update, if strides are detected, the weighted mean is computed for smaller and smaller intervals and overcomes the integration drift.

Activity Recognition in Controlled Environments

In this section we first validate the activity recognition algorithm on the "DB5" recordings" containing hospital Duchenne Muscular Dystrophy (DMD) tests with Algorithm 14: Activity recognition algorithm.

Input : Recording of the ActiMyo system worn at the ankle Output: Activity recognition 1 Projection of the inertial data in a terrestrial reference frame W (Section 1).

2 Detection of inactivity times {(t 0 1 , t Features computation (Section 3).

8

GBT binary classification for stride detection.