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Résumé: Cette thèse s’intéresse à la détec-

tion de mouvements spécifiques à partir du dis-

positif ActiMyo développé par la société Sysnav,

système de capteurs inertiels miniatures bas-

coût pouvant se porté à la cheville et au poignet.

En particulier, une approche d’apprentissage

statistique supervisé vise à détecter les foulées

dans les enregistrements cheville. Ce premier

travail, combiné avec un algorithme breveté

par l’entreprise Sysnav, permet de reconstru-

ire la trajectoire du piéton. Cette trajectoire

est ensuite utilisée dans une nouvelle méth-

ode d’apprentissage supervisé pour la reconnais-

sance d’activité qui est une précieuse informa-

tion notamment dans un contexte médical. Ces

deux algorithmes proposent une approche inno-

vante basée sur l’alignement des signaux iner-

tiels et l’extraction d’intervalles candidats qui

sont ensuite classés par l’algorithme de Gra-

dient Boosting Trees. Le manuscrit présente

également une architecture de réseaux de neu-

rones combinant des channels de convolution et

d’analyse topologique des données pour la détec-

tion de mouvements caractéristiques de la mal-

adie de Parkinson tels que les tremblements et

crises de dyskinésie.
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Abstract: This thesis focuses on the detec-

tion of specific movements using ActiMyo, a de-

vice developed by the company Sysnav. This

system is composed by low-cost miniature in-

ertial sensors that can be worn on the ankle

and wrist. In particular, a supervised statistical

learning approach aims to detect strides in an-

kle recordings. This first work, combined with

an algorithm patented by Sysnav, allows to com-

pute the trajectory of the pedestrian. This tra-

jectory is then used in a new supervised learn-

ing method for the activity recognition, which

is valuable information, especially in a medical

context. These two algorithms offer an innova-

tive approach based on the alignment of inertial

signals and the extraction of candidate intervals

which are then classified by the Gradient Boost-

ing Trees algorithm. This thesis also presents

a neural network architecture combining convo-

lutional channels and topological data analysis

for the detection of movements representative of

Parkinson’s disease such as tremors and dyski-

nesia crises.
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Symbols
g gravity vector
R Rotation matrix
v Speed
a Specific acceleration
ω Angular velocity measured by gyrometer
γ Global acceleration measured by accelerometer: γ = a+ g

X̂ Estimated version of quantity X
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Introduction (Français)
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Ce premier chapitre vise à contextualiser les enjeux majeurs de cette thèse
et de présenter une vue d’ensemble des algorithmes existants qui ont été in-
tiallement développés pour répondre à ces problématiques. En Section I.1 nous
décrivons les Unités de Mesure Inertielle (IMUs) et leur utilisation pour la re-
construction de trajectoire et des applications médicales. En particulier, nous
présentons en Section I.2 le dispositif ActiMyo développé par Sysnav, destiné à
être porté à la chevillet ou au poignet. En Section I.5 et Section I.3 nous décrivons
les variables calculées par Sysnav visant à caractériser l’évolution de la santé des
patients pendant les études cliniques pour deux maladies : Parkinson et la Dys-
trophie Musculaire de Duchenne (DMD). Les variables cliniques DMD sont basées
sur la reconstruction de trajectoire du dispositif positionné à la cheville. En Sec-
tion I.4 nous introduisons les notions de reconstruction de trajectoire pour un
piéton équipé d’un IMU posé directement sur la chaussure. Cette approche a été
adaptée au dispositif ActiMyo qui est positionné à la cheville. Que ce soit pour
les variables cliniques DMD ou Parkinson, Sysnav a développé des algorithmes
montrant plusieurs limitations pour lesquelles nous apporteront des solutions au
long de cette thèse. En Section I.6 nous décrivons brièvement notre travail, di-
visé en trois applications utilisant du Machine Learning : la détection de foulées,
la reconnaissance d’activité et la détection d’évènements parkinsoniens.

1 Contexte général et enjeux majeurs de la thèse

Dans cette section nous présentons deux types d’application utilisant des Sys-
tèmes de Mesure Inertiels (IMUs). En Section I.1.1 nous décrivons les avantages
d’utiliser les IMUs pour la reconstruction de trajectoire, répondant notamment à
plusieurs limitations de la Géolocalisation et Navigation par un Système de Satel-
lites (GNSS) qui apparaissent dans les bâtiments par exemple. Ces dispositifs
sont également de plus en plus utilisés dans un contexte médical pour mesurer
l’évolution de la santé des patients à domicile. De part leur petite taille, il est en
effet facile de les intégrer dans la vie de tous les jours.

1.1 Unité de Mesure Inertielle pour la reconstruction de trajectoire

L’émergence de la Géolocalisation et Navigation par un Système de Satellites
(GNSS) dans les années 2000 a changé la perception du grand public de la géolo-
calisation. Alors que les systèmes GNNS sont beaucoup utilisés, dans de nom-
breuses situations ils ne parviennent pas à fournir une position précise à cause
d’une mauvaise réception de signal (tunnels, parking sous-terrain, en forêt, à
l’intérieur des bâtiments etc.). Cependant être capable de géolocaliser avec pré-
cision peut s’avérer vital pour les travailleurs isolés, pompiers ou des applications
militaires.

Dans ce contexte les Unités de Mesure Inertielle (IMUs) peuvent être utilisés
dans un Système de Navigation Inertielle (INS). L’avantage majeur de ces disposi-
tifs est qu’ils ne dépendent d’aucune infrastructure externe une fois que le point
d’initialisation est fixé. Ceci les rend particulièrement robustes aux perturbations
extérieures ou sabotages, à l’inverse des architectures basées sur la GNSS. C’est
pour cette raison que les INS sont largement utilisés dans des applications où
une précise géolocalisation est critique comme pour les avions, bateaux, sous-
marins, missile, fusées, satellites. Ils ont été de plus en plus développés pour ces
applications industrielles et militaires au début des années 1950. La trajectoire
est estimée par "navigation à l’estime" : un signal IMU (accélération et vitesse
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angulaire) est intégré afin de calculer la position actuelle à partir d’une position
initiale connue. Pour ce genre d’application, cette méthode demande d’utiliser
des capteurs à haute précision qui sont très volumineux et très cher. Il est im-
possible d’en équiper un piéton. Dans ce cas, pour estimer la position avec des
capteurs inertiels légers et peu coûteux comme ceux des téléphones portables
par exemple, des méthodes différentes doivent être implémentées.

1.2 Unité de Mesure Inertielle pour des applications médicales

D’autres travaux à partir de données inertielles sont également entrepris dans
un contexte médical. L’utilisation des INS en ingénierie biomédicale s’est rapi-
dement popularisée pour l’analyse de mouvement. Les IMUs sont discrets et
simples à porter à l’aide d’une sangle, les rendant faciles à intégrer dans di-
verses technologies portatives destinées aux applications de santé et bien-être à
domicile. En effet ils sont capables de mesurer et de suivre les activités pour per-
mettre ensuite d’évaluer la qualité de vie d’un individu. Ils peuvent être utilisés
par exemple pour la détection de chute et de symptômes de patients souffrant de
troubles du mouvement. Bien que la médecine promeut ce genre d’innovation,
les études cliniques qui évaluent l’efficacité de nouveaux traitements sont réal-
isées dans des environnement très contrôlés. Jusqu’à 2019, aucun système
n’avait été approuvé par l’Agence Européenne du Médicament (EMA) comme
outil pour mesurer l’évolution de la santé des patients.

Dans ce contexte Sysnav a développé un système de capteurs magnéto-
inertiels destinés à être porté à la cheville et au poignet. Ce dispositif a pour
but de permettre le calcul de variables de trajectoire pour des patients souffrant
de troubles du mouvement. Par exemple il est pertinent d’étudier la trajectoire
de la cheville pour des maladies provoquant une perte progressive de la marche.

2 ActiMyo: système de capteurs magnéto-inertiels

L’ActiMyo est composé d’un accéléromètre et d’un gyromètre enregistrant les
données (respectivement γ et ω) dans son propre référentiel (qu’on appelle
référentiel "body") avec une fréquence de 130 Hz et une autonomie sur batterie
de 16 heures. L’accéléromètre mesure à la fois l’accélération produite par le
mouvement (a) mais mesure également en continue l’accélération de la gravité
terrestre. Les capteurs inertiels commencent à enregistrer dès que la dispositif
est retiré de son boîtier. Lorsqu’il est remis en place, les données sont transférées
sur un serveur cloud auquel nous avons accès.

(a) (b) (b)

Figure 2: ActiMyo connecté à la station (a), positionné à la cheville (b) et au poignet (c).
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2.1 IMU à composants liés

Le système de mesure inertiel utilisé dans ce dispositif appelé "à composants
liés" est décrit en [60]. Dans ce type de IMU, l’accéléromètre et le gyromètre
sont fixés de manière rigide sur une plate-forme solide, contrairement à une
plate-forme gyrostabilisée où l’orientation de l’accéléromètre est stabilisée dans
le référentiel inertiel. Ceci a une implication majeure : l’attitude n’est pas don-
née directement par le gyroscope mais doit être intégrée à partir de la vitesse
angulaire. Cela est fortement corrélé aux problèmes d’attitude et de position
et représente une la majeure difficulté de la navigation inertielle. Cependant,
de nos jours, les systèmes de navigation inertielle à composants liés suscitent
un intérêt particulier. En effet ils sont plus faciles à construire mécaniquement,
sont plus petits et plus légers. On les retrouve par exemple dans l’ensemble des
smartphones du marché.

2.2 Calibration des capteurs inertiels

Les capteurs inertiels triaxiaux de l’ActiMyo sont conçus pour émettre un sig-
nal proportionnel à la quantité d’intérêt (vitesse angulaire pour le gyromètre
et accélération pour l’accéléromètre). Cependant, leurs modèles doivent être
calibrés individuellement avant de les utiliser comme mesures d’accélération
ou de vitesse de rotation. De plus, la combinaison des trois axes n’est jamais
totalement orthogonale en raison de la précision de l’assemblage mécanique.
L’étalonnage peut également être influencé par des facteurs environnementaux
comme la température et ces effets doivent également être pris en compte. Sys-
nav a développé un module interne qui calcule une erreur de compensation de
calibration (facteur d’échelle, biais, non orthogonalité, etc.) pour chaque sys-
tème fabriqué.

ActiMyo a été conçu pour être facile à utiliser pour les patients. Il nécessite
peu de manipulation et peut être connecté directement à la station d’accueil afin
que les données collectées chaque jour soient automatiquement envoyées à un
serveur dédié pour une analyse hors ligne.

3 Variables cliniques pour la Dystrophie Musculaire de

Duchenne

Dans cette section, nous présentons l’impacte de la maladie dans la vie quotidi-
enne pour des patients souffrant de la dystrophie musculaire de Duchenne (Sec-
tion I.5.1) ainsi que les variables "officielles"qui sont calculées à l’hôpital pour
mesurer les symptômes pendant les études cliniques (Section I.3.2). Cependant,
ces tests effectués à l’hôpital présentent de nombreux inconvénients ue Sysnav
vise à surpasser avec l’ActiMyo (Section I.3.3).

3.1 Présentation de la maladie

la dystrophie Musculaire de Duchenne est une maladie génétique qui provoque
une perte progressive de la fonctionnalité des fibres musculaires ce qui affecte la
mobilité. Les dernières années ont vu une augmentation de l’intérêt des sociétés
pharmaceutiques pour le lancement de recherche et développement dans de
nouveaux traitements. On peut penser que de nouvelles thérapies permettront
de ralentir la progression de la maladie afin de maintenir des bonnes conditions
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de vie. Les études cliniques ciblent des patients myopathes qui sont suffisam-
ment âgés pour être évalués de manière fiable et qui ont encore suffisamment
de fibre musculaires pour démontrer une bénéfice sur la durée usuelle d’un essai
clinique (autour d’un an).

3.2 Tests en hôpital

Durant les dernières années, des dizaines de milliards de dollars ont été investis
pour créer des nouvelles molécules dans des laboratoires afin de développer des
traitements innovants. Mais un aspect n’a jamais changé : les méthodes de
mesures pour évaluer l’efficacité du traitement (variables cliniques). À ce jour,
les variables cliniques consistent à chronométrer le temps minimal du patient
pour monter marches (test des marches), le temps minimal du patient pour courir
10 mètres (test des 10 mètres de course) ou la distance maximale parcourue
sur 6 minutes de marche. Le problème principal de ces variables cliniques est
qu’elles peuvent être biaisées par la motivation du patient. En effet les résultats
peuvent être impactés par la condition physique du jour sans pour autant être
corrélés avec l’état de santé général. De plus, les erreurs humaines peuvent
apparaître dans la prise demesure. Par exemple, le test des 4marches est parfois
effectué en moins de deux secondes et la mesure prise sur le même test par
deux docteurs peut varier de manière significative. Enfin, ces tests sont usants
et parfois compliqués à réaliser pour des patients qui ne vivent pas proche de
l’hôpital.

3.3 Variables à domicile avec l’ActiMyo

Il y a un fossé entre l’investissement mis dans les traitements comparés au be-
soin de définir des nouvelles variables cliniques plus robustes. Le but de l’ActiMyo
est de calculer des variables cliniques corrélés avec les tests précédemment
mentionnés mais dans un environnement non contrôlé : c’est à dire à domicile, à
l’école, sur n’importe quel lieu du quotidien. Il est important de calculer des vari-
ables qui traduisent la véritable activité du patient sur plusieurs mois, et non pas
sur des tests ponctuels réalisés en hôpital. Les variables proposées correspon-
dent à la longueur des foulées, la vitesse des foulées et la distance des foulées
[32, 46]. Afin de relier ces résultats aux tests des 4 marches et des 10 mètres de
course, nous avons besoin de Reconnaissance l’Activité (AR).

Pour la longueur des foulée calculée à part d’IMU, la navigation à l’estime
pour le piéton a montré qu’on pouvant atteindre des bonnes précisions dans de
nombreuses applications industrielles. Dans ce qui suit, nous allons introduire
les bases de la navigation à l’estime pour le piéton avec un IMU positionné sur
la chaussure ainsi que l’algorithme innovant développé par Sysnav qui adapte la
méthode utilisée pour un IMU sur la chaussure.

4 Navigation à l’estime pour le piéton avec un IMU sur la

chaussure

Le principe de la navigation inertielle peut être résumée de manière très sim-
ple : estimer l’évolution de la position, l’orientation et la vitesse d’un objet dans
un référentiel inertiel. Cette approche repose essentiellement sur l’intégration
des accélérations et des vitesses angulaires pour estimer la position suivante
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au cours du temps. Contrairement aux systèmes dépendant d’infrastructure ex-
térieure comme le map matching, Wi-Fi [84], l’identification par radiofréquence
[80], ou la technologie à bande ultralarge [41], Les IMUs peuvent être déployés
rapidement et facilement (Figure 3).

Figure 3: PERSY (Predestrian Reference SYstem) développé par IFSTTAR.

Cependant, tous les IMUs à composants liés sont soumis à une dérive et les
intégrations accumulent rapidement des erreurs importantes. Pour résoudre ce
problème, la technique zero velocity update technique (ZUPT) [43, 5, 26, 74] est
souvent utilisée. Le but de cette méthode est de détecter quand le ppied est
complètement à plat par rapport au sol. En Section I.4.1 et Section I.4.2 nous
introduisons deux principes pour détecter ces instants : les méthodes basées sur
des valeurs seuil prédéfinies et celles utilisant de l’apprentissage automatique.
À partir de cette détection, l’intégration des données inertielles se fait unique-
ment lorsque le pied est en mouvement en l’air (Figure 4) au lieu d’être réalisée
sur l’ensemble de la durée de l’enregistrement. La procédure est décrite en Sec-
tion I.4.3. Cependant, cette techniques n’est pas directement ultilisable avec

Figure 4: Les instants de vitesse nulle sur un cycle de marche.

l’ActiMyo car il est porté à la cheville et non sur le pied. C’est pourquoi Sysnav a
développé une nouvelle méthode inspirée du ZUPT et présentée en Section I.4.4
mais qui comporte tout de même certaines limitations. En Section I.4.5 nous
décrivons comment utiliser la trajectoire reconstruire de la cheville pour recon-
naître l’activité pour une application médicale.

4.1 Détection des instants de vitesse nulle basée sur des valeurs seuil

Plusieurs études dans la littérature ont proposé d’optiiser des valeurs seuil pour
les données inertielles (accélérations proche de 1 g et petites valeurs de vitesses
angulaires) [58, 42, 1]. Un limitation bien connue de ces approches est qu’elles
ne parviennent pas à être efficaces face à la grande variété de déplacements et
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mouvements. Il est vrai que ces approches fonctionnent bien dans des situations
de marche classique mais échouent pour des pas atypiques comme dans des es-
caliers ou des piétinements. Dans [69], plusieurs systèmes inertiels portés à la
cheville ou poignet ont été testées pour détecter les foulées et la distance par-
courue pendant la marche, dans des escaliers et durant des activités du quotidien
en intéreieur. Tous les dispositifs ont montré une baisse de performance lorsque
la marche était ralentie, en ratant un nombre important de foulées. Les mau-
vaises performances pour le calcul des distances ont aussi été démontrées pour
des marches lentes ou des escaliers. Les approches récentes visent à améliorer
la détection des foulées en adaptant les valeurs seuil vis à vis des accélérations
observées [51, 77] ou de la fréquence du signal [83]. Cependant, modéliser une
détection de foulées précise durant les phases d’escaliers ou la course reste un
challenge [40].

4.2 Apprentissage automatique pour la détection des vitesses nulles

Dans le but de répondre aux limitations des approches basées sur des valeurs
seuil, des récents travaux utilisent l’apprentissage automatique dans des détec-
tions de foulées avec une approche de fenêtre glissante [76, 6]. Ces méthodes
consistent à construire une fonction de prédiction qui fournit une sortie binaire
pour chaque échantillon de l’enregistrement : 1 si l’échantillon correspond à un
instant de vitesse nulle, 0 sinon. La principal inconvénient de cette approche
est que ces fonctions présentent un bon taux de détection mais avec beaucoup
de fauux positifs lorsque le dispositif est en mouvement. Cela peut engendrer
des erreurs importantes dans la reconstruction de la trajectoire. Pour maintenir
des performances acceptables, les algorithmes de la littérature ajuste la sortie
de la fonction de prédiction, par exemple en éliminant les instants de vitesse
nulle prédits sans grande confiance (valeur seuil optimisée). Ce genre de com-
pensation montre des bons résultats quand on sait que le piéton est en train de
marche mais n’est pas robuste à la grande variété des activités du quotidien.
En effet plusieurs foulées sont détectées à tort lorsque le pied bouge alors que
la personne est assise ou fait du vélo etc. L’étude présentée en [69] montre
que l’ensemble des dispositifs testés pour la détection des foulées comportent
beaucoup de faux positifs pendant des activités basiques effectuées à domicile
comme la lecture, les jeux de cartes etc.

4.3 Reconstruction de trajectoire à partir des instants de vitesse nulle

Dans le but de calculer la trajectoire, la stratégie qui consiste à intégrer les ac-
célérations et vitesses angulaires enregistrées par les capteurs inertiels dérivent
rapidement. La méthode de détection des instants de vitesse nulle limite les
erreurs en nécessitant d’intégrer uniquement pendant les foulées détectées, en
faisant l’hypothèse que la vitesse nulle apparaît au début et à la fin de la foulée.
La détection des instants de vitesse nulle est incluse dans un filtre de Kalman
étendu [57] avec une approche de navigation à l’estime (Figure 5). Ce filtre per-
met de réduire significativement les erreurs au cours du temps. Le filtre peut
par exemple inclure un état à 6 degrés de liberté pour la vitesse et l’attitude.
D’autres états peuvent être ajoutés comme la position, le biais du capteur etc. Il
permet aussi de mesurer la confiance des états estimés.

La méthode de détection des instants de vitesse nulle (ZUPT) améliore la qual-
ité de reconstruction de trajectoire mais repose sur une contrainte assez forte :
le placement du dispositif sur la chaussure. Cet emplacement est très sensible
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4.5 Reconnaissance d’activité (AR)

Ce travail vise à être appliqué pour calculer des statistiques pertinentes durant
des études cliniques, reliées aux différents tests déjà en place et présentés en
Section I.3.2 (test des 4 marches, 10 mètres de course, 6 minutes de marche).
Durant les dix dernières années, le reconnaissance d’activité a constitué un sujet
de recherche important dans un contexte médical. Alors que les solutions à base
d’analyse d’image sont très intrusives [62], l’émergence des accéléromètres
et gyromètres dans les objets connectés du quotidien (smartphones) permet
d’effectuer des analyse de données inertielles pour la reconnaissance d’activité.
La plupart des articles de la littérature utilise des algorithmes à fenêtre glissante
combinée avec des chaînes de Markov [75] ou de l’apprentissage automatique
[53, 78, 85]. Cependant, ces méthodes sont généralement non robustes aix
phases de transition. En effet, elles montrent souvent des erreurs au début
ou à la fin des activités, quand la fenêtre superpose la fin d’une activité et le
début de la nouvelle. Ces algorithmes montrent aussi des mauvaises perfor-
mances lorsque la taille de la fenêtre est trop petite et ne contient pas assez
d’information. De plus, ils ne sont pas adaptés à la détection des foulées car dans
le quotidien on peut changer rapidement et régulièrement de types de foulée
(escaliers avec des plateforme par exemple). Le travail réalisé dans cette thèse
utilise la trajectoire reconstruite des foulées détectées, information précieuse,
afin de reconnaître l’activité. Comme les utilisateurs peuvent avoir des âges
et physiques différents, nous n’appliquons pas des techniques basées sur des
valeurs seuil de la longueur ou vitesse de la foulée. Nous préférons construire un
algorithme d’apprentissage automatique.

D’autres travaux traitant des données inertielles sont appliqués dans un con-
texte médical. Par exemple dans [64], un dispositif porté à la chaussure est utilisé
pour analyser la démarche et détecter automatiquement la maladie de Parkinson
en utilisant des algorithmes d’apprentissage automatique. Cependant leur étude
présente plusieurs limitations : elle est basée sur un petit jeu de données qui
a été construit dans un environnement contrôlé. Les utilisateurs marchent 10
mètres quatre fois à un rythme confortable et en ligne droite sans obstacle. La
segmentation est donnée par une approche valeur seuil sur le gyromètre et des
techniques classiques de traitement du signal (moyenne, variance, maximum,
minimum). Cette approche ne serait robuste pour la détection de foulées dans
des enregistrement à domicile, ils ont d’ailleurs admis que le modèle avait des
difficultés à généraliser sur d’autres jeux de données.

5 Variables cliniques pour la maladie de Parkinson

Parmi les troubles neurodégénératifs courants liés à l’âge, la maladiie de Parkin-
son est la deuxième plus présente. En France on compte plus de 200 000 person-
nes atteint de la maladie. Des traitements sont en cours de développement et
plusieurs présentent des résultats encourageants mais l’analyse de leur efficac-
ité reste un véritable challenge, dûe notamment à la complexité des symptômes.
En Section I.5.1 nous présentons rapidement les symptômes et le traitement Lev-
odopa. En Section hyperlinkAutomatic detection of Parkinson’s eventsfrI.5.2 nous
présentons les algorithmes à la pointe de l’état de l’art pour la détection des
évènements parkinsoniens. Puis nous concentrons notre étude en Section I.5.3
sur les algorithmes utilisant l’ActiMyo développés par Sysnav pour la détection
des tremblements et crises de dyskinésie, ainsi que leurs limitations.
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élimination en ne gardant uniquement les phases avec des mouvements suffisa-
ment importants mais n’étant pas associés à des déplacements (marche, course
etc.).

Cette approche a été testée pendant des enregistrements effectués en hôpi-
tal, où les patients doivent réaliser des actions particulières pour la mesure du
score UPDRS. Les algorithmes ont montré des résultats encourageants dans ce
genre d’environnement contrôlé mais ne parviennent pas à généraliser suur des
enregistrements à domicile face à la grande variété de mouvements. En effet,
une comparaison des détections peut être faite à partir des enregistrements de
volontaires, non atteints par la maladie, qui ont accepté de porté le dispositif.
Ils ont souvent le même âge, les conjoint(e)s par exemple et servent de patient
"contrôle" pour les étude. Nous avons pu observer beaucoup de faux positifs
dans la détection des évènements parkinsoniens.

6 Contributions générales de la thèse

Dans la section précédente, nous avons décrit les algorithmes développés par
Sysnav pour la reconstruction de trajectoire et la détection des évènements
parkinsoniens (respectivement en Section I.4.4 et Section I.5.3). Nous avons
montré plusieurs limitations que nous visons à résoudre dans le travail de cette
thèse avec des algorithmes d’apprentissage statistique supervisé. En Section
I.6.1 nous introduisons les concepts de l’apprentissage supervisé et comment
l’utiliser aux données enregistrées par l’ActiMyo pour la tâche de détection des
foulées (Section I.6.2 and Section I.6.3), activity recognition in Section I.6.4 et
la détection des évènements parkinsoniens en Section I.6.5. Ces travaux sont
basés sur des algorithmes innovants dont nous présentons les principales idées
dans ce qui suit.

6.1 Apprentissage statistique supervisé pour la détection de foulées
et des évènements parkinsoniens

De part la complexité de notre cadre d’application, la problématique de notre
étude est difficile à décrire avec des modèles déterministes, et donc nous avons
adopté des stratégies basée sur le machine learning. Cette première section
vise à introduire les principaux concepts de l’apprentissage supervisé pour les
séries temporelles. Ces méthodes sont appliquées aux données inertielles de
l’ActiMyo : accélérations et vitesses angulaires selon trois axes. Traditionnelle-
ment pour la détection d’évènements dans les séries temporelles, l’approche par
fenêtre glissante est utilisée pour sélectionner des intervalles qui sont ensuite
classifiés par la fonction de prédiction, auparavant calculées par apprentissage
statistique supervisé. Nous appliquons cette technique pour la détection des
crises de dyskinésie mais développons une approche innovante pour la détection
des foulées basée sur une extraction d’intervalles candidats. Le principe est de
sélectionner des intervalles pertinents qui pourraient correspondre à des foulées
et sélectionner ceux qui sont réellement des foulées via le machine learning. En
effet, de nombreux intervalles sont sélectionnés à tort quand l’utilisateur bouge
sa cheville mais sans être en train de marcher ou lorsque le dispositif n’est pas
porté à la cheville (dans la poche ou dans un sac à dos). L’extraction d’intevalles
pertinents permet de réduire le nombre de classifications par la fonction de pré-
diction et réduit la complexité statistique.
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Considérons un vecteur aléatoire (X, Y ) à valeurs dans R
p × Y dont la distribu-

tion de probabilité PX,Y est inconnue. Les algorithmes d’apprentissage supervisé
vise à estimer le lien entre les covariables X = (X1, . . . , Xu, . . . , Xp) (qui correspon-
dent aux données inertielles des intervalles dans notre cas) et une variable à
prédire Y (évènements parkinsoniens par exemple). L’estimation de la fonction
de prédiction f définie sur Rp et à valeurs dans Y repoose sur un jeu de données
Dn = {(X1, Y1), . . . , (Xi, Yi), . . . , (Xn, Yn)} de n couples indépendants et identique-
ment distribués suivant la distribution PX,Y . Un estimateur f̂ de f permet de
prédire une nouvelle valeur Yn+1 à partir d’une nouvelle observation Xn+1.

En pratique Xi correspond aux données du gyromètre et accéléromètre de
l’intervalle i (fourni par la fenêtre glissante ou l’extraction d’un intervalle can-
didat). Les algorithmes d’apprentissage supervisés nécessitent que pour tout i,
Xi soit à valeurs dans R

p avec p un entier fixé. Une approche par fenêtre glis-
sante permet d’extraire des intervalles à taille fixe mais l’approche innovante
d’extraction d’intervalles candidats n’assure pas d’obtenir une taille constante.
Pour répondre à cette problématique, on peut calculer des variables depuis les
données inertielles Xi (comme la moyenne, la variance etc.). Cette procédure
est appelée features engineering. Au final, cela permet de calculer Zi à valeurs
dans R

d quel que soit la taille de l’intervalle extrait. Nous observons alors un cou-
ple (Z, Y ) à valeurs dans R

d×Y où d correspond au nombre de features calculées.
Les algorithmes d’apprentissage statistique supervisé peuvent alors être utilisés
quelle que soit la méthode d’extraction d’intervalles.

6.2 Extraction d’intervalles candidats basée sur le contact au sol

Le dispositif ActiMyo doit être positionné à la cheville ou au poignet, comme illus-
tré en Figure 11. Dans cet emplacement par défaut, les capteurs enregistrent les
données inertielles dans le référentiel défini par un axe Z aligné avec la jambe
et l’axe X aligné avec le pied. Cependant nous avons observé que le système
pouvait être placé à l’envers et pouvait tourner autour de la cheville au cours
de l’enregistrement. Typiquement, en Figure 7, l’axe Y est aligné avec la jambe
(accélérations proches de -g quand le pied est au sol). C’est pourquoi à ce stade

Figure 11: Placement du dispositif par défaut.

nous n’avons aucune information de la direction des différents axes des données
inertielles. Pour répondre à ce problème en Chapitre III, les normes des signaux
sont utilisée. Nous avons observé que les foulées produisent un pic dans la norme
des accélérations quand le pied entre en contact avec le sol. Puis le début et la fin
de l’intervalle sont définis par des minima locaux de la norme du gyromètre au-
tour des pics d’accélération. En effet, quand le pied entre en contact avec le sol,
les vitesses angulaires de la cheville sont plus faibles que quand le pied est en
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phase de balancement. Cependant cette approche extrait également des inter-
valles qui ne correspondent pas à des foulées quand par exemple l’utilisateur est
en train de faire du vélo. The but est alors de sélectionner parmi les intervalles
extraits ceux qui sont réellement des foulées. Nous appliquons une méthode
d’apprentissage statistique supervisé pour répondre à ce problème grâce à une
base de donnéees que nous avons préalablement construites.

La procédure de features engineering repose sur le calcul d’une rotation ap-
pliquée sur les données inertielles afin de travailler dans un référentiel commun
entre les enregistrements. Cette étape clef de notre algorithme est basée sur un
ensemble de modèles géométriques à trois dimensions des vitesses angulaires
calculés depuis la base de données. Ensuite le balancement du pied vers l’avant,
qui intervient juste avant le contact avec le sol, est étudié. Il fournit des pré-
cieuses informations pour la fonction de prédiction calculé à partir de l’algorithme
Gradient Boosting Trees (Section II.2.2).

Ce premier algorithme de détection des foulées montre des résultats encour-
ageants et des améliorations comparé à la méthode existante développée par
Sysnav et introduite en Sectioin I.4.4 tout particulièrement pour les foulées atyp-
iques. Cependant, il montre également des limitations lors de pas chassés rapi-
des ou des descentes rapides d’escaliers. De plus, cet algorithme est coûteux en
temps de calcul car le nombre de pics d’accélération peuvent être créés par de
nombreux mouvements qui ne correspondent pas à des foulées. En conséquence
le calcul des features et l’appel de la fonction de prédiction sont effectués de
nombreuses fois en parcourant les enregistrement.

6.3 Extraction d’intervalles candidats de fouléees basée sur une
pseudo-vitesse

En Chapitre IV, l’idée principale repose sur le fait que dans un référentiel inertiel,
l’intégration des accélérations pendant une période ∆t est égale à la différence
de la vitesse de la cheville (quelques mètres par seconde pour un piéton) ce qui
est petit devant l’intégration de la gravité. À partir des intégrations des vitesses
angulaires pendant t et t + ∆t, nous pouvons calculer les matrices de rotation
Rt+dt

t ,Rt+2dt
t , . . . ,Rt+∆t

t . Cela permet par composition des matrices de rotation à
projeter les accélération dans le référentiel body du système du temps t. En effet
par définition on a Rt+2dt

t = Rt+dt
t Rt+2dt

t+dt . Puis l’intégration de γt entre t et t +∆t est
donné par :

1

∆t

∫ t+∆t

t

γt(u)du =
1

∆t

∫ t+∆t

t

at(u)du+ gt

=
vt(t+∆t)− vt(t)

∆t
+ gt

≃ gt,

où gt est une constante. En supprimant la gravité des données accéléromtètre
projetées dans le référentiel terrestre qui est aligné avec la gravité identifiée,
nous pouvons calculer une pseudo-vitesse v̂W qui est une features importante
pour détecter le début et la fin des foulées. Cette procédure qui vise à obtenir les
données dans un référentiel terrestre, est appelée filtre d’attitude. La quantité
de vitesse calculée est appelée pseudo-vitesse v̂W car ce n’est pas la quantité
utilisée dans la reconstruction de trajectoire construite par le filtre de Kalman
étendu qui est plus précise. Par contre son calcul est très rapide.

Cet algorithme vise à aligner les capteurs dans un référentiel commun
(référentiel terrestre) afin de tirer profit des trois dimension de l’accéléromètre
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et gyromètre, principe similaire à celui présenté auparavant en Section I.6.2.
Cependant, la pseudo-vitesse calculée est plus robuste dans les situations cri-
tiques et fournit, par intégration, une pseudo-trajectoire qui apparaît comme
une variable clef pour la décision de la fonction Gradient Boosting Trees (Sec-
tion II.2.2). En effet, cette approche extrait des intervalles qui ne correspondent
pas à des foulées quand par exemple l’utilisateur tient le dispositif dans sa main
le temps de l’installation. La sélection des foulées réelles parmi les intervalles
extraits est fournie par la fonction de prédicion.

6.4 Reconnaissance d’activité à partir de la trajectoire reconstruite

Sysnav a développé un algorithme introduit en Section I.4.4 qui permet de cal-
culer la trajectoire pour chaque foulée détectée. Cet algorithme nécessite une
estimation précise des débuts et fins des foulées avant d’appliquer l’estimation
de la vitesse du système par le modèle de bras de levier. L’estimation de la
vitesse est intégrée dans un filtre de Kalman étendu avec l’intégration des ac-
célérations, fournissant la trajectoire reconstruite.

Pendant les études cliniques, la reconnaissance d’activité est une précieuse
information pour évaluer la santé des patients souffrant de troubles du mouve-
ment. Nous concentrons notre travail sur trois activités particulières en relation
avec les variables cliniques usuelles pour la myopathie : les escaliers, la marche,
et la course. Cependant, définir la frontière entre la course et la marche rapide au
travers de la trajecctoire est un véritable challenge. En effet, la différence d’âge
entre les patients en étude clinique peut être assez grande, et leur démarche
très différente. De plus, détecter les escaliers pour des patiients souffrant de
myopathie s’avère difficile car ils ont tendance à monter les marches une par
une ce qui aboutit à une faible différence d’altitude notamment. C’est pourquoi
en Chapitre V nous avons mise en place un algorithme d’apprentissage supervisé
pour construire une fonction de classification qui reconnaît l’activité des foulées
via leur trajectoire avec un calcul des features basé l’analyse des données fonc-
tionnelles.

6.5 Réseau de neurones pour la détection des évènements parkin-
soniens

Le Chapitre VI présente une approche de deep-learning innovante et générique
pour des problématiques issues de données inertielles. Au travers de ce tra-
vail, nous concentrons notre attention sur la détection des tremblements et des
crises de dyskinésie, en parallèle de la reconnaissance d’activité. Notre travail
est basé sur un réseau multi-channel, utilisant en particulier des réseaux de neu-
rones à convolution et un channel d’analyse topologique des données (TDA) pour
le traitement de séries temporelles multivariées. L’analyse topologique des don-
nées est un domaine récent qui a émergé de divers travaux de géométrie com-
putationnelle notamment, visant à fournir des méthodes mathématiques, statis-
tiques et algorithmiques bien définies pour exploiter les structures géométriques
et topologiques dans les données.
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Introduction (English)
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This first chapter aims to contextualize the main problems of the thesis and
to give an overview of the existing algorithms that have been developed to over-
take them. In Section I.1 we describe the Inertial Measurement Units (IMUs) and
their use for trajectory reconstruction and healthcare application. In particular
we present the ActiMyo device developed by Sysnav in Section I.2, designed to
be worn at the wrist and at the ankle. In Section I.5 and Section I.3 we describe
the variables computed by Sysnav aiming to characterize the evolution of the
health condition of patients during clinical studies for two diseases: Parkinson
and Duchenne Muscular Dystrophy (DMD). The DMD clinical outcomes are based
on the trajectory reconstruction of the device worn at the ankle. In Section I.4
we introduce the notions of trajectory reconstruction for a pedestrian with shoe-
mounted IMU that have been adapted to the ActiMyo device. Whether for DMD
or Parkinson’s clinical variables, Sysnav developed algorithms with several limi-
tations that we will try to overtake in this thesis. In Section I.6 we briefly describe
the content of our work divided into three machine learning applications: the
stride detection, the activity recognition and the Parkinson’s event detection.

1 General context and main issues of the thesis

In this section we present two types of application using Inertial Measurements
Units (IMUs). In Section I.1.1 we describe the advantage of using IMUs for tra-
jectory reconstruction which overtakes several limitations of Global Navigation
Satellite Systems (GNNS) in indoor positioning as an example. These devices are
also increasingly used in a medical context to measure the living conditions of pa-
tients at home. Indeed their small size makes them particularly easy to integrate
into daily life situations.

1.1 Inertial Measurement Unit for Trajectory Reconstruction

The emergence of Global Navigation Satellite System (GNSS) receivers in the
2000s changed the perception of navigation. While they are commonly used in
outdoor environments, in many situations they fail to produce accurate localiza-
tion due to poor reception (e.g., tunnels, indoor parking, forests, inside buildings,
etc.). However, reliable localization may be vital in situations where a continuous
position estimate is needed to ensure safety, for instance for isolated workers,
firefighters or military applications.

In this context, Inertial Measurement Units (IMUs) can be utilized as part of
an Inertial Navigation System (INS). The main advantage of these systems is
that they do not rely on external references once the initialization point has been
given to the INS, which makes them highly robust to external disturbances or sab-
otage, especially compared to architecture based localization systems, such as
the GNSS. For this reason, INS are extensively used in products relying critically
on their position estimate such that aircraft, boat, submarines, missile, space-
ship, satellites. Being critical for these military and industrial applications, INS
have been extensively developed after the beginning of the second half of the
20th century. The trajectory is estimated by dead reckoning technique: an IMU
signal (acceleration and rotation speed) is integrated to predict one’s current po-
sition by using a previously determined position. It is known that for this kind
of applications, using classical navigation method requires to use high precision
sensors that are too bulky and too expensive to be carried by a pedestrian. To be
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able to estimate a trajectory with light and low cost inertial sensors such as those
used in mobile phones, for example, different methods hast to be implemented.

1.2 Inertial Measurement Unit for Healthcare Application

Other works with inertial wearable devices are applied in a medical context. The
use of INS in medical engineering has been rapidly spreading for human motion
tracking and analysis. IMUs are noninvasive and relatively easy to integrate into
a wearable strap, making them appropriate sensors to utilize in a diverse variety
of portable technologies aimed at home healthcare and wellness applications
since they are capable of assessing and monitoring activities and subsequently
enabling the evaluation of an individual’s quality of life. They can be used for in-
stance in activity monitors, fall detection and symptoms detection of patient suf-
fering from pathologies associated with movement disorders. Although medicine
promotes this kind of innovation, clinical trials that evaluate the effectiveness
of new treatment take place in a highly regulated environment. Until 2019, no
system has been approved by the European Medicine Agency (EMA) as represen-
tative of the physical conditions of the patient and can be used in clinical studies.
This topic has thus become a major issue.

In this context Sysnav developed ActiMyo, a system to be worn at the ankle
and the wrist, based on magneto-inertial sensors to compute relevant trajec-
tory measures for patients suffering from movement disorders. In particular, for
pathologies involving difficulties of walking, it is crucial to precisely analyse the
trajectory of the ankle-mounted device.

2 ActiMyo: magneto-inertial sensors system

Actimyo is composed of one accelerometer and one gyrometer recording data
(respectively γ and ω) in its own reference frame (called body reference frame) at
130 Hz with about 16 hours of battery autonomy. The accelerometer is measuring
both the linear acceleration due to motion (a) and the acceleration caus ed by
gravity (g): γ = a+ g. The inertial sensors start recording data when the device is
taken from its case. When put back, the recorded data are transferred to a cloud
server we have access to.

(a) (b) (b)

Figure 12: ActiMyo connected to the docking station (a), worn at the ankle (b) and the wrist
(c).
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2.1 Strapdown IMU

The IMU used in this device is a strapdown kind described in [60]. In this kind of
IMU, the accelerometer and gyrometer are rigidly attached on a solid platform,
in contrast to a gyrostabilized platform where accelerometer orientation is sta-
bilized in the inertial frame. This has one major implication: the attitude is not
given by the gyroscope directly, but has to be integrated from the angular ve-
locity. This strongly correlates the problems of attitude and position and one of
the reasons for the difficulty of doing inertial navigation. However nowadays,
Inertial Navigation Strapdown systems are of particular interest. The majority of
IMUs are strapdown montage because they are easier to build mechanically, are
smaller and lighter, the best example being the smartphones.

2.2 Inertial sensors calibration

The triaxial inertial sensors in ActiMyo are designed to output a signal propor-
tional of the quantity of interest (angular velocity for gyrometer and acceleration
for accelerometer). However, their models have to be calibrated individually be-
fore using them as measurements of acceleration or rotational velocity. More-
over, the combination of the three axis is never totally orthogonal because of the
precision of the mechanical assembly. The calibration can also be influenced by
environmental factors such as the temperature, this effects also have to be taken
into account. Sysnav has developed an intern module that computes one unique
calibration compensating errors (scale factor, biais, nonorthogonality etc.) for
each manufactured system.

ActiMyo has been designed to be easy to use for patients. It requires little
manipulation and can be connected directly to the docking station so that the
data collected each day is automatically sent to a dedicated server for offline
analysis.

3 Clinical outcomes for Duchenne Muscular Dystrophy

In this section, we present the effects on patients life, suffering from Duchenne
muscular dystrophy (Section I.3.1) and the "official" variables calculated at hos-
pital for measuring symptoms during clinical trials (see Section I.3.2). However,
these hospital tests have several drawbacks that Sysnav wants to overtake with
the ActiMyo device (see Section I.3.3).

3.1 Presentation of the disease

Duchenne muscular dystrophy (DMD) is a genetic disorder that results in a pro-
gressive loss of functional muscle fibers and weakness affecting mobility. The
past several years have seen increased interest by biopharmaceutical compa-
nies in conducting research and development into novel treatment agents for
DMD. There is hope that new therapies will slow disease progression and main-
tain quality of life. The clinical trials target DMD patients who are old enough
to be assessed reliably and still have sufficient muscle fibers available for thera-
peutics to demonstrate a measurable benefit over the typical 1-year clinical trial
duration.
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3.2 Hospital tests

Over the last 50 years, tens of billions of dollars have been invested to bring
new molecules from the laboratory for develop the most innovative drugs. But
one aspect has never changed: how to judge the effectiveness of treatments, by
variables called "endpoint". The existing measured variables are the time taken
by the patient to climb 4 steps (4-stairs test), the time for running 10 meters (10
meters run test) or the distance traveled when the patient is asked to walk for 6
minutes around two cones in the hallway of a hospital (6 minutes walk test). The
main problem is these clinical outcomemeasures can be biased by themotivation
of the patient. The results can indeed be impacted by the fitness condition of the
day without being correlated with patient health. In addition, human errors may
appear in the measurement. For instance, the 4-stairs test can be performed
in less than two seconds and the measures taken by two different doctors can
vary consistently. Finally it is tiring and sometimes complicated for patients to
regularly go to the hospital.

3.3 Home variables with ActiMyo

There is a gap between the investment in the therapies compared to effort for
designing new endpoints to judge the efficacy of treatments in clinical trials. The
goal of ActiMyo is to compute new outcome measures correlated with the pre-
vious mentioned tests in uncontrolled environments: at home, at school, play-
ing outside or resting inside etc. It is important to compute outcomes that de-
scribe the actual daily activity during months compared to punctual measures
performed at hospital. The proposed variables are aiming at the motor func-
tion domain and include the stride length, stride velocity and distance walked
[32, 46]. In order to connect these results to 4-stairs test or 10 meters run test,
Activity Recognition (AR) must be applied.

For stride length estimation with IMU, Pedestrian Dead Reckoning (PDR) has
been shown to yield positioning accuracy adequate for many end applications.
In the following we will introduce the basics of PDR algorithm with shoe-mounted
IMU and the innovative Sysnav algorithm that adapted the technique for an ankle-
mounted device.

4 Introduction to PDR with shoe-mounted IMU

The problem of inertial navigation can be summarized in a very simple way: to
estimate the evolution of the position, orientation and speed of an object it is
attached to, with respect to another reference frame. This approach mainly re-
lies on integrating the linear acceleration and the angular velocity data to yield
position updates over time. Unlike infrastructure-dependent localization systems
such as map matching, Wi-Fi [84], radio frequency identification [80], or ultra-
wideband [41], body-mounted IMUs are lightweight and can be rapidly and easily
deployed (see Figure 13).

However, all strapdown IMUs are subject to drift, and the integrations rapidly
accumulate large errors. To overcome this issue, the zero velocity update tech-
nique (ZUPT) [43, 5, 26, 74] is traditionally used. The goal of this method is to
detect when the foot is flat on the ground and stationary relative to the surface.
In Section I.4.1 and Section I.4.2 we introduce two kinds of detection: respectively
threshold-based and with machine learning. Knowing these time moments, inte-
gration of the inertial data is required only during the intervals between footfalls
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Figure 13: PERSY (Predestrian Reference SYstem) developed by IFSTTAR.

(see Figure 14) instead of along an entire trajectory. The procedure is described
in Section I.4.3. However, this technique is not directly usable to the ActiMyo

Figure 14: Walking gait cycle and measurement update cycle.

device as it is worn on the ankle and not on the foot. Sysnav develop a new
inspired ZUPT approach presented in Section I.4.4 that presented several limita-
tions. Finally in Section I.4.5 we described how to take advantage of the ankle
reconstructed trajectory in a medical activity recognition application.

4.1 Threshold-based Zero Velocity Update Detection

Several studies in the literature have proposed to tune thresholds on the iner-
tial data (linear velocity close to one g and small values of the angular velocity)
[58, 42, 1]. A known limitation of these fixed-thresholds-based detectors is they
fail to perform reliably across a variety of gait motions. These methods show
good results for classical gait, but fail for atypical strides such as stairs and small
steps. In [69], several inertial devices worn at the ankle or wrist have been tested
for estimating steps and travelled distance during walking, stairs, and simulated
household activities. Every tracker showed a decreasing accuracy with slower
walking speed, which resulted in a significant under-counting of steps. Poor
performance in travelled distance estimation was also evident during walking
at low speeds and climbing up/down stairs. Recent approaches aim to improve
detection by implementing adaptive techniques that are dependent on velocity
[51, 77] or gait frequency [83]. However, modeling zero-velocity detection during
motions such as stair climbing and crawling, while maintaining accurate detec-
tion during walking and running, is fundamentally challenging [40].

35













unimodal wearable sensors or even audio sensors. However, most papers were
restrained either to a controlled environment, the characterization of parkinso-
nian patients [56], the detection of freezing of gait periods [55, 52], the detec-
tion of tremors [4, 49] and bradykinesia [50], the physical activity of patient [71],
the limited detection of dyskinesia crises in specific life activities [44], or to a
correlation with the UPDRS [63] score given by doctors. Others tried the charac-
terization of ON-OFF states, while detecting dyskinesia based on a thresholding
of the spectrum [45]. Nonetheless, some papers [72] implemented a way of do-
ing automatic detection in everyday life environments by learning patterns. To
the best of our knowledge, none did really extend their detection out of controlled
areas, to test their robustness and generalization ability. It also seems like none
did claim to provide an accurate detection of the beginning and the end of a
dyskinesia crisis.

5.3 Automatic detection of ankle tremors and dyskinesia with Ac-
tiMyo

The system ActiMyo has been worn at the ankle by 14 patients suffering from
Parkinson disease during a proof of concept in 2014 and a clinical study in 2017,
both dealing with the Levodopa drug. These recordings have been used to de-
velop an automatic detection of two parkinsonian events: tremors and dyskinsia.

First, the algorithm described in Section I.4.4 is used to detect when a stride
occurs in the recording. It allows to exclude intervals during which the patient is
walking. Motionless intervals are also excluded as they could not correspond to
these two events. Tremors have been characterised by repeated movements in
frequencies: a peak in a tuned range of frequencies has to be detected in one of
the axes of the accelerometer and gyrometer. Then dyskinesia are detected in
the ankle proceeding by elimination keeping only phases with a long and strong
enough move but which is not associated to walking or tremors. When the ankle
moves, it usually implies lifting the foot before returning it rapidly to the floor, eg
when walking. So looking at the acceleration and angular velocity at the ankle,
for most regular moves, a peak in acceleration is regularly noticeable. So if the
amplitude remains large enough during the studied interval, a candidate dyski-
nesia is considered. If there is a tremor or normal looking leg movements in the
phase, then the phase is discarded as not a dyskinesia. The remaining phases
are the dyskinesia output.

This approach has been tested during hospital recordings where they are
asked to realize specific actions to attest for their UPDRS score. It provides
promising result in this kind of controlled environment but fail to perform reliably
across a variety of gait motions during home recordings. Indeed, an available
comparison was provided by healthy volunteers, who were merely partners of
those patients that accepted to wear the device as well. All of them were match-
ing age, and could thus serve as controls for the study. We observed a a lot of
false symptom detections.

6 General Contributions and Thesis Outline

In the previous sections we described the algorithms developed by Sysnav for
trajectory reconstruction and Parkinson’s envent detection (respectively Section
I.4.4 and Section I.5.3). They had several limitations we want to overtake in the
work of this thesis with supervised statistical learning algorithms. In Section I.6.1
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we introduce the concepts of supervised statistical learning and how to adapt
this approach to the data recorded by ActiMyo for stride detection (see Section
I.6.2 and Section I.6.3), activity recognition in Section I.6.4 and Parkinson’s event
detection in Section I.6.5. These works are based on innovative algorithms whose
we present the main ideas in the following.

6.1 Supervised Learning for stride detection and Parkinson’s events

Due to the complexity of our application framework, the problem in our study is
difficult to describe with simple deterministic models, and thus we adopted a ma-
chine learning approach. This first section aims to introduce the general concepts
of statistical supervised learning for times series. These methods are applied to
ActiMyo recordings that contains inertial data: acceleration and angular velocity
in three axes. Traditionally, for event detection in time series, the sliding window
approach is used to select intervals that are classified by the prediction function
previously built with supervised learning. We adopt this technique for tremor
and dyskinesia detection and develop an innovative approach for stride detec-
tion based on candidate intervals extraction. The principle is to select relevant
intervals that may correspond to stride and select among them the true strides by
machine learning. Indeed, many intervals are wrongly selected when the wearer
is moving its ankle but not walking or even when the device is not worn at the an-
kle (in a pocket, backpack). This intervals exaction allows to reduce the number
of classifications by the prediction function and reduce the statistical complexity.

Let’s consider a random vector (X, Y ) taking values in R
p × Y whose the

probability distribution PX,Y is unknown. Supervised learning algorithms aim
to estimate the link between the covariates X = (X1, . . . , Xu, . . . , Xp) (corre-
sponding to the inertial data of an interval in our case) and a variable to be
predicted Y (Parkinson’s event for example). The estimation of the predic-
tion function f defined on R

p and taking values in Y relies on a dataset Dn =
{(X1, Y1), . . . , (Xi, Yi), . . . , (Xn, Yn)} of n independent and identically distributed cou-
ples following the PX,Y distribution. One estimator f̂ of f allows to predict a new
output value Yn+1 knowing an new observation Xn+1.

In practice Xi corresponds to the gyrometer and accelerometer data of the
interval i (given by sliding window or candidate intervals extraction). The super-
vised learning algorithms require that for all i, Xi takes its values in R

p with p a
fixed integer. A sliding window approach allows us to extract fixed-size interval
but the innovative candidate stride extraction does not ensure the same size for
all intervals. To overtake this issue, one can compute relevant variables from
the inertial data Xi (such as the mean, standard deviation etc.). This procedure
is called the features engineering process. Finally it allows to compute Zi taking
values in R

d regardless of the interval size. We observe now a couple (Z, Y ) taking
values in R

d × Y where d corresponds to the number of computed features. The
supervised learning algorithms can thus be adapted to any interval extraction
approach.

6.2 Candidate stride interval extraction based on ground contact

The ActiMyo system should be worn at the ankle, as illustrated in the Figure 11. In
this default placement, the sensors record the inertial data in the reference frame
defined by the Z axis aligned with the leg and the X axis aligned with the foot.
However we observed that the device may be worn upside down and may turn
around the ankle during the recording. Typically, in Figure 7, the Y axis is aligned
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with the leg (acceleration close to -g when the foot is on the ground). Thus at this

Figure 11: Default device placement.

stage, we have no information about the direction of the different axes of inertial
data. To overtake this issue in Chapter III, the norms of the signals are used. We
observed that strides induce a peak in the norm of the acceleration when the foot
touches the ground. Then the beginning and the end of the interval are defined
by local minima of the gyrometer norm around the acceleration peak. Indeed,
when the foot is on the ground, the angular velocity of the ankle is lower than
during the swing phase. However this approach also extract intervals that do not
correspond to stride when for example the user is bicycling. The goal is to select
among these intervals which ones are true strides. We adopt a statistical learning
approach to answer this problem thanks to a database we have built.

The features engineering process relies on the calculation of a rotation applied
on the inertial data in order to work in the same reference frame for all records.
This key stage is based on fitting the gyrometer data with 3D reference geometric
patterns computed from the database. Then the forward swing movement that
occurs just before the foot contact with the ground is studied, providing precious
information for the prediction function built from the Gradient Boosting Trees
algorithm (see Section II.2.2).

This first stride detection algorithm shows promising performance improve-
ment compared to the existing method developed by Sysnav introduced in I.4.4
especially for atypical strides. However it shows limitations in situations such
as fast side stepping and prompt descent of stairs. In addition, this algorithm is
computationally expensive as the number of acceleration peaks are in practice
caused by a lot of device movements that do not correspond to strides. Conse-
quently the features and the classifications by the prediction function are com-
puted a lot of times along the recording.

6.3 Candidate stride interval extraction based on pseudo-speed

In Chapter IV, the main idea lies in the fact that in an inertial reference frame, the
integration of the accelerometer data during a period ∆t is equal to the difference
of the ankle speed (a few meters per second for a pedestrian) that is small com-
pared to the integration of the gravity. With angular velocity integration during t
and t + ∆t, we can compute the rotation matrices Rt+dt

t ,Rt+2dt
t , . . . ,Rt+∆t

t . It allows
by composition of the rotation matrices to project the acceleration in the body
frame of time t. Indeed by definition Rt+2dt

t = Rt+dt
t Rt+2dt

t+dt . Then the integration of
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γt during t and t+∆t is given by:

1

∆t

∫ t+∆t

t

γt(u)du =
1

∆t

∫ t+∆t

t

at(u)du+ gt

=
vt(t+∆t)− vt(t)

∆t
+ gt

≃ gt,

with gt a constant. By removing the gravity from the accelerometer data pro-
jected in the world frame that is aligned with the identified gravity, we can com-
pute a pseudo-speed v̂W which is a good feature to detect the beginning and the
end of strides. This procedure aims to have a representation of the data in a
world frame which is called attitude filter. The computed speed quantity is called
pseudo-speed v̂W because it is not the quantity used for trajectory reconstruction
given by the extended Kalman filter that is more accurate. The advantage of this
described attitude filter is its computation efficiency.

This algorithm aims to align the sensors in a common reference frame (world
frame) in order to take advantage of the three dimensions of the accelerometer
and gyrometer, as the previous one briefly described in Section I.6.2. However
the computed pseudo-speed is more robust in critical situations and provides, by
integration, a pseudo-trajectory that appears to be a key variable for the Gradi-
ent Boosting Trees decision function (see Section II.2.2). Indeed, this approach
extracts intervals that are not strides when for example the wearer is moving
the device in the hand during the required time to install or uninstall the system
from the docking station. The selection of the true stride intervals among them
is given thanks to this decision function.

6.4 Activity recognition from computed stride trajectory

Sysnav developped an algorithm introduced in Section I.4.4 that allows to com-
pute the trajectory of each detected stride. This algorithm requires a precise
estimation of the stride start and stride end before applying a speed estimation
of the device based on a lever arm model. Then, the speed estimation is fused
with inertial integration in an extended Kalman filter, providing the computed
trajectory.

During clinical studies, activity recognition is precious information to evaluate
the health of patients suffering from movement disorders. In this work, we focus
on three activities related to the primary outcomes for DMD: stairs, walking, and
running. However, defining the difference between running and fast walking re-
garding the trajectory is a challenging task. Indeed, the age difference of patients
in clinical studies can be very large, and their gaits very dissimilar. Moreover, de-
tecting stairs is difficult for patients suffering from DMDwho can hardly take them
and go up the stairs one by one (the difference in the computed altitude is small).
Thus, in Chapter V we adopted supervised machine learning algorithm to build a
classifier that recognizes the activity of the performed stride given its computed
trajectory with features engineering process based on functional data analysis.

6.5 Neural Network for Parkinson’s events detection

Chapter VI presents an innovative and generic deep-learning approach for is-
sues based on inertial data recordings. Throughout this work, we focused our
attention on the detection of tremors and dyskinesia, concurrently to the issue
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of activity recognition. The models have been built in order to precisely de-
tect the time boundaries of such Parkinson’s events or activities. Our work is
based on multi-channel networks, using in particular Convolutional Neural Net-
works and one Topological Data Analysis (TDA) channel for multivariate time se-
ries that improved the performances. Topological Data Analysis is a recent field
that emerged from various works in applied topology and computational geom-
etry, aiming at providing well-founded mathematical, statistical and algorithmic
methods to exploit the topological and underlying geometric structures in data
(see Section II.3.4). The proposed methodology involves converting the multi-
variate time series to point cloud and applying methods for findings topological
structure that allow to compute features for our Neural Network. Our approach
proved its efficiency on activity recognition and Parkinson’s event detection, with
scores reaching the performances of state of the art methods.
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Part II

Supervised learning for stride detection
and Parkinson’s events detection
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Due to the complexity of our applications, the problem we study is difficult to
describe with simple deterministic models, and thus we adopted machine learn-
ing approaches. In this thesis, machine learning techniques are used at three
different stages: for stride detection, activity recognition and Parkinson’s events
detection. In Section II.1 we describe the principles of supervised statistical learn-
ing [81, 35] and in particular the Gradient Boosting Trees (Section II.2) and the
Neural Network algorithms (Section II.3). We then explain in Section II.4 how
these methods can be applied to our setting.

1 Introduction to Statistical supervised learning

Let’s consider a random vector (X, Y ) taking values in R
p×Y whose the probability

distribution PX,Y is unknown. Supervised learning algorithms consists of defining
an efficient prediction rule between the covariates X = (X1, . . . , Xu, . . . , Xp) and a
variable to be predicted Y . Namely a prediction function f defined on R

p with
values in Y. For instance, for stride interval detection, X is a vector inertial data
quantity and Y = {−1, 1}, with 1 for a stride and −1 otherwise. The error for a
prediction rule f is given by:

R(f) = EX,Y ℓ(f(X), Y ),

where ℓ is a loss function. The best prediction function f ∗, called Bayes estimator,
is then the one that minimizes the previous expression of R, called risk, for the
set of measurable functions in C defined on R

p with values in Y :

f ∗ ∈ argmin
f∈C

R(f).

However, as the joint distribution PX,Y is unknown we can not compute directly
f ∗. The technique lies in the estimation of such a function from a dataset
Dn = {(X1, Y1), . . . , (Xi, Yi), . . . , (Xn, Yn)} of n independent and identically distributed
couples following the PX,Y distribution.

1.1 Empirical Risk Minimization

From the dataset Dn the empirical risk noted R̂ is given by:

R̂ =
1

n

n
∑

i=1

ℓ(f(Xi), Yi).

The function that is zero everywhere except at Xi taking the value Yi is a min-
imizer of the empirical risk. This kind of function is not satisfying as it would
achieve poor generalization performance (overfitting). Let consider a binary clas-
sification problem with Yi ∈ {−1, 1}. A new observation Xn+1 that do not belongs
to the dataset Dn, would be always wrongly classified zero. Hence, we choose
the f̂ that minimizing the empirical risk over some class of functions F , such
as parametric models, histogram classifiers, decision trees or linear/polynomial
functions, etc.:

f̂ ∈ argmin
f∈F

R̂(f)

= argmin
f∈F

1

n

n
∑

i=1

ℓ(f(Xi), Yi).
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To justifiy this empirical risk minimization method, we need to know how similar
the R(f) and R̂(f) are. When F contains only finite number of classifiers, say N
classifiers, then for bounded loss ℓ Hoeffding’s inequality shows that with proba-
bility at least 1− δ for all f in F :

|R(f)− R̂(f)| ≤

√

logN + log 2
δ

2n
,

Now let consider F contains infinite number of classifiers. As long as its Vapnik-
Tchervonenkis (VC) dimension d [81] is strictly smaller than n, the VC theory tells
us that with probability 1− δ we have:

|R(f)− R̂(f)| ≤

√

d
(

log 2n
d
+ 1
)

− log δ
4

n
.

1.2 Bias-Variance Trade-Off in Machine Learning

The performance of f̂ based on the empirical risk minimization depends on the
class F . One of the main goals of statistical analysis of supervised learning al-
gorithms is to understand how the excess risk defined by the difference between
R(f ∗) and R(f̂) depends on the sample size n, on the complexity of the class F
and on the underlying complexity of the prediction problem itself. Indeed, the
excess risk can be expressed by:

R(f̂)−R(f ∗) =
(

R(f̂)−R(f ∗
F)
)

+ (R(f ∗
F)−R(f ∗)) ,

where f ∗
F ∈ argmin

f∈F
R(f). The first term in the equation, corresponding to the vari-

ance, measures the estimation error in the F . The second term, corresponding to
the bias, measures the error based on the restriction the class F . Consequently,
the more the complexity of F is big, the more the variance is large and the biais is
small. The class F has to be chosen carefully to reach the best trade-off between
the bias and the variance. Namely, the class F has to be not too large to avoid
over-fitting but also not to restrictive in order to approach f ∗.

The phenomenon can be illustrated for a polynomial regression. In this case,
the complexity of F corresponds to the polynomial degree. By increasing the
degree, the prediction error decreases until zero, meaning the observations of
Dn are all exactly predicted by the interpolation. But in Figure 12, it shows also
that the predictions performed outside the set Dn can reach extreme values and
thus large errors.

(a) (b) (c)

Figure 12: Polynomial regression in two dimensions: (a) degree 1, (b) degree 5, (c) degree 10.
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One solution to find the best f̂ with good bias-variance trade-off compromise
is to add a penalization into the empirical risk minimization. Namely, we can
consider:

argmin
f∈F

{R̂(f) + penλ(f)},

where penλ(f) allows to penalize the complexity of the models. One challenge
is to tune the parameter λ that could yield to a strong overfitting. An alterna-
tive method is cross-validation that shows good model selection performances
in (almost) any framework. Nevertheless, universality has a price: compared to
procedures designed to be optimal in a specific framework, the model selection
performances of cross-validation can be less accurate, while its computational
cost is higher.

1.3 Risk Estimation

The simplest method to estimate the risk consists in using an independent subset
that did not participate to the estimation of the model. It requires to build three
sets respectively called learning, validation and test set.

• The training set aims to find the best prediction function for a fixed model
(for example a model of fixed polynomial degree).

• The validation set is used to compare models (for example polynomial re-
gression with several degrees).

• The test set allows to compare the best prediction functions of the different
tested models.

However this solution requires a large initial dataset size n. In practice, the
labelling for the three tasks we consider in this thesis (stride detection, activ-
ity recognition, Parkinson’s events detection) is costly in time and effort. Con-
sequently the total size of observations with label is small. Several strate-
gies have been proposed to estimate the risk with low bias in this situation.
The most popular is cross-validation. The risk estimation is iteratively com-
puted before average in order to reduce the variance and increase the preci-
sion. The K-fold cross-validation is described in the Algorithm 1. It consists in
randomly splitting the dataset into K subsets and then they iteratively are con-
sidered as validation set whereas the K − 1 others constitute the training set.

Algorithm 1: K-fold cross-validation

Input : K random subsets
Output: Estimation by cross-validation

1 foreach k ∈ J1, KK do
2 Consider the kth subset as test set.
3 Estimate the model on the K − 1 subsets remaining.
4 Compute the error on the kth subset.
5 end
6 Mean of K errors.

The choice of the K value is generally taken between 5 and 15. If K is small
(K = 5), the variance is lower but the bias increases. This choice corresponds
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again to a trade-off and its optimization is to complicated or requires too many
observations to be in practice performed, hence the default value equals to 10.
This technique can be repeated several times in order to get the variance of the
resulting error score. It is called the Monte Carlo cross validation.

2 Ensemble methods

The initial idea of Freund and Schapire in [73] described the original algorithm
of AdaBoost (Adaptative Boosting) for the prediction of a binary variable. Sev-
eral studies have been published that adjust this algorithm to other situations:
multi class, regression etc. These tests have shown that this kind of algorithm re-
duce drastically the variance but also the bias of prediction. This algorithm have
been considered as the best method of-the-shell meaning that does not require
a long pre-treatment of data neither a fine tuning of parameters during learning.
Nonetheless, the evolution towards new versions (extrem gradient boosting) with
better performances lead to grow the number of tuned parameters.

Boosting algorithm adopts the same general principle of bagging: building a
family of models that are finaly aggregated thought a weighted mean of estima-
tions/votes. But it is different in terms of building the family that is in this case
recursively: each model is an adaptative version of the previous ones, by given
more weight to observations wrongly estimated for the next estimation. This
section aims to describe boosting algorithms, from AdaBoost (Section II.2.1) to
Gradient Boosting Trees (Section II.2.2).

2.1 Introduction to Boosting Algorithm through Adaboost

Let describe the original version of boosting for a binary problem with δ the pre-
diction function with values in {−1, 1}. It is also possible to adapt this version to a
regression, namely with a real target values.

The weights of each observation are initialized to 1
n
for the estimation of the

first model and then change for each iteration. The weight of an observation is
noted wi is unchanged if it is correctly classified. In the opposite, it grows propor-
tionally to the error made by the model. The final aggregation of the predictions
for a X in R

p is a sum of the different models weighted by their performance:
∑M

m=1 cmδm(X).
This kind of algorithm is used with decision tree (CART) as weak learner (de-

cision tree with accuracy just a little bit better than random guessing). Several
applications have shown that if the weak learner is a trivial decision tree with
only two leafs, AdaBoost reaches better performance compared to a sophisti-
cated tree for a same amount of computational cost: same number of leafs in
the sophisticated tree as number of AdaBoost iteration. The goal of boosting
algorithm is to find an approximation of f such as:

f̂(X) =
M
∑

m=1

cmδ(x; βm),

where cm is a parameter depending on the quality of the weak learner of iteration
m, δ the weak learner with βm parameters fonction of x. With ℓ the loss function,
the goal is to solve at each stage:

(cm, βm) = argmin
(c,β)

n
∑

i=1

ℓ(yi, f̂m−1(xi) + cδ(xi; β)).
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The estimation f̂m given by f̂m(x) = f̂m−1(x) + cmδ(x; βm) is then an amelioration of
the previous iteration.

With Adaboost, the loss function is defined by ℓ(y, f(x)) = exp[−yf(x)]. Namely,
the goal is to solve:

(cm, βm) = argmin
(c,β)

n
∑

i=1

exp[−yi(f̂m−1(xi) + cδ(xi; β))]

= argmin
(c,β)

n
∑

i=1

wm−1
i exp[−yicδ(xi; β))],

with wm−1
i = exp[−yif̂m−1(xi)] independent of c and β. The solution to this optimiza-

tion problem is computed in two steps: finding the best weak classifier δm (namely
finding βm) and then the optimization of the parameter cm.

βm = argmin
β

n
∑

i=1

wm−1
i 1{yi 6= δ(xi; β)}, (1)

cm =
1

2
log

1− ǫ̂m
ǫ̂m

, (2)

where ǫ̂m is the weighted classification error defined by:

ǫ̂m =

∑n

i=1 w
m−1
i 1{δm(xi) 6= yi}
∑n

i=1 w
m−1
i

. (3)

The weights wi for i in J1, nK are updated with:

wm
i = wm−1

i exp[−cm1{δm(xi 6= yi}]. (4)

We described in this section the boosting algorithm for Adaboost (pseudo-code
in Algorithm 2), with exponential loss function. Other loss functions can be used
such as ℓ(y, f(x) = log2(1 + exp[−2yf(x)] for LogitBoost. It depends on the dataset
Dn, if it presents outliers for example.

Algorithm 2: AdaBoost algorithm

Input : Training set Dn,
Weights initialization w0 = {wi =

1
n
; i = 1, . . . , n},

Number of iteration M .
Output: Prediction function f̂M , estimation of f .

1 foreach m ∈ J1,MK do
2 Estimation of δm on the training set weighted by wm−1 (Equation 1).
3 Compute the error ǫ̂m (Equation 3).
4 Compute cm (Equation 2).
5 Update the weights (Equation 4).

6 end

7 Resulting prediction function f̂M(x) = sign[
∑M

m=1 cmδm(x)].

Assuming the trees at each iteration are weak learners (a little bit better than
random guessing) it is possible to prove that the training error of AdaBoost’s final
prediction function f̂M decreases to zero. Furthermore, we can measure the com-
plexity of the final hypothesis using the VC-dimension which can be computed
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[30]. By analyzing both the complexity and training fit of the final hypothesis,
one can immediately apply the VC theory to obtain a bound on its generaliza-
tion error. As noted above, we expect training error to drop very quickly, but
at the same time, the VC-dimension of the final hypothesis is increasing roughly
linearly with the number of iterations M . Thus, with a large value of M , the final
prediction function becomes overly complex and leads to overfitting behavior.

2.2 Gradient Boosting Trees

With the same adaptive approach, Freidman proposed in [31] a familiy of Gradi-
ent Booting Models (GBM) with a loss function ℓ that is convex and differentiable.
Based on the same idea of Adaboost, the goal of Gradient Boosting Trees algo-
rithm is to build a sequence of models that combined together estimate better
and better f , but the main innovation is that we use the gradient of ℓ estimated
by a regression tree at each step (to avoid overfitting). The previous presented
model f̂m(x) = f̂m−1(x) + cmδ(x; βm) is now changed in a gradient descent:

f̂m(x) = f̂m−1(x)− βm

n
∑

i=1

∇fm−1ℓ(yi, fm−1(xi)).

Despite finding the best weak learner δm in Adaboost, the optimization problem is
based on finding the descent step. This requires computation of the derivatives
∇fm−1ℓ(yi, fm−1(xi)), for i ∈ {1, . . . , n}. The quantities ri,m := −∇fm−1ℓ(yi, fm−1(xi)) are
also called pseudo residuals. Now, the problem is that a naive gradient descent
approach would yield a predictor that could only be computed on the training set.
The solution is to fit a weak learner in the direction of the gradient. The Algorithm
3 summarizes the different steps for a regression problem for regression but it
can be adapted to a classification problem.

Algorithm 3: Gradient Boosting Trees algorithm

Input : Training set Dn,
Prediction function initialization f̂0 = argmin

β∈R

∑n

i=1 ℓ(yi, β)

Number of iteration M .
Output: Prediction function f̂M , estimation of f .

1 foreach m ∈ J1,MK do
2 Compute the pseudo residuals ri,m := −∇fm−1ℓ(yi, fm−1(xi)); i = 1, . . . , n.
3 Fit a regression tree δm to the couples (xi, ri,m)i=1,...,n.
4 Compute βm by solving: argmin

β∈R

∑n

i=1 ℓ(yi, fm−1(xi) + βδm(xi)).

5 Update the prediction function f̂m(x) = f̂m−1(x) + βmδm(x).

6 end

7 Return f̂M .

Friedman also proposed in [31] a version named Stochastic Gradient Boosting
including a random under-sampling inspired from bagging methods. An other
proposition consists in add a learning rate coefficient ν that penalizes the update
of the new model in the aggregation:

f̂m(x) = f̂m−1(x) + νβmδm(x).
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A small value of ν requires to increase the number of trees M but in practise
it generally improves the final result. These two parameters have to be tuned
by cross validation on the training set. More recetnly Chen and Guestrin [20]
proposed XGBoost algorithm (Extreme Gradient Boosting). It is a specific imple-
mentation of the Gradient Boosting Trees algorithm which uses more accurate
approximations to find the best tree model:

• Computing second-order gradients, namely second partial derivatives of the
loss function (similar to Newton’s method), which provides more information
about the direction of gradients and how to get to the minimum of the loss
function.

• Advanced regularization (L1 and L2), which improves model generalization.

3 Neural Networks

Deep learning is a set of learning methods attempting to model data with com-
plex architectures combining different non-linear transformations. These tech-
niques have enabled significant progress in the fields of sound and image pro-
cessing, including facial recognition, speech recognition, computer vision, lan-
guage processing, text classification etc. There exist several types of archi-
tectures for neural networks: Multilayer Perceptrons (MLP), Convolutional Neural
Networks (CNN), recurrent neural networks (LSTM). This section aims to introduce
the reader MLP principles (Section II.3.1), CNN (Section II.3.3) and their param-
eters optimization through backpropagation (Section II.3.2). These supervised
learning models are used in Parkinson’s event detection with an innovative chan-
nel for inputs that we introduce in Section II.3.4.

3.1 Transfer function for MLP

An artificial neuron is a function h of the input x = (x1, . . . , xp) weighted by a
vector of connection weights w = (w1, . . . , wp), completed by a neuron bias b
and associated to an activation function φ. Namely, the output is defined by
h(x) = φ(wTx + b). Several activation functions can be considered, the most
popular are the identity function (φ(x) = x), sigmoid function (φ(x) = 1

1+exp(−x)
),

hyperbolic tangent function noted "tanh" (φ(x) = exp(2x)−1
exp(2x)+1

), threshold function
(φβ(x) = 1{x ≥ β}) and the Rectified Linear Unit activation function noted "ReLu"
(φ(x) = max(0, x)). The Figure 13 illustrates the activation function of one artificial
neuron where

∑

= wTx.
A multilayer perceptron (or neural network) is a structure composed by sev-

eral hidden layers of neurons where the output of a neuron of a layer becomes
the input of a neuron of the next layer (without backfeed loop). On last layer,
called ouput layer, different activation function are applied depending on the
type of problems (regression or classification). The Figure 14 represents a neural
network with three input variables, one output variable and two hidden layers.
The parameters of the architecture are the number of hidden layers and of neu-
rons in each layer. The activation functions are also chosen by the user for each
layer. Usually for regression task, the last layer is defined by one neuron with
the identity activation function. For binary classification, the output neuron is
defined with the sigmoid activation function whereas for a classification problem
of M classes, the last layer contains M neurons (one neuron per class) with a
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3.2 Parameters Optimization through Backpropagation

The set of parameters to be tuned is noted θ, composed of the weights and bi-
ases. As usual, the estimation is obtained by minimizing a loss function with a
gradient descent algorithm. For multi-class classification problem withM number
of classes, we consider loss function defined by:

ℓ(θ) = −EX,Y [
K
∑

j=1

1Y=j ln f(X,θ)].

In order to estimate the parameters θ, we use a training sample (Xi, Yi)1≤i≤n

and we minimize the empirical risk:

R̂ =
1

n

n
∑

i=1

ℓ(f(Xi), Yi).

We can add a regularization term to penalize the empirical risk, that leads to
minimize the following empirical loss:

Ln(θ) =
1

n

n
∑

i=1

ℓ(f(Xi), Yi) + λΩ(θ).

Usually, L2 regularization is used:

Ω(θ) =
∑

k

∑

i

∑

j

(W
(k)
ij )2

=
∑

k

||W (k)||2F ,

where ||W ||F denotes the Frobenius norm of the matrix W . Only the weights are
penalized here, not the biaises. This penalization is used because we can com-
pute its gradient during the gradient descent algorithm by the following equation:

∇W (k)Ω(θ) = 2W (k).

In order to minimize the empirical loss Ln(θ), a stochastic gradient descent is
used. It computes the gradient for the loss function at each step of the algorithm
but only on a subset B of cardinality m (called a batch) taken randomly without
replacement. A large m value allows to speed up the algorithm but it leads to
poor generalization. An iteration over all the training samples is called an epoch.
The number of epochs is a parameter to be fixed by the user. The total number
of iterations N equals the number of epochs times the sample size n divided by
m. This procedure is called batch learning and is presented in Algorithm 4. As

we can compute the gradient of the loss function, the gradient vector of the loss
function indicated the direction of a growing error. Thus to decrease the loss
value, we need to get the inverse direction of the gradient. The learning rate
τ can be fixed by the user, its choice is crucial for the convergence of the SGD
algorithm. Variations of the algorithm have been proposed to update its value
during the learning. Intuitively, at first we an take a large value to speed up the
process until decreasing the value when the system is close to a solution.

The parameters update consists in an iterative algorithm that modify
the weights for each neuron, called backpropagation algorithm that has
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Algorithm 4: Stochastic Gradient Descent (SGD) algorithm

Input : Initialization of θ = (W (1), b(1), . . . ,W (L+1)), b(L+1)

Number of epochs
Batch size m
Number of iterations N .

Output: Optimization of θ

1 for N iterations do
2 Parameters update: θ = θ − τ 1

m

∑

i∈B[∇θℓ(f(Xi,θ, Yi) + λ∇θΩ(θ)]
3 end
4 Return θ.

been introduce in [68]. It is summarized in Algorithm 5 with no reg-
ularization term to simplify the equations, but it can be easily added.

Algorithm 5: Backpropagation algorithm

Input : the values of the current fixed weights of iteration r :
θ(r) = (W (1,r), b(1,r), . . . ,W (L+1,r) =, b(L+1,r))).

Output: Update of θ

Forward pass:
1 Compute the predicted values f(Xi,θ

(r)).
2 Store all the intermediate values

(

a(k)(Xi), h
(k)(Xi) = φ(a(k)(Xi))

)

1≤k≤L+1
.

Backpropagation algorithm:
3 Compute the output gradient ∇a(L+1)(x)ℓ(f(x), y)

4 foreach k ∈ {L+ 1, L, . . . , 1} do
Compute the gradient at the hidden layer k :

5 ∇W (k)ℓ(f(x), y) = ∇a(k)ℓ(f(x), y)h
(k−1)(x)T ,

6 ∇b(k)ℓ(f(x), y) = ∇a(k)ℓ(f(x), y).
Compute the gradient at the previous layer k − 1:

7 ∇h(k−1)(x)ℓ(f(x), y) = (X(k))T∇a(k)ℓ(f(x), y),
8 ∇a(k−1)ℓ(f(x), y) = ∇h(k−1)(x)ℓ(f(x), y)⊙ (. . . , φ(a(k−1)(x)j)

T , . . .)T ,
where ⊙ is the element-wise product.

9 end
10 Return θ.

For some types of data, especially for images, multilayer perceptrons are not
well adapted. Indeed, they are defined for vectors as input data, hence, to apply
them to images, we should transform the images into vectors, losing the spatial
information.

3.3 Convolutional Neural Networks

The Convolutional Neural Networks (CNN) introduced in [48] are widely used for
image classification, object recognition etc. They have revolutionized image pro-
cessing as they act directly on matrices or even tensors for images with three
RGB color chanels. Indeed a black and white picture is defined by a matrix
with values corresponding to the pixel intensity. But a colored image has three
chanels, namely, we have three values for each pixel that represent the lel of
red, green and blue.

58



Kernel

As a image, the kernel is a matrix but with generally smaller dimensions (in R
3×3).

It allows to capture the characteristics of an image (color, luminosity, bounds
etc.). It is applied iteratively step by step along the considered image (see Figure
15) by computing the convolution. At each kernel position, we get the convolution

Figure 15: Schematic representation of a kernel applied on an image.

between the kernel and the part of the image that is currently treated (see Figure
16). For 2-dimensional signals such as images, we consider the 2D-convolutions:

(K ∗ I)ij =
∑

m,n

KmnIi+n,j+m.

The kernel moves by a number s of pixels, called step. When the step is small

Figure 16: Example of a convolution between the kernel and one part of the image.

we get redondant information. Sometimes, zero padding is used that is a margin
of size p adding zero values around the image in order to control the size of the
ouput. Let consider an image in R

W0×H0×C0 where W0 denotes the width, H0 the
height and C0 the number of channels (typically C0 = 3 for RGB images). With a
kernel in R

k×k, the size of the ouput is in RW1×H1×C1 and we have:

W1 =
W − k + 2p

s
+ 1

H1 =
H0 − k + 2p

s
+ 1.

The value of C1 corresponds to the number of kernels that we used, called
depth. This defines the number of characteristics we want to detect. The Fig-
ure 17 shows two different transformations with two kernels traditionally used
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for bounds detection and blurring. These parameters have to be tuned empiri-
cally regarding the type of data. Taking small value of k or a number of C1 too
large will usually lead to over-fitting. On the contrary, using few kernels with big
size may not provide sufficient details from the treated image. The strength of a
convolution layer consists in learning the kernels that are the most useful for the
task.

Figure 17: Example of one convolution layers provided by two different kernels.

Architecture

The convolution operations are combined with an activation function φ, usually
the Relu activation function (see Section II.3.1). Another powerful tool called pool-
ing layer is used in CNNs. It allows to reduce the size of an image by keeping the
main relevant characteristics. The most common used method is max pooling,
consisting in reducing the image and retaining the largest values of pixels. Like
the convolutional layer, pooling layers act on small part of the image and slide
along all the image step by step. In practice, we consider a window of size 2×2 or
3× 3, over which we take the maximum value to define the output layer (see Fig-
ure 18). Other pooling methods exist such as average pooling that computes the

Figure 18: Example of one max pooling layer.

mean of the window, stochastic pooling that keeps one value under probability.
Reducing the dimension is also achievable by the convolutional layer, consider-
ing a step size s larger than 1 and without zero padding. But the main advantage
of pooling layer is that it is less sensitive to small translations of the input images.

The particularity of these two layers is that their outputs can be directly con-
sidered as new images which can be treated as the initial input ones. At each
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stage, the outputs become more and more complex. In the most classical CNN,
we chain several times a convolution layer followed by a pooling layer and we add
at the end fully connected layers (MLP). The famous LeNet network, proposed in
[47], developed to digit recognition, is composed only on few layers and few fil-
ters due to the computer limitations at that time. The Figure 19 shows in details
the resulting outputs of each stage.

Figure 19: Example of the layers outputs for digit recognition with LetNet network.

Learning and tuning the whole model

The hyperparameters to be tuned by the user are the number of kernels for each
convolutional layer, their size and the type of pooling to apply. For fully connected
layers, the number of layers and number of neurons is crucial. To a higher level,
one has to chose the basic architecture, namely the number of convolutional
layers etc. The learning phase is similar to the described one in Section II.3.2.
We need a data base of labelled images. They are passed through the CNN and
the resulting errors inform about the quality of the weights and biases of each
neuron in the convolutional of fully connected layers. They are updated through
backpropagation in order to reduce the errors. The elements that appear rarely
into the images are skipped with small weight value whereas relevant patterns
that are found regularly in the set of images are combined with high weight value.

Beyond images

Although CNNs were used at first for images classification, their success has
motivated research to adapt them to other types of data. For multivariate time
series of W0 dimensions, we can split the overall signal into smaller parts with
smaller fixed duration H0. We obtain matrix in R

W0×H0 where the lines correspond
the W0 variables data and the columns correspond to the time samples. Keeping
the notations introduce in Section II.3.3, we can consider this matrix as an
image with pixels indicating the intensity of the signal values. The higher is the
signal data, the higher is the pixel value. Typically, with inertial data in three
dimensions provided by ActiMyo recordings, we can build "images" in R

3×H0. For
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1D signals, one method is to consider a split time duration equals to W0 ×H0 and
build the matrix with the first line corresponding to the H0 first sample values,
then the interval [H0, 2 × H0] correspond to the second line of the matrix etc.
However, An alternative version of 2D CNNs called 1D Convolutional Neural
Networks have been developed for 1D signals (for example in ECG classification
[70]). Several studies have shown that for certain applications 1D CNNs are
advantageous and thus preferable to their 2D counterparts in dealing with
1D signals due to several reasons. Indeed rather than matrix operations, the
backpropagation require simple array operations, reducing the computational
complexity. In addition recent studies show that 1D CNNs with relatively shallow
architectures (small number of hidden layers and neurons) are able to reach
good performances when 2D CNNs usually require deeper architectures to
handle the same scores.

Other techniques allow to extract relevant information from multivariate time
series that feed the last fully connected layer in the architecture presented
above. One can compute variables from signal processing techniques such as
maximum, mean, standard deviation, root mean square, inter-quantile range,
Fast Fourier Transform, 3rd and 4th order moments, auto-correlation and correla-
tions between signals etc. In this thesis, we developed a framework for analyz-
ing multivariate time series using topological data analysis (TDA) methods. The
proposed methodology involves converting the multivariate time series to point
cloud data and exploit the underlying geometric structures through persistent
homology. The experimental results on "DB1" and "DB2" has shown that it allow
to compute features that are missed by traditional signal processing techniques.
In the following section, we briefly introduce the basics of persistence used in this
thesis. We refer the reader to [28, 17, 13] for more details.

3.4 Topological Data Analysis Channel

Topological Data Analysis (TDA) refers to a collection of methods for findings
topological structure in data ([14, 19]). The input is a dataset drawn from a
probability measure supported on an unknown set X. The ouput is a collection
of data summaries that are used to describe the topological features of X. Ho-
mology, or more precisely persistent homology ([12]), appears as a fundamental
tool for TDA. It associates to any topological space X, a family of vector spaces
(the so-called homology groups) Hk(X), k = 0, 1, . . . , each of them encoding topo-
logical features of X. The kth Betti number of X, denoted βk, is the rank of Hk(X)
and represents the number of k-dimensional features of X : for example, β0 is
the number of connected components of X, β1 the number of independent cy-
cles or "tunnels", β2 the number of "voids", etc. (see [36]). Persistent homology
([29, 86, 7]) provides a framework and efficient algorithms to encode the evo-
lution of the homology of families of nested topological spaces indexed by a set
of real numbers that may often be seen as scales, such as the union of growing
balls, or nested family of simplicial complexes built on top of the data. The ob-
tained multiscale topological information is then represented in a simple way as
a barcode or persistence diagram, providing relevant information about the data
([22, 16]). Persistence diagrams coming as sets of intervals are not well-suited for
direct use to standard machine learning method and need to be converted into a
vector representation to design a neural network architecture that can take them
as input features. Several approaches and methods have been recently proposed
to achieve this task (see [38, 79, 3, 25, 15] ). In this work, we use the functional
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summary called a persistence landscape ([13]). These landscapes are the data
summaries that we focus on this section and are used to compute inputs of the
last fully connected layer in the neural net architecture.

Simplicial complexes

To compute the persistent homology from a set of data we need to construct
a set of structures called simplicial complexes. We use the point cloud {xα in
a metric space (Euclidean space in practice) as the vertices of a combinatorial
graph whose edges are determined by proximity (vertices within some specified
distance ǫ). We complete the graph to a simplicial complex, a space built from
simple pieces (simplicies) identified combinatorially along faces. The choice of
how to fill in the higher dimensional simplices of the proximity graph allows for
different global representations. In the following we present two methods for
doing so given a collection of points {xi} in a Euclidean space E

n :

• The Cech complex, Cǫ, is the abstract simplicial complex chose k-simplices
are determined by unordered (k + 1)-tuples of points {xi}

k
0 whose closed ( ǫ

2
)-

ball neighborhoods have a point of common intersection.

• The Vietoris-Rips complex, Rǫ, is the abstract simplicial complex whose k-
simplices correspond to unordered (k + 1)-tuples of points {xi}

k
0 which are

pairwise within distance ǫ.

Note that these two complexes are related by Rǫ ⊆ Cǫ ⊆ R2ǫ. In Figure 20 we
represent a set of points completed to a Cech complex and Vietoris-Rips complex
(Figure 21).

Figure 20: A fixed set points with proximity parameter ǫ (source: [33]).

Figure 21: Cech complex Cǫ (left) and Vietoris-Rips complex (right) computed from the point
clouds in Figure 20 (source: [33]).
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Filtrations

Converting a point cloud data set into a global complex (whether Vietoris-Rips,
Cech, or other) requires a choice of parameter ǫ. For a value of ǫ sufficiently small
the complex is a discrete set, for ǫ sufficiently large the complex is a single high-
dimensional simplex. The optimal choice for ǫ which best captures the topology
of the dataset is a challenging task. Consider the point cloud data set and a
sequence of Vietoris-Rips complexes as illustrated in Figure 22. This point cloud
is a sampling of points on a planar annulus. From the figure, it appears that an
ideal choice of ǫ is difficult: by the time ǫ is increased so as to remove small holes
from within the annulus, the large hold distinguishing the annulus from the disk
is filled in.

Figure 22: A sequence of Vietoris-Rips complexes for a point cloud data set representing an
annulus (source: [33]).

Each family described above is non-decreasing with ǫ : for any ǫ ≤ α, there is
an inclusion of Rǫ in Rα, and similarity for the Cech complex. These sequences of
inclusions are called filtrations.

Examining the homology for one specific value of ǫ is insufficient. The counts
of the number and types of holes appearing at each parameter value, namely
Betti numbers, is not relevant. Indeed one requires a means of declaring which
holes are relevant and which can be ignored. The Figure 23 shows the effect of
outliers. Adding just a few outliers to a point cloud may dramatically change the
topology of its offsets.
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Figure 23: Outliers effect on the topology.

In the following, we let Filtǫ(X) denotes a filtration of the metric space X cor-
responding to one of the parameterized complexes defined above.

Persistence diagrams

We saw that the topology of Filtǫ(X) changes as ǫ increases: new connected com-
ponents can appear, existing connected components can merge, cycles and cav-
ities can appear or be filled etc. Persistent homology tracks these changes, iden-
tifies features and associates an interval or lifetime (from birth b to death d) to
them. For instance, a connected component is a feature that is born at the small-
est ǫ such that the component is present in Filtǫ(X), and dies when it merges with
an older connected component. A barcode allows a graphical representation of
this procedure. It is a collection of horizontal line segments in a plane whose hor-
izontal axis corresponds to the parameter ǫ and whose vertical axis represents
an (arbitrary) ordering of homology generators. Equivalently, the lifetime of a
feature can be represented as a point in the plane with coordinates (b, d). The ob-
tained set of points (with multiplicity) is called the persistence diagram D(Filt(X))
(and we will abuse terminology slightly by denoting it DX). Note that the diagram
is entirely contained in the half-plane above the diagonal since death always oc-
curs after birth.

As an example, in Figure 24 we consider the filtration given by a union of
growing balls centered on the finite set of points:

a) For the radius ǫ = 0, the union of balls is reduced to the initial finite set of
point, each of them corresponding to a 0-dimensional features, namely a
connected component. An interval is created for the birth for each of these
features at ǫ = 0.

b) Some of the balls started to overlap resulting in the death of some con-
nected components that get merged together. The persistence diagram
keeps track of these deaths, putting an end point to the corresponding in-
tervals as they disappear.

c) New components have merged giving rise to a single connected component
and all the intervals associated to a 0-dimensional feature have been ended,
except the one corresponding to the remaining components. Two new 1-
dimensional features have appeared resulting in two new intervals (in blue)
starting at their birth scale.

d) One of the two 1-dimensional cycles has been filed, resulting in its death in
the filtration and the end of the corresponding blue interval.
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e) All the 1-dimensional features have died, it only remains the long (and never
dying) red interval. As in the previous stages, the final barcode can also
be equivalently represented as a persistence diagram where every interval
(b, d) is represented by the point of coordinate (b, d) in R

2.

Intuitively the longer is an interval in the barcode, or equivalently the farther
from the diagonal is the corresponding point in the diagram, the more persistent
,and thus relevant, is the corresponding homological feature across the filtration.
Notice also that for a given radius ǫ, the k-th Betti number of the corresponding
union of balls is equal to the number of persistence intervals corresponding to k-
dimensional homological features and containing ǫ. So, the persistence diagram
can be seen as a multiscale topological signature encoding the homology of the
union of balls for all radii as well as its evolution across the values of ǫ.

Figure 24: The sublevel set filtration of the distance function to a point cloud and the "con-
struction" of its persistence barcode as the radius of balls increases and its persistence diagram.

To avoid technical difficulties, we restrict our attention to diagrams D such
that (b, d) ∈ [0, T ] × [0, T ] for all (b, d) ∈ D, for some fixed T > 0. We denote DT the
space of all such persistence diagrams and we endow it with a metric called the
bottleneck distance db. Given two persistence diagrams, the bottleneck distance
is defined as the infimum of the δ for which we can find a matching between the
diagrams, such that two points can only be matched if their distance is less than
δ and all points at distance more the δ from the diagonal must be matched.

A fundamental property of persistence diagrams proven in [18] is their stabil-
ity. The Hausdorff distance between two compact subsets X, Y of a metric space
(X, ρ) is H(X, Y ) = max{max

x∈X
min
y∈Y

ρ(x, y),max
y∈Y

min
x∈X

ρ(x, y)}. If X and X̃ are two compact

metric spaces, then one has:

db(DX, DX̃
) ≤ 2dGH(X, X̃), (5)

where dGH(X, X̃) denotes the Gromov-Hausdorff distance.
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Persistence Landscapes

The persistence landscape, introduced in [13] is a collection of continuous, piece-
wise linear functions λ : Z+ × R → R that summarizes a persistence diagram. To
define the landscape, consider the set of functions created by tenting each point
p = (x, y) =

(

b+d
2
, d−b

2

)

representing a birth-death pair (b, d) as follows:

Λp(t) =



























t− b t ∈

[

b,
b+ d

2

]

,

d− t t ∈

[

b+ d

2
, d

]

,

0 otherwise.

(6)

We obtain an arrangement of piecewise linear curves by overlaying the graphs of
the functions {Λp(t)}p. The persistence landscape is a summary of this arrange-
ment. Formally, the persistence landscape of the persistence diagam D is the
collection of functions

λD(k, t) = kmax
p

Λp(t), t ∈ [0, T ], k ∈ N, (7)

where kmax is the kth largest value in the set. In particular 1max is the usual
maximum function. In Figure 25, we use the rotated axes to represent a persis-
tence diagram D. A feature (b, d) ∈ D is represented by the point

(

b+d
2
, d−b

2

)

(pink).
Namely, the x-coordinate is the average parameter value over which the feature
exists, and the y-coordinate is the half-life of the feature. The cyan curve is the
landscape α(1, .).

Figure 25: Example of persistence landscapes.

This representation is convenient for machine learning algorithm as the per-
sistence landscapes can be used as 1D signals. In Chapter VI we will see how we
use them as inputs of our Neural Network for Parkinson’s event detection.

4 Applications to ActiMyo data

The work of this thesis includes three uses of supervised machine learning
algorithms: stride detection, activity recognition and Parkinson’s event detection.
In the previous sections we introduced the mathematical tools and the main su-
pervised statistical learning algorithms used for these three tasks. They require
labeled databases that we present in Section II.4.1.

For stride detection, we have seen in Section I.4.3 that threshold based algo-
rithms do not perform well for atypical strides (stairs, small steps...). In addition,
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in Section I.4.2 the state of the art machine learning algorithms only achieve good
performance when it is known that the wearer is walking but do not perform well
in uncontrolled environments, namely at home. These methods consist of build-
ing a prediction function that outputs binary zero velocity classifications for ev-
ery sample of the recording. In this thesis we develop an innovative approach for
stride detection based on candidate intervals extraction. The following Section
II.4.2 describes this task that can be sum up in two stages:

• Extract candidate intervals from the ActiMyo data that may correspond to
strides.

• Select among the extracted intervals the true strides by machine learning
with a binary classification function.

This procedure allows to compute the trajectory of each detected stride that
is a main feature for activity recognition (Section II.4.3). Indeed, faced to the
variety of gait motions, we adopted supervised machine learning algorithm to
build a classifier that recognizes the activity of the performed stride from the
ActiMyo data and its computed trajectory that greatly helps the decision.

In Section II.4.4 we present our sliding window approach for Parkinson’s event
detection with machine learning. We also present our use of topological data
analysis (TDA) introduced in Section II.3.4, a recent field aiming to exploit the
topological and underlying geometric structures in data. Applying this newly
spreading method to our problematic seemed relevant when looking at the 3D
point clouds representation of inertial data. It will feed one channel in our Neural
Network merged with CNNs for tremors and dyskinesia detection.

4.1 Databases description

Our three supervised learning tasks require labelled datasets to compute the cor-
responding prediction functions (see Section II.1). In the following, we describe
the recordings that have been used to build the databases for the model selec-
tion and recordings that have not been used in the learning but still with ground
truth for the validation of the three algorithms.

Parkinson’s event dataset "DB1"

The system ActiMyo has been worn at the ankle by 14 patients suffering from
Parkinson disease during a proof of concept in 2014 and a clinical study in 2017,
both dealing with the Levodopa. This drug aims to ease the symptoms such
as tremors but has a main drawback: induced dyskinesia crises (Section I.5.1).
Those patients underwent a Levodopa test at the hospital, while wearing the
sensors at the ankle and the wrist, so that every record made could be annotated
by the doctors through real-time observation. The resulting labelled database per
patient is represented in Figure 26. The first observation is that all patient do not
show all Parkinson’s events, whether on the ankle or on the wrist. Among the
labelled events, we focused our effort for tremor detection and more actively on
dyskinesia crisis detection. Ten of the patients did wear the devices at home as
well, enabling us to gather the corresponding data. An available comparison was
provided by healthy volunteers, who were merely partners of those patients that
accepted to wear the device as well. All of them were matching age, and could
thus serve as controls for the study.

One major problem we faced is the annotation confidence. Typically we real-
ized for example that some of tremors events labelled on wrist could occur only
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to perform a set of six basic activities (standing, sitting, lying, walking, upstairs
and downstairs). Inertial data about those activities and their transition were
recorded by a smartphone placed on their waist, sampling the 3-axial accelera-
tion and the 3-axial angular velocity at a frequency of 50 Hz. As one may notice
in Tabular 1 and Tabular 2, this database is also linked to imbalance learning due
to the poor amount of gathered events for transition activities. In addition, the
activity recognition task is very similar to Parkinson’s event detection as we can
consider tremors or dyskinesia as particular activities of patients that we want to
detect among all the other daily activities. The total recordings duration is about
4 hours which makes it easier to test different approaches compared to Parkin-
son’s database. With 50 Hz frequency, it corresponds to 720 thousands recording
points versus billions for dataset "DB1".

Walking Upstairs Downstairs Sitting Standing Laying

Ratio 15% 14% 13% 14% 16% 18%

Table 1: Basic Activities Ratios of 4 hours recording.

Stand to Sit Sit to Stand Sit to Lie Lie to Sit Stand to Lie Lie to Stand

Ratio 1% 1% 1% 1% 1% 1%

Table 2: Transition Activities Ratios of 4 hours recording.

Co-workers at Sysnav "DB3"

A dozen of co-workers of various ages and heights were filmed practicing several
activities while wearing the system at the ankle and the wrist at Sysnav company
under video control. At the ankle, the device has been carefully fixed with the de-
fault placement (see Figure 11), namely the X axis of the body frame is aligned
with the foot and the Z axis is aligned with the leg. This precision is important
for our first algorithm presented in Chapter III. With synchronisation between the
video and ActiMyo data time scales, it is easy to annotated when a stride occurs
in the ankle recordings and precise the activity of the performed stride among
"atypical steps", "walking", "running", "upstairs" and "downstairs". This dataset
will be used to build algorithms for stride detection and activity recognition both.
These recordings contain about 6000 strides balancedly distributed among the
activities. Depending on the activity, one stride corresponds to approximately
130 recorded points by ActiMyo. Hence, these recordings require a labelling pro-
cess with video control of almost one million points.

Co-workers in Motion Capture (MOCAP) environment "DB4"

A group of seven people wore the ActiMyo with infrared markers during MOCAP
sessions in a 25 m2 room (Figure 27). Several cameras were set in order to film
the whole scene. They broadcast infrared radiation that was reflected by the
markers. This allowed the camera to record the position of the markers with
sub-millimeter accuracy. We faced three issues here. Firstly the tracking system
samples the data at 240 Hz whereas ActiMyo sensors samples at 130 Hz. Sec-
ondly the triangulation of the markers position do not correspond to the position
of the ActiMyo sensors. Finally, the data provided by the optical tracking system
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notated thanks to the MOCAP altitude defining when the foot is on the ground.
In addition, we can compare the difference between the computed stride length
with the ground truth (MOCAP stride length) for each detected stride.

DMD hospital tests "DB5"

During hospital tests for DMD clinical trials (see Section I.3.2), several patients
were wearing the ActiMyo system at the ankle under video control. We have
access to the recordings of 10 patients performing the 10 meters run test and 6
minutes walk test. Moreover, 8 patients performed the 4-stairs test. As one goal
of this thesis is to compute statistics on strides trajectory and strides activity
on home recordings of patients suffering from Duchenne muscular dystrophy,
this dataset is particularly important. It will allow us to test our stride detection
and activity recognition algorithms on patients recordings with ground truth. All
recordings together provide hundreds of walking strides, more than one hundred
of running and upstairs strides. With 130 Hz frequency, one stride length can
vary between few dozens of points to more than several hundreds. They have
been manually labelled with the video control.

4.2 Candidate intervals extraction for stride detection

In this thesis, the stride detection task results in a binary classification problem.
Indeed, we developed an approached based on candidate intervals extraction
that may correspond to stride. The stride selection among them is given by a
binary classifier that has been computed with a supervised learning algorithm.
In the following we introduce the notations defining the extracted intervals and
their labelling procedure that allow to build a dataset for supervised learning
algorithms.

Interval extraction

We develop two algorithms for candidate stride interval extraction. To define the
beginning and the end in the intervals, the first approach described in Chapter III
uses the inertial data norm whereas the second one in Chapter IV is based on a
pseudo-speed norm computation. However due to the complexity of our applica-
tion framework, the problem in our study is difficult to describe with simple deter-
ministic models for both extraction methods. Indeed the combination of criteria
to apply on the inertial norm or pseudo-speed norm have to be sufficiently wide
to detect all types of strides (atypical strides, running, stairs etc.). Consequently,
when these two extraction algorithms are launched on the recordings from the
database "DB3", it leads to build a family of candidate intervals with several in-
tervals that may not correspond to strides. They are defined by one start and one
end, and we note the family of intervals ÎDB3 = {(ŝ1, ê1), . . . , (ŝi, êi), . . . , (ŝn, ên)}

1. In
the following we will consider a generic ÎDB3 without introducing notations defin-
ing the extraction method but the number of extracted intervals can change
along with. Some of the intervals in the family ÎDB3 correspond to real strides,
with correct start and end times tying in moments when the foot is on the ground.
Others come from movements that are not strides and that we want to exclude
(wrist movements, bicycling etc.).

1Note to the reader that Î does not defined an estimation here although conventionally we use hat for

estimated version of a quantity.
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contained in each axis. In Section III.2, the sensors alignment is based on the
computation of a rotation matrix fitted with geometric patterns built from the
database. In Section IV.3, we compute a terrestrial reference frame with gravity
identification that allows to compute a pseudo-trajectory. Then the data are pro-
jected to have the Z axis aligned with the gravity and X axis is defined by the
beginning and the end of the pseudo-trajectory.

From the features engineering procedure, the family of extracted intervals is
now defined by {(xs

1, y
s
1), . . . , (x

s
n, y

s
n)} where xs

i ∈ R
ps with ps the number of com-

puted features. With the same notations introduced in this Section, we can tune
the parameters of the GBT algorithm by 10-fold cross validation (Algorithm 1).
This provides a prediction function f̂ s that can be applied for a new extracted
interval (after features computation). The overall procedure is sum up in the fol-
lowing Algorithm 6. Then for the recordings in "DB4" for example, we can detect
the strides with Algorithm 7.

Algorithm 6: Learning a binary prediction function for interval classification

1 Compute the intervals extraction algorithm on the recordings of "DB3" and affect a
label with video control for each extracted intervals: 1 if it is a true stride, -1 if not. It
provides a family of extracted intervals:
ÎDB3 = {(ŝ1, ê1, y

s
1), . . . , (ŝi, êi, y

s
i ), . . . , (ŝn, ên, y

s
n)}.

2 Compute features engineering process with sensors alignment:

ÎDB3 = {(xs
1, y

s
1), . . . , (x

s
n, y

s
n)} with xs

i ∈ R
ps .

3 Tune the parameters of GBT algorithm with 10-fold cross-validation providing the

prediction function f̂ s defined on R
ps taking values in {−1, 1}.

Algorithm 7: Detecting strides in "DB4" recordings

1 Compute the intervals extraction algorithm providing a family of candidate intervals:

ÎDB4 = {(ŝ1, ê1), . . . , (ŝn, ên)}.
2 Compute the features for each extracted intervals:

ÎDB4 = {(ŝ1, ê1,x
s
1), . . . , (ŝi, êi,x

s
i ), . . . , (ŝn, ên,x

s
n)} with xs

i ∈ R
ps .

3 Apply the prediction function f̂ s :

ÎDB4 = {(ŝ1, ê1,x
s
1, ŷ

s
1), . . . , (ŝi, êi,x

s
i , ŷ

s
i ), . . . , (ŝn, ên,x

s
n, ŷ

s
n)} with f̂ s(xs

i ) = ŷsi .
4 Exclude the intervals classified as non stride, namely ŷsi = −1.

The beginning and the end of the detected strides are given by {ÎDB4 | ŷsi =
1, i = 1, . . . , n} := ĨDB4. In order to simplify the notation in the following, we in-
troduce {ÎDB3 | ŷsi = 1, i = 1, . . . , n} := ĨDB3 and {ÎDB3 | ysi = 1, i = 1, . . . , n} := ĪDB3.
Namely, The symbol ĪDB3 represents the detected strides that are true strides
and ĨDB3 represents all the detected strides. Consequently ĪDB4 ⊂ ĨDB4 and a
perfect stride classification on "DB4" leads to ĪDB4 = ĨDB4.

4.3 Activity Recognition from computed trajectory

Sysnav developped an algorithm introduced in Section I.4.4 that allows to com-
pute the trajectory of each detected stride that is a main feature for activity
recognition. This algorithm requires a precise estimation of the stride start and
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end before applying a speed estimation of the device based on a lever arm
model. Then, the speed estimation is fused with inertial integration in an ex-
tended Kalman filter, providing the computed trajectory. This algorithm has been
launched on the database "DB3" from the annotation of the strides indices of
the family ĪDB3. With video control, we affected a label ya (exponent a for ac-
tivity) defining the activity of the performed stride among "atypical strides" (la-
bel 1), "walking" (label 2), "running" (label 3), "upstairs" (label 4) and "down-
stairs" (label 5). Thus we have a family of intervals corresponding to strides
ĪDB3 = {(s̄1, ē1, y

a
1), . . . , (s̄i, ēi, y

a
i ), . . . , (s̄n, ēn, y

a
n)} where yai ∈ {1, 2, 3, 4, 5}.

The goal is to compute a prediction function f̂a from Gradient Boosting Trees
algorithm, for multi-class classification task, that allows to predict the target yai
from the inertial data and the computed trajectory of the stride intervals in ĪDB3.
We faced the same problem as in Section II.4.2, the length of the strides is not a
constant whereas the GBT algorithm requires the input variables to be the same
for all observations. In addition to the features computed from the inertial data
based on functional data analysis, relevant variables are computed from the tra-
jectory that allow to enrich considerably the features for the activity recognition
task. It provides a set of observations {(xa

1, y
a
1), . . . , (x

a
n, y

a
n)} with xi ∈ R

pa for the
GBT algorithm. The overall procedure is sum up in the following Algorithm 8.
Then for the recordings in "DB5" for example, we can apply the activity recogni-
tion with Algorithm 9.

Algorithm 8: Learning a prediction function for activity recognition

1 Affect a label defining the activity for the family of extracted strides in "DB3":
ĪDB3 = {(s̃1, ē1, y

a
1), . . . , (s̄i, ēi, y

a
i ), . . . , (s̄n, ēn, y

a
n)} where yai ∈ {1, 2, 3, 4, 5}

2 Compute the trajectory from the strides in ĪDB3.
3 Compute the features from inertial data and computed trajectory based on functional

data analysis. it provides the set: {(xa
1, y

a
1), . . . , (x

a
n, y

a
n)} with xa

i ∈ R
pa .

4 Tune the parameters of GBT algorithm with 10-fold cross validation providing the

prediction function f̂a defined on R
pa taking values in {1, 2, 3, 4, 5}.

Algorithm 9: Activity recognition in "DB5" recordings

1 Compute the strides detection with Algorithm 7
2 Compute the trajectory reconstruction for the detected strides

ĨDB5 = {(s̃1, ẽ1), . . . , (s̃i, ẽi), . . . , (s̃n, ẽn)}
3 Compute the features for each detected strides:

ĨDB5 = {(s̃1, ẽ1,x
a
1), . . . , (s̃i, ẽi,x

a
i ), . . . , (s̃n, ẽn,x

a
n)} with xa

i ∈ R
pa .

4 Apply the prediction function f̂a :

ĨDB5 = {(s̃1, ẽ1,x
a
1, ŷ

a
1), . . . , (s̃i, ẽi,x

a
i , ŷ

a
i ), . . . , (s̃n, ẽn,x

a
n, ŷ

a
n)} with f̂a(xa

i ) = ỹai .

4.4 Parkinson’s event detection with sliding window

The parkinsonian events detection was one of the most difficult tasks of this the-
sis. As far as we know, there is no robust algorithm for detecting dyskinesia
crises and tremors from inertial home recordings. Indeed, faced to the variability
of daily movements, especially on the wrist, it is impossible to describe with de-
terministic models these events. Thus, we adopted a machine learning approach.
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Topological Data Analysis Features

It is a recent field that emerged from various works in applied topology and
computational geometry (see Section II.3.4). It aims at providing well-founded
mathematical, statistical and algorithmic methods to exploit the topological and
underlying geometric structures in data based on persistence homology. It is a
method aimed at computing topological features of a space at different spatial
resolutions. By construction, those features are more likely to represent true
characteristics of the underlying space (rather than artifacts of sampling, noise,
or particular choice of parameters) as they are intrinsically linked to the spatial
relationships of the data points.

To compute the persistence homology of a space, it must first be represented
as a nested family of simplicial complex (basically a graph made of a set of points
and their relationships: lines and triangles in a two-dimensional space). This fam-
ily is called a filtration. Generally, the construction of this filtration is based on the
definition of a distance function, whose values are used to index the complexes
in the family.

The theory of persistence homology allows us to uniquely represent the per-
sistence homology of a filtered simplicial complex with a persistence barcode or
persistence diagram. A barcode diagram represents each persistence genera-
tor with a horizontal line beginning at the first filtration level where it appears,
and ending at the filtration level where it disappears, while a persistence dia-
gram plots a point for each generator with its x-coordinate the birth time and its
y-coordinate the death time.

In practice, the 3 dimensions raw signals are converted into point cloud with
a sliding window approach and then we build a ball of increasing radius around
those points until finding some intersections (birth time). Pursuing this method
leads to cover some points and destroy some of the previously created structures
(death time). Finally it ends up with components (date of birth and death), which
are represented through persistence diagram and barcode.

One problem is that one window does not ensure to compute the same amount
of topological features. To overtake this issue we compute the persistence land-
scapes that is a convenient representation for machine learning algorithm as they
can be used as 1D signals. In Chapter VI we will see how we use them as inputs
of our Neural Network for Parkinson’s event detection.

77





Part III

Candidate stride interval extraction based
on ground contact
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This chapter aims to present a first stride detection algorithm. It is based
on the extraction of candidate intervals from the inertial norms recorded by the
ActiMyo device. Among these intervals, some are true strides and others cor-
respond to movements that are not strides. Thanks to the labeled databases
presented in Section III.4.1, we can compute a prediction function calculated by
Gradient Boosting Trees algorithm (see Section II.2.2). It allows, with relevant fea-
tures calculation (see Section III.2), to select from the set of candidate intervals
the true strides. In Section III.3, we present its learning performances and the
overall algorithm performances on recordings in motion capture environment.
The work of this chapter has been published in [9], IEEE conference paper.

1 Intervals Extraction Method

The ActiMyo device records along time the acceleration and the angular velocity
in its body reference frame with 130 Hz frequency (respectively γt(t) and ωt(t)).
The device should be worn at the ankle as illustrated in the Figure 31. In this
default placement, the sensors record the inertial data in the reference frame
defined by the Z axis aligned with the leg and the X axis aligned with the foot.
However we observed that the device may be worn upside down and may turn
around the ankle during the recording. Typically, in Figure 7, the Y axis is aligned
with the leg (acceleration close to -g when the foot is on the ground).

Figure 31: Default device placement.

To overtake the unknown device position that does not allow the interpretation
of the inertial data between the three axes, we decided to study the norm of γt(t)
and ωt(t). We observed that strides induce a peak in the norm of the acceleration
when the foot touches the ground. Then the beginning and the end of the interval
are defined by local minima of the angular velocity norm or when the acceleration
norm is close to 9.81 (the gravity value in m/s2). Indeed, when the foot is on the
ground, the angular velocity of the ankle is lower than during the swing phase
and the specific ankle acceleration is close to zero: the accelerometer sensors
record only the gravity. However, the choice among the minima of the angular
velocity norm is challenging. In addition, during non walking activities such as
bicycling, the same type of patterns in the inertial norm happens. To illustrate
the complexity of our application we represent in Figure 32 the end of an ankle
recording (inertial norms in blue). The user performed three strides highlighted in
green before removing the device and carrying it in his hands (in red). In the red
part, the intervals extraction algorithm selected several intervals as it faced lot of
acceleration peaks surrounded by angular velocity minima or acceleration values
close to 9.81. The Figure 33 shows two extracted intervals, one corresponding
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to classify the considered interval: if it is a stride or not. One could only compute
features from the norms of the signals but it misses a lot of relevant informa-
tion contained in each axis. That is why during the features engineering process
the main idea is to project the inertial data in a reference frame with the same
definition for each interval.

2 Features engineering

The database "DB3" (see Section II.4.1) contains a dozen of co-workers record-
ings of various ages and heights practicing several activities under video control.
At the ankle, the device has been carefully fixed with the default placement,
ensuring that the system was placed as defined in Figure ??. With synchroni-
sation between the video and ActiMyo data time scales, the performed strides
have been annotated among "atypical steps", "walking", "running", "upstairs"
and "downstairs".

Activity Atypical steps Walking Running Upstairs Downstairs
Label ya 1 2 3 4 5

Table 3: Activity labels definition.

From these records, the gyrometer data of ĪDB3 (extracted intervals that are
true strides, see Section II.4.2) were used to define a reference pattern Ω

ya in R
3×n

for each activity. In Section III.2.1, the goal is to fit the gyroscope data of a new
candidate stride interval to each reference pattern by allowing a rotation. Then,
if the considered extracted interval is a stride, the swing phase (see Figure 14) is
visible on the Y axis of the gyrometer data. The aim of Section III.2.2 is to model
the forward swing by computing a 1D reference pattern for the five considered
activities presented in Table 3. The variables computed along the previous stages
are combined with features based on functional data analysis (Section III.2.3).

2.1 Sensors alignment

Let Ω
ys = (Ωys

1 , . . . ,Ωys

n ) with Ω
ys

i ∈ R
3 the 3D reference pattern data of size n on

the three gyrometer axes and (ω1, . . . ,ωN) the gyroscope data of a new candidate
stride interval. The first step is to bring the observed data to the same number of
samples as the reference pattern by a cubic spline interpolation [24] on each axis.
Let ω̂ = (ω̂1, . . . , ω̂n) be the vector of the interpolated data. We want to compute
the rotation matrix R∗ that minimizes

∑n

i=1 wi||Rω̂i−Ω
ys

i ||22 with R a rotation matrix
in R

3×3. The coefficients w1, . . . , wn are the weights given to the samples of the
pattern (

∑n

i=1 wi = 1). In practice we set empirically higher weight values to the
samples in the middle of the stride to avoid side effects. Indeed, data in the
end can be noisy by the contact of the foot with the ground. Moreover, the foot
movement on the ground during the stance phase is less specific to the activity
than during the swing phase. Hence, the weights are set close to zero when the
foot is on the ground and increase linearly over time until the foot is in the air
before decreasing linearly with time when the foot approaches the ground.
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Property 1. — Given ωi ∈ R
3 and Ω

ys

i ∈ R
3 for all i in [[1, n]]. The solution of the

problem

R∗ = argmin
RRT=I3,det(R)=1

n
∑

i=1

wi||Rω̂i −Ω
ys

i ||22,

is given by

R∗ = V UT ,

where I3 is the identity matrix in R
3×3, V and U are the unitary matrices of the

decomposition into singular values of ω̂W (Ωya)T , and W = diag(w1, . . . , wn) with
∑n

i=1 wi = 1.

Proof 1. —

||Rω̂i −Ω
ya

i ||22 = (Rω̂i −Ω
ya

i )T (Rω̂iΩ
ya

i )

= (ω̂T
i R

T − (Ωya

i )T )(Rω̂i −Ω
ya

i )

= ω̂T
i R

TRω̂i − ω̂T
i R

T
Ω

ya

i − (Ωya

i )TRω̂i + (Ωya

i )2

= (ω̂i)
2 − ω̂T

i R
T
Ω

ya

i − (Ωya

i )TRω̂i + (Ωya

i )2

Therefore,

argmin
RRT=I3, det(R)=1

n
∑

i=1

wi||Rω̂i −Ω
ya

i ||22 = argmin
RRT=I3, det(R)=1

−

n
∑

i=1

wi ( ω̂T
i R

T
Ω

ya

i

− (Ωya

i )TRω̂i ).

In addition for all i in J1, nK we have ω̂T
i in R

1×3, RT in R
3×3 and Ω

ya

i in R
3×1. Thus

ω̂T
i R

T
Ω

ya

i is a scalar and ω̂T
i R

T
Ω

ya

i = (ω̂t
iR

T
Ω

ya

i )T = (Ωya

i )TRω̂i.
We can write,

R∗ = argmin
RRT=I3, det(R)=1

−2
n
∑

i=1

wi(Ω
ya

i )TRω̂i

= argmax
RRT=I3, det(R)=1

n
∑

i=1

wi(Ω
ya

i )TRω̂i

= argmax
RRT=I3, det(R)=1

w1(Ω
ya

1 )TRω̂1 + . . .+ wn(Ω
ya

n )TRω̂n

= argmax
RRT=I3, det(R)=1

Tr(W (Ωya)TRω̂)

Indeed,

W (Ωya)TRX =







w1

. . .

wn













(Ωya

1 )T

...
(Ωya

n )T






R
(

ω̂1, . . . , ω̂n

)

=







w1(Ω
ya

1 )T

...
wn(Ω

ya

n )T







(

Rω̂1, . . . ,Rω̂n

)

=







w1(Ω
ya

1 )TRω̂1

. . .

wn(Ω
ya

n )TRω̂n
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Hence
∑n

i=1 wi(Ω
ya

i )TRω̂i = Tr((W (Ωya)T )(Rω̂)) = Tr((Rω̂)(W (Ωya)T ).
Let the decomposition into singular values of ω̂W (Ωya)T : ω̂W (Ωya)T = UΣV T ,
therefore we have

R∗ = argmax
RRT=I3, det(R)=1

Tr(W (Ωya)TRω̂)

= argmax
RRT=I3, det(R)=1

Tr(Rω̂W (Ωya)T )

= argmax
RRT=I3, det(R)=1

Tr(RUΣV T )

= argmax
RRT=I3, det(R)=1

Tr(ΣV TRU )

However the matrices V T , R and U are orthogonal matrices. If we write O =
V TRU we can deduce that the matrice O is orthogonal too:

(V TRU )−1 = U−1R−1(V T )−1

= UTRTV

= (V TRU )T

We write O = (O1,O2,O3). As O is orthogonal, we have for all i in J1, 3K OT
i Oi = 1

which is equivalent to
∑3

j=1 O
2
ij = 1. Hence for all i and j in J1, 3K |Oij| ≤ 1, in

particular |Oii| ≤ 1.
By writing Σ = diag(σ1, σ2, σ3) we have,

Tr(ΣV TRU ) = Tr(ΣO)

=
3
∑

i=1

σiOii

≤

3
∑

i=1

σi

Thus the maximum of Tr(ΣV TRU ) is reached for all i in J1, 3K Oii = 1. As O is
orthogonal, it is equivalent to consider 0 = I3.

O = I3 ⇔ V TRU = I3

⇔ R = (V T )−1U−1

⇔ R = V UT

Thus the solution is given by:

R = V UT

We compute this rotation matrix for the five 3D reference patterns to be sure that
at least one good alignment has been computed. In the following of this Section
4.2.2, we assume that the rotated data of the extracted strides are in the default
reference frame defined in Figure ??.

2.2 Swing modelling

We saw (see Figure 29) that the cycle of a stride is divided into two phases: swing
and stance. During the swing phase, moving the foot forward creates a distinctive
pattern in the Y axis (with default device placement assumption) of the angular
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Property 2. — Given Λl = (αl1, . . . , αlp)
T and the symetric matrix A defined by

Aij =
∑

l

αl,iαl,j

||Λl||
2
2
, the solution of the problem (P) is given by:

ĥya = ±

p
∑

u=1

θpueu, (12)

and

ây
a

l =

∑p

u=1 αluβ̂u
∑p

u=1 α
2
lu

, (13)

where θp is the eigenvector of A associated to its greater eigenvalue.

Proof 2. — The definition of ây
a

l is given by the minimization of the expression

||ay
a

l hya

l − ĥya || that is equivalent to minimize ||ay
a

l hya

l − ĥya ||2. Considering the nota-
tions of Equation 10 and Equation 11 we have:

||ay
a

l hya

l − ĥya ||2 =

p
∑

u=1

(ay
a

l αlu − β̂u)
2

=

p
∑

u=1

(ay
a

l )2(αlu)
2 + (β̂u)

2 − 2ay
a

l αluβ̂u

= (ay
a

l )2
p
∑

u=1

(αlu)
2 − 2ay

a

l

p
∑

u=1

αluβ̂u +

p
∑

u=1

(β̂u)
2.

By derivating with respect to ay
a

l we have:

2ay
a

l

p
∑

u=1

(αlu)
2 − 2

p
∑

u=1

αluβ̂u > 0,

that is equivalent to:

ay
a

l >

∑p

u=1 αluβ̂u
∑p

u=1(αlu)2
.

Thus the solution of Equation 9 is given by:

ây
a

l =
∑p

u=1 αluβ̂u∑p
u=1 α

2
lu

.

The estimator ây
a

l is well defined because its denominator
∑p

u=1 α
2
lu is equals zero

if and only if for all u in J1, pK we have αlu = 0. By equivalence of the norms in finite
dimension, such a function is the null function defined in [0, 1] (if we consider in
particular the norm ||.||2). However the studied functions have strictly negative
values (negative angular velocity values on the Y axis between two zero cross-
ings).
The solution of Equation 8 is the function ĥya that minimizes the expression

||
∑Nya

l=1 ||ây
a

l hya

l − hya ||2. Considering the notations of Equation 10 and Equation 11

87



we have:

Nya

∑

l=1

||ây
a

l hya

l − hya ||2 =
Nya

∑

l=1

(

(ây
a

l )2
p
∑

u=1

α2
lu − ây

a

l

p
∑

u=1

αluβu +

p
∑

u=1

β2
u

)

= Nya
p
∑

u=1

β2
u +

Nya

∑

l=1

(ây
a

l )2
p
∑

u=1

α2
lu − 2

Nya

∑

l=1

ây
a

l

p
∑

u=1

αluβu

= Nya
p
∑

u=1

β2
u +

Nya

∑

l=1

(
∑p

u=1 αluβu)
2

(
∑p

u=1 α
2
lu)

2

p
∑

u=1

α2
lu

−2
Nya

∑

l=1

∑p

u=1 αluβu
∑p

u=1 α
2
lu

p
∑

u=1

αluβu

= Nya
p
∑

u=1

β2
u +

Nya

∑

l=1

(
∑p

u=1 αluβu)
2

(
∑p

u=1 α
2
lu)

2 − 2
Nya

∑

l=1

∑p

u=1 αluβu
∑p

u=1 α
2
lu

= Nya
p
∑

u=1

β2
u −

Nya

∑

l=1

(
∑p

u=1 αluβu)
2

∑p

u=1 α
2
lu

.

Thus we want to minimize the expression Nya
∑p

u=1 β
2
u −

∑Nya

l=1

∑p
u=1 αluβu

(
∑p

u=1 α
2
lu)

2 under the

constraint ||hya || = 1 that is equivalent to
∑p

u=1 β
2
u = 1. With the notation in the

canonical basis of Rp, Λl = (αl1, . . . , αlp)
T , X = (β1, . . . , βp)

T and X̂ = (β̂1, . . . , β̂p)
T we

have:

X̂ = argmin
||X||22=1

Nya
p
∑

u=1

β2
u −

Nya

∑

l=1

(
∑p

u=1 αluβu)
2

∑p

u=1 α
2
lu

= argmin
||X||22=1

Nya −

Nya

∑

l=1

(
∑p

u=1 αluβu)
2

∑p

u=1 α
2
lu

= argmax
||X||22=1

Nya

∑

l=1

(
∑p

u=1 αluβu)
2

∑p

u=1 α
2
lu

= argmax
||X||22=1

Nya

∑

l=1

< X,Λl >
2
2

||Λl||22

= argmax
||X||22=1

Nya

∑

l=1

XT
ΛlΛ

T
l X

||Λl||22

= argmax
||X||22=1

XT

Nya

∑

l=1

ΛlΛ
T
l

||Λl||22
X

= argmax
||X||22=1

XTAX.

The matrix A in R
p×p is defined for all i and for all j in J1, pK by Aij =

∑Nya

l=1
αliαlj

||Λl||
2
2
.

It is a symetric matrix with values in R, thus its eigenvectors are defined in R.
We note λ1 ≤ . . . ≤ λp its eigenvalues. As A is symetric, it is diagonalizable in
the orthonormal basis of its eigenvectors (w1, . . . ,wp) associated to λ1, . . . , λp. The
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expression of X in the basis (w1, . . . ,wp) is given by X =
∑p

u=1 β
w
u wu. Then we

have:

XTAX =

p
∑

u=1

λu(β
w
u )

2

≤

p
∑

u=1

λp(β
w
u )

2

≤ λp

p
∑

u=1

(βw
u )

2

≤ λp.

Indeed, ||X||22 = 1 is equivalent to
∑p

u=1(β
w
u )

2 = 1. But if we take X = ±wp, we have
||X||22 = 1 and

XTAX = wT
p Awp

= αpw
T
p wp

= αp.

We can deduce that wp is solution and thus:

ĥya = ±
∑p

u=1 wpueu.

We chose ĥya among these two solutions in order to have positive values for ây
a

l ,

namely
∑p

u=1 αluβ̂u∑p
u=1 α

2
lu

> 0.

From the above, we want to express the functions defined in [0, 1] taking values
in R in a finite orthonormal basis. Let assume that the functions hya and hya

l belong
to the space R[X], the basis composed by the polynomials of Lagrange fulfil the
criteria and the expression of a function is easy. Let assume that the space E
of the studied functions hya and hya

l are the set of polynomials defined on [0, 1],
with real coefficients and with degrees smaller or equal to d. Let the regular
subdivision of [0, 1] : 0 = 0

d
= x0 < 1

d
= x1 < . . . < xd = d

d
= 1. The Lagrange

polynomials associated to these points are the polynomials defined for all t in
[0, 1] and for all u in J0, dK , lu(t) =

∏d

z=0,d 6=u
t−xz

xu−xz
. They constitute a basis of the

space E. In addition, for the scalar product < P,Q >=
∑d

i=0 P (xu)Q(xu), this basis
is orthonormal. In this basis we write the functions hya

l for all t in [0, 1] by the
following:

hya

l (t) =
d
∑

u=0

hya

l (xu)lu(t).

However we saw that the gyrometer sensors record data with 130 Hz frequency.
We note ty

a

l,1 < ty
a

l,2 < . . . < ty
a

l,n the n recording times during the lth forward swing
of the database "DB3" (see Section II.4.1) performed with the activity ya. As in
this database the ActiMyo device has been set carefully with the default place-
ment, the forward swing values associated with the recordings time are given
by the Y axis of ωt. We note them ωya

l,1, . . . , ω
ya

l,n. We consider the n couples
(0, ωya

l,1), (
1
n
, ωya

l,2), . . . , (1, ω
ya

l,n). this subdivision does not necessarily correspond to the
one defined by the xu. Thus, we compute a cubic splines interpolation ([24]) on
the couples (0, ωya

l,1), . . . , (1, ω
ya

l,n) that estimates the values of hya

l (xu). The quality of
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Lagrange polynomials interpolation depends on the d value (the more d is large
better is the interpolation). However considering a d value too large would be too
much time consuming for the computation of the eigenvectors of A (see Prop-
erty 2) with O(d3) dimension complexity. In practice, d = 99 leads to sufficient
precision. For illustration we represent in Figure 35 the forward swing for a walk-
ing stride with the n recordings times (resized in [0, 1]) and its interpolation by
Lagrange polynomials in dimension 100.

Figure 35: Example of a walking forward swing with Lagrange interpolation (blue) on n record-
ing points ωya

l,i (red).

The 5 functions ĥya are computed once for all and the procedure is sum up in
the following Algorithm 10.

Algorithm 10: Computation of the 1D forward swing pattern for activity ya.

1 Compute the matrix A such as for all i, j in J0, 99K :

Aij =
Nya

∑

l=1

hya

l (xi)h
ya

l (xj)
∑d

u=0 .
(

hya

l (xu)
)2

2 Compute the eigenvalues (in R) of A.
3 Consider the greatest eigenvalue associated with the eigenvector θd ∈ R

d+1.
4 Compute the 1D reference pattern for the activity ya define in [0, 1] :

ĥya(t) = −|
99
∑

u=0

θdulu(t)|.

For a an extracted interval, after sensors alignment with the method pre-
sented in Section III.2.1, if negative values are detected in the Y axis of gyrometer
data between two zero crossings, we compute the function g defined in [0, 1] with
values in R in the Lagrange polynomials basis:

g(t) =
99
∑

u=0

g(xu)lu(t).

90



Then for each class ya we compute the multiplier coefficient ay
a

(Equation 13) and
compare ay

a

g(t) it to the 1D reference pattern ĥya. If the residuals ||ay
a

g(t) − ĥya ||2
are small for one 1D reference pattern, it means that g probably corresponds to
the forward swing of a stride of activity ya. On the other hand, it the residuals are
large for every 1D reference patterns, it means the extracted interval probably
does not correspond to a stride.

2.3 Functional data analysis

From the norm and each axis of both acceleration and angular velocity, features
were computed in the time and frequency domains: maximum, mean, standard
deviation, root mean square, inter-quantile range, Fast Fourier Transform, 3rd and
4th order moments, auto-correlation and correlations between signals etc.

Following the strategy explained in this section for each element of our ex-
tracted intervals algorithm, 2695 features are computed. The overall procedure
is described in a pseudo-code in Algorithm 11. At this stage, we want to build a
binary classifier that decides if one extracted interval is a stride or not.

Algorithm 11: Features computation

1 Compute the frequency domain features from the inertial data norms.
2 Compute the rotations (Property 1).
3 foreach activity rotation do
4 Compare the rotated angular velocity with the 3D reference pattern
5 if negative values on y gyroscope axis then
6 foreach 1D reference pattern do
7 Compute the multiplying coefficient (Equation 13).
8 Compare the resulting multiplied negative values with the 1D reference

pattern.
9 end

10 end

11 end

3 Intervals classification with GBT

This section describes the performance of the GBT classifier on the extracted
intervals from the database "DB3" (Section III.3.1) and the performance of the
overall stride detection algorithm during experimental tests in Motion Capture
environment "DB4" (Section III.3.2). As a reminder, the descriptions of "DB3" and
"DB4" are given in Section II.4.1.

3.1 Cross-validation performance

A dozen of co-workers of various ages and heights were filmed practicing several
activities while wearing the system at the ankle and the wrist at Sysnav company
under video control, composing the database of recordings "DB3". From this
database, the extraction algorithm built the family ÎDB3 with 6213 intervals that
do not correspond to strides (label -1) and 5964 stride intervals divided into 5
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different activities (label 1): "atypical step" that includes small step, side step,
backward walking etc., "normal walking", "running", "upstairs" and "downstairs".
We computed the features following the Algorithm 11 for each element in ÎDB3

and then we launched the 10-fold cross-validation method testing several set
of GBT parameters. We focused the tuning procedure for important parameters
that can lead to overfitting such as the number of trees, the learning rate, the
maximum depth of the trees and subsampling proportion. The cross-validation
results of the best parameters are presented in the following confusion matrix
(Table 4).

Predicted -1 Predicted 1
Actual -1 6195 18
Actual 1 19 5945

Table 4: Confusion matrix.

The global error is about 0.3%. The distribution of the false negatives is pre-
sented in the Table 6.

Atypical steps Walking Running Upstairs Downstairs
FN 19

1319
0

1473
0

1146
0

1024
0

1002

Table 5: False negatives distribution.

Our algorithm made no mistake on the "walking", "running", "upstairs" and
"downstairs" strides. On "atypical" strides, it achieved a detection error rate of
1.5%. They are the most difficult kind of strides to detect because the associated
3D and 1D patterns are less specific. Consequently the sensors alignment pro-
cedure sometimes leads to an wrong orientation, namely different to the default
one. Moreover a small step can be performed without a forward swing which
makes the features engineering in Section III.2.2 useless.

The performance of the cross-validation depends on the interval extraction
algorithm. Indeed, the extraction procedure may not select true strides in the
"DB3" recordings that would have been wrongly classified by the GBT prediction
function and then would have deteriorated the cross-validation score. In order to
better analyze the performances of our algorithm, in the following we study the
results of our stride detector in MOCAP environments "DB4".

3.2 False negative rate in MOCAP

A group of seven people wore the ActiMyo with infrared markers during MOCAP
sessions in a 25 m2, composing the databse of recordings "DB4". Several cam-
eras were set in order to film whole scene. They broadcast infrared radiation
that was reflected by the markers. This allowed the camera to record the po-
sition of the markers with sub-millimeter accuracy. We launched the stride de-
tector algorithm (Algorithm 7), with stage 2 corresponding to the features en-
gineering process described in Algorithm 11, on the recordings of "DB4". It pro-
vides a family of intervals detected as strides ĨDB4 = {(s̃1, ẽ1), . . . , (s̃i, ẽi), . . . , (s̃n, ẽn)}.
With the MOCAP altitude (see Figure 28), we can note precisely when the foot
is in contact with the ground during the stance phases in "DB4". We note
IDB4 = {(s1,1, s1,2, e1,1, e1,2), . . . , (sn,1, sn,2, en,1, en,2)} the family of strides with (si,1, si,2)
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4 Contributions

This section described an algorithm that allows to detect when a stride occcurs
with its start and end times from inertial sensors worn at the ankle. This work is
divided in four main stages:

• The selection of candidate intervals that may correspond to strides.

• The calculation of a rotation applied on the data in order to work in the same
frame for all records. This step is built on fitting the gyroscope data with 3D
geometric patterns.

• The extraction of the forward swing on the gyroscope axis y. These data are
then fitted with 1D reference patterns.

• The binary classification of the intervals using the Gradient Boosting Trees
algorithm with features computed along the previous steps.

For normal walking it has shown good results achievable with existing algorithms.
But the method described in this section also has a good sensitivity for atypical
strides such as small steps, side steps and backward walking contrary to most
algorithms proposed in the literature. In Table 7 and Table 8 we present the
atypical strides detection rates for the threshold based algorithm developed by
Sysnav and for the machine learning (M.L.) approach described in this Section,
both launched on the "DB4" recordings.

Small steps

Total Threshold based detection M.L. Section III

Wearer 1 88 75% 100%
Wearer 2 67 68.7% 100%
Wearer 3 107 63.6% 95.3%
Wearer 4 145 55.2% 97.9%
Wearer 5 65 10.8% 69.2%
Wearer 6 90 40.7% 94.8%
Wearer 7 48 39.6% 89.6%

Total 610 52.9% 93.8%

Table 7: Detection rate for small steps.

Side steps

Total Threshold based detection M.L. Section III

Wearer 1 287 50.7% 97.9%
Wearer 2 265 56.5% 85.5%
Wearer 3 143 52.9% 84.2%
Wearer 4 301 59.7% 98.7%
Wearer 5 246 36.1% 100%
Wearer 6 150 51.4% 96.2%
Wearer 7 200 44.4% 51.5%

Total 1592 50.6% 91.7%

Table 8: Detection rate for side steps.

94







Part IV

Candidate stride interval extraction based
on pseudo-speed

97





The ActiMyo device is a strapdown IMU (see Section I.2), thus the inertial data
are recorded in its reference frame that we called body frame. Consequently, the
rotation matrix that allows to express the acceleration (including the gravity) and
the angular velocity in a world frame is not given directly. The general problem
of reference coordinate frames was introduced in Figure 1 with the associated
notations. One major consequence is that the speed of the device is difficult to
estimate. However, we believe that this feature would be particularly relevant
for detecting strides. Indeed when the foot is on the ground, namely during the
stance phase, the speed of the ankle is small compared to the swing phase,
whatever the activity. Even if during running for example, the ankle speed can
reach more than 4 m/s when the foot is on the ground, it is still much greater
during the swing. The idea is that studying the minima around the maxima of the
ActiMyo speed would give the beginning and the end of the strides. But still, it
requires to estimate the speed in the world frame.

In this chapter we propose a method removing the gravity from the accelera-
tion and computing a terrestrial reference frame (Section IV.1). Then the integra-
tion of the projected linear velocity leads to the ankle pseudo-speed computation,
noted v̂W (Section IV.2). This is a rough estimation of the ActiMyo speed that is
less accurate than the one computed in the extended Kalman filter (see Chapter
V) but it allows to proposed relevant candidate stride intervals and shows fast
computation.

Thanks to the labeled databases presented in Section II.4.1, we can compute a
prediction function calculated by Gradient Boosting Trees algorithm (see Section
II.2.2). It allows, with relevant features calculation (see Section IV.3), to select
from the set of candidate intervals the true strides. In Section IV.4, we present
its learning performances and the overall algorithm performances on recordings
in motion capture environment. The work of this chapter has been published in
Sensor journal [10] and in [8] IEEE conference paper.

1 Terrestrial Reference Frame Computation

The main idea of the terrestrial reference frame computation lies in the fact that
in an inertial reference frame, the integration of γ is equal to the difference of the
ankle speed (a few meters per second for a pedestrian) that is small compared
to the integration of the gravity. At any time t in [0, T ], the device records the
acceleration and angular velocity data (respectively γt(t) and ωt(t) in R

3) in the
body reference frame of the system. For all u in [t, t+∆t] we compute the rotation
matrix Rt

u between the body reference frame at time t and u by angular velocity
integration. The matrix Rt

u is the solution of Equation (14):

dRt
u

du
= −Rt

u Skew(ωu(u)), (14)

with Rt
t = I3 and the Skew operator defined for all vectors n in R

3, n = (nx, ny, nz)
T :

Skew(n) =





0 −nz ny

nz 0 −nx

−ny nx 0



 .

Let au(u) be the acceleration of the ActiMyo system without gravity gu : γu(u) =
au(u) + gu. Then, the mean of the recorded acceleration projected in the body
reference frame at time t, on an interval ∆t, is given by:

1

∆t

∫ t+∆t

t

Rt
uγu(u)du =

1

∆t

∫ t+∆t

t

Rt
u(au(u) + gu)du.
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We assume that for a sufficiently small ∆t, the integration of the angular velocity
produces no error. As a result, Rt

ugu is a constant gt on this interval. We have:

1

∆t

∫ t+∆t

t

Rt
uγu(u)du =

1

∆t

∫ t+∆t

t

Rt
u(au(u) + gu)du

=
1

∆t

∫ t+∆t

t

Rt
uau(u)du+ gt.

Let vt(u) be the speed of the ankle in the reference frame at time t for all u in
[t, t+∆t]. From the equation above we can write:

1

∆t

∫ t+∆t

t

Rt
uγu(u)du =

vt(t+∆t)− vt(t)

∆t
+ gt.

For a sufficiently long duration of integration ∆t, we assume that the speed dif-
ference of the ankle, between ∆T and t, divided by ∆t is small relative to the
gravity:

vt(t+∆t)− vt(t)

∆t
≪ gt. (15)

Thus, we can deduce the following equation:

1

∆t

∫ t+∆t

t

Rt
uγu(u)du ≈ gt. (16)

The assumption in Equation (15) is valid for large ∆t. However, this approach
requires that the mean of the acceleration in an inertial reference frame is com-
puted. Due to the integration drift with time (caused by lack of precision and
noise of inexpensive sensors in ActiMyo), if ∆t is too large, we have no guarantee
that Rt

u provides a rotation between the body reference frame at time u and t. In
practice, we found a compromise by setting ∆t = 15 s.

Thanks to Equation (16) we can identify the gravity in the body reference
frame at time t : gt. If the angular velocity integration did not produce any error,
for all t > 0, gt would be equal to Rt

t+dtgt+dt. In practice, we observe variations due
to the integration drift. For all t > 0 we can correct this by computing the rotation
matrix Rgt that aligns gt over time. We introduce the vector a as follows:

a = lim
dt→0

gt/||gt|| ×Rt
t+dtgt+dt/||R

t
t+dtgt+dt||

dt
.

Then the rotation matrix Rgt is the solution of the following equation:

dRgt

dt
= −Rgt Skew(a). (17)

As a result, we can project the inertial data to have g constant and equal to gt=0.
Finally, we define and project the data into a terrestrial reference frame W by
considering the vector − g0

||g0||
as the new ZW axis and arbitrarily choosing XW and

YW axes in order to build an orthonormal basis. The overall procedure is described
in the pseudo-code Algorithm 12.

We now have access to the acceleration of the ankle for all t by removing the
gravity (≈ 9.81 m/s) from the ZW axis:

âW (t) = γW (t)−





0
0

9.81



 . (18)
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Algorithm 12: Terrestrial reference frame computation with gravity identification.

Input : Recording of the system worn at the ankle
Output: Inertial data projected in a terrestrial reference frame with gravity

identification

1 foreach t ∈ [0, T ] do
2 Computation of Rt

u by gyrometer integration during ∆t.
3 Integration of Rt

uγu(u) during ∆t that we assume to be close to gravity.
4 Alignment of the computed gravity with the previous ones.

5 end
6 Alignment of the gravity with the ZW axis of the final terrestrial reference frame and

projection of the inertial data.

The advantage of this attitude filter is the efficiency of its computation. This char-
acteristic is necessary as we use âW to compute a pseudo-speed introduced in
Section IV.2 that is one of the main features in our stride detector. It allows to ex-
tract a family of candidate intervals that may correspond to stride and provides,
by integration, a pseudo-trajectory that appears to be a key variable for the Gra-
dient Boosting Trees decision function. Indeed, this approach extracts intervals
that are not strides when for example the wearer is moving the device in the
hand during the required time to install or uninstall the system from the docking
station.

2 Pseudo-speed Computation

In the previous section, we described the projection of the inertial data recorded
by the device into a terrestrial reference frame. In this procedure, the gravity is
removed from the acceleration, which can be integrated to compute the pseudo-
speed of the ankle during the recording with an unknown initial condition. The
first step of our algorithm is to detect phases of inactivity where we assume the
ankle velocity as null. Let {(t01, t

1
1), . . . , (t

0
i , t

1
i ), . . . , (t

0
n, t

1
n)} the n detected couples of

inactivity instants with the ankle in motion in between. We can integrate âW be-
tween t0i and t1i chronologically and in the reverse-time direction to compute what
we call respectively forward speed (v̂f

W ) and backward speed (v̂b
W ). We introduce

here their general expression between two instants a and b, with a < b :














v̂
f
W (t; a, b) =

∫ t−a

0

âW (a+ u)du+ v̂
f
W (a; a, b),

v̂b
W (t; a, b) =

∫ b−t

0

âW (b− u)du+ v̂b
W (b; a, b).

(19)

In particular, the instants t0i and t1i are defined as moments where the ankle is
motionless, so we assume v̂

f
W (t0i ; t

0
i , t

1
i ) = 0 and v̂

f
W (t1i ; t

0
i , t

1
i ) = 0. As a result we

have:


















v̂
f
W (t0i , t

1
i )(t) =

∫ t−t0i

0

âW (t0i + u)du,

v̂b
W (t0i , t

1
i )(t) =

∫ t1i−t

0

âW (t1i − u)du.

(20)

Since the integration drift accumulates errors over time, wemake the assumption
that for all t in [a, b], the closer t is to b, the more v̂

f
W (t; a, b) produces errors and on
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the opposite, the closer t is to a, the more v̂b
W (t; a, b) produces errors. That is why

we compute the pseudo-speed v̂W (t; a, b) as a weighted mean between a and b :

v̂W (t; a, b) = v̂
f
W (t; a, b)

b− t

b− a
+ v̂b

W (t; a, b)
t− a

b− a
. (21)

We note t0 is the first index of inactivity detected and tn+1 is the last one. For all
t < t0 we can only compute the backward speed, as we do not know the initial
condition for t = 0 :

v̂b
W (t; 0, t0) =

∫ t0−t

0

âW (t0 − u)du. (22)

In contrast, for all t > tn+1 we can only compute the forward speed between tn+1

and T because we do not have any information on the speed of the ankle at the
end of the recording:

v̂
f
W (t; tn+1, T )(t) =

∫ t−tn+1

0

âW (tn+1 + u)du. (23)

We can now define the pseudo-speed v̂W during the entire recording. The pseu-
docode of v̂W calculation is presented in Algorithm 13. For all t in [0, T ] we have:

v̂W (t) =



















v̂b
W (t; 0, t0) if t < t0,

v̂W (t; t0i , t
1
i ) if t0i < t < t1i , ∀i ∈ J1, nK,

v̂
f
W (t, tn+1, T ) if tn+1 < t,

0 otherwise.

(24)

Algorithm 13: Pseudo-speed computation.

Input : Inertial data projected in a terrestrial reference frame with gravity
removed

Output: Pseudo-speed

1 Detection of inactivity.
2 Definition of intervals with device in motion: {(t01, t

1
1), . . . , (t

0
i , t

1
i ), . . . , (t

0
n, t

1
n)}.

3 Backward integration between t0 and t01 (Equation 22).
4 Forward integration between t1n and tfinal (Equation 23).
5 foreach interval [t0i , t

1
i ] do

6 Forward and backward integration between t0i and t1i (Equation 20).
7 Weighted mean of the forward speed and backward speed (Equation

21).
8 end

2.1 Pseudo-speed norm extrema for interval extraction

As inertial criteria (acceleration norm close to one g and local minima of angular
velocity) described in Chapter III for extracting candidate stride intervals, the
norm of v̂W is a good variable to detect the start and the end of a stride during
walking. This characteristic is illustrated in Figure 40, the stride segmentation is
given by minima around a maximum. Yet, while the previous extraction algorithm
has shown its limits in situations such as fast side stepping, prompt descent of
stairs or during small steps with soft foot contact, the pseudo-speed norm criteria
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uations to learn. In the following we present a new rotation matrix around ZW

that projects any interval in a terrestrial reference frame invariant to the initial
XW and YW axes. It is based on a speed estimation at the end and the start of
the extracted interval (see Section IV.3.1), then the alignment procedure is de-
scribed in Section IV.3.2. Finally we present in IV.3.3 the computed features from
functional data analysis techniques on the time series we have access to for each
considered interval.

3.1 Speed estimation at extracted interval boundaries

With the notations introduced in Section II.4.2, the family Î of one record-
ing represents the set of n intervals extracted from the algorithm described
in Section IV.2.1. The intervals are defined by one start and one end: Î =
{(ŝ1, ê), . . . , (ŝi, êi), . . . , (ŝn, ên)}. Inspired by the Sysnav algorithm developed for tra-
jectory reconstruction of an ankle-mounted IMU pedestrian in Section I.4.4, we
assumed that during the beginning and the end of a stride, when the foot is flat
on the floor, the ankle is in rotation around the heel. Then, if the ith interval is a
true stride we assumed that the ankle speed at ŝi and êi is given by a lever arm
model:































v̂W (ŝi) = ωW (ŝi)×





0
0
r



 ,

v̂W (êi) = ωW (êi)×





0
0
r



 ,

(25)

with r the device’s height relative to the ground. In practice, we set the value of
r to 8 cm. From Equation (19) we can compute the forward speed v̂

f
W (t; ŝi, êi) and

the backward speed v̂b
W (t; ŝi, êi) for t in [ŝi, êi].

If the interval i is a stride, these two speeds are close because we integrate
the acceleration during a short period so that the drift stays small. However if i is
a non stride interval, ŝi and êi do not necessarily correspond to the ankle rocker.
That is why we observed differences in the residuals |v̂b

W (t; ŝi, êi)− v̂
f
W (t; ŝi, êi)| for t

in [ŝi, êi] as features. The residuals can indeed be much larger for movements that
are not strides. This phenomenon is illustrated in Figure 44 where the computed
forward speed norm ||v̂f

W ||2 (in green) and backward speed norm ||v̂b
W ||2 (in red)

have been represented for two extracted intervals that are characterized with
very similar inertial norms patterns. The interval on the left is a stride and the
interval on the right correspond to a device movement that is not a stride. We
can see that the gap between the forward and backward speed is larger for the
non stide interval.

3.2 Pseudo-trajectory and sensors alignment

Then, thanks to Equation (21), we compute v̂W (t; ŝi, êi) from v̂
f
W (t; ŝi, êi) and

v̂b
W (t; ŝi, êi) on each studied interval. By integrating this pseudo-speed, we com-
pute a pseudo-trajectory in the terrestrial reference frame W , starting from the
origin (0, 0, 0) and ending in (x̂êi , ŷêi , ẑêi)

T :





x̂êi

ŷêi
ẑêi



 =

∫ êi

ŝi

v̂W (u; ŝi, êi)du. (26)
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3.3 Functional data analysis

The GBT algorithm requires the observations features of the learning set ÎDB3 =
{(ŝ1, ê1, y

s
1), . . . , (ŝi, êi, y

s
i ), . . . , (ŝn, ên, y

s
n)} to be the same variables for all i. However,

the size of the extracted intervals [ŝi, êi] are not all the same. As a consequence,
the 3D interval data (pseudo-speed norm, pseudo-trajectory, acceleration, angu-
lar velocity etc.) projected in the terrestrial reference frame Wi are not directly
suitable for the GBT algorithm. To face this problem, we computed features for
each axis from signal processing techniques in time and frequency domains such
as maximum, mean, standard deviation, root mean square, inter-quantile range,
Fast Fourier Transform, 3rd and 4th order moments, auto-correlation and correla-
tions between signals etc. In the end, the number of features was equal to 1657.
This allow us to apply the GBT algorithm to compute the classifier that will iden-
tify the strides among the extracted intervals. Its performance is evaluated in
Section IV.4.

4 Intervals classification with GBT

The following section describes the performance of the GBT classifier on the ex-
tracted interval from the database "DB3" (Section IV.4.1) and the performance
of the overall stride detection algorithm during experimental tests in Motion Cap-
ture environment "DB4" (Section IV.4.2). As a reminder the definition of these
databases are described in Section II.4.1. We also present results in challenging
situations, namely when the device is moving but not during walking, such as
bicycling, car ride, carried in a pocket etc. (Section IV.4.3).

4.1 Cross-validation performance

In the database "DB3", a dozen of co-workers of various ages and heights
were filmed practicing several activities while wearing the system at the an-
kle at Sysnav company under video control. From this database, the ex-
traction algorithm based on pseudo-speed norm (Section IV.2.1) and the fea-
tures engineering process (Section IV.3) built the family of intervals ÎDB3 =
{(ŝ1, ê1,x

s
1), . . . , (ŝi, êi,x

s
i ), . . . , (ŝn, ên,x

s
n)} with xs

i ∈ R
1657. The video control allowed

us to affect a label to each extracted interval leading to a annotated family
ÎDB3 = {(ŝ1, ê1,x

s
1, y

s
1), . . . , (ŝn, ên,x

s
n, y

s
n)} with the label variable ys that takes the

value 1 is the interval is a stride, -1 if not. The set ÎDB3 contains 6213 stride inter-
val and 6085 intervals extracted from device movements that are not strides. We
launched the 10-fold cross-validation method testing several set of GBT parame-
ters (see Section II.2.2). We focused the tuning procedure for important parame-
ters that can lead to overfitting such as the number of trees, the learning rate, the
maximum depth of the trees and subsampling proportion. The cross-validation
results of the best parameters are presented in the following confusion matrix
(Table 9).

Predicted -1 Predicted 1
Actual -1 5852 233
Actual 1 128 6085

Table 9: Confusion matrix.
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The mean error is around 3%, namely ten times more than the cross-validation
score reached in Chapter III. However this score depends on the difficulty of the
set of extracted intervals from the recordings in "DB3". In this Section, the ex-
traction method based on the pseudo-speed norm only selects a few non strides
interval when the wearer is walking (whatever the activity). Thus many device
movements coming from challenging situations (hand-carried, bicycling etc.) la-
belled -1 that looked like true strides from inertial data point of view were in-
cluded in the learning set. As a result, the final score was slightly deteriorated
but it led to a more robust classifier. In order to better analyze the performances
of our algorithm, in the following we study the results of our stride detector in
controlled environments, meaning we know where strides occurred in the record-
ings. Two kinds of error were considered: the false negatives (FNs) corresponding
to missing strides, and the false positives (FPs) corresponding to non-stride inter-
vals wrongly classified with the label 1.

4.2 False Negative Rate in MOCAP

We launched the stride detector algorithm on the "DB4" recordings. They are
providing by a group of seven people who wore the ActiMyo with infrared mark-
ers during MOCAP sessions in a 25 m2 room. Several cameras were set in or-
der to film the whole scene. They broadcast infrared radiation that was re-
flected by the markers. This allowed the camera to record the position of the
markers with sub-millimeter accuracy. The stride detector algorithm provides
a family of intervals detected as strides ĨDB4 = {(ŝ1, ẽ1), . . . , (s̃i, ẽi), . . . , (s̃n, ẽn)}.
With the MOCAP altitude (see Figure 28), we can note precisely when the foot
is in contact with the ground during the stance phases in "DB4". We note
IDB4 = {(s1,1, s1,2, e1,1, e1,2), . . . , (sn,1, sn,2, en,1, en,2)} the family of strides with (si,1, si,2)
and (ei,1, ei,2) delimiting the first and last stance phase of the stride i. In this Sec-
tion we focus on the False negative rate, namely the strides in IDB4 that are not
detected by our stride detector (FN). We consider that a stride i in IDB4 is not
detected if there is no element j in ĨDB4 such as s̃j ∈ [si,1, si,2] and ẽj ∈ [ei,1, ei,2]. The
final results are presented in Table 10.

Slow Walking Medium Walking Fast Walking Small Steps Side Steps

Total - FN Total - FN Total - FN Total - FN Total - FN

Wearer 1 291 - 0% 279 - 0% 216 - 0% 88 - 0% 287 - 0.7%
Wearer 2 306 - 0% 261 - 0% 195 - 0% 67 - 0% 265 - 2.6%
Wearer 3 294 - 0% 219 - 0% 198 - 0% 107 - 4.7% 143 - 3.5%
Wearer 4 297 - 0% 267 - 0% 228 - 0% 145 - 0.7% 301 - 0%
Wearer 5 273 - 0% 249 - 0% 213 - 0% 65 - 7.7% 246 - 0%
Wearer 6 345 - 0% 339 - 0% 327 - 0% 90 - 1.1% 150 - 0.8%
Wearer 7 342 - 0% 246 - 0% 240 - 0% 48 - 8.3% 200 - 0.7%

Total 2148 - 0% 1860 - 0% 1617 - 0% 610 - 2.3% 1592 - 1.1%

Table 10: False negative rates in MOCAP sessions.

All walking strides with various stride lengths and stride durations (see Figure
36) are detected. This means that our detection achieved 100% accuracy for walk-
ing phases with various paces. Our algorithm did not detect all atypical strides,
but shows very good results while most existing methods described in the lit-
erature do not detect them. In particular, our stride detector do not presents
weakness whatever the wearer.
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4.3 False Positive Rate

A good score for the false negative rate is important, but in return it may lead to
an increased false positive rate. We have to pay attention to this type of error,
as our algorithm is designed for daily evaluation of the physical conditions of
subjects suffering from pathologies associated with movement disorders. Falsely
detected strides could deteriorate the statistics during clinical trials. We tested
our algorithm on several typical situations that may produce errors: when the
ActiMyo system is worn at the ankle but the wearer is not walking (e.g., sitting on
a chair and moving the ankle, bicycling, in a car) and when the device is not worn
at the ankle (e.g., carried in the hand, in a backpack, in a pocket). The results of
several tests are presented in Table 11.

Movement Walking Sitting Bicycling Car Ride Hand-Carried Backpack Pocket

FP average per hour 0 0 1.7 0 10.1 0 0.1

Table 11: False positive (FP) rates during daily activities.

Our stride detector produced almost no mistakes during these situations. We
can see in Table 11 that the most difficult situation is when the ActiMyo device
is manipulated in the hand. Some hand movements may look a lot like strides
(displacing the system on a table) that even an expert can hardly differentiate
by looking at the data we have access to. With 130 Hz frequency, one hour of
ActiMyo recording corresponds to 468 thousands data points. The number of ex-
tracted non stride intervals depends on the activity intensity. But as an example,
one hour of "Hand-Carried" movements can lead to thousands of extracted inter-
vals. Thus, reaching dozens of wrongly predicted intervals still remains a good
performance.

5 Contributions

This section described a stride detector algorithm for ActiMyo recordings. The
first step of our algorithm consists of a procedure that removes gravity from the
linear acceleration. It allows the computation of a pseudo-speed in a terrestrial
reference frame that finally provides a family of candidate intervals that may
correspond to strides. Some of these intervals are true strides, while others come
from recorded movements that are not strides and we want to exclude. We use
a gradient boosting trees algorithm to choose the intervals that we consider as
true strides. The stride detection given by the GBT classifier showed 100% stride
detection success for more than 5600 walking strides and about 98% detection
success for more than 2000 atypical strides such as small steps and side steps. In
Table 12 and Table 13 we present the atypical strides detection rates from "DB4"
recordings for the threshold based algorithm developed by Sysnav and for the
two machine learning (M.L.) approaches described in this thesis (Chapter III and
Chapter IV).
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Small steps
Total Threshold based detection M.L. Chapter III M.L. Chapter IV

Wearer 1 88 75% 100% 100%
Wearer 2 67 68.7% 100% 100%
Wearer 3 107 63.6% 95.3% 95.3%
Wearer 4 145 55.2% 97.9% 99.3%
Wearer 5 65 10.8% 69.2% 92.3%
Wearer 6 90 40.7% 94.8% 98.9%
Wearer 7 48 39.6% 89.6% 91.7%

Total 610 52.9% 93.8% 97.7%

Table 12: Detection rate for small steps.

Side steps
Total Threshold based detection M.L. Chapter III M.L. Chapter IV

Wearer 1 287 50.7% 97.9% 99.3%
Wearer 2 265 56.5% 85.5% 97.4%
Wearer 3 143 52.9% 84.2% 96.5%
Wearer 4 301 59.7% 98.7% 100%
Wearer 5 246 36.1% 100% 100%
Wearer 6 150 51.4% 96.2% 99.2%
Wearer 7 200 44.4% 51.5% 99.3%

Total 1592 50.6% 91.7% 98.9%

Table 13: Detection rate for side steps.

We can see that the limitations observed with the previous M.L. algorithm in
Chapter III are much better handled by the algorithm of this chapter. These im-
provements are mainly due to the new interval extraction procedure that allows
to extract the stride intervals even for small steps with light foot contact (see
Figure 42) and also during fast side steps (see Figure 41).

Moreover, our stride detector showed its robustness by presenting no error for
several critical daily situations such as bicycling, sitting in a car or on a chair,
and walking with the device in a backpack or pocket while existing methods in
the literature do not consider them. Indeed, they evaluate false positive errors
only when the device is correctly worn (on the foot) and the wearer is walking
(still generating FP). As our algorithm aims to compute outcomes based on stride
trajectory for daily home recordings during clinical, it is important not to produce
false positives for stride detection which would distort the medical findings.

The proposed clinical variables are aiming at the motor function domain and
include the stride length, stride velocity and distance walked. In order to connect
these results to the DMD hospital tests (4-stairs test or 10 meters run test) we
want to recognize the activity of each detected strides. In Chapter V we present
the algorithm developed by Sysnav that allows to compute the trajectory of a
pedestrian wearing the ActiMyo device. This computed trajectory turned out to
be a main feature for activity recognition that we describe in Section V.3.
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Part V

Activity Recognition from Computed
Trajectory
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2 Trajectory reconstruction performance

For the evaluation of the trajectory reconstruction algorithm, we used the record-
ings of "DB4" performed in the MOCAP environment that provides the ground
truth ActiMyo trajectory. We also validated the algorithm with a test performed
in an uncontrolled environment. A co-worker was wearing the system during sev-
eral hours at Sysnav free to move in the office as he wanted.

2.1 Stride length performance in MOCAP

We launched on the database "DB4" (See Section II.4.1) our stride detector pre-
sented in Section IV. The "DB4" recordgins a providing by a group of seven people
wore the ActiMyo with infrared markers during MOCAP sessions in a 25 m2 room.
Several cameras were set in order to film the whole scene. They broadcast in-
frared radiation that was reflected by the markers. This allowed the camera to
record the position of the markers with sub-millimeter accuracy. We saw in Sec-
tion IV.4.2 that this algorithm allows to detect 100% of the walking strides and
more than 98% of the atypical strides. Then we applied the trajectory reconstruc-
tion algorithm in order to compare the results with the trajectory provided by
the MOCAP infrared infrastructure. As one of the clinical variables for Duchenne
Muscular Dystrophy (DMD) is based on daily statistics of stride lengths (see Sec-
tion I.3.3), we studied the difference between the computed stride length and the
ground truth in absolute value. The results are presented in Table 14 and Table
15.

Slow walking Medium walking Fast walking
Mean (m) Std (m) Mean (m) Std (m) Mean (m) Std (m)

Wearer 1 0.024 0.038 0.020 0.022 0.029 0.036
Wearer 2 0.026 0.039 0.016 0.018 0.025 0.034
Wearer 3 0.023 0.021 0.028 0.024 0.036 0.023
Wearer 4 0.028 0.020 0.028 0.021 0.023 0.022
Wearer 5 0.061 0.091 0.025 0.020 0.032 0.029
Wearer 6 0.018 0.016 0.024 0.024 0.043 0.039
Wearer 7 0.014 0.026 0.014 0.012 0.023 0.044

Total 0.028 0.048 0.022 0.021 0.032 0.034

Table 14: Absolute computed stride length error for walking phases.

Small steps Side steps
Mean (m) Std (m) Mean (m) Std (m)

Wearer 1 0.027 0.070 0.044 0.106
Wearer 2 0.039 0.048 0.071 0.168
Wearer 3 0.057 0.082 0.070 0.177
Wearer 4 0.025 0.024 0.048 0.056
Wearer 5 0.049 0.082 0.022 0.046
Wearer 6 0.074 0.061 0.133 0.170
Wearer 7 0.039 0.055 0.053 0.116

Total 0.048 0.069 0.056 0.129

Table 15: Absolute computed stride length error for atypical strides.

Our algorithm achieved similar performance to existing methods [37, 34] for
normal walking but also achieved good results for atypical strides (around 5 cm
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this context, the computed trajectory almost never crossed the walls and we
could identify which room the wearer was in at any given time or when he was
taking the stairs. In Figure 49 we can see a difference in the computed altitude
of 3.4 m for both stairs phases that were composed of 21 stair treads of 15.4 cm
height. The true altitude of the first ground is 3.234 m, so the altitude mean error
was less than 1 cm for each stair tread. In addition, the starting points of the
second and third walking periods correspond to the ending point of the previous
ones. This means that no stride was wrongly detected when the wearer was on
his chair and moving his ankle.

The computed altitude allowed to detect when the wearer was walking on
stairs during the recording. More generally, the computed trajectory of a stride is
a relevant feature to recognize the activity. In the following, we describe a super-
vised learning approach for activity recognition based on the computed trajectory
of the detected strides.

3 Activity Recognition of the Detected Strides with Ma-

chine Learning from the Computed Trajectory

During clinical studies, activity recognition is a precious information to evaluate
the health of patients suffering from movement disorders. In this work, we fo-
cus on three activities related to the primary outcomes for Duchenne Muscular
Dystrophy (DMD): stairs, walking, and running (See I.3.2). However, defining the
difference between running and fast walking regarding the trajectory is a chal-
lenging task. Indeed, the age difference of patients in clinical studies can be very
large, and their gaits very dissimilar. Moreover, detecting stairs is often more
difficult than in Section V.2.2. Some patients suffering from DMD can hardly take
them and go up the stairs one by one (the difference in the computed altitude
is small). Thus, we adopted supervised machine learning algorithm to build a
classifier that recognizes the activity of the performed stride given its computed
trajectory.

3.1 Cross-validation performance with GBT

We launched the stride detector (see Algorithm 7) in "DB3" recordings with
the interval extraction approach described in Chapter IV. The "DB3" database
is composed by recordings performed by a dozen of co-workers of various
ages and heights were filmed practicing several activities while wearing the
system at the ankle at Sysnav company under video control (See Section
II.4.1). The stride detector provides a family of classified intervals ÎDB3 =
{(ŝ1, ê1,x

s
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i ), . . . , (ŝn, ên,x
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n)} where xs

i defines the features com-
puted following the procedure described in Section IV.3 and ŷsi defines the pre-
diction (1 if it is a stride, -1 if not). This allows to compute the trajectory with the
algorithm presented in Section V.1.

Keeping the notations introduced in Section II.4.2, the family ĨDB3 defines the
extracted intervals classified as strides (ŷsi = 1). With the video control, we keep
among the elements in ĨDB3 the intervals that are true strides and we affected
a label ya defining the activity of the performed stride among "atypical strides"
(label 1), "walking" (label 2), "running" (label 3), "upstairs" (label 4) and "down-
stairs" (label 5). Thus we have a family of intervals corresponding to strides
ĪDB3 = {(s̄1, ē1,x
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n)} where yai ∈ {1, 2, 3, 4, 5} (see

Table 16).
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Activity Atypical Stride Walking Running Uptairs Downstairs
Label 1 2 3 4 5

Table 16: Label definitions for activity recognition.

One could at this stage compute a prediction function from GBT algorithm
(See Section II.2.2), for multi-class classification in order to predict the target yai
from xs

i . However we wanted to take advantage of the computed trajectory that
turned out to be a main feature for the activity recognition task. As you can see
in Figure 48 the algorithm described in Section V.1 computes the trajectory in
an arbitrary reference but we can extract information by considering the relative
evolution. This technique also provides the speed in the three dimensions and
the angle evolution of the device, which have characteristic patterns according
to the activity performed. In the end, we computed 510 extra features for each
interval in ĪDB3 leading to a set {(xa

1, y
a
1), . . . , (x

a
n, y

a
n)} with xa

i ∈ R
pa.

We tested several supervised learning algorithms with several hyperparame-
ters for multi-class classification (five classes for five activities). Once again, GBT
provided the best results using the 10-fold cross-validation. The confusion matrix
is presented in Table 17.

Predicted 1 Predicted 2 Predicted 3 Predicted 4 Predicted 5

Actual 1 1138 14 0 0 0
Actual 2 17 1185 0 2 2
Actual 3 0 0 1334 0 0
Actual 4 0 2 0 1098 0
Actual 5 0 0 0 0 1155

Table 17: 10-fold cross-validation results of the GBT classifier for activity recognition.

The global score was about 99.4%. The difference between ”atypical stride”
and ”walking” is difficult to define, especially for a small forward step. As even
the labelling decision by the video viewer is difficult, it is not surprising that most
errors were between these two classes.

3.2 Algorithm Overview

We can now compute the entire algorithm for activity recognition on clinical study
recordings and especially on the recordings on "DB5" (See Section II.4.1) contain-
ing several episodes of walking, running and stairs performed by DMD patients at
hospital. The overall algorithm (see Algorithm 14) is described in pseudo-code.

Step 14 of Algorithm 14 is important to counter the integration drift if the
ankle movement period [t0i , t

1
i ] is large. In that case, the weighted mean of forward

speed and backward speed (see Equation 20 and Equation 21) may not overtake
the integration errors for t far from t0i and t1i . With the pseudo-speed update, if
strides are detected, the weighted mean is computed for smaller and smaller
intervals and overcomes the integration drift.

3.3 Activity Recognition in Controlled Environments

In this section we first validate the activity recognition algorithm on the "DB5"
recordings" containing hospital Duchenne Muscular Dystrophy (DMD) tests with
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Algorithm 14: Activity recognition algorithm.

Input : Recording of the ActiMyo system worn at the ankle
Output: Activity recognition

1 Projection of the inertial data in a terrestrial reference frame W (Section 1).
2 Detection of inactivity times {(t01, t

1
1), . . . , (t

0
i , t

1
i ), . . . , (t

0
n, t

1
n)}.

3 Pseudo-speed computation (Section 2).
4 foreach ankle movement period i do

5 Extraction of the set of candidate stride intervals Î ((Section 2.1).

6 foreach interval j in Î do
7 Features computation (Section 3).
8 GBT binary classification for stride detection.
9 if interval classified as a stride then

10 Trajectory reconstruction (Section 1)
11 Computation of the trajectory features.
12 GBT multi-class classification for activity recognition.
13 Pseudo-speed update: v̂W (t) = v̂W (t, êj, t

1
i ), ∀t ∈ [êj, t

1
i ] (Equation (21))

14 Update of the candidate intervals extraction posterior to êj
15 end

16 end

17 end

video control. The four-stairs test consists of DMD patients climbing four stairs
as quickly as possible. During one session, they performed the test several times
with the ActiMyo device at the ankle. We studied the performance of our activity
recognition algorithm (see Algorithm 14) by counting the number of true stairs
strides that were missing (FN). One FN stride was either classified as another
activity or not detected at all. The results are presented in Table 18.

Patient 1 Patient 2 Patient 3 Patient 4

Total 4 15 10 7
FN 0 0 0 0

Patient 5 Patient 6 Patient 7 Patient 8

Total 16 20 16 15
FN 9 1 0 0

Table 18: Activity recognition for DMD recordings: false negative rates during four-stairs tests.

The algorithm performed well for all patients except one (patient 5). This can
be explained by the difficulty this patient had in climbing the stairs. In Figure
53 we show the video recording during one stairs step every half second. The
patient took 5 seconds to climb it for a small altitude variation. This kind of stride
does not exist in the learning dataset built from "DB3" recordings where stairs
were performed by healthy adults co-workers. Thus, it is not surprising that the
GBT prediction function for activity recognition classified the stride as "atypical
stride". In addition, several patients performed a run in a 10-m hospital corri-
dor with the ActiMyo device at the ankle. We adopted the same evaluation, by
counting the number of missing running strides defined as classified as another
activity or not detected (FN). The results are presented in Table 19.
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Figure 53: Example of one stairs step progression every half second of patient 5.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Total 26 18 13 18 14
FN 0 0 2 0 0

Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

Total 32 12 14 21 22
FN 0 0 0 2 1

Table 19: Activity recognition for DMD recordings: false negative rates during four-stairs tests.

The success rate was about 97.4% less than the 99.4% presented in Table 17.
This is due to the fact that most of the labeled strides for activity recognition were
performed by Sysnav employees. As a result, the GBT classifier for AR achieved
better results for adult recordings. Moreover, the classification of DMD activities
may be a more challenging task from a statistical point of view.

During the 6-minute walk tests, DMD patients performed hundreds of strides.
Our algorithm produced no error for these walking phases. Several running
strides were detected but validated by the video control. This again shows that
this kind of test is not relevant to measure the health of the patients because
those who run while they have to walk skew the results.

We validated our algorithm during another test with a Sysnav employee that
performed 139 walking strides and 79 running strides with various speeds. The
classification results are presented in Figure 54. We can see that several running
strides speed were below walking strides. Nevertheless, the GBT predictions
for activity recognition produced only one error (ID = 51, stride duration ≈ 0.8 s,
stride length ≈ 1 m). This shows the benefits of having a supervised learning
approach rather than setting empirical thresholds for the stride length, duration,
or speed that would not work here.

In this section, we validated our algorithm for activity recognition in controlled
environments. The wearers were asked to perform the activities we wanted to
test. However, our algorithm was designed to be applied for home recordings
during clinical trials. In uncontrolled environments, the activity recognition is
more challenging. In the following section we present the stairs detection for one
home recording.

3.4 Activity Recognition for One Healthy Child Recording in Uncon-
trolled Environment

The child of one coworker agreed to wear the ActiMyo device at home for one
day as a DMD patient would do during a clinical trial. He is not affected by the
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4 Contributions

This section described the overall algorithm for inertial sensors worn at ankle
that enables trajectory computation and activity recognition for each detected
strides in the recordings. Our approach is divided into four main stages with two
machine learning predictions (see Figure 55).

Figure 55: The four main algorithm stages with machine learning uses (red).

The first step of our algorithm is described in Chapter IV. It consists of a proce-
dure that removes gravity from the linear acceleration, allowing the computation
of a pseudo-speed in a terrestrial reference frame that finally provides a family
of candidate intervals that may correspond to strides. Some of these are real
strides, while others come from recorded movements that are not strides and
we want to exclude. We use a gradient boosting trees algorithm to choose the
intervals that we consider as real strides.

From the stride detection, trajectory reconstruction is computed with an in-
spired ZUPT technique (see Section I.4). As the ankle speed is not null when the
foot is on the ground, we used a speed estimation based on a lever arm model
that is fused with inertial integration in an extended Kalman filter. It achieved
around 3 cm absolute mean error for the walking stride length and about 5 cm
for atypical strides. In the literature, existing methods [37, 34] achieved simi-
lar performances for walking strides but do not even study atypical strides (as
they faced difficulties to detect them). Our algorithm aims to be applied for daily
recordings during clinical trial. In home situations, a majority of small steps are
performed. In Section V.2.2, we showed the good performance of the trajectory
reconstruction in a difficult environment with narrow areas, small rooms, corri-
dors and stars. In this context, the computed trajectory almost never crossed the
walls of the house and regarding the altitude we could easily identify when the
wearer was taking the stairs.

More generally we use the computed stride trajectory to recognize the activity
with a machine learning approach which was robust to the gait variety. Indeed,
the age difference of patients in clinical studies can be very large, and their gaits
very dissimilar. Our algorithm performed well for adult recordings (more than
99% success) and also recordings of patients suffering from Duchenne Muscu-
lar Dystrophy (more than 97% success), which is a challenging task. This origi-
nal approach allows classification of the detected strides into five main labelled
activities: "atypical stride", "walking", "upstairs", "downstairs" and "running". We
believe that our methodology is ready to be applied to home recordings over long
periods to compute clinical outcomes related to hospital tests (four stairs, 10-m
run) in clinical trials.
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Part VI

Parkinson’s event detection with sliding
window
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This chapter presents an innovative and generic deep-learning approach for
issues based on inertial data recordings. Throughout this chapter, we focused our
attention on the detection of parkinsonian symptoms, concurrently to the issue
of activity recognition (see Section VI.1). The models have been built in order to
precisely detect the time boundaries of specific movements (tremors, dyskinesia,
activities) with a sliding window approach. Our work is based on multi-channel
networks (Section VI.2), using in particular Convolutional Neural Networks and
one Topological Data Analysis channel that improved the performances (see Sec-
tion VI.2.4). Finally in Section VI.3 we launch our algorithm for Parkinson’s event
detection with home recordings of several patients allowing to compute interest-
ing statistics.

1 Data Background

In this section we describe the dataset that allowed us to build our neural network
model. The HAPT dataset firstly described in Section VI.4.1 and reintroduced in
Section VI.1.1 was used to optimize our neural network architecture that has
been adapted for Parkinson’s event detection through a sliding window approach
presented in Section VI.1.2.

1.1 Parkinson’s event dataset and HAPT dataset

The Parkinson’s event dataset "DB1" is composed by 13 patients who underwent
tests at the hospital while wearing the ActiMyo device at the ankle and the wrist.
The recordings have been annotated by the doctors through real-time observa-
tion. We described in Section VI.1.1 the issues related to the confidence in the
labeling. As an example, we noticed that pauses in a long diskynesia crisis are of-
ten not considered and are wrongly annotated the same as the rest of the event.
Among the encountered problematics of ground truth, this database presents
two particularities that add difficulty for the supervised learning approach. The
amount of healthy daily home recordings from the controls are enormous (sev-
eral months of studies) whereas the total tremors and dyskinesia crises duration
is several hours. Thus this database is large (heavy to learn with supervised
learning algorithms) and unbalanced, namely proportions between the targeted
classes are very different. Indeed, one daily recording of 8-9 hours with ActiMyo
130 Hz frequency provides almost 4millions of data points in three dimensions for
acceleration and angular velocity (both ankle and wrist). Hence, several months
of clinical study correspond to billions of labelled data points recorded by con-
trols. Instead, the annotated events by the doctors represent barely 2 millions
of annotated data points on the ankle and wrist. This motivated us to build our
algorithm on another database of activity recognition from inertial sensors, pre-
senting the same unbalanced particularity but with smaller amount of data.

The open-source HAPT dataset is a newest version of the UCI HAR Dataset.
The data is made of 30 volunteers who were asked to perform a set of six basic
activities (standing, sitting, lying, walking, upstairs and downstairs). Inertial data
about those activities and their transition were recorded by a smartphone placed
on their waist, sampling the 3-axial acceleration and the 3-axial angular velocity
at a frequency of 50 Hz. This database is also linked to imbalance learning due
to the poor amount of gathered events for transition activities. In addition, the
activity recognition task is very similar to Parkinson’s event detection as we can
consider tremors or dyskinesia as particular activities of patients that we want
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and has the same imbalance in classes proportion, but with much smaller overall
number of tagged intervals.

The Table 21 represents the performances of the tuned model on the testing
set of the HAPT dataset. We specified here the mean accuracy on both basic
activities and postural transitions as these last are underrepresented. Indeed,
the imbalance learning characteristic is one of the main reasons we chose to
consider this dataset.

Basic Activities Postural Transitions

Mean accuracy 97.2% 86.35%

Table 21: Testing scores for HAPT dataset with CNN channels model.

Our model achieved more than 97.2% mean accuracy on the basic activities
that is achieved by the best result of the literature for this dataset. It also pre-
sented good performances for the transition activities with more than 86% ac-
curacy that most of the paper in the literature do not even consider in their val-
idation. Still, these classes are more difficult to detect as they are in minority
compared to basic ones.

For the Parkinson’s event detection task, the model quickly achieved 100%
performance for the "tremor" class for both wrist and ankle recordings. As the
results in Table 22 we focused on the results including "dyskinesia" and "other"
classes.

Sensitivity Specificity

Ankle 41.2% 95.8%
Wrist 21% 90.6%

Table 22: Testing scores for dyskinesia detection with CNN channels model.

The difficulty behind the detection of dyskinesia crises is the difference be-
tween the controlled environment at the hospital and the home environment of
those patients, as well as the generalization to new patients. Knowing the valida-
tion accuracy had a mean of 99.8% for every step of our cross-validation protocol,
we may observe in Figure 59 the intrinsic difficulty of generalizing the dyskine-
sia detection of the studied patients to a patient for which the model was blind.
Even if we use a validation set to stop the learning phase when the validation
performance starts decreasing, it seems that the model still leads to a kind of
overfitting.

In the following we add new channels in order to improve the results of this
model keeping the same strategy: tuning the hyperparameters on the HAPT
dataset and then compute the optimization through backpropagation with Parkin-
son’s inputs.

2.3 Handcrafted Features Channel

Inspired by the literature concerning the detection of symptoms of Parkinson’s
patients [61], we built statistical features such as mean, correlation, kurtosis
etc. We also computed signal theory features such as spectral power, harmon-
ics, Fourier transform, Wavelet transform etc. We computed features from the
freezing index [54], which has been proved to be strongly correlated to the pres-
ence of freezing of gait. We computed features based on the chaos theory and
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Table 26: Testing scores for dyskinesia detection with CNN, handcrafted features and TDA
channels model.

We observed that the TDA channel has also increased the performance of de-
tection of dyskinesia crises. In particular, we have a gain of almost 7% for sensi-
tivity score on the wrist without decreasing too much the specificity score.

3 Parkinson’s statistics for home recordings

To quantify our ability to detect dyskinesia crises at home without ground truth,
our statistical results are indicative. However, one main goal had to be fulfilled:
reducing the amount of false positives on healthy people. For an entire record-
ing, we apply the same sliding window approach with overlap presented in Sec-
tion VI.1.2. Hence, one data point is extracted several times and is associated
to several a posteriori probabilities predictions of the neural network. They are
averaged to compute the final prediction. We assign the predicted class that cor-
responds to the highest mean of the probabilities. The Table 27 represents the
statistics of detected events in home recordings.

Wrist Ankle

Hospital 14.3% 13.5%
Home 3.6% 9.5%

Healthy 0.2% 0.1%

Table 27: Parkinson’s event rates.

It is promising to detect tremors and dyskinesias in home recordings for pa-
tients and only little for controls (healthy people). According to these results,
there are many more events in hospitals than at home. Indeed the protocol at
the hospital is programmed to induce dyskinesia or tremors in order to record
them.

4 Contributions

In this chapter we have presented an architecture of neural networks constructed
and tuned iteratively for activity recognition (HAPT dataset) and for the detection
of Parkinson’s events. The use of the HAPT dataset is justified by the fact that
it is a multi-class classification problem on specific movement detection with in-
ertial data and it has the same characteristic as our Parkinson’s database: it is
unbalanced. Indeed, we have access to a very large number of home control
records (healthy people) and very few parkinsonian events tagged in the hos-
pital. The HAPT dataset is composed of a set of basics activities which repre-
sents almost 95% of the global dataset (completed by the postural transitions
which are therefore the underrepresented activities). The small size of the HAPT
dataset compared to the parkinsonian dataset allowed us to test several archi-
tectures and quickly tuned the structure of the convolutional networks and the
dense networks present in our model. The final architecture is then used for the
backpropagation learning phase on the parkinsonian data.

The architecture of our network is composed of 1D convolutional network for
the inertial norms and 2D convolutional networks for the three axial acceleration
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and angular speed, extracted with a sliding window (with overlaps). We also com-
pute handcrafted features from chaos theory and signal processing techniques
creating a dense network channel. Finally we use the topological data analysis
theory introduced in II.3.4 to compute silhouettes that can be considered as 1D
signal in our network. All the channels are merged in a dense network providing
a posteriori probabilities for the considered multi class classification. For each
sample, they are averaged (considering all the crossing windows) providing the
final prediction.

At each iteration we estimated the performances of the model which allows us
to assess their contribution. The results are represented in Table 28 for the activ-
ity recognition with scores reaching the performances of state of the art methods,
and above. In Table 29 and Table 30 are described the results for respectively the
dyskinesia detection on ankle and wrist recordings.

Basic Activities Postural Transitions

CNNs 97.2% 86.35%
+ Handcrafted Features 97.3% 88.15%

+ TDA 98.4% 90.2%

Table 28: Mean accuracy on the testing HAPT set.

Sensitivity Specificity

CNNs 41.2% 95.8%
+ Handcrafted Features 41.3% 96.5%

+ TDA 41.5% 96.9%

Table 29: Testing scores for dyskinesia detection on ankle recordings.

Sensitivity Specificity

CNNs 21% 90.6%
+ Handcrafted Features 24.7% 91.1%

+ TDA 31.4% 90.8%

Table 30: Testing scores for dyskinesia detection on wrist recordings.

Thus this architecture is modular and allows adding relevant channels which
improve the results. In particular, the innovative channels TDA has greatly im-
proved the sensitivity for the detection of dyskinesia on the wrist. In addition, the
model achieved 100% accuracy for tremor detection task.

This final model has been applied on home recordings of patients and controls
who are healthy people (see Table 31). It is promising to detect more Parkinson’s
event for patients recordings but as we do not have the ground truth is it hard to
conclude. Still, our model detects false positive events that may be eliminated
with new channels in a future work.

Wrist Ankle

Hospital 14.3% 13.5%
Home 3.6% 9.5%

Healthy 0.2% 0.1%

Table 31: Parkinson’s event rates.
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Part VII

General Conclusions
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In this chapter, we first describe the general context of the thesis, the main
issues that arise from it and the developed algorithms that propose methods to
overtake them with machine learning approaches (Section VII.1). In Section VII.2
we describe two industrial applications which were inspired by our work but re-
quiring some specific modifications or adaptations. Finally in Section VII.3, we
introduce the general principles of domain adaptation which has shown interest-
ing results for activity recognition.

1 Summary of main contributions with machine learning

approaches

In this section, we briefly describe the main works of this thesis. The challenges
were guided by the medical use of the inertial system Actimyo in clinical studies
for Duchenne Muscular Dystrophy (DMD) and Parkinson’s disease. The device
has been developed to be worn at the wrist and the ankle by patients suffering
frommovement disorders in order to evaluate their health condition along clinical
trials. The DMD clinical variables proposed by Sysnav are based on the trajectory
and the activity recognition (see Section VII.1.2) of strides in ankle home record-
ings. The developed algorithms for the calculation of these variables depend
initially on the detection and precise segmentation of the stride indices in the
records (Section VII.1.1). For Parkinson, we aim to detect movements character-
istic of the disease, that is to say tremors and dyskinesia crises, in both wrist
and ankle records (Section 1.3). All the solutions proposed can hardly be relied
on robust deterministic models from the inertial data. This is why the proposed
algorithms are all based on a prediction functions built beforehand by statistical
supervised learning procedures dedicated to the considered task.

1.1 Stride detection from candidate intervals extraction

Stride detection with precise segmentation of the start and end indices is a key
step in our thesis. Indeed, the trajectory reconstruction algorithm that we intro-
duced in Section V.1 aims to estimate the speed of the ActiMyo around these
indices with a model that is valid only when the foot is on the ground. Thus, poor
segmentation, for example a detected end of stride when the foot is in the air,
can lead to large errors in trajectory reconstruction. On the opposite, not detect-
ing a stride immediately causes as much error as the distance traveled by this
stride.

In this thesis, we adopted an innovative approach which consists in selecting
candidate stride intervals from the inertial recordings. Some of the selected in-
tervals are true strides, others are movements of the ActiMyo device resulting
for example from a manipulation by hand or from activities without strides like
bicycling. The choice among the candidate stride intervals is given by a pre-
diction function computed by a binary gradient boosting trees algorithm (stride
or not stride). As the annotation is time consuming, because it has to be done
manually, we have to compute relevant features for this classification task and
in particular robust at any positioning of the ActiMyo sensors around the ankle.
During the thesis we developed two extraction methods presented in Chapter III
and Chapter IV. The last one which leads to the best performances is based on
the identification of the gravity in the acceleration recorded by the ActiMyo ac-
celerometer. It allows to project the inertial data into a terrestrial reference frame
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and to compute a pseudo-speed that is used for the extraction of relevant can-
didate intervals and is one of the main features for the gradient boosting trees
learning. ://www.overleaf.com/project/5e1200f610a3b3000132f758 This innova-
tive approach for stride detection has improved the performance of the existing
algorithm developed by Sysnav that presented good detection for classic walking
strides but suffered from limitations for atypical strides (small steps, side steps,
fast stairs) with only a detection rate of 50%. Our algorithm detects more than
98% of atypical strides and is also much more robust in situations where the
system ActiMyo is in motion that does not correspond to strides.

1.2 Activity Recognition from the computed trajectory

We introduced in Section V.1 the principles of trajectory reconstruction for an in-
ertial system worn at the ankle. This block developed by Sysnav takes as input
the stride indices detected by our algorithm described in Chapter IV. We vali-
dated it in a motion capture room which allows a precise evaluation of the error
produced for each stride length. With an error about 3 cm for walking and about
5 cm for atypical strides, we are able to compute the trajectory of a pedestrian
in three dimensions, even in narrow and challenging places.

The trajectory is a key variable for recognizing the activity of detected strides.
Indeed, we have access to the trajectory, in particular the altitude, but also the
speed which a priori allows to differentiate running strides and stairs strides.
However, we want to apply this activity recognition algorithm for children suf-
fering from Duchenne Muscular Dystrophy. These children are at very different
stages of the disease and present a wide variety of gait motion. It is difficult
to develop a deterministic model. We have therefore adopted a machine learn-
ing approach aiming in particular to recognize running strides and stairs strides
which are precious information in a medical context. The features computed from
the trajectory and the inertial data allows the gradient boosting trees algorithm
to compute a robust prediction function for healthy adult and children recordings
(more than 99% success), but also for DMD patient recordings (more than 97%
success).

1.3 Dyskinesia and tremor detection

The Levodopa drug aims to ease the symptoms of Parkinson’s disease, such as
tremors, but has a main drawback: induced dyskinesia crises. Thus, the detection
of these two events is essential to measure the quality of life of patients. In this
context, the ActiMyo device was used in clinical trials that we can use to build
our algorithm. Faced to the variety of movement (especially on the wrist) it is
impossible to simply describe the dyskinesia. We opted for a machine learning
approach with a sliding window that chronologically extracts time intervals of a
few seconds, and which we aim to classify among the following events: "tremors",
"dyskinesia", "other".

The database build from the recordings of clinical trials is highly unbalanced
(few tremors and dyskinesia annotated compared to the amount of healthy home
recording) and very large (hundreds of home recordings). This last characteristic
makes the tuning phase of a machine learning model very time consuming. We
decided to proceed with the development of our model from the HAPT dasaset,
composed by inertial recordings for activity recognition. It has the particularity
of presenting the same problem of imbalance learning (with under-represented
transition activities) but is much smaller. In addition, the detection of tremors
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and dyskinesia can be considered as recognition of activity among all other daily
activities.

We ended up with a neural network composed by several relevant channels
merged in a dense network, the overall architecture is described in Chapter VI.
During the procedure, we added iteratively the channels in order to measure
their respective contribution. The convolutional networks for the inertial time
series and the handcrafted features channel inspired by signal processing tech-
niques allowed to achieve results better than the literature for the HAPT dataset.
In the end, we build a topological data analysis (TDA) channel that remarkably
improved the scores, especially for the underrepresented classes. The princi-
ples of TDA introduced in Section Topological Data Analysis ChannelII.3.4 aims to
capture geometric structures into point cloud. In our case, we applied this tech-
niques on angular velocity data extracted by the sliding window. the validation
of the parkinsonian model has shown 100% success for the tremor detection but
limitations for the generalization of dyskinesia detection on recordings of patients
who have not been used for the learning. On the other hand, for patients already
seen in the learning base, we obtain around 98% of accuracy. Even if we do not
have the ground truth for home recordings, we tested false positives on control
recordings (healthy people). It is encouraging to detect less than 2 minutes of
Parkinson’s events throughout the day while for patients it detects several tens
of minutes (which is coherent).

2 Extensions to industrial applications

In this section we describe two applications that were inspired by the work devel-
oped in this thesis. In Section VII.2.1, the algorithm for trajectory reconstruction
using the stride detection of Chapter III is extended to beacon data. In Section
VII.2.2, we describe the adaptations of the algorithm described in Chapter IV to
online constraints in an embedded system.

2.1 Beacons for trajectory reconstruction

In Chapter III, we presented a stride detection algorithm that allows to recon-
struct the pedestrian trajectory thanks Sysnav methods introduced in Section
V.1. The advantage of these algorithms is that they do not require any additional
infrastructure-dependent localization systems to compute the trajectory. How-
ever, it is represented in an arbitrary reference frame whose the definition of the
axes is unknown in the pedestrian environment.

A beacon is a small system that continuously sends a radio signal incorporat-
ing its identifier. A device equipped with a receiver is then able to "see" the bea-
con when it enters its emission radius. Depending on the strength of the received
signal, we can then estimate the distance between the receiving device and the
beacon. Their advantage in industrial applications is that they are not expensive
and can be installed quickly in any environment. However, the signals are often
disturbed by the walls, machines, etc. Thus computing the trajectory only as
a function of the intensity of the signals received by a triangulation method for
example is not reliable.

The device ActiMyo has therefore been adapted so that it can read the sig-
nals sent by beacons. The proposed solution is to firstly compute the trajectory
without using the beacon information. Then we modify the trajectory in order to
correspond with the beacon data only when the strength of the received signal
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is large. That is to say when we are sure that the pedestrian is very close to the
transmitting beacon. In practice we consider the signals to modify the trajectory
which indicate a position less than one meter from the beacon.

The proposed algorithm consists in processing the beacon data chronologi-
cally. The principle is to apply a rotation between two successively detected
beacon so that the resulting trajectory fit at best with their position. Then we
force the trajectory capturing the beacons to enter into the corresponding emis-
sion zone (applying as little modification as possible on the initial trajectory).
This overall algorithm is currently used by an industrial Sysnav client in order to
optimize worker movements between machines.

2.2 Stride detection algorithm in embedded system

The stride detection algorithm described in Chapter IV is used offline. That is to
say, the ActiMyo recordings are first loaded into a cluster and then the algorithm
is launched. It is therefore not suitable for online use which would consist of
processing inertial signals directly when they are recorded. In many industrial
applications, this functionality is requested, in particular for isolated workers,
firefighters or military, whose position must be known "in live" to ensure safety.

In this context, Sysnav modified the ActiMyo device to develop an embedded
system. The goal is to adapt our stride detection algorithm to launch it on this
system. The principle of this algorithm remains the same: identifying the grav-
ity in the accelerations recorded by the sensor, computing a pseudo-speed that
allows to extract candidate stride intervals, then selecting among them the in-
tervals that are true strides. The offline identification of the gravity could be
directly transcribed for online algorithm. However we had to restrict the number
of extracted candidate stride intervals to reduce the number of prediction func-
tion launches. In addition, the procedure for computing the features presented
in Section IV.3 and the prediction of the gradient boosting trees function requires
too much resources for the embedded microprocessor. We opted for the con-
struction of a neural network with 2D Convolutional Neural Networks channels
(with only two layers) for each 3D times series that need no more computation
at this stage (acceleration, angular velocity, pseudo-speed). The three channels
are finally merged in a last fully connected layer.

These modifications provide a good compromise between execution time and
performance. This work was supported by the French Délégation Générale de
l’Armement (DGA) and by ANR project TopData ANR-17-MALN-0003. It is currently
used in the final solution of Sysnav competing for the MALIN challenge.

3 Future work: Domain Adaptation for Activity Recogni-

tion

The work described along this thesis has resulted in performances good enough
to be used in several solutions proposed by Sysnav. However during our re-
search we have been studying the domain adaptation by optimal transport which
showed interesting results for the activity recognition. In the following we intro-
duce this work that deserves to be studying further.

In this thesis, the work for activity recognition aims to be used in a medical
context, that is to say for home recordings of patients suffering from Duchenne
Muscular Dystrophy (DMD). We saw in Section V.3 that the algorithm achieved
good performance except for one patient with a very particular gait motion for
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We can count 19 errors essentially between running and walking. In the fol-
lowing we will study if a domain adaptation between the source and the target
with JDOT can improve this score. We obtain the confusion matrix presented in
Table 35.

Predicted walking Predicted running Predicted upstairs Predicted downstairs

Actual walking 31 0 1 0
Actual running 0 29 2 1
Actual upstairs 0 0 32 0

Actual downstairs 1 3 1 27

Table 35: Confusion matrix after applying JDOT algorithm.

Thus, optimal transport allowed to achieve 9 errors from 19 errors, by remov-
ing all the errors between walking and running. However it can be noted that no
error was initially made between climbing and descending stairs before transport,
but here one false descent was transported on the observations of stair climbing.
In addition, JDOT requires the proportion of strides in each class (namely in each
activity) to be identical in the source and the target. This is one of the main
drawbacks of JDOT agorithm in our application framework. Indeed we can orga-
nize the learning base for activity recognition so that it is balanced, however it is
very likely that the DMD home recording on which we want to apply JDOT is not
exactly composed of the same stride number of walking, running and stairs etc.

A difference in decision rule between source and target observations can be
observed in many industrial applications. The algorithm for optimal transport in-
troduced by Cuturi in 2013 with entropy regularization greatly accelerated the
calculation of optimal transport. However it is still time consuming in large di-
mension such as our application settings.

The JDOT algorithm allows to take into account the labels of the source in the
transport and has shown particularly interesting results in our framework for ac-
tivity recognition (adaptation of healthy adult strides to DMD strides). However,
this algorithm requires a complicated choice for the parameters of regularization
and labels penalization. In addition, it requires the proportion of the classes in
the target and the source to be the same. From JDOT algorithm, We started re-
search for the estimation of classes proportion in the target (in order to adjust
them on the source) and for the selection of variables based on the quality of
transport and learning to improve the prediction on the target. It could also pro-
vide a dimension reduction easing the use of optimal transport algorithm in JDOT
that is time consuming in large dimension. These works could be continued in
the future.
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