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Title: New Methods for Ti ght Analysis of Popu lation-based Evolutionary Algorithms
Keywords: Algorithms, Runtime Analysis, Evolutionary Computation
Abstract: Evolutionary Algorithms (EAs for brevity)
is a broad class of optimization algorithms which are
inspired by the natural evolution. They are often used
to solve practical problems which cannot be solved
precisely in a reasonable time, since they can find sat-
isfying solutions without spending too much compu-
tation resources. The practical efficiency of the EAs is
supported by the theory of evolutionary computation
which has produced a huge number of impressive re-
sults during the last two decades. These results give
valuable recommendations on how to set up parame-
ters of algorithms or even propose new EAs.
Theoretical studies mostly observe how simple algo-
rithms optimize model problems. It is hard to anal-
yse more real-world settings, since even the most sim-
ple algorithms are often described via highly compli-
cated stochastic processes. In particular, not so much
is known about the behavior of the population-based
algorithms, while the populations are believed to be
essential by most practitioners. The lack of theoret-
ical understanding of how populations work raises a
risk that populations are used not in the most effective
way.
The existing analysis tools, however, are not suit-
able to give us a better understanding of popula-
tions. Hence, the main aim of this work is to de-
velop new analysis methods which would help to de-
liver new runtime bounds for evolutionary algorithms
and extend our knowledge of the role of populations.
We propose the following analysis methods for the
population-based EAs.
1) The method of the complete trees for delivering the

lower bounds on the runtime of the population-
based EAs.

2) Themethod of the analysis of the no-drift processes.
3) The method for delivering the precise bounds on

the runtime distribution for the EAs on plateaus.
4) The additive drift theorem with tail bounds.
With these analysis methods we perform a runtime
analysis of the following algorithms.
1) With the method of the complete trees we derive

a tight bound on the runtime of the (µ+ λ) EA

on ONEMAX. These bounds, in particular, sug-
gest that using parent population size µ which is
O(log(n)) does not increase the asymptotical run-
time (which can be useful when optimizing noisy
functions) and that using offspring population size
λ greater than max{µ, ln(n)} does not give a sig-
nificant decrease in the expected number of itera-
tions (hence such large population sizes should be
avoided when solving some easy problems).

2) With the method of the analysis of the no-drift pro-
cesses we analyse the (µ, λ) EA on ONEMAX with
the threshold parameter values λ ≈ eµ. We show
that in this setting (where there is almost no drift
of the number of the best offspring) the absolute
population size plays a significant role and that
this regime seems to be the most interesting for
the practical application of the (µ, λ) EA.

3) With the method for the analysis of EAs on
plateaus we deliver precise estimates on the
runtime of the (1 + 1) EA and (λ

1:1
+ λ) EA on

PLATEAUk function, demonstrating that the choice
of the mutation operator does not play a signifi-
cant role when an EA is traversing a plateau.

We also propose a new crossover-based algorithm
with non-trivial offspring population — the heavy-
tailed (1 + (λ, λ)) GA. Our analysis of this algorithm
on ONEMAX, LEADINGONES and JUMPk functions re-
veals the efficiency of the random parameter choices
from a power-law distribution. While on JUMPk this
random parameter choice gives us a one-size-fits-all
algorithm which relieves us from choosing the opti-
mal static parameters (which depend on function pa-
rameter k, probably unknown in advance), on ONE-
MAX we observed a runtime which is better than the
runtime for the best static parameter choice. On the
LEADINGONES (with a help of the developed additive
drift theorem) we showed that the asymptotical run-
time is the same for any static or dynamic choice of
parameters and is the same as for the most standard
mutation-based algorithms.
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Titre: Nouvelles Méthodes d’analyse précise des algorithmes évolutifs basés sur la population
Mots clés: Algorithmique, Analyse de la Complexité, Calcul Évolutif
Résumé: Les algorithmes évolutifs (AÉs pour
la brièveté) sont une large classe d’algorithmes
d’optimisation qui sont inspirés par l’évolution na-
turelle. Ils sont souvent utilisés pour résoudre des
problèmes pratiques qui ne peuvent pas être résolus
avec précision dans un délai raisonnable, car ils peu-
vent trouver des solutions satisfaisantes sans dépenser
trop de ressources de calcul. L’efficacité pratique des
AÉ est soutenue par la théorie du calcul évolutif, qui
a produit un grand nombre de résultats impression-
nants au cours des deux dernières décennies. Ces ré-
sultats donnent de précieuses recommandations sur la
façon de configurer les paramètres des algorithmes ou
même proposent des nouvaux AÉs.
Les études théoriques observent principalement com-
ment des algorithmes simples optimisent des prob-
lèmes de modèle. Il est difficile d’analyser prob-
lèmes du monde réel, car même les algorithmes les
plus simples sont souvent décrits via des processus
stochastiques très compliqués. En particulier, on en
sait peu sur le comportement des algorithmes basés
sur des populations. En même temps les populations
sont considérées comme essentielles par la plupart des
praticiens. Le manque de compréhension théorique
du fonctionnement des populations soulève le risque
que les populations ne sont pas utilisées de la manière
la plus efficace.
Les outils d’analyse existants ne sont cependant
pas adaptés pour donner une meilleure compréhen-
sion des populations. Ainsi, l’objectif principal de
cette thèse est de développer de nouvelles méthodes
d’analyse qui permettraient de fournir de nouvelles
limites d’exécution pour les algorithmes évolutifs et
d’étendre nos connaissances sur le rôle des popula-
tions. Nous proposons les méthodes d’analyse pour
les AÉs basées sur la population.
1) La méthode des arbres complets pour fournir les

limites inférieures au temps d’exécution des AÉs
basées sur la population.

2) La méthode de l’analyse des processus sans dérive.
3) La méthode pour fournir les limites précises sur la

distribution des temps d’exécution pour les AÉs sur
plateaux.

4) Le théorème de dérive additif avec limites de la distri-
bution.

Avec ces méthodes d’analyse, nous effectuons une
analyse d’exécution des algorithmes suivants.
1) Avec la méthode des arbres complets, nous

dérivons une limite étroite sur l’exécution de

l’AÉ (µ+λ) sur le problème ONEMAX. Ces limites,
en particulier, suggèrent que l’utilisation d’une
taille de la population parente µ qui est O(log(n))
n’augmente pas le temps d’exécution asympto-
tique (ce qui peut être utile lors de l’optimisation
des fonctions bruyantes) et que l’utilisation de
la taille de la population de la progéniture λ
supérieur à max{µ, ln(n)} ne donne pas une
diminution significative du nombre d’itérations
prévu (par conséquent, de telles tailles de popu-
lation devraient être évitées lors de la résolution
de problèmes faciles).

2) Avec la méthode d’analyse des processus sans
dérive, nous analysons l’AÉ (µ, λ) sur ONEMAX
avec les valeurs de paramètre de seuil λ ≈ eµ.
Nous montrons que dans ce cadre (où il n’y a quasi-
ment pas de dérive du nombre de meilleurs de-
scendants) la taille absolue de la population joue
un rôle significatif et que ce régime semble être
le plus intéressant pour l’application pratique de
l’AÉ (µ, λ).

3) Avec la méthode d’analyse des AÉs sur plateaux
nous délivrons des estimations précises sur
l’exécution de l’AÉ (1 + 1) et l’AÉ (λ

1:1
+ λ) sur

PLATEAUk, démontrant que le choix de l’opérateur
de mutation ne joue pas un rôle significatif
lorsqu’un les AÉs traverse un plateau.

Nous proposons également un nouvel algorithme
basé sur le croisement avec une population de de-
scendants non triviale — le queue-lourde l’algorithme
génétique (1 + (λ, λ)). Notre analyse de cet algo-
rithme sur les fonctions ONEMAX, LEADINGONES et
JUMPk révèle l’efficacité des choix de paramètres aléa-
toires à partir d’une loi de puissance. Alors que sur
JUMPk ce choix de paramètre aléatoire nous donne
un algorithme universel, ce qui nous dispense de
choisir les paramètres statiques optimaux (qui dépen-
dent du paramètre de fonction k, probablement in-
connu à l’avance), sur ONEMAX nous observons un
temps d’exécution meilleur que le temps d’exécution
pour le meilleur choix de paramètre statique. Sur le
fonction LEADINGONES (avec l’aide du théorème de
dérive additif avec limites de la distribution), nous
montrons que le temps d’exécution asymptotique est
le même pour tout choix statique ou dynamique des
paramètres et est le même que pour les algorithmes
basés sur des mutations les plus standards.
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Тема диссертации: Методы точного анализа популяционных эволюционных алгоритмов
Ключевые слова: Алгоритмы, Анализ времени работы, Эволюционные вычисления
Аннотация: Эволюционные алгоритмы (ЭА) —
это широкий класс алгоритмов оптимизации,
основанных на принципах естественной
эволюцией. Они часто используются для
решения практических задач, которые нельзя
решить точно за разумное время, поскольку они
могут найти достаточно хорошие решения, не
затрачивая черезмерно много вычислительных
ресурсов. Практическая эффективность ЭА
также подтверждается теорией эволюционных
вычислений, которая получила большое
число значимых результатов за последние
два десятилетия. Эти результаты дают
ценные рекомендации по настройке параметров
алгоритмов или даже предлагают новые ЭА.
Теоретические исследования в основном
изучают, как простые алгоритмы оптимизируют
модельные задачи. Анализировать более
близкие к реальному миру задачи намного
сложнее, так как даже самые простые
алгоритмы часто описываются с помощью
очень сложных стохастических процессов. В
частности, довольно мало изучено поведение
популяционных алгоритмов, в то время как на
практике нетривиальные популяции считаются
неотъемлимой составной частью эволюционных
алгоритмов. Отсутствие теоретического
понимания того, как работают популяции,
повышает риск того, что популяции используются
не самым эффективным образом.
Однако, существующие инструменты теоретичес-
кого анализа не могут дать лучшее понимание
природы популяций. Следовательно, основная
цель этой работы состоит в разработке новых
методов анализа для оценки времени работы для
популяционных эволюционных алгоритмов и для
расширения наших знаний о роли популяций.
В данной работе были предложены следующие
методы анализа популяционных ЭА.
1) метод полных деревьев для получения нижних

границ на время работы популяционных ЭА.
2) метод анализа процессов без явного сноса.
3) метод для точной оценки распределения

времени работы для ЭА на плато.
4) Теорема об аддитивном сносе с оценками на

концентрацию.
С помощью этих методов анализа был выполнен
анализ времени работы следующих алгоритмов.
1) С помощью метода полных деревьев были

получены асимптотически точные оценки
на время работы (µ + λ)-ЭА на ONEMAX.
Эти оценки, в частности, предполагают,

что использование размера популяции
родителей µ, равного O(log(n)), не увеличивает
асимптотическое время работы (что может
быть полезно при оптимизации функций в
присутствии шума), и что использование
размера популяции потомков λ больше,
чем max{µ, ln(n)}, не дает значительного
уменьшения ожидаемого числа итераций
(следовательно, следует избегать таких
больших размеров популяции при решении
простых задач).

2) С помощью метода анализа процессов без
явного сноса был проведен анализ (µ, λ)-
ЭА на ONEMAX с граничными значениями
параметров λ ≈ eµ. Было показано, что в этой
ситуации (где практически отсутствует снос
случайной величины, равной числу лучших
потомков в поколении) абсолютный размер
популяции играет значительную роль, и что
этот режим является наиболее интересным для
практического применения (µ, λ)-ЭА.

3) С помощью метода анализа ЭА на плато были
получены точные оценки времени работы (1 +

1)-ЭА и эволюционного алгоритма (λ
1:1
+ λ) на

функции PLATEAUk, показавшие, что выбор
оператора мутации не играет существенной
роли, когда ЭА находится на плато.

Также был предложен новый алгоритм,
использующий оператор скрещивания с
нетривиальной популяцией потомков —
генетический алгоритм (1 + (λ, λ)) с тяжелым
хвостом (то есть использующий распределения,
не сконцентрированные у малых значений).
Проведенный анализ этого алгоритма на
функциях ONEMAX, LEADINGONES и JUMPk показал
эффективность случайного выбора параметров из
степенного распределения. В то время как на
JUMPk этот случайный выбор параметров дает нам
универсальный алгоритм, который избавляет нас
от выбора оптимальных статических параметров
(которые зависят от параметра k, вероятно,
неизвестного заранее), на ONEMAX наблюдается
время работы, которое лучше, чем время
работы алгоритма с наилучшими статическими
параметрами. На LEADINGONES (с помощью
предложенной теоремы об аддитивном сносе)
было показано, что асимптотическое время
работы одинаково для любого статического или
динамического выбора параметров, причем оно
такое же, как для большинства стандартных
алгоритмов, основанных на мутациях.
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Introduction

Relevance.
Evolutionary algorithms (EAs for brevity) are a class of the random search heuristics which

are based on the principles of the natural evolution. Most of the algorithms which belong to this
class are described by the following scheme.

1) First EAs create an initial population of the potential solutions, which are usually
random points of the search space.

2) Then they evaluate the individuals of the population by calculating their fitness, that
is, the value of the optimized function in them.

3) Then the algorithm chooses parents from the current population using some selection
mechanism and apply different variation operators (mutation and crossover) to them.
The resulting set of the new potential solutions is called the offspring population. It
might complement the parent population (in case of elitist algorithms) or totally re-
places it (in case of non-elitist algorithms). Then the algorithm removes the less fit
individuals and returns to the second step.

4) The algorithm is terminated as soon as some stopping criterion is met (e.g., if a suf-
ficiently good solution is found or if the algorithm is run out of the computation re-
sources).

EAs are often not capable of finding the exact optimal solution in a polynomial time
(e.g., when solving an NP-hard problem), however they can find a sufficiently good solution
in sufficiently short time. For this reason EAs are often used to solve such practical problems
as making a schedule for the ships to pass through a channel [103], or optimization of space
trajectories [93]. Also there is a huge variety of additional heuristics which let the user to tailor
an EA for his problem. At the same most of the theoretical studies consider only the most simple
algorithms on toy problems. The reason of this gap between theory and practice is that on the one
hand EAs are easy to implement and tailor for a particular problem, while on the other hand the
stochastic processes which describe them are extremely complex and require non-trivial analysis
methods.

Nevertheless, the theory is an important part of the field of the evolutionary computation,
since it has given a lot of valuable recommendations on how to use the EAs in practice (e.g.,
recommendation to use a standard bit mutation with rate 1

n [67]) and introduced some new
algorithms into the field (e.g., the Fast genetic algorithm and the (1 + (λ, λ)) GA [34]).

Most of such results were obtained via the runtime analysis. By the runtime of an algorithm
we mean not the clock time, but the number of fitness evaluations or the number of iterations
which the algorithm makes before finding the optimum. This measure is used in all theoretical
studies for several reasons. Fist, it is independent of the details of the algorithm implementation
and of the hardware which runs the algorithm. And second, the most computation time of an
EA run is usually spent on the fitness evaluations, while the intermediate calculations take only
a small part of the resources. The main goal of the theoretical runtime analysis is to deliver the
estimates on the algorithm runtime considering it as a random variable. Namely, the aim is to
find its expectation, variance or tail bounds.

There is a rich toolbox for the theoretical runtime analysis, which includes
• Markov’s chains,
• drift analysis,
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• fitness levels techniques,
• family trees

and other methods and techniques. Unfortunately, most of them have some own disadvantages
which make them hard to apply for the non-trivial EAs, such as population-based EAs, or they
do not give enough insights about the algorithm behavior, which prevent us from delivering
recommendations on the practical application of EAs. In particular, Markov’s chains have a
very complicated structure for the population-based algorithms, drift analysis requires to design
a complicated potential function which has to take into account the whole population, fitness
levels techniques are either not precise enough, or they do not give much insights. The method
of family trees has only a narrow application field, since so far it was used only for the analysis
of the (µ+ 1) EA.

Populations are widely used when solving practical problems with EAs. However, the
lack of the theoretical understanding of the concept of populations does not let us use them in
the most effective ways (e.g., it is not clear how to choose the population size). The root of this
problem is in the absence of the methods for the runtime analysis of the population-based EAs.
Hence, the topic of the new methods of the tight runtime analysis of the population-based EAs
is relevant.

State of the art.
Markov’s chains are a classic tool from the probability theory which is widely used in the

field of the theory of evolutionary computation [15, 9]. However, they are mostly used for the
analysis of simple processes or for the analysis of simple components of a process.

Drift analysis is a set of theorems which allow to estimate the runtime T until the random
process reaches some value through the expected change of the process in a unit of time. These
methods originate from the negative drift by Hajek [78]. A big step in the drift analysis was the
development of the additive drift theorem by He and Yao [80], which then lead to its various
modifications. However, all these theorems have two disadvantages. First, they all require to
design a potential function defined on all possible states of the analysed algorithm. It is possible
for simple algorithms like the (1 + 1) EA, however it becomes too complicated when we analyse
a population-based EA which has much more possible states. Second, most of these theorems
only give the bounds on the expectation of T and only few of them give some tail bounds. The
most detailed survey on the drift analysis can be found in [101].

Fitness levels techniques are the methods which are based on splitting the search space into
sets of points with the same fitness [17]. These methods often consider the EAs with a large
level of abstraction. Although such approach makes the application field of these methods sig-
nificantly wider, it also prevents us from getting insights on the algorithm behavior and reduces
the precision.

Family trees were developed for the proof of lower bounds on runtime [138]. They made
it possible to obtain the lower bounds fot the (µ+ 1) EA, but since then it was not used outside
this scope (in particular, for the analysis of the algorithms with non-trivial offspring population).

The theoretical toolbox also contains some problem-specific methods like the multi-
branching processes [96] or tools which have not shown their true potential yet (mostly because
they require some additional analysis before the application). An example for the latter group
of methods is the stochastic domination [28].

From the analysis of the above-mentioned results, the following conclusions can be de-
rived:
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• the existing methods are either too complicated for the analysis of the population-based
EAs or do not give sufficient insights on the EAs behavior;

• it is possible to develop new methods for the analysis of the more complicated processes
(like the population-based EAs) based on the existing methods.

The aim of this work is to increase the efficiency of the population-based evolutionary
algorithms

To achieve this aim, the following tasks are defined:
1) develop the methods for the analysis of the population-based EAs;
2) apply the developed methods to the population-based EAs;
3) distill the recommendations on the practical use of the population-based EAs and de-

velop new efficient algorithms.
The object of the study are bio-inspired optimization methods (evolutionary algorithms

in particular), which use non-trivial populations.
The subject of the study is the methods of the precise runtime bounds delivery for such

algorithms.
Principal statements of the thesis:
1) the method of the complete trees for delivering the lower bounds on the runtime of the

population-based EAs;
2) the method of the analysis of the no-drift processes;
3) the method for delivering the precise bounds on the runtime distribution for the EAs

on plateaus;
4) the additive drift theorem with tail bounds;
5) the algorithm which is based on the (1 + (λ, λ)) GA and which is more efficient that

the standard EAs both on unimodal and multimodal problems.
The scientific novelty is as follows:
1) the method of complete trees (in contrast with the method of family trees) considers

also search points which potentially could be created by the algorithm with a different
parent selection mechanism;

2) the method of the no-drift processes transforms a no-drift process to a process with a
drift

3) the method of the runtime analysis of EAs on plateaus is the first to analyse the spec-
trum of the transition matrix in order to get precise bounds;

4) the new drift theorem uses the original negative drift theorem in order to obtain the
tail bounds;

5) the proposed algorithm is the first crossover-based algorithm which uses the fast mu-
tation operator.

Researchmethodology andmethods. This thesis uses methods of discrete mathematics,
probability theory, linear algebra and experiment design and analysis.

Soundness and correctness of scientific statements, conclusions and proofs obtained
in the thesis are confirmed by formalized problem settings, formal proofs of correctness and
efficiency of proposed models, methods and algorithms, as well as by the experimental results.

The theoretical significance of the thesis is that, with the use of proposed models, meth-
ods and algorithms, the following statements were proven:

• the method of complete trees significantly expands the possibilities of the family trees
making it possible to analyse algorithms with non-trivial offspring population;
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• the method of analysis of the no-drift processes allows to apply a huge variety of the
drift theorems to the drift theorems to the processes which have no significant drift;

• the method of the analysis of EAs on plateaus gives a better understanding of the be-
havior of the EAs on plateaus and shows that the runtime of unary algorithms has only
a weak dependency on the choice of the mutation operator;

• additive drift theorem with tail bounds allows to obtain the estimates of the runtime
distribution under the additive drift, while it does not require to prove complicated
properties of a process;

• the proposed (1 + (λ, λ)) GA with heavy-tailed choice of the parameters shows how
effective it can be to combine the two previous theoretical results, namely the
(1 + (λ, λ)) GA and the fast mutation operator.

The practical significance of the thesis is that application of the proposed methods to
the runtime analysis of population-based EAs allowed to distill the following recommendations
on how to use EAs for solving practical problems:

• for the (µ+ λ) EA using population sizes which are O(log(n)) does not increase the
asymptotical runtime, which can be useful when optimizing noisy functions;

• for the (µ+ λ) EA using the population size greater than max{µ, ln(n)} does not give a
significant decrease in the expected number of iterations, hence such large population
sizes should be avoided when solving some easy problems;

• for the (µ, λ) EA one should use the population sizes such that λ ≈ eµ and the algorithm
behavior can be adjusted by choosing the right absolute population size;

• when solving problems with plateaus, it is hard to increase the efficiency by varying the
mutation operator, hence one should use crossover-based algorithms for such problems;

• when solving problems without any information on their structure, one should use the
proposed modifications of the (1 + (λ, λ)) GA, since they release the algorithm from
parameter tuning.

The results of the thesis were used in the following projects:
• project No. 17-71-20178 “Methods for development of efficient evolutionary algo-

rithms”, years 2017–2020, supported by Russian Science Foundation;
• project “Methods, models and technologies of the artificial intelligence in bio-

informatics, social media, cyber-physical, biometric and speech systems”, years 2017–
2019, supported by the Government of Russian Federation.

The results were also implemented into the educational process of the Faculty of Infor-
mation Technologies and Programming of ITMO University in course «Genetic and evolutionary
computation» of the master’s program «Technologies of software development».

Dissemination. The main results of the thesis were presented at the following venues:
1) Genetic and Evolutionary Computation Conference , GECCO (2018, Kyoto, Japan;

2019, Prague, Czech Republic; 2020, online);
2) Parallel Problem Solving from Nature, PPSN (2018, Coimbra, Portugal; 2020, Leiden,

Netherlands);
3) Foundations of Genetic Algorithms (2019, Potsdam, Germany).
Personal contribution. The author has developed the analysis methods, performed the

runtime analysis of the EAs with the developed methods, the design of the proposed algorithms
and the design of the experimental studies. In papers co-authored with supervisors Maxim Buz-
dalov and Benjamin Doerr their contribution is in the supervision of the work. The contribution
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of Maxim Buzdalov is also in developing the software for running the experiments. In papers co-
authored with students Jiefeng Fang, Tangi Hetet, Quentin Yang and Vitalii Karavaev supervised
(or co-supervised) by Denis Antipov their contribution is in checking the proof ideas.

Publications. The primary results of this thesis are presented in nine publications, eight
of which are published in the conference proceedings indexed in Scopus, two of which are also
indexed in Web of Science. Also there is a publication published in a journal indexed in Scopus.

There are also ten other publications related to the design and analysis of evolutionary al-
gorithms, six of which are indexed in Scopus, including two publications which are also indexed
in Web of Science.
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Chapter 1 Introduction

Evolutionary algorithms (EAs for brevity) are a class of the random search heuristics which
are based on the principles of the natural evolution. Most of the algorithms which belong to this
class are described by the following scheme.

1) First, EAs create an initial population of the potential solutions which are usually
random points of the search space.

2) Then EAs evaluate the individuals of the population by calculating their fitness, that
is, the value of the optimized function at the individual.

3) Then the algorithm chooses parents from the current population using some selection
mechanism and apply variation operators (mutation and crossover) to the selected par-
ents. The resulting set of the new potential solutions is called the offspring population.
It might complement the parent population (in case of elitist algorithms) or totally
replace it (in case of non-elitist algorithms). Then the algorithm removes the less fit
individuals and returns to the second step.

4) The algorithm is terminated as soon as some stopping criterion is met (e.g., if a suf-
ficiently good solution is found or if the algorithm is run out of the computation re-
sources).

EAs are often not capable of finding the exact optimal solution in a polynomial time (e.g.,
when solving an NP-hard problem), however they can find a sufficiently good solution in suf-
ficiently short time. For this reason EAs are often used to solve such hard practical problems
as making a schedule for ships to pass through a channel [103], or optimization of space tra-
jectories [93]. Also there is a huge variety of additional heuristics which let the user to tailor
an EA for his problem. At the same time most of the theoretical studies consider only the most
simple algorithms on toy problems. The reason of this gap between theory and practice is that
on the one hand EAs are easy to implement and tailor for a particular problem, while on the
other hand the stochastic processes which describe them are extremely complex and require
non-trivial analysis methods.

Nevertheless, theory is an important part of the field of the evolutionary computation,
since it has given a lot of valuable recommendations on how to use the EAs in practice (e.g.,
recommendation to use a standard bit mutation with rate 1

n [67]) and introduced some new
algorithms into the field (e.g., the fast genetic algorithm [57] and the (1 + (λ, λ)) GA [34]).
On the other hand, theoretical understanding of such an important concept of the EAs as pop-
ulations is still on an unsatisfying level. The main problem here is that the algorithms with
non-trivial populations are described via complex stochastic processes (much more complicated
than the algorithms with trivial populations) which are extremely hard to analyse with the ex-
isting mathematical tools. The lack of theoretical understanding of populations raises the risk
that populations might be used not in the most effective way and encourages the development
of new analysis tools to overcome it.

Most of theoretical results were obtained via the runtime analysis. By the runtime of an
algorithm we mean not the clock time, but the number of fitness evaluations or the number
of iterations which the algorithm makes before finding the optimum. This measure is used in
most theoretical studies for at least two reasons. Fist, it is independent of the details of the
algorithm implementation and of the hardware which runs the algorithm. And second, the most
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computation time of an EA run is usually spent on the fitness evaluations, while the intermediate
calculations take only a small part of the resources.

The main goal of the theoretical studies is usually to consider some algorithm (or a class
of algorithms) optimizing some function (or a class of functions) and to deliver the estimates
on its runtime considering it as a random variable. Namely, the aim is to find its expectation,
variance or tail bounds.

In the following sections of Chapter 1 we describe the algorithms and functions considered
in this work after introducing the notation used in this work. Then we describe the current state
of the art of the theory of the evolutionary computation and its existing toolbox. Then we show
what is missing in this toolbox and explain the relevance of this work. We conclude the chapter
with the collection of mathematical tools which are used in this work.

1.1 Notation

In this section we briefly overview the notation we use to avoid misreading of the results
presented in the work.

By the set of natural integers N we denote the set of positive integers {1,2, . . .} and by N0
we denote N ∪ {0}.

We write [a..b] to denote an integer interval including its borders and (a..b) to denote an
integer interval excluding its borders. For a, b ∈ R the notion [a..b] means [dae..bbc]. For the
real-valued intervals we write [a, b] and (a, b) respectively.

For any probability distribution L and random variable X, we write X ∼ L to indicate
that X follows the law L. We denote the Bernoulli law of parameter p ∈ [0,1] by Ber(p) and the
binomial law with parameters n ∈ N and p ∈ [0,1] by Bin(n, p).

An empty product (i.e. a product over an empty set) is always considered to be 1, an
empty sum is always 0. The infimum of an empty set is +∞.

The binomial coefficient (nk) is zero, if k < 0 or if k > n.
We denote the vector of length n that consists only of ones by 1n and the vector of length

n that consists only of zeros by 0n.
By 1A we denote a random variable which equals to one if and only if event A occurs and

which is equal to zero otherwise.
We follow the common notation and call evolutionary algorithms which use a crossover

operator genetic algorithms (GAs for brevity).

1.2 Considered EAs and GAs

In this section we describe the algorithms which are considered in this work, namely
the (µ+ λ) EA, the (µ, λ) EA and the (1 + (λ, λ)) GA. Although these algorithms can be used in
different search spaces, in this work we consider optimization of pseudo-Boolean functions, that
are, functions which work from the space of bit strings of length n to the set of real numbers
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Algorithm 1 – The (µ+ λ) EA maximizing a given function f : {0,1}n → R, with population size
µ and offspring population size λ. We do not specify the mutation operator.

Initialization:
1: Create a population of µ individuals by choosing x(i) ∈ {0,1}n, 1 ≤ i ≤ µ uniformly at

random.
2: Let the multiset X(0) := {x(1), ..., x(µ)} be the population at time 0. Let t := 0.

Optimization:
3: while an optimum has not been reached do
4: X′ := X(t)

Mutation phase:
5: for i = 1, . . . , λ do
6: Choose x ∈ X(t) uniformly at random
7: Create x′ by mutating x
8: X′ := X′ ∪ {x′}
9: end for

Selection phase:
10: Create the multiset X(t+1), the population at time t+1, by deleting the λ individuals with

lowest f-value in X′

11: t := t+ 1
12: end while

R. We call n the dimension of the size of the problem and in our runtime analysis we aim at
estimating the runtime as a function of n.

1.2.1 The (µ+ λ) EA

The (µ+ λ) EA is a simple mutation-based elitist evolutionary algorithm. It stores a pop-
ulation of µ individuals which is initialized with random bit strings of length n. In each iteration
of the algorithm, we independently generate λ offspring, each by selecting an individual from
the parent population uniformly at random and mutating it. The mutation operators considered
in this work are discussed in Section 1.3. Then we select µ individuals with the best fitness
among the µ parents and λ offspring into the parent population for the next iteration. In case
of a tie offspring are selected before parents, and the remaining ties are broken uniformly at
random. We note that the results presented in Chapter 2 hold also for any other tie-breaking
mechanism.

In Chapter 3 we consider a special case of the (µ+ λ) EA, the (1 + 1) EA, which has both
parent and offspring populations of size one.

The pseudocode of the (µ+ λ) EA is shown in Algorithm 1.
For the (µ+ λ) EA we call every iteration of the outer loop a generation. For t ∈ N, we

define Pt as the parent population of the algorithm after generation t.
There is a special case of the (µ+ λ) EA, which we call the (λ + λ) EA with fair parent

selection or the (λ
1:1
+ λ) EA for short. It has the parent and offspring population of the same size

λ and its main difference is that every individual in the population creates exactly one offspring
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Algorithm 2 – The (λ
1:1
+ λ) EA, maximizing a given function f : {0,1}n → R, with population

size λ.
Initialization:

1: Create a population of µ individuals by choosing x(i) ∈ {0,1}n, 1 ≤ i ≤ µ uniformly at
random.

2: Let the multiset X(0) := {x(1), ..., x(λ)} be the population at time 0. Let t := 0.
Optimization:

3: while an optimum has not been reached do
4: X′ := X(t)

Mutation phase:
5: for i = 1, . . . , λ do
6: x := the i-th individual from X(t) (deterministic selection)
7: Create x′ by mutating x
8: X′ := X′ ∪ {x′}
9: end for

Selection phase:
10: Create the multiset X(t+1), the population at time t+1, by deleting the λ individuals with

lowest f-value in X′

11: t := t+ 1
12: end while

in each iteration. The pseudocode of the (λ
1:1
+ λ) EA is shown in Algorithm 2. This algorithm was

previously studied in [13] on ONEMAX, but we also study it on PLATEAUk function in Chapter 3.

1.2.2 The (µ, λ) EA

The (µ, λ) EA is a non-elitist evolutionary algorithm, which differs from the (µ+ λ) EA
only in the selection of the individuals to the next generation. It starts with a population that
consists of µ random vectors from {0,1}n. Then it repeats the following cycle until some stopping
criteria is met. The algorithm chooses an individual x from the population uniformly at random
and then creates its offspring by mutating x. After obtaining λ offspring it selects the µ best (in
terms of fitness) of them into the next population (ties are broken uniformly at random). Due to
this non-elitist selection it is necessary that µ ≤ λ. The pseudo-code of the (µ, λ) EA is shown in
Algorithm 3.

1.2.3 The (1 + (λ, λ)) GA

The (1 + (λ, λ)) GA, first presented in [34], has the following working principles. It stores
one current individual x, which is initialized with a random bit string. Each iteration of the
(1 + (λ, λ)) GA consists of two phases, which are the mutation phase and the crossover phase.
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Algorithm 3 – The (µ, λ) EA maximizing a given function f : {0,1}n → R, with population size
µ and offspring population size λ ≥ µ.

Initialization:
1: Create a population of µ individuals by choosing x(i) ∈ {0,1}n, 1 ≤ i ≤ µ uniformly at

random.
2: Let the multiset X(0) := {x(1), ..., x(µ)} be the population at time 0. Let t := 0.

Optimization:
3: while an optimum has not been reached do
4: X′ := ∅ // the only line different from the (µ+ λ) EA

Mutation phase:
5: for i = 1, . . . , λ do
6: Choose x ∈ X(t) uniformly at random
7: Create x′ by mutating x
8: X′ := X′ ∪ {x′}
9: end for

Selection phase:
10: Create the multiset X(t+1), the population at time t+ 1, by deleting the λ− µ individuals

with lowest f-value in X′

11: t := t+ 1
12: end while

In the mutation phase the algorithm first chooses the mutation strength ℓ following the binomial
distribution with parameters n and p, where p is usually called the mutation rate. It then creates
λ mutants by copying the current individual x and flipping exactly ℓ bits which are chosen
uniformly at random, independently for each mutant. After that the mutant with the best fitness
is chosen as the winner of the mutation phase x′ (all ties are broken uniformly at random). In
the crossover phase the algorithm λ times performs a crossover between x and x′ by taking each
bit from x′ with probability c and from x otherwise. The probability c is called the crossover
bias. The best crossover offspring y (all ties are again broken uniformly at random) is compared
with the current individual x. If y is not worse, then it replaces x. The main hope behind
this algorithm is that with a high mutation rate, the mutation winner x′ contains some beneficial
solution elements, and that the crossover with the parent acts as a repair mechanism that removes
the destructions caused by the high mutation rate. The runtime analyses for this algorithm
on ONEMAX and on random satisfiability instances (see Section 1.5) confirm that, indeed, the
(1 + (λ, λ)) GA shows this behavior on these instances. The pseudocode of the (1 + (λ, λ)) GA
optimizing a pseudo-Boolean function f is shown in Algorithm 4.

The standard parameter setting proposed in [34] uses the mutation rate p = λ
n and the

crossover bias c = 1
λ
. These parameters guarantee that if the mutation winner contains some

beneficial bit (and differs from the parent by O(λ) bits, which is very likely), then with constant
probability there is a crossover offspring that has all bits repaired apart from the beneficial one.

Another argument for this parameterization is that a single application of mutation and
crossover with the parent, without intermediate selection, would create an offspring distributed
as if generated via standard bit mutation with mutation rate 1

n . Note that 1
n is the usual recom-

mendation for the mutation rate in standard bit mutation (though [57] suggests that this is not
so clear).
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Algorithm 4 – The (1 + (λ, λ)) GA maximizing f : {0,1}n → R
1: x← random bit string of length n
2: while not terminate do

Mutation phase:
3: Choose ℓ ∼ Bin(n, p)
4: for i ∈ [1..λ] do
5: x(i) ← a copy of x
6: Flip ℓ bits in x(i) chosen uniformly at random
7: end for
8: x′ ← arg maxz∈{x(1),...,x(λ)} f(z)

Crossover phase:
9: for i ∈ [1..λ] do

10: Create y(i) by taking each bit from x′ with probability c and by taking it from x with
probability (1− c)

11: end for
12: y← arg maxz∈{y(1),...,y(λ)} f(z)
13: if f(y) ≥ f(x) then
14: x← y
15: end if
16: end while

In our proofs we often exploit the following elementary observation.

Lemma 1. Let x be some bit string of length n. LetM1 be the mutation operator1 that first chooses
ℓ ∼ Bin(n, p) and then flips exactly ℓ random bits. LetM2 be a standard bit mutation operator that
flips each bit independently with probability p. Then for all y ∈ {0,1}n we have

Pr[M1(x) = y] = Pr[M2(x) = y].

This simple observation allows us to consider each particular mutant as being generated
via standard bit mutation with mutation rate λ

n . Note that we cannot do so with the mutation
winner x′ since its distribution is significantly affected by the selection.

1.3 Mutation and Crossover Operators

In this section we describe the variation operators which are considered in this work
and recall some existing theoretical results for them as well as several analysis tools which are
specific for these operators. We study only two types of the operators: unary operators (or
mutation operators), which have a single argument and return a single individual, and binary
operators (or crossover operators) which have two arguments and return a single individual. We
do not consider operators of a higher-arity and operators which return more than one individual.

1The mutation operators are discussed in more details in Section 1.3
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1.3.1 Unbiased Operators

All algorithms considered in this work use only unbiased mutation and crossover oper-
ators. A mutation operator M for bit-string representations is called unbiased if it is symmet-
ric in the bit-positions [1..n] and in the bit-values 0 and 1. This is equivalent to saying that
for all x ∈ {0,1}n and all automorphisms σ of the hypercube {0,1}n (respecting Hamming
neighbors) we have σ−1(M(σ(x)) = M(x), which is an equality of distributions. Similarly,
the crossover operator X is unbiased if it is symmetric in the bit-positions [1..n] and in the
bit-values 0 and 1 of both its arguments. Using the same language it is equivalent to say that
σ−1(X (σ(x), σ(y))) = X (x, y). The notation of unbiasedness was introduced (also for higher-arity
operators) in the seminal paper [97].

For our purposes, it suffices to know that the set of unbiased mutation operators consists
of all operators which can be described as follows. For the unbiased mutation operators we first
choose a number ℓ ∈ [0..n] then we flip exactly ℓ bits chosen uniformly at random. Therefore,
the only difference between all unbiased mutation operators is in how they choose ℓ. This char-
acterization of these operators can be derived from [56, Proposition 19]. It was explicitly stated
in [39]. Examples for unbiased mutation operators are the operator of Random Local Search,
which flips a single random bit, or standard bit mutation, which flips each bit independently
with probability 1

n . Note that in the first case ℓ is always equal to one, whereas in the latter ℓ
follows a binomial distribution with parameters n and 1

n . In the (1 + (λ, λ)) GA we explicitly use
an unbiased mutation: we first choose ℓ and then flip ℓ randomly chosen bits.

The class of unbiased mutation operators contains a few operators which are unable to
solve even very simple problems. For example, operators that always flips exactly two bits
never finds the optimum of any function with unique optimum if the initial individual has an
odd Hamming distance from the optimum. To avoid such artificial difficulties, we only consider
unbiased operators that have at least a constant (positive) probability to flip exactly one bit. In
Chapter 3 we also touch the operators with a sub-constant (but still positive) probability to flip
exactly one bit.

For the unbiased crossover operators the similar description is more complicated. The
reason is that although unbiased operators cannot treat bits differently depending on their values
and positions, they do can distinguish bits which are the same in both bit strings participating
in the crossover and which are different. Hence, unbiased crossover operator decides how many
bit-flips it makes in these two bit sets and then flips the chosen number of bits in each set choosing
their positions uniformly at random.

For a more formal description consider a single application of an unbiased crossover op-
erator to x and y. Let L be the set of indices of equal bits in x and y and let M be the set of indices
of bits which differ. Any unbiased crossover creates x′, which is a copy of one of its arguments.
Then it chooses numbers ℓL ∈ [0..|L|] and ℓM ∈ [0..|M|], chooses uniformly at random ℓL bits in
positions from L and ℓM bits in positions from M and flips the chosen bits in x′, which is returned
as a result. The for the unbiased crossover used in the (1 + (λ, λ)) GA ℓL is always zero and ℓM
follows Bin(|M|, 1

λ
).
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Figure 1 – The probability to flip ℓ bits for n = 40. The heavy-tailed rate gives a more balanced
distribution of the number of bits that are flipped.

1.3.2 Fast Mutation Operator and Power-law Distribution

In Chapter 4 we base our results on the fast mutation operator, an unbiased mutation
operator which uses the power-law distribution. This operator first chooses some integer number
α from the power-law distribution and then performs a standard bit mutation with mutation rate
α
n .

We say that a random variable X ∈ N follows a power-law distribution pow(β, u) with
parameters β and u if

Pr[X = i] =
{
Cβ,ui−β, if i ∈ [1..u],
0, else,

where Cβ,u = (
∑u

j=1 j−β)−1 is the normalization coefficient. We write X ∼ pow(β, u) and call u
the upper limit of X and β the power-law exponent.

The idea of the fast mutation operator comes from the observation that the number of
bits flipped by the standard bit mutation with rate p follows the binomial distribution Bin(n, p)
and therefore it is concentrated around pn. Hence, choosing low p, namely p = (1

n), makes it not
likely to flip super-constant number of bits, which might lead to a bad performance on multi-
modal problems [57]. On the other hand, choosing p = ω(1

n) makes it not likely to flip exactly
one bit, which reduces the exploitation efficiency. The fast mutation operator overcomes both
issues, since it chooses the mutation rate from the power-law distribution and thus it has a good
probability to flip any number of bits (see Figure 1). It was previously shown that this operator
can relieve the algorithm user from choosing the optimal mutation rate for a relatively small
price. Inspired by this idea, in Chapter 4 we show that this way of random choice of parameters
can be even more effective in the (1 + (λ, λ)) GA.

The benefits of the fast mutation operator are based on the following properties of the
power-law distribution. Consider some X ∼ pow(u, β). Then we have

1) If β > 1, then Pr[X = i] = Θ(1) for any integer i = Θ(1).
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2) The distribution is heavy-tailed, which means that we have a decent (only inverse poly-
nomial instead of negative-exponential) probability that X = i for any super-constant
i ≤ u.

3) If β > 2, then we also have E[X] = Θ(1).
These properties are easily seen from the following estimates of the partial sums of the

generalized harmonic series.
Lemma 2. For all positive integers a and b such that b ≥ a and for all β > 0, the sum∑b

i=a i−β is
• Θ((b+ 1)1−β − a1−β), if β ∈ [0,1),
• Θ(log( b+1

a )), if β = 1, and
• Θ(a1−β − (b+ 1)1−β), if β > 1,

where we use Θ notation with respect to b→ +∞.
This lemma follows from the following two lemmas.

Lemma 3. For all u ≥ 1 and for all β 6= 1 we have ∑⌊u⌋
i=1 i−β ≥ u1−β−1

1−β
. For β = 1 we have∑⌊u⌋

i=1 i−β ≥ ln(u).
Proof. We estimate the sum for β 6= 1 through the corresponding integral.

⌊u⌋∑
i=1

i−β ≥
∫ u

1
x−βdx =

u1−β − 1
1− β

.

The case for β = 1 is a well-known bound on the partial sum of the harmonic series.

Lemma 4. For all u ∈ N we have
• ∑u

i=1 i−β ≤ u1−β 2−β
1−β

, if β < 0,
• ∑u

i=1 i−β ≤ u1−β

1−β
, if β ∈ [0,1),

• ∑u
i=1 i−β ≤ β

β−1 , if β > 1,
• ∑u

i=1 i−β ≤ ln(u) + 1, if β = 1.
Proof of Lemma 4. By analogy with Lemma 3 we estimate the sum through a corresponding in-
tegral. If β < 0 we have

u∑
i=1

i−β ≤
∫ u

1
x−βdx+ u−β ≤ u1−β − 1

1− β
+ u−β ≤ u1−β 2− β

1− β
.

If β ≥ 0 we have
u∑

i=1
i−β ≤ 1 +

∫ u+1

2
(x− 1)−βdx ≤ 1 +

u1−β − 1
1− β

.

If β ∈ [0,1), then we have
u∑

i=1
i−β ≤ u1−β − 1 + 1− β

1− β
≤ u1−β

1− β
.
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If β > 1, we have
u∑

i=1
i−β ≤ 1 +

1
β − 1 ≤

β

β − 1 .

The case for β = 1 is a well-known bound on the partial sum of the harmonic series.
Lemma 2 gives the following estimates for the normalization coefficient Cβ,u of the power-

law distribution and for the expected value of X ∼ pow(β, u).
Lemma 5. The normalization coefficient Cβ,u = (

∑u
j=1 i−β)−1 of the power-law distribution with

parameters β and u is
• Θ(uβ−1), if β ∈ [0,1),
• Θ(1/ log(u+ 1)), if β = 1, and
• Θ(1), if β > 1,

where we use Θ notation with respect to u→ +∞.
Lemma 6. The expected value of X ∼ pow(β, u) is

• Θ(u), if β < 1,
• Θ( u

log(u)), if β = 1,
• Θ(u2−β), if β ∈ (1,2),
• Θ(log(u+ 1)), if β = 2, and
• Θ(1), if β > 2,

where we use Θ notation with respect to u→ +∞.

1.4 Model Functions

Most theoretical studies analyse EAs on some model functions in order to observe the
behavior of an algorithm on a landscape with some particular features. In this work we consider
four model functions described in the following subsections after discussing the term of the
black-box complexity.

1.4.1 Black-box Complexity

The runtime analysis of evolutionary algorithms is closely connected with the term of
black-box complexity. The black-box complexity of a problem is the time in which it is possible
to solve the problem with an algorithm for which the problem is a black box. This means that
the algorithm cannot have an access to the problem structure and all it can do is to make queries
to the problem to learn the value of the optimized function at a search point. As well as in the
runtime analysis of EAs the time is measured in the number of queries which an algorithm makes
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before making a query with the optimal solution. And since by a problem we usually understand
a set of instances, we compute this time by the worst-case instance.

More formally, consider the class of algorithms A and the problem F . Let T(A, f) denote
the runtime of an algorithm A on a problem instance f (which is a random variable, since the
algorithm A might be stochastic). Then the black-box complexity of the problem F for the class
of algorithms A is

inf
A∈A

sup
f∈F

E[T(A, f)].

In the context of the theory of evolutionary computation black-box complexity is often
regarded in order to show how close the runtime of a considered algorithm is to the best the-
oretically possible runtime. Studying the black-box complexity of a problem might also help
to understand what the existing algorithms are missing and to design new more effective algo-
rithms based on this insight. Probably the best example of such result is the development of
the (1 + (λ, λ)) GA which was an outcome of a study of the black-box complexity of ONEMAX
problem [34].

In this work we consider only the algorithms which use unbiased unary and binary op-
erators (see Section 1.3). Hence, when discussing different functions, we are interested in the
following types of their black-box complexity.

1) Unrestricted black-box complexity — the black-box complexity with no restrictions on
the algorithms.

2) Unary unbiased black-box complexity — the black-box complexity for the algorithms
which can only use unbiased mutation operators to generate new queries.

3) Binary unbiased black-box complexity — the black-box complexity for the algorithms
which can only use unbiased mutation and crossover operators operators to generate
new queries.

In the rest of this section we discuss the black-box complexity of the considered prob-
lems in order to give the reader a better understanding of how hard these problems are for the
evolutionary algorithms. For more details on the black-box complexity see survey [62].

1.4.2 ONEMAX

Function ONEMAX : {0,1}n → R is defined by ONEMAX(x) = ∑n
i=1 xi for all x ∈ {0,1}n.

In other words, ONEMAX returns the number of one-bits in its argument. Without proof we
note that due to the unbiasedness of the operators used by all considered algorithms all our
results related to ONEMAX also hold for the so-called generalized ONEMAX function, denoted by
ONEMAXz. This function has some hidden bit-string z and returns the number of coinciding bits
in its argument and z. In other words,

ONEMAXz(x) =
n∑

i=1
(1− |zi − xi|) = n− H(x, z),

where H(x, z) stands for the Hamming distance.
The main features of the ONEMAX landscape is that it is a strictly monotone function

(every bit flipped from zero to one increases the value) and that it has an ideal fitness-distance
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correlation. Analyzing EAs on ONEMAX one can observe how good these EAs on easy stages of
the optimization (those where we have a clear signal towards the right bit positions from the
fitness) and how good these EAs are at exploitation (whether they meet the coupon collector
effect).

Despite its simplicity, ONEMAX has given a birth to many fundamental results, e.g. [64,
65, 66, 87, 42, 139, 121, 6, 33].

The unary black-box complexity of ONEMAX (and also of the generalized ONEMAX) is
Θ(n log(n)) [97, Theorem 6]. The binary unbiased black-box complexity has not been determined
precisely yet. What is known is that it is at least Ω( n

log(n)) (which is the unrestricted black-box
complexity of the generalized ONEMAX proven in [68]) and is at most O(n), which is the runtime
of the (1 + (λ, λ)) GA with optimal fitness-dependent parameters [33].

1.4.3 LEADINGONES

The LEADINGONES function returns the maximal length of a prefix that consists only of
ones. More formally, the LEADINGONES function is defined by

LEADINGONES(x) =
n∑

i=1

i∏
j=1

xj

for all x ∈ {0,1}n.
This function has a much weaker fitness-distance correlation than ONEMAX: even the

search point in distance 1 from the optimum can have the minimal fitness. Hence, the analysis
of an algorithm on LEADINGONES shows how much the algorithm relies on this correlation.
However, it is a monotone function, so it is considered to be relatively easy for the EAs.

The unary unbiased black-box complexity of LEADINGONES is Θ(n2) (the lower bound is
shown in [97] and the upper bound is shown in [123] for the (1 + 1) EA). For the crossover-
based algorithms the black-box complexity of LEADINGONES has not been determined precisely,
but it is known that it is Ω(n log log(n)) [97] and O(n log(n)) [58].

1.4.4 Jump Functions

The JUMPk function with parameter k ∈ [2..n], which is the width of the valley of low
fitness, is then defined as follows.

JUMPk(x) =
{

OM(x) + k, if OM(x) ∈ [0..n− k] ∪ {n},
n− OM(x), if OM(x) ∈ [n− k+ 1..n− 1].

A plot of JUMPk is shown in Figure 2. The fitness is essentially the fitness of ONEMAX
except for all search points with Hamming distance between one and k− 1 from the optimum.
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Figure 2 – Plot of the JUMPk function. As a function of unitation, the function value of a search point
x depends only on the number of one-bits in x

The unbiased black-box complexity (both unary and binary) of JUMPk is the same as the
one of ONEMAX. This is because if we know the value of JUMPk at some search point, we can also
compute its ONEMAX value and vice versa.2 While this implies that there is a unary unbiased
black-box algorithm finding the optimum of JUMPk in O(n log n) time, such results generally
do not indicate that a problem is easy for reasonable evolutionary algorithms. For example,
in [35] it was shown that the NP-complete partition problem also has a unary unbiased black-
box complexity of O(n log n).

1.4.5 Plateau Functions

In this work we also propose a new benchmark function—PLATEAUk. The PLATEAUk
function resembles the ONEMAX function, but has a plateau of second-highest fitness of radius
k around the optimum.

PLATEAUk(x) :=


ONEMAX(x), if ONEMAX(x) ≤ n− k,
n− k, if n− k < ONEMAX(x) < n,
n, if ONEMAX(x) = n.

The plateau of the function PLATEAUk(x) consists of all bit-strings that have at least n− k
one-bits, except the optimal bit-string x∗ = (1, . . . ,1). See Fig. 3 for an illustration of PLATEAUk.
Our hope is that this generic fitness function with a plateau of scalable size may aid the under-
standing of plateaus in evolutionary computation in a similar manner as the jump functions have
led to many useful results about the optimization of functions with true local optima, e.g., [67,
90, 36, 12, 19, 20, 71, 16, 14, 57, 20, 134, 79, 23, 25].

2To avoid such tricks a slightly different definition of JUMPk is used in the context of the black-box complex-
ity [36], but even this hard variant of the problem has an unbiased black-box complexity which is much lower than
the runtime of reasonable EAs on it.
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Figure 3 – Plot of the PLATEAU function. As a function of unitation, the function value of a search
point x depends only on the number of one-bits in x

In this work we consider only PLATEAUk functions with a constant parameter k. The unary
unbiased black-box complexity of these functions is Θ(n log n). Since we are first to introduce
this benchmark function, we prove its unary black-box complexity in the following Lemma.

Lemma 7. For all constants k, the unary unbiased black-box complexity of the PLATEAUk function is
Θ(n log n).

Proof. The lower bound follows from the Ω(n log n) lower bound for the unary unbiased black-
box complexity of ONEMAX shown in [97]. Since we can write PLATEAUk = f ◦ ONEMAX for a
suitable function f (such that f(x) = x, if x /∈ [n−k..n] and f(x) = n−k otherwise), any algorithm
solving PLATEAUk can be transferred into an algorithm which treats all points with fitness in
[n− k..n− 1] as points with fitness (n− k) and therefore solving ONEMAX in the same time.

The upper bound follows along the same lines as the O(n log n) upper bound for the unary
unbiased black-box complexity of JUMPk, see [36] and note that the algorithm given there con-
tains a sub-routine which, in expected constant time, for a given constant radius r determines
the Hamming distance H(x, x∗) of a point x from the optimum x∗ without evaluating search
points y with H(y, x∗) ≤ r. Note that the Hamming distance from the optimum determines the
ONEMAX value of x. Hence with this routine one can optimize both jump and plateau functions
by simulating an O(n log n) black-box algorithm for ONEMAX.

1.5 State of the art

In this section we show what is already known about how the algorithms described in
Section 1.2 perform on functions described in Section 1.4 and discuss what is missing in this
field.
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1.5.1 Results for the (µ+ λ) EA on ONEMAX

Before this work there were no known tight bounds on the runtime of the (µ+ λ) EA
on ONEMAX. However, the tight bounds were obtained for its special cases—the (1 + λ) EA
and the (µ+ 1) EA which have trivial parent and offspring population respectively. In [49], the
runtime of the (1 + λ) EA on the class of linear functions is analyzed, which contains the ONEMAX
function. A tight bound of Θ(n log n

λ
+ n log+ log+ λ

log+ λ
) is proven for the expected runtime (number of

iterations until the optimum is found) of the (1 + λ) EA maximizing the ONEMAX function. This
extends the earlier result [87], which shows this bound for λ = O( log(n) log log(n)

log log log(n) ) (note that in this
case the bound simplifies to Θ(n log(n)

λ
)) and which shows further that for asymptotically larger

values of λ, the expected runtime is ω(n log(n)
λ

).
Witt [138] studied the (µ+ 1) EA on the three pseudo-Boolean functions LEADINGONES,

ONEMAX and SPC. For the ONEMAX problem, under the mild assumption that µ is polynomially
bounded in n, he proved that the expected runtime of the (µ+ 1) EA is Θ(µn+ n log n).

For algorithms with non-trivial parent and offspring population sizes, the following is
known. The only work regarding the classic (µ+ λ) EA for general µ and λ is [116]. Using the
recent switch analysis technique [140] and assuming that µ and λ are polynomially bounded
in n, it was shown that the (µ+ λ) EA needs an expected number of

Ω

(n log n
λ

+
µ

λ
+

n log log n
log n

)
(1)

iterations to find the optimum of any function f : {0,1}n → R with unique optimum. Unfortu-
nately, this bound was not accompanied by any upper bound.

For the (λ
1:1
+ λ) EA the first result [80, Theorem 4] considers the runtime on the ONEMAX

in a special case when λ = n. It shows an upper bound of O(n) iterations, which is tight as
shown in Section 2.2.4. For the (λ

1:1
+ λ) EA with general λ, Chen et al. [13, Proposition 4] show

an optimization time of O(n log n
λ

+ n logλ) iterations. They conjecture a runtime of O(n log n
λ

+
n log log n) [13, Conjecture 3], which is asymptotically at least as good and which is stronger for
λ = ω(log n).

We also find notable that the runtime bound for the (µ, λ) EA noted in Subsection 1.5.2 can
be seen as the upper bound for the (µ+ λ) EA, since the population of the (µ+ λ) EA is always
better than the population of (µ, λ) EA after the same number of iterations in the dominating
sense.

From these results one can see that we are still missing the asymptotically precise estimate
for the runtime of the (µ+ λ) EA on ONEMAX. The results from [49] and [138] for the special
cases have not been extended for a general case with non-trivial population sizes for the following
reasons. For the (1 + λ) EA it turned to be non-trivial to extend the results on the (µ+ λ) EA due
to much more complicated population dynamics compared to the dynamics of a single individual.
The methods used for the analysis of the (µ+ 1) EA such as family trees (see Section 1.6) become
too complicated when more than one offspring is created in each iteration. All mentioned results
for the (µ+ λ) EA with non-trivial populations (both parent and offspring) are either for some
special cases of the (µ+ λ) EA, or they are not precise enough as we show in Subsection 2.2.2
(and therefore, they do not give the right insights about the algorithm behavior). Hence, to
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obtain the precise bounds on the runtime and to understand the interaction between the parent
and offspring population sizes we need to develop some new analysis methods.

1.5.2 Results for the (µ, λ) EA on ONEMAX

What is known about how the (µ, λ) EA optimizes ONEMAX is roughly the following.
When the offspring population size λ is at most (1− ε)eµ for some positive constant ε, then the
expected runtime (measured by the number of fitness evaluations until an optimum is found) is
exponential in n [96]. When λ ≥ (1 + ε)eµ and λ ≥ C ln n with C a sufficiently large constant,
then the runtime becomes polynomial, and in fact, O(nλ) [17].

There is a good reason for these results. Let x be a parent individual with high fitness,
that is, ONEMAX(x) is close to n and thus d := d(x) := n−ONEMAX(x) is small. When generating
offspring from x via standard-bit mutation with mutation rate 1

n , then with probability roughly
1
e the offspring has the same fitness as the parent, with probability Θ(dn) the offspring is better
than the parent, and else it is worse. Consequently, when d is small, the number of individuals
with best fitness in the population, in expectation, increases per iteration by a factor of at least
(1+ ε) when λ ≥ (1+ ε)eµ and it decreases by a factor of roughly (1− ε) when λ ≤ (1− ε)eµ. In
the efficient case, the (1+ ε) multiplicative increase of the number of top-individuals suffices to
ensure that a single top individual has a constant chance to take over the whole population in
O(logµ) iterations. In the inefficient case, the size of the subpopulation of the best individuals
decreases by the factor of (1 − ε) in each iteration, which leads to its loss much earlier than a
superior offspring is generated. We note that a number of highly non-trivial arguments [96, 17]
are necessary to transform these observations into rigorous proofs for the runtimes cited above.

While these results are mathematically non-trivial despite their intuitive explanations,
they only discuss the easy situations where the number of top individuals is a subject to a clear
drift, either into the right or the wrong direction. These situations might be too extreme to lead
to a full understanding of the population dynamics of this EA. Moreover, these are typically the
situations in which using comma selection is not a good idea. For the case of negative, but also
positive drift the main advantage of comma selection is absent. We recall that comma selection is
used, among others, with the hope that by not keeping good parent individuals in the population,
one can prevent premature convergence. If λ ≤ (1 − ε)eµ or λ is too small, then the algorithm
does not converge at all (not only prematurely) and is not likely to approach the optimum to a
reasonably close distance in polynomial time. If λ ≥ (1 + ε)eµ and λ is sufficiently large, then
discarding the parent population does not help, since with high probability it reappears in the
offspring population.

To be more precise, let us assume that we have a parent population that is converged to
a local optimum. Then with λ ≥ (1+ ε)eµ, an expected number of (1+ ε)µ copies of this parent
are generated as offspring. Since these are generated independently, with probability 1− e−Ω(µ)

(which follows from Chrenoff bounds, see Lemma 22 in Section 1.8) at least µ such copies are
generated, which means that inferior offspring cannot enter the population. For this reason,
the two regimes with clear drift are possibly not the most interesting ones for using an EA with
comma selection.

The very general analyses of non-elitist EAs in [96, 95, 18, 17] which give as special
case the results for the (µ, λ) EA has a downside that it gives the non-expert less understanding
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Figure 4 – The theoretically proven results for the runtime of the (µ, λ) EA in its parameters space.

of how the (µ, λ) EA really solves a problem. This is particularly true for the general results
for upper bounds [95, 18, 17], which are proven via an intricate potential function argument.
Consequently, our insight delivered in Subsection 2.3.3 that in a run of the (µ, λ) EA with λ ≥ (1+
ε)eµ, the best individual with constant probability takes over the whole population in O(logµ)
iterations is not easily derived from these works.

For the special case of the (µ, λ) EA with trivial parent population called the (1, λ) EA
a threshold behavior was observed in [84, 109, 121]. The latest of these works [121] shows
that for λ ≥ log e

e−1
n ≈ 2.18 ln n the (1, λ) EA optimizes ONEMAX in an expected number of

O(n log n+ λn) fitness evaluations, whereas for λ ≤ (1− ε) log e
e−1

n with constant ε, the runtime
is exp(Ω(nε/2)) with high probability. See Figure 4 for an illustration of the existing results for
the (µ, λ) EA.

1.5.3 Results for the (1 + (λ, λ)) GA on ONEMAX

While most classic evolutionary algorithms optimize the ONEMAX function in expected
time Θ(n log n) or slower, it was shown in [33] that the (1 + (λ, λ)) GA does so in expected time

O
(

max
{n log n

λ
,
nλ log logλ

logλ
})

,

an expression that is asymptotically smaller than Ω(n log n) (the runtime of such algorithms as
the (1 + 1) EA [108], the (µ+ 1) EA [138] and the (1 + λ) EA [87, 49]) for λ ≤ log n (and a
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slightly larger range) and that gives a bound of slightly better than O(n√log n) when using the
optimal value of λ, which is close to √log n [31].

Using the fitness-dependent parameter choice λ =
√

n
n−f(x) , we can achieve a Θ(n) run-

time [33]. For the static and even more the fitness-dependent setting, one has to question if the
typical algorithm user would have found good parameter settings. For this reason, approaches
that do not require manually finding a good static or fitness-dependent parameter settings appear
preferable.

One such approach in which the value of λ is controlled according to a simple one-fifth
rule was proposed in [31]. It was proven that this modification lets the (1 + (λ, λ)) GA find the
optimum of the ONEMAX function in Θ(n) fitness evaluations, which is asymptotically the same
as when using the optimal fitness-dependent value of λ. However, it was shown in [11] that for
a more real-world problem, namely for the random satisfiability instances, the dynamic choice
of the parameter λ must be modified to give the good results. More precisely, the maximal value
of λ must be capped with 2 ln(n + 1). This method of parameter control also leads to a very
inefficient performance on jump functions [126]. These raises the need to find new universal
methods of the efficient parameter control for the (1 + (λ, λ)) GA.

1.5.4 Results for the LEADINGONES

The classical LEADINGONES benchmark function was first proposed in [123]. This func-
tion is still easy in the sense that it is unimodal, that is, from every search point there is a path
to the optimum such that each edge on this path refers to a one-bit flip increasing the fitness.
However, the fitness-distance correlation is low, since all bits to the right of the left-most zero
have no influence on the fitness.

We are aware of the following runtime results for the LEADINGONES. The (1 + λ) EA,
for any polynomial value of λ, finds the optimum of LEADINGONES in an expected number
of Θ(n2/λ + n) iterations, as was shown in [87]. Regarding other mutation-based EAs, it is
worth mentioning that (1 + 1) EA needs Θ(n2) iterations to find the optimum, as it was shown
in [67], and (µ+ 1) EA needs Θ(n2 + µn log n) iteration, as it was shown in [138]. For the more
detailed overview on the LEADINGONES problem see [48] (slightly more detailed in the arXiv
version), which considers some algorithms with sub-quadratic runtime as well. Although these
few algorithms are interesting for a further investigation, they are still far from being a generally
accepted evolutionary algorithm.

1.5.5 Results for Plateaus

When trying to analyze how evolutionary algorithms optimize plateau functions, we ob-
serve that the active area of theoretical analyses of evolutionary algorithms has produced many
strong tools suitable to analyze how evolutionary algorithms make true progress (e.g., various
form of the fitness level method [133, 125, 18, 17] or drift analysis [81, 44, 98, 47]), but much
less is known on how to analyze plateaus.
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This is not to mean that plateaus have not been analyzed previously, see, e.g., [72, 88, 8,
43, 110, 69, 70], but these results appear to be more ad hoc and less suitable to derive generic
methods for the analysis of plateaus. In particular, with the exception of [72], we are not aware
of any results that determine the runtime of an evolutionary algorithm on a fitness function with
non-trivial plateaus precise including the leading constant (whereas a decent number of very
precise results have recently appeared for unimodal fitness functions, e.g., [7, 41, 139, 102, 83,
37, 82]).

The design of the PLATEAUk function is partially inspired by the XDIVK function, which
was studied mostly in the context of problems with auxiliary objectives [10, 3]. This function is
defined as

XDIVK(x) := bONEMAX(x)/kc,
where k is an integer parameter. The XDIVK function, which has multiple plateaus, was intro-
duced to study the behavior of the random search heuristics in the absence of the strong signal
towards the optimum from the fitness, however the theoretical analysis even of the most simple
EAs on this function turned to be a non-trivial problem. In some sense, PLATEAUk is a simplified
version of XDIVK which lets us observe algorithms’ behavior in the hardest plateau of XDIVK
and to develop new analysis methods for plateaus.

Another problem with plateaus which received an attention from theoretical community
is the ROYALROAD function. This function also has a parameter k and is defined3 as

ROYALROAD(x) :=
n/k−1∑
i=0

k∏
j=1

xik+j.

In simple words, we divide a bit string into blocks of length k and each block adds k to the fitness
if and only if all its bits are equal to one. This functions family was introduced in [106] to study
the building blocks hypothesis, but later it was also used to study the effect of crossover [124,
89] and population sizes [50] on plateaus.

1.5.6 Results for Jump Functions

Clearly the usual application of evolutionary algorithms are problems with multimodal
landscapes, that is, with non-trivial local optima, and these local optima usually present a dif-
ficulty for evolutionary algorithms. In the runtime analysis perspective multimodal problems
have displayed very different optimization behaviors. For example, on multimodal landscapes
it has been observed that crossover can recombine solutions into significantly better ones [90],
that mutation rates significantly larger than 1

n can be preferable [57], and that estimation-of-
distribution algorithms can significantly outperform classic algorithms [79, 23].

When we consider the theoretical studies of jump functions we note that for the elitist
algorithms the only way to leave the local optimum of JUMPk to a strictly better search point is
to flip exactly the right k bits and go to the optimum. For this reason, it comes as no surprise
that many mutation-based evolutionary algorithms need Ω(nk) time to optimize such a jump

3We only consider the definition for the case when k is a delimiter of the problem size n in order to simplify
notation
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function. Using the right mutation rate [57] or the stagnation detection mechanism [118] can
reduce this time down to Ω((nk)

k). Non-elitist comma selection although designed to avoid getting
stuck in local optima does not show a better performance [29]. Crossover can be helpful, but the
maybe most convincing work [20] in this direction also only obtains a runtime of O(nk−1 log n)
with the standard mutation rate and O(nk−1) with a higher mutation rate. With additional tools,
runtimes up to O(n) were obtained [21, 71, 134], but the lower the runtimes become, the more
these algorithms are custom-tailored to jump functions (e.g., they intensively use the symmetry
of JUMP functions, a feature which is not often met in practice). The extreme end is marked by
an O( n

log n) time algorithm [12] designed in the context of unrestricted black-box complexity.

1.5.7 Summary for the Current State of the Art

Regarding the existing results one can notice the following gaps in the theoretical knowl-
edge about EAs.

1) We do not know the true runtime and the behavior of the (µ+ λ) EA on ONEMAX.
This is especially dissatisfying in the light of that we already have precise results for
the special cases, the (1 + λ) EA and the (µ+ 1) EA, but the key understanding of the
interplay of the two non-trivial population sizes is missing.

2) So far the behavior of the (µ, λ) EA on ONEMAX has been studied theoretically only for
the parameter settings which do not exploit the main idea behind the comma selection,
which is, to be able to leave local optima while preserving the ability to converge to the
global optimum. This might lead us to a wrong conclusion that the comma selection
should not be used at all, while the threshold parameters are promising to be able to
hold the balance between the elitist behavior and the premature convergence.

3) It is not well-understood how the populations help to leave local optima and traverse
through plateaus. There are some results which show that the crossover-based algo-
rithms with diversity mechanisms cope with local optima on the example of JUMP
function, but they exploit the symmetry of JUMP function and do not have much prac-
tical support of their efficiency.

4) The best-known performance of a crossover-based algorithm on ONEMAX is obtained
via the dynamic parameter choices in the (1 + (λ, λ)) GA. However, both known ways
to choose the parameters (fitness-dependent and according to the one-fifth rule) do
not work well on more real-world problems like MAX-3SAT. Therefore, to increase the
efficiency of the (1 + (λ, λ)) GA on practical problems we need to find new universal
ways of dynamic parameter choices.

The reason why these parts of the knowledge about EAs is still uncovered by theoretical
studies is that the existing tools are not able to deliver such results. In the following section
we overview the theoretical toolbox and explain why these tools cannot be used to answer the
stated questions.
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1.6 Existing Tools

The spectrum of mathematical tools used for the runtime analysis is extremely wide and
includes the means from probability theory, linear algebra, mathematical analysis and other
disciplines. However, there is a group of tools which are most frequently used in the theory of
evolutionary computation and it is fair to say that they form a basis for all theoreticians in this
field. In this section we make an overview of these tools.

1.6.1 Markov Chains

Markov chains are a widely used tool for the runtime analysis of evolutionary algorithms
(see, e.g., [107, 130, 122]). In this work we only regard absorbing Markov chains. A Markov
chain is called absorbing if there is a subset S′ of the set of its states S such that

(1) for every state s1 ∈ S there exists a state s2 ∈ S′ such that there exists a path of
transitions with positive probabilities from s1 to s2 (we call s2 an absorbing state) and

(2) for every absorbing state s ∈ S′ the probability to leave this state is zero.
Absorbing chains appear naturally in runtime analysis. When taking as states of the

Markov chain the possible states of the algorithm, we can assume the optima to be absorb-
ing. The runtime of the algorithm is the number of transitions in the chain until it reaches an
absorbing state. We only regard absorbing Markov chains with exactly one absorbing state.

The standard way to compute the expected number of steps until an absorbing state reach-
ing uses the fundamental matrix, which is built as follows. Let P be the transition matrix of an
absorbing Markov chain, that is, the matrix where each element pji is equal to the transition
probability from state i to state j. Let Q be the square submatrix of P consisting only of the rows
and columns which correspond to transient states of the chain. We call Q the transient matrix for
brevity. Then the fundamental matrix N of this chain is defined as

N =
+∞∑
t=0

Qt = (I− Q)−1,

where I is the identity matrix of the same order as Q. Let π be a stochastic vector which repre-
sents the initial distribution over the transient states. Then the expected time until we reach an
absorbing state is

E[T] = πN1 = ‖πN‖1 ,

where 1 is a column vector of all ones.
However, working with fundamental matrix is not convenient, since it might be hard to

compute its elements precisely. Alternatively, we can use matrix Q to compute the runtime as

E[T] =
+∞∑
t=0
‖πQt‖1 . (2)

Markov chains are frequently used for the runtime analysis of EAs, however only when
they describe a relatively simple process, that is, either a simple algorithm with trivial population
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or only a component of a more complicated process. As soon as we introduce populations, the
set of states of the considered algorithm expands significantly, and the structure of the Markov
chain which describes the run of the algorithm becomes too complicated for the analysis.

1.6.2 Drift Analysis

Drift analysis is one of the most efficient tools for the runtime analysis of the random
search heuristics. It includes a set of theorems, which help to estimate the expected runtime or
even the tail bounds via the expected progress of the considered process. All drift theorems orig-
inate from the negative drift theorem by Hajek [78]. Here we show its interpretation from [113]
which is easier to understand and apply than the original theorem.
Theorem 1 (negative drift theorem). Let Xt, t = 0,1,2, . . . be real-valued random variables de-
scribing a stochastic process over some state space. Let a, b ∈ R such that d := b− a > 0. Let T be the
first point in time when Xt ≥ b conditional on that X0 ≤ a. If there exist γ > 0 and p > 0 such that

E[eγ(Xt+1−Xt) | Xt ∈ (a, b)] ≤ 1− 1
p

holds for all t, then for any time bound L we have
Pr[T < L] ≤ LDpe−γd,

where D := maxt∈N{1,E[eγ(Xt+1−a) | Xt ≤ a]}.
The big step forward the drift analysis was the additive drift theorem by He and Yao [80].

Theorem 2 (additive drift theorem). Let {Xt}t∈N be a sequence of random variables that describe
some random process over a finite state space S ⊂ [a, b] such that b ∈ S. Let T be the first time when
Xt = b.

1) If there exist some δ such that for all s ∈ S\{b} and t ∈ N we have E[Xt+1−Xt | Xt = s] ≤ δ,
then E[T] ≥ b−E[X0]

δ
.

2) If there exist some δ such that for all s ∈ S\{b} and t ∈ N we have E[Xt+1−Xt | Xt = s] ≥ δ,
then E[T] ≤ b−E[X0]

δ
.

We note that this theorem can also estimate the time until the random process Xt reaches
its lowest state. For this it is sufficient to apply this theorem to another process Yt = −Xt.

The additive theorem has given a raise to a series of other drift theorems: multiplicative
drift [45], variable drift [98] and others. The most recent overview of the existing techniques
can be found in [100].

To perform drift analysis of an algorithm one has to define a potential function over all
possible states of the considered algorithm. The drift theorems are then applied to this potential
function. Despite the diversity and effectiveness of drift theorems, it is a challenging task to use
them for the analysis of the population-based algorithms, since they require to design a potential
function which takes into account the whole population. Also sometimes they are not capable
to deliver tail bounds on the runtime or they are used on a high level, so that valuable insights
are obscured.
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1.6.3 Fitness Levels

Fitness levels theorems [96, 17] are mostly designed for the non-elitist algorithms except
for the artificial fitness levels [135]. They cover a wide range of processes, but the price for
this universality is that they give only little insight on the process they are applied to. This
is because these techniques use only some properties of the considered process which lie on
the surface (and this is what grants them the universality) but they do not use some deeper
machinery of the process. E.g., different fitness levels theorems were used to prove the runtime
of the (µ, λ) EA on ONEMAX when there is a clear drift in the number of the best individuals in
the population but they did not meet the conditions to be applied to the threshold parameter
values (see Subsection 1.5.2).

The artificial fitness levels theorem [135] is used to deliver the upper bounds on the run-
time of elitist algorithms. In this work we use its following interpretation (which is a simplified
version of the original one, hence we also include a simple proof).
Theorem 3. Let the space S of all possible populations of some population-based algorithm be divided
into m disjoint sets A1, . . . ,Am that are called levels. We write A≥i =

⋃m
j=i Aj for all i ∈ [1..m].

Let Pt be the population of the algorithm after iteration t. Assume that for all t ≥ 0 and
i ∈ [2..m], we have that Pt ∈ Ai implies Pr[Pt+1 ∈ A≥i] = 1. Let T be the minimum number t such that
Pt ∈ Am.

1) Assume that there are T1, . . . ,Tm−1 ≥ 0 such that for all t ≥ 0 and i ∈ [1..m− 1] we have
that if Pt ∈ Ai, then E[min{s | s ∈ N,Pt+s ∈ A≥i+1}] ≤ Ti (for all possible P0, . . . ,Pt−1).
Then

E[T] ≤
m−1∑
i=1

Ti.

2) Assume that there are p1, p2, . . . , pm−1 such that for all t ≥ 0 and i ∈ [1..m− 1] we have
that if Pt ∈ Ai, then Pr[Pt+1 ∈ A≥i+1] ≥ pi (for all possible P0, . . . ,Pt−1). Then

E[T] ≤
m−1∑
i=1

1
pi .

Proof. We start by proving the first claim. Consider a run of the algorithm. Let ti = min{t | Pt ∈
A≥i}. Consider some i ∈ [1..m − 1]. We analyze the random variable ti+1 − ti. If there is no t
with Pt ∈ Ai, then ti = ti+1 simply by the definition of the ti. Otherwise, by our assumptions, we
have E[ti+1 − ti] ≤ Ti. Note that this applies trivially also to the first case where we just saw that
ti+1 − ti = 0. Hence, from T = tm =

∑m−1
i=1 (ti+1 − ti) we conclude

E[T] =
m−1∑
i=1

E[ti+1 − ti] ≤
m−1∑
i=1

Ti.

To prove the second claim, we note that by our assumptions ti+1 − ti is stochastically
dominated by a geometric distribution with success rate pi. Hence E[ti+1− ti] ≤ 1

pi , and the claim
follows as above.

Theorem 3 is an efficient tool to deliver the upper bounds. Even for the processes which
can have a super-constant expected progress it is often possible to divide the search space into
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levels in such way that this theorem gives asymptotically precise upper bounds on the runtime
(we do it in Subsection 2.2.1). However, to deliver the lower bounds with similar arguments one
usually needs to make additional assumptions about the processes (e.g., in [127, 135]), which
does not let us make a universal version of this theorem for the lower bounds.

In this work when using the fitness levels technique, we use the following language. We
say that the algorithm is on level i if the current population is in the level Ai. We also say that the
algorithm gains a level or the algorithm leaves the current level if the new population is at the higher
level than the previous one.

1.6.4 Family Trees

The main idea of Witt’s [137, 138, 136] family tree argument is to consider a tree graph
the vertices of which are the individuals created during the evolution process and each path
from the root to a vertex corresponds to the series of mutations which led to the creation of this
vertex. Selection does not play any role in this structure, so when working with family trees we
usually assume that all individuals with a corresponding vertex in the tree can potentially be
present in the current population.

To use the family tree argument one should first argue that with high probability the true
family tree has a certain structure (e.g., a small height) and then, conditioning on this, argue
that within such a restricted structure an optimal solution is hard to reach as it was done in the
following lemma in [138].

Lemma 8 (Lemma 2 in [138]). Let D(t) denote the depth of a family tree of the (µ+ 1) EA at time
t. For all t ≥ 0 we have Pr[D(t) ≥ 3t/µ] = 2ω(t/µ).

Although family trees give us an interesting view on the evolution process an let us dis-
regard the selection, so far they have been applied only to the (µ+ 1) EA. When non-trivial
offspring populations come into scene, the tree structure changes and some properties (includ-
ing the one from Lemma 8) do not hold with probability which is high enough. Therefore, the
domain where this tool can be applied is too narrow.

1.6.5 Summary of the Existing Methods and Motivation of This Work

In this section we have shown that although the theory of evolutionary computations
developed a strong collection of runtime analysis tools, we still do not have sufficient means to
analyse population-based EAs and understand the true role of populations. The main problems
we face are the following ones.

• The population-based EAs have too many states, which makes it hard to design an easy-
to-analyse Markov’s chain or a potential function for the drift analysis.

• The application of the fitness levels theorems usually does not give enough understand-
ing of the algorithm behavior.
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• The family trees are designed for the algorithms with trivial offspring populations, which
makes it hard to use them for the analysis of the (µ+ λ) EA.

The populations are believed to be essential for the EAs and are commonly used by practi-
tioners. The insufficient theoretical understanding of how the populations affect the runtime of
EAs makes it hard to use them efficiently in practice. E.g., it might be a non-trivial task to find an
optimal population size. The main theoretical goal of this work is to develop new analysis tools
which would let us analyse population-based EAs and distill valuable practical recommendations
from analyses performed with these tools. The main practical goal of this work is to obtain some
valuable insights about the nature of populations in EAs using the developed toolbox and based
on these insights give some recommendations on how to set population sizes. Our interest is
not only at finding optimal static values of this parameter, but also at developing new efficient
strategies of the dynamic choice of population size.

1.7 Contribution of This Work

The main contribution of this work to the field of evolutionary computation consists of
three parts.

Analysis methods. We propose the following new analysis methods for the population-
based algorithms.

• Complete trees technique which lets us derive lower bounds on runtime of a population-
based EA in Subsection 2.2.2.

• Method of analysis of no-drift processes which lets us analyse processes with no drift via
the drift analysis. This turns out to be useful in the analysis of population dynamics in
Subsection 2.3.2.

• Method of analysis of EAs on plateaus.
• Additive drift theorem with tail bounds which can give strong bounds on the runtime

concentration for the processes which have a constant drift.
New algorithm, called the heavy-tailed (1 + (λ, λ)) GA, which is based on the

(1 + (λ, λ)) GA and uses the power-law distribution for the dynamic parameters choice, de-
scribed in Section 4.1.

Analyses of the population-based EAs. Using the developed methods we show the
following results.

• We show the asymptotically tight runtime of the (µ+ λ) EA on ONEMAX function.
• We show the surprising influence of the absolute population size on the performance of

the (µ, λ) EA solving ONEMAX when it uses threshold parameters.
• We show that the choice of the mutation operator almost does not have an impact on

the performance of the mutation-based EAs on plateaus.
• We perform an analysis of the proposed heavy-tailed (1 + (λ, λ)) GA on ONEMAX, LEA-

DINGONES and JUMPk. This analysis shows its effectiveness and universality.
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1.8 Useful Tools

In this section we collect the tools which are used in our analyses. These tools in contrast
with the ones mentioned in Section 1.6 are not specialized on the delivery of runtime bounds,
but they are frequently used in the theory of evolutionary computation and help to prove some
essential properties of analysed processes.

We start with the union bound which is an elementary, but useful result from probability
theory which helps us give an upper bound on the probability of a union of several events.
Lemma 9 (union bound). Let A and B be some events in some probability space. Then

Pr[A ∪ B] ≤ Pr[A] + Pr[B].
We show the following two common estimates for the distribution of the fitness of an

individual y which is created via the standard bit mutation to an individual x when we optimize
the ONEMAX function.
Lemma 10. Let f denote the ONEMAX function. Let x be an individual of fitness f(x) = n− d. Let y
be the result of the standard bit mutation with mutation rate 1

n applied to x. Then, for all i ≥ 1, we
have

Pr[f(y)− f(x) = i] ≤
(d
i
)(1

n
)i

.

Proof. To improve fitness exactly by i we need to flip at least i zero-bits. The probability that
we flip at least i bits is 1

ni . By the union bound over all possible choices of i zero-bits which we
flip, we prove the lemma.
Lemma 11. Let f denote the ONEMAX function. Let x be an individual of fitness f(x) = n− d. Let y
be the result of the standard bit mutation with mutation rate 1

n applied to x. Then

Pr[f(y)− f(x) = 0] =
min{d,n−d}∑

k=0

(d
k
)(n− d

k
)(1

n
)2k(

1− 1
n
)n−2k

.

This probability can be bounded with

(1− 1
n )

n ≤ Pr[f(y)− f(x) = 0] ≤ 1
e ·

1
1− d(n−d)

(n−1)2
.

Proof. The probability to preserve fitness is the probability that we flip the same number of
zero-bits and one-bits. For all i ∈ [0..min{d, n−d}] the probability to flip exactly i zero-bits (and
not to flip other d − i zero-bits) is (di)(1

n)
i(1 − 1

n)
d−i and the probability to flip the same number

of one-bits is (n−d
i
)
(1
n)

i(1− 1
n)

n−d−i. Summing up the probability of these two independent events
over i ∈ [0..min{d, n− d}] we get the expression for Pr[f(y)− f(x) = 0]. Note also that if we flip
more than min{d, n− d} bits with the same value, the fitness will be different.

After that, the bounds on Pr[f(y) − f(x) = 0] are obtained as follows. The lower bound
(1− 1

n)
n is just the first term of the sum. The upper bound 1

1− d(n−d)
(n−1)2

follows from the observation
that the terms of the sum are bounded by the geometric progression with ratio d(n−d)

(n−1)2 .
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For two real random variables X and Y we say that Y stochastically dominates X if for all
k ∈ R we have Pr[Y ≥ k] ≥ Pr[X ≥ k]. See [27] for a more detailed description of this concept. In
that case, we use the notation X � Y. We use this notion to argue and make precise that better
parents generate better offspring. The following result is from [139].
Lemma 12. Let x, y ∈ {0,1}n such that f(x) ≤ f(y). Let X =M(x) and Y =M(y), whereM is an
unbiased mutation operator. Then f(X) � f(Y).

We also use the following fact.
Lemma 13. Let X and Y be two random variables over N such that X � Y. Then E[X] ≤ E[Y].

A coupling for two random variables X and Y is a pair of random variables (X̃, Ỹ) defined
over the same probability space such that X and X̃ as well as Y and Ỹ follow the same law. The
following result is well-known.
Theorem 4. Let X and Y be two random variables. Then the two following statements are equivalents.

1) X � Y.
2) There exists a coupling (X̃, Ỹ) such that X̃ ≤ Ỹ.

In our proofs we use the following elementary estimates (Lemmas 14—19).
Lemma 14. For all x ≥ 0 and all a > 0 we have xe− x

a ≤ a
e .

Proof. Let a > 0. Consider the function ga(x) = xe− x
a . Notice that ga(0) = 0 and limx→+∞ ga(x) =

0. In the interval [0,+∞) function ga(x) is positive and smooth (i.e., with continuous derivative),
hence its maximum can be only in the roots of its derivative g′a(x). We compute

g′a(x) = e− x
a − x

ae−
x
a .

Note that g′a(x) = 0 only when x = a. The value of ga at this point is ae− a
a = a

e . Therefore,
ga(x) ≤ a

e for all x ≥ 0 and a > 0.

Lemma 15. For all x ≥ 0 and all a > 0 we have x2e− x
a ≤ 4a2

e2

The proof repeats the one of Lemma 14.
Lemma 16. For all x > 0 we have e−2x(1 + x) ≤ max{1− x

2 ,1− 1
4}.

Proof. Consider g(x) := e−2x(1 + x). We first compute its first and second derivatives.

g′(x) = e−2x(1− 2(1 + x)) = e−2x(−2x− 1),
g′′(x) = e−2x(−2− 2(−2x− 1)) = 4xe−4x.

For all x ≥ 0 g′(x) is negative and g′′(x) is positive, which means that g(x) is decreasing and
convex in [0,+∞). Therefore, for all x ∈ [0, 1

2 ] we have

g(x) ≤ g(0) + xg
(1

2
)
− g(0)

1
2 − 0 = 1−

(
2− 3

e
)
x ≤ 1− x

2 .
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For all x > 1
2 we have

g(x) ≤ g
(1

2
)
≤ 1− 1

4 .

Combining these two observations for two intervals we prove that g(x) ≤ max{1− x
2 ,1− 1

4}.
Lemma 17. For all x ∈ [0,1] we have ex(1− 2(e− 1)x) ≤ 1− (e− 2)x
Proof. Since ex is convex downwards, for all x ∈ [0,1] we have ex ≤ 1 + ex. Hence,

ex(1− 2(e− 1)x) ≤ (1 + ex)(1− 2(e− 1)x) ≤ 1− (e− 2)x.

Lemma 18. For all x ≥ −δ > −1 we have ln(1 + x) ≥ x− x2
2 −

δ3
3(1−δ)3 .

Proof. Applying the Taylor’s theorem with the remainder in the Lagrange form to ln(1 + x) in
point x0 = 0 we obtain

ln(1 + x) = x− x2

2 +
x3

3(1 + c)3 ,

where c is some value between x and zero. Since by the lemma condition x ≥ −δ, we have

ln(1 + x) ≥ x− x2

2 −
δ3

3(1− δ)3 .

Lemma 19. Let d = o(1). Then we have (1− 1
n)

d = (1− d
n − o(dn)).We also have (1− 1

n)
n = 1

e (1− O(1
n)).

Proof. Using the Taylor’s formula for the natural logarithm and for the exponential function we
obtain (

1− 1
n
)d

= exp
(
d ln

(
1− 1

n
))

= exp
(
d
(
−1
n − o

(1
n
)))

= exp
(
−dn − o

(d
n
))

=

(
1− d

n − o
(d
n
))

.

With the same arguments we have(
1− 1

n
)n

= exp
(
n ln

(
1− 1

n
))

= exp
(
n
(
−1
n − O

( 1
n2

)))
= exp

(
−1− O

(1
n
))

=
1
e exp

(
−O

(1
n
))

=
1
e
(

1− O
(1
n
))

.
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To be able to make the transition between the number of iterations and the number of
fitness evaluations in algorithms with a variable population size, we use Wald’s equation [132].
Lemma 20 (Wald’s equation). Let (Xt)t∈N be a sequence of real-valued random variables and let T
be a positive integer random variable. Let also all following conditions be true.

1) All Xn have the same finite expectation.
2) For all t ∈ N we have E[Xt1{T≥t}] = E[Xt]Pr[T ≥ t].
3) ∑+∞

t=1 E[|Xt|1{T≥t}] <∞.
4) E[T] is finite.

Then we have
E
[ T∑

t=1
Xt

]
= E[T]E[X1].

We use the following inequality to estimate the probability that at least one of λ Bernoulli
trials succeeds.
Lemma 21. For all p ∈ [0,1] and all λ > 0 we have

1− (1− p)λ ≥ λp
1 + λp ≥

1
2 min {1, λx} .

Proof. By [121, Lemma 8] we have (1− x)λ ≤ 1
1+λx . Hence,

1− (1− x)λ ≥ 1− 1
1 + λx =

λx
1 + λx

≥ λx
2 max{1, λx} =

1
2 min{λx,1}.

Random variable X follows binomial distribution Bin(n, p) with parameters n and p if it
is a sum of n independent random variables which follow Bernoulli distribution with parameter
p. The binomial distribution appears naturally in the theory of evolutionary computation. For
example, the number of bits flipped by the standard bit mutation or the number of copies of
the best individuals in the population both follow binomial distributions (but with different
parameters). We now collect several tools to simplify our calculations when we work with this
distribution.

We start with Chernoff bounds (see Theorems 1.10.1 and 10.10.5 in [30]) which we use to
show the concentration of some random variables involved in our analysis. We use the following
lemma, which is a particular case of these bounds for the random variables following a binomial
distribution.
Lemma 22 (Chernoff Bounds). Let X be a random variable following a binomial distribution Bin(n, p).
Then for all δ ∈ (0,1) the probability that X ≥ (1 + δ)np is at most e− δ2np

3 and the probability that
X ≤ (1− δ)np is at most e− δ2np

2 . Also for all δ ≥ 1 the probability that X ≥ (1 + δ)np is at most e− δnp
3 .

In our proofs we shall use the following result for random variables with binomial distri-
bution from [77]. An elementary proof for it was given in [24, Theorem 10].
Lemma 23. Let X ∼ Bin(n, p) such that p > 1/n. Then Pr(X ≥ E[X]) > 1/4.
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The next lemma follows from the Chernoff bounds and shows the concentration of the
number of the bit flips in the mutation phase of the (1 + (λ, λ)) GA by the Chernoff bounds.
Lemma 24. Let p ≥ 1

n . Then the number ℓ of the bits flipped by the mutation operator of the
(1 + (λ, λ)) GA is in [pn,2pn]with at least constant probability qℓ ≥ 0.1, if n is at least some sufficiently
large constant.
Proof. Recall that the number ℓ of the flipped bits in the mutation phase of the (1 + (λ, λ)) GA
is chosen according to the binomial distribution Bin(n, p). We first consider the case when p is
small. Assume pn ∈ [1,9]. Then

Pr [ℓ ∈ [pn,2pn]] ≥ Pr [ℓ = dpne] =
( n
dpne

)
p⌈pn⌉ (1− p)n−⌈pn⌉

≥ (n− dpne)⌈pn⌉
n⌈pn⌉ · (pn)

⌈pn⌉

dpne! · (1− p) 1
p pn ≥ 0.1.

The last inequality holds if n is large enough (we omit the details, since it is too tedious).
Now we consider the case when pn ≥ 9. Since ℓ follows the binomial distribution with

parameters n and p, we have E[ℓ] = pn. By the Chernoff bounds we have

Pr [ℓ ≥ 2E [ℓ]] ≤ exp
(
−E [ℓ]3

)
= exp

(
−pn3

)
,

By Lemma 23 we have

Pr[ℓ ≥ E[ℓ] = pn] ≥ 1
4 .

Hence,

Pr[ℓ < pn] ≤ 3
4 .

Therefore, by the union bound the probability qℓ that ℓ ∈ [pn,2pn] is at least
qℓ = Pr [ℓ ≥ pn ∩ ℓ ≤ 2pn]
≥ 1− Pr [ℓ < pn]− Pr [ℓ > 2pn]
≥ 1− 3

4 − exp
(
−pn3

)
.

Since we assume that pn ≥ 9, we obtain
exp

(
−pn3

)
≤ exp (−3) ≤ 0.05

and hence,

qℓ ≥ 1− 3
4 − exp

(
−pn3

)
≥ 0.2.

Therefore
qℓ ≥ 0.1 = Ω(1) .
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We also state a similar lemma for the larger mutation rates (which are of a greater interest
when we aim at escaping a local optimum with the (1 + (λ, λ)) GA).
Lemma 25. Assume p = ω(1

n). Then the number ℓ of the bits flipped by the mutation operator is in
[1
2pn, 3

2pn] with probability q′ℓ = 1− o(1).
Proof. By the Chernoff bounds we have

q′ℓ ≥ 1− Pr [ℓ < 1
2pn
]
− Pr [ℓ > 3

2pn
]

≥ 1− e− pn
8 − e− pn

12 = 1− e−ω(1) − e−ω(1) = 1− o(1).
We also encounter random variables with hypergeometric distribution. A particular ex-

ample of such random variable is the number ℓ0 of zero-bits which are flipped by the mutation
operator of the (1 + (λ, λ)) GA after the total number ℓ of the bits to flip is already chosen. This
random variable follows a hypergeometric distribution with parameters n, n−OM(x) and ℓ. For
this random variable the Chernoff bounds are also applicable [30, Theorem 1.10.25].
Lemma 26. Let ℓ0 be the number of zero-bits of a bit string x such that OM(x) > 9

16n which are flipped
by the mutation operator of the (1 + (λ, λ)) GA after ℓ is chosen. Then the probability that ℓ0 > ℓ

2 is
at most exp(− ℓ

336).
The next tool is the classic result for for martingales. Recall that a martingale with respect

to the filtration F is a stochastic process M such that, for all n ∈ N, we have E[Mn+1 | Fn] = Mn.
Theorem 5 (Doob’s Decomposition [63]). For any integrable process (Xn)N, there exists a martingale
(Mn)N and a predictable integrable process (An)N such that A0 = M0 = 0 and, for all n ∈ N, Xn =
X0 +Mn + An. This decomposition is almost surely unique.

With this theorem we prove the following auxiliary lemma.
Lemma 27. Let λ ≥ eµ. Let Xt ∼ min{µ,Bin(λ, Xt−1

eµ )}. Then for all t ∈ N and all ∆ > 0, the
probability that there exist τ ∈ [1..t] such that Xτ < X0 −∆ is at most tX0

∆2 .
Proof of Lemma 27. We define the process Mτ as follows. M0 = X0 and, for τ ≥ 0 and
Mτ+1 ∼ Bin (λ, Mτ

λ

) if Mτ > X0−∆ and Mτ+1 = Mτ otherwise. By Doob’s decomposition theorem
(Theorem 5), there exists a martingale (Nτ )N and a predictable process (Aτ )N such that, for all
τ ∈ N, (Mτ )

2 = (M0)2 + Nτ + Aτ . Note that M is a martingale. Consequently, for all τ ≥ 0, we
have

E[(Mτ+1 −Mτ )
2 | Fτ ] = E[(Mτ+1)2 − 2Mτ+1Mτ + (Mτ )

2 | Fτ ]

= E[(Mτ+1)2 − (Mτ )
2 | Fτ ] = Aτ+1 − Aτ ,

where Fτ stands for the natural filtration. We sum these equalities to obtain
τ−1∑
k=0

E[(Mk+1 −Mk)2 | Fk] = Aτ = (Mτ )
2 − (M0)2 − Nτ .

Now as N is a martingale with N0 = 0 we have E[Nτ ] = E[N0] = 0, therefore

E[(Mτ )
2] = E[(M0)2] +

τ−1∑
k=0

E[(Mk+1 −Mk)2].
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Finally, M is a martingale so E[Mτ ]
2 = E[M0]2 = E[(M0)2], since X0 is determined. Thus we have

Var(Mτ ) ≤
τ−1∑
k=0

E[(Mk+1 −Mk)2] =
τ−1∑
k=0

E[E[(Mk+1 −Mk)2 | Fk]]

=
τ−1∑
k=0

E[Var[Mk+1 | Fk]] ≤
τ−1∑
k=0

E
[
Mk

(
1− Mk

λ

)]

≤
τ−1∑
k=0

E[Mk] = τX0.

By Chebyshev’s inequality,
Pr[Mτ ≤ X0 −∆ | X0 = k] ≤ τk

∆2 .

Therefore as long as Mτ ∈ {X0−∆+1, · · · , µ} we have Mτ � Xτ . Let τ1 = inf{t ∈ N | Mt > µ}. By
Theorem 4, there exists a coupling (X̃, M̃) such that for all τ < τ1, we have M̃τ ≤ X̃τ . Therefore if
M̃τ exceeds µ we can wait until X̃τ ≤ X0 and restart the argument with t = τ1 and τ ′ = τ −τ1 ≤ τ .
Finally we have

Pr[∃t ∈ [0..τ ] : Xt ≤ X0 −∆ | X0 = k] ≤ τk
∆2 .

We make a use of the following property of the random variable which is a transformation
of another random variable with a binomial distribution.
Lemma 28. There exists a constant Smin such that if X ∼ Bin(n, p) with np ≥ Smin and p ≤ 1

2 , thenwe have
E[ln(1 + X)] ≥ ln(1 + np)− 5

6
(1− p)
np .

Proof. We first transform the random variable in the follwoing way.
E[ln(1 + X)] = E[ln(1 + np) + ln(1 + X)− ln(1 + np)]

= ln(1 + np) + E
[
ln
(

1 +
X− np
1 + np

)]
.

Let Y = X−np
1+np , which is a random variable. Note that the E[Y] = 0. Then we have

E[ln(1 + X)] = ln(1 + np) + E[ln(1 + Y)],
hence our aim is to prove that E[ln(1 + Y)] ≥ −5

6
(1−p)
(1+np) .

Consider some δ ∈ (0,1), the precise value of which we will choose later. Let D be the
event (X ≥ (1− δ)np). Event D also implies that Y ≥ − δnp

1+np ≥ −δ. We have
E[ln(1 + Y)] = E[1D ln(1 + Y)] + E[(1− 1D) ln(1 + Y)].

When D is satisfied, by Lemma 18 we have

E[1D ln(1 + Y)] ≥ E
[
1D

(
Y− Y2

2 −
δ3

3(1− δ)3

)]
.
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Since event complementary to D includes only negative values of Y, we have

E[1D ln(1 + Y)] ≥ E[Y]− 1
2E[Y

2]− δ3

3(1− δ)3 = − np(1− p)
2(1 + np)2 −

δ3

3(1− δ)3

≥ − (1− p)
2(1 + np) −

δ3

3(1− δ)3 ,

where we used E[Y] = 0 and E[Y2] = Var(Y) = 1
(1+np)2 Var(X). Let

δ :=

(
1−p

2(1+np)
) 1

3

1 +
(

1−p
2(1+np)

) 1
3
≥ 1

2
( 1− p

2(1 + np)
) 1

3
,

so that δ3
(1−δ)3 = ( 1−p

2(1+np))
1
3 . Then

E[1D ln(1 + Y)] ≥ − 2(1− p)
3(1 + np)

By Chernoff bounds, we have

Pr(X ≤ (1− δ)np) ≤ exp
(
−δ2

2 np
)
≤ exp

(
− (1− p)2/3np

8(1 + np)2/3

)
≤ exp

(
−1

8(1− p)2/3np1/3
)

Since x 7→ ln(1 + x) is monotonically increasing, we have

E[(1− 1D) ln(1 + Y)] ≥ ln
(

1− np
1 + np

)
exp

(
−1

8(1− p)2/3np1/3
)

= − ln(1 + np) exp
(
−1

8(1− p)2/3np1/3
)

The logarithm slowly grows in np, but the exponent tends to zero much faster (recall that
by the lemma conditions we have p ≤ 1

2 , therefore 1
2(1− p)2/3 is a constant). Hence, there exists

a constant Smin such that if np ≥ Smin, we have

E[(1− 1D) ln(1 + Y)] ≥ − 1− p
6(1 + np) .

Therefore,
E[ln(1 + Y)] ≥ −2

3
(1− p)
(1 + np) −

1− p
6(1 + np) = −5

6
(1− p)
(1 + np) .

We also make a use of the following adaptation of the additive drift theorem for a random
variable that dominates the binomial distribution with a capped value.
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Lemma 29. Consider λ ∈ N and µ ∈ N such that λ ≥ eµ. Let Xt and∆t be some random processes such
that for all t ∈ N we have ∆t ≥ ∆min > 0 for some ∆min ∈ (0, λ) and Xt+1 ∼ min{µ,Bin(λ, Xt+∆t

eµ )}.
Let T(X′) be the first moment in time when XT ≥ X′ for some X′ that is at least max{18 ln 2λ

∆min
,48},

but not greater than µ
2 . Then we have

E[T(X′)] ≤ max
{

24, 4X′ − 2X0
∆min

}
.

Proof of Lemma 29. Although the drift of Xt towards X′ is at least ∆t, we cannot apply the additive
drift theorem from the box, since this drift partially comes from the fact that Xt is surely larger
than X′, and the additive drift theorem prohibits to jump over the target value.

To overcome this problem we define the potential function Φ(X) for all X ∈ N as follows.

Φ(X) =
{

0, if X ≥ X′,

2X′ − X, else.

To ease the notation we introduce another random process X̃t ∼ Bin(λ, Xt+∆t
eµ ). Note that E[X̃t] =

Xt−1 + ∆t−1. We also define pt(i) := Pr[Xt = i | Xt−1] and qt(i) := Pr[X̃t = i | Xt−1]. Note that if
i < µ, then pt(i) = qt(i) and pt(µ) =∑λ

i=µ qt(i). Hence, we estimate the expected difference in the
potential function after one step of the process as follows.

E[Φ(Xt)− Φ(Xt+1) | Xt] =
X′−1∑
i=0

pt+1(i)(i− Xt)

+

µ∑
i=X′

pt+1(i)(2X′ − Xt)

≥
2X′∑
i=0

qt+1(i)i+
λ∑

i=2X′+1
qt+1(i)2X′ − Xt

≥
λ∑
i=0

qt+1(i)i+
λ∑

i=2X′+1
qt+1(i)(2X′ − i)− Xt

≥ E[X̃t+1]− Xt −
λ∑

i=2X′+1
qt+1(i)i

≥ ∆t − λPr[X̃t+1 > 2X′].

If ∆t ≤ X′

2 , then by Chernoff bounds we have

Pr[X̃t+1 ≥ 2X′] = Pr
[
X̃t+1 ≥

(
1 +

2X′

Xt +∆t
− 1
)
(Xt +∆t)

]
≤ exp

(
−
( 2X′

Xt +∆t
− 1
)2 Xt +∆t

3

)

≤ exp
(
− (X′ −∆)2

3(X′ +∆)

)
≤ exp

(
− X′

18
)
.



40 1.8. Useful Tools

Since by the lemma conditions we have X′ ≥ 18 ln 2λ
∆min

, we have Pr[X̃t+1 > 2X′] ≤ ∆min
2λ . Hence

we obtain

E[Φ(Xt)− Φ(Xt+1) | Xt] ≥ ∆t − λ
∆min
2λ ≥ 1

2∆min.

Otherwise, if ∆t ≥ X′

2 > 1, we have (Xt+∆t)
eµ > 1

λ
and thus by Lemma 23 we have Pr[Xt+1 ≥

Xt + ∆t] ≥ 1
4 . At the same time by Chernoff bounds we have Pr[Xt+1 < Xt] ≤ exp(−X′

6 ). Hence,
the drift of the potential function is at least min{X′,∆min}

4 − X′ exp(−X′

6 ) ≥
X′

8 − 3 ≥ X′

12 .
Finally, applying the additive drift theorem (Theorem 2) we have

E[T(X′)] ≤ Φ(X0)
min{1

2∆min, 1
12X′}

≤ max
{4X′ − 2X0

∆min
,24
}
.
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Chapter 2 The Methods of Runtime Analysis of the Mutation-based
Evolutionary Algorithms with Non-trivial Populations

As it was shown in Section 1.5, despite the impressive results of the last two decades,
our understanding of the role of populations even in simple mutation-based EAs is still on un-
satisfying level. The main problem which researchers face here is the complex dynamics of the
populations. For the elitist (µ+ λ) EA the only precise results we are aware of are for the special
cases—the (1 + λ) EA (where it is enough to track the dynamics of one parent individual) and
the (µ+ 1) EA (where the population dynamics are slow, namely only one individual can be
changed in each iteration). For the non-elitist (µ, λ) EA there is more understanding of how non-
trivial parent and offspring populations interact with each other, however, this has only being
studied in two parameter settings when either algorithm fails to converge or when it replicates
the behavior of the elitist (µ+ λ) EA with high probability.

In this chapter we propose two analysis methods, the complete trees technique and meth-
ods of analysis of the no-drift processes. Then we show the effectiveness of these tools by finding
the asymptotically precise runtime of the (µ+ λ) EA and by studying the runtime of the (µ, λ) EA
with the parameters which are on the threshold between the two previously observed regimes
of the algorithm.

2.1 Proposed Analysis Methods

2.1.1 Complete Trees

The main problem when proving lower bounds for population-based algorithms is that
many individuals which are created during the run of the EA are removed at some stage by
selection operations. This creates a complicated population dynamics, which is very hard to
follow via mathematical means.

One way to overcome this difficulty is to try to disregard the effect of selection and instead
regard an optimistic version of the evolutionary process in which no individuals are removed.
This idea can be traced back to [117]. In the context of evolutionary computation, it has been
first used in [137] (see [136] for an extended version) in the analysis of a steady-state genetic
algorithm with fitness-proportionate selection. In [85], this argument was used in the analysis
of a (µ + 1) evolution strategy (in continuous search spaces). Not surprisingly, the analysis of
the (µ+ 1) EA [138] uses the artificial populations argument as well.

This technique then found applications in the analysis of memetic algorithms [129], aging-
mechanisms [91], and non-elitist algorithms [96, 99]. The artificial population argument was
also used to overcome the difficulties imposed by another removal mechanism, namely Pareto
domination in evolutionary multi-objective optimization [46]. While similar in spirit, this work
however uses quite different techniques, e.g., it does not represent the search process via tree
structures.
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Of course, to make the new process really an optimistic version of the original one, we
have to ensure that, despite the larger population present, each individual which is also present
in the true population has the same power of creating good solutions as in the original process.
To ensure this in our process, we assume that in the artificial process each individual creates
Bin(λ,1/µ) offspring. This assumption, in fact, leads to a much more drastic growth of the
artificial population than the fact that we disregard selection.

When working with such an artificially enlarged population, there is a risk that the larger
population finds it easier to create the optimal solution. This would give weaker lower bounds.
So the main art in this proof approach is setting up the arguments in a way that the larger
population does still, in an asymptotic sense, not find the optimum earlier than the original
process. The reason why this is possible at all is that once selection is disregarded, the process
consists only of independent applications of the mutation operator. This allows to use strong-
concentration arguments which in the end give the desired result that none of the many members
of the artificial population is the optimal solution.

To make this approach formal, we use the following notion of a complete tree, which,
in simple words, describes all possible (iterated) offspring which could occur in a run of the
evolutionary algorithm. This notion is different from those used in the works above, which all
work with certain subtrees of the complete tree and use suitable arguments to reason that the
restricted tree still covers all individuals that can, with reasonable probability, appear. We feel
that our approach of working in the complete tree is technically simpler. For example, compared
to [138], we do not first need to argue that with high probability the true tree has only certain
depths and then, conditional on this event, argue that it does not contain an optimal solution.
Working in the complete tree, we also do not need arguments from branching processes as used
in [99]. Of course, the key argument that without selection we only do repeated unguided
mutation, is used by us in the same flavor as in all previous works.

More precisely, the complete tree with initial individual x0 is defined recursively as follow.
Every vertex is labeled with some individual (a bit-string) which could potentially occur in the
evolution process. The labels are not necessarily unique, but every vertex, except the root vertex
v0 is uniquely defined by the tuple (v, t, i), where v is the parent vertex (that is either the root
vertex, or another vertex defined by a tuple), t ∈ N is the iteration when this vertex was created
and i ∈ [1..λ] is the number of the vertex among the vertices with the same v and t. The tree
T0 = (V0,E0) at time t = 0 consists of the single (root) vertex v0 that is labeled with the bit-string
c(v0) = x0. Hence E0 = ∅. If Tt = (Vt,Et) is defined for some t ≥ 0, then we define the tree
Tt+1 = (Vt+1,Et+1) as follows. For each vertex in Vt, we add λ vertices, connect them to this
vertex, and generate their labels via standard-bit mutation from the parent. More precisely, let
Nt+1 := {(vt, t+ 1, i) | vt ∈ Vt, i ∈ [1..λ]} and Vt+1 = Vt ∪ Nt+1. We call vt the parent of (vt, t+ 1, i)
and (vt, t, i) the i-th child of vt in iteration t + 1. We generate the label c(vt, t + 1, i) by applying
standard-bit mutation to c(vt). We connect each new vertex with its parent, that is, we define
Et+1 = Et ∪ {(vt, (vt, t+ 1, i)) | vt ∈ Vt, i ∈ [1..λ]}. A simple example of a complete tree structure is
shown in Figure 5.

It is easy to see that a complete tree at time t contains exactly (λ + 1)t nodes, since each
vertex from Vt has exactly λ new children in Vt+1. As said earlier, it thus massively overestimates
the size of the true population of the EA.

For our purposes, it is not so much the total size of the tree that is important, but rather
the number of nodes in a certain distance from the root. We estimate these in the following
elementary lemma. Here and in the remainder, by distance we mean the graph theoretic distance,



Chapter 2. Analysis of Mutation-based Algorithms 43

– – –
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1 2 1 2 1 2 1 2 1 2 1 2

Figure 5 – The structure of the complete tree for the (3 + 2) EA after t = 2 iterations. The green
vertices are the initial vertices, the blue vertices were created in the first iteration and the orange vertices
were created in the second iteration. Each vertex is uniquely defined by a tuple of its parent vertex v,
iteration it was created t and its number i among the children of its parent vertex created at the same
iteration (the vertices in the figure are labeled with this number i). The highlighted vertices are the ones
which were actually created by the algorithm. The labels are omitted in this illustration for reasons of
readability

that is, the length of the (in this case unique) path between the two vertices. Observe that this
can be different from the iteration in which a node was generated. For example, the vertex
(v0, t, i), which is generated in iteration t from the initial vertex, has distance one from v0.
Lemma 30. Let Tt be a complete tree at time t. Let ℓ ∈ N0. Then Tt contains exactly(t

ℓ

)
λℓ

nodes in distance exactly ℓ from the root.
Proof. If t < ℓ, then there are no vertices in distance ℓ (recall that in our notation (t

ℓ

)
= 0 in

this case). Otherwise, let v be a vertex in distance exactly ℓ from the root. Then there are times
1 ≤ t1 < · · · < tℓ ≤ t and offspring numbers i1, . . . , iℓ ∈ [1..λ] such that with the recursive
definition of the vertices v1, . . . , vℓ via vd = (vd−1, td, id) for all d ∈ [1..ℓ], we have v = vℓ. Hence,
there are at most (t

ℓ

)
λℓ vertices in distance ℓ from the root. Conversely, each tuple of times and

offspring numbers as above defines a different vertex in distance ℓ. Hence, there are at least(t
ℓ

)
λℓ different vertices in distance ℓ from the root.

Clearly, a run of the (µ+ λ) EA creates a subforest of µ disjoint complete trees with
random root labels (complete forest). Whether a node of the complete forest appears in the
forest describing the run of the (µ+ λ) EA (the forest of the family trees) depends on the node
labels (more precisely, on their fitness). However, regardless of the node labels the following
is true: If some node vs is present in the population at iteration t, then the edge (vs, (vs, t, i)) is
present in the subforest at most with probability 1/µ, because for this it is necessary that the
i-th offspring generated in iteration t chooses vs as parent. Consequently, regardless of the nodes
labels, the probability that a node in distance ℓ from the root in the complete forest enters the
population of the (µ+ λ) EA, is at most µ−ℓ. Since we have not taken into account the node
labels, we observe that the probability that a particular node of the complete forest (i) is labeled
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with the optimum and (ii) makes it into the population of the (µ+ λ) EA, is at most µ−ℓp(ℓ, n)
with p(ℓ, n) denoting the probability that a vertex in distance ℓ from root is labeled with an
optimum (we show this probability for the (µ+ λ) EA with the standard bit mutation later in
Lemma 39).

By Lemma 30, using a union bound over all nodes in the complete forest up to iteration t,
we obtain the following theorem, which subsumes the method of the complete trees.
Theorem 6. The probability that the (µ+ λ) EA finds a unique optimum of a pseudo-Boolean in less
than t iterations is

qopt ≤ µ
t∑

ℓ=0

(t
ℓ

)(
λ

µ

)ℓ

p(ℓ, n). (3)

2.1.2 Drift Analysis for Processes with No Drift

In this section we consider stochastic processes with a very small drift compared to their
random fluctuations. Such processes are often analyzed via different mathematical tools for
martingales, e.g., with Azuma-Hoeffding inequality (Theorem 1.10.30 in [30]). However, all
such tools aim at giving an upper bound on the probability that a martingale deviates from its
expectation by some particular value. In this work we aim at the opposite result: we want to
know how much time such process needs to deviate from its expectation by some value.

We propose to use drift analysis to estimate this time t. To do so, we make a transformation
of the process. This idea has already been used to prove different drift theorems (e.g., variable
or multiplicative) via the additive drift theorem. However, there it was used for the processes
which already have drift, and the transformation only scaled the state space so that the drift
was approximately the same in all possible states. In contrast with these previous works, we
do a transformations which lets us obtain a drift from the variance of the original process. To
illustrate the main idea of this transformation, consider a stochastic process {Xt}t∈N such that

Xt+1 =

{
Xt + 1 with probability 1

2 ,
Xt − 1 with probability 1

2 .

This process has no drift, since E[Xt+1 | Xt] = 1
2(Xt − 1) + 1

2(Xt + 1) = Xt. However, consider a
function

h(x) = x(n− ln(x) + 1)

and a transformed process Yt = h(Xt) (temporarily ignore that it is not defined for all Xt). Func-
tion h(x) is monotonically increasing and concave in interval (0, en), therefore if Xt is in this
interval, then by Jensen’s inequality we have

E[h(Xt+1) | Xt] =
1
2h(Xt − 1) + 1

2h(Xt + 1) < h(Xt).

Hence, the transformed process has a drift towards zero. This idea is illustrated in Figure 6
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+ = zero drift

Original process

Xt

+ = drift downward

Transformed process

h(Xt)

Figure 6 – Illustration of the idea of how to transform a process with no drift to a process with drift.

In particular, we apply such transformation to a sequence of random variables {Xt}t∈N
which represents the number of the best individuals in the population of the (µ, λ) EA. Unless
the algorithm generates a better individual, the random variable Xt+1 has a distribution very
close to max{Bin(λ, Xt

eµ), µ}. If we have λ ≈ eµ, then E[Xt+1 − Xt] is very close to zero. Our aim is
to find the first time t when Xt turns into zero. We show this time in the following theorem.
Theorem 7. Let n be some positive integer number which tends to positive infinity (the Θ and big O
notation is used relative to n). Let λ, µ ∈ N satisfy

1) λ ≤ eµ,
2) λ ≥ (1− O( 1√n))eµ,
3) λ and µ are both ω(1) (which is necessary to satisfy the previous two conditions),
4) there exists c = Θ(1) such that µ ≤ n 1

2−c.
Let {Xt}t∈N be a sequence of non-negative integer random variables, such that for all t ∈ N we have
Xt ∼ min{µ,Bin(λ, pn(t))} with pn(t) close to Xt−1

eµ , namely∣∣∣∣pn(t)− Xt
eµ
∣∣∣∣ ≤ 2Xt

eµ√n .

Let also Xt be zero with probability one, if Xt−1 = 0. Then there exist s = Θ(1) and α = (80µ + 1)
such that Xα = 0 with probability at least s.

Before we prove this theorem we show the following lemma, where we transform the
process Xt and show that the transformed process has a constant drift towards zero.
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Lemma 31. Let Xt be a process from Theorem 7. Let h(x) = x(ln(µ) − ln(x) + 2) for all x ∈ [1..λ]
and let h(0) = 0. Let β = 1

20 . Then there exits a constant S such that
E[h(Xt)− h(Xt+1) | Xt ≥ S] ≥ β.

Proof. Assume that Xt = x for some x ∈ [1..µ]. Since we only consider one moment in time t, let
us denote pn(t + 1) by pn for brevity. Let X̃t+1 be a random variable which follows distribution
Bin(λ, pn) and which therefore dominates Xt+1. Since h is monotonically increasing, we have

E[h(Xt)− h(Xt+1) | Xt = x] ≥ E[h(Xt)− h(X̃t+1) | Xt = x]
= E [x(lnµ− ln x+ 2)− X̃t+1(lnµ− ln X̃t+1 + 2) | Xt = x]
= (lnµ+ 2)E[x− X̃t+1 | Xt = x] + E[X̃t+1 ln X̃t+1 | Xt = x]− x ln x.

(4)

We first show that the first term has a very small value. Since X̃t+1 ∼ Bin(λ, pn), its
expectation is λpn. Hence, we have

(lnµ+ 2)E[x− X̃t+1 | Xt = x] = (lnµ+ 2)(x− λpn)
≥ (lnµ+ 2)

(
x− λx

eµ
(

1 +
2√n
))

≥ (lnµ+ 2)
(
x− x

(
1 +

2√n
))

≥ −(lnµ+ 2) x√n
≥ −(lnµ+ 2) µ√n
≥ −

((1
2 − c

)
ln(n) + 2

)
n 1

2−c− 1
2

≥ −O
(
n− c

2
)
= −o(1).

(5)

Since X̃t+1 follows a binomial distribution, it can be represented as a sum of λ Bernoulli
random variables {Yi}i∈[1..λ] with success probability pn. Thus, we have

E[X̃t+1 ln X̃t+1 | Xt = x] = E
 λ∑

i=1
Yi ln

 λ∑
j=1

Yj

 | Xt = x


=
λ∑
i=1

E
Yi ln

 λ∑
j=1

Yj

 | Xt = x


= λpnE
ln

1 +
λ−1∑
j=1

Yj

 | Xt = x
 .

Let X′ :=
∑λ−1

j=1 Yj, then it follows a binomial distribution Bin(λ − 1, pn). By Lemma 28, if λpn is
not less than some constant Smin then we have

E[ln(1 + X′)] = ln(1 + (λ− 1)pn)− 5
6

(1− pn)
(λ− 1)pn .
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Hence, we compute
E[X̃t+1 ln X̃t+1 | Xt = x]− x ln x

≥ λpn
(

ln(1 + λpn)− 5
6
(1− pn)
λpn

)
− x ln x

= λpn
(

ln(1 + λpn)− 5
6
(1− pn)
λpn

)
− λpn ln(λpn)

+ λpn ln(λpn)− x ln x

(6)

First we note that since x 7→ x ln x is a continuous function and since λpn = λx
eµ (1±O( 1√n)) =

x(1± O( 1√n)), we have

λpn ln(λpn)− x ln x ≥ −xO
( 1√n

)
≥ −µO

( 1√n
)

≥ −n 1
2−cO

( 1√n
)
≥ −o(1).

Recall that λ = ω(1) and that pn satisfies the following bounds

pn ≥ x
eµ
(

1− 2√n
)
,

pn ≤ x
eµ
(

1 +
2√n
)
≤ 1

e + o(1).

Thus, we have

λpn
(

ln(1 + λpn)− 5
6
(1− pn)
λpn

)
− λpn ln(λpn)

= λpn
(

ln
(

1 +
1− pn
λpn

)
− 5

6
(1− pn)
λpn

)
(by Lemma 18) ≥ λpn

(
1− pn
λpn − 2

(1− pn
λpn

)2
− 5

6 ·
1− pn
λpn ·

λ

λ− 1

)

≥ (1− pn)
(

1− 5λ
6(λ− 1) − 2(1− pn)

λpn
)

(since λ = ω(1)) ≥
(

1− 1
e − o(1)

)(
1− 5

6 −
2
x − o(1)

)
(if x ≥ 24) ≥

(
1− 1

e
)(1

6 −
1
12
)
− o(1) ≥ e− 1

12e − o(1).

Putting this into (6) and recalling (5) and (4), we conclude that if Xt ≥ S := max{Smin,24},
then we have

E[h(Xt)− h(Xt+1) | Xt ≥ S] ≥ e− 1
12e − o(1) ≥ 1

20 =: β
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Finally, we prove Theorem 7.
Proof of Theorem 7. Let S be a constant from Lemma 31. We define potential function

h(x) =
{
x(lnµ− ln x+ 2), if x ≥ S
0, otherwise.

Since we only lowered the potential values for x ≤ S, Lemma 31 holds also for this potential
function. Therefore, by Lemma 31 and by the additive drift theorem (Theorem 2) the expected
number of generations E[τ ] until Xt becomes less than S is at most

E[τ ] ≤ 20E[h(X0)] ≤ 20h(µ) = 40µ.

By Markov’s inequality the probability that Xt does not reach S in less than 80µ generations is
at most 1

2 .
As soon as Xt becomes less than S, the probability that in the next generation Xt becomes

zero is

(1− pn)λ ≥
(

1− S
eµ(1− o(1))

)λ

=

(
1− S

λ
(1− o(1))

)λ
λ→+∞−−−−→ e−S.

Hence, if λ is large enough, this probability is at least 2e−S
3 .

Finally, the probability that process Xt reaches zero in less than α = 80µ + 1 generation
is at least s := e−S

3 = Θ(1). Since as long as Xt reaches zero it cannot increase, we have Xα = 0
with the same probability.

2.2 Analysis of the (µ+ λ) EA

In this section we prove that for arbitrary values of µ and λ (which can be functions of
the problem size n, however, for the lower bound we assume that µ is at most polynomial in
n), the expected number of iterations the (µ+ λ) EA takes to find the optimum of the ONEMAX
function is

E[T] = Θ

(n log n
λ

+
n

λ/µ
+

n log+ log+(λ/µ)

log+(λ/µ)

)
,

where log+ x := max{1, log x} for all x > 0. This result subsumes the previous results for the
(1 + λ) EA and (µ+ 1) EA obtained in [87, 49, 138].

This runtime guarantee shows, e.g., that using a true parent population of size at most
max{log n, λ} does not reduce the asymptotic runtime compared to µ = 1. Such information
can be useful since it is known that larger parent population sizes can increase the robustness to
noise, see, e.g., [74].

With our methods, we can also analyze a related algorithm. He and Yao [80] and Chen,
He, Sun, Chen, and Yao [13] analyzed the (λ

1:1
+ λ) EA. We prove a tight runtime bound of

Θ(n log n
λ

+n) iterations, which also shows that the fairness in the parent selection does not change
the asymptotic runtime in this problem.
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2.2.1 Upper Bounds

In this section, we prove separately two upper bounds for the runtime of the (µ+ λ) EA
on the ONEMAX problem, the first one being valid for all values of µ and λ and the second one
giving an improvement for the case that λ is large compared to µ, more precisely, that λ/µ ≥ ee.

Although we do not propose novel analysis methods in this subsection, it is important
to have these upper bounds to show the tightness of our lower bound which we obtain via
the complete trees technique and to better understand the dynamics of the population of the
(µ+ λ) EA.

Where not specified differently, we denote the current best fitness in the population by i
and the number of best individuals in the population by j.

Increase of the Number of the Best Individuals

In this subsection we analyze how the number of individuals on the current-best fitness
level increases over time and derive from this two estimates for the time taken for a fitness
improvement. We note that often it is much easier to generate an additional individual with
current-best fitness by copying an existing one than to generate an individual having strictly
better fitness by flipping the right bits. Consequently, in a typical run of the (µ+ λ) EA, first
the number of best individuals will increase to a certain number and only then it becomes likely
that a strict improvement happens.

Since the increase of the number of individuals on the current-best fitness level via pro-
ducing copies of such best individuals is independent of the fitness function, we formulate our
results for the optimization of an arbitrary pseudo-Boolean function and hope that they might
find applications in other runtime analyses as well. So let f : {0,1}n → R be an arbitrary fitness
function which we optimize using the (µ+ λ) EA.

Assume that the (µ+ λ) EA starts in an arbitrary state where the best individuals have
fitness i and there are j1 such individuals in the population. At this point due to the elitism the
algorithm cannot decrease the best fitness i and it also cannot decrease the number of the best
individuals j1 until it increases the best fitness. Following [129, Lemma 2] we call an individual
fit if it has a fitness i or better. For j2 ∈ N, we define τj1,j2(i) to be the first time (number of
iterations) at which the population of the (µ+ λ) EA contains at least j2 fit individuals. We note
that this random variable τj1,j2(i) may depend on the particular initial state of the (µ+ λ) EA,
but since our results are independent of this initial state (apart from i and j1) we suppress in our
notation the initial state.

The time τ1,µ(i), that is, the specific case that j1 = 1 and j2 = µ, is also called the takeover
time of a new best individual. For this takeover time, Sudholt [129, Lemma 2] proved the upper
bound

E[τ1,µ(i)] = dlog5 µe

(
32

1− 1
e
· µ
λ
+ 1
)

= O
(
µ logµ

λ
+ logµ

)
(7)

for any i ∈ [0..n− 1].
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In this section we improve this result by (i) treating the general case of arbitrary j1, j2 ∈
[1..µ] and (ii) by showing an asymptotically smaller bound for the case λ = ω(µ). In our main
analysis of the (µ+ λ) EA, we need takeover times for general values of j2 to profit from the
event when we get a fitness gain before the population contains only best individuals, which is
likely to happen on the lower fitness levels as we show further. The extension to general values
of j1 is not needed, but since it does not take extra effort, we do it on the way.

We first prove the following result for arbitrary values of µ and λ. We need this result
since it allows arbitrary target numbers j2.
Lemma 32. Let i ∈ [0..n− 1] and j1, j2 ∈ [1..µ] with j1 < j2. Then

E[τj1,j2(i)] ≤
2eµ
λ

(
ln j2

j1 + 1
)
+ (j2 − j1).

Proof. To prove this lemma we use Theorem 3. For this purpose we define levels Aj1 , . . . ,Aj2. For
any j ∈ [j1..j2 − 1] the populations in level Aj have exactly j fit individuals. The level Aj2 consists
of all populations with at least j2 fit individuals. Note that the (µ+ λ) EA cannot go from level
Aj to any other level with smaller index, since it cannot decrease the number of fit individuals
due to the elitist selection.

If there are j fit individuals in the population, then the probability p1(j) to create as one
offspring a copy of a fit individual is the probability to select one of j fit individuals as a parent
multiplied by the probability not to flip any bit of it during the mutation. Hence,

p1(j) ≥ j
µ

(
1− 1

n
)n
≥ j

2eµ, (8)

where we used the inequality (1− 1
n)

n ≥ 1
2e that holds for all n ≥ 2.

The probability p2(j) to leave level Aj in one iteration is at least the probability to create
a copy of a fit individual as one of the λ offspring. Hence, by Lemma 21 we have

p2(j) ≥ 1− (1− p1(j))λ ≥ 1
1 + 1

p1(j)λ
≥ 1

1 + 2eµ
jλ

. (9)

By Theorem 3 we have

E[τj1,j2(i)] ≤
j2−1∑
j=j1

1
p2(j) ≤

j2−1∑
j=j1

(
1 +

2eµ
jλ
)
≤ 2eµ

λ

(
ln j2

j1 + 1
)
+ (j2 − j1).

We note that in case when j1 = 1 and j2 = µ our upper bound is O(µ logµ
λ

+ µ). This is
weaker than the upper bound (7) given in [129, Lemma 2] if λ = ω(logµ). Without proof we
note that in all other cases the two bounds are asymptotically equal.

The reason that our bound is weaker in some cases is that we do not consider the event
that the algorithm generates more than one fit offspring in one iteration, while Sudholt in [129,
Lemma 2] proved that the number of the fit offspring is multiplied by some constant factor in
every 32µ/λ iterations. The same idea may be used to prove the bound

E[τj1,j2(i)] ≤
⌈
log5

j2
j1
⌉( 32

1− 1
e
· µ
λ
+ 1
)

= O
(
µ log j2

j1
λ

+ log j2
j1

)
. (10)
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We still prefer to use to Lemma 32 in our proofs, since it gives us a bound that is easier to operate
with due to the simpler leading constants of each term, while the greater terms do not affect our
main results.

We now give a second bound for the case that λ
µ
≥ ee. It is asymptotically stronger than (7)

when λ = ω(µ) and µ = ω(1).

Lemma 33. Let λ
µ
≥ ee. Let i ∈ [1..n− 1] and j1, j2 ∈ [1..µ] with j1 < j2. Then

E[τj1,j2(i)] ≤ 4 ln j2
j1

ln λ
2eµ

+ 4.

Proof. Let the current population have j fit individuals. Then by (8) the probability that a fixed
offspring is a copy of a fit individual is p1(j) ≥ j

2eµ . Therefore, the number N of fit individuals
among the λ offspring dominates stochastically a random variable B with binomial distribution
Bin

(
λ, j

2eµ
)

. We have E[B] = λj
2eµ . By Lemma 23, Pr[B ≥ E[B]] ≥ 1

4 and thus Pr[N ≥ j
2eµ ] ≥

1
4 .

Consequently, in each iteration with probability at least 1
4 the number of the fit individuals in

the population is multiplied by a factor of at least (1 + λ
2eµ) (but obviously it cannot become

greater than µ).
For a formal proof we define the levels A1, . . . ,Am, where

m :=

⌈ ln j2
j1

ln
(

1 + λ
2eµ
)⌉+ 1.

Level Am consists of the populations with at least j2 fit individuals. For k ∈ [1..m − 1] the
populations of level Ak have exactly j fit individuals, where

j ∈
[
j1
(

1 +
λ

2eµ
)k−1

, j1
(

1 +
λ

2eµ
)k
− 1
]
,

and j < j2. To leave any level it is enough to multiply the number of the best individuals by
1 + λ

2eµ , and the probability of this event is at least 1
4 . By Theorem 3 we have

E[τj1,j2(i)] ≤
m−1∑
k=1

4 = 4
⌈ ln j2

j1
ln
(

1 + λ
2eµ
)⌉

≤ 4 ln j2
j1

ln λ
2eµ

+ 4.

We note that the proof of Lemma 33 holds for the weaker assumption λ
µ
> 2e as well.

However in order not to confuse the reader later when we consider the case λ
µ
> ee and where

this lemma is used, we formulate Lemma 33 with unnecessarily stronger condition.
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When j2 = µ and j1 = 1 the bound yielded by Lemma 33 is at least as tight as that of (7).
For the general values of j1 and j2 our bound is at least as tight as the bound (10). When λ/µ ≥ ee
the bound (10) simplifies to O(log j2

j1 ). If λ = ω(µ) and j2
j1 = ω(1) then we have

4 ln j2
j1

ln λ
2eµ

+ 4 = o
(

log j2
j1
)
.

Therefore, in this case the bound given in Lemma 33 is asymptotically smaller than (10). In all
other cases the two bounds are asymptotically equal.

The reason that we have obtained a tighter bound is that we have proven that the number
of the fit individuals is multiplied by a super-constant factor with constant probability, while the
proof of [129, Lemma 2] considers only the multiplication by a constant factor.

We now use Lemmas 32 and 33 to prove estimates for the time it takes to obtain a strictly
better individual once the population contains at least one individual of fitness i. We define T̃i
as the number of iterations before the algorithm finds an individual with fitness greater than i,
if it already has an individual with fitness i in the population. As before, this random variable
depends on the precise initial state, but since our results do not rely on the initial state, we
suppress it in this notation.

To prove upper bounds on T̃i, we estimate the time it takes until some number µ0(i) ∈ [1..µ]
of individuals with fitness at least i are in the population and then estimate the time to find an
improving solution from this situation. We phrase our results here in terms of µ0(i) and optimize
the value of µ0(i) in the later subsections.
Corollary 1. For any i ∈ [0..n− 1] and µ0(i) ∈ [1..µ], we have

E[T̃i] ≤ µ0(i) + 2eµ
λ

(ln(µ0(i)) + 1) + eµn
λ(n− i)µ0(i) .

Proof. Even if the algorithm has only one best individual in the population, in τ1,µ0(i)(i) iterations
it will have at least µ0(i) individuals with fitness at least i. Assume that at this time we have
no individuals with fitness better than i (since otherwise we are done). Let τ+(i) be the runtime
until the algorithm creates an individual with fitness at least i+ 1 if it already has at least µ0(i)
individuals with fitness i in the population.

In this setting the probability p′(i) that a particular offspring has fitness better than i is
at least the probability to choose one of the µ0(i) best individuals and to flip only one of n − i
zero-bits in it. We estimate

p′(i) ≥ µ0(i)(n− i)
µn

(
1− 1

n
)n−1

≥ (n− i)µ0(i)
eµn .

By Lemma 21 the probability p′′(i) to create at least one superior individual among the λ offspring
is

p′′(i) ≥ 1− (1− p′(i))λ ≥ λp′(i)
1 + λp′(i) =

1
1 + 1

λp′(i)
≥ 1

1 + eµn
λ(n−i)µ0(i)

. (11)

With p′′(i) we estimate E[τ+(i)] ≤ 1
p′′(i) . Therefore, by Lemma 32 we have

E[T̃i] ≤ E[τ1,µ0(i)(i) + τ+(i)] = E[τ1,µ0(i)(i)] + E[τ+(i)]
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≤ E[τ1,µ0(i)(i)] +
1

p′′(i)
≤ 2eµ

λ
(lnµ0(i) + 1) + (µ0(i)− 1) + 1 +

eµn
λ(n− i)µ0(i)

= µ0(i) + 2eµ
λ

(ln(µ0(i)) + 1) + eµn
λ(n− i)µ0(i) .

Corollary 2. If λ
µ
> ee then for any i ∈ [0..n− 1] and µ0(i) ∈ [1..µ], we have

E[T̃i] ≤ 4lnµ0(i)
ln λ

2eµ
+

eµn
λ(n− i)µ0(i) + 5.

Proof. Using the same arguments as in the proof of Corollary 1 (in particular, the estimate for
p′′(i) given in (11)) and by Lemma 33 we estimate

E[T̃i] ≤ E[τ1,µ0(i)(i) + τ+(i)] = E[τ1,µ0(i)(i)] + E[τ+(i)]
≤ E[τ1,µ0(i)(i)] +

1
p′′(i)

≤ 4lnµ0(i)
ln λ

2eµ
+ 4 + 1 +

eµn
λ(n− i)µ0(i)

= 4lnµ0(i)
ln λ

2eµ
+

eµn
λ(n− i)µ0(i) + 5.

We note that Lemma 33 is tight in the sense that we cannot obtain a better upper bound
using only the argument of copying the fit individuals.

To formalize this we assume that there is a set D ⊆ {0,1}n of desired individuals. We regard
the variant EA0 of the (µ+ λ) EA which only accepts offspring which are desired individuals
identical to their parent. Note that the number of desired individuals in a run of this artificial
algorithm can never decrease. Assuming that the initial population of the EA0 contains exactly
j1 desired individuals, we define τ ∗j1,j2(i) as the number of iterations until the population of the
EA0 contains at least j2 desired individuals (unlike before, this notation does not depend on
the precise initial population as long as it has exactly j1 desired individuals, but this fact is not
important in the following). We show the following result.
Lemma 34. Let λ

µ
≥ ee. Let j1, j2 be some integer numbers in [1..µ] such that j2 > j1. Then

E[τ ∗j1,j2(i)] = Ω

( log j2
j1

log λ
µ

+ 1
)
.

Proof. If j2
j1 ≤

λ
µ
, then

log j2
j1

log λ
µ

+ 1 = Θ(1)
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and the claim is trivial, since we need at least one iteration to increase the number of the copies
in the population.

Consider j2
j1 ≥

λ
µ
≥ ee. It is enough to show that E[τ ∗j1,j2(i)] = Ω(log( j2j1 )/ log(λ

µ
)) (without

+1 term). Let j(t) be the number of the desired individuals after iteration t. We have j(0) = j1.
Let N(t) be the number of desired individuals newly created in iteration t. Then N(t) follows a
binomial law Bin(λ, j(t−1)

enµ ), where en := (1− 1
n)

−n ≥ e. Hence, we have E[N(t) | j(t−1)] = j(t−1)λ
enµ ≤

j(t−1)λ
eµ .

For any t ∈ N we have j(t) ≤ j(t−1)+N(t), where strict inequality occurs only if j(t−1)+
N(t) > µ. Therefore, we have

E[j(t)] = E[E[j(t) | j(t− 1)]] ≤ E[E[j(t− 1) + N(t) | j(t− 1)]]
= E[j(t− 1)] + E[E[N(t) | j(t− 1)]] ≤ E[j(t− 1)] + E

[ j(t− 1)λ
eµ

]
= E[j(t− 1)] + λ

eµ E[j(t− 1)] =
(

1 +
λ

eµ
)
E[j(t− 1)].

By induction, we obtain

E[j(t)] ≤
(

1 +
λ

eµ
)t

j(0) =
(

1 +
λ

eµ
)t

j1,

and by Markov’s inequality, we have

Pr[j(t) ≥ j2] ≤ E[j(t)]
j2 ≤

(
1 +

λ

eµ
)t j1

j2 .

For
t := ln j2

2j1
ln
(

1 + λ
eµ
) = Ω

( log j2
j1

log λ
µ

)

we obtain
Pr[j(t) ≥ j2] ≤ 1

2 .

Hence, the probability that the EA0 does not obtain j2 desired individuals in t = Ω( log(j2/j1)
log(λ/µ) )

iterations is at least constant. Thus, the expected number of iterations before this happens is at
least Ω( log(j2/j1)

log(λ/µ) ).

Unconditional Upper Bound

Having the results of the previous subsection for the takeover times we first prove the
following upper bound, which is valid for all values of µ and λ. When λ is not significantly
larger than µ, then the (µ+ λ) EA typically increases the best fitness by at most a constant in
each iteration. For this reason, we can use Theorem 3 and obtain a runtime bound that will turn
out to be tight for this case.
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Theorem 8. The expected number of iterations for the (µ+ λ) EA to optimize the ONEMAX problem
is

O
(n log n

λ
+

nµ
λ

+ n
)
.

Proof. To use Theorem 3 we define levels A0, . . . ,An such that level Ai, i ∈ [0..n], consists of all
populations having maximum fitness equal to i. In Corollary 1 we have already estimated the
expected times E[T̃i] the (µ+ λ) EA takes to leave these levels. These estimates depended on the
number µ0(i) of individuals of fitness i we aim at before leaving the level. By choosing suitable
values for the µ0(i) we prove our bound.

The choice of µ0(i) is guided by the following trade-off. If we choose µ0(i) = µ, then
after having µ best individuals in the population we have the highest probability to find a better
individual. However, we pay for it with the time we spend on obtaining µ copies of the best
individual. On the other hand, if we choose µ0(i) = 1 we do not spend any iteration filling the
population with copies of the best individual, but we have a low chance to increase the current
fitness. How this trade-off is optimally resolved, and hence the optimal value of µ0(i), depends
on the probability to create a better individual and thus on the current fitness i.

We distinguish three cases depending on current fitness i. The “milestones” which mark
the transition between these cases are the fitness values i = dn− n

2+λ/(eµ)e and i = bn− n
µ(2+λ/e)c.

While the best fitness is below the first milestone, the probability to increase the fitness is so
high that we do not need to have more than one best individual in the population. Beyond the
second milestone this probability is so low that we better spend the time to fill the population
with the copies of the best individual. Between the two milestones we have to find a suitable
value of µ0(i) to give a balanced trade-off.

To simplify the notation, we define ∆i := 1 +
√

1 + nλ
e(n−i)µ . Note that

1 +

√ n
n− i

√
λ

eµ ≤ ∆i ≤ 1 +

√ n
n− i

√
1 +

λ

eµ. (12)

This value of ∆i arises from the computation of the derivative of the upper bound on E[T̃i] from
Corollary 1, which is needed to find the optimal value of µ0(i) in the second case, when the
current fitness is between the two milestones.

For i ≤ dn− n
2+λ/(eµ)e we define µ0(i) := 1. By Corollary 1 we have

E[T̃i] ≤ eµn
λ(n− i) +

2eµ
λ

+ 1.

Let T1 be the number of iterations before the (µ+ λ) EA finds an individual with fitness greater
than dn− n

2+λ/(eµ)e for the first time. Then by Theorem 3 we have

E[T1] ≤
⌈n− n

2+λ/eµ ⌉∑
i=0

E[T̃i] ≤
⌈n− n

2+λ/eµ ⌉∑
i=0

( eµn
λ(n− i) +

2eµ
λ

+ 1
)

≤ eµn
λ

(
ln(n)− ln

( n
2 + λ/eµ

)
+ 1
)
+

2eµ
λ

n+ n

=
eµn
λ

ln
(

2 +
λ

eµ
)
+

3eµn
λ

+ n
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= O
(µn
λ

)
+ O(n),

where we used the estimate eµ
λ

ln(2 + λ
eµ) = O(1 + µ

λ
) that holds for any asymptotic behavior of

µ/λ.
For dn− n

2+λ/(eµ)e < i ≤ bn− n
µ(2+λ/e)c we define µ0(i) := d n

(n−i)∆i
e. By Corollary 1 we have

E[T̃i] ≤ n
(n− i)∆i

+ 1 +
2eµ
λ

(
ln n

(n− i)∆i
+ 2
)
+

eµ∆i
λ

.

By (12), we have

E[T̃i] ≤ n
(n− i)

(
1 +

√
n

n−i
√

λ
eµ
) + 1

+
2eµ
λ

ln n
(n− i)

(
1 +

√
n

n−i
√

λ
eµ
) + 2


+

eµ
λ

(
1 +

√ n
n− i

√
1 +

λ

eµ

)
.

(13)

Let T2 be the number of iterations until the (µ+ λ) EA finds an individual with fitness
greater than bn − n

µ(2+λ/e)c for the first time if it already has an individual with fitness greater
than dn− n

2+λ/(eµ)e in the population. By Theorem 3 and by (13), we obtain

E[T2] ≤
⌊n− n

µ(2+λ/e) ⌋∑
i=⌈n− n

2+λ/(eµ) ⌉+1
E[T̃i]

≤ n
⌊n− n

µ(2+λ/e) ⌋∑
i=⌈n− n

2+λ/(eµ) ⌉+1

1
(n− i)

(
1 +

√
n

n−i
√

λ
eµ
)

+
eµ
λ

⌊n− n
µ(2+λ/e) ⌋∑

i=⌈n− n
2+λ/(eµ) ⌉+1

(
1 +

√ n
n− i

√
1 +

λ

eµ

)

+
2eµ
λ

⌊n− n
µ(2+λ/e) ⌋∑

i=⌈n− n
2+λ/(eµ) ⌉+1

ln
( n
(n− i)∆i

)
+

2eµ
λ

2n+ n.

(14)
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We regard three sums in (14) separately. First, by the estimate ∑n
i=1 1/√i ≤ 1 +∫ n

1 (1/
√x)dx < 2√n, we obtain

⌊n− n
µ(2+λ/e) ⌋∑

i=⌈n− n
2+λ/(eµ) ⌉+1

1
(n− i)

(
1 +

√
n

n−i
√

λ
eµ
)

≤
⌊n− n

µ(2+λ/e) ⌋∑
i=⌈n− n

2+λ/(eµ) ⌉+1

1
(n− i)

√
n

n−i
√

λ
eµ

=

√ eµ
λn

⌊n− n
µ(2+λ/e) ⌋∑

i=⌈n− n
2+λ/(eµ) ⌉+1

1√n− i

≤
√ eµ

λn · 2
√ n

2 + λ/(eµ) ≤ 2
√ eµ

λn
√ n

λ/(eµ) = 2eµ
λ
.

(15)

To analyze the second sum we also use the estimate 1+t
2+t < 1 valid for all t ∈ [0,+∞). We

obtain

⌊n− n
µ(2+λ/e) ⌋∑

i=⌈n− n
2+λ/(eµ) ⌉+1

(
1 +

√ n
n− i

√
1 +

λ

eµ

)

≤ n+
√
n
(

1 +
λ

eµ
) ⌊n− n

µ(2+λ/e) ⌋∑
i=⌈n− n

2+λ/(eµ) ⌉+1

1√n− i

≤ n+
√
n
(

1 +
λ

eµ
)
· 2
√ n

2 + λ/(eµ)

= n+ 2n
√

1 + λ/(eµ)
2 + λ/(eµ) ≤ 3n.

(16)

For the last sum we use the logarithmic version of Stirling’s formula, that is, ln(n!) =

n ln(n)− n + O(log(n)) (see, e.g. [120] or [30, Theorem 1.4.10]), and the estimate ln(2+t)+2
2+t ≤ 2

for all t ∈ [0,+∞). We obtain
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⌊n− n
µ(2+λ/e) ⌋∑

i=⌈n− n
2+λ/(eµ) ⌉+1

ln
( n
(n− i)∆i

)

≤
⌊n− n

µ(2+λ/e) ⌋∑
i=⌈n− n

2+λ/(eµ) ⌉+1
ln
( n
(n− i)

)

≤
⌈ n

2 + λ/(eµ)
⌉

ln(n)− ln
 n∏

i=⌈n− n
2+λ/(eµ) ⌉

(n− i)


≤
⌈ n

2 + λ/(eµ)
⌉

ln(n)− ln
(⌈ n

2 + λ/(eµ)
⌉
!

)
=

⌈ n
2 + λ/(eµ)

⌉(
ln(n)− ln

⌈ n
2 + λ/(eµ)

⌉
+ 1
)

+ O
(

log
⌈ n

2 + λ/(eµ)
⌉)

≤ n
2 + λ/(eµ)

(
ln
(

2 +
λ

eµ
)
+ 2
)
+ o(n)

≤ 2n+ o(n).

(17)

Finally, by putting (15), (16) and (17) into (14) we obtain

E[T2] ≤ n · 2eµ
λ
+

eµ
λ
· 3n+ 2eµ

λ
(2n+ o(n)) + 4eµn

λ
+ n

=
13eµn

λ
+ n+ o

(µn
λ

)
= O

(µn
λ

+ n
)
.

For n − 1 ≥ i > bn − n
µ(2+λ/e)c we define µ0(i) := µ. Note that this case can only appear

when n
µ(2+λ/e) ≥ 1 and thus µ ≤ n

(2+λ/e) = O(n/λ). By Corollary 1 the expected waiting time for
a fitness gain is at most

E[T̃i] ≤ µ+
2eµ
λ

(ln(µ) + 1) + en
λ(n− i) .

Let T3 be the number of iterations until the (µ+ λ) EA finds the optimum starting from the
moment when it has an individual with fitness greater than bn − n

µ(2+λ/e)c in the population.
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Then by Theorem 3 we have

E[T3] ≤
n−1∑

i=⌊n− n
µ(2+λ/e) ⌋+1

E[T̃i]

≤
n−1∑

i=⌊n− n
µ(2+λ/e) ⌋+1

(
µ+

2eµ
λ

(ln(µ) + 1) + en
λ(n− i)

)

≤ µ
n

µ(2 + λ/e) +
2eµ
λ

(ln(µ) + 1) n
µ(2 + λ/e)

+
en
λ

(
ln n

µ(2 + λ/e) + 1
)

= O
(n
λ

)
+ O

(n logµ
λ2

)
+ O

(n log n
λ

)
= O

(n logµ
λ2

)
+ O

(n log n
λ

)
= O

(µn
λ

)
+ O

(n log n
λ

)
.

Summing the expected runtimes for all optimization stages, we obtain the upper bound
for the expected total runtime.

E[T] ≤ E[T1] + E[T2] + E[T3]

= O
(µn
λ

+ n
)
+ O

(µn
λ

+ n
)
+ O

(
µn
λ

+
n log n

λ

)
= O

(n log n
λ

+
µn
λ

+ n
)
.

Upper Bound with Large λ

In this section we consider the case when λ
µ
> ee. Due to the large number of offspring

the algorithm performs significantly better in this case. The first reason of this speed-up is that
the algorithm can now gain several fitness levels in one iteration with high probability when
the current-best fitness is small. The second reason is the faster increase of the number of best
individuals, see Corollary 2.

These two observations allow us to prove the following upper bound on the runtime.

Theorem 9. If λ
µ
≥ ee then the expected number of iterations for the (µ+ λ) EA to optimize the

ONEMAX problem is
O
(n log log λ

µ

log λ
µ

+
n log n

λ

)
.
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Note that the bound given in Theorem 9 is asymptotically the same as the bound given
in Theorem 8 when λ

µ
= Θ(1). The difference between the two bounds becomes asymptotically

significant only when λ
µ

= ω(1). Therefore it does not matter which constant we choose to
distinguish the fast regime of the algorithm. The main purpose of the choice of ee as a border
value is to simplify the proofs and to improve their readability. However without proof we note
that all arguments used in this section hold also for the smaller values of λ

µ
which are greater

than 2e.
To prove Theorem 9 we split the optimization process into four phases. Each phase corre-

sponds to some range of the best fitness values, and the phase transition occurs at fitness values
n − n

ln λ
µ

, n − µn
λ

and n − n
λ
. In each phase the (µ+ λ) EA has a specific behavior, so we analyze

each phase separately in the following four lemmas.
During the first phase, while the fitness of the best individual is below n − n

ln λ
µ

, regardless
of the number of best individuals, with constant probability we generate an offspring increasing
the best fitness in the population by at least γ := b ln λ

µ

2 ln ln λ
µ

c. So we need not more than an expected
number of O( n

γ
) iterations to finish the first phase.

Let R1 be the runtime of the (µ+ λ) EA until it finds an individual with fitness at least
n− n

ln λ
µ

, in other words, the duration of the first phase. We prove the following upper bound on
the expected value of R1.
Lemma 35 (Phase 1). If λ

µ
≥ ee, then we have

E[R1] = O
(n log log λ

µ

log λ
µ

)
.

Proof. To use Theorem 3, we split the space of populations S into levels A1, . . .Am, where

m :=

⌈bn− n
ln λ

µ

c

γ

⌉
+ 1.

If k < m, then the populations of level Ak have the fitness of the best individual in [(k−1)γ..kγ−1]
(but less than n− n

ln λ
µ

). The level Am consists of all populations containing an individual of fitness
at least n− n

ln λ
µ

.
To show that we have a constant probability to leave any level, we consider the probability

that a particular offspring has a fitness exceeding the current best fitness i by at least γ. This is
at least the probability to choose one of the best individuals and to flip exactly γ zero-bits in it
and not to flip the other n− γ bits, namely(n− i

γ

) j
µnγ

(
1− 1

n
)n−γ

≥ j
eµ
(n− i

nγ
)γ

=: pγ(i).

The probability to increase the best fitness by at least γ with one of λ offspring is at least
1− (1− pγ(i))λ. Thus, by Lemma 21, the expected number of iterations for this to happen is not
larger than

1
1− (1− pγ(i))λ ≤ 1 + eµ

λ

( nγ
n− i

)γ

.
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Since λ
µ
≥ ee, we have γ = b ln λ

µ

2 ln ln λ
µ

c ≥ b e2c = 1. Using this and the estimate n
n−i ≤ ln λ

µ

valid during this phase, we compute( nγ
n− i

)γ

≤ exp
(
γ ln

(
γ ln λ

µ

))
≤ exp

( ln λ
µ

2 ln ln λ
µ

ln
( ln2 λ

µ

2 ln ln λ
µ

))

≤ exp
( ln λ

µ

2 ln ln λ
µ

2 ln ln λ

µ

)
= exp

(
ln λ

µ

)
=

λ

µ
.

Therefore, the expected time to increase the fitness by γ (and thus to leave level Ak for any
k < m) is at most 1 + e. Summing over the levels A1, . . . ,Am−1 , by Theorem 3 we have

E[R1] ≤
m−1∑
k=1

(1 + e) < (1 + e)m < (1 + e)n
γ
= O

(n log log λ
µ

log λ
µ

)
.

Having found an individual with fitness at least n− n
ln λ

µ

, we enter the second phase. Due
to the elitist selection, the minimum fitness in the population does not decrease, so there is no
risk of a fall-back into the first phase.

In the second phase, due to the smaller distance from the optimum, fitness gains by more
than a constant are too rare to be exploited profitably. However, even when we only have one
best individual in the population, the probability to create at least one better individual in one
iteration will still be constant. Consequently, we do not need to analyze how the the number
of best individuals grows. This phase ends when the best fitness in the population is n − µn

λ
or

more.
Let R2 be the runtime of the (µ+ λ) EA until it finds an individual with fitness at least

n − µn
λ

starting from the moment when it has an individual with fitness at least n − n
ln λ

µ

in the
population. In other words, R2 is the duration of the second phase.
Lemma 36 (Phase 2). If λ

µ
≥ ee, then we have

E[R2] = O
(

n
log λ

µ

)
.

Proof. For
i ∈
[⌈

n− n
ln λ

µ

⌉
..

⌈
n− µn

λ

⌉
− 1
]
,

the level Bi is defined as the set of all populations in which the best individuals have fitness i.
For i = dn− µn

λ
e let the level Bi consist of all populations with best fitness at least i.

By Corollary 2 and defining µ0(i) := 1 for all i, we have

E[T̃i] ≤ eµn
λ(n− i) + 5 ≤ e+ 5,



62 2.2. Analysis of the (µ+ λ) EA

where the last estimate follows from i ≤ n− µn
λ

. Therefore, by Theorem 3

E[R2] ≤
⌈n−nµ/λ⌉−1∑
i=⌈n−n/ ln λ

µ
⌉

E[T̃i] ≤ (5 + e) n
ln λ

µ

= O
(

n
log λ

µ

)
.

After completion of the second phase, generating a strictly better individual is so difficult
that it pays off (in the analysis) to wait for more than one best individual in the population. More
precisely, depending on the current best fitness i we define a number µ0(i) and compute the time
to reach µ0(i) best individuals and argue that the expected time to generate a strict improvement
when at least µ0(i) best individuals are in the population is only constant. Since, as discussed in
Lemma 33, the number of the best individuals in the population roughly increases by a factor
(1 + λ

2eµ) in each iteration, the algorithm obtains µ0(i) individuals reasonably fast.
Let R3 be the runtime of the (µ+ λ) EA until it finds an individual with fitness at least

n− n
λ
, the end of the third phase, starting from the moment when it has an individual with fitness

at least n− µn
λ

in the population.
Lemma 37 (Phase 3). If λ

µ
≥ ee, then we have

E[R3] = O
(µn
λ

)
.

Proof. During this phase the best fitness i in the population satisfies

n− µn
λ
≤ i < n− n

λ
,

which implies
λ

µ
≤ n

n− i < λ. (18)

For these values of i we define µ0(i) := d nµ
(n−i)λe. Note that µ0(i) ∈ [1..µ].

For
i ∈
[
dn− µn

λ
e..dn− n

λ
e − 1

]
,

level Ci is defined as a set of all populations in which the best individuals have fitness i. For
i = dn− n

λ
e let the level Ci consist of all populations with best fitness at least i.

By Corollary 2 and by the definition of µ0(i) we have

E[T̃i] ≤ 4lnµ0(i)
ln λ

2eµ
+

eµn
λ(n− i)µ0(i) + 5

≤ 4
ln λ

2eµ

(
ln nµ

(n− i)λ + 1
)
+ e+ 5.

By Theorem 3 we obtain

E[R3] ≤
⌈n−n/λ⌉−1∑
i=⌈n−nµ/λ⌉

T̃i
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≤
⌈n−n/λ⌉−1∑
i=⌈n−nµ/λ⌉

(
4

ln λ
2eµ

(
ln nµ

(n− i)λ + 1
)
+ e+ 5

)

≤ 4
ln λ

2eµ

nµ
λ

+

⌈n−n/λ⌉−1∑
i=⌈n−nµ/λ⌉

ln nµ
(n− i)λ

+
nµ
λ
(e+ 5).

We estimate
⌈n−n/λ⌉−1∑
i=⌈n−nµ/λ⌉

ln nµ
(n−i)λ using Stirling’s formula as in (17). We also notice that this

phase occurs only when nµ
λ
> 1, thus we have (ln nµ

λ
− lnbnµ

λ
c) ≤ 1. Hence, we obtain.

⌈n−n/λ⌉−1∑
i=⌈n−nµ/λ⌉

ln nµ
(n− i)λ ≤

⌊nµ/λ⌋∑
i=1

ln nµ
iλ

=
⌊nµ
λ

⌋
ln nµ

λ
−
⌊nµ
λ

⌋
ln
⌊nµ
λ

⌋
+
⌊nµ
λ

⌋
+ O

(
log
⌊nµ
λ

⌋)
=
⌊nµ
λ

⌋(
ln nµ

λ
− ln

⌊nµ
λ

⌋
+ 1
)
+ o
(µn
λ

)
≤ 2nµ

λ
+ o
(µn
λ

)
.

Therefore,

E[R3] ≤ (5 + e)µn
λ

+ 42nµ
λ
+ o(µn

λ

)
+ nµ

λ

ln λ
2eµ

= O
(µn
λ

)
.

When the algorithm is closer to the optimum than in the third phase, then we cannot
expect to have a constant probability for a strict fitness improvement even when the whole
population consists of individuals of best fitness. In this forth and last phase, we thus always
wait (in the analysis) until the population only contains best individuals and then estimate the
expected time for an improvement. We denote by R4 the runtime until the algorithm finds the
optimum if it already has an individual with fitness at least n− n

λ
in the population.

Lemma 38 (Phase 4). If λ
µ
≥ ee then

E[R4] = O
(n log n

λ

)
.

Proof. For
i ∈
[⌈

n− n
λ

⌉
..n− 1

]
we define level Di as a set of all populations in which the best individuals have fitness i. We also
define µ0(i) = µ for these values of i.
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By Corollary 2 we have

E[T̃i] ≤ 4 lnµ

ln λ
2eµ

+
en

λ(n− i) + 5.

Therefore, by Theorem 3, we obtain

E[R4] ≤
n−1∑

i=⌈n− n
λ
⌉

(
4 lnµ

ln λ
2eµ

+
en

λ(n− i) + 5
)

≤ 4n lnµ

λ ln λ
2eµ

+
en(ln n

λ
+ 1)

λ
+

5n
λ

= O
(

n
log λ

µ

)
+ O

(n log n
λ

)
.

Finally, we prove Theorem 9.
Proof (Theorem 9). Since we consider an elitist algorithm that cannot reduce the best fitness, by
linearity of expectation and Lemmas 35 to 38 we have

E[T] ≤ E[R1] + E[R2] + E[R3] + E[R4] = O
(n log log λ

µ

log λ
µ

+
n log n

λ

)
.

Comparison With Other Upper Bounds

We first note that our upper bound

O
(n log n

λ
+

n
λ/µ

+
n log+ log+(λ/µ)

log+(λ/µ)

)
for the runtime of the (µ+ λ) EA on ONEMAX subsumes the known bounds

O(n log n+ µn)
for the (µ+ 1) EA [138] and

O
(n log n

λ
+

n log+ log+ λ

log+ λ

)
for the (1 + λ) EA [49].

We are not aware of any previous result for the (µ+ λ) EA for general values of µ and λ.
We believe that a domination argument allows to transfer the results of Corus et al. [17] for the
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(µ, λ) EA to the (µ+ λ) EA. Since we prove in this work a bound that is at least as strong and
stronger in some cases, we sketch this argument now, but do not give formal proofs.

We recall that the (µ, λ) EA differs from the (µ+ λ) EA only in the selection mechanism,
which disallows the (µ, λ) EA to select any parent individual into the next population. This
imposes a constraint on the parameters requiring λ to be at least µ. For the case that λ > (1+δ)eµ,
δ > 0 a constant, and λ ≥ c ln(n) with sufficiently large constant c, Corus et al. [17, Theorem 3]
proved that the (µ, λ) EA within an expected number of O(n) iterations finds the optimum of
ONEMAX.

Since the (µ+ λ) EA uses elitist selection, we conjecture that the fitness values of its pop-
ulation always stochastically dominate those of the population of the (µ, λ) EA. More precisely,
for a run of the (µ+ λ) EA let us for i ∈ [1..µ] and t ∈ N denote by fit the fitness of the i-th
individual in the parent population after iteration t, where we assume that the individuals are
sorted by decreasing fitness. Let us denote by f′it the same for the (µ, λ) EA. Then for all i and t,
the random variable fit stochastically dominates f′it. Presumably, this can be shown via coupling
in a similar fashion as in the proof of Theorem 23 in [26]. Thus the upper bound given by Corus
et al. is also valid for the (µ+ λ) EA. For the case λ > (1 + δ)eµ and λ = Ω(log n) regarded by
Corus et al., our bound becomes

O
(
n
( log(n)

λ
+

µ

λ
+

log+ log(λ/µ)
log(λ/µ)

))
,

which is of an asymptotically slightly smaller order than that of [17] when λ = ω(µ+ log(n)).

2.2.2 Lower Bounds

In this section, we show the lower bounds corresponding to the upper bounds we proved
in the previous section. They in particular imply the lower bounds for the (µ+ 1) EA given
in [138] and the (1 + λ) EA given in [49]. Hence our proof method is a unified approach to both
these algorithms as well. The arguments we use do not consider selection phase at all, thus they
hold also for all functions with a unique optimum and for other selection mechanisms, including
the (µ, λ) EA.

To prove the lower bound we use the complete tree technique. We start with observation
thatsince there is no selection in the complete tree, the vertex labels simply arise from repeated
mutation. More precisely, a vertex in distance ℓ from the root has a label that is obtained from
ℓ times applying mutation to the root label. This elementary observation allows to estimate the
probability that a node label is equal to some target string.
Lemma 39. Consider a complete tree with root label c(v0) = x0. Let x∗ ∈ {0,1}n with H(x∗, x0) ≥ n/4
(where H is the Hamming distance). Let x be the node label of a node in distance ℓ from v0. Then

Pr[x = x∗] ≤ min
{

1,
(

ℓ

n− 1
)n/4}

=: p(ℓ, n).

Proof. The probability that x = x∗ is at most the probability that each of the H(x0, x∗) bits in
which x0 and x∗ differ was flipped in at least one of the ℓ applications of the mutation operator
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which generated x from x0. For one particular position the probability that this position was
involved in one of ℓ mutations is 1− (1− 1

n)
ℓ. For H(x0, x∗) positions the probability that all of

them were involved in one of ℓ mutations is(
1−

(
1− 1

n
)ℓ
)H(x0,x∗)

≤
(

1− exp
(
− ℓ

n− 1
)) n

4
≤
(

ℓ

n− 1
) n

4
,

where we used the estimates (1− 1/n)(n−1)r ≥ e−r valid for all n ≥ 1 and any positive r ∈ R, and
e−r ≥ 1− r valid for all r ∈ R.

We are now ready to prove our lower bound. Since the proof is valid not only for the
ONEMAX function, but for any pseudo-Boolean function with a unique optimum, we formulate
the result for such functions. We show extensions to many functions with multiple optima in the
following section.
Theorem 10. If µ is polynomial in n, then the (µ+λ) EA with any type of selection of the new parent
population (including only selecting from the offspring population) needs an expected number of

Ω

(n log n
λ

+
µn
λ

)
iterations to optimize any pseudo-Boolean function with a unique optimum.

If further λ
µ
≥ ee, then the stronger bound

Ω

(n log n
λ

+
n log log λ

µ

log λ
µ

)
holds.
Proof. Without any loss of generality in this proof we assume that the function optimized by the
algorithm has an optimum in x∗ = (1, . . . ,1).

In our proofs we use the following tool. To prove that the expected runtime of the algo-
rithm is Ω(f(n)) for some function f(n), it is enough to prove that the probability that the runtime
is less than f(n) is less than some constant γ < 1, since in this case the expected runtime is not
less than (1− γ)f(n).

We first note that the bound Ω(n log n
λ

) is easy to prove for the ONEMAX function. A short,
but deep argument for this bound is that the (µ+ λ) EA is an unary unbiased black-box com-
plexity algorithm in the sense of Lehre and Witt [97]. Any such algorithm needs an expected
number of Ω(n log n) [97] or, more precisely, of at least n ln(n) − O(n) [40] fitness evaluations
to find the optimum of the ONEMAX function.

However, we prove the lower bounds for any function with a unique optimum, so we use
an elementary argument essentially identical to the one of [138] as follows. The lower bound
Ω(n log n

λ
) needs to be shown only in the case µ ≤ c log n, where c is an arbitrarily small constant.

For any bit position we have the probability q1 that all individuals in the initial population have
a zero-bit in that position that is calculated as

q1 =

(1
2
)µ

≥
(1

2
)c log(n)

= exp(c log(n) log(1/2)) = n−c log(2).
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Thus, the expected number z of the bit positions such that all individuals in the initial population
have a zero-bit in that position is

E[z] =
n∑

i=1
q1 = n1−c log(2).

We call such positions initially wrong positions. Since the bit values in each bit position and each
initial individual are independent, each position is initially wrong or not independently on other
positions. Hence, by Chernoff bounds (see, e.g., Theorem 1.10.5 in [30]) the probability q2 that
we have at least E[z]/2 = n1−c log(2)/2 such bit positions is calculated as

q2 = Pr [z ≥ (1− δ)E[z]] ≥ 1− exp
(
−δ2E[z]

2
)

= 1− exp
(
−n

1−c log(2)

8
)
.

Now we are ready to show that the algorithm does not flip at least one of the bits in
the initially wrong positions in t := bα(n−1) log(n)

λ
c iterations, where α is a constant that will be

defined later, with a high (at least 1−o(1)) probability. We calculate the probability q3 that one
particular bit is flipped at least once in t iterations (or in λt mutations) as

q3 = 1−
(

1− 1
n
)λt

= 1−
(

1− 1
n
)(n−1) λt

(n−1)

≤ 1− exp
(
− tλ
(n− 1)

)
≤ 1− e−α log(n) = 1− n−α.

If we have at least n1−c log(2)/2 initially wrong positions, then the probability q4 that all of them
are flipped at least once in t iterations is

q4 = q n1−c log(2)
2

3 ≤ (1− n−α)
n1−c log(2)

2

= (1− n−α)n
α· n

1−c log(2)−α

2 ≤ exp
(
−n

1−c log(2)−α

2
)

Thus we have the probability q5 that at least one of the initially wrong bits is not flipped (and
thus, the optimum is not found) in t = Θ(n log(n)

λ
) iterations at least

q5 ≥ q2(1− q4)

≥
(

1− exp
(
−n

1−c log(2)

8
))(

1− exp
(
−n

1−c log(2)−α

2
))

≥ 1− 2 exp
(
−n

1−c log 2−α

8
)
.

(19)

Hence, if α and c satisfy c log(2) + α < 1, (e.g., α := 1
2 and c := 1

2) then the expected
runtime of the algorithm is Ω(n log(n)

λ
).

To prove the remaining two bounds, we argue as follows. Again using a simple Chernoff
bound argument, we first observe that the probability q6 that the number of zero-bits y in the
one particular individual in the initial population is less than n/4, is estimated as

q6 = Pr
[
y ≤ E[y]

2
]
= Pr [y ≤ (1− 1/2)E[y]] ≤ exp

(
− n

16
)
.
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Hence, all µ individuals of the initial population have a Hamming distance of at least n/4 from
the optimum x∗ with probability

q7 = (1− q6)µ ≥
(

1− exp
(
− n

16
))µ
≥ exp

(
− µ

e n
16 − 1

)
Since µ is polynomial in n, we have µ

e n
16 −1 = o(1) and therefore, q7 = 1 − o(1). Further in this

proof we assume that all initial individuals have at least n/4 zero-bits. Therefore, the probability
that an individual which is a label of vertex in distance ℓ from the root of a complete tree is the
optimum is at most p(ℓ, n) as shown in Lemma 39.

We now use the complete trees technique and Theorem 6 to prove the remaining lower
bounds. Let first t := bµn/8eλc. Using the inequality (t

ℓ

)
≤ (et/ℓ)ℓ that follows from Stirling’s

formula, we estimate the summand s(ℓ) := (t
ℓ

)
(λ
µ
)ℓp(ℓ, n) of qopt for every ℓ ∈ [0..t].

• By Lemma 39 we have p(ℓ, n) ≤ 1. Thus, if ℓ ≥ n/4, we estimate

s(ℓ) =
(t
ℓ

)(
λ

µ

)ℓ

p(ℓ, n) ≤
(etλ
ℓµ

)ℓ

≤
( n

8ℓ
)ℓ
≤ (1/2)ℓ ≤ (1/2)n/4.

• By Lemma 39 we have p(ℓ, n) ≤ (ℓ/(n− 1))n/4. Hence, if n/4 ≥ ℓ > 0, we estimate

s(ℓ) =
(t
ℓ

)(
λ

µ

)ℓ

p(ℓ, n) ≤
(etλ
ℓµ

)ℓ(
ℓ

n− 1
)n/4

≤
( n

8ℓ
)ℓ( ℓ

n− 1
)n/4

≤
( n

4ℓ
)ℓ( ℓ

n− 1
)n/4

≤
( n

4ℓ ·
ℓ

n− 1
)n/4

≤ (1/2)n/4.

• Finally, for ℓ = 0 we have p(ℓ, n) = 0 and thus s(ℓ) = 0.
Consequently, the optimum is found in less than t iterations if either there is an individual

with less than n/4 zero-bits in the initial population, or with an exponentially small probabil-
ity otherwise. Therefore, the probability q8 of finding the optimum in less than t iterations is
bounded as

q8 ≤ (1− q7) + q7µ
t∑

ℓ=0
s(ℓ)

≤
(

1− exp
(
− µ

e n
16 − 1

))
+ µ

t∑
ℓ=1

(1/2)n/4

≤ µ

e n
16 − 1 +

µ2n
8eλ(1/2)

n/4 = o(1),

(20)

since we assumed µ to be at most polynomial in n.
We finish the proof by showing the lower bound Ω

(
n log log λ

µ

log λ
µ

)
in case when λ

µ
≥ ee. For

this purpose let t = b (e−2)n ln ln λ
µ

4(e+1) ln λ
µ

c. Using the complete tree notation we show that the probability
that the algorithm finds an optimum in less than t iterations is very small.

For all ℓ ∈ [0..t] consider s(ℓ). Using the inequality (t
ℓ

)
≤ (et/ℓ)ℓ we estimate the upper

bound for it as follows.
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s(ℓ) =
(t
ℓ

)(
λ

µ

)ℓ

p(ℓ, n) ≤
(etλ
ℓµ

)ℓ(
ℓ

n− 1
)n/4

= exp
(
ℓ ln etλ

ℓµ
+

n
4 ln ℓ

n− 1
)
.

(21)

Consider precisely the argument of the exponential function from the last equality in (21).
For this purpose define f(ℓ) := ℓ ln etλ

ℓµ
+ n

4 ln ℓ
n−1 . By considering the derivative of f(ℓ) on segment

[0, t] one can see that it is a monotonically increasing function. Since t ≥ ℓ and λ
µ
≥ ee, we have

etλ
ℓµ
≥ ee+1 and thus, ln etλ

ℓµ
≥ e+ 1. Hence,

f′(ℓ) = ln etλ
ℓµ
− 1 +

n
4ℓ ≥ e+ 1− 1 > 0

Thus, f(ℓ) reaches its maximum when ℓ = t. Therefore,

f(ℓ) ≤ f(t) ≤ t ln eλ
µ

+
n
4 ln t

n− 1
≤

(e− 2)n ln ln λ
µ

4(e+ 1) ln λ
µ

(
ln λ

µ
+ 1
)
+

n
4 ln (e− 2)n ln ln λ

µ

4(e+ 1)(n− 1) ln λ
µ

=
(e− 2)
4(e+ 1)n ln ln λ

µ

(
1 +

1
ln λ

µ

)

+
n
4
(

ln ln ln λ

µ
− ln ln λ

µ
+ ln (e− 2)n

4(e+ 1)(n− 1)
)

≤ n
4 ln ln λ

µ

(
(e− 2)
(e+ 1)

(
1 +

1
e
)
+

ln ln ln λ
µ

ln ln λ
µ

− 1 +
ln (e−2)n

4(e+1)(n−1)
ln ln λ

µ

)
.

Notice that ln x
x ≤

1
e for all x ≥ 1 and that ln (e−2)n

4(e+1)(n−1) < 0 for all n > 1. Therefore we
have

f(ℓ) ≤ n
4 ln ln λ

µ

(
(e− 2)
(e+ 1)

(
1 +

1
e
)
−
(

1− 1
e
))

= −
n ln ln λ

µ

4e .

Thus, by (21) we have

s(ℓ) ≤ exp
(
−
n ln ln λ

µ

4e

)
=

(
ln λ

µ

)−n/4e
.

By Theorem 6 summing up µs(ℓ) for all ℓ ∈ [0..t] we obtain the following upper bound on
the probability q9 that the algorithm finds the optimum in less than t = Θ(

n log log λ
µ

log λ
µ

) iterations.
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q9 ≤ (1− q7) + q7µ
t∑

ℓ=0
s(ℓ)

≤ µ

e n
16 − 1 + µ

(e− 2)n ln ln λ
µ

4(e+ 1) ln λ
µ

(
ln λ

µ

)−n/4e
.

(22)

Notice that q9 is o(1), since we assumed that µ is polynomial in n. Hence, the expected
runtime of the algorithm is Ω(n log log λ

µ

log λ
µ

)

Comparison With Other Lower Bounds

Since all results involved are asymptotically tight, our lower bounds subsume the previous
bounds for the (µ+ 1) EA and the (1 + λ) EA in the way as discussed for upper bounds.

For general values of µ and λ, the only result [116] we are aware of proves that for any µ
and λ that are at most polynomial in n the runtime of the (µ+ λ) EA on every pseudo-boolean
function with a unique global optimum is

Ω

(n log n
λ

+
µ

λ
+

n log log n
log n

)
. (23)

By comparing the three terms of this bound with the corresponding terms of our bound

Ω

(n log n
λ

+
n

λ/µ
+

n log+ log+(λ/µ)

log+(λ/µ)

)
,

we immediately see that our bound is asymptotically at least as large as the one in (23); note
that for the third term, this follows trivially from the assumption that λ is polynomial in n and
the fact that x 7→ log log(x)

log(x) is decreasing for x sufficiently large.
There are two cases when our bound is asymptotically greater than (23).

Setting 1. Let λ
µ
= O(1) and µ = ω(log(n)). Then our bound is Ω(nµ

λ
), which is at least Ω(n). On

the other hand, (23) is
n log n

λ
+

µ

λ
+

n log log n
log n =

n o(µ)
λ

+
µ

λ
+ o(n) = o

(nµ
λ

)
.

Setting 2. Let log λ
µ
= ω(log n). This implies that λ

µ
= ω(n) and thus

log n = o
(n log log n

log n
)

= o
(

λ
µ

log log λ
µ

log λ
µ

)
.

Therefore, we have
n log n

λ
= o
(n log log λ

µ

µ log λ
µ

)
= o
(n log log λ

µ

log λ
µ

)
.

Hence, the lower bound given in Theorem 10 simplifies to Ω(
n log log λ

µ

log λ
µ

).
On the other hand, the bound (23) is of the asymptotically smaller order o(log n)+ o(1)+

O(n log log n
log n ) = O(n log log n

log n ).
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2.2.3 Extending the Lower Bounds to All Functions Having Not Excessively
Many Global Optima

Since the family tree technique depends little on the particular function to be optimized,
Witt [138] extended his lower bounds for ONEMAX to a much broader class of functions. He
proved that the (µ+ 1) EA needs Ω(µn) iterations to find a global optimum of any function that
satisfies one of the following conditions. (i) The function has at most 2o(n) optima. (ii) All optima
have at least n/2 + εn one-bits or all optima have at least n/2 + εn zero-bits, where ε > 0 is an
arbitrary constant.

In this section we extend our lower bounds of Section 2.2.2 to a wide class of functions
as well. In particular, we show that Witt’s results are valid for all functions with at most 2βn

optima, where β is some constant less than 1
16 ln 2 , regardless of the positions of the optima.

To reach our goal we exploit the fact that in Theorem 10 we proved very small values for
the probabilities that the runtime is less than some threshold (see (19), (20) and (22)), while it
would have been enough to prove that they are some constants less than one.
Theorem 11. For any constant ε > 0 there exists another constant c > 0 such that if µ < c ln n, then
for any n-dimensional pseudo-Boolean function with not more than 2n1−ε optima the (µ+ λ) EA takes
at least Ω(n log n

λ
) iterations in expectation and with high probability to find an optimum.

Proof. Let c be some arbitrary small positive constant and let µ < c ln n. By (19) the probability
that the algorithm finds a particular optimum in less than t := αn log n

λ
iterations (where α is some

arbitrary constant) is

1− q5 ≤ 2 exp
(
−n

1−c ln 2−α

8
)
.

If we have at most 2n1−ε optima, then by a union bound over all optima we obtain that
the probability q10 that the algorithm finds an optimum in less than t iterations is

q10 ≤ (1− q5)2n1−ε ≤ 2 exp
(
−n

1−c ln 2−α

8
)

exp (n1−ε ln 2)
= 2 exp

(
n1−ε ln 2− n1−c ln 2−α

8
)
.

This probability q10 tends to zero with growing n if and only if the argument of the expo-
nential function tends to negative infinity. It does so if and only if α and c satisfy α+ c ln 2 < ε.
Since ε is a positive constant, we can choose α := ε/2 and c := ε/2 to satisfy this condition.

The actual reason that the algorithm cannot find an optimum faster than in Ω(n log n
λ

) it-
erations is the coupon collector effect when the algorithm tries to flip the few wrong bits left
in the end of the optimization. However, if we have 2Θ(n) optima, the algorithm avoids this ef-
fect. To illustrate this idea consider the (1 + 1) EA that optimizes the ONEMAX function, but the
bit-strings with less than cn zero-bits, where c is some small constant, are considered optimal.
Thus, this functions has no more than O(2c log2(1/c)n) ⊆ 2Θ(n) optima. Clearly, the runtime of the
(1 + 1) EA on such function is linear, which may be proven with simple additive drift argument.
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The following two theorems extend our Ω(nµ
λ
) and Ω(

n log log λ
µ

log λ
µ

) bounds to the functions
with 2O(n) optima.
Theorem 12. If µ is at most polynomial in n, then the (µ+ λ) EA optimizes any pseudo-Boolean
function with at most 2βn optima, where β is some constant less than 1

16 ln 2 , in Ω(µn
λ
) iterations. If

λ
µ
> ee, then the stronger bound Ω(

n log log λ
µ

log λ
µ

) holds.

Proof. By (20) the probability that the algorithm finds a particular optimum in less than t := b µn
8eλciterations is

q8 ≤
µ

e n
16 − 1 +

µ2n
8eλ

(1
2
) n

4
.

By a union bound taken over no more than 2βn optima, the probability q11 that the algorithm
finds any optimum in this time is

q11 ≤ q82βn ≤ µe(ln 2)βn− n
16

1− e− n
16

+
µ2n
8eλ2βn− n

4 .

Since β < 1
16 ln 2 and β is a constant, we have both (ln 2)βn − n

16 < 0 and βn − n
4 < 0

(and both of them are linear in n). Thus, q11 tends to zero with growing n. Hence, the expected
runtime of the algorithm is Ω(t) = Ω(µn

λ
).

To prove the Ω(
n log log λ

µ

log λ
µ

) bound we argue in a similar way. By (22) the probability that
the algorithm finds a particular optimum in less than t := b (e−2)n ln ln λ

µ

4(e+1) ln λ
µ

c iterations is

q9 ≤
µ

e n
16 − 1 + µ

(e− 2)n ln ln λ
µ

4(e+ 1) ln λ
µ

(
ln λ

µ

)−n/4e
.

By a union bound taken over no more than 2βn optima, the probability q12 that the algo-
rithm finds any optimum in this time is

q12 ≤ q92βn ≤ µeβn ln 2−n/16

1− e− n
16

+ µ
(e− 2)n ln ln λ

µ

4(e+ 1) ln λ
µ

eβn ln 2−n/4.

Since β < 1
16 ln 2 and β is a constant, we have both (ln 2)βn − n

16 < 0 and βn ln 2 − n
4 < 0

(and both of them are linear in n). Thus, q12 tends to zero with growing n. Hence, the expected
runtime of the algorithm is Ω(t) = Ω(

n log log λ
µ

log λ
µ

).

2.2.4 Analysis of the (λ
1:1
+ λ) EA

In this section we prove that our results (both upper bound from Theorem 8 and lower
bound from Theorem 10) hold in an analogous fashion also for the (λ

1:1
+ λ) EA, that is, we show
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that this algorithm optimizes ONEMAX in an expected number of Θ(n log n
λ

+ n) iterations. This
improves over the O(n log n

λ
+n logλ) proven bound and the O(n log n

λ
+n log log n) conjecture of [13].

Due to the differences in the algorithms, to prove our results we obviously cannot just
apply the previous theorems in this work to the case λ = µ. We recall that the (λ

1:1
+ λ) EA uses a

different parent selection. While the classic (µ+ λ) EA chooses each parent independently and
uniformly at random from the µ individuals, the (λ

1:1
+ λ) EA creates exactly one offspring from

each parent (see Algorithm 2). We note that the authors of [13] also use a slightly different
way of selecting the next parent population. In principle, they take as new parent population
the µ best individuals among parents and offspring (plus-selection). If this would lead to a new
parent population only consisting of offspring, they remove the weakest offspring and replace it
with the strongest individual from the previous parent population. Since this appears to be a not
very common way of selecting the new population, we shall work with the classic plus-selection,
favoring offspring in case of ties, and breaking further ties randomly (though, indeed, the tie-
breaking is not important when optimizing ONEMAX via unary unbiased black-box algorithms).
We note without proof that the following results and proofs are valid for the precise algorithm
regarded in [13] as well.

We start by proving the upper bound for the runtime.
Theorem 13. The expected runtime of the (λ 1:1

+ λ) EA on the ONEMAX function is O(n log n
λ

+ n).

Proof. We aim at adapting Theorem 8 for the (λ
1:1
+ λ) EA. For this purpose we note that the

proof of Theorem 8 only depends on the expected level improvement times E[T̃i] computed in
Corollary 1, which again depend on the times needed for increasing the number of fit individuals
computed in Lemma 32. Therefore, it suffices to show that the estimates of Lemma 32 and
Corollary 1 are also valid for the (λ

1:1
+ λ) EA.

We prove that Lemma 32 holds for the (λ
1:1
+ λ) EA by observing that the probability p2(j)

to create at least one copy of the fit individual satisfies the same estimate as the one used for the
(µ+ λ) EA, which is (9), with µ = λ. For the (λ

1:1
+ λ) EA, p2(j) is at least the probability that at

least one of the j fit parent individuals creates as offspring a copy of it. By Lemma 21 we have

p2(j) ≥ 1−
(

1−
(

1− 1
n
)n)j

≥ 1−
(

1− 1
2e
)j
≥ 1

1 + 2e
j
,

which is the same estimate as for the (µ+ λ) EA (with µ = λ).
To prove that Corollary 1 holds for the (λ

1:1
+ λ) EA as well, it is sufficient to show that

the probability p′′(i) to create a superior individual satisfies as well the estimate (11) in the case
µ = λ. The probability p′′(i) is at least the probability that for at least one of the µ0(i) best
individuals the offspring is better than its parent. Using Lemma 21 we calculate

p′′(i) ≥ 1−
(

1− n− i
n
(

1− 1
n
)n−1)µ0(i)

≥ 1−
(

1− n− i
en

)µ0(i)

≥ 1− 1
1 + µ0(i)(n−i)

ne
,

which is the same value as in Corollary 1 when µ = λ.
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Comparing this bound with the bound O(n log n
λ

+ n logλ) proven in [13] and the bound
O(n log n

λ
+ n log log n) conjectured in the same work, we immediately see that ours is at least as

strong as these two for all values of λ. For λ = ω( log n
log log n), our bound is asymptotically smaller

than both the proven bound and the conjecture.
We now prove a matching lower bound, which agrees with the one of Theorem 10 in the

case of µ = λ.

Theorem 14. If λ is polynomial in n then the expected runtime of the (λ
1:1
+ λ) EA on the ONEMAX

function is Ω(n log n
λ

+ n).

Proof. We show that the main arguments of the proof for this bound in Theorem 10 are also
valid for this parent selection mechanism.

To prove the Ω(n log n
λ

) bound we can repeat the arguments from Theorem 10 without any
changes. One needs to prove this bound only for λ < c log n for some arbitrary small constant
c. The main argument is that with high probability there is a set of bits which were in a wrong
position in all initial individuals and that at least one of those bits was not flipped by any of tλ
applications of the mutation operator for some t = Θ(n log n

λ
). This argument stays valid for the

fair parent selection as well.
To prove the Ω(n) bound we consider the complete trees for the (λ

1:1
+ λ) EA. Since in a run

of the (λ
1:1
+ λ) EA each individual in the population creates exactly one offspring, the complete

trees now have a slightly different structure, namely each node of the tree has exactly one child
at each time step (instead of λ children). In return, we cannot argue that each edge is present
in the true family tree with probability at most 1/µ only (so we assume that all these edges are
in fact present). Since λ = µ, these two effects cancel.

More precisely, following the proof of Theorem 10 we argue that with high probability
q7 ≥ exp(− λ

e n
16 −1) all initial individuals have at least n/4 wrong bits. Next, we argue that in

an analogous fashion as in Theorem 6 – and this is where the two effects truly cancel – the
probability qopt that the optimum occurs in any tree in less than t := d n8ee iterations is at most

qopt ≤ λ

t∑
ℓ=0

(t
ℓ

)
p(ℓ, n) ≤ λt

(1
2
)n/4

.

Since we only consider λ that is polynomial in n, this entity tends to zero, when n tends to
infinity. Therefore, the probability that the algorithm finds an optimum in t = Θ(n) iterations is
at most (1−q7)+q7qopt that is less than some constant, if n is large enough. Hence, the expected
runtime of the (λ

1:1
+ λ) EA is Ω(n).

We note that we can extend this lower bound to functions with multiple optima in the
same manner as in Subsection 2.2.3 for the (λ

1:1
+ λ) EA. We omit the proof, since it repeats the

proof of Theorems 11 and 12.
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2.3 Analysis of the (µ, λ) EA

To gain a deeper understanding of the population dynamics of EAs in the case where there
is no clear drift, we regard the (µ, λ) EA settings with λ close to eµ. We prove three results inside
this phase transition region λ = (1± ε)eµ.

We first show that the super-polynomial range already starts when λ ≤ (1 − ε)eµ for
ε = ω(n−1/2). To prove this result, we do not extend the general but technical negative-drift-in-
populations theorem of [96] to smaller negative drifts, but instead use a basic drift argument.
This approach avoids the use of family trees and branching processes and might thus be a light-
weight alternative for similar analysis problems as well.

When µ is not overly large, namely µ ≤ n1/2−c for an arbitrary small constant c > 0, then
the weaker condition λ ≤ eµ suffices to lead to a super-polynomial runtime. Note that in this
regime, we have essentially no drift in the sub-population of best individuals. The reason why
the (µ, λ) EA still has difficulties to find the optimum is that in this no-drift regime, the number of
best individuals performs an unbiased a random walk (with typical step sizes up to √µ). When
this walk reaches zero, no individual on this fitness level is left and the (µ, λ) EA, due to the
limited population size, takes a non-trivial amount of time to re-generate such an individual.
The time this walk takes to reach zero is roughly O(µ). Hence if µ ≤ n1/2−c and the best fitness
in the population is close to n, then the O(µ) iterations with O(λ) = O(µ) offspring generated
are not enough to produce a strictly better individual. For this reason, we exhibit here a (slow,
namely constant per O(µ) iterations) negative drift in the fitness of the best individual in the
population. This negative drift translates into a long runtime via a negative drift theorem.

When µ is slightly larger, namely at least n2/3+c for an arbitrary constant c > 0, then for all
λ ≥ eµ, that is, again including settings with essentially no drift, we have a polynomial runtime
of O(nλ log n), which means O(n log n) iterations. This is, the same runtime guarantee as shown
for the constant (1 + ε) drift case in [18] (which has been recently improved to O(n) iterations
in [17]), but the reasons are different. Here, we have essentially a no-drift regime. Hence the
number of individuals on the highest fitness level performs an unbiased random walk. Different
from above, the larger population sizes implies that before this walk reaches zero, some individ-
uals are generated on a higher level. This is not the immediate pathway to the optimum since
these small sub-populations have a good chance of dying out quickly (they perform the same
type of unbiased random walk, but starting close to zero). The reason why these climbers make
a difference is that they stabilize the fitness level below them. We recall that such an individual,
when chosen as parent, creates an equally fit offspring with probability roughly 1

e . In addition,
with probability 1

e it creates an offspring on the next lower fitness level. These offspring create a
positive drift in this level and hinder it from dying out after O(µ) iterations. Consequently, this
lower level has ample time to create further climbers until one of them successfully take over
the population.

The results of this section are summarized in Figure 7 together with previous results
already shown in Figure 4.
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Polynomial runtime O(nλ) [17]

λ =
(1+

ε)eµ

c ln n
Exponential runtime [96]

λ =
(1−

ε)eµλ =
eµ

λ = µ

[1
21

]

1

2 log e
e−1

n

n 1
2−c

n 2
3 log4 n

µ

λ

0

Algorithm does not exist

Figure 7 – Our results for the (µ, λ) EA in its parameters space. We proved the super-polynomial
runtime in a zone marked with orange lines and we proved the polynomial runtime in a zone marked
with blue dots. Although our results cover only a small range of parameters, we revealed the most
interesting regimes of the (µ, λ) EA.

2.3.1 Lower Bounds for λ ≤ (1− ε)µe with ε = ω
(

1√n
)
.

In this section, we show that when λ ≤ (1− ε)µe for some ε = ω
(

1√n
)

, then the runtime
of the (µ, λ) EA on ONEMAX is super-polynomial. Our analysis reproves the exponential runtime
shown in [96] for constant ε and it enlarges the range for which a super-polynomial runtime is
proven to ε = ω

(
1√n
)

.

Theorem 15. Consider the run of the (µ, λ) EA on n-dimensional ONEMAX function.
1) If there exists a constant ε ∈ (0,1) such that λ ≤ (1 − ε)µe, then the expected runtime is

exponential in n.
2) If there exists ε = ω( 1√n) such that λ ≤ (1 − ε)µe, then the expected runtime is super-

polynomial in n.

To prove this result we use the lower bound version of the additive drift theorem. For
this we define the potential function g(x) both for individuals and for populations. The potential
of a population is a sum of potentials of its individuals. The potential of an individual, roughly
speaking, is exponential in its fitness. This lets us estimate the potential of the next population
via the potential of all offspring, including those who do not survive. By this, we circumvent the
usually difficult analysis of the effects of selection.



Chapter 2. Analysis of Mutation-based Algorithms 77

Exploiting that fitness gains are rare when close to the optimum, we show that this po-
tential has an expected increase (drift) of at most 2λ per iteration. Again exploiting the strong
growth of this potential function, we see that the potential difference of the initial population
and any population containing the optimum is large, which gives the desired lower bound via
the additive drift theorem.

The potential function g is defined as follows. Let τ := 4e
ε

,

α := 1− 1
τ

ln
(

1 +
1
τ

)
and f0 := dαne. Note that α is at most 1 and it is at least

α ≥ 1− 1
τ2 = 1− ε2

16e2 ≥ 1− 1
16e2 ,

since ln(1+x) ≤ x holds for all x > −1 and since ε ≤ 1 (otherwise we have λ < µ). The potential
function g is defined over {0,1}n by

g(x) =
{
τ f(x)−f0 if f(x) ≥ f0,
0 otherwise.

For a population P, we define
g(P) =

∑
x∈P

g(x).

The following key lemma estimates the drift of the potential in each generation.
Lemma 40. For all t, we have E[g(Pt+1)] ≤ g(Pt) + 2λ.

To prove this result, we first compute the expected fitness of an offspring of a search point
of fitness at least f0.
Lemma 41. For any individual x of fitness f(x) ≥ f0, we have

E[g(Mx)] ≤ 1
e (1 + ε)g(x),

whereM stand for the operator of the standard bit mutation with mutation rate 1
n .

Proof. Let x be an individual such that f(x) ≥ f0 and let d := n − f(x) be its distance to the
optimum. Note that

d ≤ (1− α)n =
n
τ

ln
(

1 +
1
τ

)
≤ n

τ2 , (24)

where we used the inequality x ≥ ln(1 + x) which holds for all x > −1. Let δx = f(Mx) − f(x)
We aim at showing that

g(Mx) = g(Mx)1(δx>0) + g(Mx)1(δx<0) + g(Mx)1(δx=0)

and analyze each term separately.
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Positive δx. By the definition of g we compute

E[g(Mx)1(δx>0)] = g(x)
d∑

i=1
Pr[δx = i]τ i.

By Lemma 10,
d∑

i=1
Pr[δx = y]τ i ≤

d∑
i=1

(d
y
)(1

n
)i

τ i

=
(

1 +
τ

n
)d
− 1 ≤ exp

(dτ
n
)
− 1.

Since by (24) we have d ≤ n
τ

ln (1 + 1
τ

), we also have

E[g(Mx)1(δx>0)] ≤
(

exp
(dτ

n
)
− 1
)
g(x)

≤
(

exp
(

ln
(

1 +
1
τ

))
− 1
)
g(x) = g(x)

τ
.

Negative δx. We compute

E[g(Mx)1(δx<0)] = g(x)
−1∑

i=f0−f(x)
Pr[δx = i]τ i

≤ g(x)
τ

∑
i<0

Pr[δx = i] ≤ g(x)
τ

.

Zero δx. By Lemma 11 we have

E[g(Mx)1(δx=0)] = g(x)Pr[f(Mx) = f(x)] ≤ g(x) 1
e
(

1− d(n−d)
(n−1)2

) .
Since d ≤ n

τ2 , we have

E[g(Mx)1(δx=0)] ≤ g(x) 1
e
(

1− n
(n−1)τ2

) .
Note that we also have

1
1− n

(n−1)τ2
=

1 + 1
τ2(

1− n
(n−1)τ2

) (1 + 1
τ2
) =

1 + 1
τ2

1 + 1
τ2 − n

(n−1)τ2 − n
(n−1)τ4

≤ 1 +
1
τ2 .

Therefore,

E[g(Mx)1(δx=0)] ≤ g(x)1e
(

1 +
1
τ2

)
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Finally, we obtain
E[g(Mx)] = E [g(Mx)1(δx>0)

]
+ E [g(Mx)1(δx<0)

]
+ E [g(Mx)1(δx=0)

]
≤ g(x)

(1
e +

2
τ
+

1
eτ2

)
= g(x)1e

(
1 +

ε

2e +
ε2

16e3

)
≤ g(x)1e (1 + ε).

Since Lemma 41 applies when f(x) ≥ f0, we now show that the expected potential of an
offspring of a search point of fitness at most f0 − 1 is at most constant.
Lemma 42. If n is large enough, for all individuals x such that f(x) < f0, we have

E[g(Mx)] ≤ 2.
Proof. Let x be an individual such that f(x) < f0. ThenMx has potential zero unless it gains at
least the difference between f(x) and f0, which is at least 1. By the law of total probability and
by Lemma 10, we have

E[g(Mx)] =
n−f(x)∑

i=f0−f(x)
Pr[δx = k]τ (i−f0+f(x))

≤ τ f(x)−f0
n−f(x)∑

i=f0−f(x)

(n− f(x)
k

)(1
n
)i

τ i

≤ τ f(x)−f0
(

1 +
τ

n
)n−f(x)

.

This expression monotonically grows with the growth of f(x) (since increasing f(x) by a small δ
increases it by a factor of (τ(1 + τ

n )
−1)δ > 1), hence it is at most

E[g(Mx)] ≤ 1
τ

(
1 +

τ

n
)n−f0−1

≤
(

1 +
τ

n
)(1−α)n

=
(

1 +
τ

n
) n

τ
ln(1+ 1

τ
)

≤ eln(1+ 1
τ
) = 1 +

1
τ
≤ 2.

Now we prove Lemma 40 using Lemmas 41 and 42.
Proof of Lemma 40. Let y be an offspring created from Pt. Then we have

E[g(y)] =
∑
x∈Pt

E[g(Mx)]
µ

≤
∑
x∈Pt

1
e (1 + ε)g(x) + 2

µ

=
1
e (1 + ε)g(Pt)

µ
+ 2.
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Let P̃t+1 be the set of the λ offspring generated from Pt. Since Pt+1 ⊂ P̃t+1, we have

E[g(Pt+1)] ≤ E[g(P̃t+1)] ≤
λ

eµ(1 + ε)g(Pt) + 2λ.

Recall that λ ≤ (1− ε)µe, hence
λ

eµ(1 + ε)g(Pt) + 2λ ≤ (1− ε2)g(Pt) + 2λ ≤ g(Pt) + 2λ.

Now we are almost in position to apply the additive drift theorem to potential function
g(Pt). For this we note that if the algorithm has found the optimum x∗, then g(Pt) ≥ g(x∗) =
τ n−f0. Therefore, it is sufficient to show that the expected time for the potential to reach τ n−f0 is
exponential. To use the additive drift, however, we must ensure that we do not jump over the
target. Hence we define the following random process

Zt := min{τ n−f0 , g(Pt)}.
We also define T′ := inf{t ≥ 0 | Zt = 0} and S by the state space of the random process

Zt. Note that if T is the runtime of the algorithm, we have E[T′] ≤ E[T].
To apply the additive drift theorem to Zt we first find the expected initial value Z0 in the

following lemma.
Lemma 43. If n is large enough, and if µ is sub-exponential in n, we have

E[Z0] ≤
1
2τ

n−f0 .

Proof. We have
E[Z0] ≤ E[g(P0)] = µE[g(x)],

where x is an individual chosen uniformly at random from {0,1}n. The fitness of x follows the
binomial distribution with parameters n and 1

2 with E[f(x)] = n
2 . Hence by Chernoff bounds the

probability that f(x) ≥ f0 = αn is

Pr[f(x) ≥ αn] = Pr
[
f(x) ≥ (1 + (2α− 1))n2

]
≤ exp

(
−(2α− 1)n

6
)
.

Since α ≥ 1− 1
16e2 > 7

8 , we have
Pr[f(x) ≥ αn] ≤ e− n

8 .

Since the maximal potential of an individual is τ n−f0, and all individuals with fitness less than
αn have zero potential, we have

µE[g(x)] ≤ µe− n
8 τ n−f0 ≤ 1

2τ
n−f0 ,

if n is large enough, since µ is sub-exponential in n.
Now we are in position to prove the main result of this subsection.
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Proof of Theorem 15. If µ is super-polynomial, the expected runtime is also super-polynomial,
hence we assume that µ and λ are at most polynomial.

We transform Lemma 40 for Zt. For all t ≥ 0 and for all s ∈ S\{τ n−f0}, we have
E[Zt+1 − Zt | Zt = s] ≤ E[g(Pt+1)− g(Pt) | Zt = s] ≤ 2λ.

By the additive drift theorem and Lemma 43, we have

E[T] ≥ E[T′] ≥ τ n−f0 − E[Z0]
2λ ≥ τ n−f0

4λ ≥ 1
4τλ exp

(n
τ

ln
(

1 +
1
τ

)
ln τ

)
≥ 1

4τλ exp
(n
τ

(1
τ
− 1

2τ2

)
ln τ

)
≥ 1

4τλ exp
( n

2τ2 ln τ
)
=

ε

16eλ exp
( nε2

32e2 ln 4e
ε

)
.

If ε is a constant, then the expected runtime is exponential. If ε = ω
(

1√n
)

, we have two cases.
Case 1. When ε ≥ n− 1

4 , we have

E[T] ≥ 1
16eλn 1

4
exp

( √n
32e2

)
.

Case 2. For ε ≤ n− 1
4 , we have

E[T] ≥ 1
16eλ√n exp (ω(1) ln n) .

In both cases the expected runtime is super-polynomial.

2.3.2 The Runtime when λ ≤ µe.

The Irrationality of e and its Consequences on the Runtime.

In this subsection, we show that due to the irrationality of the Euler’s number if the
population size µ is too small, we cannot approximate e with λ

µ
close enough, hence λ ≤ eµ also

implies that λ ≤ (1− ω( 1√n))eµ and therefore, we can apply the results of the previous section.
Theorem 16. Let λ ≤ eµ and let µ be a function of n which tends to positive infinity when n tends to
positive infinity. If there exists a constant c ∈ (0, 1

4) such that µ ≤ n 1
4−c, then the expected runtime of

the (µ, λ) EA on n-dimensional ONEMAX is super-polynomial in n.
To prove this theorem we use the definition of the irrationality measure. Let x ∈ R and

let R be a set of positive numbers d such that the set{
p, q ∈ N such that

∣∣∣∣x− p
q
∣∣∣∣ ≤ 1

qd
}

is finite. The irrationality measure of x is the infimum of R.
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Theorem 17 (Theorem 1 in [22]). The irrationality measure of e is 2.
From Theorem 17 and Theorem 15 we deduct the proof of Theorem 16.

Proof of Theorem 16. Let d := 2+c. By the definition of irrationality measure and by Theorem 17,
the set {λ, µ ∈ N |

∣∣∣e− λ
µ

∣∣∣ ≤ 1
µd} is finite. Therefore, if µ is large enough, we have∣∣∣∣e− λ

µ

∣∣∣∣ ≥ 1
µd ≥

1
n( 1

4−c)(2+c) = n− 1
2+

7c
4 +c2

= ω

( 1√n
)
.

Therefore,
λ =

(
1− 1

e
(
e− λ

µ

))
eµ =

(
1− ω

( 1√n
))

eµ.

Hence, by Theorem 15, the expected runtime of the (µ, λ) EA on n-dimensional ONEMAX is
super-polynomial in n.

The Super-polynomial Runtime for Low µ.

In this subsection we assume that the population size is bounded, and that λ
µ

is as close
to e as possible. More precisely,

λ ≤ eµ,
for all ε = ω

(
1√n
)

we have λ ≥ (1− ε)eµ
there exists a constant c ∈ (0, 1

2) such that µ ≤ n 1
2−c,

µ→∞ when n→∞.

(25)

The main result of this subsection is the following theorem.
Theorem 18. If the conditions (25) are satisfied, then the expected runtime of the (µ, λ) EA on
n-dimensional ONEMAX is super-polynomial in n.

Since the proof of Theorem 18 is quite technical, we first sketch it so that it was easier for
the reader to follow our arguments. We use the following notation in the rest of this section. We
define the top level ftop(t) at the generation t as the best fitness among the population. Namely,
ftop(t) := maxx∈Pt f(x). By Xt we denote the number of individuals of fitness ftop after the t-th
generation.

We split an algorithm run into phases of variable duration, but not longer than some
L = Θ(µ) generations (we will define L precisely later), such that the increase of ftop can appear
only in the last generation of such phase. We consider the fitness in the first generation of each
phase and show that if ftop is large enough, this fitness has a constant probability to be smaller
than the the fitness in the beginning of the previous phase, while the probability that it is greater
is too small. Therefore, this fitness at the beginning of each phase is a subject of the negative
drift theorem (Theorem 1), which gives us the desired result.

In order to show that a phase of length L results into decrease of the fitness, we first
consider the probability of the event that in L consecutive generations no superior individual
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is created (Lemma 44). Then, conditional on this event we consider the number Xt of the best
offspring in the population. We show that its conditional distribution is almost the same as
unconditional in Lemma 45. Hence, Xt has almost not drift (or the drift is small compared to its
random deviations). We apply our methods from Subsection 2.1.2 to Xt to show that it reaches
zero in at most L iterations with at least constant probability in Lemma 46.

We start with estimating the probability of the event that no good mutation occurs during
L generations in a row. For any L ∈ N we define NL as an event when during L consecutive
generations, the following two conditions are satisfied.

1) For all individuals x of fitness f(x) ≤ ftop − 1 we have f(Mx) < ftop,
2) for all individuals x of fitness f(x) = ftop, we have f(Mx) ≤ ftop with f(Mx) = ftop if

and only ifMx is the exact copy of x.
We call an individual x breaking, if it is either an offspring of individual y with f(y) < ftop

and f(x) ≥ ftop or if it is an offspring of an individual y with f(y) = ftop and x is not an exact copy
of y. In other words, this is an individual which breaks the conditions of event NL. We show the
following lower bound on the probability of NL.
Lemma 44. Assume that the conditions (25) are satisfied. Let D := nc and L ∈ N. Then if ftop ≥
n− D+ 1 and if n is large enough, we have

Pr(NL) ≥ 1− eL√n .

This bound is independent of the individuals which are chosen as parents during these L generations.
Proof. We first compute the probability that we create a breaking individual. In each individual
of Pt with fitness ftop there are n − ftop ≤ D − 1 bits in wrong positions. If such an individ-
ual is selected as a parent, the probability that the standard bit mutation (which flips each bit
independently with probability 1

n) does not flip any of these bits is at least (1− 1
n)

D−1.
In each individual of Pt with fitness less than ftop there are at least n− ftop−1 bits in wrong

position. Let us fix n− ftop−1 ≤ D of these wrong bit positions. If we select an individual x with
f(x) < ftop as a parent, and then the standard bit mutation does not flip any of the bits in these
positions, then the fitness of the offspring is not greater than ftop − 1. The probability that none
of these bits are flipped is at least (1− 1

n)
D.

Hence, independently of the choice of the parent, the probability to crate a non-breaking
offspring is at least (1− 1

n)
D. In each generation we create λ offspring independently, hence the

probability that we do not create any breaking offspring in L generations is

Pr(NL) ≥
(

1− 1
n
)DλL

.

By Bernoulli’s inequality we have

Pr(NL) ≥ 1− DλL
n ≥ 1− ncen 1

2−cL
n ≥ 1− eL√n .

Now when we see that event NL is quite likely to happen we consider how the number
of the best individuals in the population Xt changes through L generations. Normally, Xt+1 ∼
min{Bin(λ, Xt

eµ), µ}, but conditioning on NL can change its distribution. We show that this change
is almost negligible in the following lemma.
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Lemma 45. Assume that the conditions (25) are satisfied. Let D := nc and ftop ≥ n−D+1. Conditional
on event N1, there exists a sequence (pn)N such that for all n, we have Xt+1 ∼ min{Bin(λ, pn), µ} and∣∣∣pn − Xt

eµ
∣∣∣ ≤ 2Xt

eµ√n .

Proof. Let X̃t+1 be the number of offspring with fitness ftop. If we condition on N1, all X̃t+1
such offspring are the copies of their parents. Therefore, X̃t+1 follows a binomial distribution
Bin(λ, pn), where pn is the probability to choose one of Xt individuals as a parent and then create
its copy conditional on N1.

Consider a creation of an offspring. Let A be the event when an individual of fitness
ftop is picked as a parent and let B be the event when we create an exact copy of the chosen
parent. Let C the event that the created offspring is non-breaking. Note that events A and B are
independent, hence Pr[A∩ B] = Pr[A]Pr[B]. Also, since all λ offspring are created independently
we have Pr[A ∩ B | N1] = Pr[A ∩ B | C]. By the Bayes’ theorem we have

pn = Pr[A ∩ B | N1] = Pr[A ∩ B | C]
= Pr[A ∩ B]Pr[C | A ∩ B]

Pr[C] = Pr[A]Pr[B] 1
Pr[C] ,

since event A∩ B is a sub-event of C. By the same arguments as in Lemma 44 and by Lemma 19
we obtain

Pr[C] ≥
(

1− 1
n
)D
≥
(

1− D
n − o

(D
n
))

= (1− nc−1 − o(nc−1)) ≥ 1− 1√n ,

if n is large enough.
We have Pr[A] = Xt

µ
and Pr[B] = (1− 1

n)
n. Therefore, by Lemma 19 we obtain

pn ≥ Pr[A]Pr[B] =
(

1− 1
n
)n Xt

µ
≥ Xt

eµ
(

1− O
(1
n
))

, (26)

and

pn ≤ Pr[A]Pr[B]
Pr[C] ≤

(
1− 1

n
)n Xt

µ

(
1− 1√n

)−1

≤ Xt
eµ
(

1 +
1√n + o

( 1√n
))
≤ Xt

eµ
(

1 +
2√n
)
,

(27)

if n is large enough, where we used the Taylor’s formula for function f(x) = 1
1−x . Hence, by (26)

and (27) we conclude ∣∣∣∣pn − Xt
eµ
∣∣∣∣ ≤ Xt

eµ max
{
O
(1
n
)
,

2√n
}

=
2Xt
eµ√n ,

if n is large enough.
Lemma 45 shows that Xt conditional on N1 satisfies the conditions of Theorem 7 (the drift

analysis of processes with no drift). Hence, the probability that Xt reaches zero in L := 40µ + 1
iterations (conditional on NL) is at least some constant s. We make this probability unconditional
in the following lemma.
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Lemma 46. Let L = 80µ + 1. Assume that conditions (25) are satisfied and let D = nc. Then, if
ftop ≥ n− D + 1 and if n is large enough, the probability to lose the top level after L generations is at
least 3s

4 , where s is a constant from Theorem 7.
Proof. By Lemma 44 we have

Pr(NL) ≥ 1− eL√n = 1− 80eµ+ e√n ≥ 1− 80e
nc −

e√n = 1− o(1).

Hence, if n is large enough, Pr(NL) ≥ 3
4 . By Lemma 45 and Theorem 7 the probability to lose

all individuals in L iterations conditional on NL is at least s. Therefore, denoting by A the event
that we lose all best individuals after L generations, we have

Pr[A] ≥ Pr[A | NL]Pr[NL] ≥
3s
4 .

Now we are going to split the algorithm run into phases of variable length. We define
ϕ(0) = 0 and, for all t ∈ N,

ϕ(t+ 1) = min
{
ϕ(t) + L,min{τ ≥ ϕ(t) | ftop(τ + L) > ftop(ϕ(t))}

}
,

where we recall that in our notation a minimum of an empty set is the positive infinity, and
Zt := ftop(ϕ(t)). In other words, we divide the process into phases of variable lengths so that if
the top level does not increase during the L next generations, the phase length is L generations.
Otherwise, the phase is stopped as soon as the top level exceeds its value. This way, during
phase t (between Zt and Zt+1), there can only be one generation after which the top level goes
from some f1 ≤ ftop(ϕ(t)) to some f2 > ftop(ϕ(t)).

In order to apply the negative drift theorem to Zt, let b(n) = n and a(n) = n − nc. In the
following lemma we bound the probabilities of steps towards optimum.
Lemma 47. Assume that the conditions (25) are satisfied. Then for all i ≥ 1 we have

Pr[Zt+1 − Zt = i | Zt ≥ a(n)] ≤ Lλn
−i(1−c)

i! .

Proof. The probability Pr[Zt+1 − Zt = i | Zt > a(n)] is the probability that we crate at least one
individual with fitness ftop(ϕ(t)) + i in L generations. Consider the probability to create such
offspring. Assume that we choose an individual with fitness f(x) ≤ ftop(ϕ(t)) as a parent. Let
d := n− ftop(ϕt) and let δ := ftop(ϕt)− f(x). By Lemma 10, the probability to create such offspring
is

Pr[f(Mx) = ftop + i] ≤
(d+ δ

i+ δ

) 1
ni+δ

≤ di
i!ni ·

(d+ δ)δ

iδnδ

≤ di
i!ni ≤

nic
i!ni =

n−i(1−c)

i! .

By the union bound over all λL offspring which we create in λL iterations we have

Pr[Zt+1 − Zt = i | Zt ≥ a(n)] ≤ LλPr[f(Mx) = ftop + i] ≤ Lλn
−i(1−c)

i! .
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Now we are in position to prove Theorem 18.
Proof of Theorem 18. To apply the negative drift theorem (Theorem 1), we define γ := c ln n −
ln 81 + ln s

4 − 1, where s is the constant from Theorem 7. We compute the expectation of the
exponential drift as follows (implicitly we compute it conditional on Z ∈ (a(n), b(n)), but we
omit this notation to make it easier to read).

E [eγ(Zt+1−Zt)] ≤ e−γ Pr[Zt+1 < Zt] + e0 Pr[Zt+1 = Zt] +
∑
i≥1

eγi Pr[Zt+1 − Zt = i].

We compute each term separately. First, by Lemma 46 we have

e−γ Pr[Zt+1 < Zt] ≤ 81 s
4n

−c · 3s4 = O(n−c) = o(1).

We also have

e0 Pr[Zt+1 = Zt] ≤ 1− Pr[Zt+1 < Zt] ≤ 1− 3s
4 .

For the third term by Lemma 47 we compute
∑
i≥1

eγi Pr[Zt+1 − Zt = i] ≤
∑
i≥1

eγiLλn
−i(1−c)

i!

= Lλ
∑
i≥1

(eγnc−1)i

i!
≤ (80µ+ 1)eµ (exp(eγnc−1)− 1)
≤ 81eµ2

(
exp

(n2c−1 s
4

81e
)
− 1
)

≤ 81en1−2cn2c−1 s
4

81e (1 + o(1))
=

s
4(1 + o(1)).

(28)

Therefore, we have

E [eγ(Zt+1−Zt)] ≤ o(1) +
(

1− 3s
4
)
+

s
4 + o(1) = 1− s

2 + o(1) ≤ 1− s
3 ,

if n is large enough. We also compute

D := E [eγ(Zt+1−a(n)) | Zt ≤ a(n)] ≤ 1 +
∑
i≥1

eγi Pr[Zt+1 − a = i | Zt ≤ a(n)].

The probabilities in the sum are maximized when Zt = a(n), therefore, we can bound it as in (28)
with s

4(1 + o(1)) ≤ s
2 . Hence,

D ≤ 1 +
s
2 .
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Finally, by the negative drift theorem (Theorem 1), the probability that the minimal time
T for which ZT = n is less than t is

Pr[T ≤ t] ≤ tD3
s e

−γ(b(n)−a(n)) ≤ t
(

1 +
s
2
) 3
s e

γnc = Θ(tncnc),

which is sub-constant for any polynomial t. Therefore, the expected runtime is super-polynomial.

2.3.3 Polynomial Runtime on the Threshold for the Large Population Sizes

In this section we reveal a tighter threshold for the parent and offspring population sizes
of the (µ, λ) EA that guarantees a polynomial runtime for the optimization of ONEMAX. We
consider λ ≥ eµ and µ = ω(n 2

3 log4(n)). Such relatively large values of µ give us a high concen-
tration of several random variables such as the number of the individuals on the top level. This
concentration turns out to be enough for even small drifts to play a significant role.

In this subsection we define level i as the set of all bit strings of length n with exactly i
one-bits. We denote by Xt(f) the number of individuals in Pt of fitness exactly f and by Yt(f) the
number of individuals in population Pt that have a fitness strictly greater than f.

We say that the current level is f at generation t if there exists t0 < t such that Xt0(f)+Yt0(f) ≥
µ
2 and for all τ ∈ [t0..t] we have Xτ (f) + Yτ (f) ≥ µ

4 and Yτ (f) < µ
2 . In other words, it is the highest

fitness level such that once there were at least µ
2 individuals on this level or above, and since

then this number of individuals has not fallen below µ
4 .

The current level f can change in one of the two events. (i) There are less than µ
4 individ-

uals with fitness at least f in the population (then we say that the algorithm loses a level) or (ii)
there are at least µ

2 individuals with fitness more than f in the population (then we say that the
algorithm gains a level).

For brevity we define Xt := Xt(f) and Yt := Yt(f), if the current level is f. The main result
of this section is the following theorem.

Theorem 19. If λ ≥ eµ and µ ≥ n 2
3 ln4(n) and λ

µ
is at most polynomial in n then the expected number

of generations of the (µ, λ) EA on the ONEMAX function is at most O(n log(n)).
To prove Theorem 19, we split the runtime into two phases. In the first phase, the current

level is at most n
3 . In the second phase the the current level f is greater than n

3 . We first analyze
these two phases separately and then we come up with the proof of Theorem 19.
Lemma 48. The expected number of generations that the (µ, λ) EA spends in first phase is O(n).
Proof. Let the current level be f ≤ n

3 at generation t = 0. Then we have X0 ≥ µ
2 .

We have Y1 � min
{
µ,Bin(λ, 2X0

3eµ )
}

, since we create an offspring with fitness at least f+ 1
when we select an offspring with witness f (with probability X0

µ
) and flip only one wrong bit in it

(with probability at least 2
3e). By Chernoff bounds we have the probability that Y1 < µ

3 (1− µ− 1
3 )

is at most exp(−µ
1
3

6 ).
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At the same time we have X1 � min{µ,Bin(λ, X0
eµ )} and by Chernoff bounds we have the

probability that X1 < X0(1− µ− 1
3 ) is at most exp(−µ

1
3

4 ).
Given that Y1 ≥ µ

3 (1− µ− 1
3 ) and X1 ≥ µ

2 (1− µ− 1
3 ) we have Y2 � min{µ,Bin(λ, 2X1

3eµ + Y1
eµ )}.

Therefore, by Chernoff bounds we have

Pr
[
Y2 <

µ

2
]
≤ Pr

[
Y2 <

(
Y1 +

2X1
3
)
(1− µ− 1

3 )

]
≤ exp

(
−

2µ
3 (1− µ− 1

3 )

2µ 2
3

)
≤ exp

(
−µ

1
3

3

)
,

if µ ≥ 3. By union bound, the probability that the algorithm does not gain a level in two
iterations is at most exp(−µ

1
3

6 ) + exp(−µ
1
3

4 ) + exp(−µ
1
3

3 ) ≤ 3 exp(−µ
1
3

6 ).
The probability that the algorithm reaches current level n

3 in not more than 2n
3 iterations

is at least (1− 3 exp(−µ
1
3

6 ))
2n
3 = 1− o(1). If the algorithm does not reach current level n

3 in this
number of iterations, in the worst case its current level is zero, and it starts another attempt. The
probability that the algorithm needs another attempt is o(1), so if n is large enough the expected
number of such attempts is at most 2. This results that the expected number of generations of
the first phase is at most 4n

3 = O(n).
To analyze the expected runtime of the second phase, we regard in details the behavior of

the algorithm on the current level f. We show that the algorithm is not likely to lose the current
level in a sufficiently long time. At the same time, it creates enough offspring with fitness at
least f+1 to fill the upper level in expected number of O( n

n−f) generations. The first observation
leads us to the following lemma.
Lemma 49. Let the current level at generation t0 = 0 be f ≥ n

3 and µ = n 2
3h(n), where h(n) ≥ ln4(n).

If X0 ≥ µ
2 and λ ≥ eµ and λ

µ
is at most polynomial in n and n is large enough then for any t ∈ N we

have
Pr
[
∀τ ∈ [t0..t]⇒ Xτ ≥

µ

4
]
≥
(

1− 2
n3

)t
.

The proof of Lemma 49 is based on the following observation. Xt performs an unbiased
random walk with steps of size O(√Xt). For this reason the expected number of generations
before Xt ≤ µ

4 is linear in µ. However, while Xt ≥ µ
4 we have a positive drift of order Θ(µn ) for Yt,

that makes us reach Yt = ω(
√
µ) in o(µ) iterations with high probability.

Once Yt = ω(
√
µ), it is not likely to decrease by a factor more than 2 in √µ iterations,

since it preforms a random walk of the same manner as Xt did. At the same time such great Yt
creates an influx of individuals of fitness f that is of greater order than the steps made by Xt. This
is enough for Xt to become at least µ

2 again before Yt becomes too small. This regular refilling of
level f does not let Xt fall below µ

4 for long enough.
Proof of Lemma 49. We split the runtime of the algorithm while its current level is f into cycles.
Each cycle can be either successful, unsuccessful or totally unsuccessful. After a successful cycle the
algorithm has at least µ

2 individuals of fitness exactly f in the population. After an unsuccessful
cycle that started with m individuals of fitness f in the population, there are at least m − 2∆µ
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individuals of fitness f in the population, where ∆µ := n 2
3h 3

4 (n). We pessimistically assume that
an uninterrupted series of µ

8∆µ
= h 1

4 (n)
8 unsuccessful cycles results into a level loss, since it might

decrease the number of individuals at level f by µ
4 . A totally unsuccessful cycle is a cycle that is

neither successful, nor unsuccessful. After a totally unsuccessful cycle we pessimistically assume
that the algorithm loses a level. We aim to show that the event of a level loss is not likely to
happen for long enough.

Each cycle is split into two phases. Consider some cycle that starts at generation τ0. To
shorten the notation assume that τ0 = 0, however it does not mean that we regard only the first
cycle. The first phase of the cycle terminates after τ1 generations, that is, at the first generation
such that either Xτ1 < X0 −∆µ or Yτ1 ≥ µ0, where µ0 := n 1

3h(n). If at the end of the first phase
we have Xτ1 < X0 − ∆µ then the cycle is terminated and we consider it as either unsuccessful
or totally unsuccessful if Xτ1 < X0 − 2∆µ. Otherwise, the cycle enters the second phase, which
starts with at least µ0 individuals of fitness greater than f.

The second phase (and also the cycle) ends after τ2 more generations, where τ2 is the
first integer such that Xτ1+τ2 ≥

µ
2 or Xτ1+τ2 < Xτ1 or Yτ1+τ2 < µ0

2 . If Xτ1+τ2 ≥
µ
2 , then the cycle is

successful, otherwise it is either unsuccessful or totally unsuccessful if Xτ1+τ2 < Xτ1.
Now we consider each phase in details to show that the probability that the cycle is

successful is sufficiently high.
The First Phase. The probability that the cycle is neither unsuccessful nor totally un-

successful after the first phase is at least the probability that for τ ∗1 := n 2
3h 1

4 (n) the number Yt
of individuals on the upper levels reaches µ0 in less than τ ∗1 generations while the number Xt of
individuals on the current level Xt does not go below X0−∆µ until generation τ ∗1 . By Lemma 27
we have the probability that Xt ≤ X0 −∆µ for some t ≤ τ ∗1 is at most τ∗1 X0

∆2
µ
≤ 1

h 1
4 (n)

.
To estimate the expected runtime before Yt becomes at least µ0 we apply Lemma 29 to Yt.

For this reason we note that Yt+1 � min{µ,Bin(λ, Yt
eµ + Xt

enµ)}, since we can obtain individuals in
the upper levels either by copying one of Yt individuals with probability at least 1

e or by creating
a superior offspring from one of Xt individuals with probability at least (n−f)

en ≥
1
en . Since during

the cycle we have Xt at least µ
4 , we have ∆min ≥ µ

4n . By taking X′ = µ0 (which is greater than
max{48,18 ln λ

∆min
} if n is large enough) and applying Lemma 29 we obtain that the expected

runtime before Yt exceeds µ0 for the first time is at most max{4µ0n
µ

,24} = 4n 2
3 , if n is large

enough. By Markov’s inequality the probability that this time exceeds τ ∗1 is at most

4n 2
3

τ ∗1
=

4
h 1

4 (n) .

So as an intermediate result we have the probability that the cycle is neither unsuccessful, nor
totally unsuccessful after the first phase is at least 1− 1

h 1
4 (n)
− 4

h 1
4 (n)

= 1− 5
h 1

4 (n)
.

The Second Phase. Proceeding to the second phase of the cycle, we notice that it starts
with Xτ1 ≥

µ
4 and Yτ1 ≥ µ0 and the cycle is successful if after the second phase we have Xτ1+τ2 ≥

µ
2 .

The probability that the cycle succeeds after the second phase is at least the probability
that for τ ∗2 := n1/3h1/3(n) we have Yt ≥ µ0

2 for all t ∈ [τ1..τ1 + τ ∗2 ] and there exists some t ≤ τ ∗2 such
that Xτ1+t ≥ µ

2 and Xt does not decrease for t ∈ [τ1, τ1 + τ ∗2 ].
By Lemma 27 the probability that Yt < µ0

2 for some t < τ1 + τ ∗2 is at most 4τ∗2 Yτ1
µ2

0
≤ 4

h1/2(n) .
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By the application of Lemma 29 to Xt+1 ∼ Bin(λ, Xt
eµ + fYt

eµ ) we have the expected runtime
before Xt becomes more than µ

2 is at most 4µ/2−2µ/4
µ0
6

= 9n 1
3 . By Markov’s inequality we have that

the probability that Xt does not become greater than µ
2 in less than τ ∗2 generations is at most

9n 1
3

τ∗2
= 9

h 1
2 (n)

.
Finally, by Chernoff bounds the probability that Xt decreases in one generation during the

second phase is at most exp(− Y2t
9E[Xt]) ≤ exp(− µ2

0
36µ) ≤ exp(−h(n)

36 ). The probability that Xt does not
decrease during τ ∗2 generations is at least (1− exp(−h(n)

36 ))n
1
3 h 1

2 (n). Since we have h(n) ≥ ln4(n), if
n is large enough this probability is at least 1− 1

h 1
2 (n)

.
Summing up, the probability that the cycle is not successful after the second phase is

at most 4
h 1

2 (n)
+ 9

h 1
2 (n)

+ 1
h 1

2 (n)
+ ≤ 15

h 1
2 (n)

. If we also take into account the probability not to be
unsuccessful after the first phase, we estimate the probability of a successful cycle ps as

ps ≥ 1− 5
h 1

4 (n) −
15

h 1
2 (n) ≥ 1− 6

h 1
4 (n) ,

if n is large enough.
Losing a Level. The cycle is totally unsuccessful in two cases. The first case is when

in the end of the first phase we have Xτ1 < X0 − 2∆µ. Notice that for this to happen we need
Xτ1−1 − Xτ1 > ∆µ, and by Chernoff bounds the probability of this is at most exp(−n 2

3h 1
2 (n)). The

second case is when in the end of the second phase we have Xτ1+τ2 < Xτ1−∆µ. The probability of
this event is at most the probability that at the last generation of the second phase Xt decreased,
that is, at most exp(−h(n)

9 ). Hence, the probability ptu of a totally unsuccessful cycle is at most

ptu ≤ exp(−n 2
3h 1

2 (n)) + exp
(
−h(n)9

)
≤ exp(−h 1

2 (n)) ≤ exp(− ln2(n)) ≤ 1
n3 ,

if n > e3, since we assume that h(n) ≥ ln4(n).
Except a totally unsuccessful cycle we have only one possible way to lose a level, that is

a series of µ
8∆µ

unsuccessful cycles in a row. The probability pus of such series is at most

pus ≤ (1− ps)
µ

8∆µ ≤

(
6

h 1
4 (n)

) h
1
4 (n)
8

≤ 1
n3 ,

if n is large enough.
Since each cycle takes at least one generation, the probability not to lose a level after t

generations is at most (1− ptu − pus)t ≥ (1− 2
n3 )

t.

Next observation is that before the algorithm loses a level, Yt has a decent positive drift.
This gives us the following lemma.
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Lemma 50. If λ ≥ eµ and λ
µ
is at most polynomial in n and µ = n 2

3h(n) where h(n) ≥ ln4(n), then
the expected runtime before the (µ, λ) EA either loses or gains a level is at most 8n

n−f generations. The
probability that this results in a level loss is at most 10

n .

Proof. Note that Yt+1 � min
{
µ,Bin(λ, Yt

eµ + (n−f)Xt
enµ )

}
. Before the algorithm loses a level we have

Xt
n ≥

µ
4n . By Lemma 29, denoting ∆t :=

(n−f)Xt
n ≥ (n−f)µ

4n and X′ = µ
2 , we have that the expected

runtime before Yt ≥ X′ is at most 4X′

∆min
= 8n

n−f .
The probability that the algorithm gains a level is at least the probability that before gen-

eration τ := n2 the algorithm has not lost a level and it has gained a level before this generation.
By Lemma 49 the probability that it has lost a level is

1−
(

1− 2
n3

)τ

= 1−
(

1− 2
n3

)n2

≤ 1− exp
(
−2
n
)
≤ 2

n .

By Markov’s inequality the probability that the algorithm does not gain a level in τ gen-
erations is at most 8n

(n−f)n2 ≤ 8
n .

Therefore, by the union bound the probability that the algorithm loses a level before it
gains one is at most 2

n +
8
n ≤

10
n .

Now we are ready to prove Theorem 19.

Proof of Theorem 19. If the algorithm does not lose a level, then the expected number T′ of gen-
erations before it finds the optimum is at most the expected number of generations spent in the
first phase plus the expected number of generations spent in each level of the second phase. By
Lemmas 48 and 50 we have

E[T′] ≤ O(n) +
n−1∑
f= n

3

8n
n− f = O(n log(n)).

By Lemma 50 the probability not to lose a level before reaching the optimum, which
requires to gain at most 2n

3 fitness levels, is at least (1− 10
n )

2n
3 ≥ e−20/3, if n is large enough. We

pessimistically assume that in the event of a level loss, the algorithm goes back to level zero,
hence losing a level is equivalent to a restart of the algorithm. However, the expected number of
such restarts is not greater than e20/3, so the total expected number of generations of the (µ, λ) EA
on the ONEMAX function is O(n log(n)).

2.4 Conclusion of Chapter 2

In this chapter we proposed two novel methods for the analysis of population-based unary
EAs and applied them to the analysis of two standard EAs—the (µ+ λ) EA and the (µ, λ) EA.
We are optimistic that they can extend the toolbox for the theoretical analysis of EAs and we
support our optimism with the results of Sections 2.2 and 2.3, where these methods allowed us
to solve problems which are fair to name long-standing.
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In Section 2.2 we determined (tight apart from constant factors) the runtime of the
(µ+ λ) EA on the ONEMAX benchmark problem. This is thus one of the few tight runtime
analyses taking into account more than a single parameter ([75, 31] are the other two such
works we are aware of).

Not surprisingly for a simple function like ONEMAX, our result does not indicate that it is
advantageous to use larger parent or offspring populations. Indeed, it follows from [139, The-
orem 6.2] (see [26] for a simplified proof) that for any µ and λ the runtime of the (µ+ λ) EA
stochastically dominates the runtime of the (1 + 1) EA with best-of-µ initialization. The run-
time difference between the (1 + 1) EA with best-of-µ initialization and with the usual random
initialization is small, roughly an additive Θ(

√n lnµ) term [114].
While our result does not show an advantage of using larger populations, it does show

that using moderate-size populations is not overly costly. For example, as long as µ, λ = O(log n),
the (µ+ λ) EA takes Θ(n log n) fitness evaluations to find the optimum. This observation could
indicate that using such population sizes is generally an interesting idea – we could speculate
that there is no harm from using such populations, but there could be other advantages.

In the light of recent other work, our work suggests two directions for further research.
In [75], a precise runtime analysis for the (1 + λ) EA with general mutation rate c/n, c a con-
stant, on the ONEMAX benchmark was conducted. It suggests that the precise mutation rate is
important when λ is small, but less decisive when λ is large. It would be interesting to know to
what extent this result carries over to the (µ+ λ) EA. In [6, 61, 53], it was shown that various
dynamic choices of the mutation rate can reduce the runtime of the (1 + λ) EA on ONEMAX.
Again, it would be interesting to see to what extend a similar behavior is true for the (µ+ λ) EA.

In Section 2.3, we have analyzed how the (µ, λ) EA optimizes the ONEMAX function when
the population sizes are chosen close to the efficiency threshold λ ≈ eµ. This regime is interesting
in that there is no clear negative drift, which strongly prevents approaching the global optimum,
and in that there is no clear positive drift, which destroys the ability of comma selection to leave
local optima (by creating with high probability a copy of the parent population).

Due to the technical challenges in this regime, this first analysis is not fully conclusive,
and in fact, we observe that now also the absolute population size plays a role (more than just
the need to be at least polynomial). Our results show in particular that close to the threshold, a
polynomial runtime is still possible if the population size is not too small (but n2/3+ε is enough).

This raises the question (and hope) whether in this regime the (µ, λ) EA can overcome
premature convergence when optimizing multi-modal optimization problems. Our upper bound
proof suggests that in this regime the population is not quickly concentrated on the best-so-
far fitness level, but is spread over more than one level. This could ease leaving such a local
optimum. Since the analysis of the (µ, λ) EA on multi-modal problems is again a topic little
understood, we cannot answer this question easily, but suggest this as an interesting problem
for future research.
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Chapter 3 The Methods for Precise Analysis of the Evolutionary
Algorithms on Plateaus

In this chapter we aim at making progress on several related subjects—we aim at under-
standing how evolutionary algorithms optimize non-unimodal fitness functions, what mutation
operators to use in such settings, how to analyze the behavior of evolutionary algorithms on large
plateaus of constant fitness, and in particular, how to obtain runtime bounds that are precise
including the leading constant.

The main result presented in this chapter is a very general analysis of how the simplest
mutation-based evolutionary algorithm, the (1 + 1) EA, optimizes the n-dimensional plateau
function with plateau parameter k ∈ N. The precise result of this analysis lets us also estimate
the runtime of the (λ

1:1
+ λ) EA with constant population size. We allow the algorithms to use

any unbiased mutation operator (including, e.g., one-bit flips, standard bit mutation with an
arbitrary mutation rate, or the fast mutation operator) as long as the operator flips exactly one
bit with probability ω(n− 1

2k−2 ). This assumption is natural, but also ensures that the algorithm
can reach all points on the plateau. Denoting the number of bits flipped in an application of
this operator by the random variable α, we prove that the expected optimization time of the
(1 + 1) EA is

nk
k!Pr[1 ≤ α ≤ k] (1 + o(1)).

This result, tight apart from lower order terms only, is remarkable in several respects. It shows
that the performance depends very little on the particular mutation operator, only the probability
to flip between 1 and k bits has an influence. The absolute runtime is also surprising — it is the
size of the plateau times the waiting time until we flip between 1 and k bits.

We also deliver relatively precise estimates of the runtime distribution, which turns to be
close to the geometric one with success probability

k!Pr[1 ≤ α ≤ k]
nk (1 + o(1)).

Such precision allows us to extend the runtime results on a population-based algorithm, namely
on the (λ

1:1
+ λ) EA.

A similar-looking result was obtained in [72], namely that the expected runtime of the
(1 + 1) EA with 1-bit mutation and with standard bit mutation with rate 1

n on the needle function
is (apart from lower order terms) the size of the plateau times the probability to flip a positive
number of bits (which is 1 for 1-bit mutation and (1 − o(1))(1 − 1

e ) for standard bit mutation
with rate 1

n). Our result is different from that one in that we consider constrained plateaus of
arbitrary (constant) radius k ≥ 2, and more general in that we consider a wide class of unbiased
mutation operators. Despite the difference in the plateaus, the expected runtime is surprisingly
similar, which is the size of the plateau times the expected number of iterations until we flip
between 1 and k bits (where for the needle function we can take k = n).

We note that there is a substantial difference between the case k = n and k constant.
Since the needle function consists of a plateau containing the whole search space apart from
the optimum, the optimization time in this case is just the hitting time of a particular search
point when doing an undirected random walk (via repeated mutation) on the hypercube {0,1}n.
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For PLATEAUk with constant k, the plateau has a large boundary. More precisely, almost all4
search points of the plateau lie on its outer boundary and furthermore, all these search points
have almost all their neighbors outside the plateau. Hence a large number of iterations (namely
almost all) are lost in the sense that the mutation operator generates a search point outside the
plateau (and different from the optimum), which is not accepted. Interestingly, as our result
shows, the optimization of such restricted plateaus is not necessarily significantly more difficult
(relative to the plateau size) than the optimization of the unrestricted needle plateau.

Our precise runtime analysis allows to deduce a number of particular results. For example,
when using standard bit mutation, the optimal5 mutation rate is k√k!

n , that is, approximately k
en .

This is by a constant factor less than the optimal rate of k
n for the jump function with jump size

k, but again a factor of Θ(k) larger than the classic recommendation of 1
n , which is optimal for

many unimodal fitness functions. Hence our result confirms that the optimal mutation rates can
be significantly higher for non-unimodal fitness functions. While the optimal mutation rates for
jump and plateau functions are similar, the effect of using the optimal rate is very different.
For jump functions, an kΘ(k) factor speed-up (compared to the standard recommendation of 1

n)
was observed, here the influence of the mutation operator is much smaller, namely the factor
Pr[1 ≤ α ≤ k], which is trivially at most 1, but which was assumed to be at least some positive
constant. Interestingly, our results imply that the fast mutation operator is not more effective
than other unbiased mutation operators, even though it was proven to be significantly more
effective for jump functions and it has shown good results in some practical problems [105].

So one structural finding, which we believe to be true for larger classes of problems and
which fits to the result [72] for needle functions, is that the mutation rate, and more gener-
ally, the particular mutation operator which is used, is less important while the evolutionary
algorithm is traversing a plateau of constant fitness.

The main technical novelty in this chapter is that we model the optimization process via
two different Markov chains describing the random walk on the plateau, namely the chain de-
fined on the Θ(nk) elements of the plateau (plus the optimum) and the chain obtained from
aggregating these into the total mass on the Hamming levels. Due to the symmetry of the pro-
cess, one could believe that it suffices to regard only the level chain. The chain defined on
the elements, however, has some nice features which the level chain is missing, among others,
a symmetric transition matrix (because for any two search points x and y on the plateau, the
probability of going from x to y is the same as the probability of going from y to x). For this
reason, we find it fruitful to switch between the two chains. Exploiting the interplay between
the two chains and using classic methods from linear algebra, we find the exact expression for
the expected runtime.

The most valuable insight given by this approach is that the mixing of the probability mass
over the plateau is very fast. More precisely, we show that independently of the first position
on the plateau, in slightly more than Θ(

√n log(n)) iterations we are almost equally likely to be
at any point of the plateau. A similar mixing argument was used to prove the upper bound on
the runtime of the (1 + 1) EA on the LEADINGONES with strong prior noise in [126]. There,
however, only an exponential mixing time was shown, although the author conjectures that it
should be polynomial. Our analysis based on the interplay of two Markov chains is problem-
specific (e.g., we base our arguments on the symmetry of the plateau), but we are optimistic that

4in the usual asymptotic sense, that is, meaning all but a lower order fraction
5We call a mutation rate optimal when it delivers the expected runtime that differs from the truly optimal one

at most by lower order terms, that is, e.g. a factor of (1± o(1)).
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the observed behavior of a small mixing time can be also seen on other plateaus which are not
too easy to leave.

The rest of the chapter has the following structure. In Section 3.1 we list the mathematical
means that are used in our analysis. In Section 3.2 we introduce the central tool of our analysis
— the two Markov chains, show their properties and the connection between the two chains.
In Section 3.3 we prove the main result of this chapter, which is, the precise runtime of the
(1 + 1) EA on the PLATEAUk function for constant k. The corollaries from the main result, which
are, the precise runtime of different variants of the (1 + 1) EA, are shown in Section 3.4. Finally,
we summarize the results in Section 3.6.

3.1 Tools from Linear Algebra

In this section we briefly review the terms, tools and facts from the linear algebra that
we use in this chapter. Since they are not used in other chapters, we did not put them into
Section 1.8.

Given the square matrix A, the vector x is called the left eigenvector of the matrix A if
xA = λx for some λ ∈ C. In this situation, λ is called eigenvalue of the matrix A. The vector x
is called right eigenvector if Ax = λx for some λ ∈ C. Since in this chapter we regard only left
eigenvectors, we call them just eigenvectors.

The spectrum of a matrix is the set of all its eigenvalues. If a matrix has size n×n, then the
number of its eigenvalues is not greater than n. For each eigenvalue there exists a corresponding
eigenspace, that is, the linear span of all the eigenvectors that correspond to the eigenvalue.

The only point shared by any two eigenspaces that correspond to two different eigenvalues
is 0n.

The characteristic polynomial χ(λ) of matrix A is the function of λ that is defined as the de-
terminant of the matrix A−λI, where I is the identity matrix. The set of roots of the characteristic
polynomial equals the spectrum of the matrix A.

The standard inner product of the vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) is a
scalar value defined by 〈x, y〉 = ∑n−1

i=0 xiyi. The two vectors are orthogonal if their inner product
is zero.

For every diagonalizable matrix A of size n×n there exists a set {ei}n−1
i=0 of eigenvectors that

form a basis of Rn. A basis is called orthogonal when all pairs of the basis vectors are orthogonal.
A matrix A = (aji) is symmetric if for every i and j we have aji = aij.

We use the following two properties of symmetric matrices.

Lemma 51. All eigenvalues of a symmetric matrix are real.

Lemma 52. Two eigenvectors of a symmetric matrix that correspond to different eigenvalues are
orthogonal. Also every symmetric matrix of size n× n is diagonalizable, which meas that there exists
an orthogonal basis of Rn which consist of eigenvectors of this matrix.

In this chapter we also encounter irreducible matrices. Among the several definitions, the
following is the easiest to check for the non-negative matrices considered in this chapter. For
each non-negative matrix A of size n × n we can build a directed graph GA by taking an empty
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graph on n vertices and adding an edge from vertex i to vertex j for each positive component aji
of A. Then a matrix A is irreducible if and only if graph GA is strongly connected.

For example, the transition matrix of an irreducible Markov chain (a chain such that each
state is reachable from each other state) is irreducible.

A crucial role in this chapter is played by the Perron-Frobenius theorem [104]. This
theorem gives a series of properties of the irreducible matrices, among them we use the following
four.
Theorem 20 (Perron-Frobenius). Any irreducible non-negative matrix A has the following properties.

• The largest eigenvalue λ0 of A lies between the minimal and the maximal row sum of A.
• For every eigenvalue λ of A different from the largest eigenvalue λ0 we have |λ| < λ0.
• The largest eigenvalue of A has a one-dimensional eigenspace.
• There exists an eigenvector which corresponds to the largest eigenvalue λ0 all components of
which are strictly positive.

When talking about vector norms, we use the following notation. For any p ∈ (0,+∞)
and any vector x ∈ Rn, we let

‖x‖p =
n−1∑

j=0
|xj|p

1/p

.

In this chapter we use only the Manhattan norm (p = 1) and the Euclidean norm (p = 2). We
use the following property of these norms.
Lemma 53. For all x ∈ Rn we have

‖x‖2 ≤ ‖x‖1 ≤
√n ‖x‖2 .

The following lemma is often called triangle inequality
Lemma 54. For any norm ‖·‖ and for every x, y and z = x+ y we have

‖x‖ − ‖y‖ ≤ ‖z‖ ≤ ‖x‖+ ‖y‖
We use the following properties of the Euclidean norm.

Lemma 55. If vectors x1, . . . , xn are orthogonal, then for any values a1, . . . , an ∈ R we have∥∥∥∥∥
n∑

i=1
aixi
∥∥∥∥∥

2
≤ max

i∈[1..n]
|ai|
∥∥∥∥∥

n∑
i=1

xi
∥∥∥∥∥

2

Lemma 56. If vectors x1, . . . , xn are orthogonal, then for any subset S ⊂ [1..n] we have∥∥∥∥∥∑i∈S xi
∥∥∥∥∥

2
≤

∥∥∥∥∥
n∑

i=1
xi
∥∥∥∥∥

2

We also make a use of the orthogonal projection of vectors, which is defined as follows.
Suppose we have vector x ∈ Rn and it is decomposed into the sum of m orthogonal vectors
{xi}m−1

i=0 where m ≤ n. Then xi is the orthogonal projection of x to the linear span of xi. To
calculate precisely the norm of the projection, we use the following lemma.
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Lemma 57. If xi is the orthogonal projection of x, then for any norm ‖·‖ we have

∥∥xi∥∥ =
〈x, xi
‖xi‖〉

〈 xi
‖xi‖ ,

xi
‖xi‖〉

.

We also encounter the self-adjoint operators. An operator A : Rn → Rn is called self-adjoint
if for all x ∈ Rn and y ∈ Rn we have 〈Ax, y〉 = 〈x,Ay〉, where 〈·, ·〉 stands for the standard inner
product. The operator in this space is self-adjoint if and only if its matrix is symmetric. The most
important properties of self-adjoint operators are stated in the Hilbert-Schmidt theorem [119].
We use only one of them.

Lemma 58. For any self-adjoint operator A : Rn → Rn there exists an orthonormal basis of Rn that
consists of the eigenvectors of A.

3.2 Proposed Analysis Method for Plateaus

We propose a novel method for the analysis of EAs on plateaus, which is based on the
analysis of the spectrum of the transient matrices of two different Markov chains. Although at
the moment this method is tailored for the PLATEAUk function, we are optimistic that insights
delivered by our analysis are also true for plateaus of an arbitrary shape. By insights we mean
the observation that when the (1 + 1) EA enters a plateau, in a short time it becomes uniformly
distributed over the plateau, that is, each point of the plateau is (almost) equally likely to be the
current individual of the (1 + 1) EA. However, to show that it is also what happens on plateaus
of an arbitrary shape, the proposed method requires further development.

In this section we introduce the two Markov chains and prove some of their properties
which are essential for our analysis.

3.2.1 Two Markov Chains

For the optimization process of our (1 + 1) EA we first observe that, since the unbiased
operator with probability ω(n− 1

2k−2 ) flips exactly one bit, the expected time to reach the plateau
is O(n1+ 1

2k−2 log n). Since the time for leaving the plateau (as shown in this chapter) is Ω(nk), we
only consider the runtime of the algorithm after it has reached the plateau.

For this runtime analysis on the plateau we consider the plateau in two different ways.
The first way is to regard a Markov chain that contains N+1 states, where N =

∑k−1
i=0
( n
k−i
). Each

state represents one element of the plateau plus there is one absorbing state for the optimum.
Note that N = nk

k! +o(nk), since (nj) = nj
j! (1+o(1)) for all j ∈ [1..k]. The transition probability from

transient state x to any state y is pyx = Pr[α = d](nd)−1, where d is the Hamming distance between x
and y. This implies that the transition probability from x to y is equal to the transition probability
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from y to x for any pair of the transient states. Therefore, the transient matrix6 is symmetric,
which gives us the opportunity to use Lemma 51 and Lemma 52. We call this Markov chain the
individual chain, denote its transient matrix by Q and call the space of real vectors of dimension
N the individual space7, since the current state of the chain defines the current individual of the
algorithm.

To define the second Markov chain, we first define the i-th level as the set of all search
points that have exactly n − k + i one-bits. Then the plateau is the union of levels 0 to k − 1
and the optimum is the only element of level k. Notice that the i-th level contains exactly ( n

k−i
)

elements (search points). For every i, j ∈ [0..k] we have that for any element of the i-th level
the probability to mutate to the j-th level is the same due to the unbiasedness of the operator.
Therefore we can regard a Markov chain of k+1 states, where the i-th state (i ∈ [0..k]) represents
the elements of the i-th level. State k is an absorbing state. The transition probability from level
i to level j is

pji =



0, if i = k, j 6= k,
k−j∑
m=0

( k−i
j−i+m

)(n−k+i
m
)( n

j−i+2m
)−1 Pr[α = j− i+ 2m], if j > i,

k−i∑
m=0

(k−i
m
)(n−k+i

i−j+m
)( n

i−j+2m
)−1 Pr[α = i− j+ 2m], if j < i and i 6= k,

1−
k∑

m=0,m̸=i
pmi , if j = i,

(29)

where we assume that n > 2k not to complicate the upper limit of sums. This assumption
is justified by that we only consider constant k and we estimate the runtime with n tending to
infinity. We notice the following useful property of these probabilities.
Lemma 59. For all i, j ∈ [0..k− 1] we have( n

k− i
)
pji =

( n
k− j

)
pij.

Proof. Let Ls denote level s for all s ∈ [0..k− 1]. Let also px→Ls denote the probability to get from
individual x to any individual in level s. Since for all individuals x in level i the probability px→Lj
is the same and equal to pji and since there are ( n

k−i
) individuals in level i, we have( n

k− i
)
pji =

∑
x∈Li

px→Lj =
∑
x∈Li

∑
y∈Lj

qyx =
∑
x∈Li

∑
y∈Lj

qxy =
∑
y∈Lj

py→Lj =
( n
k− j

)
pij.

We observe that the probability to gain ℓ levels is O(n−ℓ).
Lemma 60. For all i ∈ [0..k− 1] and j ∈ [i+ 1..k], we have pji = O(n−(j−i)).

6Recall that the transient matrix is a submatrix of the transition matrix consisting of rows and columns which
correspond to transient states.

7Note that the dimension of the individual space is equal to the number of transient states of the individual
chain, not to the total number of states. Hence, matrix Q defines a linear operator on the individual space.
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Figure 8 – Illustration of the level chain. The black circle represents the optimum that is an absorbing
state. The states [0..k− 1] represent the levels of the plateau surrounding the optimum.

Proof. By Lemma 59 and since pij ≤ 1 we have

pji =
( n
k−j
)pij( n

k−i
) ≤ (n− k+ i)!(k− i)!

(n− k+ j)!(k− j)! = O(n−(j−i)).

We call this Markov chain the level chain and we call the space of real vectors of length
k the level space8. The level chain is illustrated in Fig. 8. The transient matrix P of the leaky
chain has a size of k × k. The matrix P (unlike Q) is not symmetric. In our analysis we use the
following property of the matrix P.
Lemma 61. The sum of each row of P is 1− O(1

n).
Proof. The sum of the i-th row of P is

k−1∑
j=0

pji = 1− pki , (30)

since the sum of all the outgoing probabilities for each state in the original Markov chain is one.
By Lemma 60 we have pki = O(n−(k−i)) = O(1

n).
There is a natural mapping from the level space to the individual space. Every vector

x = (x0, . . . , xk−1) can be mapped to the vector ϕ(x) = (y0, . . . , yN−1), where ym = xj/
( n
k−j
)
, if the

m-th element belongs to the j-th level. If x is a distribution over the levels, that is, x ∈ [0,1]k and
‖x‖1 = 1, then ϕ(x) is the distribution over the elements of the plateau which is uniform on the
levels and which has the same total mass on each level as x. This mapping has several useful
properties.
Lemma 62. ϕ is linear, that is, we have ϕ(αx+βy) = αϕ(x)+βϕ(y) for all x, y ∈ Rk and all α, β ∈ R.

8As well as for the individual space, the dimension of the level space is equal to the number of the transient
states of the level chain and matrix P defines a linear operator on this space.
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This property follows directly from the definition of ϕ.
Lemma 63. For all x ∈ Rk we have ϕ(xP) = ϕ(x)Q.
Proof. In informal words, this property holds because both matrices P and Q represent the same
operator, but in different spaces. Thus, the result of applying this operator to some vector and
then switching the space is the same as performing these two actions in a reversed order.

For the formal proof, recall that level i is the set of all individuals in distance (k− i) from
the optimum. In the same manner as in the proof of Lemma 59 we use the fact that for any
individual m in level j we have

pij =
∑

ℓ∈level i
qℓm,

where qℓm is the element of matrix Q, that is, the probability to obtain individual ℓ from individual
m. From this and from the definition of ϕ we calculate the m-th element of ϕ(xP), assuming that
individual m belongs to level j.

(ϕ(xP))m =
(xP)j( n
k−j
) =

∑k−1
i=0 xipji( n
k−j
) .

By Lemma 59 we have ( n
k−i
)pji = ( n

k−j
)pij. Therefore,

(ϕ(xP))m =
k−1∑
i=0

xi( n
k−i
)pij = k−1∑

i=0

xi( n
k−i
) ∑

ℓ∈level i
qℓm.

Recall that qℓm = qmℓ for all ℓ,m ∈ [0..N− 1]. Hence, we have

(ϕ(xP))m =
k−1∑
i=0

xi( n
k−i
) ∑

ℓ∈level i
qmℓ =

N−1∑
ℓ=0

(ϕ(x))ℓ · qmℓ = (ϕ(x)Q)m.

Lemma 64. The spectrum σ(P) of the matrix P is a subset of the spectrum σ(Q) of the matrix Q. For
any eigenvector x of the matrix P the vector ϕ(x) is an eigenvector of Q.
Proof. From Lemma 62 and Lemma 63 it follows that if x is an eigenvector of P, then ϕ(x) is
an eigenvector of Q with the same eigenvalue. Thus, every eigenvalue of P is an eigenvalue of
Q.
Lemma 65. For all x ∈ Rk, the Manhattan norm is invariant under ϕ, that is, ‖x‖1 = ‖ϕ(x)‖1.

This follows from the fact that all components of ϕ(x) that are from the same level have
the same sign. Notice that an analogous property does not hold for the Euclidean norm ‖·‖2.

Although the two Markov chains represent the same process and each of them contains
all information about it, in our analysis we need to use both of them simultaneously. We do
not really work with the whole individual space, but only with its subspace ϕ(S), where S is the
level space. Hence, it is natural to use the terms of the level space to simplify the computations
and make them easier to understand. On the other hand, we cannot prove some essential facts
about the operator P represented by the matrix P, e.g., that there exists a basis of the level space
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which consists of the eigenvectors of P (see Lemma 67). To prove them we have to switch to
the individual space (or more precisely, to its subspace ϕ(S)) and use the properties of the self-
adjoint operator Q represented by the symmetric matrix Q. Therefore, both chains and their
transient matrices are indispensable in our analysis.

3.2.2 The Spectrum of the Transient Matrix

The main result of this section is the following analysis of the eigenvalues of P, which
builds on the interplay between the two Markov chains.
Lemma 66. Let P be the transient matrix of the level chain. Then the following three properties hold.

1) All eigenvalues of P are real.
2) The largest eigenvalue λ0 of P satisfies λ0 = 1− O(1/n).
3) Let Pr[α = 1] > 0 and Pr[α = 1] = ω(1/ k−1√n). Then with c := Pr[α = 1] and with

ε := ck−1
(k−1)2k any other eigenvalue λ′ 6= λ0 of P satisfies |λ′| < 1− ε.

Proof. The fact that the eigenvalues are real follows from the facts that by Lemma 64 the spec-
trum of P is a subset of the spectrum of Q and that by Lemma 51 all eigenvalues of the symmetric
matrix Q are real.

The largest eigenvalue λ0 of P is bounded by the minimal and the maximal row sum of P
(see Theorem 20), which are both 1− O(1/n) by Lemma 61.

It remains to show that the absolute values of all other eigenvalues are less than 1− ε for
ε = ck−1

(k−1)2k , which requires more work. To prove this statement we perform a precise analysis of
the characteristic polynomial of P.

Recall that the spectrum of P is the set of the roots of its characteristic polynomial

χP(λ) = det(P− λI) =
∑
σ∈Sk

sgn(σ)
k−1∏
i=0

(P− λI)i,σ(i),

where Sk is the set of all permutations of the set [0..k − 1] and sgn(σ) denotes the signature of
permutation σ (that is, +1 if it can be obtained from the identity permutation in even number
of element swaps, and −1 otherwise). Note that for all permutations except the identity the
product in the sum contains at least one factor (P − λI)i,j with j > i and this element satisfies
(P− λI)i,j = pji = O(1/n) by Lemma 60. The other factors of the product are either pj′i′ or (pi′i′ − λ)
for some i′, j′, therefore every product where σ is not the identity is a polynomial in λ with
coefficients which are O(1/n). Thus, the characteristic polynomial can be written as

χP(λ) =
k−1∏
i=0

(pii − λ) + β(λ), (31)

where β(λ) is some polynomial in λ with coefficients that are all O(1/n). For this reason the
derivative β′(λ) will also be O(1/n) for all λ ∈ [−1,1], where we recall that all asymptotics are
for n→∞ (and, e.g., not for any limit behavior of λ).
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To prove that for all eigenvalues λ′ 6= λ0 we have λ′ < 1−ε we need to prove that there is
no more than one root of the characteristic polynomial in [1− ε,1]. To do so it suffices to prove
that χP(λ) is strictly monotonic in this segment.

Consider λ ≥ 1− ε. This implies that λ ≥ 1− c
2 . For every i 6= 0 we have pii ≤ 1− Pr[α =

1] = 1− c. Thus, for every i 6= 0 and any λ ≥ 1− ε we have
(pii − λ) ≤ −c/2. (32)

By (31), the derivative of χP(λ) can be written as

χ′
P(λ) = (p0

0 − λ)

(k−1∏
i=1

(pii − λ)

)′

−
k−1∏
i=1

(pii − λ) + β′(λ). (33)

Recall that ε = ck−1
(k−1)2k . For all λ ≥ 1− ε we have

p0
0 − λ ≤ 1−

(
1− ck−1

(k− 1)2k

)
=

ck−1

(k− 1)2k ,∣∣∣∣∣∣
(k−1∏

i=1
(pii − λ)

)′
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣−
k−1∑
i=1

∏
j∈[1..k−1]

j ̸=i

(pjj − λ)

∣∣∣∣∣∣∣∣ ≤ (k− 1),

∣∣∣∣∣
k−1∏
i=1

(pii − λ)

∣∣∣∣∣ ≥ ck−1

2k−1 ,

where the last inequality follows from (32). Furthermore, from (32) it also follows that for i 6= 0
we have (pii − λ) < 0. Thus,

sign
(k−1∏

i=1
(pii − λ)

)′ = sign

− k−1∑
i=1

∏
j∈[1..k−1]

j̸=i

(pjj − λ)

 = (−1)k−1. (34)

Consequently, we have two cases.
Case 1: When p0

0 − λ ≥ 0, we have∣∣∣∣(p0
0 − λ)

(k−1∏
i=1

(pii − λ)

)′

−
k−1∏
i=1

(pii − λ)

∣∣∣∣
≥

∣∣∣∣∣
k−1∏
i=1

(pii − λ)

∣∣∣∣∣−
∣∣∣∣∣∣(p0

0 − λ)

(k−1∏
i=1

(pii − λ)

)′
∣∣∣∣∣∣

≥
∣∣∣ c2∣∣∣k−1

− ck−1

(k− 1)2k

k−1∑
i=1

∣∣∣∣∣∣∣∣
∏

j∈[1..k−1]
j̸=i

(pjj − λ)

∣∣∣∣∣∣∣∣
≥ ck−1

2k−1 − (k− 1) ck−1

(k− 1)2k =
ck−1

2k .
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Hence, we have

|χ′
P(λ)| =

ck−1

2k + O(1/n) = ω(1/n 1
k−1 )k−1

2k + O(1/n) = ω(1/n).

Case 2: When p0
0 − λ < 0, since by (32) (pii − λ) < 0 for all i 6= 0, we have∣∣∣∣∣∣(p0

0 − λ)

(k−1∏
i=1

(pii − λ)

)′

−
k−1∏
i=1

(pii − λ)

∣∣∣∣∣∣ ≥
∣∣∣∣∣
k−1∏
i=1

(pii − λ)

∣∣∣∣∣ ≥ ck−1

2k−1 .

Therefore,
|χ′

P(λ)| = ω(1/n).
For n large enough, this together with (33) and (34) implies that χ′

P(λ) has the same sign
as (−1)k−1 for every λ ∈ [1− ε,1]. Thus, there can be only one root of characteristic polynomial
in this segment.

To rule out that there is a negative eigenvalue λ with |λ| > 1−ε, we notice that for λ < −1
2

and for every i we have (pii − λ) > 1
2 . Therefore, |χP(λ)| >

(1
2
)k − o(1), and thus there are no

roots that are less than −1
2 when n is large enough.

This finally shows that for all eigenvalues λ′ 6= λ0 we have |λ′| < 1 −min
(

1
2 ,

ck−1
(k−1)2k

)
=

1− ck−1
(k−1)2k .

3.3 Runtime Analysis

In this section, we prove our main result, which determines the runtime of the (1 + 1) EA
on the PLATEAU function.
Theorem 21. Consider the (1 + 1) EA using any unbiased mutation operator such that the probability
to flip exactly one bit is at least Pr[α = 1] = ω

(
n− 1

2k−2
)
. Let T denote the runtime of this algorithm

starting on an arbitrary search point of the plateau of the PLATEAUk function. Then

E[T] = nk
Pr[1 ≤ α ≤ k]k! (1 + o(1)),

Pr[T > t] = (1± o(1))
(

1− k!Pr[1 ≤ α ≤ k]
nk (1± o(1))

)t
+ r(t),

where |r(t)| ≤ √N(1 − ε)t, ε = (Pr[α=1])k−1

(k−1)2k , and N = nk
k! (1 ± o(1)). All asymptotic notation refers to

n→∞ and is independent of t.
We start with a few preparatory results. Recall that by Theorem 20 the largest eigenvalue

of a positive matrix has a one-dimensional eigenspace. Also this theorem asserts that both left
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and right eigenvectors that correspond to the largest eigenvalue have all components with the
same sign and they do not have any zero component. Let π∗ be such a left eigenvector with
positive components for P and let it be normalized in such way that ‖π∗‖1 = 1. We view π∗ as
distribution over the levels of the plateau and call it the conditional stationary distribution of P
since it does not change in one iteration under the condition that the algorithm does not find
the optimum. Also let u = (u0, . . . , uk−1) be the probability distribution in the level space such
that ϕ(u) is the uniform distribution in the individual space. Hence

ui =
( n
k− i

)/ k−1∑
j=0

( n
k− j

)
=

( n
k− i

)
N−1

for all i ∈ [0..k− 1]. Our next target is showing that π∗ and u are asymptotically equal. For this,
we need the following basis of the level space.
Lemma 67. There exists a basis {ei}k−1

i=0 of the level space with the following properties.
1) π∗ = e0.
2) ei is an eigenvector of P for all i ∈ [0..k− 1].
3) The ϕ(ei) are orthogonal in the individual space.

Proof. Let S be the level space and Sind be the individual space. Then ϕ(S) is a subspace of Sind
with dimϕ(S) = k, since the kernel of ϕ is trivial.

Consider the operator Q that is represented by the matrix Q. It is a self-adjoint operator
on Sind, since its matrix is symmetric. Moreover, this operator maps ϕ(S) into ϕ(S), since for all
x ∈ S by Lemma 63 we have Q(ϕ(x)) = ϕ(x)Q = ϕ(xP). Therefore, Q is a self-adjoint operator
on ϕ(S). Thus, by Lemma 58 there exists an orthonormal basis f0, . . . , fk−1 of ϕ(S) that consists
of eigenvectors of Q. Let ei = ϕ−1(fi) for all i ∈ [0..k−1]. By Lemma 64 the ei are eigenvectors of
P. By the linearity of ϕ (Lemma 62) they are linearly independent, hence they form a basis of S.

By assuming that e0 corresponds to the largest eigenvalue and multiplying e0 by a suitable
scalar, we also satisfy the first property of the lemma.

We use the basis from Lemma 67 to prove that ϕ(π∗) is very close to the uniform distri-
bution.
Lemma 68. If Pr[α = 1] = ω

(
n− 1

2k−2
)
, then for all j ∈ [0..k − 1], we have π∗

j = uj(1 + γj), where
|γj| ≤ γ for some γ = o(1).
Proof. Figure 9 illustrates the relation of the terms used in this proof to make it easier to follow.
By Lemma 67, there exist unique c0, c1, . . . , ck−1 ∈ R such that

u =
k−1∑
i=0

ciei.

If we transfer this decomposition into the individuals space (using the linearity of ϕ, see
Lemma 62), we obtain

U =
k−1∑
i=0

Ui,
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Individual space: U = (U0, . . . ,Um, . . . ,UN−1) = Π∗+ U1 + . . . + Uk−1

Level space: u = (u0, . . . , uj, . . . , uk−1) = π∗+ c1e1 + . . .+ ck−1ek−1

ϕ ϕ ϕ ϕ
individual
of
level

=

( n
k−j

)N−1

= (1 + γj)·

=

(π∗
0 , . . . , π

∗
j , . . . , u∗k−1)

=

N−1

= (1 + γj)·

=

(Π∗
0 , . . . ,Π

∗m, . . . ,Π∗
k−1)

Figure 9 – Illustration of the terms and their relations used in Lemma 68

where we define U := ϕ(u) and Ui := ϕ(ciei) for all i ∈ [0..k−1]. Note that the vector U describes
the uniform distribution in the individuals space and hence all its components are equal to 1

N .
For brevity we also define Π∗ := ϕ(π∗).

We now aim at finding a useful connection between the components of Π∗ and U. Namely,
if for all levels j ∈ [0..k−1] we prove that for any individual m in level j we have Π∗

m = (1+γj)Um
with γj that satisfies the conditions of the theorem, we simultaneously prove the same relation
for the components of π∗ and u.

Recall that π∗ is a normalized vector. Thus, by Lemma 65 we have ‖Π∗‖1 = 1. Recall also
that π∗ = e0 (by the choice of the basis) and therefore, we have Π∗ = U0

∥U0∥1
. For all m ∈ [0..N−1],

we have

Π∗
m =

U0
m

‖U0‖1
. (35)

The m-th component of U0 is

U0
m = Um −

k−1∑
i=1

Ui
m = Um

(
1−

k−1∑
i=1

Ui
m

Um

)
= Um

(
1− N

k−1∑
i=1

Ui
m

)
.

With βm := N
k−1∑
i=1

Ui
m, this simplifies to

U0
m = Um (1− βm) =

1
N (1− βm) .

We also compute the denominator of (35) as
∥∥U0∥∥

1 =
N−1∑
m=0
|U0

m| =
N−1∑
m=0

1
N(1− βm) = 1−

N−1∑
m=0

1
Nβm.
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Putting this into (35), we obtain

Π∗
m = Um

1− βm
1−∑N−1

m=0
1
Nβm

. (36)

In the remainder of the proof we aim at bounding |βm| from above by some β = o(1).
Then (36) gives

1− βm
1−∑N−1

m=0
1
Nβm

∈
[1− β

1 + β
,
1 + β

1− β

]
⊂
[
1− 2β

1− β
,1 +

2β
1− β

]
,

hence defining γ = 2β
1−β

= o(1) proves the lemma.
To find the desired β with |βm| < β = o(1), we regard the vector U − UQ. On the one

hand, its elements are very small. For all m ∈ [0..N− 1], we have

(U− UQ)m = Um −
N−1∑
ℓ=0

qmℓ Uℓ =
1
N

(
1−

N−1∑
ℓ=0

qℓm
)

=
qNm
N ,

where qmℓ is the probability to go from individual ℓ to individual m (recall that qmℓ = qℓm) and
qNm is the probability to leave the plateau from the m-th individual. The Euclidean norm of this
vector is also very small.

‖U− UQ‖2 =

√√√√N−1∑
m=0

(qNm
N
)2

=
1
N

√√√√k−1∑
i=0

( n
k− i

)(
Pr[α = k− i]

/( n
k− i

))2
.

To bound the sum under the root we notice that it is maximized when we maximize
Pr[α = 1] (since we consider only constant k, we assume that n is large enough so that n > 2k).
Let this probability be equal to 1, then we have only one non-zero summand and hence,

‖U− UQ‖2 ≤
1
N

√(n
1
)−1

=
1√nN .

On the other hand, if we recall that the Ui are eigenvectors, then we have

U− UQ =
k−1∑
i=0

Ui −
k−1∑
i=0

λiUi =
k−1∑
i=0

(1− λi)Ui.

As the Ui are orthogonal, for every i ∈ [0..k− 1] we have
∥∥(1− λi)Ui∥∥

2 ≤ ‖U− UQ‖2 ≤
1√nN .
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Since the absolute value of every component of a vector cannot be larger than its Euclidean
norm, for all m ∈ [0..N− 1] we conclude that

|(1− λi)Ui
m| ≤

∥∥(1− λi)Ui∥∥
2 ≤

1√nN .

Recall that by Lemma 66 we have

(1− λi) > ε >
(Pr[α = 1])k−1

(k− 1)2k

for all i 6= 0. Consequently,

|βm| =

∣∣∣∣∣N
k−1∑
i=1

Ui
m

∣∣∣∣∣ ≤ N
k−1∑
i=1
|Ui

m| ≤ N
k−1∑
i=1

1√nN(1− λi)

≤ (k− 1)√nε =: β.

Since we have Pr[α = 1] = ω(n− 1
2k−2 ), we conclude that

ε =

(
ω(n− 1

2k−2 )
)k−1

(k− 1)2k = ω(1/√n).

Thus,

β =
(k− 1)√nε = o(1)

as desired.

We are now in the position to prove our main result.
Proof of Theorem 21. To prove the theorem we first estimate the probability that the runtime T
is greater than t by Pr[T > t] = ‖πPt‖1, where π is the initial distribution over the levels of the
plateau. Then by (2) we estimate the expected runtime as E[T] =∑+∞

t=1
∥∥πPt−1∥∥

1.
To analyse ‖πPt‖1, we decompose π into a sum of eigenvectors of P using the basis

e0, . . . , ek−1 from Lemma 67. Let π0, . . . , πk−1 be scalar multiples of e0, . . . , ek−1 such that

π =
k−1∑
i=0

πi. (37)

Using the triangle inequalities (Lemma 54) we obtain

∥∥π0Pt∥∥1 −

∥∥∥∥∥
k−1∑
i=1

πiPt
∥∥∥∥∥

1
≤ ‖πPt‖1 ≤

∥∥π0Pt∥∥1 +

∥∥∥∥∥
k−1∑
i=1

πiPt
∥∥∥∥∥

1
.
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Since the πi are the eigenvectors of P, we have

λt0
∥∥π0∥∥

1 −

∥∥∥∥∥
k−1∑
i=1

λtiπ
i
∥∥∥∥∥

1
≤ ‖πPt‖1 ≤ λt0

∥∥π0∥∥
1 +

∥∥∥∥∥
k−1∑
i=1

λtiπ
i
∥∥∥∥∥

1
. (38)

Now we estimate the “error term”
∥∥∥∑k−1

i=1 λtiπ
i
∥∥∥

1
of these bounds. First, by Lemma 65 and

by Lemma 62, we have ∥∥∥∥∥
k−1∑
i=1

λtiπ
i
∥∥∥∥∥

1
=

∥∥∥∥∥ϕ
(k−1∑

i=1
λtiπ

i
)∥∥∥∥∥

1
=

∥∥∥∥∥
k−1∑
i=1

λtiϕ(π
i)

∥∥∥∥∥
1
. (39)

Using Lemma 53 and Lemma 55 we estimate∥∥∥∥∥
k−1∑
i=1

λtiϕ(π
i)

∥∥∥∥∥
1
≤
√N

∥∥∥∥∥
k−1∑
i=1

λtiϕ(π
i)

∥∥∥∥∥
2
≤
√N max

i∈[1..k−1]
(|λti|)

∥∥∥∥∥
k−1∑
i=1

ϕ(πi)

∥∥∥∥∥
2
. (40)

By Lemma 66 we have maxi∈[1..k−1](|λti|) ≤ (1− ε)t, where ε = (Pr[α=1]))k−1

(k−1)2k . Hence, by Lemma 56
and Lemma 53, we conclude

√N max
i∈[1..k−1]

(|λti|)

∥∥∥∥∥
k−1∑
i=1

ϕ(πi)

∥∥∥∥∥
2
≤
√N(1− ε)t ‖ϕ(π)‖1 =

√N(1− ε)t. (41)

Finally, by (38), (39), (40), and (41) we obtain that

‖πPt‖1 = λt0
∥∥π0∥∥

1 + r(t), (42)

where |r(t)| ≤ √N(1− ε)t.
To estimate the expected runtime we put (42) into (2) and obtain

E[T] =
+∞∑
t=1

∥∥πPt−1∥∥
1 =

+∞∑
t=1

(
λt−1

0
∥∥π0∥∥

1 + r(t− 1))
=

+∞∑
t=1

λt−1
0
∥∥π0∥∥

1 +
+∞∑
t=1

r(t− 1) =
∥∥π0∥∥

1
1− λ0

+
+∞∑
t=0

r(t).
(43)

By (41) we have ∣∣∣∣∣
+∞∑
t=0

r(t)
∣∣∣∣∣ ≤

+∞∑
t=0
|r(t)| ≤

+∞∑
t=1

√N(1− ε)t =
(1− ε)

√N
ε

≤
√N
ε

.

From the assumptions of the theorem we have

ε =
(Pr[α = 1])k−1

(k− 1)2k =
ω(1/√n)
(k− 1)2k = ω(1/√n),
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and hence ∣∣∣∣∣
+∞∑
t=0

r(t)
∣∣∣∣∣ = o(√nN).

It remains to estimate ∥∥π0∥∥
1 and λ0. Recall that by Lemma 65 we have ∥∥π0∥∥

1 =
∥∥ϕ(π0)

∥∥
1.

From the linearity of ϕ (see Lemma 62) and (37) we obtain ϕ(π) =
∑k−1

i=0 ϕ(πi). Since π0, . . . πk−1

are scalar multiples of e0, . . . ek−1 and all ϕ(ei) are orthogonal, we have a decomposition of ϕ(π)
into a sum of orthogonal vectors. Therefore, by Lemma 57, we have

∥∥ϕ(π0)
∥∥

1 =
〈ϕ(π), ϕ(e0)〉
〈ϕ(e0), ϕ(e0)〉

. (44)

By Lemma 68, the components of e0 are almost equal to the components of the vector u
of the uniform distribution in the level space9. Transferring this result to the individual space,
we have (ϕ(e0))m = 1

N(1 + γj) for all j ∈ [0..k − 1] and all individuals m that belong to level j.
This and the fact that by Lemma 65 we have ‖ϕ(π)‖1 = ‖π‖1 = 1 allow to calculate the inner
products in (44) and obtain

∥∥π0∥∥
1 =

k−1∑
j=0

∑
m∈level j

(ϕ(π))m
1+γj
N

k−1∑
j=0

∑
m∈level j

(1+γj
N
)2 = 1 + o(1). (45)

We compute (1−λ0) in the following way. First, since ‖π∗‖1 = 1 and π∗ is an eigenvector
of P, we have

1− λ0 = 1− ‖λ0π∗‖1 = 1− ‖π∗P‖1 = 1−
k−1∑
i=0

∣∣∣∣∣∣
k−1∑
j=0

π∗
j pij

∣∣∣∣∣∣ .
Since by Theorem 20 all components of π∗ are positive and the components of P are

non-negative, this simplifies to

1−
k−1∑
i=0

∣∣∣∣∣∣
k−1∑
j=0

π∗
j pij

∣∣∣∣∣∣ = 1−
k−1∑
i=0

k−1∑
j=0

π∗
j pij = 1−

k−1∑
j=0

π∗
j
k−1∑
i=0

pij.

By the definition of P, the sum of the j-th row of P is equal to (1 − pkj ), and we have∑k−1
i=0 π∗

i = ‖π∗‖1 = 1. Hence,

1−
k−1∑
j=0

π∗
j
k−1∑
i=0

pij = 1−
k−1∑
j=0

π∗
j (1− pkj ) =

k−1∑
j=0

π∗
j pkj .

9Note that e0 is the same vector as π∗ in Lemma 68. However we now refer to this vector as e0 to underline that
we consider it as a basis vector of the level space, while in Lemma 68 we referred to it as π∗ since we considered it
as a vector of the probabilistic distribution over the states of the level chain.
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By Lemma 68 and (29) we have
k−1∑
j=0

π∗
j pkj =

k−1∑
j=0

( n
k− j

)
N−1(1 + γj)

( n
k− j

)−1
Pr[α = k− j]

=
1
N

k∑
j=1

Pr[α = j](1 + γk−j) =
1
N Pr[1 ≤ α ≤ k](1 + o(1)).

Thus, we obtain
λ0 = 1− 1

N Pr[1 ≤ α ≤ k](1 + o(1)). (46)
By substituting λ0 and ∥∥π0∥∥

1 into (43) and (42) with their values from (46) and (45) and
recalling that N = nk

k! (1 + o(1)), we prove the theorem.

We also underline that r(t) in the tail bounds on the runtime distribution is negligible, as
soon as t = ω(

√n log(n)), that is, far before the algorithm finds the optimum.

3.4 Corollaries

We now exploit Theorem 21 to analyze how the choice of the mutation operator influences
the runtime.

By the runtime in this section we mean the runtime of the algorithm when it starts from
an arbitrary individual, which is not necessarily on the plateau. However, without proof we
notice that the (1 + 1) EA with any mutation operator considered in this section reaches the
plateau in an expected number of O(n log(n)) iterations from any starting individual, which is
significantly less than the time which it spends on the plateau. Therefore, the time to leave the
plateau coincides with the total runtime precisely apart from lower order terms. Since, by our
main result, the time to leave the plateau depends only on the probability to flip between 1 and
k bits, determining the runtimes in this section is an easy task.

We first observe that for all unbiased operators with constant probability to flip exactly
one bit, the expected optimization time is Θ(N), where we recall that the size N of the plateau is

N =
k−1∑
i=0

( n
n− k+ i

)
= (1± o(1))n

k

k! .

Hence all these mutation operators lead to asymptotically the same runtime of Θ(nk). The inter-
esting aspect thus is how the leading constant changes.

3.4.1 Randomized Local Search and Variants

When taking such a more precise look at the runtime, that is, including the leading con-
stant, then the best runtime, obviously, is obtained from mutation operators which flip always
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between 1 and k bits. This includes variants of randomized local search which also flip more
than one bit, see, e.g., [73, 111, 39], as long as they do not flip more than k bits, but most
prominently the classic randomized local search heuristic, which always flips a single random
bit. Note that the latter uniformly for all k (and including the case k = 1 not regarded in this
chapter) is among the most effective algorithms.

3.4.2 Standard (1 + 1) EA

The classic mutation operator in evolutionary computation is standard bit mutation, where
each bit is flipped independently with some probability (“mutation rate”) γ/n, where γ usually is
a constant. We call the (1 + 1) EA which uses the standard bit mutation the standard (1 + 1) EA.
Theorem 22. Let γ be some arbitrary positive constant and k ≥ 2. Then the standard (1 + 1) EA
with mutation rate γ/n optimizes PLATEAUk in an expected number of

E[T] = (1 + o(1)) nk
k!e−γ

∑k
i=1

γi
i!

iterations. This time is asymptotsically minimal for γ =
k√k! ≈ k/e.

Proof. For the standard bit mutation with mutation rate γ/n, the probability to flip exactly one
bit is

nγn
(

1− γ

n
)n−1

≥ γe−γ(1− o(1)),

which is at least some positive constant as long as γ is a constant. Thus, we can apply Theorem 21
and obtain

E[T] = (1± o(1)) N
Pr[1 ≤ α ≤ k]

= (1± o(1))N
( k∑

i=1

(n
i
)(γ

n
)i (1− γ

n
)n−i

)−1

= (1± o(1))n
k

k!

( k∑
i=1

γ i

i! e
−γ

)−1

.

Consider d(γ) = e−γ
∑k

i=1
γi
i! . In order to minimize E[T], we have to maximize d(γ). Now

γ 7→ d(γ) is a smooth continuous function, so its maximal value for γ ∈ [0,+∞) can only be at
γ = 0, for γ → +∞, or in the zeros of its derivative. We have d(0) = limγ→∞ d(γ) = 0. The
derivative is

d′(γ) =
(
e−γ

k∑
i=1

γ i

i!

)′

= e−γ

k∑
i=1

iγ i−1

i! − e−γ

k∑
i=1

γ i

i!
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= e−γ

(k−1∑
i=0

γ i

i! −
k∑

i=1

γ i

i!

)
= e−γ

(
1− γk

k!
)
.

Hence the only value of γ with d′(γ) = 0 is γ =
k√k!. For this value we have d( k√k!) > 0, so this

defines the unique optimal mutation rate. Finally, by Stirling’s formula k! ≈ √2πk (ke)k we have
k√k! ≈ (2πk) 1

2k ke ≈
k
e .

3.4.3 Fast (1 + 1) EA

The fast (1 + 1) EA proposed in [57] is simply a (1 + 1) EA that uses standard bit mutation
with a random mutation rate γ/n with γ ∈ [1..n/2] chosen according to a power-law distribution.
More precisely, for a parameter β > 1 which is assumed to be a constant (independent of n), we
have

Pr[γ = i] = 0
for every i > n/2 and i = 0, and

Pr[γ = i] = i−β/Hn/2,β

otherwise, where Hn/2,β :=
∑n/2

i=1 i−β is a generalized harmonic number.
Theorem 23. For k ≥ 2 the expected runtime of the fast (1 + 1) EA on PLATEAUk is Ckn n

k
k! , where

Ckn :=
Hn/2,β
Hk,β

(1 + o(1)) can be bounded by constants, namely Ckn ∈
[

1
β−1−o(1)

Hk,β
,

1
β−1+1
Hk,β

]
.

Proof. From the definition of the fast (1 + 1) EA we have

k∑
i=1

Pr[γ = i] =

k∑
i=1

i−β

n/2∑
i=1

i−β

=
Hk,β
Hn/2,β

.

Since β > 1 and k are constants, Hk,β is a constant as well. We estimate Hn/2,β through
the corresponding integral.

1
β − 1 + 1 =

+∞∫
1

x−βdx+ 1 ≥ Hn/2,β ≥
n/2∫
1

x−βdx =
1− (n/2)1−β

β − 1 =
1− o(1)
β − 1 .

Notice that Pr[α = 1] = H1,β
Hn/2,β

=
(Hn/2,β

)−1 is at least some constant. Thus, Theorem 21
gives an expected runtime of E[T] = Hn/2,β

Hk,β
N(1 + o(1)), which we can estimate by

1−o(1)
β−1
Hk,β

nk
k! ≤ E[T] ≤

1
β−1 + 1
Hk,β

nk
k! (1 + o(1)).
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3.4.4 Hyper-Heuristics

Hyper-heuristics are randomized search heuristics that combine, in a suitable and again
usually randomized fashion, simple low-level heuristics. Despite many success stories in appli-
cations, their theoretical understanding is still very low and only the last few years have seen
some first results. These exclusively regard simple (1 + 1) type hill-climbers which choose be-
tween different mutation operators as low-level heuristics. We now regard the hyper-heuristics
discussed in [1] argue that for some of these, our method is applicable, whereas for others it is
not clear how to do this.

Like almost all previous theoretical works, we regard as available low-level mutation
operators one-bit flips (flipping a bit chosen uniformly at random) and two-bit flips (flipping
two bits chosen uniformly at random from all 2-sets of bit positions). Hence the (1 + 1) hill-
climber with this a hyper-heuristic selection between these two operators starts with a random
search point and then repeats generating a new search point by applying one of the mutation
operators (chosen according to the hyper-heuristic) and accepting the new search point if it has
an at least as good fitness as the parent.

The most elementary hyper-heuristic called simple random in each iteration simply chooses
one of the two available mutation operators with equal probability 1/2. This compound mutation
operator (choosing one randomly and applying it) still is a unary unbiased mutation operator,
so our main result (Theorem 21) is readily applicable and gives the following result.
Theorem 24. Consider the (1 + 1) hill-climber using the simple random hyper-heuristic to decide
between the one-bit flip and the two-bit flip mutation operator. When started on an arbitrary point of
the plateau, its runtime T on the PLATEAUk, k ≥ 2, function satisfies

E[T] = nk
k! (1± o(1)).

The more interesting hyper-heuristic random gradient in the first iteration chooses a ran-
dom low-level heuristic. In each further iteration, it chooses the same low-level heuristic as in
the previous iteration, if this has ended with a fitness gain, and it chooses again a random low-
level heuristic otherwise. This way of performing mutation obviously cannot be described via a
single unary unbiased operator. However, once the algorithm has reached the plateau, it can.
The reason is that from that point on and until the optimum is found, no further improvements
are found. Consequently, the algorithm reverts to the one using the simple random approach.
Theorem 25. Consider the (1 + 1) hill-climber using the random gradient hyper-heuristic to decide
between the one-bit flip and the two-bit flip mutation operator. When started on an arbitrary point of
the plateau, its runtime T on the PLATEAUk, k ≥ 2, function satisfies

E[T] = nk
k! (1 + o(1)).

For two other common hyper-heuristics, we currently do not see how to apply our meth-
ods. The permutation heuristic initially fixes a permutation of the low-level heuristics and then
repeatedly uses them in this order. The greedy heuristic uses, in each iteration, all available
hyper-heuristics in parallel and proceeds with the best offspring produced (if it is at least as
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good as the parent). While we are optimistic that these heuristics lead to asymptotically the
same runtimes as the two heuristics just analyzed, we cannot prove this since our main result is
not applicable.

It has been observed in [102] that, due to the generally low probability of finding an
improvement, better results are obtained when the random gradient heuristic is used with a
longer learning period, that is, the randomly chosen low-level heuristic is repeated for a phase
of τ iterations. If an improvement is found, a new phase with the same low-level heuristic
is started. Otherwise, the next phase starts with a random operator. This idea was extended
in [60] so that now a phase was called successful if within τ iterations a certain number σ of
improvements were obtained. This mechanism was more stable and allowed a self-adjusting
choice of the previously delicate parameter τ . Again, for these hyper-heuristics our results are
not applicable.

3.4.5 Comparison for Concrete Values

Since the leading constants computed above, in their general form, are hard to compare,
we now provide in Table 1 a few explicit values for specific algorithm parameters and plateau
sizes.

Algorithm k = 2 k = 4 k = 6
Random Local Search 1 1 1
(1 + 1) EA with standard
bit mutation

Mutation rate 1
n 1.812 1.591 1.582

Mutation rate k
en 2.074 1.328 1.027

Fast Genetic Algorithm β = 1.5 1.930 1.563 1.428
β = 2 1.316 1.155 1.103

(1 + 1) EA with
hyperheuristics

simple random 1 1 1
random gradient 1 1 1

Table 1 – Comparison of the leading constant in the expected runtime of the evolutionary algorithms
with different mutation operators on the PLATEAUk function, that is, the constant c, such that the
expected runtime is cnkk! (1− o(1)).

3.5 Parallel Runs and Population-Based Algorithms

In this section we show how our precise tail bound for the runtime can be useful when it
comes to the analysis of the algorithms other than (1 + 1) EA. First, we consider λ parallel runs
of the (1 + 1) EA with λ = Θ(1). We call the runtime of these parallel runs T̃ and define it as the
minimal t ∈ N such that at least one of λ processes finds the optimum in t iterations. In other
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words, denoting by Ti the runtime of the i-th process, we have
T̃ = min

i∈[1..λ]
Ti.

We show in the following theorem that T̃ follows a distribution close to 1
λ

Geom(p) with
p = Pr[1≤α≤k]k!

nk (1 + o(1)).
Theorem 26. Let T̃ be the parallel runtime until the optimum of the PLATEAUk function is found
by one of λ = Θ(1) parallel runs of the (1 + 1) EA with an unbiased mutation operator such that
Pr[1 ≤ α ≤ k] = ω(n− 1

2k−2 ). Then we have
Pr[T̃ > t] = (1− p)λt(1 + s(t)),

where p = Pr[1≤α≤k]k!
nk (1+o(1)) and s(t) = o(1) for all t ≥ 2k ln(n)

ε
, where ε is the same as in Theorem 21.

To simplify the proof of the theorem we first prove the following auxiliary lemma.
Lemma 69. With ε defined in Theorem 21 and p defined in Theorem 26 we have(1− ε

1− p
) 2

ε

≤ e−1.

Proof. First notice that since ε ∈ [0,1], we have eε/2 ≤ (1 + ε). Hence, we have
(1− ε)e ε

2 ≤ (1− ε)(1 + ε) ≤ 1− ε2 ≤ 1− p,
if n is large enough, since ε = ω(n−1/2) and p = O(n−k). By multiplying both sides of the
inequality by 1

eε/2(1−p) and then raising them in power of 2
ε
, we prove the lemma.

We are in a position to prove Theorem 26.
Proof of Theorem 26. To have T̃ > t we need all λ processes not to find the optimum in t itera-
tions. Recall that Ti is the runtime of the i-th process. Since the processes are independent and
they all have the same distribution of the runtime, we have

Pr[T̃ > t] =
λ∏
i=1

Pr[Ti > t] = (Pr[T > t])λ,

where T is the runtime of the (1 + 1) EA with the same mutation operator. Notice that T is a
subject for Theorem 21 which gives us

Pr[T̃ > t] = ((1 + o(1))(1− p)t + r(t))λ = (1− p)λt
(

1 +
r(t)

(1− p)t + o(1)
)λ

.

If t ≥ 2k ln(n)
ε

, then by Lemma 69 we have∣∣∣∣ r(t)
(1− p)t

∣∣∣∣ ≤
√N(1− ε)t

(1− p)t =
√N

(1− ε

1− p
) 2k ln(n)

ε
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≤
√Ne−k ln(n) = O(nk/2)n−k = o(1).

Therefore, since we only consider λ = Θ(1), for these values of t we have

Pr[T̃ > t] = (1− p)λt (1 + o(1))λ = (1− p)λt (1 + o(1)) .

Unfortunately, we cannot state the same result for the super-constant λ. The root of this
problem is that when we have a super-constant number of points on plateau, the approxima-
tion of the uniform distribution with any other distribution given in Lemma 68 is not enough.
Namely, the factor of ∥∥π0∥∥

1 can be no longer (1 + o(1)), when it is raised in a super-constant
power of λ.

Nevertheless, we still can analyse the runtime of the (λ
1:1
+ λ) EA with constant population

size. For this we consider the (λ
1:1
+ λ) EA with an additional diversity mechanism, which affects

how we break ties when we select individuals to the next population. With this mechanism, in
a case of a tie we select individuals into the next population in the following order.

1) First, we choose individuals from the offspring population.
2) Second, we choose parents whose offspring was not selected into the next population.
3) Finally, we choose other individuals from the parent population.

The idea of maintaining diversity with this mechanism comes from the observation that an
offspring is usually not significantly different from its parent. With these tie-breaking rules
we select a pair of a parent and its offspring into the next population only if there exists another
pair with smaller fitness. This prevents us from selecting two individuals with similar genotype
into the next population, making us prefer individuals with different genotype.

One can see that as soon as all individuals of the (λ
1:1
+ λ) EA reach the plateau, it turns into

λ independent runs of the (1 + 1) EA. This happens because when all individuals are already in
the plateau, then in each pair of an offspring and its parent there is at least one individual with
fitness at least n− k, hence, exactly one of them satisfies one of the first two rules. This leads us
to the following theorem.

Theorem 27. Let λ = Θ(1) and let T be the runtime of the (λ
1:1
+ λ) EA with the described diversity

mechanism on PLATEAUk if it starts with the whole population on the plateau. If the (λ 1:1
+ λ) EA uses

an unbiased mutation operator such that Pr[1 ≤ α ≤ k] = ω(n− 1
2k−2 ), then we have

Pr[T > t] = (1− p)λt(1 + s(t)),

where p = Pr[1≤α≤k]k!
nk (1+o(1)) and s(t) = o(1) for all t ≥ 2k ln(n)

ε
, where ε is the same as in Theorem 21.

Finally, we note that the (λ
1:1
+ λ) EA with λ = Θ(1) reaches the plateau with at least

one individual in O(n1+ 1
2k−2 log(n)) iterations (see Subsection 2.2.4). Then the individual in the

plateau creates an offspring lying in the plateau with probability Ω(n−1− 1
2k−2 ), and therefore, all

population reaches the plateau in at most λΩ(n1+ 1
2k−2 ) = Ω(n1+ 1

2k−2 ) iterations. By Theorem 27
this time is much smaller than the time the algorithm spends on the plateau.
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3.6 Conclusion of Chapter 3

In this chapter we developed a new method to analyze the runtime of evolutionary algo-
rithms on plateaus. This method does not depend on the particular mutation operator used by
the EA as long as there is a sufficiently large probability to flip a single random bit. We performed
a very precise analysis on the particular class of plateau functions, but we are optimistic that
similar methods can be applied for the analysis of other plateaus. For example, Lemmas 66, 67
and 68 remain true for those plateaus of the function XDIVK (that is defined as bONEMAX(x)/kc
for some parameter k) that are in a constant Hamming distance from the optimum (and these
are the plateaus which contribute most to the runtime). That said, the proof of Lemma 66 would
need to be adapted to these plateaus different from the one of our plateau function. We are
optimistic that this can be done, but leave it as an open problem for now.

The inspiration for our analysis method stems from the observation that the algorithm
spends a relatively long time on the plateau. So regardless of the initial distribution on the
plateau, the distribution of the individual converges to the conditional stationary distribution
long before the algorithm leaves the plateau. This indicates that our method is less suitable to
analyze how evolutionary algorithms leave plateaus which are easy to leave, but such plateaus
usually present not bigger problems in optimization.

Overall, we are optimistic that our main analysis method, switching between the level
chain and the individual chain, which might be the first attempt to devise a general analysis
method for EAs on plateaus, will find further applications.

The precision of the obtained results allowed us to estimate the distribution of the
population-based (λ

1:1
+ λ) EA with a diversity mechanism. However, it is still an open ques-

tion how the more complicated EAs like perform on plateaus. A series of works [81, 80, 87, 138,
84, 13, 121, 49, 33, 31] analyzing the runtime of various versions of the (µ+ λ) EA, (µ, λ) EA,
and (1 + (λ, λ)) GA on ONEMAX show that these algorithms quickly reach the plateau of the
PLATEAU function, but it is currently not clear how to extend our method to get sharp runtime
estimates also for the part of the process on the plateau. Likewise, it is not clear how our methods
can be extended to algorithms that dynamically change their parameters [32], because here in
most cases the relevant state of the algorithm not only consists of the current search point(s). For
hyper-heuristics, we could show two elementary results, but again, as discussed in Section 3.4.4,
for most hyper-heuristics our general result cannot be applied. By analogy with jump functions,
crossover-based algorithms should be efficient on plateaus, especially the ones using different
diversity mechanisms [20]. However, these algorithms are more complicated, and even on jump
functions there are no asymptotically tight bounds on their runtime. This suggest that studying
their behavior on plateaus might be even more complicated. Given that plateaus of constant
fitness appear frequently in optimization problems, we feel that the open questions discussed in
this paragraph are worth pursuing in the near future.



118

Chapter 4 The Methods for Analysis of the Crossover-Based Algorithms

In this chapter our focus is on the analysis of a relatively new algorithm—the
(1 + (λ, λ)) GA proposed in [34]. This algorithm is of a special interest for us, since it not
only uses non-trivial populations, but also the crossover operator. Being the first crossover-
based algorithm which can solve ONEMAX in a linear time, this algorithm requires a non-trivial
parameter control methods to reach its best efficiency. In [11] it was shown that the parameter
control technique used to obtain a linear runtime on ONEMAX does not work well on the MAX-
3SAT instances and needs additional adjustment for a reasonable runtime. On the other hand,
in [2] it was empirically observed that such an adjusted version of the (1 + (λ, λ)) GA does not
work well when the distance to the optimum is small (e.g., in case of re-optimization after a
small change of a fitness function). This raises a question if there exist a more universal way of
a dynamic parameter choice for the (1 + (λ, λ)) GA.

In this chapter we propose a modification of the (1 + (λ, λ)) GA which we call the heavy-
tailed (1 + (λ, λ)) GA. This modified version simply chooses the parameters of the algorithm in
each iteration from the power-law distribution. Our analysis of this algorithm on the ONEMAX,
LEADINGONES and JUMPk functions shows that simple way of the dynamic parameters choice
can be surprisingly effective. We also show that variation of the parameters of the power-law
distribution does not have a strong impact on the runtime, hence it is fair to call the heavy-tailed
(1 + (λ, λ)) GA a parameterless algorithm.

Previously the (1 + (λ, λ)) GA has not been analysed neither on LEADINGONES, nor on
JUMPk, so we also derived the runtime of the standard (1 + (λ, λ)) GA with static parameters
on these functions. From the analysis on the LEADINGONES we see that the (1 + (λ, λ)) GA
struggles from the weak fitness-distance correlation of the optimized function, however, it does
not become worse than the standard mutation-based algorithms. The study of the (1 + (λ, λ)) GA
on JUMPk showed that the standard parameter setting of the algorithm can be not optimal when
we optimize non-unimodal functions (in the same manner as it was shown in [57] that the
standard recommendation to use mutation rate 1

n does not work well for JUMPk).

From the technical point of view our analysis is not too complicated (compared to the
previous chapters), however to deliver the runtime on LEADINGONES we had to develop a new
drift theorem which can deliver tail bounds under additive drift. This new theorem resembles
some of the results in [92], being less general while easier for the application.

The structure of this chapter is as follows. First we describe the heavy-tailed
(1 + (λ, λ)) GA in Section 4.1. Then we analyse it on ONEMAX function and provide its
empirical comparison with its natural competitors on ONEMAX and on MAX-3SAT instances
used in [11] in Section 4.2. We proceed with analysis of the (1 + (λ, λ)) GA with static param-
eters and of the heavy-tailed (1 + (λ, λ)) GA on LEADINGONES in Section 4.3 starting it with
stating and proving our new drift theorem. Finally, in Section 4.4 we analyse the (1 + (λ, λ)) GA
with static parameters on jump and then propose a slightly different version of the heavy-tailed
(1 + (λ, λ)) GA for the non-unimodal functions in Section 4.5.
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4.1 Heavy-tailed (1 + (λ, λ)) GA

It is often cited as a strength of evolutionary algorithms (EAs) that by setting the param-
eters right the algorithm can be adjusted to the particular problem to be solved. However, it is
also known that this process of optimizing the parameters is time-consuming and needs a lot of
expert knowledge.

The theoretical research in this field (see, e.g., [4, 51, 86, 112]) has contributed to this
challenge via mathematical runtime analyses for general parameter values which allow to un-
derstand the influence of the parameter on the performance and to derive optimal parameter
values. Examples (already discussed in the previous chapters) include (i) the works of Jansen,
de Jong, and Wegener [87] as well as Doerr and Künnemann [49], which determine the runtime
of the (1 + λ) EA on ONEMAX for general value of λ and from this derive that a linear speed-up
exists only for λ = O( log(n) log log(n)

log log log(n)
), (ii) Witt’s analysis [138] of the runtime of the (µ+ 1) EA

for general values of µ on the LEADINGONES benchmark, which in particular shows that for
µ = O(log n) a larger parent population does not lead to an asymptotic slow-down of the algo-
rithm, or (iii) the results of Lehre [96, 95] and many follow-up works, which for many non-elitist
algorithms determine asymptotically precise thresholds for the selection pressure that separate
a highly inefficient regime from one with polynomial runtimes.

Concerning the mutation rate p of the standard bit mutation operator for bit strings of
length n, which is one of our main objects of interest in this chapter, a large number of classic
results suggests that a value of p = 1

n or close by is a good choice. We note that a mutation rate
of p = 1

n means that on average a single bit is flipped. The recommendation p = 1
n can already be

found in [5, 108]. Rigorously proven results show, among others, that only p = Θ(1
n) can give an

O(n log n) runtime of the (1 + 1) EA on ONEMAX [67], that the asymptotically optimal mutation
rate for the (1 + 1) EA on LEADINGONES is approximately p = 1.59

n , that p = (1 ± o(1))1
n is the

asymptotically best mutation rate of the (1 + 1) EA for all pseudo-Boolean linear functions [139],
that only a mutation rate below c

n , where c is a specific constant, guarantees a polynomial runtime
of the (1 + 1) EA on all monotonic functions [59, 100], and that (1 ± o(1))1

n is the optimal
mutation rate for the (1 + λ) EA on ONEMAX when λ is small [75].

In the light of this previous state of the art, it came as a surprise when Doerr, Le,
Makhmara, and Nguyen [57] determined the runtime of the (1 + 1) EA on jump functions for
general mutation rates and observed that here much higher mutation rates were optimal. It
showed that for this multimodal benchmark function the insight gained on unimodal functions
like ONEMAX, linear functions, or LEADINGONES do not apply. The optimal mutation rate for
JUMPnk was found to be (1 ± o(1)) kn . The work [57] also showed that deviating from this op-
timal rate by a small constant factor already leads to a runtime increase by a factor of eΩ(k).
Consequently, the choice of the mutation rate for this problem is truly delicate.

To overcome this difficulty, the use of a random mutation rate chosen according to a
heavy-tailed distribution, more specifically, a power-law distribution with exponent β > 1, was
suggested. This mutation operator, called fast mutation in agreement with previous uses of heavy-
tailed distributions in continuous evolutionary computation, samples a random number α ∈
[1..b n2c] with probability proportional to α−β and then flips each bit independently with rate α

n .
Each application of this operator independently samples a new value of α.

The main result in [57] is that the (1 + 1) EA with this mutation operator for all k opti-
mizes JUMPnk in a time that is only by a factor of O(kβ−0.5) larger than the time resulting from
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Algorithm 5 – The heavy-tailed (1 + (λ, λ)) GA with power-law exponent β and upper limit u
maximizing f : {0,1}n → R

1: x← random bit string of length n
2: while not terminate do
3: Choose λ from [1..u] with Pr[λ = i] ∼ i−β

Mutation phase:
4: Choose ℓ ∼ Bin(n, p)
5: for i ∈ [1..λ] do
6: x(i) ← a copy of x
7: Flip ℓ bits in x(i) chosen uniformly at random
8: end for
9: x′ ← arg maxz∈{x(1),...,x(λ)} f(z)

Crossover phase:
10: for i ∈ [1..λ] do
11: Create y(i) by taking each bit from x′ with probability c and by taking it from x with

probability (1− c)
12: end for
13: y← arg maxz∈{y(1),...,y(λ)} f(z)
14: if f(y) ≥ f(x) then
15: x← y
16: end if
17: end while

standard bit mutation with the optimal rate. Given that missing the optimal rate (which is only
accessible when knowing k) by a small constant factor already incurs a runtime increase by a
factor of eΩ(k), the O(kβ−0.5) price for having a one-size-fits-all mutation operator appears to be
a good investment. From the asymptotic point of view β should be taken arbitrarily close to 1,
but the experiments conducted in [57] suggested that β = 1.5 is a good choice. Both theory and
experiments showed that the choice of β is not overly critical. For this reason, it is fair to call
fast mutation a parameterless operator.

Since the fast mutation operator is nothing else than a random linear combination of
standard bit mutation operators with rates α

n , α = 1, . . . , b n2c, it is not surprising that the resulting
runtime is higher than the one from the best of these individual operators. Rather, it is surprising
that by simply averaging over the available options, one comes relatively close to the optimum,
and this in a scenario where for static rates a small deviation from the optimum leads to a
significantly increased runtime.

The reason why the fast mutation is so effective on JUMP is that it has a probability of at
least Ω(k−(β−0.5)) to choose a mutation rate close to the optimal one, while we are not punished
for missing the right rate. We find such behavior also profitable in a different situation. Namely,
it was shown in [33] that when we optimize ONEMAX with the (1 + (λ, λ)) GA, the optimal value
of λ grows as we approach the optimum. However, if we miss the optimal λ, we are still likely to
have some progress. Hence, it is natural to choose parameter λ from a power-law distribution.
Hence, we come up with a modification of the (1 + (λ, λ)) GA shown in Algorithm 5.
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4.2 Runtime Analysis of the Heavy-Tailed (1 + (λ, λ)) GA on ONEMAX

The main result of this section is that not only the use of the heavy-tailed parameter choice
in the (1 + (λ, λ)) GA relieves us from finding a good mutation rate, but surprisingly we can even
obtain a runtime that is faster than the runtime of the (1 + (λ, λ)) GA with any fixed mutation
rate: If the power-law exponent β satisfies 2 < β < 3, then the heavy-tailed (1 + (λ, λ)) GA has
an expected runtime of O(n) on ONEMAX.

We note that a linear runtime of the (1 + (λ, λ)) GA on ONEMAX was obtained earlier
with a self-adjusting choice of the mutation rate based on the one-fifth rule [31]. While this
worked well on ONEMAX, experimental [76] and theoretical [11] studies on MAX-3SAT instances
showed that this approach carries the risk that the population size λ increases rapidly because
the problem structure may just not allow a one-fifth success rate, regardless how large λ is.
Since this behavior increases the time complexity of each iteration, it leads to a significant
performance loss. Such problems, naturally, cannot arise with the static behavior of the fast
mutation operator.

Via an empirical study, we show that the fast mutation operator indeed without any
modification also solves well the MAX-3SAT instances for which the one-fifth rule variant of the
(1 + (λ, λ)) GA did not perform well in [11] (unless enriched with a suitable cap on λ). However,
our study also shows that on ONEMAX itself, the self-adjusting (1 + (λ, λ)) GA is by a constant
factor faster than the heavy-tailed (1 + (λ, λ)) GA. Since the runtime loss from a degenerate
behavior of the one-fifth rule version of the (1 + (λ, λ)) GA can be large (due to the population
size of order n), we draw from these results the recommendation to use the more robust heavy-
tailed (1 + (λ, λ)) GA on a novel problem rather than the self-adjusting (1 + (λ, λ)) GA.

4.2.1 Runtime Analysis

In this section we prove upper and lower bounds on the runtime of the heavy-tailed
(1 + (λ, λ)) GA on ONEMAX.

Upper Bound

Our goal in this subsection is to prove an upper bound on the number of fitness evaluations
taken until the heavy-tailed (1 + (λ, λ)) GA finds the optimum of the ONEMAX benchmark. Since
it is technically easier, we first regard the number of iterations until the optimum is found. For
algorithms with fixed population sizes, such a bound would immediately imply a bound on the
number of fitness evaluations (namely by multiplying the number of iterations with the fixed
number of fitness evaluations per iteration). For the heavy-tailed (1 + (λ, λ)) GA using a newly
sampled value of λ in each iteration, things are not that easy, but Wald’s equation (Lemma 20)
allows to argue that multiplying with the expected number of fitness evaluations per iteration
gives the right result.
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We start by showing that for reasonable parameter values, the optimum is found in a
linear number of iterations.
Theorem 28. If β ∈ (1,3) and u ≥ ln 1

3−β (n), then the expected number of iterations until the heavy-
tailed (1 + (λ, λ)) GA finds the optimum of ONEMAX function is O(n).

When β > 2, the expected number of fitness evaluations per iteration is constant (see
Lemma 6). With this observation and Wald’s equation, we obtain the following estimate for the
runtime.
Theorem 29. If β ∈ (2,3) and u ≥ ln 1

3−β (n), then the expected number of fitness evaluations until
the heavy-tailed (1 + (λ, λ)) GA finds the optimum of ONEMAX function is O(n).

We start with the proof of Theorem 28. For the readers’ convenience we split the proof
into Lemmas 70 and 71. The first lemma is essentially an interpretation of Lemma 7 in [33].
Lemma 70. If λ ≤

√
n

d(x) , where d(x) is the current distance between the current individual x and the
optimum, then the probability pd(x)(λ) of increasing the fitness in one iteration is at least

Cd(x)λ
2

n ,

where C > 0 is an absolute constant. If λ >
√

n
d(x) , then this probability is at least C.

Proof. By [33, Lemma 7], the probability of a true progress pd(x)(λ) is at least

C′

1−
(

1− d(x)
n
)λ2

2
 ,

where C′ > 0 is an absolute constant. By Lemma 21 we have

pd(x)(λ) ≥ C′

1−
(

1− d(x)
n
)λ2

2
 ≥ C′

d(x)λ2
2n

1 + d(x)λ2
2n

.

If λ ≤
√

n
d(x) , then we have pd(x)(λ) ≥ C′ d(x)λ2

3n . Note that C := C′

3 is an absolute constant as well as
C′. If λ >

√
n

d(x) , then pd(x)(λ) ≥ C′

3 = C.
Since Lemma 7 in [33] is formulated for λ ≥ 2 only, we also note that for λ = 1 the

algorithm essentially performs an iteration of the (1 + 1) EA. Therefore, the probability for a
progress in this case is at least d(x)

en .
Lemma 71. Let β ∈ (1,3). Then the probability pd(x) of having progress in one iteration given that
the current distance to the optimum is d(x) is at least

C(β)d(x)U
3−β

n ,

where U = min{u,
√

n
d(x)} and C(β) is some constant independent of n.
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β u ≤
√

n
d(x) u >

√
n

d(x)

< 1 Ω
(
d(x)u2

n
)

Ω(1)
= 1 Ω

(
d(x)u2
n log(u)

)
Ω
(

1
ln(u) +

(
1− ln(n/d(x))

2 ln(u)
))

(1,3) Ω
(
d(x)u3−β

n
)

Ω

(√
n

d(x)
1−β
)

= 3 Ω
(
d(x) log(u)

n
)

Ω
(

log(n/d(x))
(n/d(x))

)
> 3 Ω

(
d(x)
n
)

Table 2 – The probability pd(x) to increase fitness in one iteration for various values of parameters
β ∈ R and u ∈ N

Proof. By Lemma 70 we have

pd(x) =
u∑

λ=1
Cβ,uλ−βpd(x)(λ) ≥ Cβ,uC

⌊U⌋∑
λ=1

d(x)λ2−β

n

= Cβ,uCd(x)n
⌊U⌋∑
λ=1

λ2−β

If U ≥ 2, then by Lemma 3 we have
⌊U⌋∑
λ=1

λ2−β ≥ U3−β − 1
3− β

≥ 1− 2β−3

3− β
U3−β ≥ 3

8U
3−β.

Otherwise, when U < 2 we have
⌊U⌋∑
λ=1

λ2−β ≥ 1 = Uβ−3U3−β ≥ 2β−3U3−β ≥ 1
4U

3−β.

Finally, we estimate

pd(x) ≥ Cβ,uCd(x)n
⌊U⌋∑
λ=1

λ2−β

≥ Cβ,uC1
4
d(x)
n U3−β = C(β)d(x)U

3−β

n
with C(β) := 1

4Cβ,uC.

In order to show a full picture we also computed the values of pd(x) for a wider range of
parameters u and β. The results are shown in Table 2. We omit the proofs, since they are similar
to the proof of Lemma 71.

We are now ready to prove Theorem 28.
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Proof of Theorem 28. By Theorem 3 we estimate the upper bound on the expectation of the run-
time TI (in terms of iterations) as the sum of expected times until the algorithm leaves each
fitness level. By Lemma 71 we have

E[TI] ≤
n∑

d(x)=1

1
pd(x)

≤ 1
C(β)

⌊n/u2⌋∑
d(x)=1

n
d(x)u3−β

+
n∑

d(x)=⌊n/u2⌋+1

√ n
d(x)

β−1
 .

By Lemma 4 we estimate the first sum
⌊n/u2⌋∑
d(x)=1

n
d(x)u3−β

≤
n (ln ( n

u2
)
+ 1)

u3−β
≤ n(ln(n) + 1)

ln(n) = n(1 + o(1)),

where in the last inequality we used the assumption u ≥ ln 1
3−β (n). By Lemma 4 we estimate the

second sum as follows.

n∑
d(x)=⌊n/u2⌋+1

√ n
d(x)

β−1
≤

n∑
d(x)=1

√ n
d(x)

β−1

≤ nβ−1
2

n∑
d(x)=1

d(x)−β−1
2 ≤ nβ−1

2
n 3−β

2

(3− β)/2 = O(n).

Therefore, we have

E[TI] ≤ 1
C(β) (O(n) + O(n)) = O(n).

We are now in position to prove Theorem 29
Proof of Theorem 29. Let {λt}t∈N be a sequence of random variables, each following the power-
law distribution with parameters β and u. We can assume that for all t ∈ N the heavy-tailed
(1 + (λ, λ)) GA chooses λ := λt in iteration t. Since the cost of one iteration is 2λ fitness eval-
uations (λ for the mutation phase and λ for the crossover phase), the total number of fitness
evaluations TF has the same distribution as∑TI

t=1 2λt. We aim at proving that the sequence (λt)t∈N
and TI allow to use Wald’s equation (Lemma 20). We show that conditions (1)–(4) of this lemma
are satisfied.

1) All λt have the same expectation, which is finite by Lemma 6.
2) The event TI ≥ t is independent of the outcome of λt, which implies that for all i ∈ [1..u]

we have Pr[TI ≥ t | λt = i] = Pr[TI ≥ t]. Therefore, we have

E[λt1{TI≥t}] =
u∑

i=1
iPr[λt = i]Pr[TI ≥ t | λt = i]

= Pr[TI ≥ t]
u∑

i=1
iPr[λt = i] = Pr[TI ≥ t]E[λt].
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β E[TI] E[TF] = 2E[TI]E[λ]
< 1 O(n) if u ≥

√ln(n)
O ( n

u2 log n
u2
) if u ≤

√ln(n)
O(nu2−β) if u ≥

√ln(n)
O (u−βn log n

u2
) if u ≤

√ln(n)
= 1 O(n log(u)) if u ≥

√ln(n)
O ( n

u2 log ( n
u2
) log(u)) if u ≤

√ln(n)
O(nu log(u)) if u ≥

√ln(n)
O ( n

u log ( n
u2
) log(u)) if u ≤

√ln(n)
(1, 2) O(n) if u ≥ ln 1

3−β (n)
O ( n

u3−β log ( n
u2
)) if u < ln 1

3−β (n)

O(nu2−β) if u ≥ ln 1
3−β (n)

O ( n
u log ( n

u2
)) if u < ln 1

3−β (n)

= 2 O(n log(u)) if u ≥ ln 1
3−β (n)

O
(

n log(u)
u3−β log ( n

u2
)) if u < ln 1

3−β (n)

(2, 3) O(n) if u ≥ ln 1
3−β (n)

O ( n
u3−β log ( n

u2
)) if u < ln 1

3−β (n)

= 3 O(n log log(u)) if u ≥ n 1
ln ln(n)

O
(

n
log(u) log ( n

u2
)) if u < n 1

ln ln(n)

O(n log log(u)) if u ≥ n 1
ln ln(n)

O
(

n
log(u) log ( n

u2
)) if u < n 1

ln ln(n)

> 3 O(n log(n)) O(n log(n))

Table 3 – Upper bounds on the expected number of iterations and expected number of fitness evalu-
ations for different values of β and u. The last column is calculated by Wald’s equation in the same
manner as in Theorem 29

3) By the previous condition we have
+∞∑
t=1

E[|λt| · 1{TI≥t}] =
+∞∑
t=1

Pr[TI ≥ t]E[λt] = E[λ]E[TI],

since for all t ∈ N we have E[λt] = E[λ]. By Theorem 28 and Lemma 6, both E[λ] and
E[TI] are finite, hence their product is finite as well.

4) By Theorem 28 E[TI] is finite.
Thus, by Wald’s inequality we have

E[TF] = E[TI]E[2λt].
By Theorem 28 we have E[TI] = O(n) and by Lemma 6 we have E[λ] = Θ(1). Hence, we conclude

E[TF] = O(n) ·Θ(1) = O(n).
Although we are mostly interested in β ∈ (2,3) and reasonably high upper limit u, a

reader might find it interesting to see the upper bounds for the runtimes yielded by different
parameters values.

For this reason we show the estimates for E[TI] and E[TF] for a wider range of parameters
values in Table 3. We omit the proofs, since they generally imitate the proofs of Theorems 28
and 29.

In the proofs of Theorems 28 and 29 we aimed at delivering only asymptotical upper
bounds disregarding the leading constant in order not to reduce the readability of the paper.
However, for the complete picture, without proof we estimate the leading constant derived from
our arguments.

Recall that C(β) = 1
12Cβ,uC′. From the proof of Lemma 7 in [33] we can show that C′ which

is used in Lemma 70 is at least 1
e (1− exp(− exp(−3

2))) ≈ 0.0735. For any upper bound u = ω(1)
we also have Cβ,u ≈ β − 1. Hence, we estimate the upper bound on the leading constant.

1
C(β)

(
1 +

2
3− β

)
≈ 12(5− β)

(3− β)(β − 1)C′ ≈ 164 (5− β)

(3− β)(β − 1) .
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Taking into account the leading constant hidden in Lemma 6, which is β−1
β−2 if β > 2, we

estimate the upper bound on the leading constant for E[TF] delivered by Theorem 29 as

328 (5− β)

(3− β)(β − 2) .

Lower Bound

In this section we prove the tightness of our upper bounds by showing a lower bound of
Ω(n) fitness evaluations for the runtime of the heavy-tailed (1 + (λ, λ)) GA on ONEMAX. This is
a special case of a deeper result [131], which showed the same lower bound for all comparison-
based algorithms (which the (1 + (λ, λ)) GA is). For the readers’ convenience, we give an ele-
mentary proof as well.
Theorem 30. The expected runtime of the heavy-tailed (1 + (λ, λ)) GA with parameter β ∈ R and
any upper limit u ∈ N on the ONEMAX function is at least Ω( n

E[λ]) iterations, where E[λ] is estimated
as in Lemma 6, and Ω(n) fitness evaluations.
Proof. The progress in one iteration cannot be greater than the number ℓ of bits which we flip in
each mutant, since we cannot obtain more than ℓ new one-bits in the winner x′ of the mutation
phase. Therefore, after we have sampled λ, the expected progress is

E[f(y)− f(x) | λ] ≤ E[ℓ | λ] = λ.

The expected progress in one iteration thus is

E[f(y)− f(x)] =
u∑

i=1
Pr[λ = i]E[f(y)− f(x) | λ = i] ≤ E[λ].

Let x0 be the initial individual. Since it is chosen uniformly at random, its expected
fitness is E[f(x0)] = n

2 . Hence, by the additive drift theorem [81] the expectation of the number
of iterations TI before the algorithm finds the optimum is at least

E[TI] ≥ n− E[f(x0)]
E[λ] =

n
2E[λ] .

Now we can use Wald’s equation as we did in the proof of Theorem 29. We obtain

E[TF] = E[TI]E[2λ] ≥ n
2E[λ] · 2E[λ] = n.

4.2.2 Experiments

In order to estimate the leading constant in the runtime of the heavy-tailed (1 + (λ, λ)) GA
with a heavy-tailed choice of λ and to compare it with its natural competitors on more practical
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problems we performed a series of experiments. We compared our algorithm with standard
mutation-based algorithms, namely randomized local search (RLS) and the (1 + 1) EA with a
standard bit mutation, as well as with the (1 + (λ, λ)) GA with controlled λ according to the
one-fifth rule [31]. We have also considered the version of the (1 + (λ, λ)) GA with the one-fifth
rule with an upper limit of 2 ln(n + 1) on the value of λ, introduced in [11], since it showed a
much better performance on the MAX-3SAT problem than without this upper limit. In all the
adaptive versions of the (1 + (λ, λ)) GA, the initial value of λ is set to 1.

Since according to our theoretical results the runtime is linear for all β ∈ (2,3), we were
also interested in finding the most appropriate value from this interval. We tried the values of
β = 2.1,2.3,2.5,2.7 and 2.9.

For all runs we slightly modified the algorithms to avoid counting absolutely useless fit-
ness evaluations. The particular changes are as follows.

• In the (1 + 1) EA, if the standard bit mutation flips zero bits, then we continue resample
offspring until one or more bits are flipped.

• In all versions of the (1 + (λ, λ)) GA, we (re-)sample ℓ until ℓ 6= 0. In the crossover phase,
the attempts to sample an individual identical to the parent x are repeated (without
evaluating the fitness of a copy), and the attempts to sample the individual identical to
the mutation-best offspring x′ do not count towards the number of fitness evaluations.
Additionally, x′ also participates in the selection of the best among x and the crossover
results y(i). When there is a tie, then the crossover winner has a higher priority than x′.

We consider these natural modifications instead of the original algorithms in this section,
since we are sure that anyone implementing these algorithms for solving practical problems
would do the same. For a practitioner it does not make sense to waste fitness evaluations on in-
dividuals which are identical to their parents, while in theoretical works these are often counted
since constant factors are often ignored. We note that similar modifications of algorithms were
called practice-aware in [115]. We note that there are much more ways to tune the runtime of
the (1 + (λ, λ)) GA in a practical application, see, e.g., [76]. In contrast to the modifications
described above, for these it is not clear to what extent they are useful in general or only for
particular problems. For this reason, we did not consider them in our experimental study.

Clearly our theoretical results from Section 4.2.1 apply to these mildly modified algo-
rithms. For the upper bounds it is enough to note that by resampling identical individuals and
by having x′ participate in the selection, the probability to have a progress in one iteration only
increases. Thus, repeating the arguments from Theorem 28 we obtain the same upper bound
on the expected number of iterations. Since our implementation does not affect the choice of
λ, its expected value E[λ] stays the same. The cost of one iteration is at most 2λ (but can be
smaller). Thus, by Wald’s equation we obtain the same upper bound on the expected number
of fitness evaluations as in Theorem 29. For the lower bound we use the same arguments as in
Theorem 30, with the only change that since we cannot choose ℓ = 0, we have

E[ℓ | λ] = λ

1− (1− 1
λ

)λ ≤ λ

1− 1
e
,

which still gives us a lower bound of Ω(n) fitness evaluations.
The experiments were performed on the ONEMAX function and on random satisfiable

instances of the MAX-3SAT problem, that is, the problem of maximizing the number of satisfied
clauses in a Boolean formula represented in the conjunctive normal form. The second problem
was chosen for two reasons. First, it is a more practical problem than ONEMAX, second, there are
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already theoretical and empirical results for the (1 + (λ, λ)) GA on this function (see [11]). For
this problem, the number of clauses was chosen to be 4n ln n for the number of variables n. An
all-ones bit string is assumed to be a planted optimal solution; this is without loss of generality,
as all considered algorithms are unbiased. For each clause, three participating variables and
their signs (i.e. whether it is inverted or not) are sampled uniformly and independently until this
clause is satisfied by the planted solution. Note that these are easy instances of the MAX-3SAT
problem, so the presented results on this problem should not be considered as if the proposed
algorithms are competitive in solving this problem in general. However, these instances have a
lower fitness-distance correlation, which makes them harder in particular for the (1 + (λ, λ)) GA.

In our experiments we chose the problem sizes n to be powers of two, so that the asymp-
totic behavior of the algorithms is easier to investigate visually. For ONEMAX, we limit the
problem size to 222, and for MAX-3SAT, the upper limit is 215. These sizes were derived from
the affordable computational times. To allow also these high problem sizes, we used incre-
mental fitness evaluations to save computational time without affecting any other aspect of the
experiment. We did not reach the size of 220 on MAX-3SAT as in [11], because the incremental
fitness evaluations have a weaker impact on algorithms with fast mutation. For each algorithm,
each problem setting, and each problem size, 100 independent runs were performed. For the
MAX-3SAT problem, a new random instance was created for each run.

The results are shown in Figures 10 and 11. In both figures the x-axis indicates the
problem size in a logarithmic scale, and the y-axis indicates the ratio of the runtime to the
problem size. In this visualization a linear runtime results in a horizontal plot and any runtime
in Θ(n log n) gives a linearly increasing plot.

In Figure 10 we show the results of the runs on the ONEMAX function. If we do not
consider β = 2.1, which turns out to be too small (and therefore gives a too large expected value
of λ), then all versions of the heavy-tailed (1 + (λ, λ)) GA start outperforming the (1 + 1) EA
already at population size n = 210 and then outperform RLS at n = 220 or earlier. Recalling the
discussion after the proof of Theorem 28 we note that our estimate of the leading constant in
the runtime is way too pessimistic, otherwise we would have no chance to outperform RLS on
these problem sizes.

The one-fifth rule shows a much better performance and yields a runtime of the
(1 + (λ, λ)) GA which is close to linear already at n = 210, independently of the upper bounds on
the choice of λ. The plots for the heavy-tailed choice of λ do not look horizontal, but they show
a strongly marked tendency that they will do it at larger population sizes. The runtimes for all
β except β = 2.1 are quite well concentrated, as well as the runtimes of the (1 + (λ, λ)) GA with
the one-fifth rule, in contrast to the runtimes of the (1 + 1) EA and RLS. We have no results for
β = 2.1 for population sizes n ≥ 221 and for β = 2.3 for n ≥ 222, since they were too expensive
(in terms of computational resources) and most likely not too insightful.

Regarding the runtimes of the (1 + (λ, λ)) GA with fixed values of λ one can see that the
heavy-tailed (1 + (λ, λ)) GA performs roughly similarly. With β = 2.5 it manages to outperform
the optimal and close-to-optimal fixed λ (which were computed in [11]) when the problem size
n ≥ 220. Note that the theoretically asymptotically optimal λ =

√
ln(n) ln ln(n)

ln ln ln(n) (delivered in [31])
is outperformed by different static values of λ at these population sizes.

Figure 11 shows the results of the experiments on the MAX-3SAT problem. As previously
shown in [11], large values of λ can be harmful. For this reason, the (1 + (λ, λ)) GA with the
unbounded one-fifth rule is outperformed already by the simple (1 + 1) EA. The authors of [11]
proposed to limit the value which λ can take by 2 ln(n + 1), which helped to outperform RLS
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Figure 10 – Mean runtimes and their standard deviation of different algorithms on ONEMAX bench-
mark problem. By λ ∈ [1..u] we denote the self-adjusting parameter choice via the one-fifth rule in the
interval [1..u]. The indicated confidence interval for each value X is [E[X]− σ(X),E[x] + σ(X)], where
σ(X) is the standard deviation of X

on this problem. As we see in Figure 11, the heavy-tailed (1 + (λ, λ)) GA is quite efficient even
without an upper limit on λ, except when β = 2.1. All other values of β managed to outperform
the (1 + 1) EA and the (1 + (λ, λ)) GA with the one-fifth rule without the upper limit on λ
(however, for β = 2.3 the advantage is not very clear), but none of them outperformed RLS
or the (1 + (λ, λ)) GA with the one-fifth rule with a logarithmic cap on λ. The runtimes of all
algorithms are super-linear according to the plots.

Summing up, from the results of the experiments we conclude the following three points.

• The heavy-tailed (1 + (λ, λ)) GA performs better than the mutation-based algorithms on
ONEMAX and it is not significantly outperformed on MAX-3SAT.

• It is more universal than the (1 + (λ, λ)) GA with the one-fifth rule, since it works well
even without limiting λ. Such limits might be problem-specific, e.g. with a logarith-
mic limit which is beneficial when solving MAX-3SAT, it may be hard to leave a local
optimum with a large basin of attraction.

• The choice of β does not play a big role as long as it is not too close to the borders of the
interval (2,3). Taking β between 2.5 and 2.7 might be a good general recommendation.
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Figure 11 – Mean runtimes and their standard deviation of different algorithms on MAX-3SAT
instances with 4n ln(n) clauses. By λ ∈ [1..u] we denote the self-adjusting parameter choice via
the one-fifth rule in the interval [1..u]. The indicated confidence interval for each value X is
[E[X]− σ(X),E[x] + σ(X)], where σ(X) is the standard deviation of X

4.3 The Runtime Analysis of the (1 + (λ, λ)) GA on LEADINGONES

What has not been regarded so far, and what is the topic of this section, is how the
(1 + (λ, λ)) GA performs on functions which have a weak fitness-distance correlation. The nat-
ural first example to regard for such an investigation is the classical LEADINGONES benchmark
function. This function is still easy in the sense that it is unimodal, that is, from every search
point there is a path to the optimum such that each edge on this path refers to a one-bit flip
increasing the fitness. However, the fitness-distance correlation is low, since all bits to the right
of the left-most zero have no influence on the fitness.

This immediately suggests that the (1 + (λ, λ)) GA could have some difficulties to optimize
LEADINGONES. To make progress when optimizing LEADINGONES, it is necessary to flip the left-
most zero-bit (“critical bit”). However, as soon as a one-bit to the left of it is flipped, which is
likely when using a large mutation rate, the critical bit has no influence anymore on the fitness.
Hence there is no reason why the mutation winner should have a good chance to have the critical
bit set to one.

Surprisingly, transforming this intuitive consideration into a rigorous proof turns out to be
quite non-trivial (we sketch the difficulties and our solutions before the proofs), but we manage
to show that the (1 + (λ, λ)) GA on the LEADINGONES function indeed does not profit from the
faster exploration that was aimed at with this algorithm. On the positive side, we can also
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show that the (1 + (λ, λ)) GA is still asymptotically as efficient as many classical evolutionary
algorithms.

The main result of this section is that the runtime of the (1 + (λ, λ)) GA with standard
parameter setting p = λ/n and c = 1/λ for any population size λ ≤ n/2 finds the optimum of
the n-dimensional LEADINGONES function in an expected number of Θ(n2/λ) iterations, which is
equivalent to an expected number of Θ(n2) fitness evaluations. The latter bound on the number of
fitness evaluations is also valid when the value of λ is chosen in an arbitrary dynamic manner,
including the choice from a power-law distribution with u ≤ n

2 . We note that values for λ
that are greater than n/2 in the standard parameterization do not make much sense for the
(1 + (λ, λ)) GA, since the mutation rate p is set to p = λ/n. Hence a λ-value greater than n/2
gives a mutation rate larger than 1/2, which is generally considered to be ill-natured.

In the light of the runtimes of the natural competitors described in Subsection 1.4.3 we
see that the (1 + (λ, λ)) GA also in the absence of a strong fitness-distance correlation can be a
competitive optimization algorithm. It may lose its particularly efficient faster exploration, but
even then it competes well with the classical evolutionary algorithms.

As a side result we prove a variant of the additive drift theorem for lower bounds that
comes with a tail bound (Theorem 31 with a more general Theorem 32). Such a result was
given previously in [92], however, it used a notion of sub-Gaussian processes and was not easy
to apply in this work. The differences with those previous results are discussed in details in
Subection 4.3.1.

4.3.1 Additive Drift with Tail Bounds

In our proofs we face the need to give an upper bound on the runtime of some process
that has a drift of at most some ε towards its goal. Namely, we want to argue that the difference
between best-so-far fitness (which can be greater than the current fitness f(x) if it was obtained
in the mutation phase) and f(x) does not exceed n

4 for long enough with high probability. For
these reason, we prove the following theorem.

Theorem 31 (Additive drift with tail bounds). Let Xt, t = 0,1,2, . . . be integer-valued random
variables that describe some stochastic process over some state space. Let X0 = a and let T be the first
time when Xt is at least some b > a. If there exist δ > 0 and r > 0 such that for all j ∈ N10 we have

Pr[Xt+1 − Xt = j | X0, . . . ,Xt] ≤
r

(1 + δ)j
,

then with
ε := 2r 2 + δ

δ ln(1 + δ
2)

we have
Pr
[
T ≤ (b− a)

2ε
]
≤ max

{
4, 2δ

r(2 + δ)

}
· (b− a)

2ε
(

1 +
δ

2
)− b−a

2
.

10Here and further in the paper by the set of natural numbers N we mean the set of all positive integers {1,2, . . .}.
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Note that the random variable Xt considered in this theorem can have a positive drift of
at most

∆X ≤
+∞∑
j=1

jPr[Xt+1 − Xt = j | X0, . . . ,Xt]

≤
+∞∑
j=1

j r
(1 + δ)j

=
r(1 + δ)

δ2 .

Hence, ε, as defined in the theorem, is at most by factor 2δ(2+δ)

(1+δ) ln(1+ δ
2 )

greater than the drift of Xt.
To prove Theorem 31 we first formulate and prove the following more general theorem.

Theorem 32. Let Xt, t = 0,1,2, . . . be a real-valued random process. Let X0 = a and let T be the
minimal t such that Xt ≥ b for some b > a. Let Yt = Xt − εt with some ε > 0. If there exist γ > 0 and
p > 1 such that

E[eγ(Yt+1−Yt) | X0 . . .Xt] ≤ 1− 1
p ,

then we have
Pr
[
T ≤ (b− a)

2ε
]
≤ (b− a)p

2ε exp
(
−γ(b− a)

2
)
.

Note that in Theorem 32 one should choose ε which is greater than the drift of Xt. Other-
wise, we have

E[eγ(Yt+1−Yt) | X0 . . .Xt] ≥ E[γ(Yt+1 − Yt) | X0 . . .Xt] + 1 ≥ 1.
The main argument in the proof of Theorem 32 is the application of the negative drift

theorem (Theorem 1).
Proof of Theorem 32. Let TY be the first time when Yt becomes at least b+a

2 . If t ≤ b−a
2ε and Yt < b+a

2
then Xt = Yt + εt < b+a

2 + b−a
2 = b. Therefore,

Pr
[
TX ≤ (b− a)

2ε
]
≤ Pr

[
TY ≤ (b− a)

2ε
]
.

To apply Theorem 1 to Yt we compute
D = max

t∈N
{1,E[eγ(Yt+1−a) | Yt ≤ a]}

≤ max
t∈N

{1,E[eγ(Yt+1−Yt) | Yt ≤ a]} ≤ max
{

1,1− 1
p
}

= 1.

Finally, by Theorem 1 with L := n
2ε and d := b+a

2 − a = b−a
2 we conclude

Pr
[
TY ≤ (b− a)

2ε
]
≤ (b− a)

2ε · 1 · p · exp
(
−γ(b− a)

2
)

=
(b− a)p

2ε exp
(
−γ(b− a)

2
)
.
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Finally we are ready to prove the main result of this section.
Proof of Theorem 31. In order to apply Theorem 32 set γ := ln(1 + δ

2) and compute

E[eγ(Yt+1−Yt)] = E[eγ(Xt+1−Xt−ε)] = e−γεE[eγ(Xt+1−Xt)]

≤ e−γε

Pr[Xt+1 − Xt ≤ 0] +
+∞∑
j=1

eγjr
(1 + δ)j


≤ e−γε

(
1 + r2 + δ

δ

)
.

(47)

From the definitions of ε and γ we have r2+δ
δ

= γε
2 . Therefore, by Lemma 16 and by

Eq. (47) we have

E[eγ(Yt+1−Yt)] ≤ exp
(
−2r2 + δ

δ

)(
1 + r2 + δ

δ

)
≤ max

{
1− 1

4 ,1− r2 + δ

2δ
}
.

(48)

We define p := max{4, 2δ
r(2+δ)

}. By Eq. (48) we have

E[eγ(Xt+1−Xt)] ≤ 1− 1
p . (49)

Therefore, by Theorem 32 we obtain

Pr
[
TY ≤ (b− a)

2ε
]
≤ max

{
4, 2δ

r(2 + δ)

}
· (b− a)

2ε
(

1 +
δ

2
)− b−a

2
.

Comparison with Existing Tools

We now compare our results from Subsection 4.3.1 with two similar results presented
in [92]. The first of them is the following theorem.
Theorem 33 (Theorem 1 in [92]). Let Xt, t = 0,1,2, . . . be real-valued random variables with finite
expectation and let X0 = a. Let T be the first moment in time when Xt exceeds some b > a. Suppose
there exist ε, c > 0 such that for all t we have

1) E[Xt+1 − Xt | X0, . . . ,Xt,T > t] ≤ ε and
2) |Xt − Xt+1| ≤ c.

Then for all s ≤ b−a
2ε we have

Pr[T < s] ≤ exp
(
−(b− a)2

8c2s
)
.
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Unfortunately, this result is not strong enough for our purposes, since we consider a pro-
cess that can perform larger jumps. There is a decent chance that a jump of order Ω(log(b− a))
happens in a relatively small number of iterations. Thus, we could only use Theorem 33 with a
super-constant c, which would not yield the desired bound on the failure probability.

The second related result from [92] uses the notion of sub-Gaussian processes. A random
process Xt is called (c, δ)-sub-Gaussian if for all t ∈ N and for all γ ∈ [0, δ] we have

E[eγ(Xt+1−Xt) | X0, . . . ,Xt] ≤ exp
(
γ2c
2
)
.

For such processes the following result was shown in [92].
Theorem 34 (Theorem 14 in [92]). Suppose Xt has a drift of at most ε > 0 and (Xt − εt) is (c, δ)-
sub-Gaussian. Let X0 be a ∈ R and let T be the first moment in time when Xt exceeds some b > a.
Then for all s ≤ b−a

2ε we have

Pr[T ≤ s] ≤ exp
(
−b− a

4 min
(
δ,
b− a
2cs

))
.

Generally this theorem satisfies our needs, and could have been used instead of Theo-
rem 32 in the proof of Theorem 31. However, in order to do so we would have to prove that the
process Xt − εt under conditions of Theorem 31 is (c, δ)-sub-Gaussian. To do so we would have
to find some c ∈ R and δ > 0 such that for all γ ∈ [0, δ] we had

E[eγ(Xt+1−Xt−ε) | X0, . . . ,Xt] ≤ exp
(
γ2c
2
)
. (50)

Compare this to the statement which should be proved in order to use Theorem 32.

E[eγ(Xt+1−Xt−ε) | X0, . . . ,Xt] ≤ 1− 1
p . (51)

The main difficulty that one can face when applying Theorem 34 is proving that Eq. (50) holds
for all values of γ ∈ [0, δ]. At the same time, to use Theorem 32 it is enough to prove that Eq. (51)
holds for only one particular value of γ. This might be crucial, when the left part of Eq. (50) is
not monotonic in γ.

Theorem 10 in [92] proves that all processes with step size which is dominated by some
random variable with geometric distribution are (c, δ)-sub-Gaussian and gives exact values for c
and δ which depend on the parameters of that geometric distribution. However, this theorem
does not satisfy our needs, since we consider processes which can make large steps, but only in
direction which is opposite to their goal.

Another reason why we formulated and proved Theorem 32 is that for any (c, δ)-sub-
Gaussian process with c < 0 Theorem 34 bounds the probability Pr[T < s] with a value which is
greater than one. This can be overcome by the observation that any (c, δ)-sub-Gaussian process is
(c′, δ)-sub-Gaussian for all c′ > c. For this reason we can consider any (c, δ)-sub-Gaussian process
with negative c as a ( b−a

2δs , δ)-sub Gaussian, so that Theorem 34 yields

Pr[T ≤ s] ≤ exp
(
−(b− a)δ

4
)
.



Chapter 4. Analysis of Crossover-based Algorithms 135

This bound can be made more precise for the processes Xt, t = 0,1,2, . . . such that Xt − εt has
a truly negative drift, that is, when the process satisfies conditions of Theorem 32. Notice that
in this setting, if it is possible also to show that Eq. (51) holds for all smaller positive γ (which
means that the process Xt − εt is (0, γ)-sub-Gaussian), then the bound yielded by Theorem 34 is

Pr[T ≤ s] ≤ exp
(
−nγ4

)
,

which is asymptotically greater than the bound delivered by Theorem 32 with any p which is
polynomial in n.

4.3.2 Lower Bound

The main result of this section is the following theorem.
Theorem 35. If λ ≤ n

2 , the expected runtime of the (1 + (λ, λ)) GA on LEADINGONES is Ω(n
2
λ
)

iterations or Ω(n2) fitness evaluations.
When proving this result, we have to overcome a couple of technical challenges. One of

these is that it is hard to argue with the fitness of the current solution x. A common argument in
the runtime analysis for the LEADINGONES function is that when the current-best search point
x has a fitness of i, then the first i bits of x are one, the next bit is zero, and all other bits
are independently and uniformly distributed on {0,1}. This argument already appeared in the
seminal runtime analysis paper [67]. It gives a very good understanding of the search process,
which allows very precise analyses of the expected runtime [7, 125] or even the distribution of
the runtime [54, 26].

The problem in the analysis of the (1 + (λ, λ)) GA is that not always the best search point
ever generated survives as parent individual. It may well happen that the mutation phase creates
a search point with high fitness i+ (which then becomes the mutation winner), but that then the
crossover phase only creates individuals with lower fitness. If one of these becomes the next
parent, say with fitness i, then bit i+1 surely is zero, but the bits i+2, . . . , i++1 are not uniformly
distributed in {0,1}, since they were influenced by the selection in the mutation phase.

The usual way to overcome this problem, done first in [55, proof of Theorem 10] and
subsequently in [94, 52, 121, 128, 38], is to argue that such bits relatively quickly approach
the uniform distribution. More precisely, the distance to the uniform distribution reduces by
a factor of (1 − 2/n) each round. Hence Θ(n) iterations, with implicit constant large enough,
suffice to reduce the distance to any small constant. This convergence speed is usually enough
when working with standard bit mutation with the classical mutation rate of 1/n, since it takes
Θ(n) iterations to find the next fitness improvement.

In our situation, unfortunately, the more aggressive way of mutation together with the
fact that offspring are generated in parallel can imply that a fitness improvement is found much
faster than the time needed to let these bits converge to a near-uniform distribution. For this
reason, we do not see how to use the argument just sketched.

We overcome this problem by not regarding the progress with respect to the fitness of the
current search point x, but with regard to the best fitness ever seen in the run so far. Hence we
denote by fmax(t) the maximum fitness among all search points sampled in the first t−1 iterations
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(so that fmax(t) and f(x) are the fitnesses of the best-so-far and the current search point at the
start of iteration t). As discussed, fmax(t) = n does not mean that the algorithm has reached the
optimum. However, the converse is true, and this is what we need. As soon as the algorithm
reaches the optimum, fmax(t) must be n. For this reason, a lower bound on the time when fmax(t)
hits n is a lower bound for the runtime as well.

In simple words, our main proof argument will be that when fmax(t) is in the interval
[1
2n, 3

4n], its value increases only by O(λ/n) in expectation at each iteration, and that this implies
that the expected number of iterations necessary to obtain an fmax(t)-value larger than 3

4n is
Ω(n2/λ). We encounter some more technical challenges on the way, but to ease reading we shall
discuss them before the proof in which they show up.

The Probability of Successful Mutation

If we denote the current fitness f(x) by i, then in order to generate a better individual
(either in the mutation phase or in the crossover phase) it is necessary that the i+ 1-st bit of the
mutation winner x′ is one. We first analyze the probability of this event. We distinguish three
possible outcomes of the mutation phase that lead to this.

1) f(x′) < f(x) and the i+ 1-st bit is flipped in x′.
2) f(x′) > f(x) and f(x′) ≤ fmax(t).
3) f(x′) > fmax(x).

In this subsection we study these three cases separately, in the order listed above. Note that we
do not consider the case when f(x′) = f(x), since it implies that the i+ 1-st bit is zero in x′.
Lemma 72. Let i be the current fitness f(x). If i ≤ 3n

4 , the probability p−M that f(x′) < f(x) and the
i+ 1-st bit is flipped in x′ is at most 4λ

n .
Proof. If the algorithm has chosen mutation strength ℓ in the mutation phase and f(x′) = j < f(x),
then the j+1-st bit is surely flipped in x′ and the other ℓ−1 flipped bits are somewhere in positions
[j+2..n], distributed there uniformly at random. Hence, the probability that the i-th bit is flipped
in x′ is ℓ−1

n−j−1 . Therefore, the probability that x′ is worse than x, but the i+ 1-st bit is flipped, is

p−M =
n∑

k=2
Pr[ℓ = k]

min{f(x)−1,n−k}∑
j=0

Pr[f(x′) = j | ℓ = k] k− 1
n− j− 1 .

Since we assume that i ≤ 3n
4 , we have j ≤ i − 1 < 3n

4 and thus n − j − 1 ≥ n
4 . Hence, the

inner sum can be estimated by

min{i−1,n−k}∑
j=0

Pr[f(x′) = j | ℓ = k] k− 1
n− j− 1

≤ (k− 1)
min(i−1,n−k)∑

j=0

Pr[f(x′) = j | ℓ = k]
n/4
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<
4(k− 1)

n .

Therefore, we have

p−M ≤
4
n

n∑
k=2

(k− 1)Pr[ℓ = k]

≤ 4
nE[ℓ− 1] = 4(λ− 1)

n ≤ 4λ
n .

Lemma 73. If λ ≤ n
2 , the probability that f(x′) > f(x) is at most

λ2

n exp
(
− f(x)λn

)
.

Lemma 74. If λ ≤ n
2 , for all j ∈ N we have the probability pM(j) that f(x′) ≥ fmax(t) + j is at most

λ2

2j−1n exp
(
− fmax(t)λ

n
)
.

To prove Lemma 73 and Lemma 74, we use the following auxiliary lemma.
Lemma 75. If λ ≤ n

2 , then for all m ∈ [1..λ] and all j ∈ N the probability that f(x(m)) ≥ fmax(t) + j is
at most

λ

2j−1n exp
(
− fmax(t)λ

n
)

and the probability that f(x(m)) > f(x) is at most
λ

n exp
(
− f(x)λn

)
.

Proof. To obtain a mutant x(m) that is better than x, one needs to flip the bit in position f(x) + 1,
while not flipping a single bit in positions [1..f(x)]. To obtain a mutant x(m) of fitness at least
fmax(t) + j one also needs to flip those bits in positions [f(x) + 2..fmax(t) + j] which are zero. To
estimate these probabilities, we recall that by Lemma 1 we can assume that x(m) is obtained from
x by flipping all bits independently with probability λ

n .
For the bits in positions [1..f(x)], the probability that none of them is flipped is (1− λ

n )
f(x).

The probability to flip the bit in position f(x) + 1 is λ
n . At this point we already have

Pr[f(x(m)) > f(x)] ≤ λ

n
(

1− λ

n
)f(x)

≤ λ

n exp
(
− f(x)λn

)
.

For the bits in positions [f(x) + 2..fmax(t) + 1] we cannot know neither their value, nor
their probability to be one or zero. For each such bit the probability that it is a one-bit in x(m)

is qλ
n + (1 − q)(1 − λ

n ), where q is the probability of this bit to be a zero-bit in x. Since we
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assume that λ ≤ n
2 then max{λn , (1 − λ

n )} = (1 − λ
n ), hence this probability is at most (1 − λ

n ).
Consequently, the probability that all bits in positions [f(x) + 2..fmax(t) + 1] are one-bits in x(m) is
at most (1− λ

n )
fmax(t)−f(x).

Finally, if j > 1, there are (j − 1) bits in positions [fmax(t) + 2..fmax(t) + j] and they are
independently and uniformly distributed in {0,1}. Thus the probability for each of them to be a
one-bit in x(m) is 1

2
λ
n +

1
2(1− λ

n ) =
1
2 . By independence, the probability that they all are one-bits

is 1
2j−1 .

In summary, we have
Pr[f(x(m)) ≥ fmax(t) + j]

≤
(

1− λ

n
)f(x)

λ

n
(

1− λ

n
)fmax(t)−f(x) 1

2j−1

≤ λ

2j−1n exp
(
− fmax(t)λ

n
)
.

Proof of Lemma 73 and Lemma 74. By the union bound (see Lemma 9) and by Lemma 75 we
estimate the probability that f(x′) > f(x) as

Pr[f(x′) > f(x)] ≤
λ∑

m=1
Pr[f(x(m)) > f(x)] ≤ λ2

n exp
(
− f(x)λn

)
.

And the same argument shows Lemma 74

To simplify the following proofs we also state the following upper bound on the proba-
bility of large jumps of fmax(t) that trivially follows from Lemma 74.
Corollary 3. If λ ≤ n

2 , then the probability that f(x′) ≥ fmax(t) + n
16 is e−Ω(n) and the probability that

f(x′) ≥ fmax(t) + 2 log2 n is at most 1
2n .

Proof. By Lemma 74, with j := n
16 we have

Pr
[
f(x′) ≥ fmax(t) + n

16
]
≤ 2λ2

2n/16n exp
(
− fmax(t)λ

n
)

≤ 2λ2

n e−Ω(n) = e−Ω(n).

With j := 2 log2 n we also have

Pr[f(x′) ≥ fmax(t) + 2 log2 n] ≤
2λ2

22 log2 nn exp
(
− fmax(t)λ

n
)

≤ 2λ2

n3 ≤
1
2n .
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Maximal Fitness and Current Fitness

As said earlier, our general proof idea is to show that fmax(t) increases at most by something
like O(λn ) per iteration (in expectation) and from this deduce a runtime of Ω(n2

λ
) iterations. It

is not surprising that in the very early stages of the process, when fmax(t) is very small, a larger
progress can be observed. For this reason, we shall only regard the phase in which fmax(t) is
in the interval [1

2n, 3
4n]. Surprisingly, even in this regime a too large (super-constant) progress

fmax(t+ 1)− fmax(t) is possible in certain situations, namely when f(x) is very small (not greater
than some constant). We first give an example and then show that such situations arise not too
often.

Let f(x) be zero and let fmax(t) be n
2 . In this case the leading bit of x is zero, but we

know nothing about the other bits in the first half of x, including their probabilities to be one or
zero. So in the most optimistic case, they all are one. Without giving details we note that the
probability that the first bit is flipped in x′ is approximately 1− (1− λ

n )
λ = Θ(min{1, λ2

n }).In the crossover phase we have a probability of 1
λ

to take the leading bit from x′ into a
fixed offspring. At the same time, the number of bits that are flipped in x′ among the first n

2 bits
is λ on average, so the probability to repair them all in the crossover phase by taking them from
x is around (1− 1

λ
)λ ≈ e−1. Note that having the first n

2 bits equal to one gives us fitness that is
at least n

2 + 1. Therefore, the probability that we create an offspring with fitness strictly greater
than fmax(t) in the crossover phase is approximately 1 − (1 − 1

2eλ)
λ ≈ 1 − e− 1

2e , that is a positive
constant.

These observations, although informal, lead to a drift of order Θ(λ
2
n ). For this reason we

now argue that typically fmax(t) is not extremely far from f(x), which excludes the given example
from the possible scenarios.
Lemma 76. If λ < n

2 then there exists some τ = Θ(n
2
λ
) such that the difference fmax(t)− f(x) does not

exceed n
4 in first τ iterations with probability 1− e−Ω(n).

Proof. Let Xt := fmax(t) − f(x), where x is the parent individual from iteration t. Xt can increase
only in the mutation phase, since any individual created in the crossover phase that is better
than the current x can only decrease Xt. Therefore, the probability that Xt increases by at least
j in one iteration is at most the probability that we create x′ of fitness fmax(t) + j. By Lemma 74,
for all j ∈ N, this probability is at most λ2

2j−1n exp(− fmax(t)λ
n ).

Let t0 be the first iteration when fmax(t) > n
16 . Before this iteration we have Xt ≤ n

16 , since
Xt ≤ fmax(t) ≤ n

16 . The probability that Yt increases drastically in iteration t0 − 1 is small, since
by Corollary 3 we have

Pr
[
Xt0 ≥ Xt0−1 +

n
16
]
≤ Pr

[
f(x′) ≥ fmax(t0 − 1) + n

16
]
= e−Ω(n).

Consequently,
Pr
[
Xt0 ≥

n
8
]
= e−Ω(n).

We aim to apply Theorem 31 to Xt, counting t0 as the initial iteration. For this purpose
we define

r := 32λ
en ≥

2λ2

n e− λ
16 ≥ 2λ2

n exp
(
− fmax(t)λ

n
)
,
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where the first inequality follows from Lemma 14, and δ := 1 so that by Lemma 74 we had

Pr
[
Xt+1 − Xt ≥ j

∣∣∣Xt ≥
n

16
]
≤ 2λ2

2jn exp
(
− fmax(t)λ

n
)
≤ r

(1 + δ)j
.

Defining the interval bounds a := n
8 and b := n

4 and

ε := 2r (2 + δ)

δ ln(1 + δ
2)

=
192λ
ne ln(3

2)
,

we have

τ :=
(b− a)

2ε =
n
8ne ln 3

2
2 · 192λ =

e ln 3
2

3072 ·
n2

λ
= Θ

(n2

λ

)
.

Therefore, by Theorem 31 we obtain that the probability that Xt exceeds n
4 in less than τ

iterations if Xt0 <
n
8 is

max
{

4, 2δ
r(2 + δ)

}
· (b− a)

2ε
(

1 +
δ

2
)− b−a

2

≤ 2n
λ
·
e ln 3

2
3072 ·

n2

λ
·
(3

2
)− n

8
≤ n3

λ2

(3
2
)− n

8

= e−Ω(n).

Finally, we conclude that the probability that Xt exceeds n
4 in τ iterations is at most

Pr
[
Xt0 ≥

n
8
]
+ Pr

[
Xt0 <

n
8
]
e−Ω(n) = e−Ω(n) + e−Ω(n) = e−Ω(n).

An Upper Bound for the Progress in One Iteration

With the additional assumption that the current fitness is not too low, argued for in the
previous subsection, we now show that fmax(t) does not increase by more than O(λn ) in expecta-
tion per iteration. Since we shall later need not a bound on the expected progress, but on the
distribution, we formulate our result in this language.
Lemma 77. Let λ ≤ n

2 . If fmax(t) ∈ [ n2 ..
3n
4 ] and f(x) ≥ n

4 , then the probability that fmax(t + 1) ≥
fmax(t) + j is at most

(31 + 3j) λ

2jn
for all j ∈ N and t ∈ N.
Proof. Let i + 1 be the position of the first zero-bit in x, that is f(x) + 1. To obtain a better
individual in one iteration we must obtain x′ such that x′i+1 = 1. We distinguish the two cases
of such outcomes of the mutation phase.
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Case 1: x′i+1 = 1 and f(x′) ≤ fmax(t). This happens when we either have f(x′) < f(x), but
fortunately flipped the i+1-st bit in x′, or when we have f(x′) ∈ [f(x)+1..fmax(t)]. By Lemma 72,
the probability of the first situation is at most 4λ

n . By Lemma 73 the probability of the second
situation is at most

λ2

n exp
(
− f(x)λn

)
≤ λ2

n e−λ
4 ≤ 32λ

en ,

where the last inequality follows from Lemma 14. Therefore, the probability of this case is at
most

4λ
n +

32λ
en =

(
4 +

32
e
)

λ

n =: p1. (52)

To increase fmax(t) by at least j ∈ N from such an x′, the algorithm must create a crossover
offspring from x and x′ that satisfies the following conditions.

1) The bits in positions [1..i] that are zeros in x′ must be taken from x. Since we do not
know the number of such bits, we only argue that the probability of this event is at
most one.

2) The i+ 1-st bit must be taken from x′; the probability of this event is 1
λ
.

3) The bits of the offspring in positions [i+ 2..fmax(t) + 1] must be ones. Since we do not
understand the distribution of these bits, we bound the probability of this event with
one.

4) The bits of the offspring in positions [fmax(t)+2..fmax(t)+j] must be ones. The probability
of this event is 1

2j−1 , since these bits independently are equally likely to be one or zero
both in x and x′.

Taking all four events together, we see that for all m ∈ [1..λ] and for all j ∈ N we have

Pr[f(y(m)) ≥ fmax(t) + j | f(x′) ≤ fmax(t) and x′i+1 = 1] ≤ 1
2j−1λ

.

By the union bound and by Eq. (52) we conclude that the probability pC1(j) that we create
x′ of fitness not greater than fmax(t) and then generate y with fitness at least fmax(t) + j is at most

pC1(j) ≤ p1
λ∑

m=1

1
2j−1λ

≤
(

8 +
64
e
)

λ

2jn .

Case 2: f(x′) > fmax(t). In this case we increase fmax(t) by at least j if f(x′) ≥ fmax(t) + j
or, for some k ∈ [1..j − 1], we have f(x′) = fmax(t) + k and from this x′ we obtain y such that
f(y) ≥ f(x′) + (j− k). So the probability pC2(j) that any of these events occurs is

pC2(j) = Pr[f(x′) ≥ fmax(t) + j] +
j−1∑
k=1

qk Pr[f(x′) = fmax(t) + k]

≤ Pr[f(x′) ≥ fmax(t) + j] +
j−1∑
k=1

qk Pr[f(x′) ≥ fmax(t) + k],
(53)

where we define qk := Pr[f(y) ≥ f(x′) + (j− k) | f(x′) ≥ fmax(t) + k] for brevity.
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To have f(y(m)) ≥ f(x′) + (j − k) for some particular offspring y(m) we need the crossover
to take the i + 1-st bit from x′ (the probability of this is 1

λ
) and we need the bits in positions

[f(x′) + 1..f(x′) + (j− k)− 1] to be ones. Since these bits are uniformly random both in x and in
x′ (except bit f(x′) + 1, which is zero in x′ and must be taken from x with probability λ−1

λ
), the

probability of this is 1
2j−k−1 · λ−1

λ
≤ 1

2j−k−1 . By the union bound over all offspring of the crossover
phase we obtain

qk ≤
λ∑

m=1

1
λ2j−k−1 =

1
2j−k−1 .

Recall that by Lemma 74 for all k ∈ N we have

Pr[f(x′) ≥ fmax(t) + k] ≤ λ2

2k−1n exp
(
− fmax(t)λ

n
)

≤ λ2

2k−1ne
−λ

2 ≤ 4λ
e2kn ,

where the last inequality follows from Lemma 14.
Substituting the probabilities in Eq. (53) with these estimates we obtain

pC2(j) ≤
4λ
e2jn +

j−1∑
k=1

4λ
e2kn ·

1
2j−k−1

=
4λ
en
( 1

2j +
j− 1
2j−1

)
=

4λ(2j− 1)
e2jn .

We conclude that the probability that after the crossover phase we obtain an individual
with fitness by at least j greater than fmax(t) is at most

pC1(j) + pC2(j) ≤
(

8 +
64
e
)

λ

2jn +
4
e (2j− 1) λ

2jn
≤ (31 + 3j) λ

2jn .

To shorten the further proofs we also give the following bound on the progress in one
iteration, which does not depend on the current value of fmax(t).
Lemma 78. If λ ≤ n

2 , the probability that fmax(t) increases by more than 4 log2(n) in one iteration is
at most 3

2n .
Proof. By Corollary 3 the probability that the fitness of the mutation winner f(x′) is greater than
fmax(t) by more than 2 log2 n is at most 1

2n .Notice that each bit in positions [max{fmax(t), f(x′)} + 2..n] has equal chances to be one
or zero both in the current individual x and in the mutation winner x′, which also applies to
any offspring created in the crossover phase. Therefore, conditional on f(x′) ≤ fmax(t)+2 log2(t),
to obtain an offspring y(m) with fitness at least fmax(t) + 4 log2 n we need the bits in at least
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2 log2 n−1 positions (namely, in positions [max{fmax(t), f(x′)}+2..fmax(t)+4 log2 n]) to be ones in
this offspring. The probability of this is at most 1

22 log2 n−1 ≤ 2
n2 . By the union bound the probability

that it happens in at least one offspring in the crossover phase is therefore at most 2λ
n2 ≤ 1

n .
Hence, the progress in fmax(t) is greater than 4 log2 n with probability at most 1

2n + (1 −
1
2n)

1
n ≤

3
2n .

The Final Drift Argument

With the preparations already made in this subsection, we are now ready to prove the
lower bound of our main result. We argue that fmax(t) has a drift of only O(λn ) in the interval
[ n2 ,

3n
4 ]. We show that fmax(t) is close to n

2 when fmax(t) first enters this interval. Hence fmax(t) has
to increase by Ω(n) to reach or exceed 3n

4 . With a drift of only O(λn ), this takes expected time of
at least Ω(n2

λ
) iterations by the additive drift theorem.

Proof of Theorem 35. We first analyze the state of the algorithm in the first iteration t0 such that
fmax(t) ≥ n

2 . If t0 ≥ τ (where τ is the threshold from Lemma 76), then the runtime is already
Ω(n

2
λ
) iterations. Otherwise, by Lemma 76 at this iteration we have f(x) ≥ fmax(t0)− n

4 ≥
n
4 with

probability 1− e−Ω(n).
Restricting ourselves to the case f(x) ≥ n

4 we note that the probability that fmax(t0) >
n
2 + 4 log2(n) is at most the probability that fmax(t) is increased by more than 4 log2(n) in one
iteration. By Lemma 78 we have

Pr[fmax(t0) > n
2 + 4 log2(n)]

≤ Pr[fmax(t0) ≥ fmax(t0 − 1) + 4 log2(n)]
≤ 3

2n .

Let T be the first time when fmax(t) > 3n
4 . Then by Lemma 77 for all t ∈ [t0,T− 1] we have

∆fmax = E[fmax(t+ 1)− fmax(t)]

≤
+∞∑
j=1

Pr[fmax(t+ 1) ≥ fmax(t) + j]

≤
+∞∑
j=1

(31 + 3j)λ
n2j =

37λ
n .

Finally, applying the additive drift theorem we obtain

E[T] ≥
3n
4 − fmax(t0)

∆fmax
≥

n
4 − 4 log2(n)

37λ
n

= Ω

(n2

λ

)
.

This bound holds if t0 < τ and fmax(t) ≤ n
2 + 4 log2(n). The probability that both of these

conditions are satisfied is at least 1 − 3
2n − e−Ω(n) ≥ 1 − 2

n , if n is large enough. Therefore, the
expected runtime of the algorithm is at least (1− 2

n)Ω(
n2
λ
) = Ω(n

2
λ
) iterations.
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4.3.3 Lower Bound for Adaptive λ

In this section we prove that any strategy of adjusting the value of λ during the algorithm
run cannot speed up the algorithm (in terms of the asymptotic number of fitness evaluations).
We consider a modification of the (1 + (λ, λ)) GA such that it chooses the value of λ from [1..b n2c]before each iteration (probably not from the power-law distribution). We call this algorithm an
adaptive (1 + (λ, λ)) GA.
Theorem 36. The adaptive (1 + (λ, λ)) GA with any strategy of choosing λ needs Ω(n2) fitness eval-
uations to find the optimum of LEADINGONES.

The proof of this theorem builds on the observation that while fmax(t) ∈ [ n2 ..
3n
4 ] the expected

progress in one iteration is O(λn ). Since the algorithm performs exactly 2λ fitness evaluations in
each iteration, the expected progress per one call of the fitness function is therefore O(1

n). This
intuitive observation, however, cannot be directly transformed into a rigorous proof, since the
fitness evaluations come into groups of size 2λ and progress can occur only after such group.
For this reason the standard drift arguments are not applicable here.
Lemma 79. Consider a run of the adaptive (1 + (λ, λ)) GA. Let n ≥ 4 and let t0 be the first iteration
which starts with fmax(t) ≥ n

2 . If fmax(t0) ≤ n
2 + 4 log2(n) and f(x) ≥ n

4 in the start of iteration t0, then
the runtime until fmax(t) ≥ 3n

4 is Ω(n2) fitness evaluations with probability 1− e−Ω(n).

Proof. Let λt be the value of λ chosen in the start of iteration t. Let Xt :=
∑t

i=t0 2λi, which
is the number of fitness evaluation the algorithm performed since iteration t0 until iteration t
(inclusive). Consider the random variable Yt := fmax(t) − αXt

n with constant α := 270
ln(3/2) . As long

as Yt < 5n
8 and Xt ≤ n2 ln(3/2)

2160 , we have

fmax(t) = Yt + α
Xt
n <

5n
8 +

n
8 ≤

3n
4 .

Now we aim to show that Yt does not reach 5n
8 in n2 iterations with high probability, which

means that with at most the same probability fmax(t) reaches 3n
4 only after n2 ln(3/2)

2160 = Ω(n2) fitness
evaluations. To use Theorem 1 we compute the expected drift ∆Y(γ) of Yt.

∆Y(γ) :=E[exp(γ(Yt+1 − Yt)) | Y0, . . . ,Yt]

=E
[
exp

(
γ

(
fmax(t+ 1)− fmax(t)− α

λt
n
)) ∣∣∣∣ Yt

]
≤ exp

(
−γαλtn

)(
Pr[fmax(t+ 1) = fmax(t)]

+
+∞∑
j=1

Pr[fmax(t+ 1) = fmax(t) + j]eγj
 .

By Lemma 77 this is at most
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∆Y(γ) ≤ exp
(
−γαλtn

)1 +
+∞∑
j=1

(31 + 3j)λt
2jn eγj

 .

With γ := ln 3
2 and Lemma 16 we obtain

∆Y(γ) ≤ exp
(
−270λt

n
)(

1 + 135λtn
)

≤ max
{

1− 1
4 ,1−

135λt
2n

}
≤ 1− 1

n ,

if n ≥ 4. Hence, we define p := n.
Let T be the first iteration when Yt ≥ 5n

8 . By the negative drift theorem (Theorem 1) we
have

Pr[T ≤ t0 + n2] ≤ n2p exp
(
−γ
(5n

8 − Yt0

))
≤ n3 exp

(
− ln 3

2
(n

8 − 2 log2 n
))

= e−Ω(n).

Now to prove Theorem 36 it is enough to prove that the initial conditions of Lemma 79
are satisfied with high probability.
Lemma 80. Let t0 be the first iteration when fmax(t) ≥ n

2 . There exists some τ = Θ(n2) such that
either t0 ≥ τ or t0 < τ and the conditions of Lemma 79 are satisfied with probability 1− e−Ω(n).
Proof. We aim to find τ such that t0 < τ implies

(i) f(x) ≥ n
4 at iteration t0 and

(ii) fmax(t) ≤ n
2 + 4 log2(n).

To prove that the first condition holds we argue that Lemma 76 also holds for some τ = Θ(n2).
Not to repeat the proof, we just notice that to obtain this result we need to change the definition
of r in the proof of Lemma 76 and take r := 2048

e2n , which by Lemma 15 still satisfies the further
arguments (independently on the choice of λ in each iteration), with only exception that we also
redefine

ε :=
12288
ne2 ln 3

2
and

τ :=
e2 ln 3

2n2

196608 = Θ(n2).

To prove that the second condition holds we notice that Lemma 78 holds for any λt,
therefore, in the iteration t0−1 the value of fmax(t) increases by more than 4 log2 nwith probability
at most 3

2n .Finally, by the union bound we have that the probability that both conditions hold at
iteration τ (as we redefined it) is at least 1− e−Ω(n) − 3

2n .
Theorem 36 follows directly from Lemmas 79 and 80.
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4.3.4 Upper Bound

We denote by i the current fitness, that is, f(x). The main idea of our proof is to show that
the mutation phase winner x′ has the i+1-st bit equal to one with probability Ω(λn ). Afterwards,
we prove that conditional on this, there is at least a constant probability to generate an offspring
y such that the i-th bit of y is taken from x′ and all other bits that differ in x and x′ are taken
from x. For the latter estimate to hold we assume that ℓ is between λ

2 and 2λ. Combining the
estimates we get an upper bound on the expected runtime of O(n2

λ
) iterations. These arguments

bring us the following theorem, which is the main result of this section.
Theorem 37. The expected runtime of the (1 + (λ, λ)) GA on the LEADINGONES problem is O(n2

λ
)

iterations or O(n2) fitness evaluations.
To avoid some technical difficulties and simplify the rest of this section we first prove this

bound for relatively trivial case when λ < 4.
Theorem 38. If λ < 4, the expected runtime of the (1 + (λ, λ)) GA on the LEADINGONES problem is
O(n2) iterations.
Proof. The line of the proof generally repeats the one for the (1 + 1) EA. In order to obtain
progress in one iteration, it suffices to satisfy the following conditions.

1) At least one mutant is better than the current individual (so that the mutation winner
is better than the current individual as well).

2) At least one crossover offspring took the critical bit from the mutation winner (since
all previous bits are ones in both parents, this results into crossover winner which is
better than the current individual).

The probability p1 that some mutant is better than the current individual x is the probability
that the mutation does not flip any bit in the prefix and it flips the critical bit. We estimate it as

p1 ≥
(

1− λ

n
)n

λ

n ≥
(1

4
)λ

λ

n ≥
(1

4
)3 3

n ≥
3

64n .

The probability p2 that at least one mutant is better than the parent is not less than p1. The
probability p3 that in the crossover phase we take the critical bit from the winner of the mutation
phase in one particular offspring is 1

λ
≥ 1

3 . The probability p4 that we do it in at least one offspring
is at least p3 ≥ 1

3 . Finally, we have that the probability to create a better offspring in one iteration
is at least p2p4 ≥ 1

64n . Since we need at most n improvements to reach the optimum the total
runtime is at most 64n · n = O(n2) iterations.

Further in this section we assume that λ is at least 4.

Mutation Phase

In this section we estimate the probability to obtain an individual with the i + 1-st bit
flipped as the winner of the mutation phase. First we argue that with at least constant probability
the number of the flipped bits is around λ.
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Lemma 81. If λ ≥ 4, the number ℓ of the bitts flipped by the mutation operator is in [λ2 ,2λ] with
probability at least 1− e−λ

3 − e−λ
4 ≥ 1

9 .
Proof. Recall that the number of bits to flip ℓ is chosen according to the binomial distribution
Bin(n, λn ). This implies that its expectation E[ℓ] = nλ

n = λ. By Chernoff bounds we have

Pr[ℓ ≥ 2E[ℓ]] ≤ exp
(
−λ

3
)
,

and
Pr
[
ℓ ≤ E[ℓ]

2
]
≤ exp

(
−λ

8
)
.

Therefore, the probability that ℓ ∈ [λ2 ,2λ] is at least

Pr
[
ℓ ∈

[
λ

2 ,2λ
]]
≥ 1− exp

(
−λ

3
)
− exp

(
−λ

8
)
,

which is at least a positive constant (approximately, 0.1298 ≥ 1
9) for all λ ≥ 4.

Conditional on that the number of the flipped bits does not differ much from λ, we further
condition on the fitness j of the winner of the mutation phase x′ and consider two possible
outcomes.
Lemma 82. If ℓ ≥ λ

2 and the fitness j of the winner of the mutation phase x′ is less than the current
fitness i, then the probability that the i+ 1-st bit is one in x′ is at least λ

4n .
Proof. Since the fitness of x′ is j, the j + 1-st bit was flipped by the mutation operator and all
other ℓ − 1 flipped bits are to the right from the j + 1-st bit. The positions of these flipped bits
were chosen uniformly at random and were not affected by the selection. Therefore, for each
bit to the right of the j+ 1-st bit (including the i+ 1-st bit) the probability to be flipped is

ℓ− 1
n− j− 1 ≥

ℓ− 1
n ≥

λ
2 − 1
n ≥ λ

4n .

Lemma 83. If ℓ ≥ λ
2 and the fitness j of the winner of the mutation phase x′ is not less than the current

fitness i, then the probability that the i+ 1-st bit is one in x′ is at least λ
2n .

Proof. From the conditions of the lemma we have that there is at least one mutant with fitness
at least i. Assume that there are k such mutants with k ≥ 1. For each of them the positions of
the ℓ flipped bits are uniformly distributed in [i + 1..n]. Hence, the probability that the i + 1-st
bit is flipped in one such mutant is ℓ

n−i .To have the i+ 1-st bit equal to zero in the mutation winner x′, we need to have it equal
to zero in all k mutants with fitness at least i, otherwise there is a mutant with fitness at least
i + 1 that is selected as x′. Since the mutants are generated independently, the probability this
event does not occur is at least

1−
(

1− ℓ

n− i
)k
≥ ℓ

n− i ≥
ℓ

n ≥
λ

2n .
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From Lemmas 81, 82 and 83 we conclude the main result of this subsection.
Lemma 84. If λ ≥ 4, with probability at least λ

36n the winner of the mutation phase x′ is such that
• x′i+1 = 1 and
• H(x, x′) ≤ 2λ, where H(x, x′) is Hamming distance between x′ and the current individual x.

Proof. By the definition of conditional probability we have
Pr[x′i+1 = 1 and H(x, x′) ≤ 2λ]

≥Pr
[
x′i+1 = 1 and ℓ ∈

[
λ

2 ,2λ
]]

=Pr
[
x′i+1 = 1

∣∣∣∣ℓ ∈ [λ2 ,2λ
]]

· Pr
[
ℓ ∈

[
λ

2 ,2λ
]]

.

By Lemma 81 we have

Pr
[
ℓ ∈

[
λ

2 ,2λ
]]
≥ 1

9 ,

and by Lemmas 82 and 83 we have

Pr
[
x′i+1 = 1

∣∣∣∣ℓ ∈ [λ2 ,2λ
]]
≥ λ

4n .

Finally, we obtain

Pr[x′i+1 = 1 and H(x, x′) ≤ 2λ] ≥ λ

4n ·
1
9 =

λ

36n .

Crossover Phase

Now we consider the probability to have progress in the crossover phase. For that purpose
we estimate the probability to get y such that yi+1 is a one-bit and none of other bits are changed
compared to x (and hence we increase the fitness by at least 1). We estimate the probability to
obtain progress in one particular offspring in the following lemma.
Lemma 85. Let λ ≥ 4. Assume that x′i+1 = 1 and the Hamming distance between x and x′ is at most
2λ. Then for any offspring y(m) we have Pr[f(y(m)) > f(x)] is at least 1

8λ .
Proof. To obtain an offspring y(m) that is better than xwe can take bit i+1 from x′ with probability
1
λ

and take all other 2λ − 1 bits that differ in x and x′ from x with probability (1 − 1
λ
) each.

Therefore, we have

Pr[f(y(m)) > f(x) | x′i+1 = 1 ∩ H(x, x′) ≤ 2λ] ≥ 1
λ

(
1− 1

λ

)2λ−1
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≥ 1
8λ.

The winner of the crossover phase y is strictly better than x, if at least one offspring y(m)

is better than x. Hence, we have

Pr[f(y) > f(x) | x′i+1 = 1 ∩ H(x, x′) ≤ 2λ] ≥ 1−
(

1− 1
8λ
)λ

≥ 1− e− 1
8 .

Now we have all arguments to prove Theorem 37.
Proof of Theorem 37. The probability that the algorithm improves its current fitness in one iter-
ation is at least the probability that the three consequent events happen.

• The number of flipped bits ℓ is in [λ2 ,2λ].• The i+ 1-st bit is flipped in x′.
• There is an offspring y(m) created in the crossover phase such that it differs from x only

in the i+ 1-st bit.
By Lemmas 84 and 85 the probability of this sequence is at least

λ

36n
(

1− e− 1
8
)
= Ω

(
λ

n
)
.

Therefore, the (1 + (λ, λ)) GA spends expected number of O( n
λ
) iterations before it improves the

fitness. Since there can be at most n improvements of the fitness before the optimum is found,
the total runtime of the (1 + (λ, λ)) GA on the LEADINGONES is O(n2

λ
). Since exactly 2λ fitness

evaluations are made in each iteration, the runtime is O(n2) fitness evaluations.

4.3.5 Upper Bound for Adaptive λ

In the same manner as in Section 4.3.3 we observe that the average expected progress per
fitness evaluation is Ω(1

n). From this we can also conclude that any adaptive choice of λ does not
speed up or slow down the runtime by more than a constant factor. However, we cannot use the
drift argument out of the box, since the progress comes only after an iteration which consists of
2λ fitness evaluations. We overcome this with a similar trick as in Section 4.3.3 and prove the
following theorem.
Theorem 39. The adaptive (1 + (λ, λ)) GA with any strategy of choosing the value of λ finds an
optimum of LEADINGONES in O(n2) fitness evaluations with probability 1− e−n+o(n).

From the previous section, we derive the following lower bound on the probability for a
fitness increase.
Lemma 86. If the adaptive (1 + (λ, λ)) GA chooses λt in the start of iteration t, then the probability
that f(x) increases in this iteration is at least λt

324n .
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Proof. If the algorithm chooses λt < 4, then with the same arguments as in Theorem 38 we can
show that the probability of progress in one iteration is at least (1

4)
λt 1

n ≥
λt

192n > λt
324n .Otherwise, by Lemma 84 and Lemma 85 we have that the probability of progress is at

least
λt

36n
(

1− e− 1
8
)
>

λt
324n .

Now, using the similar ideas as in Lemma 79 we prove the main result of this section.
Proof of Theorem 39. For all t ∈ N, let λt be the value of λ chosen at the start of iteration t and
xt be the current individual in the start of iteration t. Let Xt :=

∑t
i=0 2λi, which is the number

of fitness evaluations the algorithm performed until iteration t (inclusive). Consider the random
variable

Yt =
Xt

1296en − f(xt).
If Yt ≤ n and Xt ≥ 2592en2 = O(n2), then f(xt) must be at least n. If Yt does not exceed n before
Xt reaches 2592en2, the optimum is found by the moment Xt exceeds 2592en2. We show that Yt
does not exceed n for at least 1296en2 iterations, which is surely enough for Xt to reach 2592en2

even if the algorithm always chooses λt = 1.
To invoke Theorem 1, we compute E[eγ(Yt+1−Yt)] with γ := 1. By Lemma 86 we have

E [eYt+1−Yt] = E
[
exp

( 2λt
1296en − f(xt+1) + f(xt)

)]
≤ exp

(
λt

648en
)(

λt
324ne

−1 +
(

1− λt
324n

))
= exp

(
λt

648en
)(

1− (e− 1)λt
324en

)
.

Since for all λt ∈ [1.. n2 ] we have λt
648en ∈ [0,1], by Lemma 17 we also have

E [eYt+1−Yt] ≤ 1− (e− 2)λt
648en

Let T be the first time when Yt exceeds n. By the negative drift theorem (Theorem 1) we have

Pr[T ≤ 1296en2] ≤ 1296en2 · 648en
(e− 2)λt · e

−n = e−n+o(n),

which is an upper bound on the probability that algorithm does not find the optimum in 1296en2

iterations.

4.4 The Runtime Analysis of the (1 + (λ, λ)) GA with on JUMP

Clearly the usual application of evolutionary algorithms are problems with multimodal
landscapes, that is, with non-trivial local optima, and these local optima usually present a dif-
ficulty for evolutionary algorithms. In the runtime analysis perspective multimodal problems
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have displayed very different optimization behaviors. For example, on multimodal landscapes
it has been observed that crossover can recombine solutions into significantly better ones [90],
that mutation rates significantly larger than 1

n can be preferable [57], and that estimation-of-
distribution algorithms can significantly outperform classic algorithms [79, 23].

In this light and given that all previous runtime analyses for the (1 + (λ, λ)) GA consider
unimodal problems or problems that are sufficiently close to unimodal for the multimodality
to have no effect, we feel that it is the right time to now investigate how the (1 + (λ, λ)) GA
optimizes multimodal problems. Being the prime multimodal benchmark in runtime analysis,
we regard jump functions.

The main result of this section is a runtime analysis of the (1 + (λ, λ)) GA with static
parameters on jump functions for all jump sizes k ∈ [2.. n16 ]. We deviate from the standard
parameters and consider arbitrary values for the mutation rate p, the crossover bias c, and the
offspring population size λ. We motivate it by the observation that the standard parameters
setting aim at making small steps (but with high success probability).More precisely, the distance
between the current individual x and any offspring y(i) of the crossover phase follows a binomial
distribution Bin(n, 1

n) which, as we know from [57], is not suitable for making jumps of size k.
We also allowed different offspring population sizes λm and λc for the mutation and crossover
phase, which however did not lead to stronger runtime guarantees.

For all k ∈ [2.. n16 ] and for arbitrary values of these four parameters except for the only
constraint p ≥ 2k

n , we prove that the (1 + (λ, λ)) GA crosses the fitness valley in expected time
(number of fitness evaluations) at most

E [T] ≤ 4(λm + λc)

qℓ min{1, λm( p2)k}min{1, λcck (1− c)2pn−k}
,

where qℓ is a constant from [0.1,1], if it starts in the local optimum of JUMPk. Ignoring the
hidden constants in the resulting eO(k) factor, this bound is optimized for p = c =

√
k
n and

λm = λc = nk/2k−k/2 and then gives
E[T] ≤ nk/2eO(k)k−k/2.

When not starting in the local optimum, but with an arbitrary initial solution (or the usual
random initialization), the (1 + (λ, λ)) GA reaches the local optimum in an expected time of
neO(k) iterations, if p = c =

√
k
n and λm and λc are at least n

k . With slightly smaller values for the
population sizes, namely, λm = λc = n(k−1)/2k−k/2 this gives us the total expected runtime of

E[T] ≤ n(k+1)/2eO(k)k−k/2.

As for the previous results on JUMPk, a speed-up over classic algorithms is also observed for larger
ranges of parameters, though these are harder to describe in a compact fashion (see Corollary 5
for the details).

The result above shows that the power of the (1 + (λ, λ)) GA becomes much more visible
for jump functions than for the problems regarded in previous works. Concerning the optimal
parameter values, we observe that they differ from those that were optimal in the previous works.
In particular, the relation of mutation rate and crossover bias is different. Whereas in previous
works pcn = 1 was a good choice, we now have pcn = k. A moment’s thought, however, shows
that this is quite natural, or, being more cautious, at least fits to the previous results. We recall



152 4.4. The Runtime Analysis of the (1 + (λ, λ)) GA with on JUMP

that pcn is the expected Hamming distance of the parent to an individual generated from one
isolated application of mutation and crossover. The previous works suggested that this number
should be one, since one is also the expected distance of an offspring generated the classic way,
that is, via standard bit mutation with mutation rate 1

n .
Now for the optimization of jump functions, where a non-trivial local optimum has to be

left, it makes sense to put more weight on larger moves in the search space. More specifically,
the work [57] has shown that the optimal mutation rate for the (1 + 1) EA optimizing jump
functions is k

n . Hence for the classic (1 + 1) EA, the best way of generating offspring is such that
they have an expected Hamming distance of k from the parent. Clearly, this remains an intuitive
argument, but it shows that also when optimizing multimodal problems, the intuitive approach
of previous works, which might help an algorithm designer, gave the right intuition.

Our recommendation when using the (1 + (λ, λ)) GA for multimodal optimization prob-
lems would therefore be to choose p and c larger than in previous works, and more speficially,
in a way that pcn is equal to an estimate for the number of bits the algorithm typically should
flip. Here “typically” does not mean that there are actually many moves of this size, but that
this is the number of bits the algorithm has to flip most often. For example, when the (1 + 1) EA
optimizes a jump function, it will maybe only once move to a search point in distance k, how-
ever, it will nevertheless need many offspring in distance k until it finds the right move of this
distance.

From our rigorous analysis, we conclude that the (1 + (λ, λ)) GA is even better suited for
the optimization of multimodal objective functions, and we hope that the just sketched intuitive
considerations help algorithm designers to successfully apply this algorithm to their problems.

4.4.1 Upper Bounds

In this section we analyse the (1 + (λ, λ)) GA with general parameters on JUMPk and
show upper bounds on its runtime. We recede from the standard parameter setting of the
(1 + (λ, λ)) GA, since the intuition behind these parameters values (that is, the intent to have
only a single bit flipped if we consequently apply mutation and crossover operators) suggests
that they are not efficient to escape local optima.

We split our analysis into two parts. First we find the expected time the (1 + (λ, λ)) GA
needs to perform a jump to the global optimum when it is already in the local optimum. Then we
complete the story by considering the runtime until the (1 + (λ, λ)) GA gets to the local optimum
starting in a random bit string.

We do not consider the case when k = 1, since JUMP1 coincides with ONEMAX, which
is already well-studied in the context of the (1 + (λ, λ)) GA (see [31] for the full picture). We
also omit considering too large values of k (namely, k > n

16) since they do not give much new
insight about the (1 + (λ, λ)) GA, while they require more complicated arguments for our results
to hold.

We also constrain ourselves to the case p ≥ 2k
n so that once we get to the local optimum we

have a decent probability to flip at least 2k bits. This implies that an individual with k zero-bits
flipped will have a better fitness than any other offspring and therefore selected as the winner
of the mutation phase x′. Without this assumption an individual with all zero-bits flipped to one
might occur in the fitness valley, thus it is not detected as the mutation phase winner. Hence,
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the jump to the global optimum becomes more challenging for the algorithm, which makes this
parameter setting not really promising to be effective on multimodal functions.

Escaping the Local Optimum

In this section we analyse how the (1 + (λ, λ)) GA leaves the local optimum. Although
by runtime we understand the time until the optimum is sampled, it is fair to consider the time
until x becomes the optimum for at least two reasons. (i) By disregarding the event that the
optimum is sampled in the mutation phase, we still get an upper bound on the runtime. (ii)
Since the probability to sample the optimum in the mutation phase is small compared to the
probability to sample the optimum in the crossover phase, we expect to lose only a little. Due
to the elitist selection the only chance to leave the local optimum is to find the global optimum
in one iteration. For this it is sufficient that the following two consecutive events happen.

1) The mutation phase winner x′ has all k bits which are zero in the current individual x
flipped to one.

2) The crossover winner y takes all k bits which are zero in x from x′ and all bits which
are zero in x′ from x.

We first estimate the probability of the first event and then estimate the probability of the second
event conditional on the first one.

We call the mutation phase successful if all k zero-bits of x are flipped to one in x′ (and
possibly some one-bits are flipped to zero) and the number ℓ of the flipped bits is at most 2pn.
We estimate the probability pm of having a successful mutation phase in the following lemma.
Lemma 87. Let k ≤ n

4 . If p ≥ 2k
n , then we have

pm ≥ qℓ
2 min

{
1, λm

(p
2
)k}

,

where qℓ is as defined in Lemma 24, which is Θ(1).
Proof. If ℓ ≥ 2k then we flip at least k one-bits in each mutant, hence the fitness of each mutant
is at most n − k. Therefore, if there is at least one individual with all k zero-bits flipped, then
this individual has a greater value of JUMPk than any other individual which does not have all
zero-bits flipped. Hence, such an individual is chosen as the mutation winner x′. Therefore, for
a successful mutation phase it suffices that the following two events occur (in this order).

• The number of flipped bits ℓ is in [pn,2pn].
• The k zero-bits of x are among the ℓ chosen bits in at least one of the λm offspring. We

call such offspring good in this proof.
By Lemma 24 the probability of the first event is qℓ ≥ 0.1. We condition on this event

in the remainder. The probability qm(ℓ) that one particular offspring is good is (n−k
ℓ−k)
(n
ℓ
)

. By the
assumption that p ≥ 2k

n we have

qm(ℓ) =
(n−k
ℓ−k
)(n

ℓ

) =
(n− k)!

(ℓ− k)!(n− ℓ− 2k)! ·
ℓ!(n− ℓ)!

n!
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=
ℓ(ℓ− 1) . . . (ℓ− k+ 1)
n(n− 1) . . . (n− k+ 1) ≥

(
ℓ− k
n
)k
≥
(pn

2n
)k

=
(p

2
)k

.

The probability that at least one offspring is good is 1− (1− qm(ℓ))λm. By Lemma 21, we
estimate

1− (1− qm(ℓ))λm ≥ 1
2 min {1, λmqm(ℓ)}

≥ 1
2 min

{
1, λm

(p
2
)k}

.

Therefore, we conclude

pm ≥ Pr [ℓ ∈ [pn,2pn]] · 12 min
{

1, λm
(p

2
)k}

≥ qℓ
2 min

{
1, λm

(p
2
)k}

.

Now we proceed with the crossover phase. We call the crossover phase successful (condi-
tional on a successful mutation phase) if the winner y takes all bits which are zero in x′ from x
(where they are one) and all k bits which are zero in x from x′ (where they are ones). We denote
the probability of a successful crossover phase by pc.

Lemma 88. Assume that k ≤ n
4 and the mutation phase was successful. Then

pc ≥ 1
2 min

{
1, λcck (1− c)2pn−k

}
.

Proof. To generate an optimal solution in one application of the crossover operator we need to
take k particular bits from x′ and ℓ−k particular bits from x. The probability qc to generate such
a crossover offspring is

qc = ck (1− c)ℓ−k ≥ ck (1− c)2pn−k ,

since a successful mutation implies that ℓ ≤ 2pn. The probability to generate at least one such
offspring is

pc = 1− (1− qc)λc ≥ 1−
(

1− ck (1− c)2pn−k
)λc

≥ 1
2 min

{
1, λcck (1− c)2pn−k

}
,

where the last inequality follows from Lemma 21.

With Lemmas 87 and 88 we are capable of proving the upper bounds on the expected
runtime until the (1 + (λ, λ)) GA escapes the local optimum. We estimate the runtime both in
terms of the number of fitness evaluations and the number of iterations, denoted by TF and TI
respectively.
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Theorem 40. Let k ≤ n
4 . Assume that p ≥ 2k

n and qℓ is as defined in Lemma 24. Then the expected
runtime of (1 + (λ, λ)) GA on JUMPk is

E [TI] ≤ 4
qℓ min

{
1, λm

( p
2
)k}min

{
1, λcck (1− c)2pn−k

}
iterations and

E [TF] ≤ 4(λm + λc)

qℓ min
{

1, λm
( p

2
)k}min

{
1, λcck (1− c)2pn−k

}
fitness evaluations if the algorithm starts in the local optimum.
Proof. When the algorithm is in the local optimum it stays there until it moves to the optimum.
During this time in each iteration it has the same probability P to move into the global optimum,
which is the probability that a successful mutation phase is followed by a successful crossover
phase:

P = pmpc ≥ qℓ
2 λm

(p
2
)k
· 12λcc

k (1− c)2pn−k .

Hence we obtain an expected optimization time in terms of iterations of

E [TI] = 1
P ≤

4
qℓλmλc

( pc
2
)k

(1− c)2pn−k .

In each iteration the (1 + (λ, λ)) GA performs exactly λm+ λc fitness evaluations, which gives us
an expected number of

E [TF] ≤ 4 (λm + λc)

qℓλmλc
( pc

2
)k

(1− c)2pn−k

fitness evaluations in total.
With help of Theorem 40 we deliver good values for the parameters, namely p = c =

√
k
n

and λc = λm =
√n

k
k. We omit the proof that these parameters yield the lowest upper bound (apart

from optimizing the eO(k) factor), since it is just a routine work with complicated derivatives, but
we state the runtime bounds resulting from these settings in the following corollary. In order to
use this result when we compute the runtime with the random initialization we also formulate
this theorem for general population sizes.
Corollary 4. Let k ∈ [2..b n4c]. Assume that p = c =

√
k
n and λm = λc = λ ≤ 2k√n

k
k. Then

the expected runtime of (1 + (λ, λ)) GA on JUMPk is E[TF] ≤ nkk−keO(k)λ−1 fitness evaluations and
E[TI] ≤ nkk−keO(k)λ−2 iterations. For λ =

√n
k
k these bounds are E[TI] ≤ eO(k) and E[TF] ≤

√n
k
keO(k).

Proof. With λ ≤ 2k√n
k
k we have λ( p2)

k ≤ 1 and λck(1−c)2pn−k ≤ 1. Consequently, by Theorem 40
we have

E [TI] ≤ 4

qℓλ2 ( k
2n
)k(1−

√
k
n

)2√kn−k
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=
2k+2 (n

k
)k

qℓλ2
(

1−
√

k
n

)2√kn−k

≤ 2k+2

qℓλ2

(n
k
)k(

1−
√

k
n

)−2√kn

≤ 2k+2

qℓλ2

(n
k
)k(

1−
√

k
n

)−
√ n

k2k
,

Where qℓ ∈ [0.1,1] is a constant defined in Lemma 24. By the estimate (1 − x)− 1
x ≤ 4 which

holds for all x ∈ (0, 1
2 ] and by

√
k
n ≤

√ n
4n = 1

2 we have

E [TI] ≤ 2k+2

qℓλ2

(n
k
)k(

1−
√

k
n

)−
√ n

k2k

≤ 2k+2

qℓλ2

(n
k
)k

42k

=
(n
k
)k eO(k)

λ2 .

(54)

The expected number of fitness evaluations is λm + λc = 2λ times greater, hence we have

E [TF] ≤
(n
k
)k eO(k)

λ
. (55)

Putting λ =
√n

k
k into (54) and (55) we have E[TI] ≤ eO(k) and E[TF] ≤

√n
k
keO(k).

In the following corollary we show a wide range of the parameters, which yield a better
upper bound than the mutation-based algorithm (apart from the eO(k) factor) for the sub-linear
jump sizes. We do not show it for k = Θ(n), since in this case the upper bound given by
Corollary 4 is eO(k), which is not better than the runtime of best mutation-based EAs.
Corollary 5. Let k ≥ 2 and k = o(n). Assume that p = ω( kn), c = ω( kn) and pc = O( kn). Define
α := λm(

p
2)

k and β := λcck(1−c)2pn−k. If α and β are at most one and α = ω(( k
nc)

k) and β = ω((2k
pn )

k),
then the expected number of fitness evaluations until the (1 + (λ, λ)) GA reaches the global optimum
starting from the local optimum of JUMPk is

E[TF] = o
((n

k
)k)

eO(k).

Before we prove the corollary we shortly discuss how one can choose the parameters that
give us o

((n
k
)k) eO(k) runtime with Corollary 5. First we should choose p. It can be any value

which is ω( kn) and which is o(1). Then with the chosen value of p we can choose any c which is on
the one hand ω( kn), but on the other hand O( knp−1). Note that the closer p is to Θ(1), the smaller
the range for c (thus we could not choose p = Θ(1), since in this case we cannot simultaneously
satisfy c = ω( kn) and pc = O( kn)).
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After we determine p and c, we can choose λm and λc. For λm the upper bound for the
possible range is ( p2)

−k, which follows from condition α = λm(
p
2)

k ≤ 1. The lower bound for λm
is ω(( 2k

pcn)
k), which follows from the condition α = ω(( k

nc)
k). For λc we have similarly obtained

bounds, which are c−k(1− c)−(2pn−k) and ω(( 2k
pcn)

k)(1− c)−(2pn−k).
Generally, the choice of the λm and λc should be made in such way that they were as close

as possible to the inverse probabilities of creating a good offsprings in the mutation and crossover
phases respectively. By Lemma 21 this choice yields a Θ(1) probability of a successful iteration.
Any smaller population size reduces this probability (usually greater than it reduces the cost of
one iteration), while any greater population size only increases the cost of each iteration without
significantly increasing the success probability.
Proof of Corollary 5. Since α and β are at most one, the runtime given by Theorem 40 is simpli-
fied to

E[TF] ≤ 4(λm + λc)

qℓλmλc
( pc

2
)k

(1− c)2pn−k

=
4

qℓαck(1− c)2pn−k +
4

qℓβ
( p

2
)k .

We want both terms to be o((nk)k)eO(k). For the first term it is sufficient if the three follow-
ing conditions hold. (i) ck = ω(( kn)

k), which holds if c = ω( kn). (ii) (1 − c)2pn−k = e−O(k). For this
it is sufficient to have pc = O( kn), since then we have

(1− c)2pn−k = (1− c) 1
c (2pcn−kc) ≥

(1
4
)2pcn

=

(1
4
)O(k)

= e−O(k).

(iii) α = ω(( k
nc)

k), since this implies

4
qℓαck(1− c)2pn−k =

o
((nc

k
)k)

cke−O(k) = o
((n

k
)k)

eO(k).

For the second term it is enough that the following two conditions hold. (i) ( p2)k = ω(( kn)
k),

for which it is sufficient to have p = ω( kn). (ii) β should not be too small, namely, β = ω((2k
pn )

k),
since it implies

4
qℓβ

( p
2
)k = o

((pn
2k
)k)(p

2
)−k

= o
((n

k
)k)

.

Without having the lower bounds we cannot claim that other parameter settings are worse
than the proposed one. However, since we believe our bound to be asymptotically tight (apart
from the eO(k) factor), we show that the standard parameter setting does not give us such a good
upper bound.
Corollary 6. Let k ∈ [2..b n4c]. Assume that p = λ

n , c = 1
λ
and λm = λc = λ for some λ ∈ [2k..n].

Then the expected runtime of (1 + (λ, λ)) GA on JUMPk is E[TI] = O(2knkλ−2) iterations and E[TF] =
O(2knkλ−1) fitness evaluations.
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Proof. Since the standard parameter setting with λ ≥ 2k satisfies the conditions of Theorem 40,
we obtain

E[TI] ≤ 4
qℓλ2 ( λ

2nλ
)k (1− 1

λ

)2λ−k

≤ 4(2n)k
qℓλ2 (1− 1

λ

)2λ = O
(
(2n)k
λ2

)
.

In each iteration the (1 + (λ, λ)) GA performs 2λ fitness evaluations, thus we have

E[TF] = 2λE[TI] = O
(
(2n)k
λ

)
.

Reaching the Local Optimum

We showed that the (1 + (λ, λ)) GA with non-standard parameters setting can find the
global optimum of JUMPk much faster than any standard mutation-based algorithms if the algo-
rithms are started in the local optimum. However, the non-standard parameter setting includes
an unnaturally large population size, which makes each iteration costly. At the same time, there
is no guarantee that we increase the fitness by much in one iteration, which makes us pay with
many fitness evaluations before we reach the local optimum. Hence we question how much
the runtime with this parameter setting increases when we start at a random bit string. In this
section we show that slightly changing the parameters we can obtain the runtime which is only
by a √n factor greater than the runtime when we start in the local optimum. The main result of
this section is the following theorem.

Theorem 41. Let k ≤ n
16 . If λm = λc = 1√n

√n
k
k and p = c =

√
k
n , then the expected runtime

of the (1 + (λ, λ)) GA with any initialization on the JUMPk function is at most √n√n
k
keO(k) fitness

evaluations.
To prove Theorem 41 we first analyse the runtime until the (1 + (λ, λ)) GA reaches the

local optimum of JUMPk.

Theorem 42. Let λm = λc = λ ≥ n
k and p = c =

√
k
n . Then the expected time until the (1 + (λ, λ)) GA

reaches the local optimum of JUMPk with k ≤ n
16 is at most E[TI] = neO(k) iterations.

The main challenge in the proof of this theorem is that an offspring close to the optimum
in the mutation phase can lie in the fitness valley and thus it is not selected as x′. In this section
we call the mutation phase successful if the winner has at least one zero-bit of x flipped to one.
If such a bit exists, we call it critical and we call a mutation phase offspring which has such a bit
and does not lie in the fitness valley good. We write pm to denote the probability of a successful
mutation phase. We call the crossover phase successful if the winner of the crossover phase has
inherited the critical bit from x′ and all other bits are not changed compared to x (hence, the
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name “critical”, since we need such bit to be taken from x′ for a successful iteration). We write
pc to denote the probability of this event.

To prove Theorem 42 we show two auxiliary lemmas for the mutation and crossover
phases respectively.
Lemma 89. Let k ≤ n

16 . If λm ≥
√n
k√k and ℓ ∈

[√nk
2 , 3√nk

2
]
, then pm = Θ(1).

Proof. We denote the current distance to the global optimum by d(x). We distinguish two cases
depending on this distance d(x).

1) d(x) ≥ 3√nk
2 + k (long distance from the optimum),

2) d(x) < 3√nk
2 + k (short distance from the optimum).

Long distance from the optimum. When d(x) ≥ 3√nk
2 + k, we have a probability of

zero to sample an individual in the fitness valley, since for this we require ℓ > 3√nk
2 . Thus to

obtain a fitter individual it is sufficient to generate an offspring with at least one of its zero-bits
flipped to one. We denote the number of zero-bits flipped to one-bits by ℓ0. Since we assumed
ℓ ∈ [

√nk
2 , 3√nk

2 ], we estimate the probability qm to generate a good offspring as follows.

qm = Pr
[
ℓ0 > 0

∣∣∣∣ ℓ ∈
[√nk

2 ,
3√nk

2

]]

=

(
1−

(OM(x)
ℓ

)(n
ℓ

) )
≥ 1−

(OM(x)
n

)ℓ

≥ 1−
(
n− 3

2
√nk
n

)√nk
2

≥ 1
2 min

{
1, 3k

4
}

= Ω(1),

where the last inequality follows from Lemma 21. Therefore, pm = 1− (1− qm)λ ≥ qm = Ω(1).
Short distance from the optimum. When d(x) < 3√nk

2 + k there is a positive probability
to have a mutant in the fitness valley. However, if the number ℓ0 of zero-bits flipped is in [1..ℓ/2],
then the offspring is guaranteed to be good. With the union bound we estimate the probability
of this event as

qm ≥ 1− Pr[ℓ0 = 0]− Pr
[
ℓ0 >

ℓ

2
]
.

Having k ≤ n
16 and OM(x) > n− 3√nk

2 − k ≥ 9n
16 , we can use Lemma 26, which yields

Pr
[
ℓ0 ≥

ℓ

2
]
≤ e− ℓ

336 .

Hence, since we have ℓ ≥
√nk

2 , this probability is at most exp(−
√nk
672 ).We estimate the probability that we have not flipped a single zero-bit in the same way

as for the long distance from the optimum, but we have another upper bound on the current
fitness.

Pr[ℓ0 = 0] =
(OM(x)

ℓ

)(n
ℓ

) ≤
(n− k

n
)ℓ

≤
(

1− k
n
)√nk

2
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= 1−
1−

(
1− k

n
)√nk

2
 ≤ 1− 1

2 min
{

1, k
√k

2√n

}

where the last inequality follows from Lemma 21. Therefore, we have

qm ≥ 1− Pr[ℓ0 = 0]− Pr
[
ℓ0 >

ℓ

2
]

≥ 1
2 min

{
1, k
√k

2√n

}
− e−

√nk
672 ≥ 1

4 min
{

1, k
√k

2√n

}
,

where the last inequality holds when n is at least some sufficiently large constant. If k√k
2n > 1,

this probability is already Ω(1) and hence pm = Ω(1).
Otherwise, by Lemma 21 we compute

pm = 1− (1− qm)λ ≥ 1
2 min {1, λqm} .

Since λ ≥
√n
k√k , we have λqm ≥ 1

2 and therefore, pm = Ω(1).
Finally, we note that for constant n the probability qm is still positive, and hence Ω(1).
We proceed with a lemma for the crossover phase.

Lemma 90. Let k ≤ n
16 . Assume that c =

√
k
n , λc ≥

√n
k and ℓ ∈

[√nk
2 , 3√nk

2
]
, and there is at least

one critical bit in x′. Then pc = e−O(k).
Proof. To have a successful crossover offspring it is sufficient to take one critical bit from x′
and all other different bits from x. Thus the probability qc of generating one superior crossover
offspring is

qc = c(1− c)ℓ−1 ≥
√

k
n

(
1−

√
k
n

) 3√nk
2 −1

≥
√

k
n

(
1−

√
k
n

)√ n
k

3k
2

=

√
k
ne

−Θ(k).

Since we need only one of the λc ≥
√n

k offspring to be superior, by Lemma 21 we have

pc = 1− (1− qc)λc ≥ 1
2 min

{
1, λc

√
k
ne

−O(k)
}

= e−O(k).

Now we are in position to prove Theorem 42
Proof of Theorem 42. We denote the probability to increase fitness in one iteration by P and we
estimate this probability as follows.

P ≥ Pr
[
ℓ ∈

[pn
2 ,

3pn
2
]]
· pm · pc.
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By Lemmas 25, 89, and 90 we have
P ≥ (1− o(1)) · Ω(1) · e−O(k) = e−O(k).

Therefore the expected runtime (in terms of iterations) until the (1 + (λ, λ)) GA reaches
the local optimum of JUMPk is

E[TI] ≤
n−k∑
i=0

1
P ≤ neO(k).

Finally, we prove the main result of this section, Theorem 41.
Proof of Theorem 41. By Theorems 4 and 42 the upper bound on the total number of fitness
evaluations of the (1 + (λ, λ)) GA with random initialization is

E[TF] ≤ λneO(k) +
√n

k
k eO(k)

λ
.

With λ = 1√n
√n

k
k, we have

E[TF] ≤ 1√n
√n

k
k
neΘ(k) +

√n
k
k eΘ(k)

1√n
√n

k
k

≤
√n
√n

k
k
eΘ(k) +

√n
√n

k
k
eΘ(k) =

√n
√n

k
k
eΘ(k).

We note that λ = 1√n
√n

k
k is the value which minimizes our upper bound apart from the

eΘ(k) factor. We omit the proof of this fact, since it trivially follows from the minimization of a
function f(x) = ax+ b

x via analysis of its derivative.

4.4.2 Lower Bound

In this subsection we show that a deviation from the instance-specific optimal parameters
setting significantly increases the runtime. The consequence is that when the parameter k is
unknown, we are not likely to choose a good static parameter setting.

To analyze the negative effect of a wrong parameter choice we use the precise expression
of the probability P to go from the local to the global optimum in one iteration, which is

P =
n∑

ℓ=0
pℓpm(ℓ)pc(ℓ), (56)

where pℓ is the probability to choose ℓ bits to flip, pm(ℓ) is the probability of a successful mutation
phase conditional on the chosen ℓ, and pc(ℓ) is the probability of a successful crossover phase
conditional on the chosen ℓ and on the mutation being successful.
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Since ℓ ∼ Bin(n, p), we have pℓ =
(n
ℓ

)pℓ(1− p)n−ℓ. The probability of a successful mutation
depends on the chosen ℓ. If ℓ < k, then it is impossible to flip all k zero-bits, hence pm(ℓ) = 0.
For larger ℓ the probability to create a good offspring in a single application of the mutation
operator is qm(ℓ) =

(n−k
ℓ−k
)
/
(n
ℓ

). If ℓ ∈ [k + 1..2k− 1] then any good offspring occurs in the fitness
valley and has a worse fitness than any other offspring that is not good. Hence, in order to
have a successful mutation we need all λm offspring to be good. Therefore, the probability of
a successful mutation is (qm(ℓ))λm. For ℓ = k and ℓ ≥ 2k we are guaranteed to choose a good
offspring as the winner of the mutation phase if there is at least one. Therefore, the mutation
phase is successful with probability pm(ℓ) = 1− (1− qm(ℓ))λm.

In the crossover phase we can create a good offspring only if ℓ ≥ k. For this we need to
take all k bits which are zero in x from x′, and then take all ℓ−k one-bits which were flipped from
x. The probability to do so in one offspring is qc(ℓ) = ck(1 − c)ℓ−k. Since we create λc offspring
and at least one of them must be superior to x, the probability of the successful crossover phase
is pc(ℓ) = 1− (1− ck(1− c)ℓ−k)λc.

Putting these probabilities into (56) we obtain

P =

(n
k
)
pk(1− p)n−k

1−
(

1−
(n
k
)−1)λm

(1− (1− ck)λc)
+

2k−1∑
ℓ=k+1

(n
ℓ

)
pℓ(1− p)n−ℓ

((n−k
ℓ−k
)(n

ℓ

) )λm (1− (1− ck(1− c)ℓ−k)λc
)

+
n∑

ℓ=2k

(n
ℓ

)
pℓ(1− p)n−ℓ

1−
(

1−
(n−k
ℓ−k
)(n

ℓ

) )λm
(1− (1− ck(1− c)ℓ−k)λc

)
.

Via this expression for P we compute the expected runtime in terms of iterations as E[TI] =
P−1 and the expected runtime in terms of fitness evaluations as E[Tf] = (λm + λc)P−1. It is hard
estimate precisely the probability P and thus the expected runtime. Therefore, to show the
critical influence of the parameters on the runtime, we compute E[Tf] precisely for n = 220

and k ∈ {22,24,26} and for different parameter values. We fix λm = λc =
√n

k
k and take p =

2δ
√

k
n and c = 2−δ

√
k
n for all δ ∈ [− log2(

√n
k).. log2(

√n
k)]; these limits for δ guarantee that both

p and c do not exceed 1. Note that we preserve the invariant pcn = k, since otherwise the
expected Hamming distance between x and any crossover offspring (the “search radius” of the
(1 + (λ, λ)) GA) is not k, which makes it even harder to find the global optimum. The results of
this computation are shown in Figure 12.

As one can see, there is a relatively small interval where losses in runtime are of a small
constant factor (for δ = −1 the runtime is even slightly better), but generally the runtime is in-
creased by a Θ(2|δ|k) factor. Therefore, in order to solve JUMPk effectively with the (1 + (λ, λ)) GA
using the static parameters, one has to guess the value of k with a small relative error. In practice
when we optimize some JUMP-like problem we usually cannot tell in advance the size of jump
which we must perform to escape local optima. Therefore, when we do not know jump size k in
advance, we need some method of dynamic choice of parameters to avoid missing the optimal
one.
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Figure 12 – The ratio of the runtime with disturbed parameters to the runtime with the parameters
suggested Corollary 4. The left plot shows the full picture for all considered values of δ. The right plot
shows in more detail a smaller interval around the best values

4.5 The Runtime Analysis of the Heavy-Tailed (1 + (λ, λ)) GA JUMP

Corollary 6 showed that the standard parameters of the (1 + (λ, λ)) GA are not very useful
on jump, while taking mutation rate p and crossover bias c equal can be a good idea when making
progress is difficult. Parameterizing p = c =

√s/n, we obtain that an offspring after mutation
and crossover has an expected Hamming distance of s from the parent. Hence the parameter s,
in a similar manner as the mutation rate in a traditional mutation-based algorithm, quantifies
the typical search radius of the (1 + (λ, λ)) GA. Hence, it is natural to choose s from the power-
law distribution, since intuitively we should have the same effect as in [57] of having a good
probability to choose s close to its optimal value k. However, if we try to use Corollary 4 and to
set the population size λ according to our choice of s, namely λ = (ns )

s/2, then overestimating s
will be very costly. For this reason we find it more natural to choose it randomly form another
power-law distribution.

We conduct a mathematical runtime analysis of the (1 + (λ, λ)) GA with heavy-tailed
choices of s and λ from a broad range of power-law distributions. It shows that for a power-law
exponent βs > 1 for the choice of s and a power-law exponent βλ equal to two or slightly above,
a very good performance can be obtained. The resulting runtimes are slightly higher than those
stemming from the best, instance-specific static parameters, but still much below the runtimes
of classic evolutionary algorithms.

While undoubtedly we have obtained parameters that work uniformly well over all jump
functions, we also feel that our choices of the power-law exponent are quite natural, so that
the name parameterless (1 + (λ, λ)) GA might be justified. There is not much to say on the
choice of s, where apparently all power-laws (with exponent greater than one, which is a very
natural assumption for any use of a power-law) give good results. For the choice of λ, we note
that the cost of one iteration of the (1 + (λ, λ)) GA is 2λ fitness evaluations. Hence 2E[λ] is
the expected cost of an iteration with a random choice of λ. Now any power-law exponent
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βλ > 2 gives a constant value for E[λ]. The larger βλ is, the more the power-law distribution is
concentrated on constant values. For constant λ, however, the (1 + (λ, λ)) GA cannot profit a
lot from the intermediate selection step, and thus shows a behavior similar to classic mutation-
based algorithms. For this reason, choosing a power-law exponent rather close to two appears
to be a natural choice. Based both on this informal argument and our mathematical results, for
a practical application of our algorithm we recommend to use βs slightly above one, say 1.1, and
βλ slightly above two, say 2.1.

The asymptotically best choice of βλ (in the sense that the worst-case price for being
instance-independent is lowest) is obtained from taking βλ = 2. Since this alone would give an
infinite value for E[λ] , one needs to restrict the range of values this distribution is defined on. To
obtain an O(nkβs−1) price of instance-independence, a generous upper bound of 2n is sufficient.
To obtain our best price of instance-independence of O(n log n), a similar trick is necessary for
the choice of s, namely taking βs = 1 and capping the range at the (trivial) upper bound s ≤ n.
While we think that these considerations are interesting from the theoretical perspective as they
explore the limits of our approach, we do not expect these hyperparameter choices to be useful in
many practical applications. We note the runtime of the (1 + 1) EA with heavy-tailed mutation
rate was shown [57] to exceed the instance-specific best runtime of the (1 + 1) EA by a factor
of Θ(nβ−0.5). Hence a power-law exponent β as low as possible (but larger than one) looks best
from the theoretical perspective. In contrast, in the experiments in [57], no improvement was
seen from lowering β below 1.5.

4.5.1 The Heavy-Tailed (1 + (λ, λ)) GA with Multiple Parameter Choices

We now define the heavy-tailed (1 + (λ, λ)) GA as motivated in the introduction. The
main difference from the standard (1 + (λ, λ)) GA is that at the start of each iteration the muta-
tion rate p, the crossover bias c, and the population sizes λm and λc for the mutation and crossover
phases are randomly chosen as follows. We sample s ∼ pow(βs, us) and take p = c = ( sn)

1/2. The
population sizes are chosen via λm = λc = λ ∼ pow(βλ, uλ). Here the upper limits uλ and us
can be any positive integers and the power-law exponents βλ and βs can be any non-negative
real numbers. We call these parameters of the power-law distribution the hyperparameters of
the heavy-tailed (1 + (λ, λ)) GA and we give recommendations on how to choose these hyper-
parameters. The pseudocode of this algorithm is shown in Algorithm 6. We note that it is not
necessary to store the whole offspring populations, since only the best individual has a chance
to be selected as mutation or crossover winner. Hence also large values for λ are algorithmically
feasible.

4.5.2 Runtime Analysis

In this section we conduct a rigorous runtime analysis for our heavy-tailed (1 + (λ, λ)) GA
optimizing jump functions with jump size k ∈ [2.. n4 ]. We cover the full spectrum of the algo-
rithm’s hyperparameters βs, us, βλ, uλ. For large ranges of the hyperparameters, in particular,
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Algorithm 6 – The heavy-tailed (1 + (λ, λ)) GA with multiple parameter choices maximizing a
pseudo-Boolean function f

1: x← random bit string of length n
2: while not terminate do
3: Choose s ∼ pow(βs, us)
4: p← ( sn)

1/2

5: c← ( sn)
1/2

6: Choose λ ∼ pow(βλ, uλ)
Mutation phase:

7: Choose ℓ ∼ Bin(n, p)
8: for i ∈ [1..λ] do
9: x(i) ← a copy of x

10: Flip ℓ bits in x(i) chosen uniformly at random
11: end for
12: x′ ← arg maxz∈{x(1),...,x(λ)} f(z)

Crossover phase:
13: for i ∈ [1..λ] do
14: Create y(i) by taking each bit from x′ with probability c and from x with probability

(1− c)
15: end for
16: y← arg maxz∈{y(1),...,y(λ)} f(z)
17: if f(y) ≥ f(x) then
18: x← y
19: end if
20: end while

for natural values like βs = βλ = 2 + ε and us = uλ = ∞, we observe a performance that is
only a little worse than the one with the best instance-specific static parameters. This price of
instance-independence can be brought down to an O(n log(n)) factor. Taking into account the
effect of failing to guess the optimal parameters shown in Section 4.4.2, this is a fair price for a
one-size-fits-all algorithm.

Since a typical optimization process on jump functions consists of two very different
regimes, we analyze separately the difficult regime of going from the local optimum to the
global one and the easy ONEMAX-style regime encountered before that.

Escaping the Local Optimum

The time to leave the local optimum (necessarily to the global one) is described in the
following theorem and Table 4. We will see later that unless βλ < 2, and this is not among our
recommended choices, or k = 2, the time to reach the local optimum is not larger than the time
to go from the local to the global optimum. Hence for βλ ≥ 2, the table also gives valid runtime
estimates for the complete runtime.
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βλ E[Tf]ps if uλ <
(n
k
)k/2 E[Tf]ps if uλ ≥

(n
k
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[0,1)
eΘ(k) 1

uλ
(n
k
)k uλeΘ(k)

= 1 uλeΘ(k)/
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1 + ln
(
uλ
(n
k
)k/2))

(1,2) eΘ(k)u2−β
λ

(n
k
)k/2(β−1)

= 2 eΘ(k) ln(uλ+1)
uλ

(n
k
)k eΘ(k) ln(uλ)

(n
k
)k/2

(2,3) eΘ(k) 1
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(n
k
)k eΘ(k) (n

k
)k/2(β−1)

= 3 eΘ(k) 1
ln(uλ+1)

(n
k
)k eΘ(k) (n

k
)k

/ ln
((n

k
)k)

> 3 eΘ(k) (n
k
)k

Table 4 – Influence of the four hyperparameters βs, us, βλ, uλ on the expected number E[Tf] of fitness
evaluations the heavy-tailed (1 + (λ, λ)) GA starting in the local optimum takes to optimize JUMPk.
Since all runtime bounds are of type E[Tf] = F(βλ, uλ)/ps, where ps = Pr[s ∈ [k..2k]], to ease reading
we only state F(βλ, uλ) = E[Tf]ps. By taking βs = 1 + ε or βs = 1 ∧ us = n, one obtains ps = kε
or ps = O(log n). Using βλ = 2 and an exponential uλ gives the lowest price of an O(n log n) factor
for being independent of the instance parameter k. We also advertise the slightly inferior combination
βλ = 2 + ε and uλ = +∞ as for βλ > 2 each iteration has a constant expected cost and uλ has no
influence on the runtime (if chosen large enough). If βλ ≥ 2 and k ≥ 3, then the times stated are also
the complete runtimes starting from a random initial solution

Theorem 43. Let k ∈ [2.. n4 ]. Assume that we use the heavy-tailed (1 + (λ, λ)) GA (Algorithm 6)
to optimize JUMPk, starting already in the local optimum. Then the expected number of the fitness
evaluations until the optimum is found is shown in Table 4, where ps denotes the probability that
s ∈ [k..2k]. If us ≥ 2k, then ps is

• Θ(( k
us )

1−βs), if βs ∈ [0,1),
• Θ( 1

ln(us)), if βs = 1, and
• Θ(kβs−1), if βs > 1.
Before the proof we distill the following recommendations on how to set the parameters

of the power-law distributions from Theorem 43.
Distribution of λ: We note that when guessing uλ right (depending on k), and only then,

good runtimes can be obtained for βλ < 2. Since we aim at a (mostly) parameterless approach,
this is not very interesting. When βλ > 3, we observe a slow runtime behavior similar to the
one of the (1 + 1) EA with heavy-tailed mutation rate [57]. This is not surprising since with
this distribution of λ typically only small values of λ are sampled. We profit most from the
strength of the heavy-tailed (1 + (λ, λ)) GA when βλ is close to two. If it is larger than two, then
each iteration has an expected constant cost, so we can conveniently choose uλ = ∞ without
that this can have a negative effect on the runtime. This is a hyperparameter setting we would
recommend as a first, low-risk attempt to use this algorithm. Slightly better results are obtained
from using βλ = 2. Now a finite value for uλ is necessary, but the logarithmic influence of uλ
on the runtime allows to be generous, e.g., taking uλ exponential in n. Smaller values lead to
minimally better runtimes as long as one stays above the boundary (nk)

k/2, so optimizing here is
risky.

Distribution of s: The distribution of s is less critical as long as us ≥ 2k. Aiming at an
algorithm free from critical parameter choices, we therefore recommend to take us = n unless
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there is a clear indication that only short moves in the search space are necessary. Once we
decided on us = n, a βs value below one is not interesting (apart from very particular situations).
Depending on what jump sizes we expect to encounter, taking βs = 1 leading to an O(log n)-factor
contribution of s to the runtime or taking βs = 1 + ε, ε > 0 but small, leading to an O(kε)-factor
contribution to the runtime are both reasonable choices.

For the proof we also need the following supplementary lemma, which can easily be
deduced from Lemmas 87 and 88.
Lemma 91. Let λm = λc = λ and p = c = ( sn)

1/2 with s ∈ [k..2k]. If the current individual x of
the (1 + (λ, λ)) GA is in the local optimum of JUMPk, then the probability that the algorithm finds the
global optimum in one iteration is at least e−Θ(k) min{1, ( kn)kλ2}.
Proof of Theorem 43. Let F be the event that the algorithm finds the global optimum in one
iteration when the current individual x is already in the local optimum. The probability P of this
event is at least

P ≥ p(F|s)ps,
where p(F|s) = Pr[F | s ∈ [k..2k]] and ps = Pr[s ∈ [k..2k]]. The expected number of iterations TI
until we find the optimum is therefore

E[TI] = 1
P ≤

1
p(F|s)ps .

In each iteration the heavy-tailed (1 + (λ, λ)) GA performs 2λ fitness evaluation (where λ is
chosen from a power-law distribution at the start of the iteration). Using Wald’s equation
(Lemma 20) we compute the expected runtime Tf in terms of fitness evaluations from TI.

E[Tf] = E[TI]E[2λ] = E[2λ]
P ≤ 2E[λ]

p(F|s)ps .

In the remainder of the proof we estimate how E[λ], p(F|s), and ps depend on the hyperparameters
of the algorithm.

The expected value of λ is

E[λ] =
uλ∑
i=1

pλ(i)i = Cβλ,uλ

uλ∑
i=1

i1−βλ ,

where pλ(i) = Pr[λ = i]. We compute the conditional probability of F as

p(F|s) =
uλ∑
i=1

pλ(i)p(F|s,λ)(i),

where p(F|s,λ)(i) = Pr[F | s ∈ [k..2k] ∧ λ = i]. Note that event λ = i does not depend on the choice
of s. By Lemma 91 we have

p(F|s,λ)(i) ≥
{( k

n
)k i2e−Θ(k), if i ≤ (nk)k/2

,

e−Θ(k), otherwise.
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We consider two cases of the size of uλ relative to k and n. First, if uλ < (nk)
k/2, then we have

p(F|s) ≥
uλ∑
i=1

Cβλ,uλ i−βλ

(k
n
)k

i2e−Θ(k) = Cβλ,uλe−Θ(k)
(k
n
)k uλ∑

i=1
i2−βλ .

Hence, we have

E[Tf] = Cβλ,uλ
∑uλ

i=1 i1−βλ

psCβλ,uλe−Θ(k) ( k
n
)k∑uλ

i=1 i2−βλ

= p−1
s eΘ(k)

(n
k
)k ∑uλ

i=1 i1−βλ∑uλ
i=1 i2−βλ

.

In the second case, if u ≥ (nk)
k/2, we have

p(F|s) ≥
⌊( n

k)
k/2

⌋∑
i=1

Cβλ,uλ i−βλ

(k
n
)k

i2e−Θ(k) +
uλ∑

⌊( n
k)

k/2
⌋+1

Cβλ,uλ i−βλe−Θ(k)

= Cβλ,uλe−Θ(k)

(kn
)k ⌊( n

k)
k/2

⌋∑
i=1

i2−βλ +

uλ∑
i=⌊( n

k)
k/2

⌋+1

i−βλ

 .

Therefore,

E[Tf] ≤ 2E[λ]
p(F|s)ps ≤

eΘ(k)∑uλ
i=1 i1−βλ

ps
(( k

n
)k∑⌊( n

k)
k/2

⌋
i=1 i2−βλ +

∑uλ
i=⌊( n

k)
k/2

⌋+1
i−βλ

) .

Viewing these two cases together, we obtain

E[Tf] ≤ eΘ(k)S1

ps
(( k

n
)k S2 + S0

) , (57)

where
• S1 :=

∑uλ
i=1 i1−βλ,

• S2 :=
∑min{⌊( nk )k/2,uλ⌋

i=1 i2−βλ, and
• S0 :=

∑uλ
i=⌊( nk )

k/2⌋+1 i−βλ if uλ > (nk)
k/2 and S0 := 0 otherwise.

Table 5 shows the estimates of S1, S2 and S0, which follow from Lemma 2. We also note
that the estimates for ps = Cβs,us

∑2k
i=k i−β follow from Lemmas 2 and 5. We omit these elementary

calculations. Putting these estimates into (57) proves the theorem.

Reaching the Local Optimum

In this section we show that the heavy-tailed choice of parameters lets the (1 + (λ, λ)) GA
reach the local optimum relatively fast. Without proof, we note that if βλ ≥ 2 and k ≥ 3, then
the time to reach the local optimum is not larger than the time to go from the local to the global
optimum. For a set of hyperparameters giving the best price for instance-independence, we now
show an O(n2 log2(n)) time bound for reaching the local optimum.
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βλ S1 S2 S0 if uλ > (nk)
k/2

[0,1)
Θ(u2−βλ

λ )
Θ
(
(min{uλ, (nk)k/2})3−βλ

) Θ
(
u1−βλ

λ − (nk)
k(1−βλ)/2

)
= 1 Θ

(ln (uλ( kn)k/2))
(1,2)

Θ
(
(nk)

k(1−βλ)/2 − u1−βλ

λ

)= 2 Θ(log(uλ))
(2,3)

Θ(1)= 3 Θ
(log(min{uλ, (nk)k/2})

)
> 3 Θ(1)

Table 5 – The values of S1, S2 and S0 used in the proof of Theorem 43

Theorem 44. Let uλ = 2Θ(n), βλ = 2, us = Θ(n), and βs = 1. Then the expected runtime until the
heavy-tailed (1 + (λ, λ)) GA reaches the local optimum of JUMPk starting in a random string is at most
O(n2 log2(n)) fitness evaluations. For greater βλ and any uλ this runtime is at most O(n log2(n)). In
both cases with βs > 1 and any us ∈ N the runtime is reduced by a Θ(log(n)) factor.
Proof. We prove the theorem only for βλ = 2 and βs = 1, since for other hyperparameter values
the arguments are identical. By Lemma 5, the probability ps,λ to choose s = 1 and λ = 1 is

ps,λ = Cβs,us1(−1)Cβλ,uλ1(−2) = Θ

( 1
log(n)

)
.

With s = 1 and λ = 1 the algorithm essentially performs an iteration of the (1 + 1) EA
with mutation rate 1

n , since there is no selection of the mutation winner and each bit of the
crossover offspring is flipped with probability

√
1
n

2
= 1

n . Therefore, if the algorithm has not
reached the local optimum, then the probability P to have a true progress in one iteration is at
least

P ≥ ps,λn− i
n ,

where i is the current fitness of x. Therefore, by Lemma 2 the expected number of iterations
until the algorithm reaches the local optimum is at most

E[TI] ≤
n−k−1∑
i=0

n
ps,λ(n− i) ≤ Θ(log(n)) · n · O(log(n)) = O(n log2(n)).

Since by Lemma 6 the expected number of fitness evaluations per iteration is Θ(log(uλ)) =
Θ(n), by Wald’s equation (Lemma 20) we have

E[Tf] = E[TI]E[2λ] ≤ O(n log2(n)) ·Θ(n) = O(n2 log2(n)).

4.6 Conclusion of Chapter 4

In Section 4.1 we performed the first runtime analysis of a crossover-based algorithm
using the heavy-tailed parameter choice and observed that the fast mutation operator not only
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can relieve the algorithm designer from the task of choosing a suitable mutation rate, but it can
also lead to runtimes asymptotically better than any static choice of the mutation rate. However,
different from previous works, where any power-law exponent greater than one could be used,
our work requires that β is between 2 and 3 and thus shows that, different from what the previous
works suggest, the choice of β can be non-trivial.

On the technical side, our work shows that algorithms with a heavy-tailed number of
offspring can be much easier to analyze than those with a self-adjusting number of offspring
(such as the self-adjusting (1 + (λ, λ)) GA [31]), since Wald’s equation allows to estimate the
expected runtime by the product of the expected number of iterations and the expected number
of offspring generated in one iteration. This also gives a clear hint on suitable values for the
power-law exponent. (Only) by taking β > 2, we can ensure that the expected number of
offspring generated per iteration is constant.

In Section 4.3, we have shown that the (1 + (λ, λ)) GA optimizes the LEADINGONES func-
tion in Θ(n2/λ) parallel time and Θ(n2) total runtime, regardless of the parameter λ. This shows
that, not surprisingly, the (1 + (λ, λ)) GA here does not profit from the better exploration mech-
anism (as it did on ONEMAX and random satisfiability instances). At the same time, however,
it still achieves asymptotically the same parallel runtime as the (1 + λ) EA and the same total
runtime as any (1 + λ) EA with λ ≤ n.

In Section 4.4 we performed the first runtime analysis of the (1 + (λ, λ)) GA on a multi-
modal problem and we observed that this algorithm also has a runtime advantage over classic
algorithms on multimodal objective functions, and a much more pronounced one. Whereas the
advantage in the previous results on unimodal problems was a gain of a logarithmic factor, we
have shown here a runtime that is almost the square root of the runtime of classic algorithms.

For the (1 + (λ, λ)) GA to show such a good performance, its parameters have to be chosen
differently from what was suggested in previous works, in particular, the mutation rate and
crossover bias have to be larger. We developed some general suggestions in Corollary 5 that
might ease the future use of this algorithm.

TO solve the problem of crucial dependency of optimal static parameters on the problem
instance, in Section 4.5 we proposed a variant of the (1 + (λ, λ)) GA with a heavy-tailed choice of
both the population size λ and the search radius s. To the best of our knowledge, this is the first
time that two parameters of an EA are chosen in this manner. Our mathematical runtime analysis
showed that this algorithm with suitable, but natural choices of the distribution parameters
can optimize all jump functions in a time that is only mildly higher than the runtime of the
(1 + (λ, λ)) GA with the best instance-specific parameter values.

We are optimistic that the insights gained on the jump functions benchmark extend, at
least to some degree, also to other non-unimodal problems. Clearly, supporting this hope with
rigorous results is an interesting direction for future research. From a broader perspective, this
work suggests to try to use heavy-tailed parameter choices for more than one parameter simul-
taneously. Our rigorous results indicate that the prices for ignorant (heavy-tailed) choices of
parameters simply multiply. For a small number of parameters with critical influence on the
performance, this might be a good deal.
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Conclusion

This thesis makes several contributions to the field of the theory of evolutionary compu-
tation. First, it proposes the following new analysis methods.

• The method of complete trees.
• The method of drift analysis of no-drift processes.
• The method of two Markov chains for the analysis on plateaus.
• The additive drift theorem with tail bounds.
With these methods we performed an analysis of various population-based EAs and de-

livered some totally new insights about the working principles of EAs. Although some of our
methods are problem-specific, we are optimistic that they need only small modifications to be
applied to a more general problems. We also believe that our methods can be combined to a
more powerful tools. For example, the method of the analysis of EAs on plateaus can be com-
bined with the ideas of the complete trees to deliver the runtime of the (µ+ λ) EA on plateaus,
but we leave it as an open topic for the further research.

Among the results obtained with the developed methods, we find the following ones most
notable.

• The asymptotically tight precise bounds on the runtime of the (µ+ λ) EA and the
(µ, λ) EA on ONEMAX, which show in details the interplay of the parent and offspring
populations sizes for these algorithms. In particular, we observed that the (µ+ λ) EA
makes progress after filling the top fitness level with some number of the best individuals
and that the convergence of the (µ, λ) EA crucially depends on the absolute population
sizes.

• The runtime results for the (1 + 1) EA and (λ
1:1
+ λ) EA on PLATEAU functions, which

showed that the choice of the mutation operator does not have a significant influence
on the behavior of these EAs on plateaus.

• The runtime of the (1 + (λ, λ)) GA with variable λ on LEADINGONES, where we use the
argument of the average drift per fitness evaluation for an algorithm with a variable
cost of one iteration.

We also proposed a new algorithm, the heavy-tailed (1 + (λ, λ)) GA, and showed that a
simple strategy of choosing parameters randomly (but from a well-chosen distribution) can not
only relieve us from choosing the right static parameters for a small price (as it does on JUMP),
but also gives us the better runtime than the one which could be obtained with static parameters
(as it does on ONEMAX).

To designate the further research directions, we find it profitable to extend the proposed
methods for more complicated crossover-based genetic algorithms such as the (µ+λ) GA. At the
moment we find it very challenging, since it would require more complex structures than in the
complete trees which take into account the genotype of two parents of each individual.

We also find the approach of the random parameter selection worth the further investi-
gation to find on which problems it can be beneficial. Clearly, there are two situations when
it might either reduce the runtime (as for the (1 + (λ, λ)) GA on ONEMAX) or produce a one-
size-fits-all algorithm (as for the (1 + 1) EA [57] and the (1 + (λ, λ)) GA on JUMP). However,
there are also functions for which missing the optimal parameters range can be destructive and
results into a drift outwards the optimum, e.g., the HOTTOPIC functions [100]. Therefore, it is
important to determine the scope in which this method of dynamic parameters choice helps.
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