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RÉSUMÉ

Le traitement des signaux d’électroencéphalographie (EEG) est d’un intérêt majeur
dans les domaines médicaux. Dans cette thèse, nos travaux portent sur l’étude des
signaux EEG de sujets épileptiques. Plus plus précisément, nous proposons d’étu-
dier l’irrégularité de signaux EEG acquis chez des enfants épileptiques. L’épilepsie
est l’une des affections neurologiques chroniques les plus courantes chez l’enfant et
touche 0,5% à 1% des enfants [1]. L’étude de l’épilepsie d’un point de vue électro-
neurophysiologique aiderait à mieux comprendre le trouble et permettrait de progresser
plus rapidement dans la recherche de traitements. Notre objectif principal dans cette
thèse est de proposer des approches de traitement du signal basées sur l’entropie qui
aideraient dans ces étapes.

Cette thèse a été partiellement financée par le projet DESIRE. DESIRE est un
projet financé par le 7e PC (convention de subvention n ° 602531), impliquant 25 par-
tenaires dans 11 pays.

DESIRE se concentre sur les troubles épileptogènes du développement ou les en-
céphalopathies épileptiques et développementales (EED), c’est à dire des épilepsies
précoces dont l’origine est étroitement liée aux processus de développement du cer-
veau et pour lesquelles l’activité épileptique elle-même. Les malformations du déve-
loppement cortical (MCD), qu’elles soient macroscopiques ou subtiles, sont l’une des
principales causes de l’EED. Les troubles mentaux se manifestent souvent par des en-
céphalopathies épileptiques (EE), c’est-à-dire des conditions dans lesquelles l’activité
épileptique elle-même peut contribuer à de graves troubles cognitifs et comportemen-
taux. Un traitement efficace de l’épilepsie permettra donc de limiter les séquelles cog-
nitives et comportementales de ces patients. Les EED sont les épilepsies pédiatriques
pharmaco-résistantes les plus fréquentes, avec une perspective à vie d’invalidité et de
qualité de vie réduite.

DESIRE a pour objectifs spécifiques de faire progresser l’état de l’art en ce qui
concerne :

— les causes génétiques et épigénétiques et les mécanismes pathogènes (MP) de
l’EED, en particulier le les malformations du développement cortical associées à

2



l’épilepsie , pour élucider les réseaux moléculaires et les complexes protéiques
perturbés et rechercher des bases communes pour ces troubles apparemment
hétérogènes.

— les outils de diagnostic, biomarqueurs et protocoles de traitement, et les proto-
coles à travers l’étude d’une cohorte unique d’enfants bien caractérisée et bien
caractérisée afin de fournir un diagnostic standardisé pour la stratification des
patients et la recherche en Europe.

— le traitement de l’EDD à l’aide de protocoles cliniques multidisciplinaires rando-
misés et mise à l’essai de stratégies précliniques dans des modèles expérimen-
taux afin de prendre en compte de nouvelles stratégies préventives.

Dans cette thèse, nous avons développé une nouvelle approche d’entropie basée
sur l’entropie à permutation multi-échelle dans l’optique de l’appliquer à l’analyse de
l’EEG de repos de patients avec EED avant et après mise en place d’un traitement
anti-épileptique et de corréler les données EEG avec la condition clinique des patients.
La base de l’entropie multi-échelle est la procédure suivante

y
(τ)
j = 1

τ

jτ∑
i=(j−1)τ+1

xi. (1)

{xi} est est la série chronologique originale. y(τ) est alors le sous-échantillonnage de
{xi} par le facteur τ qui est l’échelle de temps. y(τ) est alors appelée série chronolo-
gique à gros grains. Ensuite, l’entropie de permutation [11] de chaque série chronolo-
gique à gros grains est calculée comme suit

PEd
x = −

d!∑
i=1

p(πi) ln(p(πi)), (2)

où

p(πi) = #{t|t ≤ N − d, type(xdt ) = πi}
N − d+ 1 , (3)

où π est appelé un motif et correspond à un certain ordre de permutation des éléments
du sous-vecteur de longueur d. p(πi) est la fréquence relative du motif. L’équation 3 si-
gnifie le nombre de tous les vecteurs xd,lt sur tout t qui, lorsqu’ils sont triés, ont le
même ordre que πi ; le tout est divisé par le nombre total de vecteurs xd,lt (# désigne
la cardinalité). La nouvelle méthode que nous avons introduite s’appelle "multivariate
Improved Weighted Multi-scale Permutation Entropy" (mvIWMPE). Appliquée sur des

3



signaux multivariés synthétiques et comparée à d’autres méthodes multivariées repo-
sant sur l’entropie de permutation, nous montrons que notre méthode permet de mieux
différencier les signaux comparativement aux résultats donnés par l’entropie de per-
mutation multivariée multi-échelle (mvMPE) ou ceux donnés par l’entropie de permuta-
tion pondérée multivariée multi-échelle (mvMWPE). L’avantage de notre méthode par
rapport à la "multivariate improved multi-scale permutation entropy (mvIMPE)" réside
dans l’introduction du facteur de pondération qui inclut dans les calculs les amplitudes
des échantillons de signal. Nous avons finalement appliqué cette méthode sur de vrais
signaux EEG d’enfants en bonne santé afin de bien différencier deux états, les yeux
ouverts et les yeux fermés.

Nous avons développé une autre approche d’entropie multivariée basée sur la
"Sample Entropy" [99]. La "Sample Entropy" est calculée comme suit

SampEn = − ln Bm+1(r)
Bm(r) . (4)

Bm(r) (respectivement Bm+1(r)) est la fréquence à laquelle le sous-vecteur de lon-
gueurs m (respectivement m + 1) présente des similitudes dans une plage de tolé-
rance r. Cette approche développée a été comparée à l’approche existante [4] [5] en
appliquant les deux méthodes sur des signaux synthétiques comportant un nombre
variable de canaux. Il a été remarqué que les deux méthodes donnent des résultats
similaires lorsqu’elles sont appliquées sur un petit nombre de canaux (2 ou 3), mais
notre méthode donne de meilleurs résultats lorsque le nombre de canaux est supé-
rieur. Nous avons également appliqué notre méthode sur des signaux EEG de patients
épileptiques à deux moments de leur traitement. Les résultats ont été mis en corres-
pondance avec le diagnostic clinique réalisé à l’hôpital pour déterminer si la santé des
patients s’améliorait.

Une troisième mesure de complexité a été développée sur la base d’une approche
temps-fréquence variable. Cette mesure a également été appliquée sur des signaux
synthétiques, puis sur des signaux EEG réels provenant des mêmes patients épilep-
tiques que ceux utilisés dans l’étude d’entropie multivariée basée sur la "Sample En-
tropy". En extrayant plusieurs caractéristiques des résultats et en les comparant à dif-
férents moments du traitement, les résultats correspondent à ce qui avait été trouvé
lors du diagnostic clinique à l’hôpital.

Enfin, nous avons introduit une nouvelle approche de connectivité basée sur
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mvlWMPE et MI dans le but de tester l’hypothèse que cette méthode peut être adaptée
à l’étude de la connectivité fonctionnelle cérébrale :

I(x,y) = H(x) +H(y)−H(x,y), (5)

où I(x,y) est l’information mutuelle entre deux signaux ou séries temporelles x et
y. H(x) et H(y) sont les entropies des signaux x et y respectivement et H(x,y) est
l’entropie bivariée des deux signaux x et y. Nous avons d’abord testé la capacité de
cette méthode à extraire des réseaux dont les nœuds significatifs correspondent aux
réseaux à état de repos (RSN) connus extraits à l’aide de l’imagerie par résonance ma-
gnétique fonctionnelle (IRMf). Pour cette raison, nous avons appliqué la méthode aux
signaux corticaux calculés à partir des signaux EEG d’enfants en bonne santé. Après
avoir extrait les réseaux, nous avons extrait les mesures de réseau de nœuds et de
réseaux globaux et testé leurs valeurs afin d’identifier les nœuds significatifs. Les mé-
thodes ont permis de trouver des nœuds statistiquement significatifs qui avaient déjà
été trouvés dans les études RSN IRMf. Nous avons ensuite étudié l’influence de la va-
riabilité inter-sujets sur la méthode. Nous avons donc appliqué la méthode aux mêmes
enfants en bonne santé, mais cette fois dans l’intérêt de comparer les valeurs des me-
sures de réseau extraites d’un sujet à l’autre. Les résultats montrent des variabilités
significatives inter-sujets. Notre méthode ne permettra donc pas de comparer les ré-
sultats des sujets entre eux. Suite à cela, nous avons étudié la variabilité intra-sujet de
notre méthode. Nous avons donc effectué une comparaison similaire en utilisant des
mesures de réseau, mais cette fois en comparant les valeurs d’un même sujet. Les
résultats n’ont pas montré de variabilité intra-sujet significative. Cela signifie que nous
pouvons utiliser cette méthode pour étudier un sujet donné à des moments différents.
Nous avons alors analysé les états des patients épileptiques à différents moments de
leur traitement. Les résultats obtenus sont en cohérence avec le diagnostic clinique
réalisé à l’hôpital.

Ce manuscrit est divisé en 3 chapitres. Dans le premier chapitre, une revue de la
littérature sur différents concepts utilisés dans cette thèse est d’abord proposée. Nous
présentons ainsi des méthodes d’entropie qui ont été développées précédemment et
qui sont en quelque sorte liées au travail développé dans cette thèse. Ensuite, nous
proposons une brève revue du système d’acquisition et des signaux EEG ainsi que la
neurophysiologie associée. Après cela, nous décrivons l’épilepsie infantile. Enfin, nous
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présentons le concept général de connectivité fonctionnelle, l’importance de l’étude de
l’épilepsie et un bref résumé des différentes méthodes basées sur l’EEG/ la magne-
toencéphalographie (MEG) pour calculer la connectivité fonctionnelle.

Au chapitre 2, nous présentons trois nouvelles méthodes basées sur l’entropie
que nous avons développées ; mvIWMPE, une nouvelle approche multivariée de la
"Sample Entropy" et une nouvelle mesure de complexité temps-fréquence en temps
variable. Nous appliquons les méthodes développées sur des signaux synthétiques et
sur des signaux EEG haute densité provenant d’enfants sains et épileptiques.

Dans le troisième chapitre, nous adaptons la mvIWMPE développée avec l’infor-
mation mutuelle afin de proposer une nouvelle méthode de connectivité fonctionnelle
basée sur l’EEG. Nous appliquons cette méthode sur des données acquises chez des
enfants en bonne santé et chez des enfants atteints de différents types d’épilepsie
infantile dans le but d’étudier la méthode et d’évaluer sa capacité à détecter des alté-
rations du réseau au cours des différentes phases de l’épilepsie.

Enfin, nous terminons ce manuscrit par une conclusion générale du travail et des
perspectives.
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INTRODUCTION

The processing of electroencephalography (EEG) signals is of major interest for the
medical fields. In this thesis, our main focus was irregularity and complexity measures
of the signals. We aim to study the EEG signals of children with childhood epilepsy.
Epilepsy is one of the most common chronic neurologic conditions in children and
affects 0.5% to 1% of the children [1]. Studying the in-depth aspects of epilepsy from
an electro-neurophysiological point of view would help better understand the disorder
and takes steps closer towards finding cures. Our main point in this thesis is to propose
entropy-based signal processing approaches that would help in those steps.

DESIRE Project

This thesis was partly funded by the DESIRE project. DESIRE is an FP7 funded
project (Grant Agreement no : 602531), involving 25 partners in 11 countries, with
eight third parties, a total of 2166 person months, with more than 250 researchers in-
volved and 19 clinical centres involved in the clinical trial. It is co-ordinated by Prof.
Renzo Guerrini, Dipartimento di Neuroscienze, Area del Farmaco e Salute del Bam-
bino (NEUROFARBA) Universita degli Studi di Firenze, Italy.

Scope of DESIRE

DESIRE focuses on epileptogenic developmental disorders EDD, i.e. early onset
epilepsies whose origin is closely related to developmental brain processes. A major
cause of EDD are malformations of cortical development (MCD), either macroscopic
or subtle. EDD are often manifested as epileptic encephalopathies (EE), i.e. conditions
in which epileptic activity itself may contribute to severe cognitive and behavioral im-
pairments. EDD are the most frequent drug-resistant pediatric epilepsies carrying a
lifelong perspective of disability and reduced quality of life.
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Introduction

Objectives of DESIRE

Specific objectives of DESIRE are to advance the state of the art with respect to :
— the genetic and epigenetic causes and pathogenic mechanisms (PM) of EDD,

particularly epileptogenic MCD, to elucidate molecular networks and disrupted
protein complexes and search for common bases for these apparently hetero-
geneous disorders.

— the diagnostic tools (biomarkers) and protocols through the study of a unique
and well-characterized cohort of children to provide standardized diagnosis for
patient stratification and research across Europe.

— treatment of EDD using randomized, multidisciplinary clinical protocols and tes-
ting preclinical strategies in experimental models to also address novel preven-
tative strategies.

Thesis Objectives

The first main objective of the thesis is to propose a state of the art on the methods
that quantify the irregularity of time series. Then we adapt and develop new methods
based on entropy measures to study EEG signals in general.

The second main objective throughout this thesis is to create our database of EEG
recordings of children with epilepsy and healthy children. We then use this database
and apply our entropy methods on EEG recorded in epileptic children and in healthy
subjects and to compare their results.

Finally the last main objective of this thesis is to develop a new functional connecti-
vity method, based on developed entropy measures in order to apply it on the signals of
the recorded database. By comparing the results of the epileptic children with those of
the healthy children, we hypothesize that it could help to understand the network alte-
rations that are caused by the epileptic disorder itself, and the origin of some cognitive
deficits. This might help in better handling the disorder and hopefully in treatment.

Organisation

This manuscript is divided into 3 chapters. In the first chapter, a literature review of
the state of the art is proposed. The covered topics include entropy methods that were
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Introduction

previously developed and are somehow related to the work in this thesis. Then we write
a brief review of the EEG machine and the neurophysiology behind the EEG signals.
After that we describe and summarize the definition of childhood epilepsy and some
types of childhood epilepsies. Finally, we present the general concept of functional
connectivity, why it is necessary to study epilepsy, and a brief summary of the different
EEG/MEG-based methods to calculate functional connectivity.

In chapter 2, we introduce three novel entropy-based methods that we developed ;
multivariate improved weighted multi-scale permutation entropy (mvIWMPE), a new
multivariate approach of sample entropy, and a new time-varying time–frequency com-
plexity measure. We apply the developed methods on synthetic signals and on real
high density EEG signals from children (healthy and epileptic children).

In the third chapter, we adapt the developed mvIWMPE with mutual information
(MI) in order to develop a new EEG-based functional connectivity method. We apply
this method on healthy children along with children with different types of childhood
epilepsies. The aim is to study the method and evaluate its ability to detect network
alterations among different stages of epilepsy.

Finally, we end this manuscript with a general conclusion of the work and some
perspectives.
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CHAPITRE 1

STATE OF THE ART
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Partie , Chapitre 1 – State of the Art

1.1 Entropy in Signal Processing

1.1.1 Introduction

There are several methods to quantify the irregularity of signals and systems. One
of the commonly used methods is using entropy measures [71]. The concept of entropy
originally derived from thermodynamics where it was used to describe the state of
a fluid system and the probability of its molecule’s distribution. In ordered systems
(crystals) the molecules are fixed in place and have low possibility of motion and getting
out of order, thus having low entropy. As the system moves to a more disordered state
(melting of ice crystals) the molecules get more freedom to move, thus increasing the
probability of disorder. This results in the increase of the fluid system entropy.

This concept of entropy was adapted by Shannon [104] for information theory to
measure the information in a signal. Nowadays, entropy, when used in information
theory and signal processing, is used to measure or quantify the unpredictability, irre-
gularity or complexity of a signal. Many entropy measures, based on Shannon’s en-
tropy, were developed and are to be discussed in Sec. 1.1 of Chapter 1, starting with
Shannon’s entropy.

1.1.2 Shannon’s Entropy

As mentioned above, the concept of information entropy was introduced by Claude
Shannon in 1948 [104]. Shannon defined the entropy of a discrete random variable X
with values {x1, x2, . . . , xN} and a probability distribution P (X) as :

H(X) = −
n∑
i=1

P (xi) logb P (xi), (1.1)

where b is the base of the logarithm. In the case that P (xi) = 0 for a certain i, then
P (xi) logP (xi) = 0.

To further explain the use of Shannon entropy let us consider the example of a coin
toss. The coin toss has only two outcomes X = {A,B}. Initially, we will consider the
two outcomes equiprobable (P (A) = P (B) = 1

2 ). With the logarithm of base 2, the
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1.1. Entropy in Signal Processing

FIGURE 1.1 – The Shannon entropy values of a coin toss with respect to the probability
of the fist outcome A. The figure would be the same for the second outcome B as
P (A) + P (B) = 1

entropy of the outcome of the coin toss would be :

H(X) = −
2∑
i=1

P (1
2) log2

1
2 = 1. (1.2)

This is the case of the most uncertainty where the entropy is at its highest value. Ho-
wever, if we consider the outcomes to have different probabilities, such as P (A) = 0.7
and P (B) = 0.3, then the value of entropy would be H(X) = 0.8816 which implies less
uncertainty than the equiprobable case.

Shannon entropy always gives the highest value for uniform distributions of X. Fig.
1.1 shows the entropy of X with respect to P (A). Note that the entropy is maximal for
P (A) = 0.5 (uniform distribution of X).

1.1.3 Approximate Entropy

Approximate entropy (ApEn) was introduced by Pincus et al in 1991 [96] to calcu-
late the uncertainty or unpredictability of the fluctuations of a time series.

Consider a time series X = {x1, x2, x3, . . . , xN} with N points. For a fixed integer m
extract the vectors u1,u2, . . . ,uN−m+1 where ui = [xi, xi+1, . . . , xi+m−1]. For every i find
Cm
i (r), the number of vectors uj (1 ≤ j ≤ N−m+1) that satisfy the condition d[ui,uj] ≤
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r. r is a predefined real number that is considered as a threshold, d[ui,uj] is the
distance between ui and uj and is calculated as maxm |xi+k − xj+k| : 0 ≤ k ≤ m− 1,
where xi is a scalar component of ui and xj is that of uj. It is worth noting here that
d[ui,uj] is considered for the condition of i = j and thus meaning that self-comparisons
are being considered. Then, define

Φm(r) =
∑N−m+1
i=1 logCm

i (r)
N −m+ 1 . (1.3)

Finally, ApEn is calculated as

ApEn(m, r) = Φm(r)− Φm+1(r), (1.4)

where Φm+1(r) is calculated as Φm(r) but for m+ 1 instead of m.

1.1.4 Sample Entropy

Sample entropy (SampEn) was first introduced by Richman and Moorman in 2000
[99]. It is the negative logarithm of the conditional probability that a time series of length
N , showing similarity within a tolerance r for length m, will also show similarity within a
tolerance r for lengthm+1, without considering self-matches. To calculate SampEn of a
time series {x1, . . . , xi, . . . , xN} of length N , first the delay vectors (DV) should be gene-
rated. For a given embedding dimension m the DVs will be ui = [xi, xi+1, . . . , xi+(m−1)]
where i = 1, 2, . . . , N − (m − 1). For a given threshold or tolerance r, calculate all the
possible distances between pairs of DVs (ui and uj with i 6= j) and count the number
of pairs that have a distance less than the tolerance r. Any type of distance could be
used here, but the most commonly used is the Chebyshev distance. Bm(r) will denote
the frequency of occurrence. Then, extend the embedding dimension from m to m + 1
and generate the new DVs. For those new DVs, recalculate the distances between all
possible pairs and count those with distances less than r and denote their frequency
of occurrence by Bm+1(r). SampEn will then be

SampEn = − ln Bm+1(r)
Bm(r) . (1.5)

The values of the parameters are commonly used as m = 2 or m = 3 and r =
0.15×(standard deviation of normalized signal) to r = 0.25×(standard deviation of nor-
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malized signal) [99].
The lower the value of SampEn, the more regular the series is, thus more predic-

table it is.

1.1.5 Fuzzy Entropy

Fuzzy entropy (FuzzyEn) was introduced by Chen et al in 2007 [26][27].
Consider a time series {xi}i=1,...,N with N time points. Similar to Sample entropy

(sec. 1.1.4), the DV should first be generated based on the given embedding dimension
m. DVs will be ui = [xi, xi+1, . . . , xi+(m−1)] − x̃(i) where i = 1, 2, . . . , N − (m − 1). Here
x̃(i) is the mean of the vector [xi, xi+1, . . . , xi+(m−1)]. We then calculate all the possible
distances dijm between pairs of DVs (ui and uj with i 6= j). As in Sample entropy (sec.
1.1.4), any type of distance can be used, but mainly the Chebyshev distance is the
most common in application. Then based on the parameter r, the degree of similarity
Dij
m(r) between every pair of DVs is

Dij
m(r) = µ(dijm, r). (1.6)

Here, µ(dijm, r) is the fuzzy function. Any function that satisfies the following properties
can be considered as a fuzzy function :

— being continuous so that the similarity does not change abruptly
— being convex so that self similarity is convex.

In [26], exp
−(dijm)n

r was considered as the fuzzy function with r determining the width of
the exponential function and n being an additional parameter to determine its gradient.

Averaging all the obtained degrees of similarity for each vector ui we obtain φrm(i).
Then

Φr
m =

∑N−m
i=1 φrm(i)
N −m

. (1.7)

The same steps should be repeated for an embedding dimension of m + 1 to obtain
finally

Φr
m+1 =

∑N−m
i=1 φrm+1(i)
N −m

. (1.8)

Finally we can define FuzzyEn as

FuzzyEn(m, r) = − ln Φr
m+1
Φr
m

. (1.9)
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1.1.6 Permutation Entropy

Permutation entropy was introduced by Bandt and Pompe in 2002 [11].

Consider a time series {xi}i=1,...,N with N time points. For each time point a vector
containing d points is constructed such that xd,lt = {xt, xt+l, ..., xt+(d−2)l, xt+(d−1)l} where
d is the embedding dimension and l is the time delay.

Each element of the vector xd,lt is associated to a number from 1 to d and then or-
dered in increasing order to become {xt+(j1−1)l, xt+(j2−1)l, ..., xt+(jd−1−1)l, xt+(jd−1)l} with
xt+(jn−1)l ≤ xt+(jn+1−1)l. Since the vectors have d points there will be d! possible orders,
π, named motifs. The relative frequency of each motif, πi, is calculated as follows

p(πi) = #{t|t ≤ N − d, type(xd,lt ) = πi}
N − d+ 1 , (1.10)

which means the number of all vectors xd,lt across all t that, when ordered, have the
same type as πi, divided by the total number of vectors xd,lt (# means number of ele-
ments in a set or cardinality). Note that the condition (d + 1)! ≤ N should be satisfied
to get valid entropy results. PE is then calculated as [11]

PEd,l
x = −

d!∑
i=1

p(πi) ln(p(πi)), (1.11)

where 0 ln(0) = 0 is set as a convention. This algorithm is based on the original concept
of entropy, Shannon Entropy [104], having the same equation.

The higher the value of d, the more data is being sorted and the number of motifs
increase in a factorial manner. This could lead to more precise results but it will also
lead to longer calculation times and would require longer signals. Thus, in order to
compensate between the amount of data to be sorted and the calculation time, d = 3 is
commonly used [11][8]. The value of l is commonly used as 1 [11] as the general case
is the intention to study every consecutive time point of the time series without skipping
points.

The entropy value is maximum when the time series is totally uncorrelated. In this
case, the value of entropy is ln(d!). This is when the time series is the most irregular.
On the other hand, the value of entropy reaches the minimum when the time series is
monotonic. The corresponding value is ln(1) = 0. As expected, this is when the time
series is the least irregular.
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FIGURE 1.2 – A representation of the common coarse-graining procedure that is ap-
plied in all multi-scale approaches in this thesis. Scales 2 and 3 are represented.
X = {xi} is the original signal and Y(τ) = {y(τ)

i } is the coarse-grained signal. Figure
from [8].

1.1.7 Multi-scale Sample Entropy

The concept of multi-scale entropy was first introduced and applied on sample en-
tropy (SampEn) by Costa et al [34][35].

The first step to calculate the multi-scale sample entropy (MSE) is to extract a set
of coarse-grained signals of the original signal for different time scales. We will refer to
time scales as τ . Consider a time series {xi}i=1,...,N with N time points. The coarse-
grained time series as a function of τ would be {y(τ)}, where

y
(τ)
j = 1

τ

jτ∑
i=(j−1)τ+1

xi. (1.12)

y(τ) is then the downsampling of {xi} by the factor of τ . Figure 1.2 represents the
coarse-graining procedure for scales τ = 2 and τ = 3.

For every value of τ , SampEn of every {y(τ)} is calculated as mentioned in sec-
tion 1.1.4 and thus resulting in MSE(τ) as a function of time scale τ .

1.1.8 Multi-scale Permutation Entropy

Multi-scale permutation entropy (MPE), introduced by Morabito et al in 2012, is
similar to permutation entropy but includes an additional step : the coarse-graining
process [90].

Consider a time series {xi}i=1,...,N with N time points. Similar to section 1.1.7 the
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coarse-grained time series will be as follows

y
(τ)
j = 1

τ

jτ∑
i=(j−1)τ+1

xi, (1.13)

where 1 ≤ j ≤ bN
τ
c. τ stands for time scale and could range from 1 to b N

(d+1)!c. For
each time scale τ , PE of the coarse-grained time series is calculated as mentioned
in section 1.1.6 ending with MPEd,l

τ . By this way we obtain the value of permutation
entropy as a function of time scale.

1.1.9 Improved Multi-scale Permutation Entropy

Improved multi-scale permutation entropy (IMPE) was introduced by Azami and
Escudero [8] to overcome some problems of MPE. These problems are :

— the non-symmetry of the coarse-grained time series
— the variability of the MPE results in large time scales.
IMPE is calculated in two steps [8] :

1. For each time scale τ , τ different coarse-grained time series are extracted from
the original time series. The procedure is as follows

yc,τj = 1
τ

jτ+c−1∑
i=(j−1)τ+c

xi, (1.14)

where 1 ≤ j ≤ bN
τ
c and 1 ≤ c ≤ τ . Figure 1.3 represents the new coarse-

graining approach proposed for calculating IMPE of a time series.

2. For each c, PE of yc,τ is calculated such that we obtain PEd,l
c,τ . Then IMPE of a

certain time scale, τ , would be the average of all the values of PEd,l
c,τ across all c

IMPEd,l
(τ) = 1

τ

τ∑
c=1

PEd,l
c,τ . (1.15)

1.1.10 Multivariate Multi-scale Sample Entropy

Multivariate Multi-scale Sample Entropy (mvMSE) was introduced by Ahmed et
al [4][5]. Two multivariate extensions of the SampEn were proposed, the naive me-
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FIGURE 1.3 – A representation of the improved coarse-graining procedure used in [8]
for IMPE. Scales 2 and 3 are represented. Figure from [8].

thod [4] and the full method [5], with the full method being commonly used since it
outperforms the naive one [4].

Suppose {x1,k, . . . , xi,k, . . . , xN,k} is a multivariate time series where 1 ≤ k ≤ K is
the index of the variate and N is the length of the time series. As in Sec. 1.1.7, the first
step to calculate mvMSE is to extract a set of coarse-grained signals of the original
signal for different time scales (τ ).This is done as follows

y
(τ)
j,k = 1

τ

jτ∑
i=(j−1)τ+1

xi,k. (1.16)

The second step would be to generate the un-extended DVs : Y(τ)
M (i) = [y(τ)

i,1 ,

. . . , y
(τ)
i+(m1−1),1, y

(τ)
i,2 , . . . , y

(τ)
i+(m2−1),2, . . . , y

(τ)
i,K , . . . , y

(τ)
i+(mK−1),K ], where i = 1, 2, . . . , N −

max {M} and M = [m1,m2, . . . ,mK ] is the multivariate embedding dimension vector.
Calculate the distances between all the possible pairs of DVs (Y(τ)

M (i) and Y(τ)
M (j) with

i 6= j) and find A(τ)
M (r), the number of distances that are less than a defined tolerance or

threshold value r, and the frequency of occurrence of that would be denoted by B(τ)
M (r),
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where

B
(τ)
M (r) = A

(τ)
M (r)

(N−max {M})(N−max {M}−1)
2

. (1.17)

To extend the embedding dimension vector M to M + 1 in the full
method, K DV subspaces are generated where in each subspace the
embedding dimension of only one variate, k, is extended from mk to
mk + 1. This way the extended DV subspace for k would be Y(τ)

M+1(i) =
[y(τ)
i,1 , . . . , y

(τ)
i+(m1−1),1, . . . , y

(τ)
i,k , . . . , y

(τ)
i+(mk−1),k, y

(τ)
i+(mk),k . . . , y

(τ)
i,K , . . .,y

(τ)
i+(mK−1,K)] (note

that the dimension of only mk is increased by 1). The pair-wise distances are calcu-
lated between all the DVs across all the K subspaces and the number of pairs with
distances less than the threshold r is A(τ)

M+1(r). The frequency of occurrence for that
would be denoted by B(τ)

M+1(r) as

B
(τ)
M+1(r) = A

(τ)
M+1(r)

K × (N−max {M})(N−max {M}−1)
2

(1.18)

This way, the multivariate multi-scale sample entropy as a function of τ is

mvMSE(τ) = − ln B
(τ)
M+1(r)
B

(τ)
M (r)

. (1.19)

1.1.11 Multivariate Multi-scale Permutation Entropy

Consider a multivariate time series {x1,k, . . . , xi,k, . . . , xN,k} with N time points, K
channels and k representing the channel number (1 ≤ k ≤ K). Similar to MPE (section
1.1.8), coarse-grained multivariate time series for all time scales (τ ) should be extracted
as follows

y
(τ)
j,k = 1

τ

jτ∑
i=(j−1)τ+1

xi,k. (1.20)

For each time scale, τ , the vectors y(τ),d,l
i,k = {y(τ)

i,k , y
(τ)
i+1,k, ..., y

(τ)
i+(d−2)l,k, y

(τ)
i+(d−1)l,k} are

extracted for every channel. The elements of y(τ),d,l
i,k are ordered and compared with

the d! possible orders or motifs, π(τ)
m . The relative frequency of the permutation in each

channel is calculated as follows [90]

p(π(τ)
j,k ) =

#{t|t ≤ N − d, type(y(τ),d,l
t,k ) = π

(τ)
j,k }

(N − d+ 1)K . (1.21)
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Note that the relative frequency is divided here by the number of channels, K, to main-
tain

∑K
k=1

∑d!
j=1 p(π

(τ)
j,k ) = 1.

Then the marginal relative frequency of the motifs is calculated

p(π(τ)
j ) =

k∑
k=1

p(π(τ)
j,k ). (1.22)

So the multivariate multi-scale permutation entropy (mvMPE) is calculated [90]

mvMPEd,l
(τ) = −

d!∑
i=1

p(π(τ)
i ) ln(p(π(τ)

i )) (1.23)

as a function of time scale τ .

1.1.12 Multivariate Multi-scale Weighted Permutation Entropy

Multivariate multi-scale weighted permutation entropy (mvMWPE) [42] is based on
the algorithm of the weighted permutation entropy that was introduced by Fadlallah et
al [47]. This algorithm has the advantage of including the weight of the amplitudes for
each permutation.

The steps to calculate mvMWPE are similar to those mentioned in section 1.1.11.
The coarse-grained time series of the multivariate time series ({x1,k, . . . , xi,k, . . . , xN,k}
with N time points, K channels and k representing the channel number (1 ≤ k ≤ K))
is calculated for a certain scale factor, τ .

y
(τ)
j,k = 1

τ

jτ∑
i=(j−1)τ+1

xi,k. (1.24)

Then the vectors y(τ),d,l
i,k = {y(τ)

i,k , y
(τ)
i+1,k, ..., y

(τ)
i+(d−2)l,k, y

(τ)
i+(d−1)l,k} are extracted for every

channel. The elements of these vectors are ordered and compared with the d! possible
motifs, π(τ)

m . The absolute frequency of each motif of every channel is then [42]

p(π(τ)
j,k ) =

N−d∑
j=1

1
v:type(v)=π(τ)

j,k

(y(τ),d,l
t,k )w(τ)

j , (1.25)

where 1A(v) is an indicator function of the set A and is defined as 1A(v) = 0 if v /∈ A

and 1A(v) = 1 if v ∈ A. w(τ)
j is the weighted value of the vector y(τ),d,l

t,k , and is commonly
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taken as the variance of y(τ),d,l
t,k .

This would result in a matrix K×d!, where K is the number of channels. The relative
frequency, pr(π(τ)

j,k ) of each motif will be the absolute frequency, p(π(τ)
j,k ) divided by the

sum of the matrix. Then the marginal frequency is [42]

p(π(τ)
j ) =

K∑
k=1

pr(π(τ)
j,k ). (1.26)

Finally mvMWPE is calculated [42]

mvMWPEd,l
(τ) = −

d!∑
j=1

p(π(τ)
j ) ln(p(π(τ)

j )) (1.27)

as a function of time scale τ .

1.1.13 Multicomponent Signals and Time-Frequency Entropies

Our article "Time-varying Time-Frequency Complexity Measures for Epileptic EEG
Data Analysis" by Colominas, El Sayed Hussein Jomaa et al [31], described multicom-
ponent signals as follows :

The multicomponent signals, which are made of a superposition of a small number
of components modulated both in amplitude and frequency (AM-FM), are a versatile
way to model phenomena such as audio signals [86], biomedical signals [124], or eco-
nomic temporal series [131].

For a signal with K component we have

x(t) =
K∑
k=1

xk(t) =
K∑
k=1

ak(t) cos(2πφk(t)), (1.28)

with ak(t), φ′k(t) > 0∀t and φ′ is the derivative of φ. In this case, the temporal variations
of ak(t) and φ′k(t) are much smaller than those of φk(t), which adds new constraints :
|a′k(t)|,|φ′′k(t)| < εφ′k(t), for a small ε > 0. The signals modeled as in equation 1.28 have
a special structure in a time-frequency plane : every component occupies a "ribbon"
around its instantaneous frequency φ′k(t). The more components we have, the more
ribbons and the larger the occupancy of the plane we will get.

If we analyze the signal of equation 1.28 with the short time Fourier transform
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FIGURE 1.4 – AM-FM signals of different complexities and their spectrograms. Left :
pure tone as in x1(t) = cos(2πf0t) with f0 = 25. Middle left : chirp signal as in x2(t) =
cos(2πf0t+πkt2), with f0 = 25 and k = 10. Middle right : summation of three pure tones
as in x1, with f0,1 = 25, f0,2 = 50, and f0,3 = 75. Right : three chirps. In all four cases, the
signals are defined for 0 ≤ t ≤ T = 1 and were generated with a sampling frequency of
fs = 1000. The spectrograms were obtained with a Hann window of 200 samples, and
for 0 ≤ f ≤ 100. Figure from [31].

(STFT)
F g
x (t, f) =

∫
x(u)g(u− t) exp−i2πf(u−t) du, (1.29)

where g(t) is an even real compact-supported window with supp{G(f)} ⊆ [−B,+B],
then its spectrogram is

Sgx(t, f) = |F g
x (t, f)| ≡

K∑
k=1

a2
k(t)|G(f − φ′k(t))|2, (1.30)

provided φ′k+1(t) − φ′k(t) > 2B, ∀k. For the sake of simplicity, and due to its symmetry
for real signals, we consider only positive frequencies for the spectrogram.

Time-Frequency Complexity

A widespread manner to measure the information and complexity of the time-
frequency plane comes from the analogy between signal energy densities and pro-
bability densities [12]. In this analogy, the instantaneous energy |x(t)|2 and the spec-
tral energy |X(f)|2 act as unidimensional densities of the energy of the signal in time
and frequency respectively, while the time-frequency representation (TFR) of the si-
gnal would behave as a bidimensional energy density in time-frequency. However, to
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consider TFR Rx(t, f) as a true density, it should satisfy the marginal properties

∫
Rx(t, f)df = |x(t)|2,

∫
Rx(t, f)dt = |X(f)|2, (1.31)

the energy conservation property

∫ ∫
Rx(t, f)dtdf =

∫
|X(f)|2df =

∫
|x(t)|2dt, (1.32)

and the non-negativity property
Rx(t, f) ≥ 0. (1.33)

If a given TFR satisfies requirement (1.31), it automatically satisfies requirement
(1.32), but the converse is not true [30]. Unfortunately, most TFRs do not satisfy the
three requirements simultaneously. The bilinear distributions that are manifestly po-
sitive and satisfy the marginal properties do not exist [30]. Wigner-Ville distribution
satisfies the marginals but takes negative values, as well as all fixed-kernel Cohen’s
class TFRs that satisfy requirement (1.31) [12]. The spectrogram, on the other hand,
satisfies the positivity property, but it does not do so with the marginals (although it
satisfies the energy conservation property) [30] [51]. The negativity of the Wigner-Ville
distribution prevented the authors in [12] to use a classical Shannon entropy [104] of
the TFR. Instead, they opted for a Rényi entropy [98], which appararently solves the
non-positivity issue by taking the logarithm outside of the integral :

Hα
R(Rx) = 1

1− α log2

∫ ∫
R̃x

α(t, f)dtdf. (1.34)

However, because of the negative values of the Wigner-Ville distribution, it is still pos-
sible for (1.33) to not exist, since

∫ ∫
Rα
x(t, f)dtdf < 0 could happen for odd α. This is

a bad result since odd orders α > 1 make this entropy asymptotically invariant to the
well-known cross-terms of the Wigner-Ville distribution.

All this drives us not to use the Wigner-Ville distribution and we will opt for the
spectrogram instead. Although it does not satisfy the marginal properties (1.31), it was
already successfully used in the context of time-frequency complexity measures in [74]
and [103].

A different way to measure the complexity of the time-frequency plane comes from
the singular value decomposition (SVD) entropy, first introduced in [6], and used in
the context of time-frequency representations in [19]. The SVD of the time-frequency
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x1(t) x2(t) x3(t) x4(t)
Rényi 13.336 13.378 14.921 14.965
NoC 1 1.029 3 3.093
SVD 0.0027 1.796 0.0361 1.946

TABLE 1.1 – Rényi entropy, number of components (NoC) based on Rényi entropy, and
SVD entropy of the signals shown in figure 1.4 for α = 2.

representation expands it as

Rx(t, f) =
inf∑
n=1

σnun(t)vn(f), (1.35)

by solving a system of two coupled integral equations [30] [106]. A Shannon entropy is
applied on the singular values σn’s, after normalization :

HV (Rx) = −
∑
n

σn∑
n σn

log2( σn∑
n σn

). (1.36)

Table 1.1 shows the values of Rényi entropy, SVD entropy, and the number of com-
ponents based on Rényi entropy of the signals shown in figure 1.4 for α = 2. Number
of components is [103] [107]

Nα
x = 2Hα

R(Sx)−H̆α
R , (1.37)

where Sx is the spectrogram of the signal x and H̆α
R is the Rényi entropy of a pure tone.

While the Rényi entropy cannot distinguish between x1(t) and x2(t), the SVD entropy
is able to do so. The counting property of the Rényi entropy is well illustrated, as well
as the “immunity” of the SVD entropy to the number of components.
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1.2 Electroencephalography : Principle and Instru-

mentation

1.2.1 Cellular Neurophysiology

The ability to generate electrical activity is a very common property of living tis-
sues. Some examples of this are the electrical activity of the heart and its recording of
electrocardiogram (ECG) and the electrical activity of muscles and its recording of the
electromyogram (EMG). For this it is not surprising to know that the brain does also
generate electrical activity.

In 1929, Hans Berger was the first to record electrical activity of the human brain
and give it the name we know today, "electroencephalography" (EEG). His findings
were confirmed 5 years later by Adrian and Matthews after they repeated Berger’s
experiment. Berger later published 14 articles on the electrical activity of the human
brain, explaining the concept of EEG and the significance of several recordings.

In the following subsections, we will explain the neurophysiological principle of EEG
and the instrumentation of the recording system itself.

1.2.2 Neurophysiology

Neurons generate time-varying electrical currents when activated. These are ionic
currents generated at the level of cellular membranes. We can distinguish two main
forms of neuronal activation [105] : the fast depolarization of the neuronal membranes
that results in the action potential caused by sodium and potassium voltage-dependent
ionic conductances gNa and gK(DR) respectively, and the more prolonged change of
membrane potential due to synaptic activation caused by several neurotransmitter sys-
tems.

The action potential consists of a rapid change of membrane potential, such that
the intracellular potential jumps suddenly from negative to positive, and quickly, in 1 or
2 milliseconds, returns to the resting intracellular negativity (figure 1.5). Through this
mechanism, the nerve impulse propagates the nerve axon and dendrite without losing
amplitude (figure 1.6).

Concerning the slower postsynaptic propagation, they are of two main types [105],
excitatory post synaptic potentials (EPSPs) and inhibitory post synaptic potentials
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FIGURE 1.5 – The electrical potential difference between intracellular and extracellular
mediums of the nerve cell during an action potential [122].

FIGURE 1.6 – A schematic diagram of a neuron showing the main components label-
led [97].
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FIGURE 1.7 – Intra- and extracellular current flow in a neuron due to different types of
synaptic activation. EPSP : excitatory synapse at the level of the apical dendrite ; the
generated current of positive ions flows inwards, causing depolarization of the cell. This
results in an active sink at the level of synapse. The extracellularly measured EPSP has
a negative polarity at the level of the synapse. At the soma there is a passive source,
and the potential has a reversed polarity. IPSP : inhibitory synapse at the level of the
soma. A current of negative ions flows inwards causing hyperpolarization of the cell ;
this results in an active source at the level of the synapse. The extracellularly measured
IPSP has a positive polarity at the level of the soma. At the level of the distal apical
dendrite there is a passive sink, and the potential has a reversed polarity [45].

(IPSPs). These two kinds are differentiated based on the type of neurotransmitter and
corresponding receptor, and their interaction with specific ionic channels and/or intra-
cellular second messengers.

At the level of a synapse in the case of the EPSP, the transmembrane current is
carried by positive ions inwards. In the case of the IPSP, it is carried by negative ions
inwards or positive ions outwards. Thus the positive electric current is directed to the
extracellular medium in the case of an EPSP, and it is directed from the inside of the
neuron to the outside in the case of an IPSP (figure 1.7).

When it comes to EEG recordings, the EEG signal arises mainly from the summa-
tion of thousands EPSPs and the IPSPs. The most important point to take into consi-
deration is the geometry of the neuronal sources of electrical activity that gave rise to
the scalp EEG signals. The neurons that give the main contribution to the EEG are
those that form "open fields" according to the classic description in [39]. Those are the
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pyramidal neurons of the cortex, since they are arranged in palisades with the apical
dendrites aligned perpendicularly to the cortical surface. This means that longitudinal
intracellular currents flow along dendrites or axons, and thus generate electric fields
around them.

Pyramidal neurons of the cortex, with their long apical dendrites, generate coherent
electric fields when activated with a certain degree of synchrony. We may say that
these neurons behave as "current dipoles" that can be detected by sensors placed at
a small distance from the skull.

In order to make the next step toward an understanding of how EEG signals re-
corded outside the skull are generated, we also have to take into consideration the
folding of the cortex. The fact that the cortex is folded, forming gyri and sulci, implies
that some populations of neurons that are at the top of a gyrus have apical dendrites
that are perpendicular to the overlying skull, whereas those that are on the wall of a
sulcus are parallel to the skull. The point to note in this respect is that the orientation of
the neurons with respect to the skull influences the resulting EEG signal recorded out-
side the skull. In fact the EEG detects only those electric fields that have a component
perpendicular to the skull. These fields are generated by neuronal currents that have
a component oriented radially to the skull. In contrast, those currents that are orien-
ted tangentially to the skull do not generate an electric field outside the head. A more
elaborated explanation of this point is described in figure 1.8 [45].

1.2.3 Technical Background of EEG

The EEG machine has been under constant improvement since it was introduced
in the 1920s by Hans Berger. One channel machines were expanded to machines with
16, 32, 64, 128, and even 256 channels. The development of vacuum tube-based am-
plifiers has allowed the integrated circuits to become higher in complexity and smaller
in size thus leading to devices so small that could be put in patients’ pockets instead
of being so large that they needed to be pushed around in hospitals. Figure 1.9 shows
the block diagram of a modern EEG machine that consists both of digital and analog
components [45].

In the next subsections, we will cover the two major component of the EEG machine,
the electrodes or the sensors and the amplifiers.
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FIGURE 1.8 – Schematic of brain cross-section representing four separate EEG
sources. The alignment of the pyramidal neurons is perpendicular to the cortex, thus
the EEG electric field is also perpendicular to the cortex. The (+) and (-) show the po-
larity of the fields generated by the dipoles or the pyramidal neurons of these sources.
Top and back views of the scalp EEG of these four separate sources are shown.
Sources 2 and 3 generate radial electric fields and the negative voltage maximum
is directly above them. in source 3, field from opposing sulcal walls cancel each other
and thus only keeping the field that is radial at the bottom to dominate what is detected
by the EEG. Sources 1 and 4 produce tangential fields, thus no negative maximum is
detected above them, whereas the the negative and positive maxima are detected on
either sides in the EEG [45].
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FIGURE 1.9 – Block diagram of a modern EEG machine. In digital EEG machines,
the writer unit is replaced by an analog-to-digital converter, computer monitor and a
computer that automatically displays and saves the recording of the subject for later
diagnosis and allows the use of computerized signal analysis methods.

1.2.4 EEG Electrodes

Electrodes conduct electrical potentials from patient to the EEG machine, usually
with help from an conductive electrolyte solution connecting skin to electrode. The
electrolyte solution that is used serves to transmit potentials from the brain to the EEG
machine and to decrease movement artifacts. Electrodes are made of metal, but not all
metals make equally good EEG electrodes. Proper electrodes must be good electrical
conductors [45].

When a voltage (such as that from the EEG machine) is applied to an electrode
and an electrolyte solution, the double layer between the two is disturbed, and current
flows between the electrolyte solution and the electrode. This current is added to the
steady-state electrode-electrolyte current. Reversible electrodes are electrodes that do
not easily become polarized. One way to produce such electrodes is to deposit a me-
tallic salt containing an ion in common with the conducting solution on the electrode.
An example of this is the silver chloride (AgCl) electrode. An electrode like this may be
fabricated by immersing silver wire in a solution of electrolyte-containing chloride and
placing a positive voltage across the electrode. Chloride ions migrate to the surface of
the silver. When a chloride-treated silver electrode comes into contact with NaCl solu-
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FIGURE 1.10 – The ability of different types of electrodes to reproduce an input square
signal of 10mA and 10mV [32].

tion on the skin, currents of Cl− ions flow freely between the electrode and the solution
and prevent the electrode from becoming polarized. Polarization is avoided because
the electrode and the solution can communicate with ions that exhibit identical mobili-
ties in solution. Silver chloride electrodes are useful for recording DC and potentials of
very low frequency [32] [45].

Figure 1.10 from [32] shows the ability of different types of electrodes to reproduce
a square wave test voltage of 10mV. It is noticed that the AgCl electrode gives the best
results while others failed to reproduce the low frequency or the DC of the input voltage
and current.

1.2.5 Amplifiers

Amplifiers in EEG machines are different from common amplifiers whose sole func-
tion is to increase the voltage. In EEG machines amplifiers are much more complex
and include filters, voltage dividers, and calibration devices [45].

Typically an amplifier multiplies the input voltage by a constant. In EEG machines,
since EEG signals are of very small amplitude, the constant of the amplifier is grea-
ter than 1, usually in the range of 2 to 1000. Thus the amplifiers are called step-up
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FIGURE 1.11 – Symbol of a differential amplifier. VS+ and VS− are power supply of the
amplifier. Vout is the output voltage which is equal to A(V+ − V−), where A is the gain.

amplifiers. The amplification factor is called gain and is expressed as

Gain = Vout
Vin

. (1.38)

A more common way to express the gain is as a logarithmic ratio where it would be
expressed in decibels (dB) :

GaindB = 20 log Vout
Vin

. (1.39)

Signals captured by an electrode are transmitted into a differential amplifier (fi-
gure 1.11) that subtracts the signal of one electrode from that of another electrode
and amplifies it. Signals common to both inputs are eliminated. Such signals can be
called in phase or common mode [45]. This means that they vary together with respect
to time. This helps in removing common noise. Line noise of 50Hz is in phase between
all electrodes, but differential amplifiers are not ideal and are not able to totally elimi-
nate such noise. The ability of the differential amplifier to reject in phase signals and
amplify out of phase signals is measured by the common-mode rejection ratio (CMRR).
To calculate the CMRR of an amplifier there are two steps :

1. Feed the same voltage to the two inputs of the differential amplifier. The output
in this case is measured and denoted as VCM .

2. Feed the same voltage to only one of the inputs and connect the other to the
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ground of the system. The output voltage in that case is measured and denoted
as Vd.

In this case
CMRR = Vd

VCM
. (1.40)

An EEG amplifier is good if it has at least a CMRR of 1000. It is important for the
reference electrode to be relatively close to the recording electrode. This maximizes the
chance of eliminating major noise signals in common. When the reference electrode
is distant (for example on the leg), the spaced electrodes act like an antenna and may
pick up signals that may exceed the amplifier’s common-mode range.

After the signals are subtracted and amplified, they are filtered to remove unwan-
ted frequencies. High-pass filters remove frequencies less than a desired cut-off fre-
quency ; low pass filters remove frequencies greater than a desired cut-off frequency.
A common special kind of filter, the notch filter, removes one frequency. This filter is
used to remove the line-frequency (50Hz) and reduces as much as possible the noise
caused by it.

Mainly after that, the signal is either transmitted to the pen to be printed on a paper
or transmitted to the screen and saved digitally in the database for further processing
and later diagnosis.
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1.3 Epilepsy

Epileptic seizures and epileptic disorders are common in all ages in both sexes.
Blume et al [18] defined Epileptic disorders as chronic neurological conditions cha-
racterized by recurrent epileptic seizures. Epileptic seizures are "transient occurrences
of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity
in the brain" [50].

In this thesis we will cover some epileptic disorders of childhood that are called
epileptic syndromes because they are defined on precise clinical and EEG criteria.
These specific epileptic syndromes are : childhood absence epilepsies (CAE), Landau-
Kleffner syndrome including epileptic encephalopathies with Continuous spikes and
waves during sleep (CSWS), and benign childhood epilepsy with centrotemporal spikes
(BECTS).

1.3.1 Childhood Absence Epilepsy (CAE)

Absence seizures are brief (usually some seconds) generalised epileptic seizures.
They are mainly characterized by consciousness impairment and this is where the term
"absence" comes from. Impairment of consciousness could range from being complete
to partial or even requires special cognitive tests to be detected.

Although typical absences are mainly spontaneous, they could be induced in al-
most 90% of the patients through hyperventilation. Other factors that may facilitate
the occurrence of absences are some photic stimulations, patterns, video games, and
thinking [94].

Clinical manifestations of absence seizures are different from patient to another.
Consciousness impairment is sometimes not the only clinical manifestation and thus
this leads to categorizing absences into two categories [94] :

— simple absences with impairment of consciousness
— complex absences where impairment of consciousness is accompanied with

ictal motor manifestations

When comparing incidence rates, complex absences are much more frequent in chil-
dren knowing that the same patient can have both simple and complex absences.

Simple absences were defined as seizures with "transient loss of consciousness
without conspicuous convulsions. A patient stops for a moment whatever he or she is
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doing, very often turns pale, may drop whatever is in hand. . . There may be a slight
stoop forward, or a slight quivering of the eyelids. . . The attack usually lasts only a few
seconds. The return of the consciousness may be sudden and the patient after the mo-
mentary lapse, may be in just the same state as before the attack, may even continue
a sentence or action which was commenced before it came on, and suspended du-
ring the occurrence" [56]. In less severe cases, absences may not completely stop the
patient’s activities, but could slow his or her reaction time and speech. In their mildest
forms, absences may be unnoticeable to observers (phantom absences) [94].

Figure 1.12 shows the EEG recordings of a child with Childhood Absence Epilepsy
during a seizure.

Complex absences are sub-categorized into many subcategories based on the ma-
nifestations that accompany the impairment of consciousness. Some of these subca-
tegories are [94] :
Absences with clonic or myoclonic components : These absences are accompa-
nied with clonic or/and myoclonic motor manifestations. They could be rhythmic or ar-
rhythmic and singular or repetitive. The most common motor manifestations are jerking
of the eyelids, eyebrows, and eyeballs and jerking of the head.
Absences with atonic components : In some cases, when the absence is severe, the
seizure is accompanied with diminution of the muscle tone. In these cases, manifesta-
tions such as dropping of the arms or drooping of the head are observed in patients
during the seizures. Rarely, the diminution is strong enough to cause falls.
Absences with tonic components : Tonic muscular contractions could sometimes
accompany the absence seizures. Such manifestation mainly affect the facial and neck
muscles. In some cases, eyes and the head may be pulled backwards or to one side.

It is important to note that absences do not influence the patients’ normal life outside
the period of the seizure itself. In other words, patients have normal cognitive and
physical abilities as the non-epileptic population as long as the seizure is not taking
place [24].
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FIGURE 1.12 – The EEG recordings of a child with Childhood Absence Epilepsy during
a seizure. The seizures are generalized. Credits to Patrick Van Bogaert.

1.3.2 Epileptic Encephalopathies with Continuous Spikes and
Waves during Slow-Wave Sleep Including Landau-Kleffner
Syndrome

"Epileptic syndromes with continuous spikes and waves during slow sleep (CSWS)
are defined as a cognitive or behavioral impairment acquired during childhood, asso-
ciated with a strong activation of the interictal epileptiform discharges during NREM
sleep – whatever focal or generalized – and not related to another factor than the pre-
sence of CSWS."[113]

The onset of the seizures in CSWS is between 2 years and 12 years, peaking at
around 5 years [110]. Epilepsy with CSWS is not frequent (0.5% of all children with
seizures) [91].

There are typically 3 stages of evolution of epilepsy with CSWS [94].

1. The first stage before the occurrence of the CSWS pattern : The first seizure
usually happens at night and in general they are not frequent. The EEG shows
multi-focal spikes.

2. The second stage - stage with CSWS : This stage starts some months after
the first seizure. A patient can have one or more than one type of seizures.
Over 90% of the patients have numerous seizures, sometimes several per day.
Infrequent seizure are not common in that case (only 10%).

The most disturbing clinical feature is the decline of the neuropsychological
state. This progresses gradually. The spike localization plays an important role in
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FIGURE 1.13 – The EEG recording of an 8 years old boy with epilepsy with CSWS [94].
The recordings show the significant increase in spike frequency during sleep.

determining the neuropsychological deficits. Frontal and prefrontal CSWS affect
the cognitive and executive functioning before damaging the language function.
This might be seen as aggressiveness, inattention, and agitation. Temporal lobe
CSWS produces mainly linguistic disturbances.

It is worth adding that some studies were also able to identify metabolic dis-
turbances in areas that are remote to the epileptic foci [40][77]. This explains
why some neuropsychological disturbances are sometimes not related to the
localization of the foci.

3. The third stage of clinico-EEG remission : This stage happens between months
to 7 years after the onset. Seizures remit, EEG improves, and neuropsychologi-
cal state also improves but rarely does the children retain average normality.

Figure 1.13 shows the EEG of an 8 years old boy diagnosed with epilepsy with
CSWS. The EEG was recorded during both awake state and asleep state. The figure
shows the significant increase in the frequency of spikes during sleep state.

Landau-Kleffner Syndrome

The International League Against Epilepsy (ILAE) identified Landau-Kleffner Syn-
drome (LKS) in 1989 as "acquired epileptic aphasia" [28]. It was not considered the
same epileptic syndrome as "Epilepsy with CSWS" although both are considered to be
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"epilepsies and syndromes undetermined as whether they are focal or generalised". A
new ILAE definition [46] considers them as a single entity called "epileptic encepha-
lopathy with CSWS including LKS". The justification in [46] was the lack of evidence
for mechanistic differences between LKS and CSWS to consider them as separate
syndromes. Furthermore, a study in 2006 [114] found significant differences between
LKS and epilepsy with CSWS. This led the authors of [114] to conclude that the two
disorders could be classified as separate branches of the same disorder.

LKS is not a very frequent epileptic disorder (usually one or two cases per year in
highly specialized centres. Its onset is usually between the ages of 2-8 years, and has
a 2 :1 male to female ratio [94].

Some clinical manifestation of LKS are :

— Linguistic abnormalities : Children with LKS become unable of linking acous-
tic signals to a semantic value. The diagnosis is often delayed and mistaken to
deafness or selective mutism. But in fact most of these children have an audio-
gram that is normal [94].
Besides that, children also show language deficits. This can reach a point where
LKS can affect linguistic functions with impairment of expressive speech and
phonological errors. Finally the child may become entirely mute [94].

— Cognitive and behavioural abnormalities : More than 75% of LKS patients
show cognitive and behavioural abnormalities. Some common abnormalities are
hyperactivity and attention deficit.

— Seizures : 75% of LKS patients have seizures and the onset is between 4 and
6 years. Usually seizures are not frequent. Only 20% of LKS patients continue
to have seizures after the age of 10 years. Seizure symptoms and types are not
well described but they are mainly nocturnal [94].

1.3.3 Benign Childhood Epilepsy with Centrotemporal Spikes
(BCECTS)

Benign childhood epilepsy with centrotemporal spike (BCECTS), also called rolan-
dic epilepsy, is a common epileptic syndrome of childhood [79] [80].

The onset of these seizures is from 1 to 14 years, with 75% starting between 7
and 10. It is 1.5 times more frequent in males. Its incidence rate is 10-20 per 100000
children aged between 0-15 years.
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FIGURE 1.14 – The EEG recording of a boy diagnosed with LKS [94].

The main features of BCECTS are [94] :

— Hemifacial sensorimotor seizures : This happens in almost 30% of the pa-
tients. They are often entirely localised in the lower lip or spread to the ipsila-
teral hand. It is a sudden, continuous or bursts of contractions that usually last
for few seconds. Hemifacial sensory symptoms also involve numbness in the
corner of the mouth. They are usually associated with innability to speak and
hypersalivation.

— Oropharyngolaryngeal ictal manifestations : This happens in 53% of the pa-
tients. They are unilateral sensorimotor symptoms inside the mouth. Numbness
and paraesthesias are usually diffused on one side or even on one tooth. Motor
oropharyngolaryngeal manifestation produces strange sounds like death rattle,
gargling and grunting sounds.

— Arrest of speech : It happens to 40% of the patients. The child is unable to utter
any meaningful word and tries using gestures as a means of communication.

— Hypersalivation : It happens is 30% of the patients. It is often associated with
oropahryngolaryngeal or hemifacial seizures.

The EEG is very typical, showing CTS that are activated during sleep (figure 1.15).
Most children with BCECTS have normal cognitive abilities. However, careful neu-
ropsychological investigations have shown that a lot of patients show subtle impair-
ments affecting various domains (language, attention, memory) in patients with clas-
sical BECTS [116] [43] [9]. Moreover, some patients diagnosed as BCECTS evolve to
true EE with CSWS. So the concept that BCECTS and EE with CSWS belong to the
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FIGURE 1.15 – The EEG recording of an 11-years old girl with a recorded rolandic
seizure who has been in remission since the age of 8 years. The EEG was recorded in
both states, awake and asleep. The recording shows that the spikes are mainly central
and occur independently on both hemispheres and are more frequent during sleep [94].

same spectrum of epileptic syndromes is now widely accepted [112]. The etiology of
these epileptic syndromes is unknown. Structural MRI do not show any lesion. It is hy-
pothesized that genetic factors are involved. Still, some patients show a mutation of a
gene that is called GRIN2A.
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1.4 Functional Connectivity

Brain connectivity can be categorized into two categories, structural (anatomical)
connectivity and functional connectivity. Structural connectivity refers to connections
between different brain regions that are established through actual anatomical struc-
tures. On the other hand, functional connectivity refers to connections between different
brain regions from the statistical relationships of their physiological activity [14].

When it come to studying functional connectivity in neurological disorders, the fo-
cus is on how the disorder modifies the brain’s networks. Epilepsy is one of the most
common neurological disorders that affects the cortical networks and studying it helps
better understand its neurobiology and approaches to treatment [15] [69].

In this section, we summarize the findings of the application of functional connecti-
vity on the two most common childhood epilepsies ; BCECTS and CAE. Then we sum-
marize some different methods used to asses functional connectivity from EEG/MEG
signals.

1.4.1 Functional Connectivity in BCECTS

Functional connectivity studies of BCECTS mainly focused on network changes in
default mode network (DMN), language networks, and executive function.

Default Mode Network (DMN)

The DMN is a "resting state" network because the strength of its functional connec-
tivity increases when subjects are at rest. Usually the DMN weakens during tasks, but
it sometimes is involved during some social behaviour tasks which meant that it has a
role in facilitating such tasks.

Several studies focused on the DMN changes in BCECTS [75] [93] [77]. The most
common finding is the decrease in connectivity strength within some or all the com-
ponents of the DMN. A study using functional magnetic resonance imaging (fMRI)
observed weaker activity at rest in children with BCECTS [93]. Authors of [93] also no-
ticed weaker deactivation of the DMN during the language task. This led them to the
conclusion that weaker activations at rest doesn’t necessarily mean lower activity in
the corresponding brain region, instead it means that the connection or integration bet-
ween the DMN and other cortical regions is lost. Another study based on fMRI studied
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the DMN in 3 groups of resting state : children with BCECTS and Interictal Epileptiform
Discharges (IED), children with BCECTS and no IED, and healthy children [75]. Similar
to [93], the authors found a decrease in the activity of the DMN. This decrease was only
noticed in the group of the children with BCECTS and IED. This lead to the conclusion
that IED play the role of weakening the DMN activity.

Other studies focused on the strength of the connectivity between the DMN and
the other regions of the brain. The authors of [85] observed a decreased in connecti-
vity between the DMN and the language-related cortical regions. Another study, hand-
led children with CECTS as two groups : with attention-deficit/hyperactivity disorder
(ADHD) and without ADHD [126]. This study found that there is increased connectivity
between the DMN and the regions in the cortex that are associated to visual tasks in
both groups when compared to healthy children.

Language Networks

Language functions are interesting to study in BCECTS patients. Many studies re-
ported language deficits in children with BCECTS [111]. Studying the language deficits
in children with BCECTS from the network point of view allows us to better unders-
tand the neurological disorders of BCECTS and its atypical forms (Landau-Kleffner
syndrome).

Children with BCECTS are found to encounter problems in word generation. Thus,
children with BCECTS show altered connectivity patterns involving the inferior frontal
gyrus (IFG). Studies [129] [109] [48] showed that the local connectivity within the IFG
is altered, with lower connectivity to the temporal lobe and angular gyrus [25], and the
supramarginal and superior frontal gyri [89]. A lower connectivity between the left and
right IFG was also observed [125].

Another study considered the influence of IED on language networks [127]. This
study showed that those discharges lead to the alteration of the connectivity by lower
the strength of the network. The result is in consistence with a previous study hypo-
thesizing remote inhibition, that showed that IED lead to the inhibition of remote but
functionally connected cortical regions [40].
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Executive Functioning and the Frontal Lobe

Despite the fact that children with BCECTS have normal IQ scores, test sho-
wed that they have deficits in attention, processing speed, memory, and inhibitory
control [7] [38]. All these tasks correspond to what is called executive functioning. The
dorsolateral prefrontal cortex, orbitofrontal cortex, and the anterior cingulate cortex are
all linked to executive functioning. The executive and the salience networks (SAN) are
two resting state networks (RSN) that are associated with "task poistive" states [14].

Several studies pointed out the involvement of the frontal lobe in children with
BCECTS. An overall increase in the EEG based connectivity within the frontal and
the frontotemporal regions was linked to the presence of IED [2] [29]. In other stu-
dies, both increases and decreases in connectivity strength were noted within the
frontal regions [85] [83] [29] [115]. This variability was linked to the choice of analy-
tical methods and the regions of interest (ROIs). Finally, other studies reported the
decrease in the strength of the within-network connectivity of the dorsal attention net-
work (DAN) [75] [126].

1.4.2 Functional Connectivity in Childhood Absence Epilepsy

As in BCECTS, functional connectivity studies mainly focused on network changes
in the DMN, language network, and the executive functioning and the frontal lobe.

Default Mode Network

Similar to BCECTS, the DMN is generally the main network to be analyzed in chil-
dren with CAE. However, for CAE the analysis is divided into two categories : com-
paring the brain connectivity in children affected by CAE with that of normal children
and comparing within the same individual epochs that are IED-free (no seizures) with
epochs containing IED.

A study of connectivity based on fMRI involved 12 CAE affected children and 14
healthy controls [84]. The DMN of the two groups was compared. Only IED-free epochs
were included in the analysis. A decrease in the connectivity of the DMN was observed.
Three other studies found that the DMN is strongly weakened in epochs with IED when
compared to IED-free epochs [132] [128] [76]. These four studies show that the IED
play a role in weakening the connectivity of the DMN and that this effect continues to
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exist even during the absence of the discharges.

Language Networks

Unlike BCECTS, children with CAE are not known to have language deficits [14].
For this reason, there are no connectivity studies that analysed language connecti-
vity [14]. However, a recent study of language performance in 243 children with dif-
ferent epileptic disorders, including BCECTS and CAE, showed that the children with
CAE had a worse performance that those with BCECTS [64]. For this, it is necessary,
to perform a study comparing the language networks of CAE and BCECTS.

Executive Functioning and the Frontal Lobe

Children with CAE showed several deficits in executive functions. An analysis of
cognitive processing in children with generalized epilepsies found that the deficits in
intelligence, processing speed, and memory were found in children with CAE [82].
Changes in connectivity patterns in the frontal lobes are noticed in children with CAE.
Most of the studies concluded an increase in the connectivity of the frontal lobe
using several connectivity perspectives including EEG [100], magnetocardiography
(MEG) [123], and fMRI [10] [48]. The increase of the connectivity in the frontal lobe
could be justified by the decrease of the anticorrelation between the DMN and other
executive networks as the DAN and the SAN, thus increasing the positive correlation
and, in consequence, the functional connectivity.

The dynamic effect of the IED on the brain networks could be studied due to the
high frequency of the IED in CAE. Two studies noted the weakening of the attention and
executive networks during IED [128] [132]. In another study, the connectivity changes
at the beginning of the seizure were analysed [58]. The seizures were linked with an
increase in the delta frequency spectrum power on the MEG recording. This frequency
band was found to increase the short-range frontal lobe connectivity in [123].

1.4.3 EEG/MEG-Based Functional Connectivity Methods

fMRI has shown to be a very reliable method of functional connectivity. Although
fMRI has an excellent spatial resolution, the main (and perhaps only) drawback of
fMRI is that it has a bad temporal resolution. For this reason, several methods based
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on EEG/MEG were developed to find the brain functional connectivity, since EEG/MEG
have a very small temporal resultion (m̃s). These methods can be applied on two levels,
the electrode (scalp) level and the source (cortex) level. Since, in this thesis, we are
only interested by networks in the cortical level, we will describe several EEG-methods
used to project the scalp signals on the cortex and then describe some common me-
thods to find the functional connectivity.

EEG-Based Inverse Solution Algorithms

Based on the equivalent current dipole model, EEG signals recorded from M scalp
channels are considered as a linear combination of P source signals.

X(t) = GS(t) +N(t), (1.41)

where X(t) is the EEG signals, G[M,P ] is the lead field matrix, S(t) is the source si-
gnals, and N(t) is the noise. Since G is unknown, the EEG inverse problem consists
of estimating the unknown sources from X(t). For this reason, several algorithms have
been proposed each using different assumptions about spatial and temporal proper-
ties. We will present here three commonly used algorithms.

— Minimum Norm Estimate [60] : This algorithm is based on a solution with mi-
nimum power using the L2 norm to regularize the problem.

SMNE = GT (GGT + λC)−1G, (1.42)

where λ is the regularization parameter and C is the noise covariance matrix.
— Standardized Low Resolution Brain Electromagnetic Tomography (sLO-

RETA) [95] : sLORETA standardizes the source distribution estimated from
MNE bby the variance of each estimated source.

SsLORETA = WsLORETASMNE (1.43)

where W 2
sLORETA =diag(SMNEG) =diag(SMNE(GGT + C)STMNE).

— Dynamical Statistical Parametric Mapping (dSPM) [37] : The dSPM is based
on MNE. The normalization matrix in dSPM contains the minimum norm esti-
mates of the noise at each source, derived from the noise covariance matrix,
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defined as
SdSPM = WdSPMSMNE, (1.44)

where W 2
dSPM = diag(SMNECS

T
MNE).

EEG-based Connectivity Measures

Lately, EEG/MEG-based functional connectivity methods have been used in order
to study brain networks during different states [16] [22] [33] [61] [121] [120]. Five of the
commonly known EEG-based connectivity measures are presented here :

— Cross-Correlation Coefficient (r2) [21] : The cross-correlation coefficient mea-
sures the linear correlation between to signal or variables x and y. This correla-
tionis calculated as a function of a time delay Θ :

r2
xy = max

Θ

cov2(x(t), y(t+ Θ))
(σx(t)σy(t+Θ))2 , (1.45)

where σ and cov are the standard deviation and the covariance respectively.
— Mutual Information (MI) [36] : The mutual information between two signals x

and y is
I(xy) = H(x) +H(y)−H(xy), (1.46)

where Ixy is the mutual information between x and y, H(x) and H(y) are the
entropy values of x and y respectively, and H(xy) in the bivariate entropy of the
two signals x and y.

— Phase Locking Value (PLV) [72] : The phase locking value of two signals x and
y is

PLVxy = |mean(ei|Φx(t)−Φy(t)|)|, (1.47)

where Φx(t) and Φy(t) are the unwrapped instantaneous phases of signals x

and y that may be extracted using the Hilbert transform.
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2.1 Introduction

In this chapter, three new entropy measures that we developed are introduced. The
first, multivariate Improved Weighted Multiscale Permutation Entropy (mvIWMPE), is
based on the previously explained multivariate Permutation Entropy (mvMPE) [42],
improved multi-scale permutation (IMPE) [8], and weighted permutation entropy
(WPE) [47]. It combines the benefits of each method resulting in a method that out-
performs the others based on several tests. The second method is sample entropy
of multi-channel signals. We introduced this method to resolve the problem that was
being encountered when the original multivariate sample entropy had to deal with a
relatively large number of channels or variates. The third method we introduce is the
time-varying time-frequency complexity measure. It is based on Rényi entropy and sin-
gular value decomposition.

2.2 Multivariate Improved Weighted Multiscale Permu-

tation Entropy (mvIWMPE)

Improved Permutation Entropy proved to have more robust results, in terms of va-
riance, than other PE algorithms due to the averaging of τ entropy values of each time
scale, but it lacks the concept of considering amplitudes of the signals [8]. Moreover,
Weighted Permutation Entropy considers the amplitudes of the signals through the ad-
dition of the values of variance instead of incrementing the permutation count, but on
the other hand it lacks the low variance in results of the Improved Permutation Entropy
[42][47].

We therefore introduced Multivariate Improved Weighted Multiscale Permutation
Entropy (mvIWMPE) [67] that combines the advantages of both mvMWPE and IMPE,
thus covering the drawbacks that were mentioned for each algorithm.

Hence, the steps for calculating mvIWMPE are as described below.
Considering the multivariate time series {xm,i}i=1,...,N with N time points and M chan-
nels where m represents the channel number (1 ≤ m ≤M) :

1. For each time scale τ , τ different coarse-grained time series are extracted for
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each channel

yk,τm,j = 1
τ

jτ+k−1∑
i=(j−1)τ+k

xm,i, (2.1)

where 1 ≤ j ≤ bN
τ
c and 1 ≤ k ≤ τ .

So,

Yk,τ =



yk,τ1,1 yk,τ1,2 yk,τ1,3 ... yk,τ1,bN
τ
c

yk,τ2,1 yk,τ2,2 yk,τ2,3 ... yk,τ2,bN
τ
c

... ... ... ... ...

yk,τM,1 yk,τM,2 yk,τM,3 ... yk,τ
M,bN

τ
c

 .

2. For each k, mvMWPE of Yk,τ is calculated as mentioned earlier to obtain
mvWMPEd,l

k,τ

3. Then mvIWMPE at a certain time scale τ will be calculated as the average of all
mvWMPEk,τ

d,l across k

mvIWMPEd,l
(τ) = 1

τ

τ∑
k=1

mvWMPEd,l
k,τ . (2.2)

2.2.1 Validation on Synthetic Data

The perfomance of mvIWMPE is evaluated with synthetic data using white and pink
noise, chaotic signals generated from Lorenz system, and deterministic signals from
the MIX process. The results are compared with those of mvMPE, mvMWPE, and
mvIMPE.

White and Pink Noise

The first test is the application of all the previously mentioned algorithms on mul-
tivariate noise signals. Two types of noise signals are used. The first one is the white
Gaussian noise (WGN). The second one is the pink noise, which is generated from
WGN by dividing the Fourier transform of the WGN by

√
f , thus the power spectrum of

the resulting noise would be proportional to
1
f

.

All the generated noise signals have 18 channels and 10000 time points, and are
made according to four different mixtures :

1. 18 white noise signals
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FIGURE 2.1 – Results of the four entropy algorithms on the four different mixtures of
white and pink noise signals (d = 3 and l = 1). For each algorithm, scales where
significant differences (based on Friedman test with Bonferroni correction p < 0.01)
appeared between the results of the four noise mixtures are marked with ‘*’.
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2. 12 white noise signals and 6 pink noise signals

3. 6 white noise signals and 12 pink noise signals

4. 18 pink noise signals

Each group has 30 different realizations. Each of the four algorithms of permutation
entropy (mvMPE, mvIMPE, mvMWPE, mvIWMPE) is applied on each of them. The
time scales ranges between 1 and 100. To test our method, we use l = 1 following

Bandt’s and Pompe’s work [11]. In order to respect the condition of (d + 1)! ≤ b N
τmax
c,

where N = 10000 and τmax = 100, the highest embedding dimension value is d = 3.
The means and standard deviations of the resulting entropy values are calculated for
each group and are presented in Fig. 2.1.

To evaluate the methods, Friedman tests are applied on pairs of results of different
signal mixtures for each method. Those that show p-values less than 0.01 with Bon-
ferroni correction are considered to be significantly different. Fig. 2.1 marks by ‘*’, for
each method, the scales where the differences are significant between the entropy va-
lues of all pairs of the 4 mixtures of signals. mvIMPE shows that all 100 scales have
significant differences. mvIWMPE shows similar results with 98 scales having signi-
ficant differences (only scales 99 and 100 showed no significant differences). Those
two methods, in comparison with mvMPE and mvMWPE that show lower number
of scales with significant differences, show better performances. Those results show
that mvIWMPE outperforms mvMPE and mvMWPE and has similar performance to
mvIMPE when applied on noise signals.

Influence of Number of Channels on mvIWMPE

In this test, the effect of increasing the number of channels or variates of the signals
is studied. Nine groups of multivariate WGN with 1000 samples are studied. The num-
ber of channels ranges between 2 and 10 channels. Each group has 30 realizations.
mvIWMPE is applied on those groups with d = 3 and l = 1. Fig. 2.2 shows that, as the
number of channels increases, the values of entropy change become less decreasing
and more constant for WGN across scales. This is due to the fact that the increase of
number of channels creates more sample vectors to be sorted and distributed across
motifs, thus behaving in a manner similar to finding the multiscale entropy of a univa-
riate signal of the concatenated signals of the channels.
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FIGURE 2.2 – Results of mvIWMPE on WGN multivariate signals with different number
of channels ranging from 2 to 10 (d = 3 and l = 1).

FIGURE 2.3 – Results of mvIWMPE on 1× 4000 and 4× 1000 WGN signals (d = 3 and
l = 1).

This is supported by the results of Fig. 2.3. mvIWMPE with d = 3 and l = 1 is applied
on 2 groups of WGN, one having a dimension of 1×4000 and the other 4×1000. This way
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FIGURE 2.4 – Results of (a) mvIWMPE, (b) mvIMPE, (c) mvMWPE, and (d) mvMPE
(d = 3 and l = 1) on the chaotic and convergent signals generated by the Lorenz
system.

both groups had the same number of samples (4000). Each group has 30 realizations.
The results show that the two groups have similar values of entropy across scales thus
signifying that the two groups are being considered as almost the same signal as if the
4 channels are being concatenated to form a univariate signal.

Lorenz System

The Lorenz system [81] is a system of three differential equations that could result
in either chaotic or convergent signals based on the parameters. Its equations are



dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

. (2.3)

In our study we fixed the values of σ = 10 and β = 8
3 and used different values
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FIGURE 2.5 – The generated MIX process : bidimensional (100 × 100) signals with
different values of p (a) p = 0 ; (b) p = 0.3 ; (c) p = 0.6 ; (d) p = 1

of ρ to get different tri-variate chaotic and converging signals. Twenty different values
for 0 ≤ ρ ≤ 1 result in twenty different converging tri-variate signals. Twenty different
values for 23 ≤ ρ ≤ 33 result in twenty different chaotic tri-variate signals [102]. The
initial point is (0,5,10). All the signals are made up of 10000 time points.

The four permutation entropy algorithms are applied on these signals. The same
parameters are used (d = 3 and l = 1). The results in Fig. 2.4 show that both mvMPE
and mvIMPE are not able to differentiate between convergent and chaotic signals.
However, the two weighted algorithms show high ability to differentiate between the
two types of signals. But when comparing mvMWPE with mvIWMPE, it is noticed that
mvIWMPE has lower standard deviation value that reaches 0 for time scales greater
than 60, not to mention the smoother curve of the mvIWMPE on converging signals.
These results, in addition to the previous ones of noise signals (section 2.2.1), show
that mvIWMPE outperforms other methods in differentiating between convergent and
chaotic signals with smoother curves across scales. mvIWMPE has also similar good
performance to mvIMPE in terms of differentiating between different noise signals.

MIX Process

The last synthetic test that is applied to evaluate the algorithms is MIX process
signals. This is based on the test introduced by Pincus et al [96]. In order to test the
multivariate algorithm, this test is slightly modified to become two dimensional.

The MIX process is used to generate different levels of stochastic signals that
range from being purely deterministic to purely stochastic. To generate such signals,

set p as a probability with value between 0 and 1. Define Xm,n = α−1/2 sin(2π
12 (m+ n)),
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FIGURE 2.6 – Results of (a) mvIWMPE, (b) mvIMPE, (c) mvMWP, and (d) mvMPE
(d = 3 and l = 1) on the different MIX process signals generated by 4 different values
of p.
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for 1 ≤ m ≤M and 1 ≤ n ≤ N with α being the amplitude and defined as

α =
∑12
i=1

∑12
j=1 sin2(2π

12 (i+ j))
144 . (2.4)

Define Y as an M × N matrix of independent identically distributed real random
variables having a uniform distribution in the interval [−

√
3,
√

3]. Define Z as ano-
ther M × N matrix of independent identically distributed real random variables where
Zm,n = 1 with probability p defined earlier and Zm,n = 0 with probability 1− p.

Then
MIXm,n(p) = (1− Zm,n)Xm,n + Zm,nYm,n. (2.5)

So MIX(p) would be an M ×N matrix that has pMN of its elements corresponding to
a random bi-dimensional signal and (1 − p)MN elements corresponding to a periodic
bi-dimensional signal. Examples of the MIX signals are shown in Fig. 2.5.

To test our algorithm, four values of p are used, p = 0.1, p = 0.3, p = 0.6, and
p = 0.9. For each value, 30 different 18 × 10000 signals are generated. Each of the
four algorithms of permutation entropy is applied on these signals. The embedding
dimension and the lag are unified for all the algorithms as d = 3 and l = 1. The time
scales ranged between 1 and 100. The means and standard deviations of the resulting
entropy values are calculated for each group and represented as in Fig. 2.6. The results
show that, again, mvIWMPE has the highest differentiation among signals especially
for the first ten scales where mvMWPE and mvMPE give very similar results for p = 0.1
and p = 0.3. It also shows the highest robustness in terms of variance of entropy results
for a given type of signal, which can be confirmed by the smaller error bars.

2.2.2 Evaluation on Real EEG Signals

Our new algorithm is also tested on real EEG signals. Two different datasets are
processed as mentioned below.

Dataset 1 : Heathy Children

Twenty minutes EEG recording from 6 healthy children at rest (four females and
two males, age : 8.8± 2.11 years) were acquired in the Department of Neuropedia-
trics, Christian-Albrechts-University, Kiel, Germany. These recordings were approved
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by the Medical Ethics Committee of the Christian-Albrechts-University, Kiel, Germany,
agreement code “D 460/15”.

Subjects were lied down comfortably and rest brain activity was recorded both du-
ring eyes open where the subject looked at a fixed picture and eyes closed. The EEG
activity was recorded by 128 electrodes (Electrical Geodesics, Inc.) with the Cz elec-
trode as a reference. The sampling rate of all the acquisitions was 1000 Hz. Eyes mo-
vements were recorded by two frontal electrodes of the EEG net (E1 and E32) in order
to detect drowsiness, and epochs with slow horizontal eyes oscillations were removed
from the analysis.

Dataset 2 : Epileptic Patients

The EEG data of 3 epileptic patients recorded in Université Libre de Bruxelles, Hô-
pital Erasme (agreement of local ethical committee P2015/242) were analyzed. Patient
1 (BE001 from Table 2.2) was diagnosed with epilepsy with CSWS. The epileptic fo-
cus was clinically localized on T5 (10-20 system). Patient 2 (BE003 from Table 2.2) was
diagnosed with atypical benign childhood epilepsy with centrotemporal spikes (BECTS)
with the focus being on C3 (10-20 system). Patient 3 (BE004 from Table 2.2) was diag-
nosed with BECTS with the focus being on C3 (10-20 system).

All patients had their resting-state EEG recorded while they were lying down for
around 20 minutes and alternating between eyes open and eyes closed every minute.
The acquisition was done using high density EEG (HD-EEG) with 256 electrodes (Elec-
trical Geodesics, Inc.). The reference was the Cz electrode and the sampling frequency
was 1000 Hz.

Preprocessing

We filtered the acquired signals by a bandpass FIR filter of a transition bandwidth
of 0.22 Hz obtained by an order of 15000. The cut-off frequencies of the filter are 0.5
Hz and 45 Hz. We also applied independent component analysis (ICA) [62] on each
subject individually to remove artifacts caused by blinking or movement.

For dataset 1, we extracted 30 epochs of 10 seconds for each case (eyes open
and eyes closed) from each subject. Some of these epochs in some subjects were
overlapping (maximum of five seconds overlap).
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FIGURE 2.7 – The occipital region of interest on the (a) 256-channels EEG net and on
the (b) 128-channels EEG net.

For dataset 2, we extracted 40 non-overlapping epochs of 1 second for each case
(eyes open and eyes closed) from each subject. The reason for choosing only one se-
cond epochs is the appearance of spikes, or interictal epileptiform discharges (IED) and
we are interested in epochs without those spikes. For this, the datasets were examined
by Prof. Patrick Van Bogaert in order to select epochs with no spikes.

Previous studies showed that the main difference between eyes open and eyes
closed in terms of EEG is the presence of the alpha rhythm in the occipital region during
the eyes closed case [45]. For this reason, the analysis was performed for that region
only. We defined the set of electrodes for each EEG net that covered the occipital
region with the help of a neurophysiologist. Figure 2.7 shows the occipital region for
each net used.

All of the preprocessing was done using the EEGLAB [41] toolbox for Matlab
R2016b.

Results of EEG Signals Evaluation

The goal of this evaluation was to see whether mvIWMPE maintains higher ability
of differentiation between two states when applied to real EEG signals, which in our
case are eyes open and eyes closed. The four multivariate algorithms of permutation
entropy were then applied on the epoched signals of each subject in each dataset, with
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FIGURE 2.8 – Resulting curves of the application the 4 permutation entropy methods
(mvMPE, mvIMPE, mvMWPE, and mvIWMPE) on one of the subjects of Dataset 1.
The methods were applied on 30 epochs of eyes open (red curve) and 30 epochs of
eyes closed (blue curve).
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FIGURE 2.9 – Results of Friedman tests with Bonferroni correction on the results of
the 4 permutation entropy methods (mvMPE, mvIMPE, mvMWPE, and mvIWMPE) on
Dataset 1. Scales that had corrected p-values less than 0.01 were considered to have
eyes open entropy value to be significantly higher than that of eyes closed and labeled
in red while others are labeled in blue. The total number of scales with significant
differences for each subject and for each method is given at the end of each row.

d = 3 and l = 1 in a time scale ranging from 1 to 40.

In general, all the curves had a common form which is similar to that of the chao-
tic signals of the Lorenz system (a decaying increase of entropy value with respect
to time scale) (example in figure 2.8). However it is worth mentioning that each sub-
ject behaved differently in a certain normal range and resulted in different curves that
differentiated eyes open from eyes closed entropy values. Thus, averaging the results
across subjects would diminish this differentiation for such relatively small number of
subjects. For this reason, each subject was studied separately.

The results for all subjects showed that entropy values were lower in the case of
eyes closed, for scales less than 30. This was expected since, as mentioned in sec-
tion 2.2.2, the eyes closed state is characterized by the alpha waves that makes the
recorded EEG signals more periodic and thus less complex. The reason behind having
30 as the maximum scale where the entropy of eyes closed signal was less than the
entropy of eyes open signals is that the coarse-graining window becomes larger than
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FIGURE 2.10 – Results of Friedman tests with Bonferroni correction on the results of
the 4 permutation entropy methods (mvMPE, mvIMPE, mvMWPE, and mvIWMPE) on
Dataset 2. Scales that had corrected p-values less than 0.01 were considered to have
eyes open entropy value to be significantly higher than that of eyes closed and labeled
in red while others are labeled in blue. The total number of scales with significant
differences for each patient and for each method is given at the end of each row.

the alpha oscillation at this scale.

For all subjects in both datasets, Friedman tests were applied on the results of the
eyes open and eyes closed condition to evaluate whether we have significant diffe-
rences between the two results. Scales with Bonferroni corrected p-values less than
0.01 were considered to be significantly different. Only significant differences of scales
less than 30 were considered. Figures 2.9 and 2.10 summarize the results of the Fried-
man tests for both datasets. Scales labeled in red had the entropy values of eyes open
significantly higher than those of eyes closed. The total number of scales in red is given
for each subject or patient and for each method in each dataset. For dataset 1, both
mvIMPE and mvIWMPE had the highest number of scales in red (151) showing that
both have good ability in differentiating between signals of eyes open and eyes closed
states. For dataset 2, mvIWMPE had the highest number of scales in red (25) showing
the best ability in differentiating between the two cases of EEG signals.

It is worth mentioning that dataset 1 had epochs of 10 seconds while dataset 2 had
epochs of 1 second. This is the reason why the results of dataset 1 have much higher
number of scales in red as for longer signals each method gave more precise results
due to the increase in the number of embedding vectors to be grouped into motifs. This
also highlights the fact that, for shorter signals, mvIWMPE shows better performance
than the other permutation entropy methods as shown in Fig. 2.10.
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FIGURE 2.11 – Results of multivariate sample entropy for the existing multivariate
sample entropy and the new one we proposed applied on white Gaussian (noted as
W) and pink noise (noted as P), and a mixture of them (noted as xW/yP where x is the
number of white Gaussian noise channels and y is the number of pink noise channels).
Each signal had 5000 samples and 30 realizations. For both methods, the threshold
was r = 0.15×standard deviation of the normalized signal and m = 2 for all the chan-
nels.

2.2.3 Conclusion

We proposed a multiscale permutation entropy-based method to compute irregula-
rity of multivariate complex signals. This method, called mvIWMPE, has the advantages
of being robust and able to discriminate between different states in a single signal. The
efficiency of mvIWMPE and its performances compared to mvMWPE, mvIMPE, and
mvMPE was proven in synthetic and human EEG signals.

2.3 Sample Entropy of Multi-channel Signals

It was noticed that the multivariate sample entropy method explained in chapter 1
shows erroneous results when the number of channels increases (see Figs. 2.11 and
2.12). To address this issue, we propose a new way to calculate sample entropy for
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FIGURE 2.12 – Results of the existing multivariate sample entropy and the new one
we proposed applied on MIX signals with varying number of channels. The value of p
ranges between 0 and 1 with a step 0.1. Each signal has a length of 5000 samples and
30 realizations. For both methods, the threshold is r = 0.15×standard deviation of the
normalized signal and m = 2 for all the channels.
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multivariate time series, as described below.

Let {xk1, . . . , xki , . . . , xkN} be a multivariate time series of length N with 1 ≤ k ≤ K

being the index of the variate and let M = [m1,m2, . . . ,mK ] be the multivariate embed-
ding dimension vector. To calculate the sample entropy for this multivariate signal :

1. For each variate k, generate the DV subspace : Xk
mk

(i) = [xki , xki+1, . . . , x
k
i+(mk−1)],

where i = 1, 2, . . . , N − (mk−1) and mk is the corresponding embedding dimen-
sion for the variate k.

2. For each variate k, calculate the distances between all the possible vector
pairs. Any type of distance between vectors could be used. Here we use the
Chebyshev distance as it is commonly used in previous papers dealing with
sample entropy [4][5][99]. Since there are N − (mk − 1) vectors, this means

there are α = (N − (mk − 1))(N −mk)
2 possible distances without including

self-distances.

3. Count the number of instances Akmk(r) where the distances are less than a pre-
defined threshold r.

4. Define the frequency of occurrence as Bk
mk

(r) =
Akmk(r)
α

.

5. Extend the dimension from mk to mk + 1 and repeat steps 1 to 4. The new num-

ber of possible distances between pairs is β = (N −mk)(N −mk − 1)
2 . So the

frequency of occurrence for the extended case will be : Bk
mk+1(r) =

Akmk+1(r)
β

,

where Akmk+1(r) is the number of instances where the extended DV pairs had
distances less than r.

6. Repeat all the above steps for all the variates of the time series 1 ≤ k ≤ K.

7. The sample entropy of the multivariate time series is :

mvSampEnnew = − ln
∑K
k=1B

k
mk+1(r)∑K

k=1B
k
mk

(r)
. (2.6)

The channel-wise computation of distances and frequencies of occurrence, followed
by a global integration, makes this approach much more robust, as it will be confirmed
immediately.
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2.3.1 Validation on Synthetic Data

To study the effect of increasing the number of channels on the existing multivariate
sample entropy and the one we proposed, we apply both algorithms on synthetic data
with varying number of channels and study the behavior of the results.

White and Pink Noise

For this test, 3 types of multivariate noise signals are used :

1. Pure white Gaussian noise (WGN).

2. Pure pink noise (power spectrum proportional to 1/f ).

3. A mixture of WGN and pink noise.

These signals have a length of N = 5000 samples and each type has 30 realizations.
The existing method and the new one were applied on these signals while the number
of channels increased gradually from 2 to 9. For both methods, the threshold was
r = 0.15×standard deviation of the normalized signal and M = [mk] = 2 for 1 ≤ k ≤ K.

Figure 2.11 shows that, for the existing method, the entropy value of the pure WGN
signals is higher than that of the pure pink noise for signals with 2 and 3 channels. This
is the normal case, since white noise is more irregular than pink noise [35]. But as the
number of channels is higher than 3, the sample entropy value of white noise drops
below that of the pink noise and the difference between white and pink noise becomes
larger. For the new proposed method the sample entropy value of WGN remains larger
than that of pink noise regardless of the number of channels of the noise signals. Also,
the value of sample entropy for the mixtures of the two noises is always between those
of pure WGN and pink noise. This proves that the new proposed method gives more
consistent relative results and is not dependent on the number of channels as the
existing method is.

MIX process

In this test we evaluate the results of both methods as the multivariate signals gra-
dually change from periodic to uniform random signals with respect to number of chan-
nels.

MIX process signals [96] are signals that range from periodic to completely random
as the value of the parameter p ranges from 0 to 1. The two methods were applied on
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multivariate MIX processes with 0 ≤ p ≤ 1 for various number of channels. The length
of the signals was N = 5000 samples and we used 30 realizations. For both methods
the threshold was r = 0.15×standard deviation of the normalized signal and m = 2 for
all the channels.

Figure 2.12 shows the results of the two methods on multivariate MIX process si-
gnals with 2, 4, and 7 channels. It is expected that sample entropy value is minimum
for p = 0 as the signals are purely periodical. This value should increase as the value
of p increases and the signal becomes more random. This is the case for both methods
when the number of channels is 2. But, as the number of channels increases, the re-
sults of the existing method shows an increase in sample entropy value for 0 ≤ p ≤ 0.3.
Then, the value starts decreasing for 0.3 ≤ p ≤ 1 and even drops below the value of
p = 0. By opposition, for the proposed, method the value of sample entropy, as expec-
ted, increases as the value of p increases. This, once again, shows that the proposed
method is more consistent and is not dependent on the number of channels. It could
therefore be applied for a higher number of channels without risking getting erroneous
values.

2.3.2 Results on EEG Data

Epilepsy, as described in chapter 1, is a very commonly studied pathology using
EEG. It is a neurological disorder characterized by the recurrence of epileptic seizures.
Besides, most epileptic patients present, in the interictal state, or the state when no
seizures occur, interictal epileptiform discharges (IED).

Cognitive deficits are common in childhood epilepsy and have multifactorial origins :
underlying etiology, anti-epileptic drugs, seizures and IED. In some epilepsy syndromes
like BECTS and CSWS, the cognitive deficits are believed to be strongly related to the
frequency of spikes [119]. Some anti-epilepticdrugs (AED) may lower the frequency of
the spikes. For patients with BECTS, a decrease in the number of spikes was reported
when the patients were treated with sulthiame [13]. The same effect takes place on
patients diagnosed with CSWS when they are treated with levetiracetam [3].

In this application we will focus on the resting state, without IED, of EEG recordings
of patients with the aforementioned syndromes. We hypothesize that the treatment
will impact the complexity of the EEG signal. We will evaluate the sample entropy of
the recorded EEG before and after treatment to see if it would imply an increase in
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FIGURE 2.13 – The five regions where the entropy was calculated. LT : Left Temporal.
LC : Left Central. C : Central. RC : Right Central. RT : Right Temporal.
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FIGURE 2.14 – Results obtained with the proposed sample entropy method on 40
epochs of the two sessions (T0 being the baseline and T1 being 4 to 6 weeks after
T0 while a certain AED was successfully administered in this period) for two subjects.
The method was applied on the 5 regions (LT, LC, C, RC, and RT). Epochs are 1 se-
cond long (1000 Hz). The threshold was r = 0.15×standard deviation of the normalized
signal and m = 2 for all the channels. Regions with statistically significant differences
between T0 and T1 are marked with ‘*’. Friedman test was applied with significance
threshold p-value= 0.02 with Bonferroni correction.
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irregularity after treatment : it is known that signals from healthy subjects present higher
irregularity than those of pathological subjects [20][130].

Recordings

The EEG data of 2 epileptic patients (BE003 and BE004 detailed in table 2.2) re-
corded in Université Libre de Bruxelles, Hôpital Erasme (agreement of local ethical
committee P2015/242) were analyzed. Patient 1 (8 years old female) was diagnosed
with atypical BECTS. The epileptic focus was clinically localized on C3 (10-20 system).
Patient 2 (9 years old male) was diagnosed with BECTS with the focus being on C3
(10-20 system).

For each patient, two sessions of recordings were made, T0 being the baseline and
T1 being 4 to 6 weeks after T0 while a certain AED was successfully administered in
this period. Patient 1 was treated with valproate and lamotrigine, while Patient 2 was
treated with levetiracetam.

Both patients had their resting state EEG recorded while they were lying down for
around 20 minutes. The acquisition was done using high density EEG (HD-EEG) with
256 electrodes (Electrical Geodesics, Inc.). The reference was the Cz electrode and
the sampling frequency was 1000 Hz.

Preprocessing and Application

We processed all the recordings in the same way. A high order band-pass filter
between 0.5 Hz and 45 Hz with a transition bandwidth of 0.22 Hz was applied. Then, we
applied independent component analysis (ICA) [62] in order to isolate artifact-related
components and discard them before reconstructing the artifact-free signals. Finally,
the signals were visually examined by a trained neurophysiologist to identify the spikes
(as described earlier), and 40 spike-free epochs with eyes open (1 second long) were
extracted from each session recording.

Five regions of interest were taken from the 256 electrodes (Central (C), Left Cen-
tral (LC), Right Central (RC), Left Temporal (LT), and Right Temporal (RT)). Figure
2.13 shows the position of those regions with respect to the whole net. We are in-
terested in those regions because this is where we expect the irregularity change to
take place since the foci, as mentioned in Sec. 2.3.2, are central and temporal (since
it is the nature of the syndromes). The new proposed sample entropy method was
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applied on the epoched multivariate signals of those five regions. The threshold was
r = 0.15×standard deviation of the normalized signal and m = 2 for all the channels.

Results and Discussion

For both patients, the sample entropy results are presented in Fig. 2.14. To objec-
tively define the significance of the entropy changes, a Friedman test was applied on
the results. The regions with p-values < 0.02, with Bonferroni correction for multiple
comparisons, are considered to have significant differences between T0 and T1, and
are marked with ‘*’.

For Patient 1, C, LC, and LT regions show a significant increase in sample en-
tropy value. This suggests that the patient is responding with the medication and is
approaching the healthy case [20][130]. Besides, the regions that showed the signi-
ficant increase are in correspondence with the clinical localization of the focus (T5).
Patient 2 shows significant increase for only the LC region. This could have the same
explanation as for Patient 1. The region of significance is also in correspondence with
the clinical localization of the focus (C3). These results confirm the findings done in a
previous study [31] as the irregularity of the EEG signals increased after almost one
month of treatment.

2.3.3 Conclusion

Sample entropy has been commonly used in several fields, especially medical. In
this paper, we reviewed the sample entropy approach and its existing multivariate ex-
tension and proposed a new approach for sample entropy of multivariate signals. Exis-
ting and proposed methods were applied on synthetic data. Results showed that the
proposed method overcomes the drawback of the existing method that fails to handle
relatively large numbers of channels. Moreover, our method was applied to real EEG
data showing its reliability.
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y1(t) y2(t) Ratio
Rényi Hα

R 13.97 14.02 0.996
NoC Nα 1.555 1.617 0.961
SVD HV 1.177 1.295 0.909

mean(Hα
R(t)) 10.66 10.74 0.992

std(Hα
R(t)) 0.4514 0.3855 1.171

TV(Hα
R(t)) 2.262 4.482 0.505

mean(Nα(t)) 1.558 1.625 0.958
std(Nα(t)) 0.473 0.438 1.079
TV(Nα(t)) 2.366 4.475 0.498

mean(HV (t)) 0.3215 0.5871 0.548
std(HV (t)) 0.3233 0.286 1.130
TV(HV (t)) 3.679 6.697 0.549

TABLE 2.1 – Rényi entropy, number of components (NoC) based on Rényi entropy,
and SVD entropy of the signal shown in figure 2.15, along with the means, standard
deviations (std), and total variations (TV) of its time-dependent versions. Parameters :
α = 2 and ∆t = 101. The ratio of the value calculated for y1 to that calculated for
y2 is represented in the last column. The bold values correspond to ratios that are
significantly different from 1.

2.4 Time-varying Time-Frequency Complexity Mea-

sures

This research was published in IEEE transactions on biomedical engineering, vo-
lume 65, issue 8 [31].

In chapter 1 we illustrated the capabilities of the TF entropies to differentiate signals
based on the amount of information they carry. While the Rényi entropy focuses on the
number of components, the SVD entropy focuses on their (non)stationarity. Yet, for
very simple signals of different complexities, both might be unable to see a significant
difference between them.

Let us consider the signals y1(t) and y2(t) shown in figure 2.15. Although they may
look similar, y2(t) is indeed more complex, since it carries more information (two tran-
sients onset against only one). But the fact that both spectrograms have the same in-
tegral value makes the Rényi entropy unable to differentiate them. Also, since one TFR
can be obtained from the other by simply permutating columns, the singular values are
the same, and so does the SVD entropy. This can be confirmed on Table 2.1.

A time-varying approach for these complexity measures is needed not only to detect
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FIGURE 2.15 – Signals of different complexities, their spectrograms, and time-varying
entropies. Left : pure tone plus one transient of half duration. Right : pure tone plus
two transients of quarter duration each. In both cases, the signals are defined for
0 ≤ t ≤ T = 1 and were generated with a sampling frequency of fs = 1000. The
spectrograms were obtained with a Hann window of 200 samples, and for 0 ≤ f ≤ 100.
For each signal, the instantaneous number of components (NoC) and singular value
decomposition (SVD) are also represented.
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when a change occurred, but also to characterize the signals as a whole in a non-
local manner. The marginal statistics of these time-varying quantities are useful to this
purpose. The short-time Rényi entropy was introduced in [107]. For a slice of width ∆t
the local Rényi entropy is defined as

Hα
R(Rx; t) = 1

1− α log2

∫ t+∆t/2

t−∆t/2

∫
R̃x

α(τ, f)dτdf, (2.7)

where R̃x(t, f) = Rx(t, f)/
∫ t+∆t/2
t−∆t/2 Rx(a, b)dadb is the locally normalized time-frequency

representation. It should be noted that, in general, Hα
R(Rx) 6=

∫
Hα
R(Rx; t)dt due to the

nonlinearity of the logarithm and to the local normalization. A time-varying estimation
of the number of components is constructed as [107]

Nα
x (t) = 2Hα

R(Rx;t)−H̆α
R(t), (2.8)

where H̆α
R(t) is the time-varying Rényi entropy of a pure tone.

The mean, standard deviation, and total variation of Hα
R(Rx1,2 ; t) are presented in

table 2.1. Total variation is
TVx =

∫
|x′(t)|dt. (2.9)

The ratio between the results of the two signals is also presented. Ratios that are
significantly different from 1 are highlighted. While the first two quantities show no
difference, total variation was able to differentiate between the two signals with higher
values for the one that carries more information (y2(t)). The counting property of this
entropy can be confirmed in the third row of figure 2.15 where it can be appreciated
how Nα

x (t) acts as an instantaneous counter.

The same approach could be taken with SVD entropy. We propose here to define a
time-varying version of this complexity measure by taking the singular value decompo-
sition of a slice of width ∆t of the time frequency representation :

Rx(τ, f) =
inf∑
n=1

σ̂n,tûn,t(τ)v̂n,t(f), (2.10)

for t−∆t/2 ≤ τ ≤ t+ ∆t/2. Then, the local SVD entropy is

HV (t) = −
∑
n

σ̂n,t∑
n σ̂n,t

log2( σ̂n,t∑
n σ̂n,t

). (2.11)
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For those windows where the signal is more stationary, the time-varying SVD en-
tropy would attain low values, while where the instantaneous frequency varies faster,
the values would be increased. Specifically, for those windows where the signal has
constant frequency we expect a null value. As the window advances into the transition
zone the value would increase up to log2(2) = 1 when the center of the window cor-
responds with the onset time of one of the transients. The value then decreases again
to zero as the window advances out of the transition. The fourth row of figure 2.15 de-
picts the values of HV (Rx; t), confirming our explanation. The difference between the
two signals is now evident. Table 2.1 presents the mean, standard deviation, and total
variation of this quantity for the two signals. The differentiation becomes clear. For the
Rényi entropy, a common value of α = 2 was used in [103]. A window of ∆t = 101
samples was used for all the time-varying quantities.

2.4.1 Real EEG Data from Epileptic Patients

The EEG recordings of patients with BECTS are quite remarkable due to the pre-
sence of spikes over the centrotemporal regions (unilateral or bilateral) with a biphasic
or triphasic appearance and a relatively high amplitude [70]. Studies suggest that cog-
nitive deficits might be correlated with the frequency of spikes [88] [119]. This should
prompt the clinician to lower this spike discharge frequency using antiepileptic drugs
(AED). However this issue remains controversial as AED may, by their own, create
or aggravate pre-existing cognitive dysfunction. A decreasing of the amount of spikes
in patients with BECTS after being medicated with sulthiame was reported [13]. A
syndrome quite close to BECTS is epileptic encephalopathies with CSWS, whose pa-
tients were reported to diminish the frequency of spikes after medication with leveti-
racetam [3]. This study also showed that the clinical improvement of some patients
was associated to decreased diffusion of the IED over the whole scalp even if the fre-
quency of spikes was not decreased [3]. Moreover, the temporal association between
clinical improvement and decrease of spikes is not always strict [112]. Taken together,
this highlights that other methods to analyze EEG are needed. In the past years, a
lot of studies attempted to correlate cognitive outcome with the resting state activity in
various neurological conditions including epilepsy.

We will focus our attention on resting state signals, i.e. epochs without IED. Knowing
that signals from healthy subjects present larger complexity [20] [63] [130], we wonder
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if this will be confirmed on resting state signals of patients with BECTS and related
conditions before and after medication. Does the complexity of the resting state signals
increase after proper medication? If positive, we expect to compute larger values of
entropy on these epochs corresponding to recordings after medication. This procedure
would allow for a better monitoring of the treatment.

A second question we will address is : Is this difference big enough as to separate
the signals into two disjoint clusters? If positive, the time-frequency complexity features
are good enough for classification task.

Database

The EEG data of 3 epileptic patients acquired in Universite Libre de Bruxelles, Hopi-
tal Erasme (agreement of local ethical committee number P2015/242) were analyzed.
Patients were studied at baseline (T0) and about 4-6 weeks after a change of the
AED regimen aimed to reduce IED (T1). Table 2.2 shows a summary of clinical data,
diagnoses, AED at T0 and T1, and IED quantification on awake and sleep EEG using
a spike-wave index (SWI) during sleep and an EEG grade that assesses the diffu-
sion of IED, as previously proposed [3]. It was concluded from the visual analysis and
quantification of the SWI during non-rapid eye movement (NREM) sleep, performed by
an experienced neurophysiologist, that patient BE001 did not respond to the change
of AED (a benzodiazepine), and that patients BE003 and BE004 showed impressive
EEG improvement after introduction of levetiracetam.

For the acquisitions, all the subjects were lied down comfortably and brain activity
was recorded both during eyes open and eyes closed. The activity was recorded by
256 electrodes (hdEEG) with the Cz electrode as reference. The sampling frequency
was 1000 Hz.
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Patient (number, BE001, BE003, BE004, BE006, BE007 BE009 BE011, BE012, BE014
age, gender) 10, M 8, F 9, M 10, F 9, M 9, F 9, M 8, F 7, F

Diagnosis Epilespsy Atypical BECTS CAE Epilepsy CAE CAE CAE BECTS
with CSWS BECTS with CSWS-LKS

Localization of T5 C3 C3 T3 C3
IED acording F8 C4

to 10-20 system

Treatment LTG VPA None None None VPA None LTG VPA
at T0 ETS LTG

Treatment LTG VPA LEV ETS Cortisone VPA ETS LTG None
at T1 CLB LEV LTG ETS

ETS

SWI at 75% T0, 75% T0, 60% T0, 3% T0, 42% T0, 47% T0, 20% T0, 7% T0, 30% T0,
T0 and T1 67% T1 50% T1 70% T1 1% T1 1% T1 41% T1 1% T1 1% T1 25% T1

EEG grade at T0 3 (W and S) 3 (W and S) 3 (W and S) 2 S 1 S

EEG grade at T1 3 (W and S) 0 W, 1 S 1 (W and S) 1 S 1 S

TABLE 2.2 – Summary of the database. M : Male, F : Female, LTG : Lamotrigine, ETS : Ethosuximide, CLB : Clobazam,
LEV : Levetiracetam, VPA : Valproate, W : Awake, S : NREM Sleep. SWI calculations and EEG grades were performed
as detailed in [3].
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Preprocessing and selection of epochs

The preprocessing stage consisted of three steps : band-pass filtering, artifact re-
moval and selection of spike-free epochs. For the first task, we applied a high-order
filter between 0.5 Hz and 45 Hz, with a transition bandwidth of 0.22 Hz. We used
Independent Component Analysis (ICA) [62] to remove artifacts by discarding those
sources identified as artifacts before reconstruction. For the selection of epochs, a trai-
ned neurophysiologist visually isolated the spikes in order to obtain spike-free epochs
of 1 second of duration. These epochs are the signals we analyzed, playing the role of
{x(i)} of the previous sections. The choice of the length of the epochs was conditioned
by the fact that one patient presented only 12 non-consecutive seconds of spikefree
signals at T0. We were forced to segment this data into 12 epochs of 1 second, and
proceed in the same way for the other two patients (although with more epochs). Shor-
ter epochs would be affected by border effects. Therefore, an epoch of one second is
a good trade-off between border effects and the difficulty of having longer spike-free
segments.

Features

The features to be used will be : total number of components based on Rényi en-
tropy (to be referred as NoC in the figures), mean of time-varying number of com-
ponents (MN), standard deviation of time-varying number of components (SN), total
SVD entropy (VT), and mean of time-varying SVD entropy (MV). For every one of the
epochs e, e = 1 . . . E, we compute the five mentioned features, Cp, p = 1 . . . 5, for every
electrode. Then, we define the features for a whole region < as the mean of the corres-
ponding feature for that epoch among the electrodes belonging to that specific region
(see figure 2.16 for the regions and electrodes) :

C<,pe = 1
#<

∑
i∈<

Cp
i,e, (2.12)

where #< is the cardinality of the set <.

Results and discussion

We begin analyzing the results for patient BE004. We processed E = 30 epochs of
1 second of duration during eyes open for both baseline (T0) and after six weeks on
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FIGURE 2.16 – Thirteen regions of interest from the hdEEG (256 channels) recordings.
PF : Pre-Frontal. F : Frontal. RF : Right Frontal. LF : Left Frontal. C : Central. RC : Right
Central. LF : Left Central. RT : Right Temporal. LT : Left Temporal. P : Parietal. RP :
Right Parietal. LP : Left Parietal. O : Occipital.
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levetiracetam (T1). The values for the five features for the thirteen regions (region-wise
computed as in 2.12) can be appreciated on boxplots in figure 2.17. It can be seen how,
in general, the features attain higher values for those epochs corresponding to T1. In
order to objectively measure this increase, we performed a Friedman test for every
feature and for every region, and mark with an asterisk (‘*’) those with p < 0.05. The
increasing of the features is observed on most of the regions, especially in the frontal
area (regions prefrontal, frontal, and right and left frontal) with 12 out of 20 features
experiencing it ; and in the centrotemporal area (regions central, right and left central,
and right and left temporal) with 21 out of 25 features with a significant increase. We
also test the features for a decreasing complexity on T1 with negative results. The
fact that the major increasing is observed on the centrotemporal area is relevant since
studies have shown that these regions are the sources of IED in BECTS. These results
shed light on our first question : the complexity on the resting state signals may increase
after proper medication.

In order to evaluate the capability of these features to perform a classification task,
we performed a Principal Component Analysis (PCA) [65] for every feature on every
region. Then, the first principal component (a mere linear combination of the five fea-
tures) was used as the sole feature for binary classification. The ROC curves obtained
for different values of the discrimination threshold are presented on figure 2.18, along
with the areas under the curves (AUC). The best results again are on the centrotempo-
ral area, with an AUC higher than 0.93 for left central region, i.e. the region of the brain
where IED were localized in this patient. Now we may be able to answer our second
question : when used combined, these time varying time-frequency entropy measures
are able to perform a classification task with good results when analyzing EEG data
from epileptic patients.

For patient BE003 we were able to isolate only E = 12 epochs without any spike
because of the large amount of spikes present on the T0 recording. The results are
summarized on Table 2.3. We mark with asterisks (‘*’) those features that present a si-
gnificant difference (p < 0.05, Friedman test). As with the previous example, the results
are good enough as to evidence the difference between the T0 recording and the T1
(six weeks on levetiracetam). We observed an even performance across regions. We
also present the AUCs, with the best results on the centrotemporal area, with an AUC
up to 1 for the central region. These remarkable results must be considered carefully
since they might be conditioned by the small sample.
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FIGURE 2.17 – Results of the 5 features (NoC, VT, MN, SN, and MV) for the 30 epochs
(for each of T0 and T1) of the 13 regions for patient BE004. The baseline records (T0)
are shown in blue, while the records after six weeks on leveteracitam (T1) are shown
in red. Those features that present significant differences (p < 0.05 in a Friedman test)
are indicated with a star (‘*’). NoC : Number of Components. VT : total SVD entropy.
MN : mean of the time-varying number of components. SN : standard deviation of
the time-varying number of components. MV : mean of the time-varying SVD entropy.
Parameters : Hann window of 200 samples. ∆t = 21 samples. α = 2.
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FIGURE 2.18 – The ROC curves for the 13 regions for patient BE004 obtained for
different values of the discrimination threshold. The ROC curves were performed on
the first principal component obtained via PCA on the five features (NoC, VT, MN,
SN, and MV). The horizontal axes correspond to 1-specificity, while the vertical axes
correspond to sensitivity. The areas under the curves (AUC) are also shown.
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Region NoC VT MN SN MV AUC
Pre-frontal * * * * 0.972

Frontal * * * 0.917
Right Frontal * * * * 0.938
Left Frontal * * * * 0.993

Central * * * * 1.000
Right Central * * * 0.944
Left Central * * * * * 0.979

Right Temporal * * * 0.979
Left Temporal * * * * * 0.993

Parietal * * * * 1.000
Right Parietal * * * * 0.986
Left Parietal * * * * * 0.972

Occipital * * * * 1.000

TABLE 2.3 – Summary of the results of the comparison of the values of the five feau-
tures (NoC, VT, MN, SN, and MV) of the patient BE003 (T0 vs T1) using Friedman
test. Parameters : Hann Window of 200 samples for stft, α = 2, ∆t = 21. Significant
differences are marked with ‘*’ (significance level : p < 0.05). E = 12 epochs.

The results for patient BE001 are presented in a summarized manner in Table 2.4.
Here we analyzed 30 epochs. The results are, in general, worse than those of the
other two patients : less features present significant differences and the AUCs have
lower values. This is the patient who did not present an improvement of the EEG. This
could suggest that the complexity measures here presented are more sensitive than
visual analysis of EEG to appreciate changes related to drugs.

All the records were analyzed using a Hann window of 200 samples for the STFT,
a value of α = 2 for the Rényi entropy, and ∆t = 21 for the time-varying entropy
measures. In all cases, we only considered eyes open epochs because of two reasons :
the first one is that in this state there are less IED in some patients, and the second
one is because it is the highest complexity state (it is known that the stronger alpha
rhythm during eyes closed drives the complexity down).

The global scheme here applied on high density EEG recordings might also be
applied on other types of neurophysiological signals, such as regular EEG or magne-
toencephalography (MEG). As long as there is a difference in complexity between two
states or populations, the procedure proposed here may reveal it. Here, besides the
global entropies, we used marginal statistics of their time-varying versions, but other
features derived from the same complexity measures might be used as well.
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Region NoC VT MN SN MV AUC
Pre-frontal * * * * * 0.711

Frontal * * * * * 0.716
Right Frontal * 0.679
Left Frontal * * * 0.862

Central * 0.604
Right Central * 0.590
Left Central * * * * 0.793

Right Temporal * * * * 0.739
Left Temporal * * * * * 0.933

Parietal * * * * * 0.779
Right Parietal * * * 0.732
Left Parietal * * * * * 0.882

Occipital * * * * * 0.858

TABLE 2.4 – Summary of the results of the comparison of the values of the five features
(NoC, VT, MN, SN, and MV) of the patient BE001 (T0 vs T1) using Friedman test. Pa-
rameters : Hann Window of 200 samples for stft, α = 2, ∆t = 21. Significant diferences
are marked with ‘*’ (significance level : p < 0.05). E = 30 epochs.

2.4.2 Conclusion

We applied the global time-frequency entropies along with statistics from their time-
varying counterparts to a particular problem : the analysis of the resting state EEG
recordings from the epileptic patients before and after proper medication.

The results show an increase in the complexity for most of the regions of the brain.
This increase could be used, along with the clinical exam, neurophysiological tests,
and the decreasing in the amount of the spikes, to better monitoring the treatment of
the patients. The complexity features also show that, when combined, they are able to
perform classification between the state before and after proper medication. We made
no use of the preestablished EEG frequency bands, which may sometimes slightly dif-
fer between authors, but considered the whole frequency content of the signal instead,
with no a priori band separation.

The complexity measures presented here can be applied to a wider range of pro-
blems. For instance, in epilepsy, the time-varying versions are suitable for the prediction
of epileptic seizures. A deeper study of the regional changes of the complexities should
shed light on the localization of the epileptic foci.
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3.1 Introduction

In this thesis our aim is to use entropy measures in order to assess functional
connectivity. The authors of [117] showed that regional neural complexity and network
functional connectivity may be two related aspects of brain’s information processing :
the more complex regional neural activity, the higher functional connectivity this region
has with other brain regions. They also showed that multi-scale entropy, at high and low
frequencies may represent local and distributed information processing across brain re-
gions. These results (although validated only in mice [117]) are promising in terms of
the application of multi-scale entropy in functional connectivity studies. Another study
showed, using optical voltage imaging, that the synchrony of functional connectivity
and multi-scale entropy are positively correlated at small scales and negatively corre-
lated at large scales [78]. This study showed that functional connectivity and multi-scale
entropy are effective biomarkers for brain states, and provide a promising viewpoint to
unify these two principal domains in human brain data analysis. Based on this and for
the sake of applying multi-scale entropy measures in assessing functional connectivity
in human subjects, we introduce a new method to calculate functional connectivity ba-
sed on scalp EEG recordings. The method is based on mutual information that uses
mvIWMPE as the entropy measure. We at first validate the ability of this method to
find resting state networks that were found using functional MRI (fMRI). We then eva-
luate inter-subject variability and intra-subject variability of this method coupled with
several node and global network measures. Finally, we apply this method on EEG data
we recorded from epileptic children with three types of epilepsy : childhood absence
epilepsy, CSWS, and BECTS.

3.2 Method

This functional connectivity approach [66] is based on mutual information with the
following equation

I(x,y) = H(x) +H(y)−H(x,y). (3.1)

I(x,y) is the mutual information between two signals, x and y. H(x) and H(y) are the
entropies of x and y respectively and H(x,y) is the bivariate entropy of signals x and
y.
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3.3. Evaluation on EEG data

The novelty of this study is that we used mvIWMPE that we introduced in [67] to
calculate the mutual information. mvIWMPE was explained in details in chapter 2. So
in other words, the muatual information equation would be

Is(x,y) = mvIWMPEs(x) +mvIWMPEs(y)−mvIWMPEs(x,y), (3.2)

where 1 ≤ s ≤ τ , s is the time scale, and τ is the maximum time scale to calculate
mvIWMPE. Finally,

I(x,y) =
max τ∑
s=1

Is(x,y), (3.3)

which can be considered as an aggregation of the mutual information at different
scales.

3.3 Evaluation on EEG data

3.3.1 Dataset

Sixteen-minute high-density EEG recordings from 4 healthy children at rest (2 fe-
males and 2 males, age : 9.875±1.956 years) were acquired in Department of Pediatric
Neurology, Centre Hospitalier Universitaire, Angers, France. These recordings were
approved by ethical committee agreement (N◦ ID CPP : 2016-A01783-487).

Subjects were asked to lie down comfortably and the resting-state brain activity
was recorded during eyes open, where the subjects looked at a fixed target on a wall
facing them, and eyes closed, without sleeping. The EEG activity was recorded by
256 electrodes (Electrical Geodesic Inc.) with the Cz electrode as a reference. The
sampling rate of the acquisitions was 1 kHz.

Individual MRI for each subject was also recorded in Department of Pediatric Neu-
rology, Centre Hospitalier Universitaire, Angers, France.

3.3.2 Preprocessing

By visually inspecting all the EEG recordings, 74 channels were removed from the
recordings of all the patients for being contaminated with a significant amount of muscle
activity and to conserve symmetry between the left and right hemispheres. The signals
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FIGURE 3.1 – Pipeline to estimate functional connectivity from EEG signals. The pro-
cess involves MRI/EEG Co-registration, finding the forward model, estimating cortical
source signals by solving an inverse problem, and finally calculation of the connectivity
matrix of the source signals.

were filtered by a bandpass FIR filter of a transition bandwidth of 0.22 Hz. The cut-
off frequencies were 0.5 Hz and 45 Hz. From each subject, 10 eyes-closed artifact-
free epochs of 10 seconds each were extracted. These steps were performed using
Brainstorm [108] and EEGLAB [41].

To construct a realistic head model for each subject, the individual MRI was seg-
mented using the Freesurfer software [49]. After the coregistration of the EEG data
with the segmented MRI data, the lead field matrix for the cortical mesh of 15000 ver-
tices was computed using OpenMEEG [57] according to the Boundary Element Method
(BEM) [59].

Using the constructed lead field matrices and the 182 signals from the electrode
level for each of the epochs, 15000 source signals were estimated on the cortical level.
This was done by solving the inverse problem according to the Minimum Norm Estimate
(MNE) [60] method. Those 15000 source signals were reduced to 68 regional signals
according to the Desikan-Killiany [44] atlas. Figure 3.1 shows the pipeline that was
followed to prepare the data for acquiring the connectivity matrices.
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3.3.3 Functional Connectivity

The epochs from all the subjects were grouped into one group to get relatively gene-
ral results rather than subject-related results. For each of the 40 epochs on the source
level, we applied the mvIWMPE-based mutual information between all the signals of
the 68 regions. max τ was set to 10 and we used the default value of the embedding
dimension d as in [67], d = 3. This resulted in a 68× 68 symmetrical connectivity matrix
for each epoch. Each matrix was thresholded keeping the highest 10% of values and
zeroing the rest.

Each calculated connectivity matrix can be represented as a graph with 68 nodes
and edges between nodes, with the entries of the matrix being the weights of these
edges. In this sense, we can quantify each node with several network measures [101].
In our study, we used :

— Betweenness Centrality [53] : The betweenness centrality of node i is calculated
as

BCi = 1
(n− 1)(n− 2)

∑
h,j∈N ,h6=j,h6=i,j 6=i

ρhj(i)
ρhj

, (3.4)

where N is the set of nodes, n is the number of nodes, ρhj is the number of
shortest paths between node h and node j, and ρhj(i) is number of shortest
paths between node h and node j passing through node i. The higher the value
of BC for a node the more important that node is in the graph.

— Strength : The strength of a node i is the sum of the weights of all of its edges

Si =
∑
j∈N

wi,j, (3.5)

where N is the set of nodes, and wi,j is the weight of the edge between node i
and node j.

— Node Clustering Coefficient [92] : The clustering coefficient of a node i is calcu-
lated as

Ci = 2twi
Si(Si − 1) =

∑
j,h∈N (wijwihwjh)

1
3

Si(Si − 1) , (3.6)

where N is the set of nodes, twi is the geometric mean of triangles around node
i, and Si is the strength of node i.
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— Vulnerability [55] : The vulnerability of a node i is calculated as

Vi = E − Ei
E

, (3.7)

where E is the global efficiency of the network and Ei is the global efficiency of
the network after removing node i. Global efficiency [73] of network is calculated
as :

E = 1
n

∑
i∈N

∑
j∈N ,j 6=i(dwij)−1

n− 1 , (3.8)

where dwij is shortest weighted path length between node i and node j.
Those 4 network measures were calculated for each node of the 40 estimated net-
works. A Wilcoxon signed-rank test with Bonferroni correction (68 × 4 multiple com-
parisons) was applied on each measure of each node. The value of the measure of
a node was considered significant if the test showed that the values of the measure
were significantly higher than the median of that measure across all nodes. The level
of significance was padjusted < 0.05.

3.3.4 Results and Discussion

Functional magnetic resonance imaging (fMRI) is one of the techniques used to
find functional connectivity in the cortex during several states. During resting-state,
fMRI was able to identify several main networks that were called resting-state networks
(RSNs) [87]. In our study we used 5 main RSNs that are the Auditory Network (AUD),
Dorsal Attentional Network (DAN), Default Mode Network (DMN), Salience Network
(SAN), and Visual Network (VIS). Based on their localization, and based on previous
studies [68], we were able to correspond 44 regions from the Desikan-Killiany atlas to
to the 5 RSNs, while 24 regions did not correspond to any of the aforementioned RSNs.
Figure 3.2 represents the 68 regions (nodes) grouped according to their corresponding
RSN if they correspond to one and grouped as ‘Other’ if they do not correspond to any.
For each node, Fig. 3.2 shows whether each of the 4 network measures is significant
or not. For betweenness centrality, only one node was significant and it corresponded
to SAN. For clustering coefficient, 24 nodes were considered significant. 20 of those
nodes corresponded to RSNs (9/12 DAN, 6/14 DMN, 4/8 SAN, and 1/8 VIS). For the
vulnerability and strength, we got similar results. 29 were considered significant with
24 of them corresponded to RSNs (2/2 AUD, 9/12 DAN, 6/14 DMN, 5/8 SAN, and 2/8
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FIGURE 3.2 – Results of Wilcoxon Signed-Rank Test with Bonferroni Correction when
comparing the 4 measures (Betweenness Centrality, Clustering Coefficient, Vulnerabi-
lity, and Strength) values of a node with respect to the median of all the values of that
measure. Significance level is padjusted < 0.05. Nodes were grouped according to their
localization with respect to previously defined Resting-State Network (RSN) based on
fMRI. AUD : Auditory Network, DAN : Dorsal Attentional Network, DMN : Default Mode
Network, SAN : Salience Network, VIS : Visual Network.
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VIS).

During resting-state, we expect the most important nodes to be corresponding to the
RSNs. Our results show that, in terms of clustering coefficient, 83.3% of the significant
nodes correspond to RSNs with only 16.7% corresponding to others, and in terms of
strength and vulnerability, 82.8% of the significant nodes correspond to RSNs with only
17.2% corresponding to others. Besides, our proposed method was able to conserve
symmetry of the nodes, where for most of the significant nodes the corresponding
regions on both hemispheres were significant. These results show that our method
is able to detect functional networks in the cortex efficiently and without the need to
band-pass filter the EEG source signals into narrow frequency bands as several other
methods require for networks estimation.

3.4 Validation of the Method

To further validate this method, we applied several additional tests. Our aim was
to study inter-subject and intra-subject variability on the method. For this, we had two
datasets. The first dataset was recorded from a group of healthy children. The second
dataset was recorded from a group of epileptic children. The tests were based on the
values of the following network measures :

— Node Measures result in a value per node :
— Closeness Centrality [54] : The closeness centrality of a node i is defined as

(Li)−1 = n− 1∑
j∈N,j 6=i dij

, (3.9)

where n is the number of nodes, N is the set of all nodes, and dij is the
shortest distance between nodes i and j.

— Node Clustering Coefficient [92] : Detailed in section 3.3.3.
— Strength : Detailed in section 3.3.3.

— Global Measures result in a value per network :
— Characteristic Path Length [118] : The characteristic path length is described

as
L = 1

n

∑
i∈N

∑
j∈N,j 6=i dij
n− 1 , (3.10)

where n is the number of nodes, N is the set of all nodes, and dij is the
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shortest distance between nodes i and j.
— Clustering Coefficient [118] : Clustering coefficient is the average of all node

clustering coefficients.

C = 1
n

∑
i∈N

Ci, (3.11)

where Ci is the node clustering coefficient of node i described in sec-
tion 3.3.3

— Global Efficiency [73] : The global efficiency of a network is defined in section
3.3.3.

3.4.1 Influence of Inter-subject Variability

To study inter-subject variability on the method we used the dataset of the healthy
children. This is the same dataset used in section 3.3.1.

By visually inspecting all the EEG recordings, 74 channels were removed from the
recordings of all the patients for being contaminated with a significant amount of muscle
activity and to conserve symmetry between the left and right hemispheres. The signals
were filtered by a bandpass FIR filter of a transition bandwidth of 0.22 Hz. The cut-
off frequencies were 0.5 Hz and 45 Hz. ICA [62] was applied on the recordings to
remove all muscle artifacts and eye blinks. Bad channel detection was used based on
the PREP pipeline [17] to detect the bad channels and interpolate them. From each
subject, 10 eyes-open artifact-free epochs of 10 seconds each were extracted. These
steps were performed using Brainstorm [108] and EEGLAB [41].

To construct a realistic head model for each subject, the individual MRI was seg-
mented using the Freesurfer software [49]. After the coregistration of the EEG data
with the segmented MRI data, the lead field matrix for the cortical mesh of 15000 ver-
tices was computed using OpenMEEG [57] according to the Boundary Element Method
(BEM) [59].

Using the constructed lead field matrices and the 182 signals from the electrode
level for each of the epochs, 15000 source signals were estimated on the cortical level.
This was done by solving the inverse problem according to the Minimum Norm Estimate
(MNE) [60] method. Those 15000 source signals were reduced to 68 regional signals
according to the Desikan-Killiany [44] atlas. The introduced connectivity approach was
applied on the 68 resulting signals of each epoch.
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FIGURE 3.3 – Results of the 6 inter-subject comparisons of the values of the node
clustering coefficient using Wilcoxon sign-rank test. The significance level is p = 0.05.
Bonferroni correction of a factor of 68 is applied on the p-values. Regions below the
significance level are considered significantly different and are marked in red. Non-
significantly different regions are marked in blue. The number of regions that are signi-
ficantly different per comparison is displayed on the right end of the figure.

This resulted in 10 connectivity matrices per subject. For the sake of ease of de-
monstration of the test results, we will call the subjects AJ, LJ, AB, and LB. The three
node measures was calculated for each node of the 10 networks for every subject.
Similarly, the 3 global measures were calculated for each network.

For each node measure, after obtaining the 40 values per node (10 per subject), 6
comparisons were performed using Wilcoxon sign-rank test with Bonferroni correction
(by a factor of 68) comparing 10 values against 10 values per node (figures 3.3 3.4
and 3.5) :

— AB vs LB
— AB vs AJ
— AB vs LJ
— LB vs AJ
— LB vs LJ
— AJ vs LJ

The nodes with tests that had corrected p-values less than the significance level of 0.05
where considered significantly different.

For each global measure, after obtaining 40 values (10 per subject), the same six
comparisons were performed using Wilcoxon sign-rank test comparing 10 values of
one subject against 10 values of another subject, this time with no need for the Bon-
ferroni correction. The tests that had p-values less than the significance level of 0.05
were considered significantly different (table 3.1).
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FIGURE 3.4 – Results of the 6 inter-subject comparisons of the values of the node
closeness centrality using Wilcoxon sign-rank test. The significance level is p = 0.05.
Bonferroni correction of a factor of 68 is applied on the p-values. Regions below the
significance level are considered significantly different and are marked in red. Non-
significantly different regions are marked in blue. The number of regions that are signi-
ficantly different per comparison is displayed on the right end of the figure.

FIGURE 3.5 – Results of the 6 inter-subject comparisons of the values of the node
strength using Wilcoxon sign-rank test. The significance level is p = 0.05. Bonferroni
correction of a factor of 68 is applied on the p-values. Regions below the significance
level are considered significantly different and are marked in red. Non-significantly dif-
ferent regions are marked in blue. The number of regions that are significantly different
per comparison is displayed on the right end of the figure.
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Results Discussion

As described in the earlier section, 2 types of measures were compared. To begin
with the node measure, figures 3.3, 3.4, and 3.5 show the regions where the com-
parisons of pair of values of each node showed significant differences. Significantly
different values here means that the values are not consistent from subject to another
and that the method gives different values from subject to subject. Otherwise, the re-
gions where the comparisons of the pair of values of each node showed no significant
differences means that the methods here gave similar values and that the Wilcoxon
sign-rank test was not able to differentiate between the values of the same node of
the two compared subjects. For the node clustering coefficient, figure 3.3 shows the
results of the tests. Red squares mark the regions where the tests showed that the
values compared are significantly different and blue squares mark the regions where
the tests showed that the values compared are not significantly different. As seen in
the figure, 38.2% of the regions have significantly different values for the comparison
between AB and LB, 47.1% for the comparison between AB and AJ, 11.8% for the
comparison between AB and LJ, 48.5% for the comparison between LB and AJ, 29.4%
for the comparison between LB and LJ, and 60.3% for the comparison between AJ
and LJ. All the comparisons except AB and LJ had a lot of nodes or regions that have
significantly different values. Similarly, figure 3.4 shows the results of the tests of close-
ness centrality of the nodes. Figure 3.5 shows the results of the tests of strength of the
nodes. The same pattern can be observed where all the comparisons except AB and
LJ showed a lot of significantly different regions. This shows that we can not perform
inter-subject analysis using this method and applying the node network measures on
its results.

Similar procedure was done for the three global measures, characteristic path
length, global clustering coefficient, and global efficiency. The six comparisons are re-
presented in table 3.1. As shown, all the comparisons except AB and LJ had p-values
that are less than 0.05. This means that all the values of the all the pairs except AB
and LJ are significantly different. As mentioned for the node measures, this means that
we also can not perform inter-subject analysis using the method and applying global
measures on its results due to the inconsistent results from subject to subject.
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Characteristic Path Length Clustering Coefficient Efficiency
AB vs LB 0.0003* 0.0003* 0.0003*
AB vs AJ 0.0002* 0.0002* 0.0003*
AB vs LJ 0.7912 0.7912 0.7912
LB vs AJ 0.0078* 0.0078* 0.0089*
LB vs LJ 0.0013* 0.0013* 0.0013*
AJ vs LJ 0.0004* 0.0004* 0.0004*

TABLE 3.1 – The p-values of the comparisons of the values of the global measures
done using the Wilcoxon sign-rank test. Each subject had 10 values per measure.
Comparisons with tests that have p-values less than 0.05 are considered significantly
different and are marked with a ‘*’.

3.4.2 Influence of Intra-subject Variability

To study the influence of intra-subject variability on the method, we used the same
dataset as in sections 3.3.1 and 3.4.1. The study was made by comparing networks
extracted from the beginning of the sixteen minutes EEG recording with networks ex-
tracted from the end of the recording. The same preprocessing steps that were men-
tioned in section 3.4.1 were used here but instead of extracting 10 random spike-free
epochs, 10 spike-free epochs were extracted from the beginning (first 5 minutes) of the
recording of each subject in the eyes-open condition and other 10 spike-free epochs
were extracted from the end (last 5 minutes) of the recording of each subject. All the
epochs are 10 seconds-long.

This resulted in 20 connectivity matrices, 10 corresponding to the beginning of each
recording and 10 corresponding to the end of the recording. The same node and global
network measures that were presented in section 3.4 were calculated for each network.
Our aim here was to compare for each subject the values of the measures obtained
at the beginning of the recording session with the values obtained at the end of the
recording. Therefore, for each value of the measures, only one comparison was made
per subject, comparing the 10 values obtained at the beginning of the recording with
the 10 values obtained at the end.

For each subject and for each node measure, after obtaining the 20 values, the
comparison was made using the Wilcoxon sign-rank test with Bonferroni correction (by
a factor of 68) comparing, per node, 10 values of the beginning of the recording against
10 values of the end (figures 3.6, 3.7, and 3.8).

For each subject and for each global measure, after obtaining 20 values (10 per
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FIGURE 3.6 – Results of the 4 intra-subject comparisons of the values of the node
clustering coefficient using Wilcoxon sign-rank test. The significance level is p = 0.05.
Bonferroni correction of a factor of 68 is applied on the p-values. Regions below the
significance level are considered significantly different and are marked in red. Non-
significantly different regions are marked in blue. The number of regions that are signi-
ficantly different per comparison is displayed on the right end of the figure.

FIGURE 3.7 – Results of the 4 intra-subject comparisons of the values of the node
closeness centrality using Wilcoxon sign-rank test. The significance level is p = 0.05.
Bonferroni correction of a factor of 68 is applied on the p-values. Regions below the
significance level are considered significantly different and are marked in red. Non-
significantly different regions are marked in blue. The number of regions that are signi-
ficantly different per comparison is displayed on the right end of the figure.
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FIGURE 3.8 – Results of the 4 intra-subject comparisons of the values of the node
strength using Wilcoxon sign-rank test. The significance level is p = 0.05. Bonferroni
correction of a factor of 68 is applied on the p-values. Regions below the significance
level are considered significantly different and are marked in red. Non-significantly dif-
ferent regions are marked in blue. The number of regions that are significantly different
per comparison is displayed on the right end of the figure.

Characteristic Path Length Clustering Coefficient Efficiency
AB 0.18 0.21 0.24
AJ 0.38 0.38 0.38
LB 0.27 0.27 0.27
LJ 0.9 0.9 0.9

TABLE 3.2 – The p-values of the comparisons of the values of the global measures
done using the Wilcoxon sign-rank test. Each subject had 20 values per measure.
10 values corresponding to the beginning of the recording were compared against 10
values corresponding to the end of the recording. Comparisons with tests that have
p-values less than 0.05 are considered significantly different.
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subject), the comparison was made using the Wilcoxon sign-rank test comparing 10
values of the beginning of the recording against 10 values of the end, this time with
no need for the Bonferroni correction. The tests that had p-values less than the signifi-
cance level of 0.05 were considered significantly different (table 3.2).

Results Discussion

When taking a look at the node measure, figures 3.6, 3.7, and 3.8 show the regions
where the comparisons of pair of values of each node showed significant differences.
Significantly different values here means that the values are not consistent from epoch
to epoch within the same subject and that the method gives different values every
time. Otherwise, the regions where the comparisons of the pair of values of each node
showed no significant differences means that the methods here gave similar values
and that the Wilcoxon sign-rank test was not able to differentiate between the values
of the same node of the two compared subjects. For the node clustering coefficient,
figure 3.6 shows the results of the tests. Red squares mark the regions where the
tests showed that the values compared are significantly different. Blue squares mark
the regions where the tests showed that the values compared are not significantly
different. As seen in the figure, 3% of the regions have significantly different values for
the comparison among AB, and none for the comparisons among AJ, LB, and AJ. All
the comparisons had very few to no nodes or regions that are significantly different
values. Similarly, figure 3.7 shows the results of the tests of closeness centrality of the
nodes and figure 3.8 shows the results of the tests of strength of the nodes. The same
pattern can be observed where all the comparisons showed very few to no significantly
different regions. This shows that intra-subject variability does not influence the results
and the consistency of the method. Thus, the calculation of node measures based on
our method can be used to study the state of a subject at different times.

Similar procedure was done for the three global measures, characteristic path
length, global clustering coefficient, and global efficiency. The four comparisons are
represented in table 3.2. As shown, all the comparisons had p-values that are greater
than 0.05. This means that all the values of the all the epochs within a single subject
are similar and the Wilcoxon sign-rank test is not able to differentiate between them. As
mentioned for the node measures, this means that we can apply the method to perform
intra-subject analysis and apply global measures on its results due to the consistent
results within one subject.
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3.4.3 Application on Epileptic Patients

After the validation on the control subjects to prove that the results of the method
are not influenced by intra-subject variability, the method and the network measures
were applied on EEG signals from epileptic children. A dataset of 6 epileptic children
was used here.

Sixteen-minute high-density EEG recordings from 6 epileptic children at rest
(BE006, BE007, BE009, BE011, BE012, and BE014) were acquired in Department
of Pediatric Neurology, Centre Hospitalier Universitaire, Angers, France. These recor-
dings were approved by ethical committee agreement (N◦ ID CPP : 2016-A01783-487).
Four of the children were diagnosed with childhood absence epilepsy and are labelled
as A1, A2, A3, and A4. One was diagnosed with CSWS-LKS and is labelled as B1 and
one was diagnosed with BECTS and is labelled as B2.

For the acquisitions, subjects were asked to lie down comfortably and the resting-
state brain activity was recorded during eyes open, where the subjects looked at a
fixed target on a wall facing them, and eyes closed, without sleeping. The EEG activity
was recorded by 256 electrodes (Electrical Geodesic Inc.) with the Cz electrode as a
reference. The sampling rate of the acquisitions was 1 kHz.

The EEG of each subject was recorded twice. The first time is when the patient first
enters the hospital (before any treatment) and is labelled as T0. The second time is 4
to 6 weeks after T0 where certain anti-epileptic drugs (AEDs) were given to the child
during this time. The second session is labelled T1.

Individual MRI for each subject was also recorded in Department of Pediatric Neu-
rology, Centre Hospitalier Universitaire, Angers, France.

By visually inspecting all the EEG recordings, 74 channels were removed from the
recordings of all the patients for being contaminated with a significant amount of muscle
activity and to conserve symmetry between the left and right hemispheres. The signals
were filtered by a bandpass FIR filter of a transition bandwidth of 0.22 Hz. The cut-
off frequencies were 0.5 Hz and 45 Hz. ICA [62] was applied on the recordings to
remove all muscle artifacts and eye blinks. Bad channel detection was used based on
the PREP pipeline [17] to detect the bad channels and interpolate them. From each of
T0 and T1 of each subject, 10 eyes-open artifact-free epochs of 10 seconds each were
extracted. These steps were performed using Brainstorm [108] and EEGLAB [41].

To construct a realistic head model for each subject, the individual MRI was seg-
mented using the Freesurfer software [49]. After the coregistration of the EEG data
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FIGURE 3.9 – Results of the comparisons of the values of the node clustering coeffi-
cient using Wilcoxon sign-rank test of the 6 epileptic patients between T0 and T1. The
significance level is p = 0.05. The significance level is p = 0.05. Bonferroni correc-
tion of a factor of 68 is applied on the p-values. Regions below the significance level
are considered significantly different and are marked in red. Non-significantly different
regions are marked in blue. The number of regions that are significantly different per
comparison is displayed on the right end of the figure.

with the segmented MRI data, the lead field matrix for the cortical mesh of 15000 ver-
tices was computed using OpenMEEG [57] according to the Boundary Element Method
(BEM) [59].

Using the constructed lead field matrices and the 182 signals from the electrode
level for each of the epochs, 15000 source signals were estimated on the cortical level.
This was done by solving the inverse problem according to the Minimum Norm Estimate
(MNE) [60] method. Those 15000 source signals were reduced to 68 regional signals
according to the Desikan-Killiany [44] atlas. The introduced connectivity approach was
applied on the 68 resulting signals of each epoch.

For each subject this resulted in 20 connectivity matrices, 10 from the T0 session
and 10 from the T1 session. The same node and global network measures that were
presented in section 3.4 were calculated for each network. Our aim here is to study the
differences between the T0 session and the T1 session. Therefore, for each measure,
the values of one subject at T0 are compared with the values of the same subject at T1
using the Wilcoxon sign-rank test. For the node measures Bonferroni correction with a
factor of 68 was applied on the significance level.
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FIGURE 3.10 – Results of the comparisons of the values of the node closeness cen-
trality using Wilcoxon sign-rank test of the 6 epileptic patients between T0 and T1. The
significance level is p = 0.05. Bonferroni correction of a factor of 68 is applied on the p-
values. Regions below the significance level are considered significantly different and
are marked in red. Non-significantly different regions are marked in blue. The number
of regions that are significantly different per comparison is displayed on the right end
of the figure.

FIGURE 3.11 – Results of the comparisons of the values of the node strength using
Wilcoxon sign-rank test of the 6 epileptic patients between T0 and T1. The significance
level is p = 0.05. The significance level is p = 0.05. Bonferroni correction of a factor of 68
is applied on the p-values. Regions below the significance level are considered signifi-
cantly different and are marked in red. Non-significantly different regions are marked in
blue. The number of regions that are significantly different per comparison is displayed
on the right end of the figure.
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Characteristic Path Length Clustering Coefficient Efficiency
A1 0.054 0.054 0.054
A2 0.678 0.678 0.734
A3 0.071 0.071 0.071
A4 0.791 0.791 0.791
B1 0.00018* 0.00018* 0.00018*
B2 0.571 0.623 0.623

TABLE 3.3 – The p-values of the comparisons of the values of the global measures done
using the Wilcoxon sign-rank test. Each epileptic patient had 20 values per measure.
10 values corresponding to T0 session (before any treatment) were compared against
10 values corresponding to T1 session (4 to 6 weeks after T0 and start of treatment).
Comparisons with tests that have p-values less than 0.05 are considered significantly
different and are marked with ‘*’.

Results and Discussion

The results of the 6 comparisons between T0 and T1 are represented in figures 3.9
to 3.11 and table 3.3.

For the patients A1 to A4, the results of node measures represented in figures 3.9
to 3.11 showed 15/272 (5.5%) nodes with significant differences for node clustering
coefficient, 9/272 (3.3%) nodes with significant differences for node closeness centra-
lity, and 12/272 (4.4%) nodes with significant differences for node strength. The results
of the global measures represented in table 3.3 showed no significant differences bet-
ween T0 and T1 of the 4 patients.

For patient B1 (with CSWS-LKS), the results of the node measures represented in
figures 3.9 to 3.11 showed 62/68 (91.2%) nodes with significant differences for node
clustering coefficient, 66/68 (97.1%) nodes with significant differences for node close-
ness centrality, and 65/68 (95.6%) nodes with significant differences for node strength.
The results of the global measures represented in table 3.3 showed that all the global
measures calculated at T1 were significantly different from those calculated at T0.

For patient B2 (with BECTS), the results of the node measures represented in fi-
gures 3.9 to 3.11 showed 13/68 (19.1%) nodes with significant differences for node
clustering coefficient, 12/68 (17.6%) nodes with significant differences for node close-
ness centrality, and 10/68 (14.7%) nodes with significant differences for node strength.
The results of the global measures represented in table 3.3 showed that all the global
measures calculated at T1 were not significantly different from those calculated at T0.

Table 2.2 shows that the patients A1, A2, A3, A4, and B2 showed no changes
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FIGURE 3.12 – Holter EEG recordings during sleep of patient B1 at T0. The recordings
show very frequent IEDs on two foci T3 and F8.

clinically. This can be seen in terms of the grades and the SWI. These observations
come in parallel with the statistical results of the network measures of those patients,
as a relatively small number of nodes are significantly different between T0 and T1.
The same can be said for the global measures as none of the global measures of
these patients showed significant differences between T0 and T1.

On the other hand table 2.2 shows that the patient B1 showed much improvement
between T0 and T1. This can also be noticed from the Holter EEG recordings of that
patient (figures 3.12 and 3.13). If we take a look at the node measures for B1 we can
see that almost all the nodes of that subject showed significant differences between T0
and T1. The results are repeated for all three network measures. This is in parallel with
the clinical results as B1 was completely aphasic at T0 and after one month recovered
language at T1. The same thing can be said for the global measures. All the global
measures were significantly different from T0 to T1 and this also confirms the previous
findings.

3.5 Conclusion

From this preliminary study of our introduced functional connectivity approach, we
noticed that the results given based on this method were the same as the clinical results
of each patient. The coherence of the results was noticed on patients that clinically did
not change from T0 to T1 and also on the patient that clinically showed a strong change

111



Partie , Chapitre 3 – Functional Connectivity Based on Mutual Information using mvIWMPE

FIGURE 3.13 – Holter EEG recordings during sleep of patient B1 at T1. The recor-
dings show reduced frequency of IEDs compared with T0. Even remaining IEDs have
diminished amplitudes.

(improvement) from T0 to T1.
Future studies to assess the method would be by presenting concrete results sho-

wing the methods ability of extracting networks based on short-time epochs (around 1
second). This ability was already noticed from the method but later work should give
solid results on this hypothesis. Besides, comparing the introduced method with other
functional connectivity methods that are found in the literature could be an important
step to better evaluate the method’s potential in calculating functional connectivity and
extracting networks.
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CONCLUSION

In this thesis, we developed a new entropy approach based on permutation en-
tropy, the multivariate improved weighted multi-scale permutation entropy (mvIWMPE).
When applied on synthetic multivariate signals and compared with other multivariate
methods based on permutation entropy, we found out that our method has better abi-
lity of differentiating signals than multivariate multi-scale permutation entropy (mvMPE)
and multivariate multi-scale weighted permutation entropy (mvMWPE). The advantage
of our method over multivariate improved multi-scale permutation entropy (mvIMPE) is
that it introduced the weighting factor that includes in the calculations the amplitudes
of the signal samples. We finally applied this method on real EEG signals from healthy
children to successfully differentiate between two states, eyes open and eyes closed.

We developed another multivariate entropy approach that is based on sample en-
tropy. This developed approach was compared with the existing approach by proces-
sing synthetic signals with varying number of variates with the existing method and
with our method. It was noticed that both methods gave similar results when applied
on small number of variates (2 or 3) but our method gave better results when the num-
ber of channels was greater than that. Our method was also applied on EEG signals
of epileptic patients at two time points of their treatment. The results came in corres-
pondence with the clinical diagnosis that was performed in the hospital on whether the
patients were improving or not.

A third complexity measure was developed based on a time-varying time-frequency
approach. This measure was also applied on synthetic signals and then on real EEG
signals from the same epileptic patients that were used in the multivariate sample en-
tropy study. By extracting several features from the results and comparing them at
different time points of the treatment, the results also came in correspondence with
what was found from the clinical diagnosis in the hospital.

Finally, we introduced a new functional connectivity approach based on mvIWMPE
and mutual information (MI). We first tested this method’s ability in extracting networks
whose significant nodes correspond to the known resting state networks (RSNs) ex-
tracted using the functional magnetic resonance imaging (fMRI). For this reason we
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applied the method on cortical signals calculated from EEG signals of healthy children.
After extracting the networks, we extracted node and global network measures from
the networks and tested their values in order to identify the significant nodes. The me-
thods succeeded in having most of the fMRI RSN-corresponding nodes significant. We
then intended to study the influence of inter-subject variability on the method. So, we
applied the method on the same healthy children, but this time for the sake of compa-
ring the values of the extracted network measures across subjects. This method failed
to give consistent results across subject, which meant that we can not use to compare
different subjects. After that, we intended to test the influence of intra-subject variability
on the method. So we performed a similar comparison using network measures, but
this time comparing values within the same subject. The method showed that it gives
consistent results within the same subject. This meant that we can use this method to
study subjects at different times. So, we used this method to study the states of epilep-
tic patients at different times of their treatment. The results were based on the type of
epilepsy that each patient was diagnosed with.

This work opens the door to many other questions and applications of the method.
So in the future, our first step would be to compare the results of the method we intro-
duced with other methods that are already known in the literature (for example phase
locking value [72] and power envelope oscillation [121]). Further work should include
a much larger dataset including all the subjects (here, the data from all the subjects
are not processed yet) we recorded in our work and perhaps even record additional
subjects.

It is also important to note here that most of the epileptic patients recorded had a
third session (T2) which is six months after T0. So this opens the door to evaluate the
states of the patients even after longer times. Future work would include these sessions
and record and evaluate new T2 sessions for the remaining subjects.

As mentioned in the previous section, we also aim to test the limits of our method to
calculate connectivity by shortening the time segments as much as possible to reach
almost 1 sec at 1000 Hz sampling rate. This will help in evaluating the connectivity in
patients that have a lot of spikes in their recordings.

Another point we are curious to explore is the analysis of connectivity during the
eyes closed states. Would the networks change a lot? Would the higher frequency
of spikes during eyes closed state influence the connectivity in the spike-free epochs
during the same state?

114



The introduction of other new entropy methods allows us to think of using these
methods (as with mvIWMPE) in connectivity approaches to evaluate the patients. The
time-frequency approach [31] succeeded in detecting the changes around the epileptic
focus in the patients. Would that be valuable if adapted to a connectivity approach?

We also are curious to study the time course of the changes in complexity during
and after the spikes. What happens directly after the spikes and how long does the
influence persist ? We also intend to study, during the spike, the regions that are remote
to the focus of the spike and do not show IEDs in EEG recordings. Are those regions
also influenced? Do they record changes in complexity too?

All these points are of our interest and we are willing to address in the future. Of
course finding some answers to those points will open a path for deeper investigations
and further questions.
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Titre : Traitement des signaux d’électro-

encéphalogrammes à 256 capteurs chez l’enfant épilep-
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Resumé : Dans cette thèse, nous pro-
posons des méthodes de traitement du
signal et les appliquons à des signaux
d’électro-encéphalographie (EEG) enre-
gistrés chez des patients épileptiques.
L’objectif est de pouvoir quantifier l’état du
patient et d’étudier l’évolution du trouble
neurologique au cours du temps. Les mé-
thodes que nous avons développées sont
basées sur des mesures d’entropie. Ainsi,
nous introduisons la « multivariate Impro-
ved Weighted Multi-scale Permutation En-
tropy » (mvIWMPE) que nous appliquons
à des signaux EEG d’enfants sains et épi-
leptiques. Elle donne des résultats pro-
metteurs. Nous proposons également une
approche multivariée pour la « Sample En-
tropy ». Les résultats montrent qu’elle per-
met de traiter correctement un plus grand
nombre de canaux que la méthode exis-
tante. Nous présentons aussi une me-
sure de complexité temps-fréquence va-

riable dans le temps, basée sur la « Sin-
gular Value Decomposition » et la « Rényi
Entropy ». Ces mesures, appliquées sur
l’EEG d’enfants épileptiques avant et 4-6
semaines après un traitement, conduisent
à des résultats qui sont en accord avec
le diagnostic clinique quant à l’évolution
de la pathologie. La dernière partie de la
thèse porte sur les mesures de connec-
tivité fonctionnelle. Nous proposons une
méthode de connectivité fonctionnelle ba-
sée sur la mvIWMPE et l’information mu-
tuelle. Elle est appliquée sur des signaux
EEG d’enfants sains au repos. A l’aide de
mesures de réseau, nous pouvons iden-
tifier des régions cérébrales actives dans
des réseaux précédemment découverts
grâce à l’imagerie par résonance magné-
tique fonctionnelle. La méthode est éga-
lement utilisée pour étudier les réseaux
chez des enfants épileptiques.



Title : Signal processing of electroencephalograms with

256 sensors in epileptic children

Keywords : Entropy, Epilepsy, Complexity, Electroencephalography, Mutual Informa-
tion, Functional Connectivty

Abstract : In this thesis, our focus is to
develop signal processing methods to be
used on electroencephalography (EEG)
signals recorded from epileptic patients.
The aim of these methods is to be able
to quantify the state of the patient with
epilepsy and to study the progress of the
neurological disorder over time. The me-
thods we developed are based on entropy.
From previous permutation entropy me-
thods we introduce the multivariate Im-
proved Weighted Multi-scale Permutation
Entropy (mvIWMPE). This method is ap-
plied on EEG signals of both healthy and
epileptic children and gives promising re-
sults. We also introduce a new multiva-
riate approach for sample entropy and,
when tested and compared with the exis-
ting multivariate approach, we find that
the introduced approach is much better
in handling a larger numbers of channels.

We also introduce a time-varying time-
frequency complexity measure based on
Singular Value Decomposition and Rényi
Entropy. These measures are applied on
EEG of epileptic children before and after
4-6 weeks of treatment. The results come
in correspondence with the clinical diag-
nosis from the hospital on whether the pa-
tients improve or not. The final part of the
thesis focuses on functional connectivity
measures. We introduce a new functional
connectivity method based on mvIWMPE
and Mutual Information. The method is ap-
plied on EEG signals of healthy children
at rest. Using network measures, we are
able to identify regions in the brain that
are active in networks previously found
using functional magnetic resonance ima-
ging. The method is also used to study
the networks of epileptic children at seve-
ral points throughout the treatment.
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