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Résumé

Dans le cadre de la mission de surveillance radiologique de I’environnement
de I'Institut de Radioprotection et de Streté Nucléaire (IRSN), le Laboratoire
de métrologie de la radioactivité dans I'environnement (LMRE) effectue des
mesures de la radioactivité des échantillons prélevés dans 'environnement
afin d’identifier et quantifier les radionucléides, naturels et artificiels. La
radioactivité dans les échantillons de I'environnement est, entre autres tech-
niques, mesurée par spectrométrie gamma, mesure rapide, non-destructive et
multi-élémentaire. L’objectif de la these est d’améliorer les performances de
cette technique, en particulier en termes de limites de détection, en proposant
de nouvelles méthodes d’analyse, qui permettent de rendre la détection des
radionucléides plus sensible. Cette sensibilité accrue permet d’atteindre les
niveaux traces des radionucléides artificiels rencontrés dans les mesures de
routine, mais également d’avoir des mesures plus courtes, ce qui est partic-
ulierement intéressant en situation de crise.

Contexte de la these

Le contexte des mesures de la radioactivité de I’environnement par spec-
trométrie gamma est présenté dans le chapitre 2. Un spectre est la distri-
bution en fréquence des dépots d’énergie dans le détecteur due aux photons
incidents. Il est composé, pour un photon d’énergie E, d’un pic d’absorption
totale a I’énergie E, ainsi qu'un fond continu, appelé fond Compton, a plus
basse énergie. Un radionucléide pouvant émettre plusieurs photons, le spectre
individuel du radionucléide est composé de plusieurs pics et fonds associés.
Enfin, un échantillon de 'environnement contient plusieurs radionucléides
induisant un spectre complexe qui est la somme des spectres individuels des
radionucléides.

L’analyse d'un spectre gamma est habituellement basée sur 1'étude des
pics : les énergies des pics pour identifier les radionucléides et le nombre
d’événements dans les pics pour quantifier 'activité de chaque radionucléide.
Cependant, cette approche présente des limitations, car elle n’exploite que
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les informations des pics et elle ne prend pas en compte la statistique de
Poisson du processus physique de la détection. Dans le cadre de la these,
nous proposons de prendre en compte le spectre de chaque radionucléide dans
sa globalité, qui permet d’utiliser I’ensemble de I'information disponible dans
toute la gamme d’énergie, ainsi que la statistique de Poisson du modele.

Démeélange spectral

Dans le chapitre 3, nous proposons d’analyser des spectres gamma par
le démélange spectral, qui consiste a séparer un spectre gamma en spectres
individuels des radionucléides. Considérant le spectre comme un vecteur,
I’estimation des activités des radionucléides consiste a estimer les poids de
mélange associés aux signatures spectrales des radionucléides. D’un point
de vue mathématique, ce probleme peut s’écrire comme un probléme inverse
régularisé, les signatures spectrales étant connues, le démélange spectral est
d’abord étudié avec une contrainte de non-négativité.

Les expériences sur les spectres simulés démontrent que, comparé aux
estimateurs des moindres carrés, le démélange spectral basé sur la statistique
de Poisson permet d’améliorer la précision de l'estimation avec des biais
d’estimation et des incertitudes plus faibles. L’analyse d’un spectre dans sa
globalité est plus efficace que les méthodes basées sur les pics, en particulier
pour les radionucléides dont les spectres sont fortement corrélés. La méthode
présente également une amélioration de la sensibilité lors de I'analyse des
mesures d’échantillons de filtres d’aérosols, ot la méthode standard présente
toujours des difficultés pour la détection de 37Cs, un radionucléide présent
a l'état de trace dans 'environnement. Le démélange spectral permet ainsi
de diminuer le temps nécessaire a sa détection de 8 jours a 4 jours.

En pratique, 'ensemble des radionucléides présents dans un échantillon de
I’environnement n’est jamais parfaitement connu. Le démélange avec un en-
semble supposé de radionucléides plus grand ou plus petit que ceux réellement
présents peut générer des biais de l'estimation, ainsi que de fausses identi-
fications de radionucléides qui ne sont pas présents dans I’échantillon. Ceci
nécessite la sélection de modele de la combinaison linéaire des signatures spec-
trales. Pour ce faire, dans le chapitre 4, nous proposons d’estimer conjoin-
tement I’ensemble des radionucléides actifs et leur poids de mélange. Cette
approche appelée démélange spectral parcimonieux est étudiée afin de trou-
ver le plus petit ensemble de radionucléides qui permet d’expliquer le spectre
mesuré. Pour ce faire, nous proposons un nouvel algorithme OMP (Orthog-
onal Matching Pursuit) basé sur la statistique de Poisson. Cet algorithme
sélectionne séquentiellement le radionucléide qui maximise la vraisemblance
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de Poisson et estime les poids de mélange des radionucléides sélectionnés avec
I’algorithme de démélange spectral.

Nous montrons que ’algorithme du démélange spectral parcimonieux pro-
posé permet d’améliorer la précision de 'estimation en limitant les fausses
identifications et diminue les biais de l’estimation pour les radionucléides
actifs.

Utilisation métrologique du démélange spectral

Dans les chapitres 3 et 4, les études sont effectuées sur I’analyse des spec-
tres gamma par le démélange spectral. En général, 'utilisation métrologique
d’un algorithme d’analyse nécessite I'évaluation des limites caractéristiques
pour la prise de décision et 1’étalonnage du détecteur pour 'analyse quanti-
tative des résultats.

Nous nous concentrons essentiellement sur deux limites caractéristiques
dans le chapitre 5: le seuil de décision et les limites de l'intervalle de confiance.
i), Le seuil de décision (SD) permet de décider si un radionucléide est présent
ou non. Le SD associé a un certain taux de faux positif pour un radionucléide
est déterminé par un test statistique basé sur le fond équivalent estimé dans
le modele de démélange spectral. ii), Nous proposons également d’estimer
les intervalles de confiance a partir de la matrice de Fisher. La variance de
la distribution de I'estimation est approximée par l'inverse de la matrice de
Fisher. Ces approches sont évaluées avec les spectres gamma simulés, ceci
permet de valider leurs applications pour analyser les spectres de mesure.

Dans le chapitre 6, I’étalonnage est étudié pour un détecteur du labo-
ratoire en utilisant le démélange spectral. L’étalonnage en rendement de
détection et en résolution consiste a ajuster le modele de simulation pour que
les signatures spectrales simulées reproduisent les réponses expérimentales.
Le ré-étalonnage en énergie permet de corriger le décalage en énergie des sig-
natures spectrales simulées. Ces étapes d’étalonnage sont évaluées et validées
avec une source d’étalonnage dont les activités sont connues.

Les résultats obtenus pour les mesures expérimentales montrent que la
nouvelle méthode démélange spectral est plus sensible que ’analyse standard,
plus particulierement pour la détection et la quantification des radionucléides
a faible niveau.
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CHAPTER 1

Introduction

This thesis focuses on the development of analysis tools for gamma-ray
spectrometry. Involved in the radioactivity monitoring work, gamma-ray
spectrometry measurements need to be as sensitive and rapid as possible to
provide timely and reliable information to the population and the authority.
In this context, the study to improve the gamma-ray spectrum analysis has
attracted more and more attention in the scientific community. The key con-
tribution of this work is the solution it provides for the gamma-ray spectrum
analysis.

In the first part of the thesis, we thoroughly investigate the spectral un-
mixing methods for gamma-ray spectrum analysis, as well as their applica-
tions to different types of measurements. Such methods have been evaluated
with both synthetically generated data and experimental data. They present
significant advantages in the task of providing more sensitive analysis than
standard methods.

In the second part, we explore the metrological use of the investigated
spectral unmixing methods. The accurate quantitative analysis requires the
proper instrumentation calibrations and needs to cope with the standards
in radioactivity measurements. Different metrological aspects of the quan-
titative analysis have been investigated and further applied to analyze ex-
perimental measurements performed in IRSN (French Institute for Radiation
Protection and Nuclear Safety) laboratory/LMRE. The contribution of this
thesis is as follows:

e In Chapter 2, we firstly present the environment radioactivity mea-
surements with the gamma-ray spectrometry technique. Next, we in-
troduce the gamma-ray spectrometry instrumentation, including the
main components of a gamma spectrometer and specific installations
in the laboratory. To better understand the features of a gamma-ray
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spectrum (i.e., data to be analyzed), we briefly discuss the photon in-
teractions that characterize a gamma-ray spectrum. We end up with
the review of the state-of-the-art studies in the field of gamma-ray spec-
trum analysis, where we present the existing analysis methods and their
limitations.

In Chapter 3, we start by overcoming the activity estimation with spec-
tral unmixing techniques, which allows accounting for the full spec-
trum analysis of a gamma-ray spectrum. More precisely, we formulate
the problem as a regularized inverse problem, where activities appear
as mixing weights related to individual spectra (i.e., spectral signa-
tures) and the non-negativity constraint of the radionuclides’ activities
is taken into account. We investigate different approaches to solve the
underlying spectral unmixing problem:

— Standard least squares regression and re-weighted least squares
regression that can better account for the Poisson statistics.

— Poisson based spectral unmixing that takes into account the pre-
cise physical model underlying the detection process.

Their estimation performances are evaluated as follows:

— The algorithms are first applied to the experiments on gamma-
ray spectra simulations of two radioactive sources, which enables
us to compare the proposed approaches and better understand
the limitations of standard gamma-ray spectrum analysis meth-
ods. As a result, the Poisson-based full spectrum analysis presents
significant advantages with lower estimation errors and lower un-
certainties.

— Next, we further evaluate the estimation performances with realis-
tic simulations of real data, and particularly the ability to estimate
the low-level artificial radionuclides as a challenging issue in real
data analysis.

— Finally, the study on real data contains two aspects: i), assessing
the impact of the spectral signatures’ dictionary. ii), comparing
the sensibility of the Poisson-based spectral unmixing to the stan-
dard method used in the laboratory. The main conclusion that
can be drawn is that the Poisson-based spectral unmixing allows
reducing the time to detect the low-level ¥7Cs in environmental
samples from 8 days to 4 days.



While providing promising results on both simulated and real data, the
proposed Poison-based spectral unmixing analysis is however sensitive
to the spectral signatures’ dictionary, which requires the identification
of active radionuclides present in the measurement.

In Chapter 4, the identification of the spectral signatures’ dictionary
is further investigated, which amounts to finding the subset of active
radionuclides present in a gamma-ray spectrum measurement. For this
purpose, the spectral unmixing is extended to jointly estimate the sub-
set of active radionuclides and their activities, which requires adding a
model complexity penalty in the spectral unmixing.

To identify the smallest subset of active radionuclides that best explains
the measured spectrum, we investigate the spectral unmixing with a
sparsity constraint. By reviewing available approaches that enforce the
sparsity constraint in optimization problems, we propose the Orthogo-
nal Matching Pursuit (OMP) algorithm that sequentially selects active
radionuclides from a measured spectrum. However, the Poisson statis-
tics of the gamma-ray spectrum data makes the selection procedure
difficult. We propose a novel Poisson-based OMP algorithm. Such a
greedy sparse regression method sequentially selects the radionuclide
that maximizes the Poisson likelihood and stops selecting new radionu-
clides using a statistical deviance test.

Experimental results on both simulated and measured spectra are pre-
sented and compared to the standard OMP algorithm, the proposed
Poisson based OMP algorithm presents the following advantages:

— Comparing to the OMP algorithm that not fully accounts for the
Poisson statistics, the Poisson-based OMP algorithm is shown to
improve the gamma-ray spectrum analysis while limiting the false
identification of radionuclides that not present in the measure-
ment, and reducing the estimation bias of active radionuclides.

— The proposed deviance-based stopping rule is compared to other
information criteria. As a result, the deviance-based stopping rule
provides more accurate radionuclides’ identification.

The Poisson-based spectral unmixing approach for gamma-ray spec-
trum analysis is thoroughly investigated in Chapter 3 and 4. The main
focus of the second part of the thesis is the metrological use of the pro-
posed algorithms. The aim is to provide accurate quantitative analysis
of gamma-ray spectra measurements that cope with standards of the
radioactivity measurements.
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e In Chapter 5, we present the assessment of two characteristic limits:
the decision threshold and the limits of the confidence intervals. These
characteristic limits are related to statistical limits for decision making
purposes in experimental data analysis.

The chapter starts with the definitions of the characteristic limits,
where we present how these limits are related to the statistical hy-
pothesis framework. Next, we discuss the quantification of the exact
characteristic limits with Monte Carlo simulations, which can not be
used in practice due to the massive computation. Therefore, we pro-
pose alternative approaches and compare the results to those carried
out with the Monte Carlo simulations.

— The decision threshold of the Poisson-based spectral unmixing al-
gorithm is firstly investigated, we propose a statistical test-based
approach that enables accounting for the full spectrum informa-
tion.

— Next, we explored the use of Fisher information matrix to derive
the confidence intervals of the results.

The above methods are evaluated with realistic data of the routine mea-
surements, which confirms the validation of the procedures to analyze
experimental data performed in the laboratory.

e In Chapter 6, we focus on the quantitative analysis of a gamma-ray
spectrum, which depends on not only the spectrum analysis algorithm,
but also the proper calibrations of the instrument. As the standard
calibration procedures in standard peak-based analysis can not be used
in the spectral unmixing analysis, we propose novel calibration methods
that adapt to the full spectrum analysis.

The main calibration steps include the energy calibration, the resolu-
tion calibration, and the efficiency calibration. The evaluation of these
calibration steps with a standard gamma source (i.e., with known ac-
tivities) allows validating a pipeline to analyze gamma-ray spectra of
routine aerosol filter measurements performed with the same detection
system.

Finally, the calibrated detection system is applied to analyze experi-
mental data. The results show a significant improvement of the sensi-
tivity to detect low-level artificial radionuclides.
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CHAPTER 2. CONTEXT OF THE RADIOACTIVITY MEASUREMENTS WITH
6 GAMMA-RAY SPECTROMETRY

In this chapter, we introduce the basics of the gamma-ray spectrome-
try and its application to radioactivity measurements. In Section 2.1, we
present the radioactivity measurements, as well as the quantitative analysis
of radioactivity. At the end of the section, we present the gamma-ray spec-
trometry measurements in the laboratory and the procedure of typical aerosol
measurements investigated in this thesis. In Section 2.2, we present the in-
strumentation of the gamma-ray spectrometry, where we firstly present the
detection principle of different detectors and their data acquisition system.
Next, we focus on the detection mechanisms, how photons transfer energy
to electrons, and the major features of a photon spectrum, which enables
us to understand the contributions of a gamma-ray spectrum. Section 2.3
provides the studies to improve the detection limits with gamma-ray spec-
trometry. The chapter ends up with the state of the art of the gamma-ray
spectrum analysis in Section 2.4.

2.1 Environment radioactivity measurements

2.1.1 The radioactivity phenomenon

The radioactivity is the phenomenon in which a nucleus, unstable due to
an excess of protons and/or neutrons, disintegrates into another nucleus. We
begin with some basic nuclear notations:

e A chemical element is determined by its number of electrons Z (i.e.,
atomic number) related to its name and its chemical symbol. e.g., the
chemical symbol “C” for carbon that has an atomic number of Z = 6.
The elements and their corresponding symbols can be found in the
periodic table of elements, which is a tabular display of the chemical
elements arranged by atomic number (see Appendix A).

e A nuclide is characterized by the number of protons (equal to the num-
ber of electrons Z), the number of neutrons (N) and the energy state
of the nucleus. It is noted as 4X, where X is the chemical symbol, Z
is the number of protons, and A = Z + N is the mass number. e.g.,
$2C with 6 protons and 6 neutrons, usually simply noted with its mass
number 2C.

e [sotopes of a given element have the same number of protons but dif-
ferent numbers of neutrons. For instance, the nuclides 12C, '3C and 4C
are isotopes of carbon. '2C is stable, while 1*C and '*C are unstable
isotopes of carbon.
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e A radionuclide is an unstable nuclide that has excess of nuclear energy
and decays by the emission of nuclear radiation to achieve the stability

(e.g., %Co).

The disintegration of a radionuclide (called “parent”) into another nuclide
(called “daughter”) is accompanied by the emission of alpha radiation or beta
radiation. The alpha decay emits an alpha particle identical to 3He with two
protons and two neutrons. The beta decay transforms a neutron into a
proton through the emission of an electron (87), or transforms a proton into
a neutron through the emission of a positron (7).

a: 4X = 475Y + iHe
B X =4 Y+e +7
Bt X =4 Y +et +v

The daughter nuclide can be created in its fundamental energy level, but
more often in an excited level. The decay is thus followed by the deexcita-
tion of the daughter radionuclide accompanied by the emission of a photon
(i.e., electromagnetic radiation) called “gamma-ray”. Some other physical
phenomena lead to the emission of other photons, called “X -ray”. The dif-
ference between gamma-ray and X-ray is that they are of different origin,
while the gamma-ray originates from the deexcitation of the nucleus and the
X-ray originates from the deexcitation of the atom from an excited level to
a level of lower energy. The emitted photon energy is equal to the difference
between the energies of the initial excited state and the final state.

The photon energy according to the emission of a photon is:

e

E
A

(2.1)

where h is the Planck constant, ¢ is the speed of light in vacuum, and A
is the wavelength of the photon.
The commonly used unit of photon energy is the electronvolt (eV):

leV = 1.602176634 x 10177

2.1.2 Why measuring radioactivity in the environment ?

Environment radioactivity measurements, which are performed in world-
wide laboratories, play a central role in the field of radiation protection.
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Within the French Institute for Radiation Protection and Nuclear Safety
(IRSN), the Laboratory of Environment Radioactivity Metrology (LMRE) is
in charge of environmental radioactivity measurements for several purposes:

e Monitoring the environmental radioactivity ! in France to ensure that
the activity level in the environment is consistent with regular radioac-
tive releases from industrial and human activities.

e Rapid detection and rapid characterization of sources under emergency
conditions, such as increasing radioactivity levels due to an incident or
an accident with radioactive releases.

e Radioecology studies for a better understanding of the behavior and
transfer mechanisms of the radionuclides in the environment, e.g., mod-
eling the dispersion of radionuclides in the environment can help us to
predict the atmospheric dispersion of artificial radionuclides in case of
incident or accident. The transfer model of radionuclides in the envi-
ronment can also be used to assess the human health effects resulting
from the radioactive contamination in the environment.

For instance, the monitoring of activity concentration of 37Cs (Half-life
= 30.17 years) in the air measured in the environment in France is shown
in Figure 2.1. It is an artificial radionuclide resulting mainly from post-
atmospheric nuclear weapon tests and the Chernobyl accident.

Measuring radioactivity in the environment requires tackling the quantifi-
cation of the radionuclides’ activity in environmental samples, e.g., aerosols,
sediments, biological samples (fauna and flora), etc. It is a challenging prob-
lem since a given radionuclide can occur more than one mode of decay and
more than one radionuclide can be present in the sample to be measured.
Next, we will present the quantitative analysis of gamma-ray emitting ra-
dionuclides.

2.1.3 Quantitative analysis with gamma-ray spectrometry

Modeling radioactivity measurements first necessitates accounting for the
time evolution of the radioactivity phenomenon. The radioactive decay pro-

cess can be described by:

dN
— = —=A\N 2.2

where N is the number of radioactive nuclei, A (s7!) is the decay constant
that is specific for each radionuclide.

https://www.mesure-radioactivite.fr
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Figure 2.1 — Activity concentration of *’Cs in the air measured in France
(1958-2018).

The activity (A) of a radionuclide at a given time is defined as the number
of disintegrations per unit time:

A=AN (2.3)

where the unit of activity (A) is becquerel, 1 becquerel (Bq) = 1 dis-
integration per second. The well-known exponential decay equation is the

solution of Eq.(2.2):
N(t) = N(0)e ™ (2.4)

It describes the number of remaining nuclei at time ¢ and also holds for
the activity:

In(2)
A(t) = A(0)e™ = A(0)e T2 (2.5)

while T}, is the half-life of the radionuclide, e.g., 2.7 years for ®°Co, 53
days for "Be, 26.9 min for 2“Pb (the half-life of radionuclides mentioned in
this thesis can be found in Appendix A).

Many techniques are involved in the radioactivity measurement, such as
alpha spectrometry, liquid scintillation and mass spectrometry. Gamma-
ray spectrometry is a widely used technique to measure gamma-ray emitting
radionuclides’ activities, which allows performing direct, non-destructive, and
multi-elementary measurements.

The gamma-ray spectrometry determines the activities of radionuclides
by measuring the number of emitted photons. More precisely, the number of
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emitted photons of different energies is directly related to the radionuclide’s
activity by their emission probabilities, also called intensities. The emission
probability of a photon energy is defined as the number of emitted photons
of this energy per 100 disintegrations.

The decay process of each radionuclide is summarized by its decay scheme,
which contains its “daughter nuclide” and the « or [ decay, as well as the
gamma-ray emissions. Taking the example of %°Co for which the simplified
decay scheme is shown in Figure 2.2.%.

23 Co 100%
U—\\ 52711 (8) a
‘ & (keV)
\3_ & 2505.748
o
o
X
o
1 y & 1332.508
- 0 Stale
60w &
2 NI
Q = 2823.07 keV Threshold
1201%

Figure 2.2 — Simplified decay scheme of %°Co.

The %°Co disintegrates by 7! emission to excited levels of %°Ni, mainly
to the 2505.7 keV energy level (99.88 % of the disintegrations of °Co). As
illustrated in the decay scheme, this decay is mainly accompanied by the
emission of two photons with their according intensities:

e Photon of 1173 keV due to the deexcitation of the daughter nuclide
SONi from its excited level at 2505.7 keV to another level at 1332.5 keV,
intensity = 99.85 %.

e Photon of 1332.5 keV due to the deexcitation of °Ni from the excited
level 1332.5 keV to its fundamental level, intensity = 99.9826 %.

http://www.nucleide.org/Laraweb/index.php
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In general, for a given radionuclide, the number of emitted photons per
second of an energy level, noted N, with its according intensity, noted I,
enables calculating the activity of the radionuclide:

N (number of emitted photons of energy E/s)

Activity (Bq) = (2.6)

I (intensity of energy E)

In this context, measuring an energy spectrum of a gamma-emitting
source allows the identification and the quantification of radionuclides. For
instance, the detection of gamma rays of 1173 keV and 1332.5 keV in such
an energy spectrum reveals the presence of ®Co in the sample, and the num-
ber of photons (1173 keV and 1332.5 keV) observed in the spectrum related
to the number of emitted photons by the detection efficiency, provides the
activity of %°Co in becquerel (Bq).

2.1.4 Gamma-ray spectrometry measurements in the laboratory

In the framework of radioactivity measurements, different environmen-
tal samples are measured in IRSN/LMRE. The samples of different origins,
such as waters, aerosol filters, mineral samples (soils, sediments), and biologi-
cal samples (fauna and flora) are collected, prepared (e.g., dried, freeze-dried,
evaporated, calcined, ground, sieved, homogenized) and packed into cylindri-
cal polyethylene containers. Next, we measure the activities of radionuclides
in a sample (i.e., gamma-ray and X-ray source), which are:

e Naturally occurring radionuclides including cosmic ray induced radionu-
clides (e.g., "Be, 22Na) and telluric radiation (e.g., *°K, 210Pb, 228Ac).

e Artificial radionuclides that are:

— present at trace levels in the environment due to the normal dis-
charges of the nuclear facilities (e.g., I, %°Co, 1" Ag), and the
global fallout due to the atmospheric nuclear weapon tests and
the Chernobyl accident (e.g., 1¥7Cs).

— potentially released in case of incident or accident (e.g., 1311, 134Cs).

My investigations focused mainly on aerosol filter measurements intend-
ing to detect releases due to low-magnitude incident or accident with higher
magnitude but farther away. This is particularly interesting as the first con-
tamination vector for a release is the air transfer. The main steps to measure
aerosol samples in the laboratory are described in Figure 2.3.

In the analysis of environmental radioactivity using gamma-ray spectrom-
etry, the activity estimation of low-level radionuclides is particularly required
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Figure 2.3 — Schema of the aerosol filter measurement.

by the rapid detection and the rapid characterization of sources under emer-
gency conditions. Moreover, the results need to be more accurate and sensi-
tive for the environmental radioactivity monitoring work due to the decreas-
ing levels of artificial radionuclides over the past years. e.g., as shown in
Figure 2.1, the activity concentration of 37Cs in the air in France is lower
than 1, even 0.1, uBq/m?. Despite the high sampled volume around 100 000
m3, the activity to be measured is around a few mBq and the measurement
of 137Cs thus requires a long counting time.

2.2 Description of gamma-ray spectra

2.2.1 Detectors and data acquisition

The gamma-ray spectrometry provides the quantitative analysis of ra-
dionuclides from an energy spectrum of gamma-rays or X-rays. The mea-
surements can be performed with different types of detectors: semi-conductor
detectors e.g., High Purity Germanium detectors (HPGe), and the scintilla-
tion detectors e.g., Sodium Iodide (thallium doped) Nal(T1) or plastic. The
detector is the core of a gamma-ray spectrometry system, in which the pho-
tons interact with the material of the detector and transfer their energies to
electrons. For HPGe detectors, the energy deposited in the detector creates
electron-hole pairs in the detector. The electrons are then collected thanks
to an applied electric field. A typical gamma-ray spectrometry system is
illustrated in Figure 2.4 (see [Knoll, 2010] for details).

The data acquisition starts by transferring the incident photon energy to
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Figure 2.4 — Block diagram of the data acquisition for a gamma-ray detection
system.

electrons through the detector material. Next, the electric pulse provided
by the detector is amplified and shaped by a preamplifier and an amplifier.
While the pulse height is proportional to the deposited energy, the amplifier
gain is adjusted to cover the energy range of the photon energies. The signal is
subsequently converted by an analog-digital converter (ADC), and finally the
multichannel analyzer (MCA) collects pulses and sorts them by pulse height
in a fixed number of channels, e.g., 16384 channels covering pulse height from
0 up to 12 Volt. The measured spectrum is therefore the histogram of the
number of detected events as a function of the energy that is deposited by
the gamma-ray or X-ray in the detector and is called an “energy spectrum”.
The calibration that relates the channel numbers to deposited energy bins
will be investigated in Chapter 6.

2.2.2 Photon interactions with matter

For a better understanding of a gamma-ray spectrum, we briefly describe
the main interactions of photons:

e Photoelectric effect: the incident photon (gamma-ray or X-ray) dis-
appears by transferring its energy to an electron of the matter.

e Compton scattering: the incident photon scatters on an electron
by transferring part of its energy to this electron. The energy of the
scattered photon is equal to the difference between the initial energy
and the energy of the scattered electron, and depends on the scattering
angle.
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e Pair production: if the photon energy is higher than 1022 keV (i.e.,
twice the mass energy of the electron 511 keV), the incident photon
disappears by creating an electron-positron pair. The electron transfers
its whole energy to the matter. After losing almost its whole energy by
ionization, the positron is annihilated in the contact of a free electron,
by emitting two 511 keV photons.

Depending on the probability of the occurrence of the interactions men-
tioned above, the gamma-ray spectrum of a mono-energetic source can pro-
duce spectral features described in Table 2.1. The spectra produced by dif-
ferent photons are shown in Figure 2.5 respectively.

Spectral feature Energy range Interaction
Full-energy peak E, Photoelectric effect
Compton continuum < E, Compton scattering
Annihilation peak 511 keV Pair production
Pair production: one or two
Double/single escape | E, — 1022keV annihilation gamma-rays
peaks E, —511keV escapes from the detector

without interaction.

Table 2.1 — Spectral features due to different interactions of gamma-rays or
X-rays with matter (energy = E,,).

0 full-energy peak a full-energy peak
4
» " \Ii—Sll keV  E,—1022 keV
o Compton continuum 511keV
e Compton continuum

Energy Energy

(a) spectrum of photons at E, < 1022keV  (b) spectrum of photons at £, > 1022keV’

Figure 2.5 — gamma-ray spectra illustration of monoenergetic source photons.
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2.2.3 Gamma-ray spectrum contributions

A measured gamma-ray spectrum can be described as follows:

e As described in Figure 2.5, a photon spectrum is characterized by its
energy level (i.e., E, < 1022 keV or E, > 1022 keV).

e A radionuclide can emit photons with different energies depending on
its decay scheme thus leading to a spectrum with several peaks and
associated continua.

e The measured gamma-ray spectrum of a source containing several ra-
dionuclides thus consists of individual spectra of radionuclides.

Meanwhile, a spectrum of the background radiation contributes to the
measured spectrum, since gamma-ray emitting radionuclides in the environ-
ment can be simultaneously detected. This measure of radiation present in
the environment but not originating from the sample is known as “back-
ground radiation”.

Finally, as illustrated in Figure 2.6, a measured gamma-ray spectrum
is the sum of individual spectra of each radionuclide and the background
spectrum.

10*

5000 10000 15000 0 5000 10600 15000 ) 5000 10000 15000
Channel number Channel number Channel number

Measured spectrum Individual spectra of radionuclides Background spectrum

Figure 2.6 — Illustration of gamma-ray spectrum contributions with simulated
spectra of HPGe detector.

As a contribution of the measured spectrum, the background spectrum
need to be considered in the spectrum analysis. To perform a good estimation
of the background spectrum, in the laboratory, the background spectrum is
measured every two months for each detector. The radionuclides commonly
present in the background are 4K, 208T1, 210ph, 212Bj, 212pp, 2MBi, 24pb,
28Ac, 23Th, and #»U. Figure 2.7 shows a typical background spectrum
measured in the laboratory with some peaks illustrated in colors.
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Figure 2.7 — Example of background spectrum measurement.

2.3 Improvement of the detection limits with gamma-
ray spectrometry

Involved in the rapid detection of radionuclides, investigations have been
carried out in the laboratory to improve the detection limits (i.e, the smallest
value that can be detected with high reliability):

e On the one hand, developments have been performed in the laboratory
with the aim of increasing the signal in the measured spectrum, such as
using High volume air samplers to increase the amount of matter to be
measured, preparing the samples into small containers (e.g., 10 mL) to
increase the detection efficiency (i.e., ratio of the number of detected
counts to the number of emitted photons).

e On the other hand, the reduction of the background radiation is an
important issue so as to reduce this contribution in the final measured
gamma-ray spectrum. As background radiation originates from differ-
ent sources, different measures for the background radiation reduction
are taken into account in the laboratory (see Table 2.2).

While the current detection system provides good performance in the
task of low-level gamma-ray spectrum analysis, this thesis aims to develop
spectrum analysis tools to improve the accuracy and the sensitivity of the
activity determination.
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Origin Solution
Detector low-background material
Telluric radiation Shielded room, Individual lead shield

Cosmic radiation Underground facilities, Anti-cosmic device

Radon Ventilation system, Gaseous nitrogen flushing

Table 2.2 — Different aspects for background radiation reduction used in
LMRE/IRSN.

2.4 State of the art of gamma-ray spectrum analysis

In the previous sections, we introduced the context of gamma-ray spec-
trum measurements. Thanks to the spectral features of radionuclides char-
acterized by their decay schemes, a measured gamma-ray spectrum allows
identifying and quantifying radionuclides. In this section, we review the
state of the art of the gamma-ray spectrum analysis methods.

2.4.1 Peak-based gamma-ray spectrum analysis

The peak-based method (e.g., Genie 2000 software from Canberra ') is
conventionally used in the gamma-ray spectrum analysis, where radionu-
clides are identified thanks to their characteristic photon energy peaks and
quantified from the observed counts in the peaks, which are proportional to
the radionuclides’ activities. This approach is usually based on Region of
Interest (ROI) (see simplified illustration in 2.8 and [Gilmore, 2008] for more
details).

In brief, a radionuclide is firstly identified from its characteristic photon
energy peaks. Then the method estimates the background counts n, (i.e.,
Continua of radionuclides) from the average of two regions (see Figure 2.8)
nearby with:

np Np1 + Mp2) (2.7)

_ P
_2b(

The net counts ny can be then calculated from:
nN = Ng — Ny — NN (2.8)

where the gross number in the ROI noted n,, (i.e., the total counts in the
ROI), and nyq is the net counts of the background radiation spectrum to be
subtracted if the peak is also detected in the background radiation spectrum.

"https://www.mirion.com/products/genie-2000-gamma-analysis-software
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Figure 2.8 — A simple model of the ROI analysis to calculate the net counts
ny in the peak region (purple).

The number of net counts in the peak can be related to the radionuclide’s
activity with:
nn

(2.9)

where € is the detector efficiency (i.e., ratio of the number of detected
counts to the number of emitted photons), I is the emission intensity of this
photon, and ¢ is the counting time of the measurement.

The peak-based analysis has limited performance. Firstly, the calculation
of net counts implicitly assumes that the counting distribution is approxi-
mately Gaussian. However, this is not valid at low statistics since radioactive
sources emit photons randomly according to a Poisson process. Secondly, a
gamma-ray spectrum contains several radionuclides. The interference be-
tween individual spectra is difficult to handle with peak-based analysis (i.e.,
the overlapping of spectra), which can be caused by the following reasons:

e A gamma-ray spectra usually contains several radionuclides that can
emit photons of similar energies, which leads to very close peaks or
indistinguishable peak sum due to the detector resolution. In this case,
the quantification of radionuclides only based on the peak region is not
optimal.

e When the peak of a low-level radionuclide is located under the continua
of other radionuclides, the noise in the peak region would hamper the
estimation accuracy.

e For detectors with poor resolution (e.g., Nal detectors), the limitations
in the aforementioned two points are more significant.
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The peak-based analysis has been further extended to account for the ex-
act Poisson statistics of the measurements in [Kirkpatrick and Young, 2009].
In this paper, the authors show that the ROI analysis taking into account
the Poisson statistics provides improved accuracy comparing to traditional
Gaussian methods. However, the analysis only relies on the photon peaks.
It is of interest to further account for the entire spectrum that provides more
information.

2.4.2 Full spectrum analysis

To overcome the limitation of the gamma-ray spectrum analysis due to
the overlapping of individual spectra of radionuclides, the problem can be
addressed by the full spectrum analysis. This approach aims at determining
the radionuclides’ activities by using the observed data in all the energy range
of the measured spectrum, including the full energy peaks and the Compton
continuum of each radionuclide.

Full spectrum analysis (FSA) has been studied in [Hendriks et al., 2001],
[Caciolli et al., 2012], [Jeong et al., 2014] and their references. In these papers,
the FSA is applied to analyze different gamma-ray spectra measurements, it
addresses the analysis of a spectrum of M channels, Vi € [1,...M], while the
linear mixing of individual spectra can be modeled with:

N
7=1

where y; is the sum of the standard spectra (¢, ..., ¢;) of radionuclides
multiplied by their activity concentrations a; and the background spectrum
b; in the i channel, and N is the number of radionuclides.

The gamma-ray spectra detection follows the Poisson distribution:

x; ~ Poisson (y;) (2.11)

where z; is the counts observed in the i*" channel.
The solution of this Poisson regression problem is the least squares weighted
by the variance:

= (@i — yz‘)z
min » = (2.12)
=1 t

while the variance of the Poisson distribution is given by o? = y;, which
is the unknown linear mixing model.
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The investigations of FSA make use of the weighted least squares method
that determines the activities of radionuclides by minimizing the least squares
errors weighted by the observed data (i.e., measured spectrum).

min e .
i=1 Li

These studies show that using the full spectrum information provides
better counting statistics thus a better estimation accuracy. However, this
approach uses the least squares weighted by the measured spectrum is not
fully adapted to account for the Poisson statistics of the data, particularly
when the mean/ variance value y; is small.

2.4.3 Machine learning algorithm in gamma-ray spectrum analy-
sis

Other contributions of the activity estimation in the field of machine
learning algorithms were also applied to gamma-ray spectral analysis.

In [Yoshida et al., 2002], an artificial neural network (ANN) algorithm
is applied to identify radionuclides from gamma-ray spectra by using peak
energy data. The performance is however limited when the peaks are over-
lapped to the Compton continua of other radionuclides.

In [Sharma et al., 2012], authors have presented the application of ma-
chine learning to the anomaly detection in gamma-ray spectra. The purpose
in this paper is to apply a supervised classification framework to measured
gamma-ray spectra by labeling them with normal or certain class of anomaly
events.

However, the stated approaches based on neural networks addresses the
gamma-ray spectrum analysis problem with measured spectra, which do not
allow to precisely account the physical model underlying the detection.

2.4.4 Conclusion

The stated gamma-ray spectrum analysis methods and their limitation
can be summarized in Table 2.3.
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Method Limitations

Standard peak-based analysis | inexact Gaussian statistics approximation &
interference between individual spectra

Full spectrum analysis based not fully adapted for the Poisson statistics
on least squares method

Machine learning algorithms Not accounting for the physical model

Table 2.3 — Gamma-ray spectrum analysis methods and their limitations.

These studies reveal that the standard peak-based gamma-ray spectrum
analysis can be improved by accounting for the Poisson statistics or the full
spectrum analysis. This thesis addresses a more systematic study on the
development of alternative spectrum analysis tools, from the mathematical
modeling of the gamma-ray detection physics to the metrological aspects for
the activity determination in the real data analysis.
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From a general perspective, the problem of identifying and estimating the
activity of radionuclides from gamma-ray spectra can be tackled as a tradi-
tional inverse problem in signal processing. While spectral unmixing is now
standard in other fields of research, such as remote sensing [Bioucas-Dias
et al., 2012], [Keshava and Mustard, 2002], it has seldom been investigated
in gamma-ray data analysis. This chapter first reports on the development
of algorithms for spectral unmixing, allowing to carefully account for the un-
derlying mixing model and the statistics of the measure. Next, we apply the
spectral unmixing algorithms to gamma-ray spectra and assess their perfor-
mances to analyze both simulated and experimental data. The contribution
of this chapter is as follows:

e The problem of estimating radionuclides’ activities with spectral un-
mixing is formulated in section 3.1. The proposed approach tackles
the unmixing problem as a regularized linear inverse problem involving
Poisson-distributed measurements.

e Section 3.2 explores the use of unmixing algorithms for activity estima-
tion. To that end, we propose a novel regularized maximum Poisson
likelihood estimator. Meanwhile, algorithms based on least squares
estimators are also presented for a comparison purpose.

e To evaluate the proposed spectral unmixing approaches, we first in-
vestigate the application of spectral unmixing to synthetic data (i.e.,
simulated gamma-ray spectra).

— In contrast to standard unmixing problems that involve additive
Gaussian noise, the Poisson nature of the measurements’ statistics
makes the noise highly dependent on the actual mixing. Therefore,
the ability to precisely estimate the mixing weight of a given ra-
dionuclide will strongly depend on the others’ contributions. We
evaluate this impact in Section 3.3 with simulated gamma-ray
spectra that contain two radioactive sources in both the HPGe
detector and Nal detector settings.

— Next, we focus on realistic data of HPGe gamma-ray measure-
ments in Section 3.4, where simulations with realistic activities of
radionuclides are analyzed with the proposed algorithms to assess
the ability to analyze real data.

e Experimental results on real spectra are presented in Section 3.5, where
the implementation of spectral unmixing algorithms is assessed with
sequential data of an aerosol sample measured with HPGe detector.
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e Section 3.6 provides conclusions and open problems of this work.

3.1 From statistical modeling to an optimization prob-
lem

As we have seen in Chapter 2, a measured gamma-ray spectrum is the
sum of individual spectra of radionuclides and the background spectrum. To
take into account the full spectral information, we propose to make use of
the spectral unmixing, which can be regarded as an inverse problem, where
the measured spectrum is composed of M channels:

r = [1’1, l’M]

For Vi € [1, ..., M|, the Poisson process of radioactive decay leads to model

the problem as:
x; ~ Poisson([®al; + b;) (3.1)

The spectral signatures of each radionuclide are denoted by ® = [¢, ...¢ ]
and their mixing weights by @ = [ay, ...ay|. The scalar N is the number of
radionuclides. [®a]; is the total number of counts in the i channel. Sim-
ilarly, b; stands for the counts number of background spectrum in the i
channel. The problem is graphically represented in Figure 3.1 in its matrix
formulation.

M

- HHEEEN

Figure 3.1 — Illustration of spectral unmixing model in matrix form.

Spectral unmixing therefore requires finding the mixing weights a. These
mixing weights are directly proportional to the activities of radionuclides.
The observed data can be generally written in the form of:

r=Pa+b+n (3.2)
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In this chapter, we consider that the spectral signatures ® and the back-
ground b are known in beforehand. The estimation of the mixing weights
a from the measured spectrum a can be addressed by minimizing some dis-
tance (i.e., data error associated to noise, noted n) between the data & and
the model ®a + b.

The activity estimation can be therefore viewed as an inverse problem
that minimizes an objective function, in which the error term m is data
dependent in the Poisson statistics model. In such context, to account for
the precise Poisson statistics of the spectroscopic measurement, we make use
of an estimator that maximizes the likelihood related to the Poisson statistics.
In this setting, the probability to observe a given number of counts z; in the
i'" channel is given by:

Aixief)\i

P <XZ- =

where \; = [®a]; + b;. Thanks to the statistical independence of the
channels, the joint probability or likelihood for the different channels is then
given by:

P (X —alfa+b) - [[ 2 (3.4)
, x;!

Maximizing the likelihood is then equivalent to minimizing the neg-log-
likelihood, which leads to the following Poisson statistics-based activity esti-
mator:

Qpoisson € argmin Pa + b — x © log (Pa + b) (3.5)

where ® is the Hadamard product. This optimization problem can be
addressed as a generic inverse problem ([Bertero and Bocacci, 1998]) of the

form:
a € argmin f(a) + g(a) (3.6)

where the objective function consists of two terms:

e f(a): data fidelity term related to the minimization of data error (e.g.,
fla)=®a+b—x o (Pa+b) for described Poisson-estimator).

e g(a): regularization term, which penalizes the solution of @ with some
prior information.

More generally, the problem can be formulated as a convex optimization
problem of the form:

a € argmin f(a) + gi1(a) + ... + gn(a) (3.7)

a
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where g;(a), Vi € [1,...n] for different regularization terms. In the gamma-
ray spectrum analysis, we can impose physical constraints in the minimiza-
tion problem, such as the non-negativity of activities and the number of ac-
tive radionuclides present in the measurement. The solution of @ can also be
penalized by data-driven constraints extracted from an archive of measure-
ments, for instance, the interval of radionuclides activities that are commonly
present.

3.2 Spectral unmixing algorithms

In the gamma-ray spectrum problem formulation, the mixing weights a
is an array with non-negative entries. We firstly focus on overcoming the
optimization problem by adding the non-negativity constraint.

a € argmin f(a) + i.q>0 (3.8)

a

where i.q>0 is the characteristic function of the convex set (i.e. non-
negative orthant) {a > 0}. It is precisely defined as follows:

0,if a >0
i.azgz{ na= (3.9)

00, otherwise

3.2.1 Least squares unmixing algorithm

A classical least squares (LS) approach consists in finding the solution
a that minimizes the least squares error. In the current unmixing problem,
this can be recast as:

1
ars € argmin§||<1>a+b—ac||2+i.azo (3.10)

We tackle this optimization problem with Forward-Backward Splitting
(FBS) algorithm ([Combettes and Wajs, 2006]). An accelerated version of
the FBS algorithm coined FISTA [Beck and Teboulle, 2009] is used and
summarized in Algorithm 1. (Details can be found in Appendix B). In the
algorithm:

e the gradient of the data fidelity term f(a) = ||®a + b — |* is:

Vf(a) = ®"(Pa+b—x) (3.11)



28 CHAPTER 3. SPECTRAL UNMIXING

e the proximal operator of the non-negativity constraint Eq.(3.9) is de-
fined as the orthogonal projection onto the non-negative orthant:

a, otherwise

prox, _ = {0’ ifa<0 (3.12)

The algorithm is guaranteed to converge when the gradient step v <
1/||®T®||,. In practice, the algorithm stops when the relative variation of a
between two consecutive iterations is lower than 10712,

Algorithm 1 Pseudocode of FISTA with constant stepsize

Input:
Fix the step size 0 < v < 1/||®T®||,

Initialization:
Yy = a), tay =1

. a —Q (1. _ _
while 1e®=2¢-vll o 1p-12 4
lag—nll

am = prox ;. (yu — 1@ (Pyw +b—x))

/14 (1) 2

tk+1) = 5

Yk+1) = Ak) + (
end while

t(k+1)

From a statistical perspective, the least squares approach is equivalent
to a maximum likelihood estimate assuming that the underlying noise is
additive, white and Gaussian: n ~ N (0,0%). However, because of the
Poisson statistics of the spectroscopic measurement, the noise variance is data
dependent. It is well known that the variance of the Poisson distribution is
equal to the expected value, which leads to o2 = [®al]; +b;, for Vi € [1, ..., M].
The weighted least squares (WLS) is indeed the generic form of the least
squares, which leads to model the minimization of the WLS error related to
the Poisson statistics model with:

awrs € argmin (Pa +b—x) W (®a +b— ) + i..50 (3.13)

a
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where W is a diagonal matrix with diagonal elements specified by ®a-+b:

[<I>a]1 + bl
[(I)CL]Q + bg

[(DCL]M + bM

However, the linear mixing model ®a + b can not be known in advance.
Previous studies (e.g., Full spectrum analysis (FSA) reviewed in Chapter 2)
considers W = diag (x) (i.e., the measured spectrum), which is not fully
adapted to account for the Poisson statistics.

We further propose to tackle this optimization problem with iterative
estimation of the true model with an iterative re-weighted least squares al-
gorithm. More precisely, as described in Algorithm 2, the main step of the
algorithm consists in estimating the mixing weights, noted a and updating
the weights with the estimated model: ®a + b.

Each estimation step makes application of the aforementioned FISTA
algorithm by considering the gradient of the data fidelity term:

Vf(a)=®"W(®a+b-x) (3.14)

Algorithm 2 Pseudo code of iterative re-weighted squares algorithm

Initialization:
W o) = ®ays + b, where a;, is the least squares solution.

Estimate the mixing weights — a o)
for k < k40 do

Update: W(k+1) = (I)d(k) +b
Re-estimation with W 41y — @41
end for

While the iterative re-weighted least squares algorithm allows better ac-
counting for the Poisson statistics, the algorithm still leads to estimation bias
of the true model. An approach that takes into account the actual Poisson
maximum likelihood estimation is therefore further required.
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3.2.2 Poisson statistics-based unmixing algorithms

Along with the non-negativity penalization, the Poisson statistics-based
estimator can be formulated as follows:

Qpoisson € argmin ®a + b — x © log (Pa + b) + i.q4>0 (3.15)

We now present two algorithms to solve this optimization problem, Mul-
tiplicative update algorithm [Lee and Seung, 2001] and the Chambolle-Pock
algorithm [Chambolle and Pock, 2011].

Multiplicative update algorithm

The multiplicative update rule with respect to the KL (Kullback-Leibler)
divergence loss enables solving the non-negativity regularized Poisson based
optimization problem. The multiplicative update algorithm introduced in
[Lee and Seung, 2001] is applied to gamma-ray spectral unmixing in [Paradis
et al., 2020], which is summarized in Algorithm 3.

Algorithm 3 Pseudo code of spectral unmixing with multiplicative update
algorithm

Input:
Measured spectrum: x

Spectral signatures: ® and Background: b
while stopping condition not achieved do

Update Vj = [1,..., N|:

M
gD — ) > i1 P/ MY

M
’ ’ Zi:l q)ij

with: M* = ®a* + b
end while

This algorithm addresses the non-negativity regularized Poisson estima-
tor. However, the convergence can be slow for low statistic regimes. More-
over, it is less generic due to the difficulty of adding other regularization
terms, whereas the proximal algorithms can provide solutions with simplic-
ity. Therefore, we investigate the Primal-dual proximal algorithm for solving
the minimization problem in Eq.(3.15).
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Primal-dual proximal algorithm

We propose to solve the optimization problem in Eq.(3.15) with primal-
dual proximal algorithms such as the one introduced by Chambolle and Pock
in [Chambolle and Pock, 2011] (Details can be found in Appendix B). The
pseudo-code of the Chambolle-Pock algorithm is given in Algorithm 4, in
which the proximal operator of the joint Poisson distribution of the measure-
ment is:

y+b—p+1/(p—y—b)+4px
prox,¢(y) = \/ 5 —-b (3.16)

where & and b stand for the measured spectrum and the background
spectrum.

The convergence of the algorithm is ensured with o7 < 1/||®*®||, and
# = 1. The step parameters ¢ and 7 are chosen with ¢ with respect to
the total number of counts in the measured spectrum and 7 = 0.9/(0 *
|®7®||5) for a better convergence rate. Similarly to the FISTA algorithm,
the algorithm stops when the relative variation of a between two consecutive
iterations is lower than 10712,

Algorithm 4 Pseudocode of Chambolle-Pock algorithm

Input:
Fix the parameters: 0,7 > 0 and o7 < 1/|®7 ®||,.

Initialization:
a() = a(), wo) = Pay)

. a —Q(f_ _
while le®=ee-vl > 10" do
lag—nll

v = Uy + oPay

U(r1) =V — 0 PIOX (10 (2)

1) = Prox ;. (@) = 78 gy
Q(kt1) = Q1) T 0(@wr1) — aw))

end while
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3.3 Experiments on the combination of two radioactive
sources

To assess the impact of the Compton contribution of a given radionuclide
on the determination of another radionuclide, we focus on simulations of
simple mixing scenarios that are composed of two sources. The experiments
are performed for simulated spectra of HPGe detector and Nal detector,
where the spectral signatures used in the simulation process are:

e For HPGe detector, simulations performed with the Monte Carlo N-
particle (MCNP) Transport Code, a software package for simulating
radiation transport developed by the Los Alamos National Laboratory
[Briesmeister, 2000]. We make use of the MCNPX (MCNP eXtended),
which simulates the gamma-ray spectrum of sources that emits pho-
tons at one or more specific energies with given weights. It provides
simulated spectra consisting of given energy peaks and the associated
Compton continua.

e For Nal detector, measured spectra with a 3”x3” Nal(T1) detector with-
out shielding using point sources placed at a distance of 1 m (see details
in [Paradis et al., 2020]).

3.3.1 Experiments on simulations of HPGe detector

We consider the mixture of two radioactive sources at 500 keV, noted ¢,
and 200 keV, noted ¢,. The measured spectra are defined as follows:

x ~ Poisson (¢p,a1 + ¢yas + b) (3.17)

where ¢, and ¢5 are simulated with MCNPX, a; and a, stand for the
mixing weights of the sources. b is the spectrum of the background radiation.

As shown in Figure 3.2, we generate simulations as follows: a; for the
source with energy peak at 500 keV kept fixed and we change as for the one
at 200 keV. For each linear combination level, we simulate 100 gamma-ray
spectra by random Poisson process as described in Eq.(3.17). Experiments
are carried out for these simulated spectra with:

e Poisson unmixing using Chambolle-Pock algorithm. To further high-
light how much full spectrum knowledge can help improving unmixing,
we further consider two distinct implementations:

— a full spectrum based version
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— an alternative that only considers region-of-interest (i.e., peak re-
gion of the two sources)

e Least squares (LS) spectral unmixing using FISTA algorithm.

e Weighted least squares (WLS) spectral unmixing using Iterative re-
weighted least squares (the main estimation step uses the FISTA algo-

rithm).
10° — source 500 keV
—— source 200 keV
; —— background
2 10% 1 ~_,\ simulated spectrum
E 10V - J J—LLL'LJ'\‘MA-LAQ.L_‘M‘
51072
10~

0 2500 5000 7500 10000 12500 15000
Channel number
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