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Résumé

Dans le cadre de la mission de surveillance radiologique de l’environnement
de l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN), le Laboratoire
de métrologie de la radioactivité dans l’environnement (LMRE) effectue des
mesures de la radioactivité des échantillons prélevés dans l’environnement
afin d’identifier et quantifier les radionucléides, naturels et artificiels. La
radioactivité dans les échantillons de l’environnement est, entre autres tech-
niques, mesurée par spectrométrie gamma, mesure rapide, non-destructive et
multi-élémentaire. L’objectif de la thèse est d’améliorer les performances de
cette technique, en particulier en termes de limites de détection, en proposant
de nouvelles méthodes d’analyse, qui permettent de rendre la détection des
radionucléides plus sensible. Cette sensibilité accrue permet d’atteindre les
niveaux traces des radionucléides artificiels rencontrés dans les mesures de
routine, mais également d’avoir des mesures plus courtes, ce qui est partic-
ulièrement intéressant en situation de crise.

Contexte de la thèse

Le contexte des mesures de la radioactivité de l’environnement par spec-
trométrie gamma est présenté dans le chapitre 2. Un spectre est la distri-
bution en fréquence des dépôts d’énergie dans le détecteur due aux photons
incidents. Il est composé, pour un photon d’énergie E, d’un pic d’absorption
totale à l’énergie E, ainsi qu’un fond continu, appelé fond Compton, à plus
basse énergie. Un radionucléide pouvant émettre plusieurs photons, le spectre
individuel du radionucléide est composé de plusieurs pics et fonds associés.
Enfin, un échantillon de l’environnement contient plusieurs radionucléides
induisant un spectre complexe qui est la somme des spectres individuels des
radionucléides.

L’analyse d’un spectre gamma est habituellement basée sur l’étude des
pics : les énergies des pics pour identifier les radionucléides et le nombre
d’événements dans les pics pour quantifier l’activité de chaque radionucléide.
Cependant, cette approche présente des limitations, car elle n’exploite que
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les informations des pics et elle ne prend pas en compte la statistique de
Poisson du processus physique de la détection. Dans le cadre de la thèse,
nous proposons de prendre en compte le spectre de chaque radionucléide dans
sa globalité, qui permet d’utiliser l’ensemble de l’information disponible dans
toute la gamme d’énergie, ainsi que la statistique de Poisson du modèle.

Démélange spectral

Dans le chapitre 3, nous proposons d’analyser des spectres gamma par
le démélange spectral, qui consiste à séparer un spectre gamma en spectres
individuels des radionucléides. Considérant le spectre comme un vecteur,
l’estimation des activités des radionucléides consiste à estimer les poids de
mélange associés aux signatures spectrales des radionucléides. D’un point
de vue mathématique, ce problème peut s’écrire comme un problème inverse
régularisé, les signatures spectrales étant connues, le démélange spectral est
d’abord étudié avec une contrainte de non-négativité.

Les expériences sur les spectres simulés démontrent que, comparé aux
estimateurs des moindres carrés, le démélange spectral basé sur la statistique
de Poisson permet d’améliorer la précision de l’estimation avec des biais
d’estimation et des incertitudes plus faibles. L’analyse d’un spectre dans sa
globalité est plus efficace que les méthodes basées sur les pics, en particulier
pour les radionucléides dont les spectres sont fortement corrélés. La méthode
présente également une amélioration de la sensibilité lors de l’analyse des
mesures d’échantillons de filtres d’aérosols, où la méthode standard présente
toujours des difficultés pour la détection de 137Cs, un radionucléide présent
à l’état de trace dans l’environnement. Le démélange spectral permet ainsi
de diminuer le temps nécessaire à sa détection de 8 jours à 4 jours.

En pratique, l’ensemble des radionucléides présents dans un échantillon de
l’environnement n’est jamais parfaitement connu. Le démélange avec un en-
semble supposé de radionucléides plus grand ou plus petit que ceux réellement
présents peut générer des biais de l’estimation, ainsi que de fausses identi-
fications de radionucléides qui ne sont pas présents dans l’échantillon. Ceci
nécessite la sélection de modèle de la combinaison linéaire des signatures spec-
trales. Pour ce faire, dans le chapitre 4, nous proposons d’estimer conjoin-
tement l’ensemble des radionucléides actifs et leur poids de mélange. Cette
approche appelée démélange spectral parcimonieux est étudiée afin de trou-
ver le plus petit ensemble de radionucléides qui permet d’expliquer le spectre
mesuré. Pour ce faire, nous proposons un nouvel algorithme OMP (Orthog-
onal Matching Pursuit) basé sur la statistique de Poisson. Cet algorithme
sélectionne séquentiellement le radionucléide qui maximise la vraisemblance
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de Poisson et estime les poids de mélange des radionucléides sélectionnés avec
l’algorithme de démélange spectral.

Nous montrons que l’algorithme du démélange spectral parcimonieux pro-
posé permet d’améliorer la précision de l’estimation en limitant les fausses
identifications et diminue les biais de l’estimation pour les radionucléides
actifs.

Utilisation métrologique du démélange spectral

Dans les chapitres 3 et 4, les études sont effectuées sur l’analyse des spec-
tres gamma par le démélange spectral. En général, l’utilisation métrologique
d’un algorithme d’analyse nécessite l’évaluation des limites caractéristiques
pour la prise de décision et l’étalonnage du détecteur pour l’analyse quanti-
tative des résultats.

Nous nous concentrons essentiellement sur deux limites caractéristiques
dans le chapitre 5: le seuil de décision et les limites de l’intervalle de confiance.
i), Le seuil de décision (SD) permet de décider si un radionucléide est présent
ou non. Le SD associé à un certain taux de faux positif pour un radionucléide
est déterminé par un test statistique basé sur le fond équivalent estimé dans
le modèle de démélange spectral. ii), Nous proposons également d’estimer
les intervalles de confiance à partir de la matrice de Fisher. La variance de
la distribution de l’estimation est approximée par l’inverse de la matrice de
Fisher. Ces approches sont évaluées avec les spectres gamma simulés, ceci
permet de valider leurs applications pour analyser les spectres de mesure.

Dans le chapitre 6, l’étalonnage est étudié pour un détecteur du labo-
ratoire en utilisant le démélange spectral. L’étalonnage en rendement de
détection et en résolution consiste à ajuster le modèle de simulation pour que
les signatures spectrales simulées reproduisent les réponses expérimentales.
Le ré-étalonnage en énergie permet de corriger le décalage en énergie des sig-
natures spectrales simulées. Ces étapes d’étalonnage sont évaluées et validées
avec une source d’étalonnage dont les activités sont connues.

Les résultats obtenus pour les mesures expérimentales montrent que la
nouvelle méthode démélange spectral est plus sensible que l’analyse standard,
plus particulièrement pour la détection et la quantification des radionucléides
à faible niveau.
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CHAPTER 1

Introduction

This thesis focuses on the development of analysis tools for gamma-ray
spectrometry. Involved in the radioactivity monitoring work, gamma-ray
spectrometry measurements need to be as sensitive and rapid as possible to
provide timely and reliable information to the population and the authority.
In this context, the study to improve the gamma-ray spectrum analysis has
attracted more and more attention in the scientific community. The key con-
tribution of this work is the solution it provides for the gamma-ray spectrum
analysis.

In the first part of the thesis, we thoroughly investigate the spectral un-
mixing methods for gamma-ray spectrum analysis, as well as their applica-
tions to different types of measurements. Such methods have been evaluated
with both synthetically generated data and experimental data. They present
significant advantages in the task of providing more sensitive analysis than
standard methods.

In the second part, we explore the metrological use of the investigated
spectral unmixing methods. The accurate quantitative analysis requires the
proper instrumentation calibrations and needs to cope with the standards
in radioactivity measurements. Different metrological aspects of the quan-
titative analysis have been investigated and further applied to analyze ex-
perimental measurements performed in IRSN (French Institute for Radiation
Protection and Nuclear Safety) laboratory/LMRE. The contribution of this
thesis is as follows:

• In Chapter 2, we firstly present the environment radioactivity mea-
surements with the gamma-ray spectrometry technique. Next, we in-
troduce the gamma-ray spectrometry instrumentation, including the
main components of a gamma spectrometer and specific installations
in the laboratory. To better understand the features of a gamma-ray
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spectrum (i.e., data to be analyzed), we briefly discuss the photon in-
teractions that characterize a gamma-ray spectrum. We end up with
the review of the state-of-the-art studies in the field of gamma-ray spec-
trum analysis, where we present the existing analysis methods and their
limitations.

• In Chapter 3, we start by overcoming the activity estimation with spec-
tral unmixing techniques, which allows accounting for the full spec-
trum analysis of a gamma-ray spectrum. More precisely, we formulate
the problem as a regularized inverse problem, where activities appear
as mixing weights related to individual spectra (i.e., spectral signa-
tures) and the non-negativity constraint of the radionuclides’ activities
is taken into account. We investigate different approaches to solve the
underlying spectral unmixing problem:

– Standard least squares regression and re-weighted least squares
regression that can better account for the Poisson statistics.

– Poisson based spectral unmixing that takes into account the pre-
cise physical model underlying the detection process.

Their estimation performances are evaluated as follows:

– The algorithms are first applied to the experiments on gamma-
ray spectra simulations of two radioactive sources, which enables
us to compare the proposed approaches and better understand
the limitations of standard gamma-ray spectrum analysis meth-
ods. As a result, the Poisson-based full spectrum analysis presents
significant advantages with lower estimation errors and lower un-
certainties.

– Next, we further evaluate the estimation performances with realis-
tic simulations of real data, and particularly the ability to estimate
the low-level artificial radionuclides as a challenging issue in real
data analysis.

– Finally, the study on real data contains two aspects: i), assessing
the impact of the spectral signatures’ dictionary. ii), comparing
the sensibility of the Poisson-based spectral unmixing to the stan-
dard method used in the laboratory. The main conclusion that
can be drawn is that the Poisson-based spectral unmixing allows
reducing the time to detect the low-level 137Cs in environmental
samples from 8 days to 4 days.
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While providing promising results on both simulated and real data, the
proposed Poison-based spectral unmixing analysis is however sensitive
to the spectral signatures’ dictionary, which requires the identification
of active radionuclides present in the measurement.

• In Chapter 4, the identification of the spectral signatures’ dictionary
is further investigated, which amounts to finding the subset of active
radionuclides present in a gamma-ray spectrum measurement. For this
purpose, the spectral unmixing is extended to jointly estimate the sub-
set of active radionuclides and their activities, which requires adding a
model complexity penalty in the spectral unmixing.

To identify the smallest subset of active radionuclides that best explains
the measured spectrum, we investigate the spectral unmixing with a
sparsity constraint. By reviewing available approaches that enforce the
sparsity constraint in optimization problems, we propose the Orthogo-
nal Matching Pursuit (OMP) algorithm that sequentially selects active
radionuclides from a measured spectrum. However, the Poisson statis-
tics of the gamma-ray spectrum data makes the selection procedure
difficult. We propose a novel Poisson-based OMP algorithm. Such a
greedy sparse regression method sequentially selects the radionuclide
that maximizes the Poisson likelihood and stops selecting new radionu-
clides using a statistical deviance test.

Experimental results on both simulated and measured spectra are pre-
sented and compared to the standard OMP algorithm, the proposed
Poisson based OMP algorithm presents the following advantages:

– Comparing to the OMP algorithm that not fully accounts for the
Poisson statistics, the Poisson-based OMP algorithm is shown to
improve the gamma-ray spectrum analysis while limiting the false
identification of radionuclides that not present in the measure-
ment, and reducing the estimation bias of active radionuclides.

– The proposed deviance-based stopping rule is compared to other
information criteria. As a result, the deviance-based stopping rule
provides more accurate radionuclides’ identification.

The Poisson-based spectral unmixing approach for gamma-ray spec-
trum analysis is thoroughly investigated in Chapter 3 and 4. The main
focus of the second part of the thesis is the metrological use of the pro-
posed algorithms. The aim is to provide accurate quantitative analysis
of gamma-ray spectra measurements that cope with standards of the
radioactivity measurements.
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• In Chapter 5, we present the assessment of two characteristic limits:
the decision threshold and the limits of the confidence intervals. These
characteristic limits are related to statistical limits for decision making
purposes in experimental data analysis.

The chapter starts with the definitions of the characteristic limits,
where we present how these limits are related to the statistical hy-
pothesis framework. Next, we discuss the quantification of the exact
characteristic limits with Monte Carlo simulations, which can not be
used in practice due to the massive computation. Therefore, we pro-
pose alternative approaches and compare the results to those carried
out with the Monte Carlo simulations.

– The decision threshold of the Poisson-based spectral unmixing al-
gorithm is firstly investigated, we propose a statistical test-based
approach that enables accounting for the full spectrum informa-
tion.

– Next, we explored the use of Fisher information matrix to derive
the confidence intervals of the results.

The above methods are evaluated with realistic data of the routine mea-
surements, which confirms the validation of the procedures to analyze
experimental data performed in the laboratory.

• In Chapter 6, we focus on the quantitative analysis of a gamma-ray
spectrum, which depends on not only the spectrum analysis algorithm,
but also the proper calibrations of the instrument. As the standard
calibration procedures in standard peak-based analysis can not be used
in the spectral unmixing analysis, we propose novel calibration methods
that adapt to the full spectrum analysis.

The main calibration steps include the energy calibration, the resolu-
tion calibration, and the efficiency calibration. The evaluation of these
calibration steps with a standard gamma source (i.e., with known ac-
tivities) allows validating a pipeline to analyze gamma-ray spectra of
routine aerosol filter measurements performed with the same detection
system.

Finally, the calibrated detection system is applied to analyze experi-
mental data. The results show a significant improvement of the sensi-
tivity to detect low-level artificial radionuclides.
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CHAPTER 2. CONTEXT OF THE RADIOACTIVITY MEASUREMENTS WITH
GAMMA-RAY SPECTROMETRY

In this chapter, we introduce the basics of the gamma-ray spectrome-
try and its application to radioactivity measurements. In Section 2.1, we
present the radioactivity measurements, as well as the quantitative analysis
of radioactivity. At the end of the section, we present the gamma-ray spec-
trometry measurements in the laboratory and the procedure of typical aerosol
measurements investigated in this thesis. In Section 2.2, we present the in-
strumentation of the gamma-ray spectrometry, where we firstly present the
detection principle of different detectors and their data acquisition system.
Next, we focus on the detection mechanisms, how photons transfer energy
to electrons, and the major features of a photon spectrum, which enables
us to understand the contributions of a gamma-ray spectrum. Section 2.3
provides the studies to improve the detection limits with gamma-ray spec-
trometry. The chapter ends up with the state of the art of the gamma-ray
spectrum analysis in Section 2.4.

2.1 Environment radioactivity measurements

2.1.1 The radioactivity phenomenon

The radioactivity is the phenomenon in which a nucleus, unstable due to
an excess of protons and/or neutrons, disintegrates into another nucleus. We
begin with some basic nuclear notations:

• A chemical element is determined by its number of electrons Z (i.e.,
atomic number) related to its name and its chemical symbol. e.g., the
chemical symbol “C” for carbon that has an atomic number of Z = 6.
The elements and their corresponding symbols can be found in the
periodic table of elements, which is a tabular display of the chemical
elements arranged by atomic number (see Appendix A).

• A nuclide is characterized by the number of protons (equal to the num-
ber of electrons Z), the number of neutrons (N) and the energy state
of the nucleus. It is noted as A

ZX, where X is the chemical symbol, Z
is the number of protons, and A = Z + N is the mass number. e.g.,
12
6 C with 6 protons and 6 neutrons, usually simply noted with its mass
number 12C.

• Isotopes of a given element have the same number of protons but dif-
ferent numbers of neutrons. For instance, the nuclides 12C, 13C and 14C
are isotopes of carbon. 12C is stable, while 13C and 14C are unstable
isotopes of carbon.
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• A radionuclide is an unstable nuclide that has excess of nuclear energy
and decays by the emission of nuclear radiation to achieve the stability
(e.g., 60Co).

The disintegration of a radionuclide (called “parent”) into another nuclide
(called “daughter”) is accompanied by the emission of alpha radiation or beta
radiation. The alpha decay emits an alpha particle identical to 4

2He with two
protons and two neutrons. The beta decay transforms a neutron into a
proton through the emission of an electron (��), or transforms a proton into
a neutron through the emission of a positron (�+).

↵: A
ZX ! A�4

Z�2Y + 4
2He

��: A
ZX ! A

Z+1Y + e� + ⌫

�+: A
ZX ! A

Z�1Y + e+ + ⌫

The daughter nuclide can be created in its fundamental energy level, but
more often in an excited level. The decay is thus followed by the deexcita-
tion of the daughter radionuclide accompanied by the emission of a photon
(i.e., electromagnetic radiation) called “gamma-ray”. Some other physical
phenomena lead to the emission of other photons, called “X -ray”. The dif-
ference between gamma-ray and X-ray is that they are of different origin,
while the gamma-ray originates from the deexcitation of the nucleus and the
X-ray originates from the deexcitation of the atom from an excited level to
a level of lower energy. The emitted photon energy is equal to the difference
between the energies of the initial excited state and the final state.

The photon energy according to the emission of a photon is:

E =
hc

�
(2.1)

where h is the Planck constant, c is the speed of light in vacuum, and �

is the wavelength of the photon.
The commonly used unit of photon energy is the electronvolt (eV):

1eV = 1.602176634⇥ 10�19J

2.1.2 Why measuring radioactivity in the environment ?

Environment radioactivity measurements, which are performed in world-
wide laboratories, play a central role in the field of radiation protection.
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Within the French Institute for Radiation Protection and Nuclear Safety
(IRSN), the Laboratory of Environment Radioactivity Metrology (LMRE) is
in charge of environmental radioactivity measurements for several purposes:

• Monitoring the environmental radioactivity 1 in France to ensure that
the activity level in the environment is consistent with regular radioac-
tive releases from industrial and human activities.

• Rapid detection and rapid characterization of sources under emergency
conditions, such as increasing radioactivity levels due to an incident or
an accident with radioactive releases.

• Radioecology studies for a better understanding of the behavior and
transfer mechanisms of the radionuclides in the environment, e.g., mod-
eling the dispersion of radionuclides in the environment can help us to
predict the atmospheric dispersion of artificial radionuclides in case of
incident or accident. The transfer model of radionuclides in the envi-
ronment can also be used to assess the human health effects resulting
from the radioactive contamination in the environment.

For instance, the monitoring of activity concentration of 137Cs (Half-life
= 30.17 years) in the air measured in the environment in France is shown
in Figure 2.1. It is an artificial radionuclide resulting mainly from post-
atmospheric nuclear weapon tests and the Chernobyl accident.

Measuring radioactivity in the environment requires tackling the quantifi-
cation of the radionuclides’ activity in environmental samples, e.g., aerosols,
sediments, biological samples (fauna and flora), etc. It is a challenging prob-
lem since a given radionuclide can occur more than one mode of decay and
more than one radionuclide can be present in the sample to be measured.
Next, we will present the quantitative analysis of gamma-ray emitting ra-
dionuclides.

2.1.3 Quantitative analysis with gamma-ray spectrometry

Modeling radioactivity measurements first necessitates accounting for the
time evolution of the radioactivity phenomenon. The radioactive decay pro-
cess can be described by:

dN

dt
= ��N (2.2)

where N is the number of radioactive nuclei, � (s�1) is the decay constant
that is specific for each radionuclide.

1https://www.mesure-radioactivite.fr
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emitted photons of different energies is directly related to the radionuclide’s
activity by their emission probabilities, also called intensities. The emission
probability of a photon energy is defined as the number of emitted photons
of this energy per 100 disintegrations.

The decay process of each radionuclide is summarized by its decay scheme,
which contains its “daughter nuclide” and the ↵ or � decay, as well as the
gamma-ray emissions. Taking the example of 60Co for which the simplified
decay scheme is shown in Figure 2.2.1.

Figure 2.2 – Simplified decay scheme of 60Co.

The 60Co disintegrates by ��1 emission to excited levels of 60Ni, mainly
to the 2505.7 keV energy level (99.88 % of the disintegrations of 60Co). As
illustrated in the decay scheme, this decay is mainly accompanied by the
emission of two photons with their according intensities:

• Photon of 1173 keV due to the deexcitation of the daughter nuclide
60Ni from its excited level at 2505.7 keV to another level at 1332.5 keV,
intensity = 99.85 %.

• Photon of 1332.5 keV due to the deexcitation of 60Ni from the excited
level 1332.5 keV to its fundamental level, intensity = 99.9826 %.

1http://www.nucleide.org/Laraweb/index.php
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In general, for a given radionuclide, the number of emitted photons per
second of an energy level, noted N , with its according intensity, noted I,
enables calculating the activity of the radionuclide:

Activity (Bq) =
N(number of emitted photons of energy E/s)

I(intensity of energy E)
(2.6)

In this context, measuring an energy spectrum of a gamma-emitting
source allows the identification and the quantification of radionuclides. For
instance, the detection of gamma rays of 1173 keV and 1332.5 keV in such
an energy spectrum reveals the presence of 60Co in the sample, and the num-
ber of photons (1173 keV and 1332.5 keV) observed in the spectrum related
to the number of emitted photons by the detection efficiency, provides the
activity of 60Co in becquerel (Bq).

2.1.4 Gamma-ray spectrometry measurements in the laboratory

In the framework of radioactivity measurements, different environmen-
tal samples are measured in IRSN/LMRE. The samples of different origins,
such as waters, aerosol filters, mineral samples (soils, sediments), and biologi-
cal samples (fauna and flora) are collected, prepared (e.g., dried, freeze-dried,
evaporated, calcined, ground, sieved, homogenized) and packed into cylindri-
cal polyethylene containers. Next, we measure the activities of radionuclides
in a sample (i.e., gamma-ray and X-ray source), which are:

• Naturally occurring radionuclides including cosmic ray induced radionu-
clides (e.g., 7Be, 22Na) and telluric radiation (e.g., 40K, 210Pb, 228Ac).

• Artificial radionuclides that are:

– present at trace levels in the environment due to the normal dis-
charges of the nuclear facilities (e.g., 129I, 60Co, 110mAg), and the
global fallout due to the atmospheric nuclear weapon tests and
the Chernobyl accident (e.g., 137Cs).

– potentially released in case of incident or accident (e.g., 131I, 134Cs).

My investigations focused mainly on aerosol filter measurements intend-
ing to detect releases due to low-magnitude incident or accident with higher
magnitude but farther away. This is particularly interesting as the first con-
tamination vector for a release is the air transfer. The main steps to measure
aerosol samples in the laboratory are described in Figure 2.3.

In the analysis of environmental radioactivity using gamma-ray spectrom-
etry, the activity estimation of low-level radionuclides is particularly required
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Origin Solution

Detector low-background material

Telluric radiation Shielded room, Individual lead shield

Cosmic radiation Underground facilities, Anti-cosmic device

Radon Ventilation system, Gaseous nitrogen flushing

Table 2.2 – Different aspects for background radiation reduction used in
LMRE/IRSN.

2.4 State of the art of gamma-ray spectrum analysis

In the previous sections, we introduced the context of gamma-ray spec-
trum measurements. Thanks to the spectral features of radionuclides char-
acterized by their decay schemes, a measured gamma-ray spectrum allows
identifying and quantifying radionuclides. In this section, we review the
state of the art of the gamma-ray spectrum analysis methods.

2.4.1 Peak-based gamma-ray spectrum analysis

The peak-based method (e.g., Genie 2000 software from Canberra 1) is
conventionally used in the gamma-ray spectrum analysis, where radionu-
clides are identified thanks to their characteristic photon energy peaks and
quantified from the observed counts in the peaks, which are proportional to
the radionuclides’ activities. This approach is usually based on Region of
Interest (ROI) (see simplified illustration in 2.8 and [Gilmore, 2008] for more
details).

In brief, a radionuclide is firstly identified from its characteristic photon
energy peaks. Then the method estimates the background counts nb (i.e.,
Continua of radionuclides) from the average of two regions (see Figure 2.8)
nearby with:

nb =
p

2b
(nb1 + nb2) (2.7)

The net counts nN can be then calculated from:

nN = ng � nb � nN0 (2.8)

where the gross number in the ROI noted ng (i.e., the total counts in the
ROI), and nN0 is the net counts of the background radiation spectrum to be
subtracted if the peak is also detected in the background radiation spectrum.

1https://www.mirion.com/products/genie-2000-gamma-analysis-software
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The peak-based analysis has been further extended to account for the ex-
act Poisson statistics of the measurements in [Kirkpatrick and Young, 2009].
In this paper, the authors show that the ROI analysis taking into account
the Poisson statistics provides improved accuracy comparing to traditional
Gaussian methods. However, the analysis only relies on the photon peaks.
It is of interest to further account for the entire spectrum that provides more
information.

2.4.2 Full spectrum analysis

To overcome the limitation of the gamma-ray spectrum analysis due to
the overlapping of individual spectra of radionuclides, the problem can be
addressed by the full spectrum analysis. This approach aims at determining
the radionuclides’ activities by using the observed data in all the energy range
of the measured spectrum, including the full energy peaks and the Compton
continuum of each radionuclide.

Full spectrum analysis (FSA) has been studied in [Hendriks et al., 2001],
[Caciolli et al., 2012], [Jeong et al., 2014] and their references. In these papers,
the FSA is applied to analyze different gamma-ray spectra measurements, it
addresses the analysis of a spectrum of M channels, 8i 2 [1, ...M ], while the
linear mixing of individual spectra can be modeled with:

yi =
N
X

j=1

aj�j(i) + bi (2.10)

where yi is the sum of the standard spectra (�1, ...,�j) of radionuclides
multiplied by their activity concentrations aj and the background spectrum
bj in the ith channel, and N is the number of radionuclides.

The gamma-ray spectra detection follows the Poisson distribution:

xi ⇠ Poisson (yi) (2.11)

where xi is the counts observed in the ith channel.

The solution of this Poisson regression problem is the least squares weighted
by the variance:

min
M
X

i=1

(xi � yi)
2

�2
i

(2.12)

while the variance of the Poisson distribution is given by �2
i = yi, which

is the unknown linear mixing model.
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The investigations of FSA make use of the weighted least squares method
that determines the activities of radionuclides by minimizing the least squares
errors weighted by the observed data (i.e., measured spectrum).

min
M
X

i=1

(xi � yi)
2

xi

(2.13)

These studies show that using the full spectrum information provides
better counting statistics thus a better estimation accuracy. However, this
approach uses the least squares weighted by the measured spectrum is not
fully adapted to account for the Poisson statistics of the data, particularly
when the mean/ variance value yi is small.

2.4.3 Machine learning algorithm in gamma-ray spectrum analy-
sis

Other contributions of the activity estimation in the field of machine
learning algorithms were also applied to gamma-ray spectral analysis.

In [Yoshida et al., 2002], an artificial neural network (ANN) algorithm
is applied to identify radionuclides from gamma-ray spectra by using peak
energy data. The performance is however limited when the peaks are over-
lapped to the Compton continua of other radionuclides.

In [Sharma et al., 2012], authors have presented the application of ma-
chine learning to the anomaly detection in gamma-ray spectra. The purpose
in this paper is to apply a supervised classification framework to measured
gamma-ray spectra by labeling them with normal or certain class of anomaly
events.

However, the stated approaches based on neural networks addresses the
gamma-ray spectrum analysis problem with measured spectra, which do not
allow to precisely account the physical model underlying the detection.

2.4.4 Conclusion

The stated gamma-ray spectrum analysis methods and their limitation
can be summarized in Table 2.3.
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Method Limitations

Standard peak-based analysis inexact Gaussian statistics approximation &
interference between individual spectra

Full spectrum analysis based
on least squares method

not fully adapted for the Poisson statistics

Machine learning algorithms Not accounting for the physical model

Table 2.3 – Gamma-ray spectrum analysis methods and their limitations.

These studies reveal that the standard peak-based gamma-ray spectrum
analysis can be improved by accounting for the Poisson statistics or the full
spectrum analysis. This thesis addresses a more systematic study on the
development of alternative spectrum analysis tools, from the mathematical
modeling of the gamma-ray detection physics to the metrological aspects for
the activity determination in the real data analysis.
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From a general perspective, the problem of identifying and estimating the
activity of radionuclides from gamma-ray spectra can be tackled as a tradi-
tional inverse problem in signal processing. While spectral unmixing is now
standard in other fields of research, such as remote sensing [Bioucas-Dias
et al., 2012], [Keshava and Mustard, 2002], it has seldom been investigated
in gamma-ray data analysis. This chapter first reports on the development
of algorithms for spectral unmixing, allowing to carefully account for the un-
derlying mixing model and the statistics of the measure. Next, we apply the
spectral unmixing algorithms to gamma-ray spectra and assess their perfor-
mances to analyze both simulated and experimental data. The contribution
of this chapter is as follows:

• The problem of estimating radionuclides’ activities with spectral un-
mixing is formulated in section 3.1. The proposed approach tackles
the unmixing problem as a regularized linear inverse problem involving
Poisson-distributed measurements.

• Section 3.2 explores the use of unmixing algorithms for activity estima-
tion. To that end, we propose a novel regularized maximum Poisson
likelihood estimator. Meanwhile, algorithms based on least squares
estimators are also presented for a comparison purpose.

• To evaluate the proposed spectral unmixing approaches, we first in-
vestigate the application of spectral unmixing to synthetic data (i.e.,
simulated gamma-ray spectra).

– In contrast to standard unmixing problems that involve additive
Gaussian noise, the Poisson nature of the measurements’ statistics
makes the noise highly dependent on the actual mixing. Therefore,
the ability to precisely estimate the mixing weight of a given ra-
dionuclide will strongly depend on the others’ contributions. We
evaluate this impact in Section 3.3 with simulated gamma-ray
spectra that contain two radioactive sources in both the HPGe
detector and NaI detector settings.

– Next, we focus on realistic data of HPGe gamma-ray measure-
ments in Section 3.4, where simulations with realistic activities of
radionuclides are analyzed with the proposed algorithms to assess
the ability to analyze real data.

• Experimental results on real spectra are presented in Section 3.5, where
the implementation of spectral unmixing algorithms is assessed with
sequential data of an aerosol sample measured with HPGe detector.
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In this chapter, we consider that the spectral signatures Φ and the back-
ground b are known in beforehand. The estimation of the mixing weights
a from the measured spectrum x can be addressed by minimizing some dis-
tance (i.e., data error associated to noise, noted n) between the data x and
the model Φa+ b.

The activity estimation can be therefore viewed as an inverse problem
that minimizes an objective function, in which the error term n is data
dependent in the Poisson statistics model. In such context, to account for
the precise Poisson statistics of the spectroscopic measurement, we make use
of an estimator that maximizes the likelihood related to the Poisson statistics.
In this setting, the probability to observe a given number of counts xi in the
ith channel is given by:

P
⇣

Xi = xi

�

�

�
[Φa]i + bi

⌘

=
�xi

i e
��i

xi!
(3.3)

where �i = [Φa]i + bi. Thanks to the statistical independence of the
channels, the joint probability or likelihood for the different channels is then
given by:

P
⇣

X = x

�

�

�
Φa+ b

⌘

=
Y

i

�xi

i e
��i

xi!
(3.4)

Maximizing the likelihood is then equivalent to minimizing the neg-log-
likelihood, which leads to the following Poisson statistics-based activity esti-
mator:

âPoisson 2 argmin
a

Φa+ b� x� log (Φa+ b) (3.5)

where � is the Hadamard product. This optimization problem can be
addressed as a generic inverse problem ([Bertero and Bocacci, 1998]) of the
form:

â 2 argmin
a

f(a) + g(a) (3.6)

where the objective function consists of two terms:

• f(a): data fidelity term related to the minimization of data error (e.g.,
f(a) = Φa+ b� x� (Φa+ b) for described Poisson-estimator).

• g(a): regularization term, which penalizes the solution of a with some
prior information.

More generally, the problem can be formulated as a convex optimization
problem of the form:

â 2 argmin
a

f(a) + g1(a) + ...+ gn(a) (3.7)
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where gi(a), 8i 2 [1, ...n] for different regularization terms. In the gamma-
ray spectrum analysis, we can impose physical constraints in the minimiza-
tion problem, such as the non-negativity of activities and the number of ac-
tive radionuclides present in the measurement. The solution of a can also be
penalized by data-driven constraints extracted from an archive of measure-
ments, for instance, the interval of radionuclides activities that are commonly
present.

3.2 Spectral unmixing algorithms

In the gamma-ray spectrum problem formulation, the mixing weights a
is an array with non-negative entries. We firstly focus on overcoming the
optimization problem by adding the non-negativity constraint.

â 2 argmin
a

f(a) + i.a�0 (3.8)

where i.a�0 is the characteristic function of the convex set (i.e. non-
negative orthant) {a � 0}. It is precisely defined as follows:

i.a�0 =

(

0, if a � 0

1, otherwise
(3.9)

3.2.1 Least squares unmixing algorithm

A classical least squares (LS) approach consists in finding the solution
a that minimizes the least squares error. In the current unmixing problem,
this can be recast as:

âLS 2 argmin
a

1

2
kΦa+ b� xk2 + i.a�0 (3.10)

We tackle this optimization problem with Forward-Backward Splitting
(FBS) algorithm ([Combettes and Wajs, 2006]). An accelerated version of
the FBS algorithm coined FISTA [Beck and Teboulle, 2009] is used and
summarized in Algorithm 1. (Details can be found in Appendix B). In the
algorithm:

• the gradient of the data fidelity term f(a) = 1
2
kΦa+ b� xk2 is:

rf(a) = Φ
T (Φa+ b� x) (3.11)
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• the proximal operator of the non-negativity constraint Eq.(3.9) is de-
fined as the orthogonal projection onto the non-negative orthant:

proxi.
a≥0

=

(

0, if a < 0

a, otherwise
(3.12)

The algorithm is guaranteed to converge when the gradient step � 
1/kΦT

Φk2. In practice, the algorithm stops when the relative variation of a
between two consecutive iterations is lower than 10�12.

Algorithm 1 Pseudocode of FISTA with constant stepsize

Input:
Fix the step size 0 < � < 1/kΦT

Φk2
Initialization:
y(1) = a(0), t(1) = 1

while
ka(k)�a(k−1)k

ka(k−1)k
> 10�12 do

a(k) = prox i.
a≥0

�

y(k) � �ΦT (Φy(k) + b� x)
�

t(k+1) =
1+
p

1+4t(k)
2

2

y(k+1) = a(k) +
⇣

t(k)�1

t(k+1)

⌘

(a(k) � a(k�1))

end while

From a statistical perspective, the least squares approach is equivalent
to a maximum likelihood estimate assuming that the underlying noise is
additive, white and Gaussian: n ⇠ N (0,σ2). However, because of the
Poisson statistics of the spectroscopic measurement, the noise variance is data
dependent. It is well known that the variance of the Poisson distribution is
equal to the expected value, which leads to �2

i = [Φa]i+bi, for 8i 2 [1, ...,M ].
The weighted least squares (WLS) is indeed the generic form of the least
squares, which leads to model the minimization of the WLS error related to
the Poisson statistics model with:

âWLS 2 argmin
a

(Φa+ b� x)T W�1 (Φa+ b� x) + i.a�0 (3.13)
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whereW is a diagonal matrix with diagonal elements specified by Φa+b:

W =

0

B

B

B

B

B

B

@

[Φa]1 + b1

[Φa]2 + b2

.

.

[Φa]M + bM

1

C

C

C

C

C

C

A

However, the linear mixing model Φa+ b can not be known in advance.
Previous studies (e.g., Full spectrum analysis (FSA) reviewed in Chapter 2)
considers W = diag (x) (i.e., the measured spectrum), which is not fully
adapted to account for the Poisson statistics.

We further propose to tackle this optimization problem with iterative
estimation of the true model with an iterative re-weighted least squares al-
gorithm. More precisely, as described in Algorithm 2, the main step of the
algorithm consists in estimating the mixing weights, noted â and updating
the weights with the estimated model: Φâ+ b.

Each estimation step makes application of the aforementioned FISTA
algorithm by considering the gradient of the data fidelity term:

rf(a) = Φ
TW�1(Φa+ b� x) (3.14)

Algorithm 2 Pseudo code of iterative re-weighted squares algorithm

Initialization:
W (0) = Φâls + b, where âls is the least squares solution.

Estimate the mixing weights ! â(0)

for k < kmax do

Update: W (k+1) = Φâ(k) + b

Re-estimation with W (k+1) ! â(k+1)

end for

While the iterative re-weighted least squares algorithm allows better ac-
counting for the Poisson statistics, the algorithm still leads to estimation bias
of the true model. An approach that takes into account the actual Poisson
maximum likelihood estimation is therefore further required.
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3.2.2 Poisson statistics-based unmixing algorithms

Along with the non-negativity penalization, the Poisson statistics-based
estimator can be formulated as follows:

âPoisson 2 argmin
a

Φa+ b� x� log (Φa+ b) + i.a�0 (3.15)

We now present two algorithms to solve this optimization problem, Mul-
tiplicative update algorithm [Lee and Seung, 2001] and the Chambolle-Pock
algorithm [Chambolle and Pock, 2011].

Multiplicative update algorithm

The multiplicative update rule with respect to the KL (Kullback-Leibler)
divergence loss enables solving the non-negativity regularized Poisson based
optimization problem. The multiplicative update algorithm introduced in
[Lee and Seung, 2001] is applied to gamma-ray spectral unmixing in [Paradis
et al., 2020], which is summarized in Algorithm 3.

Algorithm 3 Pseudo code of spectral unmixing with multiplicative update
algorithm

Input:
Measured spectrum: x

Spectral signatures: Φ and Background: b

while stopping condition not achieved do

Update 8j = [1, ..., N ]:

a
(k+1)
j = a

(k)
j

PM
i=1 Φijxi/M

k
i

PM
i=1 Φij

with: M k = Φak + b

end while

This algorithm addresses the non-negativity regularized Poisson estima-
tor. However, the convergence can be slow for low statistic regimes. More-
over, it is less generic due to the difficulty of adding other regularization
terms, whereas the proximal algorithms can provide solutions with simplic-
ity. Therefore, we investigate the Primal-dual proximal algorithm for solving
the minimization problem in Eq.(3.15).
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Primal-dual proximal algorithm

We propose to solve the optimization problem in Eq.(3.15) with primal-
dual proximal algorithms such as the one introduced by Chambolle and Pock
in [Chambolle and Pock, 2011] (Details can be found in Appendix B). The
pseudo-code of the Chambolle-Pock algorithm is given in Algorithm 4, in
which the proximal operator of the joint Poisson distribution of the measure-
ment is:

prox⇢f (y) =
y + b� ⇢+

q

(⇢� y � b)2 + 4⇢x

2
� b (3.16)

where x and b stand for the measured spectrum and the background
spectrum.

The convergence of the algorithm is ensured with �⌧ < 1/kΦT
Φk2 and

✓ = 1. The step parameters � and ⌧ are chosen with � with respect to
the total number of counts in the measured spectrum and ⌧ = 0.9/(� ⇤
kΦT

Φk2) for a better convergence rate. Similarly to the FISTA algorithm,
the algorithm stops when the relative variation of a between two consecutive
iterations is lower than 10�12.

Algorithm 4 Pseudocode of Chambolle-Pock algorithm

Input:
Fix the parameters: �, ⌧ > 0 and �⌧ < 1/kΦT

Φk2.
Initialization:
ā(0) = a(0), u(0) = Φa(0)

while
ka(k)�a(k−1)k

ka(k−1)k
> 10�12 do

v = u(k) + �Φā(k)

u(k+1) = v � � prox (1/�)f

�

v
�

�

a(k+1) = prox i.
a≥0

�

a(k) � ⌧ΦTu(k+1)

�

ā(k+1) = a(k+1) + ✓(a(k+1) � a(k))

end while
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3.3 Experiments on the combination of two radioactive
sources

To assess the impact of the Compton contribution of a given radionuclide
on the determination of another radionuclide, we focus on simulations of
simple mixing scenarios that are composed of two sources. The experiments
are performed for simulated spectra of HPGe detector and NaI detector,
where the spectral signatures used in the simulation process are:

• For HPGe detector, simulations performed with the Monte Carlo N-
particle (MCNP) Transport Code, a software package for simulating
radiation transport developed by the Los Alamos National Laboratory
[Briesmeister, 2000]. We make use of the MCNPX (MCNP eXtended),
which simulates the gamma-ray spectrum of sources that emits pho-
tons at one or more specific energies with given weights. It provides
simulated spectra consisting of given energy peaks and the associated
Compton continua.

• For NaI detector, measured spectra with a 3”x3” NaI(Tl) detector with-
out shielding using point sources placed at a distance of 1 m (see details
in [Paradis et al., 2020]).

3.3.1 Experiments on simulations of HPGe detector

We consider the mixture of two radioactive sources at 500 keV, noted φ1,
and 200 keV, noted φ2. The measured spectra are defined as follows:

x ⇠ Poisson (φ1a1 + φ2a2 + b) (3.17)

where φ1 and φ2 are simulated with MCNPX, a1 and a2 stand for the
mixing weights of the sources. b is the spectrum of the background radiation.

As shown in Figure 3.2, we generate simulations as follows: a1 for the
source with energy peak at 500 keV kept fixed and we change a2 for the one
at 200 keV. For each linear combination level, we simulate 100 gamma-ray
spectra by random Poisson process as described in Eq.(3.17). Experiments
are carried out for these simulated spectra with:

• Poisson unmixing using Chambolle-Pock algorithm. To further high-
light how much full spectrum knowledge can help improving unmixing,
we further consider two distinct implementations:

– a full spectrum based version
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The median values and confidence intervals between percentile 25 and per-
centile 75 are displayed. Similarly, the relative errors obtained with different
estimators for experiments of NaI detector are compared in Figure 3.5 for
both 57Co and 152Eu.

From these results, we can draw the following conclusions:

• Advantage of using full spectrum analysis. As we can see in
Figure 3.2, the spectrum of 200 keV is below the Compton continuum
of the spectrum of the source of energy 500 keV. The precision of the
estimated mixing weight of the 200 keV source is limited, especially
when the number of counts is low (see Figure 3.4-a). Nevertheless, the
full spectrum analysis using Poisson, LS, WLS estimators provide lower
estimation bias than the peak-based analysis.

• Advantage of Poisson statistics based estimation. In experi-
ments from both HPGe detector and NaI detector, the Poisson esti-
mator and the WLS estimator provide lower estimation bias and un-
certainties, which is shown in Figure 3.4 and Figure 3.5. It should be
noted that, in case of mixtures of 57Co and 152Eu, the relative estima-
tion errors for 152Eu is significantly lower for the Poisson estimator and
the WLS estimator, as well as the estimation uncertainties. In conclu-
sion, accounting for the Poisson statistics has significant advantages to
tackle overlapped spectra of NaI measurements.

• Poisson estimator and WLS estimator. The WLS estimator is
shown to yield similar estimation bias and error bars than the Poisson
estimator. However, the WLS estimator requires iterative estimation
of the mixing weights to update the weight matrix. Moreover, the
matrix W�1 = diag

�

1
Φa+b

�

is usually ill-conditioned, which leads to
slow convergence rate. The speeds of convergence will be compared in
the next section.

3.4 Realistic simulations of routine aerosol samples

In this work, the spectral signatures are simulated with the MCNP-CP
code (A Correlated Particle Radiation Source Extension of a General Purpose
Monte Carlo N-Particle Transport) [Berlizov, 2006], which allows simulating
physics of nuclear decay and the subsequent emissions.

An example of MCNP-CP simulation for 60Co is shown in Figure 3.6. The
MCNP-CP code simulates spectral components due to photon interactions
refer to Chapter 2, including two absorption peaks E1 = 1173 keV, E2 =
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3.4.2 Comparisons of the unmixing algorithms in different count-
ing regimes

Different statistical regimes are considered so as to simulate different mea-
surement counting times. This is done by introducing a multiplicative factor
� by:

x ⇠ Poisson ([Φa0 + b]⇥ �) (3.21)

Experiments are carried out with � = 0.1, 0.16, 0.3, 0.6, 1, where � = 1
according to realistic number of counts for which the simulated spectrum is
shown in Figure 3.7. We generate 100 simulations for each mixture using the
random Poisson process in Eq.(3.21).

The Poisson unmixing is compared to LS unmixing by using the relative
estimation error in Figure 3.9. The median values of Monte-Carlo simulations
are given. The confidence intervals are defined by the first quartile (25%
percentile) and last quartile (75% percentile).

Results

• Practical advantage for realistic data analysis. In practice, the
role of � is similar to changing the counting time of a measurement.
The relative error bars of Figure 3.9 shows that the estimation perfor-
mances of each algorithm improve when � increases, which confirms
the limitation in the low statistics regime. The realistic levels in ex-
perimental measurements correspond to mixtures between � = 0.6 and
� = 1, where the Poisson unmixing algorithm provides more accu-
rate estimation with lower relative errors and lower uncertainties. The
method is therefore of special interest to reduce the counting time of
the measurements.

• Impact of Compton continua. Referring to the spectral contribu-
tion shown in Figure 3.7, the results obtained for 210Pb indicate that
both estimators have similar performances for estimating a spectrum
which consists of dominant peak when the count number is large. The
Poisson unmixing has significant advantage for the estimation of 22Na,
40K, 137Cs at low statistics and composed of peaks and significant con-
tinuum contributions.

3.4.3 Evaluation of unmixing algorithms for low-level artificial ra-
dionuclide

The ability to estimate the low-activity artificial radionuclide plays a
central role in the field of rapid detection. In such a context, we focus on
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3.5 Experimental results with real spectra from aerosol
samples’ measurements

In this section, the proposed approaches are applied to real aerosol sam-
ples, which are routinely collected as a part of the surveillance mission of
the laboratory. To better focus on the rapid detection of radionuclides, the
different unmixing methods are applied to short-time counting statistics. To
this end, a dedicated scenario of measurements has been set up for an aerosol
sample. These measurements are performed half an hour after the collection,
in a continuous manner, with pre-defined counting times for 8 days (see Table
3.2). Figure 3.11 displays the counting rate of these measured spectra as a
function of the time after sampling.

start time ending time counting time(s)

s1 19/04 09:10:53 0.5h 1h 1800

s2 19/04 09:41:42 1h 1.5h 1800

s3 19/04 10:12:30 1.5h 2h 1800

s4 19/04 10:44:11 2h 3h 3600

s5 19/04 11:45:03 3h 4h 3600

s6 19/04 12:46:59 4h 5.5h 5400

s7 19/04 14:20:23 5.5h 8.5h 10800

s8 19/04 17:22:17 8.5h 23.5h 54000

s9 20/04 08:41:41 23.5h 1day and 7h 28000

s10 20/04 16:29:59 1day and 7h 4day and 2 h 240000

s11 23/04 11:44:44 4day and 2 h 7day and 19h 320000

Table 3.2 – Measurements of an aerosol filter sampled on 19/04/2018 8:46:00,
Orsay, France. The start time and ending time of each measurement are
considered from the sampling.

The experiment was carried out with an 10 mL cylindrical counting geom-
etry (h = 5mm, ; = 50mm) measured with an HPGe detector (60% relative
efficiency). The measured spectra are subsequently analyzed with the pro-
posed spectral unmixing algorithms and Genie 2000, which is traditionally
used in the laboratory.

In this section, we first investigate how the choice of the spectral signa-
tures impacts the activity estimation quality. This is particularly important
as the subset of active radionuclides is generally unknown in practice. Next,
the results are compared with the standard peak-based Genie 2000 algorithm.
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Moreover, the statistical deviance ([DasGupta, 2008]) is displayed in Fig-
ure 3.16, which provides a measure of the goodness-of-fit for both estimators,
for either simulated or measured spectra.

More precisely, the statistical deviance for the Poisson distribution is
defined by:

D = 2
⇣

x log(
x

Φâ + b
)� x+Φâ + b

⌘

where â stands for the estimated mixing weights.

Results

As shown in Figure 3.14-a and Figure 3.15-a, making use of the small
dictionary Φ

5 leads to significant biases in the first measurements, where
short-lived radionuclides can hardly be neglected. The results obtained with
a larger spectral dictionary Φ

10 leads to much more accurate results as shown
in Figure 3.14-b and Figure 3.15-b. These results are similar to the ones we
obtained with real spectra (see Figure 3.13). Poisson unmixing tends to over-
estimate the activities comparing to the least squares unmixing. One can
observe that Poisson unmixing tends to be more sensitive to the choice of the
spectral dictionary. The origins of this phenomenon is the Poisson unmixing
aims to precisely fit the measured spectrum with the full spectrum, which
yields increased errors when the spectral dictionary cannot fit the actual set
of radionuclides, since the logarithmic scaling in the likelihood term induces
lower weights on channels in peak regions.

Figure 3.16 shows that, in the first measurements, the spectral unmixing
with Φ

10 provides lower deviance than with Φ
5 for both simulated and mea-

sured spectra. In this case, the estimated models with Φ
5 tend to fit for the

short-lived radionuclides that are not in the spectral signatures dictionary,
with the ones contained in the dictionary. In the last measurement, short-
lived radionuclides having significantly decayed, making use of Φ5 leads to
lower deviance since this dictionary already provides an accurate description
of the measurements. Moreover, lower deviance is achieved with Poisson un-
mixing for each experiment, which confirms the advantage of Poisson unmix-
ing to analyze these data, whether they are simulated or real measurements.

The results obtained using different choices of spectral dictionaries high-
light that the accurate identification of spectral signatures is of key impor-
tance for the spectral unmixing to work efficiently.

3.5.2 Comparisons with peak-based analysis

We compare the results of the Poisson unmixing estimator with those of
Genie 2000, which is the workhorse method in a large number of radioactivity
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measurement laboratories. As discussed previously, these comparisons have
been carried out with the 10-radionuclides dictionary, which is suitable for the
analysis of measured spectra. We first focus on the long-lived radionuclide
7Be and the short-lived radionuclide 212Bi. The estimated mixing weights
are compared in Figure 3.17. Secondly, the results for 137Cs are displayed in
Figure 3.18.

Results

As shown in Figure 3.17, the Poisson unmixing and Genie 2000 algorithms
provide similar results for the estimation of 7Be and 212Bi, while the estimated
mixing weights are of the same order in the last two measurements. This is
related to the larger counting rates obtained with long counting times (3 days
for s10 and 4 days for s11).

Figure 3.18 shows that the Poisson unmixing algorithm detects 137Cs with
similar level to that obtained with Genie 2000 from the measurement s10,
which is evaluated from day 2 to day 4. To validate this result, simulations are
performed with the final estimated mixing weights obtained with the Poisson
unmixing algorithm (â = 0.016/s for 137Cs) to mimic the measurement s10.
1000 Monte Carlo simulations are generated to compute a confidence interval.
1000 extra Monte Carlo simulations are carried out with 137Cs = 0 to quantify
the false positive rate. In Figure 3.19, the distribution of the estimated
mixing weights is presented for both experiments.

These results allow to draw the following conclusions:

• The detection of 137Cs is statistically significant for the significance
level of ↵ = 0.05 in the null hypothesis.

• The confidence interval derived from the simulations also confirms that
the activity level measured from the real measurement s10 is significant.

This confirms that the Poisson unmixing algorithm allows identifing 137Cs
four days before the usual method Genie 2000.

In this section, we can first conclude that when full spectrum unmixing
is used, the lack of knowledge of the actual active radionuclides may lead to
under-fitting or over-fitting effects, which eventually lead to biased activity
estimation. Secondly, Poisson unmixing yields significant improvements for
the estimation of low-activity radionuclides, which is a key advantage for the
rapid detection of an anomaly in the air.
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In Chapter 3, we have seen that the Poisson-based spectral unmixing
can provide more sensitive activity estimations in gamma-ray spectrometry.
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Meanwhile, the experimental results on successively measured gamma-ray
spectra carried out in Chapter 3 show that the spectral unmixing is sensitive
to the choice of the spectral signatures dictionary. Using a larger/smaller
dictionary can lead to under/over fitting effects that affect the estimation
accuracy.

In this chapter, we further investigate how the set of spectral signatures of
the actually active radionuclides in a measured gamma-ray spectrum can be
identified. In such a context, the spectral unmixing problem is reformulated
so as to jointly estimate the dictionary of the spectral signatures and the
corresponding mixing weights. The contribution of this chapter is as follows:
we start by recasting the spectral signatures identification task as a model
selection problem in Section 4.1, where we reformulate the spectral unmixing
along with an additional constraint on the model complexity. This brings us
to consider a sparsity-based approach for spectral unmixing in Section 4.2.
Next, to impose the sparsity constraint in the spectral unmixing problem,
we explore the sparse spectral unmixing algorithms in Section 4.3, where a
novel Poisson-based greedy algorithm is proposed. The evaluation of sparse
spectral unmixing is then carried out in Section 4.4 and Section 4.5, where
we focus respectively on experiments on both NaI and HPGe measurements.
The Section 4.6 summaries the benefits of the sparse spectral unmixing and
the perspectives of this work.

4.1 A model selection approach

The spectral unmixing addresses the problem of gamma-ray spectrum
analysis by decomposing a measured spectrum into individual spectra of
radionuclides. The problem has been tackled as a non-negativity regularized
inverse problem to estimate the mixing weights of spectral signatures. In
other words, the spectral unmixing aims at explaining the measured spectrum
with the radionuclides in a given dictionary. Recall that we consider the
following mixing model with N radionuclides:

x ⇠ Poisson

 

N
X

j=1

φjaj + b

!

(4.1)

Nevertheless, the set of active radionuclides that are actually present is
not known in advance. A badly chosen dictionary of spectral signatures leads
to increased activity estimation errors. To alleviate this problem, an alterna-
tive consists in using a large dictionary, which contains the radionuclides that
are commonly present in certain type of of measurement (e.g., the aerosol
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candidate models, which allows penalizing the number of parameters in the
model to avoid the over-fitting.

It has to be noticed that other more recent information criteria such as the
Deviance Information Criterion (DIC - [Spiegelhalter et al., 2002]) could be
envisaged, but they would require resorting to MCMC-based solvers, which
is computational difficult to be implemented. In the following, we will mainly
focus on the sparsity as a model complexity penalization.

4.2 Sparse solution

The objective of the model selection in the spectral unmixing is to find the
smallest subset of columns of Φc that best explains the measured spectrum.
It is commonly done by adding a sparsity regularization in the objective
function that enforces the number of active radionuclides to be low while
still explaining the data.

One can tackle the sparsity constraint with:

• `0 -“pseudo-norm”, which is defined with:

kak0 = the number of non-zero elements in a.

The solution a is said to be k-sparse if kak0  k, which naturally
induces the sparsity constraint.

• As a relaxation of `0-“norm”, `1-“norm”, noted kak1, is the sum of ab-
solute values of elements in a. It is easier to solve due to the convexity
of kak1.

However, the `1 that imposes a threshold of the solution is not suitable
in the Poisson noise case, it considers an additive noise independent to the
data, that is not true in the Poisson model. The `0 sparsity regularization
is therefore needed in the Poisson-based spectral unmixing. Fortunately, the
dimension of spectral signatures dictionary is low in the gamma-ray spectrum
analysis. The straightforward search of the subset of active radionuclides is
feasible, which allows solving the `0 minimization with greedy sparse regres-
sion methods.

The sparse spectral unmixing can be formulated as follows:

â 2 argmin
a

f(a) + i.a�0 s.t. kak0  k (4.3)

where the sparsity constraint enforces the mixing weights vector a to have
exactly k non-zero elements.
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4.3 Greedy algorithm to identify active radionuclides

4.3.1 Greedy algorithms in least squares problem

Greedy algorithms are involved in the `0 optimization problem. These
algorithms have been proposed to find the sparse solution in least squares
problem, in which the selection of columns of Φc starts by an empty sup-
port, then the support is updated step by step with the element that opti-
mally solve the problem. Algorithms in such category includes the Matching
Pursuit (MP), [Mallat and Zhang, 1993] and Orthogonal Matching Pursuit
(OMP), [Pati et al., 1993], which allows sequentially selecting the signatures
in the dictionaryΦ

c that has the largest correlation with the current residual.
Let’s now investigate the use of OMP algorithm to the spectral unmixing

problem. Recall the gamma-ray spectrum model:

x = Φa+ b+ n (4.4)

In such OMP algorithm, we make use of the iterative re-weighted least
squares mentioned in Chapter 3 to estimate the mixing weights with selected
active radionuclides. The pseudo-code of the OMP algorithm for solving the
sparse solution of Eq.(4.4) is stated in Algorithm 5.

However, such algorithm have been developed to find the sparse solution
to an underdetermined system (i.e., Φ 2 R

M⇥N : M < N). This is not the
case of the gamma-ray spectral unmixing problem. Furthermore, the main
objective of the sparse spectral unmixing here is to select the active radionu-
clides, which requires that the capacity to accurately identify radionuclides
when the noise is low. Therefore, a Poisson-based OMP algorithm is partic-
ularly needed.

4.3.2 The Poisson OMP Algorithm

Only a few studies have been carried out in Poisson-based greedy algo-
rithms. An extension to the Poisson denoising case has been published in
[Dupé and Anthoine, 2013]. The algorithm selects new variables based on
the minimization of the gradient of the Poisson negative log-likelihood. This
method requires the number of active radionuclides k to be known, which is
however not true in gamma-ray spectrum analysis since the number of active
radionuclides is unknown for a measured spectrum.

We rather extend the OMP algorithm to P-OMP (Poisson-based OMP)
described in Algorithm 6. It selects forward the radionuclides in Φ

c by se-
quentially adding the radionuclide that maximizes the Poisson likelihood.
More precisely, the model is initialized with the background spectrum b, at
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Algorithm 5 Pseudo-code of OMP algorithm

Input:
Measured spectrum: x and background radiation spectrum b

The spectral signatures: Φc = �1...�N

([1, ...N ]: each index for a radionuclide in Φ
c)

Initialization:
The selected indices: I0 = ;, the residual r0 = x� b

while the stopping condition is not achieved do

i = i+ 1

Find the column of Φc that solves:

argmax
j
kri�1

Φ
ck

Add the jth column to the selected radionuclides: Ii = Ii�1 [ j

Estimate âi with selected radionuclides (Φc[Ii]) and compute the new
residual with:

ri =
x�Φ

c[Ii]âi � b

Φ
c[Ii]âi + b

end while

each step, each of the non-selected radionuclides is added into the spectral
signatures for activity estimation using the Poisson unmixing algorithm de-
scribed in Chapter 3. At the end of the iteration, it selects the radionuclide
that minimizes the Poisson-based cost function. The algorithm stops when
certain stop condition is achieved.

4.3.3 Stopping criteria for radionuclides identification

The OMP and P-OMP algorithms sequentially select the radionuclides at
each step. Once a radionuclide has been added into the spectral signatures,
a stopping condition needs to be applied to compare two candidate models:

• M0: the model with selected radionuclides

• M1: the model with an extra active radionuclide

As mentioned in Section 4.1, model selection methods such as AIC and
BIC are commonly used to penalize the model complexity.
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Algorithm 6 Pseudo-code of Poisson-based OMP algorithm

Input:
Measured spectrum: x and background radiation spectrum b

The spectral signatures: Φc = �1...�N

([1, ...N ]: each index for a radionuclide in Φ
c)

Initialization:
The selected indices: I0 = ;
The indices to check: Ic = [1...N ]

The neg-log-likelihood (with background spectrum): L0 = b� x� log(b)

while the stopping condition is not achieved do

i = i+ 1

for j 2 Ic do

Add a radionuclide to the subset of spectral signatures:

I test  Ii�1 [ j

Estimate mixing weights anew with Φ
c[I test]

Compute the neg-log-likelihood:

Φ
c[I test]anew + b� x� log(Φc[I test]anew + b)

end for

Find j⇤ that minimizes the neg-log-likelihood

Add the j⇤th column to the selected radionuclides: Ii = Ii�1 [ j⇤

Remove the selected radionuclide j⇤ from Ic.
end while

To use these information criteria as stopping rule, the

AIC = 2 ⇤ k � 2 lnL, BIC = k ⇤N � 2 lnL

need to be calculated at each straightforward selection step, where L
is the likelihood function, k is the number of parameters to be estimated
(i.e., the number of selected radionuclides), and N is the sample size (i.e.,
the number of channels in the spectrum). The algorithm stops when the
information criteria increases.
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However, these model selection methods can not provide an idea about
the false positive rate. To consider the false positive rate of adding a new
radionuclide to the model, we propose to apply a stopping criteria with a
statistical test under the following hypotheses:

• H0: the model M0 is true

• H1: the model with an extra active radionuclide M1 is true

For this purpose, the statistical deviance test between M0 and M1 ([Das-
Gupta, 2008]) is well-suited, which is defined by the difference of their neg-
log-likelihood:

D = �2 (L1 � L0) (4.5)

where L0 and L1 stand for the neg-log-likelihood calculated with model
M0 (selected radionuclides) and M1 (selected radionuclides + an extra ra-
dionuclide) respectively. More precisely, as we presented in Chapter 3, for
the OMP algorithm with weighted least squares estimation, the neg-log-
likelihood function takes the form of:

L (x|a) = (Φa+ b� x)T W�1 (Φa+ b� x)

For the Poisson based OMP algorithm, the Poisson neg-log-likelihood
takes the form of:

L (x|a) = Φa+ b� x� (Φa+ b)

When M0 is nested within M1 and M1 is the true model, the statistical
deviance asymptotically follows a �2 distribution with d degrees of freedom
(d is the difference of the number of radionuclides in the two models). How-
ever, the models are not nested in the straightforward search of P-OMP
algorithm, since among the radionuclides to be tested, the true model may
be a combination of radionuclides. In such a multiple hypothesis testing
problem, the Bonferroni correction [Benjamini and Hochberg, 1995] is com-
monly used, which allows to control the number of false positives based on a
p-value corrected by the number of hypotheses.

The selection of extra radionuclides stops whenever the deviance is con-
sistent with a �2 distribution with the critical p-value:

↵ =
↵0

n
(4.6)

where n is the number of radionuclides to be tested at this step and ↵0

is the desired false positive rate, while ↵0 = 0.01 is used in the experiments
of this chapter.
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Indeed, the results obtained with Genie 2000 is according to Genie 2000 + a
post-analysis procedure, while some false identifications of radionuclides are
rejected. Furthermore, the results of Genie 2000 are given based on certain
decision threshold level which implies the significance of the radionuclides’
presence (see details in Chapter 5).

However, one limitation for applying P-OMP on real measurements of
HPGe detectors is the bias of the Poisson spectral unmixing. Firstly, the
spectral signatures of radionuclides are simulated with MCNP-CP, which
provides bias on gamma-ray responses. Secondly, background spectra are
measured every two months, b used in the spectral unmixing process is gener-
ated from a previous measurement of background spectrum, which is not the
actual background at the time of the measurement. This bias on background
spectrum leads to over/under estimations since the background consists of
several radionuclides which also participate in the measured sample.

4.5 Application of P-OMP to NaI measurements

4.5.1 Description of the data

The spectral unmixing applied to the activity estimation from NaI gamma-
ray measurements have been studied in [Paradis et al., 2020] based on the
multiplicative update algorithm described in Chapter 3. The investigations
in this paper consider that the set of active radionuclides is known. To fur-
ther overcome the radionuclides’ identification, [André et al., ] makes use of
the P-OMP algorithm to impose the sparsity constraint into the spectral un-
mixing algorithm proposed in [Paradis et al., 2020]. In this section, we aim
to further investigate how the P-OMP algorithm behaves when the correla-
tion of radionuclides’ spectra between the spectra of the spectral dictionary
increases, which is more challenging in NaI spectra analysis.

It is indeed expected that larger correlation will hamper the estimation
bias of the activities, and more importantly the detection capabilities of the
sparse spectral unmixing algorithm. For that purpose, we apply P-OMP
to simulated measurements of a 3”x3” NaI(Tl) detector without shielding
using point sources placed at a distance of 1 m [Paradis et al., 2020]. The
spectral dictionary is composed of ten spectral signatures, which are made
of 1024 channels. These signatures correspond to the detector response of
ten gamma-emitting radionuclides with photon emissions covering a range of
energies between 40 keV and 2 MeV:

57Co, 60Co, 88Y, 133Ba, 134Cs, 137Cs, 152Eu, 207Bi, 241Am, 237Np.
Simulations of different mixing scenarios are performed with the following

choice of radionuclides (i.e., active radionuclides present in the spectrum).
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The choice of 57Co, 60Co, 133Ba, 137Cs and 241Am is particular relevant as
they correspond to the main radionuclides that need to be identified for illicit
radioactive material monitoring [IEC 62484:2010, 2010]. Furthermore, 152Eu
has been chosen as its signature covers a large range of energies, 120 keV to
1410 keV, which is largely correlating with other radionuclides. The following
scenarios have been considered :

• Scenario I: following [André et al., ], the scenario considers measure-
ments where only four radionuclides are present in the mixture: 57Co,
133Ba, 152Eu, 241Am. A natural background spectrum is further added.
This scenario allows to compare the precision of the unmixing methods
for both estimation quality and detection capability.

• Scenario II: in these experiments, 137Cs is added to the mixture of
Scenario I. This allows to evaluate the ability to detect low-activity
radionuclides such as 137Cs, as well as the impact of the estimation on
other radionuclides. These experiments are reminiscent of the 137Cs
estimation experiment we performed in Chapter 3.

• Scenario III: 60Co is added to the standard mixture Scenario I. This
set-up allows to highlight how radionuclides’ identification can be ham-
pered when their spectral signatures have a significant overlap, which
is the case of 57Co, 60Co and 152Eu.

For a comparison purpose, the OMP algorithm based on the iterative
re-weighted least squares estimation and the P-OMP algorithm based on
the Poisson estimation presented in Section 4.3 are applied to analyze the
simulated spectra of the above three scenarios. At the end of the section,
we compare the proposed deviance-based stopping criteria to those based on
information criteria.

4.5.2 Application to NaI measurements - scenario I

This scenario has been investigated in [André et al., ] to simulate mea-
surements similar to illicit radioactivity monitoring with NaI-based detectors.
Four radionuclides and a background spectrum are considered in the mea-
surements, their proportion can be found in Table 4.1). To better illustrate
the correlations between individual spectra of the measurements, the spectral
signatures of the above 4 active radionuclides are shown in Figure 4.5.

We quantify the estimation bias of the mixing weights (i.e., the activities)
of these radionuclides as well as the detection performances of the P-OMP
and OMP algorithms, with an empirical evaluation of the false positive and

















4.6. SUMMARY OF THE SPARSE SPECTRAL UNMIXING 77

Counts 152Eu 25 50 100 150 200 250 300 400 500

57Co
OMP (WLS) 0 0 0 0 0 0 0 0 0

P-OMP 0 0 0 0 0 0 0 0 0

60Co
OMP (WLS) 79.2 78.4 76.4 78.4 80.4 79.2 68 76.4 77.2

P-OMP 0 0 0 0 0 0 0 0 0

152Eu
OMP (WLS) 10 9.2 3.2 1.2 0.4 0 0 0 0

P-OMP 16.4 10.4 2.4 0 0 0 0 0 0

Table 4.4 – False negative rate of 57Co, 60Co and 152Eu (%) (Scenario III).

different values for the average total number of counts of 152Eu: 25, 100 and
200.

These results first show that AIC systematically over-estimates the num-
ber of active radionuclides, leading to a detection rate of a few percents for
the 5 non-active radionuclides. This holds true for the three different levels
of Europium that were tested. In contrast, BIC is more conservative and
leads to detection results that are closed to the deviance-based criterion, a
slightly large false positive rate.

It has to be emphasized that controlling the FPR is key for tackling spec-
tral unmixing problem, which favor the use of the deviance-based criterion
along with the sparsity penalization for model selection.

FNR of active radionuclides FPR of non-active radionuclides
57Co 60Co 133Ba 152Eu 241Am 88Y 134Cs 137Cs 207Bi 237Np

Dev. 0 0 0 16.8 0 0 0 0.4 0 0.8

AIC 0 6.8 0 19.2 0 0 6.0 5.2 3.2 5.6

BIC 0 0 0 16.8 0 0 0.8 0.4 0 0.8

Table 4.5 – Comparison of different model complexity penalizations. Average
total number of counts for 152Eu of 25.

4.6 Summary of the sparse spectral unmixing

In this chapter, the spectral unmixing is reformulated with a sparsity
constraint so as to estimate the subset of active radionuclides present in a
measured gamma-ray spectrum. We proposed a novel Poisson Orthogonal
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FNR of active radionuclides FPR of non-active radionuclides
57Co 60Co 133Ba 152Eu 241Am 88Y 134Cs 137Cs 207Bi 237Np

Dev. 0 0 0 1.6 0 0 0 0 0 0

AIC 0 6.8 0 2.8 0 0 4.0 8.8 7.2 7.2

BIC 0 0.8 0 1.6 0 0 0.4 0 0.8 0.8

Table 4.6 – Comparison of different model complexity penalizations. Average
total number of counts for 152Eu of 100.

FNR of active radionuclides FPR of non-active radionuclides
57Co 60Co 133Ba 152Eu 241Am 88Y 134Cs 137Cs 207Bi 237Np

Dev. 0 0 0 0 0 0 0 0 0 0

AIC 0 9.6 0 0 0 0 6.4 5.2 6.8 7.2

BIC 0 0 0 0 0 0 0 0.4 1.2 0.4

Table 4.7 – Comparison of different model complexity penalizations. Average
total number of counts for 152Eu of 200.

Matching Pursuit algorithm, named P-OMP, which enables to find the spars-
est solution of mixing weights that best fits the measured spectrum according
to the Poisson statistics. We evaluated the performance of this P-OMP al-
gorithm by comparing to standard OMP algorithm based on the iterative
re-weighted least squares estimation. As results, the P-OMP is shown to
provide more accurate estimation of the active radionuclides’ subset, as well
as their according mixing weights. This further highlights the advantage
of accounting for the Poisson data error in spectral unmixing rather than
weighted least squares error.

While providing promising results, assuming that the radionuclides’ spec-
tral signatures and the background spectrum are accurately known is an
important limitation in real data analysis, particularly in case of aerosol
measurements that we investigate, since the spectral signatures need to be
simulated. In practice, the variability of spectral signatures might increase
false identifications as well as estimation bias of the mixing weights. The
next chapters will focus on the quantitative analysis of radionuclides’ activi-
ties with experimental data, where we will discuss the error estimation with
characteristic limits and propose calibrations for quantitative analysis.
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The precise analysis of gamma-ray spectra requires two key ingredients:
the first one is an efficient spectral unmixing algorithm, which we thoroughly
investigated in the previous chapters. The second ingredient, which is key to
reach a truly metrological analysis quality, is the quantification of the errors
of the estimation and the detection procedures. As detailed in-depth in this
chapter, this requires evaluating the so-called characteristic limits, which
are essential for decision making purposes in the quantitative analysis of
the radioactivity measurements. The assessment of two major characteristic
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limits: the decision threshold and the limits of the confidence interval will
be thoroughly evaluated in this chapter.

While being well studied in traditional peak-based analysis, the main
goal of this chapter is to introduce and evaluate a new approach to derive
such characteristic limits for the spectral unmixing algorithms we introduced
previously. More precisely, the contribution of this chapter is as follows:

• We first focus on the concept of characteristic limits for radioactivity
measurements in Section 5.1, where we present their definitions.

• In Section 5.2, we review how the characteristic limits can be calcu-
lated from Monte Carlo simulations, which were used to determine the
significance of results provided with spectral unmixing in Chapter 3.

• The assessment of the decision threshold in spectral unmixing is inves-
tigated in Section 5.3.

• The evaluation of the confidence interval of the activity estimation is
then carried out in Section 5.4.

The proposed approaches to derive characteristic limits have been eval-
uated and validated with realistic simulations of HPGe measurements and
NaI measurements. Section 5.5 finally discusses their metrological use in the
gamma-ray spectrum analysis.

5.1 Characteristic limits in radioactivity measurements

Refer to [ISO 11929, 2010], the notations below are used in the description
of the characteristic limits:

• Y : Measurand, the quantity of interest.

• y: Determined value of the measurand Y (i.e., the estimate of Y ).

• ỹ: True value of the measurand.

We first present the classical statistical hypothesis framework used for
decision making in gamma-ray spectrum analysis. It is commonplace to
consider testing hypotheses with the two alternatives (associated with type
I error and type II error described in Table 5.1):

• H0: the null hypothesis, where a given radionuclide is not “active”.

• H1: the alternate hypothesis, where the radionuclide is present in the
mixture.
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H0 is true H1 is true

rejecting H0 Type I error: the error of
rejecting H0 when it is true,
the probability of committing
a type I error is denoted by
↵, called false positive rate.

accepting H0 Type II error: the error of
accepting H0 when H1 is true,
the probability of committing
a type II error is denoted by
�, called false negative rate.

Table 5.1 – Two types of errors of hypotheses test.

The standardization document [ISO 11929, 2010] defines the determina-
tion of the characteristic limits, namely the decision threshold, the detection
limit, and limits of the confidence interval for ionizing radiation measure-
ments. It provides a framework for the computation of the characteristic
limits. Referring to [Weise et al., 2005], [Michel, 2016], the definition and
interpretation of the characteristic limits for some estimate y of a measurand
Y are as follows:

• Decision threshold (DT) allows a decision to be made on whether
or not the physical effect quantified by the measurand is present.

The determination of DT is related to the Type I error described in
Table 5.1. When the quantity y exceeds the critical value (DT), the null
hypothesis H0 should be rejected with respect to a given false positive
rate (FPR). It can be described with:

↵ = P (y � DT |ỹ = 0) (5.1)

where ỹ is the true value of the measurand and ↵ is the desired critical
FPR.

• Detection limit (DL) indicates the smallest true quantity value of the
measurand, which can still be detected with the applied measurement
procedure.

The determination of DL is related to the Type II error described in
Table 5.1. It is selected with respect to a desired false negative rate
(FNR) based on the decision threshold level.
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More precisely, the detection limit (DL) is the smallest value that pro-
vides a desired Type II error probability �:

� = P (y  DT |ỹ = DL) (5.2)

where the DT is given and ỹ is the true value of the measurand.

• The confidence interval for the estimate y is an interval that has a
probability � of containing the true value ỹ.

In this work, we mainly focus on the determination of the decision thresh-
old and the confidence interval, since in practice, these two ingredients allow
us to determine whether the resulting activity of a radionuclide is significant.
Firstly, we can evaluate the measurement uncertainty of each radionuclide
from the combination of the confidence interval and other metrological un-
certainties. Secondly, for the decision making purpose, it is sufficient to
compare the low boundary of the measurement uncertainty to the decision
threshold. In practice, the detection limit can be used as reference values,
which is however not useful in case of the aerosol measurements that will be
analyzed.

5.2 Quantification with Monte Carlo simulations

A traditional approach to quantify the characteristic limits for some es-
timation method is to make use of Monte-Carlo simulations. Indeed, we
pointed out in Chapter 3 that the significance level of the radionuclide’s
presence and the confidence interval of the activity estimation with spectral
unmixing can be derived from Monte Carlo simulations.

In this chapter, the evaluation of characteristic limits are carried out with
the radionuclides’ realistic mixture of aerosol measurements (see Chapter 3).
Recall that the mixture consists of 10 radionuclides: 7Be, 22Na, 40K, 137Cs,
210Pb, 208Tl, 212Bi, 212Pb, 214Bi, 214Pb. It should be noted that the evalu-
ations from this realistic mixing scenario are meaningful since the counting
statistics is similar to typical aerosol routine measurements. In this context
we focus on the assessment of characteristic limits for 4 radionuclides: 7Be,
22Na, 137Cs, 212Pb, since these radionuclides cover the whole energy range
and different statistic regimes. The simulation model of 10 radionuclides and
the contribution of these 4 radionuclides are displayed in Figure 5.1.

Decision threshold from Monte Carlo simulations

Monte Carlo simulations that mimic the mixture under the null hypothe-
sis of a radionuclide allows quantifying the false positive rate of this radionu-
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the first ones obtained with simulations under the null hypothesis can be
used to quantify the significance of the radionuclide’s presence, which allows
computing a decision threshold with respect to some false positive rate from
the according percentile of the distribution. The second ones obtained with
the true mixture allows computing a confidence interval from the according
percentiles of the distribution that contains the true value.

In practice, Monte Carlo simulations are seldom used to analyze gamma-
ray spectra in routine analysis procedures. The main drawback is their mas-
sive computational cost since Monte Carlo simulations are needed for each
new spectrum to be analyzed. In the next sections, we focus on computa-
tionally cheaper and yet precise alternatives to derive the characteristic limits
without resorting to Monte-Carlo simulations.

5.3 Quantifying the decision threshold

5.3.1 Decision threshold in peak-based analysis

In gamma-ray spectrum analysis, the decision threshold is usually derived
from some statistical test based on the measured spectrum. This amounts to
evaluating how much the estimated quantity associated with a radionuclide’s
activity departs from the background (i.e., other contributions composed in
the measured spectrum) and is therefore statistically consistent or not with
this background.

In the peak-based analysis, the activity is associated with the net counts
(see details in Chapter 2). Recall that it is the total number of counts
measured in a given ROI, which further corrected by the average number of
counts of the background:

Nn = Ng �N0 (5.3)

where Nn is the net counts number associated to the activity, Ng is the
observed gross number of counts and N0 is the number of background counts.
Recall the definition of DT in Section 5.1, the DT level of the measurand
(i.e., net counts number) is derived from:

↵ = P(Nn � DT |Ñn = 0) (5.4)

where ↵ and Ñn stands for the desired FPR and the true value of the net
number of counts respectively. The estimated number of Ng and N0, noted

N̂g and N̂0 respectively. In practice, the DT is derived from some statistical

test of the quantity N̂g � N̂0 under the hypothesis of Ñn = 0, which has:

• mean value equal to zero.
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• variance according to 2N̂0, since both of Ng and N0 follow the Poisson
statistic thus their mean value are equal to their variance, and Ng = N0

under the hypothesis of Ñn = 0.

5.3.2 Decision threshold in spectral unmixing analysis

The DT determination in peak-based analysis considers that the back-
ground spectrum N0 is well estimated and provides a mean value of the
distribution under the null hypothesis, from which the DT can be derived
based on a desired FPR. Now, we aim to investigate the DT in the spectral
unmixing approach, where the measurand associated with a radionuclide’s
activity is the number of counts in the full spectrum range. The DT can be
derived with the same idea of statistical test based on a “background”, but
adapted to the full spectrum analysis.

Recall that the spectral unmixing decomposes a gamma-ray spectrum
into individual spectra of radionuclides. To determine the decision threshold
of a single radionuclide indexed by j in the unmixing model, we reformu-
late the true linear mixing model with this radionuclide and an equivalent
background:

Φa+ b! φjaj +m (5.5)

where φjaj represents the individual spectrum of the jth radionuclide,
while the other radionuclides and the background spectrum b compose an
equivalent background:

m =

l 6=j
X

φlal + b

In the spectral unmixing analysis, the activity of the jth radionuclide is
associated to the mixing weight aj. Recall the definition in Section 5.1, the
DT level of the measurand (i.e., aj) is derived from:

↵ = P (aj � DT |ãj = 0) (5.6)

Recall that, the measured spectrum x is composed of M channels, 8i 2
[1, ...,M ], the observed counts in each channel of the spectrum follows a
Poisson distribution with mean value: �i = [φjaj]i +mi.

The DT can be derived from a standard hypothesis testing procedure test
under the null alternative of H0 : ãj = 0, which leads to �i = mi for 8i 2M .
This can be generally formulated with some statistical test T as follows:

↵ = P
�

T � T (�)|8i,�i = mi

�

(5.7)

For this purpose, we propose to make use of statistical test based on
different assumptions as follows:
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a. Test based on the sum of observed counts: a simple statistical
test to consider is based on the total number of counts, as measured by
the sum of observed counts under the null hypothesis H0. Thanks to the
statistical independence of each channel, this quantity should follow a Poisson
distribution with mean value m̂ (i.e., estimated equivalent background).

X

i

xi ⇠ Poisson

 

X

i

m̂i

!

(5.8)

Therefore, the DT (noted a⇤j) of the estimated activity for the jth radionu-
clide with a given false positive rate ↵, can be derived from the cumulative
distribution function (CDF) of the following distribution:

↵ = P
⇣

X

i2C

xi �
X

i2C

[φja
⇤
j ]i +

X

i2C

mi

⌘

(5.9)

where C is some set of observed channels. The total number of counts
from the full spectrum is a special case where C defines all the observed
channels. While it allows to account for the full information carried out by
the spectrum, it however poorly distinguishes the radionuclide to be tested
from the background. We rather use the pre-specified channels in a region
of interest, where the equivalent background is better distinguished from the
jth radionuclide. (e.g, peak region of the radionuclide).

b. Test based on sum of weighted observed counts: In order to
better distinguish between the radionuclide to be tested and the equivalent
background, we further investigate statistical test derived from the sum of
weighted counts in different channels written as

P

i wimi with the following
choice of wi:

• Let Ψ =
h

φj m

i

, the least squares solution of the mixing vector of

Ψ can be written as:

â 2 argmin
a

1

2
kx�Ψak2 (5.10)

for which the solution is â = Ψ
†x, where Ψ

† = (ΨT
Ψ)�1

Ψ
T is the

pseudo inverse matrix.

We make use of the the component of Ψ† related to φj as the weights

matrix, noted as w1 = Ψ
†
�. As graphically illustrated in Figure 5.3, it

allows projecting onto the span of φj parallelly to m.
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Next, we evaluate the above statistical tests to assess the decision thresh-
old for HPGe and NaI spectra, while the results are compared to those carried
out with Monte Carlo simulations.

5.3.3 Evaluation of the decision threshold determination

For a comparison purpose, by fixing the false positive rate to ↵ = 2.5%,
we calculate the DT for Poisson-based spectral unmixing with the following
approaches:

• For each radionuclide, the accurate DT level quantified with respect
to 1 � ↵ percentile of the distribution of estimated value from Monte
Carlo simulations under the null hypothesis of this radionuclide.

• the decision threshold assessment with different statistical tests for each
Monte Carlo simulation. The comparisons are carried out for:

– the Poisson statistical test based on the sum of counts in peak
region. This is used only for HPGe measurements since using the
peak regions to analyze NaI measurements is not interesting due
to the correlations of spectra, for which it is better to take into
account the full spectrum information.

– the Gaussian statistical test based on two choices of weighted sum
of counts, noted w1 and w2 respectively.

The evaluation are carried out for:

• Experiments on the described mixing scenario (see Figure 5.1) of an
HPGe measurement, while the peak region, noted ROI, used are: 7Be
at 477 keV, 22Na at 1274 keV, 137Cs at 661 keV and 212Pb at 238 keV.

• Simulations of NaI gamma-ray spectra measurements. By considering
the spectral signatures used in [Paradis et al., 2020], simulations are
performed with 60Co, 134Cs, 137Cs, 152Eu with a background spectrum.
As shown in Figure 5.4, 1000 simulations are performed for the mixture
with respect to number of counts shown in Table 5.2.

Radionuclide 60Co 134Cs 137Cs 152Eu background

Number of counts 1500 500 1500 2500 4000

Table 5.2 – Number of counts of NaI simulations.
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where I(✓) is the Fisher information ([Fisher, 1956]) defined as:

I(✓) = E✓



@2 log f(x|✓)

@✓2

�

(5.15)

The estimation standard error can be obtained by replacing the unknown
true value ✓ by the estimated value ✓̂.

In our activity estimation problem, the investigated Poisson-based spec-
tral unmixing provides a maximum likelihood estimate of the mixing weights,
noted â. According to the Poisson likelihood, the Fisher information matrix
can be written as:

I(â) = Φ
Tdiag

�

x↵ (Φâ+ b)2
�

Φ (5.16)

We propose to assess the confidence interval of the estimated mixing
weights â by the diagonal elements of

p

I(â)�1, which approximates the
standard deviation of the distribution.

5.4.2 Evaluation of confidence interval in spectral unmixing

In this paragraph, the confidence interval assessment with Fisher infor-
mation matrix is evaluated with simulations of HPGe and NaI measurements
described in the previous section. More precisely, we calculate the standard
deviation from the Fisher information matrix and evaluate the results with
Monte Carlo simulations.

Firstly, we make use of the Q-Q (quantile-quantile) plots, which compares
the distribution of estimated activities of Monte Carlo simulations to the
distribution generated from the standard deviation carried out with Fisher
information. The aim is to i), test the normality of the estimator, which
allows validating the confidence interval with a standard uncertainty in terms
of Normal distribution. ii), compare the distribution to those obtained with
Fisher information.

More precisely, for each radionuclide, we show the Q-Q plot for two data
samples noted A1 and A2:

• A1 for estimated activity values of Monte Carlo simulations.

• A2 for Normal distribution generated from the Fisher information of
the estimation:

N
�

a0, �
2
f

�

where a0 is the expected mixing weight of the radionuclide and �f is the
standard uncertainty calculated from the Fisher information matrix.







5.5. DISCUSSION 99

7Be 22Na 137Cs 212Pb

percentage within a0 ± �f 68.0 66.1 68.6 68.4

percentage within a0 ± 2�f 96.4 93.9 95.7 95.0

percentage within a0 ± 3�f 99.9 99.8 99.8 99.9

Table 5.3 – Standard deviation from Fisher information matrix comparing
to Monte Carlo simulations (HPGe measurements).

60Co 134Cs 137Cs 152Eu

percentage within a0 ± �f 68.1 66.0 67.5 66.2

percentage within a0 ± 2�f 95.3 95.0 94.0 95.5

percentage within a0 ± 3�f 99.7 99.5 99.9 99.8

Table 5.4 – Standard deviation from Fisher information matrix comparing
to Monte Carlo simulations (NaI measurements).

confidence interval are evaluated and validated for simulations of HPGe and
NaI measurements. It should be noted that the simulations of HPGe mea-
surement mimic realistic activities of aerosol measurements; therefore, the
decision making with the proposed decision threshold and the confidence in-
terval (i.e., statistical uncertainty) assessment with the Fisher information
matrix can be used in the quantitative analysis of HPGe gamma-ray spectra
measurements, this will be presented in Chapter 6.
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In this chapter, we investigate the application of spectral unmixing meth-
ods to analyze spectra of HPGe gamma-ray measurements. We focus on the
evaluation and validation of the spectral analysis pipeline for gamma-ray
measurements performed with a detection system (i.e., detector and source
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geometry) used in the laboratory, which can be virtually applied to other
detection systems.

Applying the spectral unmixing to real measurements is not straightfor-
ward as the data need to be calibrated for a precise analysis. The general
questions of calibrations in gamma-ray spectrum analysis are described in
Section 6.1; we describe how these calibration tasks are carried out in stan-
dard peak based analysis and propose the calibration procedures in the spec-
tral unmixing approach. Next, three calibrations steps are investigated and
evaluated with a standard multi-gamma source of known activities:

• The calibrations required in the simulation process of spectral signa-
tures are presented in Section 6.2. In this framework, the efficiency
and the resolution are adjusted to mimic the response of the detection
system.

• In Section 6.3, we discuss the complexity of the spectral signatures,
which amounts to adding spectral contributions due to the lead shield-
ing system into the spectral signatures.

• Section 6.4 presents the energy calibration for the Poisson based spec-
tral unmixing algorithm.

The calibrations are subsequently validated with the spectrum analysis of
the standard source in Section 6.5. Next, the proposed quantitative pipeline
is applied to analyze past measurements of environmental samples (aerosol
filters) in Section 6.6, where the results are compared to those obtained with
the standard method. Finally, conclusions and perspectives can be found in
Section 6.7.

6.1 Challenges of calibrations in gamma-ray spectrum
analysis

The qualitative analysis in gamma-ray spectrometry consists of: i), the
identification of radionuclides in the sample. ii), the quantification of each
radionuclide by determining the activity in becquerel (Bq), as well as its
characteristic limits and the uncertainties of the measurement.

In practice, the accurate quantitative analysis in gamma-ray spectrome-
try strongly depends on the proper calibration of the measurement instru-
ment (i.e., the detector and the sample geometry), which relates the detected
counts in a measured spectrum to the activity of radionuclides. The main cal-
ibration tasks are: energy calibration for identifying radionuclides, efficiency
calibration and resolution calibration for the quantification of radionuclides.
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In this section, we detail these calibrations and how they are performed in
standard peak based analysis. The calibrations in spectral unmixing analy-
sis need to be performed differently; they are introduced at the end of this
section.

6.1.1 Calibrations in peak based analysis

Energy calibration

We would like to recall that a gamma-ray spectrum measurement provides
the energy response of emitted photons (gamma-ray or X-ray) with multi-
channel analyzer (MCA), such a spectrum is the histogram of detected events
as a function of the voltage ranges (i.e., channel number). More precisely, the
number of channels in MCA used for gamma-ray spectrometry is fixed: 1024
channels (i.e., NaI measurements [Paradis et al., 2020]) up to 16384 channels
(i.e., HPGe measurements used in the laboratory). Referring to Chapter 2,
the MCA collects pulses in all voltage ranges (depending on the deposited
energies), noted 0� Vmax, while each pulse height increments the count in a
corresponding channel. For instance, when Vmax takes 12 V and the number
of channels is set to 16384, the number of counts of 5 V is according to
channel 8192. The radionuclides are characterized by energies, the energy
calibration is thus needed to identify radionuclides, which allows to relate
the channel number to the corresponding energy:

E = f (NCh) (6.1)

where NCh and E are the channel number and the corresponding energy.
As shown in Figure 6.1, the energy calibration is performed by localizing
peaks of known energies, which allows fitting the calibration function intro-
duced in Eq.(6.1).

Efficiency calibration

Efficiency calibration defines a function that relates the number of ob-
served photons and the disintegration rate. In peak based analysis, the de-
tection efficiency of full energy peak is defined as:

✏ =
Np

Ns

(6.2)

As illustrated in Figure 6.2, it relates the number of counts in the full
energy energy peak, noted Np, and the number of photons emitted by the
source for this energy, noted Ns, with Ns = A⇥I⇥t (A: activity, I: emission
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function to describe the peak shape versus the corresponding energy:

FWHM = a+ b
p

(E + cE2) (6.3)

where E is the peak energy and FWHM represents the full width at half
maximum of the peak.

6.1.2 Towards calibrations for spectral unmixing

In the spectral unmixing setting, the activities of radionuclides are pro-
portional to the estimated mixing weights â in the mixing model: Φâ + b.
While we are concerned with measurements of environmental samples, the
spectral signatures (i.e., each column of Φ) need to be simulated, since the
radionuclides contained in environmental samples are rarely present in stan-
dard sources. To this end, we make use of simulated spectral signatures
based on the MCNP particle transport code [Briesmeister, 2000], which is
used to perform gamma-ray spectra simulations throughout this thesis. The
experiments in this thesis use two versions of the MCNP code (see Appendix
C for details of the simulation code).

• MCNPX (MCNP eXtended) [Pelowitz, 2011] for the gamma-ray spec-
trum simulation of source that emits photons at specific energies.

• MCNP-CP (A Correlated Particle Radiation Source Extension of a
General Purpose Monte Carlo N-Particle Transport Code) [Berlizov,
2006] for the gamma-ray spectrum simulation of radionuclides, which
simulates the physics of nuclear decay and the subsequent emissions.

Quantitative analysis with simulated spectral signatures

The MCNP simulates gamma-ray spectrum and finally normalizes the
spectrum by the number of source-particle histories run in the simulation
process. Accordingly, a simulated spectral signature corresponds to the en-
ergy response with unit particle (i.e. one disintegration). The estimated
mixing weight â of a radionuclide is therefore the number of disintegrations.
Recall that activity unit becquerel (Bq) is defined as the number of disinte-
grations per second. This leads to quantify the radionuclides’ activity with:

Activities (Bq) =
â

t
(6.4)

where â is the estimated mixing weights and t is the counting time of
the measurement. To validate the quantification in Eq.(6.4), the simulation
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where Np is the number of observed counts in this full energy peak E,
A is the activity of the radionuclide that emits photons at this energy,
which is known for the standard source, I is the intensity of this energy
peak (i.e. the probability of emission of the corresponding gamma-ray
for 100 disintegrations of the radionuclide) and t is the counting time
of the measurement.

• Efficiency calibration in simulation configurations: the objec-
tive is to calibrate the simulation detection system so that simulated
detection efficiencies are close to ✏exp values. In the settings of MCNP-
CP, F8 tally (pulse height tally) specifies the energy distribution of
pulses, which allows us to simulate the photon energy peak as a Dirac
by default (see details in Appendix C).

Recall that a radionuclide emits photons at several energy peaks. Sim-
ulations are performed individually for each radionuclide of the source.
Knowing that the simulated response is normalized by the number of
particles run in the simulation, the detection efficiency of a full energy
peak E of the simulated detection system is:

✏simu(E) =
H(E)

I(E)
(6.6)

where H is the peak height of this peak and I is the intensity according
to E.

The simulation configurations have been changed so as to provide better
agreement of ✏exp and ✏simu, while the details can be found in Appendix C. By
comparison, the full energy peak efficiency of radionuclides in the reference
source, noted ✏exp and the full energy efficiency calculated with MCNP-CP
simulations, noted ✏simu, the ratio ✏simu

✏exp
at each peak energy are displayed in

Figure 6.5.
As a result, the full energy peak efficiency ratio shows a difference within

5% for all the peaks, which will be taken into account in the uncertainty
evaluation of the measurement.

6.2.2 Resolution calibration in spectral unmixing

The detection resolution is an important feature of gamma-ray measure-
ments, for which the calibration is particularly key in the analysis of HPGe
measurements since the number of counts is large in the few channels of the
peaks. In the MCNP-CP input file, the resolution can be specified with the
option GEB card, the parameters in the empirical model Eq. (6.3) need to
be calibrated in this step.
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• Simulated spectral signatures need to be interpolated to the measure-
ment energy bins.

• Estimation bias can be caused by the shift of energy between a mea-
sured spectrum and simulated spectral signatures.

To overcome these problems, we propose to use interpolations of simulated
spectral signatures in a high resolution domain corresponding to responses
in smaller energy bins. It can be formulated as follows:

Φ = HΦhr, Φhr = LΦ (6.7)

where Φ and Φhr represent spectral signatures respectively in actual en-
ergy domain and high resolution domain. Note that E and Ehr are energy
bins of Φ and Φhr. The operator H and L correspond to the interpolations
of Ehr ! E and E ! Ehr respectively.

More precisely, the energy re-calibration for the analysis of the mentioned
standard source is described as follows:

Step 1: Interpolation of simulated spectral signatures In the MCNP
simulation process, the energy bin scheme of the simulated spectrum is set
to interval of 0.1 keV (i.e., simulation of energy responses at each 0.1 keV).
As illustrated in Figure 6.7, simulated spectral signatures Φsimu are firstly
interpolated into high resolution energy bins (see illustration in Figure 6.7-
a), with 10 energy bins in one channel (i.e., energy responses at each 0.01
keV). Then the high resolution spectral signatures Φhr are interpolated into
measurement energy bins (see illustration in Figure 6.7-b), noted Φr.

Step 2: First activity estimation By using Φr, knowing that x (mea-
sured spectrum) and b (background). The spectral unmixing provides a first
estimation of activities, which is denoted as âr. The energy shift is illustrated
in Figure 6.8 for a single peak.

Step 3: Correction of the energy shift for peaks of known energies
The energy shift present in the first estimation for one of the energy peaks
is illustrated in Figure 6.8, we aim to fit an energy shift correction function
from k peaks, noted [e0, ...ek]. In such context, to determine the energy
shift of each peak, we define a maximum number of shift step in the high
resolution domain, which is fixed to Nmax = 15 (i.e., shift the spectra to
left or right with maximum 15 energy bins in the high resolution domain,
which is according to 0.15 keV in our simulated response). The energy shift
of a peak can be therefore obtained with the shift step that minimizes the
estimation residual. Details are given in Algorithm 7.
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re-calibrate the spectral signatures’ energy by solving the following weighted
least squares problem that aims to fit a polynomial function with c0, c1, c2, c3.

min
k
X

i=1

wi

�

ei +∆
i
e � (c0 + c1ei + c2e

2
i + c3e

3
i )
�2

(6.8)

where ei is the photon energy of the ith peak, ei+∆i
e is the target energy

of the ith peak, and k is the number of peaks used in this calibration step.
The weight of each peak is computed as follows:

wi =
1

P

channels in the ithpeak m
(6.9)

m is the equivalent background with respect to other spectral contribu-
tions with the exception of the radionuclide that emits photons at the ith

peak.
To overcome this problem, we can write the coefficients with a vector

c = [c0, c1, c2, c3], by considering the following matrix form:

• Vector e = [e1, ...ek] is the photon energies of the k peaks

• Matrix of variables in the polynomial function noted as:

V =

0

B

B

B

@

1 e1 e21 e31
. . . .

. . . .

1 ek e2k e3k

1

C

C

C

A

• Vector energy shift of peaks: ∆e = [∆1
e, ...∆

k
e ]

• Weights matrix Σ = diag (w1, ...wk)

The coefficients can be calculated by solving the following problem:

argmin
c

Σ
�1ke+∆e � V ck22 (6.10)

which leads to:

c =
�

V T
Σ

�1V
��1

V T
Σ

�1 (e+∆e) (6.11)

Finally, the corrected spectral signatures Φ can be obtained by interpo-
lating the corrected energy bins (High resolution domain) into energy bins
of the measurement.

Φf = H
�

c0 + c1Ehr + c2E
2
hr + c3E

3
hr

�

where H is the interpolation operator described in Eq.(6.7), and Φf is
the final re-calibrated spectral signatures.
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Evaluation of the energy re-calibration The estimation residual is
compared for results that we computed before and after energy correction.
These residuals, which are normalized by the observed counts, are displayed
for peaks in Figure 6.9. This result highlights that the energy shift correction
improves the spectral unmixing, which has significant benefits by reducing
the estimation residual in peak regions of the spectrum. For the analysis
of HPGe gamma-ray spectrum, where the counts in peaks regions are dom-
inant, we can especially benefit from a significant improvement from this
energy re-calibration step.

6.5 Validation with the standard source analysis

In this section, we aim to validate the proposed calibrations with the
standard source. For this purpose, the standard source is measured with the
calibrated detection system. The measured spectrum is analyzed with the
investigated spectral analysis pipeline, which includes the calibration steps
presented in previous sections and characteristic limits assessment introduced
in Chapter 5.

Uncertainties of the standard source analysis

Before proceeding with the spectral analysis, the main practical problem
comes from the uncertainties of the actual measurements. It is well known
that the measurement uncertainties contain not only statistical uncertainties
of the estimation, but also metrological uncertainties related to the material
and the analysis method. In practice, the uncertainties of the results are
determined from the probability that the estimated activity is contained in
a confidence interval based on a given p-value �, where � = 0.05 is usually
taken into account. The uncertainty is according to 2� for the Normal distri-
bution assumption (i.e. k=2). For this purpose, we make use of the relative
uncertainties defined with:

u =
2�

â

where â is the estimated activity.
We establish an uncertainty budget by using the spectral unmixing, which

contains the following uncertainty terms:

• For a given radionuclide, the statistical uncertainty with the Fisher
information matrix as described in Section 5.4, noted:

u1 =
2�f

â
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where �f and â stand for the standard deviation calculated from Fisher
information matrix and the estimated activity respectively.

• As previously investigated, spectral signatures Φ are calibrated with a
relative uncertainty of u2 = 5%.

• The uncertainty of the standard source that used for the calibration:
u3 = 5%.

• The uncertainty to take into account the variation of the sample po-
sition, for which we take the same value as considered in Genie 2000
analysis in the laboratory u4 = 2%.

• The uncertainty associated withthe variation of the detector u5 = 5%.

The relative uncertainty of the estimated activities can be assessed with
the combination of the above uncertainty terms:

u =
q

u2
1 + u2

2 + u2
3 + u2

4 + u2
5 (6.12)

As a result, the activity estimation carried out with the Poisson based
spectral unmixing are compared to the reference activities given by the source
in Table 6.1. To further evaluate the results, we make use of the ⇣scores [ISO
13528, 2015] derived with a standard normal distribution centered at the
reference activity:

⇣scores =
â� aref
q

�2 + �2
ref

(6.13)

where â and � are the estimated activity and the standard uncertainty
(according to k = 1 of Eq.(6.12)), aref and �ref represent the activity and
uncertainty (k = 1) of the reference source.

As reported in Table 6.1, the ⇣scores assessed for radionuclides of the stan-
dard source satisfies the following criteria:

• |⇣scores|  2 indicates ”satisfactory”

• 2  |⇣scores|  3 indicates ”questionable”

• |⇣scores| � 3 indicates ”unsatisfactory”

The evaluation of calibrations in spectral unmixing with the standard
source allows drawing the following conclusion: the activity and uncertainty
estimation with the spectral unmixing method is able to provide quantitative
analysis such that close to reference values. It can be used to analyze the
aerosol measurements performed with the same detection system.
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source spectral unmixing

reference
activity

uncertainty
(k=2)

estimated
activity

uncertainty
(k=2)

|⇣scores|

241Am 50.4 2.2 50.9 4.3 0.201
109Cd 378 21 376 32 0.114
57Co 18.70 0.64 18.70 1.57 0.004
139Ce 14.89 0.63 14.45 1.22 0.644
51Cr 22.6 1.1 23.0 2.0 0.435

113Sn 37.5 1.7 39.1 3.3 0.877
85Sr 23.51 0.91 25.7 2.2 1.888

137Cs 95.8 3.3 99.5 8.4 0.817
88Y 73.9 2.6 75.9 6.4 0.568

60Co 135.0 4.7 136.5 11.5 0.241
210Pb 353.5 9.3 355 30 0.081

Table 6.1 – Results of the standard source analysis with Poisson based spec-
tral unmixing (Bq).

6.6 Experiments on aerosol measurements

6.6.1 Uncertainty budget of the aerosol measurements

The uncertainty terms to analyze spectra performed with the calibrated
detection system has been assessed in the previous section. To analyze aerosol
measurements, another uncertainty term associated with the variation of the
pressed filter needs to be taken into account in the uncertainty budget. More
precisely, due to the preparation process of aerosol samples, the thickness
and the density of the pressed filter samples are different than those of the
standard source, which leads to variations of the detection efficiency.

This uncertainty term is evaluated for the first time during the thesis.
To this end, the thickness and the density of 1500 filters of past gamma-ray
measurements in the laboratory are measured and the results are summarized
in table 6.2.

The spectral analysis procedure is calibrated with the standard source of
thickness = 4.64 mm and density = 1.15 g/cm3, which is however far from
the median values of the actual sample geometries. Therefore, to analyze the
aerosol measurements, we make use the spectral signatures simulated with
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6.6.2 Re-analysis of aerosol measurements

The challenging problem to analyze environment radioactivity measure-
ments is to estimate the activity of low-level radionuclides with high accuracy
and high sensitivity. We make use of the Poisson based spectral unmixing
to re-analyze past measurements of environmental samples (aerosol filter)
performed with the calibrated detection system. The results are carried out
with the characteristic limits introduced in Chapter 5 and the evaluated un-
certainty budget.

The spectral unmixing is applied to analyze 67 aerosol measurements
during the past two years. They have been measured with the calibrated
HPGe detector. The results of the estimated activities consist of:

• Activity of radionuclides.

• Assessment of uncertainties.

• Decision threshold of radionuclides derived from statistical test intro-
duced in Chapter 5 with ↵ = 0.025.

For a comparison purpose, we focus on the activity estimation of 7Be,
22Na, 40K, 137Cs and 210Pb resulting from the Poisson-based spectral unmix-
ing and Genie 2000. Figure 6.11 illustrates the distribution of the ratio of
activities estimated with the two methods:

r =
â1
â2

where â1 for Poisson based spectral unmixing and â2 for Genie 2000.
The ratio of activity estimations of the two methods show that:

• For 7Be and 210Pb, the estimated activities with the spectral unmixing
are systematically lower than those obtained with Genie 2000. Recall
that Genie 2000 determines radionuclides’ activities with an efficiency
curve calibrated from the standard source. However, as we can see
in Figure 6.10, the efficiency performed with the source geometry is
systematically less efficient than routine measurements, which leads to
an over-estimate of the activities. In the proposed spectral unmixing
analysis, the spectral signatures are simulated with median values of
the geometries’ height and density (see Table 6.2 for details).

• For the analysis of low-level radionuclides, the spectral unmixing pro-
vides larger activities than Genie 2000. This can be explained by some
over-estimation with spectral unmixing or under estimation with Genie
2000 at low statistics. For further validation of low-level radionuclides’
quantification, low activity sources of known activities are needed.
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Furthermore, we compare the activity estimation of the two methods by
considering the uncertainties. Figure 6.10 displays the activities estimated
with Genie 2000 as a function of those estimated with Poisson based spectral
unmixing, where the error bars represent the uncertainties of the results.

In Figure 6.10, the error bars box (red) includes the uncertainties of the
results is comparable with the line of y = x (blue) for 7Be, 40K and 210Pb. For
22Na and 137Cs of very low-level activities, the error bars boxes are under the
line of y = x. The results confirm that the spectral unmixing tends to sys-
tematically provides larger activity estimation comparing to the Genie 2000.
To interpret the results, the Genie 2000 is likely to over estimate the back-
ground when the number of counts in the peak region is low. However, the
quantification of low activity radionuclides needs to be further investigated
with reference sources.

Next, we focus on the sensibility of the Poisson spectral unmixing analysis
to detect the 137Cs at trace level. Table 6.3 reports the activity estimation of
137Cs for 6 of the 67 measurements, for which the 137Cs is not detected with
Genie 2000 but with the Poisson based spectral unmixing.

Date 09/07/18 11/10/19 21/03/19 18/10/19 25/10/19 17/12/19

Activity 0.136 0.043 0.045 0.058 0.040 0.054

Uncertainty 0.063 0.025 0.016 0.022 0.019 0.021

DT 0.040 0.016 0.009 0.012 0.011 0.011

Table 6.3 – Activity (µBq/m3) of 137Cs analyzed with spectral unmixing for
measurements when 137Cs is not detected with Genie 2000. Uncertainties are
assessed with k=2 (2�), DT = decision threshold.

The results reported in Table 6.3 are illustrated in Figure 6.11. The detec-
tion of 137Cs of these 6 measurements are shown to be significant comparing
to the decision threshold, whereas the results are non-significant with Genie
2000, This further confirms the sensibility of the spectral unmixing analysis.

6.7 Conclusion

In this chapter, we investigated the quantitative analysis of experimental
aerosol measurements with HPGe gamma-ray spectrometry. Instrumenta-
tion calibration procedures of the spectral unmixing are proposed to analyze
HPGe measurements using MCNP-CP simulated spectral signatures. To
summarize, the quantitative analysis with a given detection system is per-
formed with the following calibration tasks: i), in the simulation process,
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the efficiency and the resolution are calibrated so that the simulated spectral
signatures can reproduce the actual energy response of the detection system,
ii) the measured spectrum need to cope with the spectral contributions due
to the specific installations of the detection system (e.g., lead shielding) by
adding a spectrum into the spectral signatures’ dictionary, iii), an energy re-
calibration step is proposed to correct the energy shift between energy bins
of the simulations and the measured spectrum.

The proposed calibration procedures are evaluated and validated for a
detection system with a multi-gamma standard source of known activities.
The aerosol measurements performed with this calibrated detection system
are subsequently analyzed with the proposed analysis pipeline (characteristic
limits + calibrations). The results are compared to those obtained with
Genie 2000 analysis. In conclusion, the Poisson based spectral unmixing
significantly improves the sensitivity of radionuclides’ identification, which
is particularly required by the rapid detection and rapid characterization
of artificial radionuclides (e.g., 137Cs) under emergency conditions. Future
investigations with low-level standard source are necessary to validate the
quantification of low-level radionuclides in real data analysis.
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7.1 Conclusion

The thesis addresses the gamma-ray spectrum analysis problem, which
covers both the development of analysis methods and metrological aspects
of the radioactivity determination with gamma-ray spectrometry technique.
We investigated the spectral unmixing to tackle the identification and quan-
tification of radionuclides with the aim of finding the spectral contributions
from a measured gamma-ray spectrum. The proposed spectral unmixing was
formulated as a regularized inverse problem that makes use of the observed
data in the full energy range and takes into account the Poisson statistics of
the underlying physical process.

The spectral unmixing aims at decomposing a measured spectrum into
the radionuclides’ spectral signatures and a background spectrum. We first
tackled the problem in a supervised framework in Chapter 3, where the
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spectral signatures and the background spectrum are considered as known.
Experiments on both simulated and measured gamma-ray spectra indicated
the significant advantages of using the Poisson-based full spectral unmixing.
The time to detect the low-level radionuclide 137Cs in aerosol filters was
reduced to 4 days after the sampling, whereas we need 8 days with standard
analysis method.

In the spectral unmixing problem, the identification of the spectral signa-
tures is usually a challenging problem, it is as well an important issue that we
need to cope with in gamma-ray spectrum analysis, since the active radionu-
clides present in a measurement is actually unknown in advance. For this
purpose, we presented the sparse spectral unmixing in Chapter 4. A novel
Poisson-based Greedy algorithm has been proposed, it enables to accurately
identify the active radionuclides and improves the accuracy of the activity
estimation.

Next, the quantitative analysis of the radioactivity measurements by us-
ing spectral unmixing methods has been investigated by focusing on different
metrological problems. In the field of radioactivity measurements, the char-
acteristic limits need to be assessed. In Chapter 5, we presented the charac-
teristic limits calculation for the spectral unmixing analysis tool investigated
in this thesis. In Chapter 6, we proposed the spectrum analysis procedure for
experimental gamma-ray measurements, in which the instrumentation cali-
brations are thoroughly investigated and further evaluated with a detection
system used in the laboratory.

The novel spectral unmixing approach has been applied to analyze gamma-
ray spectra measurements and compared to standard analysis method, the
spectral unmixing is shown to be more sensitive in the task of detecting
low-level radionuclides.

In this thesis, we focused on the spectrum analysis of aerosol measure-
ments performed with HPGe detectors. The investigated methods can be
further applied to other detectors and other radioactivity measurement do-
mains:

• The measurements with NaI(Tl) detectors are performed by the TRI-
LATAC device designed by IRSN for the radioactivity monitoring in
food and feed. The objective of these measurements is to control if
the activity in the food and feed samples exceed the maximum per-
mitted levels of radioactive contamination following a nuclear accident
or any other case of radiological emergency laid down by the Council
Regulation (Euratom) 2016/52. Due to the large number of samples to
be measured in this case, fast measurements are particularly required
while keeping good identification performance.
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• In the framework of controlling illegal nuclear material trafficking, the
investigated spectral unmixing method can be applied to measurements
using radiation portal monitors with scintillation detectors (plastic,
NaI(Tl)) to improve the detection limits.

7.2 Perspectives

7.2.1 Spectral unmixing with temporal signatures

In the thesis, we focused on the analysis of individual gamma-ray spectra,
where only information about the signatures in energy of the radionuclides
can be used in the unmixing process. In Chapter 3, we investigated the
analysis of a temporal sequence of 11 HPGe spectra, which corresponds to
a non-standard data acquisition procedure at IRSN. However, for the rapid
detection of artificial radionuclides, it is expected that further accounting
for the temporal information carried out by the radioactive decay will be
beneficial for the accuracy and sensitivity of the spectral unmixing.

More precisely, as presented in Chapter 2, the activity of a given radionu-
clide at time t can be obtained by an exponential decay function:

a[t] = a[0]e��t (7.1)

where a[0] is the activity at t[0]. Each radionuclide has a specific decay
constant �, which can further help discriminating between distinct radionu-
clides. The Poisson unmixing algorithm we investigated in this thesis can be
therefore extended to jointly take into account the spectral signatures and
the temporal signatures of radionuclides to estimate their activities.

As depicted in Figure 7.1, for a given measurement between two different
times ti and tj, a radionuclide’s activity, noted aj, is defined as the integral
of the activity decay between ti and tj:

aj =

Z tj

ti

a[0]e��tdt (7.2)

=
a[0]

�
(e��ti � e��tj) (7.3)

In the experiments described in Section 3.5, the time intervals are con-
tiguous, the starting time of some measurement is exactly the ending time
of the previous one.

Let’s now define by S the matrix defined as the row-wise concatenation
of L temporal measurements, where the jth column of S defines the mea-
surement ending at time tj. The mixing model can now be extended to the
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are considered in the simulations, where the decay constant of the parent
radionuclide is used for its daughter radionuclide (see Table 7.1).

Half-life time decay chain

10.64 h (212Pb) 212Pb ! 212Bi ! 208Tl

26.916 min (214Pb) 214Pb ! 214Bi

Table 7.1 – Decay constant considered in the equilibrium state.

start time from collecting counting time

s7 5.5h 10800

s8 8.5h 54000

s9 23.5h 28000

s10 1day and 7h 240000

s11 4day and 2 h 320000

Table 7.2 – Simulation of measurements for spectral unmixing with temporal
signatures.

The temporal/spectral-based unmixing algorithm is compared with our
standard Poisson unmixing algorithm based on the relative estimation error.
The comparisons are carried out for the 5 radionuclides and featured in Figure
7.2, where the median values and the first and last quartiles are displayed.

Unsurprisingly, further accounting for the temporal information featured
by the difference in activity decay of different radionuclides, help improv-
ing the estimation accuracy to a large extent. This is especially true for
early measurements, where the increased complexity of the measured spec-
tra dramatically hampers the estimation of the low-activity radionuclides. It
is also expected that accounting for both temporal and spectral information
can help improving the sensitivity and detection abilities of the unmixing
process.

Future work will also have to deal with the full complexity of gamma-ray
measurements by also accounting for the measurements in which radionu-
clides are not in equilibrium (e.g., the measurements corresponding to s1-s5
in experiments of Section 3.5). In this case, the activity decay is not known
for certain radionuclides, which either requires an hybrid mixture model or
a joint estimation of their activity decay.

The preliminary results carried out with the temporal/spectral-based un-
mixing opens the perspectives of the following applications:
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(timeline of the measurements) and the spectral information (counting
statistics of each measurement).

• Online analysis of aerosol filters collected with high volume air sam-
plers measured with HPGe detectors in LMRE. These samplers, part of
the OPERA-Air network of IRSN, are localized all over France and the
filters are thus received at LMRE at least 24 hours after sampling; the
radon progenies are therefore at equilibrium and the future algorithm
taking into account the decay information should improve the radioac-
tivity analysis in terms of sensibility, rapidity and accuracy (bias).

7.2.2 Making profit of the past processed data, learn to unmix

Involved in the radioactivity monitoring work, the laboratory is in charge
of gamma-ray spectra measurements with 20 HPGe detectors. 400-500 aerosol
filter measurements have been performed per year during the last decade.
The unmixing algorithms we introduced during this thesis apply to a single
measurement without accounting for the knowledge accumulated from the
processing of past measurements. In other words, they are agnostic to the
available archive of past measurements, which bring highly valuable informa-
tion to perform accurate radionuclide activity estimation, especially for the
challenging low-statistics regime.

Extracting information from the archive of past processed measurements
can be done in several ways. Following a traditional statistical approach
would boil down to deriving a statistical model for the past measured ra-
dionuclides’ activities to build a prior distribution, which can be plugged in
our Poisson unmixing algorithm. However, the relationship between the ac-
tivities of several radionuclides may be intricate and therefore hard to model
with simple statistical models.

In contrast, machine learning is a potentially interesting framework to
design a model for the sought-after radionuclides’ activities that could bet-
ter account for their complexity. Interestingly, deep unfolding techniques
have attracted a growing interest during the last five years [Diamond et al.,
2017],[Monga et al., 2019], allowing to combine standard solvers for linear
inverse problems with prior model learning. In a nutshell, such methods con-
sist in building a recurrent network that reproduces that inversion process
of common optimization algorithms (e.g. Forward-Backward Splitting [Gre-
gor and Lecun, 2010, Adler and Öktem, 2017, Andrychowicz et al., 2016]
and proximal primal-dual [Adler and Öktem, 2018] algorithms or Neumann
Network -NN- [Gilton et al., 2019]) while allowing to learn a data-driven
regularization from some training set. An unrolled version of the ADMM
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min
a

�J (a) +Φa+ b� x� log (Φa+ b) , (7.5)

where � is the Hadamard product. The term J stands for a penalization
term based on some prior knowledge about a, e.g., non-negativity investi-
gated in Chapter 3. The second term is the neg-log-likelihood of the Poisson
distribution. Beyond the non-negativity of a, one could benefit from the
available archive of hundreds to thousands of routinely taken measurements
to further learn a data-driven prior J ( . ), which should improve both the
estimation bias/variance.

In [Bobin et al., 2019], we introduced an unrolled version of the ADMM
algorithm to tackle the following equivalent of the problem in Eq.(7.5):

min
u,a

max
v

JΘ(a) + u� x� log (u) + vT (u�Φa� b) +
⇢

2
ku�Φa� bk22

where u is an extra variable, v is the dual variable related to the constraint
u = Φa + b and ⇢ is a positive scalar. The regularization term JΘ now
depends on some parameters Θ to be learned from the available training set.

In the present context, the advantage of ADMM is that it allows to split
the inversion of spectral signatures dictionary and the application of the
regularization in two distinct steps. A single iteration k of the proposed
Learned-ADMM, and subsequently each layer of the resulting recurrent net-
work, reads as:

• Update of u :minimizing Eq.(7.5) with respect to u leads to: u(k+1) =

prox1/⇢P

⇣

Φa(k) + b� 1/⇢v(k)
⌘

, where prox1/⇢P is proximal operator of

the Poisson neg-likelihood with scaling parameter 1/⇢ [Combettes and
Pesquet, 2007], the proximal operator of the Poisson neg-likelihood is
calculated in Appendix B.

• Update of a : updating a for fixed parameters Θ is done as follows:

a(k+1) = argmin
a

JΘ(a) +
⇢

2
kΦa+ b+ 1/⇢v(k) � u(k+1) � a(k)k22

Since the dictionary of spectral signatures Φ is not orthogonal, this
problem does not admit a closed-form solution. Instead of resorting to
a numerical evaluation with an extra iterative procedure, it is rather
approximated with a projected least-square estimate of the form:

a(k+1) = RΘ

�

Φ
†
�

u(k+1) � b+ 1/⇢v(k)
��



136 CHAPTER 7. CONCLUSION AND PERSPECTIVES

where Φ
† is the pseudo-inverse of Φ.

The operator RΘ stands for a shrinkage operator that depends on pa-
rameters Θ that are updated during training procedure so as to mini-
mize the mean estimation bias of

P

p kâp � a?
pk, from a training set of

T samples {(xp,a
?
p)}p=1,··· ,T .

The processing of routine aerosol measurements generally leads to ac-
tivities that do not vary to a large extent for natural radionuclides
(see Figure 7.4). Therefore, the goal of learning RΘ is to capture this
standard regime as well as the intricate correlation between the ra-
dionuclides’ estimated activities.

• Gradient ascent on v : the dual variable is updated as: v(k+1) =
v(k) + ⇢

�

u(k+1) �Φa(k+1) � b
�

. The parameter ⇢ is also trained along
with the inversion procedure.

Figure 7.4 – Natural radionuclides activity concentrations in the air sampled
in Orsay (France) as a function of the sampling date.

As displayed in Figure 7.5, each recurrent block is composed of a main
block where u and a are updated sequentially. The update of the dual vari-
able v appears externally and is the only variable that explicitly cumulates
information in the recurrence; this is reminiscent of skip connections. Sev-
eral values for the number of recurrent layers L have been tested. In these
experiments, L = 5 provides the best results; more layers did not provide
significant improvements.
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clides of interest in aerosol filters have been weekly measured at LMRE
with HPGe for several decades (see Figure 7.4 for 2-years period). The
learning algorithm allows extracting knowledge of the average levels
and the variability of their activity concentrations. Future investiga-
tions can also focus on the rapid detection of anomaly events with
information learned from these routine measurements.

• Use of high frequency in situ measurements. In situ air measurements
are performed by gamma probes, part of the OPERA-Air network
of IRSN, for environmental radiation surveillance and early warning
purposes. They measure continuously the environmental gamma dose
rate. Replacing this probes by new spectrometric probes with NaI(Tl)
(e.g. SpectroTracer, Bertin Instruments) would allow to use air mea-
surements by NaI detectors every 10 minutes to improve the analysis
tools. A similar approach could be applied to the in situ measurements
of the aerosols filters collected by air samplers. For instance, the air
samplers of the international network managed by the Comprehensive
Nuclear-Test-Ban Treaty Organization (CTBTO) performed one sam-
pling/measurement per day. Using the acquisition of the HPGe daily
measurement could improve the analysis tools.

7.3 Open questions

• Dealing with the variability of the spectral signatures: It is a
question of future research to investigate the variability of the spectral
signatures. The detection efficiency varies from one detector to another,
using spectral signatures simulated for a detector to analyze spectra
measured with other detectors can provide significant estimations bias.
For a given detector, the detection efficiency varies when measuring the
actual geometries of different dimensions (e.g., 10 mL and 30 mL used
in the laboratory).

We investigated the instrument calibrations in Chapter 6 for quantita-
tive analysis of HPGe gamma-ray measurements. In such context, the
efficiency and the resolution of a given detection system (detector +
source geometry) are adjusted thanks to a standard source. However,
the characteristics of the detector vary over time and lead to variable
spectral signatures. Moreover, as discussed in Chapter 6, the dimen-
sion and the density of pressed aerosol samples has an impact on the
detection efficiency. e.g., Figure 7.8 illustrates the simulated spectra of
40K by slightly changing the configurations of the detector or geometry.
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estimation error of the background b, which leads to over/under
estimate of radionuclides’ activities.

– Moreover, the background spectrum may consists of several ra-
dionuclides, which also participate in the measured sample, e.g.,
40K, which hampers the estimation accuracy of these radionu-
clides.

Therefore, it is of interest to jointly estimate the background spectrum
in the spectral unmixing problem, which would allow to improve the
estimation accuracy of the radionuclides’ activities.

7.4 Publications

Papers

• Xu, J., Bobin, J., de Vismes Ott, A., and Bobin, C. (2020). Sparse
spectral unmixing for activity estimation in �-ray spectrometry ap-
plied to environmental measurements. Applied Radiation and Isotopes,
156:108903.

• André, R., Bobin, C., Bobin, J., Xu, J., and de Vismes Ott, A. Metro-
logical approach of �-emitting radionuclides identification at low statis-
tics: application of sparse spectral unmixing to scintillation detectors.
Metrologia in revision.

Papers in preparation

• Analysis of �-ray spectra with spectral unmixing: determination of
characteristic limits. In Prep.

• Calibrations for quantitative analysis of HPGe �-ray measurements. In
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Presentations

• Sparse spectral unmixing for activity estimation in gamma-ray spec-
trometry. Oral presentation, International Conference on Radionuclide
Metrology and its Applications (ICRM), Salamanca, Spain. 2019.

• Learning to unmix from Poisson measurements with application to �-
spectroscopy. Poster, Signal Processing with Adaptive Sparse Struc-
tured Representations (SPARS) workshop, Toulouse, France. 2019.
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Open source code

The methods developed in this thesis have been tested on both simulated
and experimental data. The code will be available at https://github.com/
IRSN-LMRE.





APPENDIX A

Nuclear data of radionuclides

RN Element Z Half-life RN Element Z Half-life
7Be Beryllium 4 53.22 D 134Cs Cesium 55 2.0644 Y

22Na Sodium 11 2.6029 Y 137Cs Cesium 55 30.05 Y
40K Potassium 19 1.2504E9 Y 139Ce Cerium 58 137.641 D
51Cr Chromium 24 27.704 D 152Eu Europium 63 13.522 Y

54Mn Manganese 25 312.19 D 207Bi Bismuth 83 32.9 Y
57Co Cobalt 27 271.81 D 208Tl Thallium 81 3.058 M
60Co Cobalt 27 5.2711 Y 210Pb Lead 82 22.23 Y
85Sr Strontium 38 64.850 D 212Bi Bismuth 83 60.54 M
88Y Yttrium 39 106.63 D 212Pb Lead 82 10.64 H

106Rh Rhodium 45 30.1 S 214Bi Bismuth 83 19.8 M
109Cd Cadmium 48 461.9 D 214Pb Lead 82 26.916 M

110mAg Silver 47 249.78 D 228Ac Actinium 89 6.15 H
113Sn Tin 50 115.09 D 237Np Neptunium 93 2.144E6 Y

129I Iodine 53 16.1E6 Y 234Th Thorium 90 24.10 D
131I Iodine 53 8.0233 D 241Am Americium 95 432.6 Y

133Ba Barium 56 10.539 Y

Table A.1 – S = second, M = minute, D = day, Y = year, RN = radionuclide,
Z = atomic number.





APPENDIX B

Proximal algorithms for spectral unmixing

B.1 Optimization problem underlying the spectral un-
mixing

As mentioned in Chapter 3, the spectral unmixing aims to solve the min-
imization of an objective function of the form:

â 2 argmin
a

f(a) + g1(a) + ...+ gn(a) (B.1)

More precisely, the above minimization problem in the gamma-ray spec-
tral unmixing problem can be described as follows:

• The data fidelity term f (a) associated to least squares error is smooth
with a Lipschitz gradient, it can be solved with gradient descent al-
gorithms. However, along with non-differentiable regularization terms
such as the non-negativity constraint used in the gamma-ray spectral
unmixing, it requires the use of non-smooth optimization algorithms,
more specifically the use of proximal algorithms [Parikh and Boyd,
2014].

• In case that we consider the exact Poisson statistics based data fi-
delity term, which is not differentiable. Along with the non-negativity
constraint, none of the two terms is differentiable. Fortunately, both
terms admit a proximal operator, which also makes the application of
the proximal algorithms.

Involved in solving convex non-smooth optimization problems, the over-
all advantage of using proximal algorithms is the flexibility and simplicity it
provides to add regularization terms. Since the optimization steps in these
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algorithms involve the proximal operators of the terms in the objective func-
tion independently, such as the non-negativity regularization investigated in
Chapter 3 and data-driven regularization terms discussed in Chapter 7.

B.2 Proximal operators and proximal algorithms

B.2.1 Definition of the proximal operator

The proximal operator ([Parikh and Boyd, 2014]) of a closed proper and
lower semi-continuous convex function h : Rn [1 is defined by:

proxh(y) = argmin
u

h(u) +
1

2
ku� yk22 (B.2)

where k.k2 is the usual Euclidean norm. The function is strongly convex
and not everywhere infinite, so it has a unique minimizer for y 2 R

n.
The proximal operator of the scaled function ⇢h with the scale parameter

⇢ > 0 is more commonly used, which can be expressed as:

prox⇢h(y) = argmin
u

h(u) +
1

2⇢
ku� yk22 (B.3)

For more interpretations of the proximal operators, refer to [Parikh and
Boyd, 2014].

B.2.2 Proximal algorithms used in this work

Forward-Backward splitting

The Forward-Backward splitting(FBS) algorithm ([Combettes and Wajs,
2006]) tackles the minimization problem of the form:

â 2 argmin
a

f(a) + g(a) (B.4)

with f differentiable and g admits a proximal algorithm. In the non-
negativity regularized least squares problem described in Chapter 3:

• the data fidelity term:

f (a) =
1

2
kΦa+ b� xk2 (B.5)

is differentiable, its gradient is:

rf (a) = Φ
T (Φa+ b� x) (B.6)
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with Lipschitz constant L = kΦT
Φk2, where k . k2 stands for the spec-

tral norm of a matrix (i.e., its largest eigenvalue).

Similarly, when weighted least squares error is considered, in which:

f (a) = (Φa+ b� x)T W�1 (Φa+ b� x) (B.7)

the gradient is:

rf (a) = Φ
TW�1 (Φa+ b� x) (B.8)

with Lipschitz constant L = kΦTW−1
Φk2.

• the regularization term g (a) = i.a�0 is convex and admits a proximal
operator.

Also known as the proximal gradient algorithm, the minimization step of
the FBS algorithm can be described as:

a(k+1) = prox�g
�

a(k) � �rf
�

a(k)

��

(B.9)

where the “forward” referring to the gradient step on the differential func-
tion f and the “backward” to the proximal step of the function g. The algo-
rithm is guaranteed to converge to the unique minimum when the gradient
step �  1/L.

Primal-dual algorithm

Recall the Poisson statistics-based activity estimator with non-negativity
constraint presented in Chapter 3:

âPoisson 2 argmin
a

Φa+ b� x� log (Φa+ b) + i.a�0 (B.10)

In the above optimization problem, none of the two terms is differen-
tiable. Hence, different algorithmic strategies can be considered to design
a minimizer. This includes the Alternating Direction Method of Multipliers
(ADMM - see [Boyd et al., 2011]) or primal-dual proximal algorithms such as
the one introduced by Chambolle and Pock in [Chambolle and Pock, 2011].
In this thesis, we chose the latter as it requires few algorithmic hyperparam-
eters to be tuned, which can further be fixed in a quite easy manner.

More generally, the Chambolle-Pock algorithm aims at tackling optimiza-
tion problems of the form:

argmin
a

f (Φa) + g (a) (B.11)
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Recall the convex conjugate of the function f :

f ⇤ (u) =< Φa,u > �f (Φa) (B.12)

The dual problem of the minimization of f (Φa) is:

max
u

< Φa,u > �f ⇤ (u) (B.13)

The primal-dual problem of Eq.(B.11) can be therefore written as:

min
a

max
u

< Φa,u > �f ⇤ (u) + g (a) (B.14)

In the framework of the Chambolle-Pock algorithm, each iteration al-
ternates the minimization on the dual variable u and the primal variable
a by calculating the proximal gradient descent, since we can easily get the
proximal operators of the function f ⇤ and g. The main minimization step is
described as follows:

1. Dual proximal: u(k+1) = prox�f∗

�

u(k) + �Φā(k)

�

2. Primal proximal: a(k+1) = prox⌧g
�

a(k) � ⌧ΦTu(k+1)

�

3. Update the primal variable: ā(k+1) = a(k+1) + ✓
�

a(k+1) � a(k)

�

The convergence of the algorithm is ensured with �⌧  1/L and ✓ = 1.

B.2.3 Proximal operators calculation

The proximal operators of functions used in this work are given as follows:

1. The non-negativity indicator function defined by:

i.a�0 =

(

0, if a � 0

1, otherwise
(B.15)

Its proximal operator is defined as the orthogonal projection onto the
non-negative orthant:

proxi.
a≥0

=

(

0, if a < 0

a, otherwise
(B.16)
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2. The negative log-likelihood of the Poisson estimation: Poisson (x|�) of
the form:

f (�) = �� x log (�) (B.17)

Its proximal operator is calculated as:

prox⇢f (y) =
y � ⇢+

q

(⇢� y)2 + 4⇢x

2
(B.18)

In the gamma-ray spectrum formulation, we need to calculate the prox-
imal operator of the function:

f (Φa) = (Φa+ b)� x� (Φa+ b) (B.19)

According to the basic operations of the proximal operator (see [Parikh
and Boyd, 2014]), the proximal operator of Eq.(B.19) is:

prox⇢f (y) =
y + b� ⇢+

q

(⇢� y � b)2 + 4⇢x

2
� b (B.20)

where x and b stand for the measured spectrum and the background
spectrum in Eq.(B.19).

3. Refer to [Parikh and Boyd, 2014], by Moreau decomposition, the prox-
imal operator of the convex conjugate of the function f :

prox⇢f∗ (v) = v � ⇢prox(1/⇢)f

✓

v

⇢

◆

(B.21)
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The MCNP simulation code

Gamma-ray spectrum simulations can be performed with Monte Carlo
simulation by using different software refer to [Lépy et al., 2019]. In this
thesis, we make use of the MCNP simulation process based on the random
number generators by taking into account the interaction of particles with
materials. The MCNPX and MCNP-CP codes configure the detection system
information in the same manner with an input file, which allows us to specify:

• the three-dimensional geometrical cells according to the detection sys-
tem.

• the material densities and the interaction of particles with materials.

The MCNP can be used for neutron, photon, electron, or coupled neu-
tron/photon/electron transport. The specific configurations for the gamma-
ray spectrum simulations are:

• Tally F8 enables to obtain pulse height per emitted particle in the
source, which can provide the energy distribution of pulses created in
a detector, i.e., a spectrum.

• The E8 card specifies the energy bins of the spectrum.

• By default, the simulation code provides the detector response with
photon energy peak as a Dirac. With GEB card option, the parameters
of the empirical function:

FWHM = a+ b
p

(E + cE2)

can be set to reproduce the actual resolution of the experimental mea-
surements (see Section 6.1 for details).



154 APPENDIX C. THE MCNP SIMULATION CODE

• SDEF card is used to specify the source and its position, in which:

– the keyword “ERG” in MCNPX specifies the energies for which
we aim to simulate the detector response.

– the keyword “ZAM” in MCNP-CP specifies the radionuclides for
which we aim to simulate the detector response with their respec-
tive atomic and mass numbers Z and A, M indicates an isomeric
state. It simulates the statistical processes accomplished following
the disintegration of the given radionuclides, including the cascade
emissions, the escape peaks, and the peak sum, with the nuclear
data from the Evaluated Nuclear Structure Data File 1

The spectral signatures used in the experiments in Chapter 6 are per-
formed with MCNP-CP code. To reproduce the actual energy response of a
detection system, the simulation input file is configured for the specification
of the detector illustrated in Figure C.1.

For a better agreement of the simulated spectral signatures and the ac-
tual energy response of the detection system (i.e., efficiency calibration), the
configurations of the Ge crystal dimension (see Figure C.2) can be slightly
changed with the following principles:

• changing the crystal diameter has an impact of the detection efficiencies
on the whole energy range.

• changing the dimension at the bottom of the Ge crystal has an impact
of the detection efficiency for source that emit photons at high energy.

• the thickness of the dead layer on the top of the Ge crystal has an
impact of the detection efficiency for source that emit photons at low
energy.

In summary, the configurations of the Ge crystal dimension is changed
by removing 3mm thickness from the bottom of Ge Crystal to decrease the
efficiency of sources that emit photons at high energy and changing the dead
layer of 4µm to 13µm in the top of Ge Crystal to decrease the efficiency of
sources that emit photons at low energy.

1https://www.iaea.org/resources/databases/evaluated-nuclear-structure-data-file
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