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Preface

When | started working at VUB in June of 2015, | actually had no idea |
had just taken my first step onto the four-year path that would be my
PhD. In fact, | agreed initially to a one-year research project that would
be a collaboration between the department of Applied Mechanics at
VUB and the Acoustics & Vibrations R&D department at Atlas Copco.
However, after starting this alleged one-year journey, it soon became
clear to me that I found the topic of the research deeply fascinating.
During my master’s in mechanical engineering, | already had a strong
interest in courses related to either vibrations or acoustics, so this new
research project fitted quite naturally into my range of interests. On
top of that, | genuinely enjoyed coming to work and collaborating with
the people both at VUB and Atlas Copco. Thus unsurprisingly, when my
supervisor Jan Helsen proposed to extend the research project into a
full-fledged PhD track, I did not really have to think twice. And so |
began my four-year PhD odyssey, during which | got many opportuni-
ties to go and meet interesting people, to collaborate, to further my
research, and to present my work at (inter)national events.

Just as agreeing to the one-year research project was my first step
onto the PhD path, so the writing of this preface is the last step. |
am now at the end of what was a captivating and thought-provoking
journey, and | want to thank the people who helped or encouraged me
along the way.

First off, | want to express my gratitude to the person who not only
made this PhD possible, but also guided me practically every step of
the way. Jan, thank you for these past four years, during which you ad-
vised me masterfully, provided me with many great opportunities to
advance my career, and perhaps most important of all, believed in me
and in a successful ending of this PhD. Your engagement, relentless
motivation, and clear vision has always inspired me and continues to
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inspire me to work hard and to look towards the future. On a personal
level, | never regretted accepting the PhD since the team spirit has al-
ways been top-notch.

One of those great opportunities offered to me during my PhD, was
the collaboration with my French promotor, Prof. dr. ir. Jerome Antoni
of the Laboratoire Vibrations Acoustique at INSA Lyon. This collabo-
ration between VUB and INSA Lyon, in the form of a joint PhD, proved
truly invaluable to my research and personal scientific development.
When | first started out with my PhD, | spent a good deal of my time
reading scientific papers about condition monitoring to study more
about the topic. Then, | learned that there was a possibility to col-
laborate with the person whose name | saw on many of those papers.
Naturally, | was initially quite nervous about how this collaboration
would go. To my great fortune however, this person turned out to be
very kind, patient, and helpful. Jérome, thank you so much for not
only agreeingto this collaboration, but also for helping me understand
complex signal processing concepts, for making time in your very busy
schedule, and in general for elevating my research level altogether.

Another person from INSA-Lyon who deserves mentioning, is Quentin
Leclere. Your patience and insightful help with the multi-order prob-
abilistic approach was very much appreciated!

I would also like to express my gratitude to the head of our Applied
Mechanics department and co-promotor of this PhD, Patrick Guillaume.
Together with Jan, he convinced me to start working at VUB, he ad-
vised me during my PhD, and he helped facilitate the collaboration
with INSA-Lyon.

During a conference at MIT in Boston in May of 2018, | got the
chance to meet the team of Prof. Steven Leeb and get a tour of their
laboratory. What followed was a fruitful collaboration about vibration-
based rotation speed estimation. Many thanks go out to Pete Lindahl
for clarifying the VIBES method to me and illustrating it on experimen-
tal vibration data, to John Donnal for providing interesting data sets
and pictures of a navy ship generator, and lastly to Steven Leeb for
making it all possible.
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An aspect that was invaluable for this PhD research was the col-
laboration with industrial partners. In this regard, | am grateful to
Hans Vande Sande, Philippe Geuens, and Jeroen Firlefijn of Atlas Copco
for providing me with interesting research challenges and helping me
wherever necessary. Additionally, | would also like to thank Alexan-
dros Skrimpas of MHI Vestas for the close and useful collaboration.

Thanks are also in order to my entire PhD jury for critically assess-
ing my PhD manuscript and providing me with fruitful comments that
helped augmenting the level of the manuscript.

| can undoubtedly say that one of the reasons I liked coming to
VUB every day was due to my helpful, friendly, and funny colleagues.
Pieter-Jan, thank you for joining our team with full conviction in what
we are currently doing and for being a critical voice to discuss topics
with. Timothy, thank you for working together with me and for being
patient despite my slow understanding of your complicated machine
learning magic tricks. Nicoletta, thank you for not thinking | was crazy
when | said the word 'cepstrum’ for the millionth time in a single day
and for always voluntarily cleaning the coffee machine during breaks (I
do hope you don’t carry this burden anymore at your new job at Dana
in Italy!). 1 also want to thank Wout, Nymfa, Christof, Tim, and Max of
our neighboring office. You guys were a joy to organize the EAWE PhD
seminar with, to do social events with, to go conferences with, and in
general to talk to during breaks.

My stay in Lyon has also left me with happy and lasting memo-
ries. Besides being a very nice city to live in, | want to thank Gianluigi,
Giorgio, Souha, Edouard & Rémi for making my time in Lyon and in
the office absolutely delightful and entertaining. Thanks for the ski-
ing, the board games in this interesting little café called “Moi j'm’en
fous je triche”, and the trip to les Gorges du Verdon and Bormes-Les-
Mimosas!

Furthermore, thanks to Birgit, Maxime, and Jenny for helping me
with all my practical or administrative problems in the past four years.
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A major factor which helped keeping me sane during the PhD was
squash. Therefore, thank you to my squash sparring partners in the
past years and to my squash club ‘De Vaart’ for providing a great envi-
ronment to decompress in after work by hitting a rubber ball as hard
as possible against a wall.

Of course, | would not have been able to enjoy my PhD as much as
| did now without the much-appreciated support of my friends from
Leuven. Roeland, Daniel, Yannick, Egon, Kaylian, and Paul, thank you
guys for being in my corner!

If there is one person who followed my four-year PhD journey from
up close, it is my girlfriend Romina. Thank you for your patience, un-
derstanding, and support during these challenging years. You kept my
life balanced and reminded me about the importance of taking a few
steps back and looking at issues from a distance.

Finally, | want to thank my parents for their eternal and uncondi-
tional support of all my endeavors. | can say without a doubt that they
form the pillars of any success I've ever had and that without them, |
would stand nowhere.

Obviously, | am also eternally grateful to my sister for the role she
played in my life. She was there every step of the way and whenever |
had a problem, she would be there to listen and give me advice. Spe-
cial thanks go to her husband Rob for not only teaching me how to
improve my squash level, but also in general for being an awesome
brother-in-law who is always willing to help wherever possible and
who appreciates my amateur D) mixes.

Lastly, I'm beyond grateful for the endless love and support of my
grandparents who have stood by me from the very beginning. Your
unequivocal belief in me has always motivated me to do better and
never give up.
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Abstract

This Ph.D. dissertation targets innovative methods for vibration-based
condition monitoring of rotating machinery. Substantial benefits can
be achieved from an economical and a safety point of view using con-
dition monitoring. One of the most popular methods to gather in-
formation about the state of machine parts is through the analysis
of machine vibrations. Most of these vibrations are directly linked to
periodical behavior of subsystems within the machine like e.g. rotat-
ing shafts, gears, rotating electrical fields, etc. This knowledge can
be exploited to enable fault-dependent processing schemes. This dis-
sertation investigates how to implement and utilize these processing
schemes and details the steps in such a procedure.

Typically, the first prerequisite for advanced analysis is the avail-
ability of the instantaneous rotation speed. This speed needs to be
known since most frequency-based analysis techniques assume sta-
tionary behavior. Knowledge of the speed thus allows for compensat-
ing speed fluctuations, for example through angular resampling of the
vibration signal. While there are hardware-based solutions for speed
estimation using angle encoders or tachometers, this thesis investi-
gates the potential in vibration signals for speed estimation.

After speed estimation and angular resampling, a common next
step is to separate the signal into deterministic and stochastic compo-
nents. The cepstrum editing procedure is examined for its efficacy and
applicability. Afterwards, different filtering methods are inspected as
to improve the signal-to-noise ratio of the signal content of interest.
Existing methods using conventional criteria are investigated together
with a novel blind filtering methodology.

The final step in the multi-step processing scheme is to search
for the potential fault. Statistical indicators can be calculated on the
processed time domain signal and tracked over time to check for in-
creases. In many cases, the fault signature exhibits cyclostationary
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behavior. Therefore this dissertation also examines different cyclosta-
tionary analysis techniques. Lastly, the performance of the different
processing methods is validated on two experimental vibration data
sets of wind turbine gearboxes.
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French summary

Cette thése porte sur des méthodes innovantes de contrdle de l'état
de santé des machines tournantes par l'analyse des signaux vibra-
toires. En effet, la surveillance de 'état de santé des machines con-
tribue a des améliorations substantiels des points de vue économique
et de sureté. Afin d'y aboutir, 'une des maniéres les plus populaires
est de recueillir les vibrations de la machine. La plupart de ces vibra-
tions sont directement liées au comportement périodique des sous-
systémes de la machine tels que les arbres de rotation, engrenages,
champs électriques rotationnels, etc. Cette connaissance peut étre
exploitée afin de concevoir une méthodologie adaptée a chaque type
de défaut. Cette thése s'intéresse aux étapes de la mise en ceuvre de
cette méthodologie. En régle générale, la premiére condition préal-
able a l'analyse avancée de l'information récoltée est la disponibilité
de la vitesse intantanée de rotation. Cette vitesse doit étre connue car
la plupart des techniques du traitement du signal sont adaptées aux
conditions de fonctionnement stationnaires. Ainsi, la connaissance de
la vitesse permetra de compenser les fluctuations de vitesse, par ex-
emple par le ré-échantillonnage angulaire du signal de vibration. Mal-
gré l'existence d’outils de mesure permettant l'estimation de la vitesse
tels que les codeurs et les tachymétres, cette thése étudie le poten-
tiel d’estimer la vitesse instantanée de rotation a partir des signaux
vibratoires. Aprés 'estimation de la vitesse et le ré-échantillonnage
angulaire, une étape suivante courante consiste a séparer le signal en
composantes déterministes et stochastiques. Dans ce sens, l'efficacité
et lapplicabilité de la procédure d’édition du cepstre sont analysées.
Ensuite, differentes méthodes de filtrage sont appliquées au signal
résiduel afin d’'améliorer le rapport signal sur bruit. Pour cette fin, les
méthodes existantes utilisant des critéres conventionnels sont étudiées
en parallélle avec une nouvelle méthodologie aveugle de filtrage. La
derniére étape du processus de traitement consiste a diagnostiquer le
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défaut potentiel. Ainsi, des indicateurs statistiques sont calculés sur
le signal obtenu aprés traitement et suivis dans le temps pour véri-
fier leurs variations. Dans de nombreux cas, la signature du défaut
présente un comportement cyclostationaire. Par conséquent, cette
thése examine également différentes techniques d’analyse de la cy-
clostationarité. Enfin, les performances des differentes méthodes de
traitement sont validées sur deux ensembles de données expérimen-
tales de vibrations issues de boites de vitesses d’éoliennes.
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Dutch summary

Deze dissertatie bespreekt innovatieve methoden om de gezondheid-
stoestand van roterende machines te monitoren door trillingssignalen
te analyseren. Het bewaken van de gezondheidstoestand van de ma-
chines draagt bij tot aanzienlijke verbeteringen vanuit economisch en
veiligheidsoogpunt. Een van de meest populaire opties voor het mon-
itoren van machines is om de trillingen van de machine te verzame-
len. De meeste van deze trillingen zijn direct gerelateerd aan het peri-
odieke gedrag van machinesubsystemen zoals roterende assen, tand-
wielen, roterende elektrische Velden, etc. Deze kennis kan worden
gebruikt om een methodologie te ontwerpen die is aangepast aan elk
type defect. Dit proefschrift richt zich op de verschillende stadia in de
implementatie van zulk een methodologie. Over het algemeen is de
beschikbaarheid van de rotatiesnelheid een eerste vereiste voor een
geavanceerde analyse van de verzamelde trillingsinformatie. Deze ro-
tatiesnelheid dient gekend te zijn omdat de meeste signaalverwerk-
ingstechnieken zijn aangepast aan stationaire werkingsomstandighe-
den. Kennis van de rotatiesnelheid maakt het aldus mogelijk om snel-
heidsschommelingen te compenseren, bijvoorbeeld door het herbe-
monsteren van het trillingssignaal in het hoekdomein in plaats van het
tijldsdomein. Ondanks het bestaan van meetinstrumenten voor het
meten van de rotatiesnelheid zoals encoders en tachometers, bestudeert
dit proefschrift het potentieel voor het estimeren van de instantane
rotatiesnelheid met trillingssignalen. Na het schatten van de rotaties-
nelheid en de herbemonstering, is een gebruikelijke volgende stap het
splitsen van het signaal in deterministische en stochastische compo-
nenten. De efficiéntie en toepasbaarheid van de methodes gebaseerd
op het gebruik en aanpassen van het cepstrum worden hiervoor on-
derzocht. Vervolgens worden verschillende filtermethoden toegepast
op het residueel signaal om de signaal-ruisverhouding te verbeteren.
De dissertatie bekijkt naast bestaande methoden die conventionele
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criteria gebruiken ook een nieuwe zogenaamde blinde filtermethode.
De laatste stap in het analyse proces is om het potentieel aanwezige
defect te diagnosticeren. Hiervoor worden statistische indicatoren
berekend op het residuele signaal. Deze indicatoren worden in de
tijd opgevolgd om zo mogelijke variaties en anomalieén te detecteren.
Vaak vertoont het trillingspatroon van het defect cyclostationair gedrag.
Daarom onderzoekt dit proefschrift ook verschillende technieken voor
het analyseren van cyclostationariteit. Ten slotte wordt de effectiviteit
van de verschillende analysemethoden gevalideerd op twee data sets
van experimentele trillingsgegevens gemeten op tandwielkasten voor
windturbines.
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Chapter 1

Introduction & Outline

11 Condition Monitoring

The process of tracking the health of machinery is commonly known as
condition monitoring or CM. Typically, it involves recording data, ana-
lyzing this data, and then inspecting the resulting indicators for poten-
tial significant changes that could be symptomatic of a defect. Incor-
porating condition monitoring in the Operations and Maintenance (O
& M) scheme opens the door for predictive maintenance. This means
that maintenance can be planned which allows scheduling on before-
hand what actions need to be performed and when exactly. Ideally,
degradation is detected early on such that only minor preventative
actions need to be undertaken and that more grave repercussions
are avoided. This is actually the main reason why condition moni-
toring is used, since the machine operator does not want a reduced
machine lifespan. Condition monitoring is most often employed on
rotating machinery (e.g. pumps, internal combustion engines, com-
pressors, presses, gearboxes, generators, electric motors, ...), but can
also be utilized for static utilities and machinery (e.g. cables, pipes,
converters). It should not be confused with structural health monitor-
ing, which is a term reserved for the monitoring of engineering struc-
tures.

Predictive maintenance is a term that has gained a lot of attention
over the past few years, but it is not all hype. In total it is estimated
that the predictive maintenance market is currently worth over 3 bil-
lion US dollars in 2019 and will continue to grow with a projected value
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2 Chapter 1. Introduction & Outline

of 10.7 billion US dollars by 2024 [1]. The company PricewaterhouseC-
oopers (PwC) points out in their predictive maintenance market survey
of 2018 [2] that a majority of companies is very interested in improving
and expanding their predictive maintenance activities. They defined
four maturity levels where visual inspections represent level 1, instru-
ment inspections and continuous condition monitoring levels 2 and
3, and big data analytics with condition-based decision-making rep-
resent level 4. They refer to this last level as Predictive Maintenace
4.0 or PdM 4.0. To give a quick idea about the integration and de-
velopment of condition monitoring and predictive maintenance in the
industry, some key findings of their survey are presented:

* 11% of companies are already combining condition monitoring
with big data to drive decision-making, i.e. PdM 4.0 (shown in
Fig. 1.1).

« 60% of companies have either intentions or already concrete
plans to use big data together with condition monitoring to drive
decision-making and improve uptime (shown in Fig. 1.2).

« Companies that have no plans for PdM 4.0, attribute this most of-
ten to the lack of budget or to being irrelevant for their business
case.

+ 95% of companies that use PdM 4.0, confirm that it is responsible
for improving one or more key maintenance value drivers.

« 60% of companies see an asset uptime increase of on average
9%.

Based on these numbers, it is clear that condition monitoring and
predictive maintenance is here to stay and will continue growing in the
foreseeable future. In the next section some common types of condi-
tion monitoring are discussed to give the reader a broad overview of
what is available and the current practices.
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) L o . 2017
Current levels of maturity in predictive maintenance 2013

3% 2% 11% 11%

No PdM Level 1 Level 2 Level 3 Level 4

FIGURE 1.1: Distribution of predictive maintenance ma-
turity levels according to a PwC 2018 market survey, as
reproduced from [2].

m 60%
Future plans and motives for PAM 4.0 2ois|

50%

40%

30%

20%

Yes, we are Yes, we start Yes, we start Yes, but we have No
currently next year within 3 year no start date yet
implementing it

FIGURE 1.2: Distribution of future plans of predictive
maintenance according to a PwC 2018 market survey,
as reproduced from [2].

111 Types of condition monitoring

Condition monitoring is an umbrella term that spans various different
ways of tracking the health state of a machine. A short overview of
the most commonly used types of condition monitoring is provided.
It should be noted that the research described in this dissertation
concentrates solely on vibration-based monitoring and that often the
focus lies on wind energy applications. The reason for the focus on
vibration-based monitoring is specified later in the dissertation in sec-
tion 114.7.
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. Sample testing Maintenance
Sample collection > . > ..
& reporting decision support
FIGURE 1.3: Lubrication condition monitoring
scheme [3].

1414 Lubricants

Lubration-based condition monitoring is often used as an early warn-
ing system to indicate incipient deterioration. Typically, viscous oil or
grease is used as lubricant in machines and it is analyzed for poten-
tial contamination and property changes. A conventional lubrication
scheme consists of three steps [3] (also shown in Fig. 1.3:

1. lubricant sampling, including sample scheduling and collecting
2. lubricant sample testing and reporting

3. maintenance decision support by analyzing and interpreting the
results

The sampling of the lubricant is nowadays often still executed inan
off-line manner. This means that a sample of the lubricant is taken out
ofthe machine and then analyzed in a laboratory. The downside of this
approach is that there can be significant delays before a change in the
lubricant contamination or properties is detected. Therefore, there is
a rising interest in continuous on-line sampling where samples are
drawn and examined while the machine is operational.

Some parameters of lubricants that are commonly investigated are
shown in Table 11. These parameters are then used as input for fur-
ther analysis. Examples of processing methods of the lubrication data
include thresholding, statistical analysis, and spectroscopic analysis.
The lubrication data and its processed derivatives can then be ana-
lyzed using statistical approaches (e.g. trending, regression,...), arti-
ficial intelligence, model-based approaches (e.g. simulation and ex-
perimental models), or hybrid methodologies.
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1.1. Condition Monitoring 5

Type Parameters

Additives Boron, Barium, Calcium, Magnesium,
Molybdenum, Phosphorus, Sodium, Silicon,
Zinc [4, 5]

Contamination Vanadium, Water, Sodium, Boron, Coolant,
Soot/carbon, Potassium, Silicon [6-8]

Wear elements Chromium, Titanium, Iron, Copper, Lead,
Tin, Aluminum, Nickel, Vanadium, Silver [9-
12]

Physical & chemical Total Base Number (TBN), Total Acid Num-
ber (TAN), Viscosity @ 400C, Viscosity @
1000C, Flash point [13-15]

TABLE 1.1: Summary of lubricant parameters that are
commonly investigated (based on [3]).

114.2 Thermals

Temperature is probably one of the most commonly tracked parame-
ters of a machine to assess its health state [16]. This is primarily due
to the fact that temperature abnormalities can be caused by many dif-
ferent factors (e.g. faulty operation control, damaged materials, mal-
functioning electrical connections,etc. ).

One way to utilize temperature is to simply track temperature val-
ues measured by e.g. a thermocouple and then use these values as
input to a statistical or machine learning approach. Both approaches
try to detect anomalous behavior either using thresholds based on
historical experience and regression techniques or using expected be-
havior modeling (e.g. K-means clustering, Bayesian Ridge Regression,
etc. [17]).

Another way to monitor the thermals of a machine is through the
use of infrared thermography. It allows to measure the temperature
in real time and in a non-contact manner. Thermography has enjoyed
a steady increase in interest and usage in condition monitoring ap-
plications. Examples of various thermography applications include
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6 Chapter 1. Introduction & Outline

the monitoring of structures [18, 19], chemical processes [20], electri-
cal equipment [21-23], wood and paper inspection [24, 25], manufac-
turing processes [26-28], material fatigue [29-31], machinery [32-34],
aerospace [35], plastic and tensile deformation [36-39], nutrition [40],
electronics [41, 42], nuclear power [43], etc. Additionally, thanks to the
ever-improving infrared camera technology, thermography is devel-
oping into a more economical, robust and precise technique.

The main principle of thermography is based on the infrared radi-
ation an object emits if it is above 0 K or -273°C. Typically this infrared
radiation is observed by an infrared camera whose output can then
be examined in the form of thermal imagery. Figure 1.4 displays a con-
ventional thermography setup to monitor a mechanical system, i.c. an
impeller. Infrared imagery usually has a low signal-to-noise ratio, thus
necessitating the need to enhance the measured images. Some image
analysis methods that are employed to process the infrared images
include principal component analysis (PCA) [44], texture-based analy-
sis [45], global and fuzzy thresholding [46, 47], morphological segmen-
tation [16, 48, 49], edge detection filters [16], etc. The goal of most of
these techniques is to detect potential hot-spots and quantify them
in the form of condition indicators.

IR camera

Monitor/ PC

Photograph of an impeller end
of a blower system

IR image

FIGURE 1.4: Overview of a common setup used
for infrared thermography experiments, reproduced
from [16].
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111.3 SCADA

Supervisory Control and Data Acquisition (SCADA) is a control system
structure that serves to provide high-level process information. In
practice, this involves the use of computers (e.g. PID and PLC con-
trollers) and data communication networks. SCADA systems have be-
come one of the most common forms of industrial control systems. A
good example is its usage in wind turbine performance monitoring. A
SCADA system is installed in larger wind turbines almost by default,
thus providing valuable information about the operating behavior of
the turbine. It should be noted that when SCADA data is mentioned or
referred to in this dissertation, it explicitly refers to SCADA data usage
in a wind turbine context.

SCADA data in the wind turbine case is typically either sampled at
a 10 minute or a 1 second interval. From a condition monitoring point
of view, this data can serve as a low-cost potential solution since no
extra sensors are required. The entire list of parameters tracked in the
SCADA data is typically quite extensive, but an overview of basic SCADA
parameters is given in Table 1.2. Normally the extent and quality of the
SCADA data depends on the turbine manufacturer. Other possible us-
ages besides condition monitoring include power curve analysis [50]
and modeling with e.g. k-nearest-neighbour [51], spare part demand
forecasting [52], and load monitoring [53].

In the literature, many researchers investigated the potential of
SCADA data for usage in condition monitoring of different turbine com-
ponents. While wind turbine SCADA systems were not developed for
dedicated condition monitoring purposes, interest in using it for such
practices increased the moment maintenance became a priority. Tautz
et al. [54] categorize the different SCADA-based monitoring methods
into five classes:

i Trending
ii Clustering
iii Normal behavior modeling

iv Damage modeling
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8 Chapter 1. Introduction & Outline

TABLE 1.2: Overview of some basic SCADA parameters (based on [54-64]).

Category SCADA parameter

Environmental wind speed, wind direction, ambient tempera-
ture, nacelle temperature

Electrical active power output, power factor, reactive
power, generator voltages, generator phase
current, voltage frequency

Control variables | pitch angle, yaw angle, rotor shaft speed, fan
speed/status, generator speed, cooling pump
status, number of yaw movements, set pitch
angle/deviation, number of starts/stops, op-
erational status code

Temperatures gearbox bearing, gearbox lubricant oil, gen-
erator winding, generator bearing, main bear-
ing, rotor shaft, generator shaft, generator slip
ring, inverter phase, converter cooling water,
transformer phase, hub controller, top con-
troller, converter, controller, grid busbar

v Assessment of alarms and expert systems

i. The challenge of the first monitoring class lies within the inter-
pretation of the trends. Due to the high variability of the operating
regime of modern wind turbines, changes in the SCADA parameters
do not automatically correspond to the presence of a defect. A very
straightforward approach is to monitor the SCADA parameters over a
long period of time and use statistical thresholds for alarming.

ii. Clustering deals with the problem of the visual interpretation
of the trends. When large numbers of wind turbines need to be moni-
tored efficiently, it becomes imperative to have an automatic manner
to classify the turbines as ’'healthy’ or 'faulty’. Kusiak et al. analyzed
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1.1. Condition Monitoring 9

drivetrain and tower accelerations using SCADA data by means of a
modified k-means clustering [65] conditioned on the wind speed. Kim
et al. [66] and Catmull [60] applied self-organizing maps instead of
k-means to build such clusters. Despite these advancements, the in-
terpretation of the clustering results is often still perceived to be dif-
ficult [54].

iii. Normal behavior modeling (NBM) employs the same idea of
anomaly detection as the previous techniques, but focuses more on
the empirical modeling of the measurements. The residual error be-
tween the modeled and observed parameter then serves as a health
indicator. A basic example of NBM involves the use of linear and poly-
nomial models. A linear autoregressive model with exogenous inputs
(ARX) was used by Garlick et al. [67] to detect generator bearing fail-
ures from the bearing temperature. Higher-order polynomial full sig-
nal reconstruction (FSRC) models of drivetrain temperatures were de-
veloped by Wilkinson et al. [63] to detect gearbox and generator fail-
ures.

Other approaches typically involve more machine learning-based
techniques such as artificial neural networks (ANN) or support vector
machines (SVM). These approaches allow for modeling of non-linear
relationships between measurements from training data sets. Without
going into too much detail of how a neural network functions, the net-
work architecture normally consists of one input layer, a varying num-
ber of hidden layers and an ouput layer. The layers can consist of vary-
ing numbers of neurons whose inputs are the outputs of the previous
layer or the input parameters. A neuron has a non-linear transfer func-
tion that merges the inputs and an activation function that determines
whether or not output is produced. The training phase of the network
then boils down to optimizing the input weights. Standard examples
of networks are feed-forward and recurrent neural networks (RNN).
Schlechtingen et al. [68] compared a simple linear model approach
to a neural network approach in a study performed on 14 months of
SCADA data from ten 2 MW offshore wind turbines. The generator bear-
ing temperature was modeled using the nacelle temperature, genera-
tor stator temperature, produced power and generator speed. In this
study the ANN outperformed the linear model for bearing fault detec-
tion due to the strong seasonal influences on the measurements.
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10 Chapter 1. Introduction & Outline

iv. Damage modeling tries to incorporate more physical insight
into the modeling step. Instead of training empirical normal behav-
ior models, the measurements are interpreted with physical models
to improve the accuracy. Gray et al. [69] developed a damage model
using physical failure modes of interest to estimate the failure proba-
bility. A general scheme for a physics-based monitoring approach was
proposed by Breteler et al. [70] and is shown in Fig. 1.5. A theoretical
model of a wind turbine gearbox with Double-Fed Induction Genera-
tor (DFIG) was built by Qiu et al. [71]. This model utilized temperature
trending and the underlying thermodynamic principles to track the
degradation of a generator ventilation fault.
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FIGURE 1.5: Framework for a physics-of-failure-based
methodology, reproduced from [70].

v. The last class, assessment of alarms and expert systems, looks
at the outputs of the SCADA control alarms or the NBM output alarms.
Atypical example of this class is the analysis of the status codes of the
wind turbine. Status code processing approaches typically investigate
the possibility of extracting useful, actionable information about the
health of the turbine from these status codes and there exist many
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12 Chapter 1. Introduction & Outline

different ways to do this. For example, Chen et al. [72] used a prob-
abilistic approach with Bayesian networks to track down root causes
for failures such as a pitch fault. Qiu et al. [73] also utilized Bayes’
theorem and compared the extracted patterns using a Venn diagram
of which an example can be seen in Fig. 1.6. Other approaches often
involve machine learning such as Kusiak et al. [74] who used neural
network ensembles to predict status codes and their severity to de-
tect a diverter malfunctioning.

Lastly, a significant amount of research examines the use of “ex-
pert systems to interpret the status codes or model outputs. Often
these systems are based on using fuzzy logic to determine a diagnosis
for anomalies. Example research works that are based on or employ
fuzzy logic are given in [58, 62, 64, 75-77].
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FIGURE 1.6: Example probability-based alarm Venn-diagram

for a pitch malfunctioning, reproduced from [73]. The size

of the circles is proportional to the conditional probability

of two overlapping alarms. The intersections represent the

alarms occurring concurrently. In this example, alarm 387 was

determined to be the origin and key trigger for subsequent
alarms.

114.4 Computer vision

The ability to assess the condition of a machine, process or structure
visually has been a research field of interest for quite some years by
now. This has mainly to do with the unique benefits of vision-based
monitoring. It offers a possible non-contact, non-destructive, long
distance, high-precision, large-range, multi-target solution. Because
the visual observations can be made from a distance, it circumvents
potential issues such as electromagnetic interference close to the ob-
ject of interest. The technology behind the vision hardware has also
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continuously improved over the past decades which pushed the ad-
vancements in this field ever further. A vision-based measurement
system is essentially similar in setup as a thermography setup since
both involve image acquisition and analysis. This means it generally
also consists of a device such as a digital camera, computer and image
analysis software.

A very common example for vision-based monitoring is structural
health monitoring (SHM) of large structures, e.g. bridges. An example
of a typical setup used to measure structural displacements at cer-
tain designated locations is presented in Fig. 1.7. The displacements
of a structure can be tracked using targets attached to the structure.
There are many ways to achieve accurate tracking of these targets,
e.g. digital image correlation [78], mean-shift tracking [79], CamShift
tracking [80], interferometric phase-shift image matching [81], Lucas-
Kanade template tracking [82], robust object search [83], etc. Apart
from just measuring the displacement amplitudes, these measure-
ments can also be used for other purposes such as structural strain
and stress estimation [84, 85], system identification of the structural
dynamics (i.e. natural frequencies, modal damping ratios, mode shapes)
[86-91], and crack inspection and characterization [92-96].

Structure

FIGURE 1.7: Example of a general 2D vision-based displace-
ment measurement setup, reproduced from [97].
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Besides SHM, other possible examples include the condition mon-
itoring of tools used in manufacturing processes [98], surface rough-
ness monitoring of workpieces [99], or rotation speed monitoring of
shafts [100].

114.5 Acoustic emission & Ultrasound

Acoustic emission (AE) can be described as the radiation of elastic
waves in solid structures that result from an internal structural change
in the material. This usually occurs as a consequence of plastic de-
formation or crack initiation. Local sources of elastic waves lead to
small surface displacements which can be measured. A common fre-
quency range for AE waves is within the 1 kHz to 1 MHz band. The
most popular uses for AE include source localization [101-103], mate-
rial characterization [104, 105], and health monitoring [106]. Next to
non-destructive testing, AE can also be used for process monitoring
and in high-pressure fluid situations.

Applications of AE on machinery can include both high and low-
speed machinery and in the past decade there has been a consider-
able amount of research conducted in the field of AE-based machine
monitoring [107-112]. Health monitoring of rolling element bearings
is @ much investigated topic in AE [110, 113-116]. Of particular inter-
est are the papers investigating the potential for AE to detect faults
in bearings rotating at extremely low speeds, e.g. below 100 rpm. Vi-
bration analysis has traditionally had a difficult time in reliably de-
tecting these low-speed bearing faults since the fault signatures are
badly excited due to the low acceleration levels and thus get buried
in the background noise. Several papers investigate the potential of
AE to overcome this issue. Jamaludin et al. [117] analyzed AE signals
of rolling bearing rotating at 112 rpm. Wu et al. [118] examined the
AE signature of a large wheel rotating at 0.32 rpm. Many other ex-
amples can be found in literature on this topic [119-122]. However,
despite all these efforts, low speed damage monitoring is still an on-
going research topic in AE with potentially significant improvements
to be made.
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111.6 Electrical signatures

Current and voltage signals can be used for the condition monitoring
of electrical machinery. This analysis of electrical currents or voltages
to monitor the health of an electrical motor, generator, or transformer
is not a new concept. Already in the early 1970s the use of currents was
proposed to monitor the motors in nuclear power plants [13]. Faults
that are often encountered in electrical machinery can generally be
categorized as follows [3, 13, 23]:

- Static or dynamic air-gap irregularities

- Stator faults such as opening or shorting of a stator phase wind-
ing coil

 Broken rotor bar

« Cracks in the rotor end-rings

« Faulty connection of the stator windings
« Eccentricity in the shaft

« Bearing failures

Bonaldi et al. [11] and Verucchi et al. [24] claim that about 40%
of defects can be attributed to bearing failures, 30 to 40% to stator
faults, 10% to rotor faults, with the remaining 10% being a variety of
other defects. A common defect in motors or generators is the pres-
ence of air-gap eccentricity. This occurs when the distance between
the rotor and stator is not uniform. Figure 1.8 displays the three po-
tential air-gap scenarios. Static eccentricity means that the position of
the minimal radial air-gap is fixed, while dynamic eccentricity means
that the position follows the rotation of the rotor. Static eccentricity
typically leads to sidebands of the grid frequency in the current spec-
trum, while dynamic eccentricity further modulates the signal with the
dynamic rotation frequency of the airgap [11]. Many current signature
analysis approaches employ frequency analysis to detect faults early
on. This approach is also becoming more and more popular in the
wind energy sector.
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a) Concentric b) Static eccentricity c) Dynamic eccentricity

FIGURE 1.8: Example of the three different types of air-gap
eccentricity, reproduced from [123].

Due to the rapid growth of the rated power of wind turbines and
projects in harsher environments (e.g offshore wind farms), the re-
liability of the electrical components is seen as a critical issue for
wind turbine operation. Power Electronic Converters (PECs) are re-
sponsible for 25% of the total failures and 14% of the total downtime
in wind turbines [124]. All modern multi-megaWatt wind turbines op-
erate at a variable speed thanks to their PEC, which is either partially
power rated (with a DFIG) or fully power rated (normally with a syn-
chronous generator). Nowadays, DFIGs are the most used generator
type in high-power variable speed drives in wind energy conversion
systems (WECSs) [125]. A diagram of a DFIG topology can be seen in
Fig. 1.9. The most common faults in a PEC is a short- or open-circuit
of the insulated-gate bipolar transistors (IGBTs) [126]. Normally, they
are caused by thermomechanical and electrical stress or by misfiring
pulses from the gate driver unit. IGBT short-circuits are destructive in
nature and readily detected by hardware protection circuits, leading to
the immediate shutdown of the wind turbine. Open-circuit (OC) faults
can be caused by the failure of one or more IGBTSs, or by the failure
of a complete phase either on the rotor or grid side. These faults can
remain undetected for a long period time because of the much less
severe consequences, increasing consequently the thermal, electrical
and mechanical stresses on the wind turbine components. Therefore,
their early detection is important for reducing unfavorable loading of
the wind turbine drivetrain and thus avoiding secondary faults.
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FIGURE 1.9: DFIG wind turbine topology [127].

An example of the impact of an open-circuit fault on the currents of
a generator with a synchronous speed of 1500 rpm is shown in Fig. 1.10.
Normally these currents should purely sinusoidal. These currents can
be measured using sensors like clamp probes, current transformers,
or resistors. Different algorithms can then be utilized to process these
currents and track the changes in their characteristics. Apart from
conventional frequency analysis, other commonly used approaches
include Park’s vector analysis [128-131] and artificial intelligence tech-
niques [132-134].

Rotor current [A]

FIGURE 1.10:

Phase b Phase a

Phase c

—— Experimental faulty data at 1300 rpm
—— Simulated faulty data at 1300 rpm

—— Experimental faulty data at 1600 rpm
—— Simulated faulty data at 1600 rpm

D

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

Time [s]

Example of simulated and experimental data

for each phase of rotor currents in a faulty open-switch

regime.

Left: sub-synchronous speed at 1300 rpm, right:

super-synchronous speed at 1600 rpm [127].
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1447 Vibrations

When components of rotating machinery need to be monitored, vi-
bration analysis is probably the most prevalent approach. This has in
large part to do with the fact that it not only allows for analysis of the
high-frequency content generally associated with gears and bearings,
but is also fairly straightforward to install, proven to be effective, and
normally allows to pinpoint faults. These aspects cannot be said for
some of the approaches described earlier. For example, the analy-
sis of the lubricants, thermals and SCADA data of a machine normally
happens at a low or very low sample rate (<1 Hz). They also track pa-
rameters that can show a significant delay in response to an emerg-
ing fault, whilst vibrations react immediately to faults. Computer vi-
sion then is not readily applicable inside a gearbox. Acoustic emission
is a potential alternative to vibration analysis since it also allows for
meaningful high-frequency processing of the machine to detect gear
or bearing fault characteristic frequencies. However, as mentioned in
Section 1.1.1.5, based on literature, acoustic emission analysis needs
additional research to really establish itself as being as effective as
vibration analysis. Often the sample rates required for AE are also
very high, making a practical implementation and roll-out difficult.

The history of vibration analysis goes back to the late 1970s [41]. In
particular the aerospace and offshore oil industry were early adopters
of vibration-based condition monitoring [135]. In the early days, there
was already a large focus on structural health monitoring but the de-
tection of bearing faults quickly gained interest of researchers as well.
This is evidenced in Fig. 1.11 and 1.12. These two figures display the oc-
currence percentage of the bi-grams “structural monitoring,“bearing
monitoring, “gear monitoring, and “vibration monitoring in the cor-
pus of English books indexed by Google, from 1900 to 2000 [136]. The
offshore oil industry was mainly interested in detecting imminent fail-
ure of their expensive drilling and pump equipment [51] and accord-
ing to Farrar et al. [41] the most mature and successful application of
vibration-based condition monitoring has probably been in the field
of rotating machinery [137]. While vibration analysis is employed for
both structural health monitoring and machine health monitoring, this
dissertation focuses on the latter and more in particular on rotating
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machinery.

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

FIGURE 111:  Evolution of the occurrence of the

bi-grams “structural monitoring,“bearing monitoring,

and “gear monitoring in the corpus of English books
indexed by Google, from 1900 to 2000 [136].
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FIGURE 112: Evolution of the occurrence of the bi-gram
“vibration monitoring in the corpus of English books
indexed by Google, from 1900 to 2000 [136].

11.2 Industry 4.0 and Industrial Internet of Things

The wide implementation of the internet all over the world has made
continuous data-connectivity possible for a wide range of systems:
machines, vehicles, ... Figure 1.13 shows that we are now in the fourth
phase of industrial development, namely the one of cyber-physical
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systems. A cyber-physical system is a mechanism that is controlled or
monitored by computer-based algorithms, tightly integrated with the
Internet and its users [138]. Original Equipment Manufacturers (OEMs)
and end-users of machines have taken this new opportunity to in-
strument their machines for condition monitoring purposes. Today,
common practice is to perform condition assessment intermittently
on the different machines in a process chain. Typically, an engineer
goes around in the factory and acquires measurements manually us-
ing a hand-held device. Acquisition is done from time to time for those
machines that are important but non-critical. Today, permanent mon-
itoring systems only target plant critical machines. Those monitoring
systems take measurements automatically at intermittent moments
in time. These measurements are then processed automatically on
the monitoring device or sent to a central location for interpretation.
However, these practices are changing. With the rise of Industry 4.0
and correspondingly the Industrial Internet of Things (lloT), more and
more instrumentation will be available in machines, either directly
mounted by the OEM or installed during lifetime by owner-operators.
Particularly, the IloT context is pushing for sensors that are directly
connected to the internet. As such, measurements can be transferred
continuously to a cloud data-center. These can be raw measurements
or data preprocessed at the edge.
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FIGURE 113: Overview of the four phases of industrial
development, as reproduced from [139].

These large amounts of sensor data can be used for condition
monitoring purposes. In contrast to current practices using intermit-
tent data, it will be possible to collect continuous streams of data.
Such streams have both a finer granularity and longer signal length.
These aspects allow to get a more detailed analysis and get a better
grasp on the normal system characteristics and behavior changes a
healthy machine experiences. This is particularly interesting for mod-
ern machines designed for operation in a wide speed and load range.
For these machines, the range of normal operation is widening and
thus also to difficulty for anomaly detection to distinguish between
normal and abnormal behavior.

Nonetheless, only increasing the amount of data brings no added
value. Processing data needs to result in directly actionable infor-
mation for machine operators. As such integrated condition monitor-
ing techniques are necessary to automatically process the data and
combine the health indicators into conclusions about system condi-
tion. Long-term data allows long-term trending and anomaly detec-
tion on features extracted using signal processing techniques or from
machine learning models. To get good insights in system health it is
suggested to use a combination of the methods mentioned above and
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FIGURE 1.14: Approach envisioned at VUB to monitor
wind turbine drivetrains in the 1loT context.

Several challenges however need to be overcome in order to be
able to fully exploit the opportunities granted by Industry 4.0 and con-
tinuous data. First, a balance needs to be found between data trans-
fer to a cloud data-center and local processing on the acquisition de-
vice. Second, given that continuous streaming results in large data
quantities, there is a need for automated condition monitoring ap-
proaches able to autonomously process these large amounts of mon-
itoring data. Third, the lloT trend makes that a wider variety of sen-
sor data types is available for analysis. Each of these data sources
requires a dedicated approach. Moreover, the resulting multitude of
indicators from all these analyses need to be fused into a joint con-
clusion about system health by applying sensor fusion approaches. An
example of how we at VUB envision a monitoring approach for wind
turbines in the current Industry 4.0 climate is shown in Fig. 1.14.
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FIGURE 1.15: Overview of cloud approach used at VUB

An important aspect within this IloT monitoring approach is data
storage and cloud processing. In order to be able to integrate the dif-
ferent monitoring approaches, the data needs to be made available
in a central data-storage location. Figure 1.15 illustrates the approach
that we at VUB are currently using. Sensor data is being collected by a
number of sensors. These can be embedded SCADA system sensors or
additionally mounted vibration sensors. Sensor data is typically col-
lected by a data-acquisition system and then made available to exter-
nal data-clients by means of standardized Open Platform Communi-
cations (OPC) servers. Typically, this sensor data is stored at a local
centralized data-cluster. Recently, there has been a trend to move
from traditional historian and SQL databases towards big data stor-
age approaches such as Hadoop or no-SQL databases [140].

Another application that has recently gained significant traction
thanks to the lloT progress enabling it, is the analysis of a whole fleet
of machines or assets, so-called fleet monitoring. To get a global
overview of asset performance, fleet-wide operational monitoring is
done to compare performance of systems that are alike. Different
monitoring parameters can be used.
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FIGURE 1.16: Fleet-wide benchmarking example of un-
derperformance

Figure 116 illustrates some results of a fleet-wide analysis done on
a wind turbine farm to detect underperformance. This underperfor-
mance is detected by means of turbine-to-turbine comparison of tur-
bines that are closely spaced and where it can be assumed that they
are subjected to similar wind loading conditions. The red turbine was
detected to exhibit underperforming behavior. The power curves for
three neighboring turbines are shown (two green and one red box).
These power curves were constructed using the operational data of
one day. Based on the comparison of the three power curves (two
green and one red) of the neighboring turbines, it can be seen that
the red turbine shows significantly different behavior than the green
turbines. Particularly for full load conditions the red turbine is under-
performing, since a significant amount of operational points (dots in
the power curve) is below the expected power curve.

This underperformance could be due to many factors. Further fail-
ure mode analysis unveiled that the controller was behaving strangely
due to unreliable wind speed measurements. In Fig. 1.16, the histogram
of the wind speed is shown for each turbine in the farm. For most tur-
bines, the wind speeds measured by the anemometers on the nacelle
of the turbine show consistent results. For the red turbine on the other
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hand the wind speed measurements showed high variability. In other
words, the turbine controller assumed the wind speeds to be higher
than was the case in reality. In this case the turbine was using a con-
trol scheme tailored for higher wind speeds (pitch control), which re-
sulted in the turbine underperformance. Fleet-wide comparison was
able to unveil this in a straightforward way and can be expanded to
other monitoring approaches.

1.2 Research gap

The main objective of this dissertation is the development and vali-
dation of new ways to employ vibration signals for the extraction of
condition information with a focus on the potential for automation. In
particular the different stepsinvolved in going from a raw measured vi-
bration signal to condition indicator are investigated separately. Every
step is also illustrated on both simulated and experimental data sets
to be as comprehensive as possible with regards to results and per-
formance. During the research for this dissertation, some limitations
and/or shortcomings of certain steps were identified in typically used
vibration processing schemes. These opportunities for improvement
were thus further investigated and also form the basis for the chapters
of this document. First, it was observed that vibration-based speed es-
timation techniques benefit from utilizing the information contained
within multiple harmonics and thus this idea was employed to derive
a new methodology in chapter 2. Second, removal of deterministic
signal content through the manual editing of the cepstrum produced
promising results and therefore its automation potential is further in-
vestigated in chapter 3. Third, the majority of processing schemes in-
volves some form of filtering step. Looking at the available solutions
for blind vibration filtering in literature, it was noticed that many such
techniques rely on time-domain statistics such as impulsiveness to
recover a fault signal. Knowing that the application domain of cy-
clostationarity in condition monitoring has greatly expanded in the
last decade, chapter 4 looks into a new way of estimating blind filters
while making use of the cyclostationary properties of a signal. Lastly,
while there is a vast amount of literature available that focuses on
the development of individual techniques, there is still relatively little
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research that details the combination of multiple advanced process-
ing techniques on measurement data. Therefore, the dissertation is
concluded with an in-depth investigation of measurement data using
multiple processing steps.

1.3 Research scope

131 Wind energy

Wind energy is a rapidly growing source of (renewable) energy in Eu-
rope. In 2018, about 11.7 GW of new wind energy was installed in Eu-
rope [141]. It is nowadays the second largest form of power generation
capacity in the EU with 189 GW, just behind natural gas (See Figs. 117
and 1.18), and it accounts for about 19% of Europe’s total installed
power generation capacity. It is therefore safe to say that wind en-
ergy is not going anywhere anytime soon and that investments in its
progress will continue for quite some time still. The latter is also con-
firmed by Fig. 119 where it can be seen that most EU countries are
investing heavily in expanding their wind energy capacity. Alongside
this expanding capacity, the interest in cutting the Operating Expenses
(OPEX) of wind energy also increases.
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FIGURE 1.18: Cumulative onshore and offshore instal-
lations in Europe from 2008 to 2018, as reproduced
from [141].
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FIGURE 1.19: New financing in 2018 by country (ex-
pressed in billion € and GW), as reproduced from [141].

Wind turbines are exposed to strong dynamic excitation events
such as varying wind speeds, electricity grid events, or sea waves (for
offshore wind turbines) [142]. The production cost of electricity by
wind turbines is strongly influenced by the reliability of the wind tur-
bine systems [143]. The downtime and repair costs significantly con-
tribute to the economic impact of faults. In particular gearboxes in
wind turbines exhibit substantial downtime in case of failure [144] and
bearings turn out to be the most critical component in wind turbine
gearboxes [145, 146]. In general, rolling element bearings are one of
the most used components in wind turbine drivetrains.
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FIGURE 1.20: Diagram with failure statistics based on
the NREL Gearbox Reliability Database, as reproduced
from [147].

According to the statistics provided by the NREL gearbox reliabil-
ity database (shown in Fig. 1.20), more than half (76%) of wind turbine
gearbox failures are caused by bearings, with gear faults being the
second major cause for failure (1714%) [147]. It is estimated that over-
all more than 90% of all rotating machines [148] contain rolling ele-
ment bearings. Unfortunately, they are susceptible to a multitude of
premature deficiencies and less than 10% of rolling element bearings
reach their expected basic L10 life, the life at which ten percent of the
bearings can be expected to have failed due to normal fatigue failure
for that particular application. These observations imply a need for
an improved comprehensive condition-based maintenance program.
However, there are still some hurdles to be overcome before such an
exhaustive program becomes fully feasible. This dissertation regu-
larly uses the example of wind energy to illustrate the performance of
methods on because the wind energy industry is currently one of the
most interested parties in improving their reliability through condition
monitoring and because wind energy applications form an interesting
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research challenge due to the varying load and speed.

1.3.2 Other industries

Beside the wind energy application, there are many other industries
that are looking at condition monitoring and predictive maintenance
to improve the reliability of their machines and reduce operational
costs. Common examples of other industries where condition mon-
itoring is employed are the Hydrocarbon Processing industry (Oil &
gas / petrochemical), (hydroelectric) power plants, food processing,
transportation (planes, helicopters, trains, cars), mining, farming equip-
ment, etc. All these applications utilize rotating machinery in some
way and typically the used equipment is expensive to replace and
brings about a significant downtime cost when they halt production.
These two reasons are typically one of the main reasons to install con-
dition monitoring tools. In the foreseeable future however, it is very
likely that condition monitoring solutions will not only be limited to
big, expensive machinery, but will also expand its usage to cheaper
industrial equipment and potentially even to everyday household ap-
pliances.

1.4 Research challenges

Analyzing vibrations in search of information about a machine’s con-
dition is a multi-faceted problem and has been approached by re-
searchers in many different ways. Retrieving diagnostic information
for a general case is not that simple though since the processing pro-
cedure necessary to go from a raw vibration signal to a possible diag-
nosis is not straightforward. Lately, there has been an ever-increasing
amount of attention towards vibration-based condition monitoring of
machines, and correspondingly there has been an increase in contri-
butions towards tackling the problem of designing such a processing
scheme. While some researchers focus on just a single step in this
usually multi-step process, others focus on the entire methodology in
itself.
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While there are many analysis procedures out there tackling the
analysisissue in different ways, the scheme utilized in this dissertation
consists out of five steps:

1. Instantaneous rotation speed estimation & compensation of its
fluctuation

2. Deterministic and stochastic signal content separation
3. Filter design to increase the fault signal-to-noise ratio
4. Residual signal analysis

5. Indicator calculation and “smart” tracking

Ideally, an end-user of this processing approach would use a black
box procedure with the raw vibration signals as input and diagnos-
tic information about the machine as output. Attempts have already
been made in the past to incorporate several techniques into one
method chain in order to offer a more elaborate and/or automated
analysis of vibration measurements. Randall & Antoni proposed a
semi-automated procedure for bearing diagnostics using a combina-
tion of order tracking, discrete component removal, minimum entropy
deconvolution, spectral kurtosis and envelope analysis [149]. A great
deal of researchers also try combining several machine learning meth-
ods (e.g. artificial neural networks, support vector machines, genetic
algorithms, etc.) in order to improve the robustness of automated
fault detection [150]. In theory, a lot of method combinations are
conceivable and deciding the optimal one will remain an open ques-
tion for quite a while most likely. The proposed five-step processing
scheme is introduced further in the following sections and each step
serves as a standalone chapter in which it is illustrated in more depth.

1.4 Rotation speed estimation

Instantaneous rotation speed estimation has become a key part of
many condition monitoring procedures for rotating machinery. The
ability to track the rotational speed of a system is a critical require-
ment for the majority of vibration-based condition monitoring meth-
ods. Information about the speed enables compensating for potential
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speed variations that would otherwise impair conventional frequency-
based methods. The problem of instantaneous speed estimation based
on the vibration signals themselves is one that has received a sig-
nificant amount of attention in recent years. Installing encoders or
tachometers has become a lot less attractive due to the potential cost
savings that can be obtained by simply utilizing an accelerometer in-
stead. However, trying to find a speed estimation method that fits
a certain application “best” is not so straightforward if one inspects
the available literature. It turns out that there are many articles that
present slight variations or extensions to already existing techniques.

The importance of an accurate speed estimation scheme is un-
derlined by the existence of a special issue on Instantaneous Angular
Speed processing and angular applications in the journal of Mechan-
ical Systems & Signal Processing [151] and of a conference dedicated
solely to condition monitoring in non-stationary operations, coined
CMMNO [152]. There is also quite a large body of literature on instan-
taneous frequency estimation in the general field of signal process-
ing. However, the estimation of instantaneous speed from vibrations
specifically addresses a more difficult problem, which often jeopar-
dizes the use of these general signal processing techniques. Typical
problems that can occur for the case of instantaneous frequency es-
timation from vibration signals are:

« Extremely low signal-to-noise ratio

Strongly colored noise

« Harmonic interference (a special case of the former point)

Amplification by resonances (e.g. band-pass filtering in signal
processing terms)

« Non-persistent and fading harmonics

Presence of multiple harmonics

Currently, the main benefit of using a direct speed measurement
approach, i.e. an angle encoder, as compared to an indirect approach,
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i.e. vibration-based speed estimation, is still the accuracy. When us-
ing an indirect method such as vibration-based speed estimation, the
analysis is often confronted with several interfering sources due to the
nature of the vibration measurements, e.g. resonances, non-speed
related harmonics, noise, etc. These effects can have a detrimental
effect on the accuracy as compared to angle encoders. On the other
hand, vibration sensors are often cheaper and easier to install than
angle encoders. Sometimes it can be unfeasible to instrument the
shaft of interest with a standard encoder when the shaft is too large
or not accessible. Also the data acquisition system needs to be capa-
ble of reading in and processing the encoder data stream and often
requires dedicated measurement hardware. The capability to simul-
taneously measure the vibrations for condition monitoring purposes
and estimate the speed based on those vibrations allows to circum-
vent the encoder-related practical inconveniences and costs.

This dissertation and more in particular Chapter 2 focuses on es-
timating the IAS based on the information contained within the vi-
bration signal. While it is possible to utilize the IAS itself as a form
of indicator for the condition of the machine, this typically involves
installing a high-resolution encoder [153-155] in order to reach the re-
quired accuracy of the IAS to be able to detect small faults. Analyzing
signals in the angular domain is one of the main reasons why most
condition monitoring procedures include speed estimation. Chapter 2
discusses the state-of-the-art methods in vibration-based speed esti-
mation and compares the performance of some of these methods on
experimental data sets. Additionally, this chapter discusses a novel
speed estimation method that shows very promising results with re-
gards to accuracy and robustness.

1.4.2 Discrete-random signal separation

A large entity of condition monitoring research investigates the sep-
aration of signal mixtures into sub-components originating from dif-
ferent sources. An important step in this respect is the separation of
stochastic signal content from deterministic content. The former is
considered to entail signals such as measurement or process noise
from pumps, turbines, but also cyclostationary signals such as rolling
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element bearing faults. The latter often consists of the gear or shaft
harmonics. This separation step is considered to play a significant role
in the proper detection of mechanical faults.

Bearing faults are typically detected by analysis of the measured
signal’s envelope spectrum [156-158]. Unfortunately its presence in
the envelope spectrum is often masked by high-energy determinis-
tic components [159]. Separating the bearing faults from the masking
signal content assumes that a bearing fault signal is stochastic due to
random jitter on the fundamental period of the fault frequency [160].
This corresponds to the random slip of the rolling elements and a
bearing signal can be considered to be second-order (quasi-) cyclo-
stationary. These effects cause a smearing of the bearing frequencies
in the amplitude spectrum, while the deterministic signals manifest
themselves as discrete peaks [161]. This property forms the basis for
many stochastic-deterministic separation methods. Example meth-
ods that were proposed in the past are the discrete/random separa-
tion (DRS) technique [162] (see Fig. 1.21 for an example), self-adaptive
noise cancellation (SANC) [163], linear prediction filtering (LP) [164],
and the (generalized) time synchronous average (TSA) [165, 166]. An-
other method that has proven its worth in this regard is the cepstrum
editing approach [167].
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FIGURE 1.21: Example of signal separation using

DRS [162] on an experimental gearbox vibration signal

(data from [168]), (Top) Original signal spectrum (Mid-

dle) Deterministic signal spectrum (Bottom) Stochas-
tic signal spectrum.

Cepstrum analysis is a signal processing tool with already quite a
lengthy history. Bogert et al. [169] introduced the cepstrum first in
1963 as “the power spectrum of the logarithmic power spectrum with
the purpose of detecting echoes in seismic signals. Since then the
description of the cepstrum has evolved and other definitions for the
cepstrum have been identified afterward, like the “complex cepstrum
by Oppenheim and Schafer [170, 171]. Various discussions were held
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about the proper definitions and properties of the cepstrum [172, 173]
and different forms were described like the differential cepstrum [174]
and the mean differential cepstrum [175], which have their use mainly
in operational modal analysis (OMA). Recently however the cepstrum
has come into the limelight for its use in the field of vibration-based
condition monitoring. It turns out that the cepstrum can be used in an
efficient and effective manner as well to separate deterministic from
stochastic content [167]. This separation property of the cepstrum is
further investigated in Chapter 3.

1.4.3 Signal filtering

Vibration signals normally contain a mixture of different signal com-
ponents originating from many different sources. On top of that, the
source signals get distorted by the transmission paths from the vibra-
tion sources to the transducer that actually measures the resulting
vibration. The latter effect has a considerable influence on the mea-
sured signature of impulsive signals, e.g. coming from impacts due to
local defects such as spalls or pitting in gears or bearings. Also, if the
impulse response function (IRF) is shorter than the spacing between
the impulses (which can be the case for high-speed machines), it can
prove difficult to find the repetition frequency of the impulses, e.g.
through envelope analysis.
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Envelope Signal

FIGURE 1.22: Typical impulse train signatures for the
four different bearing fault frequencies (FTF, BSF, BPFO
& BPFI), as reproduced from [176]).

Therefore, in order to increase the signal-to-noise ratio of the fault
signature, an additional filtering step is often introduced after the sig-
nal separation. This filtering step often revolves around finding a filter
that optimizes a certain criterion that characterizes the fault signature
of interest. In the case of impulsive events such as a bearing fault, the
source signal is typically assumed to be an impulse train at the repeti-
tion frequency of the bearing characteristic fault frequency, as shown
in Fig. 1.22. The basic idea employed to find this source signal is then to
find an inverse filter that nullifies the transmission path by maximizing
the impulsiveness or kurtosis of the filtered signal. Besides maximiz-
ing the kurtosis, there are many possible optimization criteria that can
be used to find a filter. Chapter 4 discusses this broad topic of signal
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filtering approaches.

1.4.4 Fault detection & diagnosis

Probably the only step that is used in every single condition monitor-
ing procedure out there is the step of fault detection. This is easily
explained by the fact that every measured signal has to be processed
in some way to determine whether or not the signal characteristics
have changed as compared to the past. Only after this step of fault
detection, the next one of diagnosis can be taken. The concept of
fault detection is quite wide-ranging and there exist many potential
ways of identifying discrepancies in the signal characteristics.

The two most commonly used approaches are tracking the statis-
tics of the time domain waveform and the frequency spectrum of the
signal. In the early days of condition monitoring, it used to be stan-
dard practice to just calculate the vibration energy levels and compare
them to standardized criteria for vibration severity [177, 178]. These
criteria were originally developed using subjective empirical obser-
vations however, often even observed by touching the machine with
a finger and assessing the degree of vibration severity [176]. It was
quickly realized that a more accurate means of assessing machine con-
dition could be achieved through the use of frequency analysis. Ini-
tially, the use of difference spectra and one-to-one comparisons was
popular for tracking the condition. Gradually, the number of tech-
niques used in the frequency analysis also expanded and methods
such as time-frequency diagrams and phase analysis were employed
to detect defects [179, 180]. Nowadays, there are many potential ways
to obtain a time-frequency representation (TFR) of a signal, typically
divided into linear and quadratic or bilinear categories. Example TFR
techniquesinclude the short-time Fourier transform (STFT), the wavelet
transform (WT), their synchrosqueezed variants [181, 182], the Wigner-
Ville Distribution [183], the Choi-Williams distribution [184], the Zhao-
Atlas-Marks time-frequency distribution (also known as the cone-shape
distribution) [185], etc. In general though, it is important to note that
each one of the TFRs still has to respect the uncertainty principle, also
called the Gabor limit, stating that the product of the standard devia-
tion in time and frequency is limited. It is possible to obtain a higher
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resolution, but at the cost of different signal components interfering
with each other [186].

Besides time-frequency analysis, also the analysis of the phase of
signals became a staple in many condition monitoring schemes. It
turns out that many defects in rotating machinery (e.g. related to the
combustion or pressure in cylinders and pumps) induce perturbations
in the torsional vibration of shafts. Frequency demodulation is there-
fore used on shaft encoder signals to detect these perturbations.

0 200 400 600 800 1000
Samples

FIGURE 1.23: Example of a second order cyclostationary
signal (i.c. amplitude-modulated white noise).

In recent years, a relatively new concept to condition monitoring
has received a lot of attention in research, namely the concept of
cyclostationarity. While Chapter 3 focuses on the separation of de-
terministic and stochastic separation of signals, it is possible to also
discriminate cyclostationary signals from other signal content. Bear-
ing faults for example typically introduce second-order cyclostation-
ary content in the signal, meaning their second order statistics are
periodic (i.e. they have a periodic autocorrelation). An example of
a second-order cyclostationary signal is shown in Fig. 5.3. Chapter 5
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discusses the different ways signals can be processed using the men-
tioned statistical, spectral, and cyclostationary approaches and how
the resulting information is translated into condition indicators.

1.4.5 Towards automation

Thanks to the decreasing cost in sensors and data acquisition systems
and the ever-increasing computational power, it has become feasi-
ble to do extensive measurement campaigns where vibrations are ac-
quired on multiple channels and machines simultaneously. The diffi-
culty however is in the fact that all this acquired data needs to be pro-
cessed in a meaningful and efficient manner. Nowadays it is not prac-
tical or possible anymore to have an expert dedicated to only looking
at analysis results and condition indicators continuously. This excess
of data necessitates profound automation of the analysis procedure
and the interpretation of the analysis results. On top of that, experi-
mental vibration data coming from a machine that operatesin a highly
dynamic context (e.g. a wind turbine) normally shows a large depen-
dency on its operating conditions. This dependency can invalidate
standard condition monitoring approaches such as statistical thresh-
olding of the indicators. Therefore, the calculated condition indica-
tors also need to be compensated for this dependency such that the
expected behavior for every operating regime can be learned and uti-
lized for anomaly detection. Chapter 5 thus also goes into detail about
how the analysis results can be summarized into a form that is work-
able for a human mind and independent of operating conditions.

1.5 Original contributions

This dissertation discusses many of the state-of-the-art methods com-
monly used in vibration-based condition monitoring, but this section
details the original and novel contributions of this dissertation.
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151 Contributions related to rotation speed estimation

A major part of the PhD research was dedicated to investigating in-
stantaneous speed estimation methodologies. While initially the re-
search started with implementing and comparing existing speed es-
timation techniques, the research afterwards progressed towards the
development of an entirely novel method for rotation speed estima-
tion, namely the Multi-Harmonic Demodulation (MHD) method. This
technique uses the concept of single harmonic phase demodulation
and extends it to allow for simultaneous demodulation of multiple
harmonics present in the signal. Considerable time and effort was
also spent on improving the reliability of the speed estimation results
of this method by developing a rigorous manner in which to weight
the different harmonics based on their signal-to-noise ratio. This was
achieved through a maximum-likelihood estimation approach. Based
on the assumption that most rotating machines introduce many well-
excited and speed-related harmonics into the signal, this method has
the potential to often be the most accurate rotation speed estimation
method available. This can mainly be attributed to the usage of the
information contained within multiple harmonics instead of just one
single harmonic.

Aspecial notice should also be given to the Multi-Order Probabilistic
Approach (MOPA). This method, originally developed by Leclére et al. [187]
in 2016, was not only the subject of continued collaboration between
INSA Lyon and VUB, but also the subject of further investigation into
how the method performs on experimental wind turbine data and how
it could be improved.

Lastly, the acquired findings and experience in speed estimation
are discussed in a detailed comparison of several advanced speed es-
timation techniques on experimental data sets. This examination of
different methods was mainly done due to the lack of an extensive and
quantifiable review of the methods available in literature. Therefore
this last contribution is intended to be useful to both newcomers and
more experienced researchers in the field of vibration-based rotation
speed estimation.
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1.5.2 Contributions related to discrete-random signal separa-
tion

A strong focus at the start of the PhD research also went to the further
development of an automated discrete-random separation method-
ology. To achieve the goal of signal separation into deterministic and
stochastic content, the cepstrum editing procedure, originally pro-
posed by Randall and Sawalhi [167] in 2011, is automated and its per-
formance is investigated comprehensively on simulated and experi-
mental data.

1.5.3 Contributions related to signal filtering

While many different filtering approaches were investigated during the
course of the PhD, the main novelty is the development of a new blind
filtering framework from a cyclostationary perspective. In the past,
blind filters such as Minimum Entropy Deconvolution (MED) [188] and
its derivatives [189] used statistics of the time waveform to find an
optimal frequency filter. In contrast, the methodology proposed in
this dissertation employs the assumption that most faults (especially
bearing faults) introduce second order cyclostationary content in the
signal and uses that knowledge to derive filters that maximize in a
blind manner this cyclostationarity. Especially the usage of an itera-
tive filter updating procedure with the generalized Rayleigh quotient
is highlighted since it allows for a quick and effective computation of
the filter and a very flexible adaptation to many other optimization
criteria.

1.5.4 Contributions related to fault detection, diagnosis, and
data interpretation

The main contribution here is the development of a fully automated
and scalable monitoring approach using the developed advanced pro-
cessing methods. The contribution in itself can be considered to be
more a collection of different techniques than just a single technique.
Due to the vast amount of measurement data that Industry 4.0 brings
with it, it has become paramount nowadays to have an efficient means
to analyze all that data. This dissertation details how to process and

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



JAA Chapter 1. Introduction & Outline

interpret all those measurements using a hybrid approach consisting
of physics-based signal processing and data-driven models.

1.6 Outline of the dissertation

Chapter 1 gives a general introduction to the different types of con-
dition monitoring and describes the benefits and drawbacks of each.
Special emphasis is placed on the emergence of Industry 4.0 and the
application of condition monitoring to wind energy and other indus-
tries. Lastly, the different research challenges and objectives are high-
lighted.

Chapter 2 discusses the state-of-the-art in vibration-based instan-
taneous angular speed estimation and proposes a novel method for
an accurate multi-harmonic phase demodulation procedure. This new
method is fully derived theoretically and afterwards validated on both
simulated and experimental data. Additionally, a thorough compari-
son is made of several different advanced speed estimation methods
on three different experimental data sets.

Chapter 3 details the state-of-the art in signal separation tech-
niques such as time synchronous averaging and investigates the per-
formance of the automated cepstrum editing procedure (ACEP) on both
simulated and experimental data.

Chapter 4 elaborates on the topic of indicator tracking and using
these indicators for filtering approaches. Also a new methodology
is defined for deriving blind filtering approaches using complex op-
timization criteria based on the cyclostationary properties of the sig-
nal. This new framework is illustrated for different indicators based on
predictability or sparsity of the envelope signal or envelope spectrum
respectively. Validation is again done on both simulated and experi-
mental data.
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Chapter 5 provides an overview of common methods for fault de-
tection and diagnosis such as spectral and envelope analysis. It also
elaborates on the cyclostationarity concept. Finally, it proposes a hy-
brid physics-based and data-driven monitoring approach.

Chapter 6 illustrates and validates the processing methods dis-
cussed in this dissertation on experimental data sets. Emphasis is put
on the proper combination of the different tools and on the valida-
tion of their performance. Two case studies showcase the developed
methods on vibration data measured on wind turbine gearbox hous-
ings.

Chapter 7 completes the dissertation with general conclusions about
the described state-of-the-art methods and the newly proposed ones.
Ideas for future research challenges are discussed together with sug-
gestions for improvements of the proposed techniques.
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Chapter 2

Rotation speed estimation

241 Introduction

Accurate knowledge of the rotation speed of a machine is necessary to
gain insight in the mechanical signatures of the machine components
and it is of vital importance to the majority of leading-edge vibration-
based condition monitoring techniques. Many rotating machines in-
deed do not operate at a constant speed but operate at varying speed
regimes. Such non-stationary conditions require an efficient and ro-
bust way of estimating the instantaneous angular speed (IAS) in order
to not invalidate techniques such as order analysis and angular re-
sampling. While in the past this information would typically be mea-
sured using an angle encoder on one of the rotating shafts [190-192],
recent research efforts concentrate primarily on extracting the IAS di-
rectly from the vibration signal due to the potential cost savings or
installation problems.

In industry currently, it is still common practice to use rotary en-
coders to estimate the speed due to the reliability and the accuracy. A
whole range of rotary encoder types exists. Incremental encoders are
rotary feedback speed and position transducers that produce coded
output, typically in the form of a pulse train with a frequency pro-
portional to the rotation speed. Absolute encoders do not produce
pulse trains, but generate binary code that allow estimating the shaft
position accurately. Typically, absolute encoders operate using an op-
tical method, such as light sources and photo-sensors in combination
with a disk made of regions with different transparency. A downside
of this approach is that the photosensors must be mounted close to
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the rotor disc, and a small tolerance is required at the relative sensor
positions [193]. If the working distance of the photosensors can be in-
creased from the actuators, it leads to more flexible applications and
this is where vision-based solutions come in.

Region of interest
(a) R-G-B
Pattern
(on rotor)

Area for
color
tracking

Image center
of marker
—R—G—B—R...

—RP?B2?G—R...

High-speed (b) Image processing

RGB camera Measured angle

FIGURE 2.1: Example concept of a visual encoder where
an RGB pattern is used to track the rotation speed
through image processing, as reproduced from [193].

Computer-vision algorithms have been used in the past for visual
tracking of an object [194], examples are techniques such as SIFT [195]
and SURF [196]. Vision-based methods are applicable for objects po-
sitioned relatively far from the observer and thus do not have the
same structural limitation as standard optical encoders. Nowadays,
there are quite a few publications available that investigate rotation
speed measurement using vision-based methods [197-201]. Each pa-
per suggests different approaches in tracking the rotation speed and
angle, but most of them are based on tracking high-contrast markers
or speckle patterns (as shown in Fig. 2.). Typically this involves using
expensive camera equipment capable of filming at very high frame
rates. Recently, Zhong et al. [100] showed that artificial fringe pat-
terns and linear array sensors can be employed to estimate with high
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precision the instantaneous rotational speed. Following the Industry
4.0 trend, there is an increasing focus on cost efficiency also in this
research field. Wang et al. [202, 203] show that vision-based rotation
speed estimation is feasible using a low-cost imaging device. Their
methodology is based on tracking the degree of similarity, quanti-
fied by a two-dimensional correlation, between consecutive images.
The periodicity of the low-resolution similarity can then be exploited
using the Chirp-Z Transform. While these low-cost, vision-based en-
coders do not achieve the same accuracy yet as the standard optical
encoders, this deficit will certainly decrease in the future when imag-
ing sensors become even cheaper and algorithms more optimized.

While it is possible to install an encoder or tachometer to measure
the IAS directly on the machine, this imposes an additional cost for the
machine operator since a technician needs to dedicate time and re-
sources to the instrumentation. Because of this increased cost, there
has been a significant amount of research done on the estimation of
the instantaneous angular speed from the vibration signal itself. Even
though there have been many publications in the past decade detail-
ing various “encoder-less” or “tacholess” speed estimation methods,
most of them can be categorized into a limited number of groups.
Therefore, the following section gives a brief summary of the state-
of-the-art in vibration-based speed estimation.

2.2 Overview of state-of-the-art

Tracking in a TFR A large number of contributions focus on extract-
ing speed information by tracking harmonics in a time-frequency rep-
resentation (TFR) of the vibration signal with varying degrees of com-
plexity. Typical examples of such TFRs are the short-time Fourier trans-
form (STFT), the wavelet transform, or a Wigner-Ville distribution. Ur-
banek et al. [204] use a simple maximum tracking in the spectrogram
in a comparison with phase-based demodulation methods. Further-
more, multiple research papers investigate the possibility to improve
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the STFT for instantaneous frequency tracking by increasing the reso-
lution when necessary. Kwok et al. [205] implement an adaptive short-
time Fourier transform that chooses the optimal window parameters
based on an entropy concentration measure of the STFT. Cheung et
al. [206] use two kernel functions of different supports to obtain a
wideband and a narrowband spectrogram. To preserve the localiza-
tion characteristics, they implement a combined spectrogram using
the geometric mean of the corresponding STFT amplitudes. Peng et
al. [207] use a chirplet transform with a polynomial kernel to extend
the standard chirplet transform to non-linear IAS estimation with im-
proved frequency resolution. Sekhar et al. [208] investigate the effect
of interpolation on the polynomial Wigner-Ville distribution and IAS
estimation. An alternative to the STFT that is often used when more
flexibility regarding frequency and time resolution is required, is the
wavelet transform. Gryllias et al. [209] use complex shifted Morlet
wavelets to find the optimal shift and bandwidth from which to deter-
mine the instantaneous speed. Current signals can also use this type
of techniques to determine the speed since they are very similar to
vibration signals. Aller et al [210] use an analytic wavelet transform
on the stator current signal of an AC machine combined with a simple
ridge tracking algorithm.

A fairly recent development is the synchrosqueezing transform. In
2009, Daubechies et al. [181] proposed this new technique in the con-
text of audio analysis. Generally, it can be considered as a special
type of reassignment method, similar to what had been done before
for the STFT and other conventional TFRs [211, 212]. The purpose of
this type of reassignment techniques is to improve the concentration
of signal components in the time-frequency plane making them more
suitable for visual analysis and for methods such as ridge extraction.
Correspondingly, there has been a surge in papers making use of the
advantages of this new technique [213-215]. Xi et al. [215] propose a
frequency-shift synchrosqueezing algorithm to generate the TFR that
afterward gets used as input for the Viterbi algorithm to find the IAS.
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Shi et al. [213] employ a step-wise demodulation transform in combi-
nation with STFT-based synchrosqueezing to determine the IAS. How-
ever, there is still strong concern about whether or not synchrosqueez-
ing actually increases the reliability of speed tracking on noisy multi-
component vibration signals [216-218] compared to an STFT or Wavelet
transform.

Other papers focus more on improving the tracking in a TFR rather
than improving the TFR itself. Barrett et al.[219] use Hidden Markov
Models to incorporate probability in the evolution of the instanta-
neous frequency. Schmidt et al. [220] incorporate a priori probabilis-
tic knowledge about the instantaneous frequency of the system to
increase the robustness of the maxima tracking in the STFT. Quite a
few papers focus on implementing a robust ridge detection scheme to
track the IAS [221, 222]. The TFR used for ridge detection varies based
on the application and sometimes also based on the preference of the
authors, but most of them take into account some a priori knowledge
about the physical system under investigation. Wang et al. [222] pro-
pose the non-linear squeezing time-frequency transform in combina-
tion with ridge detection to estimate the IF. latsenko et al. [182] use an
improved dynamic path optimization method to efficiently estimate
the candidate path that best represents the IAS. They also investigate
the applicability and performance of their method on different TFRs
such as the STFT, the wavelet transform, and their synchrosqueezed
variants.

Some techniques try to utilize more than just one single harmonic
present in the signal and its TFR. These methods try to make full use
of all the mechanical events linked to the speed, e.g. all synchronous
gear and shaft harmonics in a gearbox. Often in complex rotating ma-
chinery, there are different operating regimes, potentially leading to
other harmonics to be excited or to significant amplitude differences
of the tracked harmonics. Therefore, the idea of using multiple har-
monics makes sense for the purpose of increasing robustness. For
example Zimroz et al [223] divide the STFT into different frequency
sub-bands belonging to different harmonic orders and detect the in-
stantaneous meshing frequency for each of the orders by modeling
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the noise levels and using a threshold based on the spectral kurto-
sis. Afterward they perform an averaging of the different normalized
instantaneous meshing frequencies to obtain a mean estimate of the
speed. A fairly recent development is the multi-order probabilistic
approach [187, 224]. This approach does not require a priori knowl-
edge about the exact harmonic related to a certain periodic mechan-
ical event but views the STFT as a probability density function (pdf)
map of the speed. These multi-harmonic methods perform particu-
larly well when the harmonic structure of the signal is well known and
excited.

Phase demodulation Another major group of speed estimation meth-
ods makes use of band-pass filtering and phase demodulation based
on the analytic signal. Usually one speed-related harmonic is selected
based on its signal-to-noise ratio (SNR) and then used for phase de-
modulation after band-pass filtering around that harmonic [204, 225-
227]. There are also multiple different ways to obtain the demodulated
phase. Bonnardot et al. [225] introduced the standard demodulation
approach as described above in order to angularly resample the vi-
bration signal and they indicate some considerations and limitations
about the technique. Boudraa et al. [228] use the Teager Energy Op-
erator in combination with Empirical Mode Decomposition to obtain
instantaneous frequency (IF) estimates for every Intrinsic Mode Func-
tion (IMF). This approach does rely on the assumption that each IMF
corresponds to a band-pass filtered, IF-related harmonic. A unique ap-
proach related to demodulation was proposed by Randall et al. [229]
based on a new interpretation of the Teager Kaiser Energy Operator
(TKEO). It avoids issues one might get with unwrapping the phase in
the standard phase demodulation approach and is based on utilizing
amplitude demodulation in the form of the squared envelope of the
band-pass filtered signal.

Other approaches Lastly, there are a number of lesser used tech-
niques for speed estimation. Cardona et al.[230] use a square-root cu-
bature Kalman filter to estimate the speed and for order tracking of the
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signal. They estimate the number of orders necessary for the Kalman
filter based on the number of high amplitude harmonics. Scala et
al. [231] use an extended Kalman filter non-stationary sinusoid tracker
(EKF-NST) that also allows for both frequency estimation and order
tracking. The downside of most model-based approaches is that they
require a lot of input parameter tweaking which is often difficult to
automate. Another unique approach is based on the scale transform.
Combet et al. [232] use a short-time scale transform to estimate the
instantaneous speed relative fluctuation based on the varying time-
scale factor along the vibration signal.

2.21 Research gap

Based on the available literature, it is clear that there are a lot of
possible variations on the base methods out there, resulting in often
very similar speed estimation techniques. This chapter starts off by
proposing a promising new method belonging to the group of demod-
ulation -based methods and validating it on simulated data in sec-
tion 2.3. Afterward, the advantages, disadvantages, and performance
of the described different types of techniques are assessed in detail.
Since itis impossible to implement and test all of the different method
variants, a selection is made from the different groups mentioned in
section 2.2 to provide a qualitative comparison. The techniques are
examined on three experimental data sets originating from three dif-
ferent machines, namely a wind turbine gearbox, an aircraft engine
and the generator of a ship.
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2.3 Multi-harmonic demodulation

Speed estimation through phase demodulation has proven itself al-
ready multiple times in the past to be a fairly reliable way to obtain
accurate instantaneous angular speed estimations [204, 225-228]. It
only requires a single well-excited and speed-related harmonic order
with preferably no crossing orders and it is also very easy to imple-
ment. Despite its popularity, the possibility to employ more than one
harmonic simultaneously in the demodulation has not yet been inves-
tigated.

The method proposed here is based on the idea of extending phase
demodulation of just a single harmonic to multiple harmonics. The
name of the technique is therefore coined as the Multi-Harmonic Demod-
ulation (MHD) method. The technique does require an a-priori rough
estimate of the speed and is partly inspired by Ref.[226].

The main concept of the technique relies on processing the har-
monics with a combination of complex demodulation, band-pass fil-
tering, and phase averaging.

2.31 Theory & derivation

To find an expression of the instantaneous angular speed (IAS) that
takes into account multiple harmonics, we initially start by looking at
an analytic signal consisting of one harmonic k and no noise:

xe(n) = Ak(n)e]'(akf’(ﬂ)Jrébk) (22)

with n being the sample number, k the harmonic number, K the total
number of harmonics, A the amplitude, « the harmonic order, ¢ the
constant phase, 6 the instantaneous angle of rotation. The derivative
% (n) (the notation means a sample of the time derivative) is related
to the narrow-band signal x;(n) as follows:

i (n) = Ag(n)el @000 +0) _|_Ak(n)(ej(“ke(”)+¢k)j“k9(n)) (2.2)
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We can rewrite the relationship between x;(n) and x;(n) as follows,
starting from Eq. 2.2:

i (n) = Ag(n)el @00 +90) +Ak(n)(ej(ka(n)+¢k)jak9(n)) (2.3)

N (2:83 + jard (n)) Ay (n)el @O0 (2.4)
= ( ZEZ) + joxf(n)) xx (1) 25)

This linear relationship between x;(n) and x;(n) can be written as
follows:

(1) = Br(n)xi(n) (2.6)
where Bi(n) is equal to:
piln) = 20 gt (23)

The following is then true:

S{Br(n)} = axb(n) (2.8)
and also:
0(n) = S{m} (2.9)

This is a well-known identity and used in the past to circumvent phase
unwrapping [233]. Typically, the measured signal is nota mono-component
signal, so the harmonic x(n) is obtained approximately through band-
pass filtering.

With noise If we introduce process noise (e.g. due to imperfect sam-
pling process and numerical differentiation process) vi(n) to Eq. 2.6,
the formulation resembles a state space model where the state and
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measurement equation are respectively given by:

yr(n) = x(n) + ex(n) (2:10)
xk(n) = Br(n)xx(n) + v (n) (2.211)

where x;(n) is the source signal and € (n) is the measurement noise.
In reality, xx(n) and x,(n) are both “experimental” variables, like the
input and output of a system. Thus, %,(n) is no longer given by the
mathematical derivative of Eq. 2.1 here. To avoid confusion, we change
the notation for x(n) to z(n):

zr(n) = Br(n)xx(n) + vi(n) (212)

While process noise is an idealization of the problem; “measure-
ment” noise (e.g. due to background noise from other vibration sources)
will also be present in practice, even if narrow-band filtering around
the harmonics will reduce it. The effect is to bias downward the es-
timators. However, as is stated later on more clearly, this bias is as-
sumed to more desirable as compared to having an unbounded vari-
ance.

Considering only process noise, the least-square error estimator of
(n) using all the filtered narrow-band harmonic signals to minimize
the square of vx(n), is given by:

A K .
0(n) = argmin ) ||z (1) — jaxd (n)xi(1)||* (213)
0(n) k
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Calculating the derivative and setting it to zero, gives the following:

1) — jagb(n)xg(n)]|?) =0 (214)

i s ([t —jakem)xk(n)} 2(n) —jakf?(n)xk(n)]*) —0 (215)

L g0 BEO0SEO00 jndsizl)
— jo () xi (n) 17 (n) + a0 (n) |xi (n)[?] = 0
K K
; jauk [x;;(n)zk(n) - xk(n)x;;(n)} + ;Za%|xk(n)|29(n) =0 (217)

- L joe x5 () = xi ()2 () | )
n)= .
LK 263 | (n) P
I (n) = xp(m)z(m)|
o) = Yk 20| () [2 219

and rewriting the term in the nominator as follows:

) ) = )z n) = (54088 = i) ) )

A (’;) (2.20)

(G, )+ 10 (m)) i (m) i ()
—2jaf(n)xi(n)xg(n) (2.21)
= —2jS{zk(n)xp(n)} (2.22)

gives after substitution into Eq. 2.19:
3 - Tk (=20)S{ze(m)x(n)}

O P 22
. é(i’l) _ C‘}{Zszk(n) k( )} (2.24)

EAEACHIE
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The advantage of this formulation is to embody several harmonics
in the demodulation and therefore the denominator of Eq. 2.24 has a
low probability of approaching zero, thus practically guaranteeing a
finite variance. This reduces the need to do an a-posteriori smoothing
of the resulting speed profile (which is often necessary for standard
single harmonic demodulation). Eq. 2.24 has an unbounded variance
for the case where only a single harmonic is demodulated (it then boils
down to Eq. 2.9), since zero values (or close to zero values- are allowed
for |xx(n)|. This means that the ratio can get arbitrarily large, making
its mean value unbounded. This unbounded variance makes it a bad
estimator with unbounded mean square error. Equation 2.24 has a
bounded variance for multiple harmonics due to the positive denom-
inator, but at the cost of potential bias. In general, this is probably
more desirable since the mean square error is bounded in this case.

For a single harmonic, a band-pass filter is typically defined based
on the minimum and maximum expected frequency of that harmonic.
Due to overlapping harmonic content, this approach limits the max-
imum bandwidth of such a band-pass filter and thus the maximum
amount of speed fluctuation. This can be mitigated by using a win-
dowed band-pass filtering approach. For the multi-harmonic demod-
ulation method as proposed above, this overlap issue is avoided in
another way. In practice, the complex harmonic signals x(n) can be
obtained by complex demodulation using a rough speed estimation.
This way the harmonics get shifted towards zero frequency (DC) and
one can employ a simple and more narrow low-pass filter for every
harmonic. The required a-priori rough speed can be obtained in mul-
tiple ways that require little input, e.g. using maximum tracking in the
spectrogram. Using the rough speed for the complex demodulation
does mean that when calculating 6 as specified in Eq.2.24, the result is
the deviation of the instantaneous frequency of the estimated speed
compared to the rough speed.

Another reason to do complex demodulation plus low-pass filter-
ing prior to using the formula in Eq.2.24 is because of the differenti-
ation involved. Differentiating filters usually increase high-frequency
noise as can be seen from their transfer function. Close to zero fre-
quency they have a linear response and the influence of the multi-
plication with the frequency in the spectral domain is reduced when
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combined with low-pass filtering. An example of the transfer func-
tion magnitude responses for four differentiation schemes are shown
in Fig.2.2. In the shown applications a simple first order difference is
employed since it has the lowest computation time and the produced
results ended up being not significantly influenced by the type of dif-
ferentiation.

3 | — ldeal
First order difference

—— Central difference

—— Smooth 4th-order differentiator
= 21
2
el
I

0.0 02 04 06 08 1.0
Frequency [£]

FIGURE 2.2: Magnitude responses of four differentia-
tors.

2.311 Maximum likelihood estimation of harmonic weights

Looking at Eq. 2.24, we can see that every narrow-band harmonic in-
cluded in the estimation will be uniformly weighted. However, in real
signals it is rarely the case that every harmonic is equally well-excited
nor do we expect that every harmonic is well-excited all the time. It is
entirely possible that the filtered signal x;(n) consists entirely of noise
and has no meaningful phase information. Also some harmonics can
vary in signal-to-noise ratio over time. Therefore it makes sense to
try to find a time-dependent weight for each harmonic to take into
account when calculating the IAS such that low SNR harmonics are
weighted less than high SNR harmonics. The employed approach de-
rives the maximum likelihood estimates of these weights.
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After complex demodulation and filtering, we have a set of signals
and their derivatives from the measurements that can be formulated
as the following set:

*A{a(n), z21(n)], [x2(n), 22(n)], .., [xx (1), zx ()]}

We again start from the linear relationship between x; (1) and z(n)
(as already defined in Eq. 2.12:

zi(n) = Br(n)xx(n) + vk (n) (2.25)

where Bi(n) is the regression coefficient and v, (n) the process noise.
We then need to make three assumptions:

« Assumption 1: the process noise is a univariate complex Gaus-
sian distribution with zero bias and unknown variance ~ N(0, o7 (1))

« Assumption 2: the statistics of the process noise are indepen-
dent of time and the number of the harmonic k

« Assumption 3: the process noises on the different harmonics are
assumed to be uncorrelated

The second assumption is wrong since v, (n) does depend on time and
the harmonic number k, but it allows us to use a simple Gaussian dis-
tribution.

We now write the probability density function of the process noise
(a univariate complex Gaussian distribution):

K —|zg (n) =By () x ()|
1 2w

P(x1,x2, ..., x¢|0(n)) = 1;[ 7'((7,?(11)6 oj(n (2.26)

This equation can be used as the likelihood function, i.e. the den-
sity function of z;, x) conditioned to B;. The idea behind Eq. 2.26 is
to use the asymptotic minimum variance property of the likelihood
estimator to find weights that reduce the estimation variance of 6 as
much as possible.

For a univariate complex Gaussian distribution there is no square
root in the PDF nor a factor 2. Thus rewriting the PDF gives us the
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likelihood function:

P(x1, X2, x|0(n)) = & = L(8(n)) (2.27)

Now we need to find §(n) that maximizes L(6(n)), which translates
into minimizing (due to the minus) the log-likelihood.

2

0(n)mr = argmax(L(6(n)))

— argmin(~1n(L(6(m))) 228)
=ar min(i 2¢(n) = Pr(m) ()| + constant)
- k=1 o (n)

The constant does not depend on #(n) so this can be ignored for the
minimization.

To find a local minimum of the log-likelihood function, we take the
derivative and set it equal to zero:

d(=In(L(O(n))) _

56(n) (2.29)

We need to take into account that the likelihood function is actually a
function of x;(6(n)), this means that for L(x;(6(n))):

+LeR
« x,€C
- 8(n) €R

We need to derive the real and imaginary part separately, which gives
for the real part:

S(R{=In(L(0(n)))}) _ §)?{5(—114(L(9(n)))}

50 () (2.30)
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We can rewrite Eq.2.30 as follows:

%g@muwmm}:;(@«m¢wmm>+(a4mumm»>)

30(n) 36(n) 50(n)
(2.31)
using these identities:
z=a+jb
R{z) = zZ+z
2 (2.32)
Cx _
\S\{Z} - 2
|z| = zz*

where z is just a complex number here.
If we write out the first term within the brackets of Eq. 2.31, this
gives:

3(=In(L(6(n))) _ Z[zk(n) = Be(m)xi ()] (—jaexic ()
50(n) o] o2 (n) (2.33)
(21 (1) — Bi(n) xic(n)] (ki (1))
o7 (n)
The second term is simply the conjugate of Eq. 2.33:
S(=In(L(6(n))\ " _ & [zx(n) — Br(m)xi(m)] (arx (1))
< 56(n) ) - L oZ(n) * 030
2k (n) — Bi(n)xi ()] (—jaxxi(n))
o7 (n)
The real part now becomes:
6(—In(L(6(n))) 5 [ze(n) — Br(m)xi (m)]* (—joex ()
R TR o2) " s
[zk (1) — Bie(n)xx ()] ok ()
o7 (n)
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Doing the same for the imaginary part using S{z} = %5*,
that the first (Eq. 2.33) and second term (Eq. 2.34) cancel each other
out. Thus, Eq.2.29 becomes:

K, [z (n) — Belm) e (m) g (m)joe | [za(n) — Be(m) e (m)] () (o
)» 2(n) * o2 (n) =0

(2.36)

In Eq. 2.36 we can recognize again the structure of ®{z} = #, o)
we rewrite it as:

%{i [z (n) — 5k(n)xk(n)]x7§(n)j“k} —0 (2.37)
k=1

To move closer to the expression in Eq.2.24 for é(n), we rewrite
Eq. 2.37 with the imaginary part instead, using following identity:

z=a+jb
R{jz} = Rjila+ b)) = —b = —z) (238)
This results in:
K — Br(n)xx(n)]xg(n)ay .
; () B =0 (2:39)
Splitting the equation up, gives:
%{i zi(n xlt(”) _cx{z B (1) [ xx( )| } (2.40)

k=1 o7 (1) og(n)

Now recall that the imaginary part of B (n) is a;f(n) and that the other
product factors are real, making the second part equal to:

C\{Z Br(n |xk ))| (Xk} = 6(n) i W (2.41)
k=1

oi(n)
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This then gives us the maximum likelihood estimate for 8(n):

(g, M
O(n)pr = O (2.42)

K |
k=1~ oFn)

The optimal weights for each harmonic are therefore defined as:

wi(n) = — (2.43)

As can be seen from Eq. 2.43, this does require knowledge of the vari-
ance of the noise ¢7(n).

Noise variance derivation Consequently, we need to derive the max-
imum likelihood estimate for the noise variance. The noise variance
is assumed to be constant over a short time interval [n — I, n + I]. The
pdf for the noise variance is then given by:

P(x¢lof) = ] —5e % (2.44)
i=n—I 7'[0']%
07 mr = argmax(L(0?)) (2.45)

with the likelihood in this case being:

) 1 Frl —\zku)—ﬂgu)xkaﬂz
L(og) = 71(2“1)((7]3)(2”1)6 ¢ (2.46)
and the log-likelihood:
2 2 1 VlJrI . . . 2
In(L(c%)) = I+ 1) In(m) + 21+ 1) In(0g) + = Y, —lz(i) — Be(i) (i) ]
k i=n—1I
(2.47)
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We again derive the maximum log-likelihood:

6(—In(L(0})))

502 =0 (2.48)

e L+ L T ) - pnE =0 ()
0—13 Ulécli:n—l ‘ ¢ ¢ .

Z= LY ) - pm@P (@s0)
T '

QZEZ; is slow and small com-
pared to the instantaneous frequency:

n+1
AD 2
- 2.51
Ok ML ™ 57 1l§n,lfzk jouB (i) xi (1) (2.51)

Since we ignored the E ; term, this estimate for 62 will be an

overestimation. The idea for the weights is that a high variance of the
noise will lead to a low weight. The procedure will iteratively switch
between estimating 6(n)y;, and 62 y.. For a first estimate of 0(n)mL
we can assume o7 to be equal to 1 or k or even %, depending on the
observable evolution of the signal-to-noise ratio for higher harmon-
ics.
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2.3.2 Simulation assessment

In order to highlight the influence of the maximum likelihood weight-
ing, a simple example is chosen where a signal with a normalized sam-
ple rate of 1 Hz and length of 20000 samples is simulated that consists
of the following:

« 5sinusoidal harmonics with a base rotation speed of 0.03 Hz, but
importantly the harmonic numbers are chosen to be odd, mean-
ing that there are no 2"9, 4t 6t, 8t nor 10t harmonic present
in the signal.

« The 5th harmonic however is chosen to be asynchronous with
the speed. This means the speed-synchronous signal content
only consists of the 1%t, 3, 71", and 9t" harmonic.

« Additionally, there is also 1 very lightly damped resonance in the
middle of the 7th harmonic, which is detrimental for the phase
demodulation of that harmonic.

 The 5 harmonics are all amplitude modulated
- Additive white Gaussian noise is added with an SNR of -5 dB

The spectrogram of the resulting simulated signal is shown in Fig. 2.3.
It is easily observed that the 7t" harmonic around 0.2 Hz is masked
by the lightly damped resonance and the 5t" harmonic around 0.15 Hz
is asynchronous. In total the MHD is run for 20 iterations with and
without MLE weighting of the harmonics to see the difference in per-
formance.
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FIGURE 2.3: Spectrogram of the simulated signal.

Figure 2.4 displays the resulting speed estimation. It is clearly ob-
served that in this case it is imperative to use harmonic weighting in
order to have a proper selection of the right harmonics for the es-
timation. Of course, a similar result could be obtained by manually
selecting only the 1%, 3™, and 9™ harmonic for the MHD method with-
out MLE. However, this example illustrates the automation potential
of the full method.

To further illustrate the functioning of the method with MLE, the
time-dependent weighting is shown in Fig. 2.5 for the odd harmon-
ics in red with the actual amplitude modulation of each harmonic in
black. The figure indicates that the 15, 3, and 9t" harmonic follow
rather well the amplitude modulation pattern and have a significantly
higher value constantly as compared to the 5™ and 79 harmonic (y-
axes are exactly the same scale).
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FIGURE 2.4: Resulting speed profiles of the estimation
with and without maximum likelihood estimation of
the weights as compared to the true speed.
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FIGURE 2.5: The ML-estimates in time compared to the
actual amplitude variation of the excited harmonics.

Lastly, to get an idea about the convergence of the weights, the
time-averaged weights are displayed in Fig. 2.6 for every iteration
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and every harmonic. Apart from the dominance of the weights of the
1%, 37, and 9" harmonic, it can be noticed that after approximately 5
iterations the weights have practically already converged to their final
values.

FIGURE 2.6: Evolution of the MLE harmonic weights per
iteration and per harmonic.

The next step is now to validate the method on experimental data,
which is done in section 2.5. First however, the theory behind some
other techniques is detailed such that an in-depth comparison can be
made of all techniques together on the same data sets.

2.4, Other IAS estimation methods

The other methods that are compared in this chapter with regards
to their speed estimation performance, are in essence either based
on demodulation or on a time-frequency representation of the signal,
since these represent the majority of the techniques out there. This
means that no purely model-based or scale transform approaches are
investigated. In total seven other methods besides the MHD method
are assessed:
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1. Phase demodulation

2. Iterative phase demodulation

3. Demodulation based on the Teager-Kaiser Energy Operator
4. Multi-order probabilistic approach

5. ViBES method

6. Cepstrum-based multi-order approach

7. Maximum tracking in combination with a Vold-Kalman filter

A short background summary of every method is provided to explain
some of the key details concerning the methods. For more detailed in-
formation, interested readers are referred to the origin articles of each
method, with the exception of the VIBES method which has not been
published yet. Keep in mind that some of the techniques presented
here can also be used in different combinations with other techniques,
but investigating all possible combinations would be unfeasible.

2.41 Phase demodulation based on the analytic signal

Perhaps the most used approach for vibration-based instantaneous
angular speed estimation is based on phase demodulation of a shaft-
speed related harmonic that exhibits a high signal-to-noise ratio. This
method is fairly straightforward and is mainly based on using an (ideal)
band-pass filter around a well-separated, high SNR harmonic of the
rotation speed. After defining the optimal lower and upper cutoff fre-
quencies for the band-pass filter, the harmonic is isolated from the
complex spectrum. Next, the analytic signal xguasic(t) can be ob-
tained by inverse Fourier transforming the complex band-pass filtered
spectrum to the time domain without its negative frequencies. This
Xanalytic(t) 1S then ideally a mono-component signal with a high SNR
and can be written in its exponential form:

Xanatytic(t) = A(t)e?®) with A(t) >0 (2.52)
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Thus, the instantaneous phase is given by the imaginary part of the
logarithm of the analytic signal:

¢(t) = %(Zog(xanulytic(t))) (2.53)

Finally, the instantaneous frequency is estimated based on the varia-
tion of the unwrapped phase:

finst(t) = zlndcl;(tt) (2.54)

The instantaneous angular speed can then be obtained by multiplying
finst(t) with the correct kinematic ratio. Figure 2.7 shows a flowchart
of the full approach that clearly does not require a lot of steps and is
easy to implement.

Band-pass filter Hilbert transform —>

1 do(t
fnst = 25 G

¢(t) = S(log(xamzl]/tic(t))) Unwrap (P(t) —

FIGURE 2.7: Overview of a standard phase demodula-
tion approach.

While this approach can deliver very accurate IAS estimations in
cases where such a single, constantly present, and dominant harmonic
is existing, there are ample cases where this approach has its limi-
tations regarding applicability. In complex rotating systems, the de-
terministic components are not necessarily all harmonically related,
causing crossing orders and skewing the extracted instantaneous phase.
Additionally, such systems often operate in strongly varying condi-
tions which can cause harmonics to fade into the noise. Another limi-
tation of this technique is the boundaries for the possible speed fluc-
tuation. When a harmonic at a higher frequency is chosen, this of-
ten accompanies a reduced possible relative bandwidth size for the
band-pass filter due to overlapping of lower and higher order har-
monics. Take for example the straightforward case where there are
only harmonics of the shaft speed present in the signal at the aver-
age frequency fi.f1, SO no sidebands related to the meshing of gears.
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The maximum speed fluctuation Af,,,, that can be present in the sig-
nal to allow for band-pass filtering the nt" harmonic so that it does
not overlap with its lower order harmonic at (n — 1) and higher order
harmonic at (n+1) is:

fshaft

Ao = 2n+1

(2.55)

with f., ¢ being the average of the minimum and maximum shaft speed.
This means that in order to define a band-pass filter on the second
harmonic n = 2 so that it does not overlap with the third harmonic,

the speed fluctuation of the signal cannot be greater than %

This simple example shows that the possible speed fluctuation
quickly gets limited by the maximum bandwidth that does not cause
overlap with other harmonics. A small adaptation of the method is
therefore made for long signals with strong speed fluctuations. For
such signals, it is impossible to incorporate the full signal in one de-
modulation step since the required filter bandwidth would be too large
and encompass multiple harmonic orders. Thus the demodulation is
done consecutively on windowed sections of the signal. In this disser-
tation a rectangular window with a standard overlap of 50% is chosen
for all phase demodulation methods. The obtained speed profiles of
overlapping sections are averaged together using a weighted average
based on a Hanning window with its center in the middle of the win-
dow. This is done to reduce the influence of the end effects associated
with using an ideal FFT band-pass filter.

2.4.2 Iterative phase demodulation

The previous paragraph touches upon the fact that it is not always
possible to define a band-pass filter on the full signal when the speed
fluctuation is too high. Therefore, a possible remedy [234] is to use a
lower order harmonic first. This way an initial speed estimate can be
obtained which can afterward be used for angular resampling of the
signal. After angular resampling, the speed fluctuation still present in
the signal is due to the estimation error in the initial speed estimate,
but it should have greatly decreased. Thus, another phase demodula-
tion step can be performed using a higher order harmonic now with a
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band-pass filter that has a smaller bandwidth thanks to the decreased
speed fluctuation. Figure 2.8 shows a simplified diagram of this itera-
tive demodulation approach.

@gular resampled signa/\l Angular resampling of x(t)

égnal x@-» Band-pass filter =~ Phase demodulation = Instantaneous Speed

FIGURE 2.8: Overview of the iterative demodulation ap-
proach.

2.4.3 Teager-Kaiser Energy Operator

An interesting new way of looking at the Teager Kaiser Energy Operator
(TKEO) was found by Randall et al. [229]. Instead of using the TKEO for
tracking the energy in speech signals, they show that it is possible to
estimate the speed directly from the TKEO formulation.

The TKEO operator ¥, is defined in continuous form as follows:

Fo(x () = [£(O)]2 - x(D)% () (2:56)

If the TKEO is applied to a monocomponent signal such as an ampli-
tude and frequency modulated sine (which in practice can be achieved
through band-pass filtering), then the signal x(¢) can be written as:

x(H) = A(D)sin(@(b)) with ¢(¢) / w (2.57)

with A(t) and w(t) = the time-dependent amplitude and frequency
respectively. If the variation of these two quantities is slow, then:

%(t) ~ w(t)A(t)cos(¢(t)) (2.58)
%(t) = —[w(t)PA(t)sin(¢(t)) (2.59)
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The TKEO then becomes:

Ye(x(t) = [2(H)]* — x(t)&(t) (2.60)
~ [w(H)]?[A(t)]*(cos?p(t) + sin®p(t)) (2.61)
~ [w(t)]*[A(t)]? (2.62)
The squared envelope se,(t) of x(t) is defined as:

sex(t) = x2(t) + £2(¢) (2.63)

Ye(x(t) = [wB)P[A(H)]? = [w(t)]*sex(t) = sex(t) (2.64)
_[sex(t)
w(t) = sex(D) (2.65)

As Randall & Smith point out in their paper [229], it is quite straight-
forward to implement this technique. A zero phase-shift ideal FFT fil-
ter can be used to band-pass filter the signal. The squared envelope
sex(t) is obtained by simply inverse Fourier transforming the filtered
band back to the time domain without the negative frequencies and
squaring the amplitude. The squared envelope of the derivative se; ()
is obtained in exactly the same way but an additional multiplication
with jw is done in the spectral domain concurrently with the band-
pass filtering. Multiplying with jw is equivalent to applying an ideal
differentiation filter on the signal. It avoids partially the typical dif-
ferentiation issue related to noise amplification of higher frequencies
(due to the differentiation filter gain that increases linearly with fre-
quency) thanks to the limited bandwidth of the band-pass filter. The
use of ideal Fourier filtering does create some end effects related to
the Gibbs phenomenon, but these can be alleviated if one can trans-
form a slightly larger signal part. The start and the end of the signal
can then simply be discarded in further analysis. Since the entire pro-
cedure is mostly carried out in the frequency domain, Randall & Smith
propose to rename the technique to “Frequency Domain Energy Oper-
ator” or FDEO in a more recent paper [235]. In the same paper, Randall
& Smith also point out that a closely related and potential alternative
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for the FDEO can be found using the derivative of the instantaneous
phase of the analytic signal [233]:

i = FORO _ 70
wlt) = §(t) = “5e5 =9 [xa (t)} (2.66)
where x,(t) is the time derivative of x,(t), which again can be obtained
by multiplying the spectrum by jw over a select frequency band. This
equation is not further investigated in this chapter.

2.4.4 Multi-order Probabilistic approach

The multi-order probabilistic approach (MOPA) belongs to the group of
techniques that try to utilize more than just one harmonic order in the
signal for the speed estimation. The general idea behind MOPA as pro-
posed by Leclére et al. [187] is based on regarding the instantaneous
spectrum, which can be obtained through a short time Fourier trans-
form (STFT), of the vibration signal as a probability density function
(pdf) of the IAS Q). Consequently, if the spectrum has a high amplitude
at frequency f, there is a high probability that the shaft frequency is
equal to f/H; with H; being the excitation order or, for the cases de-
scribed below, the gear ratios. The STFT can be calculated for a signal
x(n) as follows:

N-1 .
STFTi(m, k) = Y x(n)w(n — m)e 2N (2.67)
n=0

with N the window length, n the sample index, m the window index,
and k the frequency index. It is important to define a range for the
IAS in which the user expects the IAS to reside. This range has a lower
bound Q,,;,, and an upper bound ;.. The following pdf can then be
constructed:

i (2.68)

p(QH) = FA(Hiw)  for Quip < @ < Qyuax

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



76 Chapter 2. Rotation speed estimation

with A(f) a whitened version of the vibration signal’s spectrum and ¢;
a normalization factor to make sure the pdf has unit area:

&= / A(Hjw)dw. (2.69)

min

The purpose of the whitening is essentially to reduce the influence
of resonances on the generated pdf, since it is undesirable to give a
too high probability to a certain part of the spectrum only due to the
increased amplitudes because of a resonance. The used whitening
technique should be chosen based on the application.

To improve the IAS estimation and utilize more of the information
potential of the spectrum, one has to include more than just one pdf
based on one gear ratio or meshing order. Afterwards these different
pdfs can be combined together in one pdf by multiplication. Equa-
tion 2.68 does not take into account the possibility that a part of the
spectrum for a certain harmonic H; can exceed the Nyquist frequency.
In this case the pdf is made uniform above f,,,,/ H;:

p(Q‘HI) = éA(Hiw) for Qmin <w< fmax/Hi
P(Q‘Hl) - mp(Q|Hl) - 0 fOI’ w < Qmin or w > Qmax
(2.70)
with &; now:
Q — Q : fmax/Hi
i mex mn A(H;w)dw. (2.71)

fmux/Hz' - Qmin Qpin

The inputs of the method are thus an approximate range for the IAS,
the meshing orders and the vibration signal. For every order a pdf is
then constructed based on the signal’s instantaneous spectrum and
rescaled to the given range for the IAS. Next, the pdfs are multiplied
to combine the information of all the orders so that the main corre-
sponding estimate for the IAS becomes the most dominant peakin the
pdf.

Currently, the pdfs are still independently generated for each time
step and thus do not guarantee any continuity of the IAS, which is a
logical assumption for any mechanical system. Due to the inertia of
the rotating shafts, strong acceleration or deceleration is improbable.
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As such, to improve the results further, an a priori of continuity is in-
troduced for the IAS. The concept relies on generating for each time
step a pdf that is based on the pdfs of several time steps before and
after the central pdf. Appropriate weighting of these pdfs is done by
convolving the pdf with a centered Gaussian and the time relationship
is introduced by letting the variance depend on the time between the
considered pdf and the central pdf. The pdf at time step j generated
by the pdf at time step j + k is defined as:

Qmax a]2
PO = [ P00 s explyl) +p(Oys)  @272)

with p(Q););4 the pdf at time j that can be obtained by convolution of
the pdfattime j +k, p(Q; «) with a centered Gaussian, and oy = |vkA;|
with A; being the time step, v the standard acceleration of the IAS.
Similar to the previous step in which the pdfs corresponding to the
different orders have to be multiplied for each time step to obtain a
single combined pdf, there are now again multiple pdfs for every time
step j + k belonging to time steps before and after time step j. Thus
the final step is to multiply again all the pdfs for every time step:

K
p(Q)s < TT [Qjsx (2.73)
k=—K

The instantaneous angular speed can then simply be obtained by cal-
culating the expected value of every pdf.

2.4.5 VIBES method

The VIBES method is another STFT-based algorithm recently devel-
oped at MIT's Research Laboratory of Electronics and similar in ap-
proach to the MOPA method. It also views the STFT as a combination
of probability density functions but has the user define ranges of the
STFT that represent these pdfs. These ranges also track the instanta-
neous frequency estimates. For this method, the user defines an initial
estimate of the vibration frequency, fo, and defines a set of vibration
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mesh ranges of interest,
R = {I'],I'Z,...,I'M}, (274)

where r; = [¥; min, "imax), I-€., all real values in the range 7; min 10 i max-
The set of mean values of these ranges,

R = {f'l,f‘z,...,f‘M} (2-75)

should correspond to strong (in the signal-to-localized-noise ratio sense)
individual vibration spectral components correlated to the frequency
profile of interest (e.g. the frequency of a particular shaft’s rotation).
For convenience, these mesh ranges should be ordered from low to
high and related such that,

=2 (2.76)

In this way, the user can define R based on the expected locations
of strong vibrational mesh content, and set the width of all the cor-
responding ranges based on the width of a single range. This defin-
ing range should be set wide enough so that all ranges sufficiently
encompass their corresponding vibrational spectrum component but
not too wide that any range also encompasses adjacent correlated
vibrational spectrum content. For example, for harmonically related
vibration meshes, each range should only encompass one harmonic.

The method operates by calculating the STFT as defined in Eq. 2.67
and obtaining the short-time amplitude spectra A;[k| of the vibration
measurement, with t being the time at the center of the window.

At each time instance, t, the algorithm converts the M vibration
mesh ranges of interest, R, into frequency ranges as,

F= fthtR/ (2.77)

where f,_; is the previous time instance frequency estimate. The cor-
responding M sections of A;[k] are A;[K] where K > k;, and,

ki = Nfl;At r;. (2-78)
s
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with F; being the sample rate of the measurement.

The algorithm treats the magnitude profiles of these M ranges as
scaled and sampled probability density function estimates of the lo-
cation of the vibration frequency profile of interest at time ¢, i.e.,

Pri (fi) = ail Aelki]|, (2.79)

where,
fi= flki) (2.80)

¥

Here, «; is the scaling factor to ensure }_ p;;(fi) = 1.

If the mesh ranges, R, are ordered from low to high and related ac-
cording to (2.76), then each f; will cover a similar range, though fu; will
have the highest frequency resolution. Each probability density func-
tion, p;;(f;) can then be interpolated to match the sample points, fu,
so that the M resulting probability density function estimates p; ;(fm)
have the same length and thus can be arithmetically combined to form
a single composite probability density function,

pe(fm) = g (Pris fm) - (2.81)

For the results presented here, the function g() calculates the joint
probability density function assuming each p;; as independent, i.e.,

M
8(Peisfm) = | | Pri(fm)- (2.82)
i1

Finally, the frequency estimate for time, ¢, is calculated as the ex-
pected value of the composite probability density function,

fr="Y fibe(f0). (2.83)
fi€fm

This process is repeated for the length of the vibration signal x(n)
to form the full estimated frequency profile, f.
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2.4.51 Adaptation 1: Illegal Regions

To improve robustness, the VIiBES method allows defining “illegal” fre-
quency regions unavailable for the analysis. This helps protect against
the amplifying influences of resonances as well as vibration distur-
bances from extraneous sources, e.g., 50 Hz or 60 Hz “hum” corre-
sponding to the electrical line frequency. These regions can be de-
fined as,

Z=1{z,2,...,2.}. (2.84)

At each time instance, t, if any of the frequency regions of F (calcu-
lated in (2.77)) overlap with any regions of Z, the algorithm removes
the overlapping regions from F and removes the corresponding mesh
range from R. That is, (2.77) becomes,

F= {fthtri | ]?thtrz' Nzj=9g V z¢€ Z} , (2.85)

and R is updated as,
F
 fear

The analysis then continues through (2.78) - (2.83).

R

(2.86)

2.4.5.2 Adaptation 2: Variance-Based Lock-in Tracking

The VIBES method also allows the automated toggling between two
modes, wait and track, in response to a criteria metric. For example,
the variance in the composite probability density function,

?= ) (ﬁ—ﬁ)zﬁt(ﬁ), (2.87)
fi€fm

can be thought of as a confidence metric of the estimate, ﬁ. A low
value corresponds to when the individual probability density func-
tions, p:; (fm), have high signal-local-noise ratios with content co-
aligned in fy;. A high value occurs when the signal-local-noise ratio is
low and/or when their vibration content is not well co-aligned. If the
previous time-instance estimate of frequency, f;_a;, is good at time
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instance t, then ¢ will be small and the analysis should save the up-
dated estimate. However, if the estimate is poor, then the content
will not align well and ¢ will be high. Thus, maintaining a binary state
variable S; and setting it conditional to o incorporates an algorithmic
decision to start, keep, or stop tracking frequency. That is,

, ifSi_ar=0and 2 > o?

, if Si—_at = 1and % > 0'5

N
I

, (2.88)

- O O

p ifSt,At:()and o? SUZZ

1, if Stht =1and 0’2 < 0’5

where o7 and o7 are empirical threshold values with ¢ > ¢7. In (2.88),
S; = 0 indicates wait-mode and S; = 1 indicates track-mode. (2.83)
can then be altered to depend on S;,

f— ZfinM fiﬁt(fi)/ if ;=1

(2.89)

so that the profile f; only contains estimates when in track mode.

Under this operation, (2.77) and (2.78) need to be adapted by re-
placing f;_a¢ with f;o as f;_a¢ can take on the null set. By setting f;
as,

fioar, ifS =1
fw, if S, =0

fro = (2.90)

where f, is the initial frequency guess when in wait mode and defined
by the user.

2.4.6 Cepstrum-based multi-order approach

This chapter also investigates the performance of combining the cep-
strum transformation with the multi-order probabilisticapproach. This
technique is inspired by the approach proposed by F. Bonnardot at the
data contest [236] of the Surveillance 8 conference which was held at
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the Roanne Institute of Technology in France. In this contest Bonnar-
dot uses the cepstrum to find an initial estimate for the speed. Instead
of a Time-Frequency Representation (TFR), a Time-Quefrency Repre-
sentation (TQR) is generated based on a short-time cepstrum trans-
form. The technique then makes use of a tracking algorithm based on
the maxima of the first five rhamonics in the TQR and based on using
linear prediction to find the expected quefrencies.

Background about cepstrum

The complex cepstrum is defined as the inverse Fourier transform of
the log spectrum. It can be expressed in terms of the amplitude and
the phase of the spectrum:

Ce(t) = 7 H{In(X(f))} = 7 H{In(A(f)) + jo ()} (2.91)

where X(f) is the frequency spectrum of the signal x(t):
X(f) = F{x(t)} = A(f)el?V) (2.92)

By setting the phase to zero in Eq.(3.1), the real cepstrum can be ob-
tained:

Cr(1) = Z {In(A(f))} (2.93)

Here, T is a measure of time, referred to as “quefrency”, however it is
not defined in the same sense as a signal in the time domain. A peak
at a certain quefrency corresponds to the inverse period of a series of
periodic harmonics in the spectrum. For example, if the sampling rate
of a signal is 20 kHz and the cepstrum displays a quefrency peak at
1000 samples, the peak indicates that there is a family of harmonics
present in the spectrum with a spacing of 20 Hz (20 kHz/1000 sam-
ples).

An important property of the cepstral domain is that the convo-
lution of two time domain signals can be expressed as an addition
of their cepstra. Consider the output signal y(¢) of a physical system
represented by the convolution of an input signal x(¢) and an impulse
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response h(t) of the system:
y(t) = x(t)  h(t) (2.94)

Because of the convolution theorem, this time domain expression trans-
forms into a multiplication in the frequency domain:

Y(f) = X(f)H(f) (2.95)

In turn, taking the logarithm of Eq.(3.5) transforms the multiplication
into a sum:

In(Y(f)) = In(X(f)) + In(H(f)) (2.96)

Since the Fourier transform is linear, the addition remains valid in the
cepstral domain.

C(r) =7 HIn(Y(f))} = 7 {In(X(f))} + 7 {In(H(f))} (2.97)

This property indicates the possibility to deconvolve a signal if one
of the factors is known. As such the logarithmic transformation al-
lows the separation of the influence of the excitation source and the
transmission path of the system in the cepstral domain. This property
opens up possibilities for modal analysis in the cepstral domain [237],
but this is not the focus of this chapter.

TQR-based speed estimation

The usage of the cepstrum for speed estimation is slightly different
in this chapter compared to Bonnardot’s approach. Instead of using
a tracking approach based on the first five harmonics, the TQR is re-
garded as a probability density function map of the rhamonic orders
similar to MOPA.

The TQR of a signal or Short-Time Cepstrum Transform (STCT) is
essentially based on the STFT. The STCT is then simply the inverse
Fourier transform of the natural logarithm of the absolute values of
every spectrum in the STFT. The amount of windows remains the same:

N-1 .
Y In(|STFT(m,k)|e >™™N) (2.98)
k=0

STCT,(m, 7) = %
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with 7 the quefrency index. This STCT or “cepstrogram” is then used as
input for the same formalism as defined in Section 2.4.4 for MOPA. The
key difference between MOPA on the STFT and STCT is based on the
fact that a decrease in rotation speed will actually lead to an increase
in the quefrency peak related to that rhamonic order. This means that
the STCT looks like it is inverted compared to the STFT. All the fre-
quency intervals defined for the spectra are also inverted since the
minimum and maximum expected rotation frequency correspond to
the maximum and minimum rotation quefrency respectively.

2.4.7 Maximum tracking combined with Vold-Kalman filter

The final technique to be investigated is a combination of two com-
monly employed techniques and is based on the three-step procedure
described in [220]. First, the spectrogram of the signal is calculated
and used for a maximum tracking procedure. There exist quite a few
maximum tracking algorithms, but the one showcased in this chap-
ter is the one described in [220]. Second, this initial speed estimate
based on the maxima serves as input for the Vold-Kalman filter, which
is regarded as a time-varying band-pass filter in this context with the
center frequency being the initial speed estimate. Third, the result-
ing, filtered signal should then be a mono-component signal and thus
suitable for phase estimation through its analytic signal.

Maximum tracking

The idea behind maximum tracking is very straightforward: the ampli-
tudes of a speed-related harmonic (or set of harmonics) are tracked
over time in the spectrogram in an automated way by simply looking at
the peaks (maxima) near the expected frequency and assuming that
the found peaks are related to the harmonic to track. The manner
in which this automated search and tracking is implemented varies
greatly within literature [238] and there still does not seem to be a
consensus as to what the optimal approach consists of. Regardless,
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the approach in this chapter (as proposed in [220]) is based on solv-
ing a constrained optimisation problem in the form of:

minimize = —|STFT(n,k)|? (2.99)
subject to (KAf — f.(n))* < Af? (21100)

with f. the center of the constraint, n the time index, Af. the band-
width of the constraint, k the frequency index, and Af the frequency
resolution. It is assumed that:

frr(nAt) = fuax(n) (2101)

with fir the actual instantaneous frequency of the harmonic to track,
At the time resolution of the spectrogram, and f,... the frequency that
corresponds to the maximum amplitude. In order to make the tracking
process more robust, the acceleration of the instantaneous frequency
(IF) can be taken into account. The Taylor series expansion of the IF
gives:

2
f]p(f) = f[p(t — At) + At%f[p(t — At) + %Atz%f][!(t — At) =+ ...

(2.102)
The gradients of the IF are of course unknown (and assumed to be con-
tinuous) and the actual fir is also unknown. Therefore, the gradients
are estimated using a simple finite difference scheme based on the
previous IF estimates fy,x(n — 1), fmax(n — 2), etc. Next, it is assumed
that:

fmax(n) = fie(n) +v(n) (2103)

with v representing the deviation due to smearing of the STFT and
noise in the signal. It is assumed that this deviation has a Gaussian
distribution v ~ N(0,¢?) so that the estimated IF, f,..x, can be related
to the true IF, fir, as follows:

1 (fmax (n)— f1p (m))?

e 202 (2.104)
V2027t

p(finax (1) ’fIF(”)r‘Tz) =
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A model of the true IF fir,, is used since fir is unknown. An N**-order
polynomial is used for fir ,:

firw = wo +wit' +wot? + ...+ wytY (2:105)

The polynomial weights w = [wg, wy, w», ..., wy]" are estimated through
a maximum likelihood procedure:

n—1
W = argmax H p(fmax(i)\flplw(i),az) (2.106)

w i=n—Npy

with N, the number of previous time steps taken into account. The
maximization of the likelihood function under a conditional Gaussian
noise distribution for a linear model is equivalent to minimizing a
sum-of-squares error function [239]. This boils down to solving a least
squares problem which uses a Moore-Penrose pseudo-inverse. The re-
sulting weights can then be found using following matrix expression:

W= (QTQ)_lQTfmax (2-107)

with f,,,, the (N, x 1) vector containing the previous N,, IF estimates,
and Q the design matrix of the polynomial:

1 (n—1)At ((n—1)At)N
0- 1 (n —.Z)At ((n— %)At)N (2108)
1 (n—Ny)At ... ((n— Ny)At)N

In this dissertation a first order polynomial is used to minimize po-
tential errors in the extrapolation. Also a limited number of previous
points N, is taken into account, namely five, for the cases described
in this chapter to make sure that the computation time remains ac-
ceptable. The method does require estimates at the first time index
for the IF and its gradient. The initial gradient is assumed zero and the
initial IF estimate is obtained by visual inspection of the spectrogram.
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The constrained minimization problem is reformulated using a pe-
nalised unconstrained cost function (see [220] for more details):

k(p,1,K) = —|STET(n, K)2 + p1 - max[0, (kAF — fue(n — 1))2 — Af3]

+ p2 - max[0, (kAf — firw(n))* — Af5)
(2109)

This cost function is minimized using a brute force approach which is
computationally feasible as long as the number of points N,, is not too
high. The bandwidth for the tracker is denoted by Af, and Af,,. The
parameters p; and p; are chosen in such a way that the cost function is
dominated by the constraint terms in case the constraints get violated.
The estimated IF is then given by:

fmax(n) = Af argmink(p, n, k) (2110)
k

Vold-Kalman filter

The IF estimate returned by the maximum tracking is still quite rough
due to the resolution limitations of the spectrogram. Therefore the
Vold-Kalman filter (VKF) is employed as a time-varying band-pass fil-
ter with a center frequency based on the IF estimate returned by the
maximum tracking. The VKF allows for defining a bandwidth of the
band-pass filter such that the provided rough speed does not have to
be perfect. The larger the bandwidth however, the more noise and ex-
traneous components are included. The implementation used here is
based on the one-pole angular-displacement filter as recommended
by [220]. The angular-displacement VKF tries to estimate the envelope
of the mono-component signal and should be fairly robust to cross-
ing orders compared to the angular-velocity VKF. The full background
of the VKF is not provided here, but interested readers are referred
to [220, 240-242] for more details. Finally, after the VKF, the instan-
taneous speed estimate is found by using the analytic signal as de-
scribed in Section 2.4.1.
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2.5 Performance comparison on experimental data

The seven methods highlighted in Section 2.4 and the proposed multi-
harmonic demodulation method are examined for their accuracy and
ease of use on three different experimental data sets. One data set
originates from a wind turbine gearbox, one from an aircraft engine,
and one from a ship generator. Each data set has very different charac-
teristics and thus their analysis can provide some interesting insights
into the subtleties of each method. Since each method and data set
require new input parameter settings, describing all of them each time
would be quite cumbersome. Therefore only the most important set-
tings that change between the different cases are reported and the
remaining parameters are displayed in tables. A general overview of
allthe input parameters per method is provided in Table 2.1. The meth-
ods are abbreviated as follows:

« SHD = Single Harmonic Demodulation

+ MHD = Multi-Harmonic Demodulation

ISHD = Iterative Single Harmonic demodulation

FDEO = Frequency Domain Energy Operator

MOPA = Multi-Order Probabilistic Approach

C-MOPA = Cepstrum-based Multi-Order Probabilistic Approach

« max.tr. + VKF = maximum tracking in the STFT with Vold-Kalman
filtering

The list of input parameters per implemented method is undoubt-
edly subjective since another user might want to add or reduce certain
inputs as to increase the flexibility for their particular case. However,
the input parameters here are defined from a perspective that each
method should be easy to use in an automated manner, thus with the
least amount of manual effort possible. By looking at Table 2.1, it can
be noticed immediately that the methods based on the STFT need at
least three additional parameters just for the calculation of the STFT.
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The method with the most required inputs is the combination of max-
imum tracking with the Vold-Kalman filter since this method is prob-
ably also the most complex method to implement out of the eight
methods tested.

TABLE 2.1: Overview of the input parameters of each method.

Method name
SHD MHD ISHD FDEO MOPA VIiBES C-MOPA  max. tr.

+ VKF
Fs Fs Fs Fs Fs Fs Fs Fs
Winit — Wrough Winit ~ Winit  Wmin Ny Winin Winit
Bw Bw Bw Bw Winax Nrer Winax Bwax
Ny Ny Ny {Hi}  Novertap {Hi}  {Hi} Ny
{H;} Ny {R} Ny Nrrr
Neer {Z} Ngrr Novertap
Novertap o? Noverlap ~ Np
Kw (7% Ky N
Y Y Bwykr

Nykr
with Fs the sampling rate in Hz, w;y; the IF at the first time index, wy,,,, an initial rough IF
estimation, Bw the bandwidth of the band-pass filter, N;, the window size used, { H;} the list
of harmonic orders, Nrpy the size of the FFT in samples, Novertap the amount of overlap be-
tween windows in samples, K;, is the number of windows used for the continuity smoothing
in MOPA, 7 is the expected acceleration of the IAS in MOPA, {R} the set of mesh ranges of
interest with each range defined by a minimum and maximum value, {Z} the set of illegal
frequency regions, o7 & o2 the variance threshold values for beginning and stopping track-
and wait-mode of ViBES, N, the order of the polynomial used for maximum tracking, N;, the
number of previous time steps taken into account, p; & p; are the weights for the penalised
unconstrained cost function, Bwy,,» & Bwykr are the bandwidths for the maximum tracking
and the vold-kalman filter respectively, and finally Nyxr the order of the vold-kalman filter.

2,51 Wind turbine gearbox data set

This well-documented data set originated from a diagnosis contest
held at the International Conference on Condition Monitoring of Ma-
chinery in Non-Stationary Operations (CMMNO) in 2014 [187]. The pro-
vided vibration signal was measured on the gearbox housing of a wind
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turbine near the epicyclic gear train and sampled at 20 kHz. The goal
was to estimate the IAS of the high-speed shaft (carrying gear #7 in
Fig.2.9). This estimate was then compared with a reference speed sig-
nal measured by an angle encoder. The length of the measurement
was approximately 550 seconds. The spectrogram of the full signal
can be seen in Fig 2.10 and is generated using a Hanning window of 1
second with 50% overlap.
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FIGURE 2.9: Visualization of the wind turbine gearbox
used in the CMMNO 2014 diagnosis contest.
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FIGURE 2.10: Spectrogram of the CMMNO 2014 diagno-
sis contest data.

2,511 Parameter settings

The methods based on phase demodulation mainly need one high
SNR, speed-related harmonic as their most important input. In this
case, the second harmonic of the planet gearmesh frequency around
55 Hz is chosen due to the good results obtained using it, which is also
corroborated by the report in [187]. The bandwidth and window size
for this case are set at 8 Hz and 10 seconds respectively. The methods
based on the STFT all use the same settings for the STFT:

+ uniform weighting window

« Window length of 1 second

* FFT size of 2 seconds (thus 1 second of zero padding)
« Overlap of 95% of the short time window length

The fundamental harmonic orders taken into account for the multi-
order probabilistic approach are displayed in Table 2.2. The first ten
harmonics of every fundamental order are considered for MOPA. The
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number of windows K, used for the a priori continuity introduction is
set to 20 and the acceleration tolerance of the speed +y is set to 0.4 %
The benefit of using MOPA is that it allows the estimation of the speed
of the full signal at once. The base frequency interval {win, Wmax}
used here is chosen to be {15,35}. The mesh ranges for the ViBES
method are setto R = {[0.9290, 1.1219], [1.8580, 2.2438], [2.7871,3.3657],
[4.8167,5.8167]} and no illegal frequency ranges are defined. The first
three of these ranges correspond to the fundamental, and 2nd and
3rd harmonics of the vibration content created by gear pairs 1/2 and
2/3 (Table 2.2), respectively, while the fourth range corresponds to the
fundamental vibration content created by gear pair 4/5 (Table 2.2).

TABLE 2.2: Fundamental orders related to high-speed

shaft.
Gear pair Order value
1 1
2/3.1/2 1.025459229
4/5 5.316666667
6/7 29
8/9 15.225
10/11 6.619565217

Next, the multi-harmonic demodulation uses an initial rough speed
estimation obtained by the zero crossings of the third harmonic of the
1.025™" order. It then employs harmonics of all orders given in Table 2.2.

Finally, for the maximum tracking, the third harmonic of the planet
gearmesh frequency which starts at about 75 Hz is chosen for w;,,;;. The
bandwidth Bw,,,, is set to 2 Hz, the polynomial order N, to 1, and the
number of previous estimates to take into account N,, to 5. Lastly,
the chosen bandwidth Bwykr is 4 Hz and the VKF order Nyr is 2. An
overview of every single input parameter is shown in Table 2.3.
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TABLE 2.3: Overview of the input parameters for the
CMMNO data set
Method name
SHD MHD ISHD FDEO MOPA VIBES C-MOPA max.
tr+VKF
wipit = 53 Hz Bw =2Hz Wipit = 53 Hz winit = 53 Hz Wiy = 15 Wipit = 25 Hz Wiy = 15 Wipit = 75 Hz
Hz Hz
Bw =8 Hz Ny = 10000 Bw = 8 Hz Bw = 8 Hz Wmax = 35  Nppp =21 Wmax = 35  Bwpax=2Hz
Hz Hz
Ny =50000  {H;} =Table2.2 N, = 50000 Nw = 50000 {H;} =Table2.2 Nyy1sp=90%  {H;}=Table22 Ny = 5000
{H;} = {2, Nyp=5000 Ny=10000 Ny=5000 Npgr = 10*
10.62}
Nepr = 10* {R} = Nppr=10* Novertap=95%
{[0.9290,1.1219],
[1.8580,2.2438],
[2.7871,3.3657],
[4.8167,5.8167]}
Noverlap=95%  {Z} ={} Noverlap=95%  Np=1
Ky =20 o2=[1 Kyp=20 Nm=5
v=04k2 o2l 1 v=04k2 Bwygp=k Hz
Nykp=2
2.51.2 Results

Some intermediary results are shown first in order to illustrate better
the internal workings of the different methods. As described in Sec-
tion 2.4.4, MOPA views the spectrogram as a probability density func-
tion (pdf) map and relates all of the pdf intervals belonging to differ-
ent harmonic orders back to the fundamental speed interval, in this
case {15,35}. Figure 2.11 shows the obtained pdf map after summation
and continuity introduction for the fundamental speed interval on the
CMMNO data. The instantaneous speed profile can then be obtained
by taking the expected value of every pdf at every time step.
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FIGURE 2.11: pdf map of the speed profile based on the
CMMNO spectrogram after continuity introduction.

The same approach is employed for the cepstrum-based MOPA,
but the STCT or cepstrogram is used instead of the spectrogram. Fig-
ure 212 displays the used cepstrogram with quefrency on the y-axis.
The structure of the rhamonics clearly corresponds to the inverse of
the instantaneous speed profile. Therefore the obtained pdf map, as
shown in Fig. 243, also returns an inverted speed estimate. By taking
the expected quefrency values of the pdf map and simply inverting
them, the instantaneous frequency values are recovered.

100 200 300 400 500
Time [s]

FIGURE 213: pdf map of the speed
FIGURE 2.12: Cepstrogram of the profile based on the CMMNO cep-
CMMNO data. strogram after continuity intro-

duction.

The maximum tracking method basically calculates a 2D cost map
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based on a penalized unconstrained cost function and the spectro-
gram. Figure 214 shows the cost map as an overlay in red over the
spectrogram in the background. The cost map is red where the cost
is very high and becomes more transparent where the cost is low.
Clearly, the cost is lowest around the third harmonic of the planet
gearmesh frequency since this harmonic lights up through the cost
map layer. The input rough speed estimate for the VKF is then ac-
quired by taking the frequency that corresponds to the minimum cost
at every time step.
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FIGURE 2.14: Cost map of the CMMNO data as calculated by the max-
imum tracking algorithm using a penalized unconstrained cost func-
tion.

The extracted speed profiles of the eight different methods are
then compared to the reference speed signal measured by the angle
encoder in Fig. 2.15. It can be seen that most methods perform quite
well in tracking the overall profile of the speed. The cepstrum-based
approach shows the largest discrepancies to the encoder speed. This
is mainly attributable to the poor quefrency resolution and the fact
that not all rhamonics are as well-pronounced as their harmonic spec-
tral counterparts since the cepstrum is strongly influenced by noise.
The maximum tracking and VKF approach exhibits one major deviation
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of the encoder speed around 217 seconds. This deviation is primarily
due to the maximum tracking being influenced by a very short, sudden
drop in energy of the tracked harmonic. This is also the main problem
of this method. If the noise is too high, if there are crossing orders, or
if there is a short drop in the amplitude of the tracked harmonic, the
maximum tracking can jump quickly to the wrong frequency bins and
this is not always straightforward to control in an automated manner.
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Maximum tracking +
Vold-Kalman filter

18- Cepstrum-based
multi-order approach

Multi-Harmonic Demodulation

16- VIiBES
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FIGURE 2.15: Estimated instantaneous speed profiles
of every method on the CMMNO data.

Since it is fairly difficult to assess the accuracy of each method
visually in this manner, the mean and median absolute errors are cal-
culated and displayed in Fig. 2.16. In general, the errors are quite low
apart from the one of the cepstrum-based MOPA as is explained ear-
lier. The best result is obtained by the newly proposed multi-harmonic
demodulation, closely followed by MOPA. The main reason why the
MHD and the spectrum-based MOPA work so well is thanks to the well-
defined harmonic structure in the spectrogram and the large number
of different harmonic orders that do not overlap excessively. The MHD
method benefits heavily in this case from taking into account more
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harmonics than the SHD. Likewise, averaging the resulting pdfs to-
gether of over 60 harmonics produces a very accurate and smooth
result for MOPA. The VIBES method only performs a bit worse than
MOPA which is probably due to the difference in implementation and
the different harmonic orders chosen. It comes as no surprise that
the iterative phase demodulation performs better than the single step
phase demodulation and FDEO. The latter two methods mainly suf-
fer from the fact that a fixed window size was chosen for the entire
signal. These methods would get closer to the result of the iterative
demodulation if custom window sizes and filter bandwidths were de-
fined for every signal part depending on the speed fluctuation. The it-
erative phase demodulation does not suffer from this drawback since
after the first angular resampling it is possible to define a narrow filter
bandwidth for the entire signal at once. A similar reasoning can be fol-
lowed for the VKF approach since after the VKF the signal is essentially
a mono-component signal, meaning that phase demodulation of the
full-bandwidth signal is possible.
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FIGURE 2.16: Mean and median absolute errors for ev-
ery method on the CMMNO data using the encoder as
reference.

To provide some insight into the computational effort required by
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the eight methods, the execution time of every method is returned in
Fig. 2.17. All the computations were done on the same computer using
single threaded computation on one CPU core of an i5-5300U proces-
sor with 16GB of RAM. Deriving all the computational complexities of
every single method is not the main focus here, but Fig. 247 aims to
present a ballpark indication of the computation time such that indi-
viduals who are interested in implementing a fast speed estimation
method have something to judge from.
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FIGURE 2.17: Computation time for every algorithm on
the CMMNO data.

2.5.2 Aircraft engine data

The second data set to be analyzed originates from the Safran contest
at the Surveillance 8 conference, held in Roanne, France [236]. The
provided data consists of vibration and tachometer signals acquired
during a ground test campaign on a civil aircraft engine with two dam-
aged bearings.

A general overview of the engine with the damaged bearings and the
sensors locations is displayed in Fig. 2.18. The engine has two main
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shafts and an accessory gearbox with equipment such as pumps, fil-
ters, alternators, and starter. The accessory gearbox is linked to the
high-pressure shaft HP by a radial drive shaft RDS and a horizontal
drive shaft HDS. The kinematics of the gearbox and the rotating speeds
of its shafts are described in Fig. 2.18. A spectrogram of the analyzed
signal of accelerometer 2 can be seen in Fig. 2.20. It is generated using
a Hanning window with a length of 2! samples with an overlap of 95%.

Roller bearing LS
damaged outerrace |
(spalling) x

FIGURE 2.18: General overview of the engine and the
accessory gearbox. Shafts are identified by labels in
amber color.
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FIGURE 2.19: Diagram of the kinematics of the gearbox.
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FIGURE 2.20: Spectrogram of the analyzed Surveillance
8 aircraft engine vibration data.
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2.5.21 Parameter settings

The main harmonic used for the single harmonic phase demodulation
techniques is the 38t harmonic of the high-pressure shaft. The chosen
window size is only 1 second due to the very rapid speed increase. The
bandwidth is therefore also quite large at 100 Hz. The multi-harmonic
demodulation uses the first 60 harmonics of the high-pressure shaft
with a moving window size for the MLE part of 217 samples. The rough
speed is estimated by using the zero crossings of the filtered first har-
monic of the high-pressure shaft.
The parameters for MOPA are as follows:

» harmonics orders used: first 60 harmonics of the HP shaft & L1
shaft

* {Wmin, Wmax} = {175 Hz, 230 Hz }
« Ny = Nppr =21

* Noverlap = 0.9Ny

+ Ky =20

s ¥=0.4

The mesh ranges for the ViBES method were set to correspond to the
fundamental through 8th harmonic of the vibration created by the HP
shaft. Table 2.4 displays all of the input parameter settings for this
case. The main differences are the different harmonic orders and the
adjustments necessary to deal with the very rapid speed increase.
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TABLE 2.4: Overview of the input parameters for the
Surveillance 8 aircraft engine data set

Method name

SHD MHD ISHD FDEO MOPA VIiBES C-MOPA max.
tr+VKF
Winit = 6960  Bw =5 Hz Winit = 6960 Wipis = 6960  Wyin = 175 Wiz = 178 Wyin = 175 Wiyt = 6960
Hz Hz Hz Hz Hz Hz Hz
Bw=100Hz N =217 Bw=100Hz Bw=100Hz  wmax = 230  Nppp =21 Wmax = 230 Bwmax=50Hz
Hz Hz
Ny =214 {Hi} = {1} Ny = 214 Ny =21 {Hi} = Novertap=90%  {H;} = Ny=2"
{1,1.342} {1,1.342}
{H;} = {38, Ny=214 Ny»=31200 Nyp=214 Nppp =214
75}
Nppr =21 {R} =  Nppr=24 Nooerlap=90%

{[0.9375,1.0625),
(1.8750,2.1250],
[2.8125,3.1875),
(3.7500,4.2500],
(4.6875,5.3125),
(5.6250,6.3750],
(6.5625,7.4375),
(7.5000,8.5000] }

Noverlap=90% {zy=1{} Noveriap=90% Np=1

Ky =20 o2=[] Ky=20 Np=5

v= 0.4% zrlz=[ ] v= 0.4% Bwygp=tHz
Nykrp=2

2.5.2.2 Results

Figure 2.21 shows the obtained pdf map after summation and conti-
nuity introduction for the fundamental speed interval on the Surveil-
lance 8 aircraft engine data. The instantaneous speed profile is again
obtained by taking the expected value of every pdf at every time step.
It can be seen from the continuity map that the very sudden increase
in rotation speed around 50 seconds causes the certainty of the ex-
tracted expected value to decrease due to the smearing of all the har-
monics, illustrated by the vertical red line.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



2.5. Performance comparison on experimental data 103

0
2501
—-500
240
—-1000
2301
N —1500
=}
> 220
= L —2006;
()
=
g210
£ - —2500
200
- —3000
190+
L —3500
“ﬂ-wﬂw-
180 |"
‘ ! ‘ - L1—4000
50 100 150 200
Time [s]

FIGURE 2.21: Pdf map of the speed profile based on the
Surveillance 8 spectrogram after continuity introduc-
tion.

Figure 2.22 displays the cepstrogram. The obtained pdf map after
continuity introduction, as shown in Fig. 2.13, portrays quite clearly the
instantaneous speed profile, but suffers from the same problems as
the spectrum-based MOPA around 50 seconds.
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FIGURE 2.22: Cepstrogram of the Surveillance 8 aircraft
engine data.
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FIGURE 2.23: Pdf map of the speed profile based on the
Surveillance 8 cepstrogram after continuity introduc-
tion.

Figure 2.24 shows the cost map for the Surveillance 8 data as an
overlay in red over the spectrogram in the background. The cost map
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isred where the cost is very high and becomes more transparent where
the cost is low. The cost is lowest around the 38t harmonic of the HP
shaft frequency illustrated by the visibility of the spectrogram coloring
from 6.9 kHz to 9.3kHz.
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FIGURE 2.24: Cost map of the Surveillance 8 data as
calculated by the maximum tracking algorithm using a
penalized unconstrained cost function.

A comparison of the estimated speed profilesis provided in Fig. 2.25.
All methods are successful in estimating the general outline of the
speed, albeit with varying degree of accuracy. The cepstrum-based
MOPA again suffers from resolution issues causing the estimated speed
to be quite choppy. The FDEO method manages to track the speed very
well visually but suffers from a temporary drop in amplitude and thus
signal-to-noise ratio of the 38t harmonic around 105 seconds.
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FIGURE 2.25: Estimated instantaneous speed profiles
of every method on the Surveillance 8 aircraft engine
data.

Again the mean and median absolute errors are calculated and
shown in Fig. 2.26 to assess the performance more objectively. The
cepstrum-based MOPA performs the worst, which is expected when
looking at the speed profiles. Interestingly, the phase demodulation
methods perform the best. This can probably be explained by the fact
that the 38! harmonic has a very high signal-to-noise ratio overall and
does not have any significant crossing orders, leading to very clean
demodulation results. The FDEO method also has a very low median
absolute error but has a large mean error due to the erroneous track-
ing around 105 seconds. The best results are obtained by the iterative
harmonic phase demodulation method. Almost identical results are
found using the multi-harmonic demodulation, albeit ever so slightly
worse. In this case it seems like incorporating more harmonics than
the most dominant ones does not yield significant improvements. This
is confirmed by looking at the harmonic weights estimated by the MLE
optimization of the MHD method shown in Fig. 2.27. This figure indi-
cates that also the MHD method prefers to mainly use the 38" har-
monic for demodulation.
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Another observation experienced during the testing of the meth-
ods based on the spectrogram is that the resulting errors were quite
sensitive to the choice of the set of harmonic orders, more so than
for the CMMNO case. Increasing the set of harmonic orders did not
always yield a better result compared to simply choosing the highest
amplitude orders, which suggests potential for order set optimization.
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FIGURE 2.26: Mean and median absolute errors for ev-
ery method on the Surveillance 8 data using the en-
coder as reference.
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FIGURE 2.27: Estimated harmonic weights for the MHD
method.

Lastly, the computation times are displayed in Fig. 2.28. The calcu-
lation of the cost map for the maximum tracking is the main contrib-

utor for the maximum tracking with VKF combination, due to the large
size of the spectrogram.
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FIGURE 2.28: Computation time for every algorithm on
the Surveillance 8 data.

2.5.3 Ship generator data

The third and last data set to be examined is measured on one of the
main generators of a YP-700 US navy ship as seen in Fig. 2.29. Each Yard
patrol craft has two generators but only one runs at a time. The gener-
ator, shown in Fig. 2.30, is a Detroit Diesel 3-71 and has a power output
of 50 kW at 450 V4c. The electrical system is a three-phase system at
60 Hz. The cause for the excessive speed fluctuation of the generator
is a bad governor, displayed in Fig. 2.31. An accelerometer was placed
close to the base of the generator as shown in Fig. 2.32. The used mea-
surement is approximately 200 seconds in duration at a sample rate
of 5 kHz. Interestingly, it contains two fast run-downs and one very
fast run-up. These extreme speed fluctuations form quite a signifi-
cant hurdle to overcome for most of the speed estimation methods
as there is also a complete standstill part in-between the first run-
down and run-up. The spectrogram of the signal is shown in Fig. 2.33
and exhibits a large amount of speed-related harmonics. Regrettably,
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there is no angle encoder or speed reference available for this data
set. Therefore a quantitative assessment of estimation errors is not
possible, but the authors do believe that highlighting the potential is-
sues that come into play when analyzing this type of data is of some
importance to investigate.

FIGURE 2.29: Navy ship on which

the generator is installed. FIGURE 2.30: Generator.

FIGURE 2.32: Accelerometer place-

FIGURE 2.31: Faulty governor. ment.
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FIGURE 2.33: Spectrogram of the analyzed ship gener-
ator vibration data.

2.5.31 Parameter settings

Since there is no reference speed, only the single stage phase demod-
ulation is performed. This means neither the iterative nor the multi-
harmonic demodulation method is showcased here because both suf-
fer from the drawback that demodulation methods have here, be-
ing the difficulty of defining a filterband for the temporary standstill
around 100 secs. The input parameters are shown in Table. 2.5. For
the demodulation the first harmonic of the generator shaft is tracked
which always stays right below the electrical line frequency of 60 Hz.
The MOPA method takes into account the sub-harmonics of the fun-
damental frequency at multiples of one third its frequency. The mesh
ranges for the ViBES method were set to correspond to the first seven
components of the vibration spectrum that are correlated to the gen-
erator shaft speed. The VIBES method applies the additional adapta-
tions explained in Section 2.4.5 in the analysis of the ship generator
data. The first adaptation, related to the “illegal” frequency regions, is
applied by defining Z. Z contains two regions, z; = [58.5,61.5|Hz
and z, = [178.5,181.5] Hz. These “illegal” regions of the vibration
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spectrum contain disturbances corresponding to the fundamental and
third harmonic of the electrical line frequency, respectively. Also the
second adaptation, related to the wait-and track-mode, is employed.
The thresholds are set to o7 = 0.2 Hz? and ¢7 = 0.4, HZ?.

TABLE 2.5: Overview of the input parameters for the
ship generator data set

Method name

SHD FDEO MOPA VIiBES C-MOPA max. tr. + VKF
Winit =53 Hz  wipy = 53 Hz Wpin = 12 Hz Winit =53 Hz  wWyin = 12 Hz Winit = 53 Hz
Bw = 10 Hz Bw = 10 Hz Wax = 60 Hz Nepr = 213 Wax = 60 Hz Bwyay = 3 Hz
» = 5000 Ny = 5000 {Hi} ={0333}  Nooertap=96% {H;} = {0.333} » = 5000
N=5000 N=5000 Ny=214 Ngpr = 5000
Ngpr = 5000 {R}= Nepr =21 Novertap=99%

{[0.9444,1.0556),
[1.2593,1.4074],
(1.5741,1.7593],
(1.8889,2.1111],
[2.2037,2.4630],
[2.5185,2.8148],
[2.8333,3.1667]}

Novertap=98% {Z}={[58.5,61.5], Nyyeriap=90% Np=1
[178.5,181.5]}
Ky =20 072=0.4Hz* K= 20 Nu=5
v =042 0?=0.2Hz? v =04l Bwykr=3Hz
Nykr=2

2.5.3.2 Results

The run-down and run-up approximately in the middle of the data
record make it difficult for some of the techniques to track the speed
of the signal in one go, at least not without some additional mea-
sures like for example the second adaptation of the ViBES method
in Section 2.4.5. The second adaptation of the ViBES method allows
the algorithm to track the second region of operation starting at the
123 second mark after losing tracking of the first operation after 82
seconds. Since the demodulation methods require an initial speed
estimate to start tracking a harmonic, this leads to erroneous results
when these methods try to track the run-up again due to the standstill
in-between causing the tracking to go haywire. Therefore, the data is
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processed in two separate parts for the phase demodulation, FDEO
and maximum tracking method. The MOPA method does not have this
drawback because only a speed interval needs to be defined and it
automatically gets back “on track” the moment the most likely speed
estimate emerges within that speed interval again. This property is
usually sufficient for most cases since the focus is mostly on the oper-
ating regimes at higher rotation speeds as there is often little to learn
from near standstill data from a fault monitoring perspective.

The cepstrogram is shown in Fig. 2.34 together with the generated
pdf map after continuity introduction in Fig. 2.35. As expected, the
probability density functions jump around in frequency due to smear-
ing during the standstill part around 100 seconds and at the end of
the record after the run-down. The maximum tracking is done in two
separate parts due to the necessity for an initial frequency estimate
and the inability of the method to track the very fast run-up at 120 sec-
onds. This run-up goes from 0 Hz to 55 Hz in approximately 4 seconds
which causes all the harmonics to smear together in the spectrogram,
making maximum tracking practically impossible. The same issue oc-
curs for the phase demodulation methods since the signal has a low
SNR in the beginning of the run-up and due to the difficulty in defining
a proper band-pass filter. Figure 2.36 & 2.37 display the cost maps for
the first and second part of the signal on the fundamental harmonic
order. This order is chosen because it is reasonably well separated
from the other harmonics and the deceleration of the run-down is not
too extreme as compared to higher harmonics.
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FIGURE 2.34: Cepstrogram of the ship generator data.
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FIGURE 2.35: Pdf map of the speed profile based on the
ship generator cepstrogram after continuity introduc-
tion.

Unfortunately, there was no reference speed provided with these
measurements, so only a qualitative visual assessment of the speed
profiles can be made. Figure 2.38 shows the estimated speed profiles
and it distinctly showcases the issues that arise when a fast run-down
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FIGURE 2.36: Cost map of the first
part of the ship generator data as
calculated by the maximum track-
ing algorithm using a penalized
unconstrained cost function.

or run-up occurs. The MOPA method is able to continuously track the
speed but produces meaningless results during the standstill. The
phase demodulation method, maximum tracking with VKF, and FDEO
method are unable to track the speed in one go, but perform better
in tracking the run-down than MOPA as they produce a sensible result
down to 18 Hz approximately. Clearly, the methods based on tracking
a specific harmonic within a frequency band need additional built-in
intelligence in order to make them cope with sudden run-downs and
run-ups as this would make them more flexible to use in an industrial
setting.
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FIGURE 2.38: Estimated instantaneous speed profiles
on the ship generator data.

2.6 Discussion

Based on the experimental results of the speed estimation compari-
son, there is no absolute outcome as in which method is the most ac-
curate for every case and which method is always the easiest to use.
Nevertheless, some general comments can be made.

The signal-to-noise ratio, with the harmonics being the signal and
all the other signal content being the noise, logically influences all
the speed estimation methods mentioned in this chapter. The meth-
ods that are based on a single harmonic are more dependent on the
signal having a high SNR, well-separated harmonic as compared to the
multi-harmonic methods. Therefore, in situations where there is not
a single harmonic that is well excited, the multi-harmonic methods
should outperform the single harmonic methods due to a reduction
in variance by taking into account multiple harmonics.
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The single harmonic phase demodulation method produces very
satisfactory results as long as there is a high SNR harmonic present
in the signal without any significant crossing orders and well sepa-
rated from nearby harmonics. Doing an additional step of angular
resampling and phase demodulation of a higher harmonic order can
improve the result even further but the limit of the accuracy gain is
usually reached after one to two iterations. The multi-harmonic de-
modulation method is similar in approach as the iterative demodu-
lation approach, but allows for more leniency towards the end-user
in choosing the right harmonics. A whole range of potential harmon-
ics can be given as an input. The maximum likelihood estimation will
then decide for you which harmonics are best for the speed estima-
tion. The downside to the demodulation methods is the need for an
initial or rough speed estimate. This means that when there is a to-
tal standstill such as in the third data set, the phase demodulation
methods fail to start tracking the right harmonic again by themselves
since they have been demodulating noise during the standstill. This
could be improved by adding some intelligence to the tracking such
as described by the variance-based lock-in tracking adaptation in Sec-
tion 2.4.5. The same remarks are valid for the FDEO method.

The methods based on a TFR or TQR of the signal are able to contin-
uously track the speed since they estimate the most likely speed at ev-
ery time index and they only require an approximate speed range. The
performance of the cepstrum-based MOPA is consistently the worst
due to the poor resolution and sensitivity to noise, but it is easy to
use since the harmonic orders are usually known a priori from the
kinematics of the investigated system. The spectrum-based MOPA and
ViBES method are two similar takes on perceiving the spectrogram as a
probability density function map, but with different implementations
and adaptations. The accuracy is very similar for both methods and
depends mostly on the chosen inputs. The main drawback of this type
of techniques is the dependency on the frequency and time resolution
of the TFR or TQR. If the speed fluctuates very strongly, the harmonics
tend to smear together in the short-time spectrum making it difficult
to distinguish them and causing the obtained pdfs to be smeared as
well. It is also difficult to capture small, but fast speed fluctuations
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since the time resolution is often too coarse to identify such varia-
tions.

In the future a possibility to automate this search for the optimal
window length choice can be investigated. An optimization procedure
could be implemented that can for example be based on the max-
imum acceleration of the speed or be based on a statistical quan-
tity of the time-frequency representation. Another potential improve-
ment would be to remove the a-priori assumption about the maximum
physically possible speed acceleration. Instead, the maximum accel-
eration could be tracked and updated over time based on the previ-
ous time windows. The idea here is to make the Gaussian pdfs used in
MOPA as narrow as possible for each time step.

The combination of the maximum tracking and the Vold-Kalman
filter tries to circumvent this issue by using the VKF as a time-varying
band-pass filter such that the phase can be obtained from the result-
ing analytic signal. The main issue however in utilizing the VKF is the
large number of adjustable parameters that can impact significantly
the performance of the method. This encumbers somewhat the practi-
cality of the approach and makes it probably the most complex tech-
nique out of the eight tested methods. Also the maximum tracking
used in this chapter is based on calculating a cost map of the spec-
trogram which can take quite a while to calculate and needs an initial
speed estimate. A potential improvement can probably be made by
combining a technique such as MOPA with a time-varying band-pass
filter such as the VKF.

Finally, if there is no tacho or angle encoder available to compare
the estimated speed to, then the only sources of information avail-
able are the estimated speed signal itself and the vibration signal. It
is reasonable to assume that the speed profile needs to be continu-
ous and cannot be jumping around like e.g. in Fig.2.38. A possible way
to grade the estimation therefore could be based on the acceleration
of the speed signal. The vibration signal itself can also be employed:
if for example the RMS of the signal drops below a certain threshold,
you can assume the machine is in standstill condition and thus the
estimated speed can be ignored. Such approaches offer a more auto-
mated way of assessing the quality of the estimated speed compared
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to visually inspecting it.

2.7 Conclusion

This chapter proposes a novel instantaneous speed estimation method,
coined the multi-harmonic demodulation (MHD) method. It also in-
vestigates seven other instantaneous angular speed estimation meth-
ods based on the most commonly used principles, namely phase de-
modulation and tracking in a time-frequency representation of the vi-
bration signal and compares them on experimental data. It is clear
from Section 2.2 that there exists a large number of possible variations
and extensions to these two basic principles. While it is impossible to
investigate all of these variations, this chapter still aims to shed some
light on the strengths and drawbacks of different method implemen-
tations by assessing their performance on experimental data. A short
overview of the different theoretical backgrounds of each method is
provided in Section 2.4. Three experimental vibration data sets are in-
vestigated: one was measured on a wind turbine gearbox, one on an
aircraft engine, and one on the generator of a ship. Section 2.5 dis-
cusses the results obtained by applying the eight methods on these
three data sets. While every method is able to track the general speed
profile for each case, the level of manual involvement in tweaking the
input parameters for every method differs greatly, as does the result-
ing accuracy. The performance of every method is discussed in Sec-
tion 4.5. Based on the assessment provided in this chapter, it is evident
that effective speed estimation methods already exist, but that there
are still improvements to be made. It should be noted though that the
proposed MHD method shows promising results in both accuracy and
applicability.

In general, the main challenges for speed estimation methods con-
tinue to be sudden fast speed fluctuations, operating regime changes
that influence the harmonic structure, and accurate continuous track-
ing, even at low speeds.
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Chapter 3

Discrete-random signal
separation

34 Introduction

An essential step in many vibration-based condition monitoring ap-
proaches is to separate contributions from components that produce
deterministic/discrete signal content, such as gears and shafts, from
components that produce stochastic/random content, such as rolling
element bearings (REB). In many cases, this separation is considered
to play a significant role in the proper diagnosis of bearing faults and it
is therefore often employed and mentioned in bearing fault detection
research. This chapter discusses this signal separation with a focus on
specifically this bearing fault detection. More in particular, it investi-
gates the automation of a cepstrum-based separation procedure.

Separating bearing faults from masking signal content assumes
that a bearing fault signal is stochastic due to the random variation
on the fundamental period of the fault frequency. This can be at-
tributed to the random slip of the rolling elements. This random slip
causes a smearing of the bearing frequencies in the amplitude spec-
trum (shown in Fig. 3.1), while the deterministic signals manifest them-
selves as discrete peaks. This property forms the basis for the cep-
strum editing methods investigated in this chapter for signal separa-
tion. The term ‘jitter’ used in this chapter is sometimes used instead
of slip. However, the random variable used in the signal models is
in fact the spacing between the impulses itself, rather than a fixed
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122 Chapter 3. Discrete-random signal separation

jitter on the fundamental bearing fault period. This means the un-
certainty increases with projected time into the future. It also means
that the bearing fault signals simulated in this chapter are pseudo-
cyclostationary, rather than cyclostationary.

—— Without slip —— With slip

Amplitude [linear]

|I||Il||. ...... n v .

Frequency Frequency

||||||1|||III|||||

FIGURE 3.1: Amplitude spectrum of a simulated outer
race bearing fault, (left) without any slip, (right) with
2% slip .

It is now understood that the real cepstrum can be used to edit the
log amplitude spectrum of stationary signals and combined with the
original phase to achieve edited time signals. This particular finding
has given rise to the development of cepstrum editing methods for
the separation of deterministic signal content from stochastic con-
tent. Initially, most of the research focused on developing a cepstrum
editing procedure to selectively set certain cepstral peaks belonging
to masking discrete frequencies to zero [167, 173, 243]. The idea here
is mainly to filter out the deterministic frequencies while preserving
the rest of the signal’s content. Lately however, there has been an in-
creasing usage of a so-called cepstrum pre-whitening method [244-
246]. Instead of setting only a selection of peaks to zero, this method
sets the whole real cepstrum to zero, except for the zero quefrency.
This technique is very easy to implement and has a very low compu-
tational cost, but alters the signal content substantially in a rather
uncontrolled fashion.

In this chapter a comparison is made between these two devel-
opments in cepstral processing of vibration measurements, namely
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3.2. Methodology 123

between an automated cepstrum editing procedure (ACEP) and cep-
strum pre-whitening (CPW). While this comparison investigates some
important influences on the performance of both methods, it is not
an exhaustive review of all possible influencing factors. It assesses
the potential benefits and/or disadvantages of each method in order
to make future end-users aware of this when choosing between the
two methods. This chapter presents an overview of the performance
of both methods on virtual and experimental signals.

3.2 Methodology

Before illustrating the algorithms of the two studied methods, a small
summary of the theory behind the cepstrum is presented. Next, the
automated cepstrum editing procedure and the cepstrum pre-whitening
method are explained further in sections 3.2.2 & 3.2.3. To get a better
view on the method sensitivities, both methods are first used on sim-
ulated signals and investigated for varying signal-to-noise ratios of
additive white Gaussian noise, noisy resonances and number of har-
monics. An envelope spectrum feature is defined to help in evaluating
the performance of the two methods. Finally, the ACEP and CPW tech-
niques are examined on experimental data originating from the wind
turbine gearbox condition monitoring round robin study organized by
the National Renewable Energy Laboratory (NREL) in the US.

3.21 Cepstrum: Theory

The complex cepstrum is defined as the inverse Fourier transform of
the log spectrum. It is here expressed in terms of the amplitude and
the phase of the spectrum:

Ce(r) = 7 H{In(X(f))} = 7 H{In(A(f)) +je(f)}  (32)

where X(f) is the frequency spectrum of the signal x(¢):

X(f) = Z{x(t)} = A(f)e?V) (3:2)
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By setting the phase to zero in Eq.(3.1), the real cepstrum can be ob-
tained:
Ci(7) = 7 HIn(A(f))} (3.3)

Here, T is a measure of time, referred to as "quefrency", however it is
not defined in the same sense as a signal in the time domain. A peak
at a certain quefrency corresponds to the inverse period of a series of
periodic harmonics in the spectrum. For example, if the sampling rate
of a signal is 20 kHz and the cepstrum displays a quefrency peak at
1000 samples, the peak indicates that there is a family of harmonics
present in the spectrum with a spacing of 20 Hz (20 kHz/1000 sam-
ples).

An important property of the cepstral domain is that the convolu-
tion of two time domain signals can be expressed as an addition of
their cepstra. Suppose an output signal y(t) of a physical system that
is the convolution of an input signal x(t) and an impulse response h(t)
of the system:

y(t) = x(t) «h(t) (3.4)

Because of the convolution theorem, this time domain expression trans-
forms into a multiplication in the frequency domain:

Y(f) = X(f)H(f) (3.5)

In turn, taking the logarithm of Eq.(3.5) transforms the multiplication
into a sum:

log(Y(f)) = log(X(f)) +log(H(f)) (3.6)

Since the Fourier transform is a linear transform, the addition remains
valid in the cepstral domain.

C(t) = 7 Hlog(Y(f))} = 7 {log(X(f))} + 9’1{log(H(f))(} )
37
This property indicates the possibility to deconvolve a signal if one of
the factors is known. As such the logarithmic transformation allows to
separate the influence of the excitation source and the transmission
path of the system in the cepstral domain.
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3.2.2 Automated cepstrum editing procedure (ACEP)

The cepstrum has the interesting property that it is able to concentrate
periodic spectral components (e.g. harmonics) into a smaller number
of impulses called "rahmonics". The first rahmonic is considered to
be the most important one since it represents the average protrusion
level of harmonics in the spectrum above the noise level [176]. The
higher rahmonics are affected by artefacts, e.g. the used window for
the frequency analysis. Removal of these rahmonic peaks, also called
"liftering", corresponds to a decrease of the log amplitude of the pe-
riodic components in the signal. It was recently shown by Randall
& Sawalhi [243] that the real cepstrum is an effective way of editing
the log amplitude spectrum of signals containing harmonic compo-
nents. Recombining this edited amplitude spectrum with the original
phase produces the edited time domain signal. This cepstrum editing
procedure (CEP) has been further investigated [244, 245, 247] where
it was shown that the CEP method is a simple method to implement
for separating deterministic signal content from random or cyclosta-
tionary signal content. While the editing of certain frequencies intro-
duces some phase distortion, this is generally negligible compared to
the significant reduction in amplitude at those frequencies. A general
scheme of the CEP method is shown in Fig.3.2a. It can be seen that
the most crucial part in the CEP method is the editing of the real cep-
strum. To enhance the applicability of the CEP method to industrial
environments, an automated editing procedure is used in this research
instead of a manual one. It was shown by Ompusunggu [248] that it
is possible to implement a robust and efficient automated liftering of
the harmonic signal content. Figure 3.2b displays an overview of the
steps to automate the editing. It can be seen that the real cepstrum
is enhanced before the actual peak selection. The reason for the en-
hancement is simply to make the peak detection step easier and more
straightforward. First, the cepstrum is long-pass liftered as to pre-
vent liftering of low quefrency content. Second, a wavelet denoising
and spectral subtraction (SS) method is used to reduce the amount
of noise present in the signal. Afterwards, a notch lifter is generated
based on the automatic peak detection on the denoised cepstrum.
Lastly, the original real cepstrum is liftered with the resulting notch
lifter which gives the detected peaks zero amplitude in the cepstrum,
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before transforming back to the frequency and time domain. The end
result should possess a similar amplitude spectrum as the original
signal, yet without the deterministic components.

pmm———— +[TditedTog | EXP; [Complex
] e |_.|
! Time signal hase spectrum spectrum

......

Edited
log amplitude}
spectrum

FIGURE 3.2: (a) Schematic diagram of the cepstrum
editing procedure. (b) Schematic diagram of the au-
tomated cepstrum editing step.

3.2.21 Long-pass lifter

Transforming the signal to the cepstral domain leads to a concentra-
tion of modal information in the low quefrency region. These system
resonances are preferable to retain. Thus, the low quefrency region is
not taken into account for the notch lifter generation step, implying
that there will be no detected peaks corresponding to modal content.

Fora general case itis difficult to determine the appropriate cut-off
quefrency. The decision can be based on the resonance frequencies
that are present in the investigated system, but this involves manual
inspection of the signal. To automate the procedure, it is reasonable to
construct a long-pass lifter with a relatively high cut-off quefrency as
to have a safety margin and to prevent liftering away too much modal
content. A user should take into account the type and size of the ma-
chine on which they perform the analysis.

If n, News—ogs @and L are respectively the sample quefrency index,
the cut-off quefrency index and the sample length of the cepstrum,
the long-pass lifter can be defined as follows:

lp(ny = §© 11 Naory (38)
1 n= Ncutfoff +1:L
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Applying the lifter to the unedited real cepstrum c(n) produces the
long-pass liftered cepstrum:

CLP(TZ) = C(H)ZLP(TI). (39)

3.2.2.2 Noise reduction

After the long-pass liftering step, the cepstrum is denoised using two
conventional denoising methods. As proposed by [248], the first ap-
plied method is spectral subtraction (SS). To smooth the cepstrum fur-
ther, wavelet denoising is used afterwards.

Spectral subtraction

The spectral subtraction method was originally introduced by [249]
as an acoustic speech enhancement technique and later an ample
amount of variations have been developed [250, 251]. In this work
the multi-band spectral subtraction proposed by Kamath et al. [252]
is used.

The spectral subtraction method estimates the noise spectrum and
the average signal spectrum and then subtracts them from each other,
improving the average signal-to-noise ratio (SNR). Usually noise is col-
ored and not perfect white Gaussian noise. The multi-band spectral
subtraction method allows to some degree the presence of colored
noise because the filtering of the signal spectrum is separated into
different frequency bands.

Being a transformation of the measured time signal, the cepstrum
contains noise as well and can be regarded as an addition of discrete
signal components ¢(n) and noise d(n):

crp(n) = é(n) +d(n). (310)

A diagram of the multi-band spectral subtraction technique is shown
in Fig.3.3. The SS technique makes use of a window basis for calcu-
lating the Fourier transform and performing the denoising procedure.
The amplitude |C(f, k)| is employed for estimating the average noise
spectrum in every frequency band iteratively. The estimated ampli-
tude |C(f, k)| is obtained by subtracting the noise estimate from the
original amplitude |C(f,k)|. Finally, the de-noised cepstrum ¢(n) is
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reconstructed using the original phase ZC(f, k) and the amplitude es-
timates of all window frames.

Multi-Band
noise
estimation -
Dtk
Power spectral
Window k modification

IFFT -

co=&n)+dn) =Ty o] f—— [

»| C(fk)

FIGURE 3.3: Schematic diagram of the multi-band spec-
tral subtraction method.

Wavelet denoising

One of the primary applications of wavelets is denoising of signals.
Wavelets allows for denoising in both time and frequency domain si-
multaneously and has even been used before as standalone method
for bearing fault detection [176]. Wavelet denoising employs thresh-
olding methods where the wavelet coefficients are thresholded to re-
move the noisy signal content and is mostly based on research con-
ducted by [253]. A ‘hard thresholding’ method leaves the retained co-
efficients unchanged, while a ‘soft thresholding’ method, as is used for
the cepstrum, subtracts the noise estimate (threshold value) from the
retained coefficients. An example of wavelet denoising is presented in
Fig. 3.4.
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—— Original signal

A WA

—— Noisy signal

— Original signal

FIGURE 3.4 (Top) Original signal, (Middle) Signal with

additive white Gaussian noise at an SNR of 3.45 dB,

(Bottom) Denoised signal with an improved SNR of
13.44 dB.

The wavelet denoising method employed for the CEP method makes
use of Daubechies3 wavelets and of universal soft thresholding. This
chapter does not go into further detail about wavelet denoising how-
ever since it is not the primary focus of this dissertation. For more
information on wavelet denoising, the interested reader is referred to

Refs [176, 254, 255].
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3.2.2.3 Peak detection

After long-pass liftering and denoising, a fixed threshold of three stan-
dard deviations (3¢) is calculated from the residual cepstrum c,(n) as
follows:

threshold = E[c,(n)] + 3 x std[c,(n)], (311)

where E[.] and std|[.| denote respectively the expectation operator and
the standard deviation operator. A vector m is constructed, based on
all values greater than the threshold, containing all the corresponding
sample indices:

m = {Vn|c,(n) > threshold} (312)

While periodic signal components show up as sharp peaks in the cep-
strum, second-order cyclostationary components like bearing faults
normally do not show up as strong peaks in the real cepstrum and
thus they should not be detected nor liftered away.

3.2.2.4 Liftering

The final editing step is the generation of the notch lifter, based on the
cepstral peaks of the denoised cepstrum, and the actual liftering of
the unaltered real cepstrum with this lifter. It should be noted however
that the notch width has a significant influence on the performance of
the ACEP method. If there is speed variation present in the signal, it
can be desirable to choose a larger notch width, but it should not be
chosen too large either since this can lead to excessively distorting
the amplitude spectrum.

3.2.3 Cepstrum pre-whitening

Another approach of cepstral editing, usually called cepstrum prewhiten-
ing, is far more radical in liftering the real cepstrum [167]. Instead of
liftering only the detected cepstral peaks and setting a fairly limited
amount of samples to zero, this technique sets the whole real cep-
strum to zero, except for the zero quefrency. Both discrete frequen-
cies and resonances are removed from the amplitude spectrum using
this approach. The zeroed cepstrum is then transformed back to the
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time domain, after recombination with the wrapped phase of the orig-
inal signal. This method is actually easily implemented by dividing the
complex frequency domain signal by its absolute value and after in-
verse transforming it back to the time domain:

} (313)
This technique "whitens" the signal’s spectrum by decreasing the amount
of variation between adjacent frequency bins. As described by Black-
man & Tukey [256], this introduces "compensation" to the spectrum of
the signal and the flattening does not need to be that precise either.
Essentially it decreases the rate of change of power spectral density
with frequency, giving the same weighting to all frequency bands, in
the hope of emphasizing impulsive events. Figure 3.5 shows a diagram
of the straightforward processing procedure using the CPW method.

i Cepstrum Pre-whitening |
| ppr —FETOA) | Pre-whitened signal X(t)
abs(FFT(x(1))) 1

Time signal x(t)

FIGURE 3.5: Schematic diagram of the cepstrum pre-
whitening procedure.

3.3 Comparison on simulated signals

In order to make a qualitative comparison of the two mentioned tech-
niques and to get a better knowledge of the influencing factors, the
results of applying the methods to virtual signals are first assessed.
Vibration measurements on complex machinery usually contain a mix-
ture of signals originating from a plethora of sources. All these sources
influence the measurements in their own way. As such, this chapter
does not cover all the possible influencing factors, rather it investi-
gates the sensitivity and performance of the two methods to a chosen
set of affecting elements.
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3.31 Squared envelope spectrum feature

Assessing the performance of two methods raises the need for a per-
formance metric or indicator, enabling an easy comparison between
the techniques under investigation. Since one of the most used tech-
niques for bearing fault diagnosis is the squared envelope spectrum
(SES), a feature is defined on the normalized squared envelope spec-
trum which gives a measure of the discernibility of the bearing fault
frequencies. This feature is defined as the average amplitude of the
first five harmonics of the fault frequency f,,; in the normalized en-
velope spectrum subtracted with a threshold that is based on the
noise floor level in the envelope spectrum. Mathematically, this is
simply expressed as follows:

5

1 .
feature - g Z(A(ffaultl) - Athreshold) (3-14)
i=1

Note also that the envelope is calculated over the full spectral band-
width of the signal and no additional filtering takes place.

3.3.2 Influence of additive white Gaussian noise

The first factor that is examined is the influence of noise. While noise
is always present in experimental measurements, it does depend on
the application and the measurement equipment whether the noise
levels will play a deciding role in the fault detection or not.

For this case, the simulated signal consists solely out of an outer race
bearing fault signal, additive white Gaussian noise and harmonics. The
model used for the bearing signal assumes that there is only a single
fault present and that it is rotating at a constant speed. The bearing
fault signal x(t) can then be expressed as the convolution of an im-
pulse train with a transfer path impulse response function #(t). This

gives:
N

X(t) = h(t) * Z Ai(s(t - inault) (315)

i=1
The fundamental fault period Ty, is however not a constant, it varies
slightly in a random manner due to the bearing slip [161]. Next to this
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random slip on the fundamental period, there is also a random am-
plitude modulation of impulses A;, and the impulse responses h(t)
take into account system resonances excited by the bearing fault with
a corresponding damping ratio.

The simulated bearing signal used in this chapter is synthesized as a
single-degree-of-freedom (SDOF) system with a resonance frequency
of 2000 Hz and a damping ratio of 5%. The period of the Dirac impulses
corresponds to a bearing fault frequency of 32 Hz with 5% random slip
and 10% random amplitude modulation. The resulting bearing signal
in the time domain, sampled at 10 kHz, is shown in Fig. 3.6a and in the
frequency domain in Fig. 3.6b.

0.5
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o
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FIGURE 3.6: (a) Time domain representation of the sim-
ulated bearing signal. (b) Amplitude spectrum of the
bearing fault signal

Since the CPW and ACEP method are designed to remove the influ-
ence of deterministic signal content in the envelope spectrum, a set of
harmonics is added to the bearing signal. In total three harmonic fam-
ilies are added with fundamental frequencies of 22 Hz, 37 Hzand 50 Hz.

Finally, white noise is added to the bearing signal with a prede-
termined signal-to-noise ratio (SNR), with the bearing fault being the
signal of interest and the white Gaussian noise the noise. The SNR is
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then varied from -50 dB to +50 dB and the envelope feature is calcu-
lated for every SNR value. This enables the possibility of discerning
the differences between CPW and ACEP. Figure 3.7 shows the results of
this simulation for the unedited original signal, consisting of the bear-
ing signal, harmonics and additive noise, and for the same signal after
applying the CPW and ACEP methods.

1.5 T

| —— sEs original signal

II: III : IV | ——SES after ACEP

| " — SES after CPW

Feature value [-]

o
o

SNR [dB]

FIGURE 3.7: Evolution of SES feature value in function
of the signal-to-noise ratio of the bearing fault signal
to the white Gaussian noise.

It can be seen that for SNR values below -16 dB the ACEP method
is unable to detect any presence of the bearing fault frequency in the
squared envelope spectrum. However, this is still an improvement
compared to the lower detection limit of -11 dB for the CPW method.
The graph indicates that there are four regions discernible:

I. Below -16 dB SNR, where neither the CPW or the ACEP method are
able to detect the bearing fault.

Il. Between -16 dB and -11 dB SNR, where only ACEP detects the bear-
ing fault.
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I1l. Between -11 dB SNR and -4 dB SNR, where the feature value for
the CPW method is increasing but remains smaller than the ACEP
method.

IV. Above -4 dB SNR, where the feature value for the CPW method
crosses the ACEP method and converges towards a higher value
than the ACEP method.

The first region is not of interest since it only shows the presence of
noise in the envelope spectra. Therefore the envelope spectra corre-
sponding to an SNR value in each of the last three regions are further
investigated. Three signals are generated with an SNR of -15 dB, -10 dB
and +5 dB, each corresponding to one of the three regions. In Fig. 3.8a
the amplitude spectrum is shown of the unaltered signal for the -15dB
SNR case. The resonance around 2000Hz can barely be identified here.
Figure 3.8b shows the spectrum of the signal after the ACEP method
(black) and the CPW method (red). Unsurprisingly, the spectrum is just
a horizontal line after CPW, since this is the only manipulation this
method administers. Figure 3.9 shows the squared envelope spectra
for the original signal, the signal after applying the ACEP method, and
the signal after CPW. A visual inspection of these three envelope spec-
tra corroborates the simulation results of Fig. 3.7. Only the envelope
spectrum after ACEP is able to distinguish the 32 Hz BPFO component
properly. Higher harmonics cannot be seen, but the spectrum after
CPW does not exhibit any clear peak at the BPFO frequency. This is
not really surprising since the main benefiting factor for the detection
of the bearing fault signal is the resonance around 2 kHz. The CPW
method removes this resonance and thus nullifies part of the bearing
information protruding above the noise floor. It relies solely on the
residual phase information, which alone is too noisy to give rise to a
fault frequency peak in the envelope spectrum. The envelope spec-
trum of the original signal is, as expected, totally dominated by the
strong deterministic components and does not show any presence of
the bearing fault frequency. The ACEP method is able to remove these
harmonics while still preserving the bearing resonance. This preser-
vation helps in the detection of the BPFO component as seen on the
figure.
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FIGURE 3.8: (a) Amplitude spectrum of the simulated
signal for the -15dB SNR case. (b) Amplitude spectrum
after the ACEP and CPW method.
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FIGURE 3.9: Squared envelope spectra of the original
signal, the signal after ACEP, and the signal after CPW
for the -15 dB SNR case.

The third region is assessed by investigating a signal with an SNR
of -10 dB. The SES feature indicates that both methods should already
detect the bearing frequency quite well, but the ACEP method should
still outperform the CPW method. Figure 3.10 confirms this suspicion.
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The ACEP envelope spectrum gives a clear view of the 32 Hz fault fre-
quency and its second harmonic, while only the fundamental fault fre-
quency is discernible in the CPW envelope spectrum.
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FIGURE 3.10: Squared envelope spectra of the original
signal, the signal after ACEP, and the signal after CPW
for the -10 dB SNR case.

The fourth and last region indicates that the CPW envelope spec-
trum should display a stronger presence of the fault frequency than
the ACEP spectrum. Again, this belief is validated as can be seen in
Fig. 311. The amplitude of the higher harmonics of the bearing fault
frequency are more easily distinguishable after the CPW technique
than after the ACEP method. This can be explained by the fact that
the CPW method removes most of the resonance’s influence in the
time signal, making the reconstructed time signal essentially a some-
what noisy Dirac comb with a period between the peaks equal to the
bearing fault period. The envelope spectrum of a Dirac comb is again
a Dirac comb with a frequency spacing at the bearing fault frequency.
This effect thus amplifies the detection possibilities compared to the
ACEP method since it does retain the bearing resonance, causing a
smearing effect of the envelope time signal and reducing the ampli-
tude of the higher harmonics in the envelope spectrum.
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FIGURE 3.11: Squared envelope spectra of the original
signal, the signal after ACEP, and the signal after CPW
for the +5 dB SNR case.

In general, the analysis exemplifies that for low signal-to-noise ra-
tios, i.e. strong additive white Gaussian noise compared to the bearing
signal, the ACEP method can outperform the CPW method due to its
capabilities of retaining more of the bearing fault information. While
for high signal-to-noise ratios the CPW method can outperform the
ACEP method due to the removal of resonance frequencies, empha-
sizing the bearing fault impulses.

3.3.3 Influence of non-fault related resonances

In the previous section it was already mentioned that the presence
of system resonances has an influence on the detection capabilities
of the studied techniques. Hence, this influence is further examined
through a similar analysis as for the additive white noise case.

Avirtual signal is constructed consisting of harmonic components,
the same bearing fault signal as in the previous section, and a system
resonance around 1 kHz which is not related to the fault in any way.
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This resonance is constructed in the frequency domain using the fol-
lowing transfer function:
S

) = K 67 (216

with s = jw the complex frequency, K the transfer gain, p; = —10 +
10007, and p, its conjugate pole. This results in a resonance around 1
kHz with a damping ratio of 1%. The output acceleration signal A(s)
is the result of using complex white Gaussian noise as force input for
the transfer function:

A(s) = H(s)F(s). (317)

This frequency domain signal is then simply transformed back to the
time domain using an inverse discrete Fourier transform.

Again, the evolution of the SES feature value is tracked for increas-
ing SNR values, going from -50 to +50 dB SNR, with the 1 kHz resonance
signal being the noise this time. Figure 3.12 displays the simulated re-
sults, which look similar to the ones of the previous section. However,
now it is the CPW method that succeeds in detecting the bearing fre-
quency for lower SNR values.

In order to reduce the size of the represented results, only the en-
velope spectra for an SNR value in the second and third region are
examined for validating the simulation results. An SNR value of -20
dB SNR, corresponding to the second region, is inspected further, to-
gether with an SNR value of -10 dB SNR for the third region.
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FIGURE 3.12: Evolution of SES feature value in function
of the signal-to-noise ratio of the bearing fault signal
to the 1 kHz resonance signal.

Figure 3.13a shows the spectrum for the -20 dB SNR case before
cepstral editing, and Fig. 3.13b after applying the ACEP and CPW meth-
ods. Inspection of the envelope spectra in Fig. 3.14 ratifies the evo-
lution analysis results. The CPW envelope spectrum clearly exhibits
the bearing fault harmonics, while the ACEP spectrum does not show
any significant peaks near the BPFO at all and is mainly dominated by
noise. Since the envelope spectrum is calculated for the full band-
width of the signal, this is to be expected. The spectrum after ACEP is
for the most part still overshadowed by the 1 kHz resonance with noise
as force input due to it higher amplitude. band-pass filtering around
the 2 kHz bearing resonance would alleviate this problem, but this is
not the research intent here specifically. The CPW method circumvents
the influence of the resonance by equally weighting the amplitudes of
all the frequencies. Therefore it enhances the detection of the bear-
ing impulses much earlier than the ACEP method by relatively reducing
the 1 kHz resonance amplitude and increasing the 2 kHz one.
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FIGURE 3.13: (a) Amplitude spectrum of the simulated
signal for the -20 dB SNR 1 kHz resonance case. (b)
Amplitude spectrum after the ACEP and CPW method.
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FIGURE 3.4: Envelope spectra for -20 dB SNR case with
a 1 kHz resonance for the simulated signal after ACEP
and CPW.

The second analysis is done for -10 dB SNR, which is located in the
third region. Fig. 315 reveals that the ACEP method indeed starts to de-
tect the bearing frequency for higher SNR values. In general it can be
concluded that the influence of resonances that carry no bearing in-
formation, is quite significant for full bandwidth enveloping and since
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practical setups are usually multiple-degree-of-freedom (MDOF) sys-
tems, it is very likely that the bearing information is clouded by these
resonances, making the CPW method a more interesting candidate for
such full bandwidth analyses. This analysis was also performed for
multiple resonances at different frequencies, but all gave similar re-
sults to the ones presented here.
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FIGURE 3.15: Envelope spectra for -10 dB SNR case with
a 1 kHz resonance for the simulated signal after ACEP
and CPW.

3.3.4 Influence of harmonics

In order to prove the possible equal performance of both described
methods in filtering out harmonic content, a quick evolution analysis
is done by varying the amount of harmonics. This amount influences
the amplitude of the corresponding peak in the cepstral domain and
therefore also the effectiveness of the ACEP method in detecting these
peaks. However, it is found that with the right parameters the ACEP
method displays similar performance compared to the CPW method.
Figure 3.16 shows that the feature value remains constant for both the
ACEP and CPW method ,while the feature value decreases significantly
for an increasing number of harmonics without cepstral editing. The
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signal used for this analysis consisted of a bearing fault signal, addi-
tive white Gaussian noise, and harmonics of 10 Hz. Other harmonic fre-
quencies and multiple non-harmonic deterministic components were
investigated as well and gave analogous results, although the ACEP
method does need more fine-tuning compared to the CPW method.
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FIGURE 3.16: Evolution of SES feature value in function
of the number of added harmonics for the three sim-
ulated signals.

3.3.5 Influence of additional parameters

As can be deduced from the previous sections, it would be interesting
to do a more in-depth analysis of some additional key parameters of
the method and of the simulated signals. As such it was decided to
investigate the influences of the following extra parameters:

1. The height of the threshold used in calculating the feature indi-
cator

2. The number of peaks used in calculating the feature indicator

3. The amount of slip on the fundamental bearing fault period

4. The amount of random amplitude modulation of the fault impact
peaks
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5. The damping ratio of the noise resonances
6. The damping ratio of the bearing fault resonance

The first two parameters are to showcase the sensitivity of the feature
indicator to the calculation procedure, while the other parameters are
independent design parameters of the simulated signals. These in-
dependent parameters are examined simultaneously later on in this
section using a multivariable analysis. First however curves are iden-
tified for every parameter separately to get a feeling for the individual
contributions to the only dependent variable here, namely the bear-
ing fault indicator.

3.3.51 One-dimensional analysis of parameters

Indicator threshold The first parameter to be analyzed is the thresh-
old used in the calculation of the envelope spectrum metric. This
threshold plays a crucial role in separating noise peaks from real en-
velope peaks belonging to the bearing fault frequency. The threshold
used in section 3.3 is simply four times the moving standard devia-
tion of the envelope spectrum using a central windowing scheme and
a window size equal to the sample rate. These values were arbitrar-
ily chosen based on observations and should be adapted if used for
other purposes, but for this analysis case they performed well enough
and presented a straightforward thresholding approach. It should be
noted though that the values of an envelope spectrum typically are
not normally distributed (a chi-squared distribution would be more
appropriate [257, 258]), but the use of standard deviation is purely from
a practical point of view for defining a threshold. To illustrate the dif-
ferences when a lower or higher value of standard deviation is chosen,
Fig. 3.7 illustrates the curves for 1 to 7 standard deviations (“sigma”)
for the case where the amount of noise is varied from -50 dB to +50 dB
SNR. The figures show that, as expected, increasing or decreasing the
threshold mainly constitutes a corresponding shift and scaling of the
indicator curve. The main concern here is avoiding to take a too low
or too high value of standard deviation, since this could respectively
lead to noise peaks protruding above the threshold or negating of the
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fault peaks.
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FIGURE 3.17: a) Feature evolution of the SES after ACEP

for the case where the threshold is varied from 1 to

7 sigma. b) Feature evolution of the SES after CPW

for the case where the threshold is varied from 1 to
7 sigma.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



146 Chapter 3. Discrete-random signal separation

Number of peaks The second parameter, namely the number of peaks
considered in the indicator calculation, does not influence the shape
of the curves considerably. Mainly a scaling of the curves will occur, as
can be seen in Fig.3.18 for the same case as the previous figures. This
can be explained by the fact that primarily the first few peaks are high
in amplitude and the sum of the amplitudes is simply divided by the
total amount of considered peaks. This could be offset by introducing
weighting factors for the higher order harmonics since they still pro-
trude noticeably above the surrounding noise. However this was not
investigated further.
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FIGURE 3.18: a) Feature evolution of the SES after ACEP for the case where the
amount of peaks is varied from 1 to 7 peaks. b) Feature evolution of the SES
after CPW for the case where the amount of peaks is varied from 1 to 7 peaks.
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Slip The amount of slip on the fundamental fault period is the next
parameter to be inspected. It is expected that the curves will start
to lose their normal shape for an increasing amount of random jit-
ter since this smears the envelope spectrum fault peaks and thus de-
creases the amplitude of the detected peaks. Figure 3.19 shows the
result for letting the amount of the jitter vary from 1% to 10% of the
fault period.
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FIGURE 3.19: a) Feature evolution of the SES after ACEP for the case where the
amount of jitter is varied from 1to 10%. b)Feature evolution of the SES after
CPW for the case where the amount of jitter is varied from 1 to 10%.

Amplitude modulation To analyze the influence of the amount of
random amplitude modulation on the curves, the modulation is varied
from 0% to 100%. It can be seen in Fig.3.20 that the random amplitude
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modulation has very little effect on the indicator curves. Again, this is
to be expected because on average the amplitude modulation doesn’t
influence the occurrence of the impulses or the spacing.

|— SES after ACEP - 90% Random AM
— SES after ACEP - 100% Random AM
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FIGURE 3.20: a) Feature evolution of the SES after ACEP for the case where

the amount of random amplitude modulation is varied from 1 to 100%. b)

Feature evolution of the SES after CPW for the case where the amount of
random amplitude modulation is varied from 1 to 100%.

Damping ratios The last parameter to be investigated is the damping
ratio of the resonances. Since there is a damping ratio for the bearing
resonance and for the noise resonances, these two cases are investi-
gated separately.

First the influence of the damping ratio is studied for the case where
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the SNR is varied between the bearing fault and the 1 kHz noise res-
onance. It is shown in Fig.3.21 that while the damping ratio does not
influence the CPW method significantly, the ACEP method is more sen-
sitive to it. This is to be expected since the CPW method totally re-
moves any amplitude influences of the resonances, while the ACEP
method retains this information. As such, lower damping ratios and
thus higher resonance amplitude peaks have a more substantial effect
on the outcome of the ACEP method than the CPW method.
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FIGURE 3.21: a) Feature evolution of the SES after ACEP for the case where the

damping ratio of the noise resonance of 1 kHz is varied from 2 to 10%. b)

Feature evolution of the SES after CPW for the case where the damping ratio
of the noise resonance of 1 kHz is varied from 2 to 10%.

The final analysis is of the influence of the damping ratio of the
bearing fault resonance on the curves. Figure 3.22 indicates that the
damping ratio influences the ACEP method slightly less than the CPW
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method. The low damping ratio makes the impulse peaks of the fault
impacts less pronounced and causes the bearing fault signal to ap-
pear more smooth. This creates an envelope signal that exhibits the
fault less clearly than for a high damping ratio. As can be seen, in the
presence of low SNR values, the CPW method is more affected by this
effect than the ACEP method.
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FIGURE 3.22: a) Feature evolution of the SES after ACEP for the case where

the damping ratio of the bearing fault resonance of 2.5 kHz is varied from

110 10%. b) Feature evolution of the SES after CPW for the case where the

damping ratio of the bearing fault resonance of 2.5 kHz is varied from 1 to
10%.
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3.3.5.2 Modeling the feature indicator response

Based on the above findings, a multiple non-linear regression approach
was chosen to fit a model to the results that resembles to the spe-

cific shape of the curves seen above. The chosen model is based on

a Weibull distribution, more in particular the cumulative distribution

function of a Weibull distribution. The shape of this function resem-

bles strongly to the shape found in the feature indicator response and

the Weibull distribution is a commonly used distribution in other re-

search fields. Equation 3.8 presents the formula on which the model

is based.

1—exp(—(x/A)%) x>0

CDFweipun = (318)

0 x <0

To take into account the non-linear influences that every parameter
has on the feature indicator, this model was augmented by inspection
of three dimensional surface plots representing the response variable
as a function of two of its independent variables. It should be noted
that for this model only three parameters are taken into account in
order to not make the model excessively complicated. The chosen
parameters are:

« Signal-to-noise ratio between bearing fault and additive white
Gaussian noise

« The amount random jitter on the fundamental bearing fault pe-
riod

« The amount of damping of the bearing fault resonance

As can be seen above, these are design parameters of the bearing
fault and not method parameters of the feature indicator calculation.
The following ranges were used for simulation and calculating the re-
sponse feature indicator:

« SNR, from -30 dB to +30 dB, in steps of 0.5 dB
- Jitter, from 0.2% to 10%, in steps of 0.2%

« The amount of damping, from 0.2% to 10%, in steps of 0.2%
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Based on the inspection of the three-dimensional response curves,
the following model was made:

*1+Be

10"
y = (B1+ Paxz + faxs + %) exp(—(5,——
* s TP
3

)P10) (319)

In the model x1, x2, x3 and y stand for SNR, jitter, damping and the fea-
ture indicator respectively. This model was derived using the following
observations:

« For high SNR values, the feature indicator converges towards a
certain value. This value depends linearly on the damping and
jitter, and is also reciprocal with respect to the jitter. This is in
correspondence with the previously obtained results, that indi-
cated a scaling of the indicator curves based on these parame-
ters. The factor before the exponential in Eq.3.18 determines this
convergence value and can thus be adapted to reflect this de-
pendence. This explains the presence of coefficients B1, B2, B3, Ba
and Bs.

« To offset the negative SNR values (in dB), a coefficient ¢ is added.

+ The point where the slope of the CDF is highest (approximately
in the middle of the S-curve), correspondingto A in Eq.348, is in-
versely dependent on the damping. This constitutes the need for
coefficients B7, Bs and Bo. This relationship explains the fact that
for decreasing damping values of the bearing fault resonance, it
gets increasingly more difficult to detect the bearing fault.

« Lastly the shape parameter, k in Eq.3.18, is described by coeffi-
cient B1o.

In order to find the appropriate coefficients, the model is com-
puted using MATLAB®. The convergence criterion on the coefficient
estimates is 1e—8 and the Levenberg—Marquardt algorithm is used to
solve the non-linear least squares problem. The initial coefficient val-
ues can be found in Table 4.1 along with the estimated coefficients for
both the ACEP and CPW method. It should be noted that the model
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also converged to similar values of the coefficients for different start-
ing values.

TABLE 3.1: Overview of the starting values and esti-
mated values for the model coefficients for both the

ACEP and CPW method.

Coefficient ‘ Initial values | Estimated values ACEP | Estimated values CPW

B1 1 48.4049 -115.8
B2 1 62.5746 4.9167
B3 1 -136.0759 ~570.4539
Ba 1 0.00257811 2.3248
Bs 1 2.4069¢ 11381
Be 30 30 30

Bz 1 21.0799 -3.7842
Bs 2 2.2661 1.2026
Bo 1 132.9908 589.1836
B1o 2 0.03939 0.0071

The adjusted R-squared values for the model are 0.942 and 0.92
for respectively the ACEP and CPW model. The root-mean-squared-
error is 2.42 for the ACEP model, and 3.79 for the CPW model. It should
also be noted that all p-values for the coefficients were < 0.01 mak-
ing them statistically significant. To asses the fit of the model to the
actual data, Fig. 3.23 displays the relationship between two indepen-
dent parameters and the dependent variable for the ACEP case. The
left hand side of the figure shows the actual data and the right hand
side the model response. Since it is impossible to show every possible
combination of input parameters (2D plot for 3 input parameters) and
because the main goal is to showcase the fit of the model, the values
corresponding to the plot were chosen arbitrarily and are displayed
above the subplots. As can be seen, the model shows good similarity
in response compared to the actual data. Similar results are obtained
for the CPW model in Fig.3.24, with the main difference being that for
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very low jitter values (<0.5%) and high SNR levels the feature indica-
tor is slightly lower than for higher jitter values (between 0.5% and
2.5%). This can be explained by the fact that for very low jitter values
the bearing fault signature in the spectrum is less smeared out and
the CPW method is just mainly filtering out that bearing fault signa-
ture for higher SNR levels, reducing the amplitude of the peaks in the
envelope spectrum.
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FIGURE 3.23: Comparison of the actual simulated re-
sponse vs. the estimated model response for the ACEP
method.

Cette these est accessible a l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



3.3. Comparison on simulated signals 155

Actual data for 2.1 % damping Fitted model for 2.1 % damping

0.1

o
o @
o o
S
S

0.08

@
S

£ 0.06

=4
=3
=]
N
=2

T
£ 0.04
S

e
=3
B

Jitter [%]
Feature indicator

c

0.02

o
o
N]

-30 -20 -10 0 10 20 30 -30 20 -10 0 10 20 30
SNR [dB] SNR [dB]
Actual data for 6 % jitter Fitted model for 6 % jitter
—0.08 —0.08 2 e
= 0.06 = 0.06 15 5
E= £ =
£0.04 £ 0.04 10 §
& & ;
0.02 0.02 5w
0
-30 -20 -10 0 10 20 30 -30 20 -10 0 10 20 30
SNR [dB] SNR [dB]
Actual data for -8 dB SNR Fitted model for -8 dB SNR w0
—8 —_8 5
g g g
26 26 i
5 £ 20 5
g4 £4 &
a a 03
2 2 w
2 4 6 8 10 2 4 6 8 10
Jitter [%] Jitter [%]

FIGURE 3.24: Comparison of the actual simulated re-
sponse vs. the estimated model response for the CPW
method.

This analysis shows the potential to develop a more complex model,
taking into account more input parameters, and to refine the feature
calculation process. This could lead to a useful evaluation tool for as-
sessing the strengths and weaknesses of methods that try to improve
bearing fault detection. This way you can get an overview of potential
reasons why a new method does not work well on experimental data.

3.3.6 Possible other influences

The performed analysis covers far from all possible influences on the
performance of the CPW or ACEP method, but it does provide insight
on the strong and weak points of both methods for some key influ-
encing factors. However, one can easily come up with possible other
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important elements. Examples of such influencing factors could in-
clude:

« Resonances carrying impulsive information instead of noise.

« Randomly occurring impulsive noise events.

« Other modulating components, it should be noted that even though

the CPW and ACEP method alter the signal content, they are not
designed for multiplicative component removal.

« Other bearing fault signal parameters such as the type of the
bearing fault: outer race fault, inner race fault, cage fault or ball
fault.

« Coloured noise instead of white noise.

« Amount of speed variation.

3.4 Comparison of experimental results

To further assess the differences between the two methods, a com-
parison of the two techniques is also carried out on an experimen-
tal setup. Data from the wind turbine gearbox condition monitoring
round robin study provided by NREL, the National Renewable Energy
Laboratory, is used because of its well-documented and interesting
setup. Only a short description of the experimental setup is provided
since a more elaborate analysis procedure is investigated on this data
set in Chapter 6. The focus in this chapter is on the performance com-
parison between CPW and ACEP.

3.41 Description of experimental setup

The test turbine is a three-bladed, stall-controlled, upwind turbine. It
has a rated power of 750kW and the generator normally operates at
1800 rpm or 1200 rpm nominal. The complete drivetrain was installed
in the NREL dynamometer test facility. It was hard fixed to the floor
and missed the hub, rotor, yaw bearing and yaw drives. The used gear-
box consists of one low speed (LS) planetary stage and two parallel
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stages. The used nomenclature is the same as the one used by Sheng
et al. [259] and can be seen in Fig.3.25. Two loss-of-oil events dam-
aged its internal bearings and gears while in the field. Afterwards, it
was again installed in the dynamometer facility and retested in a con-
trolled environment. Various bearing types are used in the gearbox
corresponding to the loading conditions and life requirements. Two
full-complement cylindrical roller bearings (fcCRB) support the planet
carrier and two cylindrical roller bearings (CRB) support the planet
gears. The parallel shafts are each supported by a CRB on the upwind
side and by two tapered roller bearings (TRB) on the downwind side
of the assembly. A list of all bearing locations, manufacturers, part
numbers and types can be found in [259] and Fig.3.25 illustrates the
locations and used names of the different bearings. If the component
is positioned upwind, this is denoted with an ‘A’ and if it is downwind,
with a ‘B’ or a ‘C’. The accelerometers were mounted on the outside
of the gearbox and data was sampled at 40 kHz per channel. In to-
tal data sets of eight accelerometers (Model: IMI 626B02) were made
available. Table 6.4 gives an overview of the fault frequencies present
in the gearbox vibration signals and that are investigated in this chap-
ter. In total, four bearing fault frequencies are examined sequentially.
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FIGURE 3.25: View of internal components of the test
gearbox and the nomenclature and locations of the
bearings and gears.

TABLE 3.2: Damaged bearings and their corresponding
theoretical characteristic frequencies.

. Detectable characteristic
Bearing label Fault type frequency [Hz]
) , . ) BPFI 345,29Hz
HS-SH downwind bearings (HSS-B& C) FTE 12.75 Hz
IMS-SH downwind bearings (ISS-B& C) | BPFO 105,75 Hz
IMS-SH upwind bearing (ISS-A) BPFI 73,7 Hz

3.4.2 Results

The CPW and ACEP methods are compared for the previously men-
tioned bearing frequencies through the use of envelope analysis. It
should also be noted that all signals are first order tracked in order to
minimize the amount of speed variation present in the spectra.
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3.4.21 High-speed downwind bearings

The first analysis examines the observed fundamental train frequency
and inner race fault frequency of the HSS-B&C bearings. The data used
originates from the AN7 accelerometer, which is located close to the
high-speed shaft. Figure 3.26a displays the spectrum of the damaged
AN7 signal before and after ACEP, below Fig.3.26b gives an indication
of the reduction in dB of the first hundred shaft speed harmonics. It
can be seen that a significant reduction is obtained. Figure 3.27 shows
a zoom of the full bandwidth envelope spectra generated by using the
developed methods around the FTF frequency of 12.75 Hz. It can be
seen that the ACEP method amplifies significantly the fault peak here
compared to the original signal and the CPW signal. Cepstrum pre-
whitening only emphasizes the fault peak slightly.
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FIGURE 3.26: (a) Amplitude spectrum of the AN7 sen-

sor signal before and after ACEP. (b) Graph showing

the amplitude reductions, in dB, of the first 100 shaft
speed harmonics.
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FIGURE 3.27: Zoom of the squared envelope spectra
around the FTF frequency of 12,75 Hz of the HSS-B&C
bearings for the signal without cepstral editing, and
after ACEP and CPW.

However, the opposite is true for the ball pass fault frequency of
the inner race around 345.2 Hz. Figure 3.28 exhibits a clear peak for
the CPW method, while the original signal and the ACEP signal show
no sign of a BPFI frequency. It is noted that band-pass filtering around
17 kHz with a bandwidth of 2 kHz (based on the kurtogram) does reveal
the fault for the ACEP method as well.
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FIGURE 3.28: Zoom of the squared envelope spectra

around the BPFI frequency of 345.2 Hz of the HSS-B&C

bearings for the signal without cepstral editing, and
after ACEP and CPW.

3.4.2.2 Intermediate-speed shaft upwind bearing

The next analysis looks at the inner race fault of the ISS-A bearing.
It was stated in the damage report that this bearing showed signs of
plastic deformation, debris dents, assembly damage, scuffing, false
brinelling and contact corrosion. Figure 3.29 displays a zoom of the
envelope spectra around the BPFI frequency of 72.93 Hz. It can be
seen that the peak amplitudes remain small for all three signals, and
that the CPW envelope spectrum contains more noisy content than the
other two spectra. The two methods do not filter out this frequency
however, indicating that it most likely does not belong to a determin-
istic source. Again, it should be noted that improving the peak ampli-
tude is possible through band-pass filtering with a center frequency
of 10 kHz with a bandwidth of 1 kHz. This filtering step is not the focus
of this chapter however, so it is not illustrated here.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



3.4. Comparison of experimental results 163

I
= Without cepstral editing
— After ACEP
0.09~ —— After CPW B

0.08 - IXBPFI -]

0.07 — \ 1

0.06 — 1

Amplitude [-]
< o

&

T

1 |
725 72.6 727 728 72.9 73 734 73.2 73.3 73.4 735
Frequency [Hz]

FIGURE 3.29: Zoom of the squared envelope spectra

around the BPFI frequency of 72.93 Hz of the ISS-A

bearing for the signal without cepstral editing, and af-
ter ACEP and CPW.

3.4.2.3 Intermediate-speed shaft downwind bearings

Lastly, the ISS-B&C bearings are inspected for their BPFO frequency of
105.2 Hz, using the data set of the AN6 accelerometer which is close to
the intermediate-speed stage. The damage report declared that they
observed plastic deformation, assembly damage and multiple dents
for these bearings. The analysis of the fault frequency is however not
as straightforward as the other ones. While most of the round robin
research partners did find the second and higher even harmonics of
the outer race fault frequency, they did not observe any strong indi-
cation of the fundamental fault frequency. Likewise it can be seen in
Fig. 3.30a that also in this analysis there appears to be no high am-
plitude envelope peak around this frequency. The envelope spectrum
after CPW exhibits the largest peak at this frequency, while the ACEP
spectrum is too noisy to clearly discern the BPFO frequency. Analysis
of the higher harmonics though reveal high amplitudes at the even
harmonics (s4x, 6x, 8x) of the BPFO frequency. Especially the ACEP
method emphasizes the even BPFO peak as can be seen in Fig. 3.30b.
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While it is not entirely certain why the fundamental frequency is so
badly detected, it might be allotted to the presence of multiple dents
on the outer ring. These multiple point defects can introduce cancel-
lation and reinforcement of certain frequency components, which can
modify the appearance of the envelope spectrum according to McFad-
den et al [260].

a b

1xBPFO

[

2xBPFQO

FIGURE 3.30: (a) Zoom of the squared envelope spec-

tra around the fundamental BPFO frequency of 105.2

Hz of the I1SS-B&C bearings. (b) Zoom of the squared

envelope spectra around the second harmonic of the
BPFO at 210.4 Hz.

3.5 Discussion

The question arises as to whether the ACEP method and the CPW method
could be merged into a unified liftering method where liftering is done
in such a way that it removes harmonics but does not equalize com-
pletely the resonances. A unified liftering approach that combines the
advantages of both methods would be desirable. Such a method could
make use of knowledge about the resonance damping and recently it
has already been proposed for this purpose by Randall & Smith [261].
They suggest the use of an exponential lifter where the time constant
is set using the damping of the lowest resonance frequency present
in the signal. This exponential lifter smooths the spectrum to retain
mainly the resonances and reduces the amplitude of the harmonics
significantly. Compared to the ACEP method it is less forceful in re-
moving the harmonics through the cepstrum though, so there might
still be residual harmonics even after exponential liftering, since the
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corresponding rahmonics are not totally set to zero. The performance
of this exponential lifter has not been investigated here.

Another idea could be to optimize the liftering in such a way that
it optimizes the feature indicator defined in Eq. 3.14. This approach
does require a priori knowledge about the presence of a fault and the
corresponding fault frequencies. Moreover the amount of bearing slip
is usually not known and can cause variations around the theoretical
fault frequency. This can be resolved by taking some tolerances into
account for the indicator calculation.

For complex systems the sole step of cepstrum editing might be in-
sufficient to properly detect the fault frequency, necessitating an addi-
tional band-pass filtering step (e.g. through the use of the kurtogram).
In regard to the ACEP method, there is an additional risk of instabil-
ity of the optimization when iterating over possible input parameter
combinations for the method. However, it is definitely promising to
develop an optimization scheme for cepstrum liftering, but depend-
ing on the implementation, the resulting method should try to keep
the complexity as low as possible.

3.6 Conclusion

This chapter investigates two effective approaches for discrete-random
signal separation based on the cepstrum. The performance of the
automated cepstrum editing procedure (ACEP) and the cepstrum pre-
whitening (CPW) method is compared.

First, both methods are described theoretically and compared on
simulated signals. The sensitivity for fault detection of both meth-
ods is assessed for varying SNR values of the bearing fault signal. An
analysis is made comparing ACEP and CPW for the case of additive
white Gaussian noise, where it is concluded that ACEP can outperform
CPW for low SNR values due to the preservation of the bearing reso-
nance. A similar analysis with additional noisy resonances is carried
out. Here the CPW method outshines ACEP for lower SNR values. ACEP
retains the resonances which heavily influences the envelope spectra
when demodulating the full bandwidth of the signal. Other possible
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influences are not further investigated, but suggestions are made for
potential future studies.

Finally, the two techniques are examined on experimental data of
the wind turbine gearbox condition monitoring round robin study, pro-
vided by the National Renewable Energy Laboratory (NREL). The re-
sults are less clear here than for the virtual signals. While the CPW
method does indicate most of the bearing faults, the fault frequen-
cies are sometimes surrounded by high levels of noise in the envelope
spectrum, making it difficult to interpret. For some fault frequencies,
the ACEP method performs better in amplifying the fault peaks than
the CPW method, but it can totally miss a fault frequency peak without
additional band-pass filtering, as is the case for the BPFI frequency of
the HSS-B&C bearings. ACEP also requires more fine-tuning than CPW,
making it a bit more cumbersome for automated industrial applica-
tions. Since CPW removes the influence of other high amplitude com-
ponents like resonances, it is for some occasions able to increase the
sensitivity of the full bandwidth envelope spectrum for these weaker
components. This makes it potentially better suited for applications
in which band-pass filtering is not employed.
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Chapter 4

Signal filtering

41 Introduction

This chapter discusses the concept of vibration signal filtering from
the perspective of increasing the signal-to-noise ratio of a potential
fault signature. This may seem somewhat overlapping with the topic
of the previous chapter since it discussed the signal separation of de-
terministic and stochastic content which in essence also can increase
the fault signal-to-noise ratio. However, the techniques in this chap-
ter are typically utilized after the signal separation step since the sig-
nal filtering described here make use of the properties of the residual
stochastic signal that would otherwise be too negatively influenced
by the deterministic content. In other words, the signal separation is
considered a necessary precursor for further signal filtering.

After the signal separation, the residual stochastic signal normally
still consists of a mixture of random signals, but the hope or assump-
tion is that these signals occupy different frequency bands such that
they can be separated by spectral filtering. Therefore, the filtering step
often revolves around finding a filter that optimizes a certain crite-
rion that characterizes the fault signature of interest such that the fre-
quency band(s) of interest can be identified. In the case of impulsive
events such as a bearing fault, the source signal is often assumed to
be an impulse train at the repetition frequency of the bearing charac-
teristic fault frequency. Two filtering approaches are commonly used
for filtering out such an impulsive signature.

One way is to search for a good narrow-band filter that maximizes
the kurtosis or impulsiveness of the filtered signal by iteratively going
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through many filters with pre-defined center frequencies and band-
widths, i.e. the kurtogram [262]. More specifically, the vibration signal
is put through a filterbank and the criterion of interest is calculated
for the full filterbank. An example of the dyadic frequency grid for the
filterbank used by the kurtogram is shown in Fig. 4.
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FIGURE 4.1: Filterbank used by kurtogram [262]

Another way is to drop the narrow-band assumption and to search
for a filter that iteratively optimizes its own filter coefficients and con-
verges to a filter that maximizes the filtered signal’s kurtosis, i.e. the
minimum entropy deconvolution (MED) technique [188]. The original
idea employed by this latter MED approach is to recover the source
signal of bearing fault impulses by finding an inverse filter that com-
pensates the transmission path. An example of MED filtering is shown
in Fig. 4.2. In this figure you can clearly see the recovered fault im-
pulses after the MED filtering.

The methodology of the second approach is often called a blind
approach since it allows to find an optimal filter without any prior
knowledge. colorblueBlind filtering, as used in this work, is defined
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similar to that of blind signal separation (BSS), meaning the separa-
tion of a signal or a set of signals from a set of signal mixtures, without
the aid of information or with very little information about the sig-
nals of interest or the mixing process. This blind filtering concept is
the main focus of this chapter and a new framework for deriving such
blind filters for vibration analysis is proposed. First however, the need
for blind filtering approaches is explained as to provide some back-
ground for its relevance in further research.

—— Original signal —— Noisy signal —— MED output signal

Amplitude

Time Time Time

FIGURE 4.2: Example of application of Minimum En-

tropy Deconvolution [188] on a simulated noisy bear-

ing fault signal, (Left) Original bearing fault signal,

(Middle) with added white Gaussian noise at SNR of
-4 dB, (Right) Resulting signal after MED filtering.

4aa Background

The interest of industry in more advanced condition monitoring tools
is growing thanks to the ever-improving computational power, expand-
ing storage capabilities, and decreasing cost of modern day IT sys-
tems. Despite this trend, it sometimes remains difficult to implement
some of the more advanced methods due to incomplete knowledge
about the system of interest. Complex machines can consist of dozens
of bearings and gears, modern examples are gearboxes of wind tur-
bines and helicopters. These machines typically have one or more
planetary gear stages in combination with parallel gear stages. Not all
kinematic information of the manufacturer about the system might be
available to the machine operator, or the information might be inaccu-
rate due to reparations with new components. This issue constitutes
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the need for methods capable of tracking the condition of these com-
ponents without the need for prior knowledge about the kinematics
or, in other words, blindly.

The concept of tracking signal characteristics blindly is already
widely employed in industry thanks to the simplicity of time-domain
statistical indicators. Nevertheless there is still room to improve fur-
ther on this blind signal analysis concept and to bring it better in line
with other state-of-the-art vibration analysis methods. One of the
most popular approaches for fault detection is to look at the cyclo-
stationary behavior of the vibration signal [176, 258, 263-269]. Inspired
by this fact, this chapter investigates the possibility to utilize the cy-
clostationary content of a signal in a blind manner. Therefore, instead
of just looking at the statistics of the time waveform, the squared en-
velope and its spectrum of the signal are employed as blind means
to gain more information about potential defects. The envelope is
probably the most frequently used tool to inspect the cyclostationary
behavior of signals. From experience it is known that most mechanical
faults of bearings or gears induce some form of cyclostationary behav-
ior in the observed vibration signals [149, 265, 270]. This phenomenon
causes the envelope time waveform to become more sinusoidal and
thus more structured. Additionally, the envelope spectrum will exhibit
discrete peaks at the corresponding fault frequencies. These peaks
protrude from the background noise and thus their amplitude is dis-
tinguishable from the spectral noise floor. In other words, most me-
chanical faults increase the predictability of the envelope time wave-
form and the sparsity of the envelope spectrum.

41.2 Sparsity

Sparsity is a very useful concept that has become a widely used tool
across various fields in recent years. In the context of 1D signal vec-
tors, sparsity quantifies the inequality in the data. Intuitively, a sparse
representation is one in which a small number of coefficients contain
a large proportion of the energy. A concrete example of what is meant
by this is given in Fig. 4.3. If the randomly generated signal on the left
of the figure is considered to be values of the distribution of wealth
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among citizens, it would be considered a fairly equal wealth distri-
bution, i.e. not sparse. However, the signal on the right of the figure
would be considered a lot less equal and in this case more sparse.

—— A not so sparse signal —— A sparse signal

Pos AR A Ao bl At

FIGURE 4.3: lllustration of sparsity principle used in

this chapter, (left) Signal values that are mostly equal

without any significant outliers, i.e. high equality and

low sparsity, (right) The same signal but with one clear

outlier being significantly higher in value, thus low
equality and high sparsity.

The use of sparsity (or sparseness) in numerical analyses saw a
significant increase in interest from scholars thanks to the introduc-
tion of compressed sensing in 2004. Candes et al. [271, 272] and D.
Donoho [273, 274] proved that when knowledge is available about the
sparsity of a signal, that signal can potentially be reconstructed with
even fewer samples than strictly required by the Nyquist-Shannon sam-
pling theorem. This idea is the basis of compressed sensing. Figure 4.4
shows how the usage of sparsity increased almost exponentially in
research efforts over the last few years, as listed by the Web of Sci-
ence [275]. This sparsity property can now also be exploited to find
a filter that maximizes the sparsity of the envelope spectrum since it
can be assumed that this corresponds to a mechanical fault and not
to normal behavior.
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FIGURE 4.4: Evolution of the number of research
records in the Web of Science related to the topic of
'sparsity’.

41.3 Blind filtering

This chapter illustrates the concept of blind filtering using sparsity in-
dicators on the envelope spectrum and envelope predictability as a
way of tracking the health of bearings. The proposed blind filtering
approach is similar to the blind deconvolution idea employed by Min-
imum Entropy Deconvolution (MED) filtering [188] which uses the kur-
tosis of the time waveform as the statistic to maximize. MED filtering
was orginally applied in the field of seismic signal processing.
Kurtosis however has some disdvantages as a measure to maxi-
mize [276]. Kurtosis tends to be maximized by a single large peak am-
plitude, which is rarely realistic for a rotating component fault. There-
fore, improvements and variations on the MED approach were devel-
oped afterwards. Cabrelli [277] suggested to use the D-norm (MEDD),
an alternative to kurtosis, as a way to find a direct solution to the blind
deconvolution problem. Wang et al. reduced the computation time of
MEDD by using an adaptive least-squares approach [278]. Broadhead
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et al. compared the performance of MED and MEDD for varying signal-
to-noise ratios (SNR) and found that MEDD outperforms MED in low
to moderate SNR. W. Gray [279] analyzed normalized higher-order mo-
ments other than kurtosis. McDonald et al. [280] made a comprehen-
sive investigation of MED and its flaws. They afterwards suggest sev-
eral improvements and extensions to MED in an attempt to circumvent
these flaws, such as using multi-point kurtosis instead of standard
kurtosis. Obuchowski et al. [189] opted to use the Jarque-Bera statis-
tic, a combination of skewness and kurtosis, for the detection of gear
faults. Very often the MED-related techniques get paired with other
pre-processing methods, like autoregressive filtering or cepstrum pre-
whitening, in order to remove deterministic content that could poten-
tially hinder successful deconvolution of the fault signal [281-285]. The
need for a novel approach, and the origin of the idea in this chapter for
the proposed blind filtering approach, was actually identified by look-
ing at the available literature about blind deconvolution filters and
making the observation that a large majority of techniques is based
on the use of kurtosis (or a derivative of kurtosis) as an optimization
metric.

In recent years, the blind filtering research has experienced a shift
in focus from looking at the time waveform statistics to looking at the
cyclostationary properties. Maximum correlated kurtosis deconvolu-
tion (MKCD) and the multipoint optimal minimum entropy deconvo-
lution (MOMEDA) [280] are technically cyclostationary approaches but
were empirically introduced from the perspective of trying to maxi-
mize the impulsiveness linked to a certain fault period. Thanks to the
recent efforts in further development and promotion of the concept
of cyclostationarity for vibration analysis [257, 258, 269, 286, 287], the
topic is now a lot more understood and more widely used. A newly
proposed approach [288] employs an indicator of second-order cyclo-
stationarity (ICS2) in the process of blind deconvolution. It allows the
user to maximize the ICS2 in an efficient and flexible manner thanks
to the versatility of the generalized Rayleigh quotient. However, the
approach still requires prior knowledge of the fault frequencies in or-
der to work.
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41.4 Proposed blind filtering concept

One way to remedy this requirement of prior knowledge, is applying
the concept of sparsity to the envelope spectrum, which is probably
the most popular tool to analyze the cyclostationary content of a vi-
bration signal. Wang et al. [289] suggested to use the %-norm on the
envelope spectrum of filtered signals. They extend the filterbank idea,
originating from the kurtogram, to utilize the %—norm instead of the
kurtosis. The downside of this approach is however that it is still not
fully blind in the sense that an end-user still has to inspect the filter-
bank with the %-norm values and choose the appropriate frequency
band. Additionally, it makes the assumption that the signal of interest
has a narrow-band frequency signature, which can limit the applica-
bility. In contrast, the proposed methodology employs the discussed
blind filtering approach such that a suitable filter that maximizes the
envelope spectrum sparsity is found automatically and the filtered sig-
nal can be wideband. The main “selling” point of the proposed ap-
proach as compared to the ICS2 filter or similar methods is the fact
that no prior information is needed about the characteristic fault fre-
quencies. The proposed method provides a potential way to track the
presence of any modulating fault signature using conventional finite-
impulse response filters.

Using the proposed methodology which is primarily based on the
usage of the Rayleigh quotient, another blind filtering approach is de-
rived using the envelope predictability. The emergence of a cyclosta-
tionary fault and the subsequent introduction of modulating behavior
in the signal means that the envelope waveform becomes more pre-
dictable and can thus be fitted with an autoregressive model. This
property is exploited to find a filter that minimizes the relative predic-
tion error of the squared envelope since it is assumed that a good fit
corresponds to a mechanical fault and not to normal behavior.

Animportant remark about the proposed approach is that the blind
filtering methodology described in this chapter cannot be categorized
as blind deconvolution, blind signal separation, or denoising. The pro-
posed approach namely does not attempt to deconvolve the signal in
order to recover the source signal (e.g. impulses), nor does it attempt
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to separate signals from a mixture or remove noise from the signal
without distorting it. In fact, it actually does distort the signal such
that the envelope is as predictable as possible or that the envelope
spectrum is as sparse as possible. This is a rather new concept since
from this perspective the algorithm does not care about restoring the
signal or recovering the source signals. Instead the algorithm just tries
to maximize the figure of merit. It is important to take this distinction
into account when inspecting filtering results since the results might
not correspond to what is expected.

41.5 Chapter summary

This chapter attempts to highlight several things: the utility of spar-
sity from a cyclostationary perspective, the potential of using the en-
velope waveform directly for filtering without any need of its spectral
counterpart, and it emphasizes the versatility of the Rayleigh quotient
regarding the indicator choice for the blind filtering step. First, the the-
oretical background is explained in Section 4.2. The indicator choice
and the derivation of the Rayleigh quotients are described. Next, the
methodology is validated on simulated signals in Section 4.3 and ex-
perimental data of a gearbox trending data set in Section 4.4. The
results show that the proposed approach is capable of extracting a
cyclostationary fault signature and that both the sparsity measure of
the envelope spectrum and the envelope prediction error can be used
as a tracking parameters.

4.2 Methodology

Before going into detail how to optimize the sparsity of the envelope
spectrum or the prediction error of the envelope waveform, the math-
ematical quantities of the envelope and its spectrum are expressed in
matrix notation in section 4.2.1. Afterward, the derivation of the blind
filters is specified for the relative prediction error of the envelope and
for four different sparsity indicators of the envelope spectrum.
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4.2a Blind filtering

The concept of blind filtering is to find a filter that maximizes a certain
criterion of the signal starting from a noisy measured signal x:

s=xxh (4.1)

where s is the estimated input, h is the inverse filter, and * refers to
the convolution operation. It should be noted that vectors and matri-
ces are set in bold font to illustrate the difference with scalars. The
convolution is expressed as:

s = Xh (4.2)

SN—1 XN—-1 =--- X0 ]’l()

SL-1 Xp-1 ... Xp-N-2] |hn-1

with L and N the number of samples of s and h respectively.
Now the squared envelope €, can be defined as follows:

ex = |s|? = |Xh|? (4.3)
It can also be written as:
H
S ... 0
€x=|: . : Xh = diag(s?)Xh (4.43)
0 ... Si._Nt1

with s being the Hermitian transpose of s, and diag(s) being a di-
agonal matrix with the values of the vector s on its diagonal. The
squared envelope spectrum E, is then the Fourier transform of this
squared envelope:

Ey = Fe, = FPdiag(s™)Xn (4.5)
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with:
1 1 . 1 . 1
1 ety .. exdw L R
F = : :. E . 4:1<71 (46)
1 e 2y ... e 20N . in=
[ —N— -k(L-N-1 . (K=1)(L-N-1
|1 e~ 2 R o2 e—m%_

withn = 0.L — N —1,k = 0.K —1 and K — 1 corresponding to the

index of the maximum frequency of interest. F has dimensions (L —

N, K). The defined variables now allow deriving filters for the envelope-
based indicators in a fairly efficient manner.

4.2.2 Derivation of LP-envelope filter

Before deriving the envelope spectrum sparsity-based filters, we take
a look at the filter using the prediction error of the squared enve-
lope in the time domain. The idea of the proposed methodology is
to exploit the predictability of a fault modulation signature by trying
to fit it with a linear prediction (LP) filter or auto-regressive (AR) fil-
ter. The prediction error of an auto-regressive all-poles model of the
squared envelope serves then as the metric of interest. The better the
AR model can fit the actual envelope, the more predictable and thus
the less noisy it is. This means that if there is a signal component
present with e.g. a clean sinusoidal amplitude modulation, the AR
model is then capable of predicting future samples accurately which
in turn corresponds to a low prediction error. This does indicate the
potential need for prewhitening the signal to make sure the AR model
does not try to fit the envelope of deterministic components in the
signal.

The relative prediction error of the AR model is closely related to
the spectral flatness as the AR model also maximizes the spectral flat-
ness of the squared envelope prediction error [290]. The relative pre-
diction error (RPE) of the AR model of the squared envelope is given
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by:
02

RPE = % (4.7)

USE
with o, being the prediction error of the squared envelope, and os¢ be-
ing the standard deviation of the squared envelope. The autoregres-
sive coefficients can be obtained by fitting a linear prediction model
on the squared envelope. The standard LPC representation of a signal
x(n) for a model of order N is:

a;x(n —1i) +e(n) (4.8)

=

x(n) =
i=1

with a; the autoregressive coefficients, and where the error e(n) can
be obtained by:

e(n) = iaix(n — i) withag = 1. (4.9)
i=0

Figure 4.5 illustrates the straightforward process. The autoregressive
filtering necessary to obtain the prediction error e of the squared en-
velope €, can be written in matrix notation as follows:

e = Adiag(sH)s (4.10)

with A a band matrix containing the autoregressive coefficients as fol-
lows:

a a1 ... ay 0 ... O
0 a a1 ... an
. . . .0
A= |: .4y a4y ... ay (411)
apg m
_O 0 g |

Since the intent is actually to minimize the relative prediction error
in Eq. 4.7 and not maximize it, the ratio to be maximized is actually the
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Linear Prediction Coding —»@ediction error e(@

FIGURE 4.5: Input-output relationship between the pre-
diction error and the sampled signal.

inverted RPE. Equation 4.7 can thus be written in the following manner:

oir  exlex  WHXHdiag(s)diag(s®)Xh  hYRxw,xh

= = A2
02 efe  WHXHdiag(s)AHAdiag(sH)Xh  hHRxy,xh (422)

The generalized Rayleigh quotient [291] can be recognized in Eq. 4.12
and can be maximized using an iterative maximization of the eigenval-
ues:

o hHRxwlxh

KRy, xh

The Rayleigh quotient has the interesting property that its maximal
value with respect to h is equivalent to its largest eigenvalue A and
corresponding eigenvector. The proof behind this property is actually
relatively short. To find the optimal eigenvector h corresponding to
the maximum or minimum of RQ(h) in Eq. 413, we need to find its
derivative with respect to h. First, we define the scalar numerator of
RQ(h) as a, we then know that « is given by:

RQ(h) (4.13)

N
v=),
=)

N
cijhihj (414)
j =1

1

where c;; are the values of the symmetric correlation matrix Rxw, x.
Differentiating with respect to the kt" element of k, we get:

do N N
i Y ckihi+ ) cigh (4.15)
k=1 i=1

fork=1,2,...,N. This can be written as:

do
% = hTR;(WlX + hTRXW1X == hT(R;(WlX _|’ RXW]X) (4.16)
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Since Ry, x IS symmetric, R)T<WIX = Rxw,x, so the derivative of the
numerator ends up being:

do
— = 2h"Ryw, x (4:47)

dh
The denominator can be derived in the exact same way. Thus, we
can now simply apply the quotient rule for the derivative of the full
Rayleigh quotient, giving us:

iRQ(h) _ ZhTRxwlx(hHRxwth) — ZhTRxwzx(hHRxwlxh) (418)
dh (hHRxwth)z '

Setting this expression to zero, gives:

K Ry, x (WERxw,xh) = T Rxyw,x (W Rxw, xh) (4.19)
h'Rypw,x = thxiwlxhhTRxwzx (4.20)
h Rxwth
h'Rxw,x = RQ(h)h" Rxw,x (4.21)
Rxw,xh = ARxw,xh (4.22)

with A being the eigenvalue and h the corresponding eigenvector. In
Eq. 4.22 we can recognize a generalized eigenvalue problem.

Thus, by means of solving the generalized eigenvalue problem de-
fined in Eq. 4.22, we can maximize the Rayleigh quotient and find the
maximal values of the corresponding indicator and filter. In order to
obtain real eigenvalues however, the correlation matrices Rxw,x and
Rxw,x need to be Hermitian, and Rxy, x needs to be positive semidef-
inite. If these conditions are met, the Rayleigh quotient offers an ef-
ficient means to calculate iteratively the filter coefficients. Only the
largest eigenvalue and corresponding eigenvector need to be com-
puted in each iteration, which can be achieved efficiently by using al-
gorithms such as the power method [292].

The generalized eigenvalue problem to be solved is thus formu-
lated as such:

Rxw,xh = Rxw,xhA (4.23)
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The iterative algorithm used to minimize the prediction error consists
of four basic steps:

1. Assume an initial guess for h
2. Estimate Rxw,x and Rxw,x based on h and X using Eq. 412

3. Solve Eq. 4.23 to find A, and a new filter h that corresponds to
a higher value of the used criterion

4. Return to step 2 using the new h until convergence is reached or
the maximum number of iterations

The name of the proposed method is abbreviated to LPE (Linear Pre-
diction of Envelope) filtering in the rest of the chapter.

4.2.3 Sparsity-based blind filters

Now that we defined afilter based on the prediction error of the squared
envelope, the scope of the proposed blind filtering methodology is ex-
tended to the use of sparsity metrics on the envelope spectrum. Sec-
tion 4.2.3a first looks at potential indicators of sparsity that can be
used for the optimization. Afterward, sections 4.2.3.2 to 4.2.3.5 detail
the derivation of the suggested sparse envelope spectrum filters.

4.2.31 Choice of sparsity measure

Ever since sparsity became a popular research interest, in large part
thanks to the rise of compressed sensing, many sparsity measures
have been introduced. Each measure typically has its pros and cons.
A selection is made in this chapter of four different metrics that have
been used in the past to either directly quantify sparsity or are closely
related to the sparsity concept:

1. 2-norm

1
2. Spectral negentropy
3. Hoyer Index

4. Spectral Flatness

A brief background description is provided for these four metrics.
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%-norm A widely used sparsity measure is the %—norm, which be-
longs to the family of %—norms. More than a decade ago, the inverse

%—norm (more colloquially known as the Taxicab-Euclidean norm ra-
tio [293]) became much used as a sparsity measure in Non-negative
Matrix Factorization [294-298]. In fact, it was already being used as
a tool for deconvolution in geophysics [279]. This type of norm has
recently been used as well in the context of vibration analysis for de-
convolution of time-domain waveforms [299]. The %-norm of a vector
x is defined as:

L DB o)

b Sl |Ex(n)

Hoyer Index Hurley et al.[297] made a comprehensive comparison of
fifteen commonly used sparsity measures. They evaluated these mea-
sures using six criteria a desirable measure should possess as an at-
tribute. The Gini Index came out on top, satisfying all six criteria, with
the Hoyer Index a close second, satisfying five of the criteria. However,
the calculation of the Gini Index requires sorting the values which is
difficult to incorporate in the derivation of the blind filter as will be-
come clear later on. Thus, this chapter opts to include the Hoyer Index
as the third sparsity measure of choice for the envelope spectrum. The
Hoyer Index was proposed by P. Hoyer [298] in 2004 and is essentially
a normalized version of the %-norm. The Hoyer Index evaluates to
unity if and only if the spectrum contains only a single non-zero com-
ponent, and takes a value of zero if and only if all spectral components

are equal. It is defined as :

N
Hoyer Index = <\/N— Loz |x(1) ) ! (4.25)
T ()2 VN ~1

with x being the sample vector, n the sample number, and N the total
number of samples.
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Spectral negentropy Another interesting measure to characterize the
squared envelope spectrum is the spectral negentropy in the spectral
domain. Spectral negentropy proceeds from interpreting the (square
of the) instantaneous energy flow in a signal as a probability distribu-
tion [276]. Therefore, the definition of negentropy takes into consider-
ation the normalization of the energy flow €. The spectral negentropy
is the negative of spectral entropy and is defined in the time domain

- Ale = —H = <<E§>l<<8>)> 29

In the spectral domain this becomes:

LV IEWE (@
ae= e = (et () e

The negentropy in the time domain quantifies impulsive signal con-
tent, much like the kurtogram (Eq. 4.26 is actually a weighted version
of kurtosis). The negentropy in the spectral domain on the other hand
quantifies the repetitive or cyclostationary signal content. It is pos-
sible to combine the two to obtain the averaged spectral negentropy.
The weighted average of the spectral negentropy in the two domains
reaches its upper bound when we just take the normal mean of the
two quantities. The average spectral negentropy is defined as:

1 1
Alijy = 50lc+ S AL (4.28)

Spectral flatness One of the measures to characterize a spectrum is
the spectral flatness or tonality coefficient. Spectral flatness provides
a way to quantify how noise-like a spectrum is. The maximum spec-
tral flatness of 1 indicates that you have a pure white noise spectrum,
while a low spectral flatness (near zero) indicates a 'pure tone’ which
shows up as a discrete peak in the spectrum. This concept can be re-
lated to the squared envelope spectrum since fault modulations are
expected to show up as discrete peaks in the squared envelope spec-
trum (SES). Thus minimizing the spectral flatness, or maximizing the
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inverse, corresponds to finding the filter that produces the most ‘pure
tone’-like SES. The spectral flatness (SF) of the SES is calculated by
dividing the geometric mean by the arithmetic mean of the SES and is
given by:

VTG Ec(n)| ok TN tn((Ex(m)])

SF = =
N Easo [Ex(m)]  § Lo |Ex(n)]

(4.29)

42.3.2 Derivation of filter using {2-norm

The %-norm of the envelope spectrum E, is defined as:

L/ TatlEx(n)]?

b o B (430)

Rewriting using vector notation, gives:

n__ VEE (437
I Edeiag(‘Elx‘)Ex .

The denominator is obtained using following identity:

N N 2
L |Ex(m)] = g‘éxx(&)ﬁ = Eling(g B (432

Manipulating the numerator of Eq. 4.31 further, it follows that:

v/ E.HE, = ﬂ —E Hdlag(#)E (4 33)
x Lx E.IE, x E.IE, x

Eq. 4.31 can thus be rewritten in following form:

L E,Hdiag( ElHE )Ex
2 _ A (4.34)
I E, dzag(‘Ex‘)Ex
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Inserting Eq.4.5 in EQ. 4.34 allows to write the ratio in full:

HyH j; H
L _h X"diag(s )Fdzag(\/i)F diag(s?)Xh

L hWiXHdiag(s)Fdiag (- )FAdiag(s™)Xh (4-35)

|Ex|

The generalized Rayleigh quotient [291] can be recognized in Eq. 4.35.
Thus the #-norm is rewritten as follows:

I _ hHRxwl xh

2 _ 36
I~ W Ry ol (4.36)
with:
1
R = XHdine(s)Fdiag(———)FHdine(sH)X (4.37)
Rxw,x = XHdiag(s)Fdiag( ! )FHdiag(sH)X (4.38)

|Ex|

4.2.3.3 Derivation of filter using Hoyer Index

Since the Hoyer Index is essentially a normalized version of the %-
norm, the derivation is very similar. The Hoyer index of the squared
envelope spectrum E, is defined as:

Yo [Ex(n )I

_\/zn E(n)? f—l

Hoyer Index = (4.39)
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Rewriting Eq. 4.39 using vector notation results in:

VEFE, (440)

Hoyer Index = (VN —

VN -1

\F\;’i Edezag(| |)IEIJ.C

(4.£1)
(VN -1 J
Edeiag(\/LL)Ex — E,'diag( Elxl )Ex
= Bty (4.4:2)
diag (i )Ex
Edeiag( — E)Ex
= 1 (4.43)
Edezag(\/T)Ex

After some more rewriting, the generalized Rayleigh quotient emerges
again:

KHXH diag(s)Fdiag( \/@E ) Fdiag(s") Xh
Hoyer Index = r— N1 \oH .
h" X5 diag(s )Fdzag(\/m)lf diag(sH)X
(4.42)
So for the Hoyer Index we have the following end formula:
Hoyer Index = m (4.45)
with:
Ryw,x = XHdiag(s)Fdiag( VN ! )FHdiag(sT)X  (4.46)
E.PE, |El

Rxw,x = XHdiag(s)Fdiag( VN -1 VFHdiag(s"X (4.47)
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4.2.3.4 Derivation of filter using spectral negentropy

The spectral negentropy Al is the negative of spectral entropy and is
defined for the envelope spectrum as:

Aly — —Hy — < |Ex(a) |* ln<<|Ex(0¢)\2 >> (4.48)

(IEx(a)[?) "\ {|Ex(2)[?)
Rewriting again using vector notation:
__N 2, (|Ex(@)]?
E Hdzag(ln( 1B )E
== E HélE — (4.50)
X

This can again be written as a generalized Rayleigh quotient.

WHXHdiag(s)Fdiag(In( {2k ) FHdiag (sH) Xh

51
WA XHdiag(s)FFHdiag(sH)Xh (451)

Alp =

So for the spectral negentropy of the envelope spectrum we get:

H
Alp = ZHﬁix};Z (4.52)
with:
Ryw,x = XHdiag(s)Fdiag(In( <lE I2>))PHdzag( )X (4.53)
Rxw,x = XHdiag(s)FFHdiag(sH)X (4.54)

The spectral negentropy also has the useful property that it is al-
ways greater than zero and smaller than In(N):

0 < AIz < In(N) (4.55)

The same is valid for the negentropy in the time domain Al.. This is
proven in Appendix A 4.6.
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For the sake of completeness, also the derivation of the blind filter
formulatuion for the spectral negentropy of the squared envelope and
the averaged spectral negentropy is given.

Spectral negentropy of squared envelope The formulaforthe squared
envelope spectral negentropy is identical almost to the one of the en-
velope spectrum and is given by:

i 2
AL - edezag(ln(&))ex

.56
e e, (4.56)
Since there is no need for a Fourier transform matrix here compared
to the envelope spectrum, the formula for the Rayleigh quotient here
is consequently slightly simpler :

WHXHdiag (s)diag(In( &) )diag(sH) Xh

Al = .
Wi XHdiag(s)diag(sH)Xh (4.57)
So for the spectral negentropy of the squared envelope we get:
hHR h
Ale = # (4.58)
h RXWZXh
with:
2
Ryw,x = XHdiag(s)diag(In( <Ex2> ))diag(sH)X (4.59)
X
Rxw,x = XHdiag(s)diag(sH)X (4.60)

The maximization of this criterion however does not guarantee a an
informative envelope spectrum since it is a weighted version of kurto-
sis. Therefore, by itself, it might not be ideal to analyze non-impulsive
CS2 signal content.

Average spectral negentropy The weighted average of the spectral
negentropy in the two domains reaches its upper bound when we just
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take the normal mean of the two quantities. The average spectral ne-
gentropy is thus defined as:

1 1
AL, = EAIG + 5AIE (4.61)

Replacing Al. and Al with their Rayleigh quotients (where we
have used the symbol W to represent the weighting matrices), we get:

ALy = (4.62)

1 (thﬂwleXh hHXHWUth>
2 \WEXH Wy Xh * hEXHW,e Xh

Some restructuring gives:

AL — 1 (hHXH Wi XhhH XHWoe Xh + hH XHW, e XhhH XH W2£Xh>
1279 hH XHWo, XhhH XHW,e Xh
(4.63)
) hHXH [WleXhhHXH War + W1£XhhHXHW2€] Xh
=5 < (4.64)
hHxH [erXhhHXH WZE] Xh
hHR h

~1H
h RXWZ/]/th
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This equation can also be expressed in terms of the weighted correla-
tion matrices of the spectral negentropy in the two domains:

Ry, xh W Rxw, xh

AL = .66

V2T WHRxpxh | W Ry, xh (4.66)
_ hHRXWthhHRXWZEXh + hHRxlexhhHRXWZEXh (L} 67)

R Ry, xhhH R xw,, xh

hH |:RXW1€XhhHRXW2EX + RXWEXhhHRXWZEX] h

— (4.68)

hH [RXWZGXhhHRXWZEX] h
_ hHRXWl,l/ZXh (4.69)

~ hMRxw,, ,xh
The average spectral negentropy was not used in further analyses

since it was found to have a bad convergence behavior.

4.2.3.5 Derivation of filter using spectral flatness

The spectral flatness of the squared envelope spectrum (SES) is cal-
culated by dividing the geometric mean by the arithmetic mean of the
SES and is given by:

VITVGEe(n)] ok S5 ()

SF = - = — (4.70)
% ZnN:ol‘Ex(”” % Z,Z:]:ol’EX(n)‘
Rewriting this using matrix notation gives for the numerator:
2,5 YN Vin(|Es
e% Z,/,N;()l li’l(‘Ex(l’l)D _ |Ex(n)| eN Enfo n(l (n)|) (4.71)

|Ex(n)?
N Znlo In(|Ex(n)])
. Hg: e N &=n=0
= E,(n)"diag( ()2 )Ex(n) (4.72)
elIn(|Ex]))
| Ex|?

= EMdiag( )Ex (4.73)
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and for the denominator:

1 NZ:IIE )Hdzug(ME (n) (4.74)

) E

= Edezag(M)Ex (4.75)
N

The spectral flatness in matrix notation is thus given by:

. (In(|Ex]))
Edemg(e‘Ei‘z)Ex

SF = (4.76)
Hdlag( |Ex‘ )
which can be written as a Rayleigh quotient:
. n(|Ex|)) .
oF hHXHdiag(s)Fdiag (< |E 2 YFHdiag(sH)Xh _ hHRyy. xh -
hHXHdiag(s)Fdiag(%)FHdiag(sH)Xh hHRxw,xh
with:

H e o elm([Ex])) H . H
Rxw,x =X dzag(s)Fdzag(W)F diag(s™)X (4.78)

Rxw,x = XHdiag(s)Fdiag(“EI\’I(')FHdiag(sH)X (4.79)

The actual calculation is done by computing the largest eigenvalue
of the inverse of the spectral flatness since this corresponds to finding
the most sparse SES.

4.2.4, Overview of derived Rayleigh quotient filters

In total, six different blind filters are further investigated. Table 4.
presents a concise summary of the weights of the Rayleigh quotient
correlation matrices of these blind filters as to provide a quick means
for the reader to see the mathematical differences between the filter
formulations.
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TABLE 4.1: Overview of the Rayleigh quotient weights of
the different blind filters.

Indicator Wi W,
Envelope prediction error 1 AHA
p-norm PdMg(vﬁiﬁg)PH Fdiag(1g)F?
Hoyer Index Fdiag( E@Ex — g )FH | Fdiag( \/\/%)FH
Spectral negentropy Al Fdiag(In( <I£iii> ))EH FFH
Spectral negentropy Al diag(In( <Z§> )) 1
Spectral flatness Fdiag(eyréjﬁ)) )FH Fdiag(5x)FH

These weights are to be used in the expression of the Rayleigh
quotient to find the corresponding indicator as follows:
B hiXHdiag(s)Wydiag(s™)Xh
~ hHXHdiag(s)Wadiag(sH)Xh

RQ(h) (4.80)

4.2.5 Practical considerations

The maximization of the sparsity of the envelope spectrum and the
minimization of the envelope prediction error is based on the assump-
tion that the component responsible for increasing the sparsity or
predictability, is the potential fault signature. Therefore, it is recom-
mended to first prewhiten the signal such that the deterministic com-
ponents are removed before solving the maximization problem since
these components often introduce high amplitude discrete peaks in
the envelope spectrum and can cause erroneous convergence.

The calculation of correlation matrices Rxw,x and Rx,x includes
for some filters a Fourier matrix to calculate the envelope spectrum.
However, in the actual calculation this can be replaced by an FFT to
decrease the computation time and the memory requirements.
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The total duration of the computations will depend mainly on the
signal length and the chosen filter length. Since the matrices can be-
come quite large for long signals and filters, the number of multiplica-
tions and FFTs that need to be calculated can lead to long computation
times. Currently, the filter length is still chosen arbitrarily by visual in-
spection of the results, but future research will focus on automating
this filter length choice.

4.2.6 Extension for non-stationary angular speed cases

A potential extension of the envelope spectrum-based methodology
is to make the kernel of the Fourier matrix in the filter correlation ma-
trices dependent on angle. This way, the instantaneous angular speed
variations can be taken into account directly in the filter. This exten-
sion is not further investigated in this dissertation but it can be easily
achieved by means of the Velocity Synchronous Discrete Fourier Trans-
form (VSDFT) [300]. The Fourier matrix then needs to be reformulated
as follows:

r 6 8o o 6o .
6y fre~ 701 f1e7701% fre 1010k -1
F ! :
- ® 0, e éne_ﬁ”ﬂk éne’jG”QKfl
g ; _je Q ; _je o —j6, Q
Lo nNo1 O n_qe PL-N-121 4,y qe PL-N-1D% 4y je PL-N-19k-1 ]

(4.81)

with 6, = XL_ 0(n), Q(k) the vector of orders for the representation
of the order spectrum, and the normalization factor © = L_,60(n).

An alternative approach would be to resample the signal to the
angular domain before passing it to the filter optimization.

4.2.7 Extension for single-input multiple-output (SIMO) systems

Similar to the description in [288], the indicator calculations described
here can also be extended for the case when there is more than one
acquisition channel that measures the vibration response. The pro-
posed approach allows a fairly straightforward extension to the case
where one has Q responses x,. Each response x, that is filtered by h,,
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can be summed together to return an estimation of the signal of in-
terest s. The iterative procedure using the Rayleigh quotient can still
be used for the SIMO case. The only adaptation necessary is of the
correlation matrices and the filter vector.

Rxw, x and Rxw,x need to be expressed as cross-correlation ma-
trices:

Rxwx = Rywg (4.82)
Rawq '

with R,w, the weighted auto-correlation matrix of x; and the off-
diagonal matrices are the weighted cross-correlation matrices of x,
and x;. The filter h then becomes:

hy

h=h, (4.83)

The g'" contribution to the signal of interest s is then calculated as:

with X, the Toeplitz matrix of x, as defined in Eq. 4.2. Thus, the overall
signal of interest s is then found by:

s = Z;Q:lsq (4.85)

4.3 Simulation analysis

To validate and illustrate the proposed approach, two simulated cases
are first considered. To add some point of reference, the performance
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of the proposed approach with the different sparsity indicators is com-
pared to time-domain blind deconvolution filtering based on Mini-
mum Entropy Deconvolution (MED), ICS2, and the time-domain spec-
tral negentropy. Two cases with cyclostationary source signals are ex-
amined:

« Case 1: Periodic impulses with Gaussian distributed amplitudes

« Case 2: Periodic impulses with Gaussian distributed amplitudes
and Gaussian jitter on the impulse period

These two cases are the same first two cases as in [288] to provide
additional reference for comparison. The periodic impulse signal s; is
convolved with the impulse response function (IRF) ¢; s and the Gaus-
sian noise with ¢; ,. The generated signals are shown separately in
Fig. 4.6. Instead of only analyzing a single simulation though, the addi-
tive Gaussian noise is varied in signal-to-noise ratio (SNR) from -80 dB
to 0 dB to assess the trending behavior of the filters. The overall vari-
ance of the full signal is kept constant. For the time-domain blind
filters, a filter length of 40 samples is used, while the sparsity-based
spectral filters use a filter length of 20 samples. The maximum number
of iterations is set to 50. Preferably the filter lengths are short to de-
crease computation time and improve the convergence of the filter. At
the same time, the filter lengths cannot be too short since they need to
be able to effectively suppress unwanted frequency content. Currently
these values are thus still chosen arbitrarily, but in the future, effort
should go into investigating automated approaches for choosing the
filter lengths.
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—— Source signal of periodic impulses
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FIGURE 4.6: Input signals used for simulation case 1:

(Top) Periodic impulses with Gaussian distributed am-

plitudes s; , (Bottom-left) after convolution with IRF

g1, (Bottom-right) Additive Gaussian noise after con-
volution with IRF g7 ,,.

Figure 4.7 shows the resulting indicator evolutions from -80 dB to
0 dB SNR for the first case. It can be seen that in this particular case
six out of eight filters show a significant increase at approximately -
38 dB. Only the LP-envelope filter and the spectral flatness filter have
a significant delay in feature value change.

To inspect the results further, Fig. 4.8 displays a color map of the
squared envelope spectra for the first case. The envelope spectra of
the time-domain filters (ICS2, MED, and time-domain negentropy) ex-
hibit clear harmonics of the fault frequency at 4 Hz for higher SNRs. In
contrast, the envelope spectra of the sparsity-based filters and the LP-
envelope filter exhibit the first fault harmonic at 4 Hz but also a lower
frequency component at 0.4 Hz that is higher in amplitude. This is due
to the envelope spectrum of the simulation signal containing a very
low frequency modulation due to the employed Gaussian distributed
amplitudes of the periodic impulses. Additionally, this low frequency
modulation increases the sparsity of the envelope spectrum. The only
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exception is the spectral flatness filter that appears to be rather un-
stable with respect to the SES but does filter out the 4 Hz harmonics.

Lastly, the filtered signals of case 1 are shown in Fig. 4.9 at the SNR
of -19 dB, similar to the comparison of signals shown in [288]. The
amplitude of the signals has been normalized between -1 and +1. It
turns out that the time-domain filters deconvolve the periodic im-
pulse train of the input source signal, while the envelope spectrum
sparsity-based filters extract the periodic impulse train after decon-
volution with its IRF. This result makes sense considering that the most
sparse envelope spectrum is that of a signal with a pure sinusoidal am-
plitude modulation. A Dirac impulse train however results in an enve-
lope spectrum that exhibits multiple harmonics which decreases the
sparsity as compared to a single discrete peak. Therefore the sparsity-
based methods filter out the impulse train after convolution with the
IRF which leads to a sparsity that is in-between that of a pure sinu-
soidal modulation and that of an impulse train. The only bad result
is produced by the LP-envelope filter in this case, which is unable to
filter out any meaningful signal at any SNR below -13 dB.
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FIGURE 4.7: Trending of the different indicators for simulation case 1.
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Negentropy in the time domain
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FIGURE 4.8: Trending of the normalized squared envelope spectra for sim-
ulation case 1. The fault frequency of interest is 4 Hz. (Black = o, white =

1)
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FIGURE 4.9: Time waveforms at -19 dB SNR for simu-
lation case 1. The amplitudes have been normalized
between -1 and +1.
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The second example investigates the case where the fundamental
fault period of the impulses fluctuate due to Gaussian jitter. The re-
sults are similar to the first case since the jitter only impacts the filter-
ing potential of the sparsity-based filters slightly. Figures 4.10, 412, 411
display respectively the indicator trends, the envelope spectra color
maps, and the filtered time waveforms at -19 dB. In case the jitter
would be chosen to have a larger value, it can be expected that the
jitter of the fault period would cause the discrete envelope spectrum
peaks to spread out over multiple frequency bins and thus reduce the
sparsity of the envelope spectrum.
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FIGURE 410: Trending of the different indicators for
simulation case 2.
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FIGURE 411: Trending of the squared envelope spectra
for simulation case 2. The fault frequency of interest
is 4 Hz. (Black = o, white = 1)
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FIGURE 412: Time waveforms at -19 dB SNR for simu-
lation case 2. The amplitudes have been normalized
between -1 and +1.
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4.4 Experimental analysis & results

The proposed approach is applied on vibration signals from the Prog-
nostics Data Repository of NASA as provided by the Center for Intelli-
gent Maintenance Systems (IMS) of the University of Cincinnati [168].
This data set was measured during a run-to-failure experimentin which
a bearing experienced an outer race fault. The bearing test rig, as
shown in Fig. 443, consists of a shaft coupled to an AC motor rotating
at 2000 RPM. A radial load of 2700 kg is applied. Four Rexnord ZA-2115
bearings are mounted on the shaft together with high-end accelerom-
eters. In total three run-to-failure experiments were conducted where
one second measurements were recorded at a sample rate of 20 kHz
every 10 min. The approach described in this chapter is examined
on the second data set containing 984 measurement samples and in
which Bearing 1 failed due to an outer race defect.

U Radial Load U Thermocouples
[ ] [ ] |_|

AW s e ¢

| Bearing 2 | | Bearing 3 | Bearing 4

dijiRs=]

FIGURE 413: Bearing test rig [301] of the IMS dataset.

Again, all filters used in the simulation analysis are employed here
to provide some reference for comparison of the methods’ perfor-
mance. The characteristic fault frequency of the outer race is approx-
imately 236 Hz and is thus used as input for the ICS2 filter. The filter
length is set at 20 samples and the maximum number of iterations is
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50. Theoretically the ICS2 filter should be most capable in tracking sig-
nal signature changes due to the fault emergence since it tracks the
fault frequency modulation directly.

The results shown in Fig. 414 seem to confirm this theory. The ICS2
filter manages to already show a rise in ICS2 indicator at the start
of day 4. The MED filter and the time-domain negentropy filter per-
form badly which comes as no surprise since it was already proven
in [302] that kurtosis or other indicators tracking non-Gaussianity per-
form badly for this particular data set. The signal is in fact already
non-Gaussian from the start of the test. These two filters therefore
underperform in effectively tracking the fault in this case. The LP-
envelope filter does not seem to perform that well either based on
the relative prediction error evolution. It showcases a slight decrease
starting on day 5, but a significant change can only be observed after
day 6. The envelope spectrum sparsity-based filters on the other hand
suggest the increase of mainly cyclostationarity of the signal due to
the fault. Apart from the spectral flatness filter, the sparsity-based
filters exhibit a sudden increase in indicator value around the start
of day 5. As described in [302], the degradation of the bearing mainly
manifests itself by a significant surge in cyclostationarity and not non-
Gaussianity. The spectral flatness filter exhibits more outliers after day
4 but does not display any significant trend in feature value.
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FIGURE 4.14: Evolution of the indicators after filtering
with the six different methods on the IMS data set.
(Top row, left to right) ICS2 filter, MED filter, Negen-
tropy in the time-domain filter. (Bottom row, left to
right) Filters based on respectively the negentropy, the

%-norm, and Hoyer Index of the envelope spectrum.

Theincrease in envelope spectrum sparsity means that a dominant
discrete peak or set of discrete peaks should show up in the envelope
spectrum. Figure 4.15 shows a waterfall colormap plot of the envelope
spectra as a function of time from 0 Hz to 500 Hz. The fault frequency
at 236 Hz can be detected clearly starting from day 4 for the ICS2 filter,
and from day 5 for the sparsity-based filters. Surprisingly, both the LP-
envelope and the spectral flatness filter manage to still filter out the
236 Hz fault frequency despite not showcasing any significant indicator
increase. This might indicate that their feature definitions are not that
well-suited for trending purposes, although more in-depth research
needs to be done in order to rule this out. Lastly, the MED and SE
negentropy filter perform the worstin enhancing the fault frequency in
the SES, which is in correspondence with their feature value evolutions
of Fig. 4.14.
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FIGURE 4.15: Waterfall plots of the normalized enve-
lope spectra after filtering with the six different meth-
ods on the IMS data set. (Top row, left to right) ICS2
filter, MED filter, Negentropy in the time-domain filter.
(Bottom row, left to right) Filters based on respectively

the negentropy, the %-norm, and Hoyer Index of the
envelope spectrum. (Black = o, white = 1)

4.5 Discussion

The simulation and experimental results showcase the potential for
condition monitoring using a blind filtering approach of vibration sig-
nals without any prior knowledge of the fault frequencies. The simu-
lation results indicate that filtering based on the sparsity of the enve-
lope spectrum can potentially outperform traditional time indicator-
based filtering approaches such as MED. This is especially so when the
fault signature introduces cyclostationarity in the signal which is de-
tected effectively by the envelope spectrum. A limitation of kurtosis-
based filtering is exemplified for the case when the fault impulses
have a high repetition rate and do not fully decay before the next im-
pulse. In this case the kurtosis will only be affected slightly due to the
lack of strong non-Gaussian behavior.
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Another significant difference in the way the sparsity-based filters
function as compared to more conventional blind deconvolution fil-
ters such as MED is the fact that the proposed filters purely try to
maximize a certain property of the signal. This means that they do
not attempt to recover source signals (e.g. repetitive impacts), sepa-
rate signals from a mixture, or denoise the signal. This is a different
blind filtering perspective than typically used in the past. As a conse-
quence, the user needs to keep this property in mind when analysing
the results since the filtered response might not accurately represent
the signal of interest, rather a distorted version of it that maximizes
the used criterion. Nevertheless, the experimental applicability of the
suggested approach is apparent since the envelope spectrum is one
of the most prevalent tools in vibration-based condition monitoring.

The experimental application illustrates the sensitivity of the pro-
posed approach to cyclostationary sources. While the sparsity-based
filters are slightly slower in detecting the fault than the ICS2 filter, they
still manage to track the fault accurately without any knowledge of the
actual bearing fault frequency. The results suggest as well that look-
ing at the envelope spectrum sparsity of the filtered signal could be a
reliable blind tracking measure for the amount of cyclostationarity in
a signal. Lastly, the results indicate that more research is necessary to
investigate which sparsity indicator performs best in filtering out and
tracking cyclostationary faults.

The proposed approach employs a powerful new way of looking at
the combination of blind filtering and the envelope time signal and
spectrum. As is the case for almost every method however, there are
some drawbacks or hindrances that can negatively influence results.
The main difficulty in using this type of filters resides in the choice for
the filter length. This length can impact the results and the compu-
tation time significantly. Obviously longer filter lengths increase the
computation time, but they can also lead to slower convergence or
non-convergence of the filter coefficients. The latter can be especially
troublesome if the indicator values oscillate strongly due to this non-
convergence. Therefore it is recommended to keep the filter length
short, while maintaining the capability of the filter in suppressing un-
wanted frequency content.
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Some additional side-notes about this sparsity-based approach
can be made. While the goal of the method is to maximize the sparsity
of the envelope spectrum after filtering, it is assumed that the fault
content is localized in a frequency band or a limited set of frequency
bands. This means that even though a more sparse envelope spectrum
is obtained after filtering, it still contains the modulation sidebands
since it is assumed they modulate the same frequency region as the
one the fault occupies, and thus they cannot be filtered out by simple
frequency filtering. Nevertheless, it is possible that the filtering can
alter the modulation sidebands as compared to the source signal of
the fault. This assumption also implies that the performance of the
method can suffer significantly if there are other modulating or im-
pulsive signals occupying the same frequency range as the signal of
interest, such as electromagnetic interference (EMI) signals (from e.g.
variable frequency drives) or vibrations due to cavitation in pumps.
Some caution is thus required when interpreting the results of the
method.

It is in any case recommended to track the sparsity of the enve-
lope spectrum over time such that a reference is available for when
the sparsity increases due to an emerging second-order cyclostation-
ary component. This way, if an increase in sparsity is observed and
a frequency peak arises (or multiple peaks), the operator knows that
it is related to a cyclostationary source, which is often related to a
potential mechanical fault such as gear or bearing damage. To fully
determine the fault type and source however, more in-depth analysis
is still required.

Despite this obstacle, this chapter hopes to pave the way for fur-
ther research in novel blind filtering approaches for vibration monitor-
ing. The Rayleigh quotient iteration framework detailed in this chapter
isthe main tool responsible for the ease of implementation of the pro-
posed filters. Yet this does not mean other approaches are not viable.
A future improvement could be to reduce the sensitivity to the filter
length and improve the convergence behavior.
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4.6 Conclusion

This chapter investigates novel blind filtering techniques that utilize
the predictability of the envelope and the sparsity of the envelope
spectrum to track the presence of faults with a second-order cyclosta-
tionary signature in vibration signals. The envelope prediction error
and four sparsity measures on the envelope spectrum are used to de-
rive filter formulations that are applicable in a methodology based on
Rayleigh quotient iteration. This approach allows for fast computation
and straightforward implementation of the proposed filters.

Both the simulation and experimental results indicate the poten-
tial of the proposed blind filters in tracking the emergence of cyclosta-
tionary sources. Three out of four suggested sparsity measures per-
form in a similar manner with regards to their rise in absolute values
and to their corresponding filtering behavior. When the fault signal
does not exhibit strong impulsive content, the described approach
outperforms conventional blind deconvolution methods such as MED
and its variants.

Future work can focus on improving the stability of the results so
that filter length plays less of an influential role in the computation
time and convergence behavior of the algorithm.
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Appendix A

It can be proven that the spectral negentropy is always greater than
zero and smaller than In(N):

0 < AIg <In(N) (4.86)

Starting from the Shannon (or information) entropy H, the follow-
ing is valid:

- Zpil”(Pz‘) > 0and Zpi =1 (4.87)

with p; a discrete set of probabilities. |

Thus for p; = Z}”Efglz the following is true:
iZ}VEliE-Pl”(ngElﬁlz) =0 (4.88)

N 2 1IE.|12

*Z T gvlw B Ng;i'&lz) <0 (1.89)
<<I§jl§>ln<<l§:lz>> + <:g:i>l"(;)> <0 (4.90)
<<:1§§Iz>l”( <I§z:§>)> + 2:;::21”(;,) <0 (4.91)
LB e
(iEr g < 00 (u53)
(4.94)

It is also known from Kullback-Leibler divergence (or relative entropy)
that:

Dk(pllq) = szln ) > 0and sz =1, qu =1 (4.95)
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Thusfor p; = |E: |1|15 B and taking a uniform distribution for g with g, =

the following is true:

N |E? |Ei|*
In >0 (4.96)
;ZZN |Ei|> (Z%V |Ei|2%)
N |E]? IE'I2
*EzNus " Em) 2 (497)
N |E? IEiI2
ZlelElzl |E|2>) >0 (4.98)
|Ei |Ei|* >
In >0 (4.99)
(e R
; _ [/ |E? [Eil> \\.
Therefore, with AIx = <<|E |2>ln(<IE,I ))>.
0 < AIg <In(N) (4.100)

The same is thus also valid for the negentropy in the time domain Al.
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Chapter s

Fault detection & diagnosis

54 Introduction

The previous chapters discussed methodologies that focus on pre-
processing vibration signals such that they become easier to utilize
for fault analysis. The reduction in influence of speed fluctuation was
discussed in these chapters, next to separation into deterministic and
stochastic content, and spectral filtering. This chapter details the one
remaining and typically last step in a full vibration analysis procedure,
namely that of the fault identification. This consists of translating the
preprocessed signals into information that is understandable for a hu-
man end-user. Normally, this is accomplished by calculating scalar
condition indicators on the preprocessed signals. A concise overview
is given in this chapter of the possible options to compute such con-
dition or health indicators.

Ideally, an end-user needs to inspect only a few summarized, high-
level graphsin order to get a quick idea about the health of a machine.
However, due to the complexity of machinery nowadays, this is often
a difficult feat to achieve. Potentially, the condition of every machine
subcomponent is tracked over time leading to a plethora of health in-
dicators. For this reason, the usage of machine learning techniques
is employed to reduce the number of indicators to a manageable set
of health indicators. This chapter therefore illustrates the machine
learning approach developed to tackle this issue.
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The structure of this chapter is slightly different from the previ-
ous chapters in the sense that there is no large body of content in-
troducing and investigating a new signal processing methodology. In-
stead, the state-of-the-art in time and frequency domain indicators
for vibration-based condition monitoring is discussed in sections 5.2 & 5.3.
Nevertheless, a minor new development that was derived during this
PhD work is briefly presented in sections 5.21 & 5.3. The majority of
the performed investigative work is presented in section 5.5 about the
hybrid physics and model-based automation approach used in major
experimental data analysis cases.

5.2 Time domain approaches

Current practice in condition monitoring systems often revolves around
tracking time-domain statistical indicators [303-305]. The advantage
of using simple scalar time-domain indicators is that no prior knowl-
edge about the characteristic fault frequencies is required and thus
the number and complexity of the components is not taken into ac-
count. This simplifies the analysis procedure significantly, with the
trade-off being that it does not allow pinpointing which component is
exhibiting the anomalous behavior. Not having any knowledge about
the exact location of a fault is a downside, but in an early analysis
stage it is often easier and quicker to have a straightforward overview
of which measurement sensor is picking up faulty behavior. Usually
these time-domain condition indicators are trended over time such
that the potential fault evolution can be followed up on.

Examples of commonly used time-domain indicators are given in
Table 5.1 [302, 306-314]. While many more indicators can be found in
the literature, it is not the intent to give a full exhaustive overview
here. These time indicators can all be used to characterize trends in
measured vibration signals.
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TABLE 5.1: Overview of commonly used time-domain condition indicators in
vibration analysis.

Indicator Expression
RMS & Dl 22(n)
Crest factor M
. N(Z 19;( )
i MR C e I
Kurtosis T M 3
Moors kurtosis (E7—Es)+(Es—E1)
Ee—E,
Peak-to-peak Xax — Xmin

Peak energy index A /Nip Yol x2(n)

1 N
Form/Shape factor Vn Ln=1 ¥ (1)

N Lot [x(n)]
Impulse factor — Ymer
( ol lx(n |)2
Margin factor %2
( n 1 |)
Skewness R X (x(n )—x)
[t £ (x()—%)2]
Higher-order moments g Tl [x(n)]
o I
1 Z d(
FM4 i\, 1(d(n 7)2
2t tao-m ]
NAL (r(n) r(n ) i
[ Zm lNEn 1(?’(}’1,}1’[ ))2]
4
NB[|. N):n 1(xenv ”) xenv( )) ,
[ Zm 1N2n 1(xmv( m)— xenv(m))z]

(HnNzl 5(”)>1/N

Smoothness index
%25:15(”)

Shannon entropy — Y p(xa)log(p(xn))
Renyi entropy =log(Xh1 p(xn)®)
Sample entropy See [315]
Mean absolute difference Lo x|
N(N-1)

With x(1) the sampled vibration signal, E; the i*" octile, N, the number of peaks above a
chosen threshold, d(n) the difference signal [308], (1) the residual signal [308, 313], M the

time record number in the run ensemble [308, 313], x..., the envelope signal.
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5.21 Frequency filtering

One preprocessing technique that is often added right before the in-
dicator calculation, is frequency filtering. In order to add sensitivity of
the statistical indicators to frequency-localized phenomena such as
resonance amplification of bearing or gear faults, vibration signals can
be filtered using a set of band-pass filters. While many different fre-
quency regions can be defined as pass-bands, an interesting filtering
approach was introduced by Antoni by means of the kurtogram [262].
The kurtogram filterbank concept was already introduced in Chapter 4
and shown in Fig. 41. The dyadic binary-ternary frequency grid for the
filterbank used by the kurtogram can however be reused for other in-
dicators aside from kurtosis. This idea was explored during the PhD
work and an example of the work can be seen in Fig. 5.1. This figure
shows four different indicators calculated with a binary-ternary filter-
bank decomposition up to level 7, on a signal consisting of weak repet-
itive transients hidden in stationary white Gaussian noise. The spec-
tral content of the transients is in the frequency band from 0.15 Hz
to 0.19 Hz. The four chosen indicators highlight these impulsive tran-
sients nicely, but only thanks to the additional frequency filtering. In
theory, every single indicator of each frequency band in these 2D maps
can be trended over time, yet again reiterating the need for a compre-
hensive automated indicator assessment methodology.
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FIGURE 5.1 Different indicators calculated with
the binary-ternary filter tree decomposition concept
(based on the kurtogram [262]).

5.2.2 Regarding the abundance of features

All the indicators mentioned in this chapter can be calculated on both
raw measurements or preprocessed vibration signals. This optional
choice for additional preprocessing is one of the main reasons why
monitoring a complex machine brings about immense numbers of con-
dition indicators.

As a quick example, assume that a machine operator or end-user
does not know which preprocessing methodology is optimal to de-
tect faults in his machine (which is not such an unrealistic scenario).
Therefore, to keep his options open, he decides to calculate a set of
ten indicators on each preprocessed signal and on the raw data. If his
software allows to do four different preprocessing techniques, this al-
ready leads to 50 different condition indicators. If certain techniques
can be combined with one another, then the number of indicators in-
creases even further. In case the end-user operates a fleet of machines
instead of just one, this number also gets multiplied with the number
of machines in the fleet.
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It is thus easy to see that it becomes unfeasible very quickly for
a human operator to inspect every single indicator trend. This phe-
nomenon is the main reason and motivation for the methodology pre-
sented in section 5.5.

5.3 Frequency domain approaches

This section describes diagnostic approaches that are primarily based
on the tracking of amplitudes in the frequency domain. The main rea-
son why the use of spectral methods is so popular in condition moni-
toring is that it not only allows for fault detection, but also for fault di-
agnosis. A rotating mechanical subsystem normally has a set of known
characteristic frequencies associated with it. Typical examples of ma-
chine components that allow for fairly straightforward calculation of
their characteristic frequencies are shafts, gears, and bearings. These
frequencies provide the necessary means to an operator for pinpoint-
ing potential mechanical defects of the machine components. For ex-
ample when a bearing has an inner race defect such as micropitting,
this defect shows up at the corresponding ball pass frequency of the
inner race, often abbreviated as BPFI. In general, bearing vibrations
are described with four fundamental characteristic frequencies, each
one related to one of their mechanical parts, i.e. inner race, outer race,
roller cage, and roller. The expressions necessary to calculate these
four frequencies are given in Table 5.2. Gears have a different set of
characteristic frequencies that can be calculated. These are given in
Table 5.3 and are related to the gear meshing process.
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TABLE 5.2: Characteristic bearing frequencies.

Name Expression
FTF £(1- B—; cos(¢)
BPFI Sw(l+ g cos(¢)
BPFO %w(l — g—; cos(¢)
BSF a1 (1= (5:)?[cos(9))?)

With FTF the Fundamental Train Frequency, BPFI the Ball Pass Frequency of the Inner ring,
BPFO the Ball Pass Frequency of the Outer ring, BSF the Ball Spin Frequency, w the rotation
speed, D, the diameter of the roller, D, the pitch diameter, N, the number of rollers, and ¢ the
contact angle.

TABLE 5.3: Characteristic gear frequencies.

Name Expression
Gear rotational frequency fq wg
Pinion rotational frequency f;, wp
Mesh frequency f, weNg or w, N,
Assembly phase passage frequency f, {\,—’”
Tooth repeat or hunting tooth frequency f;, IJ\(ITZZtI]p

With N, the number of teeth on the pinion, w, the pinion rotation speed, w, the gear rotation
speed, N, the number of gear teeth, and N, the product of common prime factors of N; & Nj,.

While both gears and bearings have well-defined fault frequencies,
the detection of these fault frequencies often happens in different
ways due to the inherent nature of the mechanical processes behind
gear and bearing fault phenomena. The main reason for this difference
in detection approaches can be attributed to the slip phenomenon
that occurs during the rotation of a bearing. While the roller cage of
a bearing guides the rotation of the rollers, it does not physically lock
them at the rotation speed of the shaft the bearing is mounted on. The
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rollers are actually allowed to experience slip between themselves
and the race surfaces. Therefore, the rotation speed of these rollers
is slightly asynchronous with the rotation speed. When a fault such as
pitting then occurs on one of the races, this slip introduces jitter on
the fundamental period of the impulses caused by the pitting. This jit-
ter causes the discrete spectral peaks associated with the frequency
signature of the fault to smear, leading to a significant decrease in
amplitude in the spectrum. Gears on the other hand are locked at the
rotation speed due to the shaft mounting and the gear meshing. Gear
signals are therefore considered to be purely periodic or determinis-
tic. In contrast, bearing signals are normally characterized as being
second-order cyclostationary, meaning they have a periodic autocor-
relation. This difference in signal nature lead to the development of
different diagnostic methodologies.

For gears, approaches for fault detection usually focus more on
tracking the amplitudes of harmonics and sidebands in the spectrum
orthe cepstrum, while for bearings more cyclostationarity-based meth-
ods tend to be employed. Nonetheless, also for gear faults it is rec-
ommended to look at the cyclostationary signature of a signal since
distributed gear faults can also significantly impact the modulation of
the deterministic gear signals. An example of how sidebands evolve
with the type of the fault, is presented in Fig. 5.2. A local fault on one
of the gear teeth will introduce low-level sidebands in the spectrum,
whereas distributed gear damage exhibits higher level sidebands.
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FIGURE 5.2: Comparison of time and frequency domain
signatures of local and distributed faults in gears.

The presence of modulation sidebands is also the main reason why
the usage of cepstrum-based techniques is popular for gear diagnos-
tics. Since the cepstrum groups together equally spaced harmonics,
it provides a very effective means to track the average amplitude of
sidebands. By tracking the amplitude of the first rahmonics of side-
band or harmonic families, the overall condition of the gear can be
trended in a simple manner, instead of having to track multiple peaks
in the spectrum simultaneously. Another benefit of looking at the cep-
strum rahmonics is the accuracy of the sideband frequency estimation
thanks to the averaging effect.

5.31 Cyclostationarity

Nowadays, probably the most popular tools for the detection of bear-
ing faults are based on the theory of cyclostationarity. Generally speak-
ing, the cyclostationary properties of a signal are interesting from a
condition monitoring perspective since they tell us something about
the modulations present in a signal. Knowledge of the modulations
in a signal is valuable considering that mechanical faults in a rotating
system typically introduce modulations. This includes bearing faults.
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Cyclostationary signals with different cyclic frequencies also allow for
signal separation, similar to what is presented in Chapter 3. In the liter-
ature, most research focuses on the detection and analysis of second-
order cyclostationary signals, since this class of signals encompasses
the majority of fault signatures encountered in mechanical rotating
systems. Briefly put, a first-order cyclostationary signal has a peri-
odic mean value (e.g. a sine wave plus noise), whereas a second-order
cyclostationary signal has a periodic autocorrelation (e.g. amplitude-
modulated white noise). In other words, a second-order cyclostation-
ary signal has a periodic energy flow with repetitive bursts of energy.
An example of the latter signal and its corresponding amplitude spec-
trum is presented in Fig. 5.3 (the axes are not specified here since the
figure is solely meant as an example). It should be noted that cyclo-
stationarity is not limited to the first and second-order statistics of a
signal, there are also higher moments (and cumulants) that can de-
scribe signals. A full exploration of cyclostationarity is not the focus
of this chapter, but for the interested readers, there is a large body of
literature available describing in much more detail the cyclostationary
theory (e.g. higher-order cyclostationarity) [316-321].

Time Frequency

FIGURE 5.3: Example of a second-order cyclostationary
signal (i.c. amplitude-modulated white noise) (Left) in
the time domain, (Right) in the frequency domain.

Looking at Fig. 5.3, it can be observed that while the white noise
clearly has a visually distinguishable sinusoidal modulation, this is
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not observable in the amplitude spectrum at all. In this case, the
carrier is white noise so the sidebands are effectively smeared out
over the entire spectrum. If we would calculate the autocorrelation of
the spectrum however, we would observe peaks at the corresponding
cyclic frequency of the modulation, meaning the frequency bins of the
white noise are correlated with each other despite being visually in-
distinguishable. This phenomenon is detailed further in the paragraph
about spectral correlation in section 5.3.1.1.

5.311 Cyclostationarity analysis methods

Envelope analysis Probably by far the most popular approach for
the analysis of such second-order cyclostationary signals (and cor-
respondingly for bearing diagnostics) is envelope analysis. The en-
velope of a signal is considered to be any function that ‘encloses’
the energy variation in the signal. By taking the modulus of the an-
alytic version of the signal, obtained through the Hilbert transform,
the envelope time waveform can be found. Usually the envelope is
squared (effectively done by multiplying the analytic signal with its
conjugate) before taking the Fourier transform to analyse its envelope
spectrum [159]. Figure 5.4 shows the amplitude envelope obtained
through the Hilbert transform of the example signal of Fig. 5.3 and the
corresponding squared envelope spectrum (SES). The cyclic frequency
of the modulation is easily detected, indicating the efficacy of the SES.

It should be noted that when the signal of interest is a narrow-
band signal, e.g. when bearing fault impulses are amplified by housing
resonances, the signal is usually band-pass filtered at the resonance
frequency band prior to amplitude demodulation.
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FIGURE 5.4: Envelope analysis of the example signal in
Fig. 5.3: (left) Envelope time waveform, (right) Enve-
lope spectrum.

Spectral correlation While envelope analysis has long proven its worth,
it provides only part of the available cyclostationary information in
a signal. Cyclostationarity actually generalizes envelope analysis in
the sense that it can remove the dependency on the frequency band
choice for the band-pass filtering. This is where the spectral correla-
tion density comes to the fore and a brief introduction of this quantity
is necessary.

The spectral correlation density SC(f) of a signal x(¢) is defined
as:

. . 1 o
SCx(f) ZAngrleTAf/Tfo(t;era/Z)fo(t;f—a/2)e j2at g
(51)

where « represents the cyclic frequency and f the carrier frequency.
From this definition it can be seen that SC{(f) is a density of correla-
tion between two spectral components spaced apart by « around the
central carrier frequency of f [319]. If a signal exhibits pure second-
order cyclostationarity, the SC%(f) is expected to have non-zero val-
ues parallel to the carrier frequency axis. A good example of such a
pure second-order cyclostationary signal is the signal of Fig. 5.3 (with
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no periodic carrier). The instantaneous autocorrelation and the spec-
tral correlation of this signal are shown in Fig. 5.5 & 5.6. The cyclic mod-
ulation of the white noise is clearly supported over the entire carrier
frequency range.
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FIGURE 5.6: Spectral correlation,

FIGURE 5.5: Instantaneous autocor-  obtained after a two-dimensional

relation as a function of time de- FFT over the instantaneous auto-
lay/lag and time samples. correlation.

In practice, the most used version of the spectral correlation den-
sity is likely the energy-normalized one, known as the spectral coher-
ence. It is defined as follows:

o SCE(f)
72 (f) = V/SCOU(f +a/2)SCA(f —a/2)

(5.2)

The spectral coherence % (f) ranges from 0 to 1 and forms a very use-
ful detection method for second-order cyclostationary signatures [287,
322]. It can also be seen as the spectral correlation of the whitened
signal.

Since the spectral coherence 7§(f) is a two-dimensional map, it is
often simplified by taking the average of the amplitudes over a carrier
frequency band. This is the so-called “enhanced envelope spectrum”
(EES):

fa
5P () = /f |x(e, f)| df (5.3)
1
This spectrum allows for easy tracking of the amplitudes of mod-

ulating frequencies in a signal and is thus often an effective tool in
condition monitoring schemes for bearing fault signals.
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5.31.2 Harmonogram

Based on the idea of extending the filterbank approach originally pro-
posed as the kurtogram in [262], another new frequency-based ap-
proach was developed to help in finding the optimal resonance fre-
quency band to demodulate a bearing fault. Similar to how the fil-
terbank can be employed for different statistical indicators (as pre-
sented in section 5.2.1), it is now used instead to find the frequency
band that maximizes the amplitude of a fault frequency of interest in
the squared envelope spectrum. Similar to the kurtogram, the signal
is filtered following a binary-ternary tree decomposition. Next, the
squared envelope spectrum is then calculated of the filtered analytic
signals and normalized between 0 and 1. Given the fault frequency «
of the bearing, a simple feature A(f,Af) is then computed on each
normalized SES as follows:

I
A(f.Af) = ;SESf,Af(i“) — Blia) (5.4)

with I the number of SES peaks that should be taken into account for
the calculation of the feature, and g a threshold calculated by taking
a moving average over the SES. Thus, the method tries to maximize
the envelope spectrum peaks while avoiding maximizing a noise peak
through the use of a threshold. Since the method employs the enve-
lope spectrum harmonics, the method is coined ‘harmonogram’. The
usage of this method is more envisioned to be an a-posteriori method
for fault analysis, rather than a means that can be used for trending.
The latter would imply calculating a harmonogram for every potential
fault frequency in a system, which would lead to long computation
times and many indicators to track.

The proposed method’s performance is illustrated on a simulated
outer race bearing fault signal. This bearing fault signal is polluted
with additive white Gaussian noise at an SNR of 5 dB. The sample rate
is 1 Hz and a signal of 1¢° samples is simulated. Also harmonics are
added at multiples of 0.02 Hz. A summary of the parameters for the
outer race bearing fault is given:

» BPFO =0.025 Hz
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* fresonance =02Hz
« damping { = 0.1
« random fault period jitter of 2%

Figure 5.7 shows part of the simulated outer race bearing fault sig-
nal and the resulting signal with the noise and the harmonics, as well
as the amplitude spectrum of the simulated signal.
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FIGURE 5.7: (Top) the simulated outer race bearing fault

signal, (Middle) the full signal with added white Gaus-

sian noise and harmonics, (Bottom) the spectrum of
the simulated signal.

Next, the harmonogram and the kurtogram (for comparison) are
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computed up to level 5 and shown in Fig. 5.8. It is clear that the har-
monogram succeeds in detecting the bearing fault resonance, whereas
the kurtogram is skewed due the harmonics and indicates an erro-
neous resonance band in this case. This is corroborated in Fig. 5.9
where the envelope spectra of the filtered demodulated signals is
shown for both approaches. The harmonogram SES has a distinctive
peak at the fault frequency of 0.25 Hz (represented by the red dotted
line), while the fault frequency in the kurtogram SES is entirely masked
by the harmonics.

It is worth noting that the performance of the kurtogram could
probably be improved by removing the harmonics prior to its appli-
cation by means of a discrete-random separation method. However,
the example presented here is for illustration purposes and indicates
the potential advantage of an approach like harmonogram for cases
when the deterministic component removal fails to properly separate
the harmonics.

Harmonogram Kurtogram
0.0 0.0 -1.25
-0.125
1.6 1.6 -1.00
—_ -0.100 —
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3 26 0.075 g 26
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FIGURE 5.8: The harmonogram on the left indicates the

resonance frequency band of the simulated fault at

0.2 Hz, while the kurtogram on the right is skewed and
fails to indicate the resonance band.
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FIGURE 5.9: Comparison of the demodulated envelope

spectra for the harmonogram (left) and the kurtogram

(right). The red dotted line indicates the BPFO fault

frequency at 0.025 Hz, while the 0.02 Hz peak corre-
sponds to the harmonic frequencies.

5.4 Regarding the domain classification

Some explanation is necessary as to why this chapter chooses to sep-
arate the concept of vibration indicators into the two separate classes
of time and frequency domain indicators. There are a couple of rea-
sons why the choice for this classification is made this way. First off,
in the majority of publications in the literature, you will find the same
or similar domain-based categories for condition indicators. Often a
set of indicators or a new indicator is introduced with the focus on
whether it is defined in the time or frequency domain. Even MATLAB
uses this exact same categorization in their Predictive Maintenance
Toolbox [323]. Another reason to use these two categories is because
of the intuitiveness. Often concepts get explained in the domain that
makes for the simplest explanation. For example, kurtosis or impul-
siveness is typically described from a time domain perspective since
it is much more instinctive to comprehend as compared to kurtosis in
the frequency domain.

Nonetheless, it is possible to also bring up counterarguments to
this classification into time and frequency domain. The main objection
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to it is probably that most indicators are quite easily interchangeable
between the time and frequency domain since the Fourier transform is
a linear and invertible transform. In fact, very recently another classi-
fication for condition indicators was proposed that does not utilize the
time and frequency domain partitioning. Instead it proposes to cat-
egorize condition indicators into two groups: one for characterizing
non-stationary behavior and one for non-Gaussian behavior [302]. It
turns out that most condition indicators are quantifying one or both
of these signal characteristics, regardless of which domain they are
calculated in. Examples of non-Gaussian indicators include kurtosis,
crest factor, or skewness. Indicators of non-stationarity are typically
related to the concept of cyclostationarity, e.g. the degree of cyclo-
stationarity. Taking all this into consideration, it would therefore also
make sense to adopt this alternative classification. However, to stay in
line with some of the previously done work, the former classification
of time and frequency domain indicators is used in this dissertation.

5.5 Data-driven automation

Now that we have established an overview of the most commonly used
methodologies for fault detection, we take a look at how we can start
to automate the inspection of their output results. Thanks to the re-
cent advances of machine learning, it has now become more feasible
to not only identify relevant condition indicators, but also relate them
to the operating regime of a machine for each measurement. It turns
out that most of the commonly used condition indicators are sensi-
tive to changes in the operating parameters and thus can lead to er-
roneous conclusions if they are not compensated for these changes.
This section about automation is the result of a collaboration with
the Artificial Intelligence department at VUB, and in particular with
Timothy Verstraeten and Ann Nowé. They did all the necessary steps
with regards to training the ML models and the anomaly detection.
Our joint research efforts examined the potential for using machine
learning methods to reduce the influence of strongly varying operat-
ing regimes. It illustrates how condition indicators can be combined
with machine learning (ML) techniques to allow for the normalization
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of indicators, making them independent of the operating regime, and
how it can provide a streamlined methodology for efficient early fault
analyses. Ideally, the provided indicators measure a certain property
in the vibration signal that is linked to a specific failure type in order to
provide the diagnostic ML models with physics-based and thus rele-
vant features. The meaning of physics-based used here, should not be
confused with physics-based modeling. The ML models are not linked
with any physics-based model, but use indicators that are based on
tracking certain physical phenomena in the monitored machine.

Currently, this research has mainly focused on automatic feature
reduction and automatic alarm thresholding. However, in future work,
further steps towards complete automation of the vibration signal
processing chain will be taken (e.g. automatically setting the input
parameters for the different methods).

5.51 Expected behavior modeling

As shown in the previous sections, various condition indicators can
be constructed from vibration data to represent the machine condi-
tions. Analysing these indicator values can help us to find anomalies
in the data, which may indicate failure. For example, when impulses
are found in a subset of the indicators in a particular time frame, this
can be reported to the machine operator, such that an investigation
of specific components can be carried out.

However, manually investigating a large set of features is tedious
work. Moreover, it is subjective in the sense that smaller trends may
be overlooked, or complex trends are not considered to be indicative
for an anomaly, even if it deviates from the normal trends. Therefore,
we opt for using ML techniques and statistics to objectively and auto-
matically annotate anomalies over the set of indicators.

In order to automatically detect anomalies, we first must define
what normal machine behavior is, such that deviations from this be-
havior can be detected. A potential way to achieve this is by modeling
the machine behavior by training a ML model using indicators of his-
toric vibration data under healthy conditions.
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5.5.1.1 Operating condition independence.

The health indicators can be made independent from the operating
conditions by performing k-means clustering on the operational data
(e.g. SCADA data). K-means is a machine learning technique that finds
k centroids, such that the squared distances between each data point
and any centroid is minimized [324]. Afterwards, each data point is as-
signed to its closest centroid, effectively clustering the data into par-
titions. To define the operating condition, we use operational param-
eters that are known to influence the machine’s vibrational behavior,
and then perform k-means on a large set of historic data. This cluster-
ing step makes sure that each condition indicator is objectively binned
into operating regimes, enforcing independence for later modeling.

5.5.1.2 Healthy condition model.

Per operating regime, we bin the data and can use techniques such
as linear Bayesian Ridge Regression [325] to map the operational pa-
rameters (e.g. rotation speed and power production) to a particular
feature. Bayesian Ridge Regression is a probabilistic approach to re-
gression with regularization. Essentially, it fits the linear parameters
(i.e. slopes and intercept) and inherent noise to the observed data,
while maintaining the uncertainty over the parameters. Formally, the
following model is used.

flx) =[x 1]w"

y(x) = f(x) +e
e ~N(0,0,1)
w ~ N(0,04I)

(5.5)

where x,y are operational parameters and associated observed sta-
tistical feature values, and oy, 0,, are respectively the regularizer and
observational noise. The frequently used vague inverse-gamma priors
[326] are chosen to model the uncertainty over o;, and oy, such that
the posterior estimations depend mainly on the observed data. For
modeling the machine’s healthy behavior, we are mainly interested in
posterior estimations of w (linear parameters) and ¢, (observational
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noise). Note that such a model is trained for each operating condition
and statistical feature separately.

The choice of this model has several advantages. First, once in-
dependence w.rt. the operating conditions is induced, the features
show either constant or linear behavior, which makes the linearity of
the model sufficient for our purposes. Second, the regularizer is of-
ten introduced when dealing with over-determined systems [327]. This
provides more robustness against unexpected phenomena (e.g. out-
liers) that are challenging for a traditional linear model to deal with.
Finally, a Bayesian approach maintains the uncertainties of the pa-
rameters in the face of small data sets. When only a few effective data
points are available, the linear weight parameters are heavily influ-
enced by noise, which makes the trend uncertain (i.e. many trends
can describe the observed data). Quantifying all types of uncertainty
properly is necessary for our anomaly detection mechanism, which
analyzes deviations from a healthy linear trend in terms of the noise
present in the model. As detecting a deviation from a normal linear
trend is meaningless when this trend is highly uncertain, this noise
should be properly quantified by taking both the observational noise
and parameter uncertainty into account [328].

5.5.2 Anomaly detection

The aim of the proposed approach is to predict failure by detecting
anomalies in the expected machine behavior. This behavior is mod-
eled using time frames of the operational data and statistical features
where the machine is known to be healthy.

We define an anomaly to be any observed data point that deviates
significantly from the expected behavior of the machine. Therefore,
for each operating condition and health indicator, an expected be-
havioral model is fitted. An alarm is raised when an indicator value
is B number of standard deviations away from the behavioral model,
where we define  to be the alarm level. In accordance with Eq. 5.5, for
a linear model f(-) with noise parameter ¢, associated with a specific
operating condition and health feature, the alarm level § is defined as

follows:
_ |y —E[f(x)]]
= | erten] )
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where x;,y; are in our case respectively the observed operational pa-
rameters and constructed feature at time ¢, and [E, V are the expec-
tation and variance operators. The expected value and variance of f
can be directly computed from the posterior weight parameters w in
Equation 5.5. Note that the denominator includes both the observa-
tional noise and the uncertainty of the model parameters, which is
important as mentioned previously.

To provide intuitive anomaly indicators, we set three alarm levels:
green (B < 2), yellow (2 < B < 4) and red (B > 4), which respectively
have values 0, 0.5 and 1. These thresholds can be chosen based on
qualitative investigations of the data. Additionally, we remove outliers
in the alarm time series by using a sliding windows and keeping the
median alarm level.

As a final step in our approach, we reduce the workload of the early
failure analysis by compressing the large set of anomaly alarms to a
smaller fused set per indicator type. For statistical time-domain indi-
cators, this step can improve the robustness of the alarms since they
are often expected to show similar properties of the potential failures.

Then, the maximum over all measurement channels per indicator
type is taken. This provides a fast warning that an anomaly is present
on any measurement channel. The fused alarms are values between
o and 1, which can be perceived as a severity indicator. For example,
if a fused alarm is close to 1, lots of features agree on the alarm level,
which makes the occurrence of an anomaly more likely.

5.5.3 Experimental application example

To give an example of how we use the described automation approach,
an experimental example is presented in which we process data of
four different wind turbines. Due to confidentiality reasons, the amount
of details is kept very concise.

Vibration sensors are distributed over the wind turbine drivetrains.
Data is sampled above 25kHz and acquired for approximately 10 sec-
onds at intermittent times each day. Eight vibration measurement
channels are processed using the tools of different complexity dis-
cussed in the previous section. In this example, only six statistical
time-domain indicators are calculated on the raw sensor data: RMS,
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kurtosis, peak-to-peak, crest factor, peak energy index, and Moors kur-
tosis. In the future we plan to expand this analysis to include both
the time and frequency domain indicators discussed in sections 5.2 &
5.3. In total 60 different processing pipelines, of the type discussed in
the previous section (cepstrum liftering and frequency filtering), are
computed to provide enhanced failure signatures. Subsequently, sta-
tistical indicators are derived for each of these pipelines. To allow
data-trending, intermittent data samples for a period of 5 years are

processed.

We target the detection of a bearing issue known to be present
in the slow rotating stage of one of the four wind turbines. The tur-
bines are in each other’s vicinity in the farm and believed to be loaded
in a similar way. As such indicator trends are compared to illustrate
deviations in behavior. Figure 510 shows the comparison between the
Moors kurtosis of the four turbines after the same processing pipeline.
Similarly, Fig. 511 shows the results for the crest factor after process-

ing.
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FIGURE 5.10: Comparison of Moors Kurtosis-based in-
dicators for the four wind turbines over a period of 5
years.
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FIGURE 5.11: Comparison of crest factor-based indica-
tors for the four wind turbines over a period of 5 years.

The fault condition in the fourth turbine is clearly visible in all
indicators after processing based on the comparison. Detection is
achieved approximately 6 months prior to repair. Additionally, the
moment of repair is clearly identifiable. Using the neighbor turbine
as a reference shows potential. However, to improve this comparison
it is better to remove the DC values of the indicators during healthy
conditions.

To illustrate the impact of using different processing pipelines, Fig.5.12
displays the RMS after using two different filters (and thus pipelines)
for the fourth turbine. To maximize the detection potential, it is thus
recommended to look simultaneously at multiple pipeline outcomes.
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FIGURE 5.12: Comparison of RMS-based indicators with
different processing pipelines.

The indicators calculated for the four turbines are also used as
inputs for the anomaly detection based on the fused indicators. To
define the operational regime of the wind turbine, we use the active
power production and rotational speed. Based on the popular silhou-
ette score measure [329], the number of operational regimes (clusters)
is set to 4. The statistical indicators are modeled using the Bayesian
expected behavior model. Fused alarms are computed by taking the
average alarm level over all features per statistical indicator type (e.g.
crest factor). This fusion is carried out over all features, which results
into 6 fused alarms (one per indicator type) and thus significantly re-
duces the workload of the analysis.

The effects of the failure on the behavior of the statistical features
can be observed in the fusion, reaching an alarm severity of about 70%
for the fused moors kurtosis indicator seen in Fig. 513 and 100% for
the crest factor in Fig. 5.14. Thresholds can be put in place by the op-
erator to alert for potential failures automatically. It can be seen that
the alarm severity approximately starts to increase significantly in the
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third year of measurements, which corresponds with the raw statisti-
cal indicators. After the repair of the bearing, the fused indicators are
still slightly raised above the DC alarm level. This can be attributed
to the fact the ML model was not retrained after the repair. Such a
retraining is necessary when machine components are replaced.
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FIGURE 5.13: Fusion of moors kurtosis indicators.
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FIGURE 5.14: Fusion of crest factor indicators.

5.6 Conclusion

This chapter presented a state-of-the-art overview of vibration anal-
ysis methods for fault detection. The general classes of time domain
and frequency domain indicators are discussed together with poten-
tial additional processing steps such as frequency filtering. The con-
cepts of envelope analysis and cyclostationarity are summarized since
they play an essential role nowadays in vibration-based condition mon-
itoring of rotating machinery. Also, an alternative approach to the
kurtogram, called the harmonogram, is proposed if prior knowledge
about the characteristic frequency is available. It employs the squared
envelope spectrum of the filtered signal in each filterband of the de-
composition tree to calculate a fault feature on the harmonics of inter-
est. Despite being a fairly straightforward extension of the kurtogram
concept, it can provide a useful tool for finding an optimal demodula-
tion frequency band for a specific fault.
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Lastly, a data-driven automated indicator processing methodol-
ogy, developed in collaboration with the Al department of VUB, is pre-
sented. It allows reducing the vast number of condition indicators
coming from complex systems into a workable set of alarm severities.
Currently, the main work that would still need to be done by an op-
erator manually, involves choosing the right input parameters for the
vibration processing methods and inspecting the summarized alarm
severity figures. Future work will focus on further reducing the num-
ber of input parameter choices for the different methods.
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Chapter 6

Experimental case studies

64 Introduction

So far, this dissertation discussed individual vibration signal process-
ing methods. Brief illustrations of these methods on simulated and
experimental data were given, highlighting their performance. This
chapter expands the applied analysis in this dissertation with two
more investigations of experimental data sets. These examinations
employ multiple of the different techniques mentioned in the previ-
ous chapters. The two data examples in this chapter serve as an ad-
ditional means for giving a better insight into the different ways the
discussed methods can be utilized in a practical setting. Showcasing
the methods by doing a more in-depth analysis of experimental data
also provides a good summary of the application potential.

The two data sets in this chapter are both of wind turbine gear-
boxes. The first one is the well-documented data set from the Na-
tional Renewable Energy Laboratory (NREL) in the context of a wind
turbine gearbox condition monitoring round robin study. An investi-
gation of this data set was conducted using multiple processing meth-
ods, including order tracking, cepstrum editing, the kurtogram, and
envelope analysis. This study is described in section 6.2. The second
data set comes from an operational multi-megawatt wind turbine that
experienced a bearing failure. Due to confidentiality reasons, most of
the technical details of the gearbox and measurement setup are omit-
ted. Some of the other techniques discussed in the dissertation are
illustrated on this data set, including the multi-harmonic demodula-
tion, the statistical indicator tracking using a filterbank approach, and
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the cyclic spectral coherence. This second study is described in sec-
tion 6.3.

6.2 Case study 1: NREL round robin data set

In order to illustrate the benefit of a multi-step processing approach,
experimental data of a wind turbine from the National Renewable En-
ergy Laboratory (NREL) is examined and the results are compared to
those summarized in the general report by Sheng [259]. In this re-
port, a number of participating research partners published their find-
ings [330-335] which form a valuable background for this study. The
NREL dynamometer test facility (DTF) was used for the data collection.

6.2a Description of experimental setup

Turbine As can be seen on Fig. 6.1(a), the test turbine is a three-
bladed, stall-controlled, upwind turbine. It has a rated power of 750kW
and the generator normally operates at 1800 rpm or 1200 rpm nomi-
nal. The complete drivetrain is installed in the NREL DTF as shown on
Fig. 61(b). It is hard fixed to the floor and misses the hub, rotor, yaw
bearing and yaw drives.
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FIGURE 6.1: (a) Drive train configuration of the test tur-
bine. (b) NREL dynamometer test stand with the tur-
bine installed.

Gearbox Two gearboxes of the same design are used for collecting
the data, one in "healthy" state and the other one in "damaged" state.
An exploded view of the gearbox is shown in Fig.6.2(a). The accelerom-
eter vibration measurements along with high-speed shaft RPM data
was made available. The "healthy" gearbox is only tested in the dy-
namometer while the "damaged" gearbox first did a run-in in the dy-
namometer and was later sent to a wind farm for field testing. Two
loss-of-oil events damaged its internal bearings and gears. Afterward,
it was again installed in the dynamometer facility and retested in a
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controlled environment. The gearboxes consist of one low speed (LS)
planetary stage and two parallel stages. The used nomenclature is the
same as the one used by Sheng [259] and can be seen in Fig. 6.2(b).

a

High-Speed Stage High-Speed Shaft

b - a
g —

Intermediate-Speed
/MS-SH
Planet]

pPLC

Low-Speed Shaft

Gear

Intermediate-Speed Stage

FIGURE 6.2: (a) View of internal components of the test gearbox. (b) Internal
nomenclature and abbreviations of the test gearbox.

Bearings Various bearingtypes are used in the gearboxes correspond-
ing to the loading conditions and life requirements. Two full-complement
cylindrical roller bearings (fcCRB) support the planet carrier and two
cylindrical roller bearings (CRB) support the planet gears. The parallel
shafts are each supported by a CRB on the upwind side and by two
tapered roller bearings (TRB) on the downwind side of the assembly.
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A list of all bearing locations, manufacturers, part numbers and types
can be found in Table 6.1 and Fig. 6.3 illustrates the locations and used
names of the different bearings. If the component is positioned up-
wind, this is denoted with an ‘A’ and if it is downwind, with a ‘B’ or a
‘C’. A full list of the gear and bearing characteristic frequencies is not
given but can be determined based on Table 6.1.

TABLE 6.1: Overview of used bearing types, numbers
and locations.

Location I..ocation designa- | Type Provider Part number
tion
Planet PLC-A fcCRB INA SL181892E
carrier PLC-B fcCRB INA SL 18 1880 72/K10
Planet PL-A CRB FAG NJ2232E.M1
PL-B CRB FAG NJ2232E.M1
Low- LS-SH-A fcCRB INA S1181856E
speed LS-SH-B TRB SKF 32948*
shaft LS-SH-C TRB SKF 32048*
Intermediate- IMS-SH-A CRB FAG NU2220E.M1
speed IMS-SH-B TRB SKF 32032 X
shaft IMS-SH-C TRB SKF 32032 X
High- HS-SH-A CRB FAG NU2220E.M1
speed HS-SH-B TRB SKF 32222 )2
shaft HS-SH-C TRB SKF 32222 J2
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FIGURE 6.3: Locations and nomenclature of the bear-
ings in the test gearbox.

6.211 Measurement settings

The accelerometers are mounted on the outside of the gearbox and
data is sampled at 40 kHz per channel. In total data sets of eight ac-
celerometers (Model: IMI 626B02) are made available and the exact
locations can be seen in Fig. 6.4. Lastly, Table 6.2 gives a summary of
the signal names and their corresponding locations of the different
vibration sensors.
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FIGURE 6.4: Overview of the accelerometer locations.

TABLE 6.2: List of the used sensors and their corre-
sponding placement descriptions.

Sensor label | Location description

AN3 Ring gear radial 6 o'clock

ANg Ring gear radial 12 o'clock

AN5 LS-SH radial

AN6 IMS-SH radial

AN7 HS-SH radial

AN8 HS-SH upwind bearing radial
AN9 HS-SH downwind bearing radial
AN10 Carrier downwind radial
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6.2.2 Analysis procedure

In order to assess the performance of the developed methods for
bearing fault detection, the provided signals at 1800 rpm from the
NREL test setup are investigated using a combination of the following
techniques:

1. Speed estimation and angular resampling
2. Automated cepstral editing procedure (ACEP)
3. Bandpass filtering based on kurtosis

4. Squared envelope analysis

According to the report of [259], the research partners of the Wind
Turbine Gearbox Condition Monitoring Round Robin Study agreed to a
total of seven damages that were considered to be detectable through
vibration analysis. Table 6.3 shows a summary of the detectable gear-
box damage.

TABLE 6.3: Actual gearbox damage that should be de-
tectable through vibration analysis.

Damage | Component Mode
#
1 HS-ST gear set Scuffing
2 HS-SH downwind bearings Overheating
3 IMS-ST gear set Fretting corrosion, scuffing, polishing
wear
4 IMS-SH upwind bearing Assembly damage, scuffing, dents
IMS-SH downwind bearings | Assembly damage, dents
Annulus/ring gear, or sun Scuffing and polishing, fretting
pinion corrosion
7 Planet carrier upwind Fretting corrosion
bearing

This analysis focuses on bearing fault detection, so no analysis is
done for the gear faults, meaning that only the four bearing faults are
investigated. For each bearing, the characteristic frequencies corre-
sponding to the damages are shown in Table 6.4.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



6.2. Case study 1: NREL round robin data set 251

TABLE 6.4: Damaged bearings and their correspond-

ing theoretical characteristic frequencies. (BPFO: Ball

Pass Frequency Outer race, BPFI: Ball Pass Frequency
Inner race, FTF: Fundamental Train Frequency)

Fault Detectable characteristic fre-

Bearing label type | quency[Hz]

HS-SH downwind bearings | BPFI 345,29Hz

(HSS-B& C) FTF 12,75 Hz
IMS-SH downwind bearings

(ISS-B& C) BPFO 105,75 Hz
Planet carrier upwind bearing

(PLC-A) BPFO | 8,81 Hz

IMS-SH upwind bearing (ISS-A) | BPFI 73,7 Hz

6.2.3 Analysis results

The bearing faults present in the system are spatially distributed over
the gearbox, meaning that some sensors will be more likely to de-
tect possible faults than others due to being in closer proximity to the
source. To illustrate this phenomenon and the used processing steps,
the signal measured by sensor AN7 is analyzed. This sensor is located
near the high-speed shaft bearings, so it can be expected to contain
prominent signal content originating from the BPFI and FTF faults de-
scribed in Table 6.4.

6.2.31 High-speed downwind bearings

The first step in the processing scheme is to resample the healthy
and the damaged data so the speed variation present in the measure-
ments is neutralized. Using the provided tacho signal for the healthy
signals and the RPM measurements for the damaged signals, all the
signals are resampled to the angular domain to provide a clearer view
of the frequency components present in the data. Figure 6.5 shows a
zoomed picture of the 18™ high-speed shaft harmonic, around 540 Hz,
before and after angular resampling of the damaged signal. It can be
seen that the smearing of frequency peaks in the spectrum due to
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speed variation, is greatly reduced after resampling. Only one peak
remains at a multiple of the fundamental shaft speed frequency.

Amplitude [-]

I I I I |
537 538 539 540 541 542 543 544 545
Frequency [Hz]

FIGURE 6.5: Zoom of the 18t harmonic of the 30 Hz
shaft speed, measured by the AN7 sensor for the dam-
aged gearbox, before and after angular resampling.

Next, automatic cepstral editing is performed on the signal in order
to remove the deterministic content of the resampled signal as much
as possible. The ACEP method described in Chapter 3 is employed and
the spectra of the damaged data of the AN7 sensor before and after
ACEP is shown in Fig. 6.6a. The damaged data exhibits very prominent
shaft speed harmonics and due to the difficulty in properly display-
ing the total amount of reduction of harmonic content in a spectrum,
a graph of the amplitude reductions of the first 100 shaft speed har-
monic is presented in Fig. 6.6b. It can be seen that the ACEP method
is able to significantly reduce the shaft speed frequency peaks by an
average amount of about 13 dB.
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FIGURE 6.6: (a) Amplitude spectrum of the AN7 sensor signal before and after
ACEP. (b) Graph showing the amplitude reductions, in dB, of the first 100 shaft
speed harmonics.
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FIGURE 6.7: (a) Kurtogram of the healthy AN7 sensor
data. (b) Kurtogram of the damaged AN7 sensor data.

The residual signals after ACEP can now used as input for the kur-
togram to determine an optimal demodulation frequency band. The
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kurtograms of both the healthy and damaged data are generated and
examined for differences. Figure 6.7 displays the calculated kurtograms
and here it can be seen that there is an increase in kurtosis around
13,2 kHz. First however, the normalized envelope spectra of the healthy
and damaged data are examined without the use of the kurtogram,
thus without bandpass filtering. The result of this can be seen in
Fig. 6.8a. While the ACEP technique reduces the deterministic influ-
ence of the shaft speed, a prominent peak can be seen at the high-
speed shaft frequency (1xHSS) in the envelope spectrum. This is ex-
pected since ACEP only removes additive components and not mod-
ulating ones. Typically, impulses at the BPFI fault frequency are also
modulated with the shaft speed, thus they can also serve as a sign of
increased bearing wear. Multiple peaks at BPFI harmonics of 345 Hz
can be observed for the healthy as for the damaged data. The funda-
mental 345 Hz peak is close to the 2"4 harmonic of the sun gear mesh
frequency and the 46" harmonic of the intermediate shaft speed fre-
quency, but is not an exact multiple of one of these frequencies. Since
this component is so prominently present after cepstral editing, it
is concluded that the peak in the healthy and damaged data corre-
sponds to the inner race defect frequency or BPFI of the high-speed
downwind bearings, which is theoretically around 345.29 Hz for a shaft
speed of 30 Hz. This is supported further by the presence of harmonics
of the BPFI and side bands at 30 Hz in the envelope spectrum. Based
on these envelope spectra, it appears though that the inner race dam-
age was already present in the baseline healthy data.

While the gear faults are not the focus of this analysis, it is noted
that in Fig. 6.83, the envelope spectrum displays a high value at 661 Hz
for the damaged data. This corresponds to the gear mesh tooth pass-
ing frequency (GMF) of the intermediate-speed shaft (ISS) with the
high-speed shaft. The damage report verified that the ISS gear ex-
hibited corrosion, scuffing and wear.
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FIGURE 6.8: (a) Envelope spectrum generated without the use of fil-

ters/kurtogram, indicating the presence of the BPFI & FTF of the high-speed

downwind bearings (HSS-B& C). (b) Zoom of the envelope spectrum around

the FTF frequency for the healthy and damaged signals after applying ACEP
and kurtogram.

The next analysis step makes use of bandpass filtering, based on
the info portrayed by the kurtograms in Fig. 6.7. Figure 6.8b shows
a zoom of the envelope spectrum of the residual signal after band-
pass filtering. Examination of the spectrum reveals a high peak around
12.71 Hz, which corresponds to the fundamental train frequency (FTF)
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of the high-speed downwind bearings. Figure 6.8b shows a clear in-
crease of this frequency in the damaged data compared to the healthy
data. Finally, Fig. 6.8a also shows that the 30 Hz HSS modulation has
increased significantly for the damaged data set. This can indicate
a possible high-speed shaft imbalance or misalignment or it can be
associated with the BPFI modulation of the HSS-B&C bearings. Since
both the presence of an imbalance and of an inner race fault was later
corroborated by the damage report, this component is most likely the
combination of both faults.

In order to demonstrate the effect of the ACEP procedure on the
envelope spectrum, the damaged data is investigated before and after
applying cepstral editing. Figure. 6.9a shows the envelope spectrum of
the damaged data of the AN7 sensor without any filtering before and
after cepstral editing. The spectrum before ACEP exhibits far more
harmonic peaks, making it difficult to assess possible bearing faults.
Additionally, these harmonics mask the presence of bearing faults, as
is shown in Fig. 6.9b. The BPFI of the HSS downwind bearings cannot
be detected here before cepstral editing.
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Squared envelope spectra AN7 sensor - full bandwidth
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FIGURE 6.9: (a) Envelope spectrum of damaged data before (black line) and
after ACEP (red line). (b) Zoom of envelope spectrum around 345 Hz, the BPFI
frequency of the high-speed downwind bearings, before and after ACEP.

6.2.3.2 Intermediate-speed shaft downwind bearings

The analysis procedure followed for the other bearings is similar to
the one explained for the high-speed bearings. To reduce the number
of figures, only the resulting envelope spectra are shown. As such, the
analysis of the AN6 sensor, which is located close to the intermediate-
speed shaft (ISS), is investigated for possible ISS bearing faults. After
angular resampling and cepstral editing, the full-bandwidth envelope
spectrum for the damaged case, shown in Fig. 6.10, exhibits clear peaks
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at even harmonics of the BPFO(105.25 Hz) of the ISS-B&C bearings. It
does not however offer clear indications of the fundamental defect
frequency itself. The kurtogram is used for determining the bandpass
filter cut-off frequencies and is shown in Fig. 611. Using a bandpass
filter centered at 16.4 kHz with a bandwidth of approximately 1 kHz
produces the envelope spectrum of Fig. 6.12. This bandpass filter cor-
responds to the yellow rectangle in the kurtogram figure. In this en-
velope spectrum, the fundamental fault frequency is clearly revealed.
However for the greater part of the full frequency band of the signal,
mainly the even harmonics of the BPFO were discernable. This could
imply that there are multiple point defects on the bearings, introduc-
ing cancellation and reinforcement of components which can modify
the envelope signature and thus also the envelope spectrum [260].
The damage report confirms this and describes multiple dents, assem-
bly damage and plastic deformation of the ISS downwind bearings. A
zoom of the second BPFO harmonic at 210.4 Hz can be seen in Fig. 6.3
and illustrates the increase in amplitude of this frequency compared
to the healthy case.
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FIGURE 6.10: Envelope spectrum of AN6 acceleration signal after resampling
and ACEP for the healthy case (above) and damaged case (below).
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FIGURE 6.11: Kurtogram of the AN6 signal after automated cepstrum editing.
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FIGURE 6.13: Zoom of envelope spectrum of AN6 acceleration signal around
the second BPFO harmonic of the I1SS-B&C bearings for the healthy case
(black) and damaged case (red).

6.2.3.3 Intermediate-speed shaft upwind bearing

Damage was also reported for the ISS upwind bearing and evidence
of this damage was found by using a band-pass filter with a center
frequency of 10 kHz and bandwidth 1 kHz. The envelope spectrum in
Fig. 614 exhibits a high peak at 72.94 Hz, which is close to the theoret-
ical BPFI of 73.7 Hz for the ISS upwind bearing. The slight deviation of
the theoretical value is likely due to slip of the roller elements. While
this component is quite prominently present in the AN6 and AN7 data
set, it is easily mistaken for the second harmonic of the gear mesh
tooth passing frequency of the planet gears, which is 73.05 Hz. How-
ever, due to its presence after ACEP and the small frequency difference
and due to it being only in the damaged data, it can be concluded that
it is, in fact, the BPFI of the ISS upwind bearing.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



262 Chapter 6. Experimental case studies

T i
— Healthy signal after ACEP
— Damaged signal after ACEP| |

4
©
T

4
©
T

Amplitude [-]

N o o e

S (9] (=2} ~
T T
1 1

70 70.5 Al 715 72 725 73 735 74 745 75
Frequency [Hz]

FIGURE 6.14: Zoom of envelope spectrum around

72.94 Hz, the BPFI of the ISS upwind bearing, after

bandpass filtering with center frequency 10 kHz and
bandwidth 1 kHz.

6.2.3.4 Planet carrier upwind bearing

A similar approach as for the ISS-B & C bearings is used for detecting
the 8,8 Hz outer race defect frequency of the planet carrier upwind
bearing (PLC-A). A zoom of the full-bandwidth envelope spectrum is
shown in Fig. 6.15. While the damage report does state that there was
fretting corrosion present on the PLC upwind bearing, the correspond-
ing frequency peaks are small and difficult to detect. The partners
who participated in the wind turbine gearbox condition monitoring
round robin study confirmed this observation as well. Almost no one
of the partners was successful in detecting this damage blindly and
from Fig. 6.15a it can be understood why.
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FIGURE 6.15: Zoom of the envelope spectrum around
8.85 Hz, the BPFO of the PLC upwind bearing.

6.2.4 Discussion case study 1

In order to concisely summarize the findings of this case study, the
results of the bearing fault vibration analysis are presented again in
table 6.5. For four out of five faults, there are clear indications of the
fault in the envelope spectra. Only the planet carrier upwind bearing
showed no significant frequency peak no matter which demodulation
band was chosen. This corresponds to the findings of other research
partners that reported similar results. The planet carrier bearing fault
was considered to be difficult to detect through standard vibration
analysis, given the used measurement setup.
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TABLE 6.5: Overview of the results of the bearing fault vibration analysis

Fault | Detection confi-

type dence level Observations

Bearing label

HS-SH downwind Fundamental frequencies and

. ; BPFI High harmonics are clearly visible,
gfa”“gs (HSS-B & | re | High even for full bandwidth demod-
ulation

Full bandwidth shows even
BPFO harmonics clearly, kur-
togram is necessary for finding
fundamental frequency

IMS-SH downwind
bearings (ISS-B & | BPFO | High
0)

Envelope spectrum peak corre-
sponding to BPFO is too small
to make any claims about fault

Planet carrier up-
wind bearing (PLC- | BPFO | Low
A)

presence
. After bandpass filtering, the
IMS-SH upwind . SR
bearing (ISS-A) BPFI Medium Lulgdamental frequency is visi

While the mentioned bearing frequencies are deemed detectable
through vibration analysis, the fault frequencies originating from bear-
ings mounted on the lower speed shafts are in general deemed to be
more difficult to detect compared to those on higher speed shafts. For
example, the inner race fault frequency and the fundamental train fre-
quency of the high-speed shaft downwind bearings are quite simple to
detect, since these frequencies are already clearly visible in the full-
bandwidth envelope spectrum after cepstrum editing. In contrast, the
detection of the outer race fault frequency of the intermediate-speed
shaft downwind bearings is a bit less straightforward due to the lack
of a fundamental frequency peak in the full-bandwidth envelope. The
even harmonics however show high envelope spectrum peaks. After
finding the right narrow frequency band, the fundamental frequency
does also show up in the analysis. Band-pass filtering is also required
for the detection of the inner race fault of the intermediate-speed
shaft upwind bearing. The planet carrier upwind bearing, which ro-
tates at the lowest speed of all the mentioned bearings, was reported
to have fretting corrosion, but did not exhibit any significant signs of
actual damage in the vibration signals.
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Although it is not the focus of this analysis, high values for some
of the gear fault frequencies are observed in the generated enve-
lope spectra. A general remark -which other participants in the NREL
round robin study stated as well- is that due the presence of multiple
progressed faults of gears and bearings, the analysis is encumbered
by the multitude of modulating components present in the envelope
spectra. Most of the described faults produce second-order cyclosta-
tionary components which make it difficult to analyze them separately
since most signal separation techniques, including the cepstrum edit-
ing procedure, only filter out the deterministic components and leave
the modulating cyclostationary components intact. Thorough inspec-
tion of the envelope spectra is thus necessary to attribute the fault
frequencies to the correct envelope peaks.

With regards to the performance of the cepstrum editing proce-
dure in the deterministic component removal, it is found that the ACEP
technique is well-suited for the application in this case study. The
wind turbine contains a complex multi-stage gearbox, consisting of
multiple shafts, which would make the removal of masking discrete
frequency content by time synchronous averaging methods quite time-
consuming since every shaft’s influence would have to be removed
separately. Even then, modulation sidebands would still remain present
in the vibration signal. Using linear prediction filtering based on au-
toregressive models was also tested (not shown here) but failed to re-
duce the harmonics sufficiently in this particular case. The complex vi-
bration signal consists of multiple deterministic signal components at
various frequencies as well as noise. It was found that a simple autore-
gressive model fails to fit the deterministic signal part well enough to
effectively prewhiten the signal for bearing fault detection. Attempts
to optimize the model order as a function of kurtosis or using model
order criteria such as the Akaike Information Criterion (AIC) [336] did
not improve the results either. While not tested on this data, the SANC
and DRS methods would have to take care with their choice of a proper
signal delay. The correlation length of the bearing fault signals has to
be smaller than the delay, while the correlation length of the discrete
content should be longer. There is no guarantee this is the case, mak-
ing the results potentially unreliable. The cepstrum editing procedure
does not have these drawbacks or dependencies. No choice of delay
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or model order has to be made and the method only requires one step
without having to iterate over all the present shafts or gears. The main
parameter that can be changed in the CEP method is the number of
samples to put to zero in the liftering step. This amount of samples
depends on the sample rate and the length of the signal and could po-
tentially be calculated automatically as well. For the examined data it
was found that varying this parameter did not change the results as
long as the amount of samples was not chosen to be excessively large.

Overall it is found that the proposed combination of techniques
increases the detection rate and sensitivity to faults while remain-
ing robust to non-impulsive background noise and easy to implement.
However, care should be taken in the presence of impulsive noise or
other impulsive disturbances. Since the use of the kurtogram relies on
the use of kurtosis as a means of determining the appropriate band-
pass filter, this technique can be affected by impulsive disturbances
and thus present misleading results.

While the CEP method does remove discrete frequency content, it
still does not remove any other masking cyclostationary content. The
inspection of the envelope spectra still needs to take into account the
possible presence of other cyclostationary sources, as was observed
during the analysis of the NREL data due to the multitude of faults.

6.3 Case study 2: wind turbine HSS bearing failure

This case study investigates the evolution of an outer race fault of a
high-speed shaft bearing in a multi-megawatt wind turbine. The vibra-
tions were measured using nine accelerometers distributed over the
drivetrain. In total, about one year and a half of vibration measure-
ments is analyzed. Approximately one measurement of ten seconds is
performed every two to three days. Due to confidentiality restrictions,
the amount of detailed information is limited.

The fact stipulated in Chapter 5 that the number of health indica-
tors rapidly increases with the number of preprocessing techniques, is
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illustrated for this case for a subset of calculated statistical time do-
main indicators. Besides this analysis, the performance of the multi-
harmonic demodulation method is again highlighted for speed esti-
mation. Lastly, it is shown that the cyclic spectral coherence in itself
can also be used for determining a suitable demodulation carrier fre-
quency band.

6.31 Speed estimation

To illustrate the structure of the vibration data, Fig. 6.16 shows the
spectrogram over the full bandwidth with a normalized sample rate
of 1 Hz, together with a zoom from o0 to 0.1 Hz. Looking at the zoom,
it can be noticed that the harmonic structure is quite complex, with
many harmonic orders and some being asynchronous to the rotation
speed of the high-speed shaft.

Even though there is an encoder signal available, the exercise of
vibration-based speed estimation is still carried out in order to get a
better insight into the robustness of the novel multi-harmonic demod-
ulation method on such data sets. By means of comparison, also the
multi-order probabilistic approach is tested on this data. Figure 6.7
shows an example of the speed estimation of one 10-second signal
(the actual rotation frequencies are offset by a certain amount in this
figure). While the estimated speed by the MOPA method suffers from
time and frequency resolution errors that were found difficult to rem-
edy, the speed estimated by MHD is almost identical to the one of the
encoder.
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FIGURE 6.16: (Left) Spectrogram of the measured high-
speed stage signal, (Right) Zoom of the spectrogram
between 0 and 0.1 Hz.
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FIGURE 6.17: Comparison of the estimated speeds from
the vibration signal with the MHD and MOPA method
as compared to the encoder speed.

To showcase the maximum likelihood weighting of the MHD method,
Fig. 6.18 displays the time-averaged harmonic weight evolution for the
first 30 high-speed shaft harmonics used in the MHD method. It turns
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out that the 24", 20t", and 18t harmonics contribute the most to the
speed estimation overall. The weights also converge quickly.

s3ybIeM

FIGURE 6.18: Evolution of the harmonic weights per it-
eration of the MHD method.

To get a sense of the overall performance of both methods, they
are tested on all available measurements. The mean absolute devia-
tion (MAD) is computed for the estimated speed of each data set. Fig-
ure 6.19 shows violin and box plots of the MAD distributions for both
the MHD and MOPA method for all data sets. The accuracy of the MHD
method is consistently better than the one of the MOPA method in
this case. The MAD for the MHD method never goes above 0.1 % ab-
solute error on the average speed estimation. In general, it can be
concluded that the MHD method would be a good substitute for the
encoder in case it would malfunction or be unavailable due to other
circumstances.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI107/these.pdf
© [C. Peeters], [2019], INSA Lyon, tous droits réservés



270 Chapter 6. Experimental case studies

0.4

0 MOPA
0.35

O MHD
0.3
o 0.25

0.2

&
0.15 §!¥
0.05 ié

MAD [%]

-

Method

MOPA

FIGURE 6.19: Violin and box plot of the distribution of
mean absolute deviations of the MHD estimated speed
compared to the encoder speed for all data sets.

6.3.2 Statistical filterbank trending

This section details how the approach described in section 5.2.1 can
be employed for this case study. Several time domain indicators are
calculated on the vibration signals after frequency filtering in different
frequency bands. Additionally, the indicators are binned in five differ-
ent active power production regimes, with 1 being the lowest power
production regime and 5 being the highest. To keep the number of fig-
ures limited, only two example indicators are shown, namely the time
negentropy and the Hoyer index.

Time negentropy Since it is difficult to show multiple dimensions at
the same time, a parallel coordinates plot format is chosen to simul-
taneously show all computed indicators on 1 figure. Figure 6.20 shows
the time negentropy values together with its independent variables,
being the date, filterband and power bin. Every line thus represents
one combination of the parameters. It can be observed from the graph
that there is a clear increase starting around time 0.5 (dates have
been anonymized for confidentiality reasons) and finishing around 0.9,
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when the bearing got repaired. A selection is made in Fig. 6.21 of the
top time negentropy values. Looking at this graph in Fig. 6.21, the high-
est values seem to occur in the lower frequency bands in the later
stages of the damage evolution, while being fairly independent of the
power production.

However, if we make a selection where we only include the initial
increase in indicator values, as shown in Fig. 6.22, we can see that actu-
ally the higher frequency bands detect the rise in indicator value first.
This seems to be more in line with the typical expectation that bear-
ing faults manifest themselves initially in higher frequency resonance
bands.

Date Filterband Powgr bin Value
1 ———

o ———— _ Z
me0375HztuD4:!s;Hzr = — - 7 8
From 0.375 Hz0.0'5 iz 0 - S A
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to0 sl
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Fiom 025 Hz 1910. 312>
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From 0.25 Hz to 0133312
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| From0d88Hzto 025

2 1648

FIGURE 6.20: Full parallel coordinates plot of vibration
signal time negentropy, depending on the time, filter-
band, and power production regime.
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FIGURE 6.21: Selection of the top time negentropy val-
ues in the parallel coordinates plot. Note that the
highest values seem independent of the power pro-
duction, but related more to the low frequency filter
bands.
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FIGURE 6.22: Selection of the first nine months of data

to see which frequency filter bands indicate the first

increase in time negentropy values. In this case the

higher frequency bands exhibit the best sensitivity to
the growing defect.

Lastly, a comparison is shown between an indicator evolution be-
fore and after automated cepstrum editing for a specific frequency
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band (0 Hz - 0425 Hz) and power bin regime in Fig. 6.23. For this case,
the cepstrum editing seems to help improve both the stability of the
indicator prior to damage initiation and the sensitivity of the indicator
to the damage growth. While this is not always the case, it proves that
cepstrum editing can also provide an added value to the trending of
statistical indicators.

7- —e— Raw - power bin 2
?6' After cepstrum editing

S - power bin 2

g 5 ---- Repair date

o4

<

N

g2 .

—_

0 02 04 06 0.8 1

FIGURE 6.23: Time negentropy evolution in the lower

frequency band [0 Hz - 0.25 Hz] and in power bin

regime 2. Note that the cepstrum editing can improve
the indicator sensitivity to faults.

Hoyer index The same analysis as for time negentropy is briefly re-
peated for the Hoyer index. Figure 6.24 shows the full parallel coor-
dinates figure, which at first glance looks very similar to the one time
negentropy. Selecting again only the top values for the Hoyer index, as
displayed in Fig. 6.25, it can be seen that now only the higher frequency
bands and the lower power production regimes show high Hoyer index
values. The difference between the power bins in Hoyer index evolu-
tion over time is shown in Fig. 6.26. The second power bin showcases
a slightly increased sensitivity to the change in the signal due to the
damage initiation. In general, it was concluded that for this bearing
fault case it was optimal to define high frequency band filters (in the
upper half of the Nyquist frequency bandwidth).
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FIGURE 6.24: Full parallel coordinates plot of vibration
signal hoyer index, depending on the time, filterband,
and power production regime.
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FIGURE 6.25: Selection of the top Hoyer Index values

in the parallel coordinates plot. Note that the highest

values seem related more to the low power production
regimes and high frequency filter bands.
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FIGURE 6.26: Hoyer Index evolution in the higher fre-

quency band of [0.375 Hz - 0.5 Hz] and in power bin

regimes 2 and 5. Note that in this case a lower active

power production seems to influence the feature sen-
sitivity positively.

6.3.3 Envelope analysis

Lastly, to confirm the presence of a bearing fault, the cyclostationary
properties of the data is inspected. The cyclic spectral coherence is
calculated for each data set and then used to obtain the enhanced
envelope spectra. Figure 6.27 shows the evolution in time of the cyclic
order band around the BPFO of the fault. The BPFO modulation or-
der can be clearly detected in the two-dimensional map right up till
repair, although there does seem to be slight variations in the modu-
lation frequency. Most likely this can be attributed to the slip in the
bearing and the changing mechanical properties of the bearing due to
the damage progression.

To check which carrier frequency band amplifies the fault the most,
the carrier spectra at the BPFO cyclic frequency are extracted from
the 2D coherence maps. Figure 6.28 displays the carrier spectra of the
BPFO over time. Similar to the observations from the statistical in-
dicator analysis, we can see that the higher frequency bands - from
approximately 0.3 Hzto 0.5 Hz - modulate the signal earlier in time and
thus prove to be better to detect the damage early on. Another finding
that is similar to the statistical analysis, is the strong rise in modula-
tion later on in the damage progression process (starting around 0.6)
for low frequency bands (below 04 Hz). This is mainly attributable
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to the low frequency modulation harmonics of the fault that emerge
above the noise floor and indicate a severe progression of the fault.
Typically, these harmonics are too low in amplitude and are masked
by the noise or other signal components.
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FIGURE 6.27: Two-dimensional color map of the enhanced envelopes over
time, zoomed in on the fault order.
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FIGURE 6.28: Two-dimensional map of the carrier spectra over time at the
cyclic frequency of the outer race fault.
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6.4 Conclusion

This chapter investigates two experimental case studies. Both studies
involve the vibrations measured on a wind turbine gearbox housing.
The first case study investigates thoroughly the NREL condition moni-
toring round robin data set using the techniques discussed in this dis-
sertation, with a special emphasis on the automated cepstrum editing
procedure. Apart from the planet carrier upwind bearing fault which
has the lowest characteristic frequency, all faults are detected using a
combination of order tracking, cepstrum editing, band-pass filtering,
and envelope analysis. Such a multi-step approach proves vital in the
proper and reliable detection of faults in complex machinery.

The second case study involves the investigation of an outer race
bearing fault in the high-speed stage of a multi-megawatt wind tur-
bine. Thanks to the availability of an encoder, the analysis also com-
pares the novel MHD method, proposed in Chapter 2, with the MOPA
method for the purpose of speed estimation. On average, it is found
that the MHD produces significantly more accurate results than the
MOPA method for this case. Next, a concise manner to examine the
multidimensional statistical filterbank trending results is presented
by means of parallel coordinates figures. Also the cyclostationarity
of the signal is employed to corroborate the statistical analysis and
track the fault frequency specifically. Both the statistical and cyclo-
stationary analysis indicate that the bearing fault first manifests itself
in the higher frequency region, about two orders of magnitude higher
in frequency than the fault repetition frequency itself. Later in the
fault progression, the low frequency modulations become dominant,
indicating severe damage.
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Chapter 7

Conclusions

71 Main contributions

The main objective of this dissertation is the investigation of inno-
vative signal processing methods for vibration-based condition moni-
toring. Special attention is given to the applicability of the methods in
industrial environments and to their automation potential. The disser-
tation discusses the different processing stages in a multi-step analy-
sis of vibration signals and proposes novel methods in each step that
can improve or contribute to the analysis. The chapters are chrono-
logically organized based on this multi-step analysis procedure. The
envisioned analysis scheme in this dissertation consists of the follow-
ing steps:

i Estimation and compensation of the rotation speed fluctuation —
Chapter 2

ii Signal separation into deterministic and stochastic components—
Chapter 3

iii Signal filtering to increase the potential fault signal-to-noise ratio
— Chapter 4

iv Fault detection and automation of the analysis output interpreta-
tion — Chapter 5
714 Instantaneous rotation speed estimation

A vital element in each vibration-based monitoring scheme of non-
stationary machinery is the accurate estimation of the instantaneous
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rotation speed. In the last two decades, a great deal of research was
therefore dedicated to finding an optimal solution for this issue of
non-stationarity. Chapter 2 discusses the state-of-the-art in rotation
speed estimation techniques and proposes an entirely novel demod-
ulation-based speed estimation method. The proposed method and
several of the state-of-the-art methods are examined and compared
on three experimental data sets, measured on a wind turbine gearbox,
aircraft engine gearbox and a navy ship generator. Due to the very dif-
ferent natures of the three data sets, it is difficult to single out a clear
winner from the eight investigated methods. However, the proposed
multi-harmonic demodulation method proves to be the most accu-
rate on the wind turbine data set, and runner-up on the aircraft engine
data. The ship generator data highlights the need for an approach that
is capable of dealing with (very fast) shutdowns and run-ups.

71aa  Multi-order probabilistic approach

One of the speed estimation approaches that produces promising re-
sults is the multi-order probabilistic approach. Using the method is
straightforward since only approximate knowledge of the rotation speed
range is required. This means that no detailed information about a
high signal-to-noise harmonic is necessary. It can therefore cope eas-
ier with temporary shutdowns, as illustrated in the experimental anal-
ysis of the ship generator data in chapter 2. Even when there is no
information available about the kinematics of the machine, it is often
possible to extract this information in a fairly accurate manner from a
spectrogram and/or an order spectrum. This method therefore proves
to be a valuable and versatile asset for industrial analysis cases.

714.2  Multi-harmonic demodulation

The proposed demodulation-based method is coined the multi-harmonic
demodulation method due to its simultaneous usage of multiple har-
monics in the demodulation step. Thanks to the use of many har-
monics instead of just one, the variance of the speed estimation is
significantly reduced. This is a considerable upside compared to sin-
gle harmonic demodulation since very often the latter would produce
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sudden jumps in its estimation due to the instantaneous amplitude
moving close to zero.

The reliability of this method is additionally improved thanks to
the incorporation of a time-varying maximum-likelihood weighting of
the speed-synchronous harmonics. This improvement significantly en-
hances the ease of use and the accuracy of the method for complex
experimental applications. If kinematic ratios of the machine of in-
terest are available, these can all simply be used as input for the
method, together with their higher harmonic orders. The maximum-
likelihood weighting automatically emphasizes the optimal set of har-
monics over time. The only downside of the method is the need for
a rough prior speed estimation. While often such a rough speed esti-
mation can be easily obtained, e.g. through edge tracking in the spec-
trogram, this does make the method in essence a two-step approach.

71.2 Automated cepstrum editing

Chapter 3 investigates the separation of deterministic/discrete signal
content from stochastic/random signal content. The main focus was
on the performance and versatility of cepstrum editing in this sep-
aration. An automated cepstrum editing procedure is proposed that
detects peaks in a denoised version of the cepstrum and constructs a
corresponding notch lifter. A thorough comparison of this approach is
made with the so-called cepstrum prewhitening technique. This tech-
nique is very easy to implement and to test, since it essentially equal-
izes the entire amplitude spectrum of a signal. It therefore relies on
the phase of a signal to contain all the relevant information necessary
to detect a fault. This is often the case when the signal has an im-
pulsive fault signature. The equalization of the amplitude spectrum
also implies that strong non-fault related resonances and harmonics
get suppressed relatively to the incipient resonance of the fault. For
low amplitude faults this can prove essential with regard to early de-
tection. This phenomenon is also observed in the comparison of both
techniques. In general, it was found that the appropriate choice of the
right cepstrum editing method is not always so clear-cut with down-
and upsides for both techniques. Nonetheless, editing the cepstrum
provides an uncomplicated, yet potent manner for signal separation
compared to some of the other techniques available in literature.
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71.3 Blind filtering using generalized Rayleigh quotients

Chapter 4 details the development of a novel framework and perspec-
tive on blind filtering of vibration signals for fault detection. The need
for such a novel approach was actually identified by looking at the
available literature about blind deconvolution filters and making the
observation that a significant number of techniques is based on the
use of kurtosis (or a derivative) as an optimization metric.

The proposed approach employs the generalized Rayleigh quo-
tient to allow for easy integration of envelope-based and envelope
spectrum-based optimization metrics into the iterative filter updat-
ing procedure. While in the past the main approach for deriving a
blind (deconvolution) filter typically involved complicated derivations
to obtain the filter coefficient updating formulas, this Rayleigh quotient-
based approach enables the use of more complicated condition indi-
cators for blind filtering whilst not increasing the difficulty in finding
the correct filter updating expressions. The computation time of the
proposed method is also relatively low since only the largest eigen-
values of the generalized eigenvalue problem need to be computed in
each iteration.

In total, six indicators are used for the definition of six new fil-
ters. One is based on the predictability of the squared envelope, one
on the weighted impulsiveness (time negentropy) of the time domain
signal, and four on the sparsity of the envelope spectrum. A simula-
tion analysis shows that the defined filters have the potential to de-
tect bearing faults without any prior knowledge about the character-
istic fault frequencies. It also demonstrates that the indicators can be
used as trending metrics for the health of a bearing, although more
in-depth verification for this usage should be performed. The experi-
mental analysis showcases the difference in performance between the
different filters, with some filters performing better than others. Fur-
ther research is required to determine the optimal sparsity indicator
and to further optimize the filtering procedure such that it becomes
less dependent on the choice of the filter length.
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71.4 Harmonogram

A general overview of fault detection approaches is given in chapter 5.
A minor extension to filterbank approaches, named the harmonogram,
is proposed. It combines the idea of the kurtogram with an enve-
lope spectrum analysis by defining a fault frequency-based indicator
on each envelope spectrum of each filtered signal. Extensive testing
of the method is planned for future work, but a simulation analysis
demonstrates the potential efficacy of the method to easily find a de-
modulation band using cyclostationarity. Next to the harmonogram,
chapter 5 also discusses statistical time domain indicators, frequency
filtering, and the cyclic spectral correlation.

71.5 Dealing with large condition monitoring data sets

The last section of chapter 5 details how to deal with large numbers
of condition indicators coming from complex machinery in an auto-
mated manner. The first step in the suggested approach is to model
the expected behavior of the condition indicators. This entails mak-
ing the condition indicators independent of the operating regime, i.c.
this is done using k-means clustering on operational data parameters
(e.g. SCADA data). Then a healthy condition model per condition in-
dicator and operating regime is trained using linear Bayesian ridge
regression. The final step is then to detect any anomalies in the con-
dition indicators that have been made independent of the operating
regime. Whenever an indicator veers a certain number of standard de-
viations from the expected behavior, an alarm is raised. After fusing
the normalized indicators together, the anomalies can be given easy
to interpret colors such that an an end-user can easily inspect the fig-
ures for potential alarms. This automation approach is illustrated in
chapter 5 on a wind turbine bearing fault case and proves capable of
significantly simplifying the analysis process.

71.6 Experimental case studies

To conclude the dissertation, chapter 6 illustrates the presented meth-
ods in in-depth analyses of two experimental wind turbine gearbox
data sets. The first case study details a full processing flow involving
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order tracking, automated cepstrum editing, band-pass filtering with
the kurtogram, and envelope analysis. The second case study demon-
strates the proposed multi-harmonic demodulation method of chap-
ter 2 and analyzes its reliability for a long term measurement cam-
paign. Also the proposed statistical filterbank trending approach of
chapter 5 is showcased by visualizing the multi-dimensional data in
an compressed manner. Lastly, the cyclic spectral coherence is com-
puted for this data set in order to highlight that the carrier spectra
at known cyclic frequencies can also be employed to find optimal de-
modulation frequency bands for specific faults.

7.2 Recommendations for future research

This dissertation showed the need for including many different pro-
cessing steps in a vibration-based condition monitoring scheme. This
section presents several suggestions to further improve and extend
the present work.

+ One of the main findings of the analysis of the ship generator
data in chapter 2 indicated that there is still a need for a more
adequate method for the speed estimation of very fast run-ups
and run-downs. Additionally, methods based on demodulation
or on edge trackingin the spectrogram should be enabled to deal
with temporary shutdowns in such a way that they are capable
of resuming in an accurate fashion.

« The multi-order probabilisticapproach is already a very accurate
and versatile tool to estimate the speed. However, one of the
main input parameters of the method that often needs manual
tweaking, is the window length used for the spectrogram com-
putation. Future research will investigate how this window size
choice can be automated such that essentially the only required
input will be the approximate speed range.

* In general, the user experience and findings with the multi-harmonic
demodulation method of chapter 2 have been very positive thanks
to the high accuracy and robustness of the method to interfering
sources. It therefore begs the question whether the output of the
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method could be used as input for condition monitoring based
on its estimated instantaneous angular speed. Recent research
efforts have been looking at employing high-resolution rotary
encoders for condition monitoring instead of vibration sensors.
It would thus be interesting to investigate if a sufficiently accu-
rate speed can be estimated with the MHD method to use it as
well for condition monitoring.

« Chapter 3investigated cepstrum editing for discrete-random sig-
nal separation. Despite producing good results, it is clear that
further improvement is still possible since neither the cepstrum
prewhitening nor the automated cepstrum editing procedure al-
ways produce the optimal results. Investigating how the editing
step can be improved will probably be essential in this research.

« Chapter 4 proposed a new approach to develop blind vibration
filters using complex optimization metrics. While six different
filters have already been derived, future research should focus
on finding new optimization metrics and better ways to make the
filtering procedure more independent from the choice of filter
length.

« The presented automation approach of chapter 5 is one possible
way to implement an automated condition monitoring scheme.
However, many more techniques are possible to use for this pur-
pose. Therefore, the presented approach should be further ex-
panded and validated on more experimental data sets.

« Finally, the techniques introduced in this dissertation mainly fo-
cused in their experimental applications on the goal of bearing
fault detection. The performance of the presented techniques
and of the multi-step procedure should be examined for gear
fault detection.
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