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Referred to as robotic random bin-picking, a fast-expanding industrial task consists in robotizing the unloading of many object instances piled up in bulk, one at a time, for further processing such as kitting or part assembling. However, explicit object models are not always available in many bin-picking applications, especially in the food and automotive industries. Furthermore, object instances are often subject to intra-class variations, for example due to elastic deformations.

Object pose estimation techniques, which require an explicit model and assume rigid transformations, are therefore not suitable in such contexts. The alternative approach, which consists in detecting grasps without an explicit notion of object, proves hardly efficient when the object geometry makes bulk instances prone to occlusion and entanglement. These approaches also typically rely on a multi-view scene reconstruction that may be unfeasible due to transparent and shiny textures, or that reduces critically the time frame for image processing in high-throughput robotic applications.

In collaboration with Siléane, a French company in industrial robotics, we thus aim at developing a learning-based solution for localizing the most affordable instance of a pile from a single image, in open loop, without explicit object models. In the context of industrial bin-picking, our contribution is two-fold.

First, we propose a novel fully convolutional network (FCN) for jointly delineating instances and inferring the spatial layout at their boundaries. Indeed, the state-of-the-art methods for such a task rely on two independent streams for boundaries and occlusions respectively, whereas occlusions often cause boundaries. Specifically, the mainstream approach, which consists in isolating instances in boxes before detecting boundaries and occlusions, fails in bin-picking scenarios as a rectangle region often includes several instances. By contrast, our box proposalfree architecture recovers fine instance boundaries, augmented with their occluding side, from a unified scene representation. As a result, the proposed network outperforms the two-stream baselines on synthetic data and public real-world datasets.

Second, as FCNs require large training datasets that are not available iii in bin-picking applications, we propose a simulation-based pipeline for generating training images using physics and rendering engines. Specifically, piles of instances are simulated and rendered with their ground-truth annotations from sets of texture images and meshes to which multiple random deformations are applied. We show that the proposed synthetic data is plausible for real-world applications in the sense that it enables the learning of deep representations transferable to real data. Through extensive experiments on a real-world robotic setup, our synthetically trained network outperforms the industrial baseline while achieving real-time performances. The proposed approach thus establishes a new baseline for model-free object-oriented bin-picking.

Résumé

Le dévracage robotisé est une tâche industrielle en forte croissance visant à automatiser le déchargement par unité d'une pile d'instances d'objet en vrac pour faciliter des traitements ultérieurs tels que la formation de kits ou l'assemblage de composants. Cependant, le modèle explicite des objets est souvent indisponible dans de nombreux secteurs industriels, notamment alimentaire et automobile, et les instances d'objet peuvent présenter des variations intra-classe, par exemple en raison de déformations élastiques.

Les techniques d'estimation de pose, qui nécessitent un modèle explicite et supposent des transformations rigides, ne sont donc pas applicables dans de tels contextes. L'approche alternative consiste à détecter des prises sans notion explicite d'objet, ce qui pénalise fortement le dévracage lorsque l'enchevêtrement des instances est important. Ces approches s'appuient aussi sur une reconstruction multi-vues de la scène, difficile par exemple avec des emballages alimentaires brillants ou transparents, ou réduisant de manière critique le temps de cycle restant dans le cadre d'applications à haute cadence.

En collaboration avec Siléane, une entreprise franc ¸aise de robotique industrielle, l'objectif de ce travail est donc de développer une solution par apprentissage pour la localisation des instances les plus prenables d'un vrac à partir d'une seule image, en boucle ouverte, sans modèles d'objet explicites. Dans le contexte du dévracage industriel, notre contribution est double.

Premièrement, nous proposons un nouveau réseau pleinement convolutionnel (FCN) pour délinéer les instances et inférer un ordre spatial à leurs frontières. En effet, les méthodes état de l'art pour cette tâche reposent sur deux flux indépendants, respectivement pour les frontières et les occultations, alors que les occultations sont souvent sources de frontières. Plus précisément, l'approche courante, qui consiste à isoler les instances dans des boîtes avant de détecter les frontières et les occultations, se montre inadaptée aux scénarios de dévracage dans la mesure o ù une région rectangulaire inclut souvent plusieurs instances. A contrario, notre architecture sans détection préalable de régions détecte finement les frontières entre instances, ainsi que le bord occultant corv respondant, à partir d'une représentation unifiée de la scène.

Deuxièmement, comme les FCNs nécessitent de grands ensembles d'apprentissage qui ne sont pas disponibles dans les applications de dévracage, nous proposons une procédure par simulation pour générer des images d'apprentissage à partir de moteurs physique et de rendu. Plus précisément, des vracs d'instances sont simulés et rendus avec les annotations correspondantes à partir d'ensembles d'images de texture et de maillages auxquels sont appliquées de multiples déformations aléatoires. Nous montrons que les données synthétiques proposées sont vraisemblables pour des applications réelles au sens o ù elles permettent l'apprentissage de représentations profondes transférables à des données réelles. À travers de nombreuses expériences sur une maquette réelle avec robot, notre réseau entraîné sur données synthétiques surpasse la méthode industrielle de référence, tout en obtenant des performances temps réel. L'approche proposée établit ainsi une nouvelle référence pour le dévracage orienté-objet sans modèle d'objet explicite.

Mots-clés : vision par ordinateur, dévracage robotisé, apprentissage profond, segmentation en instances, détection des occultations, réseaux entièrement convolutionnels, données d'apprentissage synthétiques vi vii viii

The monster saw my determination in my face and gnashed his teeth in the impotence of anger. "Shall each man," cried he, "find a wife for his bosom, and each beast have his mate, and I be alone? [...] Beware, for I am fearless and therefore powerful. I will watch with the wiliness of a snake, that I may sting with its venom. Man, you shall repent of the injuries you inflict." 

-

P

The set of pixel locations in an image of resolution R p P P A pixel location in an image of resolution R M P V R A matrix of dimensions R whose values are in V, i.e. @p P P, M p P V. For example, if M is a RGB image of width W and height H, then V " R 3 and R " W ˆH. If M is a binary image of resolution W ˆH, then V " t0, 1u and R " W ˆH.

M ą α

A matrix M P V R binarized using the threshold α P V. @p P P, pM ą αq p " 1 if M p ą α else 0. As a result, pM ą αq P t0, 1u R .

C

A set of instance candidates resulting from an image segmentation, i.e. C Ă t0, 1u R pC, ěq A set of instance candidates equipped with an order relation, i.e. there exists a function s : C Ñ R such that: @C, C 1 P C, spCq ě spC 1 q or spC 1 q ě spCq.

If C ‹ " maxpC, ěq then @C P C, spC ‹ q ě spCq.

|S| P N The number of elements of a set S tM k u k Short designation for a set tM k u N k"1 of N elements, without explicitly specifying the number of elements. If M " tM k u k , then |M| " N.

b

The XNOR operation, i.e. @x, x 1 P t0, 1u, x b x 1 " 1 if x " x 1 else 0.

If M, M 1 P t0, 1u R , then @p P P, pM b M 1 q p " M p b M 1 p . 

Glossaries

Visual Representations

The instance boundaries (blue) and the occluding boundary sides (orange). Shortly, referred to as boundaries and occlusions respectively.

In addition to the boundaries and occlusions, the bounding box (green rectangle) and pixels (colored region) of the most affordable instance, and the corresponding grasp (yellow circle)

In addition to the boundaries and occlusions, the pixels (colored regions) of the most affordable instance candidate and other instance candidates.

The colors are randomly distributed.

Chapter 1 Introduction

Robots have become the most versatile human tools in the sense that they can help or replace humans for increasingly complex real-world interactions. The joint ever-growing amount of data and hardware capability have enabled computers equipped with learning algorithms to achieve human-level performances in a wide range of applications, such as detecting and manipulating novel objects in unknown environments.

In collaboration with Siléane1 , a French company in industrial robotics, we aim in this context at generalizing the robotization of an industrial task for which humans are unfit because of the unbearable repetitiveness, the hazardous environments in which the task is executed, or the superhuman skills that are required. Namely random bin-picking, this task consists in unpiling object instances to feed automated lines. Current automation strategies resort to strong priors on the object or the gripper, thereby preventing any generalization across many reference products although the notion of instance is object category and gripper-agnostic.

We thus propose a generic learning-based solution towards object model-free and large-scale applications. Specifically, we address two main questions:

• How to best learn generalizable representations for object-oriented bin-picking without explicit object and gripper models?

• As collecting annotated data in such application domains is unfeasible, can one leverage synthetic training data?

In this chapter, we further detail our motivations and objectives, with respect to the difficulties encountered in the real-world applications and the challenges raised by our application context.

Application Context

In the context of industrial robotics, automated lines in various applications, such as kitting, component assembling, order processing, or waste sorting, require to be continuously fed on manufactured products or waste materials. For practical reasons, these objects are conveyed to the line entry point piled up in bulk in containers. Robotic random bin-picking, shortly bin-picking, which consists in unloading object instances piled up in bulk one by one using a robotic arm, is thereby a key step towards fully automated lines. Automating such a task however raises a number of application-dependent difficulties:

• A pile of objects can be either homogeneous, i.e. containing many instances of the same object, or heterogeneous, i.e. one or many instances of many different objects, as illustrated by Figure 1.1. • In both homogeneous and heterogeneous cases, automated lines may require hundreds of different reference products to build complex systems or supply the need of user-driven customization.

• Object instances may present some intra-class variations, typically due to elastic deformations or design variations (see Figure 1.2).

• Some object geometry may induce piles prone to strong occlusions and entanglements between instances. As a result, attempting to extract an occluded instance penalizes the robot operating cycle, and consequently the overall yield of a line. • Prior knowledge on the objects to unpile may be limited. For example, in the automotive industry, CAD models are not always available because the manufactured components come from many different suppliers. In applications such as food packaging or waste sorting, explicit models are simply non-existent.

• A scene reconstruction, for example by active stereovision or laser triangulation, is not always feasible either by lack of visual information or because high-throughput applications drastically constrain the time frame for image processing.

• Annotated real-world data is hardly collectable as it is a timeconsuming and tedious task, impractical in industrial environments.

Further to these observations, we specifically address the case of high-throughput open-loop bin-picking applications for which an explicit model of the target objects is not available and a scene reconstruction is not always feasible. These conditions are met in various application domains such as car assembly, food packaging, order processing or waste sorting. We also consider that collecting real-world data, annotated or not, for offline learning is not possible.

Objectives

In this application context, we aim at developing a learning-based solution for locating the most affordable instances of a pile independently of the object and gripper models (see Figures 1.3 and 1.5). We look for learning a generic notion of affordable instance, that enables many line entry points to be automatically supervised by a unique 1.2. Objectives We advocate a unique supervised general learning (this work) that initializes each line entry point to a strong baseline, which is further specialized online. model (c.f . Figure 1.4). Such a global model has many benefits, including reduced maintenance, effective pooling of resources and skills, and scalability. As short-term results are expected from this work in collaboration with an industrial company, we assume the existence of product families for solving practical real-world scenarios. Specifically, our contributions are driven by the scenario of unpiling sachets in homogeneous bulk, using only RGB images as input data. Our results nevertheless suggest that the proposed approach can apply to other product families, using alternative input modalities as well.

Contributions

Our contributions in addressing the problem of object-oriented binpicking without explicit object models nor real-world data are two-fold:

• a novel deep fully convolutional learning architecture, referred to as bicameral, for jointly inferring the instance boundaries and occlusions from a single image;

• a simulation-based scheme for application to real-world robotic setups, referred to as Mikado, supported by an extensive experimental evaluation.

Specifically, unlike the state-of-the-art approaches which rely on two independent streams whereas occlusions cause boundaries, the proposed architecture enables a unified representation of the boundaries and occlusions between instances, thus achieving state-of-the-art performances on both synthetic data and public real-world datasets for instance boundary and occlusion detection.

The proposed simulation-based scheme then enables to synthetically train such a bicameral network for real-world bin-picking applications while outperforming the object model-free industrial baseline.

Publications

Most of this work is confidential due to direct industrial applications in collaboration with Siléane, but nevertheless led to a journal paper (in revision) and a workshop paper: [67] presents our performance-enhancing fully convolutional encoderdecoder network for oriented instance boundary detection and the benefits of jointly using synthetic data for this task.

[66] presents through a practical interactive application one of our core ideas that boundaries between instances piled up in bulk are better detected by postponing instance localization after instance delineation, and leveraging the duality between boundary detection and instance segmentation.

Contents

This manuscript is organized as follows:

In Chapter 2, we briefly introduce the mechanisms of deep learning, with a focus on the related mathematical tools that we extensively use in the following chapters.

In Chapter 3, we review the state of the art on the different approaches for bin-picking. We largely focus on the state of the art for generic instance segmentation, i.e. category-agnostic instance delineation, which constitutes a core topic of our approach.

In Chapter 4, we lay out our contributions on occlusion-aware generic instance segmentation. Specifically, we present and evaluate the proposed network architecture on the Mikado synthetic data and state-of-the-art real-world datasets. Furthermore, we conduct an ablation study of the bicameral architecture to better characterize its components. We finally describe how to translate the bicameral network inference into grasp coordinates on the most affordable instance of a pile.

In Chapter 5, we present our contributions on applying the proposed occlusion-aware instance segmentation approach to bin-picking. Specifically, we describe a training data generation pipeline to synthetically train a bicameral network for real-world bin-picking applications. We show the plausibility of the proposed synthetic training data, then extensively evaluate our synthetically trained models on a real-world robotic setup to demonstrate the applicability of our method in industrial bin-picking conditions.

In Chapter 6, we summarize our work and contributions, then draw some directions for future work.

Chapter 2

Deep Convolutional Networks

In this chapter, we briefly present deep convolutional networks (DCN) with a focus on the related mathematical tools that we extensively use in the next chapters. More precisely, we describe the state-of-the-art implementation of DCNs, their benefits and limitations. We also shortly introduce some state-of-the-art interpretations to better understand and explain their properties. For more detailed explanations on the general mechanisms of deep learning, we refer the reader to [START_REF] Goodfellow | Deep Learning[END_REF][START_REF] Lecun | Deep learning[END_REF].

Introduction
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Inputs

Definitions

A deep neural network is a computational learning structure of interconnected nodes, called neurons, aimed at encoding some input tensor(s), such as images, audio signals, videos, in a discriminative and linearly separable representation space for classification or regression tasks [START_REF] Goodfellow | Deep Learning[END_REF][START_REF] Lecun | Deep learning[END_REF]. Most generally, neurons are arranged in layers, such that a layer's neuron input is connected to all the previous layer's neuron outputs. In such a configuration, layers are said fully connected. For example, in the case of images, each pixel would be a neuron input, and a top layer's neuron would then be connected to each pixel. As illustrated by Figure 2.1, each neuron is a simple two-step operation: an affine transformation of the input values to which a non-linear activation function is applied, such as the so-called rectified linear unit (ReLU) [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] defined as maxp0, ¨q. The parameters, also referred to as weights, of these linear operators are determined by non-convex optimization. In state-of-the-art applications, a deep network may contain billions of parameters structured in hundreds of layers [START_REF] Huang | Densely Connected Convolutional Networks[END_REF]. Deep convolutional networks (DCNs) are deep neural networks specific to multi-channel images, introduced in [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF]. As images contain millions of pixels and spatially recurrent patterns, using a "fully connected" neural network as it is for encoding images is intractable and inefficient. Deep convolutional networks thus present two key architectural priors: reduced neuron receptive fields and in-layer parameter sharing (c.f . Figure 2.2). First, each neuron is connected to only a few spatially neighboring neurons of the previous layer. Second, in a layer, all the neurons share the same parameters. This equivalently results in one neuron per layer moving across the whole image. Introducing these priors has many benefits: reduction of the overall number of parameters, better generalization capability, translation invariance. Layers with such priors are then qualified as convolutional because they can be interpreted as convolution filters with learnable kernel. In state-of-the-art applications, deep convolutional layers are structured in sets of convolutional filters, interleaved with max-pooling layers that aggregate spatially neighboring features by element-wise max operators. As illustrated by Figure 2.3, an image fed-forward through a convolutional encoder thus results in deep three-dimensional feature maps or representations, that encode the image semantics at different resolutions. Fully convolutional networks (FCNs) are deep convolutional networks that contain only convolutional layers, typically aimed at classifying each pixel independently, instead of the whole image with one or a few image-level labels.

Encoder-decoder networks are FCNs designed for recovering highresolution pixel label maps. As previously illustrated in Figure 3.14, such networks typically introduce a convolutional decoder aimed at gradually recovering a full spatial resolution by interleaving convolutional and unpooling layers from the encoder's latent representations.

Learning

A network is aimed at approximating a function f : X Ñ Y, x Þ Ñ y from a finite set tpx n , f px n q P X ˆYu 1ďnďN of N P N ‹ annotated samples. For example, in binary classification using FCNs, we want to assign a label y P t0, 1u to a RGB pixel x P X " R 3 . A trained network is thus a generalizable function f W : X Ñ Y, x Þ Ñ ŷ, using the learnable parameters W P R Q , where Q P N ‹ is the overall number of parameters. f W is defined by W, but also a number of architectural choices: the number and depth of convolutional layers; how the layers are interconnected; the type of activation functions. As the search space for determining the optimal architecture is infinite, design choices are made by intuitions from state-of-the-art network architectures [START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Huang | Densely Connected Convolutional Networks[END_REF][START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF][START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF][START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF] and empirical results. Beyond the scope of this work, recent works explored tractable optimization-based strategies for addressing this concern [START_REF] Liu | Progressive Neural Architecture Search[END_REF][START_REF] Zoph | Learning Transferable Architectures for Scalable Image Recognition[END_REF], which nevertheless remains an open research field.

Training a network means determining the network parameters that best minimize an application-dependent loss function and jointly enable a strong generalization. It consists in iteratively updating the weights by stochastic gradient descent (SGD) using the backpropagation mechanism [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF][START_REF] Lecun | Backpropagation Applied to Handwritten Zip Code Recognition[END_REF]. Basically, a training iteration is a two-step action: an inference-like forward pass of a batch of training images; a backward pass of the corresponding gradients for updating the weights with respect to the gradient norm and direction, roughly according to the following update equation:

W t`1 " W t ´α∇LpW t q (2.1)
where W t and W t`1 are the network parameters at iterations t and t `1 respectively, LpW t q the loss function to minimize, and α the learning rate that controls how much the weights are adjusted at each iteration. A low learning rate induces a slow move along the downward slope. In typical SGD, the learning rate is a global single-valued hyperparameter. We won't go much further on this topic as it is already extensively covered in the literature [START_REF] Goodfellow | Deep Learning[END_REF][START_REF] Tieleman | RmsProp: Divide the gradient by a running average of its recent magnitude[END_REF]. Note that, in such an optimization, both the initialization and the optimization path have great importance for reaching the best performances [START_REF] Yosinski | How transferable are features in deep neural networks[END_REF]. Different parameter update strategies [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF][START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF][START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF][START_REF] Tieleman | RmsProp: Divide the gradient by a running average of its recent magnitude[END_REF][START_REF] Zeiler | ADADELTA: An Adaptive Learning Rate Method[END_REF] have been proposed for a faster and more stable convergence. Notably, the Adam solver [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] combines two extensions [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF][START_REF] Tieleman | RmsProp: Divide the gradient by a running average of its recent magnitude[END_REF] of SGD: per-parameter learning rates [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF] and weight updates based on moving moments of the recent past gradients [START_REF] Tieleman | RmsProp: Divide the gradient by a running average of its recent magnitude[END_REF]. Additional components have also been commonly adopted to avoid overfitting during training: the dropout mechanism [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF], which consists in randomly shutting off some parameters during training, and the introduction of a regularization term in the loss function, typically the 2 -norm of the weights.

Formally, we look for the network parameters W ‹ " arg min W LpWq using the gradient-based Adam method [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF]:

pW t`1 q i " pW t q i ´α b 1 ´pβ 2 q t i 1 ´pβ 1 q t i pm t q i `apv t q i (2.2)
where ą 0 avoids division by zero, m t , v t are estimated moments of the recent past gradients, and β 1 , β 2 hyper-parameters controlling the decay rates of these moving moments as follows:

pm t q i " β 1 pm t´1 q i `p1 ´β1 qp∇LpW t qq i pv t q i " β 2 pv t´1 q i `p1 ´β2 qp∇LpW t qq 2 i (2.3)
We minimize the following regularized cross-entropy loss function:

L RCE pWq :" ´1 N N ÿ n"1 C ÿ i"1 py n q i logp ŷn q i looooooooooooooomooooooooooooooon objective `λ W 2 2 looomooon regularization (2.4)
where λ is another hyper-parameter, called weight decay, that controls the trade-off between the objective and regularization terms. The objective term aims to minimize the information loss caused by approximating the training data distribution (see Section A.1 for more details). The regularization term enables robustness to noise and prevents from overfitting the training data. Note that the cross-entropy is not a distance because the symmetry condition is not met.

In the case of binary pixel classification, our topic of interest, Y " t0, 1u 2 . Let px, py 1 , y 2 qq P X ˆY be a training sample. For variable reduction, we can define z :" y 1 and ẑ P r0, 1s the corresponding network's estimate. Given that y 1 `y2 " 1, Equation 2.4 can be rewritten as a regularized binary cross-entropy loss function:

L RBCE pWq :" L BCE pWq `λ W 2 2 where L BCE pWq :" ´1 N N ÿ n"1
pz n logp ẑn q `p1 ´zn q logp1 ´ẑ n qq (2.5)

Bayesian Interpretation Note that, from a Bayesian perspective, the network inference ẑ " f W pxq P r0, 1s from Equation 2.5 can be viewed as a Maximum A Posteriori (MAP) probability estimate with a Gaussian prior on the weights (see Section A.2 for a formal proof).

Limitations

In Section 2.1, we introduced FCNs and their training for binary pixel classification to later build our solution. For fully understanding the limitations of our method, we need to understand the limitations of FCNs. We therefore lay out their limitations in this section. 

Large Training Datasets

Limited Internal Representations

Lack of Invariance and Non-Equivariance Due to their built-in convolutional nature, FCNs are translation invariant. As a result, a contextfree pattern is internally represented independently of its image location. For example, in object detection on RGB images, a FCN can detect multiple non-occluded objects in an image by learning only from single-object image patches. A FCN is however not scale-invariant, nor rotation-invariant. Such invariances can be captured only by accordingly augmenting the training images with geometric transformations. More generally, FCN representations are not scale equivariant, nor rotation equivariant. In other words, rotating a pattern representation is not equivalent to representating the rotated pattern. Note that [START_REF] Sabour | Dynamic Routing Between Capsules[END_REF] recently addressed this concern by introducing "capsule" networks, which enable to intrinsically learn pose-equivariant representations. Such networks however remain prospective learning architectures. Semantic Encoding or Not? A deep network inference looks impressive because human-level concepts seem to be "understood". [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Nguyen | Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[END_REF] however showed that DCNs can be easily fooled, as illustrated in Figure 2.4. Evolved fake images that are unrecognizable to humans can be classified by a DCN as familiar objects with ě 99, 6% certainty [START_REF] Nguyen | Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[END_REF]. Adding an imperceptibly small vector, whose elements are equal to the sign of the elements of the gradient of the cost function with respect to the input, can also change a DCN's classification [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]. Our own experiments on object boundary detection confirm this weakness, as shown by Figure 2.5.

Lack of Explanability

Although DCNs have shown remarkable performances and consequently become state-of-the-art for a plethoric range of applications, 2.3. Interpretations they remain poorly explained because of the complex entanglement between their internal linear operators and non-linearities. Training by non-convex optimization also enables a very convenient versatility, but at the cost of no theoretical guarantees on the success of learning, unless performing resource-intensive experiments. Fundamentally, three basic questions remain unanswered by theory: Despite these limitations, we argue that using DCNs is a reasonable and effective choice for learning generalizable representations, in light of the state-of-the-art insights and interpretations.

Interpretations

Deep representations prove the most effective and versatile solution in many applications because they enable to extract high-level concepts from end-to-end training on massive data. Specifically, empirical studies have shown that the representations learned by FCNs are multiscale and strongly generalizable to unseen samples. In this section, we briefly lay out the state-of-the-art empirical analysis of deep representations, and the recent mathematical frameworks that can explain these observations.

Hierarchical Representations

Visualizing the intermediate feature maps of a DCN reveals that the learned representations are hierarchical [START_REF] Zeiler | Visualizing and Understanding Convolutional Networks[END_REF]. As depicted in Figure 2.6, the top representations of a convolutional encoder convey high-level concepts built from the combination of lower-level features encoded by the bottom layers. For example, in face recognition applications, texture invariants such as the skin and eyes color are first encoded in the first layers, then larger parts like the nose, lips, eyes in the midlevel representations, and finally faces as combination of these parts. Furthermore, such hierarchical features consistently transition from general to specific by the last layers [START_REF] Yosinski | How transferable are features in deep neural networks[END_REF]. In particular, the bottom convolutional filters are typically Gabor-like kernels that embed strongly generalizable local representations. 

Mid-level features Low-level features

High-level features 

Kernel Perspective

DCNs can be viewed as elements of a Reproducing Kernel Hilbert Space (RKHS) of functions [START_REF] Bietti | Invariance and Stability of Deep Convolutional Representations[END_REF]. In such a perspective, there exists a positive definite kernel K that defines a RKHS H of functions from X to R, along with a mapping φ : X Ñ H. A function f W in this RKHS can then be written in linear form such that:

@x P X , f W pxq "ă f W , φpxq ą H (2.6)
Consistently with many application-driven studies showing empirically that a DCN captures multiscale invariants, φpxq is a data representation that can prove invariant to the action of groups of transformations, such as translations and diffeomorphisms [START_REF] Mallat | Understanding deep convolutional networks[END_REF]. Interestingly, Equation 2.6 induces that f W is f W H -Lipschitz continuous:

@px, x 1 q P X , | f W pxq ´fW px 1 q| ď f W H φpxq ´φpx 1 q 2 (2.7)
thus showing that f W H acts as a regularizer [START_REF] Bietti | Invariance and Stability of Deep Convolutional Representations[END_REF]. For example, let f W be a network trained to distinguish apples from cookies. As illustrated by Figure 2.7, lessening f W H enables to better control the network predictions by the corresponding representations.

φ ˆ˙´φp q 2 OE φ ˆ˙´φ ˆ˙ 2 Õ f W H OE ˇˇˇf W ˆ˙´f W ˆ˙ˇˇˇˇOE ˇˇˇf W ˆ˙´f W ˆ˙ˇˇˇˇÕ f W H Õ ˇˇˇf W ˆ˙´f W ˆ˙ˇˇˇˇÕ ˇˇˇf W ˆ˙´f W ˆ˙ˇˇˇˇÕ Figure 2
.7: Variations of | f W pxq ´fW px 1 q| with respect to the variations of f W H and φpxq ´φpx 1 q 2 (c.f . Equations 2.6 and 2.7), assuming that f W is trained to distinguish apples from cookies. From a kernel perspective, the norm f W H of a deep function f W acts as a regularizer [START_REF] Bietti | Invariance and Stability of Deep Convolutional Representations[END_REF]: predictions are better subordinated to representations by lessening f W H .

Although the quantity f W H is not analytically computable, f W H can be controlled by an upper bound [START_REF] Bietti | Invariance and Stability of Deep Convolutional Representations[END_REF]:

f W H ď ωp W 1 , ..., W L q (2.8)
where ω is increasing in all of its arguments and W k is the spectral norm of the kth linear operator W k . In addition to providing theoretical insights on deep convolutional models, this mathematical formalization has led to promising direct applications [START_REF] Cissé | Parseval Networks: Improving Robustness to Adversarial Examples[END_REF][START_REF] Miyato | Spectral Normalization for Generative Adversarial Networks[END_REF][START_REF] Sedghi | The Singular Values of Convolutional Layers[END_REF]. Specifically, as suggested by Equation 2.8, controlling the spectral norm of the convolutional layers thereby enables a better generalizability [START_REF] Sedghi | The Singular Values of Convolutional Layers[END_REF], a more stable discriminator for generative adversarial networks [START_REF] Miyato | Spectral Normalization for Generative Adversarial Networks[END_REF], and a better robustness to adversarial examples [START_REF] Cissé | Parseval Networks: Improving Robustness to Adversarial Examples[END_REF]. 

Conclusion

Chapter 3

State of the Art

In this chapter, we review the state of the art on open-loop visual-based bin-picking. Specifically, we first describe the different approaches for automating such a task and review the related works. We then review more deeply the state of the art on instance segmentation, from which we design our model-free object-oriented bin-picking approach.

Bin-Picking

In this section, we review the state-of-the-art approaches for openloop bin-picking, which is the target application of this work. In such applications, a robot is typically slaved to a vision-based module, in a three-step operating cycle:

1. Image acquisition: a visual sensor captures a photometric scene representation. Typical sensors are simple RGB cameras, hyperspectral cameras or more complex 3D sensors that provide a multi-view scene reconstruction as well (c.f . Figure 3 Vision-based bin-picking can be categorized into two main classes (c.f . Figure 3.4): gripper-oriented and object-oriented.

Gripper-oriented approaches aim to detect grasp hypotheses with respect to the gripper model and physics without any explicit notion of instance. Such approaches prove effective unless the object geometry induces strong occlusions and entanglements between the instances.

Object-oriented alternatively aim to detect object instances independently of the gripper model. Grasp hypotheses are then generated with respect to both the gripper model and the detected most affordable instance, thus considerably reducing the search space. For example, in the common case of flat convex objects such as food packets, the best grasp hypotheses are likely to be located near the centroid of each unoccluded instance. We advocate this latter approach, that paves the way towards a general framework for instance-aware grasping. Figure 3.5 illustrates how a gripper-oriented search strategy is boosted by our object-oriented approach. Green annotations indicate the selected "best" grasp. Without the notion of instance, the end effector may be sent to hardly extractable objects (c). Boosting the grasp detection using our object-oriented approach enables instead to focus on the most affordable instance, thus drastically reducing the grasp search space (d).

bin-picking object-oriented

Gripper-Oriented Bin-Picking

Gripper-oriented bin-picking approaches (see Figure 3.19) consist in detecting grasp opportunities with respect to the robot end-effector physics. Although various grippers have been developed [START_REF] Hughes | Soft Manipulators and Grippers: A Review[END_REF], vacuumsuction and parallel-jaw grippers remain most widely used in the industry, and constitute the most studied gripper models in grasp detection.

Early grasp detectors employed unsupervised heuristics on depth images to detect and rank either locations where parallel jaws can be best inserted or locally planar areas for a vacuum suction cup [START_REF] Domae | Fast graspability evaluation on single depth maps for bin picking with general grippers[END_REF]. Jointly with more complex analytic gripper models for detection, ranking heuristics-based grasp candidates was boosted by deep convolutional networks (DCNs) [START_REF] Mahler | Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics[END_REF][START_REF] Mahler | Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds Using a New Analytic Model and Deep Learning[END_REF]. Supervised end-to-end training using DCNs was first explored for single-grasp prediction on single-object images [START_REF] Lenz | Deep Learning for Detecting Robotic Grasps[END_REF]. Inspired by object detection techniques [START_REF] Redmon | You Only Look Once: Unified, Real-Time Object Detection[END_REF][START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF], end-to-end training for parallel-jaw grippers was later extended to multi-grasp detection [START_REF] Johns | Deep Learning a Grasp Function for Grasping under Gripper Pose Uncertainty[END_REF][START_REF] Redmon | Real-time grasp detection using convolutional neural networks[END_REF], then to multi-object settings by joint classification and regression of predefined grasp templates [START_REF] Chu | Real-World Multi-object, Multigrasp Detection[END_REF][START_REF] Zhou | Fully Convolutional Grasp Detection Network with Oriented Anchor Box[END_REF]. Fully convolutional grasp detection was generalized to vacuum suction grippers by inferring instead pixel-wise affordance maps [START_REF] Asif | GraspNet: An Efficient Convolutional Neural Network for Real-time Grasp Detection for Low-powered Devices[END_REF][START_REF] Nguyen | Detecting object affordances with Convolutional Neural Networks[END_REF][START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF], by analogy with semantic segmentation techniques [START_REF] Badrinarayanan | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[END_REF][START_REF] Chen | Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[END_REF]. Training data for these networks was however made from sparse manual annotations [START_REF] Chu | Real-World Multi-object, Multigrasp Detection[END_REF][START_REF] Lenz | Deep Learning for Detecting Robotic Grasps[END_REF][START_REF] Nguyen | Detecting object affordances with Convolutional Neural Networks[END_REF] or heuristics-based labels [START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF], whereas the notion of grasp affordance for a robotic gripper may fundamentally differ from a human perspective. As illustrated by Figure 3.6, simulation was thus introduced to generate unbiased training data for parallel jaw grippers [START_REF] Depierre | Jacquard: A Large Scale Dataset for Robotic Grasp Detection[END_REF][START_REF] Mahler | Learning Deep Policies for Robot Bin Picking by Simulating Robust Grasping Sequences[END_REF][START_REF] Tobin | Domain Randomization and Generative Models for Robotic Grasping[END_REF] and multi-gripper settings as well [START_REF] Matl | Learning ambidextrous robot grasping policies[END_REF]. Nevertheless, synthetically trained state-of-the-art grasp detectors lack an explicit notion of object instance, which is critical for handling occlusions in dense piles and reducing the grasp search space in high-throughput applications.

Image
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Gripper model Comparison between bin-picking approaches. Gripper-oriented approaches define the notion of grasp affordance relatively to friction forces and torques without explicit notion of object instance, which is problematic in the case of strong occlusions and entanglements between instances. Alternatively, model-based object-oriented approaches rely on the notion of pose of an object, i.e. a distinguishable static state of this object [START_REF] Brégier | Defining the Pose of Any 3D Rigid Object and an Associated Distance[END_REF]. The notion of pose is however limited to rigid objects and requires explicit models, which are not always available. In contrast with these approaches, we envision an object-oriented model-free approach based on the notion of generic instance. Such an approach aims to first delineate affordable instances independently of the object and gripper models. Grasp detection can then be oriented on the detected affordable instances.

Object-Oriented Bin-Picking

Object-oriented bin-picking aims to locate affordable instances independently of the gripper model(s). In such a perspective, the notion of affordance is strongly related to the perception of occlusions, while gripper-oriented approaches define affordance relatively to friction forces and torques. Object-oriented approaches are divided into two categories: model-based and model-free. Model-based methods assume an explicit model of the target object, while model-free algorithms are driven by image segmentation techniques. Figure 3.7 illustrates the differences between these approaches.

Model-Based Object-Oriented Bin-Picking Model-based methods (see Figure Figure 3.19) rely on the notion of pose of a rigid object, i.e. a distinguishable static state of this object [START_REF] Brégier | Defining the Pose of Any 3D Rigid Object and an Associated Distance[END_REF] (see Figure 3 [START_REF] Brégier | Defining the Pose of Any 3D Rigid Object and an Associated Distance[END_REF]. Such an approach requires an explicit object model, which is not always available in bin-picking applications.

The pose of an instance is commonly represented as a rotation and a translation that map a point in the object frame into the camera frame. Early approaches for pose detection in RGB images employed template matching from a discrete set of perspective projections [START_REF] Hinterstoisser | Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[END_REF][START_REF] Hinterstoisser | Dominant orientation templates for real-time detection of texture-less objects[END_REF][START_REF] Hinterstoisser | Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes[END_REF][START_REF] Zhang | DoraPicker: An autonomous picking system for general objects[END_REF]. Covering a wide pose variability however requires a prohibitive number of templates. Alternative approaches resorted to heuristics for fitting predefined geometric primitives in point clouds, such as planar surfaces [START_REF] Pretto | Flexible 3D localization of planar objects for industrial bin-picking with monocamera vision system[END_REF] or cylinders [START_REF] Harada | Probabilistic approach for object bin picking approximated by cylinders[END_REF][START_REF] Nieuwenhuisen | Mobile bin picking with an anthropomorphic service robot[END_REF]. Template-free approaches generalized to complex object models emerged using voting-based learning strategies based on depth-based hand-crafted data representations and feature clustering in the pose space [START_REF] Abbeloos | Point Pair Feature Based Object Detection for Random Bin Picking[END_REF][START_REF] Birdal | Point Pair Features Based Object Detection and Pose Estimation Revisited[END_REF][START_REF] Brachmann | Learning 6D Object Pose Estimation Using 3D Object Coordinates[END_REF][START_REF] Choi | Votingbased pose estimation for robotic assembly using a 3D sensor[END_REF]. State-of-the-art pose detectors now leverage synthetically trained deep convolutional networks for representation learning [START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF][START_REF] Lee | 3D Pose Estimation of Bin Picking Object using Deep Learning and 3D Matching[END_REF][START_REF] Rad | BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth[END_REF]. Due to quantization of the pose space or the selection of a pose cluster representative, a refinement of the pose estimation remains a necessary final step for accurate results [START_REF] Abbeloos | Point Pair Feature Based Object Detection for Random Bin Picking[END_REF][START_REF] Brachmann | Learning 6D Object Pose Estimation Using 3D Object Coordinates[END_REF][START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF][START_REF] Lee | 3D Pose Estimation of Bin Picking Object using Deep Learning and 3D Matching[END_REF], typically using the iterative closest point registration method [START_REF] Besl | A Method for Registration of 3-D Shapes[END_REF]. Generally, model-based approaches face two limitations for large-scale bin-picking applications. First, they require explicit object models that are not always available. Assuming an object model also excludes the case of instances with texture or geometric intra-class variations, unless prohibitively considering each variation as a new model. Second, the notion of pose is defined for rigid objects, thereby hardly appropriate for handling elastic deformations (see Figure 3.9). Model-Free Object-Oriented Bin-Picking Model-free approaches are related to the task of instance segmentation, which consists in delineating object instances without explicit object models (see Figure 3.10). Two main paradigms have emerged in the literature, localizing instances before and after delineation respectively. Early-localization algorithms are built on the assumption that instances can be approximated as rectangles. They typically consist in first predicting rectangle region proposals that might contain an object [START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF], for further learning-based grasp detection [START_REF] Pas | Grasp Pose Detection in Point Clouds[END_REF], object function prediction [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF], or amodal segmentation [START_REF] Wada | Instance Segmentation of Visible and Occluded Regions for Finding and Picking Target from a Pile of Objects[END_REF][START_REF] Zhu | Semantic Amodal Segmentation[END_REF], i.e. inferring both the visible and occluded object parts. While box proposal-based segmentation techniques certainly reduce the complexity in images sparsely populated with instances, such approaches prove inadequate for the case of dense piles (see later Figure 3.13) as a rectangle region may be shared by several instances. Urban scene understanding [START_REF] He | Mask R-CNN[END_REF] Vessel segmentation [START_REF] Maninis | Deep Retinal Image Understanding[END_REF] Plant analysis [START_REF] Salvador | Recurrent Neural Networks for Semantic Instance Segmentation[END_REF] Alternatively, late-localization approaches were first built on perceptual grouping heuristics from the Gestalt principles. They typically relied on heuristics-based bottom-up strategies for merging pixels into object parts, starting from a graph of superpixels [START_REF] Asif | Model-Free Segmentation and Grasp Selection of Unknown Stacked Objects[END_REF][START_REF] Ückermann | Real-time 3D segmentation of cluttered scenes for robot grasping[END_REF]. These graphbased models were further boosted by learning-based edge detection using structured random forests [START_REF] Dollár | Structured Forests for Fast Edge Detection[END_REF], and Pareto optimization for multiscale combinatorial grouping [START_REF] Pont-Tuset | Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation[END_REF]. Towards end-to-end learning, stateof-the-art algorithms for delineating instances leverage deep learning for instance boundary detection [START_REF] Wang | Deep Crisp Boundaries[END_REF], i.e. classifying each pixel as a boundary or not, or semantic segmentation [START_REF] Chen | Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[END_REF], i.e. assigning a category to each pixel. Given our application context and objectives, we advocate the late-localization model-free object-oriented approach. A deeper analysis of the state of the art on instance segmentation is thereby provided in Section 3.2.

Instance Segmentation

In this section, we review the state of the art on instance segmentation, which is a core topic of interest in model-free object-oriented bin-picking, and thereby in our approach. Instance segmentation is aimed at finely delineating object instances in images, without explicit object models.

Figure 3.11 illustrates the differences between types and granularities of object-level scene understanding in the literature. In this work, we are mostly interested in the task of generic instance segmentation, i.e. category-agnostic instance segmentation. Specifically, instance segmentation differs from the tasks of image classification and semantic segmentation in terms of objective: these two tasks aim instead to assign image-level and pixel-level object categories respectively, without 
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Figure 3.12: Approaches for instance segmentation. In the case of dense piles of objects, box proposals may contain multiple instances, thereby inducing ambiguous binary segmentations. We thus advocate a late-localization approach for first separating instances independently of their bounding box. notion of instance. Note that instance segmentation augmented with pixel-level categorization thus defines the task known as semantic instance segmentation. Instance segmentation also differs from the task of instance detection, but in terms of granularity: instance detection consists in coarsely localizing instances by approximating them as rectangles.

As illustrated by Figure 3.12, instance segmentation techniques are divided into two categories: the early-localization and late-localization strategies, that consider instance localization as a task preceding or following instance delineation respectively. Early-localization approaches consist in first detecting the image region framing each instance. Latelocalization approaches aim instead to first detect boundaries between instances to further cluster the pixels into instance segments.

Joint Boundary and Occlusion Detection

In both instance segmentation paradigms, a step further to separating instances consists in learning the notion of occlusion as well. Similarly to two-stream network architectures aimed at fusing different modalities [START_REF] Feichtenhofer | Convolutional Two-Stream Network Fusion for Video Action Recognition[END_REF][START_REF] Simonyan | Two-Stream Convolutional Networks for Action Recognition in Videos[END_REF], stateof-the-art approaches for this task rely on two independent streams that predict boundaries and occlusions separately. Concretely, in the late-localization paradigm, it consists in detecting respectively the instance boundaries and their orientation [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF]. In the early-localization paradigm, it consists in coloring respectively the visible instance mask and the mask including both the visible and invisible instance parts [START_REF] Zhu | Semantic Amodal Segmentation[END_REF], namely the modal and amodal masks.

However, occlusions are a major source of instance boundaries. Considering occlusions jointly with boundaries could thus provide much richer information for scene understanding. Humans indeed leverage shadows and partially occluded patterns to instantly detect object boundaries and guess simultaneously the spatial relations between instances. Moreover, in state-of-the-art solutions, an instance-wise orientation is assigned to object boundaries in natural scenes for mostly describing which side is foreground, and which side is background [START_REF] Fu | Occlusion Boundary Detection via Deep Exploration of Context[END_REF][START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF].

In contrast with previous works, we aim at addressing scenes composed of many instances occluding each other, in which the background is often hidden. In such configurations, the network should learn to answer instead the more general question: which side is above and which one is below? We now more deeply review the state of the art on both instance segmentation approaches, how the notion of occlusions is learned, and finally the training datasets for these tasks.

Early-Localization Instance Segmentation

Box proposal-based instance segmentation relies on the assumption that instances can be isolated in a rectangle. In such a perspective, the problem of segmentation is shattered into simpler multiple binary segmentations by first locating the instance bounding boxes [START_REF] Hosang | What Makes for Effective Detection Proposals[END_REF].

Proposal-Based Segmentation

Early approaches consisted in merging regions based on hand-crafted region features [START_REF] Uijlings | Selective Search for Object Recognition[END_REF][START_REF] Wang | Regionlets for Generic Object Detection[END_REF], or counting learning-based edges [START_REF] He | Oriented Object Proposals[END_REF][START_REF] Zitnick | Edge Boxes: Locating Object Proposals from Edges[END_REF]. Selecting rectangle regions containing objects was further boosted by deep region features [START_REF] Girshick | Fast R-CNN[END_REF][START_REF] Girshick | Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[END_REF][START_REF] Hariharan | Simultaneous Detection and Segmentation[END_REF][START_REF] Lu | Contour Box: Rejecting Object Proposals without Explicit Closed Contours[END_REF][START_REF] Weicheng | DeepBox: Learning Objectness with Convolutional Networks[END_REF], but still using heuristics for box proposal generation.

[155] thus introduced the concept of "region proposal network", which consists in using a deep convolutional encoder trained for locally assigning and regressing box templates from a predefined set of different scales and ratios. The trade-off between speed and accuracy of such a network was further balanced by position-sensitive score maps [START_REF] Dai | R-FCN: Object Detection via Region-based Fully Convolutional Networks[END_REF], by dividing the image into blocks instead of using box anchors [START_REF] Redmon | You Only Look Once: Unified, Real-Time Object Detection[END_REF][START_REF] Redmon | YOLO9000: Better, Faster, Stronger[END_REF], or by introducing multiscale nested connections [START_REF] Zagoruyko | A MultiPath Network for Object Detection[END_REF] and spatial pyramid pooling [START_REF] He | Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[END_REF]. Inferring a pixel-wise instance delineation in each box proposal was later obtained using a second network trained for binary segmentation [START_REF] Pinheiro | Learning to Segment Object Candidates[END_REF], whose spatial accuracy was further improved by top-down refinement modules [START_REF] Pinheiro | Learning to Refine Object Segments[END_REF].

To finally obtain a convolutional structure combining the two steps, i.e. box detection and binary segmentation, trainable end to end, [START_REF] He | Mask R-CNN[END_REF] introduced bilinear interpolation to pool the deep features of each box proposal, thus enabling the recovery of higher-resolution instance binary masks from low-resolution localization feature maps in one feedforward pass. This two-network architecture was later enhanced by bottom-up path augmentation for a better accuracy [START_REF] Liu | Path Aggregation Network for Instance Segmentation[END_REF], semantic segmentation for pixel-wise object categorization [START_REF] Chen | MaskLab: Instance Segmentation by Refining Object Detection With Semantic and Direction Features[END_REF][START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF], and a loss function that alleviates the performance-penalizing foregroundbackground class imbalance [START_REF] Lin | Focal Loss for Dense Object Detection[END_REF].

Limitations However, coloring all the pixels of an instance becomes an ambiguous task if multiple instances occluding each other share the same region proposal, as in the case of bin-picking scenes (see Figure 3.13). Unlike people or cars in natural scenes, an instance in a pile does not often fit a rectangle because instances piled up in bulk can remain at rest in any pose. Furthermore, when a manufactured object is instantiated multiple times like often in robotic setups, it may mean as a consequence classifying differently similar patterns, inconsistently with the translation invariance property of convolutional layers. An instance in a dense pile of objects occluding each other may also occlude other instances and be partially occluded at the same time.

Consequently, applying a box proposal-based instance segmentation approach on dense piles gives poor results. In this work, we thus consider deep convolutional networks for classifying pixels as instance boundary or not, independently of their bounding box. We review the state of the art on this alternative instance segmentation approach in Section 3.2.2.

Late-Localization Instance Segmentation

Late-localization approaches are based on learning similarities and dissimilarities between pixels, for further clustering them into instance segments independently of their bounding box.

Graph-Based Segmentation

Early strategies represented images as graphs of superpixels obtained by heuristics-based oversegmentation techniques [4,[START_REF] Bergh | SEEDS: Superpixels Extracted Via Energy-Driven Sampling[END_REF][START_REF] Felzenszwalb | Efficient Graph-Based Image Segmentation[END_REF][START_REF] Papon | Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds[END_REF][START_REF] Tang | Topology Preserved Regular Superpixel[END_REF] and consisted in greedily merging superpixels using hand-crafted features [START_REF] Asif | Model-Free Segmentation and Grasp Selection of Unknown Stacked Objects[END_REF][START_REF] Hasnat | Unsupervised RGB-D image segmentation using joint clustering and region merging[END_REF][START_REF] Marton | Part-Based Geometric Categorization and Object Reconstruction in Cluttered Table-Top Scenes[END_REF][START_REF] Potapova | Attention-driven object detection and segmentation of cluttered table scenes using 2.5D symmetry[END_REF][START_REF] Stein | Object Partitioning Using Local Convexity[END_REF][START_REF] Ückermann | Real-time 3D segmentation of cluttered scenes for robot grasping[END_REF]. The complexity of superpixel merging was later reduced by various learningbased algorithms [START_REF] Pont-Tuset | Boosting Object Proposals: From Pascal to COCO[END_REF] such as conditional random fields [START_REF] Arnab | Pixelwise Instance Segmentation with a Dynamically Instantiated Network[END_REF][START_REF] Li | Instance-Level Salient Object Segmentation[END_REF], Pareto optimization on hierarchical region trees [START_REF] Chen | Extracting Image Regions by Structured Edge Prediction[END_REF][START_REF] Gupta | Learning Rich Features from RGB-D Images for Object Detection and Segmentation[END_REF][START_REF] Pont-Tuset | Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation[END_REF], tree-like structure of binary classifiers [START_REF] Wang | Object proposal by multi-branch hierarchical segmentation[END_REF], deep convolutional networks for recovering contextual information among superpixels [START_REF] He | SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection[END_REF], parametric min-cuts over different seed locations [START_REF] Humayun | RIGOR: Reusing Inference in Graph Cuts for Generating Object Regions[END_REF][START_REF] Humayun | The Middle Child Problem: Revisiting Parametric Min-Cut and Seeds for Object Proposals[END_REF][START_REF] Krähenb | Learning to propose objects[END_REF], or level-set methods from geodesic distance transforms [START_REF] Krähenb | Geodesic Object Proposals[END_REF].

These learning-based merging techniques importantly relied on edge detections, as such cues constitute the premises of boundaries between instances. [START_REF] Dollár | Structured Forests for Fast Edge Detection[END_REF][START_REF] Lim | Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detection[END_REF] notably introduced structured random forests (SRFs) for learning to efficiently assign a contour patch to each pixel. SRFs were later outperformed by deep convolutional networks similarly trained to classify image patches [START_REF] Bertasius | DeepEdge: A multi-scale bifurcated deep network for top-down contour detection[END_REF][START_REF] Shen | DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection[END_REF].

End-to-end training of instance boundary detectors finally emerged with fully convolutional encoder-decoder networks [START_REF] Bertasius | High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and Its Applications to High-Level Vision[END_REF][START_REF] Liu | Richer Convolutional Features for Edge Detection[END_REF][START_REF] Maninis | Convolutional Oriented Boundaries[END_REF][START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF][START_REF] Wang | Deep Crisp Boundaries[END_REF][START_REF] Xie | Holistically-Nested Edge Detection[END_REF][START_REF] Yang | Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[END_REF], as they enable to capture multiscale relations between pixels and recover high-resolution contour maps in one feedforward pass. In this work, we thus consider fully convolutional networks, specifically encoder-decoder architectures, for classifying pixels as instance boundary or not, and for inferring their nearby spatial layouts as well.

Encoder-Decoder Networks Inspired by auto-encoders for unsupervised representation learning, encoder-decoder networks have been firstly introduced for single-task setups, such as semantic segmentation [START_REF] Badrinarayanan | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[END_REF] and instance contour detection [START_REF] Yang | Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[END_REF], in order to recover high-resolution boundaries despite the resolution loss when encoding object-level semantics.

The encoder produces deep hierarchical features, and the decoder gradually outputs a binary or category map using symmetric unpooling stages (c.f . Figure 3.14a). To keep the upsampling efficient, the decoder typically uses max-unpooling layers that take the pooling indices from the encoder max-pooling layers. However, such an architecture requires the network to restore accurate boundaries only from the last encoder activation maps, where information is the most spatially compressed. Instead of a progressive decoding, [START_REF] Liu | Richer Convolutional Features for Edge Detection[END_REF][START_REF] Xie | Holistically-Nested Edge Detection[END_REF] introduced holisticallynested connections for a late fusion of all the encoder feature maps upsampled to the image scale, thus giving a multiscale view to the decoder (Figure 3 Unpooling Sequential [START_REF] Yang | Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[END_REF] Holistic [START_REF] Xie | Holistically-Nested Edge Detection[END_REF] Residual [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] Figure 3.14: Single-stream VGG16-based [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] encoder-decoder architectures

Similarly to two-stream designs aimed at fusing different modalities [START_REF] Feichtenhofer | Convolutional Two-Stream Network Fusion for Video Action Recognition[END_REF][START_REF] Simonyan | Two-Stream Convolutional Networks for Action Recognition in Videos[END_REF], the two-stream baseline for oriented boundary detection [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] employed independent encoder-decoder streams with holisticallynested connections. This architecture however hardly allows for learning a joint feature representation of boundaries and occlusions due to direct connections between each intermediate feature map and the output layer from which starts the backpropagation. In the context of semantic segmentation, [START_REF] Luo | Deep Dual Learning for Semantic Image Segmentation[END_REF] proposed to merge local and global semantics through a dual-task training, consisting in jointly decoding pixel labels and inferring image labels after the encoder. Image-level classification is however unfeasible in our object category-agnostic problem, although detecting instance boundaries and inter-instance occlusions require global cues as well.

Combining progressive upsampling with connections to the latent feature representations at each scale can be achieved alternatively by residual-like connections [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] between the encoder and decoder (c.f . Figure 3.14c), as proposed in single-task networks [START_REF] Deng | Learning to Predict Crisp Boundaries[END_REF][START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF][START_REF] Wang | Deep Crisp Boundaries[END_REF]. Residual-like connections notably proved to be superior to holistically-nested ones for single-stream encoder-decoder networks [START_REF] Wang | Deep Crisp Boundaries[END_REF]. Indeed, by giving each decoder stage access to both the upsampled previous one and the corresponding encoder activation maps, the network can gradually merge the higher-level semantics of the previous scale with the spatial information lost during encoding at the current scale. Performing such a combination besides reduces the checkerboard artifacts inherent to unpooling [START_REF] Odena | Deconvolution and Checkerboard Artifacts[END_REF]. In contrast with two independent multiscale encoder-decoder streams, the proposed bicameral design, which can viewed as an "encoder-bidecoder" structure, employs skip connections to combine local and higher-level cues from a single feature space for detecting both boundaries and nearby occlusions.

Occlusion Detection from a Single Image

Finding occlusion relations has mostly been studied jointly with depth estimation in multiview contexts [START_REF] Geiger | Occlusions and binocular stereo[END_REF][START_REF] Grammalidis | Disparity and occlusion estimation in multiocular systems and their coding for the communication of multiview image sequences[END_REF][START_REF] Zitnick | A Cooperative Algorithm for Stereo Matching and Occlusion Detection[END_REF] and motion sequences [START_REF] Ayvaci | Occlusion Detection and Motion Estimation with Convex Optimization[END_REF][START_REF] Ayvaci | Sparse Occlusion Detection with Optical Flow[END_REF][START_REF] He | Occlusion Boundary Detection Using Pseudodepth[END_REF][START_REF] Humayun | Learning to find occlusion regions[END_REF][START_REF] Stein | Local Detection of Occlusion Boundaries in Video[END_REF][START_REF] Sun | Local Layering for Joint Motion Estimation and Occlusion Detection[END_REF][START_REF] Williams | Estimating Disparity and Occlusions in Stereo Video Sequences[END_REF], as occlusions often translate into missing pixel correspondences in different points of view or consecutive frames. Some recent works have more ambitiously focused on predicting a dense depth map from a monocular image [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF][START_REF] Li | Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs[END_REF][START_REF] Liu | Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields[END_REF], but the results are still less accurate than standard multi-view 3D reconstruction algorithms, and these techniques require ground-truth depth maps difficult to obtain.

However, considering a single point of view for inferring occlusions instead of distances from the camera seems more prone to success, as occlusions consist in binarized differences of depth at object boundaries. Such a binarization then conveys a relative depth ordering independent of the point of view and the distance between the camera and the scene. [START_REF] Ren | Figure/Ground Assignment in Natural Images[END_REF] firstly proposed a two-stage approach consisting in using an edge detector [START_REF] Martin | Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues[END_REF] to extract gradient-based features for a conditional random field (CRF) that performs local foreground/background classifications. Because local gradient-based features are limited for understanding occlusions, [START_REF] Hoiem | Recovering Occlusion Boundaries from a Single Image[END_REF] introduced 3D cues within a similar procedure, by making assumptions on the global 3D structure of the scene (sky, ground). Observing that detecting objects and foreground/background occlusions are actually coupled tasks, object part segmentation and figure/ground organization were later recovered in a single step using angular embedding [START_REF] Maire | Simultaneous Segmentation and Figure/Ground Organization Using Angular Embedding[END_REF]. However, as angular embedding and CRFs both require expensive computational time at large scales, [START_REF] Teo | Fast 2D border ownership assignment[END_REF] suggested a faster simultaneous edge and foreground/background detection by leveraging structured random forests [START_REF] Dollár | Structured Forests for Fast Edge Detection[END_REF], but still using hand-crafted features derived from a limited set of contour token clusters. In order to avoid human biases when defining features, a convolutional neural network (CNN) was instead employed to produce contextual feature representations [START_REF] Fu | Occlusion Boundary Detection via Deep Exploration of Context[END_REF] or to learn pixel-centric pairwise relations for affinity and figure/ground embedding [START_REF] Maire | Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding[END_REF]. Towards end-to-end training, and in the footsteps of fully convolutional networks (FCNs) for pixel-wise classification, two approaches have lately emerged (see Figure 3 

Amodal Segmentation

The first approach [START_REF] Zhu | Semantic Amodal Segmentation[END_REF], namely amodal instance segmentation, follows the two-step early-localization paradigm of region proposal-based instance segmentation, but aims instead at predicting for each instance the mask including both the visible and the non-visible instance parts. An estimation of the instance occlusion rate can then be obtained by comparing the predicted modal and amodal masks, i.e. the mask of the visible parts and the mask including both the visible and occluded parts. This approach however cumulates the drawbacks of region-based instance segmentation, discussed in Section 3.2.1, and the difficulty of coloring something invisible, thus resulting in low instance boundary accuracy.

Oriented Boundary Detection

The second approach [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] follows the late-localization paradigm and consists in a two-stream FCN that predicts independently boundaries and their occlusion-based orientation in one forward pass. More precisely, [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] set up one stream of the network to predict the raw orientation of a local unit vector specifying the occlusion relations by a left-hand rule, and used a logistic loss function that strongly penalizes wrong directions but only weakly tangent directions. However, to ensure a local continuity, the orientation predictions have to be further "adjusted" using the local tangent vectors of the predicted boundaries as the network may not predict similar orientations for neighbourhood pixels. There is indeed no constraints ensuring a local continuity of the network prediction, all the more as the ground-truth orientation map is noisy itself.

To overcome this issue and remove any post-processing step, we propose instead to reformulate the occlusion prediction as a local binary segmentation problem near boundaries. Both modelled as binary maps, boundaries and occlusions can then be detected using a single fully convolutional encoder-decoder structure equipped with residual-like connections, i.e. the proposed bicameral design, thus efficiently sharing features instead of using two independent encoders.

Datasets for Boundary and Occlusion Detection

Joint boundary and occlusion detection from a single image raised interest with the BSDS Border Ownership dataset (BSDS-BOW) [START_REF] Ren | Figure/Ground Assignment in Natural Images[END_REF], derived from the BSDS500 dataset [START_REF] Martin | A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[END_REF] for object contour detection, which contains 200 natural images manually annotated with object partlevel oriented contours. As state-of-the-art FCNs require more training data, [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] presented a dataset larger than BSDS-BOW, namely the PASCAL Instance Occlusion Dataset (PIOD), comprising about 10,000 manually annotated natural images from the PASCAL VOC Segmentation dataset [START_REF] Everingham | The Pascal Visual Object Classes Challenge: A Retrospective[END_REF]. Similarly for amodal instance segmentation, [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF][START_REF] Zhu | Semantic Amodal Segmentation[END_REF] have proposed real-world datasets, namely the Densely Segmented Supermarket Amodal dataset (D2SA) and the COCOA Amodal dataset (COCOA). These latter datasets are subsets of much larger datasets for instance segmentation in the early-localization paradigm, COCO [START_REF] Lin | Microsoft COCO: Common Objects in Context[END_REF] and D2S [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF] respectively, but augmented with the ground-truth amodal annotations, that can be derived for oriented boundary detection. Despite their challenging instance intra-class variability, the support images contain few instances and are limited in terms of interinstance occlusions.

PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] COCOA [START_REF] Zhu | Semantic Amodal Segmentation[END_REF] D2SA [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF] Mikado (Ours)

Dataset PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and amodal instance segmentation [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF][START_REF] Zhu | Semantic Amodal Segmentation[END_REF] compared with our synthetic data. Unlike Mikado, occlusions in these datasets are mostly due to objects occluding the background, thereby unsuitable for bin-picking scenes in which occlusions are between instances.

However, in our robotic setups, scenes are composed of many instances occluding each other. Applying on such scenes a model trained on PIOD or COCOA would give poor results since these datasets provide mostly foreground/background boundary examples for training. As extending hand-labeled real-world datasets is a time-consuming task, D2SA partly alleviates this concern by artificially overlaying manually delineated instances for creating fake images with more instances, but at the cost of lighting inconsistencies at instance boundaries and limited pose variations (see Figure 3.17 To address these issues, synthetic datasets [START_REF] Brégier | Symmetry Aware Evaluation of 3D Object Detection and Pose Estimation in Scenes of Many Parts in Bulk[END_REF][START_REF] Mccormac | SceneNet RGB-D: Can 5M Synthetic Images Beat Generic Im-ageNet Pre-training on Indoor Segmentation[END_REF][START_REF] Ros | The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes[END_REF] have emerged during the course of this work for learning and evaluation as they offer a fully controlled environment and a perfect ground truth. For benchmarking the tasks of pose detection and estimation, [START_REF] Brégier | Symmetry Aware Evaluation of 3D Object Detection and Pose Estimation in Scenes of Many Parts in Bulk[END_REF] generated depth images of many rigid instances piled up in bulk. For the tasls of object detection, semantic segmentation and instance segmentation, [START_REF] Mccormac | SceneNet RGB-D: Can 5M Synthetic Images Beat Generic Im-ageNet Pre-training on Indoor Segmentation[END_REF] and [START_REF] Ros | The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes[END_REF] proposed synthetic urban and indoor scenes respectively.

In this work, we address bin-picking scenes of deformable objects in large-scale applications. As in such scenarios real-world datasets are not available and annotating real-world data is prohibitive in industrial processes, we propose to make and use synthetic data for oriented boundary detection from a single image. As depicted by 

Conclusion

Bin-picking approaches are divided into two categories: gripper-oriented and object-oriented (c.f . Figure 3.19). Unlike object-oriented approaches, gripper-oriented techniques lack the notion of instance, which is important for handling occlusions in dense piles of instances. Object-oriented bin-picking relies either on the notion of pose, thereby requiring an explicit rigid object model, or on generic instance segmentation techniques (c.f . Figure 3.20) which can handle deformable objects as well. The task of instance segmentation can be fulfilled either by first coarsely locating instances before delineation, but under the assumption that instances can be isolated in a rectangle, or by learning boundaries between instances independently of their bounding box. Given our application context and objective, we thus advocate a model-free late-localization object-oriented approach (c.f . Figure 3.18). Specifically, we propose a synthetically trained bicameral convolutional structuring for jointly learn boundaries and occlusions from a single image. In contrast with state-of-the-art approaches, which rely on two independent streams for boundaries and occlusions respectively, we explore in Chapter 4 a fully convolutional architecture for joint representation learning, as occlusions strongly cause boundaries in bin-picking scenes. We then present and discuss through extensive experiments in Chapter 5 a synthetic training data generation pipeline for applying such a network to real-world bin-picking.
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Occlusion-Aware Instance Segmentation

In this chapter, we present our contributions on inferring instance boundaries and occlusions from a single image, using the deep learning tools presented in Chapter 2, in the ultimate goal of inferring the most affordable instance of a pile in bin-picking applications.

Bicameral Structuring

In bin-picking scenes, the boundaries between instances are mostly due to their mutual occlusion. Unlike the state-of-the-art two-stream approaches, we thus argue that boundaries and occlusions should be learned from a joint feature space (see The proposed bicameral structuring compared with the two-stream baseline built from [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF].

Specifically, we propose a bicameral fully convolutional structure, consisting in one encoder shared by two cascaded decoders through skip connections, for jointly inferring the instance boundaries and their unoccluded side from a single RGB image.

Bicameral Architecture

In our experiments, we implement a bicameral FCN from a VGG16based [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] encoder backbone, as depicted by Figure 4.2. Alternative backbones such as [START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Huang | Densely Connected Convolutional Networks[END_REF] can be employed as well; this point is addressed in our ablation study. The two cascaded decoders have the same structure: four convolutional layers whose numbers of filters are, from bottom to top, 256, 128, 64, 32. The convolutional layers of each decoder are interleaved with unpooling layers that take as input the pooling indices from the encoder max-pooling layers. As illustrated in Figure 4.3, such an unpooling mechanism enables to reuse the most salient pixel locations fired by the encoder during the feedforward, instead of arbitrarily padding with zeros. The first decoder is trained to recover boundaries, while the second decoder handles occlusions, modelled as boundary orientations. The boundary decoder is linked to the encoder by residual-like connections [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] to the top of each encoder convolutional block. The occlusion decoder is similarly connected to the encoder, but also to each boundary decoder convolutional layer. Skip connections are implemented by concatenating feature maps. We investigate alternative implementations of skip connection in our ablation study, but show that using concatenation is the best default choice.

Bicameral Learning

Boundaries Instance boundaries are modelled as binary maps such that activated pixels are boundaries, i.e. pixels in contact with two or more different instance labels. For such a binary classification, we thus use a regularized cross-entropy loss function (c.f . Chapter 2). However, boundary pixels generally represent a small fraction of a whole image. To alleviate this class imbalance between boundary and non-boundary pixels, we employ a variant of cross-entropy, referred to as a balanced cross-entropy loss function [START_REF] Liu | Richer Convolutional Features for Edge Detection[END_REF][START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF][START_REF] Wang | Deep Crisp Boundaries[END_REF][START_REF] Xie | Holistically-Nested Edge Detection[END_REF][START_REF] Yang | Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[END_REF]. Specifically, the two terms of the loss function are weighted in order to counterbalance the low number of boundary pixels against non-boundary pixels. In our experiments, we set these weights such that the "contour pixel" penalty is 10 times more important than the "non-contour" term, regardless of the dataset. We are aware of recently proposed more advanced loss functions [START_REF] Deng | Learning to Predict Crisp Boundaries[END_REF][START_REF] Lin | Focal Loss for Dense Object Detection[END_REF][START_REF] Yu | Simultaneous Edge Alignment and Learning[END_REF] but we leave the introduction of these loss functions for future work. Unpooling mechanism, also introduced in [START_REF] Badrinarayanan | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[END_REF][START_REF] Yang | Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[END_REF]. When a feature map is pooled in the encoder by a max-pooling operator, the pooling indices are stored for the corresponding decoder's unpooling layer. This enables to reuse the most salient pixel locations when unpooling, instead of arbitrarily padding with zeros.

Occlusions In the two-stream baseline [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF], the stream for occlusions consists in inferring the raw orientation θ P p´π, πs of a local unit vector specifying the occlusion relation by a left-hand rule, independently of the stream for boundaries. Their orientation learning is driven by a logistic loss function that strongly penalizes wrong directions but only weakly tangent directions. However, a consistency check between boundaries and orientations is required after each forward pass, by using the local tangent vectors of the predicted boundaries for adjusting the predicted orientations, since by construction, there is no mechanism enforcing a local continuity of the network inference.

Input

Ground truth Input Ground truth By using instead a single encoder-decoder structure, and reformulating the occlusion prediction as a local binary segmentation problem close to instance boundary detection, we can overcome this limitation. In practice, near each boundary pixel, we propose to set the side which is above the other one to "1", and the side below to "0". More precisely, for generating the ground-truth occlusion binary maps, we sweep all the ground-truth instance boundaries, and for each boundary pixel, we binarize the centered local region by computing the mean Z-offset in each segment of the region. In the end, a ground-truth occlusion map is a binary map whose positive pixels are the instance boundaries slightly translated to one side or another, according to the relative depth difference of the boundary sides, as illustrated by the final ground-truth image in Figure 4.4. Note that boundary pixels are set to 0 in the occlusion map. Occlusions can then be learned using a balanced cross-entropy loss function as well.

Bicameral Loss Function Formally, let p P P be a pixel location; typically P " t1, .., Wu ˆt1, .., Hu for an image of width W P N ˚and height H P N ˚. We note N " t1, .., Nu where N P N ˚is the number of training images, and M p P V the value at location p P P in a matrix M P V R , with R " W ˆH. With the proposed formulation for occlusions, the network jointly minimizes two balanced cross-entropy loss functions L boundaries (Eq. 4.1) and L occlusions (Eq. 4.2), respectively for instance boundaries and occlusions, defined as follows:

L boundaries pWq " ´1 |N ||P| ÿ nPN ÿ pPP µY np logp Ŷnp q `p1 ´Ynp q logp1 ´Ŷ np q (4.1) L occlusions pWq " ´1 |N ||P| ÿ nPN ÿ pPP µZ np logp Ẑnp q `ppµ ´1qY np `1qp1 ´Znp q logp1 ´Ẑ np q (4.2)
where tpX n , Y n , Z n q P pR 3 q R ˆt0, 1u R ˆt0, 1u R u nPN is the training dataset of RGB images X n , associated with their ground-truth binary maps Y n and Z n for boundaries and occlusions respectively. If a pixel p P P of the image X n is an instance boundary then Y np " 1, else Y np " 0. If p is the unoccluded side of an instance boundary then Z np " 1, else Z np " 0. p Ŷn , Ẑn q " f W pX n q P r0, 1s R ˆr0, 1s R designates the network inference for boundaries and occlusions respectively, using the parameters W. In practice, µ " 10. The factor ppµ ´1qY np `1q in Eq. 4.2 ensures consistency with Eq. 4.1, as we want the intersection between the boundary and occlusion binary maps to be empty. Basically, this factor enables to give the "is-not-unoccluded-side" penalty as much importance as the "is-unoccluded-side" term when a pixel in the occlusion map is a boundary, i.e. Y np " 1 and Z np " 0.

Implementation Details

• In practice, to ensure probability-like inferences, we train the network to infer p Ŷn , Ẑn q P R R ˆRR , then we apply the sigmoid function σ : R Ñ r0, 1s, x Þ Ñ p1 `exppxqq ´1.

• In addition to Equations 4.1 and 4.2, we perform a 2 -regularization of the parameters to avoid overfitting, but the regularization term is here omitted for brevity (c.f . Chapter 2).

• When generating the ground-truth occlusion map, local patches that contain more than two segments are fully set to 0 as they cannot be binarized. This proves to be a reasonable limitation as in practice an overwhelming majority of boundary pixels are between only two instances or between an instance and the background (e.g., 97.1% of the boundary pixels in our synthetic dataset, and 99.4% in PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF]). We leave for future work the study of the minority of pixels at the junction of more than two instances.

Experimental Setup

We now describe our experimental protocol to evaluate the proposed network architecture on real-world and synthetic data. We are interested in finding answers to the two following questions:

1. Is the proposed bicameral structuring the best architecture for oriented boundary detection?

2. How does the late-localization paradigm compare with the earlylocalization paradigm (see Figure 4.5)?

To investigate each of these questions, we conduct two sets of experiments that consist in respectively comparing:

1. the proposed bicameral design with our two-stream baseline and alternative architectures, on PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and Mikado;

2. the proposed bicameral design with the box proposal-based approach on Mikado, then the amodal segmentation approach on COCOA [START_REF] Zhu | Semantic Amodal Segmentation[END_REF].

More precisely, each set of experiments is respectively composed of comparisons between:

1. (a) the bicameral design and our two-stream baseline for oriented boundary detection, built from [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF];

(b) the bicameral design and alternative architectures;

(c) bicameral designs with different partial feature sharing between the bicameral decoders;

(d) bicameral designs with and without skip connections;

(e) bicameral designs with different type of skip connections;

(f) bicameral designs with different encoder backbone;

2. (a) the bicameral design with the box proposal-based segmentation approach [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF] for instance boundary detection;

(b) the bicameral design with a two-stream network for amodal instance segmentation [START_REF] Zhu | Semantic Amodal Segmentation[END_REF].

As reported by Let us finally address some concerns that the reader may have regarding our experimental setup:

• We leave out the BSDS Border Ownership dataset [START_REF] Ren | Figure/Ground Assignment in Natural Images[END_REF] as it contains only 200 images, and mostly because the ground truth does not define instance boundaries but object part-level edges.

• We compare the late and early-localization paradigms for boundary and occlusion detection only on COCOA because amodal segmentation requires the amodal instance masks, which are not available in PIOD and not generated in Mikado. For training the proposed network on COCOA and comparing with amodal segmentation, we turn both the COCOA ground truth and the precomputed results of [START_REF] Zhu | Semantic Amodal Segmentation[END_REF] into oriented instance boundaries.

Data Preparation

To robustly assess the generalizability of each model, each experiment is cross-validated using three folds, except for the amodal segmentation results as we use the precomputed binary outputs made publicly available by the authors. To present more significative results when comparing architectures, curves and scores are averaged on the three folds. For training, the networks are not directly fed with the original images but several sub-images randomly extracted from each original image, and augmented offline with random geometric transformations (flipping, scaling and rotation). Note that performances are not impacted by cropping given that the networks are fully convolutional. Table 4.2 details the folds for each dataset and the related experiments. We also point out some experiment-dependent details:

• Folds of Mikado are defined such that a texture appears only in one of the three subsets.

PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] Mikado COCOA [ • Folds of PIOD and COCOA are defined with respect to the initial split proposed by their authors. Specifically, the original training images are used for training or validation in our folds, and the original validation images for test. The original test images are never used as they are not publicly available.

• For fairly comparing with box proposal-based segmentation on Mikado, we use the Caffe implementation of [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF], which made a Mask R-CNN-like [START_REF] He | Mask R-CNN[END_REF] network publicly available. Just like ours, their network's encoder is based on VGG16 [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF].

• For comparing with amodal segmentation, we use the precomputed binary outputs made publicly available by the authors. We derive the oriented boundaries from both the COCOA ground truth and their precomputed results alike: after intersecting the modal and amodal masks of an instance, amodal pixels that don't belong to the intersection are considered closer to the camera than the pixels of the intersection. This gives an orientation to the instance boundaries, i.e. the boundaries of the modal mask.

Training Settings For each dataset and each experiment, each network is trained and tested using Caffe [START_REF] Jia | Caffe: Convolutional Architecture for Fast Feature Embedding[END_REF], and the exact same settings (including fixed random seeds). At training time, we use the Adam solver [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with β 1 " .9, β 2 " .999, " 10 ´8, a fixed learning rate of 10 ´4, a weight decay of 10 ´4, a 2 regularization, and a batch size of eight 256ˆ256 images. The training images are randomly permuted at each epoch. As we solve a non-convex optimization problem, without theoretical convergence guarantees, the number of training iterations is chosen for each dataset from an empiric analysis on training and validation subsets. As generally adopted, the optimization is stopped when the validation error stagnates or increases while the training error keeps decreasing. Please note that although the chosen stopping criterion may not be optimal for reaching the best performances on each dataset, it is however sufficient for significative comparative performances on a given dataset since each network in a comparison is trained under the exact same conditions. For all experiments, each network has its encoder initialized with weights pretrained on ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], and its decoder(s) with the Xavier method [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. The decoders are also equipped with dropout layers (with a ratio of 0.5) after each convolutional block at training time, to avoid overfitting.

Evaluation Metrics As commonly adopted [5,[START_REF] Bertasius | DeepEdge: A multi-scale bifurcated deep network for top-down contour detection[END_REF][START_REF] Bertasius | High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and Its Applications to High-Level Vision[END_REF][START_REF] Dollár | Structured Forests for Fast Edge Detection[END_REF][START_REF] Gupta | Learning Rich Features from RGB-D Images for Object Detection and Segmentation[END_REF][START_REF] Lim | Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detection[END_REF][START_REF] Maninis | Convolutional Oriented Boundaries[END_REF][START_REF] Shen | DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection[END_REF][START_REF] Xie | Holistically-Nested Edge Detection[END_REF][START_REF] Yang | Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[END_REF] since [START_REF] Martin | Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues[END_REF], we compute at test time the precision and recall, and typical derived metrics: the best F-score on dataset scale (ODS) and the average precision (AP). Whereas ODS highlights one binarization threshold that gives the best compromise between recall and precision, AP conveys the area under the precision-recall curve over the full recall interval. For some experiments, we also consider the average precision in high-recall regime (AP 60 ), that is the precision averaged on the recall interval r0.6, 1s. As matching tolerance, i.e. the maximum 2distance to the closest ground-truth pixel for a pixel predicted positive to be considered as a good hit, we consider a hard value of 0 pixels for Mikado (which contains perfect ground-truth boundaries) but a stateof-the-art value of 0.0075 ? W 2 `H2 p» 2.7 pixels in our evaluations) for PIOD and COCOA that contain approximate hand-made annotations, where W P N ‹ and H P N ‹ are respectively the image width and height. We perform evaluation without non-maximum suppression, which may artificially improve precision.

Comparison with the State of the Art

We now evaluate the proposed bicameral network by comparing, first, with the two-stream baseline for oriented boundary detection and, second, with the two-stream baseline for amodal instance segmentation.

Oriented Boundary Detection

We compare with the proposed bicameral structuring the two-stream baseline for oriented boundary detection [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] on PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and Mikado (more details later in Chapter 5). Table 4.3 reports the comparative performances on these two datasets, and Figure 4.6 some qualitative comparative results.

PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] Mikado design over the baseline on PIOD, and more than 1 point on Mikado. These results confirm that learning boundaries and occlusions from a joint feature space defines a consistent and performance-enhancing task, while reducing the number of parameters by more than 25%.

Biases in the Hand-Made Annotations One can also notice that the hand-made annotations hinder the training and evaluation due to their inaccuracy and incompleteness. As illustrated by Figure 4.8, the bicameral network is able to fairly predict non-annotated boundaries, e.g. internal boundaries of instances with holes, missing instances, or instances ambiguously considered as part of the background. Furthermore, objects with complex shape, such as houseplants, which are often coarsely annotated by humans, are finely delineated by the proposed network. This can be explained by the regulatization term in the loss function, which enables to smooth the mapping learned from the noisy ground truth. As we will see in Chapter 5, resorting instead to synthetic training data for real-world applications proves more effective for learning generalizable invariants.

Amodal Instance Segmentation

We now take a step back to compare our late-localization approach with the early-localization paradigm. Specifically, we first compare on Mikado the boundary branch of the proposed bicameral network with a Mask R-CNN-like network [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF] to evaluate each paradigm in the context of bin-picking scenes. We then compare the proposed bicameral structuring with the two-stream baseline for amodal instance segmentation [START_REF] Zhu | Semantic Amodal Segmentation[END_REF] on COCOA [START_REF] Zhu | Semantic Amodal Segmentation[END_REF]. Table 4.4 reports the comparative performances on Mikado, and Figure 4.9 some qualitative comparative results. Table 4.5 reports the comparative performances on COCOA, and Figure 4.10 some qualitative comparative results.

Late Instance Localization instead of Box Proposals

Box proposalbased segmentation approaches consist in first detecting scored rectangle regions that might contain an instance, then coloring the instance in each box proposal by binary segmentation. Such approaches prove effective for maximizing the detection recall in scenes where instances can be isolated in rectangles.

However, in bin-picking scenes, the bounding box of an instance is likely to be shared by the neighboring instances. This becomes problematic if a rectangle region contains multiple instances of the same object. Indeed, the binary segmentation of such a region implies On COCOA [START_REF] Zhu | Semantic Amodal Segmentation[END_REF] Boundaries Occlusions ODS AP ODS AP

All regions

Amodal segmentation [START_REF] Zhu | Semantic Amodal Segmentation[END_REF] 4.11, things are objects with well-defined shape (e.g. car, person) and stuff instances amorphous regions (e.g. grass, sky) [START_REF] Caesar | COCO-Stuff: Thing and Stuff Classes in Context[END_REF]. 2 The evaluation is performed on the binary segment proposals made available by the authors. [START_REF] Zhu | Semantic Amodal Segmentation[END_REF] (all/thing/stuff) Figure 4.12: Precision-recall curves for instance boundary (left) and unoccluded side (right) detection on COCOA comparing bicameral structuring against amodal instance segmentation [START_REF] Zhu | Semantic Amodal Segmentation[END_REF]. Best viewed in color that similar patterns are classified differently inconsistently with the translation invariance property of deep convolutional networks. In this paradigm, the ambiguity of the binary segmentation can then only be broken by focusing on the global appearance of each object. Furthermore, the overall image segmentation is conditionned upon the region proposal network's performances.

As shown by Figure 4.9, this results in coarse or missing instance boundaries. By contrast, the proposed approach enables to finely delineate each instance, as our pixel-wise learning is free from any ambiguity. In accordance with these observations, Table 4.4 reports that our method outperforms a Mask R-CNN-like network [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF] by near 60 points for detecting boundaries on Mikado, independently of the score threshold for filtering the proposals.

Oriented Boundaries instead of Amodal Masks Amodal segmentation can be viewed as an overlay on the box proposal-based segmentation approach, aimed at introducing the notion of occlusion in addition to the notion of instance. Specifically, amodal instance segmentation [START_REF] Zhu | Semantic Amodal Segmentation[END_REF] consists in two indepedent box proposal-based streams for respectively inferring the modal and amodal masks of each proposal, i.e. the mask of the visible instance parts and the mask including both the visible and occluded parts. An estimation of the occlusion rate of an instance can then be obtained by considering the intersection between the modal and amodal masks.

However, amodal segmentation approaches cumulate the drawbacks of box proposal-based segmentation discussed above, and the difficulty of coloring something invisible. Indeed, the ambiguity of binary segmentation raised when a rectangle region contains multiple instances of the same object is worsened when amodally coloring an instance, as the network must learn to activate "hidden" instance pixels which visibly belongs to another instance. Furthermore, when comparing the modal and amodal masks for estimating the occlusion rate of an instance, mismatches between the two masks are very likely to occur, thus inducing false positive in the boundary and occlusion maps.

As shown by 4.10, this results in inaccurate or missing boundaries and misdetected occlusions. By contrast, the proposed network overcomes these limitations by postponing instance localization: each pixel is jointly classified as boundary or not and assigned with an occlusionbased orientation independently of the instance bounding box it belongs to. Amodal segmentation also tends to favour "things", i.e. objects with well-defined shape, over "stuff" instances, i.e. amorphous regions such as grass or sky (see examples in Figure 4.11), while our method is agnostic to this categorization. Indeed, the region proposal network is trained to coarsely highlight objects from the background. As a result, stuff instances are confused with parts of the background. These observations are corroborated by Table 4.5 and Figure 4.12 which report a gain in ODS of 17.4 points for boundaries and 10.8 points for occlusions over all instance types on COCOA using our approach. On things only, the proposed bicameral network outperforms the two-stream baseline by 13 and 3.2 points for boundaries and occlusions respectively. On stuff instances, the performance gains reach 19.8 and 25.1 points respectively.

In contrast with the proposal-based approach augmented with amodal segmentation the late-localization approach proves more effective to recover comprehensive and accurate boundary and occlusion maps, consistently with our design choices.

Conclusion

A bicameral FCN is defined as two cascaded decoders sharing a single encoder, with skip connections between the encoder and each decoder, and between the decoders as well, thus enabling a fine delineation of each instance in both general scenes (PIOD and COCOA) and binpicking scenarios (Mikado).

The proposed network, which follows a late-localization paradigm, outperforms the two-stream baselines in both instance segmentation paradigms, i.e. oriented boundary detection [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and amodal segmentation [START_REF] Zhu | Semantic Amodal Segmentation[END_REF], on both real-world and synthetic data. Specifically, the performance gain reaches 2 points and near 20 points over the state-of-the-art late-localization and early-localization approaches respectively.

Trained on real-world data with biased hand-made annotations, a bicameral network is able to fairly detect non-annotated boundaries, thus suggesting that using instead synthetic training data with unbiased ground truth may enhance the performances.

Ablation Study

In Section 4.2, we showed that the bicameral structuring introduced in Section 4.1 outperforms the state-of-the-art two-stream approaches. In this section, we conduct a deeper analysis of the proposed bicameral architecture. Specifically, we explore alternative network designs and architectural components to better characterize the components of a bicameral network.

Alternative Architectures

We first compare the proposed bicameral structuring with alternative network architectures (see Figure 4 Bicameral Specifically, we compare the proposed bicameral architecture with three alternative architectures (c.f . Figure 4.13):

• a network with two independent decoders sharing the same encoder, referred to as shared;

• two decoders in cascade after one encoder, referred to as cascaded;

• a multi-task decoder that infers both boundaries and occlusions, referred to as multi-task.

Implementation For fair comparison, each network has the same VGG16-based [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] encoder, and is equipped with residual-like [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] connections, also referred to as skip connections, between the encoder and the decoder(s) for progressively combining local and global features when decoding. All the compared networks also share the same convolutional hyperparameters for their decoder(s). Specifically, for each decoder, the kernel of each convolutional layer is a 5ˆ5 square, and the four convolutional blocks have, respectively from bottom to top, 256, 128, 64 and 32 filters. Note that we arbitrarily choose VGG16 as default backbone for our experiments, but any backbone is virtually suitable (c.f . Section 4.3.4).

Shared Encoding Features Instead of Independent Streams

Our comparative experiments between single encoder-based designs and independent streams confirm that separating instances and inferring their spatial layout can be done with a single scene representation. Figure 4.14 shows that using a shared encoder, multi-task, cascaded or bicameral design instead of the two-stream baseline results in reaching lower boundary and occlusion test errors on both PIOD and Mikado. This is corroborated by Table 4.6 where the proposed bicameral and alternative architectures outperform the baseline by more than 2 points in ODS and AP, on both PIOD and Mikado for boundary detection. decoder to influence directly the encoder blocks. This trade-off is overcame by the bicameral design, which combines cascaded decoders both directly linked to the single encoder and has consequently the largest area under the precision-recall curve in Figure 4.7. The proposed bicameral structuring also outperforms a multi-task design. Table 4.6 notably reports that merging decoders limits the expressive power in favor of boundaries on PIOD. The obtained scores are well illustrated by the comparative predictions in Figure 4.6 where one can observe more closed boundaries and many false positive, mostly occlusions, predicted by the baseline and removed when instead decoding in cascade from a joint feature space.

Bicameral Structuring Instead of Alternative Designs

Decoders Feature Sharing

We now assess whether feature sharing can apply to the branches of a bicameral decoder by comparing three hybrid architectures, namely M3-B1, M2-B2, M1-B3, that merge fully multi-task and bicameral decoder designs by sharing the three, two, one bottom-most layer(s) of their decoders respectively, as depicted by Figure 4.15. Intuitively, this results in sharing some task-dependent layers, as the two decoders are specialized in detecting boundaries and occlusions respectively.

Partially Shared or Independent Decoding Features?

A bicameral structuring outperfoms a multi-task design (c.f . Section 4.3.1) but one may also wonder whether partial feature sharing of the bottom-most bicameral decoder layers enables even better performances. Table 4.7 presents the performances obtained with three hybrid architectural variations between multi-task and bicameral designs (Fig. 4.15), each one introducing feature sharing at different levels of decoding. On PIOD, a bicameral decoder remains superior to all hybrid decoders, notably by about 1 point higher in ODS and AP for occlusions. On Mikado, sharing the first bottom decoder stage (M1-B3 design), which conveys object-level semantics, slightly improves performances. This suggests that the task specialization, for boundaries and occlusions respectively, may occur at a more local scale in decoding, either because of the higher density of inter-instance occlusions in Mikado, or due to the shape similarity of the Mikado instances. Unlike any of the hybrid designs, the bicameral decoder nevertheless achieves strong ODS and AP on both PIOD and Mikado. We thus advise to consider boundaries and occlusions separately by default after unpooling the encoder feature maps with lowest resolution. in out1 out2 in out1 out2 in out1 out2
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in out1 out2 in out1 out2 
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Skip Connections

We now study the benefits of skip connections (SC) between the encoder and the decoders in a bicameral structuring. in out1 out2 in out1 out2
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Without SC With SC Types of skip connection (SC) As depicted by Figure 4.16, we compare bicameral designs with and without skip connections, and try out different types of skip connection: concatenation (our default choice for all the other experiments); element-wise max; element-wise sum. We choose concatenation by default because one can formally expect element-wise max and sum operations to be obtained using concatenation. Indeed, let N P N ‹ be the depth of two layers to merge, and e, d, f P R N feature vectors respectively for the encoder, the decoder, and the resulting fusion. Let w, w 1 P R NˆN be trainable parameters. Using element-wise max operators, @k P t1, ..., Nu, f k " ř N i"1 w ik maxpe ik , d ik q. Using element-wise sum operators, @k P t1, ..., Nu, f k " ř N i"1 w ik pe ik dik q. Using concatenation, @k P t1, ..., Nu, f k " ř N i"1 pw ik e ik `w1 ik d ik q. If needed, an element-wise sum operator can then be modelled by setting w " w 1 . Similarly, an element-wise max operator can be obtained by setting w ik " 0 or w 1 ik " 0 depending on which of the ith encoder or decoder channel has greater importance.

Skip Connections for Combining Local and Global Cues

Partially hidden patterns are a major source of boundaries and occlusions. A perception at both local and global scales is however required to understand that an instance is partially occluded. By construction, an encoder-decoder network combines local and global cues by stacking convolutional and pooling/unpooling layers. This combination is enhanced by residual-like connections at each scale between the encoder and decoder(s), as it enables to gradually combine the unpooled higher-level semantics with the spatial information lost after pooling. Figure 4.17 qualitatively shows what such connections bring: instance boundaries are detected earlier, thus giving the network more flexibility to adjust the following transformations and activations towards the desired output. These observations are corroborated by the scores in Table 4.8 and the precision-recall curves in Figure 4.18. A bicameral structuring with residual-like connections (c.f . Figure 4.16) outperforms a bicameral design without such connections by 1 point in ODS and AP on Mikado.

The obtained scores on PIOD are here impacted by the encoder initialization, which was obtained using a skip-connection free architecture. As a result, the backpropagation flow along the skip connections drastically reshapes the encoder from the first iteration, whereas the encoder of the skip connection-free design is only slighty affected by the backpropagation signals coming from the decoders. This mostly impacts the scores on PIOD because the encoders are initialized with weights pretrained on ImageNet, whose object type and context distributions are much closer to PIOD than Mikado. The skip connection-free design thereby starts to train on PIOD with already meaningful image features, unlike the bicameral design with skip connections on PIOD and both designs on Mikado. 4.8 confirms a gain of more than 1 point in AP 60 when adding skip connections.

Concatenation Instead of Alternative Merging Operators

In all of our experiments, we consider skip connections by concatenation instead of alternative operators (Fig. 4.21), because we formally expect less constraints from concatenation. Table 4.8 confirms our expectation: concatenation produces better experimental results than element-wise sum or max operators. Enforcing sum or max operations indeed introduces arbitrary correspondences between the feature channels to merge. As a result, the low-level encoder activations may be overconsidered in the decoder, thus generating more false positives. Concatenation, as proposed, leaves more degrees of freedom for merging the channels, as each weight for their linear combination before activation is learned during backpropagation. Skip connections that turn out irrelevant can thus be switched off by the decoder, with near-zero weights.

Encoder Backbone

We finally investigate the use of a different encoder backbone. Specifically, we consider a deeper encoder chaining blocks of densely connected convolutional layers [START_REF] Huang | Densely Connected Convolutional Networks[END_REF], referred to as dense blocks. As illustrated by Figure 4.21, a dense block is a generalization of a residual block [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], which introduces residual connections to give top layers access to earlier bottom layers. Introducing such skip connections between encoder layers enables to build and learn deeper representations as singularities due to zero incoming weights, overlapping incoming weights, or linearly dependent units are eliminated [START_REF] Orhan | Skip Connections Eliminate Singularities[END_REF], while reducing the number of parameters (see Table 4.9).

Conv+ReLU

Features Sequential [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] Residual [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] Dense [START_REF] Huang | Densely Connected Convolutional Networks[END_REF] In our experiments, we choose VGG16 as default backbone because it limits the required memory, but any backbone is virtually suitable. To prove this claim, we compare bicameral designs with a VGG16-based and DenseNet121-based encoder respectively. "Dense Grid" Interpretation Following our network representation in Fig. 4.2, we point out that, if we describe skip connections in a dense block as "vertical" dense connections, then bicameral connections, i.e. skip connections between the decoders and the encoder, can then be interpreted as "horizontal" dense connections. A DensetNet121-based bicameral FCN thus results in a "grid" of densely connected blocks.

On PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] Boundaries Occlusions ODS AP AP [START_REF] Girshick | Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[END_REF] [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] comparing the use of VGG16-based and DenseNet121-based encoder backbones. Plugging a bicameral decoder to a deeper encoder with dense blocks [START_REF] Huang | Densely Connected Convolutional Networks[END_REF] enables to capture a finer representation of the object boundaries and nearby occlusions.

A Backbone-Agnostic Structuring Using a deeper encoder composed of dense blocks, instead of sequential ones (Figure 4.21), the joint feature representation in a bicameral design reaches a higher expressive power. Table 4.10 reports a gain in AP of more than 6 points for boundaries and more than 4 points for occlusions over the two-stream baseline when building the bicameral encoder on DensetNet121 [START_REF] Huang | Densely Connected Convolutional Networks[END_REF] instead of VGG16 [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] on PIOD. These results also suggest that a bicameral structuring may apply to any encoder backbone, whatever the depth and the type of convolutional blocks.

Conclusion

In this section, we conducted an ablation study of the proposed performance-enhancing fully convolutional structure. Our experimental analysis exposed the importance of the bicameral characteristics, i.e. single shared encoder, decoders in cascade, skip connections between the encoder and the decoders, and backbone-agnostic encoding.

• With any decoder configuration, sharing a single encoder representation for boundaries and occlusions outperforms a twostream FCN for the same task.

• Additionnally cascading decoders, both linked to the encoder using skip connections, leads to the best trade-off between boundary and occlusion errors.

• Using skip connections between the encoder and decoders enables to recover boundaries earlier than without such connections. Skip connections by concatenation outperfom alternative types as they leave the largest number of degrees of freedom during training.

• The encoder's representative power can be enhanced by using densely connected convolutional layers.

Localizing Affordable Instances

Our bicameral network f W is trained to infer boundaries and occlusions from a single image. However, in the context of robotic applications, we need grasp coordinates on affordable instances to further interact with the real world. In this section, we thus describe our procedure to localize the most affordable instance from the network inference.

Approach

Our approach is two-fold (see Figure 4. Formally, let R be the image resolution, typically R " W ˆH for an image of width W P N ‹ and height H P N ‹ , and X P R 3ˆR an image. Let g and h be the two parameter-free functions for localizing and ranking instances respectively, from the network inference f W pXq. We look for a discrete set C " tC k P t0, 1u R u k of instance candidates C k ranked by occlusion-based affordance such that: pC, ěq " hpg ˝fW pXq, f W pXqq (4.3)

For two candidates pC, C 1 q P C ˆC, C ě C 1 means that C is more affordable than C 1 . We send to the robot the centroid coordinates of the most affordable instance C ‹ , defined as follows:

C ‹ " maxpC, ěq (4.4)

Implementation

We now detail the definition and implementation of the two functions g and h introduced in Section 4.4.1.

Instance Localization Let pY ą αq P t0, 1u R be the inferred boundary map Y P r0, 1s R binarized using the threshold α P r0, 1s. The function g takes the complementary of Y ą α as input and returns a set of binary maps C k P t0, 1u R corresponding to instance candidates such that:

C " tC k u k " gppY ą αq c q (4.5)

Our function g implements an off-the-shelf connected component labeling algorithm [START_REF] Grana | Optimized Block-Based Connected Components Labeling With Decision Trees[END_REF]. Each resulting connected component is considered as an instance candidate. In practice, for ensuring stable real-time performances, we nevertheless add a filtering step for removing overly small or large connected components, as the inferred network boundaries are sometimes noisy. An example of instance candidate generation is provided in Figure 4.23.

Instance Ranking Let pZ ą βq P t0, 1u R be the inferred occlusion map Z P r0, 1s R binarized using the threshold β P r0, 1s. The function h takes the set of candidates C and the binarized boundary and occlusion maps as inputs, and returns the ordered set pC, ěq: pC, ěq " hpC, pY ą αq, pZ ą βq (4.6)

Our implementation of h consists in, first, computing for each instance candidate C k an occlusion-based affordance score spC k q P R, then rank the set of candidates according to this affordance score. The affordance score spC k q computed for each candidate is defined such that: 

@pC, C 1 q P C ˆC, C ě C 1 ô spCq ě spC 1 q (4.7) (a) (b) (c) (d)
0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 P p (C k ) Instance candidate map b 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 P p (Z > β) Occlusion map ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' " 9 
(a) An instance boundary pixel whose outer side is occluded, thus inducing a high non-occlusion score for this instance boundary pixel Affordance Score Generally, the most affordable instance of a pile is most likely to be the one not occluded by any neighboring instances and on top of the pile. This translates into finding the instance C ‹ whose boundaries are not caused by any occluded parts, and with largest area. If we note s 1 pC k q the ratio of boundaries not due to occluded parts and s 2 pC k q the area of a candidate C k , then we look for the most affordable instance C ‹ such that:

ÿ ¨0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 P p (C k ) Instance candidate map b 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 P p (Z > β) Occlusion map ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' " 0 ( 
C ‹ " arg max C k PC 2 ÿ i"1 s i pC k q (4.8)
Specifically, we calculate the ratio s 1 pC k q of boundary pixels whose inner side is occluding the outer side, according to the network inference Z, as follows: (4.9) where P p is the patch extraction operator, which extracts a square neighborhood centered around the pixel p, and |P| the area of a patch. If M P X R is a matrix, then P p M is the square submatrix of M centered around p P P. If v 1 pC k q " 1, then the candidate C k is not occluded at all. If v 1 pC k q ă 1, then a ratio of p1 ´v1 pC k qq boundaries are caused by occlusion(s) with neighboring instance(s). Figure 4.24 illustrates the computation of P p pC k b pZ ą βqq.

s 1 pC k q " µ ÿ pPP P p pC k b pZ
The area s 2 pC k q of an instance C k is trivially defined as:

s 2 pC k q " ÿ pPP C kp (4.10)

Discussion

As depicted by Figure 4.25, the proposed approach gives good qualitative results in images densely populated with instances. A qualitative comparison with a box proposal-based approach [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF] on non-annotated real images is also provided in Figure 4.26. We quantitatively evaluate our overall strategy, including the bicameral inference and the grasp generation, on a real-world robotic setup in Chapter 5. Hyperparameters In our pipeline for generating an ordered set of candidates pC, ěq, we introduced three hyperparameters: the thresholds α and β for binarizing the boundary and occlusion maps respectively, and the size of the considered neighborhood P p when computing the affordance score. The thresholds α and β can be set both to 0.5 by default as the network is trained for binary classification. In practice, we empirically found that a lower value of 0.1 enables more stable performances, as it leads to more closed boundaries, thus grasp coordinates most likely inside an object (see Section B.1 for visualizing the impact of these thresholds). The size of the patch operator P p is set relatively to the average thickness of the inferred occlusion edges, such that it covers this thickness in the four directions around the pixel location p.

In our experiments, we use a 9 ˆ9 patch operator.

Perspectives

Loss Functions The hyperparameters introduced in Section 4.4 are strongly dependent of the bicameral loss function which controls the quality of the inferred boundaries and occlusions (c.f . Section 4.1.2).

In our experiments, we used balanced cross-entropy loss functions, but such loss functions induce thick and sometimes broken boundaries. Although thick boundaries are not a critical issue for instance segmentation, we are aware of recent works [START_REF] Deng | Learning to Predict Crisp Boundaries[END_REF][START_REF] Lin | Focal Loss for Dense Object Detection[END_REF][START_REF] Yu | Simultaneous Edge Alignment and Learning[END_REF] that proposed alternative loss functions for learning crisper and thinner boundaries in the context of imbalanced distribution. Specifically, [START_REF] Deng | Learning to Predict Crisp Boundaries[END_REF] combined the cross-entropy with the so-called Dice loss that additionnally compares the similarity between the two pixel sets. [START_REF] Yu | Simultaneous Edge Alignment and Learning[END_REF] performed edge alignment during training by solving a minimum cost bipartite assignment problem. In the application context of object detection, which faces the same class-imbalance issue, [START_REF] Lin | Focal Loss for Dense Object Detection[END_REF] introduced the so-called focal loss to put more focus on the hard misclassified training examples, thus giving sparser results. Other recent works addressed the lack of connectivity between the inferred boundary pixels [START_REF] Batra | Improved Road Connectivity by Joint Learning of Orientation and Segmentation[END_REF][START_REF] Mosinska | Beyond the Pixel-Wise Loss for Topology-Aware Delineation[END_REF]. Specifically, [START_REF] Mosinska | Beyond the Pixel-Wise Loss for Topology-Aware Delineation[END_REF] introduced a topology-aware loss function designed for minimizing the 2 distance between deep representations of the inferred and ground-truth boudary maps. [START_REF] Batra | Improved Road Connectivity by Joint Learning of Orientation and Segmentation[END_REF][START_REF] Mosinska | Beyond the Pixel-Wise Loss for Topology-Aware Delineation[END_REF] also both proposed a refinement procedure that iteratively applies the same model over the previous delineation to refine the prediction at each step, but at the cost of multiple forward passes.

Instance Embedding Our implemention of function g (c.f . Section 4.4.2) for associating pixels into instances assumes that the connected components deduced from the binarized network inference are instance candidates. In practice, the inferred boundaries may not be closed for some instances, thus inducing groups of instances as instance candidates. Conversely, false positives may lead to oversegment some instances, thereby generating instance parts as instance candidates (see Figure 4.27). Interestingly, recent works suggested that the convolutional pixel representations can be augmented with a distance to an implicit reference point of the instance to which they belong [START_REF] Liu | Affinity Derivation and Graph Merge for Instance Segmentation[END_REF][START_REF] Novotn Ý | Semiconvolutional Operators for Instance Segmentation[END_REF].

Considering a pixel clustering based on the pixel features including this instance embedding, instead of binary decisions, should enable a smoother function for generating instance candidates.

Pose Equivariance As deep convolutional networks are not rotationequivariant, nor scale-equivariant, boundaries are not encoded independently of the instance poses although our training data is accordingly augmented with geometric deformations. As a result, similar scenes, that differ only by visually minor translations, rotations or scaling, may lead to very different detections from the bicameral network. Figure 4.28 illustrates cases of this lack of equivariance. Implementing instead a bicameral structuring from pose-equivariant learning modules such as [START_REF] Sabour | Dynamic Routing Between Capsules[END_REF] is likely to introduce this property in the learning.

Conclusion

Summary

In this chapter, we proposed a novel fully convolutional structure, referred to as bicameral, for jointly inferring instance boundaries and their occlusion-based orientation from a single image. The proposed bicameral network is composed of a single encoder embedding boundaries and occlusions in a joint feature space, two cascaded decoders for recovering boundaries and occlusions respectively, linked altogether by skip connections. Specifically, we first detailed the proposed architecture, in contrast with the state-of-the-art approaches for oriented boundary detection [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and amodal instance segmentation [START_REF] Zhu | Semantic Amodal Segmentation[END_REF]. We evaluated the proposed network on the related state-of-the-art real-world datasets, i.e. PIOD [START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and COCOA [START_REF] Zhu | Semantic Amodal Segmentation[END_REF], and a synthetic dataset, namely Mikado, which better adresses the scenario of instances piled up in bulk in accordance with our application context (see Chapter 5 for details on the generation and plausiblity). We then conducted an ablation study of the proposed architecture to highlight the role of each of his components, including the relative layout of the encoder and decoders, the presence of skip connections, and the encoder's backbone.

In anticipation of detecting the most affordable instance of a pile in high-throughput bin-picking applications, we finally proposed a simple scheme to translate the bicameral network inference into relevant grasp coordinates, based on independent local operations on the inferred boundary and occlusion maps.

Contributions

Unlike the state-of-the-art approaches for both oriented boundary detection and amodal instance segmentation, which rely on two independent streams for boundaries and occlusions respectively, jointly encoding boundaries and occlusions in a single representation enables to leverage the strong link between boundaries and occlusions in scenes of many instances on top of each other.

As a result, the proposed bicameral network achieves state-of-theart performances on both real-word and synthetic data. For detecting boundaries, the proposed method outperforms the two-stream baseline for oriented boundary detection by more than 3 points on PIOD, and 1 point on Mikado, and the two-stream baseline for amodal segmentation by near 20 points on COCOA. For occlusions, the performance gain reaches more than 1 point and 10 points for oriented boundary detection and amodal segmentation respectively.

Our ablation study showed that, compared with alternative layouts of the encoder and decoders, the proposed bicameral structuring proves the most performance-enhancing on PIOD and Mikado. Skip connections between the encoder and each decoder enable to efficiently combine low-level and higher-level semantics when decoding boundaries and occlusions from the encoder representation. Skip connections between the decoders enables a better joint error minimization. Building a bicameral network from a very deep encoder composed of densely connected convolutional blocks increases the performance gain to 6 and more than 5 points on PIOD for boundaries and occlusions respectively.

The proposed method for detecting the most affordable instance of a pile from a synthetically trained bicameral network inference proves qualitatively efficient on non-annotated real images densely populated with instances, while enabling a highly parallelizable implementation. These observations thus suggest promising quantitative results for binpicking applications. In Chapter 5, we further investigate synthetic training data for real-world bin-picking, then quantify the proposed method on a real-world robotic setup.

Chapter 5 Application to Bin-Picking

In Chapter 4, we presented a performance-enhancing "bicameral" convolutional structure for jointly inferring instance boundaries and occlusions, and consequently detecting the most affordable instance of a pile from a single image. In this chapter, we want to apply this bicameral network to real-world bin-picking applications. compared with the common approach that relies on manual annotations (a). See also video "mikado01" in supplementary material.

However, there is no real-world training dataset for large-scale binpicking and annotating real images with oriented boundaries is tedious and time-consuming. As illustrated by Figure 5.1, we thus propose to synthetically train our bicameral FCN.

Synthetic Training Data

In this section, we describe our pipeline for generating synthetic training data from off-the-shelf rendering and physics engines.

Data Generation

We generate synthetic data using custom code on top of Blender [START_REF]Blender -a 3D modelling and rendering package[END_REF] by simulating scenes of objects piled up in bulk and rendering the corresponding top views, as depicted in Figure 5.2. More precisely, after modelling a static open box and, on top, a perspective camera, some mesh templates are instantiated in random initial pose and successively dropped above the box using the Blender's physics engine (a video showing the generation of a scene is provided in supplementary material). We then render the camera view, and the corresponding depth image, using the Cycles rendering engine. In this configuration, we ensure a wide pose variability, a lot of occlusions between instances, and the ground-truth occlusion boundaries can be trivially derived from depth.

In our application context, we consider piles of many instances with inner variability and using only RGB. Specifically, we target the real-world scenario of unpiling packaged food products. We thus generate RGB images of food products piled up in bulk by randomly applying local and global deformations to mesh templates that we texture successively from a set of texture images retrieved using the Google Images search engine1 and manually cropped to remove any background. Each scene is composed of many instances using the same texture image as we target homogeneous piles. Besides, to prevent the network from simply substracting the background, we apply to the box a texture randomly chosen among a set of background images, retrieved using the Google Images search engine as well. Between each image generation, we also randomly jitter the cameras and light locations to prevent the network from learning a fixed source of light, and so fixed reflections and shadows. Note that the proposed pipeline is not specific to the case of food products. Given a mesh template and texture images, piles of deformed instances are generated using a physics engine. A top-view camera is then rendered to capture RGB and depth. The synthetic images and their annotations (ground-truth boundaries are in blue, unoccluded side in orange) are finally prepared to be fed-forward through the network. See also video "mikado02" in supplementary material.
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Generating ground-truth boundaries and occlusions

Local depth-based segmentations Instance boundaries Boundaries and unoccluded side For our experiments, we generate two datasets: Mikado and a large extension referred to as Mikado+. Mikado and Mikado+ differ by the number of images but also the mesh templates, textures and backgrounds used in simulation (see Table 5.1). Samples and characteristics of the two datasets, compared with the amodal dataset of [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF], referred to D2SA, which contains real images of supermarket items annotated with the modal and amodal masks, are provided in Figure 5.4 (see Figures C.1 and C.2 for a comprehensive overview of our textures and background images). The largest generated dataset finally comprises on average up to 31.5 instances per image, hence 6 times more instances and 22 times more inter-instance occlusions per image than D2SA.

Training and test data preparation

Data Augmentation

As our RGB images are generated using heuristic rendering models, the training and evaluation may be biased by a lack of realism in the sense that the simulated camera models limitedly synthesize the properties and imperfections of real-world sensors. However, we want the proposed network to capture generalizable invariants from the synthetic data. Randomizing the image characteristics that are to vary at inference time is thereby a key condition for successful inferences in real-world conditions. We consequently augment our synthetic data statically at simulation time and dynamically during training.

Static Augmentation

During simulation, each dropped instance is augmented with a number of random geometric deformations: global transformations including isotropic and anisotropic scaling, tapering, bending, and twisting; local deformations of the mesh surface. As illustrated by Figure 5.5, such deformations enable to increase the local geometry variability, and consequently the rendered aspect. In addition with the variations of mesh templates, textures, and backgrounds, this results in statically augmented synthetic images.

Dynamic Augmentation

During training, we randomly filter one image out of two with a gaussian blur and jitter independently the RGB values, as shown in Figure 5.6, at both training and testing time. The parameters for gaussian filtering and value jittering are randomly chosen within empirically predefined intervals. This prevents the network from overfitting the too perfect synthetic color variations. In addition, the Mikado+ images are augmented with random permutation of the RGB channels and random under or over-exposition, as also illustrated by Figure 5.6. Unlike Mikado, Mikado+ thus depicts more color, texture and luminance variations as well.

Mikado Mikado+

Mesh templates 1 4

Backgrounds 40 600 Textures 120 2,400 1 The statistics on D2SA are only on the train and validation subsets as the test subset is not provided. 

Synthetic Data Plausibility Check

Unlike hand-made annotations, which are costly to obtain, simulation for generating training data is a virtually unlimited source of unbiased ground-truth annotations. However, one may raise the question whether such data is realistic. The answer is obviously no, but we argue that Mikado is plausible for training a bicameral network for real-world applications. In this section, we thus conduct experiments to jointly check the plausiblity and show the benefits of our synthetic data, independently of robotic interactions.

Experimental Setup

We show that the proposed synthetic data is plausible for real-world applications by evaluating the transferability of features learned from Mikado to real data. In line with [START_REF] Yosinski | How transferable are features in deep neural networks[END_REF], features learned from a source domain are transferable if they can be repurposed and boost generalization on a target domain. Specifically, we train the proposed network on Mikado, then retrain on the amodal dataset of [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF] referred to as D2SA (c.f . Figure 5.4), only the decoders and some of the top encoder blocks, as deep features transition from general to specific by the last layers. Furthermore, as a proof of the benefits of synthetic data in contrast real-world datasets which are hardly extensible, we study how a richer synthetic data distribution, i.e. Mikado+, impacts the domain adaptation. As the ranges of texture, shape, and pose variations are more widely represented in Mikado+, better transferable invariants are expected to be learned. In addition, we compare with the augmentation strategy of [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF], referred to as D2SA+, which consists in overlaying manually isolated instances of real images into fake training images. Specifically, we conduct three sets of experiments for comparing:

1. bicameral networks finetuned on D2SA without and after pretraining on Mikado, with different encoder block at which the network is choped and retrained (Figure 5.7), to expose the most transferable features learned from Mikado;

2. bicameral networks finetuned on D2SA using the most transferable synthetic features and different number of finetuning images, to reduce the need of hand-made annotations and compare with the augmentation strategy of [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF], referred to as D2SA+;

3. bicameral networks finetuned on D2SA using the most transferable features learned from Mikado or Mikado+, to show the impact of a richer synthetic data distribution (Mikado+) on domain adaptation.

When finetuning on D2SA we define a block as a set of convolutional layers between two pooling layers; a VGG16-based encoder is therefore composed of 5 blocks (c.f . Fig. 5.7). A block is said "frozen" when its corresponding parameters remain unchanged during finetuning.

Why D2SA As Target Domain? We consider D2SA instead of PIOD or COCOA (c.f . Table 3.16) for transfer learning from Mikado because the texture, shape, and pose distributions of PIOD and COCOA are very different from Mikado. Indeed, [START_REF] Ben-David | A theory of learning from different domains[END_REF][START_REF] Ben-David | Impossibility Theorems for Domain Adaptation[END_REF] show that a low divergence between the source and target domain distributions is a necessary condition for the success of domain adaptation. Unlike PIOD and COCOA, which contain natural images of indoor and urban scenes with people, cars and animals, D2SA and Mikado both contain top-view images of household objects in bulk.

D2SA [ ‹ D2SA+ refers to the augmentation strategy of [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF], consisting in creating fake images by overlaying isolated instances. 

Data Preparation

To robustly assess the generalizability of each model, each experiment is cross-validated using three folds (see Table 5.2). Folds of D2SA are defined with respect to the initial split proposed by their authors. Specifically, the original training images are used for training or validation in our folds, and the original validation images for test. The original test images are never used as they are not publicly available. To present comparative results more significative, curves and scores are averaged on the three folds. For training, the networks are not directly fed with the original images but several sub-images randomly extracted from each original image, and augmented offline with random geometric transformations (flipping, scaling and rotation). Note that performances are not impacted by cropping given that the bicameral network is fully convolutional.

Training Settings For each dataset and each experiment, each network is trained and tested using Caffe [START_REF] Jia | Caffe: Convolutional Architecture for Fast Feature Embedding[END_REF], and the exact same settings (including fixed random seeds). At training time, we use the Adam solver [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with β 1 " .9, β 2 " .999, " 10 ´8, a fixed learning rate of 10 ´4, a weight decay of 10 ´4, a 2 regularization, and a batch size of eight 256ˆ256 images. The training images are randomly permuted at each epoch. As we solve a non-convex optimization problem, without theoretical convergence guarantees, the number of training iterations is chosen for each dataset from an empiric analysis on training and validation subsets. As generally adopted, the optimization is stopped when the validation error stagnates or increases while the training error keeps decreasing. Please note that although the chosen stopping criterion may not be optimal for reaching the best performances on each dataset, it is however sufficient for significative comparative performances on a given dataset since each network in a comparison is trained under the exact same conditions. For the experiments without finetuning from weights pretrained on Mikado or Mikado+, each network has its encoder initialized with weights pretrained on ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], and its decoder(s) with the Xavier method [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. The decoders are also equipped with dropout layers (with a ratio of 0.5) after each convolutional block at training time, to avoid overfitting.

Evaluation Metrics

We use the same evaluation metrics as introduced in Section 4.1.3: the best F-score on dataset scale (ODS) and the average precision (AP). Whereas ODS highlights one binarization threshold that gives the best compromise between recall and precision, AP conveys the area under the precision-recall curve over the full recall interval. As matching tolerance, i.e. the maximum 2 -distance to the closest ground-truth pixel for a pixel predicted positive to be considered as a good hit, we consider a hard value of 0 pixels for Mikado (which contains perfect ground-truth boundaries) but a state-of-the-art value of 0.0075 ? W 2 `H2 p» 2.7 pixels in our evaluations) for D2SA that contains approximate hand-made annotations, where W P N ‹ and H P N ‹ are respectively the image width and height. We perform evaluation without non-maximum suppression, which may artificially improve precision. 

Transfer Learning Experiments

In line with [START_REF] Yosinski | How transferable are features in deep neural networks[END_REF], we first expose the most transferable features learned by a bicameral network from Mikado, and the impact of their reuse on the performances on D2SA (Table 5.3). We then study the performances obtained with the most transferable features, with respect to the percentage of the initial number of finetuning images and the synthetic training data distribution (Mikado or Mikado+), compared with the D2SA and D2SA+ baselines (Figure 5.9).

Synthetic Data Instead of Hand-Made Annotations

As Mikado is a computer-generated dataset, one may raise the question whether it is realistic. The answer is obviously no, but we argue that it is plausible for both a significative evaluation and real-world applications. First, in Chapter 4 when comparing network designs, the same overall relative results are obtained on PIOD, a dataset of manually annotated natural images. Second, the synthetic features learned from Mikado can be repurposed for inference on real images. Specifically, Mikado enables a transferable feature learning in line with [START_REF] Yosinski | How transferable are features in deep neural networks[END_REF], i.e. first training the network on a source dataset, then retraining only the task-specific layers on the target one. In our transfer learning experiments, we show that using local features pretrained on Mikado enables much better results on D2SA, a dataset of real-world piles of supermarket items [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF]. As reported by Table 5.3 and qualitatively corroborated by Figure 5.8, a gain of more than 10 points in AP for boundaries and 9 points for occlusions is achieved when finetuning the proposed network on D2SA with the first three encoder blocks frozen (c.f . Figure 5.7) after pretraining on Mikado, instead of training all the layers only on D2SA. This suggests that a network trained on Mikado can learn a more general concept of depth ordering as our dataset presents a wider variety of occlusion relations, including both inter-instance and object/background boundaries. [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF] also introduces an augmentation procedure to enrich the training subset with more piles of objects (D2SA+). Their procedure consists in creating new images by overlaying manually isolated instances. Table 5.3 reports that our simulation-based pretraining outperforms D2SA+ as well. Despite the domain shift, simulation enables more physics-consistent rendering at boundaries and less redundancy in terms of poses, unlike brute-force overlaying of manually delineated instance segments from real images. Furthermore, almost equivalent performances on D2SA are achieved, while reducing the number of costly human-labeled real images for finetuning. Figure 5.9 shows that a bicameral network finetuned on D2SA, with the first three encoder blocks frozen after pretraining on Mikado, using only 25% of the initial D2SA finetuning subset still outperforms a bicameral network trained only on D2SA or D2SA+. 5.9). This corresponds to a gain of 3.4 points for boundaries and 4.1 points for occlusions over using Mikado in the same conditions.

These observations imply that Mikado+ enables to learn more abstract local representations than Mikado. However, when applied on D2SA without finetuning, the Mikado+ model proves less effective than the model pretrained on Mikado. Consistently with the results after finetuning on D2SA, this could be explained by an overgeneralization of the task-specific layers. The neurons indeed co-adapt to capture the most discriminative patterns that are not likely to be the colors nor the object and background textures in Mikado+. An over-randomization of the colors and textures may disconnect the learned representations from concrete examples. This has nevertheless the advantage of easing the finetuning on D2SA, as the real-world scenes then appear as a specific variation consistent with the learned abstract representations. All these observations are incentives to favour synthetic training data when pixel-wise annotations on real-world images are hardly collectable. As also previously seen in Section 4.2 and illustrated in Figure 4.8, hand-made annotations introduce biases in the training and evaluation due to inaccuracy, incompleteness, or inconsistency. These biases are strongly attenued by using instead synthetic data. Indeed, leveraging unbiased ground-truth annotations and randomizing the scene parameters that are to vary at inference time enable a better representation of the training data distributions.

Conclusion

The proposed synthetic data, referred to as Mikado, proves plausible for real-world applications in the sense that it enables the learning of deep features transferable to real data, while drastically reducing the need of hand-made annotations for finetuning. Specifically, reusing the first three encoder blocks in a VGG16-based bicameral encoder trained on Mikado increases AP by more than 10 points for both boundaries and occlusions over the baseline, and near 5 points over D2SA+, i.e. the augmentation strategy of [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF] based on manual instance delineation. State-of-the-art performances over D2SA and D2SA+ are still achieved using these representations learned from Mikado with only 25% of the initial number of finetuning D2SA images, and only 13% by enriching the synthetic training data distribution (Mikado+). Randomizing the shape, texture and light variations indeed enables the bicameral network to capture more generalizable multiscale invariants.

Note that the proposed Mikado pipeline is virtually not limited to RGB. Depending on the application requirements, Mikado could be easily adapted for an alternative input modality such as depth (see Section C.1.2).

Real-World Experimental Evaluation

We showed that the proposed synthetic data is plausible for real-world applications. In this section, we now conduct experiments on a realworld robotic setup, in order to answer the following questions:

• Does a synthetically trained bicameral network enable effective bin-picking performances in real-world conditions?

• How does the proposed solution compare with the gripper-oriented industrial baseline?

• Can a bicameral network achieve real-time performances for highthroughput bin-picking applications?

Real-World Experimental Setup

As illustrated by Figure 5.10, our real-world robotic setup consists of a single RGB camera to capture a top view of the scene, a FANUC robotic arm equipped with a suction cup as end effector, and a Nvidia Jetson TX2 as processing unit, all connected to a wired Ethernet network. camera robot end effector The intrinsic and extrinsic parameters of the camera are estimated using standard off-the-shelf calibration tools [START_REF] Bradski | The OpenCV Library[END_REF][START_REF] Zhang | A Flexible New Technique for Camera Calibration[END_REF] based on the pinhone cameral model [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. As a single camera is not sufficient to estimate the depth of a pixel using the state-of-the-art pinhole camera model, we determine the depth by intersecting the corresponding 3D ray with a user-defined plane, in practice a plane close and parallel to the bottom of the scene. This proves to be a reasonable approximation in practice, given the relatively low height of the pile and the robot compliance.

Experimental Protocol

In order to evalutate the proposed approach in real-world conditions, we conduct a set of experiments that consist in unpiling packaged food products using a bicameral network trained on Mikado or Mikado+ without any finetuning on real images. Specifically, each experiment is a sequence of open-loop cycles, aimed at extracting one by one some product instances piled up in bulk. Consistently with mainstream scenarios in the food industry, each scene is always composed of many instances of the same object. As depicted in Figure 5.12, each observation consists in answering three questions to characterize the instance detection and extraction.

In total, we collected 3,082 observations, organized in 134 sequences, over 10 different products. An overview of the different products instantiated in a pile, is provided in Figure 5.11. Each product presents a different combination of geometric and photometric characteristics, thereby representing a different category of packaged food.

Evaluation Metrics

We calculate the evaluation metrics in Table C.2 over all the observations and per product. Specifically, we are interested in the observed success rate (S R ) and the success of the proposed method independently of the extraction (S V ). The margin between S V and S R thus reports the failures due to imperfect physical settings, typically by lack of grasp adhesiveness. We additionnally analyze the causes of success and failure by evaluating how object-centered grasps and occlusion-aware detections contribute to the performances. Our experimental analysis is organized as follows. First, we study how a synthetically trained bicameral network behaves in real-world bin-picking conditions. Second, we compare the proposed approach with our industrial baseline. Finally, we focus on computation times and how to achieve real-time performances as requested by highthroughput applications.

Metric

Generalization from Synthetic Training

In this section, we study how a bicameral network trained on the proposed synthetic data performs on real-world piles of instances, how the synthetic training data distribution impacts these performances, and how sensitive is the network to light changes.

Overall Performances As reported by Figure 5.13 (see Table C.3 for more details), the proposed method achieves an overall success rate of 74%. As 27% of failures are actually good detections, i.e. grasps centered on unoccluded instances, but due to lack of gripper adhesiveness, the success virtually reaches 81% over all products. In our experiments, we found four reasons of non-adhesiveness:

• The user-defined bottom plane is set too high. As a consequence, the end effector doesn't reach the instance.

• The grasp is on a non-planar surface. Vacuum thereby cannot be created at the grasp coordinates.

• The target instance is in unstable equilibrium. As a result, when the gripper approaches, the instance is moved away from its initially detected location (see Figure 5. • The instance's center of gravity differs from the instance mask centroid. This happens notably for half-empty sachets whose content is not homogeneously distributed in the sachet, such as haribo for which 85% of detections are visually correct but only 52% of extractions are successful.

Consistently with our objective, most of the successful extractions result from detected grasps centered on unoccluded instances: over all products, 91% of successful extractions are consequent to instancecentered grasps and 85% to grasps on non-occluded instances. For most of the products, at least 50% of the failures are non-centered grasps. In accordance with our motivations, this illustrates that grasps not centered on the instances are a major concern in bin-picking applications. The difficulties arising from occlusions are more product-dependent. For example, instances of tea are prone to strong occlusions but as each instance is rigid and very light, occluded instances can be easily extracted (16% of the failures); the pile is consequently completely reconfigured. By contrast, instances of sauce, whose geometry is nevertheless similarly anisotropic, are non-rigid and relatively heavier, thereby harder to extract if occluded (50% of the failures). 

Impact of the Synthetic Data Distribution

Impact of the Lighting Conditions

Beyond learning texture and geometry invariants, one may wonder whether a synthetically trained bicameral network can be robust to light changes as well. In industrial environments, the robotic setup space is often confined to avoid external light pertubations. However, this may result in deploying costly cumbersome structures and power-consuming lights. A solution agnostic to light changes would thereby enable machines more independent of their environment. Figure 5 

Conclusion A synthetically trained bicameral network trained on

Mikado+ achieves an average bin-picking success rate of 80% over the 10 products. Randomizing the textures, the shapes and the lighting conditions, i.e. using Mikado+ instead of Mikado, enables better and more stable performances, consistently with our synthetic data plausibility check in Section 5.2.

Comparison with the Industrial Baseline

In this section, we compare on two products, sauce and madeleine, the proposed approach with the industrial baseline, which consists in detecting grasps independently of the object models, just like ours, but without an explicit notion of instance. As depicted in Figure 5.19, the baseline is a gripper-dependent proprietary algorithm that takes a depth image as input and returns ranked grasp opportunities based on the detection of planar regions in the case of a vacuum-suction gripper. As reported by Figure 5.20 (see Table C.5 for more details), the proposed model outperforms the industrial baseline by 28 and 34 points on sauce and madeleine respectively. Unlike the gripper-oriented baseline, our approach enables instance-centered grasps and avoids occluded instances, hence a much higher success rate. For example, when using the Overview Input (depth map) Output baseline on instances of sauce, whose non-rigid stick-like shape makes object-centered and occlusion-aware grasps important conditions of success, 87% of the failed extractions are not centered and 35% on occluded instances, i.e. respectively 44% (.87 ˆ.51) and 18% (.35 ˆ.51) of the robot operating cycles. By contrast, only 12% of the robot cycles are impacted by these causes of failure using our object-oriented approach.

Achieving Real-Time Performances

We showed that the proposed method enables state-of-the-art performances over various products. In these experiments, the proposed method takes 1,800ms on average to process an image on the Nvidia Jetson TX2. However, in high-throughput bin-picking applications, the demanded cadency often reaches about 60 robot picks per minute, thereby hardly leaving 100ms for computing relevant grasp coordinates. In this section, we thus investigate faster variants of the bicameral network. Specifically, we first study how reducing the number of convolutional filters in the bicameral network impacts the performances. We then analyze the resulting computation times and bottlenecks with respect to different hardwares. Comparison of the proposed approach, using a bicameral network trained on Mikado+, with the industrial baseline. Unlike the gripper-oriented baseline, which detects grasps independently of the object model but without explicit notion of instance, our approach enables instance-centered grasps and avoids occluded instances, hence many more successful extractions.

Dimensionality Reduction

The bicameral network inference duration is intrinsically linked to the number of parameters, and more specifically to the number of feature maps and applied filters at each convolutional layer. Lessening the number of filters however reduces the dimensionalities for encoding information, so the performances. We thus study how reducing the number of filters in the bicameral network impacts the performances on synthetic data and in real-world bin-picking conditions. Figure 5.21 presents three variants of a bicameral network, namely F75, F50 and F25, retaining respectively only 75%, 50%, and 25% of the initial number of convolutional filters. As reported by Table 5.5, reducing the number of filters induces a gradual loss of performances on Mikado. Using the lightest variant (F25), AP drops by 1.4 and 1.2 points for boundaries and occlusions respectively. This observation is corroborated by the results of transfer learning (c.f . Section 5.2) from Mikado+ to D2SA in Figure 5 below 1 point. More interestingly, both ODS and AP for boundaries and occlusions remain higher than the baseline scores obtained without pretraining on Mikado+, thus suggesting that a bicameral network with only 25% of the initial number of filters can still encode representations generalizable to real-world images. In real-world bin-picking conditions, the F25 variant achieves success rates comparable to those of F100. As shown by Figure 5.23 (see Table C.6 for more details), which reports the comparative bin-picking results between F25 and F100 on nem, sauce, cookie and madeleine, the performance loss remains strictly below 5 points. The benefits of our approach, i.e. grasps centered on non-occluded instances, are maintained as well: on average, 92% of succesful extractions are centered and 82% on unoccluded instances (see Figure 5.24 for qualitative results). For nem and sauce, a larger fraction of failures is due to grasps on partially occluded instances, in accordance with the lesser capability to separate instances reported by the scores on Mikado and D2SA (c.f . Table 5.5 and Figure 5.22).

Overall Computation Time

We showed that the number of convolutional filters in a bicameral network can be reduced without severe performance loss for real-world bin-picking. We now quantify the expected gain in computation time from this dimensionality reduction. Specifically, we first benchmark the proposed method on two GPUenabled hardwares: a power-limited device for embedded applications, the Nvidia Jetson TX2, and a regular computer referred to as PC Win10 (see Figure 5.25 for detailed specifications). We then provide insights on the bottlenecks and factors impacting the computation times. As reported by Figure 5.25, the overall method takes on average per image 1,848ms on Jetson TX2 and 136ms on PC Win10, while the industrial baseline 2,411ms on PC Win10. Our method's elapsed time is reduced to 694ms and 81ms respectively using instead the F25 bicameral variant. Specifically, retaining only 25% of the initial number of convolutional filters in the bicameral network reduces by 84% and 81% the inference duration on Jetson TX2 and PC Win10 respectively, as shown by Figure 5.26.

Impact Factors and Bottlenecks

Our method is two-step: first, inferring instance boundaries and occlusions using a bicameral network, second, localizing and ranking instances from the network inference (see Table 5.6). Contrary to the second step, the bicameral network inference is independent of the number of instances in the image, and fully executed on GPU. Our current implementation of the second step is 90% on GPU and 10% on CPU. By default (F100), the network inference is the bottleneck, i.e. 89% of the overall computation time on Jetson TX2 and 63% on PC Win10. Lessening the number of filters gradually reduces the percentage of the overall computation time taken by the bicameral network (see Figure 5.27). Using the F25 variant, the elapsed time repartition is then very different: only 38% for the network on Jetson TX2 and 20% on PC Win10. The computation time repartition is different depending on the hardware, because a GTX 1080Ti contains many more cores than a Tegra X2 for the same task. This results in different levels of occupancy, i.e. the ratio of active warps2 on a Streaming Multiprocessor (SM) to the maximum number of active warps supported by the SM.

Our method's second step is dependent on the number of instances in the image. As reported by Figure 5.28a, the overall computation time and the variations of this elapsed time increase with a higher number of instances. Using a default number of filters (F100), the elapsed time for 1 to 35 instances varies from 1,700ms to 2,100ms on Jetson TX2 and on from 100ms to 200ms on PC Win10. Using the F25 bicameral variant, these intervals are dropped to 490-1,600ms and 30-140ms on Jetson TX2 and PC Win10 respectively. These variations are intrinsically correlated to the bicameral network inference. Specifically, inferred boundary maps with many false positive are likely to produce many connected components, proportionately to the number of instances in the image. Figure 5.28b empirically shows this correlation for each bicameral variant.

Conclusion

Summary

In this chapter, we applied a bicameral network, introduced in Chapter 4, to real-world bin-picking. As there is no annotated real data for our applications and collecting such data is unsustainable in industrial

Using Jetson TX2

Using PC Win10 processes, we first proposed a simulation-based pipeline to generate synthetic training images from off-the-shelf rendering and physics engines. We then checked the plausibility of such computer-generated data for real-world applications by evaluating the transferability of the learned representations to a real-world target domain. We finally conducted extensive experiments over ten types of packaged food products on a real-world robotic setup using synthetically trained bicameral models without any finetuning on real images. Specifically, we analyzed more than 130 real-world bin-picking sequences, i.e. more than 3,000 observations, to quantify the results obtained with a synthetic training in terms of successful extractions and computation time. Our three-fold experimental analysis focused on:

1. the robustness to the real-world product variations and light changes, with respect to the synthetic data distribution;

2. the benefits of our approach's properties compared with the object model-free gripper-oriented industrial baseline;

3. the conditions for real-time performances, with respect to the number of convolutional filters in a bicameral network.

Contributions

Plausible Synthetic Training Data The proposed training data generation pipeline enables to extensively produce unbiased pixel-wise ground-truth annotations, while drastically reducing the workload for human annotators, whose task then consists only in setting up the simulator. On a GPU-enabled computer, the simulation of a bin-picking scene and the corresponding top-view image takes on average 5min, against more than 30min for manually annotating a real image. The proposed Mikado synthetic data proves plausible for realworld applications in the sense that it enables the learning of performance-enhancing representations transferable to real data. Specifically, our experiments on transfer learning from Mikado to D2SA [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF] shows that reusing the local features learned from Mikado increases AP by up to 10 points over the baseline, and up to 5 points over the augmentation strategy of [START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF] as well. Furthermore, enriching the synthetic data distribution (Mikado+) with more geometry, texture, and light variations enables to still achieve state-of-the-art performances on D2SA while reducing by up to 13% the number of real images for finetuning.

Real-Time State-of-the-Art Performances

In real-world bin-picking conditions, a bicameral network trained on Mikado+, without any finetuning on real images, demonstrated a success probability of 80% on average over ten different packaged food products, excluding the failures due to gripper non-adhesiveness. Our synthetically trained model achieves stationnary performances despite light changes, thus opening the path to more versatile industrial infrastructures. As proposed, introducing the notion of instance enables a higher success rate due to more detected grasps centered on non-occluded instances. As a result, the proposed approach outperforms the object model-free gripper-oriented industrial baseline by near 30 points.

Real-time performances are achieved on a GPU-enabled regular computer (more than 3,500 GPU cores), thus meeting the conditions of high-throughput bin-picking applications, i.e. overall computation times under 100ms. On a power-limited embedded device, near realtime performances are achieved by reducing the number of filters in the bicameral network. For example, the proposed method takes on average less than 700ms on the Jetson TX2 (256 cores) using only 25% of the initial number of convolutional filters, without severe performance loss in terms of successful extractions.

As a result, the proposed object-oriented approach establishes a new baseline for model-free bin-picking.

Chapter 6 Conclusion

In this chapter, we summarize our work and contributions. We finally draw some research directions for future work.

Summary

We addressed the problem of generic instance segmentation in the context of robotic random bin-picking, i.e. the task of unpiling many object instances on top of each other with a robotic arm for feeding automated lines in industrial environments. Current industrial approaches consist in detecting either instance poses of an explicit object model, or grasp opportunities from a gripper-dependent physics model. Such approaches however prove unsuitable for model-free or deformable objects, and piles with strong inter-instance occlusions respectively. Our object-oriented approach thus introduces an explicit notion of instance independently of the object and gripper models. Specifically, our approach consists in detecting the most affordable instances of a pile by jointly delineating instances and inferring their spatial layouts from a single image, using a novel fully convolutional network (FCN) trained on synthetic data.

After briefly laying the mathematical tools related to deep convolutional networks in Chapter 2, we reviewed in Chapter 3 the state of the art on generic instance segmentation, whose mainstream strategy follows a two-step paradigm: first, detecting rectangle region proposals that might contain an instance; second, coloring the instance supposedly inside each box proposal by a binary segmentation. The notion of occlusion is then introduced by additionally learning the amodal mask, i.e. the mask including both the visible and occluded instance parts. This approach however cumulates the difficulties of isolating bulk instances in rectangles and coloring something invisible. Alternatively, the instance boundaries and their occlusion-based orientation are 125 detected separately, while boundaries are mostly caused by occlusions in bin-picking scenes. Both of these approaches also rely on hand-made pixel-wise annotations, which can hardly be collected in industrial contexts.

In Chapter 4, we analyzed the performances of the proposed network architecture, referred to as bicameral, which is composed of a deep encoder shared by two cascaded decoders. Specifically, we first compared the bicameral FCN with the state-of-the-art networks for oriented boundary detection and box proposal-based amodal segmentation on real-world and synthetic data. We then conducted an ablation study for exposing the role of the bicameral characteristics. We finally described how to employ a bicameral network inference for detecting the most affordable instance of a pile.

In Chapter 5, we addressed the problem of deploying a bicameral network into real-world bin-picking applications. We first described a cost-effective training data generation pipeline based on physics and rendering engines, referred to as Mikado. We then conducted transfer learning experiments to check the plausibility of the proposed synthetic training data. Finally, we developed a real-world robotic setup to deploy our model on real-world piles of packaged food products. We tested different training settings and architectural variations, in various lighting conditions, to quantify their impact on the overall picking performances.

Contributions

Our contribution for object-oriented bin-picking is two-fold: joint representation learning for boundary and occlusion detection and abstract learning from synthetic data, independently of the explicit object and gripper models.

Specifically, we demonstrated in Chapter 4 that, using a carefully designed fully convolutional network, learning instance boundaries and occlusions in a single feature space enables to outperform the stateof-the-art two-stream representations for the same task on synthetic and real-world data, consistently with the observation that boundaries and occlusions are strongly correlated in bin-picking scenes. In addition, decoding such a single representation by cascading two convolutional decoders enables a performance-enhancing encoder-decoder structure for recovering accurate instance boundaries augmented in cascade with an occlusion-based orientation.

In Chapter 5, we showed that plausible synthetic training data can be generated using off-the-shelf rendering and physics engines, thus eliminating the burden of hand-made pixel-wise annotations. Our ex-tensive experimental study first reported that pretraining a bicameral FCN for oriented boundary detection on our synthetic data, instead of using only target real images, increases the real-world cross-dataset performances, as the learned local representations prove more transferable to real data. Enriching the synthetic data distribution by randomizing the textures and backgrounds in simulation also enables to learn more abstract local invariants, while reducing by more than 85% the number of real images for finetuning.

Our proof-of-concept experiments on a real-world robotic setup finally demonstrated state-of-the-art performances over ten various model-free deformable objects, high and low-textured, transparent and opaque, thus opening a promising land for large-scale industrial applications towards fully automated factories. In practice, a synthetically trained bicameral network (without finetuning on real data) achieves real-time picking performances, with an average success probability of 80% in less than 100ms per image on a single GPU-equipped computer, thus meeting the typical conditions of high-throughput binpicking applications. As a result, we established a new baseline for model-free object-oriented bin-picking.

Perspectives

This work unveils long-term perspectives towards adaptive autonomous robotics in unknown environments.

In addition to detecting instance boundaries and occlusions, the proposed network architecture can be intuitively extended to become "multicameral" for learning other complementary tasks, such as instance localization, object categorization and grasp detection, within a complete end-to-end synthetic training. Specifically, the task of instance localization can be integrated by embedding the notion of pixel connectivity into each pixel feature [START_REF] Liu | Affinity Derivation and Graph Merge for Instance Segmentation[END_REF][START_REF] Novotn Ý | Semiconvolutional Operators for Instance Segmentation[END_REF]. The task of learning explicit object categories by pixel-wise categorization [START_REF] Chen | Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[END_REF] should provide more information to separate instances in the case of heterogeneous piles, e.g. in waste sorting applications, and should enable to discard the background from the set of instance candidates in the case of homogeneous piles. Ultimately, the image representations learned using such a multicameral architecture can gain more robustness to pose variations by introducing pose-equivariant learning modules instead of convolutional layers, as suggested by [START_REF] Sabour | Dynamic Routing Between Capsules[END_REF].

From a more general point of view, the proposed model only learns then applies his knowledge, hence stationary performances but without paths for improvement over time. Recent works on meta-learning however suggest that our model could learn to learn as well. Specifically, 6.3. Perspectives recent studies on unsupervised domain adaptation showed that our synthetic training can include a notion of cross-domain similarity by learning to compare cross-domain features with learned prototypes [START_REF] Pinheiro | Unsupervised Domain Adaptation With Similarity Learning[END_REF]. If a long-term collection of real images is possible during production, then generative adversarial networks could be employed as well to refine our synthetic images so that their aspect better matches the realworld camera model without the need of hand-made labels [START_REF] Bousmalis | Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping[END_REF][START_REF] Bousmalis | Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks[END_REF]. In such unsupervised domain adaption frameworks, our network should be retrained on a distant server to avoid penalizing the production, and using a careful incremental learning strategy that avoids catastrophic forgetting [START_REF] Castro | End-to-End Incremental Learning[END_REF][START_REF] Hou | Robust Histopathology Image Analysis: to Label or to Synthesize?[END_REF]. More interestingly, an online backpropagation-free adaptation of a trained model is possible by few-shot dynamic learning [START_REF] Gidaris | Dynamic Few-Shot Visual Learning Without Forgetting[END_REF][START_REF] Zhao | Dynamic Conditional Networks for Few-Shot Learning[END_REF]. In such a training, a convolutional model learns from little online data to adapt some of its parameters to new tasks, e.g. novel object categories and lighting conditions in our application context.

For budget-constrained applications, our synthetically trained models must be further compressed for achieving high-throughput application-compliant performances on low-powered embedded devices, such as the Jetson devices from NVIDIA. As suggested by our experiments in Chapter 5, real-time performances using the proposed network on an embedded device are achievable by reducing the number of filters. More advanced studies on the topic have shown that a trained model can be further pruned while limiting the performance drop. Specifically, [START_REF] Yu | Slimmable Neural Networks[END_REF] introduced the class of so-called slimmable networks, i.e. networks with layer depths that can be dynamically adjusted, for permitting instant and adaptive accuracy-efficiency trade-offs at runtime. In the same vein, [START_REF] Cai | ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware[END_REF] employed a network architecture search algorithm to find the architecture achieving the optimal trade-off between accuracy and latency. Interestingly, such strategies can be used for training networks with conditional input or output as well. For example, one can imagine a multicameral model with a switchable branch for inferring object categories, activated for heterogeneous piles and deactivated for homogeneous piles. 
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  Stands for Fully Convolutional Network, i.e. a deep convolutional network composed only of convolutional layers, typically for pixel classification tasks Training Refers to the phase during which the parameters of a FCN are optimized to approximate a user-defined function from annotated samples Inference Refers to the output of a trained FCN Mikado Refers to our synthetic data Bicameral Refers to the proposed network architecture. Comes from the latin words bis (twice) and camera (chamber).
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 11 Figure 1.1: Examples of piles. Objects can be low or highly textured, piled up in homogeneous or heterogeneous configurations.

Figure 1 . 2 :

 12 Figure 1.2: Examples of intra-class variations in real-world applications. In such cases, a bin-picking approach based on the explicit object model is hardly appropriate.
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 1314 Figure 1.3: Open-loop cycle in the proposed approach, built on an offline supervised synthetic training to detect the most affordable instances of a pile from a single image, independently of the object and gripper models.
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 15 Figure 1.5: Overview of the proposed approach. A synthetically trained fully convolutional network jointly learns to detect boundaries and occlusions between instances, independently of the object and gripper models. The coordinates of the most affordable instance centroid is then deduced from the network inference and sent to the robot.
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 21 Figure 2.1: A three-input unit of a deep neural network, namely neuron, using a rectified linear unit (ReLU) as activation function

Figure 2 . 3 :

 23 Figure 2.3: Overview of a VGG16-based [168] convolutional encoder (best viewed in color). Convolutional representations are in blue, element-wise activation units are in red. Arrows indicate max-pooling operators in 2ˆ2neighborhoods.

Figure 2 . 4 :

 24 Figure 2.4: DCNs and humans recognize objects differently. (a) Images that are unrecognizable to humans but classified by a DCN as familar objects with ě 99, 6% certainty [135]. (b) Adding an imperceptibly small vector, whose elements are equal to the sign of the elements of the gradient of the cost function with respect to the input, changes a DCN's classification [63].
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 25 Figure 2.5: Can you see the duck? A deep network trained for object boundary detection can be easily fooled by deceptive details.

Figure 2 . 6 :

 26 Figure 2.6: Intermediate activations of a DCN trained for object categorization, along with the corresponding image patches. The top representations convey high-level concepts resulting from the combination of lower-level features in bottom layers [200].
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 33 Figure 3.3: Examples of robot end effectors

  Figure 3.4: Categorization of approaches for vision-based bin-picking. Blue annotations indicate the category of the proposed approach.

Figure 3 . 5 :

 35 Figure 3.5:Example of a proprietary gripper-oriented algorithm boosted by our object-oriented approach (best viewed in color). Yellow annotations indicate potential grasps for a parallel-jaw gripper. Green annotations indicate the selected "best" grasp. Without the notion of instance, the end effector may be sent to hardly extractable objects (c). Boosting the grasp detection using our object-oriented approach enables instead to focus on the most affordable instance, thus drastically reducing the grasp search space (d).
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 36 Figure 3.6: Examples of parallel-jaw grasp detections in simulation[START_REF] Depierre | Jacquard: A Large Scale Dataset for Robotic Grasp Detection[END_REF] 

  Figure 3.7: Comparison between bin-picking approaches. Gripper-oriented approaches define the notion of grasp affordance relatively to friction forces and torques without explicit notion of object instance, which is problematic in the case of strong occlusions and entanglements between instances. Alternatively, model-based object-oriented approaches rely on the notion of pose of an object, i.e. a distinguishable static state of this object[START_REF] Brégier | Defining the Pose of Any 3D Rigid Object and an Associated Distance[END_REF]. The notion of pose is however limited to rigid objects and requires explicit models, which are not always available. In contrast with these approaches, we envision an object-oriented model-free approach based on the notion of generic instance. Such an approach aims to first delineate affordable instances independently of the object and gripper models. Grasp detection can then be oriented on the detected affordable instances.

  .8).
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 38 Figure 3.8: Example of depth-based object pose detection and estimation[START_REF] Brégier | Defining the Pose of Any 3D Rigid Object and an Associated Distance[END_REF]. Such an approach requires an explicit object model, which is not always available in bin-picking applications.
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 39 Figure 3.9: Example of shape-based matching using the Halcon software [1]. While strong priors on the target object texture are required, this approach fails to handle geometric intra-class variations such as elastic deformations.
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 310 Figure 3.10: Examples of deep learning-based instance segmentation in various applications, illustrating the versatility of model-free approaches
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 311 Figure 3.11: Types and granularities of object-level scene understanding

  Figure 3.13: A box proposal-based segmentation approach is unsuitable for bin-picking scenes, as the rectangle fitting assumption becomes invalid.
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 315 Figure3.15: State-of-the-art approaches for learning instance boundaries and occlusions rely on two independent streams. In the early-localization paradigm (a), the streams predict the modal and amodal masks respectively, i.e. the mask of the visible parts and the mask including both the visible and occluded parts. In the late-localization paradigm (b), the streams predict respectively the boundaries and their orientations indicating which side is above and which side is below. However, in bin-picking scenes, boundaries are mostly caused by occlusions. We thus advocate a joint representation learning instead of two independent streams.

  Figure 3.17: Illustration of the augmentation strategy of [55], later referred to as D2SA+. Fake training images of piles (b) are created by overlaying manually isolated instances (a) from real images.
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 3318 Figure 3.18: Reasoning pipeline for building our solution

  Figure 3.19: Evolution of the state of the art for gripper-oriented (b) and model-based object-oriented (c) bin-picking approaches
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 320 Figure 3.20: Evolution of the state of the art for instance segmentation
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 41 Figure 4.1:The proposed bicameral structuring compared with the two-stream baseline built from[START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] and[START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF].
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 421 Figure 4.2: Definition of a VGG16-based [168] bicameral structuring. Best viewed in color

Figure 4 . 3 :

 43 Figure 4.3: Unpooling mechanism, also introduced in[START_REF] Badrinarayanan | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[END_REF][START_REF] Yang | Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[END_REF]. When a feature map is pooled in the encoder by a max-pooling operator, the pooling indices are stored for the corresponding decoder's unpooling layer. This enables to reuse the most salient pixel locations when unpooling, instead of arbitrarily padding with zeros.
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 44 Figure 4.4: Our representation of boundaries (blue) and occlusions (orange). Near a boundary segment, an occlusion is locally represented as a binary segmentation highlighting the occluding side of this boundary segment.
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 46 Figure 4.6: Comparative results for instance boundary (blue) and unoccluded side (orange) detection on PIOD (above) and Mikado (on the left). From top to bottom: input (a), ground truth (b), prediction using the two-stream baseline (c), using the proposed architecture (d). The proposed architecture improves the detection of fine details. Red rectangles highlight misdetections from the baseline corrected by our network.
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 48 Figure 4.8: Instance boundaries (blue) and their unoccluded side (orange) detected using our architecture (c) on PIOD images (a), annotated by humans (b). The proposed network is able to fairly predict non-annotated boundaries and better delineate instances coarsely annotated by humans.

Figure 4 . 9 :

 49 Figure 4.9: Comparative instance boundary detections on synthetic piles of sachets. From top to bottom: (a) input; (b) ground truth; (c) instance boundaries using a box proposal-based approach [45]; (d) using our approach. Best viewed in color

Figure 4 .

 4 Figure 4.10: Comparative results for instance boundary (blue) and unoccluded side (orange) detection on COCOA (best viewed in color). From top to bottom: input (a), ground truth (b), prediction by amodal segmentation [206] (c), ours (d). Unlike the proposed approach, using a box proposal-based detection qualitatively leads to coarse segmentations and non-detected instances.
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 411 Figure 4.11: Example of thing and stuff annotations[START_REF] Caesar | COCO-Stuff: Thing and Stuff Classes in Context[END_REF] 
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 4 Figure 4.16: A bicameral structuring with and without skip connections (SC), and different types of skip connections: (a) using element-wise max operators, (b) using element-wise sum operators, (c) by concatenation.

PIOD [ 186 ]Figure 4 . 17 :

 186417 Figure 4.17: From top to bottom: (a) input and ground truth, (b) activation map after deconv4a (see Fig.4.2), (c) final detection. Combining spatial information and higher-level semantics using skip connections (SC) between the encoder and decoders enables to detect instance boundaries earlier when decoding.
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 419420 Figure 4.19: Comparative training (solid lines) and test (dashed lines) errors for instance boundary (top) and occlusion (bottom) detection on PIOD (left)and Mikado (right). Relatively to the initial error, a better error minimization is achieved when using skip connections between the encoder and decoder(s).

Figure 4 .

 4 19 indeed reports that the bicameral network without skip connections starts with a lower training error on PIOD. Despite this disadvantage at training time, a bicameral design with residual-like connections shows a better precision in high-recall regime on PIOD, as shown by Figure 4.18. Table
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 421 Figure 4.21: Types of convolutional block

  22): first, a boundary-based pixel clustering for generating a set of instance candidates; second, an occlusion-based ranking of the set of candidates. Bicameral FCN pY, Zq " f W pXq Input image X P pR 3 q R Instance boundaries Y P r0, 1s R Unoccluded sides Z P r0, 1s R Connected component labeling C " tC k u k " gppY ą αq c q Instance candidates tC k P t0, 1u R u k pC, ěq " hpC, pY ą αq, pZ ą βqq Affordable instance C ‹ " maxpC, ěq
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 422 Figure 4.22: Our pipeline for inferring grasp coordinates centered on affordable instances from the bicameral network inference. First, a set of instance candidates is generated from the inferred boundaries Y by connected component labeling. Second, the set of candidates is ranked by estimating an occlusion-based affordance from the inferred unoccluded sides Z.
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 423 Figure 4.23: Example of instance candidate generation by connected component labeling [65]. From left to right: network inference (a); binarized boundary map (b); complementary of the binarized boundary map (c); resulting connected components (d). Best viewed in color

  b) An instance boundary pixel whose inner side is occluded, thus inducing a low non-occlusion score for this instance boundary pixel

Figure 4 . 24 :

 424 Figure 4.24: Computation of a local non-occlusion score at pixel location p by XNOR between neighborhoods P p of the inferred occlusion map Z and an instance candidate mask C k generated from the inferred boundary map Y

Figure 4 . 25 :

 425 Figure 4.25: Qualitative results, and corresponding intermediate states, using our approach after training on our synthetic data (see later Chapter 5 for details). From left to right: real image as input (a) ; bicameral network inference (b); connected components (c); most affordable instance (d).
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 426 Figure 4.26: Comparative instance segment proposals after training on Mikado.From top to bottom: input (a); results using a proposal-based approach[START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF] (b); using the proposed approach (c). On (b), the rectangles are the detected box proposals. On (c), the rectangles and circles represent instance-centered parallel-jaw and suction-cup grasps respectively.

  due to false positives due to unclosed boundaries

Figure 4 .

 4 Figure 4.27: Real-world examples of failure cases due to false positives and unclosed boundaries, using the proposed approach. False positives induce instance parts as candidates (a), while unclosed boundaries grouped instances as candidates (b). A solution is to consider instance embedding [115, 137] for a smoother pixel clustering. Top: input; bottom: results.
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 428 Figure 4.28: Real-world examples of non-equivariance cases, using the proposed approach. As boundaries and occlusions are not encoded independently of the corresponding instance poses despite data augmentation, similar scenes may lead to different results. A solution is to consider pose-equivariant learning structures [160]. Top: input; bottom: result.
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 51 Figure 5.1: Our simulation-based approach for generating training data (b)compared with the common approach that relies on manual annotations (a). See also video "mikado01" in supplementary material.

Figure 5 . 2 :

 52 Figure 5.2: Overview of the Mikado pipeline (best viewed in color).Given a mesh template and texture images, piles of deformed instances are generated using a physics engine. A top-view camera is then rendered to capture RGB and depth. The synthetic images and their annotations (ground-truth boundaries are in blue, unoccluded side in orange) are finally prepared to be fed-forward through the network. See also video "mikado02" in supplementary material.
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 53 Figure 5.3: Pipeline for generating the ground-truth boundaries and occlusions (best viewed in color). At each boundary pixel, a depth-based binary segmentation of the neighborhood is performed to label each side, such that the higher side is set to 1 and the lower side to 0. In the end, the ground truth consists of instance boundaries (blue) and their unoccluded side (orange).
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 54 Figure 5.4: Samples and characteristics of the state-of-the-art real-world dataset for boundary and occlusion detection on piles [55] compared with our synthetic data. Unlike D2SA, the variety of occlusions is better represented in Mikado and the dataset can be extensively enriched at low cost (Mikado+).
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 5556 Figure 5.5: Augmenting the mesh template with random geometric deformations qualitatively induces much wider ranges of texture and light variations
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 58 Figure 5.8: Comparative results for instance boundary (blue) and unoccluded side (orange) detection on D2SA (best viewed in color). From top to bottom: input (a), ground truth (b), prediction using the proposed network trained on D2SA (c), using the proposed network pretrained on Mikado then finetuned on D2SA with the first three encoder blocks frozen (d). Pretraining the proposed network on Mikado before finetuning on D2SA leads to a visually significant improvement in the quality of the results.

Figure 5

 5 Figure 5.10: Overview of the real-world robotic setup for our experiments. A single RGB camera (top right) captures a top-view of the scene. A robotic arm (left) equipped with a vacuum suction gripper (bottom right) extracts instances one by one.

Figure 5 . 11 :

 511 Figure 5.11: Overview of the 10 products used in our real-world experiments. The spider charts show their signature according to six qualitative criteria: size (A); isotropy (B); shape (C); textureness (D); colorfulness (E); transparency (F). Each product represents a different category of packaged food, as the signature shapes are all different. Best viewed in color Each cycle comprises the following steps: 1. capturing a top-view RGB image of the scene; 2. detecting the most affordable instance;

Figure 5 . 15 :

 515 Figure 5.15: Example of good detection but failed extraction because the instance is in unstable equilibrium. When the end effector approaches (a), the instance is moved away (b), thereby resulting in a failed extraction (c).

Figure 5 . 14 :

 514 Figure 5.14: Results using a bicameral network trained on Mikado+. See also video "binpicking01" in supplementary material.

Figure 5 . 17 :Figure 5 . 18 :

 517518 Figure 5.17: Comparative results using bicameral networks trained on Mikado and Mikado+ respectively (best viewed in electronic form). Randomizing the textures, shapes, and light conditions (Mikado+) enables more closed boundaries and less false positives, thus enhancing the real-world bin-picking performances.

Figure 5 . 19 :

 519 Figure 5.19: Examples of grasp detection using the industrial baseline, which consists in detecting planar regions from the depth map, independently of the object model but without an explicit notion of instance. The depth map is here obtained by laser triangulation.

Figure 5 .

 5 Figure 5.20: Comparison of the proposed approach, using a bicameral network trained on Mikado+, with the industrial baseline. Unlike the gripper-oriented baseline, which detects grasps independently of the object model but without explicit notion of instance, our approach enables instance-centered grasps and avoids occluded instances, hence many more successful extractions.

Figure 5 . 22 :

 522 Figure 5.22: Cross-validated performances on D2SA of the proposed network pretrained on Mikado+ then finetuned on D2SA with the encoder blocks 1, 2, 3 frozen, with respect to the percentage of D2SA images retained for finetuning and the percentage of the initial number of filters (F25 or F100). Despite an expected performance drop compared with a full bicameral design (F100) pretrained on Mikado+ or trained using the data augmentation strategy of[START_REF] Follmann | MVTec D2S: Densely Segmented Supermarket Dataset[END_REF], retaining only 25% of the initial number of convolutional filters (F25) still enables to achieve state-of-the-art performances for boundaries and occlusions.

F25Figure 5 . 23 :F25Figure 5 . 24 :

 523524 Figure 5.23: Per-product performances using a bicameral network trained on Mikado+, with respect to the percentage of number of convolutional filters (F25 or F100). In anticipation of computation time reduction, the number of convolutional filters can be reduced without severe performance loss.

Figure 5 . 26 :

 526 Figure 5.26: Elapsed time (ms)for the bicameral network inference alone, with respect to the percentage of the initial number of convolutional filters, using different hardwares (c.f . Figure5.25) and different image resolutions. Each time value is an average over 100 consecutive iterations using only C++/CUDA code.

Figure 5 .Figure 5 . 27 :

 5527 Figure 5.26: Elapsed time (ms)for the bicameral network inference alone, with respect to the percentage of the initial number of convolutional filters, using different hardwares (c.f . Figure5.25) and different image resolutions. Each time value is an average over 100 consecutive iterations using only C++/CUDA code.

  Overall elapsed time using different hardwares (c.f . Figure5.25). Both the elapsed time and the variations of this elapsed time increase with a higher number of instances. Elapsed time excluding the network inference duration, using PC Win10 (c.f . Figure5.25). Right axis and dashed lines: number |C| of connected components generated from the network inference. This shows that the computation time variations are strongly correlated to the number of connected components, thereby to the quality of the bicameral network inference.

Figure 5 . 28 :

 528 Figure 5.28: Elapsed time (ms) and corresponding standard variation for detecting the most affordable instance from a single 512ˆ512 image using the proposed approach, with respect to the number of instances per image and the percentage of initial convolutional filters.

FigureFigure C. 4 :

 4 Figure C.3: The bottle models, from ShapeNet [32], used to generate synthetic depth maps of bottle instances piled up in bulk, within the proposed Mikado framework

  

  

  

  

  

Bicameral Structuring and Synthetic Imagery for Jointly Predicting Instance Boundaries and Nearby Occlu- sions From a Single Image

  • [67] Grard et al.,

. Submitted to International Journal of Computer Vision (IJCV), Special Issue on Deep Learning for Robotic Vision in July 2018. First revision in January 2019.

Segmentation in Depth Maps with One User Click and a Synthetically Trained Fully Convolutional Network

  

• [66] Grard et al., Object . In International Workshop on Human-Friendly Robotics (HFR), 2017. https://doi.org/10.1007/978-3-319-89327-3_16

  Application-driven studies have shown that FCNs capture the invariants of a training dataset. For example, a FCN learns to recognize apples by extracting the attributes shared by training examples of apple. As a consequence, if the training dataset is biased by unbalanced

distributions or inconsistent ground-truth annotations

[START_REF] Torralba | Unbiased Look at Dataset Bias[END_REF]

, then the FCN captures these biases as well

[START_REF] Tommasi | A Deeper Look at Dataset Bias[END_REF]

. In our example, if the apples depicted in the training examples are all red, then the FCN learns the red color as an invariant. Large training datasets prove therefore more suitable for training FCNs as their data distribution is less likely to be biased. Moreover, as FCNs may contain billions of parameters, a large training dataset partly prevents from overfitting. This is problematic because the training samples must be annotated, which is tedious and time-consuming for learning pixel classification from real images. In Chapter 5, we address this limitation by synthetically training the proposed FCN. Note that many research works also concern the unsupervised training of FCNs but the resulting performances remain lower than those obtained by supervised training.

for learning generalizable hierarchical image representations. Specifically, a FCN captures the invariants of a training dataset. As

  

	Deep fully convolutional networks (FCNs) are layered connectionnist systems, entangling linear operators and non-linearities, a result, if a dataset is biased, then the FCN learns these biases as well. Moreover, the learned representations are not intrinsically invariant, nor equivariant, to rota-tions and scaling. Nevertheless, FCNs enable to

learn high-level con- cepts, such as the notions of instance and occlusion, from low-level data, and achieve state-of-the-art performances in many applications.

  

	The FCN parameters are learned by non-convex optimization in a end-to-end training, typically driven by a regularized binary cross-entropy loss function for binary pixel classification. There currently exist many deep learning implementations such as [2, 36, 52, 92, 142, 164]. In this work, we use the C++/CUDA library named Caffe [92].

Image processing: coordinates

  .1). of the next instance to extract are computed from the captured scene representation. The computation time and the relevance of the produced coordinates are key factors to achieve stationnary performances in high-throughput applications. This work aims to play this step.

	2. LR Mate 200, Fanuc	Quattro s650H, Adept	TP80, Sta übli		LBR iiwa, Kuka	Sawyer, Rethink Robotics
		Figure 3.2: Examples of robotic manipulators
	Vacuum suction cup	Parallel jaw gripper	iCub fingered gripper [162]	Soft fingered gripper [83]	Universal gripper [28]
		uEye CP, IDS Imaging	FX10, Specim	MotionCam 3D, Photoneo	Ensenso X, IDS Imaging	Kinect 2, Microsoft
		Figure 3.1: Examples of visual sensors. From left to right: RGB camera;
		hyperspectral camera; laser-based 3D scanner; active binocular system; time-
		of-flight camera.			
				21	

3. Robot action: a robotic manuipulator (c.f . Figure

3

.2) extracts the object at the sent coordinates. The robot end-effector is typically a vacuum suction cup or a parallel jaw gripper, but there exist alternative application-dependent designs (c.f . Figure

3

.3).

  [START_REF] Sabour | Dynamic Routing Between Capsules[END_REF] 

	Deep features ReLU activation	Very deep features	Network in network	Residual connections	Network in neuron	Equivariance learning
				(a) Deep convolutional encoders
	Domae et al. [47] ' '	DexNet 1.0 [121] ' ' Nguyen et al. [134] ' ' ' Johns et al. [93] '	DexNet 4.0 [130] ' ' ' DexNet 3.0 [120] ' Chu et al. [39] ' ' Zhou et al. [205] ' ' Randomization [179] ' ' Jacquard [44] ' '
	Lenz et al. [103] ' '		Redmon et al. [151] ' '	DexNet 2.0 [119] ' '
	2013			2014	2015	2016	2017	2018
	Single-grasp detection	Multi-grasp detection
	• Parall-jaw gripper	• Vacuum suction gripper (b) Gripper-oriented bin-picking • Single object	• Multiple objects
	Choi et al. [38] ' LINEMOD [79, 81] ' ' Pretto et al. [149] ' Brachmann et al. [24] ' Birdal et al. [20] ' Doumanoglou et al. [48] ' BB8 [150] ' SSD6D [94] ' DoraPicker [202] ' ' Abbeloos et al. [3] '	Lee et al. [102] '
	2013			2014	2015	2016	2017	2018
			Hand-crafted features		Deep learning
				• RGB as input (c) Model-based object-oriented bin-picking • Depth as input
	SRF [46] '	MCG [146] ' ' FasterRCNN [155] ' ' Asif et al. [7] ' ' DOC [186] ' ' AmodalMask [206] ' ' ' MaskRCNN [73] ' ' ' Wada et al. [184] ' ' ' AffordanceNet [45] ' ' '
	2013			2014	2015	2016	2017	2018
		Hand-crafted features	Deep learning
	• Instance boundaries	• Instance locations	• Instance categories	• Instance occlusions

Table 4

 4 

	.1, the remaining of this section focus on experi-ments 1a and 2a-b. Experiments 1b-f constitute our ablation study and are discussed in Section 4.3. The generation and plausibility of Mikado are discussed in Chapter 5.

Merging

Oriented boundary detection

[START_REF] Wang | DOC: Deep OCclusion Estimation from a Single Image[END_REF] 

-Late localization image Encoder Decoder boundary locations Encoder Decoder boundary orientations Our ablation study's baseline -Late localization image Encoder Decoder boundary locations Decoder boundary orientations Bicameral (Ours) -Late localization / / Sequential / holistically-nested / skip connections

Figure 4.5: Comparison with the state-of-the-art approaches, which rely on two independent streams for boundaries and occlusions respectively.

Table 4 .

 4 1: Sections, figures and tables related to each experiment

Table 4 . 2
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	206]

: Per-dataset folds for our cross-validation experiments after offline data augmentation (rotation, flipping, scaling)

Table 4 .

 4 3: Comparative best F-score on dataset scale (ODS) and average precision (AP) for instance boundary and occlusion detection on two datasets. The proposed bicameral architecture, which combines a shared encoder and cascaded decoders, outperforms the two-stream baseline. As shown by Figure4.6, a bicameral network enables to expectedly eliminate a number of false positive predicted by the two-stream baseline. On PIOD, one can observe that some undetected boundaries near detected occlusions in the baseline's results are recovered using our network, as the notion of occlusions is learned jointly with the notion of instance. Inversely, the results on Mikado show that some boundaries misdetected by the baseline are removed where non-occlusions are instead detected by the proposed bicameral design. Figure4.7 and Table4.3 corroborate these observations. A gain of 3 and 1.4 points in AP for boundaries and occlusions respectively is achieved by the bicameral

	(Ours)

Figure 4.7: Comparative precision-recall curves for instance boundary (left) and unoccluded side (right) detection on PIOD (dashed lines) and Mikado (solid lines). Best viewed in color Joint Representation Learning and Hierarchical Decoders

Table 4 . 4
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	: Unlike ours, a box
	proposal-based segmentation
	approach [45] gives inaccurate
	instance boundaries on dense
	piles of sachets.

Table 4 .

 4 5: Comparative performances for instance boundary and unoccluded side detection on COCOA[START_REF] Zhu | Semantic Amodal Segmentation[END_REF]. Whereas the proposed network equally performs on things and stuff, oriented boundary detection by amodal instance segmentation tends to focus on things and miss stuff instances.

		0.8				0.8		
	Precision	0.6			Precision	0.6		
		0.2 0.4	0.4	0.6	0.8	0.2 0.4	0.4	0.6	0.8
				Recall			Recall
		/ / / Using amodal instance segmentation / Using the proposed network (all/thing/stuff)	

  .[START_REF] Batra | Improved Road Connectivity by Joint Learning of Orientation and Segmentation[END_REF]) in order to better expose the benefits of sharing encoder representations and cascading decoders.

	out2	in	out1	in	out1 out2		in out1 out2
	Shared encoder	Cascaded decoders	Multi-task decoder
	Architecture Number of parameters Baseline 46,839,938 (ˆ1.0)	in	out1 out2
	Shared Cascaded Multi-task Bicameral	32,125,250 (ˆ.69) 29,949,250 (ˆ.64) 23,420,770 (ˆ.50) 34,301,250 (ˆ.73)	
	Figure 4.13: Alternative architectures also	
		considered for jointly predicting	
	boundaries and occlusions (best viewed in	
	color), using a VGG16-based [168] encoder	
	and a residual-like structure as decoder	
	template. Legend is the same as Figure 4.2	

Table 4 .
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	A closer look

Table 4 .

 4 7: Best F-score on dataset scale (ODS) and average precision (AP) for instance boundary and occlusion detection on two datasets using different levels of layer sharing between the branches of a bicameral decoder.

	Number of parameters Baseline 46,839,938 (ˆ1.0)
	Multi-task 23,420,770 (ˆ.50) M3-B1 23,548,802 (ˆ.50) M2-B2 24,060,866 (ˆ.51) M1-B3 26,108,994 (ˆ.56) Bicameral 34,301,250 (ˆ.73)

Table 4 .
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	PIOD [186]

8: Best F-score on dataset scale (ODS), average precision (AP) and average precision in high-recall regime (AP 60 ) for instance boundary and occlusion detection on two datasets using a bicameral FCN with and without skip connnections. Residual-like connections by concatenation between the encoder and the decoder(s) enable to better detect boundaries and occlusions as local and global cues are combined at each scale when decoding.

Table 4 . 9 :

 49 Number of parameters for a bicameral design with different encoder backbones

(DenseNet121) .712 .761 .529 .714 .778 .556Table 4 .

 4 ODS AP AP 60 Baseline (VGG16) .673 .708 .476 .681 .733 .518 Bicameral (VGG16) .697 .738 .517 .692 .747 .532 Bicameral 10: Best F-score on dataset scale (ODS) and average precision (AP) for instance boundary and occlusion detection on PIOD

Table 5 .
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	Overall	Average resolution Number of images Number of instances Ground-truth Human-made 1962ˆ1569 5,600 28,703 annotations	640ˆ512 2,400 48,184 Computer-generated 640ˆ512 14,560 459,002
	Per image	Number of instances Inter-instance occlusions Background pixels	5.1 2.8 79%	20.1 52.9 24%	31.5 60.5 24%

1: Differences between Mikado and Mikado+ D2SA [55] Mikado Mikado+ Dataset D2SA 1 [55] Mikado (Ours) Mikado+ (Ours)

Table 5 . 2

 52 

: Per-dataset folds for our cross-validation experiments after offline data augmentation

Measures the amount of

  

	Real success	Successful extractions, i.e. whose instance is taken away
	Virtual success	Extractions either successful, or failed but whose grasp is centered on a non-occluded instance
	Centered success	Successful extractions whose grasp is centered
	Non-occluded success	Successful extractions whose instance is unoccluded
	Not-centered failure	Failed extractions because of not centered grasps
	Occluded failure	Failed extractions because of occluded instances

Table 5 .

 5 4: Definition of our real-world performance metrics

  In Figure5.16 (see TableC.4 for more details), we compare on stick-like products two bicameral networks trained on Mikado and Mikado+ respectively. Mikado contains only stick-like sachets and a hundred of textures while Mikado+ includes different shapes and thousands of textures (c.f . Figures C.1 and C.2). As expected from Section 5.2, in which we showed that learning from Mikado+ instead of Mikado produces more abstract representations, a bicameral network trained on Mikado+ outperforms the same network trained on Mikado, by 7, 9, and 32 points on sauce, tea and nem respectively. The obtained bin-picking performances are qualitatively corroborated by Figure5.17: a model trained on Mikado+ instead of Mikado tends to produce more closed instance boundaries and less false positive, thus enhancing the generation of an affordable candidate.

Mikado / Non-centered failure Mikado+ / Non-centered failure Mikado / Occluded failure Mikado+ / Occluded failure

  Figure 5.16: Per-product performances using the proposed approach, with respect to the synthetic training distribution, i.e. Mikado or Mikado+. Training on Mikado+ instead of Mikado enables to boost performances, as the bicameral network can learn more generalizable invariants.

	n e m	s a u c e	t e a	
	. 8 4 . 5 4 . 8 6 . 5 0	. 7 5 . 7 7 . 7 6 . 8 3	. 7 7 . 7 7 . 8 6 . 6 4	Mikado / Real success Mikado+ / Real success
				Mikado / Virtual success
				Mikado+ / Virtual success
	n e m	s a u c e	t e a	
	. 8 5 . 9 2 . 7 8 . 7 8	. 8 8 . 9 5 . 8 6 . 8 4	. 5 8 . 7 8 . 7 9 . 8 7	Mikado / Centered success
				Mikado+ / Centered success
				Mikado / Non-occluded success
				Mikado+ / Non-occluded success
	n e m	s a u c e	t e a	
	. 9 2 . 7 8 . 3 5 . 2 8	. 7 7 . 5 0 . 5 0 . 5 1	. 6 2 . 5 0 . 1 6 . 1 6	
	and more than 90% for a model trained on Mikado+. and 20%, against an average success of 79% with tighter extrema of 60% on Mikado reaches an average success rate of 63% with extrema of 80% performances more independent of the light changes. A model trained randomizing the image luminance during training (Mikado+) enables hard to anticipate and synthesize the real-world lighting conditions, performances are implicitly linked to the lighting conditions. As it is .18 reports that the real-world n e m s a u c e t e a

  .[START_REF] Bousmalis | Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping[END_REF]. The performance drop on D2SA is nevertheless

			Bicameral architecture F100 34,301,250 (ˆ1.0) .769 .847 .801 .884 Number of Boundaries Occlusions ODS AP ODS AP parameters F75 19,296,050 (ˆ.56) .756 .832 .791 .876 F50 8,577,442 (ˆ.25) .730 .802 .768 .852 F25 2,145,426 (ˆ.06) .657 .706 .691 .765
		Table 5.5: Cross-validated performances for instance boundary and unoc-
		cluded side detection on Mikado using a bicameral structuring trained on
		Mikado, with respect to the percentage of initial number of convolutional
		filters (c.f . Figure 5.21). Reducing the number of convolutional filters in a
		bicameral network induces a gradual loss of performances.
	Boundary ODS	.6 5 6 .5 8 1 .7 4 8 .7 9 0 .7 5 7 .8 0 4 .7 5 4 .8 0 6 .7 6 3 .8 0 4 .7 5 7 .8 0 9 .7 6 1 .8 0 9 .7 0 0 .7 8 3	Boundary AP	.6 3 8 .5 8 0 .7 4 2 .8 1 6 .7 5 9 .8 2 8 .7 4 3 .8 3 0 .7 5 5 .8 2 9 .7 4 8 .8 3 5 .7 5 0 .8 3 6 .7 1 5 .7 9 2
		0	13 25 38 50 75	100	0	13 25 38 50 75	100
		Percentage of the initial D2S finetuning set	Percentage of the initial D2S finetuning set
	Occlusion ODS	.3 7 8 .3 5 7 .7 3 2 .8 0 1 .7 5 0 .8 1 6 .7 5 3 .8 1 9 .7 6 4 .8 1 7 .7 6 1 .8 2 1 .7 6 8 .8 2 3 .7 2 5 .7 8 5	Occlusion AP	.2 8 8 .3 6 5 .7 3 1 .8 3 4 .7 6 5 .8 4 9 .7 7 3 .8 5 1 .7 8 8 .8 5 0 .7 8 8 .8 5 7 .7 9 7 .8 5 9 .7 5 6 .7 9 5
		0	13 25 38 50 75	100	0	13 25 38 50 75	100
		Percentage of the initial D2S finetuning set	Percentage of the initial D2S finetuning set
			/	/	No pretraining with/without augmentation [55] Using the F25/F100 variant pretrained on Mikado+

Table 5 .

 5 6: Factors impacting the computation time for each of the two steps of the proposed method

www.sileane.com

3.1. Bin-Picking

The statistics on COCOA and D2SA are only on the train and validation subsets as the test subset is not provided.

https://images.google.com/

A warp is a set of threads running concurrently on a SM.

Remerciements

Appendix A Deep Convolutional Networks

A.1 Kullback-Leibler Divergence

Let ppxq be the probability distribution represented by the training set tpx n , y n qu N n"1 and ppx n q the distribution of the approximated set tpx n , ŷn qu N n"1 . Minimizing the objective term of Equation 2.4 is equivalent to minimizing the Kullback-Leibler divergence KLpp, pq between the training distribution ppxq and the distribution ppxq learned by the network f W . The Kullback-Leibler divergence, which quantifies how much information is lost when approximating a distribution by another one, is defined as the expectation of the log difference between the target and approximating distributions: KLpp, pq :" Erlog ppxq ´log ppxqs (A.1) Equation A.1 can be rewritten as follows:

ppx n q log ppx n q loooooooooooomoooooooooooon cross-entropy between p and p (A.2) Equation A.2 shows that KLpp, pq is actually the difference between the entropy of p and the cross-entropy between p and p. Assuming that tx n u N n"1 are independent observations, the entropy term is constant and the cross-entropy term can be equivalently minimized as follows:

py n q i logp ŷn q i (A. 

py n q i logp ŷn q i (A.4)

A.2 Bayesian Interpretation

From a Bayesian perspective, the network inference ẑ " f W pxq P r0, 1s from Equation 2.5 can be viewed as a Maximum A Posteriori (MAP) probability estimate with a Gaussian prior on the weights. As Z follows a Bernouilli distribution of parameter ẑ " f W pxq, ppZ " z|Wq " ẑz p1 ´ẑq p1´zq (A.7)

As W follows a Gaussian distribution, there exists σ P R such that

As a result, log ppz n |Wq " z n logp ẑn q `p1 ´zn q logp1 ´ẑ n q log ppWq9 W 2 2 (A.9)

Considering that arg minp´¨q " arg maxp¨q, we finally obtain

Appendix B

Occlusion-Aware Instance Segmentation

B.1 Binarization Thresholds

In our pipeline for generating an ordered set of candidates (c.f . Section 4.4), we introduced two hyperparameters α and β, that are thresholds for binarizing the boundary and occlusion maps respectively. As shown by Figure B.1, these thresholds impact the generation of an affordable instance from the bicameral network inference. High threshold values tend to break boundaries, thus favouring overclustering. Low threshold values induce more closed boundaries and false positive in the binary maps, thus favouring oversegmentation. Favouring overclustering makes blinder as less instance candidates are produced and instance candidates tend to be grouped instances or instances grouped with the background. Conversely, favouring oversegmentation produces more instance candidates but these candidates tend to be instance parts.

In our bin-picking experiments, we set these thresholds to .1 as, in industrial bin-picking applications, we want to maximize the probability to succesfully grasp an instance. In the worst-case scenarios, i.e. only instance parts as instance candidates or no instance candidates, we prefer attempting to grasp inside an instance even if the grasp is not optimal, rather than doing nothing. As the network inference is most likely correct or polluted with false positive, we set a low threshold value for both α and β. We thus avoid to break boundaries and face mostly two pick cases: either a correctly delineated non-occluded instance, or an instance part. α " β " .7

III

α " β " .9 

Textures and Backgrounds

The Mikado synthetic dataset was generated using 120 texture images respectively. The number of texture and background images was augmented to 2,400 and 600 respectively, for its extension Mikado+. While the texture images in Mikado are mainly for stick-like sachets, the Mikado+ textures include other food shapes as well: pastries, cookies, square sachets, rigid boxes. All the texture and background images were retrieved using the Google Image search engine and manually cropped to remove any background. A comprehensive overview of the texture and background images is provided in Figures C.1 and C.2 respectively.

C.1.2 Alternative Input Modality

The Mikado pipeline for generating synthetic training data could be adapted for an alternative input modality, such as depth. For example, instead of texture images, we collect a set of bottle models from ShapeNet [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] (c.f . 

C.2 Real-World Experimental Evaluation

This section contains the numerical version of the bin-picking performances presented in Section 5.3 (see Table C.1 for the correspondences).

The tables also include the number of observations and bin-picking sequences on which the performances are averaged (c.f . Table C.2). 5 

Figure Table