
HAL Id: tel-03081227
https://theses.hal.science/tel-03081227

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic instance segmentation for object-oriented
bin-picking
Matthieu Grard

To cite this version:
Matthieu Grard. Generic instance segmentation for object-oriented bin-picking. Other. Université de
Lyon, 2019. English. �NNT : 2019LYSEC015�. �tel-03081227�

https://theses.hal.science/tel-03081227
https://hal.archives-ouvertes.fr

NNT : 2019LYSEC15

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON

OPÉRÉE AU SEIN DE L’ÉCOLE CENTRALE DE LYON

École Doctorale N˝512 InfoMaths

Spécialité : Informatique

Generic Instance Segmentation

for Object-Oriented Bin-Picking

présentée et soutenue à huis clos par

Matthieu GRARD

le 20 mai 2019

Thèse dirigée par Pr Liming CHEN
co-encadrée par Dr Emmanuel DELLANDRÉA

Jury
Mme Marie-Odile BERGER
Directrice de recherche à l’INRIA Nancy Grand Est Présidente
M. Thierry CHATEAU
Professeur à l’Université Clermont Auvergne Rapporteur
M. Dimitris SAMARAS
Professeur à Stony Brook University Rapporteur
M. Jean-Marc ODOBEZ
Directeur de recherche à l’Idiap Research Institute Examinateur
Mme Laetitia LEYRIT
Docteure à Siléane Examinatrice
M. Liming CHEN
Professeur à l’Ecole Centrale de Lyon Directeur de thèse
M. Emmanuel DELLANDRÉA
Maı̂tre de conférences à l’Ecole Centrale de Lyon Co-encadrant de thèse

ii

Abstract

Referred to as robotic random bin-picking, a fast-expanding industrial
task consists in robotizing the unloading of many object instances piled
up in bulk, one at a time, for further processing such as kitting or part
assembling. However, explicit object models are not always available in
many bin-picking applications, especially in the food and automotive
industries. Furthermore, object instances are often subject to intra-class
variations, for example due to elastic deformations.

Object pose estimation techniques, which require an explicit model
and assume rigid transformations, are therefore not suitable in such
contexts. The alternative approach, which consists in detecting grasps
without an explicit notion of object, proves hardly efficient when the
object geometry makes bulk instances prone to occlusion and entan-
glement. These approaches also typically rely on a multi-view scene
reconstruction that may be unfeasible due to transparent and shiny
textures, or that reduces critically the time frame for image processing
in high-throughput robotic applications.

In collaboration with Siléane, a French company in industrial robotics,
we thus aim at developing a learning-based solution for localizing the
most affordable instance of a pile from a single image, in open loop,
without explicit object models. In the context of industrial bin-picking,
our contribution is two-fold.

First, we propose a novel fully convolutional network (FCN) for
jointly delineating instances and inferring the spatial layout at their
boundaries. Indeed, the state-of-the-art methods for such a task rely on
two independent streams for boundaries and occlusions respectively,
whereas occlusions often cause boundaries. Specifically, the mainstream
approach, which consists in isolating instances in boxes before detecting
boundaries and occlusions, fails in bin-picking scenarios as a rectangle
region often includes several instances. By contrast, our box proposal-
free architecture recovers fine instance boundaries, augmented with
their occluding side, from a unified scene representation. As a result, the
proposed network outperforms the two-stream baselines on synthetic
data and public real-world datasets.

Second, as FCNs require large training datasets that are not available

iii

in bin-picking applications, we propose a simulation-based pipeline
for generating training images using physics and rendering engines.
Specifically, piles of instances are simulated and rendered with their
ground-truth annotations from sets of texture images and meshes to
which multiple random deformations are applied. We show that the
proposed synthetic data is plausible for real-world applications in the
sense that it enables the learning of deep representations transferable to
real data. Through extensive experiments on a real-world robotic setup,
our synthetically trained network outperforms the industrial baseline
while achieving real-time performances. The proposed approach thus
establishes a new baseline for model-free object-oriented bin-picking.

Keywords: computer vision, robotic bin-picking, deep learning, in-
stance segmentation, occlusion detection, fully convolutional networks,
synthetic training data

iv

Résumé

Le dévracage robotisé est une tâche industrielle en forte croissance
visant à automatiser le déchargement par unité d’une pile d’instances
d’objet en vrac pour faciliter des traitements ultérieurs tels que la forma-
tion de kits ou l’assemblage de composants. Cependant, le modèle ex-
plicite des objets est souvent indisponible dans de nombreux secteurs in-
dustriels, notamment alimentaire et automobile, et les instances d’objet
peuvent présenter des variations intra-classe, par exemple en raison de
déformations élastiques.

Les techniques d’estimation de pose, qui nécessitent un modèle
explicite et supposent des transformations rigides, ne sont donc pas
applicables dans de tels contextes. L’approche alternative consiste à
détecter des prises sans notion explicite d’objet, ce qui pénalise forte-
ment le dévracage lorsque l’enchevêtrement des instances est important.
Ces approches s’appuient aussi sur une reconstruction multi-vues de la
scène, difficile par exemple avec des emballages alimentaires brillants
ou transparents, ou réduisant de manière critique le temps de cycle
restant dans le cadre d’applications à haute cadence.

En collaboration avec Siléane, une entreprise française de robotique
industrielle, l’objectif de ce travail est donc de développer une solution
par apprentissage pour la localisation des instances les plus prenables
d’un vrac à partir d’une seule image, en boucle ouverte, sans modèles
d’objet explicites. Dans le contexte du dévracage industriel, notre
contribution est double.

Premièrement, nous proposons un nouveau réseau pleinement con-
volutionnel (FCN) pour délinéer les instances et inférer un ordre spatial
à leurs frontières. En effet, les méthodes état de l’art pour cette tâche re-
posent sur deux flux indépendants, respectivement pour les frontières
et les occultations, alors que les occultations sont souvent sources de
frontières. Plus précisément, l’approche courante, qui consiste à isoler
les instances dans des boı̂tes avant de détecter les frontières et les occul-
tations, se montre inadaptée aux scénarios de dévracage dans la mesure
où une région rectangulaire inclut souvent plusieurs instances. A con-
trario, notre architecture sans détection préalable de régions détecte
finement les frontières entre instances, ainsi que le bord occultant cor-

v

respondant, à partir d’une représentation unifiée de la scène.
Deuxièmement, comme les FCNs nécessitent de grands ensembles

d’apprentissage qui ne sont pas disponibles dans les applications de
dévracage, nous proposons une procédure par simulation pour générer
des images d’apprentissage à partir de moteurs physique et de rendu.
Plus précisément, des vracs d’instances sont simulés et rendus avec les
annotations correspondantes à partir d’ensembles d’images de texture
et de maillages auxquels sont appliquées de multiples déformations
aléatoires. Nous montrons que les données synthétiques proposées
sont vraisemblables pour des applications réelles au sens où elles per-
mettent l’apprentissage de représentations profondes transférables à
des données réelles. À travers de nombreuses expériences sur une ma-
quette réelle avec robot, notre réseau entraı̂né sur données synthétiques
surpasse la méthode industrielle de référence, tout en obtenant des per-
formances temps réel. L’approche proposée établit ainsi une nouvelle
référence pour le dévracage orienté-objet sans modèle d’objet explicite.

Mots-clés : vision par ordinateur, dévracage robotisé, apprentissage
profond, segmentation en instances, détection des occultations, réseaux
entièrement convolutionnels, données d’apprentissage synthétiques

vi

vii

viii

The monster saw my determination in my face and gnashed his teeth in
the impotence of anger. “Shall each man,” cried he, “find a wife for his bosom,
and each beast have his mate, and I be alone? [...] Beware, for I am fearless
and therefore powerful. I will watch with the wiliness of a snake, that I may
sting with its venom. Man, you shall repent of the injuries you inflict.”

— Mary Shelley, “Frankeinstein”

ix

x

Remerciements

Je tiens à remercier Liming Chen et Emmanuel Dellandréa pour avoir
accepté avec enthousiasme d’encadrer mes travaux de thèse, pour le
partage de leur expérience et leurs conseils pertinents, ainsi que la
société Siléane de m’avoir fait pleinement confiance dans mon projet
de thèse CIFRE qui, j’espère, dévoilera de nouveaux horizons.

Merci également à Florian pour son suivi éclairé, ses remarques
sagaces, ses conseils techniques et philosophiques.

Merci à Fei pour sa présence, son entrain et son soutien constant
malgré les difficultés, ainsi qu’à ma famille de m’avoir supporté dans
mes choix académiques et professionnels.

Merci à mes collègues de Siléane et de l’équipe Imagine du Liris
pour leur présence et le plaisir de nos conversations, en particulier à
Romain, Amaury, Jean-Louis, Laetitia, Sébastien, Maxime.

Merci à Léo, Antoine, Marie, Eric, Jean de leur soutien parallèle
sur le plan sportif qui m’a notamment permis de représenter au mieux
l’Ecole Centrale de Lyon lors des compétitions nationales.

Merci aux membres du jury d’avoir accepté la responsabilité et la
tâche, j’espère enrichissante, d’évaluer mon travail.

Merci enfin aux innombrables autres personnes qui ont contribué,
directement ou indirectement, de près ou de loin, à l’accomplissement
de ce travail mais que je ne peux toutes citer.

xi

xii

Contents

Abstract iii

Résumé v

Remerciements xi

List of Figures xvii

List of Tables xxi

Notations 1

Glossaries 2

Visual Representations 2

1 Introduction 3
1.1 Application Context . 4
1.2 Objectives . 5
1.3 Contributions . 7

1.3.1 Publications . 7
1.4 Contents . 9

2 Deep Convolutional Networks 11
2.1 Introduction . 11

2.1.1 Definitions . 11
2.1.2 Learning . 14

2.2 Limitations . 16
2.2.1 Large Training Datasets 16
2.2.2 Limited Internal Representations 16
2.2.3 Lack of Explanability 17

2.3 Interpretations . 18
2.3.1 Hierarchical Representations 18
2.3.2 Kernel Perspective 19

2.4 Conclusion . 20

xiii

xiv Contents

3 State of the Art 21
3.1 Bin-Picking . 21

3.1.1 Gripper-Oriented Bin-Picking 24
3.1.2 Object-Oriented Bin-Picking 26

3.2 Instance Segmentation . 28
3.2.1 Early-Localization Instance Segmentation 30
3.2.2 Late-Localization Instance Segmentation 32
3.2.3 Occlusion Detection from a Single Image 35
3.2.4 Datasets for Boundary and Occlusion Detection . 37

3.3 Conclusion . 41

4 Occlusion-Aware Instance Segmentation 45
4.1 Bicameral Structuring . 45

4.1.1 Bicameral Architecture 46
4.1.2 Bicameral Learning 46
4.1.3 Experimental Setup 50

4.2 Comparison with the State of the Art 54
4.2.1 Oriented Boundary Detection 54
4.2.2 Amodal Instance Segmentation 58
4.2.3 Conclusion . 63

4.3 Ablation Study . 64
4.3.1 Alternative Architectures 64
4.3.2 Decoders Feature Sharing 67
4.3.3 Skip Connections 69
4.3.4 Encoder Backbone 74
4.3.5 Conclusion . 75

4.4 Localizing Affordable Instances 76
4.4.1 Approach . 76
4.4.2 Implementation . 77
4.4.3 Discussion . 79
4.4.4 Perspectives . 82

4.5 Conclusion . 84
4.5.1 Summary . 84
4.5.2 Contributions . 85

5 Application to Bin-Picking 87
5.1 Synthetic Training Data . 88

5.1.1 Data Generation 88
5.1.2 Data Augmentation 90

5.2 Synthetic Data Plausibility Check 93
5.2.1 Experimental Setup 93
5.2.2 Transfer Learning Experiments 98
5.2.3 Conclusion . 100

5.3 Real-World Experimental Evaluation 101

Contents xv

5.3.1 Real-World Experimental Setup 101
5.3.2 Experimental Protocol 102
5.3.3 Generalization from Synthetic Training 105
5.3.4 Comparison with the Industrial Baseline 111
5.3.5 Achieving Real-Time Performances 112

5.4 Conclusion . 120
5.4.1 Summary . 120
5.4.2 Contributions . 122

6 Conclusion 125
6.1 Summary . 125
6.2 Contributions . 126
6.3 Perspectives . 127

A Deep Convolutional Networks I
A.1 Kullback-Leibler Divergence I
A.2 Bayesian Interpretation . II

B Occlusion-Aware Instance Segmentation III
B.1 Binarization Thresholds III

C Application to Bin-Picking V
C.1 Synthetic Training Data Generation V

C.1.1 Textures and Backgrounds V
C.1.2 Alternative Input Modality V

C.2 Real-World Experimental Evaluation IX

Autorisation de Soutenance XIII

xvi Contents

List of Figures

1.1 Examples of piles . 4
1.2 Examples of intra-class variations 5
1.3 Open-loop cycle in the proposed approach 6
1.4 Our long-term view beyond this work 6
1.5 Overview of the proposed approach 8

2.1 Illustration of a neuron . 11
2.2 A network layer going convolutional 12
2.3 A VGG16-based convolutional encoder 13
2.4 Fooling deep convolutional networks 17
2.5 The invisible duck . 17
2.6 Deep representations are hierarchical 19
2.7 The norm of a deep function acts as a regularizer 20

3.1 Examples of visual sensors 21
3.2 Examples of robotic manipulators 22
3.3 Examples of robot end effectors 22
3.4 Categorization of bin-picking approaches 23
3.5 Object-oriented bin-picking 23
3.6 Example of grasp detections 24
3.7 Comparison between bin-picking approaches 25
3.8 Example of pose detection and estimation 26
3.9 Example of shape-based template matching 27
3.10 Examples of instance segmentation 28
3.11 Object-level scene understanding 29
3.12 Approaches for instance segmentation 29
3.13 Proposal-based segmentation is unsuitable for bin-picking 31
3.14 Single-stream encoder-decoder architectures 34
3.15 Approaches for learning boundaries and occlusions . . . 36
3.16 Datasets for boundary and occlusion detection 38
3.17 Augmentation strategy of [55] 39
3.18 Reasoning pipeline for building our solution 40
3.19 State of the art for bin-picking 42
3.20 State of the art for instance segmentation 43

xvii

xviii List of Figures

4.1 Our two-stream baseline 45
4.2 Definition of a bicameral FCN 47
4.3 Unpooling mechanism . 47
4.4 Our representation of boundaries and occlusions 48
4.5 Approaches for inferring boundaries and occlusions . . . 51
4.6 Comparative results on PIOD and Mikado 55
4.7 Comparative precision-recall curves on PIOD and Mikado 56
4.8 Misdetections on PIOD . 57
4.9 Applying a proposal-based approach on synthetic piles . 59
4.10 Comparative results on COCOA 60
4.11 Example of thing and stuff annotations 61
4.12 Comparative precision-recall curves on COCOA 61
4.13 Alternative architectures for jointly inferring boundaries

and occlusions . 64
4.14 Comparative training curves between different architec-

tures . 66
4.15 Alternative architectures with partial decoder sharing . . 68
4.16 A bicameral architecture with and without skip connec-

tions . 69
4.17 Comparative results with and without skip connections . 70
4.18 Comparative precision-recall curves with and without

skip connections . 71
4.19 Comparative training curves with and without skip con-

nections . 72
4.20 Checkerboard artifacts are reduced by skip connections . 72
4.21 Types of convolutional block 74
4.22 Inferring grasp coordinates 76
4.23 Generation of instance candidates 78
4.24 Computation of the local non-occlusion score 78
4.25 Qualitative results using our approach 80
4.26 Comparative instance segmentations 81
4.27 Examples of failures . 83
4.28 Examples of non-equivariance cases 83

5.1 Our approach for generating training data 87
5.2 Synthetic data generation 89
5.3 Synthetic ground truth generation 89
5.4 Datasets for boundary and occlusion detection 91
5.5 Impact of mesh augmentation in simulation 92
5.6 Synthetic data augmentation 92
5.7 Frozen encoder blocks . 96
5.8 Comparative results on D2SA 97
5.9 Comparative results on D2SA with respect the number

of finetuning images and the synthetic data distribution . 99

List of Figures xix

5.10 Our real-world robotic setup 101
5.11 The products in our real-world experiments 102
5.12 Examples of real-world observations 103
5.15 Example of unstable equilibrium 105
5.13 Overall bin-picking performances 106
5.14 Bin-picking results . 107
5.16 Bin-picking performances with respect to the synthetic

data distribution . 109
5.17 Bin-picking results with respect to the synthetic data

distribution . 110
5.18 Impact of light changes on the bin-picking performances 111
5.19 Grasp detection using the industrial baseline 112
5.20 Comparison with the industrial baseline 113
5.21 Bicameral architectures with different number of convo-

lutional filters . 114
5.22 Performances on D2SA with respect to the number of

filters . 115
5.23 Bin-picking performances with the respect to the number

of filters . 116
5.24 Bin-picking results with respect to the number of filters . 117
5.25 Overall computation times 119
5.26 Elapsed time for the network inference alone 119
5.27 Computation time repartition 119
5.28 Computation time with respect to the number of instances121

B.1 Impact of the binarization thresholds IV

C.1 The textures in Mikado . VI
C.2 The backgrounds in Mikado VII
C.3 The bottle models . VIII
C.4 Qualitative results using synthetic depth as input VIII

xx List of Figures

List of Tables

4.1 Sections, figures and tables related to each experiment . . 52
4.2 Cross-validation folds on Mikado, PIOD and COCOA . . 53
4.3 Comparative performances on PIOD and Mikado 56
4.4 Early-localization performances on Mikado 59
4.5 Comparative performances on COCOA 61
4.6 Comparative performances between different architectures 66
4.7 Comparative performances for decoder feature sharing . 68
4.8 Comparative performances with and without skip con-

nections . 71
4.9 Comparative performances between different encoder

backbones . 74
4.10 Comparative performances between different encoder

backbones . 75

5.1 Differences between Mikado and Mikado+ 91
5.2 Cross-validation folds for D2SA, D2SA+ and Mikado+ . 94
5.3 Comparative performances on D2SA with respect to the

frozen encoder blocks . 96
5.4 Our real-world performance metrics 104
5.5 Performances on Mikado with respect to the number of

convolutional filters . 115
5.6 Factors impacting the computation time 120

C.1 Correspondances between the figures in Section 5.3 and
the tables in this section IX

C.2 Our real-world performance metrics IX
C.3 Per-product real-world performances X
C.4 Per-product performances averaged over all observa-

tions, using a bicameral network trained on Mikado or
Mikado+ . X

C.5 Comparative performances with the industrial baseline . XI
C.6 Comparative performances with respect to the number

of filters . XI

xxi

xxii List of Tables

Notations

R Image resolution, typically R “ W ˆ H for an image of
width W P N‹ and height H P N‹

P The set of pixel locations in an image of resolution R

p P P A pixel location in an image of resolution R

M P VR A matrix of dimensions R whose values are in V , i.e.
@p P P , Mp P V . For example, if M is a RGB image of
width W and height H, then V “ R3 and R “ W ˆ H. If
M is a binary image of resolution W ˆ H, then V “ t0, 1u
and R “ W ˆ H.

M ą α A matrix M P VR binarized using the threshold α P V .
@p P P , pM ą αqp “ 1 if Mp ą α else 0. As a result,
pM ą αq P t0, 1uR.

C A set of instance candidates resulting from an image
segmentation, i.e. C Ă t0, 1uR

pC,ěq A set of instance candidates equipped with an order rela-
tion, i.e. there exists a function s : C Ñ R such that:
@C, C1 P C, spCq ě spC1q or spC1q ě spCq.
If C‹ “ maxpC,ěq then @C P C, spC‹q ě spCq.

|S | P N The number of elements of a set S

tMkuk Short designation for a set tMkuN
k“1 of N elements, with-

out explicitly specifying the number of elements. If
M “ tMkuk, then |M| “ N.

b The XNOR operation, i.e.
@x, x1 P t0, 1u, xb x1 “ 1 if x “ x1 else 0.
If M, M1 P t0, 1uR, then @p P P , pMbM1qp “ Mp bM1

p.

1

Glossaries

FCN Stands for Fully Convolutional Network, i.e. a deep con-
volutional network composed only of convolutional lay-
ers, typically for pixel classification tasks

Training Refers to the phase during which the parameters of a
FCN are optimized to approximate a user-defined func-
tion from annotated samples

Inference Refers to the output of a trained FCN

Mikado Refers to our synthetic data

Bicameral Refers to the proposed network architecture. Comes from
the latin words bis (twice) and camera (chamber).

Visual Representations

The instance boundaries (blue) and the occluding
boundary sides (orange). Shortly, referred to as
boundaries and occlusions respectively.

In addition to the boundaries and occlusions, the
bounding box (green rectangle) and pixels (col-
ored region) of the most affordable instance, and
the corresponding grasp (yellow circle)

In addition to the boundaries and occlusions, the
pixels (colored regions) of the most affordable in-
stance candidate and other instance candidates.
The colors are randomly distributed.

2

Chapter 1

Introduction

Robots have become the most versatile human tools in the sense that
they can help or replace humans for increasingly complex real-world
interactions. The joint ever-growing amount of data and hardware
capability have enabled computers equipped with learning algorithms
to achieve human-level performances in a wide range of applications,
such as detecting and manipulating novel objects in unknown environ-
ments.

In collaboration with Siléane1, a French company in industrial
robotics, we aim in this context at generalizing the robotization of
an industrial task for which humans are unfit because of the unbear-
able repetitiveness, the hazardous environments in which the task is
executed, or the superhuman skills that are required. Namely ran-
dom bin-picking, this task consists in unpiling object instances to feed
automated lines. Current automation strategies resort to strong pri-
ors on the object or the gripper, thereby preventing any generalization
across many reference products although the notion of instance is object
category and gripper-agnostic.

We thus propose a generic learning-based solution towards object
model-free and large-scale applications. Specifically, we address two
main questions:

• How to best learn generalizable representations for object-orien-
ted bin-picking without explicit object and gripper models?

• As collecting annotated data in such application domains is un-
feasible, can one leverage synthetic training data?

In this chapter, we further detail our motivations and objectives,
with respect to the difficulties encountered in the real-world applica-
tions and the challenges raised by our application context.

1www.sileane.com

3

4 1.1. Application Context

1.1 Application Context

In the context of industrial robotics, automated lines in various appli-
cations, such as kitting, component assembling, order processing, or
waste sorting, require to be continuously fed on manufactured products
or waste materials. For practical reasons, these objects are conveyed
to the line entry point piled up in bulk in containers. Robotic random
bin-picking, shortly bin-picking, which consists in unloading object in-
stances piled up in bulk one by one using a robotic arm, is thereby a key
step towards fully automated lines. Automating such a task however
raises a number of application-dependent difficulties:

• A pile of objects can be either homogeneous, i.e. containing many
instances of the same object, or heterogeneous, i.e. one or many
instances of many different objects, as illustrated by Figure 1.1.

Figure 1.1: Examples of piles. Objects can be low or highly textured, piled up
in homogeneous or heterogeneous configurations.

• In both homogeneous and heterogeneous cases, automated lines
may require hundreds of different reference products to build
complex systems or supply the need of user-driven customization.

• Object instances may present some intra-class variations, typically
due to elastic deformations or design variations (see Figure 1.2).

• Some object geometry may induce piles prone to strong occlusions
and entanglements between instances. As a result, attempting to
extract an occluded instance penalizes the robot operating cycle,
and consequently the overall yield of a line.

Chapter 1. Introduction 5

Geometric deformations Texture variations

Figure 1.2: Examples of intra-class variations in real-world applications. In
such cases, a bin-picking approach based on the explicit object model is hardly
appropriate.

• Prior knowledge on the objects to unpile may be limited. For
example, in the automotive industry, CAD models are not always
available because the manufactured components come from many
different suppliers. In applications such as food packaging or
waste sorting, explicit models are simply non-existent.

• A scene reconstruction, for example by active stereovision or
laser triangulation, is not always feasible either by lack of visual
information or because high-throughput applications drastically
constrain the time frame for image processing.

• Annotated real-world data is hardly collectable as it is a time-
consuming and tedious task, impractical in industrial environ-
ments.

Further to these observations, we specifically address the case of
high-throughput open-loop bin-picking applications for which an ex-
plicit model of the target objects is not available and a scene recon-
struction is not always feasible. These conditions are met in various
application domains such as car assembly, food packaging, order pro-
cessing or waste sorting. We also consider that collecting real-world
data, annotated or not, for offline learning is not possible.

1.2 Objectives

In this application context, we aim at developing a learning-based
solution for locating the most affordable instances of a pile indepen-
dently of the object and gripper models (see Figures 1.3 and 1.5). We
look for learning a generic notion of affordable instance, that enables
many line entry points to be automatically supervised by a unique

6 1.2. Objectives

(1) Data acquisition (2) Instance detection (3) Instance extraction

Figure 1.3: Open-loop cycle in the proposed approach, built on an offline
supervised synthetic training to detect the most affordable instances of a pile
from a single image, independently of the object and gripper models.

Offline
Supervised

Specific
Learning

Offline
Supervised

Specific
Learning

Offline
Supervised

Specific
Learning

Offline
Supervised

Specific
Learning

Offline
Supervised

Specific
Learning

(a) Current industrial approach

Online
Unsupervised
Specialization

Online
Unsupervised
Specialization

Online
Unsupervised
Specialization

Online
Unsupervised
Specialization

Online
Unsupervised
Specialization

Offline Supervised General Learning

(b) Our long-term view beyond this work

Figure 1.4: Our long-term view compared with the current industrial approach.
We advocate a unique supervised general learning (this work) that initializes
each line entry point to a strong baseline, which is further specialized online.

Chapter 1. Introduction 7

model (c.f . Figure 1.4). Such a global model has many benefits, in-
cluding reduced maintenance, effective pooling of resources and skills,
and scalability. As short-term results are expected from this work in
collaboration with an industrial company, we assume the existence of
product families for solving practical real-world scenarios. Specifically,
our contributions are driven by the scenario of unpiling sachets in
homogeneous bulk, using only RGB images as input data. Our re-
sults nevertheless suggest that the proposed approach can apply to
other product families, using alternative input modalities as well.

1.3 Contributions

Our contributions in addressing the problem of object-oriented bin-
picking without explicit object models nor real-world data are two-fold:

• a novel deep fully convolutional learning architecture, referred
to as bicameral, for jointly inferring the instance boundaries and
occlusions from a single image;

• a simulation-based scheme for application to real-world robotic
setups, referred to as Mikado, supported by an extensive experi-
mental evaluation.

Specifically, unlike the state-of-the-art approaches which rely on
two independent streams whereas occlusions cause boundaries, the
proposed architecture enables a unified representation of the bound-
aries and occlusions between instances, thus achieving state-of-the-art
performances on both synthetic data and public real-world datasets for
instance boundary and occlusion detection.

The proposed simulation-based scheme then enables to synthetically
train such a bicameral network for real-world bin-picking applications
while outperforming the object model-free industrial baseline.

1.3.1 Publications

Most of this work is confidential due to direct industrial applications in
collaboration with Siléane, but nevertheless led to a journal paper (in
revision) and a workshop paper:

• [67] Grard et al., Bicameral Structuring and Synthetic Imagery
for Jointly Predicting Instance Boundaries and Nearby Occlu-
sions From a Single Image. Submitted to International Journal of
Computer Vision (IJCV), Special Issue on Deep Learning for Robotic
Vision in July 2018. First revision in January 2019.

8 1.3. Contributions

Single real-world image

,Bicameral Deep Fully
Convolutional Network

Boundaries and occlusions

,Boundary-Based Clustering
& Occlusion-Based Ranking

Most affordable instance

,Mikado
Simulator

+
Inputs:
Mesh template
Texture images

Physics simulation of piles of sachets

Top-view RGB-D camera rendering

Training and test data preparation

Synthetic training
images of piles

Figure 1.5: Overview of the proposed approach. A synthetically trained fully
convolutional network jointly learns to detect boundaries and occlusions
between instances, independently of the object and gripper models. The
coordinates of the most affordable instance centroid is then deduced from the
network inference and sent to the robot.

Chapter 1. Introduction 9

• [66] Grard et al., Object Segmentation in Depth Maps with One
User Click and a Synthetically Trained Fully Convolutional
Network. In International Workshop on Human-Friendly Robotics
(HFR), 2017. https://doi.org/10.1007/978-3-319-89327-3_16

[67] presents our performance-enhancing fully convolutional encoder-
decoder network for oriented instance boundary detection and the
benefits of jointly using synthetic data for this task.

[66] presents through a practical interactive application one of our
core ideas that boundaries between instances piled up in bulk are better
detected by postponing instance localization after instance delineation,
and leveraging the duality between boundary detection and instance
segmentation.

1.4 Contents

This manuscript is organized as follows:
In Chapter 2, we briefly introduce the mechanisms of deep learning,

with a focus on the related mathematical tools that we extensively use
in the following chapters.

In Chapter 3, we review the state of the art on the different ap-
proaches for bin-picking. We largely focus on the state of the art for
generic instance segmentation, i.e. category-agnostic instance delin-
eation, which constitutes a core topic of our approach.

In Chapter 4, we lay out our contributions on occlusion-aware
generic instance segmentation. Specifically, we present and evalu-
ate the proposed network architecture on the Mikado synthetic data
and state-of-the-art real-world datasets. Furthermore, we conduct an
ablation study of the bicameral architecture to better characterize its
components. We finally describe how to translate the bicameral net-
work inference into grasp coordinates on the most affordable instance
of a pile.

In Chapter 5, we present our contributions on applying the pro-
posed occlusion-aware instance segmentation approach to bin-picking.
Specifically, we describe a training data generation pipeline to syntheti-
cally train a bicameral network for real-world bin-picking applications.
We show the plausibility of the proposed synthetic training data, then
extensively evaluate our synthetically trained models on a real-world
robotic setup to demonstrate the applicability of our method in indus-
trial bin-picking conditions.

In Chapter 6, we summarize our work and contributions, then draw
some directions for future work.

https://doi.org/10.1007/978-3-319-89327-3_16

10 1.4. Contents

Chapter 2

Deep Convolutional Networks

In this chapter, we briefly present deep convolutional networks (DCN)
with a focus on the related mathematical tools that we extensively use
in the next chapters. More precisely, we describe the state-of-the-art
implementation of DCNs, their benefits and limitations. We also shortly
introduce some state-of-the-art interpretations to better understand and
explain their properties. For more detailed explanations on the general
mechanisms of deep learning, we refer the reader to [62, 99].

2.1 Introduction

x2 w2 Σ max(0, ·)

Activation
function

y = max(0, ∑3
i=1 wixi + b)

Output
x1 w1

Weights

x3 w3

1 b

Generally, y = max(0, W>x)

Inputs

Figure 2.1: A three-input unit of a deep neural network, namely neuron, using
a rectified linear unit (ReLU) as activation function

2.1.1 Definitions

A deep neural network is a computational learning structure of intercon-
nected nodes, called neurons, aimed at encoding some input tensor(s),

11

12 2.1. Introduction

such as images, audio signals, videos, in a discriminative and linearly
separable representation space for classification or regression tasks
[62, 99]. Most generally, neurons are arranged in layers, such that a
layer’s neuron input is connected to all the previous layer’s neuron
outputs. In such a configuration, layers are said fully connected. For
example, in the case of images, each pixel would be a neuron input,
and a top layer’s neuron would then be connected to each pixel. As
illustrated by Figure 2.1, each neuron is a simple two-step operation: an
affine transformation of the input values to which a non-linear activa-
tion function is applied, such as the so-called rectified linear unit (ReLU)
[98] defined as maxp0, ¨q. The parameters, also referred to as weights, of
these linear operators are determined by non-convex optimization. In
state-of-the-art applications, a deep network may contain billions of
parameters structured in hundreds of layers [87].

Bottom Top Bottom Top Bottom Top

Fully connected Locally connected Convolutional
Receptive field Receptive field &

Parameter sharing

Figure 2.2: Example of a 4-neuron top layer turned into a 1-neuron convo-
lutional layer by two architectural priors: local neuron receptive fields and
in-layer parameter sharing. A 1-neuron convolutional layer thus results in a
neuron moving across the whole bottom layer. State-of-the-art convolutional
layers are sets of moving neurons, each accounting for a filter.

Deep convolutional networks (DCNs) are deep neural networks spe-
cific to multi-channel images, introduced in [101]. As images contain
millions of pixels and spatially recurrent patterns, using a “fully con-
nected” neural network as it is for encoding images is intractable and
inefficient. Deep convolutional networks thus present two key archi-
tectural priors: reduced neuron receptive fields and in-layer parameter
sharing (c.f . Figure 2.2). First, each neuron is connected to only a few
spatially neighboring neurons of the previous layer. Second, in a layer,
all the neurons share the same parameters. This equivalently results

Chapter 2. Deep Convolutional Networks 13

in one neuron per layer moving across the whole image. Introduc-
ing these priors has many benefits: reduction of the overall number
of parameters, better generalization capability, translation invariance.
Layers with such priors are then qualified as convolutional because
they can be interpreted as convolution filters with learnable kernel. In
state-of-the-art applications, deep convolutional layers are structured
in sets of convolutional filters, interleaved with max-pooling layers that
aggregate spatially neighboring features by element-wise max oper-
ators. As illustrated by Figure 2.3, an image fed-forward through a
convolutional encoder thus results in deep three-dimensional feature
maps or representations, that encode the image semantics at different
resolutions.

6464

25
6

256

conv1

128 128

12
8

conv2

256 256 256

64

conv3

512 512 512

32

conv4

512 512 512

16

conv5

Figure 2.3: Overview of a VGG16-based [168] convolutional encoder (best
viewed in color). Convolutional representations are in blue, element-wise
activation units are in red. Arrows indicate max-pooling operators in 2ˆ2-
neighborhoods.

Fully convolutional networks (FCNs) are deep convolutional networks
that contain only convolutional layers, typically aimed at classifying
each pixel independently, instead of the whole image with one or a few
image-level labels.

Encoder-decoder networks are FCNs designed for recovering high-
resolution pixel label maps. As previously illustrated in Figure 3.14,
such networks typically introduce a convolutional decoder aimed at
gradually recovering a full spatial resolution by interleaving convolu-
tional and unpooling layers from the encoder’s latent representations.

14 2.1. Introduction

2.1.2 Learning

A network is aimed at approximating a function f : X Ñ Y , x ÞÑ y
from a finite set tpxn, f pxnq P X ˆ Yu1ďnďN of N P N‹ annotated
samples. For example, in binary classification using FCNs, we want
to assign a label y P t0, 1u to a RGB pixel x P X “ R3. A trained
network is thus a generalizable function fW : X Ñ Y , x ÞÑ ŷ, using
the learnable parameters W P RQ, where Q P N‹ is the overall number
of parameters. fW is defined by W, but also a number of architectural
choices: the number and depth of convolutional layers; how the layers
are interconnected; the type of activation functions. As the search space
for determining the optimal architecture is infinite, design choices
are made by intuitions from state-of-the-art network architectures [75,
87, 98, 101, 168, 174] and empirical results. Beyond the scope of this
work, recent works explored tractable optimization-based strategies for
addressing this concern [110, 209], which nevertheless remains an open
research field.

Training a network means determining the network parameters that
best minimize an application-dependent loss function and jointly en-
able a strong generalization. It consists in iteratively updating the
weights by stochastic gradient descent (SGD) using the backpropaga-
tion mechanism [98, 100]. Basically, a training iteration is a two-step
action: an inference-like forward pass of a batch of training images; a
backward pass of the corresponding gradients for updating the weights
with respect to the gradient norm and direction, roughly according to
the following update equation:

Wt`1 “ Wt ´ α∇LpWtq (2.1)

where Wt and Wt`1 are the network parameters at iterations t and t` 1
respectively, LpWtq the loss function to minimize, and α the learning
rate that controls how much the weights are adjusted at each iteration.
A low learning rate induces a slow move along the downward slope. In
typical SGD, the learning rate is a global single-valued hyperparameter.
We won’t go much further on this topic as it is already extensively
covered in the literature [62, 178]. Note that, in such an optimization,
both the initialization and the optimization path have great importance
for reaching the best performances [194]. Different parameter update
strategies [49, 95, 173, 178, 199] have been proposed for a faster and
more stable convergence. Notably, the Adam solver [95] combines
two extensions [49, 178] of SGD: per-parameter learning rates [49] and
weight updates based on moving moments of the recent past gradients
[178]. Additional components have also been commonly adopted to
avoid overfitting during training: the dropout mechanism [169], which

Chapter 2. Deep Convolutional Networks 15

consists in randomly shutting off some parameters during training, and
the introduction of a regularization term in the loss function, typically
the `2-norm of the weights.

Formally, we look for the network parameters W‹ “ arg minW LpWq
using the gradient-based Adam method [95]:

pWt`1qi “ pWtqi ´ α

b
1´ pβ2qti

1´ pβ1qti
pmtqi

ε`apvtqi
(2.2)

where ε ą 0 avoids division by zero, mt, vt are estimated moments of
the recent past gradients, and β1, β2 hyper-parameters controlling the
decay rates of these moving moments as follows:

pmtqi “ β1pmt´1qi ` p1´ β1qp∇LpWtqqi
pvtqi “ β2pvt´1qi ` p1´ β2qp∇LpWtqq2i

(2.3)

We minimize the following regularized cross-entropy loss function:

LRCEpWq :“ ´ 1
N

Nÿ

n“1

Cÿ

i“1

pynqi logpŷnqi
looooooooooooooomooooooooooooooon

objective

` λ ‖W‖2
2

looomooon
regularization

(2.4)

where λ is another hyper-parameter, called weight decay, that controls
the trade-off between the objective and regularization terms. The objec-
tive term aims to minimize the information loss caused by approximat-
ing the training data distribution (see Section A.1 for more details). The
regularization term enables robustness to noise and prevents from over-
fitting the training data. Note that the cross-entropy is not a distance
because the symmetry condition is not met.

In the case of binary pixel classification, our topic of interest, Y “
t0, 1u2. Let px, py1, y2qq P X ˆ Y be a training sample. For variable
reduction, we can define z :“ y1 and ẑ P r0, 1s the corresponding net-
work’s estimate. Given that y1 ` y2 “ 1, Equation 2.4 can be rewritten
as a regularized binary cross-entropy loss function:

LRBCEpWq :“ LBCEpWq ` λ ‖W‖2
2 where

LBCEpWq :“ ´ 1
N

Nÿ

n“1

pzn logpẑnq ` p1´ znq logp1´ ẑnqq
(2.5)

Bayesian Interpretation Note that, from a Bayesian perspective, the
network inference ẑ “ fWpxq P r0, 1s from Equation 2.5 can be viewed
as a Maximum A Posteriori (MAP) probability estimate with a Gaussian
prior on the weights (see Section A.2 for a formal proof).

16 2.2. Limitations

2.2 Limitations

In Section 2.1, we introduced FCNs and their training for binary pixel
classification to later build our solution. For fully understanding the
limitations of our method, we need to understand the limitations of
FCNs. We therefore lay out their limitations in this section.

2.2.1 Large Training Datasets

Application-driven studies have shown that FCNs capture the invari-
ants of a training dataset. For example, a FCN learns to recognize
apples by extracting the attributes shared by training examples of ap-
ple. As a consequence, if the training dataset is biased by unbalanced
distributions or inconsistent ground-truth annotations [181], then the
FCN captures these biases as well [180]. In our example, if the apples
depicted in the training examples are all red, then the FCN learns the
red color as an invariant. Large training datasets prove therefore more
suitable for training FCNs as their data distribution is less likely to
be biased. Moreover, as FCNs may contain billions of parameters, a
large training dataset partly prevents from overfitting. This is problem-
atic because the training samples must be annotated, which is tedious
and time-consuming for learning pixel classification from real images.
In Chapter 5, we address this limitation by synthetically training the
proposed FCN. Note that many research works also concern the unsu-
pervised training of FCNs but the resulting performances remain lower
than those obtained by supervised training.

2.2.2 Limited Internal Representations

Lack of Invariance and Non-Equivariance Due to their built-in con-
volutional nature, FCNs are translation invariant. As a result, a context-
free pattern is internally represented independently of its image lo-
cation. For example, in object detection on RGB images, a FCN can
detect multiple non-occluded objects in an image by learning only from
single-object image patches. A FCN is however not scale-invariant, nor
rotation-invariant. Such invariances can be captured only by accord-
ingly augmenting the training images with geometric transformations.
More generally, FCN representations are not scale equivariant, nor ro-
tation equivariant. In other words, rotating a pattern representation
is not equivalent to representating the rotated pattern. Note that [160]
recently addressed this concern by introducing “capsule” networks,
which enable to intrinsically learn pose-equivariant representations.
Such networks however remain prospective learning architectures.

Chapter 2. Deep Convolutional Networks 17

(a) Fake images [135] (b) Adversarial example [63]

Figure 2.4: DCNs and humans recognize objects differently. (a) Images that
are unrecognizable to humans but classified by a DCN as familar objects with
ě 99, 6% certainty [135]. (b) Adding an imperceptibly small vector, whose
elements are equal to the sign of the elements of the gradient of the cost
function with respect to the input, changes a DCN’s classification [63].

Figure 2.5: Can you see the duck? A deep network trained for object boundary
detection can be easily fooled by deceptive details.

Semantic Encoding or Not? A deep network inference looks impres-
sive because human-level concepts seem to be “understood”. [63, 135]
however showed that DCNs can be easily fooled, as illustrated in Fig-
ure 2.4. Evolved fake images that are unrecognizable to humans can
be classified by a DCN as familiar objects with ě 99, 6% certainty [135].
Adding an imperceptibly small vector, whose elements are equal to the
sign of the elements of the gradient of the cost function with respect
to the input, can also change a DCN’s classification [63]. Our own
experiments on object boundary detection confirm this weakness, as
shown by Figure 2.5.

2.2.3 Lack of Explanability

Although DCNs have shown remarkable performances and conse-
quently become state-of-the-art for a plethoric range of applications,

18 2.3. Interpretations

they remain poorly explained because of the complex entanglement
between their internal linear operators and non-linearities. Training by
non-convex optimization also enables a very convenient versatility, but
at the cost of no theoretical guarantees on the success of learning, unless
performing resource-intensive experiments. Fundamentally, three basic
questions remain unanswered by theory:

• If we use an existing training dataset, what is the best network
architecture for the given training data distribution?

• If we use a training data generator, what is the best training data
distribution for a given network architecture?

• What are the hyperparameters for best training a given network
on a given training data distribution?

Despite these limitations, we argue that using DCNs is a reasonable
and effective choice for learning generalizable representations, in light
of the state-of-the-art insights and interpretations.

2.3 Interpretations

Deep representations prove the most effective and versatile solution
in many applications because they enable to extract high-level con-
cepts from end-to-end training on massive data. Specifically, empirical
studies have shown that the representations learned by FCNs are multi-
scale and strongly generalizable to unseen samples. In this section, we
briefly lay out the state-of-the-art empirical analysis of deep representa-
tions, and the recent mathematical frameworks that can explain these
observations.

2.3.1 Hierarchical Representations

Visualizing the intermediate feature maps of a DCN reveals that the
learned representations are hierarchical [200]. As depicted in Figure 2.6,
the top representations of a convolutional encoder convey high-level
concepts built from the combination of lower-level features encoded
by the bottom layers. For example, in face recognition applications,
texture invariants such as the skin and eyes color are first encoded in
the first layers, then larger parts like the nose, lips, eyes in the mid-
level representations, and finally faces as combination of these parts.
Furthermore, such hierarchical features consistently transition from
general to specific by the last layers [194]. In particular, the bottom con-
volutional filters are typically Gabor-like kernels that embed strongly
generalizable local representations.

Chapter 2. Deep Convolutional Networks 19

6464

25
6

256

conv1

128 128

12
8

conv2

256 256 256

64

conv3

512 512 512

32

conv4

512 512 512

16

conv5

Mid-level featuresLow-level features High-level features

Figure 2.6: Intermediate activations of a DCN trained for object categorization,
along with the corresponding image patches. The top representations convey
high-level concepts resulting from the combination of lower-level features in
bottom layers [200].

2.3.2 Kernel Perspective

DCNs can be viewed as elements of a Reproducing Kernel Hilbert
Space (RKHS) of functions [19]. In such a perspective, there exists a
positive definite kernel K that defines a RKHSH of functions from X
to R, along with a mapping φ : X Ñ H. A function fW in this RKHS
can then be written in linear form such that:

@x P X , fWpxq “ă fW, φpxq ąH (2.6)

Consistently with many application-driven studies showing empirically
that a DCN captures multiscale invariants, φpxq is a data representation
that can prove invariant to the action of groups of transformations, such
as translations and diffeomorphisms [124]. Interestingly, Equation 2.6
induces that fW is ‖ fW‖H-Lipschitz continuous:

@px, x1q P X , | fWpxq ´ fWpx1q| ď ‖ fW‖H
∥∥φpxq ´ φpx1q∥∥2 (2.7)

thus showing that ‖ fW‖H acts as a regularizer [19]. For example, let fW
be a network trained to distinguish apples from cookies. As illustrated
by Figure 2.7, lessening ‖ fW‖H enables to better control the network
predictions by the corresponding representations.

20 2.4. Conclusion

∥∥∥∥φ

ˆ ˙
´ φp q

∥∥∥∥
2
Œ

∥∥∥∥φ

ˆ ˙
´ φ

ˆ ˙∥∥∥∥
2
Õ

‖ fW‖H Œ
ˇ̌
ˇ̌ fW

ˆ ˙
´ fW

ˆ ˙ˇ̌
ˇ̌ Œ

ˇ̌
ˇ̌ fW

ˆ ˙
´ fW

ˆ ˙ˇ̌
ˇ̌ Õ

‖ fW‖H Õ
ˇ̌
ˇ̌ fW

ˆ ˙
´ fW

ˆ ˙ˇ̌
ˇ̌ Õ

ˇ̌
ˇ̌ fW

ˆ ˙
´ fW

ˆ ˙ˇ̌
ˇ̌ Õ

Figure 2.7: Variations of | fWpxq ´ fWpx1q| with respect to the variations of
‖ fW‖H and ‖φpxq ´ φpx1q‖2 (c.f . Equations 2.6 and 2.7), assuming that fW is
trained to distinguish apples from cookies. From a kernel perspective, the
norm ‖ fW‖H of a deep function fW acts as a regularizer [19]: predictions are
better subordinated to representations by lessening ‖ fW‖H.

Although the quantity ‖ fW‖H is not analytically computable, ‖ fW‖H
can be controlled by an upper bound [19]:

‖ fW‖H ď ωp‖W1‖ , ..., ‖WL‖q (2.8)

where ω is increasing in all of its arguments and ‖Wk‖ is the spec-
tral norm of the kth linear operator ‖Wk‖. In addition to providing
theoretical insights on deep convolutional models, this mathematical
formalization has led to promising direct applications [40, 132, 163].
Specifically, as suggested by Equation 2.8, controlling the spectral norm
of the convolutional layers thereby enables a better generalizability
[163], a more stable discriminator for generative adversarial networks
[132], and a better robustness to adversarial examples [40].

2.4 Conclusion

Deep fully convolutional networks (FCNs) are layered connectionnist
systems, entangling linear operators and non-linearities, for learning
generalizable hierarchical image representations. Specifically, a FCN
captures the invariants of a training dataset. As a result, if a dataset is
biased, then the FCN learns these biases as well. Moreover, the learned
representations are not intrinsically invariant, nor equivariant, to rota-
tions and scaling. Nevertheless, FCNs enable to learn high-level con-
cepts, such as the notions of instance and occlusion, from low-level
data, and achieve state-of-the-art performances in many applications.
The FCN parameters are learned by non-convex optimization in a end-
to-end training, typically driven by a regularized binary cross-entropy
loss function for binary pixel classification. There currently exist many
deep learning implementations such as [2, 36, 52, 92, 142, 164]. In this
work, we use the C++/CUDA library named Caffe [92].

Chapter 3

State of the Art

In this chapter, we review the state of the art on open-loop visual-based
bin-picking. Specifically, we first describe the different approaches for
automating such a task and review the related works. We then review
more deeply the state of the art on instance segmentation, from which
we design our model-free object-oriented bin-picking approach.

3.1 Bin-Picking

In this section, we review the state-of-the-art approaches for open-
loop bin-picking, which is the target application of this work. In such
applications, a robot is typically slaved to a vision-based module, in a
three-step operating cycle:

1. Image acquisition: a visual sensor captures a photometric scene
representation. Typical sensors are simple RGB cameras, hyper-
spectral cameras or more complex 3D sensors that provide a
multi-view scene reconstruction as well (c.f . Figure 3.1).

uEye CP, FX10, MotionCam 3D, Ensenso X, Kinect 2,
IDS Imaging Specim Photoneo IDS Imaging Microsoft

Figure 3.1: Examples of visual sensors. From left to right: RGB camera;
hyperspectral camera; laser-based 3D scanner; active binocular system; time-
of-flight camera.

21

22 3.1. Bin-Picking

2. Image processing: coordinates of the next instance to extract are
computed from the captured scene representation. The computa-
tion time and the relevance of the produced coordinates are key
factors to achieve stationnary performances in high-throughput
applications. This work aims to play this step.

LR Mate 200, Quattro s650H, TP80, LBR iiwa, Sawyer,
Fanuc Adept Staübli Kuka Rethink Robotics

Figure 3.2: Examples of robotic manipulators

3. Robot action: a robotic manuipulator (c.f . Figure 3.2) extracts the
object at the sent coordinates. The robot end-effector is typically
a vacuum suction cup or a parallel jaw gripper, but there exist
alternative application-dependent designs (c.f . Figure 3.3).

Vacuum Parallel jaw iCub fingered Soft fingered Universal
suction cup gripper gripper [162] gripper [83] gripper [28]

Figure 3.3: Examples of robot end effectors

Vision-based bin-picking can be categorized into two main classes
(c.f . Figure 3.4): gripper-oriented and object-oriented.

Gripper-oriented approaches aim to detect grasp hypotheses with
respect to the gripper model and physics without any explicit notion of
instance. Such approaches prove effective unless the object geometry
induces strong occlusions and entanglements between the instances.

Object-oriented alternatively aim to detect object instances indepen-
dently of the gripper model. Grasp hypotheses are then generated with
respect to both the gripper model and the detected most affordable
instance, thus considerably reducing the search space. For example,
in the common case of flat convex objects such as food packets, the

Chapter 3. State of the Art 23

best grasp hypotheses are likely to be located near the centroid of each
unoccluded instance. We advocate this latter approach, that paves the
way towards a general framework for instance-aware grasping. Figure
3.5 illustrates how a gripper-oriented search strategy is boosted by our
object-oriented approach.

bin-picking

object-oriented

gripper-oriented

unsupervised
supervised

model-based

model-free

unsupervised

supervised

early-localization
late-localization

Figure 3.4:
Categorization of
approaches for
vision-based
bin-picking. Blue
annotations indicate
the category of the
proposed approach.

(a) Image (b) Depth map (input) (c) Gripper-oriented (d) Object-oriented

Figure 3.5: Example of a proprietary gripper-oriented algorithm boosted
by our object-oriented approach (best viewed in color). Yellow annotations
indicate potential grasps for a parallel-jaw gripper. Green annotations indicate
the selected “best” grasp. Without the notion of instance, the end effector may
be sent to hardly extractable objects (c). Boosting the grasp detection using
our object-oriented approach enables instead to focus on the most affordable
instance, thus drastically reducing the grasp search space (d).

24 3.1. Bin-Picking

3.1.1 Gripper-Oriented Bin-Picking

Gripper-oriented bin-picking approaches (see Figure 3.19) consist in
detecting grasp opportunities with respect to the robot end-effector
physics. Although various grippers have been developed [88], vacuum-
suction and parallel-jaw grippers remain most widely used in the indus-
try, and constitute the most studied gripper models in grasp detection.
Early grasp detectors employed unsupervised heuristics on depth im-
ages to detect and rank either locations where parallel jaws can be best
inserted or locally planar areas for a vacuum suction cup [47]. Jointly
with more complex analytic gripper models for detection, ranking
heuristics-based grasp candidates was boosted by deep convolutional
networks (DCNs) [119, 120].

Supervised end-to-end training using DCNs was first explored for
single-grasp prediction on single-object images [103]. Inspired by object
detection techniques [152, 155], end-to-end training for parallel-jaw
grippers was later extended to multi-grasp detection [93, 151], then to
multi-object settings by joint classification and regression of predefined
grasp templates [39, 205]. Fully convolutional grasp detection was
generalized to vacuum suction grippers by inferring instead pixel-wise
affordance maps [8, 134, 201], by analogy with semantic segmentation
techniques [11, 35]. Training data for these networks was however
made from sparse manual annotations [39, 103, 134] or heuristics-based
labels [201], whereas the notion of grasp affordance for a robotic gripper
may fundamentally differ from a human perspective.

Figure 3.6: Examples of parallel-jaw grasp detections in simulation [44]

As illustrated by Figure 3.6, simulation was thus introduced to gen-
erate unbiased training data for parallel jaw grippers [44, 118, 179]
and multi-gripper settings as well [130]. Nevertheless, synthetically
trained state-of-the-art grasp detectors lack an explicit notion of ob-
ject instance, which is critical for handling occlusions in dense piles
and reducing the grasp search space in high-throughput applications.

Chapter 3. State of the Art 25

Image Grasp detection Grasps

Gripper model

(a) Gripper-oriented bin-picking

Image Pose detection Grasp selection Grasps

Object model Grasp detection

Gripper model

Affordable
instances

(b) Model-based object-oriented bin-picking

Image Instance segmentation Grasp detection Grasps

Examples of piles Gripper model

Affordable
instances

(c) Model-free object-oriented bin-picking (Ours)

Gripper-oriented Object-oriented
Model-based Model-free (Ours)

Provides 6D instance poses X
Handles occlusions between instances X X
Does not require explicit object models X X
Handles intra-class variations X X

Figure 3.7: Comparison between bin-picking approaches. Gripper-oriented
approaches define the notion of grasp affordance relatively to friction forces
and torques without explicit notion of object instance, which is problematic
in the case of strong occlusions and entanglements between instances. Alter-
natively, model-based object-oriented approaches rely on the notion of pose
of an object, i.e. a distinguishable static state of this object [27]. The notion of
pose is however limited to rigid objects and requires explicit models, which
are not always available. In contrast with these approaches, we envision an
object-oriented model-free approach based on the notion of generic instance.
Such an approach aims to first delineate affordable instances independently
of the object and gripper models. Grasp detection can then be oriented on the
detected affordable instances.

26 3.1. Bin-Picking

3.1.2 Object-Oriented Bin-Picking

Object-oriented bin-picking aims to locate affordable instances inde-
pendently of the gripper model(s). In such a perspective, the notion of
affordance is strongly related to the perception of occlusions, while
gripper-oriented approaches define affordance relatively to friction
forces and torques. Object-oriented approaches are divided into two
categories: model-based and model-free. Model-based methods assume
an explicit model of the target object, while model-free algorithms are
driven by image segmentation techniques. Figure 3.7 illustrates the
differences between these approaches.

Model-Based Object-Oriented Bin-Picking Model-based methods
(see Figure Figure 3.19) rely on the notion of pose of a rigid object, i.e. a
distinguishable static state of this object [27] (see Figure 3.8).

(a) Object CAD model (b) Depth map (c) Detected object poses

Figure 3.8: Example of depth-based object pose detection and estimation
[27]. Such an approach requires an explicit object model, which is not always
available in bin-picking applications.

The pose of an instance is commonly represented as a rotation and
a translation that map a point in the object frame into the camera frame.
Early approaches for pose detection in RGB images employed template
matching from a discrete set of perspective projections [79, 80, 81, 202].
Covering a wide pose variability however requires a prohibitive num-
ber of templates. Alternative approaches resorted to heuristics for
fitting predefined geometric primitives in point clouds, such as planar
surfaces [149] or cylinders [69, 136]. Template-free approaches general-
ized to complex object models emerged using voting-based learning
strategies based on depth-based hand-crafted data representations and
feature clustering in the pose space [3, 20, 24, 38]. State-of-the-art pose
detectors now leverage synthetically trained deep convolutional net-
works for representation learning [94, 102, 150]. Due to quantization

Chapter 3. State of the Art 27

of the pose space or the selection of a pose cluster representative, a
refinement of the pose estimation remains a necessary final step for
accurate results [3, 24, 94, 102], typically using the iterative closest point
registration method [18]. Generally, model-based approaches face two
limitations for large-scale bin-picking applications. First, they require
explicit object models that are not always available. Assuming an ob-
ject model also excludes the case of instances with texture or geometric
intra-class variations, unless prohibitively considering each variation
as a new model. Second, the notion of pose is defined for rigid ob-
jects, thereby hardly appropriate for handling elastic deformations (see
Figure 3.9).

(a) Template (b) Input (c) Detected template instances

Figure 3.9: Example of shape-based matching using the Halcon software [1].
While strong priors on the target object texture are required, this approach
fails to handle geometric intra-class variations such as elastic deformations.

Model-Free Object-Oriented Bin-Picking Model-free approaches are
related to the task of instance segmentation, which consists in delineating
object instances without explicit object models (see Figure 3.10). Two
main paradigms have emerged in the literature, localizing instances
before and after delineation respectively.

Early-localization algorithms are built on the assumption that in-
stances can be approximated as rectangles. They typically consist in
first predicting rectangle region proposals that might contain an object
[155], for further learning-based grasp detection [176], object function
prediction [45], or amodal segmentation [184, 206], i.e. inferring both the
visible and occluded object parts. While box proposal-based segmen-
tation techniques certainly reduce the complexity in images sparsely
populated with instances, such approaches prove inadequate for the
case of dense piles (see later Figure 3.13) as a rectangle region may be
shared by several instances.

28 3.2. Instance Segmentation

Urban scene understanding [73] Vessel segmentation [126] Plant analysis [161]

Figure 3.10: Examples of deep learning-based instance segmentation in various
applications, illustrating the versatility of model-free approaches

Alternatively, late-localization approaches were first built on per-
ceptual grouping heuristics from the Gestalt principles. They typically
relied on heuristics-based bottom-up strategies for merging pixels into
object parts, starting from a graph of superpixels [7, 182]. These graph-
based models were further boosted by learning-based edge detection
using structured random forests [46], and Pareto optimization for multi-
scale combinatorial grouping [146]. Towards end-to-end learning, state-
of-the-art algorithms for delineating instances leverage deep learning
for instance boundary detection [188], i.e. classifying each pixel as a
boundary or not, or semantic segmentation [35], i.e. assigning a cate-
gory to each pixel. Given our application context and objectives, we
advocate the late-localization model-free object-oriented approach.
A deeper analysis of the state of the art on instance segmentation is
thereby provided in Section 3.2.

3.2 Instance Segmentation

In this section, we review the state of the art on instance segmenta-
tion, which is a core topic of interest in model-free object-oriented
bin-picking, and thereby in our approach. Instance segmentation is
aimed at finely delineating object instances in images, without ex-
plicit object models.

Figure 3.11 illustrates the differences between types and granu-
larities of object-level scene understanding in the literature. In this
work, we are mostly interested in the task of generic instance segmenta-
tion, i.e. category-agnostic instance segmentation. Specifically, instance
segmentation differs from the tasks of image classification and semantic
segmentation in terms of objective: these two tasks aim instead to as-
sign image-level and pixel-level object categories respectively, without

Chapter 3. State of the Art 29

APPLE
BANANA
COOKIE COOKIE

BANANA
APPLE

Image classification Instance detection Instance segmentation Semantic segmentation
Image-level categorization Coarse localization Fine localization Pixel-level categorization

Figure 3.11: Types and granularities of object-level scene understanding

Instance
box proposals

Instance box proposal-wise
binary segmentation

Early-localization
instance segmentation

Instance
boundaries

Instance boundary-preserving
pixel clustering

Late-localization
instance segmentation

Figure 3.12: Approaches for instance segmentation. In the case of dense piles
of objects, box proposals may contain multiple instances, thereby inducing am-
biguous binary segmentations. We thus advocate a late-localization approach
for first separating instances independently of their bounding box.

notion of instance. Note that instance segmentation augmented with
pixel-level categorization thus defines the task known as semantic in-
stance segmentation. Instance segmentation also differs from the task of
instance detection, but in terms of granularity: instance detection consists
in coarsely localizing instances by approximating them as rectangles.

As illustrated by Figure 3.12, instance segmentation techniques are
divided into two categories: the early-localization and late-localization
strategies, that consider instance localization as a task preceding or fol-
lowing instance delineation respectively. Early-localization approaches
consist in first detecting the image region framing each instance. Late-
localization approaches aim instead to first detect boundaries between
instances to further cluster the pixels into instance segments.

30 3.2. Instance Segmentation

Joint Boundary and Occlusion Detection In both instance segmen-
tation paradigms, a step further to separating instances consists in
learning the notion of occlusion as well. Similarly to two-stream net-
work architectures aimed at fusing different modalities [53, 167], state-
of-the-art approaches for this task rely on two independent streams
that predict boundaries and occlusions separately. Concretely, in the
late-localization paradigm, it consists in detecting respectively the in-
stance boundaries and their orientation [186]. In the early-localization
paradigm, it consists in coloring respectively the visible instance mask
and the mask including both the visible and invisible instance parts
[206], namely the modal and amodal masks.

However, occlusions are a major source of instance boundaries.
Considering occlusions jointly with boundaries could thus provide
much richer information for scene understanding. Humans indeed
leverage shadows and partially occluded patterns to instantly detect ob-
ject boundaries and guess simultaneously the spatial relations between
instances. Moreover, in state-of-the-art solutions, an instance-wise ori-
entation is assigned to object boundaries in natural scenes for mostly
describing which side is foreground, and which side is background
[56, 186].

In contrast with previous works, we aim at addressing scenes
composed of many instances occluding each other, in which the back-
ground is often hidden. In such configurations, the network should
learn to answer instead the more general question: which side is above
and which one is below? We now more deeply review the state of
the art on both instance segmentation approaches, how the notion of
occlusions is learned, and finally the training datasets for these tasks.

3.2.1 Early-Localization Instance Segmentation

Box proposal-based instance segmentation relies on the assumption
that instances can be isolated in a rectangle. In such a perspective,
the problem of segmentation is shattered into simpler multiple binary
segmentations by first locating the instance bounding boxes [84].

Proposal-Based Segmentation Early approaches consisted in merg-
ing regions based on hand-crafted region features [183, 187], or count-
ing learning-based edges [76, 207]. Selecting rectangle regions contain-
ing objects was further boosted by deep region features [59, 60, 70, 116,
189], but still using heuristics for box proposal generation.

[155] thus introduced the concept of “region proposal network”,
which consists in using a deep convolutional encoder trained for lo-
cally assigning and regressing box templates from a predefined set

Chapter 3. State of the Art 31

(i) Urban scenes (ii) Dense piles of objects
(a) Unlike images sparsely populated with instances (i), rectangle fitting is unsuitable for the case
of dense piles, as multiple instances often share the same rectangle region (ii).

Input Which binary segmentation? Boundaries
(b) Unlike boundary detection, coloring an instance may result in classifying differently similar
patterns inconsistently with the translation invariance property of convolutional layers.

(c) As a result, a box proposal-based segmentation approach [45] gives poor results on dense piles
of sachets. First row: input; second row: best-scored detected box proposals (yellow rectangles)
and corresponding binary segmentations (colored areas) after training on our synthetic training
data. Best viewed in color

Figure 3.13: A box proposal-based segmentation approach is unsuitable for
bin-picking scenes, as the rectangle fitting assumption becomes invalid.

32 3.2. Instance Segmentation

of different scales and ratios. The trade-off between speed and ac-
curacy of such a network was further balanced by position-sensitive
score maps [41], by dividing the image into blocks instead of using
box anchors [152, 153], or by introducing multiscale nested connections
[198] and spatial pyramid pooling [74]. Inferring a pixel-wise instance
delineation in each box proposal was later obtained using a second
network trained for binary segmentation [143], whose spatial accuracy
was further improved by top-down refinement modules [144].

To finally obtain a convolutional structure combining the two steps,
i.e. box detection and binary segmentation, trainable end to end, [73]
introduced bilinear interpolation to pool the deep features of each
box proposal, thus enabling the recovery of higher-resolution instance
binary masks from low-resolution localization feature maps in one
feedforward pass. This two-network architecture was later enhanced
by bottom-up path augmentation for a better accuracy [112], seman-
tic segmentation for pixel-wise object categorization [33, 45], and a
loss function that alleviates the performance-penalizing foreground-
background class imbalance [108].

Limitations However, coloring all the pixels of an instance becomes
an ambiguous task if multiple instances occluding each other share
the same region proposal, as in the case of bin-picking scenes (see Fig-
ure 3.13). Unlike people or cars in natural scenes, an instance in a pile
does not often fit a rectangle because instances piled up in bulk can
remain at rest in any pose. Furthermore, when a manufactured object is
instantiated multiple times like often in robotic setups, it may mean as
a consequence classifying differently similar patterns, inconsistently
with the translation invariance property of convolutional layers. An
instance in a dense pile of objects occluding each other may also occlude
other instances and be partially occluded at the same time.

Consequently, applying a box proposal-based instance segmenta-
tion approach on dense piles gives poor results. In this work, we
thus consider deep convolutional networks for classifying pixels as
instance boundary or not, independently of their bounding box. We
review the state of the art on this alternative instance segmentation
approach in Section 3.2.2.

3.2.2 Late-Localization Instance Segmentation

Late-localization approaches are based on learning similarities and
dissimilarities between pixels, for further clustering them into instance
segments independently of their bounding box.

Chapter 3. State of the Art 33

Graph-Based Segmentation Early strategies represented images as
graphs of superpixels obtained by heuristics-based oversegmentation
techniques [4, 42, 54, 141, 175] and consisted in greedily merging super-
pixels using hand-crafted features [7, 72, 129, 148, 171, 182]. The com-
plexity of superpixel merging was later reduced by various learning-
based algorithms [147] such as conditional random fields [6, 105],
Pareto optimization on hierarchical region trees [37, 68, 146], tree-like
structure of binary classifiers [185], deep convolutional networks for
recovering contextual information among superpixels [77], parametric
min-cuts over different seed locations [89, 90, 97], or level-set methods
from geodesic distance transforms [96].

These learning-based merging techniques importantly relied on
edge detections, as such cues constitute the premises of boundaries
between instances. [46, 107] notably introduced structured random
forests (SRFs) for learning to efficiently assign a contour patch to each
pixel. SRFs were later outperformed by deep convolutional networks
similarly trained to classify image patches [16, 165].

End-to-end training of instance boundary detectors finally emerged
with fully convolutional encoder-decoder networks [17, 114, 125, 157,
188, 192, 193], as they enable to capture multiscale relations between
pixels and recover high-resolution contour maps in one feedforward
pass. In this work, we thus consider fully convolutional networks,
specifically encoder-decoder architectures, for classifying pixels as
instance boundary or not, and for inferring their nearby spatial lay-
outs as well.

Encoder-Decoder Networks Inspired by auto-encoders for unsuper-
vised representation learning, encoder-decoder networks have been
firstly introduced for single-task setups, such as semantic segmen-
tation [11] and instance contour detection [193], in order to recover
high-resolution boundaries despite the resolution loss when encod-
ing object-level semantics.

The encoder produces deep hierarchical features, and the decoder
gradually outputs a binary or category map using symmetric unpooling
stages (c.f . Figure 3.14a). To keep the upsampling efficient, the decoder
typically uses max-unpooling layers that take the pooling indices from
the encoder max-pooling layers. However, such an architecture requires
the network to restore accurate boundaries only from the last encoder
activation maps, where information is the most spatially compressed.
Instead of a progressive decoding, [114, 192] introduced holistically-
nested connections for a late fusion of all the encoder feature maps
upsampled to the image scale, thus giving a multiscale view to the
decoder (Figure 3.14b).

34 3.2. Instance Segmentation

in

Encoder Decoder

out1 in

Encoder Decoder

out1 in

Encoder Decoder

out1
in

out1

Input

Boundaries
Conv+ReLU
Pooling

Features
Pooling
indices

Unpooling

Sequential [193] Holistic [192] Residual [157]

Figure 3.14: Single-stream VGG16-based [168] encoder-decoder architectures

Similarly to two-stream designs aimed at fusing different modali-
ties [53, 167], the two-stream baseline for oriented boundary detection
[186] employed independent encoder-decoder streams with holistically-
nested connections. This architecture however hardly allows for learn-
ing a joint feature representation of boundaries and occlusions due
to direct connections between each intermediate feature map and the
output layer from which starts the backpropagation. In the context
of semantic segmentation, [117] proposed to merge local and global
semantics through a dual-task training, consisting in jointly decoding
pixel labels and inferring image labels after the encoder. Image-level
classification is however unfeasible in our object category-agnostic
problem, although detecting instance boundaries and inter-instance
occlusions require global cues as well.

Combining progressive upsampling with connections to the la-
tent feature representations at each scale can be achieved alterna-
tively by residual-like connections [75] between the encoder and de-
coder (c.f . Figure 3.14c), as proposed in single-task networks [43, 157,
188]. Residual-like connections notably proved to be superior to holisti-
cally-nested ones for single-stream encoder-decoder networks [188].
Indeed, by giving each decoder stage access to both the upsampled
previous one and the corresponding encoder activation maps, the net-
work can gradually merge the higher-level semantics of the previous
scale with the spatial information lost during encoding at the current
scale. Performing such a combination besides reduces the checkerboard
artifacts inherent to unpooling [138]. In contrast with two independent
multiscale encoder-decoder streams, the proposed bicameral design,
which can viewed as an “encoder-bidecoder” structure, employs skip

Chapter 3. State of the Art 35

connections to combine local and higher-level cues from a single feature
space for detecting both boundaries and nearby occlusions.

3.2.3 Occlusion Detection from a Single Image

Finding occlusion relations has mostly been studied jointly with depth
estimation in multiview contexts [57, 64, 208] and motion sequences
[9, 10, 78, 91, 170, 172, 190], as occlusions often translate into missing
pixel correspondences in different points of view or consecutive frames.
Some recent works have more ambitiously focused on predicting a
dense depth map from a monocular image [50, 104, 111], but the results
are still less accurate than standard multi-view 3D reconstruction algo-
rithms, and these techniques require ground-truth depth maps difficult
to obtain.

However, considering a single point of view for inferring occlu-
sions instead of distances from the camera seems more prone to suc-
cess, as occlusions consist in binarized differences of depth at object
boundaries. Such a binarization then conveys a relative depth order-
ing independent of the point of view and the distance between the
camera and the scene. [156] firstly proposed a two-stage approach
consisting in using an edge detector [128] to extract gradient-based
features for a conditional random field (CRF) that performs local fore-
ground/background classifications. Because local gradient-based fea-
tures are limited for understanding occlusions, [82] introduced 3D cues
within a similar procedure, by making assumptions on the global 3D
structure of the scene (sky, ground). Observing that detecting objects
and foreground/background occlusions are actually coupled tasks,
object part segmentation and figure/ground organization were later
recovered in a single step using angular embedding [122]. However, as
angular embedding and CRFs both require expensive computational
time at large scales, [177] suggested a faster simultaneous edge and
foreground/background detection by leveraging structured random
forests [46], but still using hand-crafted features derived from a lim-
ited set of contour token clusters. In order to avoid human biases
when defining features, a convolutional neural network (CNN) was
instead employed to produce contextual feature representations [56] or
to learn pixel-centric pairwise relations for affinity and figure/ground
embedding [123]. Towards end-to-end training, and in the footsteps of
fully convolutional networks (FCNs) for pixel-wise classification, two
approaches have lately emerged (see Figure 3.15).

36 3.2. Instance Segmentation

Box proposal Box proposal

,Stream 1 ,Stream 2

Modal mask Amodal mask

Image Image

,Stream 1 ,Stream 2

”above”

Boundaries Orientations
(a) Amodal segmentation [206] (b) Oriented boundaries [186]

(Early localization) (Late localization)

Figure 3.15: State-of-the-art approaches for learning instance boundaries
and occlusions rely on two independent streams. In the early-localization
paradigm (a), the streams predict the modal and amodal masks respectively,
i.e. the mask of the visible parts and the mask including both the visible and
occluded parts. In the late-localization paradigm (b), the streams predict
respectively the boundaries and their orientations indicating which side is
above and which side is below. However, in bin-picking scenes, boundaries
are mostly caused by occlusions. We thus advocate a joint representation
learning instead of two independent streams.

Amodal Segmentation The first approach [206], namely amodal in-
stance segmentation, follows the two-step early-localization paradigm
of region proposal-based instance segmentation, but aims instead at
predicting for each instance the mask including both the visible and
the non-visible instance parts. An estimation of the instance occlusion
rate can then be obtained by comparing the predicted modal and amodal
masks, i.e. the mask of the visible parts and the mask including both
the visible and occluded parts. This approach however cumulates
the drawbacks of region-based instance segmentation, discussed in
Section 3.2.1, and the difficulty of coloring something invisible, thus
resulting in low instance boundary accuracy.

Chapter 3. State of the Art 37

Oriented Boundary Detection The second approach [186] follows
the late-localization paradigm and consists in a two-stream FCN that
predicts independently boundaries and their occlusion-based orienta-
tion in one forward pass. More precisely, [186] set up one stream of the
network to predict the raw orientation of a local unit vector specifying
the occlusion relations by a left-hand rule, and used a logistic loss func-
tion that strongly penalizes wrong directions but only weakly tangent
directions. However, to ensure a local continuity, the orientation pre-
dictions have to be further “adjusted” using the local tangent vectors
of the predicted boundaries as the network may not predict similar
orientations for neighbourhood pixels. There is indeed no constraints
ensuring a local continuity of the network prediction, all the more as
the ground-truth orientation map is noisy itself.

To overcome this issue and remove any post-processing step, we
propose instead to reformulate the occlusion prediction as a local binary
segmentation problem near boundaries. Both modelled as binary maps,
boundaries and occlusions can then be detected using a single fully
convolutional encoder-decoder structure equipped with residual-like
connections, i.e. the proposed bicameral design, thus efficiently sharing
features instead of using two independent encoders.

3.2.4 Datasets for Boundary and Occlusion Detection

Joint boundary and occlusion detection from a single image raised
interest with the BSDS Border Ownership dataset (BSDS-BOW) [156],
derived from the BSDS500 dataset [127] for object contour detection,
which contains 200 natural images manually annotated with object part-
level oriented contours. As state-of-the-art FCNs require more training
data, [186] presented a dataset larger than BSDS-BOW, namely the
PASCAL Instance Occlusion Dataset (PIOD), comprising about 10,000
manually annotated natural images from the PASCAL VOC Segmenta-
tion dataset [51]. Similarly for amodal instance segmentation, [55, 206]
have proposed real-world datasets, namely the Densely Segmented
Supermarket Amodal dataset (D2SA) and the COCOA Amodal dataset
(COCOA). These latter datasets are subsets of much larger datasets
for instance segmentation in the early-localization paradigm, COCO
[109] and D2S [55] respectively, but augmented with the ground-truth
amodal annotations, that can be derived for oriented boundary de-
tection. Despite their challenging instance intra-class variability, the
support images contain few instances and are limited in terms of inter-
instance occlusions.

38 3.2. Instance Segmentation

PIOD [186] COCOA [206]

D2SA [55] Mikado (Ours)

Dataset PIOD [186] COCOA1 [206] D2SA1 [55] Mikado (Ours)

O
ve

ra
ll

Average 469ˆ386 578ˆ483 1962ˆ1569 640ˆ512resolution
Number of 10,100 3,823 5,600 2,400images
Number of 24,797 34,884 28,703 48,184instances

Ground-truth Human-made Computer-
annotations generated

Pe
r

im
ag

e

Number of 2.5 9.1 5.1 20.1instances
Inter-instance 1.3 13.5 2.8 52.9occlusions

Background 69% 33% 79% 24%pixels
1 The statistics on COCOA and D2SA are only on the train and validation subsets as
the test subset is not provided.

Figure 3.16: Samples and characteristics of the state-of-the-art datasets for
oriented boundary detection [186] and amodal instance segmentation [55, 206]
compared with our synthetic data. Unlike Mikado, occlusions in these datasets
are mostly due to objects occluding the background, thereby unsuitable for
bin-picking scenes in which occlusions are between instances.

Chapter 3. State of the Art 39

However, in our robotic setups, scenes are composed of many in-
stances occluding each other. Applying on such scenes a model trained
on PIOD or COCOA would give poor results since these datasets pro-
vide mostly foreground/background boundary examples for training.
As extending hand-labeled real-world datasets is a time-consuming
task, D2SA partly alleviates this concern by artificially overlaying man-
ually delineated instances for creating fake images with more instances,
but at the cost of lighting inconsistencies at instance boundaries and lim-
ited pose variations (see Figure 3.17). The images from these datasets
suffer besides from missing or ambiguous ground-truth annotations,
thereby introducing human biases during training and test.

(a) (b)

Figure 3.17: Illustration of the
augmentation strategy of [55], later
referred to as D2SA+. Fake training
images of piles (b) are created by
overlaying manually isolated
instances (a) from real images.

To address these issues, synthetic datasets [26, 131, 158] have emer-
ged during the course of this work for learning and evaluation as they
offer a fully controlled environment and a perfect ground truth. For
benchmarking the tasks of pose detection and estimation, [26] gener-
ated depth images of many rigid instances piled up in bulk. For the
tasls of object detection, semantic segmentation and instance segmen-
tation, [131] and [158] proposed synthetic urban and indoor scenes
respectively.

In this work, we address bin-picking scenes of deformable objects
in large-scale applications. As in such scenarios real-world datasets
are not available and annotating real-world data is prohibitive in
industrial processes, we propose to make and use synthetic data for
oriented boundary detection from a single image. As depicted by
Figure 3.16, our synthetic data, namely Mikado, emphasizes the inter-
instance occlusions that are under-represented in the state-of-the-art
real-world datasets for the same task.

40 3.2. Instance Segmentation

,Bin-picking

Do we need an explicit
notion of instance?

Gripper-oriented
(Industrial baseline)

,Object-oriented

Are objects rigid and
with an explicit model? Model-based

,Model-free

Can instances be
isolated in rectangles? Early localization

,Late localization

Are boundaries mostly
caused by occlusions? Two independent streams

,Joint representation learning

Do we need a lot of
pixel-wise annotations? Real-world training data

,Synthetic training data

No

Yes

Yes

No

Yes

No

No

Yes

No

Yes

Figure 3.18: Reasoning pipeline for building our solution

Chapter 3. State of the Art 41

3.3 Conclusion

Bin-picking approaches are divided into two categories: gripper-oriented
and object-oriented (c.f . Figure 3.19). Unlike object-oriented approaches,
gripper-oriented techniques lack the notion of instance, which is impor-
tant for handling occlusions in dense piles of instances. Object-oriented
bin-picking relies either on the notion of pose, thereby requiring an ex-
plicit rigid object model, or on generic instance segmentation techniques
(c.f . Figure 3.20) which can handle deformable objects as well. The task
of instance segmentation can be fulfilled either by first coarsely locating
instances before delineation, but under the assumption that instances
can be isolated in a rectangle, or by learning boundaries between in-
stances independently of their bounding box. Given our application
context and objective, we thus advocate a model-free late-localization
object-oriented approach (c.f . Figure 3.18).

Specifically, we propose a synthetically trained bicameral convo-
lutional structuring for jointly learn boundaries and occlusions from
a single image. In contrast with state-of-the-art approaches, which rely
on two independent streams for boundaries and occlusions respec-
tively, we explore in Chapter 4 a fully convolutional architecture for
joint representation learning, as occlusions strongly cause boundaries
in bin-picking scenes. We then present and discuss through extensive
experiments in Chapter 5 a synthetic training data generation pipeline
for applying such a network to real-world bin-picking.

42 3.3. Conclusion

2013

AlexNet [98]

2014

VGG [168]

2015

Inception [174]

2016

ResNet [75]

2017

DenseNet [87]
ResNetX [191]

2018

CapsNet [160]

Deep features
ReLU activation

Very deep
features

Network
in network

Residual
connections

Network
in neuron

Equivariance
learning

(a) Deep convolutional encoders

2013

Lenz et al. [103] ‚ ‚

2014

Domae et al. [47] ‚ ‚

2015

Redmon et al. [151] ‚ ‚

2016

DexNet 1.0 [121] ‚ ‚
Nguyen et al. [134] ‚ ‚ ‚
Johns et al. [93] ‚

2017

DexNet 2.0 [119] ‚ ‚

2018

DexNet 4.0 [130] ‚ ‚ ‚
DexNet 3.0 [120] ‚
Chu et al. [39] ‚ ‚
Zhou et al. [205] ‚ ‚
Randomization [179] ‚ ‚
Jacquard [44] ‚ ‚

Single-grasp detection Multi-grasp detection

• Parall-jaw gripper • Vacuum suction gripper • Single object • Multiple objects

(b) Gripper-oriented bin-picking

2013

Pretto et al. [149] ‚
Choi et al. [38] ‚
LINEMOD [79, 81] ‚ ‚

2014

Brachmann et al. [24] ‚

2015

Birdal et al. [20] ‚

2016

Doumanoglou et al. [48] ‚
DoraPicker [202] ‚ ‚
Abbeloos et al. [3] ‚

2017

SSD6D [94] ‚
BB8 [150] ‚

2018

Lee et al. [102] ‚

Hand-crafted features Deep learning

• RGB as input • Depth as input

(c) Model-based object-oriented bin-picking

2013

SRF [46] ‚

2014

MCG [146] ‚ ‚
Asif et al. [7] ‚ ‚

2015

FasterRCNN [155] ‚ ‚

2016

DOC [186] ‚ ‚

2017

MaskRCNN [73] ‚ ‚ ‚
AmodalMask [206] ‚ ‚ ‚

2018

Wada et al. [184] ‚ ‚ ‚
AffordanceNet [45] ‚ ‚ ‚

Hand-crafted features Deep learning

• Instance boundaries • Instance locations • Instance categories • Instance occlusions

(d) Model-free object-oriented bin-picking

Figure 3.19: Evolution of the state of the art for gripper-oriented (b) and
model-based object-oriented (c) bin-picking approaches

Chapter 3. State of the Art 43

2013

AlexNet [98]

2014

VGG [168]

2015

Inception [174]

2016

ResNet [75]

2017

DenseNet [87]
ResNetX [191]

2018

CapsNet [160]

Deep features
ReLU activation

Very deep
features

Network
in network

Residual
connections

Network
in neuron

Equivariance
learning

(a) Deep convolutional encoders

2013

Selective Search [183] ‚
RegionLets [187] ‚

2014

SDS [70] ‚ ‚ ‚
SPPNet [74] ‚ ‚
RCNN [60] ‚ ‚
EdgeBoxes [207] ‚

2015

FasterRCNN [155] ‚ ‚
DeepMask [143] ‚ ‚
ContourBox [116] ‚
DeepBox [189] ‚

2016

YOLOv1 [152] ‚
SSD [113] ‚
RFCN [41] ‚
SharpMask [144] ‚ ‚
AIS [106] ‚ ‚ ‚ ‚

2017

MaskRCNN [73] ‚ ‚ ‚
YOLOv2 [153] ‚ ‚
AmodalMask [206] ‚ ‚ ‚
RetinaNet [108] ‚ ‚

2018

MaskLab [33] ‚ ‚ ‚
AffordanceNet [45] ‚ ‚ ‚
MaskXRCNN [86] ‚ ‚ ‚
YOLOv3 [154] ‚ ‚

Hand-crafted features Deep learning

(b) Early-localization instance segmentation

2013

SRF [46] ‚
SketchTokens [107] ‚

2014

MCG [146] ‚ ‚
GOP [96] ‚ ‚
RIGOR [89] ‚ ‚

2015

U-Net [157] ‚
HED [192] ‚
SuperCNN [77] ‚ ‚
Wang et al. [185] ‚ ‚
LPO [97] ‚ ‚
POISE [90] ‚ ‚
DeepContour [165] ‚
DeepEdge [16] ‚
DeepLab [34] ‚
SRF-OCC [177] ‚ ‚

2016

CEDN [193] ‚
COB [125] ‚ ‚
DOC [186] ‚ ‚

2017

WTN [12] ‚ ‚ ‚
CED [188] ‚
RCF [114] ‚
SegNet [11] ‚
CASENet [196] ‚ ‚

2018

PersonLab [140] ‚ ‚ ‚
Semi-conv. [137] ‚
DeepLabV3+ [35] ‚
SEAL [197] ‚ ‚

Hand-crafted features Deep learning

Superpixel grouping Encoder-decoder networks Instance embedding

(c) Late-localization instance segmentation

2013

PASCAL [51] ‚ ‚ ‚
NYUDv2 [166] ‚ ‚ ‚ ‚

2014

COCO [109] ‚ ‚ ‚

2015

BSDS-BOW [156] ‚ ‚

2016

PIOD [186] ‚ ‚
SYNTHIA [158] ‚ ‚ ‚ ‚

2017

COCOA [206] ‚ ‚ ‚
SceneNet [131] ‚ ‚ ‚ ‚

2018

D2SA [55] ‚ ‚ ‚ ‚
D2S [55] ‚ ‚ ‚

Real-world datasets Synthetic datasets

(d) Datasets

• Instance boundaries • Instance locations • Instance categories • Instance occlusions

Figure 3.20: Evolution of the state of the art for instance segmentation

44 3.3. Conclusion

Chapter 4

Occlusion-Aware
Instance Segmentation

In this chapter, we present our contributions on inferring instance
boundaries and occlusions from a single image, using the deep learning
tools presented in Chapter 2, in the ultimate goal of inferring the most
affordable instance of a pile in bin-picking applications.

4.1 Bicameral Structuring

In bin-picking scenes, the boundaries between instances are mostly
due to their mutual occlusion. Unlike the state-of-the-art two-stream
approaches, we thus argue that boundaries and occlusions should be
learned from a joint feature space (see Figure 4.1).

in out1 in out2 in out1 out2 in

out1

out2

Input

Boundaries

Occlusions
Conv+ReLU
Pooling

Features
Pooling
indices

Unpooling

Two streams (Baseline) Bicameral structuring (Ours)

Figure 4.1: The proposed bicameral structuring compared with the two-stream
baseline built from [186] and [157].

45

46 4.1. Bicameral Structuring

Specifically, we propose a bicameral fully convolutional structure,
consisting in one encoder shared by two cascaded decoders through
skip connections, for jointly inferring the instance boundaries and their
unoccluded side from a single RGB image.

4.1.1 Bicameral Architecture

In our experiments, we implement a bicameral FCN from a VGG16-
based [168] encoder backbone, as depicted by Figure 4.2. Alternative
backbones such as [75, 87] can be employed as well; this point is ad-
dressed in our ablation study. The two cascaded decoders have the
same structure: four convolutional layers whose numbers of filters are,
from bottom to top, 256, 128, 64, 32. The convolutional layers of each
decoder are interleaved with unpooling layers that take as input the
pooling indices from the encoder max-pooling layers. As illustrated
in Figure 4.3, such an unpooling mechanism enables to reuse the most
salient pixel locations fired by the encoder during the feedforward,
instead of arbitrarily padding with zeros. The first decoder is trained
to recover boundaries, while the second decoder handles occlusions,
modelled as boundary orientations. The boundary decoder is linked to
the encoder by residual-like connections [75] to the top of each encoder
convolutional block. The occlusion decoder is similarly connected to
the encoder, but also to each boundary decoder convolutional layer.
Skip connections are implemented by concatenating feature maps. We
investigate alternative implementations of skip connection in our abla-
tion study, but show that using concatenation is the best default choice.

4.1.2 Bicameral Learning

Boundaries Instance boundaries are modelled as binary maps such
that activated pixels are boundaries, i.e. pixels in contact with two or
more different instance labels. For such a binary classification, we thus
use a regularized cross-entropy loss function (c.f . Chapter 2). However,
boundary pixels generally represent a small fraction of a whole image.
To alleviate this class imbalance between boundary and non-boundary
pixels, we employ a variant of cross-entropy, referred to as a balanced
cross-entropy loss function [114, 157, 188, 192, 193]. Specifically, the two
terms of the loss function are weighted in order to counterbalance the
low number of boundary pixels against non-boundary pixels. In our
experiments, we set these weights such that the “contour pixel” penalty
is 10 times more important than the “non-contour” term, regardless
of the dataset. We are aware of recently proposed more advanced
loss functions [43, 108, 197] but we leave the introduction of these loss
functions for future work.

Chapter 4. Occlusion-Aware Instance Segmentation 47

in

conv11

conv12

conv21

conv22

conv31

conv32

conv33

conv41

conv42

conv43

conv51

conv52

conv53

deconv1b

deconv2b

deconv3b

deconv4b

deconv1a

deconv2a

deconv3a

deconv4a

out1 out2 in

out1

out2

Input

Boundaries

Occlusions

Conv+ReLU

Pooling

Features Pooling indices

Unpooling

Layer Number Kernel
name of filters size

conv1X 64

3ˆ3
conv2X 128
conv3X 256
conv4X 512
conv5X 512

deconv4x 256

5ˆ5deconv3x 128
deconv2x 64
deconv1x 32

Figure 4.2: Definition of a VGG16-based [168]
bicameral structuring. Best viewed in color

(1,1) (1,2)

(2,2) (1,1)

Pooling indices

128 67

99 137

Pooled feature map

Max-Pooling

128 23 59 67

57 1 25 32

88 56 137 128

21 99 10 15

Some feature map

55 2

34 -25

Some feature map

Unpooling

55 0 0 2

0 0 0 0

0 0 -25 0

0 34 0 0

Unpooled feature map

Figure 4.3: Unpooling mechanism, also introduced in [11, 193]. When a feature
map is pooled in the encoder by a max-pooling operator, the pooling indices
are stored for the corresponding decoder’s unpooling layer. This enables to
reuse the most salient pixel locations when unpooling, instead of arbitrarily
padding with zeros.

48 4.1. Bicameral Structuring

Occlusions In the two-stream baseline [186], the stream for occlusions
consists in inferring the raw orientation θ P p´π, πs of a local unit vec-
tor specifying the occlusion relation by a left-hand rule, independently
of the stream for boundaries. Their orientation learning is driven by
a logistic loss function that strongly penalizes wrong directions but
only weakly tangent directions. However, a consistency check between
boundaries and orientations is required after each forward pass, by
using the local tangent vectors of the predicted boundaries for adjusting
the predicted orientations, since by construction, there is no mechanism
enforcing a local continuity of the network inference.

Input Ground truth Input Ground truth

Figure 4.4: Our representation of boundaries (blue) and occlusions (orange).
Near a boundary segment, an occlusion is locally represented as a binary
segmentation highlighting the occluding side of this boundary segment.

By using instead a single encoder-decoder structure, and reformu-
lating the occlusion prediction as a local binary segmentation problem
close to instance boundary detection, we can overcome this limita-
tion. In practice, near each boundary pixel, we propose to set the side
which is above the other one to “1”, and the side below to “0”. More
precisely, for generating the ground-truth occlusion binary maps, we
sweep all the ground-truth instance boundaries, and for each boundary
pixel, we binarize the centered local region by computing the mean
Z-offset in each segment of the region. In the end, a ground-truth oc-
clusion map is a binary map whose positive pixels are the instance
boundaries slightly translated to one side or another, according to the
relative depth difference of the boundary sides, as illustrated by the
final ground-truth image in Figure 4.4. Note that boundary pixels are
set to 0 in the occlusion map. Occlusions can then be learned using a
balanced cross-entropy loss function as well.

Bicameral Loss Function Formally, let p P P be a pixel location;
typically P “ t1, .., Wu ˆ t1, .., Hu for an image of width W P N˚ and
height H P N˚. We note N “ t1, .., Nu where N P N˚ is the number
of training images, and Mp P V the value at location p P P in a
matrix M P VR, with R “ W ˆ H. With the proposed formulation for

Chapter 4. Occlusion-Aware Instance Segmentation 49

occlusions, the network jointly minimizes two balanced cross-entropy
loss functions Lboundaries (Eq. 4.1) and Locclusions (Eq. 4.2), respectively
for instance boundaries and occlusions, defined as follows:

LboundariespWq “ ´ 1
|N ||P |

ÿ

nPN

ÿ

pPP
µYnp logpŶnpq

` p1´ Ynpq logp1´ Ŷnpq
(4.1)

LocclusionspWq “ ´ 1
|N ||P |

ÿ

nPN

ÿ

pPP
µZnp logpẐnpq

` ppµ´ 1qYnp ` 1qp1´ Znpq logp1´ Ẑnpq
(4.2)

where tpXn, Yn, Znq P pR3qRˆt0, 1uRˆt0, 1uRunPN is the training dataset
of RGB images Xn, associated with their ground-truth binary maps Yn
and Zn for boundaries and occlusions respectively. If a pixel p P P of
the image Xn is an instance boundary then Ynp “ 1, else Ynp “ 0. If p is
the unoccluded side of an instance boundary then Znp “ 1, else Znp “ 0.
pŶn, Ẑnq “ fWpXnq P r0, 1sR ˆ r0, 1sR designates the network inference
for boundaries and occlusions respectively, using the parameters W. In
practice, µ “ 10. The factor ppµ´ 1qYnp ` 1q in Eq. 4.2 ensures consis-
tency with Eq. 4.1, as we want the intersection between the boundary
and occlusion binary maps to be empty. Basically, this factor enables
to give the “is-not-unoccluded-side” penalty as much importance as
the “is-unoccluded-side” term when a pixel in the occlusion map is a
boundary, i.e. Ynp “ 1 and Znp “ 0.

Implementation Details

• In practice, to ensure probability-like inferences, we train the
network to infer pŶn, Ẑnq P RR ˆRR, then we apply the sigmoid
function σ : R Ñ r0, 1s, x ÞÑ p1` exppxqq´1.

• In addition to Equations 4.1 and 4.2, we perform a `2-regularization
of the parameters to avoid overfitting, but the regularization term
is here omitted for brevity (c.f . Chapter 2).

• When generating the ground-truth occlusion map, local patches
that contain more than two segments are fully set to 0 as they
cannot be binarized. This proves to be a reasonable limitation
as in practice an overwhelming majority of boundary pixels are
between only two instances or between an instance and the back-
ground (e.g., 97.1% of the boundary pixels in our synthetic dataset,
and 99.4% in PIOD [186]). We leave for future work the study of
the minority of pixels at the junction of more than two instances.

50 4.1. Bicameral Structuring

4.1.3 Experimental Setup

We now describe our experimental protocol to evaluate the proposed
network architecture on real-world and synthetic data. We are inter-
ested in finding answers to the two following questions:

1. Is the proposed bicameral structuring the best architecture for
oriented boundary detection?

2. How does the late-localization paradigm compare with the early-
localization paradigm (see Figure 4.5)?

To investigate each of these questions, we conduct two sets of experi-
ments that consist in respectively comparing:

1. the proposed bicameral design with our two-stream baseline and
alternative architectures, on PIOD [186] and Mikado;

2. the proposed bicameral design with the box proposal-based ap-
proach on Mikado, then the amodal segmentation approach on
COCOA [206].

More precisely, each set of experiments is respectively composed of
comparisons between:

1. (a) the bicameral design and our two-stream baseline for ori-
ented boundary detection, built from [186] and [157];

(b) the bicameral design and alternative architectures;

(c) bicameral designs with different partial feature sharing be-
tween the bicameral decoders;

(d) bicameral designs with and without skip connections;

(e) bicameral designs with different type of skip connections;

(f) bicameral designs with different encoder backbone;

2. (a) the bicameral design with the box proposal-based segmenta-
tion approach [45] for instance boundary detection;

(b) the bicameral design with a two-stream network for amodal
instance segmentation [206].

As reported by Table 4.1, the remaining of this section focus on experi-
ments 1a and 2a–b. Experiments 1b–f constitute our ablation study and
are discussed in Section 4.3. The generation and plausibility of Mikado
are discussed in Chapter 5.

Chapter 4. Occlusion-Aware Instance Segmentation 51

box proposal

Encoder Decoder
modal
binary mask

Encoder Decoder
amodal
binary mask

Amodal segmentation [206] – Early localization

image

Encoder Decoder
boundary
locations

Encoder Decoder boundary
orientations

Merging

Oriented boundary detection [186] – Late localization

image

Encoder Decoder
boundary
locations

Encoder Decoder
boundary
orientations

Our ablation study’s baseline – Late localization

image

Encoder

Decoder
boundary
locations

Decoder
boundary
orientations

Bicameral (Ours) – Late localization

/ / Sequential / holistically-nested / skip connections

Figure 4.5: Comparison with the state-of-the-art approaches, which rely on
two independent streams for boundaries and occlusions respectively.

52 4.1. Bicameral Structuring

Experiment Section Figure(s) Table(s)
Comparison with the two-stream baselines

Late localization 1a 4.2.1 4.1, 4.6, 4.7 4.3

Early localization 2a 4.2.2 4.9 4.4
2b 4.10, 4.12 4.5

Ablation study of the bicameral design

Alternative architectures 1b 4.3.1 4.13, 4.14 4.6
1c 4.3.2 4.15 4.7

Skip connections 1d 4.3.3 4.16, 4.17, 4.18, 4.19 4.81e
Encoder backbone 1f 4.3.4 4.21 4.9, 4.10

Table 4.1: Sections, figures and tables related to each experiment

Let us finally address some concerns that the reader may have regarding
our experimental setup:

• We leave out the BSDS Border Ownership dataset [156] as it con-
tains only 200 images, and mostly because the ground truth does
not define instance boundaries but object part-level edges.

• We compare the late and early-localization paradigms for bound-
ary and occlusion detection only on COCOA because amodal
segmentation requires the amodal instance masks, which are not
available in PIOD and not generated in Mikado. For training
the proposed network on COCOA and comparing with amodal
segmentation, we turn both the COCOA ground truth and the
precomputed results of [206] into oriented instance boundaries.

Data Preparation To robustly assess the generalizability of each model,
each experiment is cross-validated using three folds, except for the
amodal segmentation results as we use the precomputed binary outputs
made publicly available by the authors. To present more significative re-
sults when comparing architectures, curves and scores are averaged on
the three folds. For training, the networks are not directly fed with the
original images but several sub-images randomly extracted from each
original image, and augmented offline with random geometric transfor-
mations (flipping, scaling and rotation). Note that performances are not
impacted by cropping given that the networks are fully convolutional.
Table 4.2 details the folds for each dataset and the related experiments.

We also point out some experiment-dependent details:

• Folds of Mikado are defined such that a texture appears only in
one of the three subsets.

Chapter 4. Occlusion-Aware Instance Segmentation 53

PIOD [186] Mikado COCOA [206]
Training images 9,600 13,600 12,800

Validation images 800 800 1,424
Test images 800 4,800 1,323

Training iterations 18,000 34,000 24,000
Training epochs 15 20 15
In experiments 1a–f 2a–b

Table 4.2: Per-dataset folds for our cross-validation experiments after offline
data augmentation (rotation, flipping, scaling)

• Folds of PIOD and COCOA are defined with respect to the initial
split proposed by their authors. Specifically, the original training
images are used for training or validation in our folds, and the
original validation images for test. The original test images are
never used as they are not publicly available.

• For fairly comparing with box proposal-based segmentation on
Mikado, we use the Caffe implementation of [45], which made a
Mask R-CNN-like [73] network publicly available. Just like ours,
their network’s encoder is based on VGG16 [168].

• For comparing with amodal segmentation, we use the precom-
puted binary outputs made publicly available by the authors. We
derive the oriented boundaries from both the COCOA ground
truth and their precomputed results alike: after intersecting the
modal and amodal masks of an instance, amodal pixels that don’t
belong to the intersection are considered closer to the camera than
the pixels of the intersection. This gives an orientation to the
instance boundaries, i.e. the boundaries of the modal mask.

Training Settings For each dataset and each experiment, each net-
work is trained and tested using Caffe [92], and the exact same settings
(including fixed random seeds). At training time, we use the Adam
solver [95] with β1 “ .9, β2 “ .999, ε “ 10´8, a fixed learning rate of
10´4, a weight decay of 10´4, a `2 regularization, and a batch size of
eight 256ˆ256 images. The training images are randomly permuted at
each epoch. As we solve a non-convex optimization problem, without

54 4.2. Comparison with the State of the Art

theoretical convergence guarantees, the number of training iterations
is chosen for each dataset from an empiric analysis on training and
validation subsets. As generally adopted, the optimization is stopped
when the validation error stagnates or increases while the training er-
ror keeps decreasing. Please note that although the chosen stopping
criterion may not be optimal for reaching the best performances on
each dataset, it is however sufficient for significative comparative per-
formances on a given dataset since each network in a comparison is
trained under the exact same conditions. For all experiments, each net-
work has its encoder initialized with weights pretrained on ImageNet
[159], and its decoder(s) with the Xavier method [61]. The decoders
are also equipped with dropout layers (with a ratio of 0.5) after each
convolutional block at training time, to avoid overfitting.

Evaluation Metrics As commonly adopted [5, 16, 17, 46, 68, 107, 125,
165, 192, 193] since [128], we compute at test time the precision and
recall, and typical derived metrics: the best F-score on dataset scale
(ODS) and the average precision (AP). Whereas ODS highlights one bi-
narization threshold that gives the best compromise between recall and
precision, AP conveys the area under the precision-recall curve over the
full recall interval. For some experiments, we also consider the average
precision in high-recall regime (AP60), that is the precision averaged on
the recall interval r0.6, 1s. As matching tolerance, i.e. the maximum `2-
distance to the closest ground-truth pixel for a pixel predicted positive
to be considered as a good hit, we consider a hard value of 0 pixels for
Mikado (which contains perfect ground-truth boundaries) but a state-
of-the-art value of 0.0075

?
W2 ` H2p» 2.7 pixels in our evaluations) for

PIOD and COCOA that contain approximate hand-made annotations,
where W P N‹ and H P N‹ are respectively the image width and
height. We perform evaluation without non-maximum suppression,
which may artificially improve precision.

4.2 Comparison with the State of the Art

We now evaluate the proposed bicameral network by comparing, first,
with the two-stream baseline for oriented boundary detection and,
second, with the two-stream baseline for amodal instance segmentation.

4.2.1 Oriented Boundary Detection

We compare with the proposed bicameral structuring the two-stream
baseline for oriented boundary detection [186] on PIOD [186] and

Chapter 4. Occlusion-Aware Instance Segmentation 55

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 4.6: Comparative results
for instance boundary (blue)
and unoccluded side (orange)
detection on PIOD (above) and
Mikado (on the left). From top
to bottom: input (a), ground
truth (b), prediction using the
two-stream baseline (c), using
the proposed architecture (d).
The proposed architecture
improves the detection of fine
details. Red rectangles
highlight misdetections from
the baseline corrected by our
network.

56 4.2. Comparison with the State of the Art

Mikado (more details later in Chapter 5). Table 4.3 reports the com-
parative performances on these two datasets, and Figure 4.6 some
qualitative comparative results.

PIOD [186] Mikado (Ours)

Architecture Boundaries Occlusions Boundaries Occlusions
ODS AP ODS AP ODS AP ODS AP

Two-stream baseline .673 .708 .681 .733 .755 .832 .788 .872
Bicameral (Ours) .697 .738 .692 .747 .769 .847 .801 .884

Table 4.3: Comparative best F-score on dataset scale (ODS) and average pre-
cision (AP) for instance boundary and occlusion detection on two datasets.
The proposed bicameral architecture, which combines a shared encoder and
cascaded decoders, outperforms the two-stream baseline.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Two streams (Baseline) Bicameral structuring (Ours)

Figure 4.7: Comparative precision-recall curves for instance boundary (left)
and unoccluded side (right) detection on PIOD (dashed lines) and Mikado
(solid lines). Best viewed in color

Joint Representation Learning and Hierarchical Decoders As shown
by Figure 4.6, a bicameral network enables to expectedly eliminate a
number of false positive predicted by the two-stream baseline. On
PIOD, one can observe that some undetected boundaries near detected
occlusions in the baseline’s results are recovered using our network, as
the notion of occlusions is learned jointly with the notion of instance.
Inversely, the results on Mikado show that some boundaries misde-
tected by the baseline are removed where non-occlusions are instead
detected by the proposed bicameral design. Figure 4.7 and Table 4.3
corroborate these observations. A gain of 3 and 1.4 points in AP for
boundaries and occlusions respectively is achieved by the bicameral

Chapter 4. Occlusion-Aware Instance Segmentation 57

(a)

(b)

(c)

(a)

(b)

(c)

Figure 4.8: Instance boundaries (blue) and their unoccluded side (orange)
detected using our architecture (c) on PIOD images (a), annotated by humans
(b). The proposed network is able to fairly predict non-annotated boundaries
and better delineate instances coarsely annotated by humans.

58 4.2. Comparison with the State of the Art

design over the baseline on PIOD, and more than 1 point on Mikado.
These results confirm that learning boundaries and occlusions from a
joint feature space defines a consistent and performance-enhancing
task, while reducing the number of parameters by more than 25%.

Biases in the Hand-Made Annotations One can also notice that the
hand-made annotations hinder the training and evaluation due to their
inaccuracy and incompleteness. As illustrated by Figure 4.8, the bi-
cameral network is able to fairly predict non-annotated boundaries,
e.g. internal boundaries of instances with holes, missing instances, or
instances ambiguously considered as part of the background. Further-
more, objects with complex shape, such as houseplants, which are often
coarsely annotated by humans, are finely delineated by the proposed
network. This can be explained by the regulatization term in the loss
function, which enables to smooth the mapping learned from the noisy
ground truth. As we will see in Chapter 5, resorting instead to syn-
thetic training data for real-world applications proves more effective
for learning generalizable invariants.

4.2.2 Amodal Instance Segmentation

We now take a step back to compare our late-localization approach
with the early-localization paradigm. Specifically, we first compare
on Mikado the boundary branch of the proposed bicameral network
with a Mask R-CNN-like network [45] to evaluate each paradigm in
the context of bin-picking scenes. We then compare the proposed
bicameral structuring with the two-stream baseline for amodal instance
segmentation [206] on COCOA [206].

Table 4.4 reports the comparative performances on Mikado, and
Figure 4.9 some qualitative comparative results. Table 4.5 reports the
comparative performances on COCOA, and Figure 4.10 some qualita-
tive comparative results.

Late Instance Localization instead of Box Proposals Box proposal-
based segmentation approaches consist in first detecting scored rectan-
gle regions that might contain an instance, then coloring the instance
in each box proposal by binary segmentation. Such approaches prove
effective for maximizing the detection recall in scenes where instances
can be isolated in rectangles.

However, in bin-picking scenes, the bounding box of an instance
is likely to be shared by the neighboring instances. This becomes
problematic if a rectangle region contains multiple instances of the
same object. Indeed, the binary segmentation of such a region implies

Chapter 4. Occlusion-Aware Instance Segmentation 59

(a)

(b)

(c)

(d)

Figure 4.9: Comparative instance boundary detections on synthetic piles
of sachets. From top to bottom: (a) input; (b) ground truth; (c) instance
boundaries using a box proposal-based approach [45]; (d) using our approach.
Best viewed in color

On Mikado (Ours) Score Boundaries
threshold ODS AP

Box proposal-based
segmentation [45]

0.25 .216 –
0.50 .212 –
0.75 .207 –

Bicameral (Ours) – .809 .885

Table 4.4: Unlike ours, a box
proposal-based segmentation
approach [45] gives inaccurate
instance boundaries on dense
piles of sachets.

60 4.2. Comparison with the State of the Art

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 4.10: Comparative
results for instance boundary
(blue) and unoccluded side
(orange) detection on COCOA
(best viewed in color). From
top to bottom: input (a),
ground truth (b), prediction by
amodal segmentation [206] (c),
ours (d). Unlike the proposed
approach, using a box
proposal-based detection
qualitatively leads to coarse
segmentations and
non-detected instances.

Chapter 4. Occlusion-Aware Instance Segmentation 61

Input Things only Things and stuff

Figure 4.11: Example of thing and stuff annotations [29]

On COCOA [206] Boundaries Occlusions
ODS AP ODS AP

All regions Amodal segmentation [206]2 .492 – .529 –
Bicameral (Ours) .666 .694 .637 .673

Things1 only
Amodal segmentation [206]2 .536 – .608 –

Bicameral (Ours) .666 .690 .640 .674

Stuff1 only
Amodal segmentation [206]2 .489 – .397 –

Bicameral (Ours) .687 .727 .648 .693
1 As llustrated in Figure 4.11, things are objects with well-defined shape (e.g.
car, person) and stuff instances amorphous regions (e.g. grass, sky) [29].
2 The evaluation is performed on the binary segment proposals made available
by the authors.

Table 4.5: Comparative performances for instance boundary and unoccluded
side detection on COCOA [206]. Whereas the proposed network equally
performs on things and stuff, oriented boundary detection by amodal instance
segmentation tends to focus on things and miss stuff instances.

0.2 0.4 0.6 0.8
0.4

0.6

0.8

Recall

Pr
ec

is
io

n

0.2 0.4 0.6 0.8
0.4

0.6

0.8

Recall

Pr
ec

is
io

n

/ / Using the proposed network (all/thing/stuff)
/ / Using amodal instance segmentation [206] (all/thing/stuff)

Figure 4.12: Precision-recall curves for instance boundary (left) and unoc-
cluded side (right) detection on COCOA comparing bicameral structuring
against amodal instance segmentation [206]. Best viewed in color

62 4.2. Comparison with the State of the Art

that similar patterns are classified differently inconsistently with the
translation invariance property of deep convolutional networks. In
this paradigm, the ambiguity of the binary segmentation can then
only be broken by focusing on the global appearance of each object.
Furthermore, the overall image segmentation is conditionned upon the
region proposal network’s performances.

As shown by Figure 4.9, this results in coarse or missing instance
boundaries. By contrast, the proposed approach enables to finely
delineate each instance, as our pixel-wise learning is free from any
ambiguity. In accordance with these observations, Table 4.4 reports that
our method outperforms a Mask R-CNN-like network [45] by near 60
points for detecting boundaries on Mikado, independently of the score
threshold for filtering the proposals.

Oriented Boundaries instead of Amodal Masks Amodal segmenta-
tion can be viewed as an overlay on the box proposal-based segmenta-
tion approach, aimed at introducing the notion of occlusion in addition
to the notion of instance. Specifically, amodal instance segmentation
[206] consists in two indepedent box proposal-based streams for re-
spectively inferring the modal and amodal masks of each proposal, i.e.
the mask of the visible instance parts and the mask including both the
visible and occluded parts. An estimation of the occlusion rate of an
instance can then be obtained by considering the intersection between
the modal and amodal masks.

However, amodal segmentation approaches cumulate the draw-
backs of box proposal-based segmentation discussed above, and the
difficulty of coloring something invisible. Indeed, the ambiguity of
binary segmentation raised when a rectangle region contains multiple
instances of the same object is worsened when amodally coloring an
instance, as the network must learn to activate “hidden” instance pixels
which visibly belongs to another instance. Furthermore, when compar-
ing the modal and amodal masks for estimating the occlusion rate of an
instance, mismatches between the two masks are very likely to occur,
thus inducing false positive in the boundary and occlusion maps.

As shown by 4.10, this results in inaccurate or missing boundaries
and misdetected occlusions. By contrast, the proposed network over-
comes these limitations by postponing instance localization: each pixel
is jointly classified as boundary or not and assigned with an occlusion-
based orientation independently of the instance bounding box it be-
longs to. Amodal segmentation also tends to favour “things”, i.e. objects
with well-defined shape, over “stuff” instances, i.e. amorphous regions
such as grass or sky (see examples in Figure 4.11), while our method is
agnostic to this categorization. Indeed, the region proposal network is

Chapter 4. Occlusion-Aware Instance Segmentation 63

trained to coarsely highlight objects from the background. As a result,
stuff instances are confused with parts of the background. These obser-
vations are corroborated by Table 4.5 and Figure 4.12 which report a
gain in ODS of 17.4 points for boundaries and 10.8 points for occlusions
over all instance types on COCOA using our approach. On things only,
the proposed bicameral network outperforms the two-stream base-
line by 13 and 3.2 points for boundaries and occlusions respectively.
On stuff instances, the performance gains reach 19.8 and 25.1 points
respectively.

In contrast with the proposal-based approach augmented with
amodal segmentation the late-localization approach proves more ef-
fective to recover comprehensive and accurate boundary and occlu-
sion maps, consistently with our design choices.

4.2.3 Conclusion

A bicameral FCN is defined as two cascaded decoders sharing a single
encoder, with skip connections between the encoder and each decoder,
and between the decoders as well, thus enabling a fine delineation
of each instance in both general scenes (PIOD and COCOA) and bin-
picking scenarios (Mikado).

The proposed network, which follows a late-localization para-
digm, outperforms the two-stream baselines in both instance seg-
mentation paradigms, i.e. oriented boundary detection [186] and amo-
dal segmentation [206], on both real-world and synthetic data. Specif-
ically, the performance gain reaches 2 points and near 20 points over
the state-of-the-art late-localization and early-localization approaches
respectively.

Trained on real-world data with biased hand-made annotations, a
bicameral network is able to fairly detect non-annotated boundaries,
thus suggesting that using instead synthetic training data with unbiased
ground truth may enhance the performances.

64 4.3. Ablation Study

4.3 Ablation Study

In Section 4.2, we showed that the bicameral structuring introduced in
Section 4.1 outperforms the state-of-the-art two-stream approaches. In
this section, we conduct a deeper analysis of the proposed bicameral
architecture. Specifically, we explore alternative network designs and
architectural components to better characterize the components of a
bicameral network.

4.3.1 Alternative Architectures

We first compare the proposed bicameral structuring with alternative
network architectures (see Figure 4.13) in order to better expose the
benefits of sharing encoder representations and cascading decoders.

in out1out2 in out1 out2 in out1 out2

Shared encoder Cascaded decoders Multi-task decoder

Architecture Number of parameters
Baseline 46,839,938 (ˆ1.0)

Shared 32,125,250 (ˆ.69)
Cascaded 29,949,250 (ˆ.64)

Multi-task 23,420,770 (ˆ.50)
Bicameral 34,301,250 (ˆ.73)

Figure 4.13: Alternative architectures also
considered for jointly predicting

boundaries and occlusions (best viewed in
color), using a VGG16-based [168] encoder

and a residual-like structure as decoder
template. Legend is the same as Figure 4.2

in out1 out2

Bicameral

Specifically, we compare the proposed bicameral architecture with
three alternative architectures (c.f . Figure 4.13):

Chapter 4. Occlusion-Aware Instance Segmentation 65

• a network with two independent decoders sharing the same en-
coder, referred to as shared;

• two decoders in cascade after one encoder, referred to as cascaded;

• a multi-task decoder that infers both boundaries and occlusions,
referred to as multi-task.

Implementation For fair comparison, each network has the same
VGG16-based [168] encoder, and is equipped with residual-like [75]
connections, also referred to as skip connections, between the encoder
and the decoder(s) for progressively combining local and global fea-
tures when decoding. All the compared networks also share the same
convolutional hyperparameters for their decoder(s). Specifically, for
each decoder, the kernel of each convolutional layer is a 5ˆ5 square,
and the four convolutional blocks have, respectively from bottom to
top, 256, 128, 64 and 32 filters. Note that we arbitrarily choose VGG16
as default backbone for our experiments, but any backbone is virtually
suitable (c.f . Section 4.3.4).

Shared Encoding Features Instead of Independent Streams Our com-
parative experiments between single encoder-based designs and inde-
pendent streams confirm that separating instances and inferring their
spatial layout can be done with a single scene representation. Figure
4.14 shows that using a shared encoder, multi-task, cascaded or bicam-
eral design instead of the two-stream baseline results in reaching lower
boundary and occlusion test errors on both PIOD and Mikado. This is
corroborated by Table 4.6 where the proposed bicameral and alternative
architectures outperform the baseline by more than 2 points in ODS
and AP, on both PIOD and Mikado for boundary detection.

Bicameral Structuring Instead of Alternative Designs A closer look
at Figure 4.14 shows that the cascaded design reaches the lowest oc-
clusion test error on both PIOD and Mikado. This suggests that chain-
ing occlusion to boundary detection eases the backpropagation for
occlusion prediction, as the decoder for occlusions may leverage a hi-
erarchical feature representation of flat instance boundaries instead of
undecoded image features. A gain in AP is achieved by cascaded de-
coders over the baseline (1.5 point up on PIOD, 1 point up on Mikado)
but also the shared encoder design (1 point up on PIOD) for which
decoders are independent. However, Table 4.6 shows that cascaded
decoders are slightly less efficient for detecting boundaries on Mikado
than a multi-task decoder or two independent decoders sharing the
same encoder. This is explained by the impossibility of the occlusion

66 4.3. Ablation Study

PIOD [186] Mikado (Ours)

0 5 10 15
6

8

10

Epoch (1,200 iterations)

Bo
un

da
ry

Er
ro

r
(%

)

0 5 10 15 20
4

6

8

Epoch (1,700 iterations)

Bo
un

da
ry

Er
ro

r
(%

)

0 5 10 15
6

8

10

Epoch (1,200 iterations)

O
cc

lu
si

on
Er

ro
r

(%
)

0 5 10 15 20
4

6

8

Epoch (1,700 iterations)

O
cc

lu
si

on
Er

ro
r

(%
)

Baseline Shared Cascaded Multi-task Bicameral

Figure 4.14: Comparative training (solid lines) and test (dashed lines) errors
for instance boundary (top) and occlusion (bottom) detection on PIOD (left)
and Mikado (right). Lower boundary and occlusion errors are reached when
jointly predicting boundaries and occlusions (green, blue, yellow, purple)
rather than independently (red).

PIOD [186] Mikado (Ours)

Architecture Boundaries Occlusions Boundaries Occlusions
ODS AP ODS AP ODS AP ODS AP

Baseline .673 .708 .681 .733 .755 .832 .788 .872
Shared .692 .732 .686 .738 .769 .847 .792 .876

Cascaded .694 .735 .689 .748 .766 .844 .795 .880
Multi-task .691 .731 .679 .731 .767 .845 .795 .880
Bicameral .697 .738 .692 .747 .769 .847 .801 .884

Table 4.6: Best F-score on dataset scale (ODS) and average precision (AP) for
instance boundary and occlusion detection on two datasets using different
architectures. The bicameral decoder, which combines a shared encoder and
cascaded decoders, outperforms the two-stream baseline and a multi-task
decoder as well.

Chapter 4. Occlusion-Aware Instance Segmentation 67

decoder to influence directly the encoder blocks. This trade-off is over-
came by the bicameral design, which combines cascaded decoders both
directly linked to the single encoder and has consequently the largest
area under the precision-recall curve in Figure 4.7. The proposed bi-
cameral structuring also outperforms a multi-task design. Table 4.6
notably reports that merging decoders limits the expressive power in
favor of boundaries on PIOD. The obtained scores are well illustrated
by the comparative predictions in Figure 4.6 where one can observe
more closed boundaries and many false positive, mostly occlusions, pre-
dicted by the baseline and removed when instead decoding in cascade
from a joint feature space.

4.3.2 Decoders Feature Sharing

We now assess whether feature sharing can apply to the branches of
a bicameral decoder by comparing three hybrid architectures, namely
M3-B1, M2-B2, M1-B3, that merge fully multi-task and bicameral de-
coder designs by sharing the three, two, one bottom-most layer(s) of
their decoders respectively, as depicted by Figure 4.15. Intuitively, this
results in sharing some task-dependent layers, as the two decoders are
specialized in detecting boundaries and occlusions respectively.

Partially Shared or Independent Decoding Features? A bicameral
structuring outperfoms a multi-task design (c.f . Section 4.3.1) but one
may also wonder whether partial feature sharing of the bottom-most
bicameral decoder layers enables even better performances. Table 4.7
presents the performances obtained with three hybrid architectural
variations between multi-task and bicameral designs (Fig. 4.15), each
one introducing feature sharing at different levels of decoding. On
PIOD, a bicameral decoder remains superior to all hybrid decoders,
notably by about 1 point higher in ODS and AP for occlusions. On
Mikado, sharing the first bottom decoder stage (M1-B3 design), which
conveys object-level semantics, slightly improves performances. This
suggests that the task specialization, for boundaries and occlusions
respectively, may occur at a more local scale in decoding, either because
of the higher density of inter-instance occlusions in Mikado, or due
to the shape similarity of the Mikado instances. Unlike any of the
hybrid designs, the bicameral decoder nevertheless achieves strong
ODS and AP on both PIOD and Mikado. We thus advise to consider
boundaries and occlusions separately by default after unpooling the
encoder feature maps with lowest resolution.

68 4.3. Ablation Study

in out1 out2 in out1 out2 in out1 out2

M3-B1 M2-B2 M1-B3

in out1 out2 in out1 out2

Multi-task Bicameral

Architecture Number of
parameters

Baseline 46,839,938 (ˆ1.0)
Multi-task 23,420,770 (ˆ.50)

M3-B1 23,548,802 (ˆ.50)
M2-B2 24,060,866 (ˆ.51)
M1-B3 26,108,994 (ˆ.56)

Bicameral 34,301,250 (ˆ.73)

Figure 4.15: Hybrid architectures that merge multi-task (“M”) and bicameral
(“B”) designs at different decoding stages, using a VGG16-based [168] encoder
(best viewed in color). Legend is the same as Figure 4.2

PIOD [186] Mikado (Ours)

Architecture Boundaries Occlusions Boundaries Occlusions
ODS AP ODS AP ODS AP ODS AP

Baseline .673 .708 .681 .733 .755 .832 .788 .872
Multi-task .691 .731 .679 .731 .767 .845 .795 .880

M3-B1 .691 .735 .683 .734 .767 .845 .796 .879
M2-B2 .692 .738 .685 .740 .769 .848 .797 .881
M1-B3 .693 .737 .685 .739 .771 .848 .802 .885

Bicameral .697 .738 .692 .747 .769 .847 .801 .884

Table 4.7: Best F-score on dataset scale (ODS) and average precision (AP) for
instance boundary and occlusion detection on two datasets using different
levels of layer sharing between the branches of a bicameral decoder.

Chapter 4. Occlusion-Aware Instance Segmentation 69

4.3.3 Skip Connections

We now study the benefits of skip connections (SC) between the encoder
and the decoders in a bicameral structuring.

in out1 out2 in out1 out2
c1 c2

c3 c4

c1 c2

c3 c4

c1 c2

c3 c4

∑i={1,...,4} wici

∑i={1,...,4} w′
ici

w1(c1 + c3)

w′
1(c2 + c4)

w1 max(c1, c3)

w′
1 max(c2, c4)

(c)

(b)

(a)

Without SC With SC Types of skip connection (SC)

Figure 4.16: A bicameral structuring with and without skip connections (SC),
and different types of skip connections: (a) using element-wise max operators,
(b) using element-wise sum operators, (c) by concatenation.

As depicted by Figure 4.16, we compare bicameral designs with and
without skip connections, and try out different types of skip connec-
tion: concatenation (our default choice for all the other experiments);
element-wise max; element-wise sum. We choose concatenation by
default because one can formally expect element-wise max and sum
operations to be obtained using concatenation.

Indeed, let N P N‹ be the depth of two layers to merge, and e, d, f P
RN feature vectors respectively for the encoder, the decoder, and the
resulting fusion. Let w, w1 P RNˆN be trainable parameters. Using
element-wise max operators, @k P t1, ..., Nu, fk “

řN
i“1 wik maxpeik, dikq.

Using element-wise sum operators, @k P t1, ..., Nu, fk “
řN

i“1 wikpeik `
dikq. Using concatenation, @k P t1, ..., Nu, fk “

řN
i“1pwikeik `w1ikdikq. If

needed, an element-wise sum operator can then be modelled by setting
w “ w1. Similarly, an element-wise max operator can be obtained by
setting wik “ 0 or w1ik “ 0 depending on which of the ith encoder or
decoder channel has greater importance.

Skip Connections for Combining Local and Global Cues Partially
hidden patterns are a major source of boundaries and occlusions. A
perception at both local and global scales is however required to un-
derstand that an instance is partially occluded. By construction, an
encoder-decoder network combines local and global cues by stack-
ing convolutional and pooling/unpooling layers. This combination is

70 4.3. Ablation Study

PIOD [186]

(a)

(b)

(c)

Without SC With SC Without SC With SC

Mikado (Ours)

(a)

(b)

(c)

Without SC With SC Without SC With SC

Figure 4.17: From top to bottom: (a) input and ground truth, (b) activation map
after deconv4a (see Fig. 4.2), (c) final detection. Combining spatial information
and higher-level semantics using skip connections (SC) between the encoder
and decoders enables to detect instance boundaries earlier when decoding.

Chapter 4. Occlusion-Aware Instance Segmentation 71

PIOD [186]
Skip connections? Boundaries Occlusions

(Type) ODS AP AP60 ODS AP AP60
No .693 .744 .495 .692 .749 .520

Yes (Element-wise max) .685 .729 .512 .676 .731 .522
Yes (Element-wise sum) .687 .730 .505 .678 .731 .514

Yes (Concatenation) .697 .738 .517 .692 .747 .532

Mikado (Ours)
Skip connections? Boundaries Occlusions

(Type) ODS AP AP60 ODS AP AP60
No .759 .834 .686 .793 .878 .748

Yes (Element-wise max) .755 .830 .676 .786 .871 .735
Yes (Element-wise sum) .761 .838 .685 .791 .876 .743

Yes (Concatenation) .769 .847 .698 .801 .884 .758

Table 4.8: Best F-score on dataset scale (ODS), average precision (AP) and
average precision in high-recall regime (AP60) for instance boundary and
occlusion detection on two datasets using a bicameral FCN with and without
skip connnections. Residual-like connections by concatenation between the
encoder and the decoder(s) enable to better detect boundaries and occlusions
as local and global cues are combined at each scale when decoding.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Without SC With SC

Figure 4.18: Comparative precision-recall curves for instance boundary (left)
and unoccluded side (right) detection on PIOD (dashed lines) and Mikado
(solid lines)

72 4.3. Ablation Study

PIOD [186] Mikado (Ours)

0 5 10 15
6

8

10

Epoch (1,200 iterations)

Bo
un

da
ry

Er
ro

r
(%

)

0 5 10 15 20
4

6

8

Epoch (1,700 iterations)

Bo
un

da
ry

Er
ro

r
(%

)

0 5 10 15
6

8

10

Epoch (1,200 iterations)

O
cc

lu
si

on
Er

ro
r

(%
)

0 5 10 15 20
4

6

8

Epoch (1,700 iterations)

O
cc

lu
si

on
Er

ro
r

(%
)

Without SC With SC

Figure 4.19: Comparative training (solid lines) and test (dashed lines) errors
for instance boundary (top) and occlusion (bottom) detection on PIOD (left)
and Mikado (right). Relatively to the initial error, a better error minimization
is achieved when using skip connections between the encoder and decoder(s).

Input Without SC With SC

Figure 4.20: Feature maps after deconv1a (see Figure 4.2). Skip connections be-
tween the encoder and decoder strongly reduces the “checkerboard” artifacts
[138] due to unpooling.

Chapter 4. Occlusion-Aware Instance Segmentation 73

enhanced by residual-like connections at each scale between the en-
coder and decoder(s), as it enables to gradually combine the unpooled
higher-level semantics with the spatial information lost after pooling.
Figure 4.17 qualitatively shows what such connections bring: instance
boundaries are detected earlier, thus giving the network more flexibility
to adjust the following transformations and activations towards the
desired output. These observations are corroborated by the scores in
Table 4.8 and the precision-recall curves in Figure 4.18. A bicameral
structuring with residual-like connections (c.f . Figure 4.16) outperforms
a bicameral design without such connections by 1 point in ODS and AP
on Mikado.

The obtained scores on PIOD are here impacted by the encoder
initialization, which was obtained using a skip-connection free architec-
ture. As a result, the backpropagation flow along the skip connections
drastically reshapes the encoder from the first iteration, whereas the
encoder of the skip connection-free design is only slighty affected by
the backpropagation signals coming from the decoders. This mostly
impacts the scores on PIOD because the encoders are initialized with
weights pretrained on ImageNet, whose object type and context distri-
butions are much closer to PIOD than Mikado. The skip connection-free
design thereby starts to train on PIOD with already meaningful image
features, unlike the bicameral design with skip connections on PIOD
and both designs on Mikado. Figure 4.19 indeed reports that the bicam-
eral network without skip connections starts with a lower training error
on PIOD. Despite this disadvantage at training time, a bicameral design
with residual-like connections shows a better precision in high-recall
regime on PIOD, as shown by Figure 4.18. Table 4.8 confirms a gain of
more than 1 point in AP60 when adding skip connections.

Concatenation Instead of Alternative Merging Operators In all of
our experiments, we consider skip connections by concatenation in-
stead of alternative operators (Fig. 4.21), because we formally expect
less constraints from concatenation. Table 4.8 confirms our expectation:
concatenation produces better experimental results than element-wise
sum or max operators. Enforcing sum or max operations indeed intro-
duces arbitrary correspondences between the feature channels to merge.
As a result, the low-level encoder activations may be overconsidered
in the decoder, thus generating more false positives. Concatenation, as
proposed, leaves more degrees of freedom for merging the channels,
as each weight for their linear combination before activation is learned
during backpropagation. Skip connections that turn out irrelevant can
thus be switched off by the decoder, with near-zero weights.

74 4.3. Ablation Study

4.3.4 Encoder Backbone

We finally investigate the use of a different encoder backbone. Specif-
ically, we consider a deeper encoder chaining blocks of densely con-
nected convolutional layers [87], referred to as dense blocks. As illus-
trated by Figure 4.21, a dense block is a generalization of a residual
block [75], which introduces residual connections to give top layers
access to earlier bottom layers. Introducing such skip connections be-
tween encoder layers enables to build and learn deeper representations
as singularities due to zero incoming weights, overlapping incoming
weights, or linearly dependent units are eliminated [139], while reduc-
ing the number of parameters (see Table 4.9).

Conv+ReLU

Features

Sequential [168] Residual [75] Dense [87]

Figure 4.21: Types of convolutional block

Architecture Encoder Number of
backbone parameters

Two streams (Baseline) VGG16 [168] 46,839,938 (ˆ1.0)

Bicameral (Ours) 34,301,250 (ˆ.73)
DenseNet121 [87] 33,009,846 (ˆ.70)

Table 4.9: Number of parameters for a bicameral design with different encoder
backbones

In our experiments, we choose VGG16 as default backbone because it
limits the required memory, but any backbone is virtually suitable. To
prove this claim, we compare bicameral designs with a VGG16-based
and DenseNet121-based encoder respectively.

“Dense Grid” Interpretation Following our network representation
in Fig. 4.2, we point out that, if we describe skip connections in a dense
block as “vertical” dense connections, then bicameral connections, i.e.
skip connections between the decoders and the encoder, can then be
interpreted as “horizontal” dense connections. A DensetNet121-based
bicameral FCN thus results in a “grid” of densely connected blocks.

Chapter 4. Occlusion-Aware Instance Segmentation 75

On PIOD [186] Boundaries Occlusions
ODS AP AP60 ODS AP AP60

Baseline (VGG16) .673 .708 .476 .681 .733 .518
Bicameral (VGG16) .697 .738 .517 .692 .747 .532

Bicameral (DenseNet121) .712 .761 .529 .714 .778 .556

Table 4.10: Best F-score on dataset scale (ODS) and average precision (AP)
for instance boundary and occlusion detection on PIOD [186] comparing the
use of VGG16-based and DenseNet121-based encoder backbones. Plugging
a bicameral decoder to a deeper encoder with dense blocks [87] enables to
capture a finer representation of the object boundaries and nearby occlusions.

A Backbone-Agnostic Structuring Using a deeper encoder composed
of dense blocks, instead of sequential ones (Figure 4.21), the joint feature
representation in a bicameral design reaches a higher expressive power.
Table 4.10 reports a gain in AP of more than 6 points for boundaries and
more than 4 points for occlusions over the two-stream baseline when
building the bicameral encoder on DensetNet121 [87] instead of VGG16
[168] on PIOD. These results also suggest that a bicameral structuring
may apply to any encoder backbone, whatever the depth and the type
of convolutional blocks.

4.3.5 Conclusion

In this section, we conducted an ablation study of the proposed perfor-
mance-enhancing fully convolutional structure. Our experimental anal-
ysis exposed the importance of the bicameral characteristics, i.e. single
shared encoder, decoders in cascade, skip connections between the
encoder and the decoders, and backbone-agnostic encoding.

• With any decoder configuration, sharing a single encoder rep-
resentation for boundaries and occlusions outperforms a two-
stream FCN for the same task.

• Additionnally cascading decoders, both linked to the encoder us-
ing skip connections, leads to the best trade-off between boundary
and occlusion errors.

• Using skip connections between the encoder and decoders enables
to recover boundaries earlier than without such connections. Skip
connections by concatenation outperfom alternative types as they
leave the largest number of degrees of freedom during training.

• The encoder’s representative power can be enhanced by using
densely connected convolutional layers.

76 4.4. Localizing Affordable Instances

4.4 Localizing Affordable Instances

Our bicameral network fW is trained to infer boundaries and occlusions
from a single image. However, in the context of robotic applications,
we need grasp coordinates on affordable instances to further interact
with the real world. In this section, we thus describe our procedure to
localize the most affordable instance from the network inference.

4.4.1 Approach

Our approach is two-fold (see Figure 4.22): first, a boundary-based
pixel clustering for generating a set of instance candidates; second, an
occlusion-based ranking of the set of candidates.

Bicameral FCN
pY, Zq “ fWpXq

Input image
X P pR3qR

Instance boundaries
Y P r0, 1sR

Unoccluded sides
Z P r0, 1sR

Connected component labeling
C “ tCkuk “ gppY ą αqcq

Instance candidates
tCk P t0, 1uRuk

¨
˚̊
˚̊
˝

˛
‹‹‹‹‚

c

“

Affordance-driven ranking
pC,ěq “ hpC, pY ą αq, pZ ą βqq

Affordable instance
C‹ “ maxpC,ěq

Figure 4.22: Our pipeline for inferring grasp coordinates centered on afford-
able instances from the bicameral network inference. First, a set of instance
candidates is generated from the inferred boundaries Y by connected com-
ponent labeling. Second, the set of candidates is ranked by estimating an
occlusion-based affordance from the inferred unoccluded sides Z.

Chapter 4. Occlusion-Aware Instance Segmentation 77

Formally, let R be the image resolution, typically R “ W ˆ H for
an image of width W P N‹ and height H P N‹, and X P R3ˆR an
image. Let g and h be the two parameter-free functions for localizing
and ranking instances respectively, from the network inference fWpXq.
We look for a discrete set C “ tCk P t0, 1uRuk of instance candidates Ck
ranked by occlusion-based affordance such that:

pC,ěq “ hpg ˝ fWpXq, fWpXqq (4.3)

For two candidates pC, C1q P C ˆ C, C ě C1 means that C is more
affordable than C1. We send to the robot the centroid coordinates of the
most affordable instance C‹, defined as follows:

C‹ “ maxpC,ěq (4.4)

4.4.2 Implementation

We now detail the definition and implementation of the two functions
g and h introduced in Section 4.4.1.

Instance Localization Let pY ą αq P t0, 1uR be the inferred boundary
map Y P r0, 1sR binarized using the threshold α P r0, 1s. The function g
takes the complementary of Y ą α as input and returns a set of binary
maps Ck P t0, 1uR corresponding to instance candidates such that:

C “ tCkuk “ gppY ą αqcq (4.5)

Our function g implements an off-the-shelf connected component label-
ing algorithm [65]. Each resulting connected component is considered
as an instance candidate. In practice, for ensuring stable real-time per-
formances, we nevertheless add a filtering step for removing overly
small or large connected components, as the inferred network bound-
aries are sometimes noisy. An example of instance candidate generation
is provided in Figure 4.23.

Instance Ranking Let pZ ą βq P t0, 1uR be the inferred occlusion map
Z P r0, 1sR binarized using the threshold β P r0, 1s. The function h takes
the set of candidates C and the binarized boundary and occlusion maps
as inputs, and returns the ordered set pC,ěq:

pC,ěq “ hpC, pY ą αq, pZ ą βq (4.6)

Our implementation of h consists in, first, computing for each instance
candidate Ck an occlusion-based affordance score spCkq P R, then rank
the set of candidates according to this affordance score. The affordance
score spCkq computed for each candidate is defined such that:

@pC, C1q P C ˆ C, C ě C1 ô spCq ě spC1q (4.7)

78 4.4. Localizing Affordable Instances

(a) (b) (c) (d)

Figure 4.23: Example of instance candidate generation by connected com-
ponent labeling [65]. From left to right: network inference (a); binarized
boundary map (b); complementary of the binarized boundary map (c); result-
ing connected components (d). Best viewed in color

ÿ

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0 0 0 0 0

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

Pp(Ck)

Instance candidate map

b

0 0 0 0 0

0 0 0 1 1

0 0 1 1 1

0 1 1 1 0

1 1 1 0 0

Pp(Z > β)

Occlusion map

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

“ 9

(a) An instance boundary pixel whose outer side is occluded, thus
inducing a high non-occlusion score for this instance boundary pixel

ÿ

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0 0 0 0 0

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

Pp(Ck)

Instance candidate map

b

0 1 1 1 1

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

Pp(Z > β)

Occlusion map

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

“ 0

(b) An instance boundary pixel whose inner side is occluded, thus
inducing a low non-occlusion score for this instance boundary pixel

Figure 4.24: Computation of a local non-occlusion score at pixel location p
by XNOR between neighborhoods Pp of the inferred occlusion map Z and an
instance candidate mask Ck generated from the inferred boundary map Y

Chapter 4. Occlusion-Aware Instance Segmentation 79

Affordance Score Generally, the most affordable instance of a pile is
most likely to be the one not occluded by any neighboring instances and
on top of the pile. This translates into finding the instance C‹ whose
boundaries are not caused by any occluded parts, and with largest area.
If we note s1pCkq the ratio of boundaries not due to occluded parts and
s2pCkq the area of a candidate Ck, then we look for the most affordable
instance C‹ such that:

C‹ “ arg max
CkPC

2ÿ

i“1

sipCkq (4.8)

Specifically, we calculate the ratio s1pCkq of boundary pixels whose
inner side is occluding the outer side, according to the network infer-
ence Z, as follows:

s1pCkq “ µ
ÿ

pPP
PppCk b pZ ą βqqloooooooooomoooooooooon

local non-occlusion
by element-wise
XNOR function

pYp ą αqCkploooooomoooooon
at each

boundary
pixel

µ “ p|P|
ÿ

pPP
pYp ą αqCkpq´1

loooooooooooooomoooooooooooooon
normalization by the

patch area and perimeter

(4.9)

where Pp is the patch extraction operator, which extracts a square
neighborhood centered around the pixel p, and |P| the area of a patch.
If M P X R is a matrix, then PpM is the square submatrix of M centered
around p P P . If v1pCkq “ 1, then the candidate Ck is not occluded at
all. If v1pCkq ă 1, then a ratio of p1´ v1pCkqq boundaries are caused by
occlusion(s) with neighboring instance(s). Figure 4.24 illustrates the
computation of PppCk b pZ ą βqq.

The area s2pCkq of an instance Ck is trivially defined as:

s2pCkq “
ÿ

pPP
Ckp (4.10)

4.4.3 Discussion

As depicted by Figure 4.25, the proposed approach gives good qualita-
tive results in images densely populated with instances. A qualitative
comparison with a box proposal-based approach [45] on non-annotated
real images is also provided in Figure 4.26. We quantitatively evaluate
our overall strategy, including the bicameral inference and the grasp
generation, on a real-world robotic setup in Chapter 5.

80 4.4. Localizing Affordable Instances

(a) (b) (c) (d)

Figure 4.25: Qualitative results, and corresponding intermediate states, using
our approach after training on our synthetic data (see later Chapter 5 for de-
tails). From left to right: real image as input (a) ; bicameral network inference
(b); connected components (c); most affordable instance (d).

Chapter 4. Occlusion-Aware Instance Segmentation 81

(a)

(b)

(c)

(a)

(b)

(c)

Figure 4.26: Comparative instance segment proposals after training on Mikado.
From top to bottom: input (a); results using a proposal-based approach [45]
(b); using the proposed approach (c). On (b), the rectangles are the detected
box proposals. On (c), the rectangles and circles represent instance-centered
parallel-jaw and suction-cup grasps respectively.

82 4.4. Localizing Affordable Instances

Hyperparameters In our pipeline for generating an ordered set of can-
didates pC,ěq, we introduced three hyperparameters: the thresholds
α and β for binarizing the boundary and occlusion maps respectively,
and the size of the considered neighborhood Pp when computing the
affordance score. The thresholds α and β can be set both to 0.5 by de-
fault as the network is trained for binary classification. In practice, we
empirically found that a lower value of 0.1 enables more stable perfor-
mances, as it leads to more closed boundaries, thus grasp coordinates
most likely inside an object (see Section B.1 for visualizing the impact
of these thresholds). The size of the patch operator Pp is set relatively
to the average thickness of the inferred occlusion edges, such that it
covers this thickness in the four directions around the pixel location p.
In our experiments, we use a 9ˆ 9 patch operator.

4.4.4 Perspectives

Loss Functions The hyperparameters introduced in Section 4.4 are
strongly dependent of the bicameral loss function which controls the
quality of the inferred boundaries and occlusions (c.f . Section 4.1.2).
In our experiments, we used balanced cross-entropy loss functions,
but such loss functions induce thick and sometimes broken bound-
aries. Although thick boundaries are not a critical issue for instance
segmentation, we are aware of recent works [43, 108, 197] that proposed
alternative loss functions for learning crisper and thinner boundaries in
the context of imbalanced distribution. Specifically, [43] combined the
cross-entropy with the so-called Dice loss that additionnally compares
the similarity between the two pixel sets. [197] performed edge align-
ment during training by solving a minimum cost bipartite assignment
problem. In the application context of object detection, which faces the
same class-imbalance issue, [108] introduced the so-called focal loss to
put more focus on the hard misclassified training examples, thus giving
sparser results. Other recent works addressed the lack of connectivity
between the inferred boundary pixels [13, 133]. Specifically, [133] intro-
duced a topology-aware loss function designed for minimizing the `2
distance between deep representations of the inferred and ground-truth
boudary maps. [13, 133] also both proposed a refinement procedure
that iteratively applies the same model over the previous delineation
to refine the prediction at each step, but at the cost of multiple forward
passes.

Instance Embedding Our implemention of function g (c.f . Section
4.4.2) for associating pixels into instances assumes that the connected
components deduced from the binarized network inference are instance

Chapter 4. Occlusion-Aware Instance Segmentation 83

(a) Oversegmentation (b) Overclustering
due to false positives due to unclosed boundaries

Figure 4.27: Real-world examples of failure cases due to false positives and
unclosed boundaries, using the proposed approach. False positives induce
instance parts as candidates (a), while unclosed boundaries grouped instances
as candidates (b). A solution is to consider instance embedding [115, 137] for
a smoother pixel clustering. Top: input; bottom: results.

Failure Success Failure Success

Figure 4.28: Real-world examples of non-equivariance cases, using the pro-
posed approach. As boundaries and occlusions are not encoded independently
of the corresponding instance poses despite data augmentation, similar scenes
may lead to different results. A solution is to consider pose-equivariant learn-
ing structures [160]. Top: input; bottom: result.

84 4.5. Conclusion

candidates. In practice, the inferred boundaries may not be closed for
some instances, thus inducing groups of instances as instance can-
didates. Conversely, false positives may lead to oversegment some
instances, thereby generating instance parts as instance candidates (see
Figure 4.27). Interestingly, recent works suggested that the convolu-
tional pixel representations can be augmented with a distance to an
implicit reference point of the instance to which they belong [115, 137].
Considering a pixel clustering based on the pixel features including
this instance embedding, instead of binary decisions, should enable a
smoother function for generating instance candidates.

Pose Equivariance As deep convolutional networks are not rotation-
equivariant, nor scale-equivariant, boundaries are not encoded indepen-
dently of the instance poses although our training data is accordingly
augmented with geometric deformations. As a result, similar scenes,
that differ only by visually minor translations, rotations or scaling, may
lead to very different detections from the bicameral network. Figure
4.28 illustrates cases of this lack of equivariance. Implementing instead
a bicameral structuring from pose-equivariant learning modules such
as [160] is likely to introduce this property in the learning.

4.5 Conclusion

4.5.1 Summary

In this chapter, we proposed a novel fully convolutional structure, re-
ferred to as bicameral, for jointly inferring instance boundaries and their
occlusion-based orientation from a single image. The proposed bicam-
eral network is composed of a single encoder embedding boundaries
and occlusions in a joint feature space, two cascaded decoders for re-
covering boundaries and occlusions respectively, linked altogether by
skip connections.

Specifically, we first detailed the proposed architecture, in contrast
with the state-of-the-art approaches for oriented boundary detection
[186] and amodal instance segmentation [206]. We evaluated the pro-
posed network on the related state-of-the-art real-world datasets, i.e.
PIOD [186] and COCOA [206], and a synthetic dataset, namely Mikado,
which better adresses the scenario of instances piled up in bulk in ac-
cordance with our application context (see Chapter 5 for details on the
generation and plausiblity). We then conducted an ablation study of the
proposed architecture to highlight the role of each of his components,
including the relative layout of the encoder and decoders, the presence
of skip connections, and the encoder’s backbone.

Chapter 4. Occlusion-Aware Instance Segmentation 85

In anticipation of detecting the most affordable instance of a pile in
high-throughput bin-picking applications, we finally proposed a simple
scheme to translate the bicameral network inference into relevant grasp
coordinates, based on independent local operations on the inferred
boundary and occlusion maps.

4.5.2 Contributions

Unlike the state-of-the-art approaches for both oriented boundary detec-
tion and amodal instance segmentation, which rely on two independent
streams for boundaries and occlusions respectively, jointly encoding
boundaries and occlusions in a single representation enables to leverage
the strong link between boundaries and occlusions in scenes of many
instances on top of each other.

As a result, the proposed bicameral network achieves state-of-the-
art performances on both real-word and synthetic data. For detecting
boundaries, the proposed method outperforms the two-stream baseline
for oriented boundary detection by more than 3 points on PIOD, and 1
point on Mikado, and the two-stream baseline for amodal segmentation
by near 20 points on COCOA. For occlusions, the performance gain
reaches more than 1 point and 10 points for oriented boundary detection
and amodal segmentation respectively.

Our ablation study showed that, compared with alternative lay-
outs of the encoder and decoders, the proposed bicameral structur-
ing proves the most performance-enhancing on PIOD and Mikado.
Skip connections between the encoder and each decoder enable to effi-
ciently combine low-level and higher-level semantics when decoding
boundaries and occlusions from the encoder representation. Skip con-
nections between the decoders enables a better joint error minimization.
Building a bicameral network from a very deep encoder composed of
densely connected convolutional blocks increases the performance gain
to 6 and more than 5 points on PIOD for boundaries and occlusions
respectively.

The proposed method for detecting the most affordable instance of
a pile from a synthetically trained bicameral network inference proves
qualitatively efficient on non-annotated real images densely populated
with instances, while enabling a highly parallelizable implementation.
These observations thus suggest promising quantitative results for bin-
picking applications. In Chapter 5, we further investigate synthetic
training data for real-world bin-picking, then quantify the proposed
method on a real-world robotic setup.

86 4.5. Conclusion

Chapter 5

Application to Bin-Picking

In Chapter 4, we presented a performance-enhancing “bicameral” con-
volutional structure for jointly inferring instance boundaries and occlu-
sions, and consequently detecting the most affordable instance of a pile
from a single image. In this chapter, we want to apply this bicameral
network to real-world bin-picking applications.

Human annotators
∼30min per image

Real image Annotated real image

(a) Common approach based on hand-made annotations

Human
supervisor

Physics and render engines
∼5min per image Annotated synthetic image

(b) Our training data generation pipeline

Figure 5.1: Our simulation-based approach for generating training data (b)
compared with the common approach that relies on manual annotations (a).
See also video “mikado01” in supplementary material.

87

88 5.1. Synthetic Training Data

However, there is no real-world training dataset for large-scale bin-
picking and annotating real images with oriented boundaries is tedious
and time-consuming. As illustrated by Figure 5.1, we thus propose to
synthetically train our bicameral FCN.

5.1 Synthetic Training Data

In this section, we describe our pipeline for generating synthetic train-
ing data from off-the-shelf rendering and physics engines.

5.1.1 Data Generation

We generate synthetic data using custom code on top of Blender [21]
by simulating scenes of objects piled up in bulk and rendering the cor-
responding top views, as depicted in Figure 5.2. More precisely, after
modelling a static open box and, on top, a perspective camera, some
mesh templates are instantiated in random initial pose and successively
dropped above the box using the Blender’s physics engine (a video
showing the generation of a scene is provided in supplementary ma-
terial). We then render the camera view, and the corresponding depth
image, using the Cycles rendering engine. In this configuration, we
ensure a wide pose variability, a lot of occlusions between instances,
and the ground-truth occlusion boundaries can be trivially derived
from depth.

In our application context, we consider piles of many instances
with inner variability and using only RGB. Specifically, we target the
real-world scenario of unpiling packaged food products. We thus
generate RGB images of food products piled up in bulk by randomly
applying local and global deformations to mesh templates that we
texture successively from a set of texture images retrieved using the
Google Images search engine1 and manually cropped to remove any
background. Each scene is composed of many instances using the same
texture image as we target homogeneous piles. Besides, to prevent
the network from simply substracting the background, we apply to
the box a texture randomly chosen among a set of background images,
retrieved using the Google Images search engine as well. Between
each image generation, we also randomly jitter the cameras and light
locations to prevent the network from learning a fixed source of light,
and so fixed reflections and shadows. Note that the proposed pipeline
is not specific to the case of food products.

1https://images.google.com/

Chapter 5. Application to Bin-Picking 89

+
Inputs:
Mesh template
Texture images

Physics simulation of piles of sachets

Top-view RGB-D camera rendering

Training and test data preparation

Figure 5.2: Overview of the Mikado
pipeline (best viewed in color).
Given a mesh template and texture
images, piles of deformed instances
are generated using a physics
engine. A top-view camera is then
rendered to capture RGB and depth.
The synthetic images and their
annotations (ground-truth
boundaries are in blue, unoccluded
side in orange) are finally prepared
to be fed-forward through the
network. See also video “mikado02”
in supplementary material.

Top-view RGB-D camera rendering

SegmentationRGB Depth

Generating ground-truth boundaries and occlusions

Local depth-based
segmentations

Instance
boundaries

Boundaries and
unoccluded side

Training and test data preparation

Figure 5.3: Pipeline for
generating the
ground-truth boundaries
and occlusions (best
viewed in color). At each
boundary pixel, a
depth-based binary
segmentation of the
neighborhood is
performed to label each
side, such that the higher
side is set to 1 and the
lower side to 0. In the
end, the ground truth
consists of instance
boundaries (blue) and
their unoccluded side
(orange).

90 5.1. Synthetic Training Data

For our experiments, we generate two datasets: Mikado and a large
extension referred to as Mikado+. Mikado and Mikado+ differ by the
number of images but also the mesh templates, textures and back-
grounds used in simulation (see Table 5.1). Samples and characteristics
of the two datasets, compared with the amodal dataset of [55], referred
to D2SA, which contains real images of supermarket items annotated
with the modal and amodal masks, are provided in Figure 5.4 (see
Figures C.1 and C.2 for a comprehensive overview of our textures and
background images). The largest generated dataset finally comprises
on average up to 31.5 instances per image, hence 6 times more instances
and 22 times more inter-instance occlusions per image than D2SA.

5.1.2 Data Augmentation

As our RGB images are generated using heuristic rendering models,
the training and evaluation may be biased by a lack of realism in
the sense that the simulated camera models limitedly synthesize the
properties and imperfections of real-world sensors. However, we want
the proposed network to capture generalizable invariants from the
synthetic data. Randomizing the image characteristics that are to vary
at inference time is thereby a key condition for successful inferences in
real-world conditions. We consequently augment our synthetic data
statically at simulation time and dynamically during training.

Static Augmentation During simulation, each dropped instance is
augmented with a number of random geometric deformations: global
transformations including isotropic and anisotropic scaling, tapering,
bending, and twisting; local deformations of the mesh surface. As
illustrated by Figure 5.5, such deformations enable to increase the local
geometry variability, and consequently the rendered aspect. In addition
with the variations of mesh templates, textures, and backgrounds, this
results in statically augmented synthetic images.

Dynamic Augmentation During training, we randomly filter one im-
age out of two with a gaussian blur and jitter independently the RGB
values, as shown in Figure 5.6, at both training and testing time. The
parameters for gaussian filtering and value jittering are randomly cho-
sen within empirically predefined intervals. This prevents the network
from overfitting the too perfect synthetic color variations. In addition,
the Mikado+ images are augmented with random permutation of the
RGB channels and random under or over-exposition, as also illustrated
by Figure 5.6. Unlike Mikado, Mikado+ thus depicts more color, texture
and luminance variations as well.

Chapter 5. Application to Bin-Picking 91

Mikado Mikado+

Mesh templates 1 4

Backgrounds 40 600
Textures 120 2,400

Table 5.1: Differences between Mikado and Mikado+

D2SA [55] Mikado Mikado+

Dataset D2SA1 [55] Mikado (Ours) Mikado+ (Ours)

O
ve

ra
ll

Average 1962ˆ1569 640ˆ512 640ˆ512resolution
Number of 5,600 2,400 14,560images
Number of 28,703 48,184 459,002instances

Ground-truth Human-made Computer-generatedannotations

Pe
r

im
ag

e

Number of 5.1 20.1 31.5instances
Inter-instance 2.8 52.9 60.5occlusions

Background 79% 24% 24%pixels
1 The statistics on D2SA are only on the train and validation subsets as the test subset
is not provided.

Figure 5.4: Samples and characteristics of the state-of-the-art real-world
dataset for boundary and occlusion detection on piles [55] compared with our
synthetic data. Unlike D2SA, the variety of occlusions is better represented in
Mikado and the dataset can be extensively enriched at low cost (Mikado+).

92 5.1. Synthetic Training Data

Random geometric deformations in simulation?
No Yes No Yes

Side view Top view

Figure 5.5: Augmenting the mesh template with random geometric deforma-
tions qualitatively induces much wider ranges of texture and light variations

Raw Jittered Blurred Final

Raw Recolored Darkened Final

Figure 5.6: Synthetic data augmentation for Mikado and Mikado+ (first row),
and Mikado+ only (second row)

Chapter 5. Application to Bin-Picking 93

5.2 Synthetic Data Plausibility Check

Unlike hand-made annotations, which are costly to obtain, simulation
for generating training data is a virtually unlimited source of unbi-
ased ground-truth annotations. However, one may raise the question
whether such data is realistic. The answer is obviously no, but we
argue that Mikado is plausible for training a bicameral network for
real-world applications. In this section, we thus conduct experiments
to jointly check the plausiblity and show the benefits of our synthetic
data, independently of robotic interactions.

5.2.1 Experimental Setup

We show that the proposed synthetic data is plausible for real-world
applications by evaluating the transferability of features learned from
Mikado to real data. In line with [194], features learned from a source
domain are transferable if they can be repurposed and boost general-
ization on a target domain. Specifically, we train the proposed network
on Mikado, then retrain on the amodal dataset of [55] referred to as
D2SA (c.f . Figure 5.4), only the decoders and some of the top encoder
blocks, as deep features transition from general to specific by the last
layers. Furthermore, as a proof of the benefits of synthetic data in con-
trast real-world datasets which are hardly extensible, we study how
a richer synthetic data distribution, i.e. Mikado+, impacts the domain
adaptation. As the ranges of texture, shape, and pose variations are
more widely represented in Mikado+, better transferable invariants are
expected to be learned. In addition, we compare with the augmentation
strategy of [55], referred to as D2SA+, which consists in overlaying
manually isolated instances of real images into fake training images.
Specifically, we conduct three sets of experiments for comparing:

1. bicameral networks finetuned on D2SA without and after pre-
training on Mikado, with different encoder block at which the
network is choped and retrained (Figure 5.7), to expose the most
transferable features learned from Mikado;

2. bicameral networks finetuned on D2SA using the most transfer-
able synthetic features and different number of finetuning images,
to reduce the need of hand-made annotations and compare with
the augmentation strategy of [55], referred to as D2SA+;

3. bicameral networks finetuned on D2SA using the most trans-
ferable features learned from Mikado or Mikado+, to show the
impact of a richer synthetic data distribution (Mikado+) on do-
main adaptation.

94 5.2. Synthetic Data Plausibility Check

When finetuning on D2SA we define a block as a set of convolutional
layers between two pooling layers; a VGG16-based encoder is therefore
composed of 5 blocks (c.f . Fig. 5.7). A block is said “frozen” when its
corresponding parameters remain unchanged during finetuning.

Why D2SA As Target Domain? We consider D2SA instead of PIOD
or COCOA (c.f . Table 3.16) for transfer learning from Mikado because
the texture, shape, and pose distributions of PIOD and COCOA are very
different from Mikado. Indeed, [14, 15] show that a low divergence
between the source and target domain distributions is a necessary
condition for the success of domain adaptation. Unlike PIOD and
COCOA, which contain natural images of indoor and urban scenes
with people, cars and animals, D2SA and Mikado both contain top-view
images of household objects in bulk.

D2SA [55] D2SA+‹ [55] Mikado+ (Ours)
Training images 512 2,960 28,800

Validation images 56 328 4,800
Test images 5,992 5,992 –

Training iterations 960 5,550 108,000
Training epochs 15 15 30
In experiments 1–3 2–3
‹ D2SA+ refers to the augmentation strategy of [55], consisting in creating fake
images by overlaying isolated instances.

Table 5.2: Per-dataset folds for our cross-validation experiments after offline
data augmentation

Data Preparation To robustly assess the generalizability of each model,
each experiment is cross-validated using three folds (see Table 5.2).
Folds of D2SA are defined with respect to the initial split proposed
by their authors. Specifically, the original training images are used for
training or validation in our folds, and the original validation images
for test. The original test images are never used as they are not publicly
available. To present comparative results more significative, curves
and scores are averaged on the three folds. For training, the networks
are not directly fed with the original images but several sub-images

Chapter 5. Application to Bin-Picking 95

randomly extracted from each original image, and augmented offline
with random geometric transformations (flipping, scaling and rotation).
Note that performances are not impacted by cropping given that the
bicameral network is fully convolutional.

Training Settings For each dataset and each experiment, each net-
work is trained and tested using Caffe [92], and the exact same settings
(including fixed random seeds). At training time, we use the Adam
solver [95] with β1 “ .9, β2 “ .999, ε “ 10´8, a fixed learning rate of
10´4, a weight decay of 10´4, a `2 regularization, and a batch size of
eight 256ˆ256 images. The training images are randomly permuted at
each epoch. As we solve a non-convex optimization problem, without
theoretical convergence guarantees, the number of training iterations
is chosen for each dataset from an empiric analysis on training and
validation subsets. As generally adopted, the optimization is stopped
when the validation error stagnates or increases while the training er-
ror keeps decreasing. Please note that although the chosen stopping
criterion may not be optimal for reaching the best performances on
each dataset, it is however sufficient for significative comparative per-
formances on a given dataset since each network in a comparison is
trained under the exact same conditions. For the experiments without
finetuning from weights pretrained on Mikado or Mikado+, each net-
work has its encoder initialized with weights pretrained on ImageNet
[159], and its decoder(s) with the Xavier method [61]. The decoders
are also equipped with dropout layers (with a ratio of 0.5) after each
convolutional block at training time, to avoid overfitting.

Evaluation Metrics We use the same evaluation metrics as introduced
in Section 4.1.3: the best F-score on dataset scale (ODS) and the average
precision (AP). Whereas ODS highlights one binarization threshold that
gives the best compromise between recall and precision, AP conveys
the area under the precision-recall curve over the full recall interval.
As matching tolerance, i.e. the maximum `2-distance to the closest
ground-truth pixel for a pixel predicted positive to be considered as
a good hit, we consider a hard value of 0 pixels for Mikado (which
contains perfect ground-truth boundaries) but a state-of-the-art value
of 0.0075

?
W2 ` H2p» 2.7 pixels in our evaluations) for D2SA that

contains approximate hand-made annotations, where W P N‹ and
H P N‹ are respectively the image width and height. We perform
evaluation without non-maximum suppression, which may artificially
improve precision.

96 5.2. Synthetic Data Plausibility Check

in out1 out2 in out1 out2 in out1 out2

Frozen: 1 Frozen: 1, 2 Frozen: 1 to 3

in out1 out2 in out1 out2 in

out1

out2

Input

Boundaries

Occlusions
Conv+ReLU
Frozen Conv+ReLU
Pooling

Features
Pooling
indices

Unpooling

Frozen: 1 to 4 Frozen: 1 to 5

Figure 5.7: A bicameral structure with frozen encoder blocks

Pretraining Finetuning Frozen encoder Boundaries Occlusions
images images blocks‹ (Fig. 5.7) ODS AP ODS AP

None D2SA None .700 .715 .725 .756
D2SA+ .783 .792 .785 .795

Mikado

None – .652 .649 .458 .400

D2SA

None .780 .808 .794 .830
1 .783 .803 .797 .829

1, 2 .780 .802 .793 .827
1, 2, 3 .793 .819 .810 .849

1, 2, 3, 4 .759 .799 .769 .819
1, 2, 3, 4, 5 .767 .815 .773 .823

‹ A block is a set of convolutional layers between two pooling layers; a VGG16-
based encoder is therefore composed of 5 blocks.

Table 5.3: Comparative performances of the proposed network on D2SA [55]
using different pretraining conditions. Performances on both boundaries and
occlusions are maximized when freezing at finetuning time the first three
encoder blocks pretrained on Mikado (see Figure 5.7).

Chapter 5. Application to Bin-Picking 97

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 5.8: Comparative results
for instance boundary (blue)
and unoccluded side (orange)
detection on D2SA (best
viewed in color). From top to
bottom: input (a), ground truth
(b), prediction using the
proposed network trained on
D2SA (c), using the proposed
network pretrained on Mikado
then finetuned on D2SA with
the first three encoder blocks
frozen (d). Pretraining the
proposed network on Mikado
before finetuning on D2SA
leads to a visually significant
improvement in the quality of
the results.

98 5.2. Synthetic Data Plausibility Check

5.2.2 Transfer Learning Experiments

In line with [194], we first expose the most transferable features learned
by a bicameral network from Mikado, and the impact of their reuse on
the performances on D2SA (Table 5.3). We then study the performances
obtained with the most transferable features, with respect to the per-
centage of the initial number of finetuning images and the synthetic
training data distribution (Mikado or Mikado+), compared with the
D2SA and D2SA+ baselines (Figure 5.9).

Synthetic Data Instead of Hand-Made Annotations As Mikado is a
computer-generated dataset, one may raise the question whether it is
realistic. The answer is obviously no, but we argue that it is plausible
for both a significative evaluation and real-world applications. First, in
Chapter 4 when comparing network designs, the same overall relative
results are obtained on PIOD, a dataset of manually annotated natural
images. Second, the synthetic features learned from Mikado can be
repurposed for inference on real images. Specifically, Mikado enables
a transferable feature learning in line with [194], i.e. first training the
network on a source dataset, then retraining only the task-specific lay-
ers on the target one. In our transfer learning experiments, we show
that using local features pretrained on Mikado enables much better
results on D2SA, a dataset of real-world piles of supermarket items [55].
As reported by Table 5.3 and qualitatively corroborated by Figure 5.8,
a gain of more than 10 points in AP for boundaries and 9 points for
occlusions is achieved when finetuning the proposed network on D2SA
with the first three encoder blocks frozen (c.f . Figure 5.7) after pretrain-
ing on Mikado, instead of training all the layers only on D2SA. This
suggests that a network trained on Mikado can learn a more general
concept of depth ordering as our dataset presents a wider variety of oc-
clusion relations, including both inter-instance and object/background
boundaries. [55] also introduces an augmentation procedure to enrich
the training subset with more piles of objects (D2SA+). Their proce-
dure consists in creating new images by overlaying manually isolated
instances. Table 5.3 reports that our simulation-based pretraining out-
performs D2SA+ as well. Despite the domain shift, simulation enables
more physics-consistent rendering at boundaries and less redundancy
in terms of poses, unlike brute-force overlaying of manually delineated
instance segments from real images. Furthermore, almost equivalent
performances on D2SA are achieved, while reducing the number of
costly human-labeled real images for finetuning. Figure 5.9 shows that
a bicameral network finetuned on D2SA, with the first three encoder
blocks frozen after pretraining on Mikado, using only 25% of the initial
D2SA finetuning subset still outperforms a bicameral network trained

Chapter 5. Application to Bin-Picking 99

only on D2SA or D2SA+.

0 13 25 38 50 75 100

.6
52

.7
64 .7

88

.7
95

.7
97

.7
94

.7
93

.5
81

.7
90 .8
04

.8
06

.8
04

.8
09

.8
09

.7
00

.7
83

Percentage of the initial D2SA finetuning set

B
ou

n
d
ar

y
O

D
S

0 13 25 38 50 75 100

.6
49

.7
82 .8

09

.8
15

.8
12

.8
19

.8
19

.5
80

.8
16 .8
28

.8
30

.8
29

.8
35

.8
36

.7
15

.7
92

Percentage of the initial D2SA finetuning set

B
ou

n
d
a
ry

A
P

0 13 25 38 50 75 100

.4
58

.7
68 .7
96

.8
04

.8
08

.8
08

.8
10

.3
57

.8
01

.8
16

.8
19

.8
17

.8
21

.8
23

.7
25 .7

85

Percentage of the initial D2SA finetuning set

O
cc

lu
si

on
O

D
S

0 13 25 38 50 75 100
.4

00

.7
93 .8

32

.8
42

.8
50

.8
49

.8
49

.3
65

.8
34

.8
49

.8
51

.8
50

.8
57

.8
59

.7
56 .7

95

Percentage of the initial D2SA finetuning set

O
cc

lu
si

o
n

A
P

/ No pretraining with/without augmentation [55]
Pretraining on Mikado Pretraining on Mikado+

Figure 5.9: Performances of the proposed bicameral network pretrained on
Mikado/Mikado+ then finetuned on D2SA with the encoder blocks 1, 2, 3
frozen, with respect to the number of real images retained for finetuning.
Exploring a wider range of configurations in simulation (Mikado+) enables
to learn more abstract local representations of the boundaries and occlusions,
thus achieving state-of-the-art performances while drastically reducing the
number of real images for finetuning. Best viewed in color

Synthetic Data for Learning More Generalizable Invariants Unlike
real-world datasets, a synthetic dataset is readily extensible. By en-
riching Mikado with 20 times more texture images, 15 times more
background images and 4 mesh templates, namely Mikado+, we expect
more transferable local and global invariants to be learned as the ranges
of color, texture, shape, and pose variations are better represented. Ta-
ble 5.3 indeed reports that pretraining on Mikado+ instead of training
only on D2SA increases AP by 10.1 points for boundaries and 7.8 points
for occlusions while using only 13% of the initial D2SA finetuning set
(Figure 5.9). This corresponds to a gain of 3.4 points for boundaries
and 4.1 points for occlusions over using Mikado in the same conditions.

100 5.2. Synthetic Data Plausibility Check

These observations imply that Mikado+ enables to learn more abstract
local representations than Mikado. However, when applied on D2SA
without finetuning, the Mikado+ model proves less effective than the
model pretrained on Mikado. Consistently with the results after fine-
tuning on D2SA, this could be explained by an overgeneralization of the
task-specific layers. The neurons indeed co-adapt to capture the most
discriminative patterns that are not likely to be the colors nor the object
and background textures in Mikado+. An over-randomization of the
colors and textures may disconnect the learned representations from
concrete examples. This has nevertheless the advantage of easing the
finetuning on D2SA, as the real-world scenes then appear as a specific
variation consistent with the learned abstract representations.

All these observations are incentives to favour synthetic training
data when pixel-wise annotations on real-world images are hardly
collectable. As also previously seen in Section 4.2 and illustrated in
Figure 4.8, hand-made annotations introduce biases in the training and
evaluation due to inaccuracy, incompleteness, or inconsistency. These
biases are strongly attenued by using instead synthetic data. Indeed,
leveraging unbiased ground-truth annotations and randomizing the
scene parameters that are to vary at inference time enable a better
representation of the training data distributions.

5.2.3 Conclusion

The proposed synthetic data, referred to as Mikado, proves plausible
for real-world applications in the sense that it enables the learning
of deep features transferable to real data, while drastically reducing
the need of hand-made annotations for finetuning. Specifically, reusing
the first three encoder blocks in a VGG16-based bicameral encoder
trained on Mikado increases AP by more than 10 points for both bound-
aries and occlusions over the baseline, and near 5 points over D2SA+, i.e.
the augmentation strategy of [55] based on manual instance delineation.
State-of-the-art performances over D2SA and D2SA+ are still achieved
using these representations learned from Mikado with only 25% of the
initial number of finetuning D2SA images, and only 13% by enrich-
ing the synthetic training data distribution (Mikado+). Randomizing
the shape, texture and light variations indeed enables the bicameral
network to capture more generalizable multiscale invariants.

Note that the proposed Mikado pipeline is virtually not limited to
RGB. Depending on the application requirements, Mikado could be
easily adapted for an alternative input modality such as depth (see
Section C.1.2).

Chapter 5. Application to Bin-Picking 101

5.3 Real-World Experimental Evaluation

We showed that the proposed synthetic data is plausible for real-world
applications. In this section, we now conduct experiments on a real-
world robotic setup, in order to answer the following questions:

• Does a synthetically trained bicameral network enable effective
bin-picking performances in real-world conditions?

• How does the proposed solution compare with the gripper-oriented
industrial baseline?

• Can a bicameral network achieve real-time performances for high-
throughput bin-picking applications?

5.3.1 Real-World Experimental Setup

As illustrated by Figure 5.10, our real-world robotic setup consists of a
single RGB camera to capture a top view of the scene, a FANUC robotic
arm equipped with a suction cup as end effector, and a Nvidia Jetson
TX2 as processing unit, all connected to a wired Ethernet network.

camera

robot end
effector

Figure 5.10:
Overview of the
real-world robotic
setup for our
experiments. A
single RGB camera
(top right) captures
a top-view of the
scene. A robotic
arm (left) equipped
with a vacuum
suction gripper
(bottom right)
extracts instances
one by one.

The intrinsic and extrinsic parameters of the camera are estimated using
standard off-the-shelf calibration tools [25, 203] based on the pinhone
cameral model [71]. As a single camera is not sufficient to estimate the
depth of a pixel using the state-of-the-art pinhole camera model, we

102 5.3. Real-World Experimental Evaluation

determine the depth by intersecting the corresponding 3D ray with a
user-defined plane, in practice a plane close and parallel to the bottom
of the scene. This proves to be a reasonable approximation in practice,
given the relatively low height of the pile and the robot compliance.

5.3.2 Experimental Protocol

In order to evalutate the proposed approach in real-world conditions,
we conduct a set of experiments that consist in unpiling packaged food
products using a bicameral network trained on Mikado or Mikado+
without any finetuning on real images. Specifically, each experiment
is a sequence of open-loop cycles, aimed at extracting one by one some
product instances piled up in bulk. Consistently with mainstream
scenarios in the food industry, each scene is always composed of many
instances of the same object.

co
m

pot
e

co
ok

ie

cr
ep

e

don
ut

ha
rib

o

m
ad

ele
in

e

ne
m

sa
uce

ta
rte

let
te

te
a

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

AF

E

D C

B

Criterion Description
(A) Size Area of an instance
(B) Isotropy Aspect ratio of an instance
(C) Shape Curvature of the instance boundaries
(D) Textureness Presence of complex patterns such as text
(E) Colorfulness Number and variations of colors
(F) Transparency Presence of transparent or translucent parts

Figure 5.11: Overview of the 10 products used in our real-world experiments.
The spider charts show their signature according to six qualitative criteria:
size (A); isotropy (B); shape (C); textureness (D); colorfulness (E); transparency
(F). Each product represents a different category of packaged food, as the
signature shapes are all different. Best viewed in color

Each cycle comprises the following steps:

1. capturing a top-view RGB image of the scene;

2. detecting the most affordable instance;

Chapter 5. Application to Bin-Picking 103

Question Three possible answers
Q1: Is the extraction successful? Yes; No; More than one instances
Q2: Is the grasp centered on the instance? Yes; No; Between two instances
Q3: Is the detected instance occluded? Not at all; Weakly; Highly

(a) Definition of an observation

t=1 t=2 t=3 t=4

Q1: Yes Q1: Yes Q1: Yes Q1: Yes
Q2: Yes Q2: No Q2: Yes Q2: Yes
Q3: No Q3: Weakly Q3: No Q3: No

t=1 t=2 t=3 t=4

Q1: Yes Q1: Yes Q1: No Q1: Yes
Q2: Yes Q2: Yes Q2: Between two Q2: Yes
Q3: No Q3: No Q3: – Q3: No

(b) Extracts from bin-picking sequences with the corresponding observations

Figure 5.12: Observations in our real-world experiments. Best viewed in color

104 5.3. Real-World Experimental Evaluation

3. extracting the instance at the sent coordinates;

4. observing the result.

As depicted in Figure 5.12, each observation consists in answering
three questions to characterize the instance detection and extraction.
In total, we collected 3,082 observations, organized in 134 sequences,
over 10 different products. An overview of the different products
instantiated in a pile, is provided in Figure 5.11. Each product presents
a different combination of geometric and photometric characteristics,
thereby representing a different category of packaged food.

Evaluation Metrics We calculate the evaluation metrics in Table C.2
over all the observations and per product. Specifically, we are inter-
ested in the observed success rate (SR) and the success of the proposed
method independently of the extraction (SV). The margin between
SV and SR thus reports the failures due to imperfect physical settings,
typically by lack of grasp adhesiveness. We additionnally analyze the
causes of success and failure by evaluating how object-centered grasps
and occlusion-aware detections contribute to the performances.

Metric Measures the amount of

Real success Successful extractions, i.e.
whose instance is taken away

Virtual success
Extractions either successful,
or failed but whose grasp is centered
on a non-occluded instance

Centered success Successful extractions
whose grasp is centered

Non-occluded success Successful extractions
whose instance is unoccluded

Not-centered failure Failed extractions
because of not centered grasps

Occluded failure Failed extractions
because of occluded instances

Table 5.4: Definition of our real-world performance metrics

Our experimental analysis is organized as follows. First, we study
how a synthetically trained bicameral network behaves in real-world
bin-picking conditions. Second, we compare the proposed approach
with our industrial baseline. Finally, we focus on computation times
and how to achieve real-time performances as requested by high-
throughput applications.

Chapter 5. Application to Bin-Picking 105

5.3.3 Generalization from Synthetic Training

In this section, we study how a bicameral network trained on the
proposed synthetic data performs on real-world piles of instances, how
the synthetic training data distribution impacts these performances,
and how sensitive is the network to light changes.

Overall Performances As reported by Figure 5.13 (see Table C.3 for
more details), the proposed method achieves an overall success rate of
74%. As 27% of failures are actually good detections, i.e. grasps centered
on unoccluded instances, but due to lack of gripper adhesiveness, the
success virtually reaches 81% over all products. In our experiments, we
found four reasons of non-adhesiveness:

• The user-defined bottom plane is set too high. As a consequence,
the end effector doesn’t reach the instance.

• The grasp is on a non-planar surface. Vacuum thereby cannot be
created at the grasp coordinates.

• The target instance is in unstable equilibrium. As a result, when
the gripper approaches, the instance is moved away from its
initially detected location (see Figure 5.15).

Input Result (a) (b) (c)

Figure 5.15: Example of good detection but failed extraction because the
instance is in unstable equilibrium. When the end effector approaches (a), the
instance is moved away (b), thereby resulting in a failed extraction (c).

• The instance’s center of gravity differs from the instance mask
centroid. This happens notably for half-empty sachets whose
content is not homogeneously distributed in the sachet, such as
haribo for which 85% of detections are visually correct but only
52% of extractions are successful.

Consistently with our objective, most of the successful extractions
result from detected grasps centered on unoccluded instances: over
all products, 91% of successful extractions are consequent to instance-
centered grasps and 85% to grasps on non-occluded instances. For most

106 5.3. Real-World Experimental Evaluation

co
m

pote

co
okie

cre
pe

donut

har
ibo

m
ad

ele
in

e
nem

sa
uce

tar
tel

ett
e tea

co
m

pote

co
okie

cre
pe

donut

har
ibo

m
ad

ele
in

e
nem

sa
uce

tar
tel

ett
e tea

over
all

.7
4 .8
1

.7
4

.6
0

.5
2 .6

5 .8
4

.7
7 .8
4

.7
7

.7
4.8

5

.8
1

.7
7

.7
0 .8

5

.6
7 .8

6

.8
3 .8
6

.8
6

.8
1

co
m

pote

co
okie

cre
pe

donut

har
ibo

m
ad

ele
in

e
nem

sa
uce

tar
tel

ett
e tea

over
all

.9
6

.9
2

.8
8 .9
2 1.

00

.8
8 .9
2 .9
5

.8
6

.7
8 .9

1

.8
9

.7
8 .8
4 .9

7

.9
1

.9
0

.7
8 .8
4

.7
9 .8

7

.8
5

co
m

pote

co
okie

cre
pe

donut

har
ibo

m
ad

ele
in

e
nem

sa
uce

tar
tel

ett
e tea

over
all

.3
7

.6
0 .7

7

.4
2

.1
4

.7
5 .7
8

.5
0

.7
3

.5
0

.5
1

.3
2

.5
5

.2
3 .4

4

.2
1 .2
5 .2
8

.5
1

.4
0

.1
6 .3

6

Real success

Virtual success

Centered success

Non-occluded success

Non-centered failure

Occluded failure

Figure 5.13: Per-product and overall performances using a bicameral network
trained on Mikado+. Most of the successful extractions result from detected
grasps centered on unoccluded instances, consistently with our approach.

Chapter 5. Application to Bin-Picking 107

Examples of success for each product

Input

Output

Input

Output

Examples of failure due to oversegmentation or overclustering

Input

Output

Input

Output

Figure 5.14: Results using a bicameral network trained on Mikado+. See also
video “binpicking01” in supplementary material.

108 5.3. Real-World Experimental Evaluation

of the products, at least 50% of the failures are non-centered grasps. In
accordance with our motivations, this illustrates that grasps not cen-
tered on the instances are a major concern in bin-picking applications.
The difficulties arising from occlusions are more product-dependent.
For example, instances of tea are prone to strong occlusions but as
each instance is rigid and very light, occluded instances can be eas-
ily extracted (16% of the failures); the pile is consequently completely
reconfigured. By contrast, instances of sauce, whose geometry is nev-
ertheless similarly anisotropic, are non-rigid and relatively heavier,
thereby harder to extract if occluded (50% of the failures).

Impact of the Synthetic Data Distribution In Figure 5.16 (see Table
C.4 for more details), we compare on stick-like products two bicameral
networks trained on Mikado and Mikado+ respectively. Mikado con-
tains only stick-like sachets and a hundred of textures while Mikado+
includes different shapes and thousands of textures (c.f . Figures C.1
and C.2). As expected from Section 5.2, in which we showed that
learning from Mikado+ instead of Mikado produces more abstract rep-
resentations, a bicameral network trained on Mikado+ outperforms
the same network trained on Mikado, by 7, 9, and 32 points on sauce,
tea and nem respectively. The obtained bin-picking performances are
qualitatively corroborated by Figure 5.17: a model trained on Mikado+
instead of Mikado tends to produce more closed instance boundaries
and less false positive, thus enhancing the generation of an affordable
candidate.

Impact of the Lighting Conditions Beyond learning texture and ge-
ometry invariants, one may wonder whether a synthetically trained
bicameral network can be robust to light changes as well. In indus-
trial environments, the robotic setup space is often confined to avoid
external light pertubations. However, this may result in deploying
costly cumbersome structures and power-consuming lights. A solution
agnostic to light changes would thereby enable machines more inde-
pendent of their environment. Figure 5.18 reports that the real-world
performances are implicitly linked to the lighting conditions. As it is
hard to anticipate and synthesize the real-world lighting conditions,
randomizing the image luminance during training (Mikado+) enables
performances more independent of the light changes. A model trained
on Mikado reaches an average success rate of 63% with extrema of 80%
and 20%, against an average success of 79% with tighter extrema of 60%
and more than 90% for a model trained on Mikado+.

Chapter 5. Application to Bin-Picking 109

nem
sa

uce tea

nem
sa

uce tea

.5
0

.7
5

.6
4.8

4

.7
7

.7
7

.5
4

.7
6

.7
7.8

6

.8
3 .8
6

Mikado / Real success

Mikado+ / Real success

Mikado / Virtual success

Mikado+ / Virtual success

nem
sa

uce tea

.8
5 .8
8

.5
8

.9
2 .9
5

.7
8

.7
8 .8

6

.7
9

.7
8 .8
4 .8
7

Mikado / Centered success

Mikado+ / Centered success

Mikado / Non-occluded success

Mikado+ / Non-occluded success

nem
sa

uce tea

.9
2

.7
7

.6
2.7

8

.5
0

.5
0

.3
5 .5

0

.1
6.2

8

.5
1

.1
6

Mikado / Non-centered failure

Mikado+ / Non-centered failure

Mikado / Occluded failure

Mikado+ / Occluded failure

Figure 5.16: Per-product performances using the proposed approach, with
respect to the synthetic training distribution, i.e. Mikado or Mikado+. Training
on Mikado+ instead of Mikado enables to boost performances, as the bicameral
network can learn more generalizable invariants.

110 5.3. Real-World Experimental Evaluation

nem sauce tea

Input

Mikado

Mikado+

Input

Mikado

Mikado+

Figure 5.17: Comparative results using bicameral networks trained on Mikado
and Mikado+ respectively (best viewed in electronic form). Randomizing
the textures, shapes, and light conditions (Mikado+) enables more closed
boundaries and less false positives, thus enhancing the real-world bin-picking
performances.

Chapter 5. Application to Bin-Picking 111

20 30 40 50 60 70
0.2

0.4

0.6

0.8

1

Global luminance

Su
cc

es
s

ra
te

Mikado Mikado+

Examples with different luminance

(a)

(b)

(c)

Low Mid High

Figure 5.18: Real (solid lines) and virtual (dashed lines) success rates SR and
SV , averaged over three products, namely sauce (a), nem (b) and the (c), with
respect to the global image luminance. Randomizing the luminance of the
synthetic training images (Mikado+) enables more robustness to real-world
light changes.

Conclusion A synthetically trained bicameral network trained on
Mikado+ achieves an average bin-picking success rate of 80% over the
10 products. Randomizing the textures, the shapes and the lighting con-
ditions, i.e. using Mikado+ instead of Mikado, enables better and more
stable performances, consistently with our synthetic data plausibility
check in Section 5.2.

5.3.4 Comparison with the Industrial Baseline

In this section, we compare on two products, sauce and madeleine,
the proposed approach with the industrial baseline, which consists
in detecting grasps independently of the object models, just like ours,
but without an explicit notion of instance. As depicted in Figure 5.19,
the baseline is a gripper-dependent proprietary algorithm that takes a
depth image as input and returns ranked grasp opportunities based on
the detection of planar regions in the case of a vacuum-suction gripper.

As reported by Figure 5.20 (see Table C.5 for more details), the pro-
posed model outperforms the industrial baseline by 28 and 34 points on
sauce and madeleine respectively. Unlike the gripper-oriented baseline,
our approach enables instance-centered grasps and avoids occluded in-
stances, hence a much higher success rate. For example, when using the

112 5.3. Real-World Experimental Evaluation

Overview Input (depth map) Output

Figure 5.19: Examples of grasp detection using the industrial baseline, which
consists in detecting planar regions from the depth map, independently of the
object model but without an explicit notion of instance. The depth map is here
obtained by laser triangulation.

baseline on instances of sauce, whose non-rigid stick-like shape makes
object-centered and occlusion-aware grasps important conditions of
success, 87% of the failed extractions are not centered and 35% on oc-
cluded instances, i.e. respectively 44% (.87ˆ .51) and 18% (.35ˆ .51) of
the robot operating cycles. By contrast, only 12% of the robot cycles are
impacted by these causes of failure using our object-oriented approach.

5.3.5 Achieving Real-Time Performances

We showed that the proposed method enables state-of-the-art perfor-
mances over various products. In these experiments, the proposed
method takes 1,800ms on average to process an image on the Nvidia Jet-
son TX2. However, in high-throughput bin-picking applications, the de-
manded cadency often reaches about 60 robot picks per minute, thereby
hardly leaving 100ms for computing relevant grasp coordinates. In this
section, we thus investigate faster variants of the bicameral network.
Specifically, we first study how reducing the number of convolutional
filters in the bicameral network impacts the performances. We then
analyze the resulting computation times and bottlenecks with respect
to different hardwares.

Chapter 5. Application to Bin-Picking 113

sa
uce

m
ad

ele
in

e

sa
uce

m
ad

ele
in

e

.4
9

.5
0

.7
7 .8
4

.5
5

.5
5

.8
3 .8
6

Baseline / Real success

Ours / Real success

Baseline / Virtual success

Ours / Virtual success

sa
uce

m
ad

ele
in

e

.3
7 .5

5

.9
5

.9
2

.6
9 .7
7.8
4

.7
8

Baseline / Centered success

Ours / Centered success

Baseline / Non-occluded success

Ours / Non-occluded success

sa
uce

m
ad

ele
in

e

.8
7

.7
5

.5
0

.7
8

.3
5 .3
8.5

1

.2
9

Baseline / Non-centered failure

Ours / Non-centered failure

Baseline / Occluded failure

Ours / Occluded failure

Figure 5.20: Comparison of the proposed approach, using a bicameral network
trained on Mikado+, with the industrial baseline. Unlike the gripper-oriented
baseline, which detects grasps independently of the object model but without
explicit notion of instance, our approach enables instance-centered grasps and
avoids occluded instances, hence many more successful extractions.

114 5.3. Real-World Experimental Evaluation

Dimensionality Reduction The bicameral network inference dura-
tion is intrinsically linked to the number of parameters, and more
specifically to the number of feature maps and applied filters at each
convolutional layer. Lessening the number of filters however reduces
the dimensionalities for encoding information, so the performances.
We thus study how reducing the number of filters in the bicameral
network impacts the performances on synthetic data and in real-world
bin-picking conditions.

in

conv11

conv12

conv21

conv22

conv31

conv32

conv33

conv41

conv42

conv43

conv51

conv52

conv53

deconv1b

deconv2b

deconv3b

deconv4b

deconv1a

deconv2a

deconv3a

deconv4a

out1 out2

F100 F75 F50 F25
conv1X 64 48 32 16
conv2X 128 96 64 32
conv3X 256 192 128 64
conv4X 512 384 256 128
conv5X 512 384 256 128

deconv4x 256 192 128 64
deconv3x 128 96 64 32
deconv2x 64 48 32 16
deconv1x 32 24 16 8

in

out1

out2

Input

Boundaries

Occlusions

Conv+ReLU

Pooling

Features Pooling indices

Unpooling

Figure 5.21: Number of output feature maps after each convolutional layers,
for different dimensionality reductions. F100 refers to our canonical VGG16-
based architecture used in the previous experiments. Legend is the same as
Figure 4.2. Best viewed in color

Figure 5.21 presents three variants of a bicameral network, namely
F75, F50 and F25, retaining respectively only 75%, 50%, and 25% of the
initial number of convolutional filters. As reported by Table 5.5, reduc-
ing the number of filters induces a gradual loss of performances on
Mikado. Using the lightest variant (F25), AP drops by 1.4 and 1.2 points
for boundaries and occlusions respectively. This observation is corrobo-
rated by the results of transfer learning (c.f . Section 5.2) from Mikado+
to D2SA in Figure 5.22. The performance drop on D2SA is nevertheless

Chapter 5. Application to Bin-Picking 115

Bicameral Number of Boundaries Occlusions
architecture parameters ODS AP ODS AP

F100 34,301,250 (ˆ1.0) .769 .847 .801 .884
F75 19,296,050 (ˆ.56) .756 .832 .791 .876
F50 8,577,442 (ˆ.25) .730 .802 .768 .852
F25 2,145,426 (ˆ.06) .657 .706 .691 .765

Table 5.5: Cross-validated performances for instance boundary and unoc-
cluded side detection on Mikado using a bicameral structuring trained on
Mikado, with respect to the percentage of initial number of convolutional
filters (c.f . Figure 5.21). Reducing the number of convolutional filters in a
bicameral network induces a gradual loss of performances.

0 13 25 38 50 75 100

.6
56

.7
48 .7
57

.7
54 .7
63

.7
57

.7
61

.5
81

.7
90 .8
04

.8
06

.8
04

.8
09

.8
09

.7
00

.7
83

Percentage of the initial D2S finetuning set

B
o
u
n
d
ar

y
O

D
S

0 13 25 38 50 75 100

.6
38

.7
42 .7
59

.7
43 .7
55

.7
48

.7
50

.5
80

.8
16 .8
28

.8
30

.8
29

.8
35

.8
36

.7
15

.7
92

Percentage of the initial D2S finetuning set

B
o
u
n
d
ar

y
A

P

0 13 25 38 50 75 100

.3
78

.7
32 .7
50

.7
53

.7
64

.7
61

.7
68

.3
57

.8
01

.8
16

.8
19

.8
17

.8
21

.8
23

.7
25 .7

85

Percentage of the initial D2S finetuning set

O
cc

lu
si

o
n

O
D

S

0 13 25 38 50 75 100

.2
88

.7
31 .7
65

.7
73

.7
88

.7
88

.7
97

.3
65

.8
34

.8
49

.8
51

.8
50

.8
57

.8
59

.7
56 .7
95

Percentage of the initial D2S finetuning set

O
cc

lu
si

o
n

A
P

/ No pretraining with/without augmentation [55]
/ Using the F25/F100 variant pretrained on Mikado+

Figure 5.22: Cross-validated performances on D2SA of the proposed network
pretrained on Mikado+ then finetuned on D2SA with the encoder blocks 1, 2, 3
frozen, with respect to the percentage of D2SA images retained for finetuning
and the percentage of the initial number of filters (F25 or F100). Despite an
expected performance drop compared with a full bicameral design (F100)
pretrained on Mikado+ or trained using the data augmentation strategy of
[55], retaining only 25% of the initial number of convolutional filters (F25) still
enables to achieve state-of-the-art performances for boundaries and occlusions.

116 5.3. Real-World Experimental Evaluation

nem
sa

uce

co
okie

m
ad

ele
in

e

nem
sa

uce

co
okie

m
ad

ele
in

e

.8
0

.7
1 .8

4

.6
8.8

4

.7
7 .8
1

.6
5.8

6

.7
2 .8

6

.7
3.8

6

.8
3

.8
1

.6
7

F25 / Real success

F100 / Real success

F25 / Virtual success

F100 / Virtual success

nem
sa

uce

co
okie

m
ad

ele
in

e

.9
5

.9
5

.9
2

.8
6.9
2 .9
5

.9
2

.8
8

.7
6 .8

6

.7
0

.9
4

.7
8 .8
4

.7
8 .9

0

F25 / Centered success

F100 / Centered success

F25 / Non-occluded success

F100 / Non-occluded success

nem
sa

uce

co
okie

m
ad

ele
in

e

.4
8 .5
3 .5
9

.5
4

.7
8

.5
0 .6

0 .7
5

.2
8

.8
4

.6
5

.4
9

.2
8

.5
1 .5
5

.2
5

F25 / Non-centered failure

F100 / Non-centered failure

F25 / Occluded failure

F100 / Occluded failure

Figure 5.23: Per-product performances using a bicameral network trained on
Mikado+, with respect to the percentage of number of convolutional filters
(F25 or F100). In anticipation of computation time reduction, the number of
convolutional filters can be reduced without severe performance loss.

Chapter 5. Application to Bin-Picking 117

nem sauce cookie madeleine

Input

F100

F25

Input

F100

F25

Figure 5.24: Examples of successful extractions using the F100 and F25 bicam-
eral variants trained on Mikado+ (best viewed in electronic form). Although
the boundaries and occlusions are slightly degraded along with the number
of filters (F25), both bicameral variants lead to comparable real-world bin-
picking performances. See also videos “binpicking02” and “binpicking03” in
supplementary material for real-time results with the F25 variant.

118 5.3. Real-World Experimental Evaluation

below 1 point. More interestingly, both ODS and AP for boundaries
and occlusions remain higher than the baseline scores obtained without
pretraining on Mikado+, thus suggesting that a bicameral network with
only 25% of the initial number of filters can still encode representations
generalizable to real-world images. In real-world bin-picking condi-
tions, the F25 variant achieves success rates comparable to those of
F100. As shown by Figure 5.23 (see Table C.6 for more details), which
reports the comparative bin-picking results between F25 and F100 on
nem, sauce, cookie and madeleine, the performance loss remains strictly
below 5 points. The benefits of our approach, i.e. grasps centered on
non-occluded instances, are maintained as well: on average, 92% of
succesful extractions are centered and 82% on unoccluded instances
(see Figure 5.24 for qualitative results). For nem and sauce, a larger
fraction of failures is due to grasps on partially occluded instances, in
accordance with the lesser capability to separate instances reported by
the scores on Mikado and D2SA (c.f . Table 5.5 and Figure 5.22).

Overall Computation Time We showed that the number of convo-
lutional filters in a bicameral network can be reduced without severe
performance loss for real-world bin-picking. We now quantify the ex-
pected gain in computation time from this dimensionality reduction.
Specifically, we first benchmark the proposed method on two GPU-
enabled hardwares: a power-limited device for embedded applications,
the Nvidia Jetson TX2, and a regular computer referred to as PC Win10
(see Figure 5.25 for detailed specifications). We then provide insights
on the bottlenecks and factors impacting the computation times.

As reported by Figure 5.25, the overall method takes on average
per image 1,848ms on Jetson TX2 and 136ms on PC Win10, while the
industrial baseline 2,411ms on PC Win10. Our method’s elapsed time
is reduced to 694ms and 81ms respectively using instead the F25 bi-
cameral variant. Specifically, retaining only 25% of the initial number
of convolutional filters in the bicameral network reduces by 84% and
81% the inference duration on Jetson TX2 and PC Win10 respectively,
as shown by Figure 5.26.

Impact Factors and Bottlenecks Our method is two-step: first, infer-
ring instance boundaries and occlusions using a bicameral network,
second, localizing and ranking instances from the network inference
(see Table 5.6). Contrary to the second step, the bicameral network
inference is independent of the number of instances in the image, and
fully executed on GPU. Our current implementation of the second step
is 90% on GPU and 10% on CPU. By default (F100), the network in-
ference is the bottleneck, i.e. 89% of the overall computation time on

Chapter 5. Application to Bin-Picking 119

25 50 75 100

81 75 10
2

13
6

69
4 91

0

1,
43

5 1,
84

8
2,

41
1

Percentage of the initial
number of filters

El
ap

se
d

ti
m

e
(m

s)
Baseline (PC Win10)
Ours (Jetson TX2)
Ours (PC Win10)

Jetson TX2 PC Win10

CPU

ARMv8 Cortex-A57 Intel Core i7 7700

4 cores @ 2GHz 4 cores @ 3.6GHz

+ NVIDIA Denver2

2 cores @ 2GHz

GPU
NVIDIA Tegra X2 NVIDIA GTX 1080Ti

Pascal Architecture Pascal Architecture

256 cores @ 1300MHz 3584 cores @ 1500MHz

RAM
CPU/GPU CPU 32Gb

8Gb (shared) GPU 11Gb

OS Ubuntu 16 Windows 10

Figure 5.25: Elapsed time (ms) on two hardwares for generating the next grasp
coordinates from a single 512ˆ512 image using our approach (blue and red),
with respect to the number of convolutional filters, and compared with the
industrial baseline (yellow). Note: the industrial baseline uses only the CPU,
while our approach is mostly GPU-based.

25 50 75 100

26
7

59
2

1,
16

7

1,
64

7

69 15
0 29

4 41
0

16 32 57 858 13 24 27

Percentage of the initial number of filters

El
ap

se
d

ti
m

e
(m

s)

Jetson TX2 (512×512)
Jetson TX2 (256×256)
PC Win10 (512×512)
PC Win10 (256×256)

Figure 5.26: Elapsed time (ms)
for the bicameral network
inference alone, with respect to
the percentage of the initial
number of convolutional filters,
using different hardwares (c.f .
Figure 5.25) and different
image resolutions. Each time
value is an average over 100
consecutive iterations using
only C++/CUDA code.

Using Jetson TX2
38 62

65 35
81 19

89 11

F25
F50
F75

F100

Using PC Win10
20 80

43 57
56 44

63 37

F25
F50
F75

F100

% Bicameral network inference % Instance localization and ranking

Figure 5.27: Computation time repartition with respect to the percentage of
the initial number of filters (F), using different hardwares (c.f . Fig. 5.25)

120 5.4. Conclusion

Inferring boundaries Localizing and
Impact factors and occlusions ranking instances
Number of pixels X X
Number of GPU cores X X
Number of filters X
Number of instances X

Table 5.6: Factors impacting the computation time for each of the two steps of
the proposed method

Jetson TX2 and 63% on PC Win10. Lessening the number of filters
gradually reduces the percentage of the overall computation time taken
by the bicameral network (see Figure 5.27). Using the F25 variant, the
elapsed time repartition is then very different: only 38% for the network
on Jetson TX2 and 20% on PC Win10. The computation time reparti-
tion is different depending on the hardware, because a GTX 1080Ti
contains many more cores than a Tegra X2 for the same task. This
results in different levels of occupancy, i.e. the ratio of active warps2 on
a Streaming Multiprocessor (SM) to the maximum number of active
warps supported by the SM.

Our method’s second step is dependent on the number of instances
in the image. As reported by Figure 5.28a, the overall computation time
and the variations of this elapsed time increase with a higher number
of instances. Using a default number of filters (F100), the elapsed time
for 1 to 35 instances varies from 1,700ms to 2,100ms on Jetson TX2
and on from 100ms to 200ms on PC Win10. Using the F25 bicameral
variant, these intervals are dropped to 490–1,600ms and 30–140ms on
Jetson TX2 and PC Win10 respectively. These variations are intrinsically
correlated to the bicameral network inference. Specifically, inferred
boundary maps with many false positive are likely to produce many
connected components, proportionately to the number of instances in
the image. Figure 5.28b empirically shows this correlation for each
bicameral variant.

5.4 Conclusion

5.4.1 Summary

In this chapter, we applied a bicameral network, introduced in Chapter
4, to real-world bin-picking. As there is no annotated real data for
our applications and collecting such data is unsustainable in industrial

2A warp is a set of threads running concurrently on a SM.

Chapter 5. Application to Bin-Picking 121

Using Jetson TX2 Using PC Win10

5 10 15 20 25 30 35

500

1,000

1,500

2,000

Number of instances per image

El
ap

se
d

ti
m

e
(m

s)

5 10 15 20 25 30 35

50

100

150

200

Number of instances per image

El
ap

se
d

ti
m

e
(m

s)

(a) Overall elapsed time using different hardwares (c.f . Figure 5.25). Both the elapsed time and the
variations of this elapsed time increase with a higher number of instances.

5 10 15 20 25 30 35
0

20
40
60
80

100
120
140

Number of instances per image

El
ap

se
d

ti
m

e
(m

s)

0
20
40
60
80
100
120
140
160

|C
|(

--
)

5 10 15 20 25 30 35
0

20
40
60
80

100
120
140

Number of instances per image

El
ap

se
d

ti
m

e
(m

s)

0
20
40
60
80
100
120
140
160

|C
|(

--
)

5 10 15 20 25 30 35
0

20
40
60
80

100
120
140

Number of instances per image

El
ap

se
d

ti
m

e
(m

s)

0
20
40
60
80
100
120
140
160

|C
|(

--
)

5 10 15 20 25 30 35
0

20
40
60
80

100
120
140

Number of instances per image

El
ap

se
d

ti
m

e
(m

s)

0
20
40
60
80
100
120
140
160

|C
|(

--
)

(b) Elapsed time excluding the network inference duration, using PC Win10 (c.f . Figure 5.25). Right axis
and dashed lines: number |C| of connected components generated from the network inference. This shows
that the computation time variations are strongly correlated to the number of connected components,
thereby to the quality of the bicameral network inference.

F25 F50 F75 F100

Figure 5.28: Elapsed time (ms) and corresponding standard variation for
detecting the most affordable instance from a single 512ˆ512 image using the
proposed approach, with respect to the number of instances per image and
the percentage of initial convolutional filters.

122 5.4. Conclusion

processes, we first proposed a simulation-based pipeline to generate
synthetic training images from off-the-shelf rendering and physics en-
gines. We then checked the plausibility of such computer-generated
data for real-world applications by evaluating the transferability of
the learned representations to a real-world target domain. We finally
conducted extensive experiments over ten types of packaged food prod-
ucts on a real-world robotic setup using synthetically trained bicameral
models without any finetuning on real images. Specifically, we ana-
lyzed more than 130 real-world bin-picking sequences, i.e. more than
3,000 observations, to quantify the results obtained with a synthetic
training in terms of successful extractions and computation time. Our
three-fold experimental analysis focused on:

1. the robustness to the real-world product variations and light
changes, with respect to the synthetic data distribution;

2. the benefits of our approach’s properties compared with the object
model-free gripper-oriented industrial baseline;

3. the conditions for real-time performances, with respect to the
number of convolutional filters in a bicameral network.

5.4.2 Contributions

Plausible Synthetic Training Data The proposed training data gen-
eration pipeline enables to extensively produce unbiased pixel-wise
ground-truth annotations, while drastically reducing the workload
for human annotators, whose task then consists only in setting up the
simulator. On a GPU-enabled computer, the simulation of a bin-picking
scene and the corresponding top-view image takes on average 5min,
against more than 30min for manually annotating a real image.

The proposed Mikado synthetic data proves plausible for real-
world applications in the sense that it enables the learning of perfor-
mance-enhancing representations transferable to real data. Specifically,
our experiments on transfer learning from Mikado to D2SA [55] shows
that reusing the local features learned from Mikado increases AP by up
to 10 points over the baseline, and up to 5 points over the augmentation
strategy of [55] as well. Furthermore, enriching the synthetic data dis-
tribution (Mikado+) with more geometry, texture, and light variations
enables to still achieve state-of-the-art performances on D2SA while
reducing by up to 13% the number of real images for finetuning.

Real-Time State-of-the-Art Performances In real-world bin-picking
conditions, a bicameral network trained on Mikado+, without any

Chapter 5. Application to Bin-Picking 123

finetuning on real images, demonstrated a success probability of
80% on average over ten different packaged food products, exclud-
ing the failures due to gripper non-adhesiveness. Our synthetically
trained model achieves stationnary performances despite light changes,
thus opening the path to more versatile industrial infrastructures. As
proposed, introducing the notion of instance enables a higher success
rate due to more detected grasps centered on non-occluded instances.
As a result, the proposed approach outperforms the object model-free
gripper-oriented industrial baseline by near 30 points.

Real-time performances are achieved on a GPU-enabled regular
computer (more than 3,500 GPU cores), thus meeting the conditions
of high-throughput bin-picking applications, i.e. overall computation
times under 100ms. On a power-limited embedded device, near real-
time performances are achieved by reducing the number of filters in
the bicameral network. For example, the proposed method takes on
average less than 700ms on the Jetson TX2 (256 cores) using only 25% of
the initial number of convolutional filters, without severe performance
loss in terms of successful extractions.

As a result, the proposed object-oriented approach establishes a new
baseline for model-free bin-picking.

124 5.4. Conclusion

Chapter 6

Conclusion

In this chapter, we summarize our work and contributions. We finally
draw some research directions for future work.

6.1 Summary

We addressed the problem of generic instance segmentation in the con-
text of robotic random bin-picking, i.e. the task of unpiling many object
instances on top of each other with a robotic arm for feeding automated
lines in industrial environments. Current industrial approaches con-
sist in detecting either instance poses of an explicit object model, or
grasp opportunities from a gripper-dependent physics model. Such
approaches however prove unsuitable for model-free or deformable
objects, and piles with strong inter-instance occlusions respectively.
Our object-oriented approach thus introduces an explicit notion of in-
stance independently of the object and gripper models. Specifically, our
approach consists in detecting the most affordable instances of a pile by
jointly delineating instances and inferring their spatial layouts from a
single image, using a novel fully convolutional network (FCN) trained
on synthetic data.

After briefly laying the mathematical tools related to deep convo-
lutional networks in Chapter 2, we reviewed in Chapter 3 the state of
the art on generic instance segmentation, whose mainstream strategy
follows a two-step paradigm: first, detecting rectangle region proposals
that might contain an instance; second, coloring the instance suppos-
edly inside each box proposal by a binary segmentation. The notion
of occlusion is then introduced by additionally learning the amodal
mask, i.e. the mask including both the visible and occluded instance
parts. This approach however cumulates the difficulties of isolating
bulk instances in rectangles and coloring something invisible. Alterna-
tively, the instance boundaries and their occlusion-based orientation are

125

126 6.2. Contributions

detected separately, while boundaries are mostly caused by occlusions
in bin-picking scenes. Both of these approaches also rely on hand-made
pixel-wise annotations, which can hardly be collected in industrial
contexts.

In Chapter 4, we analyzed the performances of the proposed net-
work architecture, referred to as bicameral, which is composed of a deep
encoder shared by two cascaded decoders. Specifically, we first com-
pared the bicameral FCN with the state-of-the-art networks for oriented
boundary detection and box proposal-based amodal segmentation on
real-world and synthetic data. We then conducted an ablation study for
exposing the role of the bicameral characteristics. We finally described
how to employ a bicameral network inference for detecting the most
affordable instance of a pile.

In Chapter 5, we addressed the problem of deploying a bicameral
network into real-world bin-picking applications. We first described a
cost-effective training data generation pipeline based on physics and
rendering engines, referred to as Mikado. We then conducted transfer
learning experiments to check the plausibility of the proposed synthetic
training data. Finally, we developed a real-world robotic setup to
deploy our model on real-world piles of packaged food products. We
tested different training settings and architectural variations, in various
lighting conditions, to quantify their impact on the overall picking
performances.

6.2 Contributions

Our contribution for object-oriented bin-picking is two-fold: joint
representation learning for boundary and occlusion detection and
abstract learning from synthetic data, independently of the explicit
object and gripper models.

Specifically, we demonstrated in Chapter 4 that, using a carefully
designed fully convolutional network, learning instance boundaries
and occlusions in a single feature space enables to outperform the state-
of-the-art two-stream representations for the same task on synthetic and
real-world data, consistently with the observation that boundaries and
occlusions are strongly correlated in bin-picking scenes. In addition,
decoding such a single representation by cascading two convolutional
decoders enables a performance-enhancing encoder-decoder structure
for recovering accurate instance boundaries augmented in cascade with
an occlusion-based orientation.

In Chapter 5, we showed that plausible synthetic training data can
be generated using off-the-shelf rendering and physics engines, thus
eliminating the burden of hand-made pixel-wise annotations. Our ex-

Chapter 6. Conclusion 127

tensive experimental study first reported that pretraining a bicameral
FCN for oriented boundary detection on our synthetic data, instead of
using only target real images, increases the real-world cross-dataset per-
formances, as the learned local representations prove more transferable
to real data. Enriching the synthetic data distribution by randomizing
the textures and backgrounds in simulation also enables to learn more
abstract local invariants, while reducing by more than 85% the number
of real images for finetuning.

Our proof-of-concept experiments on a real-world robotic setup
finally demonstrated state-of-the-art performances over ten various
model-free deformable objects, high and low-textured, transparent
and opaque, thus opening a promising land for large-scale industrial
applications towards fully automated factories. In practice, a syn-
thetically trained bicameral network (without finetuning on real data)
achieves real-time picking performances, with an average success prob-
ability of 80% in less than 100ms per image on a single GPU-equipped
computer, thus meeting the typical conditions of high-throughput bin-
picking applications. As a result, we established a new baseline for
model-free object-oriented bin-picking.

6.3 Perspectives

This work unveils long-term perspectives towards adaptive autonomous
robotics in unknown environments.

In addition to detecting instance boundaries and occlusions, the
proposed network architecture can be intuitively extended to become
“multicameral” for learning other complementary tasks, such as in-
stance localization, object categorization and grasp detection, within
a complete end-to-end synthetic training. Specifically, the task of in-
stance localization can be integrated by embedding the notion of pixel
connectivity into each pixel feature [115, 137]. The task of learning ex-
plicit object categories by pixel-wise categorization [35] should provide
more information to separate instances in the case of heterogeneous
piles, e.g. in waste sorting applications, and should enable to discard
the background from the set of instance candidates in the case of ho-
mogeneous piles. Ultimately, the image representations learned using
such a multicameral architecture can gain more robustness to pose
variations by introducing pose-equivariant learning modules instead
of convolutional layers, as suggested by [160].

From a more general point of view, the proposed model only learns
then applies his knowledge, hence stationary performances but without
paths for improvement over time. Recent works on meta-learning how-
ever suggest that our model could learn to learn as well. Specifically,

128 6.3. Perspectives

recent studies on unsupervised domain adaptation showed that our
synthetic training can include a notion of cross-domain similarity by
learning to compare cross-domain features with learned prototypes
[145]. If a long-term collection of real images is possible during produc-
tion, then generative adversarial networks could be employed as well to
refine our synthetic images so that their aspect better matches the real-
world camera model without the need of hand-made labels [22, 23]. In
such unsupervised domain adaption frameworks, our network should
be retrained on a distant server to avoid penalizing the production, and
using a careful incremental learning strategy that avoids catastrophic
forgetting [31, 85]. More interestingly, an online backpropagation-free
adaptation of a trained model is possible by few-shot dynamic learning
[58, 204]. In such a training, a convolutional model learns from little
online data to adapt some of its parameters to new tasks, e.g. novel
object categories and lighting conditions in our application context.

For budget-constrained applications, our synthetically trained mod-
els must be further compressed for achieving high-throughput appli-
cation-compliant performances on low-powered embedded devices,
such as the Jetson devices from NVIDIA. As suggested by our ex-
periments in Chapter 5, real-time performances using the proposed
network on an embedded device are achievable by reducing the num-
ber of filters. More advanced studies on the topic have shown that a
trained model can be further pruned while limiting the performance
drop. Specifically, [195] introduced the class of so-called slimmable net-
works, i.e. networks with layer depths that can be dynamically adjusted,
for permitting instant and adaptive accuracy-efficiency trade-offs at
runtime. In the same vein, [30] employed a network architecture search
algorithm to find the architecture achieving the optimal trade-off be-
tween accuracy and latency. Interestingly, such strategies can be used
for training networks with conditional input or output as well. For
example, one can imagine a multicameral model with a switchable
branch for inferring object categories, activated for heterogeneous piles
and deactivated for homogeneous piles.

Bibliography

[1] HALCON. https://www.mvtec.com/products/halcon/, 2019.
MVTec Software Gmbh.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Systems,
2015. Software available from tensorflow.org.

[3] W. Abbeloos and T. Goedemé. Point Pair Feature Based Object
Detection for Random Bin Picking. In Conference on Computer and
Robot Vision (CRV), pages 432–439, 2016.

[4] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk.
SLIC Superpixels Compared to State-of-the-Art Superpixel Meth-
ods. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 34(11):2274–2282, 2012.

[5] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detec-
tion and hierarchical image segmentation. IEEE Transactions on
Pattern Analysis Machine Intelligence (TPAMI), 33(5):898–916, 2011.

[6] A. Arnab and P. H. S. Torr. Pixelwise Instance Segmentation
with a Dynamically Instantiated Network. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 879–888. IEEE
Computer Society, 2017.

[7] U. Asif, M. Bennamoun, and F. A. Sohel. Model-Free Segmen-
tation and Grasp Selection of Unknown Stacked Objects. In
European Conference on Computer Vision (ECCV) Part V, volume
8693 of Lecture Notes in Computer Science, pages 659–674. Springer,
2014.

129

130 Bibliography

[8] U. Asif, J. Tang, and S. Harrer. GraspNet: An Efficient Con-
volutional Neural Network for Real-time Grasp Detection for
Low-powered Devices. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 4875–4882, 2018.

[9] A. Ayvaci, M. Raptis, and S. Soatto. Occlusion Detection and
Motion Estimation with Convex Optimization. In Advances in
Neural Information Processing Systems (NIPS), pages 100–108, 2010.

[10] A. Ayvaci, M. Raptis, and S. Soatto. Sparse Occlusion Detection
with Optical Flow. International Journal of Computer Vision (IJCV),
97(3):322–338, 2012.

[11] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 39(12):2481–2495, 2017.

[12] M. Bai and R. Urtasun. Deep Watershed Transform for Instance
Segmentation. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2858–2866. IEEE Computer Society, 2017.

[13] A. Batra, S. Singh, G. Pang, S. Basu, C. Jawahar, and M. Paluri.
Improved Road Connectivity by Joint Learning of Orientation
and Segmentation. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10385–10393. IEEE Computer Society,
2019.

[14] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan. A theory of learning from different domains.
Machine Learning, 79(1-2):151–175, 2010.

[15] S. Ben-David, T. Lu, T. Luu, and D. Pál. Impossibility Theorems
for Domain Adaptation. In International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 9 of JMLR Proceedings,
pages 129–136. JMLR.org, 2010.

[16] G. Bertasius, J. Shi, and L. Torresani. DeepEdge: A multi-scale
bifurcated deep network for top-down contour detection. In
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4380–4389. IEEE Computer Society, 2015.

[17] G. Bertasius, J. Shi, and L. Torresani. High-for-Low and Low-for-
High: Efficient Boundary Detection from Deep Object Features
and Its Applications to High-Level Vision. In International Confer-
ence on Computer Vision (ICCV), pages 504–512. IEEE Computer
Society, 2015.

Bibliography 131

[18] P. J. Besl and N. D. McKay. A Method for Registration of 3-D
Shapes. IEEE Transactions on Pattern Analysis Machine Intelligence
(TPAMI), 14(2):239–256, 1992.

[19] A. Bietti and J. Mairal. Invariance and Stability of Deep Con-
volutional Representations. In Advances in Neural Information
Processing Systems (NIPS), pages 6211–6221, 2017.

[20] T. Birdal and S. Ilic. Point Pair Features Based Object Detection
and Pose Estimation Revisited. In International Conference on 3D
Vision (3DV), pages 527–535, 2015.

[21] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Blender Institute, Amsterdam, 2016.

[22] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
V. Vanhoucke. Using Simulation and Domain Adaptation to
Improve Efficiency of Deep Robotic Grasping. In International
Conference on Robotics and Automation (ICRA), pages 4243–4250.
IEEE, 2018.

[23] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan.
Unsupervised Pixel-Level Domain Adaptation with Generative
Adversarial Networks. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 95–104. IEEE Computer Society,
2017.

[24] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother. Learning 6D Object Pose Estimation Using 3D Object
Coordinates. In European Conference on Computer Vision (ECCV)
Part II, volume 8690 of Lecture Notes in Computer Science, pages
536–551. Springer, 2014.

[25] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools. Software available from opencv.org.

[26] R. Brégier, F. Devernay, L. Leyrit, and J. L. Crowley. Symmetry
Aware Evaluation of 3D Object Detection and Pose Estimation
in Scenes of Many Parts in Bulk. In International Conference on
Computer Vision Workshops (ICCVW), pages 2209–2218. IEEE Com-
puter Society, 2017.

[27] R. Brégier, F. Devernay, L. Leyrit, and J. L. Crowley. Defining the
Pose of Any 3D Rigid Object and an Associated Distance. Interna-
tional Journal of Computer Vision (IJCV), 126(6):571–596, 2018.

132 Bibliography

[28] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R.
Zakin, H. Lipson, and H. M. Jaeger. Universal robotic gripper
based on the jamming of granular material. Proceedings of the
National Academy of Sciences (PNAS), 107(44):18809–18814, 2010.

[29] H. Caesar, J. R. R. Uijlings, and V. Ferrari. COCO-Stuff: Thing
and Stuff Classes in Context. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1209–1218. IEEE Computer
Society, 2018.

[30] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct Neural Ar-
chitecture Search on Target Task and Hardware. In International
Conference on Learning Representations (ICLR), 2019.

[31] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Ala-
hari. End-to-End Incremental Learning. In European Conference on
Computer Vision (ECCV) Part XII, volume 11216 of Lecture Notes in
Computer Science, pages 241–257. Springer, 2018.

[32] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q.-X.
Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi,
and F. Yu. ShapeNet: An Information-Rich 3D Model Repository.
Computing Research Repository (CoRR), abs/1512.03012, 2015.

[33] L. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and
H. Adam. MaskLab: Instance Segmentation by Refining Object
Detection With Semantic and Direction Features. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4013–4022.
IEEE Computer Society, 2018.

[34] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
DeepLab: Semantic Image Segmentation with Deep Convolu-
tional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 40(4):834–848, 2018.

[35] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-Decoder with Atrous Separable Convolution for Seman-
tic Image Segmentation. In European Conference on Computer Vision
(ECCV) Part VII, volume 11211 of Lecture Notes in Computer Science,
pages 833–851. Springer, 2018.

[36] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang. MXNet: A Flexible and Efficient Ma-
chine Learning Library for Heterogeneous Distributed Systems.
Computing Research Repository (CoRR), abs/1512.01274, 2015.

Bibliography 133

[37] Y. Chen, J. Yang, and M. Yang. Extracting Image Regions by
Structured Edge Prediction. In Winter Conference on Applications
of Computer Vision (WACV), pages 1060–1067. IEEE Computer
Society, 2015.

[38] C. Choi, Y. Taguchi, O. Tuzel, M. Liu, and S. Ramalingam. Voting-
based pose estimation for robotic assembly using a 3D sensor. In
International Conference on Robotics and Automation (ICRA), pages
1724–1731. IEEE, 2012.

[39] F. Chu, R. Xu, and P. A. Vela. Real-World Multi-object, Multi-
grasp Detection. IEEE Robotics and Automation Letters, 3(4):3355–
3362, 2018.

[40] M. Cissé, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier.
Parseval Networks: Improving Robustness to Adversarial Ex-
amples. In International Conference on Machine Learning (ICML),
volume 70, pages 854–863. PMLR, 2017.

[41] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object Detection via
Region-based Fully Convolutional Networks. In Advances in
Neural Information Processing Systems (NIPS), pages 379–387, 2016.

[42] M. V. den Bergh, X. Boix, G. Roig, and L. J. V. Gool. SEEDS:
Superpixels Extracted Via Energy-Driven Sampling. International
Journal of Computer Vision (IJCV), 111(3):298–314, 2015.

[43] R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu. Learning to Predict
Crisp Boundaries. In European Conference on Computer Vision
(ECCV) Part VI, volume 11210 of Lecture Notes in Computer Science,
pages 570–586. Springer, 2018.

[44] A. Depierre, E. Dellandréa, and L. Chen. Jacquard: A Large Scale
Dataset for Robotic Grasp Detection. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3511–
3516. IEEE, 2018.

[45] T.-T. Do, A. Nguyen, and I. D. Reid. AffordanceNet: An End-to-
End Deep Learning Approach for Object Affordance Detection. In
International Conference on Robotics and Automation (ICRA), pages
1–5. IEEE, 2018.

[46] P. Dollár and C. L. Zitnick. Structured Forests for Fast Edge
Detection. In International Conference on Computer Vision (ICCV),
pages 1841–1848. IEEE Computer Society, 2013.

134 Bibliography

[47] Y. Domae, H. Okuda, Y. Taguchi, K. Sumi, and T. Hirai. Fast
graspability evaluation on single depth maps for bin picking
with general grippers. In International Conference on Robotics and
Automation (ICRA), pages 1997–2004. IEEE, 2014.

[48] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T. Kim.
Recovering 6D Object Pose and Predicting Next-Best-View in the
Crowd. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3583–3592. IEEE Computer Society, 2016.

[49] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization. Journal of
Machine Learning Research (JMLR), 12:2121–2159, 2011.

[50] D. Eigen, C. Puhrsch, and R. Fergus. Depth Map Prediction from
a Single Image using a Multi-Scale Deep Network. In Advances
in Neural Information Processing Systems (NIPS), pages 2366–2374,
2014.

[51] M. Everingham, S. M. Eslami, L. Gool, C. K. Williams, J. Winn,
and A. Zisserman. The Pascal Visual Object Classes Challenge:
A Retrospective. International Journal of Computer Vision (IJCV),
111(1):98–136, 2015.

[52] Facebook. Caffe2: A New Lightweight, Modular, and Scalable
Deep Learning Framework. Software available from caffe2.ai,
2017.

[53] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
Two-Stream Network Fusion for Video Action Recognition. In
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1933–1941. IEEE Computer Society, 2016.

[54] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-Based
Image Segmentation. International Journal of Computer Vision
(IJCV), 59(2):167–181, 2004.

[55] P. Follmann, T. Böttger, P. Härtinger, R. König, and M. Ulrich.
MVTec D2S: Densely Segmented Supermarket Dataset. In Euro-
pean Conference on Computer Vision (ECCV) Part X, volume 11214
of Lecture Notes in Computer Science, pages 581–597. Springer, 2018.

[56] H. Fu, C. Wang, D. Tao, and M. J. Black. Occlusion Boundary
Detection via Deep Exploration of Context. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 241–250.
IEEE Computer Society, 2016.

Bibliography 135

[57] D. Geiger, B. Ladendorf, and A. L. Yuille. Occlusions and binocu-
lar stereo. International Journal of Computer Vision (IJCV), 14(3):211–
226, 1995.

[58] S. Gidaris and N. Komodakis. Dynamic Few-Shot Visual Learning
Without Forgetting. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4367–4375. IEEE Computer Society,
2018.

[59] R. B. Girshick. Fast R-CNN. In International Conference on Com-
puter Vision (ICCV), pages 1440–1448. IEEE Computer Society,
2015.

[60] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmen-
tation. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 580–587. IEEE Computer Society, 2014.

[61] X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 9 of JMLR
Proceedings, pages 249–256. JMLR.org, 2010.

[62] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[63] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and har-
nessing adversarial examples. In International Conference on Learn-
ing Representations (ICLR), 2015.

[64] N. Grammalidis and M. G. Strintzis. Disparity and occlusion
estimation in multiocular systems and their coding for the com-
munication of multiview image sequences. Transactions on Circuits
and Systems for Video Technology (TCSVT), (3):328–344.

[65] C. Grana, D. Borghesani, and R. Cucchiara. Optimized Block-
Based Connected Components Labeling With Decision Trees.
IEEE Transactions on Image Processing, 19(6):1596–1609, 2010.

[66] M. Grard, R. Brégier, F. Sella, E. Dellandréa, and L. Chen. Object
Segmentation in Depth Maps with One User Click and a Synthet-
ically Trained Fully Convolutional Network. In 2017 International
Workshop on Human-Friendly Robotics, volume 7 of Springer Pro-
ceedings in Advanced Robotics. Springer, 2018.

[67] M. Grard, E. Dellandréa, and L. Chen. A Bicameral Decoder for
Jointly Predicting Instance Boundaries and Nearby Occlusions

http://www.deeplearningbook.org

136 Bibliography

from a Single Image. In International Journal of Computer Vi-
sion (IJCV), Special Issue on Deep Learning for Robotic Vision.
Submission in July 2018. First revision in January, 2018.

[68] S. Gupta, R. B. Girshick, P. A. Arbeláez, and J. Malik. Learning
Rich Features from RGB-D Images for Object Detection and Seg-
mentation. In European Conference on Computer Vision (ECCV)
Part VII, volume 8695 of Lecture Notes in Computer Science, pages
345–360. Springer, 2014.

[69] K. Harada, K. Nagata, T. Tsuji, N. Yamanobe, A. Nakamura, and
Y. Kawai. Probabilistic approach for object bin picking approx-
imated by cylinders. In International Conference on Robotics and
Automation (ICRA), pages 3742–3747. IEEE, 2013.

[70] B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik. Simul-
taneous Detection and Segmentation. In European Conference on
Computer Vision (ECCV) Part VII, volume 8695 of Lecture Notes in
Computer Science, pages 297–312. Springer, 2014.

[71] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2nd edition, 2003.

[72] M. A. Hasnat, O. Alata, and A. Trémeau. Unsupervised RGB-D
image segmentation using joint clustering and region merging.
In British Machine Vision Conference (BMVC), 2014.

[73] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN.
In International Conference on Computer Vision (ICCV), pages 2980–
2988. IEEE Computer Society, 2017.

[74] K. He, X. Zhang, S. Ren, and J. Sun. Spatial Pyramid Pooling
in Deep Convolutional Networks for Visual Recognition. In
European Conference on Computer Vision (ECCV) Part III, volume
8691 of Lecture Notes in Computer Science, pages 346–361. Springer,
2014.

[75] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778. IEEE Computer Society, 2016.

[76] S. He and R. W. H. Lau. Oriented Object Proposals. In Interna-
tional Conference on Computer Vision (ICCV), pages 280–288. IEEE
Computer Society, 2015.

[77] S. He, R. W. H. Lau, W. Liu, Z. Huang, and Q. Yang. SuperCNN:
A Superpixelwise Convolutional Neural Network for Salient

Bibliography 137

Object Detection. International Journal of Computer Vision (IJCV),
115(3):330–344, 2015.

[78] X. He and A. Yuille. Occlusion Boundary Detection Using Pseudo-
depth. In European Conference on Computer Vision (ECCV) Part IV,
volume 6314 of Lecture Notes in Computer Science, pages 539–552.
Springer, 2010.

[79] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit. Multimodal templates for real-time
detection of texture-less objects in heavily cluttered scenes. In
International Conference on Computer Vision (ICCV), pages 858–865.
IEEE Computer Society, 2011.

[80] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab. Domi-
nant orientation templates for real-time detection of texture-less
objects. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2257–2264. IEEE Computer Society, 2010.

[81] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. R. Bradski,
K. Konolige, and N. Navab. Model Based Training, Detection and
Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered
Scenes. In Asian Conference on Computer Vision (ACCV) Part I,
volume 7724 of Lecture Notes in Computer Science, pages 548–562.
Springer, 2012.

[82] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recover-
ing Occlusion Boundaries from a Single Image. In International
Conference on Computer Vision (ICCV), pages 1–8. IEEE Computer
Society, 2007.

[83] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus.
Haptic identification of objects using a modular soft robotic grip-
per. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1698–1705. IEEE, 2015.

[84] J. H. Hosang, R. Benenson, P. Dollár, and B. Schiele. What Makes
for Effective Detection Proposals? IEEE Transactions on Pattern
Analysis Machine Intelligence (TPAMI), 38(4):814–830, 2016.

[85] L. Hou, A. Agarwal, D. Samaras, T. M. Kurc, R. R. Gupta, and
J. H. Saltz. Robust Histopathology Image Analysis: to Label
or to Synthesize? In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8533–8542. IEEE Computer Society,
2019.

138 Bibliography

[86] R. Hu, P. Dollár, K. He, T. Darrell, and R. B. Girshick. Learning
to Segment Every Thing. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4233–4241. IEEE Computer
Society, 2018.

[87] Huang, Gao and Liu, Zhuang and van der Maaten, Laurens
and Weinberger, Kilian Q. Densely Connected Convolutional
Networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2261–2269. IEEE Computer Society, 2017.

[88] J. Hughes, U. Culha, F. Giardina, F. Günther, A. Rosendo, and
F. Iida. Soft Manipulators and Grippers: A Review. Frontiers in
Robotics and AI, 2016, 2016.

[89] A. Humayun, F. Li, and J. M. Rehg. RIGOR: Reusing Inference
in Graph Cuts for Generating Object Regions. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 336–343.
IEEE Computer Society, 2014.

[90] A. Humayun, F. Li, and J. M. Rehg. The Middle Child Problem:
Revisiting Parametric Min-Cut and Seeds for Object Proposals.
In International Conference on Computer Vision (ICCV), pages 1600–
1608. IEEE Computer Society, 2015.

[91] A. Humayun, O. Mac Aodha, and G. J. Brostow. Learning to find
occlusion regions. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2161–2168. IEEE Computer Society,
2011.

[92] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional Architec-
ture for Fast Feature Embedding. In International Conference on
Multimedia, MM’14, pages 675–678. ACM, 2014.

[93] E. Johns, S. Leutenegger, and A. J. Davison. Deep Learning a
Grasp Function for Grasping under Gripper Pose Uncertainty. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4461–4468. IEEE, 2016.

[94] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. SSD-
6D: Making RGB-Based 3D Detection and 6D Pose Estimation
Great Again. In International Conference on Computer Vision (ICCV),
pages 1530–1538. IEEE Computer Society, 2017.

[95] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations
(ICLR), 2015.

Bibliography 139

[96] P. Krähenbühl and V. Koltun. Geodesic Object Proposals. In
European Conference on Computer Vision (ECCV) Part V, volume
8693 of Lecture Notes in Computer Science, pages 725–739. Springer,
2014.

[97] P. Krähenbühl and V. Koltun. Learning to propose objects. In
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1574–1582. IEEE Computer Society, 2015.

[98] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems (NIPS), pages 1106–1114,
2012.

[99] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[100] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Computation, 1(4):541–
551, 1989.

[101] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based
Learning Applied to Document Recognition. In Proceedings of the
IEEE, volume 86, pages 2278–2324, 1998.

[102] J. Lee, S. Kang, and S. Park. 3D Pose Estimation of Bin Picking Ob-
ject using Deep Learning and 3D Matching. In International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO),
pages 328–334, 2018.

[103] I. Lenz, H. Lee, and A. Saxena. Deep Learning for Detecting
Robotic Grasps. In Robotics: Science and Systems (RSS), 2013.

[104] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. Depth
and surface normal estimation from monocular images using
regression on deep features and hierarchical CRFs. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1119–
1127. IEEE Computer Society, 2015.

[105] G. Li, Y. Xie, L. Lin, and Y. Yu. Instance-Level Salient Object
Segmentation. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 247–256. IEEE Computer Society, 2017.

[106] K. Li and J. Malik. Amodal Instance Segmentation. In European
Conference on Computer Vision (ECCV) Part II, volume 9906 of
Lecture Notes in Computer Science, pages 677–693. Springer, 2016.

140 Bibliography

[107] J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch Tokens: A Learned
Mid-level Representation for Contour and Object Detection. In
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3158–3165. IEEE Computer Society, 2013.

[108] T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Focal
Loss for Dense Object Detection. In International Conference on
Computer Vision (ICCV), pages 2999–3007. IEEE Computer Society,
2017.

[109] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft COCO: Common Objects in
Context. In European Conference on Computer Vision (ECCV) Part V,
volume 8693 of Lecture Notes in Computer Science, pages 740–755.
Springer, 2014.

[110] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-
Fei, A. L. Yuille, J. Huang, and K. Murphy. Progressive Neural
Architecture Search. In European Conference on Computer Vision
(ECCV) Part I, Lecture Notes in Computer Science, pages 19–35.
Springer, 2018.

[111] F. Liu, C. Shen, G. Lin, and I. D. Reid. Learning Depth from Sin-
gle Monocular Images Using Deep Convolutional Neural Fields.
IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI),
38(10):2024–2039, 2016.

[112] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path Aggregation Network
for Instance Segmentation. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8759–8768. IEEE Computer
Society, 2018.

[113] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu,
and A. C. Berg. SSD: Single Shot MultiBox Detector. In European
Conference on Computer Vision (ECCV) Part I, Lecture Notes in
Computer Science, pages 21–37. Springer, 2016.

[114] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai. Richer Convo-
lutional Features for Edge Detection. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5872—5881. IEEE
Computer Society, 2017.

[115] Y. Liu, S. Yang, B. Li, W. Zhou, J. Xu, H. Li, and Y. Lu. Affinity
Derivation and Graph Merge for Instance Segmentation. In Euro-
pean Conference on Computer Vision (ECCV) Part III, volume 11207
of Lecture Notes in Computer Science, pages 708–724. Springer, 2018.

Bibliography 141

[116] C. Lu, S. Liu, J. Jia, and C. Tang. Contour Box: Rejecting Ob-
ject Proposals without Explicit Closed Contours. In International
Conference on Computer Vision (ICCV), pages 2021–2029. IEEE Com-
puter Society, 2015.

[117] P. Luo, G. Wang, L. Lin, and X. Wang. Deep Dual Learning
for Semantic Image Segmentation. In International Conference on
Computer Vision (ICCV), pages 2737–2745. IEEE Computer Society,
2017.

[118] J. Mahler and K. Goldberg. Learning Deep Policies for Robot Bin
Picking by Simulating Robust Grasping Sequences. In Conference
on Robot Learning (CoRL), pages 515–524, 2017.

[119] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg. Dex-Net 2.0: Deep Learning to Plan Robust
Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.
In Robotics: Science and Systems (RSS), 2017.

[120] J. Mahler, M. Matl, X. Liu, A. Li, D. V. Gealy, and K. Goldberg.
Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets
in Point Clouds Using a New Analytic Model and Deep Learn-
ing. In International Conference on Robotics and Automation (ICRA),
pages 1–8. IEEE, 2018.

[121] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey,
M. Aubry, K. Kohlhoff, T. Kröger, J. J. Kuffner, and K. Gold-
berg. Dex-Net 1.0: A cloud-based network of 3D objects for
robust grasp planning using a Multi-Armed Bandit model with
correlated rewards. In International Conference on Robotics and
Automation (ICRA), pages 1957–1964. IEEE, 2016.

[122] M. Maire. Simultaneous Segmentation and Figure/Ground Or-
ganization Using Angular Embedding. In European Conference
on Computer Vision (ECCV) Part II, Lecture Notes in Computer
Science, pages 450–464. Springer, 2010.

[123] M. Maire, T. Narihira, and S. X. Yu. Affinity CNN: Learning
Pixel-Centric Pairwise Relations for Figure/Ground Embedding.
In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 174–182. IEEE Computer Society, 2016.

[124] S. Mallat. Understanding deep convolutional networks. Philo-
sophical Transactions of the Royal Society A, 374, 2015.

142 Bibliography

[125] K.-K. Maninis, J. Pont-Tuset, P. A. Arbeláez, and L. J. V. Gool.
Convolutional Oriented Boundaries. In European Conference on
Computer Vision (ECCV) Part I, volume 9905 of Lecture Notes in
Computer Science, pages 580–596. Springer, 2016.

[126] K.-K. Maninis, J. Pont-Tuset, P. A. Arbeláez, and L. V. Gool. Deep
Retinal Image Understanding. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI) Part II, volume 9901 of
Lecture Notes in Computer Science, pages 140–148. Springer, 2016.

[127] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human
Segmented Natural Images and its Application to Evaluating
Segmentation Algorithms and Measuring Ecological Statistics. In
International Conference on Computer Vision (ICCV), pages 416–423.
IEEE Computer Society, 2001.

[128] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to Detect
Natural Image Boundaries Using Local Brightness, Color, and
Texture Cues. IEEE Transactions on Pattern Analysis Machine Intel-
ligence (TPAMI), 26(5):530–549, 2004.

[129] Z. Marton, F. Balint-Benczedi, Ó. M. Mozos, N. Blodow,
A. Kanezaki, L. C. Goron, D. Pangercic, and M. Beetz. Part-
Based Geometric Categorization and Object Reconstruction in
Cluttered Table-Top Scenes. Journal of Intelligent and Robotic Sys-
tems, 76(1):35–56, 2014.

[130] M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and
K. Goldberg. Learning ambidextrous robot grasping policies.
Science Robotics, 4(26), 2019.

[131] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison.
SceneNet RGB-D: Can 5M Synthetic Images Beat Generic Im-
ageNet Pre-training on Indoor Segmentation? In International
Conference on Computer Vision (ICCV), pages 2697–2706. IEEE Com-
puter Society, 2017.

[132] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral Nor-
malization for Generative Adversarial Networks. In International
Conference on Learning Representations (ICLR), 2018.

[133] A. Mosinska, P. Márquez-Neila, M. Kozinski, and P. Fua. Beyond
the Pixel-Wise Loss for Topology-Aware Delineation. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages
3136–3145. IEEE Computer Society, 2018.

Bibliography 143

[134] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis.
Detecting object affordances with Convolutional Neural Net-
works. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2765–2770. IEEE, 2016.

[135] A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 427–436. IEEE Computer Society, 2015.

[136] M. Nieuwenhuisen, D. Droeschel, D. Holz, J. Stückler, A. Berner,
J. Li, R. Klein, and S. Behnke. Mobile bin picking with an anthro-
pomorphic service robot. In International Conference on Robotics
and Automation (ICRA), pages 2327–2334. IEEE, 2013.

[137] D. Novotný, S. Albanie, D. Larlus, and A. Vedaldi. Semi-
convolutional Operators for Instance Segmentation. In European
Conference on Computer Vision (ECCV) Part I, volume 11205 of
Lecture Notes in Computer Science, pages 89–105. Springer, 2018.

[138] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and
Checkerboard Artifacts. Distill, 2016.

[139] A. E. Orhan and X. Pitkow. Skip Connections Eliminate Singular-
ities. In International Conference on Learning Representations (ICLR),
2018.

[140] G. Papandreou, T. Zhu, L. Chen, S. Gidaris, J. Tompson, and
K. Murphy. PersonLab: Person Pose Estimation and Instance Seg-
mentation with a Bottom-Up, Part-Based, Geometric Embedding
Model. In European Conference on Computer Vision (ECCV) Part
XIV, Lecture Notes in Computer Science, pages 282–299. Springer,
2018.

[141] J. Papon, A. Abramov, M. Schoeler, and F. Wörgötter. Voxel
Cloud Connectivity Segmentation - Supervoxels for Point Clouds.
In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2027–2034. IEEE Computer Society, 2013.

[142] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differ-
entiation in PyTorch. In Advances in Neural Information Processing
Systems Workshops (NIPSW), 2017.

[143] P. H. O. Pinheiro, R. Collobert, and P. Dollár. Learning to Segment
Object Candidates. In Advances in Neural Information Processing
Systems (NIPS), pages 1990–1998, 2015.

144 Bibliography

[144] P. H. O. Pinheiro, T. Y. Lin, R. Collobert, and P. Dollar. Learning
to Refine Object Segments. In European Conference on Computer
Vision (ECCV) Part I, volume 9905 of Lecture Notes in Computer
Science, pages 75–91. Springer, 2016.

[145] P. O. Pinheiro. Unsupervised Domain Adaptation With Similarity
Learning. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8004–8013. IEEE Computer Society, 2018.

[146] J. Pont-Tuset, P. Arbelaez, J. T. Barron, F. Marqués, and J. Malik.
Multiscale Combinatorial Grouping for Image Segmentation and
Object Proposal Generation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 39(1):128–140, 2017.

[147] J. Pont-Tuset and L. J. V. Gool. Boosting Object Proposals: From
Pascal to COCO. In International Conference on Computer Vision
(ICCV), pages 1546–1554. IEEE Computer Society, 2015.

[148] E. Potapova, K. M. Varadarajan, A. Richtsfeld, M. Zillich, and
M. Vincze. Attention-driven object detection and segmentation
of cluttered table scenes using 2.5D symmetry. In International
Conference on Robotics and Automation (ICRA), pages 4946–4952.
IEEE, 2014.

[149] A. Pretto, S. Tonello, and E. Menegatti. Flexible 3D localization
of planar objects for industrial bin-picking with monocamera
vision system. In International Conference on Automation Science
and Engineering (CASE), pages 168–175. IEEE, 2013.

[150] M. Rad and V. Lepetit. BB8: A Scalable, Accurate, Robust to Par-
tial Occlusion Method for Predicting the 3D Poses of Challenging
Objects without Using Depth. In International Conference on Com-
puter Vision (ICCV), pages 3848–3856. IEEE Computer Society,
2017.

[151] J. Redmon and A. Angelova. Real-time grasp detection using
convolutional neural networks. In International Conference on
Robotics and Automation (ICRA), pages 1316–1322. IEEE, 2015.

[152] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779–788.
IEEE Computer Society, 2016.

[153] J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger.
In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6517–6525. IEEE Computer Society, 2017.

Bibliography 145

[154] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improve-
ment. Computing Research Repository (CoRR), abs/1804.02767,
2018.

[155] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems (NIPS), pages
91–99, 2015.

[156] X. Ren, C. C. Fowlkes, and J. Malik. Figure/Ground Assignment
in Natural Images. In European Conference on Computer Vision
(ECCV) Part II, volume 3952 of Lecture Notes in Computer Science,
pages 614–627. Springer, 2006.

[157] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation, pages 234–241. Lecture
Notes in Computer Science. Springer, 2015.

[158] G. Ros, L. Sellart, J. Materzynska, D. Vázquez, and A. M. López.
The SYNTHIA Dataset: A Large Collection of Synthetic Images
for Semantic Segmentation of Urban Scenes. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3234–3243.
IEEE Computer Society, 2016.

[159] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. In-
ternational Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[160] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic Routing Between
Capsules. In Advances in Neural Information Processing Systems
(NIPS), pages 3859–3869, 2017.

[161] A. Salvador, M. Bellver, M. Baradad, F. Marqués, J. Torres, and
X. G. i Nieto. Recurrent Neural Networks for Semantic Instance
Segmentation. In European Conference on Computer Vision (ECCV)
Women in Computer Vision Workshop (WiCV). Springer, 2018.

[162] A. Schmitz, U. Pattacini, F. Nori, L. Natale, G. Metta, and G. San-
dini. Design, realization and sensorization of the dexterous iCub
hand. In IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pages 186–191. IEEE, 2010.

[163] H. Sedghi, V. Gupta, and P. M. Long. The Singular Values of
Convolutional Layers. In International Conference on Learning
Representations (ICLR), 2019.

146 Bibliography

[164] F. Seide and A. Agarwal. CNTK: Microsoft’s Open-Source Deep-
Learning Toolkit. In International Conference on Knowledge Discov-
ery and Data Mining (KDD), page 2135. ACM, 2016.

[165] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. DeepContour:
A deep convolutional feature learned by positive-sharing loss for
contour detection. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3982–3991. IEEE Computer Society,
2015.

[166] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor Segmen-
tation and Support Inference from RGBD Images. In European
Conference on Computer Vision (ECCV) Part V, volume 7576 of
Lecture Notes in Computer Science, pages 746–760. Springer, 2012.

[167] K. Simonyan and A. Zisserman. Two-Stream Convolutional Net-
works for Action Recognition in Videos. In Advances in Neural
Information Processing Systems (NIPS), pages 568–576, 2014.

[168] K. Simonyan and A. Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Confer-
ence on Learning Representations (ICLR). IEEE Computer Society,
2015.

[169] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research
(JMLR), 15(1):1929–1958, 2014.

[170] A. Stein and M. Hebert. Local Detection of Occlusion Boundaries
in Video. In British Machine Vision Conference (BMVC), 2006.

[171] S. C. Stein, M. Schoeler, J. Papon, and F. Wörgötter. Object Parti-
tioning Using Local Convexity. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 304–311. IEEE Computer
Society, 2014.

[172] D. Sun, C. Liu, and H. Pfister. Local Layering for Joint Motion
Estimation and Occlusion Detection. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1098–1105. IEEE
Computer Society, 2014.

[173] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the
importance of initialization and momentum in deep learning. In
International Conference on Machine Learning (ICML), pages 1139–
1147, 2013.

Bibliography 147

[174] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1–9. IEEE Computer Society, 2015.

[175] D. Tang, H. Fu, and X. Cao. Topology Preserved Regular Super-
pixel. In International Conference on Multimedia and Expo (ICME),
pages 765–768. IEEE, 2012.

[176] A. ten Pas, M. Gualtieri, K. Saenko, and R. P. Jr. Grasp Pose De-
tection in Point Clouds. International Journal on Robotics Research
(IJRR), 36(13-14):1455–1473, 2017.

[177] C. L. Teo, C. Fermüller, and Y. Aloimonos. Fast 2D border own-
ership assignment. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5117–5125. IEEE Computer Society,
2015.

[178] T. Tieleman and G. Hinton. RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning, 2012.

[179] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Ku-
mar, B. McGrew, A. Ray, J. Schneider, P. Welinder, W. Zaremba,
and P. Abbeel. Domain Randomization and Generative Mod-
els for Robotic Grasping. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3482–3489. IEEE,
2018.

[180] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars. A Deeper
Look at Dataset Bias. In Domain Adaptation in Computer Vision Ap-
plications, Advances in Computer Vision and Pattern Recognition,
pages 37–55. Springer, 2017.

[181] A. Torralba and A. A. Efros. Unbiased Look at Dataset Bias.
In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1521–1528. IEEE Computer Society, 2011.

[182] A. Ückermann, R. Haschke, and H. J. Ritter. Real-time 3D seg-
mentation of cluttered scenes for robot grasping. In IEEE-RAS
International Conference on Humanoid Robots, pages 198–203, 2012.

[183] J. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders. Selective Search for Object Recognition. International
Journal of Computer Vision (IJCV), 104(2):154–171, 2013.

148 Bibliography

[184] K. Wada, S. Kitagawa, O. Kei, and M. Inaba. Instance Segmen-
tation of Visible and Occluded Regions for Finding and Picking
Target from a Pile of Objects. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2048–2055. IEEE,
2018.

[185] C. Wang, L. Zhao, S. Liang, L. Zhang, J. Jia, and Y. Wei. Object
proposal by multi-branch hierarchical segmentation. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3873–
3881. IEEE Computer Society, 2015.

[186] P. Wang and A. L. Yuille. DOC: Deep OCclusion Estimation from
a Single Image. In European Conference on Computer Vision (ECCV)
Part I, volume 9905 of Lecture Notes in Computer Science, pages
545–561. Springer, 2016.

[187] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for Generic
Object Detection. In International Conference on Computer Vision
(ICCV), pages 17–24. IEEE Computer Society, 2013.

[188] Y. Wang, X. Zhao, and K. Huang. Deep Crisp Boundaries. In
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1724–1732. IEEE Computer Society, 2017.

[189] K. Weicheng, H. Bharath, and M. Jitendra. DeepBox: Learning
Objectness with Convolutional Networks. In International Confer-
ence on Computer Vision (ICCV), pages 2479–2487. IEEE Computer
Society, 2015.

[190] O. Williams, M. Isard, and J. MacCormick. Estimating Disparity
and Occlusions in Stereo Video Sequences. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 250–257. IEEE
Computer Society, 2011.

[191] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated
Residual Transformations for Deep Neural Networks. In Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
5987–5995. IEEE Computer Society, 2017.

[192] S. Xie and Z. Tu. Holistically-Nested Edge Detection. In Inter-
national Conference on Computer Vision (ICCV), pages 1395–1403.
IEEE Computer Society, 2015.

[193] J. Yang, B. L. Price, S. Cohen, H. Lee, and M.-H. Yang. Object
Contour Detection with a Fully Convolutional Encoder-Decoder
Network. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 193–202. IEEE Computer Society, 2016.

Bibliography 149

[194] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable
are features in deep neural networks? In Advances in Neural
Information Processing Systems (NIPS), pages 3320–3328, 2014.

[195] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable Neural
Networks. In International Conference on Learning Representations
(ICLR), 2019.

[196] Z. Yu, C. Feng, M. Liu, and S. Ramalingam. CASENet: Deep
Category-Aware Semantic Edge Detection. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1761–1770.
IEEE Computer Society, 2017.

[197] Z. Yu, W. Liu, Y. Zou, C. Feng, S. Ramalingam, B. V. K. V. Kumar,
and J. Kautz. Simultaneous Edge Alignment and Learning. In
European Conference on Computer Vision (ECCV) Part III, volume
11207 of Lecture Notes in Computer Science, pages 400–417. Springer,
2018.

[198] S. Zagoruyko, A. Lerer, T. Lin, P. O. Pinheiro, S. Gross, S. Chintala,
and P. Dollár. A MultiPath Network for Object Detection. In
British Machine Vision Conference (BMVC), 2016.

[199] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method.
Computing Research Repository (CoRR), abs/1212.5701, 2012.

[200] M. D. Zeiler and R. Fergus. Visualizing and Understanding
Convolutional Networks. In European Conference on Computer
Vision (ECCV) Part I, volume 8689 of Lecture Notes in Computer
Science, pages 818–833. Springer, 2014.

[201] A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauzá, D. Ma,
O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Hol-
laday, I. Morona, P. Q. Nair, D. Green, I. Taylor, W. Liu, T. A.
Funkhouser, and A. Rodriguez. Robotic Pick-and-Place of Novel
Objects in Clutter with Multi-Affordance Grasping and Cross-
Domain Image Matching. In International Conference on Robotics
and Automation (ICRA), pages 1–8. IEEE, 2018.

[202] H. Zhang, P. Long, D. Zhou, Z. Qian, Z. Wang, W. Wan,
D. Manocha, C. Park, T. Hu, C. Cao, Y. Chen, M. Chow, and
J. Pan. DoraPicker: An autonomous picking system for general
objects. In IEEE International Conference on Automation Science and
Engineering (CASE), pages 721–726, 2016.

150 Bibliography

[203] Z. Zhang. A Flexible New Technique for Camera Calibration.
IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI),
22(11):1330–1334, 2000.

[204] F. Zhao, J. Zhao, S. Yan, and J. Feng. Dynamic Conditional Net-
works for Few-Shot Learning. In European Conference on Computer
Vision (ECCV) Part XV, volume 11219 of Lecture Notes in Computer
Science, pages 20–36. Springer, 2018.

[205] X. Zhou, X. Lan, H. Zhang, Z. Tian, Y. Zhang, and N. Zheng. Fully
Convolutional Grasp Detection Network with Oriented Anchor
Box. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 7223–7230. IEEE, 2018.

[206] Y. Zhu, Y. Tian, D. N. Metaxas, and P. Dollár. Semantic Amodal
Segmentation. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3001–3009. IEEE Computer Society, 2017.

[207] C. L. Zitnick and P. Dollár. Edge Boxes: Locating Object Proposals
from Edges. In European Conference on Computer Vision (ECCV)
Part V, volume 8693 of Lecture Notes in Computer Science, pages
391–405. Springer, 2014.

[208] C. L. Zitnick and T. Kanade. A Cooperative Algorithm for Stereo
Matching and Occlusion Detection. IEEE Transactions on Pattern
Analysis Machine Intelligence (TPAMI), 22(7):675–684, 2000.

[209] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning Transfer-
able Architectures for Scalable Image Recognition. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 8697–
8710. IEEE Computer Society, 2018.

Appendix A

Deep Convolutional Networks

A.1 Kullback-Leibler Divergence

Let ppxq be the probability distribution represented by the training
set tpxn, ynquN

n“1 and p̂pxnq the distribution of the approximated set
tpxn, ŷnquN

n“1. Minimizing the objective term of Equation 2.4 is equiv-
alent to minimizing the Kullback-Leibler divergence KLpp, p̂q be-
tween the training distribution ppxq and the distribution p̂pxq learned
by the network fW. The Kullback-Leibler divergence, which quantifies
how much information is lost when approximating a distribution by
another one, is defined as the expectation of the log difference between
the target and approximating distributions:

KLpp, p̂q :“ Erlog ppxq ´ log p̂pxqs (A.1)

Equation A.1 can be rewritten as follows:

KLpp, p̂q “
Nÿ

n“1

ppxnqplog ppxnq ´ log p̂pxnqq

“
Nÿ

n“1

ppxnq log ppxnq
loooooooooomoooooooooon

entropy of p

´
Nÿ

n“1

ppxnq log p̂pxnq
loooooooooooomoooooooooooon

cross-entropy between p and p̂

(A.2)

Equation A.2 shows that KLpp, p̂q is actually the difference between
the entropy of p and the cross-entropy between p and p̂. Assuming
that txnuN

n“1 are independent observations, the entropy term is con-
stant and the cross-entropy term can be equivalently minimized as
follows:

min
W

ppxnq log p̂pxnq “ min
W

Cÿ

i“1

pynqi logpŷnqi (A.3)

I

II A.2. Bayesian Interpretation

As a result, we find the objective term of Equation 2.4:

arg min
W

KLpp, p̂q “ arg min
W
´

Nÿ

n“1

Cÿ

i“1

pynqi logpŷnqi (A.4)

A.2 Bayesian Interpretation

From a Bayesian perspective, the network inference ẑ “ fWpxq P r0, 1s
from Equation 2.5 can be viewed as a Maximum A Posteriori (MAP)
probability estimate with a Gaussian prior on the weights.

Proposition 1. If Z is a random variable that follows a Bernouilli distribution
with parameter ẑ “ fWpxq P r0, 1s, then

W‹ “ WMAP :“ arg max
W

ppZ|WqppWq (A.5)

Proof. Assuming independent observations, and given that logarithm
is monotonic, WMAP can be rewritten as follows:

WMAP “ arg max
W

log pppZ|WqppWqq

“ arg max
W

log

˜
Nź

n“1

ppzn|WqppWq
¸

“ arg max
W

Nÿ

n“1

log pppzn|WqppWqq

“ arg max
W

˜
Nÿ

n“1

log ppzn|Wq ` N log ppWq
¸

(A.6)

As Z follows a Bernouilli distribution of parameter ẑ “ fWpxq,
ppZ “ z|Wq “ ẑzp1´ ẑqp1´zq (A.7)

As W follows a Gaussian distribution, there exists σ P R such that

ppWq9 expp´‖W‖
2
2

σ2 q (A.8)

As a result,

log ppzn|Wq “ zn logpẑnq ` p1´ znq logp1´ ẑnq
log ppWq9 ‖W‖2

2
(A.9)

Considering that arg minp´¨q “ arg maxp¨q, we finally obtain

WMAP “ W‹ (A.10)

Appendix B

Occlusion-Aware
Instance Segmentation

B.1 Binarization Thresholds

In our pipeline for generating an ordered set of candidates (c.f . Section
4.4), we introduced two hyperparameters α and β, that are thresholds
for binarizing the boundary and occlusion maps respectively.

As shown by Figure B.1, these thresholds impact the generation
of an affordable instance from the bicameral network inference. High
threshold values tend to break boundaries, thus favouring overcluster-
ing. Low threshold values induce more closed boundaries and false pos-
itive in the binary maps, thus favouring oversegmentation. Favouring
overclustering makes blinder as less instance candidates are produced
and instance candidates tend to be grouped instances or instances
grouped with the background. Conversely, favouring oversegmenta-
tion produces more instance candidates but these candidates tend to be
instance parts.

In our bin-picking experiments, we set these thresholds to .1 as, in
industrial bin-picking applications, we want to maximize the proba-
bility to succesfully grasp an instance. In the worst-case scenarios, i.e.
only instance parts as instance candidates or no instance candidates,
we prefer attempting to grasp inside an instance even if the grasp is
not optimal, rather than doing nothing. As the network inference is
most likely correct or polluted with false positive, we set a low thresh-
old value for both α and β. We thus avoid to break boundaries and
face mostly two pick cases: either a correctly delineated non-occluded
instance, or an instance part.

III

IV B.1. Binarization Thresholds

cookie haribo sauce tea

Input

α “ β “ .1

α “ β “ .3

α “ β “ .5

α “ β “ .7

α “ β “ .9

Figure B.1: Comparative results using a bicameral network trained on Mikado+
and different thresholds α and β for binarizing the network inference for
boundaries and occlusions respectively. A high threshold value tends to break
boundaries, thus favouring overclustering. A low threshold value induces
more closed boundaries and false positive, thus favouring oversegmentation.

Appendix C

Application to Bin-Picking

C.1 Synthetic Training Data Generation

C.1.1 Textures and Backgrounds

The Mikado synthetic dataset was generated using 120 texture images
respectively. The number of texture and background images was aug-
mented to 2,400 and 600 respectively, for its extension Mikado+. While
the texture images in Mikado are mainly for stick-like sachets, the
Mikado+ textures include other food shapes as well: pastries, cookies,
square sachets, rigid boxes. All the texture and background images
were retrieved using the Google Image search engine and manually
cropped to remove any background. A comprehensive overview of
the texture and background images is provided in Figures C.1 and C.2
respectively.

C.1.2 Alternative Input Modality

The Mikado pipeline for generating synthetic training data could be
adapted for an alternative input modality, such as depth. For exam-
ple, instead of texture images, we collect a set of bottle models from
ShapeNet [32] (c.f . Figure C.3). We then render two different views of
the scene to model a binocular system. Using an off-the-shelf stereo-
matching algorithm for 3D reconstruction, we generate synthetic top-
view depth images of bottle instances piled up in bulk, with intra-class
geometric variability. As qualitatively shown by Figure C.4, such im-
ages can employed to synthetically train a bicameral network for jointly
inferring boundaries and occlusions from a single depth image.

V

VI C.1. Synthetic Training Data Generation

Mikado

Mikado+

Figure C.1: Overview of the textures used to generate Mikado (top) and
Mikado+ (bottom). Best viewed in electronic version

Appendix C. Application to Bin-Picking VII

Mikado

Mikado+

Figure C.2: Overview of the backgrounds used to generate Mikado (top) and
Mikado+ (bottom). Best viewed in electronic version

VIII C.1. Synthetic Training Data Generation

Figure C.3: The
bottle models, from
ShapeNet [32], used
to generate synthetic
depth maps of bottle
instances piled up in
bulk, within the
proposed Mikado
framework

(a)

(b)

(c)

Figure C.4: Qualitative results on synthetic depth images using a synthetically
trained bicameral network for jointly detecting boundaries and occlusions
from a single depth map. From top to bottom: input (a); detected boundaries
(b); result (c). Circles and rectangles represent vacuum suction and parallel-jaw
instance-centered grasps. This shows that the proposed bicameral network
and Mikado pipeline could be easily adapted to alternative input modality.

Appendix C. Application to Bin-Picking IX

C.2 Real-World Experimental Evaluation

This section contains the numerical version of the bin-picking perfor-
mances presented in Section 5.3 (see Table C.1 for the correspondences).
The tables also include the number of observations and bin-picking
sequences on which the performances are averaged (c.f . Table C.2).

Figure Table
5.13 C.3
5.16 C.4
5.20 C.5
5.23 C.6

Table C.1: Correspondances between
the figures in Section 5.3 and the tables
in this section

Metric Measures the amount of

NO Observations Number of observations

NS Sequences Number of bin-picking sequences

SR Real success
Successful extractions, i.e.
whose instance is taken away

MV Virtual margin
Failed extractions
of well detected instances

SV Virtual success
Extractions either successful,
or failed but whose grasp is centered
on a non-occluded instance

SC Centered success
Successful extractions
whose grasp is centered

SNO Non-occluded success
Successful extractions
whose instance is unoccluded

FNC Not-centered failure
Failed extractions
because of not centered grasps

FO Occluded failure
Failed extractions
because of occluded instances

Table C.2: Definition of our real-world performance metrics

X C.2. Real-World Experimental Evaluation

NO NS SR MV SV SC SNO FNC FO

compote 75 8 .74 .42 .85 .96 .89 .37 .32

cookie 107 4 .81 .00 .81 .92 .78 .60 .55

crepe 90 7 .74 .09 .77 .88 .84 .77 .23

donut 102 7 .60 .24 .70 .92 .97 .42 .44

haribo 91 5 .52 .68 .85 1.0 .91 .14 .21

madeleine 126 5 .65 .07 .67 .88 .90 .75 .25

nem 111 4 .84 .17 .86 .92 .78 .78 .28

sauce 417 19 .77 .25 .83 .95 .84 .50 .51

tartelette 97 5 .84 .13 .86 .86 .79 .73 .40

tea 140 8 .77 .41 .86 .78 .87 .50 .16

overall 1,356 72 .74 .27 .81 .91 .85 .51 .36

Table C.3: Per-product performances averaged over all observations, using a
bicameral network trained on Mikado+

NO NS SR MV SV SC SNO FNC FO

nem Mikado 144 4 .50 .07 .54 .85 .78 .92 .35

Mikado+ 111 4 .84 .17 .86 .92 .78 .78 .28

sauce Mikado 90 4 .75 .05 .76 .88 .86 .77 .50

Mikado+ 417 19 .77 .25 .83 .95 .84 .50 .51

tea Mikado 145 7 .64 .36 .77 .58 .79 .62 .16

Mikado+ 140 8 .77 .41 .86 .78 .87 .50 .16

Table C.4: Per-product performances averaged over all observations, using a
bicameral network trained on Mikado or Mikado+

Appendix C. Application to Bin-Picking XI

NO NS SR MV SV SC SNO FNC FO

madeleine Kamido 129 2 .50 .11 .55 .55 .77 .75 .38

4 Ours (Mikado+) 111 4 .84 .17 .86 .92 .78 .78 .29

sauce Kamido 108 2 .49 .12 .55 .37 .69 .87 .35

Ours (Mikado+) 417 19 .77 .25 .83 .95 .84 .50 .51

Table C.5: Comparison of the real-world performances with the current indus-
trial approach

NO NS SR MV SV SC SNO FNC FO

nem F25 122 4 .80 .32 .86 .95 .76 .48 .28

F100 111 4 .84 .17 .86 .92 .78 .78 .28

sauce F25 109 4 .71 .03 .72 .95 .86 .53 .84

F100 417 19 .77 .25 .83 .95 .84 .50 .51

cookie F25 107 4 .84 .12 .86 .92 .70 .59 .65

F100 107 4 .81 .00 .81 .92 .78 .60 .55

madeleine F25 129 4 .68 .15 .73 .86 .94 .54 .49

F100 126 5 .65 .07 .67 .88 .90 .75 .25

Table C.6: Per-product performances, using bicameral networks trained on
Mikado+, with respect to the number of convolutional filters

	Abstract
	Résumé
	Remerciements
	List of Figures
	List of Tables
	Notations
	Glossaries
	Visual Representations
	Introduction
	Application Context
	Objectives
	Contributions
	Publications

	Contents

	Deep Convolutional Networks
	Introduction
	Definitions
	Learning

	Limitations
	Large Training Datasets
	Limited Internal Representations
	Lack of Explanability

	Interpretations
	Hierarchical Representations
	Kernel Perspective

	Conclusion

	State of the Art
	Bin-Picking
	Gripper-Oriented Bin-Picking
	Object-Oriented Bin-Picking

	Instance Segmentation
	Early-Localization Instance Segmentation
	Late-Localization Instance Segmentation
	Occlusion Detection from a Single Image
	Datasets for Boundary and Occlusion Detection

	Conclusion

	Occlusion-Aware Instance Segmentation
	Bicameral Structuring
	Bicameral Architecture
	Bicameral Learning
	Experimental Setup

	Comparison with the State of the Art
	Oriented Boundary Detection
	Amodal Instance Segmentation
	Conclusion

	Ablation Study
	Alternative Architectures
	Decoders Feature Sharing
	Skip Connections
	Encoder Backbone
	Conclusion

	Localizing Affordable Instances
	Approach
	Implementation
	Discussion
	Perspectives

	Conclusion
	Summary
	Contributions

	Application to Bin-Picking
	Synthetic Training Data
	Data Generation
	Data Augmentation

	Synthetic Data Plausibility Check
	Experimental Setup
	Transfer Learning Experiments
	Conclusion

	Real-World Experimental Evaluation
	Real-World Experimental Setup
	Experimental Protocol
	Generalization from Synthetic Training
	Comparison with the Industrial Baseline
	Achieving Real-Time Performances

	Conclusion
	Summary
	Contributions

	Conclusion
	Summary
	Contributions
	Perspectives

	Deep Convolutional Networks
	Kullback-Leibler Divergence
	Bayesian Interpretation

	Occlusion-Aware Instance Segmentation
	Binarization Thresholds

	Application to Bin-Picking
	Synthetic Training Data Generation
	Textures and Backgrounds
	Alternative Input Modality

	Real-World Experimental Evaluation

	Autorisation de Soutenance

