
HAL Id: tel-03081300
https://theses.hal.science/tel-03081300v1

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deciphering the functional and molecular differences
between MTM1 and MTMR2 to better understand two

neuromuscular diseases
Matthieu Raess

To cite this version:
Matthieu Raess. Deciphering the functional and molecular differences between MTM1 and MTMR2
to better understand two neuromuscular diseases. Genomics [q-bio.GN]. Université de Strasbourg,
2017. English. �NNT : 2017STRAJ088�. �tel-03081300�

https://theses.hal.science/tel-03081300v1
https://hal.archives-ouvertes.fr


  

UNIVERSITÉ DE STRASBOURG  

 

ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE (ED 414) 

Génétique Moléculaire, Génomique, Microbiologie (GMGM) – UMR 7156 

& 

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) 

UMR 7104 – INSERM U 964 

 
 

THÈSE  présentée par : 

Matthieu RAESS 
 

soutenue le : 13 octobre 2017 
 

 

pour obtenir le grade de : Docteur de l’université de Strasbourg 

Discipline/ Spécialité : Aspects moléculaires et cellulaires de la biologie 

 

Deciphering the functional and molecular 
differences between MTM1 and MTMR2              

to better understand two neuromuscular 
diseases. 

 
THÈSE dirigée par : 

Mme FRIANT Sylvie Directrice de recherche, Université de Strasbourg 
& Mme COWLING Belinda Chargée de recherche, Université de Strasbourg 

 

RAPPORTEURS : 
Mme BOLINO Alessandra Directrice de recherche, Institut San Raffaele de Milan  
M. BITOUN Marc Chargé de recherche, Institut de Myologie 
 

 

AUTRES MEMBRES DU JURY : 
M. ECHARD Arnaud Directeur de recherche, Institut Pasteur 
M. VITALE Nicolas Directeur de recherche, Université de Strasbourg 
 



1 

 

Acknowledgements 

It is my pleasure to acknowledge the roles of many people who made this PhD 

research possible.  

I will start by respectfully thanking the members of the jury Dr. Alessandra Bolino, 

Dr. Marc Bitoun, Dr. Arnaud Echard and Dr. Nicolas Vitale for accepting to read and evaluate 

my PhD work. 

I would like to sincerely thank Dr. Sylvie Friant and Dr. Jocelyn Laporte for 

welcoming me in their respective teams. Both of you have been a constant and powerful 

source of advice and motivation. Of course many thanks to Dr. Belinda Cowling for accepting 

to be my co-director (and my official Aurora specialist) for the last two years, your help and 

your enthusiasm have been a great support to me. 

I would like to express my appreciation to the Association Française contre les 

Myopathies (AFM Téléthon) for financially supporting my thesis project during 3 years. 

When it comes to my team(s) members, it is difficult to individually express all my 

gratitude. I will simply thank all of you for your precious help, your fruitful discussions and 

most importantly your kindness and positive atmosphere. It has always been a pleasure and a 

privilege to share your scientific and social life. Special thanks go to Bruno Rinaldi, Christine 

Kretz, Pascal Kessler (except Pascal’s jokes), Hichem Tasfaout and Raphael Schneider for their 

significant technical assistance. 

I would also like to thank our collaborators for this work: Dr. Bernard Payrastre and 

Jean-Marie Xuereb for the yeast lipid dosage and Dr. Norma Romero for sharing precious 

patient biopsies. I am also grateful to Alessandra Bolino and Marta Guerrero for sharing their 

mouse tissues. 

This work would not have been possible without our technical platforms. I especially 

thank Nadia Messaddeq, Josiane Hergueux and Coralie Spiegelhalter for their help in electron 



2 

 

microscopy; Philippe Hammann, Lauriane Kuhn and Johana Chicher (IBMC) for all the work 

on mass spectrometry; Pascale Koebel and Paola Rossolillo (IGBMC) for virus production; 

and finally the IGBMC animal facility, cell culture facility and antibody facility. 

I gratefully thank all members and organizers of the OpenLAB operation. Going in all 

these high schools through Alsace was an exciting opportunity to practice scientific 

vulgarization and really confirmed my project of becoming a teacher in biology. 

Special thanks go to my loving partner Florine, who is a constant support and source 

of happiness in my life. 

I would like to finish my acknowledgements by thanking my parents, my brothers 

Vincent, Christophe and Sébastien, and my sister Anne. They supported me during all my life 

and made all this possible for me. 



3 

 

Table of contents 

 

Acknowledgements .................................................................................................................... 1 

Table of contents ........................................................................................................................ 3 

List of tables ............................................................................................................................... 7 

List of figures ............................................................................................................................. 8 

Essential abbreviations ............................................................................................................. 10 

Part One - Introduction ........................................................................................... 11 

I. Setting the scene ............................................................................................................. 12 

II. Myotubularin-related diseases ...................................................................................... 12 

A. The X-linked centronuclear myopathy ......................................................................... 12 

1. The causative gene ................................................................................................... 12 

2. Clinical and histological features ............................................................................. 15 

3. Animal models ......................................................................................................... 18 

B. The Charcot-Marie-Tooth neuropathy Type 4B1 ........................................................ 23 

1. The causative gene ................................................................................................... 23 

2. Clinical and histological features ............................................................................. 27 

3. Animal models ......................................................................................................... 28 

III. The myotubularin family ........................................................................................... 29 

A. Introduction .................................................................................................................. 29 

B. Myotubularins: protein domains and interactions ........................................................ 31 

C. Myotubularins: tissue expression ................................................................................. 35 

D. Myotubularin: mRNA isoforms ................................................................................... 37 

E. Myotubularins: protein structure. ................................................................................. 39 

F. Conclusion .................................................................................................................... 42 

IV. Phosphoinositides: key lipids in intracellular trafficking ....................................... 43 

A. The metabolism of membrane phosphoinositides ........................................................ 43 

1. Lipids are the main membrane constituents ............................................................. 43 

2. Phosphoinositides are lipid signaling molecules ...................................................... 46 

3. Phosphatidylinositol is the precursor of phosphoinositides ..................................... 46 

B. The PtdIns3P is essential for endosomal trafficking .................................................... 47 

1. PtdIns3P synthesis .................................................................................................... 47 

2. PtdIns3P physiological role ..................................................................................... 49 



4 

 

C. PtdIns(3,5)P2 is a regulator of endosomal-lysosomal trafficking ................................ 51 

1. PtdIns(3,5)P2 synthesis ............................................................................................. 51 

2. Physiological role of PtdIns(3,5)P2 .......................................................................... 52 

D. PtdIns5P is an underappreciated phosphoinositide ...................................................... 53 

1. PtdIns5P synthesis .................................................................................................... 53 

2. PtdIns5P physiological role ..................................................................................... 54 

E. A word about the other phosphoinositides ................................................................... 55 

V. Objectives of this thesis .................................................................................................. 55 

Part Two – Results ...................................................................................................... 56 

I. Differences in sequence and regulation between MTM1 and MTMR2 .................... 57 

A. MTM1 comparison to MTMR2-L and MTMR2-S ...................................................... 57 

B. The MTMR2-Δ2-24 truncated construct ...................................................................... 60 

C. MTMR2-L function is regulated by the S58 phosphorylation on its N-terminal 

extension ............................................................................................................................... 60 

D. MTMR2 constructs used for this study ........................................................................ 61 

II. Detection of MTMR2 proteins ...................................................................................... 62 

III. MTM1 and MTMR2 display different phosphatase activities in vivo ................... 64 

A. MTMR2 expression is regulated in yeast ..................................................................... 65 

B. MTM1 and MTMR2 display different intracellular localizations in yeast .................. 66 

C. MTM1 and MTMR2 display different phosphatase activities in yeast ........................ 68 

IV. Study of MTM1 and MTMR2 localization and functions in mammalian cells .... 72 

A. MTMR2 localization depends on its N-terminal extension ......................................... 72 

B. MTMR2 N-terminal extension includes at least two phosphorylation sites ................ 75 

C. Study of MTM1 and MTMR2 in C2C12 muscle cells................................................. 77 

V. MTMR2 isoforms rescue the myopathic phenotypes of Mtm1 KO mouse muscles . 82 

A. Is MTMR2 expressed in muscle? ................................................................................. 82 

1. Expression of the MTMR2-S short isoform is reduced in Mtm1 KO mice muscles. ... 82 

2. Expression of the MTMR2-S short isoform is also reduced in the XLCNM patient 

muscles ............................................................................................................................. 84 

3. Detection of MTMR2 protein isoforms in mice ....................................................... 86 

B. Overexpression of MTM1 and MTMR2 in Mtm1 KO mouse muscles using AAV 

vectors .................................................................................................................................. 88 



5 

 

C. Exogenous expression of MTMR2 short isoform in the Mtm1 KO mice rescues muscle 

weight and force similarly to MTM1 expression ................................................................. 90 

D. The MTMR2 isoforms rescue the histopathological hallmarks of the Mtm1 KO mouse

 92 

E. MTMR2 isoforms rescue Mtm1 KO muscle disorganization ...................................... 97 

F. Exploring the mechanistic of the rescue ...................................................................... 99 

VI. Both MTMR2 isoforms are able to improve the Mtm1 KO mouse phenotypes . 103 

A. Overexpression of both MTMR2 isoforms ameliorates the lifespan and body weight of 

Mtm1 KO mice ................................................................................................................... 105 

B. Overexpression of both MTMR2 isoforms rescues the muscle strength of Mtm1 KO 

mice ……………………………………………………………………………………….107 

C. Overexpression of both MTMR2 isoforms rescues the histopathology of Mtm1 KO 

limb muscles ....................................................................................................................... 109 

Part Three - Discussion and Perspectives   (in French) ..................... 111 

I. Les isoformes de MTMR2 et l’extension N-terminale .............................................. 112 

II. Les spécificités de MTM1 et MTMR2 ........................................................................ 116 

III. Mieux comprendre la correction de la myopathie ................................................ 118 

IV. Stratégies thérapeutiques ........................................................................................ 123 

V. Epilogue ......................................................................................................................... 126 

Materials and Methods ........................................................................................... 127 

I. Plasmids and constructs............................................................................................... 128 

II. In vivo models ............................................................................................................... 129 

A. Bacteria strains and culture conditions ....................................................................... 129 

B. Yeast strains and culture conditions ........................................................................... 130 

C. Mammalian cells and culture conditions .................................................................... 130 

D. Mice and housing conditions ...................................................................................... 131 

III. Antibodies ................................................................................................................. 131 

IV. Biopsies from patients .............................................................................................. 132 

V. Bacteria transformation and plasmid production..................................................... 132 

VI. Production of monoclonal anti-MTMR2 antibody ............................................... 132 

VII. AAV production ....................................................................................................... 133 

VIII. Lentiviral production ............................................................................................... 133 

IX. Expression analysis .................................................................................................. 134 



6 

 

X. Protein extraction and Western blot .......................................................................... 135 

XI. Mass spectrometry ................................................................................................... 136 

XII. Bioinformatics analysis ............................................................................................ 137 

XIII. Protocols specific to yeast ........................................................................................ 137 

A. Transformation of yeast cells ..................................................................................... 137 

B. Subcellular fractionation ............................................................................................ 138 

C. Yeast phenotyping ...................................................................................................... 138 

XIV. Protocols specific to mammalian cells .................................................................... 139 

A. Cell transfection ......................................................................................................... 139 

B. Cell transduction ........................................................................................................ 139 

C. Immunofluorescence .................................................................................................. 140 

D. C2C12 myotubes phenotyping ................................................................................... 140 

XV. Protocols specific to mice ......................................................................................... 141 

A. AAV transduction in mice .......................................................................................... 141 

B. Clinical tests ............................................................................................................... 141 

C. Dissection and sample preparation ............................................................................. 142 

D. Functional analysis of the muscle .............................................................................. 142 

E. Histology .................................................................................................................... 142 

F. Immunofluorescence on muscle sections ................................................................... 143 

G. Electron microscopy ................................................................................................... 143 

H. PtdIns3P quantification by ELISA in muscle extracts ............................................... 143 

XVI. Statistical analysis .................................................................................................... 144 

Bibliography .................................................................................................................. 145 

Appendix .......................................................................................................................... 163 

 



7 

 

List of tables 

Table 1: Correlation between expression, localization and phosphatase activity of myotubularins expressed in 

ymr1Δ yeast cells .................................................................................................................................................. 71 

Table 2 : Rescuing effects of MTM1 and MTMR2 isoforms on several hallmarks of myotubular myopathy 102 

Table 3: List of systemic injections .................................................................................................................... 103 



8 

 

List of figures 

Figure 1: Position of XLCNM-linked nonsense and missense mutations on human MTM1 protein .................. 14 

Figure 2: Muscle histology and ultrastructure of XLCNM patients ..................................................................... 17 

Figure 3: Morphological and histological phenotypes of the XLCNM zebrafish model ..................................... 19 

Figure 4: Clinical and histological phenotypes of the XLCNM mouse model. ..................................................... 20 

Figure 5: Clinical and histological phenotypes of the XLCNM canine model ...................................................... 22 

Figure 6: Genomic structure and mRNA isoforms of MTMR2 in humans (A) and mice (B) ................................ 24 

Figure 7: Position of CMT4B1-linked nonsense and missense mutations on human MTMR2 protein .............. 25 

Figure 8: Clinical and histological phenotypes of CMT4B1 patients and associated mouse model................... 27 

Figure 9: Human myotubularins: domain organization and interactome .......................................................... 32 

Figure 10: Myotubularins tissue expression ........................................................................................................ 35 

Figure 11: Myotubularin mRNA isoforms. ........................................................................................................... 38 

Figure 12: The myotubularins protein structure .................................................................................................. 40 

Figure 13: Phosphoinositide metabolism in yeast and human cells ................................................................... 44 

Figure 14: intracellular localization of the different phosphoinositides and the membrane trafficking 

pathways .............................................................................................................................................................. 50 

Figure 15: MTMR2-L has an N-terminal extension compared to MTM1 and MTMR2-S .................................... 58 

Figure 16: Truncated forms of MTMR2-L induce an MTM1-like phenotype ....................................................... 59 

Figure 17: MTMR2 localization in mammalian cells is regulated by its S58 phosphorylation site .................... 61 

Figure 18: Production and characterization of a new anti-MTMR2 antibody .................................................... 63 

Figure 19: MTMR2 expression is regulated in yeast............................................................................................ 65 

Figure 20: MTM1 and MTMR2 display different intracellular localizations in yeast. ........................................ 67 

Figure 21: MTM1 and MTMR2 display different phosphatase activities in yeast .............................................. 69 

Figure 22: MTM1 and MTMR2-S localize to specific punctuate structures in COS cells membrane projections ... 73 

Figure 23: Detection of human MTMR2 phosphorylation sites by mass spectrometry ..................................... 76 

Figure 24: Mtm1 knowckdown C2C12 myotubes are shorter and have a lower fusion index ........................... 77 

Figure 25: Independent expression of myotubularins and GFP in C2C12 using a unique lentiviral vector ........ 79 

Figure 26: Detection and quantification of MTMR2 mRNA isoforms in mouse.................................................. 83 

Figure 27: MTMR2-S expression is reduced in XLCNM patient muscles.. ........................................................... 85 

Figure 28: Detection of endogenous MTMR2 protein isoforms in mouse and cultured cells............................. 87 

Figure 29: Detection of overexpressed myotubularins after intramuscular injections in mice. ........................ 89 

Figure 30: The MTMR2 short isoform rescues muscle weight and force similarly as MTM1 in the Mtm1 KO 

myopathic mouse ................................................................................................................................................. 91 

Figure 31: All MTMR2 constructs increase the myofiber size of Mtm1 KO mice ................................................ 92 

Figure 32: Fiber size heterogenitiy in Mtm1 KO rescued muscles. ...................................................................... 93 

Figure 33: All MTMR2 constructs rescue the nuclei positioning in Mtm1 KO mice. ........................................... 94 

Figure 34: All MTMR2 constructs rescue the mitochondria organization in Mtm1 KO mice ............................. 95 



9 

 

Figure 35: Localization in overexpressed myotubularins in Mtm1 KO muscles fibers. ...................................... 96 

Figure 36: All MTMR2 isoforms ameliorate the muscle ultrastructure of Mtm1 KO mice ................................. 98 

Figure 37: Mechanistic of Mtm1 KO mouse muscle rescue by MTMR2 ............................................................ 100 

Figure 38: Detection of overexpressed myotubularins after systemic injections in mice. ............................... 104 

Figure 39: MTMR2 isoforms rescue the body weight of myopathic mice......................................................... 106 

Figure 40: MTMR2 isoforms rescue the muscle force of Mtm1 KO mice .......................................................... 108 

Figure 41: MTMR2 isoforms rescue the histology of limb muscles ................................................................... 109 

Figure 42: The N-terminal extension of MTMR2 regulates its protein localization and activity ..................... 114 



10 

 

Essential abbreviations  

 

Aa, amino acids 

ANOVA, analysis of variance 

AAV, adeno-associated virus 

BIN1, amphiphysin 2 

CMT, Charcot-Marie-Tooth 

CNM, centronuclear myopathy 

DNM2, dynamin 2 

FYVE, Fab1-YOTB-Vac1-EEA1 

GFP, green fluorescent protein 

HE, hematoxylin-eosin 

KD, knockdown 

KI, knockin 

KO, knockout 

MTM, myotubularin 

MTMR, myotubularin-related 

PH-GRAM, Pleckstrin Homology, Glucosyltransferase, Rab-like GTPase Activator and Myotubularin 

PPIn, phosphoinositides 

PtdIns, phosphatidylinositol 

PtdIns3P, phosphatidylinositol 3-phosphate 

PtdIns5P, phosphatidylinositol 5-phosphate 

PtdIns(3,5)P2, phosphatidylinositol 3,5-bisphosphate 

TA, tibialis anterior 

WT, wild type 
Ymr1, Yeast myotubularin-related protein 1  



11 

 

Part One - Introduction



 

12 

 

12 Part One - Introduction 

I. Setting the scene 

Myotubularins (MTMs) are active or dead phosphoinositide phosphatases defining a 

large protein family conserved through evolution, from yeast to human, and involved in 

different neuromuscular diseases. Mutations in the myotubularin MTM1 gene cause the severe 

congenital myopathy called myotubular myopathy (or X-linked centronuclear myopathy) 

affecting the myocytes, while mutations in the myotubularin-related MTMR2 gene cause the 

recessive Charcot-Marie-Tooth peripheral neuropathy CMT4B1 affecting the Schwann cells. 

This tissue-specificity is quite intriguing, since MTM1 and MTMR2 are ubiquitously 

expressed and are two similar proteins: they have comparable sequences homologies, share 

domain organizations and catalytic functions, and dephosphorylate the same lipid substrates, 

phosphatidylinositol-3-monophosphate (PtdIns3P) and phosphatidylinositol-3,5-bisphosphate 

(PtdIns(3,5)P2). 

Before presenting my project, I would like to give an overview of three main aspects: 

first the neuromuscular diseases associated with myotubularins, then the large myotubularin 

family itself, and finally the phosphoinositide substrates of these phosphatases. 

 

II. Myotubularin-related diseases 

A. The X-linked centronuclear myopathy 

1. The causative gene 

The X-linked centronuclear myopathy (XLCNM, OMIM # 310400) or X-linked 

recessive myotubular myopathy (XLMTM; OMIM # 310400) is a congenital muscle disorder 

first described in 1969 by Van Wijngaarden et al. (Van Wijngaarden, G.K. et al., 1969). 

XLCNM belongs to a group of rare congenital myopathies named centronuclear myopathies 

(CNM). This group was initially composed of 3 forms: the X-linked form, the autosomal 

dominant form (due to mutations in DNM2) and the autosomal recessive form (due to 

mutations in BIN1) (Bitoun et al., 2005; Nicot et al., 2007) but more recently, other genes 
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such as RYR1, TTN or SPEG have been related to CNM and make the classification more 

difficult (Agrawal et al., 2014; Ceyhan-Birsoy et al., 2013; Wilmshurst et al., 2010). 

The MTM1 gene 

The causative gene of XLCNM was localized on the Xq28 chromosome (Thomas et 

al., 1990) and then isolated by positional cloning and identified for the first time by a 

consortium of 3 groups in 1996 (Laporte et al., 1996). Named MTM1, this gene contains 15 

exons forming a 3.9 kb transcript that is ubiquitously expressed. A second transcript of 2.4 kb 

was specifically detected in muscle and testis, due to an alternative polyadenylation signal 

resulting in a shorter transcript. However, no muscle-specific exon that could explain the 

muscle-specificity of the associated disease has been identified yet (Laporte et al., 1996).  

The MTM1 gene codes for a 603 amino acids protein with a specific phosphoinositide 

(PPIn) 3-phosphatase activity. MTM1 was the first described protein of the large 

myotubularin family that currently contains 14 identified members. This family deserves a 

full presentation and will be more thoroughly characterized in chapter III.  

MTM1 mutations 

Up to now and according to the Human Gene Mutation Database 

(http://www.hgmd.cf.ac.uk), 245 mutations on the MTM1 gene have been identified and 

associated with the myotubular myopathy. XLCNM patients have been found in all ethnical 

groups including European (de Gouyon et al., 1997; Tanner et al., 1999b), Japanese (Nishino 

et al., 1998; Tsai et al., 2005) South American (Zanoteli et al., 1998) and North American 

populations (Herman et al., 2002).  

These mutations mainly affect the PH-GRAM (Pleckstrin Homology - 

Glucosyltransferase, Rab-like GTPase Activator and Myotubularins) domain (lipid binding 

domain) and the phosphatase domain of MTM1, with no real hotspot (Figure 1) (Biancalana 

et al., 2003; McEntagart et al., 2002). Most of them are nonsense or frameshift mutations that 

induce a truncated and non-functional protein and seem correlated with severe muscular 

phenotypes (McEntagart et al., 2002). The others (77 up to now) are missense mutations 
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which often lead to milder phenotypes (McEntagart et al., 2002), and affect amino acids that 

are highly conserved in the MTM1 proteins through evolution. This suggests their important 

role in protein structure, interaction or catalytic activity. However, the genotype-phenotype 

correlation can be surprising and the same mutation (such as the E404K mutation) can induce 

various degrees of XLCNM severity from one patient to another (Hoffjan et al., 2006; 

McEntagart et al., 2002), indicating some aggravation of compensation factors. 

 

MTM1 cellular functions 

In vitro studies show that MTM1 (and active myotubularins in general) is a specific 

phosphoinositide (PPIn) 3-phosphatase that dephosphorylates the phosphatidylinositol-3-

monophosphate (PtdIns3P) and PtdIns(3,5)P2 into PtdIns and PtdIns5P, respectively 

(Blondeau et al., 2000; Taylor et al., 2000; Tronchere et al., 2004; Walker et al., 2001).  

MTM1 cellular functions are not fully understood, and the specific role of MTM1 in 

muscle remains under investigation. The majority of MTM1 mutations result in the loss of 

MTM1 protein that is presumably the cause of the disease. But we do not precisely know why 

Figure 1: Position of XLCNM-linked nonsense and missense mutations on human MTM1 

protein. Each dot represents a nonsense (blue) or missense (red) mutation listed in the Human Gene 

Mutation Database (http://www.hgmd.cf.ac.uk) for MTM1. In total, 35 nonsense and 77 missense 

mutations were linked to XLCNM in human MTM1. The number of different mutations found for the 

same amino acid is indicated by the scale on the left. The mapping was done using the mutation 

mapper of cBioPortal (http://www.cbioportal.org/mutation_mapper.jsp). PH-GRAM (Pleckstrin 

Homology - Glucosyltransferase, Rab-like GTPase Activator and Myotubularins) domain, 

phosphatase domain, CC (coiled-coil) domain and PDZ domain are represented. 

http://www.hgmd.cf.ac.uk/
http://www.cbioportal.org/mutation_mapper.jsp
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MTM1 mutations specifically affect the muscle. Data show that MTM1 interacts with desmin, 

a muscle-specific intermediate filament (Hnia et al., 2011). Moreover, MTM1 or desmin 

defects lead to abnormal mitochondrial dynamic and positioning in muscle, where 

mitochondrial production of energy is crucial for muscle contraction (Hnia et al., 2011). 

MTM1 has also been shown to interact with the amphiphysin BIN1 that is implicated in the 

autosomal recessive form of CNM (Royer et al., 2013). MTM1 enhances BIN1 activity 

(membrane tubulation) in skeletal muscle, and BIN1 patient mutations alter its binding and 

regulation by MTM1 (Royer et al., 2013). Studies in cell cultures suggest that MTM1 is able 

to dephosphorylate endosomal pools of PtdIns3P (and thus to decrease its levels) (Kim et al., 

2002), and is implicated in late endosome formation and functions through interactions with 

PtdIns(3,5)P2 (Tsujita et al., 2004). In addition to this, surface delivery of endosomal cargo 

requires PtdIns3P hydrolysis by MTM1 (Ketel et al., 2016).  

Finally, a study in mice lacking MTM1 shows aberrant mTORC1 signaling and 

impaired autophagy, suggesting that myotubularin is implicated in these pathways (Fetalvero 

et al., 2013). 

2. Clinical and histological features 

The XLCNM affects about 1/50 000 newborn males, and is generally characterized by 

hypotonia at birth, a very severe and generalized muscle weakness, external ophthalmoplegia 

and respiratory distress (Jungbluth et al., 2008; Laporte et al., 1996). To date, no specific 

therapeutic treatment is available. In 1999, Herman et al. classified XLCNM-affected patients 

in 3 categories, according to their phenotype severity: he described a severe (and classical), 

moderate and mild XLCNM (Herman et al., 1999). 

The most severe form is characterized by prenatal polyhydramnios and reduced fetal 

movements, chronic ventilator dependence (with risk of respiratory infection), highly delayed 

motor milestones and absence of independent ambulation (Das et al., 1993; Herman et al., 

1999). This severe form often results in neonatal death due to respiratory failure (mostly 

because of diaphragm weakness). Many surviving infants need a 24 hours/day ventilatory 

support and rarely reach 3 years old.  Note that the newborn cases are often similar between 

XLCNM and myotonic dystrophy, but can be distinguished by examination of the mother 
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who shows mild facial weakness and clinical or electrical myotonia in case of myotonic 

dystrophy (Heckmatt et al., 1985).  

Moderate and mild forms of XLCNM have been described by several groups (Barth 

and Dubowitz, 1998; Biancalana et al., 2003; Hoffjan et al., 2006; Yu et al., 2003). Affected 

patients are less dependent on ventilatory support and present less severely delayed motor 

milestones with some independent ambulation. Only a few patients with pathogenic variants 

in MTM1 were described to reach adulthood (Herman et al., 1999), and only two reached their 

sixties (Biancalana et al., 2003; Hoffjan et al., 2006). Also, a rare adult-onset form was 

reported, with apparently no clinical symptoms at birth and a progressive development of the 

myopathy during adulthood (Biancalana et al., 2003; Hoffjan et al., 2006; Yu et al., 2003). 

Due to the X-linked recessive inheritance, the myotubular myopathy almost 

exclusively affects newborn males, and the mutation is usually transmitted by the 

asymptomatic mother (Herman et al., 2002). The short life expectancy and the severe muscle 

weakness of XLCNM patients prevent a transmission by the father.  However, some rare 

heterozygote female carriers manifest XLCNM phenotypes similar to affected male 

phenotypes, with a high variability (Biancalana et al., 2017; Hammans et al., 2000; Jungbluth 

et al., 2003; Penisson-Besnier et al., 2007; Schara et al., 2003; Sutton et al., 2001; Tanner et 

al., 1999a; Tanner et al., 1999b). The inactivation of the other X chromosome (not carrying 

the MTM1 mutations) could explain these female cases (Kristiansen et al., 2003). Moreover, 

the degree and tissue-specificity of the X chromosome inactivation seems to determine the 

phenotype severity (Grogan et al., 2005; Jungbluth et al., 2003; Tanner et al., 1999a). 

Compared to males, manifesting female carriers present less severe phenotypes, with 

childhood or adolescent onset and a progressive muscle weakness with no impact on the 

lifespan (Grogan et al., 2005; Hammans et al., 2000; Penisson-Besnier et al., 2007; Tanner et 

al., 1999a). As these milder phenotypes present as adult-onset limb-girdle myopathy, and as 

several of the affected females carry large heterozygous MTM1 deletions not detectable by 

Sanger sequencing, the prevalence of affected female carriers is likely to be greatly 

underestimated (Biancalana et al., 2017). 
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Concerning histology, skeletal muscle biopsies of XLCNM patients reveal similar 

structural abnormalities independent of the phenotype severity. Myofibers show 

characteristics of fetal myotubes, hence the name “myotubular myopathy”. Compared to 

normal myofibers, XLCNM myofibers are smaller and rounder (Silver et al., 1986), present 

centralized nuclei instead of being at the periphery (Ambler et al., 1984; Gayathri et al., 2000; 

Helliwell et al., 1998) and possess a perinuclear halo (“necklace”) lacking contractile 

Figure 2: Muscle histology and ultrastructure of XLCNM patients. (A) H&E staining of a 

transverse muscle section, showing small round fibers and centralized nuclei (white arrows). (B) 

NADH-TR staining of a transverse muscle section, showing abnormal central accumulation of 

peripheral aggregates (necklace) of mitochondria (C) Electron microscopy of a transverse muscle 

section, showing two centralized nuclei and abnormal myofibers. (A), (B) and (C) were adapted from 

Romero et al., 2010. (D) Electron microscopy of longitudinal muscle sections, showing ultrastructural 

changes in triads (black arrows) of 3 different XLCNM patients (MTM) compared to control (CTL). 

Triads from XLCNM patients are dilated and disorganized. Scale bar 500nm. Adapted from Dowling 

et al. 2009. 
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elements and containing mitochondria aggregates and glycogen granules (Figure 2A, B and 

C) (Romero, 2010; Sarnat et al., 1981). The characteristic centralized nuclei visible after 

Hematoxylin & Eosin (H&E) staining are present in all skeletal muscles and may affect up to 

90% of fibers (Romero, 2010), hence the name “centronuclear myopathy”. For now, this 

abnormal nuclei positioning is not explained, but some data suggest that desmin intermediate 

filaments (that interact with MTM1) are implicated in the actin-driven positioning of the 

nucleus in skeletal muscle (Dupin et al., 2011; Ralston et al., 2006). A recessive desmin-null 

form of myopathy has also been described, with centralized nuclei in the myofibers 

(Henderson et al., 2013). Finally, a predominance of type I fibers (slow contraction, high 

oxidative capacity) in XLCNM patients muscles can be seen after succinate dehydrogenase 

(SDH) staining or NADH-tetrazolium reductase (NADH-TR) staining (Figure 2B) (Ambler et 

al., 1984; Helliwell et al., 1998; Romero, 2010).  

Skeletal muscle ultrastructure shows a profound disorganization of myofibrils, 

sarcomeres and triads (Figure 2C and D) (Ambler et al., 1984; Dowling et al., 2009; Silver et 

al., 1986). Furthermore, the neuromuscular junctions are smaller and the N-CAM protein 

essential for a proper neuromuscular junction adhesion is abnormally expressed (Coers et al., 

1976; Fidzianska et al., 1994). Since all these elements are essential for Excitation-

Contraction (E-C) coupling, it partially explains the muscle weakness of the XLCNM 

patients. 

Noteworthy, truncating mutations leading to an absence of MTM1 protein are usually 

related to the presence of very small myofibers and to a severe myopathy phenotype, while 

missense mutations are linked to larger myofibers (but still small compared to a normal 

muscle) and higher life expectancy (Pierson et al., 2007). Thus, measuring the fiber size could 

be an easy way to evaluate the vital prognostic of XLCNM patients. 

3. Animal models 

To better understand the pathophysiological mechanisms of myotubular myopathy and 

the cellular and molecular functions of MTM1, several vertebrate models of XLCNM have 

been generated (Lawlor et al., 2016). 
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Zebrafish model 

A zebrafish (Danio rerio) model of myotubular myopathy was generated by Mtm1 

knockdown (KD) using morpholino antisense technology (Dowling et al., 2009). Reduced 

levels of MTM1 induce impaired motor functions, myofiber atrophy, central and abnormally 

rounded nuclei, organelles mislocalization, sarcomere and triad disorganization, and abnormal 

neuromuscular junctions (Figure 3B) (Dowling et al., 2009). These phenotypes are similar to 

that seen in XLCNM patients. Dowling et al. also observed increased PtdIns3P levels in 

zebrafish muscles. Morphological changes can already been observed at the embryonic stage, 

with abnormal dorsal curvature and a diminution of spontaneous muscle contractions. 

Figure 3: Morphological and histological phenotypes of the XLCNM zebrafish model. Adapted 

from Dowling et al. 2009. (A) Live embryos at 24 and 72 hours post fertilization (hpf) injected with 

either control (CTL) or myotubularin (MTM) morpholinos. Abnormal dorsal curvature in MTM 

morphant at 24 hpf is indicated by a double star (**). MTM morphants at 72 hpf show a tail shortening 

and a selective thinning of the muscle compartment (brackets). (B) H&E staining of longitudinal 

muscle sections from control (CTL) and myotubularin (MTM) morphants at 72 hpf. MTM morphants 

show abnormally rounded nuclei (arrows) and an increased space between the myofibers. (C) Electron 

microscopy of longitudinal muscle sections from control (CTL) and myotubularin (MTM) morphants. 

MTM morphants display dilated and dysmorphic triads (arrows). Scale bar represents 500nm. 
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Mouse models 

Buj-Bello et al. generated constitutive Mtm1 knockout (KO) mice by homologous 

recombination (Buj-Bello et al., 2002b). These mice are viable but develop a progressive 

centronuclear myopathy starting at around 3-4 weeks of age, leading to death at 5 to 8 weeks 

of age. 

The myopathy reproduces the majority of clinical phenotypes of the XLCNM patients, 

as a respiratory distress, an amyotrophy and a severe progressive muscle weakness (Figure 

4A-B). Histologically, skeletal muscles fibers show smaller and rounder myofibers with a 

progressive accumulation of central or paracentral nuclei, and a mitochondrial accumulation 

in the center or the periphery of the fiber (“necklace” phenotype characteristic of human 

XLCNM) (Figure 4C-D). Highly disorganized sarcomeres and triads, with an accumulation of 

abnormal longitudinal T-tubules can be seen by electron microscopy (Figure 4E) (Al-Qusairi 

et al., 2009; Buj-Bello et al., 2002b; Lawlor et al., 2013). While the XLCNM was proposed to 

result from an arrest in myogenesis, as the myofibers exhibit fetal myotube characteristics 

(Spiro et al., 1966; van Wijngaarden, G. K. et al., 1969), this Mtm1 KO mouse model revealed 

that the cause of the pathology is likely a muscle maintenance defect (Buj-Bello et al., 2002b).  

Figure 4: Clinical and histological phenotypes of the XLCNM mouse model. (A) Grid climbing 

test of wild type (WT) and Mtm1 KO mice. Mtm1 KO mice are unable to climb. (B) Dissected hind 

limbs of WT and Mtm1 KO mice, illustrating the major muscle mass reduction in Mtm1 KO mice. (A) 

and (B) were adapted from Buj-Bello et al. 2002b. (C), (D) and (E) represent personal data of tibialis 

anterior (TA) sections of 7 week-old WT and Mtm1 KO mice, adapted from my article Raess et al. 

2017. (C) H&E staining of transversal tibialis anterior (TA) sections. Scale bar 100 µm. (D) Succinate 

dehydrogenase (SDH) staining of transverse TA sections. Scale bar 100 µm. (E) Electron microscopy 

of longitudinal TA sections displaying sarcomere, mitochondria and triad organization. Scale bar 1 

µm. Representative triads are displayed in the zoom square. 
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This model is also frequently used for preclinical development of treatments, with 

various strategies to compensate the loss of MTM1 and rescue the myopathic phenotypes. 

Gene therapy by systemic injection of adeno-associated virus serotype 8 (AAV8) expressing 

MTM1 improves motor activity, contractile force and prolonged survival (Childers et al., 

2014).  

Another potential therapeutic strategy is to decrease PtdIns3P levels that are increased 

in Mtm1 KO mice: inhibition or muscle-specific depletion of the class II PtdIns 3-kinase also 

improved motor functions, calcium release and lifespan (Kutchukian et al., 2016; Sabha et al., 

2016). These results highlight the importance of MTM1 phosphatase activity for muscle 

maintenance and function. However, the same disease model can also be partially rescued by 

expressing a phosphatase inactive MTM1 protein (Amoasii et al., 2012), supporting the 

concept that PPIn-unrelated functions of myotubularin are also implicated in this pathology.  

A third approach based on targeting DNM2 has been investigated, as increased levels 

of DNM2 dynamin have been detected in XLCNM patients and in Mtm1 KO mice, and 

mutations in DNM2 lead to the autosomal dominant form of centronuclear myopathy (Bitoun 

et al., 2005; Cowling et al., 2014). Based on this, the downregulation of DNM2 expression by 

genetic cross (generating heterozygote mice KO for DNM2) or by antisense oligonucleotide-

mediated knockdown also improved the muscular phenotypes and the survival of Mtm1 KO 

mice (Cowling et al., 2014; Tasfaout et al., 2017). 

An Mtm1 p.R69C mouse line has been generated based on the patient mutation, to 

mimic milder forms of XLCNM. These knockin (KI) mice carry a splice site mutation leading 

to the expression of only a low level of functional MTM1 protein (Pierson et al., 2012). 

However, this low level is sufficient to ameliorate the myopathic phenotypes compared to 

Mtm1 KO mice, with an increased muscular strength and a lifespan often exceeding one year. 

This model has also been used to test therapeutic approaches for XLCNM, with variable 

degrees of success (Dowling et al., 2012; Lawlor et al., 2014; Lim et al., 2015). 

 

 

 



 

22 

 

22 Part One - Introduction 

Canine model 

Contrary to other vertebrate models of centronuclear myopathy, the canine model was not 

generated but was discovered as a naturally occurring mutation in several related litters of 

Labrador Retriever puppies (Beggs et al., 2010). The causative N155K mutation in MTM1 

induces a general muscle weakness and atrophy starting at 8 weeks of age and leading to 

premature death at 15 to 26 weeks of age (Figure 5A). Expression of this mutant in COS-1 

cells shows a sequestration of MTM1-N155K in proteasomes, where it is presumably 

degraded. Affected dogs exhibit histological phenotypes similar to mouse models, including 

myofiber hypotrophy, centralized nuclei, organelles mislocalization and sarcotubular system 

disorganization (Figure 5B-C) (Beggs et al., 2010; Childers et al., 2014). It also presents 

specific histological patterns of mislocalized organelles and mitochondria that are absent from 

both murine and human XLCNM (Beggs et al., 2010; Childers et al., 2014). Note that another 

canine XLCNM (p.Q384P caused by a missense mutation in exon 11 of MTM1) was recently 

reported in Rottweiler dogs, presenting similar clinical and histological phenotypes than 

Labrador Retriever dogs (Shelton et al., 2015). 

Figure 5: Clinical and histological phenotypes of the XLCNM canine model. Adapted from Beggs 

et al. 2010. (A) Picture of a 4 month-old male Labrador Retriever affected with XLCNM, illustrating 

the generalized muscle atrophy and characteristic kyphosis. (B) H&E and NADH staining of transverse 

muscle sections from unaffected female carrier (Unaffected) and Mtm1 KO dogs. Scale bar 100 µm. (C) 

Electron microscopy of longitudinal muscle sections from unaffected female carrier (Unaffected) and 

Mtm1 KO dogs. Scale bar 2 µm. Representative triads are showed by an arrow and displayed in the 

zoom square. 
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The Labrador Retriever canine model has been used to test gene therapy for XLCNM: 

systemic intravenous injection of serotype 8 adeno-associated virus (AAV8) expressing 

MTM1 improves muscle strength, histology and dog survival (Childers et al., 2014; Mack et 

al., 2017). Combined with the results obtained in the Mtm1 KO mouse model, this paves the 

way for clinical trial and the use of gene therapy to treat XLCNM patients. 

B. The Charcot-Marie-Tooth neuropathy Type 4B1 

1. The causative gene 

The Charcot-Marie-Tooth neuropathy Type 4B1 (CMT4B1, OMIM # 601382) is one 

of the various forms of inherited neuropathies grouped under the name of Charcot-Marie-

Tooth (CMT) syndrome, also called hereditary motor and sensory neuropathy (HMSN). CMT 

has been named after the 3 investigators who described them in 1886, and gather neurological 

diseases affecting the peripheral nervous system.  

This pathology affects 1/2500 newborn and is the most common inherited neurological 

disorder (Saporta et al., 2011). Even if mutations in more than 30 different genes have been 

implicated in CMT, most affected patients share clinical similarities, with onset in the first 

two decades of life, a progressive distal weakness and atrophy associated with sensory loss, 

pes cavus foot deformity, and absent ankle reflexes (Saporta et al., 2011).  

CMT has been divided into 9 subgroups based on clinical features, gene localization 

(autosomal or allosomal) and mode of transmission (dominant or recessive). Thus, CMT4 

define axonal and demyelinating neuropathies transmitted by autosomal recessive inheritance. 

To date mutations in 11 genes have been identified: GDAP1 (CMT4A), MTMR2 (CMT4B1), 

MTMR13/SBF2 (CMT4B2), MTMR5/SBF1 (CMT4B3), SH3TC2 (CMT4C), NDRG1 

(CMT4D), EGR2 (CMT4E), PRX (CMT4F), HK1 (CMT4G), FGD4 (CMT4H), 

 FIG4 (CMT4J) and SURF1 (CMT4K). 
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MTMR2 gene 

MTMR2 localized on chromosome 11q21 is the causative gene of CMT4B1 (Bolino et 

al., 2000; Houlden et al., 2001; Laporte et al., 1998). 15 exons were initially identified, but 

Bolino et al. described 3 additional exons named 1a, 2a and 2b and their inclusion by 

alternative splicing allows the expression of 4 different transcripts variants (V1 to V4) that are 

ubiquitously expressed (Figure 6A) (Bolino et al., 2002; Bolino et al., 2000). Transcript 

Figure 6: Genomic structure and mRNA isoforms of MTMR2 in humans (A) and mice (B). 
Inclusion of any shown combination of the alternative exons 1a, 2a or 2b (2b being only present in 

humans) brings a premature stop codon and unmasks an alternative start site in exon 3. In humans and 

mice, MTMR2 V1 encodes for MTMR2-L while isoforms V2 to V4 encode for MTMR2-S. 
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variant V1 does not contain any additional exons and leads to the translation from exon 1 

encoding for a 643 amino acids (aa) protein isoform, while V2 to V4 include exon 1a, leading 

to a premature STOP codon and to the translation from an alternative start codon in exon 3. 

Thus, V2 to V4 are used for the translation of a shorter MTMR2 protein isoform of 571 aa. 

This translational start site multiplicity is present in other genes and allowed by a mechanism 

of leaky ribosomal scanning (Calkhoven et al., 1994; Kozak, 1995). In this manuscript I 

named MTMR2-L (long) the most studied 643 aa isoform and MTMR2-S (short) the less 

known 571 aa isoform.  

In mice, a similar alternative splicing system has been found (containing only two 

additional exons compared to three in human) and also leads to the translation of MTMR2-L 

and MTMR2-S (Figure 6B)  (Bolino et al., 2002). To date, the specific functions of these 

MTMR2 isoforms are not known, and this constitutes one of the main questions addressed in 

this thesis. 

Finally, a recent paper identified an alternative SOX10-responsive promoter 

at MTMR2 that displays strong regulatory activity in immortalized rat Schwann cells. This 

promoter directs transcription of a new MTMR2 transcript that is predicted to encode the 

short MTMR2-S isoform.  

MTMR2 mutations 

According to the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk), 23 

mutations in MTMR2 have been linked to CMT4B1. As for MTM1, most of the mutations found 

in MTMR2 are nonsense or frameshift mutations leading to a premature STOP codon and the 

production of a truncated dysfunctional protein (Bolino et al., 2000). Some missense mutations 

highlight amino acids that are important for MTMR2 structure and function (Figure 7). 

Figure 7: Position of CMT4B1-linked nonsense and missense mutations on human MTMR2 

protein. Each dot represents a nonsense (blue) or missense (red) mutation listed in the Human Gene 

Mutation Database (http://www.hgmd.cf.ac.uk) for MTMR2. In total, 4 nonsense and 6 missense 

mutations were linked to CMT4B1 in human MTMR2. The mapping was done using the mutation 

mapper of cBioPortal (http://www.cbioportal.org/mutation_mapper.jsp). PH-GRAM (Pleckstrin 

Homology - Glucosyltransferase, Rab-like GTPase Activator and Myotubularins) domain, phosphatase 

domain, CC (coiled-coil) domain and PDZ domain are represented. 

http://www.hgmd.cf.ac.uk/
http://www.cbioportal.org/mutation_mapper.jsp
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MTMR2 cellular functions 

In vitro studies show that MTMR2, as MTM1, is a specific phosphoinositide (PPIn) 3-

phosphatase that dephosphorylate the PtdIns3P and PtdIns(3,5)P2 into PtdIns and PtdIns5P, 

respectively (Berger et al., 2002; Tronchere et al., 2004). MTMR2 showed high efficiency 

and peak activity at neutral pH, suggesting an in vivo function in the cytosol or in non-acidic 

vesicles (Berger et al., 2002). However, MTMR2 cellular functions are not fully understood.  

In vivo, the ability of MTMR2 to dephosphorylate its substrates is still under debate.  

Lorenzo et al. show that MTMR2 (as MTM1) is able to dephosphorylate an endosomal pool 

of PtdIns3P when overexpressed in HeLa cells (Lorenzo et al., 2006), while Kim et al. state 

that overexpression of MTMR2 in COS-1 cells does not change the PtdIns3P level (Kim et 

al., 2002). A third study shows that MTMR2 is able to dephosphorylate a late endosomal pool 

of PtdIns3P and affects late endosome trafficking (Cao et al., 2008). Finally, Vaccari et al. 

suggest that PtdIns(3,5)P2 is the physiological substrate of MTMR2 in the nerve (Vaccari et 

al., 2011)  These experimental differences could be due to post-transcriptional modifications 

of MTMR2. Indeed, Franklin et al. described two phosphorylation sites (S58 and S631) that 

regulate the targeting of MTMR2 to different endosomal compartments, to regulate different 

pools of PtdIns3P (Franklin et al., 2013; Franklin et al., 2011). Phosphomimetic MTMR2-

S58E mutant remains in the cytoplasm when overexpressed in HeLa cells, while 

unphosphorylable MTMR2-S58A mutant colocalizes with early endosomes. The S631 

phosphorylation site regulates the shift of MTMR2 between Rab5-positive and APPL1-

positive endosomes. Through this mechanism, MTMR2 seems to be implicated in endosome 

maturation, endosome signaling, and potentially in endocytosis (Franklin et al., 2013; Xhabija 

et al., 2011). 

Other myotubularins implicated in CMT4 

Two other myotubularins, MTMR5/SBF1 and MTMR13/SBF2, have been found to be 

mutated in CMT4B3 (OMIM # 615284) and CMT4B2 (OMIM # 604563), respectively 

(Alazami et al., 2014; Azzedine et al., 2003; Nakhro et al., 2013; Senderek et al., 2003). 

MTMR5 and MTMR13 are two dead (catalytically inactive) members of the myotubularin 

family that interact with active MTMR2 to form heterodimers and regulate MTMR2 function 

and phosphatase activity (Kim et al., 2003; Robinson and Dixon, 2005). Thus, mutations in 
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these two genes induce CMT4 through MTMR2 dysregulation, which may explain why 

CMT4B1, 2 and 3 are clinically indistinguishable. 

2. Clinical and histological features 

CMT4B1, as most of the CMT, is clinically characterized by distal motor and sensory 

impairment, pronounced muscular atrophy, and a foot deformity named pes cavus (fixed 

plantar flexion) (Figure 8A) (Quattrone et al., 1996). Patients often develop a pes equinovarus 

(or “clubfoot”) with internally rotated feet, and facial muscle weakness. Compared to 

XLCNM, CMT4B1 is a much less severe disease, with a mean age of onset at 3-5 years old 

and a progressive distal and proximal muscle weakness of lower limbs. Patients have no 

cognitive defects and a life expectancy of 40-50 years old. Since no therapeutic treatment is 

available at this point, CMT patients are only treated for the associated symptoms. Orthopedic 

care helps for autonomous ambulation and to prevent falls.  

Contrary to MTM1 mutations that specifically affect muscle cells, MTMR2 mutations 

affect the peripheral nervous system, and more specifically the Schwann cells. These 

specialized cells wrap around axons of motor and sensory neurons to form the myelin sheath, 

an essential component that isolates the axon and accelerates the action potential. The main 

histopathological features of CMT4B1 are the demyelination and the presence of focally 

folded (outfoldings) myelin sheaths around peripheral nerves, inducing a reduced nerve 

velocity (Figure 8B-C) (Quattrone et al., 1996). 

Figure 8: Clinical and histological phenotypes of CMT4B1 patients and associated mouse model. 

(A) Characteristic pes cavus phenotype. (B) Electron microscopy of a transverse section of peripheral 

nerves from unaffected human. Adapted from Kumar et al. 2003. (C) Electron microscopy of 

transverse sections of peripheral nerves from two CMT4B1 patients, illustrating the characteristic 

myelin sheath outfoldings. Adapted from Quattrone et al. 1996 and Gambardella et al. 1998. (D) 

Tranverse (left) and longitudinal (right) sections of sciatic nerves from 7 week-old Mtmr2 KO mice. 

Myelin outfoldings are indicated by white arrows. Adapted from Bolino et al. 2004. 
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3. Animal models 

To better understand the pathophysiological mechanisms of CMT4B1 and the cellular 

and molecular functions of MTMR2, several mouse models of have been generated. 

Bolino et al. generated Mtmr2 KO mice by excision of exon 4 that induces a 

frameshift and the production of a dysfunctional protein (Bolino et al., 2004; Houlden et al., 

2001). These mice present a CMT4B1-like neuropathy with myelin outfoldings (as in 

CMT4B1 patients) and impaired spermatogenesis (Figure 8D). Histology of the brain, spinal 

cord and muscle (including ATPase isotype staining) was normal at 2 months of age (Bolino 

et al., 2004). Two other mouse models were generated, with specific depletion of MTMR2 in 

either Schwann cells or motor neurons (Bolino et al., 2004; Bolis et al., 2005). Disruption of 

MTMR2 in Schwann cells reproduces the same phenotypes as observed in MTMR2-null mice, 

while the disruption of MTMR2 in motor neurons has no visible incidence on the peripheral 

nervous system. This corroborates a Schwann cells-specific function of MTMR2, which 

negatively regulates the membrane/vesicle trafficking and delivery to the plasma membrane, 

that is essential during myelination (Bolis et al., 2005; Bolis et al., 2009). 

Another team generated a CMT4B1 mouse model that mimics a patient mutation, by 

introducing an E276X mutation (G to T mutation in exon 9 of MTMR2) and deleting the 3’ 

terminal region immediately after the stop codon of MTMR2 (Bolino et al., 2000; Bonneick et 

al., 2005). The histology shows complex myelin infoldings and outfolding in peripheral 

nerves, and especially in distal nerves. However contrary to CMT4B1 patients, no 

electrophysiological change was observed, suggesting that the nerve velocity is not 

necessarily linked to the myelin sheath morphology (Bonneick et al., 2005). 
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III. The myotubularin family 

To better understand MTM1 and MTMR2 specific functions, it is essential to 

understand the protein family they belong to. Here I focus on gene expression, protein 

interactions and protein structure in the myotubularin family. This chapter is mainly based on 

the review “WANTED - Dead or alive: Myotubularins, a large disease-associated protein 

family” that we published recently (Raess et al., 2017) (Appendix 1). Several points have 

been discussed in more detail here to develop key points relevant to my project. 

A. Introduction 

Myotubularins constitute a large disease-associated family highly conserved through 

evolution with similarities to phosphatases. In humans there are 14 clear paralogs of 

myotubularins: the first identified was MTM1 followed by 13 myotubularin-related proteins 

MTMR1 to MTMR13 (Laporte et al., 2003; Laporte et al., 1996; Robinson and Dixon, 2006). 

Among them, 8 proteins are active phosphatases while 6 are catalytically dead, with a 

functional cooperation between members of these two classes (Kim et al., 2003; Nandurkar et 

al., 2003). In addition MTMR14 protein (also named hJUMPY) has been described (Tosch et 

al., 2006), however phylogenetic studies and protein domain composition suggested it defines 

a close but distinct protein family, and therefore this protein will not be discussed further in 

this chapter. Additional pseudogenes related to myotubularins also exist (Alonso et al., 2004). 

Although active myotubularins have been tentatively classified as Protein Tyrosine 

Phosphatases (PTP) based on the presence of a C(X)5R motif, they are specific 

phosphoinositide (PPIn) 3-phosphatases that dephosphorylate the phosphatidylinositol-3-

monophosphate (PtdIns3P) and PtdIns(3,5)P2 into PtdIns and PtdIns5P, respectively 

(Blondeau et al., 2000; Taylor et al., 2000; Tronchere et al., 2004; Walker et al., 2001). 

Conversely, dead myotubularins share a similar organization in domains but lack the 

phosphatase activity (Cui et al., 1998; Nandurkar et al., 2001).  

PPIn are lipid second messengers implicated in a wide range of cellular processes 

from cell growth and survival to cytoskeleton dynamics (Di Paolo and De Camilli, 2006; 
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Staiano et al., 2015). More specifically, PtdIns3P and PtdIns(3,5)P2 regulate membrane 

trafficking at the endosomal level and autophagy, which are the most studied and 

characterized functions of myotubularins (Nicot and Laporte, 2008; Robinson and Dixon, 

2006). PtdIns5P is implicated in several cellular processes including oxidative stress 

signaling, growth factor signaling and transcriptional regulation (Bulley et al., 2015; Giudici 

et al., 2016; Gozani et al., 2003a; Keune et al., 2013; Ramel et al., 2011). 

Myotubularins have been found in almost all eukaryotes from yeast to mammals, with 

few exceptions as Plasmodium falciparum (Lecompte et al., 2008). Orthologs for the 14 

human myotubularins are found in chordates except in rodents where MTMR8 is absent at 

least in mice and rats. A co-evolution has been observed between active and dead 

myotubularins, as well as between active myotubularins and antagonist kinases (Lecompte et 

al., 2008). For example MTM1 with the class-III PtdIns 3-kinase VPS34 (PIK3C3) and its 

regulator VPS15 (PIK3R4).  

In yeast, there is only one myotubularin homolog, named YMR1 for Yeast 

Myotubularin Related 1. YMR1 deletion leads to a 2-fold increase of the myotubularin 

substrates PtdIns3P and PtdIns(3,5)P2, leading to a fragmented vacuole phenotype (Parrish, 

W.R. et al., 2004; Taylor et al., 2000). The absence of major phenotype despite the depletion 

of the unique active myotubularin can be explained by the existence of two close 

phosphatases, the synaptojanin-like proteins Sjl2 and Sjl3. These proteins non-specifically 

dephosphorylate the D3, D4 or D5 phosphate of phosphoinositides, while Ymr1 (and other 

myotubularins) mainly dephosphorylate the D3 phosphate (Guo et al., 1999). Contrary to 

ymr1Δ, the triple deletion ymr1Δsjl2Δsjl3Δ is lethal (Parrish, W.R. et al., 2004). 

Why have so many myotubularins been duplicated and conserved? Indeed, the 

presence of 14 similar proteins in humans could lead to functional redundancy, however this 

high evolutionary pressure suggests that each myotubularin has one or several specific 

function(s). This specificity could be related to tissue expression or splice isoforms, or 

particular protein-protein interactions. This specific point will be developed in this chapter. 

To date, mutations were found in 4 myotubularin genes in monogenic human diseases. 

MTM1 is mutated in X-linked centronuclear myopathy (XLCNM, OMIM # 310400) 
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(Jungbluth et al., 2008; Laporte et al., 1996). Three other myotubularins, MTMR2 (encoding 

active phosphatase), MTMR5/SBF1 and MTMR13/SBF2 (both dead phosphatases), are 

mutated in Charcot-Marie-Tooth neuropathy type 4B1 (CMT4B1, OMIM # 601382), 4B3 

(CMT4B3, OMIM # 615284) and 4B2 (CMT4B2, OMIM # 604563), respectively (Alazami 

et al., 2014; Azzedine et al., 2003; Bolino et al., 2000; Nakhro et al., 2013; Senderek et al., 

2003). In addition, several myotubularins are linked to multifactorial diseases as colorectal, 

gastric and lung cancers (MTMR3 and 7) (Hu et al., 2011; Song et al., 2010; Weidner et al., 

2016), obesity (MTMR9) (Hotta et al., 2011) and Creutzfeldt–Jakob disease (MTMR7) 

(Sanchez-Juan et al., 2012). The fact that ubiquitously expressed myotubularins are 

implicated in different tissue-specific diseases again indicates that the apparent biochemical 

redundancy is in fact hiding tissue-specific functions. 

B. Myotubularins: protein domains and interactions 

Myotubularins are multidomain proteins that share the same central core composed of the PH-

GRAM (Pleckstrin Homology - Glucosyltransferase, Rab-like GTPase Activator and 

Myotubularins) domain and the phosphatase-like domain (Figure 9A) (Begley et al., 2003; 

Choudhury et al., 2006; Doerks et al., 2000; Tsujita et al., 2004). In the 8 active 

myotubularins (MTM1, MTMR1-4 and 6-8), the catalytic domain contains the consensus 

C(X)5R signature motif (Alonso et al., 2004; Zhang et al., 1994). In the 6 phosphatase-dead 

myotubularins (MTMR9-12, MTMR5/Sbf1 and MTMR13/Sbf2), the absence of enzymatic 

activity is due to the substitution of catalytically essential residues such as the cysteine in the 

consensus motif (Cui et al., 1998; Nandurkar et al., 2003). 
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C 

Figure 9: Human myotubularins: domain organization and interactome. (A) Scaled representation of the protein 

domains of human myotubularins. All myotubularins share the PH-GRAM and phosphatase (active or dead) domains. 

For each myotubularin, amino acid length of the most described protein isoform is indicated. (B) Classification of 

myotubularins into 6 subgroups based on protein organization and phylogenetics (indicated by the vertical bars on the 

left). Active myotubularins are represented in green and dead myotubularins in red. (C) Known protein interactions 

within the myotubularin family. Published interactions are in orange while interactions found in databases (Biogrid - 

thebiogrid.org) are in blue. (D) List of known interactors for each myotubularin. Published interactors are represented in 

orange while interactors found in databases with a minimum MUSEscore of 0,95 (Biogrid and Li et al., 2016) are in 

blue. Common interactors and interactors of the same protein family are surrounded and related together by a 

continuous and stippled line, respectively. Similar interactors found for a specific myotubularin are not surrounded. 
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Myotubularins can have several other functional domains: the PDZ binding site 

(MTM1, MTMR1 and 2) mediates protein-protein interactions, the PH (Pleckstrin homology) 

(MTMR5 and 13) and FYVE (Fab1-YOTB-Vac1-EEA1) (MTMR3 and 4) domains can bind 

PPIn (Itoh and Takenawa, 2002), and the DENN domain (MTMR5 and 13) is involved in 

small GTPase Rab regulation (Fabre et al., 2000; Jean et al., 2012; Yoshimura et al., 2010),. 

By combining domain organization and phylogenetics, 6 different subgroups are highlighted, 

each containing exclusively active or dead members (Figure 9B). In addition, all 

myotubularins except MTMR10 contain a coiled-coil (CC) domain that is critical for their 

homodimerization and/or heterodimerization (Berger et al., 2006; Lorenzo et al., 2006). 

Dimerization also appears to depend on the PH-GRAM domain (Berger et al., 2006). 

Indeed, all myotubularins except MTMR11 have been shown to interact either with 

themselves or with other myotubularins (Figure 9C) (Berger et al., 2006; Gupta et al., 2013; 

Kim et al., 2003; Lorenzo et al., 2006; Mochizuki and Majerus, 2003; Nandurkar et al., 2003; 

Schaletzky et al., 2003; Zou et al., 2009). Within the 14 members, 9 have been reported to 

form homodimers; this could enhance the membrane targeting by coupling two PH-GRAM 

domains (Berger et al., 2003). At least for MTM1, homo-oligomerization controls its 

allosteric activity, and in vitro MTM1 incubated with its substrate PtdIns3P forms a heptamer 

in the presence of PtdIns5P (Schaletzky et al., 2003).  

Myotubularins also form heterodimers, and one of the most notable characteristics of 

this family is that most heterodimers are formed by a coupling between active/dead 

phosphatases. For example, MTMR2 forms heterodimers with its dead homologs 

MTMR5/Sbf1, MTMR10, MTMR12 and MTMR13/Sbf2. The fact that mutations in MTMR5 

and MTMR13 lead to a similar neuropathy (CMT4B) as defects in MTMR2 confirms the 

physiological importance of dead phosphatases. MTMR9 interacts with 3 different active 

myotubularins of the same phylogenic subgroup (MTMR6, 7 and 8) and increases their 

enzymatic activity (Mochizuki and Majerus, 2003). In the same way, MTMR5 increases the 

enzymatic activity of MTMR2 and both are related to male infertility due to impaired 

spermatogenesis (Bolino et al., 2004; Firestein et al., 2002; Kim et al., 2003). In some 

heterodimers, such as MTM1-MTMR12, MTMR2-MTMR5 and MTMR2-MTMR13, the 

dead myotubularin may regulate the cellular localization of the active member (Gupta et al., 

2013; Kim et al., 2003; Nandurkar et al., 2003). Dead myotubularins appear early in evolution 
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and are conserved in many species (Laporte et al., 2003; Lecompte et al., 2008). Altogether, 

this suggests (1) a co-evolution between active and dead myotubularins and (2) that 

myotubularins rely on oligomerization for their function since very early in the evolution. 

Heterodimers can also be formed between two active members of the same phylogenic 

subgroup, as for MTMR1-MTMR2, MTMR3-MTMR4, MTMR6-MTMR7 and MTMR7-

MTMR8 (Figure 9C). 

Numerous interactors have been identified for each myotubularin (Figure 9D) (Biogrid 

- thebiogrid.org  and Intact - http://www.ebi.ac.uk/intact/) (Agrawal et al., 2014; Berggard et 

al., 2006; Cao et al., 2007; Cui et al., 1998; Fabre et al., 2000; Firestein et al., 2000; Jean et 

al., 2012; Li et al., 2016; Plant et al., 2009; Royer et al., 2013; Rual et al., 2005; Srivastava et 

al., 2005; Yu et al., 2013; Zhang et al., 2005). Some myotubularins share common interactors 

or interactors from the same protein family. For example, MTMR6 and MTMR8 both interact 

with SOAT1, a protein localized in the endoplasmic reticulum, which is also the presumed 

localization of these myotubularins. MTM1 interacts with desmin and MTMR2 with 

neurofilament light chain (NFL), that are two intermediate filament proteins specifically 

found in muscles and neurons, respectively (Hnia et al., 2011; Previtali et al., 2003). This is 

consistent with mutations in MTM1 and desmin leading to myopathies and mutations in 

MTMR2 and NFL leading to CMT neuropathies (Goldfarb et al., 1998; Mersiyanova et al., 

2000). Another well-represented group of interactors is the Rab family: MTMR1-RAB6B, 

MTMR6-RAB1B, MTMR5-RAB35 and MTMR13-RAB21 (Jean et al., 2012; Mochizuki et 

al., 2013). Rabs constitute a very large GTPase family regulating many steps of membrane 

trafficking, one of the main cellular functions in which myotubularins are implicated (Barr, 

2013). Of note, myotubularins implicated in 3 heterodimers share common or similar 

interactors: MTMR1-MTMR2, MTMR1-MTMR5 and MTMR2-MTMR10. For example, 

MTMR1 and MTMR5 heterodimerize and interact with similar Rab GTPases (Figure 9D). 
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C. Myotubularins: tissue expression 

To investigate how myotubularin genes are expressed in human tissues, we mined the 

Genotype-Tissue Expression (GTEx) database, which has been built by systematic RNA-

sequencing using samples of 51 different tissues coming from hundreds of donors and 2 

transformed cell types in culture.  

Figure 10 shows for each gene the relative expression in all tested tissues, and 

highlights in which tissue a specific myotubularin is the most/less expressed. This is not 

absolute expression, therefore we should keep in mind that each gene cannot be directly 

compared to another for the same tissue. A dendrogram was generated using the Pearson 

correlation coefficient to highlight hierarchical clustering of myotubularins sharing similar 

profiles of expression. Whilst this is one of many possible dendrograms and thus it has to be 

interpreted cautiously, two main groups of myotubularins can be distinguished based on 

expression profiles: MTMR1-3-8-11-12-13 (upper branch, Figure 10), and the others (lower 

branch). Discriminant tissues between the two groups are brain (almost all regions), skin, 

vagina and prostate. This does not seem to be directly related to phylogenetic classification, to 

active/dead and active/active heterodimers or to myotubularins sharing common interactors. 

However, some links can be made. For example, MTMR7 and MTMR9 that form an 

Figure 10: Myotubularins tissue expression. Heat map of myotubularin genes relative expression within 51 

different tissues and 2 cell types, underlining in which tissue a specific myotubularin is the most/less expressed (left 

panel). Expression levels have been obtained by mining the GTEx database (www.gtexportal.org/home/). 

Dendrogram highlighting the hierarchical clustering of myotubularins (right panel), using the Pearson correlation 

coefficient and average linkage. 

 

http://www.gtexportal.org/home/
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active/dead heterodimer have the closest expression profiles and are both strongly expressed 

in brain tissues. A similar link applies to MTM1, MTMR2 and MTMR10, which have 

correlated expression patterns: they form two active/dead heterodimers MTM1/MTMR10 and 

MTMR2/MTMR10, and MTMR2 and MTMR10 have common interactors (Figure 9C and D) 

(Lorenzo et al., 2006). 

Concerning myotubularins related to monogenic diseases, while MTM1 has a low 

expression level in striated muscles compared to other tissues such as nerves, colon or testis, 

mutations in the MTM1 gene lead to a severe myopathy. Thus, the MTM1 tissue-specific 

function could be explained by interactions with partners that are only expressed in muscle, 

such as desmin (Hnia et al., 2011). On the contrary, MTMR2 and MTMR13 are highly 

expressed in nerves, which is consistent with the neuropathies observed due to mutations in 

these genes. In addition, MTMR2 binds the neuronal intermediate filament NFL (Previtali et 

al., 2003), highlighting a potential molecular basis common to different CMT neuropathy 

forms. A link can be observed between MTMR2 and MTMR5, known to form heterodimers; 

they both have a high relative expression level in testis, and defects of these genes lead to 

male infertility by impaired spermatogenesis (Bolino et al., 2004; Firestein et al., 2002), 

therefore adding weight to the physiological significance of these data. 

Myotubularins expression levels have also been measured in two cell types, 

lymphocytes and fibroblasts that could be easily derived from human biopsies. These cells 

could allow diagnosis at the protein level or be dedifferentiated into induced pluripotent stem 

(IPS) cells that could be reprogrammed into specific cell types, allowing study of the 

pathocellular mechanisms. This time, absolute expression levels of all myotubularins are 

compared (Figure 10). Some myotubularins, such as MTMR5 or MTMR2, are well expressed 

in both lymphocytes and fibroblasts. Whereas for other myotubularins such as MTMR13, 

their expression level is higher in fibroblasts than in lymphocytes, suggesting that their study 

in these cell types might be more adapted. Therefore, interpreting these data can be useful in 

deciding which cell lines should be used for research and diagnostic purposes. 
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D. Myotubularin: mRNA isoforms 

The study of gene expression does not take splicing events into account. Indeed, a 

specific gene is often spliced into several mRNA isoforms that could be translated into 

different protein isoforms. In this review, we use the term “isoform” to define a variant of the 

same protein or mRNA, and “homologs” for different genes. Figure 11 summarizes the 

myotubularin mRNA isoforms expression within all tissues present in the GTEx database. 

Only significantly expressed mRNA isoforms have been represented, and color-coded based 

on their predicted protein product: the main protein isoform from the literature, longer/shorter 

protein isoforms, or non-coding mRNA isoforms. For each mRNA isoform, the expression 

level is indicated as a percentage of total gene expression. 

Interestingly, the main mRNA isoform studied in the literature is not always the most 

expressed (MTM1, MTMR3, MTMR10, MTMR11 and MTMR12). For MTMR10, the most 

expressed isoform encodes only the PH-GRAM; it raises the possibility that this protein 

isoform exerts a dominant negative effect on oligomerization of myotubularins or on cellular 

functions. MTMR2 has 4 well expressed mRNA isoforms: one translated into the main 643 

amino acids (aa) protein isoform and the three others translated into a 571 aa protein isoform 

lacking the N-terminal extremity before the PH-GRAM (Bolino et al., 2001). The latter is 

present in all tissues except brain, and may have a specific function. In addition, some 

isoforms are tissue-specific, as for MTM1 with 2 isoforms only expressed in skeletal muscle. 

Corresponding peptides lack a part of the PH-GRAM domain and could support a muscle-

specific function altered in the MTM1-related myopathy.  

In total, 10 myotubularins express mRNA isoforms leading to shorter proteins and 

MTMR1 displays an isoform predicted to encode a longer protein. These differences can 

affect various protein domains as the FYVE domain for MTMR3 and MTMR4 or the DENN 

domain for MTMR5, and thus could highly impact on protein conformation or protein-

protein/protein-lipid interactions. 
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Figure 11: Myotubularin mRNA isoforms. For each myotubularin indicated on the left, the most expressed isoforms present in 

the GTEx database are represented as a percentage of total gene expression. Only the most expressed isoforms are shown. The 

mRNA isoforms coding for the main published protein isoforms are indicated in green, shorter isoforms in red and longer 

isoforms in blue. Several non-coding isoforms indicated in black have been found well expressed, for which no corresponding 

peptides have been described yet. The star indicates specific MTM1 mRNA isoforms in skeletal muscle, the tissue affected in 

MTM1-related myopathy. For several myotubularins as MTMR3, MTMR10 and MTMR12, and to a less extend MTMR2, the 

main expressed isoforms are different than the published isoforms used for functional characterization of the related proteins; for 

MTMR11 and MTMR13 the main expressed isoforms are predicted non-coding. 
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For MTM1, MTMR11 and MTMR13, the prevailing mRNA isoforms are non-coding, 

or the corresponding peptides have not been identified yet, questioning the function of such 

isoforms. Finally, some isoforms described in the literature are not represented here because 

they were absent in the GTEx database. This is the case for various MTMR1 mRNA isoforms 

that are known to be expressed in some tissues (Buj-Bello et al., 2002a).  

In the future, it would be important to characterize the cellular activity of these tissue-

specific isoforms, in order to get insight into their physiological relevance. 

 

E. Myotubularins: protein structure. 

Between 2003 and 2016, the crystal structures of 4 active myotubularins have been 

determined: MTMR1 (PDB: 5C16), MTMR2 (1LW3, 1ZVR, 1M7R and 1ZSQ), MTMR6 

(2YFO) and MTMR8 (4YZI) (Begley et al., 2006; Begley et al., 2003; Bong et al., 2016). A 

crystal structure of mouse MTMR5 has also been solved, but only contains the C-terminal PH 

domain (1V5U). No major differences have been described between the 4 structures, except 

for the orientation of the MTMR6 PH-GRAM domain; this could impact MTMR6 

oligomerization properties (Bong et al., 2016).  

From a tridimensional point of view, myotubularins are globular proteins with two 

main parts: the PH-GRAM domain and the catalytic domain, connected by a linker (Figure 

4A) (Begley et al., 2003). N-terminal extremities, coiled-coil domains and PDZ binding sites 

are absent of these structures, presumably because they are too flexible or cleaved by 

proteolysis. In addition, the cysteine residue of the catalytic C(X)5R motif has been mutated 

into a serine for crystallization, except for MTMR6. 
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Figure 12: The myotubularins protein structure. (A) Overall view of the myotubularin structure. 

The crystal structure of MTMR2 (PDB:1ZSQ) is used as a model, with a front view and a view rotated 

at 90°. Domain names and the phosphoinositide substrate (here PtdIns3P) are indicated on the the two 

representations. (B) Zoom on the substrate-binding pocket. Residues forming the C(X)5R loop and 

other important residues are represented using stick models. Residues affected by missense mutations 

in MTM1-linked centronuclear myopathy are colored in yellow. No missense mutations have been 

found in MTMR2 or MTMR13 genes in the catalytic pocket. The cysteine residue of the C(X)5R motif 

is mutated to serine in the structure for crystallization purposes. Hydrogen bonds between the two 

phosphate groups in position D1 and D3 of PtdIns3P/PtdIns(3,5)P2 and surrounding residues of the 

active site are represented by stippled lines. 
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The PH domain consists in 2 β-strands and 1 α-helix, combined with the 5 β-strands of 

the GRAM domain. The main characteristic of the catalytic domain is the substrate binding 

pocket that is significantly deeper and wider than that of classical tyrosine phosphatases, 

explaining the unique specificity of myotubularins for membrane-embedded PPIn substrates 

(Figure 4A) (Begley et al., 2003). Indeed, active myotubularins specifically hydrolyze the D-3 

position of PtdIns3P and PtdIns(3,5)P2, two PPIn with large phosphorylated inositol 

headgroups that perfectly fit in the catalytic pocket. The D-3 phosphate is then trapped by its 

interaction with the main chain of 6 residues from the C(X)5R motif loop (on MTMR2 

sequence: Cys417, Ser418, Gly420, Trp421, Asp422 and Arg423) (Figure 4B). Concerning 

the catalytic activity, the nucleophile Cys417 residue attacks the phosphorous atom in 

position D-3 of the PPIn substrate, forming a phosphoenzyme intermediate, then the aspartic 

acid (Asp422 in MTMR2) donates a proton to the released dephosphorylated substrate, before 

hydrolysis yielding free enzyme and inorganic phosphate (Begley and Dixon, 2005; Begley et 

al., 2006; Nandurkar and Huysmans, 2002). Myotubularins are different from classical PTPs 

because the catalytic aspartate residue lies directly in the catalytic C(X)5R loop and not in a 

WPD-loop. The D-1 phosphate of the PPIn interacts with the side chain of two residues from 

the C(X)5R motif (on MTMR2 sequence: Ser418 and Arg423), but also with Asn330, which 

is conserved in all active myotubularins suggesting an important role in PPIn substrate 

binding. Some other residues help to maintain the three-dimensional structure of this catalytic 

pocket, like Arg463 (on MTMR2) that is also conserved in all myotubularins. However, a 

phosphate in position D-4 would generate a steric clash with several residues of the catalytic 

pocket, excluding PtdIns(3,4)P2 and PtdIns(3,4,5)P3 from potential substrates. 

Another consideration for myotubularin substrate specificity is that active 

myotubularins are electrostatically polarized proteins, with one strongly electropositive side 

containing the catalytic site (Begley et al., 2006). This would create electrostatic interactions 

between the positively charged face of myotubularins and the negatively charged membranes 

containing PPIn, contributing to substrate-binding affinity. This electropositive patch around 

the pocket seems to be specific for active myotubularins, while several dead myotubularins 

have an electronegative surface, suggesting a poor affinity toward lipid membranes. 

Furthermore, active myotubularins could bind either membranes or dead-phosphatase 

homologs through the same interface. 
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The tridimensional structure is also very useful to understand the effect of disease-

associated mutations and thereby to evaluate the importance of mutated residues for the 

function or the stability of the protein. The majority of MTM1, MTMR2 and MTMR13 

missense mutations affect residues in the hydrophobic core structure of the PH-GRAM and 

catalytic domains, and replace native amino acids by bulkier residues, or decrease van der 

Waals contacts or alter internal hydrogen bonds, consequently disrupting the protein core 

structure. In addition, two clusters of solvent-accessible missense mutation at the surface of 

the MTM1 protein can be observed: the Pro179-Asn180-Arg184 cluster and the Asp431-

Asp433 cluster (numbered in MTM1 sequence) that could be potential binding sites for 

interactors (Begley et al., 2003). In the active site, the Ser376, Gly378 and Arg421 (numbered 

Ser418, Gly420 and Arg463 in MTMR2 structure in Figure 4B) are frequent sites of 

mutations found in MTM1: the Ser376 and Gly378 directly bind the D-3 phosphate of the 

PPIn and the Arg421 is a key factor to maintain the position of the catalytic loop. Thus, 

mutations of these residues would directly prevent any catalytic activity.  

F. Conclusion 

Myotubularins define a large and highly conserved family of proteins with some 

noteworthy characteristics. They are classified in the Protein Tyrosine Phosphatases (PTP) 

family but have a specific phosphatase activity against phosphoinositides. One other feature is 

the presence of catalytically active and dead phosphatases, where dead myotubularins regulate 

their active homologs. Although they are ubiquitously expressed, four myotubularin genes – 

MTM1, MTMR2, MTMR5 and MTMR13 – are mutated in tissue-specific neuromuscular 

diseases, suggesting tissue-specific splice isoforms or specific protein-protein or protein-lipid 

interactions. 

Future experiments will be needed to address this tissue specificity. While the function 

of myotubularins and PPIn substrates and products was well studied in cell systems, their 

physiological role in vivo is still barely understood. Another key issue is the pathological 

mechanism(s) associated with myotubularin-related diseases. Preliminary data showed that 

MTM1-related myopathy can be rescued in mice by inhibition or muscle-specific ablation of 

the class II PtdIns 3-kinase (Sabha et al., 2016; Velichkova et al., 2010). However, the same 
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disease model can also be rescued by expressing a phosphatase inactive MTM1 protein, 

supporting that PPIn-unrelated functions of myotubularin are implicated in this pathology 

(Amoasii et al., 2012). Due to the importance of myotubularins and PPIn pathways in 

metabolism and cellular integrity, it would not be surprising that their dysregulation will be 

highlighted in other diseases in the future.  

 

IV. Phosphoinositides: key lipids in intracellular 

trafficking 

 

It was inconceivable to me to talk about myotubularins without presenting their lipid 

substrates: the phosphoinositides. This chapter is based on the review of Dimitri Bertazzi et 

al. in which I participated, entitled “Les phosphoinositides, des lipides acteurs essentiels du 

trafic intracellulaire.” (Translation: Phosphoinositides, essential lipidic actors in the 

intracellular traffic) (Bertazzi et al., 2015) (Appendix 2). As was already mentioned in 

previous chapters, myotubularins are specific PPIn 3-phosphatases that dephosphorylate the 

PtdIns3P and PtdIns(3,5)P2 into PtdIns and PtdIns5P, respectively (Blondeau et al., 2000; 

Taylor et al., 2000; Tronchere et al., 2004; Walker et al., 2001). Therefore I will mainly focus 

on these 4 phosphoinositides. The review was published in French in 2015, so I translated and 

updated it.  The Figure 13 and Figure 14 come from De Craene et al., another review about 

PPIn in which I did not take part (De Craene et al., 2017). 

 

A. The metabolism of membrane phosphoinositides 

1. Lipids are the main membrane constituents 

Membranes are essential cell components with a highly dynamic structure, and 

allowed the emergence of life through their physicochemical properties. Indeed, the broader 

environment is characterized by variations in temperature, humidity, pH, sun exposure, 

osmotic pressure or energy. Thus, each living organism has to adapt to these factors and to 

organize itself in order to preserve its internal balance and stability. The plasma membrane is 
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the first barrier of the cell that separates the cytoplasm from the external environment. It acts 

as a very selective filter that mechanically protects the cell and allows a fine control of the 

exchanges between the outside and inside environments. 

Figure 13: Phosphoinositide metabolism in yeast and human cells. Adapted from De Craene et al. 

2017. (A) The chemical structure of phosphatidylinositol (PtdIns); (B) Phosphoinositides synthesized 

in yeast and in human cells with the enzymes involved. Phosphorylation reactions are represented with 

black arrows and dephosphorylation reactions by grey arrows. The name of the yeast enzyme (when 

relevant) is written on top of its human homolog. 
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The plasma membrane is composed of a phospholipid bilayer encompassing proteins, 

sterols and glycolipids. Phospholipids are amphiphilic molecules with a hydrophilic head 

linked to a hydrophobic tail (Figure 13A). Hydrophobic groups face each other, generating a 

hydrophobic space between the two phospholipid layers. This property is required for the 

membrane embedding of lipids (as sterols or ceramides), transmembrane proteins or proteins 

with a lipid anchor. The lipid composition of the membrane depends on the organism 

(eukaryote or prokaryote), the cellular type (within the tissues of a multicellular organism), 

the membrane type (plasma membrane, endoplasmic reticulum, endosomes, Golgi apparatus, 

mitochondria and other intracellular compartments) and even on the state of the cell (resting 

state or under stimulus/stress) (Spector and Yorek, 1985; Zinser et al., 1991).  

Membranes are mainly composed of 5 phospholipids: phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PtdIns) and 

sphingomyelin (SM). For note, sterols are also present in the membranes but their function is 

primarily to control the membrane fluidity, an essential factor for the lateral diffusion of 

molecules in the bilayer. This bilayer also presents an asymmetrical distribution of the 

phospholipids between the external and the internal layers, due to the vertical diffusion 

between these two layers by the flip-flop mechanism and the activity of membrane proteins 

called flippases (Kornberg and McConnell, 1971; Nakano et al., 2009a; Nakano et al., 2009b). 

Lipids play an essential role as selective barrier via the plasma membrane, but they are 

also the major constituents of eukaryotic intracellular membranes such as compartments, 

organelles and transport vesicles. Membrane organization and composition differ depending 

on the cellular compartment. On one hand, the endoplasmic reticulum, the Golgi apparatus, 

the lysosome (named vacuole in yeast cells), the endosomes and transport vesicles are 

surrounded by a single lipid bilayer. The inner space of these intracellular compartments is 

called the lumen. On the other hand, the nucleus, mitochondria, chloroplasts of chlorophyll 

containing plants, and autophagic vesicles are surrounded by a double lipid bilayer. Each of 

these intracellular compartments has specific functions that are essential to cell life (Spector 

and Yorek, 1985), and all of them are interconnected by a fine-tuned vesicular transport of 

proteins. Thus, it is crucial for the cell to properly discriminate between intracellular 

compartments. To this end, each organelle has its own identity defined by molecules in the 

cytoplasmic layer of the membranes, allowing for a distinction even between the “cis” and the 
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“trans” faces of the Golgi network. Among these molecules, lipids, and specifically 

phosphoinositides, play a major role in the spatiotemporal regulation of cellular processes as 

the cytoskeleton dynamic, membrane trafficking, proliferation and cell survival. 

2. Phosphoinositides are lipid signaling molecules 

Phosphoinositides (PPIn) refer to a group of 7 different types of phosphorylated 

phosphatidylinositol (PtdIns).  If we exclude the PtdIns, PPIn are minor membrane 

constituents in terms of their abundance, as they only represent 1% of total cellular 

phospholipids (Payrastre et al., 2001). PtdIns itself only represents less than 10% of total 

phospholipids. PPIns are composed of a glycerol esterified on SN1 and SN2 positions by two 

fatty acid chains and its SN3 position is linked to an inositol ring via a phosphate group 

(Figure 13A) (Payrastre et al., 2001). In humans, the most common fatty acids in PtdIns are 

stearic acid (lipid number 18:0, 18 defining the number of carbons and 0 the number of 

double bonds) on SN1 position and arachidonic acid (20:4) on SN2 position (Marcus et al., 

1969). In yeast Saccharomyces cerevisiae, commonly used fatty acids are oleic acid (18:1), 

palmitoleic acid (16:1) and palmitic acid (16:0) (Trevelyan, 1966). Since all PPIns derive 

from the non-phosphorylated PtdIns, it is assumed that they have the same composition in 

fatty acids as the PtdIns. 

The PPIn inositol ring is a polyol cyclohexane of which positions D3, D4 and D5 can 

be phosphorylated, potentially generating 7 different PPIns (Figure 13B): phosphatidylinositol 

3-phosphate (PtdIns3P), PtdIns4P, PtdIns5P, PtdIns 3,4-bisphosphate (PtdIns(3,4)P2), 

PtdIns(3,5)P2, PtdIns(4,5)P2 and PtdIns 3,4,5-trisphosphate (PtdIns(3,4,5)P3). Despite their 

low concentrations in lipid membranes, PPIns play an essential role in the recruitment and/or 

activation of effector proteins. Moreover, their levels in membranes are regulated by 

membrane-specific lipid kinases and phosphatases, allowing for the spatiotemporal regulation 

of diverse cell events as budding, fusion or membrane dynamic (Payrastre et al., 2001). 

3. Phosphatidylinositol is the precursor of phosphoinositides 

Phosphatidylinositol (PtdIns) is a ubiquitous phospholipid in eukaryote cells and the 

starting point of PPIns metabolism. Indeed, all PPIns are directly or sequentially synthetized 
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from PtdIns (Figure 13B). In yeast, the PtdIns is synthetized by the PtdIns synthase 1 (Pis1) in 

the cytoplasmic layer of the endoplasmic reticulum, Golgi, mitochondria and microsomes 

membranes (Nikawa and Yamashita, 1984). In human, PtdIns is synthetized by the Pis1 

protein homolog, the PtdIns Synthase which has a similar distribution to Pis1 in yeast 

(Antonsson, 1994). 

PtdIns is also recycled from PtdIns3P, PtdIns4P and PtdIns5P thanks to lipid 

phosphatases (Figure 13B). In humans, active myotubularins (MTM1, MTMR1-4, 6, 7 and 8) 

are 3-phosphatases dephosphorylating specifically the PtdIns3P into PtdIns (Laporte et al., 

2003). The other PPIns phosphatases are less specific, such as SAC1 which is able to 

dephosphorylate the PtdIns3P into PtdIns, but also to dephosphorylate the PtdIns4P (and 

probably the PtdIns5P) into PtdIns (Liu and Bankaitis, 2010). In yeast, there is only one 

myotubularin named Ymr1, which also shows a phosphatase activity specific to the D3 

position. This activity on the PtdIns3P is shared with the less specific phosphatases Sjl2, Sjl3 

and Sac1, which are also able to convert PtdIns4P into PtdIns (Parrish, W. R. et al., 2004). 

B. The PtdIns3P is essential for endosomal trafficking 

1. PtdIns3P synthesis 

In yeast, PtdIns3P represents 30% of all the PPIns and is as abundant as PtdIns4P. In 

human cells, it accounts for 15% of all the monophosphorylated PPIns and is in minority 

compared to PtdIns4P (Payrastre et al., 2001). PtdIns3P is produced by the phosphorylation 

of PtdIns at the D3 phosphate of the inositol ring, or by PtdIns(3,4)P2 or PtdIns(3,5)P2 

dephosphorylation (Figure 13B). 

In yeast, only the lipid kinase Vps34 (Vacuolar Protein Sorting 34) specifically 

catalyzes the phosphorylation of PtdIns into PtdIns3P (Herman and Emr, 1990; Schu et al., 

1993). Vps34 activity is regulated by the protein kinase Vps15, and is essential for endosomal 

trafficking and autophagy (Kihara et al., 2001). Noteworthy, it has been shown that the 

positive regulation of Vps34 by Vps15 is stimulated by the direct interaction between the 7 

WD (Trp-Asp) repetitions in the C-terminal region of Vps15 and the G subunit of Gpa1. 
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Thus, the C-terminal domain of Vps15 could acts as the γ subunit of the yeast G protein. This 

would result in a coupling between the G protein signaling at the plasma membrane and the 

receptor sorting at the endosomes. Furthermore, the interaction between the Vps34-Vps15 

complex and Gpa1 stimulates the PtdIns3P production at the endosomes (Slessareva et al., 

2006). 

The human genome encodes for 8 lipid kinases able to produce PtdIns3P. These 

kinases are classified in 3 classes, depending on their substrate specificity and their homology 

(Vanhaesebroeck et al., 2010; Vanhaesebroeck et al., 2001): 

- 4 members of the class I phosphoinositide 3-kinases (PIK3C) which phosphorylate 

predominantly PtdIns(4,5)P2 to generate PtdIns(3,4,5)P3 

- 3 members of the class II phosphoinositide 3-kinases (PIK3C2) which phosphorylate 

predominantly PtdIns4P to generate PtdIns(3,4)P2 

- Only 1 member of the class III phosphoinositide 3-kinase (PIK3C3) which is 

homologous to the yeast protein Vps34. As the latter, the human VPS34 is specific for 

PtdIns and thus probably generates most of the cellular PtdIns3P. Its activity is 

regulated by p150 (also termed PIK3R4/VPS15), the human homolog of the yeast 

Vps15 (Panaretou et al., 1997). A phylogenetic study brought to light a coevolution 

between the unique PIK3C3 and its regulatory subunit Vps15 in most eukaryotes, 

from yeast to human through amoeba and parasites (Lecompte et al., 2008). 

In yeast, PtdIns3P is also synthetized by lipid phosphatases Fig4 (Factor Induced Gene 

4, also named Sac3), Sjl2, Sjl3 and Sac1. These proteins all contain a SAC catalytic domain 

allowing to dephosphorylate different PPIns, such as the PtdIns(3,5)P2 into PtdIns3P (Liu and 

Bankaitis, 2010). Fig4 is the only PtdIns 5-phosphatase specific for PtdIns(3,5)P2 (Gary et al., 

2002), and the human homolog FIG4 has similar functions. Interestingly, mutations in human 

FIG4 gene are responsible for CMT4J, which is highly similar to the MTMR2-linked CMT4B 

(Liu and Bankaitis, 2010). Thus, FIG4 is - with MTM1 and MTMR2 – the third active 

phosphatase implicated in both PPIn regulation and a neuromuscular disease (Nicot and 

Laporte, 2008). 
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2. PtdIns3P physiological role 

In yeast and mammalian cells, PtdIns3P is enriched at membranes of early endosomes 

and membranes of intraluminal vesicles at the late endosome also termed multivesicular body 

(MVB) (Figure 14) (Gillooly et al., 2000). In early endosomes, PtdIns3P plays a central role 

in recruiting effector proteins as yeast Vps27 or its human homolog Hrs (Hepatocyte growth 

factor-Regulated tyrosine kinase Substrate). These two proteins belong to the ESCRT-0 

(Endosomal Sorting Complex Required for Transport) complex and are implicated in 

endosomal protein sorting and MVB formation (Henne et al., 2011). They both contain a 

FYVE (Fab1, YGL023, Vps27, and EEA1) domain able to bind the endosomal PtdIns3P, and 

a specific motif to recruit the ESCRT-1 complex (Gruenberg and Stenmark, 2004). The latter 

allows ESCRT-2 and 3 recruitment and their combined action induces the internalization of 

membrane proteins into the intraluminal vesicles of the MVB (Henne et al., 2011). This 

internalization is necessary to stop the signaling cascades mediated by transmembrane 

proteins and to address membrane proteins to the lumen of the vacuole/lysosome. 

The human adaptor EEA1 (Early Endosomal Antigen 1) binds with a high affinity to 

PtdIns3P via its FYVE domain, and regulates the membrane fusion process between 

endosomes, by recruiting the Rab5 GTPase to the endosomes (Gruenberg and Stenmark, 

2004). 

Similarly, the PtdIns3P 5-kinase Fab1 (yeast)/PIKfyve (human) - that phosphorylate 

the PtdIns3P into PtdIns(3,5)P2 - is able to bind the PtdIns3P through its FYVE domain 

(Payrastre et al., 2001). Thus, one of PtdIns3P physiological roles is to be a precursor for 

PtdIns(3,5)P2 synthesis. 

In yeast, the VPS34 deletion is not lethal but induces a strong growth phenotype and a 

decreased resistance to many factors (temperature, pH, hyperosmotic stress, or presence of 

ethanol, hygromycin B, caffeine or rapamycin). The vps34Δ yeast cells also present important 

defects in membrane trafficking, such as an abnormal vacuolar morphology and defective 

vacuolar transport with abnormal excretion of vacuolar carboxypeptidase Y (CPY) and 

alteration in autophagy (Kihara et al., 2001). Indeed, yeast Vps34 is responsible for the proper 
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sorting of proteins to the vacuole via the production of PtdIns3P, which allows the 

recruitment of endosomal effector proteins (Henne et al., 2011). 

Figure 14: intracellular localization of the different phosphoinositides and the membrane 

trafficking pathways. The different phosphoinositides (PPIn) are represented by symbols: circles for 

PPIn involved in intracellular trafficking with the corresponding steps they regulate; squares for PPIn 

involved in cell signaling, the latter being absent from yeast. The human proteins interacting with the 

different PPIn are represented by a rectangle. The MVB stands for multivesicular body and the VPS 

for vacuolar protein sorting. Adapted from De Craene et al. 2017. 
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C. PtdIns(3,5)P2 is a regulator of endosomal-lysosomal 

trafficking 

1. PtdIns(3,5)P2 synthesis 

PtdIns(3,5)P2 is a poorly abundant PPIn that represents less than 5% of all the PPIns in 

human cells and in S. cerevisiae. PtdIns(3,5)P2 is enriched in membranes of the late 

endosomes, MVB and lysosome/vacuole (Figure 14) (Di Paolo and De Camilli, 2006). 

In yeast, PtdIns(3,5)P2 is sequentially produced, first from the phosphorylation of 

PtdIns into PtdIns3P by the PtdIns 3-kinase Vps34, and then from the phosphorylation of 

PtdIns3P into PtdIns(3,5)P2 by the PtdIns3P 5-kinase Fab1 (Figure 13B). A hyperosmotic 

stress induces a 20-fold increase in PtdIns(3,5)P2 intracellular levels (Dove et al., 1997). 

PtdIns(3,5)P2 is regulated by the membrane vacuole proteins Vac7 and Vac14 (Bonangelino 

et al., 2002). Indeed, PtdIns(3,5)P2 is not detected in yeast cells where FAB1, VAC7 or VAC14 

genes are deleted, and this is independent of osmotic conditions (Bonangelino et al., 2002). 

However, Vac7 and Vac14 do not interact with each other: Vac7 is the major activator of 

Fab1 in a hyperosmotic stress, whereas Vac14 acts with the lipid phosphatase Fig4 to regulate 

PtdIns(3,5)P2 renewal (Duex et al., 2006b). This is quite intriguing, since the stimulation of 

PtdIns(3,5)P2 synthesis by an osmotic stress depends on two antagonist processes, PtdIns3P 

phosphorylation into PtdIns(3,5)P2, as well as PtdIns(3,5)P2 dephosphorylation into PtdIns3P, 

creating a futile loop (Duex et al., 2006a). Thus, there is an essential interdependence between 

the lipid kinase Fab1 and the antagonist phosphatase Fig4 to regulate PtdIns(3,5)P2 levels, but 

also to activate PtdIns(3,5)P2 synthesis after a stimulus. 

In human, PtdIns(3,5)P2 synthesis pathway is similar to the one described in yeast, and 

PtdIns(3,5)P2 synthesis is ensured by PIKfyve, the unique Fab1 homolog, which 

phosphorylates the PtdIns3P on its 5-position (Figure 14) (Shisheva, 2008). PtdIns3P seems 

to be the unique source of PtdIns(3,5)P2, since as of now, no PPIn 4-phosphatase hydrolyzing 

the PtdIns(3,4,5)P3 has been identified. Moreover, the regulation of PtdIns(3,5)P2 synthesis is 

conserved in humans, and PIKfyve interacts with multiple partners playing a role in 

PtdIns(3,5)P2 homeostasis (Shisheva, 2008). For example, PIKfyve interacts with its 

antagonist enzyme FIG4 (also named SAC3) that specifically dephosphorylates the 
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PtdIns(3,5)P2 into PtdIns3P. This interaction is mediated by the adaptive protein 

ArPIKfyve/Vac14 which stabilizes the PIKfyve/FIG4 complex and stimulates PIKfyve 

activity (Ikonomov et al., 2010). 

A recent study clearly showed the homology between PtdIns(3,5)P2 synthesis 

pathways in yeast and mammals (Jin et al., 2008). Indeed, in yeast as well as in mice, Vac14 

acts as a protein platform for PtdIns(3,5)P2 synthesis regulation. Vac14 interacts with 

Fab1/PIKfyve, Fig4/Sac3 and Vac7, and allows the regulation of the activity of the kinase and 

phosphatase (Ikonomov et al., 2010; Jin et al., 2008). 

The link between all these PPIn-regulating kinases and phosphatases becomes clearer 

with time. Noteworthy, autosomal recessive mutations in FIG4 and MTMR2 are both linked 

to CMT4 neuropathy, and Mtmr2 KO mice display elevated PtdIns(3,5)P2 levels (Bolino et 

al., 2000; Chow et al., 2007; Vaccari et al., 2011). There is also a genetic interaction between 

FIG4 and MTMR2, since reduction of FIG4 expression rescues the myelin outfoldings 

phenotype of the Mtmr2 KO mice (Vaccari et al., 2011). In addition, autosomal dominant 

mutations in FIG4 induce lateral sclerosis (Chow et al., 2009), and bi-allelic mutations in 

VAC14 are responsible for a pediatric-onset neurological disorder (Lenk et al., 2016). 

2. Physiological role of PtdIns(3,5)P2  

Several studies showed a physiological role for PtdIns(3,5)P2 in the trafficking 

regulation between endosomes and the vacuole/lysosome (Figure 14). 

In yeast S. cerevisiae, fab1Δ cells have growth defects at 23°C, are not viable at 37°C 

and show defaults in vacuole acidification and an enlarged vacuole that occupies up to 80% of 

total cell volume (Yamamoto et al., 1995). The abnormal vacuolar size can induce an 

incorrect segregation of chromosomes during cell division. Vac7 and Vac14 regulate 

PtdIns(3,5)P2 synthesis via Fab1, and thus are necessary for a normal vacuolar morphology 

and for a proper vacuole transmission from mother to daughter cell (Bonangelino et al., 2002). 

PtdIns(3,5)P2 has an essential function in membrane protein sorting at the late 

endosomes/MVB (Odorizzi et al., 1998). Membrane proteins addressed to the vacuole are 
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ubiquitinated in endosomes. These ubiquitinated cargos are successively recognized by 

ESCRT-0 to 2 complexes for their internalization into the intraluminal vesicles of the MVB 

(Gruenberg and Stenmark, 2004). The MVB then fuses with a vacuole, releasing the vesicles 

into the lumen of the vacuole. At endosomes, yeast epsins Ent3 and Ent5 interact with 

PtdIns(3,5)P2 through their ENTH domain, and are necessary for the sorting of ubiquitinated 

cargos to the MVB (Eugster et al., 2004; Friant et al., 2003). 

To date, the protein having the highest affinity toward PtdIns(3,5)P2 in vitro is the 

yeast Svp1/Atg18, which has a role in yeast autophagy. Interestingly, Svp1/Atg18 also 

regulated Fab1 activity, by interacting with Vac7 (that is recruited by Vac14 platform). Thus, 

Svp1/Atg18 acts as a sensor for PtdIns(3,5)P2 and regulates its synthesis via a Vac7-Vac14 

feedback (Efe et al., 2007). 

PIKfyve-/- KO mice do not survive after the embryonic stage (Ikonomov et al., 2011), 

highlighting the fundamental role of PtdIns(3,5)P2 in development and cellular processes. 

Yeast Fab1 and human PIKfyve both have a FYVE domain able to specifically bind the 

PtdIns3P. This interaction with PtdIns3P induces their recruitment to endosomes where 

PtdIns3P is enriched, and allows PtdIns(3,5)P2 synthesis (Figure 14) (Sbrissa et al., 2002). 

Finally, PIKfyve has a role in diverse processes as endosomal protein sorting, 

vacuolar/lysosomal homeostasis or signaling pathway regulation (Payrastre et al., 2001; 

Shisheva, 2008). In particular, inhibition or depletion of PIKfyve in mammalian cells induces 

an endosomal and lysosomal enlargement similar to the enlarged vacuole observed in yeast 

(Shisheva, 2008). 

D. PtdIns5P is an underappreciated phosphoinositide 

1. PtdIns5P synthesis 

PtdIns5P is the most recently identified PPIn monophosphate (Rameh et al., 1997). 

This is due to its low basal concentration in mammalian cells (less than 10% of all 

monophosphate PPIns) (Payrastre et al., 2001), but also to technical issues rendering it 

difficult to study since it co-fractionates with PtdIns4P. 
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In humans, PtdIns5P can be produced directly from PtdIns by the lipid kinase PIKfyve 

(Figure 14). The in vivo overexpression of PIKfyve induces an increased level of PtdIns5P, 

while PIKfyve+/- heterozygote mice are viable and show a reduction in PtdIns5P levels 

compared to control mice (Ikonomov et al., 2011). 

However, the major source of PtdIns5P in human cells comes from the 3-phosphatase 

activity of the myotubularin family (8 active members) on PtdIns(3,5)P2 (Figure 14) (Laporte 

et al., 2003). This has been demonstrated in particular for MTM1 in cell cultures and in 

myotubes (Tronchere et al., 2004) and for MTMR3 in Drosophila fibroblasts after activation 

of cell migration using FGF-1 (fibroblast growth factor) (Oppelt et al., 2013). 

Finally, a third possible (and unusual) source of PtdIns5P in human cells comes from 

the 4-phosphatase activity of the bacterial IpgD upon infection by Shigella flexneri which is 

responsible for dysentery (Niebuhr et al., 2002). 

2. PtdIns5P physiological role 

The physiological role of PtdIns5P in mammalian cells is still poorly understood. A 

fraction of the pool of PtdIns5P has been detected in the nucleus and could be implicated in 

stress response, notably by modulating the activity of the transcriptional regulator ING2. The 

latter is the first protein with an identified PtdIns5P-specific binding domain, which is a zinc 

finger domain named PHD (Plant HomeoDomain finger) (Gozani et al., 2003b). The Dok 

protein (downstream of tyrosine kinase) also shows strong binding properties toward 

PtdIns5P through its PH domain, and this binding activates the T cell signaling (Guittard et 

al., 2009). Moreover, PtdIns5P has been found to be implicated in autophagy since its 

addition to cells promotes the autophagosome biogenesis and compensates PtdIns3P depletion 

in Vps34 cells (Vicinanza et al., 2015). PtdIns5P also regulates actin cytoskeleton remodeling 

at the plasma membrane, by binding to the guanine nucleotide exchange factor (GEF) Tiam1, 

thus activating the Rho GTPase Rac1 (Viaud et al., 2014). Finally, PtdIns5P is a regulator of 

endosomal protein sorting via its interaction with the endosomal adapter TOM1 (Boal et al., 

2015). 
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E. A word about the other phosphoinositides 

Other phosphoinositides also exist in eukaryote cells. For example PtdIns4P is mainly 

generated by 4-phosphorylation of PtdIns by PI 4-kinases (De Matteis et al., 2002), and is a 

key effector of the Golgi trafficking (Audhya et al., 2000; Lemmon, 2003; Mizuno-Yamasaki 

et al., 2010). PtdIns(4,5)P2 is the most abundant bis-phosphorylated PPIn, and is implicated in 

endocytosis. Finally, PtdIns(3,4)P2 and PtdIns(3,4,5)P3 have not been detected in yeast, and 

are essentially localized at the plasma membrane in humans (Figure 14), where they could act 

as second messengers (for PtdIns(3,4)P2) and kinase regulators (for PtdIns(3,4,5)P3) in the 

PI3K/Akt pathway. However for the remainder of this manuscript I will focus on the 

phosphoinositides linked directly to myotubularin function. 

 

V. Objectives of this thesis 

As previously established in this introduction, MTM1 and MTMR2 are two very 

similar ubiquitously expressed proteins which are surprisingly associated with two different 

neuromuscular disorders, a centronuclear myopathy affecting muscles, and a CMT 

neuropathy affecting nerves, respectively. The molecular bases of this specificity are still 

unknown. 

The first aim of my thesis was to investigate the molecular and functional 

specificities of MTM1 and MTMR2. I thus studied their differences in terms of sequence, 

regulation, in vivo activity and localization, by using different cellular models. The impact of 

these differences was assessed by different MTMR2 constructs carrying truncating or point 

mutations. 

The second aim was to evaluate MTM1 and MTMR2 ability to compensate for 

each other in a pathological context. Since our team is focusing on myopathies, I tested here 

the ability of MTMR2 to compensate for MTM1 loss in XLCNM, using the Mtm1 KO mouse 

model. 
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I. Differences in sequence and regulation between 

MTM1 and MTMR2 

In order to investigate to functional differences between MTM1 and MTMR2, I started 

by comparing their sequence, structure and regulation. 

Most of the data presented for the remainder of this manuscript in relation to MTMR2-

L and MTMR2-S were published in the article “Expression of the neuropathy-associated 

MTMR2 gene rescues MTM1-associated myopathy” in Human Molecular Genetics (Raess 

et al., 2017) (Appendix 3). 

A. MTM1 comparison to MTMR2-L and MTMR2-S 

I first evaluated if MTM1 and MTMR2 functional differences could be linked to 

differences in their primary sequences or their domain organization. I started by comparing 

MTM1 to the main described MTMR2 protein isoform, MTMR2-L. The sequence alignment 

shows that human MTM1 and MTMR2-L present a good overall identity of 64.5% (with a 

similarity of 76%) and share the 4 same domains (Figure 15A): 

- the PH-GRAM domain that can bind to PPIn or proteins 

- the active phosphatase domain that specifically dephosphorylates the PtdIns3P and 

PtdIns(3,5)P2. 

- the coiled-coil (CC) domain that is essential for their homodimerization and/or 

heterodimerization 

- finally, the PDZ binding site that mediates protein-protein interactions. 

The most conserved domain is the phosphatase domain, which presents 73% of 

identity, and more than 80% in its central part around the catalytic site. In comparison, the 

PH-GRAM and the C-terminal part (CC and PDZ domains) are much less conserved between 

the two proteins, with 55% and 38% of identity, respectively (Figure 15A). Since these 

domains interact with lipids and other proteins, and thus impact on the localization and 

specificity of MTM1 and MTMR2, this lower conservation could be a first explanation for the 

functional differences between the two proteins. 
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As detailed in the introduction, expression of the MTMR2 gene leads (by an alternative 

splicing mechanism described in humans and mice) to two MTMR2 isoforms that we 

named MTMR2-L (long) and MTMR2-S (short) (Figure 6) (Bolino et al., 2002). The two 

protein isoforms differ only in their translation start sites; MTMR2-S starts right before the 

PH-GRAM domain while the MTMR2-L has an extended N-terminal sequence of 72 amino 

acids without known homology to any protein domain and that was not resolved in the crystal 

structure (Figure 15B) (Begley et al., 2006; Begley et al., 2003). This N-terminal extension 

specific to MTMR2-L is mostly absent in MTM1, with the two proteins sharing only a 

few amino acids in their N-terminal region (Figure 15). 

Figure 15: MTMR2-L has an N-terminal extension compared to MTM1 and MTMR2-S (A) 
Comparison between MTM1, MTMR2-L and MTMR2-S domain organization. Percentage of identity 

between MTM1 and MTMR2-L are indicated for each domain, except the coiled-coil (CC) and PDZ 

domains that are grouped. (B) Protein alignment of the first 100 amino acids of human and mouse 

MTM1, MTMR2-L and MTMR2-S. The serine S58 of MTMR2-L is indicated by the arrow. 
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The study of this N-terminal extension of MTMR2-L was initiated by Dimitri 

Bertazzi, a previous PhD student in Sylvie Friant’s laboratory, in collaboration with Jocelyn 

Laporte laboratory. Dimitri used, among others, an MTMR2-Δ2-73 construct in which amino 

acids 2 to 73 are absent. This MTMR2-Δ2-73 exactly corresponds to the MTMR2-S isoform. 

To compare the cellular functions of MTM1, MTMR2-L and MTMR2-S proteins in vivo, 

Dimitri used the heterologous expression of human myotubularins in ymr1Δ yeast cells. This 

Figure 16: Truncated forms of MTMR2-L induce an MTM1-like phenotype. Adapted from 

Dimitri Bertazzi thesis manuscript (A) Quantification of the vacuolar phenotypes observed in ymr1Δ 

yeast cells with empty vector or overexpressing MTM1, MTMR2-L or truncated forms of MTMR2-L. 

The number of cells counted per clone is indicated above. (B) Subcellular distribution of 

overexpressed myotubularins in yeast. Protein extracts of ymr1Δ yeast cells with empty vector or 

overexpressing MTM1, MTMR2-L or truncated forms of MTMR2-L, were subjected to subcellular 

fractionation. MTM1 is mainly in the P13 membrane fraction, while MTMR2-L is mainly in the S100 

cytoplasmic fraction. Truncated forms of MTMR2-L display an intermediary phenotype and are also 

present in P13 and P100 membrane fractions. Vps10 (membrane protein) and Pgk1 (cytoplasmic) are 

used as controls for the subcellular fractionation. 
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system will be more deeply explained in chapter III. To summarize, data show that MTMR2-

L and MTM1 overexpression induce different vacuolar phenotypes, due to different 

subcellular localizations (Figure 16). The vacuole morphology is regulated by the 

PtdIns(3,5)P2 level, and thus reflects the myotubularin phosphatase activity. Interestingly, 

MTMR2-S induces intermediary phenotypes compared to MTM1 and MTMR2-L. 

Altogether, this suggests that MTMR2-S is closer to MTM1 and that the N-terminal 

extension of MTMR2-L is important for its specific functions. 

B. The MTMR2-Δ2-24 truncated construct 

In his thesis, Dimitri Bertazzi started to investigate the N-terminal sequence of 

MTMR2-L. Indeed, MTMR2-L is 40 aa longer than MTM1, and this difference is mainly due 

to 3 additional sequences (amino acids 1-24, 35-40 and 63-73) in MTMR2-L (Figure 15B). 

The truncated constructs MTMR2-Δ2-24, MTMR2-Δ2-40 and MTMR2-Δ2-73 induce the 

same phenotypes when overexpressed in ymr1Δ yeast cells (Figure 16). Thus, deleting the 

first 24 amino acids of MTMR2-L is sufficient to induce an MTM1-like phenotype in yeast. 

This suggests that the functional specificity of MTMR2-L compared to MTMR2-S and 

MTM1 is mainly due to the 24 first amino acids of its N-terminal extension. 

C. MTMR2-L function is regulated by the S58 

phosphorylation on its N-terminal extension 

As mentioned in the introduction, Franklin et al. described two phosphorylation sites 

(S58 and S631) that regulate the targeting of MTMR2 to different endosomal compartments 

in mammalian cells, to regulated different pools of PtdIns3P (Franklin et al., 2013; Franklin et 

al., 2011). Indeed, the MTMR2-S58A phosphorylation-defective mutant localizes to 

endosomes and is active toward PtdIns3P, contrary to the phosphomimetic mutant MTMR2-

S58E that remains cytoplasmic (Figure 17). The S58 phosphorylation is mediated by Erk1/2 

kinase and the endosomal targeting of MTMR2 is regulated through an Erk1/2 negative 

feedback mechanism (Franklin et al., 2013; Franklin et al., 2011). The S631 phosphorylation 

site regulates the shift of MTMR2 between Rab5-positive and APPL1-positive endosomes. 

Through this mechanism, MTMR2 seems to be implicated in endosome maturation, 
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endosome signaling, and potentially in endocytosis (Franklin et al., 2013; Xhabija et al., 

2011).  

This S58 phosphorylation site is in the N-terminal extension of MTMR2-L, and is 

absent in MTMR2-S and in human MTM1 (Figure 15B). This suggests that the regulation 

of MTMR2-L by its specific S58 phosphorylation site could be implicated in functional 

differences between MTM1 and MTMR2. Note that this phosphorylation site is conserved 

in mouse MTM1 (S28 in mouse MTM1 sequence, Figure 15B), and thus could potentially be 

phosphorylated to regulate MTM1 localization and function in mice but not in human. 

D. MTMR2 constructs used for this study  

Based on preliminary data investigating MTMR2 molecular specificities, I selected 

several MTMR2 constructs for this study: 

- MTMR2-L and MTMR2-S: to compare the two physiological isoforms and evaluate 

the molecular impact of MTMR2-L N-terminal extension (1-72). 

- MTMR2-Δ2-24: as an intermediary truncated form between MTMR2-L and 

MTMR2-S, to see if deleting only the 2-24 extremity is sufficient to change MTMR2 

localization and function. 

- Mutations targeting phosphorylation of MTMR2: the non-phosphorylable MTMR2-

S58A, and the two phosphomimetics MTMR2-S58E and MTMR2-S58D. MTMR2-

Figure 17: MTMR2 localization in mammalian cells is regulated by its S58 phosphorylation site. 
Adapted from Franklin et al. 2011. HeLa cells were transfected with MTMR2-L or phosphorylation 

mutants carrying an N-terminal FLAG. After fixation, cells were immunostained with anti-FLAG 

monoclonal antibody. Scale bar 15 µm. 
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S58D was not studied by Franklin et al. but also mimics a phosphorylated S58 and 

was chosen here to confirm MTMR2-S58E results. 

To assess the impact of these modifications on MTMR2 function, I overexpressed 

these different constructs in several cellular and animal models, using MTM1 and 

MTMR2-L as controls. If the modification induces an MTM1-like phenotype, it suggests 

that the modified site is implicated in the molecular specificities observed between 

MTM1 and MTMR2. 

II. Detection of MTMR2 proteins 

Before analyzing the effect of myotubularin overexpression in cells and tissues, it is 

crucial to determine if they are indeed expressed. Our team previously tested several 

commercial antibodies directed against MTMR2. The results were not optimal, especially for 

detection in tissues and mammal cells extracts. Thus, we decided to produce new anti-

MTMR2 antibodies. 

First, I induced the production of recombinant MTMR2-L protein fused to GST in E. 

coli bacteria cells by growth in presence of IPTG. Then I extracted total proteins by 

sonication and successive centrifugations, and GST-MTMR2-L was affinity purified by using 

glutathione-sepharose beads. The first 5 eluted fractions have been separated by SDS-PAGE, 

proteins were stained by Coomassie blue, and the proteins corresponding to the expected size 

of GST-MTMR2-L were analyzed by mass-spectrometry (Figure 18A). Finally E2, E3 and E4 

fractions that contained GST-MTMR2-L (as stated by mass spectrometry) were pooled and 

given to the antibody facility of IGBMC (Illkirch), were the recombinant protein was then 

used to immunize mice and produce mouse monoclonal anti-MTMR2 antibodies. I used the 

full length MTMR2-L instead of a peptide, to directly obtain several antibodies against 

multiple conformational epitopes from throughout the sequence, and thus maximize the 

chances to recognize the native protein. 

In total, 8 different mouse monoclonal antibodies were produced and tested against 

protein extracts from COS cells and yeast cells overexpressing MTMR2-L (Figure 18B). 
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Among them, only the anti-MTMR2 4G3 (number 7 in Figure 18B) detected properly 

MTMR2 at the expected size (73 kDa) in both COS and yeast cells. In comparison, the 

commercial antibody gave a very weak signal for the same samples. Since this homemade 

antibody has been raised against the full-length MTMR2-L and not a specific peptide, we do 

not know its MTMR2 epitope. However, it is able to recognize MTMR2-S, so the epitope is 

not in the N-terminal extension of MTMR2-L (Figure 18C). In conclusion, this 4G3 

antibody detects both MTMR2-L and -S isoforms. Therefore this antibody was used for 

the remainder of the studies presented here, allowing a detection of all overexpressed 

MTMR2 constructs in all tested cellular and animal models, by western blot and 

immunofluorescence (Figure 18C and D). 

Figure 18: Production and characterization of a new anti-MTMR2 antibody. (A) Purification of 

MTMR2-L fused to GST. Coomassie staining of SDS-polyacrylamide gel with the 5 elution fractions 

of GST-MTMR2-L purification. Total lysate (T.L.) and supernatant after centrifugation (S) were also 

tested to control the affinity-purification step. (B) Testing the 8 potential anti-MTMR2 antibodies by 

western blot on protein extracts from COS-1 and yeast overexpressing MTMR2-L. The commercial 

anti-MTMR2 antibody (CA) from Abnova was used as control. Expected size for MTMR2-L is 

indicated by an arrow on the left. The 4G3 antibody (number 7 in the figure) is the only one able to 

detect MTMR2-L at the expected size in both COS and yeast extracts. (C) Testing the anti-MTMR2 

4G3 antibody by western blot on yeast, HEK293 or TA muscle protein extracts for all MTMR2 

constructs. Stainfree has been used as a loading control (no shown). (D) Testing the anti-MTMR2 4G3 

antibody by immunofluorescence on COS-1 cells transfected by a pAAV overexpressing MTMR2-L 

or MTMR2-S (green signal). Nuclei have been stained by Hoechst (blue signal). 

 



 

64 

 

64 Part Two - Results 

III. MTM1 and MTMR2 display different phosphatase 

activities in vivo 

MTM1 and MTMR2 are two active myotubularins sharing a specific 3-phosphatase 

activity toward PtdIns3P and PtdIns(3,5)P2. In vitro studies show that MTMR2, like MTM1, 

dephosphorylates its substrates with high efficiency and peak activity at neutral pH (Berger et 

al., 2002; Tronchere et al., 2004). However, when I started my thesis, it was unclear whether 

MTMR2 could dephosphorylate its substrates in vivo: one reports that MTMR2 (as MTM1) is 

able to dephosphorylate an endosomal pool of PtdIns3P when overexpressed in HeLa cells 

(Lorenzo et al., 2006), while another states that overexpression of MTMR2 in COS-1 cells 

does not change the PtdIns3P level (Kim et al., 2002). I thus decided to compare MTM1 

and MTMR2 phosphatase activities and cellular functions in a unicellular eukaryote 

model, the yeast Saccharomyces cerevisiae. 

Yeast is a powerful eukaryotic model to study human myotubularins, as its 

intracellular organization, membrane trafficking and phosphoinositides substrates metabolism 

are well characterized and conserved from yeast to human (Introduction and (Katzmann et al., 

2003)). Ymr1 is the unique yeast myotubularin and the heterologous expression of human 

MTM1 myotubularin in ymr1Δ yeast cells rescued the vacuolar fragmentation phenotype 

defect, decreased the intracellular levels of PtdIns3P and increased the production of PtdIns5P 

(Amoasii et al., 2012)). This ymr1Δ yeast strain also allows the study of the human 

myotubularin proteins activity without any competition from another myotubularin. 

Moreover, yeast is as very useful model to study proteins from other eukaryotic organisms in 

general, with low culture costs and easy gene manipulation compared to mammalian systems 

(Byrne et al., 2005; Holz et al., 2003; Joubert et al., 2010). A study investigating the 

systematic humanization of hundreds of yeast genes showed that 43% of them could be 

replaced by their human ortholog, and most of them coded for metabolic enzymes involved in 

conserved pathways, like myotubularins (Kachroo et al., 2015). 

To better understand MTM1 and MTMR2 specificities concerning their basic 

cellular functions and activities, I transformed the ymr1Δ yeast strain with 2µ plasmids 

(high copy number, overexpression) or CEN plasmids (low copy number, expression) 
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containing the cDNA of human MTM1 and all MTMR2 variants, fused or not with GFP 

(green fluorescent protein) at the C-terminal of the protein. Then I analyzed the 

expression, localization and phosphatase activity of expressed myotubularins. 

A. MTMR2 expression is regulated in yeast 

I started by testing protein expression of human myotubularins transfected in yeast, by 

SDS-page and western blot analysis. All human myotubularins were well detected at the 

expected molecular weights, with 2µ or CEN plasmids (Figure 19).  

Figure 19: MTMR2 expression is regulated in yeast. (A) Detection of overexpressed (2µ plasmids) 

MTM1 in ymr1Δ yeast cells, by western blot using polyclonal anti-MTM1 antibodies that does not 

recognize MTMR2. Wild-type (WT) and ymr1Δ yeast strains with empty vectors are used as controls. 

Pgk1p is used as a loading control. (B) Detection of overexpressed (2µ plasmids) MTMR2 constructs 

in ymr1Δ yeast cells, by western blot using the homemade monoclonal anti-MTMR2 antibody. The 

stain free signal on the membrane is used as loading control. (C) Detection of expressed (CEN 

plasmids, low copy number) MTMR2 constructs in ymr1Δ yeast cells, by western blot using the 

homemade monoclonal anti-MTMR2 antibody. Pgk1p is used as a loading control. (D) Detection of 

overexpressed (2µ plasmids) GFP-tagged MTMR2 constructs in ymr1Δ yeast cells, by western blot 

using the homemade monoclonal anti-MTMR2 antibody. (E) Quantification of MTMR2 variants 

expression levels compared to MTMR2-L. Three different clones and western blots per construct. The 

stain free blots were used to normalize protein levels. Data represent means ± s.e.m. *p<0.05 

***p<0.001 compared to MTMR2-L (ANOVA test). 
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Surprisingly, the expression level of MTMR2 was different depending on the 

construct: all variants of MTMR2 displayed a 2 to 3 fold higher expression level compared to 

the wild-type MTMR2-L, except MTMR2-S58D which was expressed at the same level as 

MTMR2-L (Figure 19B and E). Therefore, there is a specific regulation of the protein 

level for MTMR2 and its variants in yeast cells. I could not compare this result with 

MTM1 protein expression, as MTM1 and MTMR2 are not detected by the same antibody. 

GFP-tagged myotubularins were also detected at the expected sizes, but a second 

lower band was also detected for each construct (Figure 19D). This second band was not 

detected for untagged myotubularins and was always at the same distance from the upper 

band, suggesting some protein degradation induced by the C-terminal GFP-tag. 

B. MTM1 and MTMR2 display different intracellular 

localizations in yeast 

Then I analyzed the intracellular localization of overexpressed GFP-tagged 

myotubularins in ymr1Δ cells. MTM1 exhibited a punctate signal adjacent to the vacuole (also 

positive for the FM4-64 lipid dye, and probably corresponding to the MVB), whereas 

MTMR2-L signal was mainly cytoplasmic (Figure 20A). Interestingly, MTMR2-S isoform 

presented a signal in the cytoplasm and some intense dots at the vacuolar membrane, as 

observed for MTM1. It was also the case for MTMR2-Δ2-24, MTMR2-S58A and MTMR2-

S58E. The only exception was MTMR2-S58D that presented a cytoplasmic localization 

similar to MTMR2-L. This suggests that MTMR2 localization in yeast depends on its N-

terminal extension. 

I wanted to complete and quantify this localization study by a subcellular 

fractionation. I performed differential centrifugations on protein extracts of ymr1Δ yeast cells 

overexpressing MTMR2 variants. I tested several techniques and protocol adjustments to 

finally find the suitable conditions for yeast cell lysis to maintain the different compartments 

and have the proper fractionation of the endogenous yeast proteins used as controls. The 

fractionation results were in accordance with the microscopy: MTM1 was mainly detected in 

the P13 membrane fraction, whereas MTMR2-L was mainly in the S100 cytoplasmic fraction 

(Figure 20B). All other variants of MTMR2 were detected in the S100 fraction as MTMR2-L, 



 

67 

 

67 Part Two - Results 

but they were also detected in the P13 and P100 membrane fractions as MTM1. This time, no 

difference was detected for MTMR2-S58D compared to other phosphorylation mutants. 

 

In conclusion, MTM1 and the most described MTMR2-L isoform localize differently 

in yeast. Interestingly, the MTMR2-S isoform which lacks the N-terminal extension localizes 

similarly to MTM1. Deleting the first 24 amino acids of MTMR2-L or modifying the S58 

phosphorylation site also seems to induce an MTM1-like localization. Thus, MTMR2 

localization seems to depend on its N-terminal part. 

 

Figure 20: MTM1 and MTMR2 display different intracellular localizations in yeast. (A) 
Localization of GFP-tagged human myotubularins in ymr1Δ yeast cells. Vacuole morphology is 

assessed by the lipophilic dye FM4-64 and Nomarski differential contrast. Scale bar 5 µm. (B) 

Subcellular distribution of the untagged constructs overexpressed in ymr1Δ yeast cells. Subcellular 

fractionation by differential centrifugations: P13 and P100 are membrane fractions, S100 is the 

cytoplasmic fraction. Vph1 (membrane) and PGK1 (cytoplasm) are used as controls. 
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C. MTM1 and MTMR2 display different phosphatase 

activities in yeast 

The different human MTM1 and MTMR2 constructs display different localizations 

within the yeast cell. A membrane localization could suggest a better access to the lipid 

substrates compared to a cytoplasmic localization, and thus have an impact on the enzymatic 

activity. I therefor studied MTM1 and MTMR2 enzymatic activity in yeast. 

In yeast cells, vacuole volume, morphology, acidity and membrane potential are 

controlled by PtdIns(3,5)P2 that is produced through the phosphorylation of PtdIns3P by the 

Fab1 kinase. In fab1Δ mutant cells, the vacuole is very large and unilobed due to low levels of 

PtdIns(3,5)P2 (Amoasii et al., 2012; Cooke et al., 1998; Dove et al., 1997). On the contrary, 

ymr1Δ cells lacking the unique yeast myotubularin have fragmented vacuoles due to excess of 

PtdIns(3,5)P2 and/or PtdIns3P (Parrish, W.R. et al., 2004), and this phenotype is 

complemented by the expression of the human MTM1 that induces a large vacuole phenotype 

(Amoasii et al., 2012) (Figure 20A and Figure 21A). Thus, the vacuolar morphology 

reflects the PtdIns(3,5)P2 level, and consequently the myotubularin phosphatase activity. 

I assessed the vacuolar morphology upon overexpression (2µ plasmids) or expression 

(CEN plasmids) of untagged human myotubularins in ymr1Δ cells by staining the vacuolar 

membrane with the lipophilic dye FM4-64. Vacuoles were significantly enlarged upon 

overexpression of MTM1 while they remained mainly fragmented with MTMR2-L (Figure 

21A). Again, the overexpression of MTMR2-S induced an MTM1-like phenotype with large 

vacuoles. It was also the case for MTMR2-Δ2-24, MTMR2-S58A and MTMR2-S58E. Again, 

the exception was MTMR2-S58D that showed a lower percentage of large vacuoles compared 

to other variants and seemed closer to MTMR2-L. This correlates with the protein 

localization, as the enlargement of the vacuole is dependent on the phosphatase activity of 

myotubularins, and on their localization at the vacuolar membrane to have access to their lipid 

substrate (Figure 20 and Figure 21A and Table 1). Of note, these myotubularins did not 

induce a wild-type vacuolar morphology but a large vacuolar morphology mimicking a fab1Δ 

phenotype, due to their high expression levels (overexpression plasmid). These results show 

that only the membrane localized myotubularin constructs (MTM1, MTMR2-S, 
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MTMR2-Δ2-24, MTMR2-S58A and MTMR2-S58E) rescued the vacuole morphology 

defects of ymr1Δ cells. 

Figure 21: MTM1 and MTMR2 display different phosphatase activities in yeast. (A) 
Quantification of vacuolar morphology in yeast cells over-expressing (2µ plasmids, top) or expressing 

(CEN plasmids, bottom) untagged myotubularins. Two to three clones analyzed per constructs; the 

number of cells counted per clone is indicated above. Data represent means ± s.e.m. . *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 compared to empty vector (ANOVA test). (B) Example of 

FYVE punctuated localization in yeast clones expressing untagged myotubularins and DsRED-tagged 

FYVE domain that specifically binds PtdIns3P. Scale bar 5 µm. (C) PtdIns3P quantification by 

counting the number of FYVE-positive dots per cell, as represented in (B). Data represent means ± 

s.e.m. *p<0.05, **p<0.01 (ANOVA test). (D) PtdIns5P quantification by mass assay on total lipid 

extract from yeast cells over-expressing untagged myotubularins. Three clones analyzed per 

constructs. Data represent means ± s.e.m. *p<0.05 (ANOVA test).  
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The differences observed for MTMR2-L and MTMR2-S58D could also be explained 

by their lower levels of expression compared to other MTMR2 variants (Figure 19B and E). 

Indeed, using CEN plasmids (low copy number), only MTM1 was able to induce a large 

vacuole phenotype, whereas the vacuole remains mainly fragmented with all MTMR2 

variants (Figure 21A). This indicates that the level of expression is also important for 

MTMR2 phosphatase activity. However, the expression level alone is not responsible for 

the differences observed, as MTMR2-S was less expressed than MTMR2-Δ2-24, MTMR2-

S58A and MTMR2-S58E but had the same phosphatase activity.  

Whilst the vacuolar morphology reflects the PtdIns(3,5)P2 level, this lipid is not 

abundant enough to be detected in normal growth conditions (Dove et al., 1997). That is why 

we focused on PtdIns5P and quantified its in vivo level by mass assay, in collaboration with 

Jean-Marie Xuereb (Bernard Payrastre laboratory, Toulouse). Sylvie Friant and I extracted the 

total lipids from ymr1Δ cells overexpressing untagged MTM1, MTMR2-L and MTMR2-S, 

and Jean-Marie Xuereb performed the PtdIns5P mass assay. As expected by vacuolar 

morphology, PtdIns5P level was increased by MTM1 and MTMR2-S overexpression in 

ymr1Δ cells, while MTMR2-L had no effect (Figure 21D).  

I also quantified the PtdIns3P myotubularin substrate level, by counting the punctate 

structures that were positive for DsRED-FYVE, a reporter for PtdIns3P-enriched membranes 

(Katzmann et al., 2003) (Figure 21B and C). Overexpression of MTM1 significantly reduced 

PtdIns3P level while MTMR2-L had no effect. As for the other tested phenotypes, MTMR2-

S, MTMR2-Δ2-24, MTMR2-S58A and MTMR2-S58E significantly reduce PtdIns3P level 

similarly to MTM1. MTMR2-S58D behaves differently and induces an intermediary 

PtdIns3P level. 

In conclusion, data in yeast cells show that MTM1 and MTMR2 have different 

phosphatase activities in vivo, depending on the protein localization: myotubularins 

localized to membranes (such as MTM1 and MTMR2-S) are able to dephosphorylate their 

lipid substrates, contrary to cytoplasmic myotubularins (such as MTMR2-L). These results 

are summarized in Table 1. 
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MTMR2 activity and localization seems dependent to its N-terminal extension: 

MTMR2-L long isoform remains in the cytoplasm where it is unable to dephosphorylate its 

lipid substrates, while MTMR2-S lacking the N-terminal extension displays MTM1-like 

phenotypes with a membrane localization and low PPIn substrate levels. Deleting only the 

first 24 amino acids of MTMR2-L seems enough to induce an MTM1-like phenotype in yeast. 

Thus, this N-terminal extension could be the key to understand MTM1 and MTMR2 

molecular differences in vivo.  

 Finally, the S58 phosphorylation site regulates MTMR2 localization and activity 

in yeast. Surprisingly, the two phosphomimetics MTMR2-S58E and MTMR2-S58D induce 

different phenotypes, and only MTMR2-S58D remains in the cytoplasm and has a low 

phosphatase activity, as it was expected based on Franklin et al. results (Franklin et al., 2011). 

Conversely, MTMR2-S58E phosphomimetic mutant induces the same MTM1-like 

phenotypes than the unphosphorylable MTMR2-S58A. This indicates that in yeast cells, the 

MTMR2-S58D variant could be the real phosphomimetic, and not MTMR2-S58E. This S58 

phosphorylation site is in the N-terminal extension of MTMR2-L, highlighting the 

importance of this extension for MTMR2 cellular function. 

Table 1: Correlation between expression, localization and phosphatase activity of 

myotubularins expressed in ymr1Δ yeast cells.  “+,++,+++,++++”: increasing expression or 

activity of myotubularins. “-”: negative control phenotype.  positive and  negative. 

 
Empty 

vector 

MTM1 MTMR2-L 
MTMR2- 

Δ2-24 

MTMR2-S 
MTMR2-

S58A 

MTMR2-

S58E 

MTMR2-

S58D 

Expression -  + +++ ++ +++ +++ + 

Punctate 

localization 

-        

Phophatase 

activity 

- ++++ +/- +++ +++ +++ +++ ++ 
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IV. Study of MTM1 and MTMR2 localization and 

functions in mammalian cells 

The yeast model was very useful to study MTM1 and MTMR2 cellular activity on 

their PPIns substrates. It also provided novel data on a link between their intracellular 

localization and phosphatase activity. In yeast cells, MTM1 preferentially localizes to 

membranes where it dephosphorylates its lipid substrates, while the most studied MTMR2 

long isoform (MTMR2-L) remains in the cytoplasm. MTMR2-S short isoform lacking the N-

terminal extension of MTMR2-L exhibited a similar membrane localization and phosphatase 

activity to MTM1. I thus decided to study MTM1 and MTMR2 localization in 

mammalian cells. 

 In the following experiments in mammalian cells (and further in mice), I focused on 

the function of MTMR2-L and -S isoforms to compare with MTM1, as the function of 

MTMR2 in skeletal muscle is not known. Indeed, MTMR2-L and MTMR2-S are 

endogenously expressed in mice and human and could have specific physiological roles. 

MTMR2-Δ2-24 is also used in some experiments to compare the truncation of the first 24 

amino acids of MTMR2-L to the total deletion of the N-terminal extension (corresponding to 

MTMR2-S). 

A. MTMR2 localization depends on its N-terminal 

extension 

I first cloned human MTM1 and human MTMR2 long and short isoforms into pAAV 

plasmids, and then transfected these constructs into COS-1 cells to test for expression. To 

avoid any potential bias induced by an N-terminal or C-terminal tag, I decided to use 

untagged proteins and then detect them by western blot (Figure 23A) and 

immunofluorescence (Figure 22). This also allowed me to test the ability of the homemade 

anti-MTMR2 antibody to detect overexpressed MTMR2 constructs by immunostaining on 

fixed cells.  
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MTM1 and MTMR2-L both exhibited a cytosolic staining pattern in COS cells, with 

highest intensities in the perinuclear region (Figure 22). However, in most transfected cells 

MTM1 also presented a specific localization with a needle-like pattern in large membrane 

projections. These patterns have already been reported in the literature, and could result from 

oligomerization of MTM1 associated with membrane structures (Kim et al., 2002; 

Figure 22: MTM1 and MTMR2-S localize to specific punctuate structures in COS cells 

membrane projections. COS-1 cells have been transfected with empty pAAV or pAAV 

overexpressing MTM1, MTMR2-L or MTMR2-S. Following fixation, the cells were immunostained 

with anti-MTM1 or anti-MTMR2 primary antibodies. Saponin treatment (right panels) was used to 

enhance detection of membrane-localized proteins via depletion of cytosolic contents. Scale bar 20 

µm. 
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Spiegelhalter et al., 2014). This needle-like pattern is especially seen in hypo-osmotic 

conditions (Spiegelhalter et al., 2014), and was never observed here for MTMR2-L expression 

(Figure 22). The membrane projections are also specific to MTM1 expression. 

The difference observed between MTM1 and MTMR2-L was exacerbated by 2 min 

treatment with 0.01% saponin (Figure 22). Saponin is a detergent that depletes the soluble 

cytoplasmic proteins and allows visualization of membrane-localized proteins (Lin et al., 

1990). The MTMR2-L signal seemed to be restrained in the perinuclear region by the saponin 

treatment, while MTM1 localized around the nucleus and in numerous punctuate structures in 

membrane projections, strengthening the hypothesis that MTM1 is associated with 

membranes in the “needles”. 

Interestingly, MTMR2-S was different from MTMR2-L and forms large membranes 

projections like MTM1. MTMR2-S presented mainly a cytosolic staining with highest 

intensities around the nucleus and close to the plasma membrane. In some cells, MTMR2-S 

also seemed to form needle-like structures, and the saponin treatment highlighted the same 

punctuate structures observed for MTM1. This confirms the MTM1-like localization observed 

for MTMR2-S in yeast cells. 

In conclusion, in contrast with MTMR2-L, overexpressed MTM1 and MTMR2-S 

display a similar localization pattern in COS cells. Thus, MTMR2 localization in 

mammalian cells seems to depend on its N-terminal extension. This correlates with data 

in HeLa cells showing that the phosphorylation of MTMR2 on the S58 (that belongs to 

the N-terminal extension) regulates MTMR2 localization to punctate structures 

corresponding to endosomes (Franklin et al., 2011). This also supports the concept that 

the N-terminal extension of MTMR2 is mainly responsible for the functional differences 

between MTM1 and MTMR2. 
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B. MTMR2 N-terminal extension includes at least two 

phosphorylation sites 

Since the N-terminal extension seems to regulate MTMR2 function, I then 

investigated if this 72 aa sequence could contain phosphorylation sites or binding sites for 

potential interacting partners. The protein extracts of COS cells overexpressing MTMR2-L, 

MTMR2-S or MTMR2-Δ2-24 were given to Philippe Hammann (mass spectrometry 

platform, Strasbourg) who immunoprecipitated the MTMR2 variants using our anti-MTMR2 

monoclonal antibody (Figure 23A). After washing, the phosphorylation sites and interaction 

partners were identified by mass-spectrometry. 

The analysis on human MTMR2 expression in COS cells allowed the 

identification of 3 phosphorylation sites, on serines S6, S58 and S631 (Figure 23B). S58 

and S631 phosphorylations were already published for human MTMR2 (Franklin et al., 2013; 

Franklin et al., 2011), but the S6 was only reported for mouse MTMR2 (large scale analysis) 

(Villen et al., 2007) and we confirm here its conservation in human/primate cells. The S6 and 

S58 are both on the N-terminal extension of MTMR2-L, and S6 is logically deleted in the 

MTMR2-Δ2-24 construct. Thus, by analyzing MTMR2-L and MTMR2-Δ2-24, I also 

indirectly analyzed the function of S6 and S58 phosphorylation sites. A phosphorylation on 

the S9 has also been identified by a large scale analysis in mice liver, and could potentially be 

found in human cells (Huttlin et al., 2010). However, I did not detect this S9 phosphorylation 

in my assays on COS cells. 

For note, the S58 phosphorylation was not identified in MTMR2-Δ2-24, while the 

concerned peptide (from S41 to R62) was present in both MTMR2-L and MTMR2-Δ2-24 

construct. This raises the possibility of a S58 regulation by the first 24 amino acids of 

MTMR2-L, and more specifically by the S6 or S9 phosphorylation sites. Indeed, such a 

mechanism has already been brought to light in MTMR2 by Franklin et al. who showed that 

the S631 phosphorylation had an impact on MTMR2 localization (between early and late 

endosomes) only if the S58 was not phosphorylated (Franklin et al., 2013). However it cannot 

be excluded that the lack of detection could also be due to the lower level of MTMR2-Δ2-24 

after immunoprecipitation compared to MTMR2-L (Figure 23A), rather than a difference in 

phosphorylation. 
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Finally, the differential interactome between the 3 MTMR2 variants is still under 

analysis and could provide novel information concerning the specific function and interactors 

of MTMR2-L N-terminal extension. 

 

Figure 23: Detection of human MTMR2 phosphorylation sites by mass spectrometry. (A) 
Detection of MTMR2 constructs before and after immunoprecipitation (IP) using the homemade 

monoclonal anti-MTMR2 antibody. Immunoprecipitation of MTMR2-L, MTMR2-S and MTMR2-Δ2-

24 was performed after overexpression in COS cells using pAAV vectors. L = Ladder. Stain free 

membrane shows the total proteins loaded in each well. The 55 kDa bands correspond to the anti-

MTMR2 antibody. (B) Mapping of S6, S58 and S631 phosphorylation sites. MTMR2 tryptic peptides 

were fractionated and fragment ions are indicated on the m/z spectrum and peptide sequence. The 

fragment ions whose m/z value corresponds to y or b ions with the loss of a phosphate group (-98 m/z) 

are indicated on the spectrum. 
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C. Study of MTM1 and MTMR2 in C2C12 muscle cells 

As previously mentioned, mutations in the ubiquitously expressed MTM1 gene induce 

the muscle-specific XLCNM. Therefore, I next investigated MTM1 and MTMR2 cellular 

functions in a muscle cell context. More precisely, I addressed whether MTMR2 could 

compensate for MTM1 loss in muscle cells. To achieve this, I used the C2C12 cell line, an 

immortalized mouse myoblast cell line commonly used to study myoblast differentiation, 

myogenesis or muscle proteins/pathways. 

Figure 24: Mtm1 knockdown C2C12 myotubes are shorter and have a lower fusion index. (A) 

Cellular morphology of C2C12 control and Mtm1 knockdown (KD) myotubes after 9 days of 

differentiation. Caveolin 3 immunostaining and Hoechst staining were done to identify the myotubes 

and the nuclei, respectively. Scale bar 250 µm. (B) Quantification of the myotube length. n>300. 

****p<0.0001 (Student’s t test). (C) Quantification of the myotube fusion index. n>300. 

****p<0.0001 (Student’s t test). (D) Quantification of MTM1 expression by RT-qPCR in Mtm1 KD 

myotubes, compared to controls. N=2. **p<0.01 (Student’s t test). 
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The first step was to identify a specific phenotype in muscle cells lacking MTM1. To 

this end, I differentiated control and Mtm1 knockdown (KD) myoblasts into myotubes for 9 

days, and then analyzed the myotube morphology (Figure 24). Compared to controls, Mtm1 

KD myotubes were approximately 60% shorter and displayed a lower fusion index (Figure 

24B and C). The fusion index represents here the number of nuclei per myotube and reflects 

the ability of the myoblasts to fuse during their differentiation into myotubes. I also confirmed 

that the MTM1 expression level was significantly reduced in Mtm1 KD myotubes after 9 days 

of differentiation (Figure 24D). Thus, Mtm1 KD C2C12 myotubes are shorter and have a 

lower fusion index. 

Then, I next wanted to determine if the expression of human myotubularins could 

compensate for the loss of MTM1 in Mtm1 KD myotubes. Plasmid transfection has a very 

low efficiency in this cell line, and would not allow a stable and durable expression 

throughout differentiation. I thus decided to use lentiviral vectors which transduce C2C12 

cells with a good efficiency and integrate into the mammalian cell genome. I transduced 

control and Mtm1 KD myoblasts, then I re-plated them in several wells, and induced their 

differentiation into myotubes for 9 days. The lentiviral expression plasmid contained the 

human myotubularin (MTM1 or MTMR2) coding cDNA and the GFP coding cDNA (used as 

a control for transduction), under the control of two independent strong promoters. Indeed, 

preliminary immunofluorescence assays to detect overexpressed myotubularins using anti-

MTM1 and anti-MTMR2 antibodies were not successful in C2C12 cells and I could not 

identify the transduced cells (data not shown). The independently expressed GFP (bicistronic) 

allows to identify the transduced myotubes while they are still living, and is not fused to the 

myotubularin to avoid any conformation defects due to the tag. So with this vector system, I 

could measure the length and fusion index of exclusively the transduced myotubes 

overexpressing the transduced myotubularin construct. Therefore, for the remainder of the 

experiments I used GFP as a marker for cell transfection (plasmid) or transduction 

(lentivirus). 

These plasmids were first tested in HEK293 cells and induced a strong GFP 

expression detected by western blot and epifluorescence microscopy (Figure 25A). 
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Transduction using lentiviral vectors of C2C12 cells also showed a good expression of 

MTM1 and MTMR2 constructs after 3 days of differentiation (Figure 25B). However, the 

GFP was not detected by western blot in these C2C12 cells, while I could easily detect it after 

HEK293 cells transfection with the same plasmids (Figure 25C). Next, I used a new control 

Venus GFP lentiviral vector that was transduced in C2C12 myoblasts and this time I could 

detect the GFP expression (Figure 25D). This suggests that with the first GFP vector, GFP is 

Figure 25: Independent expression of myotubularins and GFP in C2C12 using a unique 

lentiviral vector. (A) GFP expression in HEK293 cells transfected by the lentivirus plasmid 

overexpressing a myotubularin construct (indicated on the left) and the GFP by two independent 

strong promoters. (B) Detection of overexpressed myotubularins in C2C12 myotubes after 3 days of 

differentiation. Before differentiation, myoblasts have been transduced by a lentiviral (MOI 20) or 

AAV2 (MOI 20 000) vector overexpressing the myotubularin constructs. Empty vectors are used as 

negative controls. (C) Detection of overexpressed myotubularins and GFP in C2C12 myotubes after 3 

days of differentiation using transduction (TD) of lentivirus, in comparison the same lentiviral plasmid 

transfected (TF) into HEK293 cells. GFP is only detected in HEK cells. (D) Detection of 

overexpressed MTMR2-S and GFP in C2C12 myotubes after 3 days of differentiation, with different 

MOI (multiplicity of infection). The GFP detection is compared to the Venus GFP lentiviral vector 

used to transduce the same C2C12 cells with the same protocol. GFP is only detected with the control 

Venus GFP lentivirus. 
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not expressed in C2C12 cells. Even changing the promoter to control GFP expression (PGK 

to SV40) did not ameliorate the expression (data not shown), indicating that the plasmid 

background could be the problem. 

This problem of GFP expression was also observed by fluorescence microscopy: 

transduced myoblasts show a weak GFP signal during the first days of differentiation, then 

this signal became hard to differentiate from the myotube auto-fluorescence (data not shown). 

A potential explanation could be that the cellular volume increases during differentiation due 

to myoblast fusion, and becomes too high compared to the GFP level of expression, inducing 

a dilution of the GFP signal in the cytoplasm. 

Unfortunately, we could not draw conclusions from this experiment as I was not 

able to detect the GFP, and thus it was not possible to identify the transduced C2C12 

myotubes overexpressing the different myotubularins. However, this system could have 

been (and could still be with a new vector) very useful to study the ability of MTMR2 to 

complement MTM1 loss in C2C12 myotubes. 

Nevertheless, this experiment allowed me to compare lentiviral and AAV2 vectors 

ability to transduce C2C12 myoblasts. In a transduction experiment, the MOI (multiplicity of 

infection) represents the ratio between the number of viral vectors added to the cultured cells 

and the number of cells in the culture well.  Even with a 1000x higher MOI, AAV2 vectors 

induced a very low myotubularin expression level compared to lentiviral vectors (Figure 

25B). Moreover, for lentivirus the myotubularin expression level was proportional to the MOI 

(Figure 25D). These results could be useful for the setup of future experiments involving 

transduction of C2C12 cell lines. 
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The study of human MTM1 and MTMR2 in mammalian cells allowed me the better 

understand the cellular differences between the two proteins. In COS cells, expression of 

human MTM1 and MTMR2-S induces similar phenotypes, while MTMR2-L induced a 

significantly different phenotype. These results point to the novel concept that MTMR2 

specific localization and function compared to MTM1 may be dependent on the N-terminal 

extension. The importance of this extension was confirmed by the identification of the two 

phosphorylation sites S6 and S58; S6 phosphorylation could potentially regulate S58 

phosphorylation, and the S58 has been shown to regulate MTMR2 functions.  

Furthermore I also showed that Mtm1 KD C2C12 myotubes are shorter and have a 

lower fusion index compared to control myotubes. This is the first time this phenotype has 

been identified, and could therefore be used for future studies on MTM1, MTMR2 or other 

myotubularins in a muscle cell context, or to help understand the disease pathophysiology 

linked to loss of MTM1.  
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V. MTMR2 isoforms rescue the myopathic phenotypes 

of Mtm1 KO mouse muscles 

I have analyzed the structural and functional differences between MTM1 and MTMR2 

isoforms in yeast and mammalian cells. I next wanted to analyze MTM1 in MTMR2 in 

skeletal muscles in vivo in Mtm1 KO mice, to determine if the differences identified, notably 

different results relative to the N-terminal composition of MTMR2, are also observed in mice. 

Furthermore based on the functional similarities between MTM1 and MTMR2, I investigated 

if MTMR2 can compensate for the loss of MTM1 in mice. 

For MTMR2, I focused my analyses on the two physiological isoforms resulting from 

alternative splicing: MTMR2-L and MTMR2-S (corresponding to MTMR2-Δ2-73). 

Moreover, I also added the MTMR2-Δ2-24 construct in some experiments to have a shorter 

N-terminal truncated form. 

A. Is MTMR2 expressed in muscle? 

Before studying MTM1 and MTMR2 specificities and trying to determine whether 

MTMR2 could be used to compensate for MTM1 loss in XLCNM, I wanted to determine 

whether MTMR2 could be detected in skeletal muscle. Indeed, the obvious absence of 

compensation in affected patients could be explained by an absence of MTMR2 in the 

affected tissues. 

1. Expression of the MTMR2-S short isoform is reduced in 

Mtm1 KO mice muscles. 

I first analyzed the gene expression level, by analyzing MTMR2 mRNA variants in 

mice skeletal muscles. As described in the introduction, four MTMR2 mRNA variants (V1 to 

V4) have been previously reported in peripheral nerves of mice, potentially coding for 2 

protein isoforms (Bolino et al., 2002). Variants V2 to V4 differ from variant V1 by the 

inclusion of alternative exons 1a and/or 2a leading to a premature stop codon and unmasking 
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an alternative start site in exon 3 (Figure 26A and B). Variant V1 encodes the most described 

MTMR2-L (long) protein isoform (643 aa) while the other variants code for the MTMR2-S 

(short) isoform (571 aa) that was previously detected in various cell lines (Bolino et al., 

2002). 

Figure 26: Detection and quantification of MTMR2 mRNA isoforms in mouse. (A) Genomic 

structure and mRNA isoforms of MTMR2 in mouse. Inclusion of any combination of the alternative 

exons 1a or 2a brings a premature stop codon and unmasks an alternative start site in exon 3. Murine 

MTMR2 V1 encodes for the MTMR2-L while isoforms V2 to V4 encode for MTMR2-S. (B)  

Sequence of mouse alternative exons 1a and 2a from Sanger sequencing of RT-PCR products from 

muscle. (C) PCR between exons 1 and 3 of MTMR2 on cDNA from TA muscles isolated from WT 

and Mtm1 KO mice and from WT liver. The 4 mRNA variants are detected. (D) Quantification by RT-

qPCR of MTMR2 isoforms (V1 to V4) in the TA muscle of Mtm1 KO mice compared to WT mice. 

n>6. Each isoform is presented as an independent ratio, with a value of 1 set for expression in WT 

mice. Data represent means ± s.d. **p<0.01, ***p<0.001, ****p<0.0001, ns not significant (Student’s 

t test). 
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I performed an RT-PCR on total mRNA from tibialis anterior (TA) skeletal muscle of 

wild type (WT) and Mtm1 KO mice and from WT liver (as control) (Figure 26C). The PCR 

amplified a sequence between exons 1 and 3 of MTMR2, allowing to detect the additional 

exon 1a and 2a if they are included by alternative splicing. Four different bands were 

amplified in each sample, and I confirmed by cloning followed by Sanger sequencing that the 

4 amplified sequences correspond to the 4 MTMR2 mRNA variants (V1 to V4) (Figure 26B). 

This shows that the four mRNA variants encoding for both MTMR2-L and MTMR2-S 

proteins are present in mouse skeletal muscle. 

Using specific sets of primers for each mRNA variant, I then quantified by RT-qPCR 

the mRNA levels of the different MTMR2 variants (V1 to V4) in TA muscles of Mtm1 KO 

compared to wild type (WT) mice (Figure 26D). The results show that MTMR2 mRNA total 

level was decreased in Mtm1 KO muscles by 2 fold. This was mainly due to a strong decrease 

in the V2 and V3 transcripts encoding the MTMR2-S isoform, while the level of the V1 

transcript coding for MTMR2-L remained statistically unchanged between Mtm1 KO and WT 

mice. Note that these changes were not observed in Figure 26C since it presents a 

conventional RT-PCR that does not allow quantification. These results show a decrease of 

MTMR2 expression in Mtm1 KO mice, and more specifically of the V2 and V3 

transcripts encoding the short MTMR2-S isoform. 

2. Expression of the MTMR2-S short isoform is also 

reduced in the XLCNM patient muscles 

In human, a similar MTMR2 alternative splicing has been described. 15 exons were 

initially identified, but Bolino et al. described 3 additional exons named 1a, 2a and 2b and 

their inclusion by alternative splicing allows the expression of 4 different transcripts variants 

(V1 to V4) that are ubiquitously expressed (Figure 6A) (Bolino et al., 2002; Bolino et al., 

2000). Transcript variant V1 does not contain any additional exon and leads to the translation 

from exon 1 of MTMR2-L long protein isoform (643 aa), while V2 to V4 include at least 

exon 1a, leading to a premature STOP codon and to the translation from an alternative start 

codon in exon 3. Thus, as in mice, V2 to V4 are used for the translation of the shorter 

MTMR2-S protein isoform of 571 aa. 
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The expression level of these isoforms was first investigated in human through mining 

the GTEx expression database encompassing data on 51 human tissues (GTEx_consortium, 

2015). Variant V1 is the major MTMR2 RNA in brain, liver and spleen while variant V2 is 

predominant in the other tissues (Figure 27A). Concerning their expression level, variant V1 

was highest in brain, testis, esophagus, ovary, colon and spleen while V2 was predominant in 

Figure 27: MTMR2-S expression is reduced in XLCNM patient muscles. (A) Comparative 

expression of MTMR2 mRNA isoforms V1 to V4 in 20 human tissues from GTEx database mining 

(top). Tissue expression of each isoform independently (bottom). (B) Quantification by RT-qPCR of 

MTMR2 isoforms (V1 to V4) in muscles of MTM1 patients compared to controls. N=3. Each isoform 

is presented as an independent ratio, with a value of 1 set for expression in control patients. Data 

represent means ± s.d. The P value is indicated for each isoform (Student’s t test). 
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the other tissues including nerve, adipose and artery. Interestingly the different variants of 

MTMR2 are poorly expressed in skeletal muscle. 

Using specific sets of primers for each human mRNA variants, I then quantified by 

RT-qPCR the mRNA levels of the different MTMR2 variants (V1 to V4) in muscles biopsies 

from 3 XLCNM patients compared to 3 unaffected muscles (Figure 27B). The low biopsies 

number did not allow to reach a statistical significance, but a clear tendency can be observed. 

As observed in mice, human MTMR2 total mRNA levels were reduced by 2 fold in 

XLCNM patient muscles compared to non-affected muscles. And as previously observed 

in mice muscles, this was mainly due to a strong decrease of V2 and V3 transcripts 

encoding the MTMR2-S isoform. 

These results show that MTMR2 expression level is low in healthy skeletal muscles 

compared to other tissues. Moreover, MTMR2 expression is reduced even further in both 

mice and human Mtm1 myopathic muscles. The short MTMR2-S isoform being the most 

affected by this decrease is intriguing, since overexpression of this isoform induced a strong 

phenotype similar to MTM1 overexpression in yeast and mammalian cells. This suggests 

that the lack of compensation of MTM1 loss by endogenous MTMR2 could be due to 

two additive effects: the low expression level of MTMR2 in muscles and the even further 

decrease in MTMR2-S expression level in affected XLCNM skeletal muscles. 

3. Detection of MTMR2 protein isoforms in mice 

As mRNA analysis indicated MTMR2 levels were reduced in Mtm1 KO mice, I next 

wanted to confirm this at the protein level. I tried to detect endogenous MTMR2 protein 

isoforms by western blot, using our homemade antibody. By increasing the anti-MTMR2 4G3 

antibody concentration and the membrane exposure time, I could obtain several bands in brain 

and TA muscle from Mtm1 KO and WT mice (Figure 28A). Some of them were at the 

expected size for MTMR2-L and –S. Unfortunately, all these bands were also detected in 

brain and TA control protein extracts from Mtmr2 KO mice, and thus were non-specific 

bands. Thus, our homemade antibody did not allow to detect the mouse MTMR2 isoforms at 

the endogenous level. 
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However, I detected what could be the endogenous MTMR2 short and long isoforms 

in protein extracts from COS cells, showing that our anti-MTMR2 antibody could be able to 

detect the primate (and also probably the human) endogenous MTMR2 in western blots 

(Figure 28B). The MTMR2-L expression would then be higher than the MTMR2-S 

expression in COS cells. Without a negative control, it is of course possible that what I 

detected are non-specific bands, but they would be exactly at MTMR2-L and –S sizes. 

 Moreover, a faint band that could correspond to MTMR2-L was also detected in 

protein extracts from C2C12 control and Mtm1 KD myotubes (Figure 28B). This could 

confirm the low expression level of MTMR2 in muscle cells. But since the signal was very 

low, it is also possible that this antibody - that was raised against the full length human 

Figure 28: Detection of endogenous MTMR2 protein isoforms in mouse and cultured cells. (A) 
Western blot to detect endogenous MTMR2 in brain and TA from Mtm1 KO and WT mice. Brain and 

TA protein extracts from Mtmr2 KO mice were used as negative control, and showed that all detected 

bands are non-specific. Expected sizes for MTMR2-L and –S are indicated on the right. Stain free was 

used as loading control. L = Ladder. (B) Detection of endogenous MTMR2 isoforms in WT COS cells 

and in control and Mtm1 KD C2C12 myotubes after 3 days of differentiation. GAPDH was used as 

loading control. A longer exposure for MTMR2 is presented below and expected sizes for MTMR2-L 

and –S are indicated on the right. L = Ladder. 
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MTMR2 and whom we don’t know the target epitope - does not recognize the mouse protein. 

The development of an MTMR2 antibody with a better specificity will be important for future 

investigations on MTMR2. However, the remainder of this thesis is focused on analyzing 

overexpressed MTMR2 in muscles, and the antibody works for this application. 

B. Overexpression of MTM1 and MTMR2 in Mtm1 KO 

mouse muscles using AAV vectors 

To assess whether in an in vivo muscle context MTMR2-S is also functionally 

closer to MTM1 compared to MTMR2-L, I overexpressed MTM1, MTMR2-L and 

MTMR2-S in the TA muscles of the Mtm1 KO mouse model and analyzed different 

myopathy-like phenotypes. MTMR2-Δ2-24 was also used in some experiments to have 

an intermediate truncated form of MTMR2. 

The different myotubularins were expressed from Adeno-associated virus AAV2/1 

under the control of the CMV promoter and the recombinant virions were injected into the TA 

muscles of 2-3 week old Mtm1 KO mice. The Mtm1 KO mice develop a progressive muscle 

atrophy and weakness starting at 2-3 weeks and leading to death by 8 weeks, the TA muscle 

being the most affected muscle detected in this model (Buj-Bello et al., 2002b; Cowling et al., 

2014). Our team has previously shown that AAV-mediated expression of MTM1 for 4 weeks 

in the TA muscle, corrects the myopathy phenotype in Mtm1 KO mice (Amoasii et al., 2012). 

Therefore to determine the impact of introducing MTMR2-L and MTMR2-S into Mtm1 KO 

mice, I followed the previously described protocol for AAV injections (Amoasii et al., 2012), 

using MTM1 as a positive control for the rescue, and empty AAV2/1 as a disease control in 

the contralateral muscle. Wild type muscles injected with empty AAV2/1 were also used as 

positive control for healthy muscles. 

The MTM1, MTMR2-L, MTMR2-S and MTMR2-Δ2-24 human myotubularins were 

detected in injected TA muscles four weeks after injection, as revealed by anti-MTM1 and 

anti-MTMR2 western-blot analyzes (Figure 29A and B). Endogenous MTMR2 proteins were 

not detected in muscles injected with empty AAV, most likely due to the low level of this 

protein, as previously described (Chapter V.A.). 
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Interestingly, detection of overexpressed MTMR2-L isoform by western blot revealed 

several bands: one at the expected MTMR2-L size, a second at the same size as MTMR2-S 

and sometimes a third band at the same size as MTMR2-Δ2-24 (Figure 29B). Moreover, 

MTMR2-Δ2-24 also displays a lower additional band at the same size as MTMR2-S (Figure 

29B). On the contrary, no additional band was observed for MTMR2-S detection. This 

suggests some protein cleavage in the N-terminal extension of MTMR2-L and MTMR2-Δ2-

24, more precisely around the 73rd amino acid of MTMR2-L, leading to the formation of 

MTMR2-S or a protein having a similar size. Another possibility is the use of the alternative 

start in exon 3 of the overexpressed mRNA, leading to the production of MTMR2-S, as it is 

Figure 29: Detection of overexpressed myotubularins after intramuscular injections in mice. TA 

muscles from 2-3 week-old Mtm1 KO mice were injected with AAV2/1 expressing myotubularins and 

analyzed 4 weeks later. (A) and (B) Detection of exogenously expressed human myotubularins by 

western blot using anti-MTM1 or anti-MTMR2 antibodies; GAPDH (A) or Stain free (B) are used as a 

loading control. L = Ladder (C) Detection of exogenously expressed human MTMR2-L in Mtm1 KO 

mouse TA, in COS-1 cells and in ymr1Δ yeast cells, by western blot. A lower supplementary band for 

MTMR2-L is detected in mice and COS cells but not in yeast. (D) Coomassie blue staining of SDS-

Page gel with total protein extract from COS cells overexpressing MTMR2-L. The 3 indicated bands 

were given to mass spectrometry. L = Ladder. 
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the case for endogenous mRNA when exons 1a or 2a are present. Post-transcriptional 

modifications might not explain these additional bands, since the distance between the upper 

and lower bands is different for MTMR2-L and MTMR2-Δ2-24. 

The same 2-3 bands were detected for MTMR2-L when overexpressed in Mtm1 KO 

TA muscle and in COS cells, but not in ymr1Δ yeast cells (Figure 29C). Thus, this potential 

cleavage or alternative start system seems specific of mammalian cells and may implicate 

some pathways or enzymes that are absent in yeast. I separated the 3 MTMR2-L bands for 

mass spectrometry analysis to determine whether the lower bands lacked the N-terminal 

extension, but unfortunately the results were not conclusive (Figure 29D and data not shown). 

In conclusion, the different overexpressed myotubularins were detected in Mtm1 

KO mouse muscles after AVV-injection. However, we have to keep in mind for the later 

analysis of muscle phenotypes that MTMR2-L and MTMR2-Δ2-24 overexpression could 

potentially lead to the production of a shorter form of MTMR2 that might be similar to 

MTMR2-S. 

C. Exogenous expression of MTMR2 short isoform in the 

Mtm1 KO mice rescues muscle weight and force similarly 

to MTM1 expression 

Next I analyzed the effect of overexpressed myotubularins on muscle weight and 

force. Four weeks after empty AAV control injection, the TA muscle weight of the Mtm1 KO 

mice was decreased by 2.5 fold compared to WT mice (Figure 30A), as previously observed 

(Amoasii et al., 2012; Buj-Bello et al., 2002b). MTM1 or MTMR2-S expression in the TA 

muscle of Mtm1 KO mice increased significantly the muscle mass compared to the empty 

AAV control (1.5 fold), contrary to MTMR2-L and MTMR2-Δ2-24. To address a potential 

hypertrophic effect of human MTM1 or MTMR2 constructs in wild type (WT) mice, TA 

muscle weight of injected WT mice was quantified (Figure 30B). No significant muscle mass 

increase was noted with any myotubularin indicating that the amelioration observed in the 

Mtm1 KO mice was not due to a hypertrophic effect but to a functional rescue.  
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The Mtm1 KO mice displayed very weak muscle force compared to WT mice, and all 

myotubularin constructs including MTMR2-L improved the TA specific muscle force (Figure 

30C). Noteworthy, a similar rescue was observed for MTM1 and MTMR2-S, significantly 

above that observed for MTMR2-L injected muscles. This time, MTMR2-Δ2-24 induced an 

intermediary force rescue between MTMR2-L and –S. These results show that both 

MTMR2-L and MTMR2-S isoforms improve the muscle weakness due to loss of MTM1, 

but only MTMR2-S expression induces a rescue level similar to that observed for 

MTM1. 

 

Figure 30: The MTMR2 short isoform rescues muscle weight and force similarly as MTM1 in the 

Mtm1 KO myopathic mouse. TA muscles from 2-3 week-old Mtm1 KO mice were injected with AAV2/1 

expressing myotubularins and analyzed 4 weeks later. (A) Ratio of muscle weight of TA expressing 

human myotubularins compared to the contralateral leg injected with empty AAV. MTMR2-S improved 

muscle mass similarly as MTM1 while MTMR2-L and MTMR2Δ2-24 had no effect. A value of 1 was set 

for the Mtm1 KO mice injected with empty AAV. n>9. Data represent means ± s.e.m. ****p<0.0001, 

***p<0.001, ns not significant (ANOVA test). (B) Ratio of muscle weight of TA expressing human 

myotubularins compared to the contralateral leg injected with empty AAV. A value of 1 is set for the WT 

TA muscle weight. n>5. Data represent means ± s.e.m. No significant differences (ANOVA test). (C) 

Specific maximal force of TA muscle (absolute values). The 3 MTMR2 constructs improved muscle force. 

n>6. Data represent means ± s.e.m. **p<0.01, ****p<0.0001, ns not significant (ANOVA test). 
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D. The MTMR2 isoforms rescue the histopathological 

hallmarks of the Mtm1 KO mouse 

In the Mtm1 KO mice, TA injections of AAV2/1 carrying MTM1, MTMR2-L or 

MTMR2-S increased muscle mass (except for MTMR2-L) and force. To analyze the rescue at 

the histological level, fiber size and nuclei localization were determined four weeks after 

injection. HE (hematoxylin-eosin) staining revealed increased fiber size upon AAV-MTM1, 

AAV-MTMR2-S and AAV-MTMR2-Δ2-24 injection compared to Mtm1 KO muscle treated 

with empty AAV or AAV-MTMR2-L (Figure 31). Morphometric analysis revealed that 

among the different myotubularins tested, MTM1 induced a clear shift toward larger fiber 

diameters compared to MTMR2 constructs and empty AAV (Figure 31A). This shift is clearer 

by analyzing the percentage of fibers superior to 800 µm2 (Figure 31B). 

Figure 31: All MTMR2 constructs increase the myofiber size of Mtm1 KO mice. TA muscles 

from Mtm1 KO mice were injected with AAV2/1 expressing myotubularins and analyzed 4 weeks 

later.  (A) Hematoxylin-eosin staining of TA muscle sections. Scale bar 100 µm. (B) Quantification of 

fiber area. Fiber size is grouped into 200 µm2 intervals and represented as a percentage of total fibers 

in each group. n>1000 for 8 mice per construct. On the right is represented the percentage of fibers 

above 800 µm2. n>8. Data represent means ± s.e.m. *p<0.05, **p<0.01, (ANOVA test). The value for 

WT is statistically different from all Mtm1 KO injected groups. 
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For all overexpressed myotubularin constructs, I observed spatial heterogeneity in the 

muscle, with some regions very well rescued and other regions still displaying smaller 

atrophic fibers characteristic of the XLCNM myopathy (Figure 32). This could be due to 

heterogeneity in the injections leading to low diffusion and transduction of the AAVs in some 

regions of the muscle. 

Since nuclei are abnormally located within muscle fibers in Mtm1 KO mice, I 

analyzed the distribution of nuclei. Injection of the different myotubularin constructs into the 

TA muscle of Mtm1 KO increased significantly the percentage of nuclei positioned at the 

periphery compared with contralateral control muscles injected with empty AAV (Figure 

33A). No significant differences have been observed between the different overexpressed 

myotubularins MTM1, MTMR2-S or MTMR2-L for this parameter. Interestingly, a 

correlation could be made between the nuclei positioning and the fiber size: for all 

overexpressed myotubularins, the percentage of well positioned peripheral nuclei increased 

Figure 32: Fiber size heterogeneity in Mtm1 KO rescued muscles. Hematoxylin-eosin staining of 

TA muscle sections were used to color code the myofibers depending on their area. The color coding 

is indicated on the left. Scale bar 1 mm. 
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with the fiber size, the biggest fibers even reaching WT level (Figure 33B). This correlated 

with the spatial heterogeneity observed for the fiber size rescue, suggesting that the 

myotubularin constructs were not properly overexpressed in the small fibers. In contrast, the 

percentage of peripheral nuclei was independent from the fiber size in the TA muscles of 

Mtm1 KO and WT mice. In patients, predominantly type 1 fibers are affected, which are the 

smallest fibers (Ambler et al., 1984; Oldfors et al., 1989; Silver et al., 1986). This may 

account for the more affected smaller fibers in this study. 

The Mtm1 KO mouse muscle histology is also characterized by an abnormal 

distribution of the mitochondria. The succinate dehydrogenase (SDH) staining shows the 

oxidative fibers and abnormally accumulates at the periphery and center in the Mtm1 KO 

fibers (Amoasii et al., 2012), while it is ameliorated with a more homogenous staining upon 

expression of the different myotubularin constructs (Figure 34).  

Altogether, these results show that all MTMR2 isoforms were able to ameliorate 

the histopathological hallmarks of the MTM1 myopathy. Furthermore the truncated 

forms MTMR2-S and MTMR2-Δ2-24 provided a better rescue than the long MTMR2-L 

isoform, corroborating my previous results obtained in yeast (chapter III). 

Figure 33: All MTMR2 constructs rescue the nuclei positioning in Mtm1 KO mice. (A) Nuclei 

positioning in TA muscle. Percentage of well-positioned peripheral nuclei. n>6 animals. Data 

represent means ± s.e.m. *p<0.05, ***p<0.001, ****p<0.0001 (ANOVA test). (B) Correlation 

between the nuclei positioning and the fiber size in TA muscles from Mtm1 KO mice overexpressing 

MTM1 and MTMR2 constructs. 
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Finally, I did experiments to assess the protein localization of the overexpressed 

myotubularins in Mtm1 KO myofibers (Figure 35). In contrast with localization experiments 

in cultured COS cells, immunofluorescence in mouse muscles was difficult to analyze. A 

good signal was obtained with polyclonal anti-MTM1 or our monoclonal anti-MTMR2 

antibodies in some TA muscles samples overexpressing MTM1, MTMR2-S or MTMR2-L, 

compared to control muscles injected with empty AAV. However, most of the signal was not 

localized in the rescued fibers displaying a large fiber size. MTM1 and MTMR2-L signal was 

mostly at the plasma membrane and diffused in the cytoplasm. A pattern of aligned structures 

was observed for MTMR2-S but this could be an artefact due to the cutting of muscle 

sections, independent of MTMR2-S expression. In conclusion, these localization 

experiments in injected TA muscles were not conclusive, even though they highlighted 

some protein overexpression inside the Mtm1 KO myofibers upon AAV injection of 

MTM1, MTMR2-S or MTMR2-L construct. 

Figure 34: All MTMR2 constructs rescue the mitochondria organization in Mtm1 KO mice. TA 

muscles from Mtm1 KO mice were injected with AAV2/1 expressing myotubularins and analyzed 4 

weeks later. Succinate dehydrogenase (SDH) staining of TA muscle sections. Scale bar 100 µm. 
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Figure 35: Localization in overexpressed myotubularins in Mtm1 KO muscles fibers. Detection of 

MTM1 (green) and both MTMR2 isoforms (red) by immunofluorescence on transverse sections of TA 

muscles from Mtm1 KO mice injected with empty AAV2/1 or AAV2/1 overexpressing the 

myotubularins. Nuclei stained with Hoechst appear in blue. For each construct, the lower montage is a 

zoom of the upper montage. Scale bar 10 µm. 
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E. MTMR2 isoforms rescue Mtm1 KO muscle 

disorganization 

In skeletal muscle, the excitation-contraction (EC) coupling machinery relates the 

muscle excitation to the calcium release from the sarcoplasmic reticulum. This system is 

formed by a highly specialized membrane structure, the triad that is formed by a central 

transverse (T)-tubule surrounded by two terminal cisternae from the sarcoplasmic reticulum 

(Figure 36A). T-tubule biogenesis and triad formation are complex and mostly unknown 

mechanisms, but have been linked to several proteins including MTM1 (Al-Qusairi and 

Laporte, 2011). 

Indeed, patients with myotubular myopathy and the Mtm1 KO mice display an 

intracellular disorganization of their muscle fibers at the ultrastructural level (Buj-Bello et al., 

2002b; Spiro et al., 1966; Toussaint et al., 2011). 

To determine the organization of the contractile apparatus and triads, the ultrastructure 

of the different injected TA muscles was assessed by electron microscopy (Figure 36B). As 

previously published, I observed Z-line and mitochondria misalignment, thinner sarcomeres 

and lack of well-organized triads in the Mtm1 KO muscle injected with empty AAV (Figure 

36B) (Amoasii et al., 2012). Expression of MTM1 and all MTMR2 isoforms improved these 

pathological phenotypes, with the observation of well-organized triads with two sarcoplasmic 

reticulum cisternae associated with a central transverse-tubule (T-tubule) in muscles injected 

with MTM1, MTMR2-L or MTMR2-S. Moreover, AAV-mediated expression of MTM1, 

MTMR2-L, MTMR2-Δ2-24 and MTMR2-S increased the number of triads per sarcomere 

back to almost WT levels, with a better effect for MTMR2-S compared to MTMR2-L (Figure 

36C). MTMR2-Δ2-24 had again an intermediate phenotype between MTMR2 short and long 

isoforms.  

Thus, similarly to MTM1, the overexpression of MTMR2 isoforms ameliorates 

the ultrastructure defects observed in Mtm1 KO muscle fibers. Furthermore, consistent 

with my previous results, the MTMR2-S isoform lacking the N-terminal extension 

displays better rescuing properties compared to the long MTMR2-L isoform. 
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Figure 36: All MTMR2 isoforms ameliorate the muscle ultrastructure of Mtm1 KO mice. (A) 
Triad organization in skeletal muscle. Adapted from Al Qusairi et al. 2011. (B) Electron microscopy 

pictures displaying sarcomere, mitochondria and triad organization or Mtm1 KO muscle fibers 

overexpressing myotubularins. Scale bar 1 µm. Representative triads are displayed in the zoom 

square. (C) Quantification of the number of well-organized triads per sarcomere. n>20 images for 2 

mice each. All muscles expressing myotubularins quantify differently than the Mtm1 KO. Data 

represent means ± s.e.m. *p<0.05, **p<0.01, ****p<0.0001 (ANOVA test). 
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F. Exploring the mechanistic of the rescue 

To better understand how MTMR2 variants were able to rescue the XLCNM 

phenotypes of the Mtm1 KO mice, I explored lipid and protein pathways known to be 

modified by MTM1 loss. 

In yeast, only MTMR2-S but not MTMR2-L regulated the PtdIns3P myotubularin 

substrate level, as well as the one of PtdIns(3,5)P2 as assessed by vacuolar morphology. To 

determine whether the rescuing capacity of MTMR2 in mice was linked to its enzymatic 

activity, I quantified the intracellular levels of PtdIns3P in the injected TA muscles of Mtm1 

KO mice (Figure 37A). PtdIns3P level was 2.3 fold higher in empty AAV injected Mtm1 KO 

muscle than in WT muscle, reflecting the impact of the loss of MTM1 on its PtdIns3P lipid 

substrate. Upon expression of MTM1, the PtdIns3P level decreased to wild type levels, 

reflecting the in vivo phosphatase activity of MTM1. MTMR2-L, MTMR2-S and MTMR2-

Δ2-24 induced a decrease in PtdIns3P level when expressed in the Mtm1 KO mice, however 

only the short MTMR2-S isoform normalized PtdIns3P to wild type levels. These results 

show that MTMR2 displays an in vivo enzymatic activity in muscle. Moreover, the 

MTMR2 catalytic activity correlates with the rescue observed in the muscle of Mtm1 KO 

myopathic mice upon MTMR2 expression. 

Increased levels of DNM2 dynamin have been found in XLCNM patients and in Mtm1 

KO mice, and mutations in DNM2 lead to the autosomal dominant form of centronuclear 

myopathy (Bitoun et al., 2005; Cowling et al., 2014). Moreover, the downregulation of DNM2 

expression by genetic cross (generating heterozygote mice for DNM2) or by antisense 

oligonucleotide-mediated knockdown also improved the muscular phenotypes and the 

survival of Mtm1 KO mice (Cowling et al., 2014; Tasfaout et al., 2017). Based on this and 

other data, MTM1 and DNM2 are suspected to form with BIN1 amphiphysin the so-called 

M.A.D. pathway (Myotubularin Amphiphysin Dynamin) implicated in centronuclear 

myopathies. To determine if the rescuing capacity of human MTMR2 was linked to Dnm2 

downregulation, I quantified Dnm2 protein levels in the injected TA muscles of Mtm1 KO 

mice (Figure 37B). As expected, Dnm2 level was 2 fold higher in empty AAV injected Mtm1 

KO muscle than in WT muscle. All overexpressed myotubularins decreased Dnm2 level, to 

near WT level in some mice. The high heterogeneity in DNM quantification and the low 
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samples number did not allow to reach a statistical difference, but the tendency is clear for 

each myotubularin variant. These results show that MTMR2, as MTM1, plays a role in the 

M.A.D. pathway and regulates DNM2 expression, allowing to compensate the MTM1-

loss in the myopathy. 

Figure 37: Mechanistic of Mtm1 KO mouse muscle rescue by MTMR2. (A) Quantification of 

PtdIns3P level by competitive ELISA in TA muscles from Mtm1 KO mice expressing different 

myotubularins and in WT muscles. n>3 mice. Data represent means ± s.e.m. *p<0.05, **p<0.01 

(ANOVA test). PtdIns3P levels in Mtm1 KO muscles expressing the different myotubularins are not 

statistically different from the WT controls. (B) Quantification of mouse Dnm2 by western blot. Stain 

free was used for normalization. n>4. No statistical difference was detected by ANOVA test. (C) 

Quantification of total MTMR2 mRNA by RT-qPCR in WT muscles, Mtm1 KO muscles and Mtm1 

KO muscles overexpressing human MTM1. n>4. ****p<0.0001 (ANOVA test). (D) Quantification by 

RT-qPCR of MTMR2 isoforms (V1 to V4) in the brain of Mtm1 KO mice compared to WT mice. n>3. 

Each isoform is presented as an independent ratio, with a value of 1 set for expression in WT mice. 

Data represent means ± s.d. **p<0.01, ***p<0.001, a P value close to be significant is indicated, ns 

not significant (Student’s t test). 
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I previously showed by RT-qPCR that total MTMR2 level was reduced by half in 

Mtm1 KO mouse muscles compared to WT muscles (Figure 26D). To better understand the 

link between MTM1 and MTMR2, I analyzed the effect on MTMR2 level of MTM1 

overexpression by intramuscular injection of AAVs in Mtm1 KO mice. Interestingly, 

reintroduction of MTM1 induced an increase of MTMR2 level back to normal level (Figure 

37C). It would also be interesting to quantify MTMR2 mRNA variants (V1 to V4) levels 

under MTM1 overexpression in Mtm1 KO mice, to see if the upregulation is the same for all 

variants. To assess if MTMR2 upregulation was the same in other Mtm1 KO tissues, I 

quantified its expression in brain where it is the most expressed (Figure 37D). As in muscles, 

MTMR2 total level was reduced almost by half, mainly caused by the downregulation of V2 

and V3 mRNA variants responsible for translation of the short MTMR2-S protein isoform. 

However, in contrast with muscles, the V1 mRNA variant leading to MTMR2-L was also 

highly reduced, suggesting a different regulation of MTMR2 expression in brain compared to 

muscles. Altogether, this confirms the genetic link between MTM1 and MTMR2. 

 

In conclusion, intramuscular injections of AAVs overexpressing MTMR2 long and 

short isoforms or the artificial MTMR2-Δ2-24 were able to rescue or ameliorate all hallmarks 

of the MTM1-linked myopathy: muscle mass and force, fiber size, nuclei positioning and 

muscle ultrastructure. For almost all parameters, MTMTR2-S performed better than MTMR2-

L and similarly as MTM1. The artificial MTMR2-Δ2-24 seems to induce intermediary 

phenotypes. This highlights the importance of the N-terminal extension of MTMR2 for the 

regulation of MTMR2 in vivo functions and for the functional differences between MTM1 

and MTMR2-L. And more importantly, this shows that MTMR2 is able to compensate 

for the loss of MTM1 in the myopathy, suggesting novel therapeutic perspectives. 

Finally, the rescuing properties of MTMR2 seem to implicate the PPIns and Dnm2 pathways 

that are affected in myopathic Mtm1 KO mice. 
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Mtm1 KO + 

empty AAV 

Mtm1 KO + 

MTM1 

Mtm1 KO + 

MTMR2-L 

Mtm1 KO + 

Δ2-24 

Mtm1 KO + 

MTMR2-S 

WT +  

empty AAV 

Muscle weight - ++ - - ++ ++++ 

Muscle force - +++ + ++ +++ ++++ 

Fiber size - +++ + ++ ++ ++++ 

Nuclei 

positioning 

- ++ ++ ++ ++ ++++ 

Number of well-

organized 

triads/sarcomere 

- +++ ++ +++ +++ ++++ 

PtdIns3P level - ++++ ++ ++ ++++ ++++ 

Dnm2 level - ++ ++ ++ ++ ++++ 

 

Table 2 : Rescuing effects of MTM1 and MTMR2 isoforms on several hallmarks of myotubular 

myopathy. “+,++,+++,++++”: increasing rescuing ability of myotubularins, ranging from “-“: no 

rescue to “++++”: WT phenotype 
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VI. Both MTMR2 isoforms are able to improve the Mtm1 

KO mouse phenotypes 

Intramuscular injections allowed to investigate the muscle-specific functions and 

rescuing capacities of MTM1 and MTMR2 in the Mtm1 KO mouse model. To complete this 

study and observe the effect of MTMR2 expression on the overall mouse, I performed 

systemic injections. Here I present only a preliminary study with few mice per construct. The 

MTMR2-Δ2-24 truncated form was not tested this time, to only focus on endogenous 

MTMR2-L and MTMR2-S isoforms. 

Wild type or Mtm1 KO pups were intraperitoneally injected at birth or at Day 1 by 

1.5x1012 units of empty AAV2/9 viral particles or AAV2/9 overexpressing human MTM1, 

MTMR2-L or MTMR2-S. The AAV2/9 serotype is supposed to transduce almost all organs 

by systemic injections. Then 3 weeks after injection I started to analyze weekly the body 

weight and the mice skeletal muscle strength by two different tests: the grip test and the 

hanging test. Initially, I was optimistic and planned to sacrifice the mice at 12 weeks of age to 

Table 1: List of systemic injections. List of Mtm1 KO and WT mice systemically injected by empty 

AAV2/9 or AAV2/9 overexpressing MTM1, MTMR2-L or MTMR2-S. The week of sacrifice or 

natural death is indicated. 
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compare MTM1 and MTMR2 rescuing capacities. However, around 7-8 weeks, 2 mice 

injected with MTMR2-L and 1 mouse injected with MTMR2-S died (Table 3). I then decided 

to sacrifice them before 12 weeks. For the last injections, I sacrificed the mice at 7 weeks 

when Mtm1 KO affected mice injected with empty AAV were still alive, allowing to compare 

the myotubularin overexpression to the empty vector. 

Figure 38: Detection of overexpressed myotubularins after systemic injections in mice. Detection 

of exogenously expressed human myotubularins in Mtm1 KO TA and Diaphragms by western blot 

using anti-MTM1 or anti-MTMR2 antibodies. The Stain free membranes are used as a loading control. 

L = Ladder. 
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Overexpression of MTM1 and MTMR2 isoforms were assessed by western blot on 

tibialis anterior and diaphragm skeletal muscles (Figure 38). In both cases, myotubularins 

were well detected at the expected size, and additional lower bands were observed for 

MTMR2-L, as already seen for intramuscular injections. However, this time additional lower 

bands were surprisingly also observed for MTMR2-S, while it was never the case for 

intramuscular injections (n=13). This suggests either a curious differential regulation of the 

potential protein cleavage depending on the AAV serotype (AAV2/1 vs 2/9), or that the 

protein modification was very weak for MTMR2-S by intramuscular injections. This 

confirmed that all myotubularins were well expressed in skeletal muscles after systemic 

delivery of AAV at day 1 postnatally in mice. 

 

A. Overexpression of both MTMR2 isoforms ameliorates 

the lifespan and body weight of Mtm1 KO mice 

I started by analyzing the effect of systemic expression of the myotubularins on the 

lifespan and the body weight of the injected mice. The first major observation was that both 

MTMR2-L and MTMR2-S increased the lifespan of Mtm1 KO mice (Table 3). While the 

myopathic mice usually die around 5-7 weeks of age, the MTMR2 isoforms allowed two mice 

to reach 10 weeks-old (and potentially older, since at this point I sacrificed the mice for 

further analysis). MTM1 was already published to have a similar rescuing effect on the 

lifespan (Buj-Bello et al., 2008). 

Major clinical phenotypes of myopathic Mtm1 KO mice are the lower body weight 

since 2 to 3 weeks of age compared to WT mice, and the progressing loss of weight starting 

around 5 weeks of age (Buj-Bello et al., 2002b; Cowling et al., 2014). The latter is mainly due 

to a loss of muscle mass and in the final steps of the disease to difficulties to reach their food. 

In contrast, WT mice continue to progressively gain weight during the first 10-12 weeks of 

their life (Figure 39A). Mice overexpressing human MTM1 are initially bigger than Mtm1 KO 

mice injected with empty AAV, and perfectly gain body weight at the same rate than WT 

mice. In comparison, mice overexpressing MTMR2-L and MTMR2-S also show a good 

rescue of the body weight from 3 weeks to 5 weeks old, but then start to lose weight and reach 
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the Mtm1 KO level (Figure 39A). In correlation, the positive effects of MTMR2 expression 

were clinically clear (but not quantified) until 5 weeks of age, then the mice started to 

progressively gain the Mtm1 KO typical phenotypes (loss of muscle weight and force, 

scoliosis, difficulties to breath and to walk). 

Figure 39: MTMR2 isoforms rescue the body weight of myopathic mice. (A) Measure of the body 

weight from 3 weeks to maximum 10 weeks of age of Mtm1 KO or WT mice overexpressing the 

different myotubularins. (B) Measure of the fat weight divided by the body weight for WT mice 

overexpressing the different myotubularins. 
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Overexpression of the myotubularin constructs in the WT mice seemed to increase the 

body weight compared to empty vector. I thus dissected and weighted their abdominal fat, and 

showed that WT mice overexpressing MTM1 had more fat than control WT mice (Figure 

39B). This was not observed (or slightly) for mice overexpressing MTMR2 isoforms. A link 

can be made with MTMR9 that was associated with obesity (Hotta et al., 2011). 

These results show that MTMR2 long and short isoform similarly improved the 

lifespan and body weight of Mtm1 KO mice. However, this effect was temporary and 

lower than the rescue observed with MTM1 overexpression. 

 

B. Overexpression of both MTMR2 isoforms rescues the 

muscle strength of Mtm1 KO mice 

The other obvious clinical feature of myotubular myopathy is the severe muscle 

weakness that is reproduced in the Mtm1 KO mouse model. The grip test showed that 

systemic expression of MTMR2-L and MTMR2-S increased similarly the muscle strength 

with an effect comparable to MTM1 and to WT mice (Figure 40A). The effect was even more 

impressive with the hanging test: overexpression of MTMR2 isoforms allowed the Mtm1 

KO mice to progressively hang longer and longer (starting at 30-40 seconds), until they 

reach the WT level and were able after 7 weeks to hang for 3 x 60 seconds (Figure 40B). 

At the same age, half of the Mtm1 KO mice are usually dead, and the two mice that I tested 

were not able to hang more than few seconds after 5 weeks. MTM1 effect was even better and 

allowed the Mtm1 KO mice to perfectly hang for 60 seconds after 4 weeks. No negative effect 

was observed for any myotubularin on WT mice that were always able to hang for 60 

seconds. 

These results showed that MTMR2 isoforms similarly rescued the muscle 

strength of Mtm1 KO mice. Notably these mice injected with MTMR2 isoforms that 

were sick in appearance (difficulties to breath, scoliosis) could hang for 60 seconds as 

well as WT mice.  
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Figure 40: MTMR2 isoforms rescue the muscle force of Mtm1 KO mice. The muscle strength of 

Mtm1 KO or WT mice overexpressing the different myotubularins was assessed by grip test (A) or 

hanging test (B) each week from 3 to 10 weeks of age. The color and symbol coding is the same for 

both figures. 
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C. Overexpression of both MTMR2 isoforms rescues the 

histopathology of Mtm1 KO limb muscles 

Mice systemically overexpressing MTMR2 isoforms have improved lifespan, body 

weight and strong rescue of limb muscle force. However, these mice still died while MTM1 

expression rescues completely the lifespan (Buj-Bello et al., 2008). This suggests that the 

rescue of the muscle weakness observed for limb muscles was maybe not present in other 

muscles or potentially affected organs. 

To explore this hypothesis, I dissected the brain, lungs, heart, liver, diaphragm, testis, 

TA, gastrocnemius and sciatic nerves of injected mice, and gave the organs to the histology 

platform of the IGBMC. They are currently cutting and H&E staining them, and analyzing 

their histological features.  

Figure 41: MTMR2 isoforms rescue the histology of limb muscles. Hematoxylin & Eosin (H&E) 

staining of tibialis anterior (TA), Gastrocnemius (Gast.) and Diaphragm (Diaph.) transverse sections 

from Mtm1 KO mice overexpressing the different myotubularins, compared to Mtm1 KO and WT 

mice injected with empty AAVs. Scale bar 50 µm. 
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They already analyzed the TA, gastrocnemius and diaphragm of injected Mtm1 KO 

mice. H&E staining showed that all myotubularin constructs improve the muscle histology of 

Mtm1 KO TA and gastrocnemius, with bigger fibers and well positioned nuclei compared to 

empty vector (Figure 41). Interestingly, the results were less clear in diaphragm, suggesting 

that MTMR2-L and MTMR2-S could have a lower effect than MTM1 in this organ. A lack of 

muscle strength in diaphragm and other respiratory muscles (such as intercostal muscles) 

could explain why mice overexpressing MTMR2 isoforms have a low life expectancy 

compared to MTM1. The analysis of the other organs will provide further information about 

the rescuing capacities of MTMR2. 

In conclusion, both MTMR2 isoforms allowed to delay the myopathic phenotype onset 

in Mtm1 KO mice and significantly rescued their muscle force, at least in the limbs. In 

contrast to intramuscular injections, MTMR2-S effect was lower than MTM1 effect, and 

similar to MTMR2-L. Mice overexpressing MTMR2 isoforms were still affected but clearly 

more mobile than Mtm1 KO mice. A video analysis at each stage highlighted the differences 

in the ability of the mice to walk and move (data not shown).  

Altogether, this systemic study shows exciting preliminary data, and warrants further 

investigation. A future complete study will be necessary to improve the significance of the 

results and better understand the functional specificities of MTM1, MTMR2-L and MTMR2-

S in the full organism. 
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Etape par étape, depuis l’utilisation du simple (mais efficace) modèle de la levure 

jusqu’à l’analyse complexe de la souris et des patients, en passant par des études in silico et 

des cultures cellulaires, j’ai cherché à comprendre les spécificités moléculaires et les 

redondances de MTM1 et MTMR2. Bien que ces deux protéines appartiennent à la même 

famille des myotubularines, les mutations dans les gènes MTM1 et MTMR2 entraînent deux 

maladies différentes, respectivement une myopathie et une neuropathie, affectant des tissus 

différents. 

En surexprimant ces myotubularines humaines dans les cellules de levure, les cellules 

de mammifère et dans le muscle squelettique de souris myopathiques Mtm1 KO, j’ai 

caractérisé deux isoformes protéiques de MTMR2, nommés MTMR2-L (long) et MTMR2-S 

(short, court). Ces deux isoformes présentent des activités catalytiques différentes, liées à leur 

capacité respective d’accéder à leurs substrats lipidiques, les PPIn. De plus, j’ai démontré que 

la surexpression de MTMR2 permettait de sauver la myopathie causée par la perte de MTM1, 

et qu’en comparaison avec MTMR2-L, l’isoforme court MTMR2-S présentait une plus 

grande activité phosphatase dans les levures et les souris, en accord avec une meilleure 

correction des phénotypes des levures ymr1Δ et des souris Mtm1 KO. 

I. Les isoformes de MTMR2 et l’extension N-terminale 

Il existe chez l’Homme et la souris quatre variants d’ARNm naturels pour MTMR2, 

encodant deux isoformes protéiques (MTMR2-L et –S), qui diffèrent par une extension N-

terminale de 72 acides aminés. Mes travaux montrent que l’isoforme court MTMR2-S, ne 

contenant pas cette séquence N-terminale, est concentré dans les membranes lorsqu’il est 

surexprimé dans la levure (Figure 20) et présente une plus grande activité vis-à-vis de ses 

substrats lipidiques dans la levure (Figure 21) et dans les muscles de souris (Figure 37A), 

comparé à MTMR2-L. 

Le site de phosphorylation S58 et l’extension N-terminale de MTMR2 

Il a été montré que la phosphorylation de la serine 58, au sein de l’extension N-

terminale, était importante pour la localisation de MTMR2 aux membranes des endosomes, 
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ainsi que pour sa fonction catalytique. En effet, dans les cellules mammifères, le mutant non-

phosphorylable MTMR2-S58A était localisé au niveau de structures membranaires et était 

actif vis-à-vis du PtdIns3P, contrairement au mutant phosphomimétique MTMR2-S58E 

(Franklin et al., 2013; Franklin et al., 2011). J’ai confirmé cette différence dans la levure, en 

montrant que le mutant phosphomimétique MTMR2-S58D était localisé dans le cytoplasme et 

montrait une activité phosphatase plus faible que le mutant non-phosphorylable MTMR2-

S58A présent aux membranes (Figures 20 et 21). Etonnamment, MTMR2-S58E (qui est censé 

être phosphomimétique) présentait la même localisation et activité que MTMR2-S58A. Cela 

suggère que les deux mutants phosphomimétiques MTMR2-S58E et -S58D adoptent dans la 

levure des conformations différentes, ou ont des interactions différentes, et que seul le mutant 

MTMR2-S58D permet d’imiter correctement la phosphorylation. 

Ainsi, les résultats sur les formes tronquées et les mutants de phosphorylation de 

MTMR2 sont complémentaires et reflètent la même régulation protéique. Il existe deux 

formes de MTMR2, MTMR2-S qui est principalement localisé aux membranes et présente 

une forte activité phosphatase in vivo, et MTMR2-L dont la localisation membranaire dépend 

de sa phosphorylation sur le résidu S58. Ce site de phosphorylation S58 est donc une 

différence majeure entre MTMR2-L et –S, et la régulation de sa phosphorylation par la kinase 

humaine Erk2 pourrait expliquer les différences fonctionnelles observées entre ces deux 

isoformes. De plus, MTMR2-L se comporte dans la levure comme un phosphomimétique, 

suggérant que le S58 est principalement phosphorylé, et donc que la kinase de levure Mpk1 

(homologue de Erk2) est capable de réguler la version humaine de MTMR2-L. Cela pourrait 

également signifier que MTMR2-L adopte dans la levure la même conformation que 

MTMR2-S58E dans les cellules humaines. De façon intéressante, dans le cerveau humain 

c’est majoritairement le transcrit MTMR2 V1 (codant pour MTMR2-L) qui est exprimé 

(Figure 27). De plus, l’expression de la kinase Erk2 est plus forte dans le cerveau que dans les 

autres tissus, et est donc corrélée avec l’expression de MTMR2-L (base de données GTEx). 
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Hypothèse pour la fonction et la régulation de l’extension N-terminale de MTMR2 

L’extension N-terminale de MTMR2 n’a à ce jour pas pu être résolue dans la structure 

cristallographique de la protéine. On peut donc supposer que cette extension peut adopter 

différentes conformations, et pourrait ainsi réguler les fonctions de MTMR2 (Begley et al., 

2006; Begley et al., 2003). Une hypothèse intéressante serait que la phosphorylation de la 

sérine 58 mette en place (ou révèle par changement de conformation) un site de liaison pour 

une ancre cytosolique, c’est-à-dire une protéine qui retiendrait MTMR2-L dans le cytoplasme 

(Figure 42). Lorsque S58 est déphosphorylé, le site de liaison disparaîtrait ou serait masqué 

par l’extension N-terminale, permettant à MTMR2-L de se détacher de l’ancre et d’atteindre 

ses substrats lipidiques au niveau des membranes. MTMR2-S ne possède pas l’extension N-

terminale et la sérine 58, et donc ne serait pas retenu dans le cytoplasme. 

Figure 42: L’extension N-terminale de MTMR2 régule la localisation et l’activité de la protéine. 

Régulation hypothétique de la localisation de MTMR2 via son interaction avec une ancre cytosolique. 

L’ancre se lie à la séquence 2-24 de MTMR2-L lorsque le S58 est phosphorylé. Lorsque le S58 n’est 

pas phosphorylé, l’extension N-terminale adopte une conformation qui empêche toute interaction avec 

l’ancre cytosolique, permettant à MTMR2 d’atteindre les membranes endosomales et de 

déphosphoryler ses substrats lipidiques. MTMR2-S et MTMR2-Δ2-24 ne possèdent pas la séquence 2-

24 et ne peuvent donc pas se lier à l’ancre cytosolique. 
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Cette hypothèse peut être complétée par l’analyse des résultats obtenus pour MTMR2-

Δ2-24. En effet, cette construction est dépourvue des 24 premiers acides aminés de MTMR2-

L, mais possède toujours le site de phosphorylation S58, et pourrait donc être régulé de la 

même façon que MTMR2-L. Cependant, MTMR2-Δ2-24 présente dans la levure une 

localisation membranaire et une activité phosphatase similaire à MTMR2-S, suggérant que la 

séquence 2-24 de MTMR2-L serait le site de fixation de l’hypothétique ancre cytosolique. La 

phosphorylation du S58 régulerait alors la conformation de l’extension N-terminale, et 

masquerait (forme non phosphorylée, localisation membranaire) ou révèlerait (forme 

phosphorylée, localisation cytoplasmique) la séquence 2-24 (Figure 42). Les constructions 

MTMR2-S et MTMR2-Δ2-24 ne possèdent pas cette séquence 2-24 et ne pourraient donc pas 

se lier à l’ancre cytosolique. L’analyse de l’interactome différentiel effectué sur les 

constructions de MTMR2 exprimées dans des cellules COS pourrait permettre d’identifier 

cette ancre cytosolique. 

Une autre hypothèse pourrait également expliquer les résultats obtenus pour MTMR2-

Δ2-24 : la phosphorylation du résidu S58 pourrait être régulée par le site de phosphorylation 

S6, de la même façon que la phosphorylation du résidu S631 dépend de la phosphorylation 

S58 (Franklin et al., 2013). Dans cette hypothèse, si le S6 n’est pas phosphorylé, ou s’il est 

manquant comme pour MTMR2-Δ2-24, alors le S58 ne pourrait pas non plus être 

phosphorylé, permettant une liaison à la membrane via le PH-GRAM. Dans la situation 

contraire, la phosphorylation du S6 permet celle du S58, induisant un changement de 

conformation qui empêche la liaison du PH-GRAM aux membranes. L’analyse par 

spectrométrie de masse semble aller dans le sens de cette hypothèse, puisque la 

phosphorylation du S58 n’a pas été détectée pour MTMR2-Δ2-24 (ne contenant pas le résidu 

S6) surexprimé dans les cellules COS, alors qu’elle a été détectée pour MTMR2-L. 

Perspectives pour l’étude de l’extension N-terminale de MTMR2-L 

Plusieurs points restent non élucidés concernant l’extension N-terminale de MTMR2. 

MTMR2-Δ2-24 présentait une localisation et activité similaires à MTMR2-S dans la levure. 

Cependant, une fois surexprimée dans les muscles de souris myopathiques Mtm1 KO,  

MTMR2-Δ2-24 avait une activité plus faible que MTMR2-S  (et plus forte que MTMR2-L) et 

corrigeait moins bien la myopathie que MTMR2-S (et mieux que MTMR2-L). Cette 
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différence mériterait d’être étudiée. Je n’ai pas non plus analysé l’impact de la 

phosphorylation du site S631 sur la fonction des constructions de MTMR2. En effet, Franklin 

et al. Ont montré que la phosphorylation du résidu S631 avait un impact sur la localisation de 

MTMR2-L (entre endosomes précoces et tardifs) uniquement si le résidu S58 n’était pas 

phosphorylé (Franklin et al., 2013). MTMR2-S ne possède pas le site S58 et se comporte 

comme le mutant non phosphorylé MTMR2-S58A, donc le site de phosphorylation S631 

pourrait avoir un impact sur sa localisation et sa fonction. Ainsi, la régulation de la 

localisation membranaire de MTMR2-L semble très complexe, et des études plus 

approfondies (utilisant par exemple l’expression de double/triple mutants de phosphorylation 

de MTMR2 dans des cellules COS) seront nécessaires afin de mieux comprendre la régulation 

de l’extension N-terminale, et de façon plus générale la régulation de MTMR2. 

Il serait également intéressant d’analyser l’impact de l’expression des mutants de 

phosphorylation S58 dans des souris Mtm1 KO, et de comparer leur capacité à corriger les 

phénotypes myopathiques avec les autres constructions de MTMR2. Enfin, il serait très utile 

de produire un anticorps monoclonal reconnaissant spécifiquement l’extension N-terminale de 

MTMR2-L. Cet anticorps pourrait alors être utilisé pour détecter spécifiquement MTMR2-L 

par western blot ou immunofluorescence. On pourrait par exemple déterminer si la seconde 

bande détectée en western blot pour MTMR2-L est en effet due à un clivage de l’extension N-

terminale. De façon plus générale, cet anticorps pourrait aider à étudier les spécificités de 

MTMR2-L et MTMR2-S et leur abondance dans différents tissus.  

II. Les spécificités de MTM1 et MTMR2 

Cette étude révèle que l’extension N-terminale en amont du domaine PH-GRAM 

constitue la base moléculaire de la différence fonctionnelle entre MTM1 et MTMR2. 

MTMR2-S ne possède pas cette extension et présent des fonctions in vivo similaires à MTM1 

dans les levures et les souris. La suppression de cette extension N-terminale dans l’isoforme 

natif MTMR2-L convertit alors l’activité de MTMR2 en une activité similaire à MTM1. 

Ces différences de fonction peuvent encore une fois être associées à des différences de 

localisation : contrairement à MTMR2-L et similairement à MTMR2-S, MTM1 est associé 

aux membranes et peut accéder à ses substrats lipidiques. De plus, MTM1 ne possède ni la 
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séquence 2-24 de MTMR2-L, ni le site de phosphorylation équivalent au S58 (Figure 15B). 

Ainsi, MTM1 ne serait pas retenu dans le cytoplasme par une hypothétique ancre cytosolique 

qui se lierait à l’extension N-terminale de MTMR2-L. La localisation membranaire de MTM1 

(et potentiellement de MTMR2-S) pourrait également induire des interactions avec des 

protéines membranaires, lui conférant des fonctions cellulaires supplémentaires par rapport à 

MTMR2-L. 

Les spécificités fonctionnelles entre MTM1 et MTMR2 pourraient également être 

expliquées par des changements d’acides aminés dans les domaines PH-GRAM, coil-coiled 

ou PDZ qui sont moins bien conservés que le domaine catalytique entre les deux protéines 

(Figure 15A), et qui permettent d’interagir avec des membranes ou des protéines. Par 

exemple, certaines protéines interagissant avec MTM1 ne pourraient pas interagir avec 

MTMR2 parce que le site de liaison a été perdu au cours de l’évolution. Encore une fois, ces 

interacteurs pourraient conférer une localisation ou fonction spécifique à MTM1 ou MTMR2. 

Cette question pourrait être examinée en clonant et en échangeant chacun de ces domaines 

entre les deux protéines, par exemple en échangeant les domaines PH-GRAM de MTMR2-L 

et MTM1. Si la construction PH-GRAMMTM1-MTMR2-L se comporte comme MTM1, cela 

voudra dire que le PH-GRAM est fortement impliqué dans les différences entre MTM1 et 

MTMR2. 

L’analyse de l’interactome différentiel entre MTM1 et MTMR2 pourrait également 

expliquer pourquoi ces protéines sont impliquées dans deux maladies neuromusculaires 

différentes, affectant deux tissus différents. En effet, MTM1 interagit avec la desmine et 

MTMR2 avec la chaine légère des neurofilaments (NFL), deux protéines de filaments 

intermédiaires qui sont également tissu-spécifiques et présentes respectivement dans les 

muscles et les neurones (Hnia et al., 2011; Previtali et al., 2003). Cela concorde avec les 

mutations dans les gènes MTM1 et desmine qui sont liées à des myopathies, et les mutations 

dans les gènes MTMR2 et NFL qui sont liées à des neuropathies (Goldfarb et al., 1998; 

Mersiyanova et al., 2000). MTMR2-L compense partiellement la perte de MTM1 dans les 

souris Mtm1 KO, mais plus faiblement que MTM1 et MTMR2-S. Il serait donc possible que 

MTMR2-L ait (parmi d’autres fonctions) un rôle spécifique dans les cellules de Schwann qui 

impliquerait son extension N-terminale, tandis que MTMR2-S aurait une fonction plus 

générale/ubiquitaire similaire à MTM1. Enfin, il serait intéressant de chercher pourquoi les 
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mutations dans MTMR2 affectent les deux isoformes exprimés de façon ubiquitaire, et 

pourtant semblent avoir uniquement un impact dans les cellules de Schwann. 

 

III. Mieux comprendre la correction de la myopathie 

Compensation et régulation au sein de la famille des myotubularines 

Il existe 14 myotubularines chez l’Homme, pour la plupart exprimées de façon 

ubiquitaire. Cependant, la perte de MTM1 est spécifiquement associée à une sévère 

myopathie. Cela implique que les homologues de MTM1, et notamment les plus proches tels 

que MTMR1 et MTMR2, ne compensent pas la perte de MTM1 dans les muscles 

squelettiques, ou du moins pas par leur expression au niveau endogène. Il est possible que ces 

homologues compensent partiellement la perte de MTM1 dans d’autres tissus chez les 

patients XLCNM, évitant des phénotypes pathologiques plus sévères (tels qu’une létalité in 

utero, par exemple). Puisque la surexpression exogène de MTMR2 dans les muscles de souris 

Mtm1 KO permet d’améliorer les marqueurs phénotypiques de la myopathie, avec une 

amélioration comparable à MTM1 pour MTMR2-S, nous pouvons supposer que le niveau 

d’expression est l’un des points critiques de la capacité de compensation au sein de la famille 

des myotubularines. 

De par ces travaux, j’ai montré que l’expression de MTMR2-S est diminuée dans les 

muscles squelettiques de souris Mtm1 KO. De plus, en comparaison avec le cerveau ou 

d’autres tissus, l’expression des transcrits de MTMR2 est basse dans les muscles 

squelettiques. L’ensemble suggère que cette faible expression de MTMR2 dans le muscle, 

additionnée par la baisse d’expression dans les muscles de souris myopathiques et de patients 

XLCNM, est la cause du manque de compensation par MTMR2. En effet, l’isoforme 

MTMR2-S est celui qui améliore le plus les phénotypes fonctionnels et structuraux de la 

myopathie, et son niveau d’expression est davantage abaissé que celui de MTMR2-L dans les 

muscles myopathiques. 
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De plus, l’expression exogène de MTM1 humain dans les muscles de souris Mtm1 KO 

permet de corriger l’expression d’ARNm total de MTMR2 jusqu’à son niveau normal, 

suggérant que MTM1 ou un de ses partenaires régule l’expression de MTMR2 au niveau du 

gène ou du transcrit (Figure 37C). La prochaine étape serait de quantifier le niveau des 4 

transcrit de MTMR2 dans des muscles myopathiques où MTM1 est surexprimé, afin de 

déterminer si cette correction impacte tous les transcrits de MTMR2 ou seulement certains 

d’entre eux. On pourrait également étudier la capacité de la surexpression de MTMR2-L ou 

MTMR2-S humain exogène à réguler le niveau d’expression endogène de MTMR2 dans le 

muscle, en utilisant des amorces spécifiques des séquences de souris pour la RT-qPCR. Si une 

correction similaire est observée, cela signifierait que la régulation fait intervenir la même 

voie de signalisation que pour MTM1, et donc potentiellement des interacteurs communs 

entre MTM et MTMR2-S et/ou MTMR2-L. 

Comment se fait la compensation de la myopathie ? 

Dans le cas d’autres maladies congénitales, la perte d’une protéine a déjà été 

compensée par la surexpression d’une protéine homologue. Par exemple, l’utrophine est un 

paralogue de la dystrophine avec laquelle elle partage 80% d’homologie ainsi que des 

fonctions communes (Love et al., 1989). L’expression de la version intégrale de l’utrophine a 

permis de d’empêcher le développement de la dystrophie musculaire causée par la perte de 

dystrophine fonctionnelle, dans les souris mdx (Tinsley 1998). 

La capacité de MTMR2-S à corriger les phénotypes myopathiques des souris Mtm1 

KO après expression dans le muscle pourrait être expliquée par la normalisation des niveaux 

de PtdIns3P. Une étude précédente dans les mutants de drosophiles mtm (orthologue de 

MTM1) ont montré que la déficience de la PtdIns 3-kinase de classe II empêchait les 

phénotypes et la mort du mutant mtm (Velichkova et al., 2010). Plus récemment, deux études 

ont démontré une correction des phénotypes musculaires de souris Mtm1 KO via 2 

mécanismes : la baisse de l’expression de la PtdIns 3-kinase de classe II PIK3C2B, ou 

l’inhibition globale par la wortmannine de l’activité PtdIns 3-kinase et donc de la production 

de PtdIns3P (Kutchukian et al., 2016; Sabha et al., 2016). 
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D’autres preuves de concept thérapeutiques ont été publiées, ne visant pas la 

normalisation des niveaux de PPIn, mais la normalisation/régulation négative du niveau 

d’expression de DNM2 (Cowling et al., 2014), l’expression d’une protéine MTM1-C375S 

sans activité catalytique (Amoasii et al., 2012) ou encore l’inhibition de l’autophagie 

(Fetalvero et al., 2013). Une hypothèse est que la dynamine DNM2 appartienne avec MTM1 

et BIN1 à la voie MAD (Myotubularin Amphiphysin Dynamin). Les régulations au sein de 

cette voie de signalisation ne sont pas encore bien comprises, mais il est déjà admis que la 

dérégulation de DNM2 constitue le facteur clé induisant une myopathie centronucléaire. En 

effet, il y a une augmentation de l’activité de DNM2 (par gain de fonction ou perte de la 

régulation) dans les patients XLCNM et les souris Mtm1 KO, et une régulation négative de 

l’expression de DNM2 dans ces souris permet de corriger les phénotypes myopathiques 

(Cowling et al., 2014; Tasfaout et al., 2017). D’où l’hypothèse que la fonction de MTM1 dans 

la voie MAD est de réguler négativement l’activité de DNM2, et de la maintenir ainsi à un 

niveau basal. Ainsi, puisque MTMR2 permet de compenser la perte de MTM1, cela suggère 

que la compensation par MTMR2 s’effectue également par régulation de DNM2. Une 

compensation par la voie MAD serait directement liée au trafic membranaire et à la 

tabulation. Il est donc possible que l’expression exogène de MTMR2-L ou MTMR2-S 

améliore le phénotype des souris Mtm1 KO par un mécanisme indépendant des PPIn. Il est 

également intéressant de noter que le mutant MTM1-C375S sans activité catalytique ne 

permet pas d’améliorer la forme des triades, alors que celle-ci est très bien corrigée par 

l’expression de MTM1 ou MTMR2-S (actives), suggérant un rôle important des PPIn au 

niveau de la triade. 

Les noyaux centraux (au lieu d’être à la périphérie cellulaire) sont l’un des phénotypes 

histologiques majeurs des muscles de patients XLCNM, et sont également observables dans 

les modèles animaux tels que les souris Mtm1 KO. Des études récentes ont montré que le 

mouvement et le positionnement des noyaux à la périphérie de la fibre musculaire est un 

mécanisme régulé par la contraction de la fibre et par l’interaction du noyau avec le 

cytosquelette (dont l’actine et la desmine) (Janota et al., 2017; Roman et al., 2017). Ainsi, 

puisque la surexpression de MTMR2 (en particulier de MTMR2-S) permet de corriger la 

position du noyau dans les muscles de souris Mtm1 KO, ce mécanisme pourrait impliquer 

l’interaction de MTMR2 (directe ou indirecte) avec le cytosquelette des fibres musculaires. 
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Les propriétés de compensation de MTMR2-L 

Même si MTMR2-L ne présentes pas de capacités de compensation aussi bonnes que 

MTM1 et MTMR2-S, cet isoforme long est capable d’améliorer la plupart des phénotypes 

myopathiques observés chez les souris Mtm1 KO (Table 2). Cela a déjà été observé dans des 

études précédentes utilisant des souris (Thèse de Thibaut Jamet, 2014, IGBMC et Institut de 

Myologie, laboratoire de Anna Buj-Bello) ainsi que des poissons zèbre (Dowling et al., 2009). 

Cela suggère que MTMR2-L agit sur les mêmes voies de signalisation que MTMR2-S (et 

potentiellement que MTM1), mais que MTMR2-L accède de façon moindre à ses substrats 

lipidiques ou présente une affinité plus faible pour ses interacteurs protéiques. 

Bien que MTMR2-L ne présente pas de forte activité dans la levure, cet isoforme 

améliore partiellement les phénotypes des souris Mtm1 KO. Ceci pourrait être expliqué par un 

manque de protéines régulatrices dans le système hétérologue de la levure. Le niveau 

d’expression de MTMR2-L pourrait également expliquer cette différence entre les résultats 

dans les levures et les souris : MTMR2-L et MTMR2-S sont exprimées au même niveau dans 

les muscles TA de souris, tandis que MTMR2-L est moins exprimé que MTMR2-S dans la 

levure (Figure 19), et j’ai justement montré que le niveau d’expression était important pour 

l’activité phosphatase de MTMR2 (Figure 21). Cependant, le niveau d’expression seul ne peut 

pas être responsable des différences observées, puisque dans la levure MTMR2-S était moins 

exprimée que MTMR2-Δ2-24, MTMR2-S58A et MTMR2-S58E, et pourtant présentait une 

activité phosphatase similaire à ces constructions (Figures 19 et 21). 

L’analyse des constructions de MTMR2 par western blot suggère que les propriétés de 

compensation de MTMR2-L pourraient provenir non pas de ses propriétés intrinsèques, mais 

de sa modification en une protéine similaire à MTMR2-S. En effet, après surexpression de 

MTMR2-L et MTMR2-Δ2-24, j’ai pu détecter (en plus des bandes attendues) des bandes de 

taille inférieure, au même niveau que la bande MTMR2-S. Cela pourrait être expliqué par un 

clivage post-traductionnel de l’extension N-terminale de MTMR2-L, produisant une protéine 

plus courte, proche de MTMR2-S. Cela pourrait également être lié à la traduction, par 

l’utilisation du codon start alternatif dans l’exon 3 de l’ARNm de MTMR2-L, comme c’est le 

cas pour la traduction normale de MTMR2-S (Figure 26). Cette hypothèse pourrait être 
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étudiée en mutant le codon start alternatif, ce qui entrainerait alors la perte de la seconde 

bande sur le western blot. 

La correction de la myopathie par injection systémique dans les souris Mtm1 KO 

Des données prometteuses ont été apportées par l’analyse de la surexpression 

systémique de MTM1 et MTMR2 dans les souris Mtm1 KO. Les deux isoformes de MTMR2 

ont réussi à améliorer la force musculaire et la survie des souris injectées. Cependant, ces 

souris restaient malades et certaines d’entre elles sont mortes avant la fin de l’étude, suggérant 

que certains muscles ou autres organes étaient moins ou pas corrigés. L’histologie du 

diaphragme a montré des anomalies même après expression de MTMR2, ce qui pourrait 

induire des difficultés respiratoires. Si certains organes sont moins corrigés que d’autres, 

changer le sérotype de l’AAV pourrait changer la spécificité tissulaire et ainsi améliorer le 

phénotype. 

Cette étude préliminaire a montré des tendances très encourageantes, qui demandent à 

être confirmées avec de plus larges cohortes et des investigations plus larges des phénotypes 

myopathiques, comme cela a été fait pour les injections intramusculaires d’AAV. En 

particulier, il serait intéressant de mesurer par Aurora la force musculaire spécifique des 

souris injectées, d’analyser l’ultrastructure de différents tissus (en particulier les muscles et le 

système nerveux), et de quantifier les niveaux de DNM2 et de PtdIns3P dans les tissus. 

L’utilisation d’un test « footprint » d’empreinte de pattes, d’un test « rotarod » ainsi qu’un 

détecteur de mouvements pourraient apporter des informations concernant la mobilité des 

souris Mtm1 KO injectées en systémique. Enfin, cette étude pourrait être complétée en 

donnant un score de sévérité à différents marqueurs de la progression de la myopathie, tels 

que la scoliose. L’ensemble de ces procédés permettrait de déterminer la capacité de MTMR2 

à compenser significativement la durée de vie et les phénotypes myopathiques des souris 

Mtm1 KO, et également de confirmer si MTMR2-S a une capacité de compensation plus 

importante que MTMR2-L. 

Le niveau d’expression de MTMR2 pourrait également être déterminé dans un 

maximum de tissus, puisque un niveau d’expression plus faible pourrait expliquer une 

correction plus faible de la myopathie dans certains organes. J’ai confirmé l’expression des 
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myotubularines dans le TA et le diaphragme, mais n’ai pas comparé ces tissus entre eux et 

n’ai pas testé d’autres organes. Une future étude pourrait tester différentes doses d’AAV afin 

de déterminer s’il existe une corrélation entre cette dose et le niveau/rapidité de la correction. 

Il est possible qu’une dose plus forte, et donc un niveau d’expression de MTMR2 plus élevé, 

puisse induire une survie et une correction aussi bonne et rapide que MTM1, et cela sans 

aucune toxicité. 

IV. Stratégies thérapeutiques 

Surexpression de MTMR2 dans les patients XLCNM 

Cette étude apporte la preuve de concept que MTMR2 pourrait être utilisée comme 

cible thérapeutique. En effet, la surexpression de MTMR2 humain dans les muscles de souris 

Mtm1 KO améliore grandement les phénotypes myopathiques, suggérant que que la 

correction des phénotypes est cellule-autonome dans le muscle. La compensation de la 

myopathie myotubulaire par une protéine MTM1 recombinante ou ré-exprimée grâce à 

l’injection d’AAV a déjà été proposée comme stratégie thérapeutique potentielle (Childers et 

al., 2014; Lawlor et al., 2013). L’expression de MTMR2 dans le muscle pourrait constituer 

une stratégie alternative, présentant l’avantage de ne pas induire de réponse immunitaire 

contre le transgène. En effet, la majorité des patients atteints de myopathie myotubulaire ont 

un niveau très faible voire nul de protéine MTM1, et leur système immunitaire pourrait donc 

considérer la protéine MTM1 exogène comme un antigène (Laporte et al., 2000; Laporte et 

al., 2001), tandis que MTMR2 est déjà exprimée de façon endogène dans les patients. Bien 

entendu, des études à long terme seraient essentielles afin de déterminer si la surexpression de 

MTMR2 n’est pas toxique ou n’induit pas de phénotype neuropathique de type CMT. 

Le saut d’exon ou l’inclusion d’exon pour favoriser l’expression de MTMR2-S 

Les données que j’ai obtenues montrent que l’isoforme MTMR2-S corrige davantage 

les phénotypes myopathiques que l’isoforme MTMR2-L qui était davantage décrit dans la 

littérature. L’isoforme court MTMR2-S est un variant naturel présent (si on se base sur les 

niveaux d’ARNm) dans tous les tissus, y compris dans les muscles. Puisque le niveau des 

transcrits de MTMR2-S est réduit dans les muscles de souris Mtm1 KO et de patients 
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XLCNM, une stratégie serait d’augmenter l’expression de ces transcrits en modulant 

l’épissage alternatif de MTMR2, via saut d’exon ou inclusion d’exon. En effet, l’inclusion de 

l’exon 1a de MTMR2 durant l’épissage produit le variant d’ARNm V2 chez l’homme (ou V4 

dans la souris), qui est alors traduit en MTMR2-S (Figure 6). Ceci utiliserait donc le système 

existant d’épissage alternatif qui, nous le savons, est fonctionnel pour MTMR2. On pourrait 

également sauter l’exon 2 de MTMR2, induisant un décalage du cadre de lecture (l’exon 2 

n’est pas en phase) et un codon STOP prématuré directement au début de l’exon 3, permettant 

la traduction de MTMR2-S à partir du codon start alternatif plus loin dans l’exon 3. Cette 

stratégie élégante éviterait l’apport de protéine exogène dans les patients, en changeant 

simplement la balance entre MTMR2-S et MTMR2-L et en favorisant l’expression de 

MTMR2-S qui est plus actif. Des stratégies similaires sont déjà employées en tests cliniques 

pour d’autres maladies congénitales, telles que la dystrophie de Duchenne : le saut d’exon est 

employé afin de supprimer des exons mutés et ré-établir un cadre normal de lecture dans le 

gène de la dystrophine, produisant ainsi une protéine plus courte et induisant une bien moins 

sévère dystrophie de Becker (Alter et al., 2006; Bremmer-Bout et al., 2004). 

La limitation majeure de cette stratégie prometteuse de saut/inclusion d’exon est le 

faible niveau d’expression de MTMR2 dans les muscles, ce qui limite l’expression de 

MTMR2-S et donc ses capacités thérapeutiques. En effet, l’épissage alternatif change 

uniquement le ratio d’expression des isoformes d’ARNm, mais n’a pas d’impact sur le niveau 

d’expression total du gène. Or contrairement à MTM1, les protéines MTMR2 endogènes 

n’ont pas pu être détectées, alors que j’ai pu détecter MTMR2 surexprimée dans les mêmes 

conditions, confirmant que les isoformes endogènes sont très faiblement exprimées. 

Cependant, des études sur le modèle murin Mtm1 p.R69C mimant une mutation de patient 

XLCNM ont montré qu’un niveau faible de MTM1 est suffisant pour améliorer les 

phénotypes myopathiques, avec une augmentation de la force musculaire et une espérance de 

vie excédant souvent 1 an (Pierson et al., 2012). Ainsi, même une faible augmentation du 

niveau de MTMR2-S pourrait améliorer les phénotypes myopathiques. Cette hypothèse doit 

cependant être modérée par mes résultats obtenus dans la levure, montrant que MTM1 est 

bien plus active que MTMR2-L ou –S à faible niveau d’expression (plasmide CEN) (Figure 

21A). 
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Une solution pourrait être d’augmenter l’expression de MTMR2 en régulant son 

promoteur. Cela a déjà été accompli pour d’autres gènes tels que l’utrophine, dont 

l’augmentation de l’expression est actuellement testée en phase 2 d’essais cliniques, afin de 

corriger la dystrophie musculaire (Tinsley et al., 2011). L’étude de la régulation du promoteur 

de MTMR2 et de ses facteurs de transcriptions serait donc essentielle afin de construire une 

thérapie basée sur MTMR2 qui soit efficace pour la XLCNM. 

Autres perspectives thérapeutiques 

Durant ma thèse, je me suis focalisé sur les différences fonctionnelles entre MTM1 et 

MTMR2, qui sont impliquées dans deux maladies neuromusculaires différentes. Après des 

résultats dans la levure montrant une homologie fonctionnelle entre MTMR2-S et MTM1, j’ai 

comparé les capacités de MTMR2-L et MTMR2-S à corriger les phénotypes myopathiques de 

souris Mtm1 KO. Cependant, si l’on se base sur les homologies de séquence protéique, 

MTMR1 pourrait également être un bon candidat pour un tel mécanisme de compensation. 

MTMR1 est en effet avec MTMR2 le plus proche homologue de MTM1, et montre la même 

spécificité de substrat. Six isoformes d’ARNm ont été décrit pour MTMR1, l’un d’entre eux 

étant spécifiquement exprimé dans le muscle (Buj-Bello et al., 2002a). Une étude dans le 

poisson zèbre montre même que MTMR1 est capable de compenser la perte de MTM1 

(Dowling et al., 2009). Ainsi, MTMR1 constitue un nouveau candidat pour la correction de la 

myopathie myotubulaire. Un alignement de séquence montre que, comme MTMR2, MTMR1 

possède une extension N-terminale comparé à MTM1, juste avant le PH-GRAM. Il est 

également intéressant de noter que le S58 de MTMR2 est conservé dans MTMR1 et pourrait 

réguler sa localisation et fonction. Il est donc possible que la perte de cette extension N-

terminale confèrerait à MTMR1 des propriétés plus proches de MTM1, et augmenterait son 

activité enzymatique in vivo. Bien qu’aucun des 6 ARNm connus de MTMR1 ne présente de 

codon STOP dans les premiers exons, on notera que le codon start alternatif de l’exon 3 de 

MTMR2 est conservé dans la séquence de MTMR1. Un variant endogène non identifié 

d’ARNm de MTMR1 pourrait donc reproduire l’épissage alternatif montré pour MTMR2, 

avec l’inclusion d’un exon supplémentaire conduisant à un STOP prématuré et à la traduction 

à partir du codon start dans l’exon 3, produisant une protéine MTMR1 plus courte, sans 

extension N-terminale. Cela conduirait à une nouvelle thérapie potentielle, basée sur la 

surexpression de MTMR1 dans les muscles de patients myopathiques. 
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Enfin, puisque MTMR2 améliore la myopathie liée à la perte de MTM1, il serait 

intéressant de tester si l’expression de MTM1 pourrait être une option thérapeutique pour la 

neuropathie CMT4B causée par des mutations dans MTMR2. 

V. Epilogue 

Durant l’été 2017, l’identification de MTMR2-S comme cible thérapeutique 

potentielle pour la myopathie myotubulaire a été brevetée par la SATT-Connectus. Cela 

pourrait permettre la poursuite de l’étude de MTMR2-S et l’identification de cet isoforme 

comme candidat potentiel pour de futurs essais cliniques. 
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I. Plasmids and constructs 

The human MTM1 (1812 bp, 603 aa) and MTMR2-L (1932 bp, 643 aa) ORFs (with 

and without STOP codon) were cloned into the pDONR207 plasmid (Invitrogen) to generate 

entry clones. The pDONR207-MTMR2-S (1716 bp, 571 aa) has been obtained by site-

directed mutagenesis on the pDONR207-MTMR2-L vector, to delete the 216 first nucleotides 

of MTMR2-L corresponding to the 72 first amino acids. Three other site-directed mutagenesis on 

pDONR207-MTMR2-L were performed to obtain the S58A, S58E and S58D variants of MTMR2-L. 

Gateway system (Invitrogen, Carlsbad, CA) was used to clone the different 

myotubularin constructs into the following destination expression vectors:  

Plasmid Insert 
Selection in 

bacteria 

Selection 

in yeast 

Replication 

in yeast 
Promoter Origin 

pVV200 ccdB Amp TRP1 2µ PGK1 Euroscarf 

pVV204 ccdB Amp TRP1 CEN TetO Euroscarf 

pAG424GPD-

ccdB-EGFP 
ccdB Amp TRP1 2µ GPD 

S. 

Lindquist 

pAAV-MCS ccdB Amp - - CMV  

 

All plasmids in this study possess the E. coli replication origin (ColE1). For 

replication in yeast, pVV200 and pAG424GPD-ccdB-EGFP yeast plasmids contain a 2µ 

episomal replication origin (high copy number) and pVV204 yeast plasmids contain a CEN 

centromeric replication origin (low copy number). 
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Lentiviral plasmids (pLenti) have been constructed by Paola Rossolillo (IGBMC, 

molecular biology facility). They contain a myotubularin construct (MTM1, MTMR2-L or 

MTMR2-S cloned by restriction enzymes BstBI/PstI) under the control of a CAG promoter 

(containing a CMV enhancer). The same plasmids also contain the EGFP ORF under the 

control of the PGK promoter. 

The pCS211 DsRED-FYVE plasmid was previously described (Katzmann et al. 

2003). 

pGGWA GST plasmid (Amp, ColE1 ori) containing MTMR2-L ORF fused by its 5’ 

extremity to GST (Glutathione-S-Transferase) ORF. This plasmid has been used for GST-

MTMR2-L production in bacteria and purification (as described in Chapter VI). 

II. In vivo models 

A. Bacteria strains and culture conditions 

Three different E. coli bacteria strains were used for this study: 

- DH5 alpha was used for amplification of plasmids without the ccdB gene. Genotype: 

fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17 

- DB3.1 was used for amplification of plasmids containing the ccdB gene which is 

important for Gateway cloning. This strain is ccdB resistant. Genotype: gyrA462 

endA1 ∆(sr1-recA) mcrB mrr hsdS20 glnV44 (=supE44) ara14 galK2 lacY1 proA2 

rpsL20 xyl5 leuB6 mtl1. 

- Rosetta (pLysS) was used for human protein production. Genotype: F- ompT 

hsdSB(rB
- mB

-) gal dcm (DE3) pLysSRARE (CamR). Mutations in proteases induce 

proteolyse reduction. The pLysSRARE contains seven genes coding for tRNA specific 

for codons that are rare in E. coli but common in eukaryotes. 
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For liquid cultures, bacteria were grown at 37°C under agitation in LB (Lysogeny 

Broth, Yeast Extract 5 g/L ; Tryptone 10 g/L , NaCl 10 g/L) supplemented with the adapted 

antibiotic (Amp 1/1000 in general). 

For culture in Petri dishes, agar-agar (20 g/L, Euromedex) was added to the LB 

medium, and bacteria were grown at 37°C. 

B. Yeast strains and culture conditions 

The S. cerevisiae ymr1∆ (MATa, ura3-52, leu2-3,112, his3-∆200, trp1-∆901, lys2-

801, suc2-∆9 ymr1::HIS3) (14) and  WT (MATa, his3∆1, leu2∆0, lys2∆0, ura3∆0) strains 

were grown at 30°C in rich medium (YPD): 1% yeast extract, 2% peptone, 2% glucose or 

synthetic drop-out medium (SC): 0.67% yeast nitrogen base without amino acids, 2% glucose 

and the appropriate amino acids mixture to ensure plasmid maintenance. I did not use the 

ymr1Δ (MATa, his3∆1, leu2∆0, lys2∆0, ura3∆0, ymr1::KanMX) in the BY4742 background 

from the yeast systematic deletion collection, because it does not have the ymr1∆ phenotype 

described by Scott D Emr’s laboratory (Parrish et al. 2004). 

C. Mammalian cells and culture conditions 

COS-1 and HEK293 cells were grown at 37°C with 5% CO2 in Dulbecco's Modified 

Eagle's Medium (DMEM) supplemented with 5% fetal calf serum (FCS). 

Knockdown (KD) Mtm1 and control C2C12 mouse myoblast cells were previously 

generated in triplicates in Jocelyn Laporte laboratory (Hnia et al. 2011). After selection by 

adding of 2 µg/ml puromycin to the culture medium, C2C12 myoblasts were maintained at 

37°C in DMEM supplemented with 20% FCS for proliferation. Differentiation of confluent 

cells was induced by changing the medium into DMEM supplemented with 5% horse serum 

(HS). Cells were then left during 9 days (washing with PBS and medium change every 2 

days) to differentiate into myotubes. 
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D. Mice and housing conditions 

In this study I used male wild-type (WT) and Mtm1 KO 129 PAS mice, generated 

by y crossing Mtm1 heterozygous females obtained by homologous recombination with WT 

males. The Mtm1 KO mice are characterized by a progressive muscle atrophy and weakness 

starting at 2-3 weeks and leading to death by 8 weeks. Animals were housed in a temperature-

controlled room (19–22°C) with a 12:12-h light/dark cycle and were given free access to 

standard food. DietGel were given after the first signs of myopathy and walking defaults, for 

better access to food. Mice were humanely killed by cervical dislocation after injection of 

pentobarbital, according to national and European legislations on animal experimentation. 

Protocols were approved by the institutional Ethics Committee. 

Mtmr2 KO mice tissues were generously given by Alessandra Bolino team. 

III. Antibodies 

Following primary antibodies were used during this study. 

Target protein Animal used for 

production 

Origin 

MTM1 Rabbit Homemade (R2827) 

MTMR2 Mouse Homemade (4G3) 

DNM2 Rabbit Homemade (R2680) 

Pgk1 (yeast) Mouse Invitrogen 

Vph1 (yeast) Mouse Molecular probes 

GAPDH Mouse Chemicon 

CAV3 Goat Santa Cruz 
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Dilutions depend on the antibody and the technique used. Used secondary antibodies 

are specified for each technique. 

IV. Biopsies from patients 

Human sample collection was performed with written informed consent from the 

patients or parents according to the declaration of Helsinki. The 3 XLCNM patients had the 

following mutations in MTM1: [c.445-49_445-4 del], [c.523A>G in exon 7, p.Arg175Gly] 

and [c.145_161del17 in exon 4, p.Val49Phe fs*6]. 

V.  Bacteria transformation and plasmid production 

For transformation, chimiocompetent E. coli cells were unfrozen on ice then 

incubated on ice during 10 min with 1 µg of plasmid (1-5 µL). Cells were heat-chocked at 

42°C for 45 sec and immediately replaced on ice for 2 min. 1 mL of LB was then added 

before incubation at 37°C for 30 min and streaking on LB agar + antibiotic. 

For plasmid purification, transformed bacteria were cultured overnight at 37°C in 2-5 

mL of LB + antibiotic. Pellets are obtained after centrifugation at 10 000 xg for 3 min. 

Plasmids are purified using the QIAprep Spin Miniprep Kit (Quiagen), according to the 

manufacturer protocol. Plasmid concentration was then measured using a Nanodrop 

spectrophotometer. 

VI. Production of monoclonal anti-MTMR2 antibody 

Recombinant MTMR2 protein fused to GST was produced using a 2L culture of E.coli 

bacteria cells transformed with a pGGWA-MTMR2 expression plasmid. The production of 

the fusion protein has been induced by IPTG addition and growth at 18°C overnight. Total 

proteins were extracted by sonication and successive centrifugations, and then GST-MTMR2 

was affinity-purified using glutathione-sepharose beads. The first 5 eluted fractions have been 

analyzed by SDS-PAGE, proteins were stained by Coomassie blue. Finally E2, E3 and E4 
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fractions that contained GST-MTMR2 (controlled by mass spectrometry) were pooled and 

given to the antibody facility of IGBMC (Illkirch). The recombinant protein was then used to 

immunize mice and produce mouse monoclonal anti-MTMR2 antibodies. 

VII. AAV production 

rAAV2/1 and rAAV2/9 vectors were generated by a triple transfection of AAV-293 

cell line with pAAV2-insert containing the insert under the control of the CMV promoter and 

flanked by serotype-2 inverted terminal repeats, pXR1 containing rep and cap genes of AAV 

serotype-1 or serotype-9, and pHelper encoding the adenovirus helper functions. Cell lysates 

were subjected to 3 rounds of freeze/thaw, then treated with 50U/mL Benzonase (Sigma) for 

30 minutes at 37°C and clarified by centrifugation. Viral vectors were purified by Iodixanol 

gradient ultracentrifugation followed by dialysis and concentration against DPBS using 

centrifugal filters (Amicon Ultra-15 Centrifugal Filter Devices 30K). Physical particles were 

quantified by real time PCR using a plasmid standard pAAV-eGFP. Titers are expressed as 

viral genomes per ml (vg/ml) and rAAV titers used here were 5-7.1011 vg/ml for 

intramuscular injections (AAV2/1) and 3-6.1013 vg/ml for systemic injections (AAV2/9). 

VIII. Lentiviral production 

Lentiviral plasmids (pLenti) have been constructed by Paola Rossolillo (IGBMC, 

molecular biology facility). They contain a myotubularin construct (MTM1, MTMR2-L or 

MTMR2-S cloned by restriction enzymes BstBI/PstI) under the control of a CAG promoter 

(containing a CMV enhancer). The same plasmids also contain the EGFP ORF under the 

control of the PGK promoter. 

Briefly, 293T cells were transfected with lentiviral plasmid and helper plasmids. 

Lentiviral supernatant was harvested 48-72 hours after transfection and concentrated by 

ultracentrifugation. Lentiviral tittering in 293T cells was performed with serially diluted 

lentivirus; after 3 days the 293T cell DNA was isolated for vector-specific quantitative PCR. 
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IX. Expression analysis 

Total RNA was purified from tibialis anterior (TA) muscle, brain and liver of 7 week-

old wild-type and Mtm1 KO mice, from C2C12 cell pellets, or from muscle biopsies of 

XLCNM patients and controls, using TRIzol reagent (Invitrogen, Carlsbad, CA) according to 

the manufacturer’s instructions. cDNAs were synthesized from 500 ng of total RNA using 

Superscript II reverse transcriptase (Invitrogen) and random hexamers. 

PCR amplification of 1/10 diluted cDNA from TA muscle and liver was performed 

using a forward primer from the 5’-UTR of MTMR2: 5’-

AGCGGCCTCCAGTTTCTCGCGC-3’ and a reverse primer from exon 3: 5’-

TCTCTCCTGGAAGCAGGGCTGGTTCC-3’, for 35 cycles of amplification at 72°C (and 

65°C as melting temperature) and 30 min of final extension at 72°C, as previously described 

(23). The products were analyzed on a 2% agarose gel, each band has been purified using 

Nucleospin Gel and PCR cleanup kit (Macherey-Nagel, Düren, Germany), then cloned into a 

pJet2.1 vector using the CloneJet PCR cloning kit  (ThermoFisher Scientific, Waltham, MA), 

and sequenced by Sanger. 

Quantitative PCR amplification (qPCR) of 1/10 diluted cDNAs from mouse TA 

muscles or brain or human muscle biopsies was performed on Light-Cycler 480 II instrument 

(Roche, Basel, Swiss) using 53°C as melting temperature.  

Specific sets of primers were used for each mouse MTMR2 isoform: forward 5’-

GACTCACTGTCCAGTGCTTC-3’ and reverse 5’-CCTCCCTCAGGACCCTCA-3’ for 

mouse V1, forward 5’-GACTCACTGTCCAGTGCTTC-3’ and reverse 5’-

CAGCTGGGCACTCCCTCA-3’ for mouse V2, forward 5’-

AAGATAAAACATCTCAAAAATTATAATTGCTTC-3’ and reverse 5’-

CAGCTGGGCACTCCCTCA-3’ for mouse V3, forward 5’-

AAGATAAAACATCTCAAAAATTATAATTGCTTC-3’ and reverse 5’-

GACTCACTGTCCAGTGCTTC-3’ for mouse V4.  
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Another set of primers (forward 5’-TCCTGTGTCTAATGGCTTGC-3’ and reverse 

5’-AACCAAGAGGGCAGGATATG-3’) amplifying a sequence common to all mouse 

isoforms has been used to quantify total mouse MTMR2 mRNA.  

Other specific sets of primers were used for each human MTMR2 isoform: forward 

5’-ACTCCTTGTCCAGTGCCTC-3’ and reverse 5’-GACTCCCTCAGGACCCTC-3’ for 

human V1, forward 5’-AAGATAAAACATCTCAAAAATTATAATTGCCTC-3’ and reverse 

5’-GACTCCCTCAGGACCCTC-3’ for human V2, forward 5’-

AAGATAAAACATCTCAAAAATTATAATTGCCTC-3’ and reverse 5’- 

GAGCGAGACTCCCTCCTC-3’ for human V3, forward 5’-

AAGATAAAACATCTCAAAAATTATAATTGCCTC-3’ and reverse 5’-

CTGGACTGCATGGGCCTC-3’ for human V4.  

Another set of primers (forward 5’-TTTCCTGTCTCTAATAACCTGCC-3’ and 

reverse 5’-CCAGGAGGGCAGGGTATG-3’) amplifying a sequence common to all human 

isoforms has been used to quantify total human MTMR2 mRNA. 

Finally, MTM1 was quantified in C2C12 cells using the forward 5’- 

CATGCGTCACTTGGAACTGTGG-3’ and reverse 5’- GCAATTCCTCGAGCCTCTTT-3’ 

primers. 

For all qPCR on cDNA from muscle samples and C2C12 myoblasts/myotubes 

samples, the HPRT gene expression was used as control because of the non-variation in its 

expression between control and myopathic muscles. For qPCR on cDNA from brain samples, 

the PGK1 gene expression was used as control. 

X. Protein extraction and Western blot 

Total proteins were extracted from yeast cells (OD600nm=0.5-0.9, minimum 3 clones 

per construct) by TCA precipitation and NaOH lysis. Total proteins were extracted from 

mouse tissues and mammalian cells by homogenization (using a tissue homogenizer (Omni 

TH) or the pipette) in RIPA buffer supplemented with PMSF 1 mM and complete mini 
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EDTA-free protease inhibitor cocktail (Roche Diagnostic). Protein concentrations were 

determined with the BIO-RAD Protein Assay Kit. Samples were denaturated at 95°C for 5 

min in SBR 1x buffer (the 2x buffer being made of: TrisHCl pH6.8 120 mM, SDS 4%, β-

mercaptoethanol 4%, Glycerol 20 %, bromophenol blue 0,004%) 

Then an equal protein quantity (usually 20 µg) for each sample was loaded in buffer 

containing 50 mM Tris–HCl, 2% SDS, 10% glycerol, separated in 10% SDS– polyacrylamide 

gel electrophoresis electrophoretic gel and transferred on nitrocellulose membrane for 1.5 h at 

200 mA. Membranes were blocked for 2 h in TBS containing 4% non-fat dry milk and 0.1% 

Tween20 before an incubation overnight at 4°C with the suitable primary antibodies (anti-

MTM1 1/500, anti-MTMR2 1/1000, anti-DNM2 1/500, anti-Vph1 1/1000, anti-PGK1 1/1000 

and anti-GAPDH 1/1000) followed by incubation 1.5 h at room temperature with the 

secondary antibody coupled to HRP, and extensive washing. Membranes were revealed by 

ECL chemiluminescent reaction kit (Supersignal west pico kit, ThermoFisher Scientific, 

Waltham, MA) and the signal was detected using a ChemiDoc (Bio-Rad). 

For most of the western blots, 5% of trichloroethanol (TCE) were added to the 

acrylamide before gel preparation, allowing the detection of total protein in the gel and on the 

nitrocellulose membrane. This Stain free system was used for normalization and 

quantification using the Bio-Rad software. 

XI. Mass spectrometry 

For differential interactome, MTMR2 constructs were overexpressed in COS-1 cells 

after transfection of pAAV vectors, and total protein were extracted using a non-denaturing 

lysis buffer with a protease inhibitor cocktail, and lysis by manual grinding using mortar and 

pestle on ice. Immunoprecipitation was carried out with μMACS Protein A/G microbeads 

(Miltenyi Biotec) and MTMR2 4G3 antibody (homemade), according to the manufacturer's 

protocol. Each protein sample was split in half. The second halves were used as negative 

controls, omitting antibodies during the immunoprecipitations. Proteins complexes were 

eluted out of the magnetic stand with the SDS gel-loading buffer from the kit. Co-

immunoprecipitation experiments were carried out in duplicates for all the samples.  



 

137 

 

137 Materials and Methods 

The samples were prepared for mass spectrometry analyses as previously described 

(Chicher et al. 2015). Briefly, eluted proteins were precipitated with 0.1 M ammonium acetate 

in 100% methanol. After a reduction-alkylation step (dithiothreitol 5 mM–iodoacetamide 

10 mM), proteins were digested overnight with 1/25 (W/W) of modified sequencing-grade 

trypsin (Promega, Madison, WI, USA) in 50 mM ammonium bicarbonate. Resulting peptides 

were vacuum-dried in a SpeedVac concentrator and re-suspended in water containing 0.1% 

FA (solvent A) before being injected on nanoLC-MS/MS (NanoLC-2DPlus system with 

nanoFlex ChiP module; Eksigent, ABSciex, Concord, Ontario, Canada, coupled to a 

TripleTOF 5600 mass spectrometer (ABSciex)). Peptides were eluted from the C-18 

analytical column (75 μm ID × 15 cm ChromXP; Eksigent) with a 5–40% gradient of 

acetonitrile (solvent B) for 90 min. 

XII. Bioinformatics analysis 

Expression levels of MTMR2 mRNA isoforms was obtained by mining the Genotype-

Tissue Expression (GTEx, www.gtexportal.org/home/) database, which has been built by 

systematic RNA-sequencing using samples of 51 different tissues from hundreds of donors 

and two transformed cell types in culture. We then used this data to calculate the relative 

expression of MTMR2 mRNA isoforms in the 20 most relevant tissues, and to create a heat 

map underlining in which tissue a specific isoform is the most/least expressed.  

Alignment of the N-terminal part of MTM1, MTMR2-L and MTMR2-S was done 

using Jalview (www.jalview.org/) and aligning amino acids were identified by Clustalx color 

coding. 

XIII. Protocols specific to yeast 

A. Transformation of yeast cells 

1 OD600nm unit of overnight cultured yeast cells were pelleted by centrifugation at 

4000 xg for 5 min. The pellet was washed with sterile water before adding of 5 µL of salmon 

sperm (10 mg/mL), 2µg of plasmid, and 500 µL of transformation buffer (Polyéthylène glycol 
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4000 40%, AcOLi 0,1M, TrisHCl pH7.5 10mM, EDTA 1mM). After mixing by vortexing, 

the tube is incubated at 42°C for 30-40 min. After 2 washings, the pellet is resuspended into 

100 µL of sterile water and spread on solid SC medium lacking the suitable amino acid for 

plasmid selection. 

B. Subcellular fractionation 

Yeast cells were grown in 100 mL of suitable SC medium at 30°C to OD600 = 0.8-1. 

After wash using 10 mL of ice-cold lysis buffer (PBS 1X + 0.25 M Sorbitol + protease 

inhibitors), cell pellet was resuspended in 1 mL of lysis buffer + PMSF 1 mM final and 

transferred in 2 mL freezing tubes with 1 mL of glass beads. Cells were lysed by FASTprep 

(MP Biomedicals) at 6.5 M/S, 5 x 30 sec, 2 min in ice in between. The solution was then 

transferred into a 1.5 mL Eppendorf tube, and centrifuged at 500 xg for 5 min at 4°C to 

remove unbroken cells and massive cell wall debris. Supernatant S5 (900 µL) was transferred 

into a new tube for a 13 000 xg centrifugation during 10 min at 4°C. The obtained P13 pellet 

was resuspended in 200 µL of lysis buffer, while the S13 supernatant was transferred into a 

ultracentrifugation tube. The last centrifugation at 100 000 xg for 1h at 4°C separates the 

P100 pellet from the S100 supernatant. P13, P100 and S100 were set at equal volume and 

conserved in SBR 1x at -20°C for further western blot analysis. 

C. Yeast phenotyping 

For vacuole staining, 1 OD600nm unit of cells was harvested by a 500 xg centrifugation 

for 1 min, incubated in 50 µl YPD medium with 2 µl FM4-64 (200 µM, Invitrogen) for 15 

min at 30°C, prior washing with 900 µl YPD and chasing by incubation at 30°C for 10 min 

followed by a second wash in SC complete medium, the stained living yeast cells were 

observed by fluorescent microscopy. Between 100 and 600 cells per clone (three different 

clones per construct) were counted and classified into two categories: large or medium 

unilobar vacuole, and small or fragmented vacuole.  

For PtdIns3P quantification, yeast cells were co-transformed by a pVV200 plasmid 

(empty or containing MTM1, MTMR2-L or MTMR2-S cDNA) and the pCS211 plasmid 

expressing the DsRED-FYVE reporter for PtdIns3P-enriched membrane structures 



 

139 

 

139 Materials and Methods 

(Katzmann et al. 2003). After fluorescence microscopy, the number of dots per cell was 

quantified on minimum 100 cells per clone (2 different clones per construct).  

For PtdIns5P quantification, yeast ymr1∆ cells producing the different MTM1 and 

MTMR2 constructs were grown to exponential phase. Lipid extraction was done as described 

in Hama et al. on 200 OD600nm units of cells (Hama et al. 2000). Quantification of the 

PtdIns(5)P level was performed as described by Morris et al. (Morris et al. 2000) and the 

results were normalized based on the total lipid concentration.  

All fluorescence microscopy observations were done with 100X/1.45 oil objective 

(Zeiss) on a fluorescence Axio Observer D1 microscope (Zeiss) using GPF or DsRED filter 

and DIC optics. Images were captured with a CoolSnap HQ2 photometrix camera (Roper 

Scientific) and treated by ImageJ (Rasband W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA, http://imagej.nih.gov/ij/). 

XIV. Protocols specific to mammalian cells 

A. Cell transfection 

All mammalian cell transfections were done using the lipofectamine 3000 reagent 

(Thermo Fisher Scientific) according to manufacturer instructions. 

B. Cell transduction 

Transduction of mammalian cells was performed by adding of viral vectors (AAV and 

Lentivirus) with polybrene (4µg/mL) to confluent cultured cells. After 24-48h of incubation at 

37°C, cells were washed and observed 2-4 days later. In a transduction experiment, the MOI 

(multiplicity of infection) represents the ratio between the number of viral vectors added to 

the cultured cells and the number of cells in the culture well. Several MOI have been used 

depending on the viral vector and the experiment. 
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C. Immunofluorescence 

Adherent mammalian cells were washed by PBS 1X prior fixation by 

paraformaldehyde (PFA) 4% 20 min, then neutralization by NH4Cl 15 min and washing by 

PBS 1X 5 min. Cell permeabilization was performed with PBS-Triton 0.2% for 10 min before 

washing by PBS 1X 5 min and saturation by PBS-Triton 0.1% + 10% FCS for 1h. Cells were 

then incubated during 3-4h with the primary antibody diluted in PBS-Triton 0.1% + 3% FCS, 

and washed 3 times with PBS 1X before incubation 1h with the secondary antibody also 

diluted in PBS-Triton 0.1% + 3% FCS. After 4 washings with PBS1X, cell nuclei were 

stained by Hoechst (1/400 for 3-5 min), before a final washing with PBS 1X and mounting 

using FluorSave reagent (Merck Millipore). Observations were made using an upright 

motorized microscope (Leica DM 4000 B). 

Primary antibodies were diluted at 1/200 for MTM1 and MTMR2 and 1/600 for 

CAV3 (caveolin 3). Secondary antibodies were goat anti-mouse Alexa 488 (for MTMR2), 

goat anti-rabbit Alexa 488 (for MTM1) and donkey anti-goat Alexa 488 (for CAV3). 

For the figure 22, cells have been incubated with saponin 0.01% for 2 min prior 

fixation, to wash the cytoplasmic background. 

D. C2C12 myotubes phenotyping 

C2C12 myotube length was quantified using ImageJ by measuring the length of 10 

random myotubes on 30 randomly taken images. 

C2C12 myotube fusion index was quantified using the cell counter plugin of ImageJ, 

by counting the number of nuclei per myotube in 10 random myotubes on 30 randomly taken 

images. The fusion index was then calculated as the mean of the number of nuclei per 

myotube. 
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XV. Protocols specific to mice 

A. AAV transduction in mice 

For intramuscular injections, two- to 3-week-old wild-type or Mtm1 KO male 

129PAS mice were anesthetized by intraperitoneal injection of 5 µl/g of ketamine (20 mg/mL; 

Virbac) and xylazine (0.4%, Rompun). Tibialis anterior (TA) muscles were injected with 20 

µl of AAV2/1 preparations (at 5-7.1011 vg/ml) or sterile AAV2/1 empty vector. Four weeks 

later, mice were anesthetized and the TA muscle was either functionally analyzed (as 

described below), or directly dissected and frozen in nitrogen-cooled isopentane for protein 

extraction and histology, or fixed for electron microscopy (as described below). 

For systemic injections, wild type or Mtm1 KO pups were intraperitoneally injected at 

birth or at Day 1 by 1.5x1012 units of empty AAV2/9 viral particles or AAV2/9 

overexpressing human MTM1, MTMR2-L or MTMR2-S. The AAV2/9 serotype is supposed 

to transduce almost all organs by systemic injections. Then 3 weeks after injection I started to 

analyze weekly the body weight and the mice skeletal muscle strength by two different tests: 

the grip test and the hanging test (described below). 

B. Clinical tests 

Grip test: Mice were placed on the wire grid of the grip-strength apparatus which was 

connected to an isometric force transducer (dynamometer). They were lifted by the tail so that 

their all paws grasp the grid and they were gently pulled backward by the tail until they 

release the grid. The maximal force exerted by the mouse before losing grip was recorded. 

The mean of three measurements for each animal was calculated. Results are represented 

relative to whole body weight (specific force). 

Hanging test: Mice were placed on a grid (cage lid) then turned upside down; the 

suspending animal should hold on to the grid to avoid falling. The latency to fall was 

measured three times for each mouse. The three trials were taken at ten minute intervals to 

allow a recovery period. The latency time measurements began from the point when the 

mouse was hanging free on the wire and ended with the animal falling to the cage underneath 
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the wire or grid. The maximum time measured was 60 s. The data were expressed as an 

average of three trials. 

C. Dissection and sample preparation 

Organs dissection was performed after the mice were anesthetized and sacrificed by 

cervical dislocation. Organs were weighed and then either frozen in isopentane by liquid 

nitrogen and stored at -80°C for future cryosection or protein/RNA extraction, or stored 24h 

in 4% PFA and then in 70% ethanol for future histological analysis. Abdominal fat depots of 

systemically injected mice were also dissected and weighed. 

D. Functional analysis of the muscle 

Muscle force measurements were evaluated by measuring in situ muscle contraction in 

response to nerve and muscle stimulation. Animals were anesthetized by intraperitoneal 

injection of pentobarbital sodium (50 mg per kg). The distal tendon of the TA was detached 

and tied with a silk ligature to an isometric transducer (Harvard Bioscience, Holliston, MA). 

The sciatic nerve was distally stimulated, response to tetanic stimulation (pulse frequency of 

50 to 143 Hz) was recorded, and absolute maximal force was determined. After contractile 

measurements, the animals were sacrificed by cervical dislocation. To determine specific 

maximal force, TA muscles were dissected and weighed. 

E. Histology 

For intramuscular injections, transverse cryosections (9 µm) of mouse TA skeletal 

muscles were stained with hematoxylin and eosin (HE) or Succinate dehydrogenase (SDH) 

and viewed with a NanoZoomer 2.0HT slide scanner (Hamamatsu). Fiber area was analyzed 

on HE sections, using the RoiManager plugin of ImageJ image analysis software and a 

graphic tablet. The percentage of peripheral nuclei was counted using the cell counter plugin 

of ImageJ image analysis software. ImageJ plugins coded by Pascal Kessler were used to 

correlate the nuclei positioning to the fiber size, and for the color coding of the myofibers 

depending on the fiber size. 
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For systemic injections, 5 µm sections from paraffin-embedded organs were 

prepared, fixed and stained by Haematoxylin and Eosin (H&E). Sections were imaged with a 

NanoZoomer 2.0HT slide scanner (Hamamatsu). 

F. Immunofluorescence on muscle sections 

Transverse 9µ cryosections of TA muscles were washed on a slide by PBS 1X for 3 x 

3 min. Permeabilization was done with PBS-Tween 0.2% for 10 min, followed by PBS 1X to 

rinse the muscle sections. Saturation was done with PBS-Tween 0.1% BSA 5% for 1.5 h, 

followed by PBS 1X to rinse. Muscle sections were then incubated overnight at 4°C with the 

primary antibody (1/50 for MTM1 and MTMR2), then washed 3 times with PBS 1X, and 

incubated 1h with the secondary antibody (1/100 for goat anti-rabbit Alexa 488 and goat anti-

mouse Alexa 647). After washings and Hoechst staining, the muscle sections were mounted 

and observed with an inverted confocal microscope (SP8UV, Leica). 

G. Electron microscopy 

TA muscles of anesthetized mice were fixed with 4% PFA and 2.5% glutaraldehyde in 

0.1 M phosphate buffer (pH 7.2) and processed as described (Cowling et al. 2011). Sections 

of 70 nm were examined by transmission electron microscopy (TEM) (Morgagni 268D, FEI). 

Ratio of triads/sarcomere was calculated by dividing number of triad structure identified by 

the total number of sarcomere present on the section (2 mice per genotype, minimum 10 

fibers analyzed per mice, minimum 20 triads per fiber). 

H. PtdIns3P quantification by ELISA in muscle extracts 

PtdIns3P Mass ELISAs were performed on lipid extracts from whole tibialis anterior 

(TA) muscle preparations according to the manufacturer's recommendations and using the 

PtdIns3P Mass ELISA kit (Echelon Biosciences, Salt Lake City, UT). TA muscles from 7 

week-old wild-type or Mtm1 KO mice were weighed, grinded into a powder using a mortar 

and pestle under liquid nitrogen and then incubated in ice cold 5% TCA to extract lipids. 

Extracted lipids were resuspended in PBS-T with 3% protein stabilizer and then spotted on 

PtdIns3P Mass ELISA plates in duplicates. PtdIns3P levels were detected by measuring 
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absorbance at 450 nm on a plate reader. Specific amounts were determined by comparison of 

values to a standard curve generated with known amounts of PtdIns3P. 

XVI. Statistical analysis 

Data are mean ± s.e.m. or ± s.d. as noted in the figure legend. Statistical analysis was 

performed using 1-way ANOVA followed by Tukey's multiple comparisons test for all data 

except for expression analysis where an unpaired 2-tailed Student’s t test was performed. A P 

value less than 0.05 was considered significant. 
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a b s t r a c t

Myotubularins define a large family of proteins conserved through evolution. Several
members are mutated in different neuromuscular diseases including centronuclear my-
opathies and Charcot-Marie-Tooth (CMT) neuropathies, or are linked to a predisposition to
obesity and cancer. While some members have phosphatase activity against the 3-
phosphate of phosphoinositides, regulating the phosphorylation status of PtdIns3P and
PtdIns(3,5)P2 implicated in membrane trafficking and autophagy, and producing PtdIns5P,
others lack key residues in the catalytic site and are classified as dead-phosphatases.
However, these dead phosphatases regulate phosphoinositide-dependent cellular path-
ways by binding to catalytically active myotubularins. Here we review previous studies on
the molecular regulation and physiological roles of myotubularins. We also used the recent
myotubularins three-dimensional structures to underline key residues that are mutated in
neuromuscular diseases and required for enzymatic activity. In addition, through database
mining and analysis, expression profile and specific isoforms of the different myotubu-
larins are described in depth, as well as a revisited protein interaction network. Compar-
ison of the interactome and expression data for each myotubularin highlights specific
protein complexes and tissues where myotubularins should have a key regulatory role.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Myotubularins constitute a large disease-associated family highly conserved through evolution with similarities to
phosphatases. In humans there are 14 clear paralogs of myotubularins: the first identified was MTM1 followed by 13
myotubularin-related proteins MTMR1 to MTMR13 (Laporte et al., 1996, 2003; Robinson and Dixon, 2006). Among them, 8
proteins are active phosphatases while 6 are catalytically dead, with a functional cooperation between members of these two
classes (Kim et al., 2003; Nandurkar et al., 2003). In addition MTMR14 protein (also named hJUMPY) has been described
(Tosch et al., 2006), however phylogenetic studies and protein domain composition suggested it defines a close but distinct
protein family, and therefore this protein will not be discussed further in this review. Additional pseudogenes related to
myotubularins also exist (Alonso et al., 2004).

Although active myotubularins have been tentatively classified as Protein Tyrosine Phosphatases (PTP) based on the
presence of a C(X)5R motif, they are specific phosphoinositides (PPIn) 3-phosphatases that dephosphorylate the phospha-
tidylinositol-3-monophosphate (PtdIns3P) and PtdIns(3,5)P2 into PtdIns and PtdIns5P, respectively (Blondeau et al., 2000;
Taylor et al., 2000; Tronchere et al., 2004; Walker et al., 2001). Conversely, dead myotubularins share a similar organiza-
tion in domains but lack the phosphatase activity (Cui et al., 1998; Nandurkar et al., 2001). PPIn are lipid second messengers
implicated in a wide range of cellular processes from cell growth and survival to cytoskeleton dynamics (Di Paolo and De
Camilli, 2006; Staiano et al., 2015). More specifically, PtdIns3P and PtdIns(3,5)P2 regulate membrane trafficking at the
endosomal level and autophagy, which are themost studied and characterized functions of myotubularins (Nicot and Laporte,
2008; Robinson and Dixon, 2006). PtdIns5P is implicated in several cellular processes including oxidative stress signaling,
growth factor signaling and transcriptional regulation (Bulley et al., 2015; Giudici et al., 2016; Gozani et al., 2003; Keune et al.,
2013; Ramel et al., 2011).

Myotubularins have been found in almost all eukaryotes fromyeast tomammals, with few exceptions, such as P. falciparum
(Lecompte et al., 2008). Orthologs for the 14 humanmyotubularins are found in chordates, except in rodents whereMTMR8 is
absent at least inmice and rats. A co-evolution has been observed between active and deadmyotubularins, as well as between
active myotubularins and antagonist kinases (Lecompte et al., 2008); for example MTM1 with the class-III PtdIns 3-kinase
VPS34 (PIK3C3) and its regulator VPS15 (PIK3R4). Why have so many myotubularins been duplicated and conserved?
Indeed, the presence of 14 similar proteins in humans could lead to functional redundancy, however this high evolutionary
pressure suggests that each myotubularin has one or several specific function(s). This specificity could be related to tissue
expression or splice isoforms, or particular protein-protein interactions. This specific point will be developed in this review.

To date, mutations were found in 3 myotubularin genes in monogenic human diseases. MTM1 is mutated in X-linked
centronuclear myopathy (XLCNM, OMIM: 310400) also called myotubular myopathy, characterized by hypotonia at birth, a
very severe and generalized muscle weakness, external ophthalmoplegia and respiratory distress (Jungbluth et al., 2008;
Laporte et al., 1996). Two other myotubularins, MTMR2 (encoding active phosphatase) and MTMR13/SBF2 (dead phospha-
tase), are mutated in Charcot-Marie-Tooth neuropathy type 4B1 (4B1, OMIM: 601382) and 4B2 (CMT4B2, OMIM: 604563),
respectively (Azzedine et al., 2003; Bolino et al., 2000; Senderek et al., 2003). CMT4B1 and 2 are two distinct but close forms of
autosomal recessive demyelinating neuropathy affecting peripheral nerves and leading to pronounced muscular atrophy and
weakness of distal limbs. In addition, several myotubularins are linked tomultifactorial diseases as colorectal, gastric and lung
cancers (MTMR3 and 7) (Hu et al., 2011; Song et al., 2010; Weidner et al., 2016), obesity (MTMR9) (Hotta et al., 2011) and
CreutzfeldteJakob disease (MTMR7) (Sanchez-Juan et al., 2012). The fact that ubiquitously expressed myotubularins are
implicated in different tissue-specific diseases again indicates that the apparent biochemical redundancy is in fact hiding
tissue-specific functions.

This review focuses on recent advances concerning 3 main aspects of the myotubularin family: gene expression, protein
interactions and protein structure. Through database mining and analysis, the interaction network of myotubularins is
revisited and integrated, and their expression profiles and specific isoforms are described.

2. Myotubularins: protein domains and interactions

Myotubularins are multidomain proteins that share the same central core composed of the PH-GRAM (Pleckstrin Ho-
mology - Glucosyltransferase, Rab-like GTPase Activator and Myotubularins) domain that could bind to PPIn or proteins and
the phosphatase-like domain (Fig. 1A) (Begley et al., 2003; Choudhury et al., 2006; Doerks et al., 2000; Tsujita et al., 2004). In
the 8 active myotubularins (MTM1, MTMR1-4 and 6e8), the catalytic domain contains the consensus C(X)5R signature motif
(Alonso et al., 2004; Zhang et al., 1994). In the 6 phosphatase dead myotubularins (MTMR9-12, MTMR5/Sbf1 and MTMR13/
Sbf2), the absence of enzymatic activity is due to the substitution of catalytically essential residues such as the cysteine in the
consensus motif (Cui et al., 1998; Nandurkar et al., 2003).
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Myotubularins can have several other functional domains: the PDZ binding site (MTM1, MTMR1 and 2) mediates protein-
protein interactions, the PH (Pleckstrin homology) (MTMR5 and 13) and FYVE (Fab1-YOTB-Vac1-EEA1) (MTMR3 and 4)
domains can bind PPIn (Itoh and Takenawa, 2002), and the DENN domain (MTMR5 and 13) is involved in small Rab GTPase
regulation (Fabre et al., 2000; Jean et al., 2012; Yoshimura et al., 2010). By combining domain organization and phylogenetics,
6 different subgroups are highlighted, each containing exclusively active or dead members (Fig. 1B). In addition, all myotu-
bularins except MTMR10 contain a coiled-coil (CC) domain that is critical for their homodimerization and/or hetero-
dimerization (Berger et al., 2006; Lorenzo et al., 2006). Dimerization also appears to depend on the PH-GRAM domain (Berger
et al., 2006).

Indeed, all myotubularins except MTMR11 have been shown to interact either with themselves or with other myotubu-
larins (Fig. 1C) (Berger et al., 2006; Gupta et al., 2013; Kim et al., 2003; Lorenzo et al., 2006; Mochizuki and Majerus, 2003;
Nandurkar et al., 2003; Schaletzky et al., 2003; Zou et al., 2009). Within the 14 members, 9 have been reported to form
homodimers; this could enhance the membrane targeting by coupling two PH-GRAM domains (Berger et al., 2003). At least
for MTM1, homo-oligomerization controls its allosteric activity, and in vitro MTM1 incubated with its substrate PtdIns3P
forms a heptamer in the presence of PtdIns5P (Schaletzky et al., 2003). One of the most notable characteristics of this family is
that most heterodimers are formed by a coupling between active and dead phosphatases. For example, MTMR2 forms het-
erodimers with its dead homologs MTMR5/Sbf1, MTMR10, MTMR12 and MTMR13/Sbf2. The fact that mutations in MTMR13
lead to a similar neuropathy (CMT4B) as defects in MTMR2 confirms the physiological importance of dead phosphatases and
heterodimers. MTMR9 interacts with 3 different active myotubularins of the same phylogenic subgroup (MTMR6, 7 and 8)

Fig. 1. Human myotubularins: domain organization and interactome. A. Scaled representation of the protein domains of human myotubularins. All myo-
tubularins share the PH-GRAM and phosphatase (active or dead) domains. For each myotubularin, amino acid length of the most described protein isoform is
indicated. B. Classification of myotubularins into 6 subgroups based on protein organization and phylogenetics (indicated by the vertical bars on the left). Active
myotubularins are represented in green and dead myotubularins in red. C. Known protein interactions within the myotubularin family. Published interactions are
in orange while interactions found in databases (Biogrid - the biogrid.org) are in blue. D. List of known interactors for each myotubularin. Published interactors
are represented in orange while interactors found in databases with a minimum MUSEscore of 0,95 (Biogrid and Li et al., 2016) are in blue. Common interactors
and interactors of the same protein family are surrounded and related together by a continuous and stippled line, respectively. Similar interactors found for a
specific myotubularin are not surrounded.

M.A. Raess et al. / Advances in Biological Regulation 63 (2017) 49e58 51



and increases their enzymatic activity (Mochizuki and Majerus, 2003). In the same way, MTMR5 increases the enzymatic
activity of MTMR2 and both are related tomale infertility due to impaired spermatogenesis (Bolino et al., 2004; Firestein et al.,
2002; Kim et al., 2003). In some heterodimers, such as MTM1-MTMR12, MTMR2-MTMR5 and MTMR2-MTMR13, the dead
myotubularin may regulate the cellular localization of the active member (Gupta et al., 2013; Kim et al., 2003; Nandurkar
et al., 2003). Dead myotubularins appear early in evolution and are conserved in many species (Laporte et al., 2003;
Lecompte et al., 2008). Altogether, this suggests (1) a co-evolution between active and dead myotubularins and (2) that
myotubularins rely on oligomerization for their function since very early in the evolution. Heterodimers can also be formed
between two active members of the same phylogenic subgroup, as for MTMR1-MTMR2, MTMR3-MTMR4, MTMR6-MTMR7
and MTMR7-MTMR8 (Fig. 1C).

Numerous interactors have been identified for each myotubularin (Fig. 1D) (Biogrid - thebiogrid.org and Intact - http://
www.ebi.ac.uk/intact/) (Agrawal et al., 2014; Berggard et al., 2006; Cao et al., 2007; Cui et al., 1998; Fabre et al., 2000;
Firestein et al., 2000; Jean et al., 2012; Li et al., 2016; Plant et al., 2009; Royer et al., 2013; Rual et al., 2005; Srivastava
et al., 2005; Yu et al., 2013; Zhang et al., 2005). Some myotubularins share common interactors or interactors from the
same protein family. For example, MTMR6 and MTMR8 both interact with SOAT1, a protein localized in the endoplasmic
reticulum, which is also the presumed localization of these myotubularins. MTM1 interacts with desmin and MTMR2 with
neurofilament light chain (NFL), that are two intermediate filament proteins specifically found in muscles and neurons,
respectively (Hnia et al., 2011; Previtali et al., 2003). This is consistent with mutations in MTM1 and desmin leading to
myopathies and mutations in MTMR2 and NFL leading to CMT neuropathies (Goldfarb et al., 1998; Mersiyanova et al., 2000).
Another well-represented group of interactors is the Rab family: MTMR1-RAB6B, MTMR6-RAB1B, MTMR5-RAB35 and
MTMR13-RAB21 (Jean et al., 2012; Mochizuki et al., 2013). Rabs constitute a very large GTPase family regulating many steps of
membrane trafficking, one of the main cellular functions in which myotubularins are implicated (Barr, 2013). Of note,
myotubularins implicated in 3 heterodimers share common or similar interactors: MTMR1-MTMR2, MTMR1-MTMR5 and
MTMR2-MTMR10. For example, MTMR1 and MTMR5 heterodimerize and interact with different Rab GTPases (Fig. 1D).

3. Myotubularins: tissue expression

To investigate howmyotubularin genes are expressed in human tissues, wemined the Genotype-Tissue Expression (GTEx)
database, which has been built by systematic RNA-sequencing using samples of 51 different tissues from hundreds of donors
and 2 transformed cell types in culture. Fig. 2 shows for each gene the relative expression in all tested tissues, and highlights
inwhich tissue a specific myotubularin is the most/less expressed. This is not absolute expression, therefore a gene cannot be
directly compared to another for the same tissue. A dendrogram was generated using the Pearson correlation coefficient to
highlight hierarchical clustering of myotubularins sharing similar profiles of expression. Whilst this is one of many possible
dendrograms and thus it has to be interpreted cautiously, two main groups of myotubularins can be distinguished based on
expression profiles: MTMR1-3-8-11-12-13 (upper branch, Fig. 2), and the others (lower branch). Discriminant tissues be-
tween the two groups are brain (almost all regions), skin, vagina and prostate. This does not seem to be directly related to
phylogenetic classification, to active/dead and active/active heterodimers or to myotubularins sharing common interactors.
However, some links can be made. For example, MTMR7 and MTMR9 that form an active/dead heterodimer have the closest
expression profiles and are both strongly expressed in brain tissues. A similar link applies to MTM1, MTMR2 and MTMR10,
which have correlated expression patterns: they form two active/dead heterodimers MTM1/MTMR10 and MTMR2/MTMR10,
and MTMR2 and MTMR10 have common interactors (Fig. 1C and D) (Lorenzo et al., 2006).

Fig. 2. Myotubularins tissue expression. Heatmap of myotubularin genes relative expression within 51 different tissues underlining in which tissue a specific
myotubularin is the most/least expressed (left panel), and absolute expression in 2 cell types. Expression levels have been obtained by mining the GTEx database
(www.gtexportal.org/home/). Dendrogram highlighting the hierachical clustering of myotubularins (right panel), using the Pearson correlation coefficient and
average linkage.
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Concerning myotubularins related to monogenic diseases, while MTM1 has a low expression level in striated muscles
compared to other tissues such as nerves, colon or testis, mutations in the MTM1 gene lead to a severe myopathy. Thus, the
MTM1 tissue-specific function could be explained by interactions with partners that are only expressed in muscle, such as
desmin (Hnia et al., 2011). On the contrary, MTMR2 andMTMR13 are highly expressed in nerves, which is consistent with the
neuropathies observed due to mutations in these genes. In addition, MTMR2 binds the neuronal intermediate filament NFL
(Previtali et al., 2003), highlighting a potential molecular basis common to different CMT neuropathy forms. A link can be
observed between MTMR2 and MTMR5, known to form heterodimers; they both have a high relative expression level in
testis, and defects of these genes lead to male infertility by impaired spermatogenesis (Bolino et al., 2004; Firestein et al.,
2002), therefore adding weight to the physiological significance of this data.

Myotubularins expression levels have also been measured in two cell types, lymphocytes and fibroblasts, that are easily
derived from human cells. These cells could allow diagnosis at the protein level or be dedifferentiated into induced plurip-
otent stem (IPS) cells that could be reprogrammed into specific cell types, allowing study of the pathocellular mechanisms.
This time, absolute expression levels of all myotubularins are compared (Fig. 2). Some myotubularins, such as MTMR5 or
MTMR2, are well expressed in both lymphocytes and fibroblasts, whereas for other myotubularins fibroblasts show a higher
expression level, as for MTMR13 for which study in these cell types might be more adapted. Therefore, interpreting this data
can be useful in deciding which cell lines should be used for research and diagnostic purposes.

4. Myotubularin: mRNA isoforms

The study of gene expression does not take splicing events into account. Indeed, a specific gene is often spliced into several
mRNA isoforms that could be translated into different protein isoforms. In this review, we use the term “isoform” to define a
variant of the same protein ormRNA, and “homologs” for different genes. Fig. 3 summarizes themyotubularinmRNA isoforms
expression within all tissues present in the GTEx database. Only significantly expressed mRNA isoforms have been repre-
sented, and color-coded based on their predicted protein product: the main protein isoform from the literature, longer/
shorter protein isoforms, or non-coding mRNA isoforms. For each mRNA isoform, the expression level is indicated as a
percentage of total gene expression.

Interestingly, themainmRNA isoform studied in the literature is not always themost expressed (MTM1,MTMR3,MTMR10,
MTMR11 and MTMR12). For MTMR10, the most expressed isoform encodes only the PH-GRAM; it raises the possibility that
this protein isoform exerts a dominant negative effect on oligomerization of myotubularins or on cellular functions. MTMR2
has 4 well expressed mRNA isoforms: one translated into the main 643 amino acids (aa) protein isoform and the three others
translated into a 571 aa protein isoform lacking the N-terminal extremity before the PH-GRAM (Bolino et al., 2001). The latter
is present in all tissues except brain, and may have a specific function. In addition, some isoforms are tissue-specific, as for
MTM1 with 2 isoforms only expressed in skeletal muscle. Corresponding peptides lack a part of the PH-GRAM domain and
could support a muscle-specific function altered in the MTM1-related myopathy. In total, 10 myotubularins express mRNA
isoforms leading to shorter proteins and MTMR1 displays an isoform predicted to encode a longer protein. These differences
can affect various protein domains as the FYVE domain for MTMR3 and MTMR4 or the DENN domain for MTMR5, and thus
could highly impact on protein conformation or protein-protein/protein-lipid interactions.

For MTM1, MTMR11 and MTMR13, the prevailing mRNA isoforms are non-coding, or the corresponding peptides have not
been identified yet, questioning the function of such isoforms. Finally, some isoforms described in the literature are not
represented here because they were absent in the GTEx database. This is the case for various MTMR1mRNA isoforms that are
known to be well expressed in some tissues (Buj-Bello et al., 2002).

In the future, it would be important to characterize the cellular activity of these tissue-specific isoforms, in order to get
insight into their physiological relevance.

5. Myotubularins: protein structure

Between 2003 and 2016, the crystal structures of 4 active myotubularins have been determined: MTMR1 (PDB: 5C16),
MTMR2 (1LW3, 1ZVR, 1M7R and 1ZSQ), MTMR6 (2YFO) and MTMR8 (4YZI) (Begley et al., 2003, 2006; Bong et al., 2016). A
crystal structure of mouse MTMR5 has also be resolved, but only contains the C-terminal PH domain (1V5U). No major
differences have been described between the 4 structures, except for the orientation of the MTMR6 PH-GRAM domain; this
could impact MTMR6 oligomerization properties (Bong et al., 2016). From a 3D point of view, myotubularins are globular
proteins with two main parts: the PH-GRAM domain and the catalytic domain, connected by a linker (Fig. 4A) (Begley et al.,
2003). N-terminal extremities, coiled-coil domains and PDZ binding sites are absent of these structures, presumably because
they are too flexible or cleaved by proteolysis. In addition, the cysteine residue of the catalytic C(X)5R motif has been mutated
into a serine for crystallization, except for MTMR6.

The PH-GRAMdomain consists in 7 b-strands and 1 a-helix. Themain characteristic of the catalytic domain is the substrate
binding pocket that is significantly deeper and wider than that of classical tyrosine phosphatases, explaining the unique
specificity of myotubularins for membrane-embedded PPIn substrates (Fig. 4A) (Begley et al., 2003). Indeed, active myotu-
bularins specifically hydrolyze the D-3 position of PtdIns3P and PtdIns(3,5)P2, two PPIn with large phosphorylated inositol
headgroups that perfectly fit in the catalytic pocket. The D-3 phosphate is then trapped by its interactionwith the main chain
of 6 residues from the C(X)5R motif loop (on MTMR2 sequence: Cys417, Ser418, Gly420, Trp421, Asp422 and Arg423) (Fig. 4B).
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Fig. 3. Myotubularin mRNA isoforms. For each myotubularin indicated on the left, the most expressed isoforms present in the GTEx database are represented as
a percentage of total gene expression. Only the most expressed isoforms are shown. The mRNA isoforms coding for the main published protein isoforms are
indicated in green, shorter isoforms in red and longer isoforms in blue. Several non-coding isoforms indicated in black have been found well expressed, for which
no corresponding peptides have been described yet. The star indicates specific MTM1 mRNA isoforms in skeletal muscle, the tissue affected in MTM1-related
myopathy. For several myotubularins as MTMR3, MTMR10 and MTMR12, and to a less extend MTMR2, the main expressed isoforms are different than the
published isoforms used for functional characterization of the related proteins; for MTMR11 and MTMR13 the main expressed isoforms are predicted non-coding.
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Concerning the catalytic activity, the nucleophile Cys417 residue attacks the phosphorous atom in position D-3 of the PPIn
substrate, forming a phosphoenzyme intermediate, then the aspartic acid (Asp422 in MTMR2) donates a proton to the
released dephosphorylated substrate, before hydrolysis yielding free enzyme and inorganic phosphate (Begley and Dixon,
2005; Begley et al., 2006; Nandurkar and Huysmans, 2002). Myotubularins are different from classical PTPs because the
catalytic aspartate residue lies directly in the catalytic C(X)5R loop and not in a WPD-loop. The D-1 phosphate of the PPIn
interacts with the side chain of two residues from the C(X)5R motif (on MTMR2 sequence: Ser418 and Arg423), but also with
Asn330, which is conserved in all active myotubularins suggesting an important role in PPIn substrate binding. Some other
residues help to maintain the three-dimensional structure of this catalytic pocket, like Arg463 (on MTMR2) that is also
conserved in all myotubularins. A phosphate in position D-4 would generate a steric clash with several residues of the cat-
alytic pocket, excluding PtdIns(3,4)P2 and PtdIns(3,4,5)P3 from potential substrates.

Another consideration for myotubularin substrate specificity is that active myotubularins are electrostatically polarized
proteins, with one strongly electropositive side containing the catalytic site (Begley et al., 2006). This would create elec-
trostatic interactions between the positively charged face of myotubularins and the negatively charged membranes con-
taining PPIn, contributing to substrate-binding affinity. This electropositive patch around the catalytic pocket seems to be
specific for active myotubularins, while several dead myotubularins have an electronegative surface, suggesting a poor af-
finity toward lipid membranes. Furthermore, active myotubularins could bind either membranes or dead-phosphatase ho-
mologs through the same interface.

The three-dimensional structure can also be very useful to understand the effect of disease-associated mutations and
thereby to evaluate the importance of mutated residues for the function or the stability of the protein. The majority of
MTM1, MTMR2 and MTMR13 missense mutations affect residues in the hydrophobic core structure of the PH-GRAM and
catalytic domains, and replace native amino acids by bulkier residues, or decrease van der Waals contacts or alter internal
hydrogen bonds, consequently disrupting the protein core structure. In addition, two clusters of solvent-accessible

Fig. 4. The myotubularins protein structure. A. Overall view of the myotubularin structure. The crystal structure of MTMR2 (PDB:1ZSQ) is used as a model, with
a front view and a view rotated at 90� . Domain names and the phosphoinositide substrate (here PtdIns3P) are indicated on the two representations. B. Zoom on
the substrate-binding pocket. Residues forming the C(X)5R loop and other important residues are represented using stick models. Residues affected by missense
mutations in MTM1-linked centronuclear myopathy are colored in yellow. No missense mutations have been found in MTMR2 or MTMR13 genes in the catalytic
pocket. The cysteine residue of the C(X)5R motif is mutated to serine in the structure for crystallization purposes. Hydrogen bonds between the two phosphate
groups in position D1 and D3 of PtdIns3P/PtdIns(3,5)P2 and surrounding residues of the active site are represented by stippled lines.
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missense mutations at the surface of the MTM1 protein can be observed: the Pro179-Asn180-Arg184 cluster and the
Asp431-Asp433 cluster (numbered in MTM1 sequence) that could be potential binding sites for interactors (Begley et al.,
2003). In the active site, the Ser376, Gly378 and Arg421 (numbered Ser418, Gly420 and Arg463 in MTMR2 structure in
Fig. 4B) are frequent sites of mutations found in MTM1: the Ser376 and Gly378 directly bind the D-3 phosphate of the
PPIn and the Arg421 is a key factor to maintain the position of the catalytic loop. Thus, mutations of these residues would
directly prevent any catalytic activity.

6. Conclusion

Myotubularins define a large and highly conserved family of proteins with some noteworthy characteristics. They are
classified in the Protein Tyrosine Phosphatases (PTP) family but have a specific phosphatase activity against phosphoinosi-
tides. One other feature is the presence of catalytically active and dead phosphatases, where dead myotubularins regulate
their active homologs. Although they are ubiquitously expressed, three myotubularin genes eMTM1,MTMR2 andMTMR13 e

aremutated in tissue-specific neuromuscular diseases, suggesting tissue-specific splice isoforms or specific protein-protein or
protein-lipid interactions.

Future experiments will be needed to address this tissue specificity. While the function of myotubularins and PPIn sub-
strates and products was well studied in cell systems, their physiological role in vivo is still barely understood. Another key
issue is the pathological mechanism(s) associated to myotubularin-related diseases. Data showed that MTM1-related
myopathy or phenotypes can be rescued in mice and drosophilia by inhibition or muscle-specific ablation of the class II
PtdIns 3-kinase, pointing to the importance of PPIn regulation by myotubularin (Sabha et al., 2016; Velichkova et al., 2010).
However, the samemouse disease model can also be rescued by expressing a phosphatase inactive MTM1 protein, supporting
that PPIn-unrelated functions of myotubularin are implicated in this pathology (Amoasii et al., 2012). Due to the importance
of myotubularins and PPIn pathways in metabolism and cellular integrity, it is expected that their dysregulation in more
common diseases will be highlighted in the future.
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67084 Strasbourg, France

Auteur correspondant : Sylvie Friant, s.friant@unistra.fr
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Résumé – Les phosphoinositides sont des lipides impliqués dans le transport vésiculaire
des protéines entre les différents compartiments. Ils agissent par le recrutement et/ou
l’activation de protéines effectrices et sont de ce fait impliqués dans la régulation de
différentes fonctions cellulaires telles que le bourgeonnement vésiculaire, la fusion ou
la dynamique des membranes et du cytosquelette. Bien que présents en faible concen-
tration dans les membranes, leur rôle est indispensable à la survie des cellules et doit
être régulé avec précision. Le contrôle de leur fonction se fait par la phosphoryla-
tion/déphosphorylation des positions D3, D4 et/ou D5 de leur anneau inositol par
des kinases et phosphatases spécifiques des différentes membranes intracellulaires. Ces
enzymes sont en partie conservées entre la levure et l’Homme et leur perte de fonction
peut entrâıner des maladies génétiques graves comme les myopathies.

Mots clés : Lipides / trafic intracellulaire / phosphoinositide / phosphatase / kinase

Abstract – Phosphoinositides: lipidic essential actors in the intracellular traffic.

Phosphoinositides (PPIn) are lipids involved in the vesicular transport of proteins
between the different intracellular compartments. They act by recruiting and/or
activating effector proteins and are thus involved in crucial cellular functions including
vesicle budding, fusion and dynamics of membranes and regulation of the cytoskeleton.
Although they are present in low concentrations in membranes, their activity is essen-
tial for cell survival and needs to be tightly controlled. Therefore, phosphatases and
kinases specific of the various cellular membranes can phosphorylate/dephosphorylate
their inositol ring on the positions D3, D4 and/or D5. The differential phosphoryla-
tion determines the intracellular localisation and the activity of the PPIn. Indeed,
non-phosphorylated phosphatidylinositol (PtdIns) is the basic component of the PPIn
and can be found in all eukaryotic cells at the cytoplasmic face of the ER, the Golgi,
mitochondria and microsomes. It can get phosphorylated on position D4 to obtain
PtdIns4P, a PPIn enriched in the Golgi compartment and involved in the maintenance
of this organelle as well as anterograde and retrograde transport to and from the
Golgi. PtdIns phosphorylation on position D3 results in PtdIns3P that is required for
endosomal transport and multivesicular body (MVB) formation and sorting. These
monophosphorylated PtdIns can be further phosphorylated to produce bisphophory-
lated PtdIns. Thus, PtdIns(4,5)P2, mainly produced by PtdIns4P phosphorylation, is
enriched in the plasma membrane and involved in the regulation of actin cytoskeleton
and endocytosis. PtdIns(3,5)P2, mainly produced by PtdIns3P phosphorylation, is
enriched in late endosomes, MVBs and the lysosome/vacuole and plays a role in endo-
some to vacuole transport. PtdIns(3,4)P2 is absent in yeast, cells and mainly produced
by PtdIns4P phosphorylation in human cells; PtdIns(3,4)P2 is localised in the plasma
membrane and plays an important role as a second messenger by recruiting specific
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protein kinases (Akt and PDK1). Finally the triple phosphorylated PPIn,
PtdIns(3,4,5)P3 also absent in yeast, is produced by the phosphorylation of
PtdIns(3,4)P2 and localized at the plasma membrane of human cells where it binds
proteins via their PH domain. Interaction partners include members of the Arf (ADP-
ribosylation factors) family, PDK1 (Phosphoinositide Dependent Kinase 1) and Akt.
Therefore this last PPIn is essential for the control of cell proliferation and its dereg-
ulation leads to the development of numerous cancers. In conclusion, the regulation of
PPIn phosphorylation/dephosphorylation is complex and needs to be very precisely
regulated. Indeed phosphatases and kinases allow the maintenance of the equilibrium
between the different forms. PPIn play a crucial role in numerous cellular functions
and a loss in their synthesis or regulation results in severe genetic diseases.

Key words: Lipids / intracellular trafficking / phosphoinositides / phosphatase / kinase

Abréviations
ENTH Epsin N-Terminal Homology
ESCRT Endosomal Sorting Complex

Required for Transport
FYVE Fab1, YGL023, Vps27, EEA1
MVB MultiVesicular Body
Osh1 Oxysterol binding protein

homologue 1
PC PhosphatidylCholine,
PE PhosphatidylEthanolamine
PH Pleckstrin Homology
PHD Plant HomeoDomain finger
PIKfyve PtdIns3P 5-Kinase (humaine)
Pis1 PtdIns synthase 1
PPIn PolyPhosphoInositides
PS PhosphatidylSérine,
PtdIns PhosphatidylInositol
PtdIns3P PhosphatidylInositol 3-phosphate
PtdIns(3,4)P2 PhosphatidylInositol 3,

4-bisphosphate
PtdIns(3,4,5)P3 PhosphatidylInositol 3,

4,5-trisphosphate
PTEN Phosphatase and TENsin

homolog
SM SphingoMyéline
Vps34 Vacuolar Protein Sorting 34

1 Le métabolisme des phosphoinositides
membranaires

1.1 Les lipides, constituants majoritaires
des membranes

Les membranes ne sont pas des structures figées mais
dynamiques dont les propriétés physico-chimiques font
partie des facteurs ayant permis l’apparition de la vie.
En effet, l’environnement, au sens large, est caractérisé
par des variations de température, d’humidité, de pH,

d’ensoleillement, de pression osmotique ou de source
d’énergie, autant de facteurs auxquels tout organisme
vivant doit s’adapter afin de conserver un équilibre
interne. C’est pour gagner en stabilité face à toutes
ces fluctuations incontrôlables que la cellule s’est orga-
nisée de façon à limiter les variations intracellulaires.
La membrane plasmique est le premier rempart per-
mettant de séparer le milieu extérieur du cytoplasme.
Sa composition lui assure une protection mécanique et
un contrôle des échanges avec l’extérieur grâce à une
perméabilité très sélective.

La membrane plasmique s’organise en deux
feuillets de phospholipides, la bicouche, dans laquelle
s’enchâssent les macromolécules protéiques, stérols et
glycolipides. Les phospholipides qui constituent cette
bicouche sont amphiphiles avec un groupe hydrophile
(tête) lié à un groupe hydrophobe (queue). Au sein
de la bicouche, les groupes hydrophobes se font face,
générant un espace hydrophobe entre les deux feuillets
membranaires. Cette propriété est très importante
pour l’ancrage dans la membrane de molécules lipi-
diques (stérols ou céramides), de protéines transmem-
branaires ou de protéines ayant une ancre lipidique. La
composition en lipides des membranes varie selon les
organismes (eucaryotes ou procaryotes), les types cel-
lulaires (au sein des tissus d’un même organisme pluri-
cellulaire), le type de membrane (plasmique, réticulum
endoplasmique, endosomes, appareil de Golgi, mito-
chondries et autres compartiments intracellulaires) et
même l’état de la cellule (au repos ou en réponse à un
stress/stimulus) (Spector & Yorek, 1985 ; Zinser et al.,
1991).

Les membranes sont composées principalement de
cinq phospholipides : la phosphatidylcholine (PC),
la phosphatidyléthanolamine (PE), la phosphati-
dylsérine (PS), le phosphatidylinositol (PtdIns) et
la sphingomyéline (SM). Les stérols, bien que pré-
sents dans les membranes cellulaires, ne forment
pas la membrane par eux-mêmes mais modulent sa
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fluidité, essentielle pour la diffusion latérale des
molécules dans la bicouche. Le double feuillet lipi-
dique des membranes présente également une distribu-
tion asymétrique des phospholipides entre les feuillets
interne et externe, qui résulte en partie de la diffu-
sion verticale entre les deux feuillets par flip-flop, un
mécanisme peu efficace.

Si la membrane plasmique joue un rôle essentiel
de barrière sélective, on retrouve dans les cellules eu-
caryotes d’autres structures membranaires intracellu-
laires telles que les organites et les vésicules de trans-
port. L’organisation de ces membranes ainsi que leur
composition diffèrent selon la nature du comparti-
ment. En effet, le réticulum endoplasmique, l’appa-
reil de Golgi, les lysosomes (la vacuole chez les le-
vures), les endosomes et les vésicules de transport
sont entourés d’une seule bicouche lipidique. L’espace
à l’intérieur de ces compartiments intracellulaires est
nommé lumen ou lumière. En revanche, le noyau, les
mitochondries, les chloroplastes des végétaux chloro-
phylliens et les vésicules autophagiques sont délimités
par une double bicouche lipidique. Chacun de ces com-
partiments intracellulaires s’acquitte de fonctions bien
précises nécessaires à la vie de la cellule (Spector &
Yorek, 1985). Cette dernière doit donc chorégraphier
le transport vésiculaire de protéines de manière spatio-
temporelle entre ces différents compartiments. Il est
par conséquent indispensable pour la cellule de dis-
criminer un compartiment intracellulaire d’un autre.
Ceci passe par l’attribution d’une identité propre à
chacun des organites allant même jusqu’à distinguer
les faces �� cis �� des faces �� trans �� de l’appareil de
Golgi. Ces �� cartes d’identité �� propres à chaque com-
partiment intracellulaire sont essentiellement définies
par les molécules tapissant le feuillet cytoplasmique
des membranes. Parmi ces molécules, les lipides mem-
branaires, et plus particulièrement les phosphoinosi-
tides jouent un rôle majeur dans la régulation spatio-
temporelle de différents processus cellulaires tels que
la dynamique du cytosquelette, le trafic membranaire,
la prolifération et la survie cellulaire.

1.2 Les phosphoinositides, des médiateurs lipides

Les polyphosphoinositides (PPIn) sont des consti-
tuants mineurs des membranes cellulaires, représen-
tant moins de 10 % des phospholipides cellulaires
(Payrastre et al., 2001). Les PPIn sont composés d’une
molécule de glycérol estérifiée en position SN1 et SN2
par deux châınes d’acides gras et reliée en position
SN3 à un anneau inositol par l’intermédiaire d’un
groupement phosphate (Payrastre et al., 2001). Chez
l’Homme, les acides gras les plus courants dans le
PtdIns sont l’acide stéarique (18:0) en position SN1
et l’acide arachidonique (20:4) en SN2 (Marcus et al.,
1969). Chez la levure Saccharomyces cerevisiae, la

nature des acides gras est légèrement différente ; on
retrouve ainsi une majorité d’acide oléique (18:1),
d’acide palmitoléique (16:1) et d’acide palmitique
(16:0) (Trevelyan, 1966). Etant donné que les diverses
espèces de PPIn dérivent du PtdIns, on estime que
leurs compositions en acides gras sont les mêmes que
celles du PtdIns.

L’anneau inositol des PPIn est un polyol de cyclo-
hexane dont les position D3, D4 et D5 sont phosphory-
lables, générant potentiellement sept PPIn différents
(figure 1) : le phosphatidylinositol 3-phosphate
(PtdIns3P ), le PtdIns4P , le PtdIns5P , le PtdIns
3,4-bisphosphate (PtdIns(3,4)P2), le PtdIns(3,5)P2,
le PtdIns(4,5)P2 et le PtdIns 3,4,5-trisphosphate
(PtdIns(3,4,5)P3). Malgré leur faible concentration
dans les membranes, les PPIn jouent un rôle essen-
tiel dans le recrutement et/ou l’activation de protéines
effectrices. De plus, leur présence dans une mem-
brane donnée et leurs niveaux varient grâce aux lipides
kinases et phosphatases spécifiques des différentes
membranes, permettant ainsi la régulation spatio-
temporelle de divers événements tels que le bourgeon-
nement, la fusion ou la dynamique des membranes
(Payrastre et al., 2001).

1.3 Le phosphatidylinositol PtdIns, précurseur
des phosphoinositides

Le PtdIns, point de départ du métabolisme des PPIn,
est un phospholipide ubiquitaire dans les cellules euca-
ryotes mais dont la proportion varie selon le type de
membrane. En effet, les PPIn sont tous métabolisés
directement ou séquentiellement à partir du PtdIns
(figure 1). Chez la levure S. cerevisiae, le PtdIns est
synthétisé par la PtdIns synthase 1 (Pis1) au niveau
de la face cytoplasmique de la membrane du réticulum
endoplasmique, de l’appareil de Golgi, des mitochon-
dries et des microsomes (Nikawa & Yamashita, 1984).
Chez l’Homme, cette synthèse est catalysée par l’ho-
mologue de Pis1, la PtdIns Synthase qui présente une
distribution similaire à celle de Pis1 chez la levure
(Antonsson, 1994).

Le PtdIns est également recyclé par la conver-
sion du PtdIns3P , du PtdIns4P et du PtdIns5P en
PtdIns par l’action de lipides phosphatases (figure 1).
Chez l’Homme, les myotubularines (MTM1, MTMR1-
4,6,7) sont des 3-phosphatases déphosphorylant
spécifiquement la position D3 et réalisant, entre
autres, la conversion du PtdIns3P en PtdIns (Laporte
et al., 2003). Les autres phosphatases sont moins
spécifiques car elles sont capables de déphosphoryler
le PtdIns3P en PtdIns, comme la PPIn phos-
phatase SAC1, qui déphosphoryle également le
PtdIns4P et probablement le PtdIns5P en PtdIns
(Liu & Bankaitis, 2010). La levure S. cerevisiae
présente également une phosphatase spécifique de la
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Fig. 1. Synthèse des phosphoinositides chez la levure S.cerevisiae et chez l’Homme avec les enzymes impliquées. Les
réactions de phosphorylation sont représentées par des flèches noires et celles de déphosphorylation par des flèches grises.
Le nom des enzymes de levure (quand elles existent) est indiqué en haut et leur homologue chez l’Homme est noté
en-dessous.

position D3 avec son unique homologue de myotubu-
larine Ymr1. Cette activité sur le PtdIns3P est par-
tagée avec des phosphatases plus générales que sont les
Synaptojanin-like protein 1 et 2 (Sjl2 et Sjl3) et Sac1,
aussi capables de convertir le PtdIns4P en PtdIns
(Parrish et al., 2004).

2 Le PtdIns4P, un effecteur clé du trafic
au niveau de l’appareil de Golgi

2.1 Synthèse du PtdIns4P

Le PtdIns4P représente environ 30 % des PPIn to-
taux chez la levure, et approximativement 45 % chez
l’Homme (Payrastre et al., 2001). Il est enrichi au
niveau de l’appareil de Golgi où il est majoritaire-
ment généré par phosphorylation du PtdIns par des
PI 4-kinases (De Matteis et al., 2002). Il peut aussi
résulter de la déphosphorylation du PtdIns(4,5)P2

et du PtdIns(3,4)P2 par des PI 5-phosphatases et
des PI 3-phosphatases, respectivement (figure 1).
Chez S. cerevisiae, les PI 4-kinases Pik1 et Stt4

réalisent la conversion du PtdIns en PtdIns4P au
niveau de l’appareil de Golgi et de la membrane
plasmique, respectivement (Audhya et al., 2000).
La déphosphorylation du PtdIns(4,5)P2 en PtdIns4P
est orchestrée par les 5-phosphatases Inp51/Sjl1,
Inp52/Sjl2, Inp53/Sjl3 et Inp54 (figure 1) (Liu &
Bankaitis, 2010). Chez l’Homme, les PPIn 4-kinases
PI4Kα et PI4Kβ synthétisent le PtdIns4P à partir
du précurseur PtdIns. Par ailleurs, le PtdIns4Ppeut
être synthétisé à partir du PtdIns(3,4)P2 par la
3-phosphatase PTEN ou à partir du PtdIns(4,5)P2 par
les 5-phosphatases OCRL1 (Occulo-cerebro-renal syn-
drome protein 1 ), INPP5B (Inositol Polyphosphate
Phosphatase 5B) et les synaptojanines 1 et 2 (figure 1)
(Liu & Bankaitis, 2010). Des mutations dans OCRL1
sont à l’origine du syndrome occulo-cérébro-rénal de
Lowe.

2.2 Rôle physiologique du PtdIns4P

Le PtdIns4P a pendant longtemps été considéré
comme un simple précurseur d’autres PPIn. Chez
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la levure, le PtdIns4P est présent dans deux com-
partiments distincts : la membrane plasmique et le
réseau trans-golgien (Audhya et al., 2000). L’appareil
de Golgi constitue un carrefour central dans le tra-
fic membranaire, où les protéines et les membranes
de divers compartiments intracellulaires s’échangent,
nécessitant donc la régulation spatio-temporelle très
précise de ces processus. Le PtdIns4P serait impliqué
dans le maintien de l’identité de l’appareil de Golgi,
afin de préserver son rôle dans le trafic intracellulaire.
Ainsi, chez la levure, le PtdIns4P a été montré comme
ayant une fonction dans le transport de protéines :
le transport antérograde à partir du réseau trans-
golgien et le transport rétrograde vers l’appareil de
Golgi (Audhya et al., 2000). De plus, chez la le-
vure le PtdIns4P est important pour la formation des
vésicules de sécrétion allant du Golgi vers la mem-
brane plasmique (Mizuno-Yamasaki et al., 2010). De
nombreuses protéines interagissant avec le PtdIns4P
ont été identifiées et sont localisées à l’appareil de
Golgi (Lemmon, 2003). Par exemple, la protéine de
levure Osh1 (Oxysterol binding protein homologue),
requise pour le transport des stérols, est localisée à
l’appareil de Golgi via son domaine PH (Pleckstrin
Homology) qui lie le PtdIns4P (Levine & Munro,
2002).

L’homologue humain de Osh1, la protéine OSBP
(OxySterol Binding Protein), également impliquée
dans le transport intracellulaire des stérols, se loca-
lise au niveau du Golgi grâce à l’interaction entre
son domaine PH et le PtdIns4P (Levine & Munro,
2002). Cependant, si cette interaction est essentielle à
la localisation de OSBP, elle n’est pas suffisante puis-
qu’elle nécessite également l’interaction avec une GT-
Pase golgienne (ADP-Ribosylation Factor ou ARF)
(Levine & Munro, 2002). Deux autres protéines,
FAPP1 et FAPP2 (Four-Phosphate-Adaptor Protéine
1 et 2 ) qui régulent le trafic membranaire golgien, sont
également en complexe avec ARF et interagissent avec
le PtdIns4P via leur domaine PH (Lemmon, 2003).
Cette interaction protéine-lipide jouerait un rôle dans
le transport vésiculaire antérograde du Golgi vers
la membrane plasmique en contrôlant la production
de vésicules bourgeonnant depuis l’appareil de Golgi
(Godi et al., 2004).

3 Le PtdIns3P, un lipide essentiel au trafic
membranaire au niveau des endosomes

3.1 Synthèse du PtdIns3P

Le PtdIns3P représente environ 30 % des PPIn totaux
de levure et est présent en quantité équivalente aux
PtdIns4P . Par ailleurs chez l’Homme, il représente
moins de 15 % des PPIn mono-phosphorylés et

est largement minoritaire par rapport au PtdIns4P
(Payrastre et al., 2001). Le PtdIns3P est produit par
phosphorylation du PtdIns en position D3 de l’inosi-
tol ou par déphosphorylation du PtdIns(3,4)P2 ou du
PtdIns(3,5)P2 (figure 1).

Chez la levure S. cerevisiae, une seule enzyme cata-
lyse spécifiquement et uniquement la phosphorylation
du PtdIns en PtdIns3P , la lipide kinase Vps34 (Va-
cuolar Protein Sorting 34 ) (Herman & Emr, 1990 ;
Schu et al., 1993). L’activité de Vps34 est régulée
par la protéine kinase Vps15 et est indispensable
à la formation du MVB (MultiVesicular Body ou
corps multivésiculaire). De façon intéressante, il a été
montré que la régulation positive de Vps34 par Vps15
est stimulée par l’interaction directe entre les sept
répétitions WD (Trp-Asp) situées dans la région C-
terminale de cette dernière et la sous-unité Gα de
la protéine Gpa1. Le domaine C-terminal de Vps15
se comporterait ainsi comme la sous-unité β de la
protéine G. Ainsi, il y aurait un couplage entre la si-
gnalisation médiée par les protéines G au niveau de la
membrane plasmique et le tri des récepteurs de cette
signalisation au niveau des endosomes. De plus, l’inter-
action du complexe Vps34-Vps15 avec Gpa1 stimule
la production de PtdIns3P aux endosomes (Slessareva
et al., 2006).

Le génome humain code pour huit lipide-kinases
capables de produire du PtdIns3P et regroupées en
trois classes, selon leurs spécificités de substrat et leur
homologie (Vanhaesebroeck et al., 2001) :
– Deux phosphoinositides 3-kinases de classe I (PI3K

I) qui phosphorylent surtout le PtdIns(4,5)P2 en
PtdIns(3,4,5)P3.

– Trois phosphoinositides 3-kinases de classe II
(PI3K II) qui phosphorylent surtout le PtdIns4P
en PtdIns(3,4)P2.

– La phosphoinositide 3-kinase de classe III, qui est
l’homologue de la protéine de levure Vps34. Tout
comme Vps34, la PI3K III humaine est spécifique
du PtdIns et est par conséquent probablement à
l’origine de l’essentiel du PtdIns3P cellulaire. La
sous-unité régulatrice de hVps34 est la protéine
p150, l’homologue de Vps15 de levure (Panaretou
et al., 1997). Une étude phylogénétique a mis en
évidence la coévolution de l’unique PI3K III et de
sa sous-unité régulatrice Vps15 chez la plupart des
eucaryotes, de la levure à l’Homme en passant par
les amibes et les parasites (Lecompte et al., 2008).

Chez la levure, le PtdIns3P est également
synthétisé par les lipides phosphatases Fig4 (Fac-
tor Induced Gene 4, également appelée Sac3),
Sjl2/Inp52, Sjl3/Inp53 et Sac1. Elles possèdent
toutes un domaine SAC catalytique permettant de
déphosphoryler différents PPIn dont le PtdIns(3,5)P2

en PtdIns3P (Liu & Bankaitis, 2010). Fig4 est la seule
PtdIns 5-phosphatase spécifique du PtdIns(3,5)P2
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(Gary et al., 2002). L’homologue humain FIG4/SAC3
remplit des fonctions cellulaires similaires à Fig4. Des
mutations dans le gène humain FIG4 sont à l’origine
du syndrome de Charcot-Marie-Tooth type 4J, une
maladie neuromusculaire de forme récessive qui se
traduit par une démyélinisation des axones (Liu &
Bankaitis, 2010). Avec MTMR2, FIG4 est donc le
deuxième gène codant pour une lipide phosphatase
impliquée dans une maladie neuromusculaire.

3.2 Rôle physiologique du PtdIns3P

Dans les cellules de levure et de mammifères, le
PtdIns3P est enrichi au niveau de la membrane
des endosomes précoces et à la membrane des
vésicules internes des endosomes tardifs (ou corps mul-
tivésiculaires, ou MVB) (Gillooly et al., 2000). Au
niveau des endosomes précoces, il joue un rôle cen-
tral dans le recrutement de protéines effectrices telles
que la protéine de levure Vps27 ou son homologue
humaine Hrs (Hepatocyte growth factor-Regulated ty-
rosine kinase Substrate), deux protéines du complexe
ESCRT-0 (Endosomal Sorting Complex Required for
Transport) impliquées dans le tri endosomal des
protéines et la formation du MVB (Henne et al., 2011).
Ces deux protéines comportent un domaine FYVE
(Fab1, YGL023, Vps27, et EEA1) liant le PtdIns3P
endosomal et un motif de recrutement du complexe
ESCRT-1 (Gruenberg & Stenmark, 2004). Ceci per-
met de recruter les deux autres complexes ESCRT-2
et 3 dont l’action concertée permet l’internalisation
des protéines membranaires dans les vésicules internes
du MVB (Henne et al., 2011). Cette internalisation
est indispensable à l’arrêt des cascades de signalisa-
tion médiées par des récepteurs transmembranaires
et à l’adressage de protéines membranaires à la va-
cuole/lysosome.

La protéine adaptatrice humaine EEA1 (Early En-
dosomal Antigen 1 ) se lie également au PtdIns3P avec
une forte affinité via son domaine FYVE et régule les
processus de fusion membranaire entre endosomes en
recrutant la GTPase Rab5 aux endosomes (Gruenberg
& Stenmark, 2004).

De même, la PtdIns3P 5-kinase Fab1 (S. cerevi-
siae) ou PIKfyve (humaine), qui catalyse la phos-
phorylation du PtdIns3P en PtdIns(3,5)P2, se fixe
au PtdIns3P via son domaine FYVE (Payrastre
et al., 2001). Ainsi, un des rôles physiologiques du
PtdIns3P est de servir de précurseur à la synthèse
du PtdIns(3,5)P2.

Chez la levure S. cerevisiae, la délétion du gène
VPS34 n’est pas létale mais elle entrâıne une crois-
sance très lente et une forte diminution de la résistance
à de nombreux facteurs (température, pH, éthanol,
hygromycine B, stress hyperosmotique, caféine ou

rapamycine). La levure vps34Δ présente également
d’importants défauts de trafic membranaire qui se tra-
duisent par une morphologie et un transport vacuo-
laire anormaux, l’excrétion de la carboxypeptidase Y
(CPY) et un défaut d’autophagie (Kihara et al., 2001).
Un des rôles essentiels de cette lipide kinase de levure
est donc d’assurer l’intégrité du tri des protéines à des-
tination de la vacuole en produisant du PtdIns3P , le-
quel permettra le recrutement de protéines effectrices
du trafic (Henne et al., 2011).

4 Le PtdIns5P, un phosphoinositide
méconnu

4.1 Synthèse du PtdIns5P

Le PtdIns5P est le PPIn mono-phosphate identifié
le plus récemment (Rameh et al., 1997). Il est long-
temps resté méconnu en raison de sa faible concen-
tration basale dans les cellules de mammifères, mais
également des difficultés liées aux techniques permet-
tant de le séparer du PtdIns4P . En effet, en conditions
basales dans les cellules de mammifères, le PtdIns5P
représente moins de 10 % des PPIn monophosphates
(Payrastre et al., 2001).

Par ailleurs, aucune étude n’a mis en évidence
la présence de PtdIns5P dans une souche sauvage
de levure S. cerevisiae. En effet, Ymr1, l’unique
représentante des myotubularines dans la levure, est
dépourvue d’activité 3-phosphatase à l’encontre du
PtdIns(3,5)P2 (Taylor et al., 2000 ; Parrish et al.,
2004).

Chez l’humain, le PtdIns5P est produit par la li-
pide kinase PIKfyve directement à partir du PtdIns
(figure 1). In vivo, la surexpression de PIKfyve induit
une augmentation de PtdIns5P , tandis que des souris
hétérozygotes PIKfyve +/null présentent des niveaux
réduits de PtdIns5P en comparaison avec les souris
témoins, sans pour autant que cela affecte la viabilité
des souris mutantes (Ikonomov et al., 2011).

Du côté des lipides phosphatases, on retrouve
les membres de la famille des myotubularines
(MTM1, MTMR1-4,6,7) qui possèdent une acti-
vité 3-phosphatase à l’encontre du PtdIns(3,5)P2, et
génèrent ainsi du PtdIns5P (figure 1) (Laporte et al.,
2003).

4.2 Rôle physiologique du PtdIns5P

Le rôle du PtdIns5P dans les cellules de mammifères
est encore relativement mal compris. Une fraction du
PtdIns5P a été détectée au niveau du noyau et se-
rait impliquée dans la réponse au stress, notamment
en modulant l’activité du régulateur transcriptionnel
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ING2. ING2 est en outre la première protéine iden-
tifiée comme ayant un domaine de liaison spécifique
au PtdIns5P , nommé PHD (Plant HomeoDomain fin-
ger), un domaine en doigt de zinc (Gozani et al., 2003).

5 Le PtdIns(4,5)P2, un phosphoinositide
impliqué dans l’endocytose

5.1 Synthèse du PtdIns(4,5)P2

Chez la levure, le PtdIns(4,5)P2 est présent en quan-
tité équivalente au PtdIns4P , soit approximativement
30 % des PPIn totaux et plus de 90 % des différents
PPIn bis-phosphorylés. Chez l’Homme, il représente
environ 45 % des PPIn totaux et plus de 90 % des
différents PPIn bis-phosphorylés. Le PtdIns(4,5)P2 est
donc un PPIn majoritaire (Di Paolo & De Camilli,
2006).

Le PtdIns(4,5)P2 est synthétisé par la PPIn
5-kinase Mss4 chez la levure (figure 1) et il est présent
essentiellement à la membrane plasmique (figure 2)
(Desrivières et al., 1998).

Chez l’Homme, plusieurs PPIn-kinases à l’origine
du PtdIns(4,5)P2 ont été identifiées : les PIP5K de
type I α, β et γ sont localisées à la membrane plas-
mique et convertissent le PtdIns4P en PtdIns(4,5)P2

(Ishihara et al., 1998) ; tandis que les PIP4K de type
II sont situées au niveau de l’appareil de Golgi et
convertissent le PtdIns5P en PtdIns(4,5)P2 (Bunce
et al., 2008 ; Clarke et al., 2008). Contrairement à
la levure, les mammifères synthétisent également du
PtdIns(3,4,5)P3 qui peut servir de substrat à des PPIn
3-phosphatases telles que PTEN (Phosphatase and
TENsin homolog), TPIPα, β et γ pour produire du
PtdIns(4,5)P2 (figure 1) (Liu & Bankaitis, 2010).

5.2 Rôle physiologique du PtdIns(4,5)P2

Chez S. cerevisiae et dans les cellules humaines,
le PtdIns(4,5)P2 est majoritairement présent dans
le feuillet cytoplasmique de la membrane plasmique
(figure 2), où il agit comme un régulateur majeur du
cytosquelette d’actine et de l’endocytose. Chez S. ce-
revisiae, Mss4 agit en combinaison avec la PtdIns
4-kinase Stt4 à la membrane plasmique pour générer le
PtdIns(4,5)P2 à partir de PtdIns. Ce PPIn est essen-
tiel pour l’activation de la cascade de signalisation des
MAP kinases médiée par Rho1/Pkc1. En effet, la lo-
calisation correcte de Rom2, la GEF (GTP Exchange
Factor) de la GTPase Rho1, dépend directement de
l’interaction entre son domaine PH et le PtdIns(4,5)P2

membranaire (Audhya & Emr, 2002). L’organisation
du cytosquelette d’actine dépend en grande partie de

cette voie de signalisation (Desrivières et al., 1998).
L’activité de Mss4 et la synthèse de PtdIns(4,5)P2

remplissent également une fonction essentielle dans
l’endocytose qui dépend de l’actine chez la levure
(Sun et al., 2007). En effet, les protéines effectrices
de l’endocytose comme les domaines ENTH (Epsin
N-Terminal Homology), ANTH (AP-180 N-Terminal
Homology) ou PH (Pleckstrin Homology) possèdent
un domaine de liaison au PtdIns(4,5)P2 (Itoh &
Takenawa, 2002 ; De Craene et al., 2012).

Chez l’Homme, le PtdIns(4,5)P2 joue un rôle ma-
jeur dans la régulation de différentes voies de signa-
lisation, notamment en raison des variations rapides
auxquelles il peut être soumis par le jeu des kinases
et phosphatases à PPIn (figure 1). À l’instar de celui
de la levure, le PtdIns(4,5)P2 remplit chez l’homme
une fonction importante dans la régulation du cytos-
quelette d’actine. En effet, plusieurs études ont révélé
des interactions entre le PtdIns(4,5)P2 et des protéines
régulatrices de la polymérisation de l’actine. Dans les
cellules de mammifères, le PtdIns(4,5)P2 est principa-
lement requis au niveau de la membrane plasmique
pour l’endocytose médiée par la clathrine (figure 2)
(Di Paolo & De Camilli, 2006). Il sert alors de si-
gnal de recrutement à de nombreuses protéines ef-
fectrices de l’étape d’internalisation de l’endocytose,
via un domaine protéique (ENTH, ANTH, PH) liant
spécifiquement le PtdIns(4,5)P2 (Itoh & Takenawa,
2002 ; Di Paolo & De Camilli, 2006 ; De Craene
et al., 2012). Ainsi, le domaine ENTH de l’Epsine1
lie le PtdIns(4,5)P2, et cette interaction induit un
réarrangement structural de l’extrémité N-terminale
en une hélice-α qui va pénétrer dans la bicouche lipi-
dique et générer la courbure membranaire nécessaire
à la formation de la vésicule d’endocytose (Ford et al.,
2001).

6 Le PtdIns(3,5)P2, un phosphoinositide
régulant le trafic endosome-lysosome

6.1 Synthèse du PtdIns(3,5)P2

Le PtdIns(3,5)P2 est également un PPIn peu abon-
dant puisqu’il représente moins de 5 % des PPIn to-
taux chez l’Homme et chez S. cerevisiae ; il est enri-
chi au niveau des endosomes tardifs, du MVB et du
lysosome/vacuole (figure 2) (Di Paolo & De Camilli,
2006).

La levure S. cerevisiae synthétise séquentiellement
le PtdIns(3,5)P2, d’abord sous l’action de la PtdIns
3-kinase Vps34 qui génère le PtdIns3P , puis par phos-
phorylation du PtdIns3P en PtdIns(3,5)P2 par la
PtdIns3P 5-kinase Fab1 (figure 1). Chez la levure,
un stress hyperosmotique stimule très fortement la
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Fig. 2. Localisation intracellulaire des différents phosphoinositides et voies du trafic membranaire. Les différents phos-
phoinositides (PPIn) sont spécifiquement enrichis dans des membranes définies. Ils sont représentés par des symboles :
en rond les PPIn impliqués dans le trafic intracellulaire avec les étapes qu’ils régulent ; en carré les PPIn impliqués dans
la signalisation cellulaire, ces deux types de PPIn sont absents chez la levure.

synthèse du PtdIns(3,5)P2 qui voit son taux intracel-
lulaire augmenter de 20 fois (Dove et al., 1997). La
synthèse du PtdIns(3,5)P2 est régulée par les protéines
vacuolaires membranaires Vac7 et Vac14 (Bonangelino
et al., 2002). En effet, dans des mutants affectés dans
les gènes FAB1, VAC7 ou VAC14, le PtdIns(3,5)P2

n’est pas détectable, et ce indépendamment des
conditions osmotiques (Bonangelino et al., 2002). Si
Vac7 et Vac14 sont indispensables à la synthèse de
PtdIns(3,5)P2, elles n’interagissent pas puisque Vac7
est l’activateur majeur de Fab1 lors d’un choc hyper-
osmotique, alors que Vac14 agit dans le cadre d’un
complexe avec la lipide phosphatase Fig4 pour réguler
le renouvellement du PtdIns(3,5)P2 (Duex et al.,
2006b). Ceci est très surprenant car la stimulation
de la synthèse du PtdIns(3,5)P2 en réponse au stress
osmotique est dépendante de réactions antagonistes
de phosphorylation du PtdIns(3)P en PtdIns(3,5)P2

et de la déphosphorylation de celui-ci en PtdIns3P

dans un cycle futile (Duex et al., 2006a). Il existe
donc une interdépendance essentielle entre la lipide
kinase et la phosphatase pour réguler le taux de
PtdIns(3,5)P2 mais également pour activer la produc-
tion de PtdIns(3,5)P2 en réponse à un stimulus.

Chez l’Homme, la voie de synthèse du
PtdIns(3,5)P2 est similaire à celle de la levure
et c’est PIKfyve, l’unique homologue de Fab1, qui
est à l’origine du PtdIns(3,5)P2 (figure 1) (Shisheva,
2008). A ce jour, aucune PPIn 4-phosphatase hydroly-
sant le PtdIns(3,4,5)P3 n’a pu être mise en évidence.
Par conséquent, il semblerait que l’unique voie de
synthèse du PtdIns(3,5)P2 passe par la phosphoryla-
tion du PtdIns3P (figure 1). De plus, la régulation
de la synthèse du PtdIns(3,5)P2 est conservée chez
l’Homme, en effet PIKfyve interagit avec de multiples
partenaires jouant un rôle dans l’homéostasie du
PtdIns(3,5)P2 (Shisheva, 2008). Par exemple, PIK-
fyve interagit avec son enzyme antagoniste Sac3/Fig4
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déphosphorylant spécifiquement le PtdIns(3,5)P2 en
PtdIns3P . Cette interaction indirecte se fait par le
biais de la protéine adaptatrice ArPIKfyve/Vac14 qui
stabilise le complexe et stimule l’activité de PIKfyve
(Ikonomov et al., 2010).

Une étude plus récente démontre clairement l’ho-
mologie dans la voie de synthèse du PtdIns(3,5)P2

entre la levure et les mammifères (Jin et al., 2008). En
effet, que ce soit chez la levure ou la souris, la protéine
Vac14 joue un rôle de plate-forme pour la régulation
de la synthèse du PtdIns(3,5)P2, en interagissant di-
rectement avec Fab1/PIKfyve, Fig4/Sac3 et Vac7 qui
sont les effecteurs de cette voie de synthèse. Ainsi
Vac7, Fab1 et Fig4 pourront entrer en contact par
l’intermédiaire de leur liaison à différentes régions de
Vac14 (Jin et al., 2008).

6.2 Rôle physiologique du PtdIns(3,5)P2

Différentes études ont montré le rôle du PtdIns(3,5)P2

dans la régulation du trafic entre les endosomes et
la vacuole (l’équivalent du lysosome chez la levure)
(figure 2).

Chez S. cerevisiae, les cellules fab1Δ présentent
un défaut de croissance à 23 ◦C, ne sont pas viables
à 37 ◦C et montrent un défaut d’acidification de la
vacuole. Elles montrent aussi d’importants défauts
d’homéostasie vacuolaire avec un compartiment va-
cuolaire anormalement élargi, occupant jusqu’à 80 %
du volume de la cellule. Cet encombrement lié à la
taille de la vacuole peut également causer une distribu-
tion incorrecte des chromosomes lors de la division cel-
lulaire (Yamamoto et al., 1995). La présence de Vac7
et de Vac14, qui régulent la synthèse du PtdIns(3,5)P2

par Fab1, est requise pour permettre le maintien de la
morphologie vacuolaire ainsi que pour la transmission
correcte de la vacuole de la cellule mère à la cellule
fille (Bonangelino et al., 2002).

Le PtdIns(3,5)P2 joue un rôle essentiel dans le
tri des protéines membranaires au niveau des en-
dosomes tardifs/MVB (Odorizzi et al., 1998). Les
protéines membranaires à destination de la vacuole
sont marquées par de l’ubiquitine au niveau des en-
dosomes. Ces cargos ubiquitinés sont reconnus suc-
cessivement par les complexes ESCRT-0 à -2 pour
leur internalisation dans les vésicules internes de l’en-
dosome afin de former le MVB, dont la fusion avec
la vacuole aboutit au largage des vésicules dans la
lumière de la vacuole (Gruenberg & Stenmark, 2004).
Au niveau des endosomes, les epsines de levure Ent3 et
Ent5 interagissent avec le PtdIns(3,5)P2 grâce à leur
domaine ENTH, et elles sont indispensables pour le
tri des cargos au MVB (Friant et al., 2003 ; Eugster
et al., 2004). La protéine liant le plus spécifiquement
et avec le plus d’affinité le PtdIns(3,5)P2 est à l’heure
actuelle la protéine de levure Svp1/Atg18, qui joue

un rôle dans l’autophagie chez la levure. De manière
intéressante, Svp1/Atg18 régule aussi l’activité de
Fab1, en se liant également à la protéine régulatrice
Vac7 (elle-même recrutée par la protéine plate-forme
Vac14). Ainsi, Svp1/Atg18 agirait comme un senseur
du taux de PtdIns(3,5)P2 en permettant la régulation
de sa synthèse via un rétrocontrôle impliquant Vac7
et Vac14 (Efe et al., 2007).

Chez la souris, le mutant PIKfyveKO/KO meurt
très tôt au cours du développement embryonnaire
(Ikonomov et al., 2011), ce qui témoigne de l’impor-
tance fondamentale de ce lipide membranaire dans
les processus cellulaires. Fab1 et PIKfyve possèdent
toutes les deux un domaine FYVE capable de lier
le PtdIns3P . Cette interaction avec le PtdIns3P va
entrâıner leur recrutement aux endosomes, où le
PtdIns3P est enrichi, et permettre la synthèse du
PtdIns(3,5)P2 (figure 2) (Sbrissa et al., 2002). PIK-
fyve a été décrite comme ayant un rôle dans divers
processus tels que le tri endosomal des protéines,
l’homéostasie vacuolaire/lysosomale ou la régulation
de voies de signalisation (Payrastre et al., 2001).

7 Le PtdIns(3,4)P2, un second messager
lipidique

7.1 Synthèse du PtdIns(3,4)P2

Chez la levure S. cerevisiae, aucune étude n’a pu
mettre en évidence la présence du PtdIns(3,4)P2. Chez
l’Homme, le PtdIns(3,4)P2 est essentiellement loca-
lisé à la membrane plasmique (figure 2) et compte
pour moins de 10 % des PPIn totaux en condition ba-
sale. Cependant, ces niveaux peuvent transitoirement
augmenter en réponse à une stimulation par des fac-
teurs de croissance ou des cytokines (Payrastre et al.,
2001). Le PtdIns(3,4)P2 est obtenu majoritairement
par la phosphorylation du PtdIns4P en PtdIns(3,4)P2

par les PI3K II (figure 1). La déphosphorylation
du PtdIns(3,4,5)P3 en PtdIns(3,4)P2 peut être
réalisée par les PPIn 5-phosphatases SHIP1/INPP5D,
SHIP2/INPPL1, OCRL1, INPP5B ainsi que par les
Synaptojanines 1 et 2 (figure 1) (Liu & Bankaitis,
2010).

7.2 Rôle physiologique du PtdIns(3,4)P2

Plusieurs études suggèrent que le PtdIns(3,4)P2 fonc-
tionne comme un second messager. En effet, il est
par exemple capable de recruter les protéine-kinases
Akt et PDK1 via leurs domaines PH. Le lien entre
le PtdIns(3,4)P2 et la voie de signalisation PI3K/Akt
suggère que ce PPIn pourrait être impliqué dans
un grand nombre de processus biologiques comme le
contrôle du cycle cellulaire, la survie, l’angiogenèse, la
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prolifération ou le métabolisme du glucose. L’équilibre
entre le PtdIns(3,4)P2 et le PtdIns(3,4,5)P3 par le jeu
des lipides kinases et phosphatases (figure 1) pour-
rait donc jouer un rôle essentiel dans la régulation
des voies de signalisation en aval de Akt (Hers et al.,
2011). Malgré les nombreuses études sur ce PPIn,
sa fonction à la membrane plasmique est peu docu-
mentée, en effet la plupart des études se focalisent sur
le PtdIns(3,4,5)P3.

Parmi les différents domaines protéiques, seuls
les domaines PH de la protéine TAPP1 (tan-
dem PH domain containing protein 1 ) interagissent
spécifiquement avec le PtdIns(3,4)P2. La protéine
TAPP1 régule l’organisation du cytosquelette d’ac-
tine. Une étude suggère que la liaison de TAPP1 au
PtdIns(3,4)P2 favoriserait le recrutement à la mem-
brane plasmique de PTPL1 (Protein Tyrosine Phos-
phatase Like protein 1, ou FAP-1), une tyrosine phos-
phatase ubiquitaire impliquée dans la survie cellulaire
(Kimber et al., 2003).

8 Le PtdIns(3,4,5)P3, un effecteur clé
de la voie de signalisation PI3K/Akt

8.1 Synthèse du PtdIns(3,4,5)P3

La levure S. cerevisiae ne présente pas de taux
détectable de PtdIns(3,4,5)P3 et celui-ci est donc
considéré comme absent de cet organisme. Chez
l’Homme, le PtdIns(3,4,5)P3 représente moins de 5 %
des PPIn totaux et il est quasiment indétectable dans
des cellules quiescentes. Ses niveaux intracellulaires
peuvent cependant augmenter de façon rapide et tran-
sitoire, jusqu’à 100 fois en réponse à un agoniste
(Milne et al., 2005). Le PtdIns(3,4,5)P3 est essen-
tiellement synthétisé à la membrane plasmique (fi-
gure 2) par les PPIn 3-kinases de classe I à partir du
PtdIns(4,5)P2 (figure 1), mais il n’est pas exclu que des
pools minoritaires de PtdIns(3,4,5)P3 puissent exister
à la membrane de compartiments intracellulaires en
réponse à un agoniste (Payrastre et al., 2001).

La synthèse du PtdIns(3,4,5)P3 est finement
régulée, étant donné que cette molécule signal est au
centre de nombreuses voies de signalisation. Parmi les
régulateurs du taux intracellulaire de PtdIns(3,4,5)P3,
on retrouve la phosphatase PTEN qui catalyse la
déphosphorylation en position 3 du PtdIns(3,4,5)P3

pour produire du PtdIns(4,5)P2. PTEN a été ca-
ractérisée comme un suppresseur de tumeur et des mu-
tations dans PTEN sont impliquées dans de nombreux
cancers (Liu & Bankaitis, 2010). Le rôle principal de
PTEN est de réguler le cycle cellulaire et l’apoptose
via son activité phosphatase requise pour la régulation
de la voie de signalisation dépendant de la kinase Akt.

8.2 Rôle physiologique du PtdIns(3,4,5)P3

Bien qu’il soit présent à de très faibles taux, le
PtdIns(3,4,5)P3 est sans doute le PPIn dont le rôle
est le mieux caractérisé. En effet, ses effecteurs im-
pliqués dans différentes voies de signalisation le lient
via leurs domaines PH, et sa dérégulation entrâıne
le développement de nombreux cancers. Parmi les
effecteurs, il y a des facteurs d’échange de petites
protéines G de la famille Arf (ADP-ribosylation fac-
tors). D’autres effecteurs sont les sérine-thréonine ki-
nases PDK1 (Phosphoinositide Dependent Kinase 1 )
et Akt ainsi que la phospholipase Cγ (PLCγ) qui font
ainsi le lien entre ce PPIn et le contrôle de fonctions
cellulaires telles que la prolifération et la survie cel-
lulaire, la dynamique du cytosquelette, la mobilité, le
trafic membranaire et l’apoptose (Lemmon, 2003).

Un des rôles les plus étudiés du PtdIns(3,4,5)P3 est
celui de régulateur de la kinase Akt qui lie ce PPIn via
son domaine PH. Akt joue un rôle très important car
d’une part elle va permettre l’activation de la PI3K I
et la synthèse du PtdIns(3,4,5)P3, et d’autre part sa
liaison au PtdIns(3,4,5)P3 via son domaine PH va lui
permettre d’être ancrée à la membrane plasmique, où
elle sera phosphorylée et activée par la protéine ki-
nase PDK1 (Hers et al., 2011). Chez les mammifères,
il existe trois isoformes d’Akt nommées Akt1, Akt2 et
Akt3 qui sont activées par des facteurs de croissance
ou d’autres stimuli extracellulaires, ainsi que par des
mutations oncogéniques dans différents régulateurs
d’Akt (Ras, les sous-unités p110 et p85 de la PI3K
I et PTEN). En effet, le domaine PH d’Akt lie aussi le
PtdIns(3,4)P2 qui est produit par PTEN à partir du
PtdIns(3,4,5)P3 (figure 1) (Hers et al., 2011). La voie
de signalisation PtdIns(3,4,5)P3/PtdIns(3,4)P2/Akt
est impliquée dans la régulation de nombreuses fonc-
tions biologiques dont la prolifération cellulaire, la sur-
vie et le métabolisme. La dérégulation d’Akt aboutit
à des cancers, des diabètes et des maladies cardiovas-
culaires et neurologiques. Il est donc très important de
trouver des inhibiteurs agissant sur Akt pour traiter
ces pathologies. Ainsi, parmi les inhibiteurs couram-
ment utilisés en thérapie, beaucoup agissent sur la liai-
son entre les PPIn et le domaine PH d’Akt (Hers et al.,
2011).

Conclusion

Les phosphoinositides sont des molécules lipidiques
qui coordonnent le trafic intracellulaire. Les différentes
formes phosphorylées des PPIn sont contrôlées par un
jeu de kinases et de phosphatases en réponse à des sti-
muli. Les sept PPIn sont présents en quantité variable
dans les cellules et certaines espèces sont enrichies
dans des compartiments intracellulaires bien précis.
Les PPIn sont tous virtuellement inter-convertibles
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sous réserve que l’organisme possède le jeu d’enzymes
appropriées. Ainsi, le PtdIns5P , le PtdIns(3,4)P2 et le
PtdIns(3,4,5)P3, présents chez les mammifères, n’ont
pu être mis en évidence dans la levure S. cerevi-
siae. Les PPIn jouent un rôle essentiel dans l’identité
des membranes intracellulaires. De plus, des change-
ments locaux dans les niveaux de PPIn permettent
une régulation spatiotemporelle de divers événements
tels que le bourgeonnement vésiculaire, la fusion mem-
branaire ou la dynamique du trafic intracellulaire.
Du fait de leur faible abondance, moins de 10 %
des phospholipides cellulaires, les PPIn peuvent être
soumis localement à des variations très fortes dans
leur concentration ; c’est plus particulièrement le cas
pour le PtdIns(3,4,5)P3 en réponse à une stimula-
tion cellulaire chez les mammifères et le PtdIns(3,5)P2

en réponse à un choc osmotique chez la levure.
Ainsi de nombreuses études se sont penchées sur le
métabolisme des PPIn, leurs localisations et leurs rôles
intracellulaires. En effet, malgré leur faible proportion,
ils jouent un rôle essentiel dans le recrutement et/ou
l’activation de protéines effectrices et interviennent
dans la régulation de différentes fonctions cellulaires.
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S.F. et bourse post-doctorale FRM à J-O.D.C.), de
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Friant, S., Pécheur, E.I., Eugster, A., Michel, F., Lefkir,
Y., Nourrisson, D., and Letourneur, F. (2003). Ent3p
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Abstract 

 

Myotubularins are active or dead phosphoinositides phosphatases defining a large protein 

family conserved through evolution and implicated in different neuromuscular diseases. Loss-

of-function mutations in myotubularin (MTM1) cause the severe congenital myopathy called 

myotubular myopathy (or X-linked centronuclear myopathy) while mutations in the 

myotubularin-related protein MTMR2 cause a recessive Charcot-Marie-Tooth peripheral 

neuropathy (CMT4B1). Here we aimed to determine the functional specificity and 

redundancy of MTM1 and MTMR2, and to assess their abilities to compensate for a potential 

therapeutic strategy. Using molecular investigations and heterologous expression of human 

myotubularins in yeast cells and in Mtm1 knockout mice, we characterized several naturally 

occurring MTMR2 isoforms with different activities. We identified the N-terminal domain as 

responsible for functional differences between MTM1 and MTMR2. An N-terminal extension 

observed in MTMR2 is absent in MTM1, and only the short MTMR2 isoform lacking this N-

terminal extension behaved similarly as MTM1 in yeast and mice. Moreover, adeno-

associated virus (AAV)-mediated exogenous expression of several MTMR2 isoforms 

ameliorates the myopathic phenotype due to MTM1 loss, with increased muscle force, 

reduced myofiber atrophy, and reduction of the intracellular disorganization hallmarks 

associated to myotubular myopathy. Noteworthy, the short MTMR2 isoform provided a better 

rescue when compared to the long MTMR2 isoform. In conclusion, these results point to the 

molecular basis for myotubularins functional specificity. They also provide the proof-of-

concept that expression of the neuropathy-associated MTMR2 gene improves the MTM1-

associated myopathy, thus identifying MTMR2 as a novel therapeutic target for myotubular 

myopathy. 
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Introduction 

Myotubularin (MTM1) and myotubularin-related proteins (MTMR) define a conserved 

protein family implicated in different neuromuscular diseases (1). They have been classified 

in the phosphatase super-family. In humans, eight myotubularins share the C(X)5R motif 

found in tyrosine and dual-specificity phosphatases and display enzymatic activity, while the 

six others lack this motif and are named dead-phosphatases. Unexpectedly, it was found that 

enzymatically active myotubularins do not act on proteins but dephosphorylate 

phosphoinositides (PPIn), lipids concentrated in specific membrane sub-domains (2, 3). PPIn 

are lipid second messengers implicated in a wide range of cellular processes including 

signaling and intracellular organization (4). Myotubularins are PPIn 3-phosphatases that 

dephosphorylate the phosphatidylinositol 3-phosphate (PtdIns3P) and the 

phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), leading to the production of PtdIns5P 

(2, 3, 5-7). PtdIns5P is implicated in transcriptional regulation and growth factor signaling, 

while PtdIns3P and PtdIns(3,5)P2 regulate membrane trafficking and autophagy. PtdIns3P is 

produced through the phosphorylation of PtdIns by class II and III PtdIns 3-kinases and 

PtdIns(3,5)P2 is obtained mainly from the phosphorylation of PtdIns3P by PIKfyve (8, 9). 

They recruit proteins to specific endosomal pools or to particular endoplasmic reticulum sites 

where autophagosomes are formed. For example, the FYVE (Fab1-YOTB-Vac1-EEA1) 

domain of EEA1 binds specifically PtdIns3P concentrated on early endosomes to regulate 

endosomal fusion and cargo delivery (9). Dead myotubularins oligomerize with and regulate 

the enzymatic activity and/or subcellular localization of their active homologs (10-12). In 

addition to the active or dead phosphatase domain, myotubularins share a PH-GRAM 

(Pleckstrin Homology, Glucosyltransferase, Rab-like GTPase Activator and Myotubularin) 

domain that bind to PPIn or proteins, and a coiled-coil domain implicated in their 

oligomerization (1). 
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There are 14 myotubularins in human and one active myotubularin in yeast Saccharomyces 

cerevisiae (1, 13). The yeast myotubularin Ymr1 regulates vacuole protein sorting and its 

absence induces vacuolar fragmentation (14). Expression of human myotubularin MTM1 in 

yeast leads to the enlargement of the vacuole as a consequence of its phosphatase activity and 

PtdIns3P decrease (2, 15). In human, mutations in MTM1 cause the severe congenital 

myopathy called myotubular myopathy (or X-linked centronuclear myopathy; OMIM 

310400) (16), while mutations in either the active MTMR2 or the dead-phosphatase 

MTMR13 cause Charcot-Marie-Tooth (CMT) peripheral neuropathies (CMT4B1, OMIM 

601382 and CMT4B2, OMIM 604563 respectively)(17-19). In addition, putative mutations in 

MTMR5 (Sbf1) were linked to CMT4B3 (OMIM 615284) and axonal neuropathy (20-22). 

Thus, lack of one myotubularin is not fully compensated by its homologs, while they are 

ubiquitously expressed. Moreover, the related diseases affect different tissues. Of note, 

MTM1 and MTMR2 are part of the same evolutionary sub-group based on their sequence 

(13). Thus, this suggests uncharacterized tissue-specific functions potentially reflecting 

different protein isoforms having specific activities or interactors. Here, we show that there 

are two protein isoforms of MTMR2 and we studied their in vivo functions in yeast and in 

mice. We report that only the short MTMR2 isoform complements the yeast ymr1Δ mutant 

phenotypes at a similar level as MTM1. Moreover, both MTMR2 isoforms ameliorated the 

myopathy phenotypes displayed by Mtm1 knockout (KO) mice, and specifically the short 

MTMR2 isoform produced a better disease rescue. 
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Results 

 

MTMR2 splicing variants are differentially expressed and encode for long and 

short protein isoforms 

Mutations in the MTMR2 gene are responsible for Charcot-Marie-Tooth neuropathy 

(CMT4B1) whereas mutations in MTM1 lead to X-linked centronuclear myopathy 

(XLCNM), suggesting that these two ubiquitously expressed myotubularins have distinct 

functions. Most tissues contain more than a single isoform, thus their localization and extent 

of expression could help explain their different functions. In order to investigate MTMR2 

function, we first defined its tissue expression and isoforms. In mice, four MTMR2 mRNA 

isoforms (V1 to V4) have been previously reported in peripheral nerves, potentially coding 

for 2 protein isoforms (Supplementary material Fig. S1A-B) (23). Variants V2 to V4 differ 

from variant V1 by the inclusion of alternative exons 1a and/or 2a leading to a premature stop 

codon and unmasking an alternative start site in exon 3. Variant V1 encodes a 643 amino 

acids protein that we named MTMR2-L (long) while the other isoforms code for a 571 aa 

protein named MTMR2-S (short) that was previously detected in various cell lines (23). The 

two protein isoforms differ only in their translation start sites; MTMR2-S starts right before 

the PH-GRAM domain while the MTMR2-L has an extended N-terminal sequence without 

known homology to any protein domain and that was not visible in the crystal structure (Fig. 

1C; Supplementary material, Fig. S1B) (24, 25). The expression level of these isoforms was 

first investigated in human through mining the GTEx expression database encompassing data 

on 51 human tissues (26). Variant V1 is the major MTMR2 RNA in brain, liver and spleen 

while variant V2 is predominant in the other tissues. The different variants were only poorly 

expressed in skeletal muscle (Fig. 1A). In mouse, RT-PCR and Sanger sequencing confirmed 

the existence of the four MTMR2 mRNA variants (V1 to V4) in tibialis anterior (TA) skeletal 

muscle of wild type (WT) and Mtm1 KO mice and in the liver (Supplementary material Fig. 
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S1C-1D), suggesting that both MTMR2-L and MTMR2-S proteins are present in skeletal 

muscle. 

 

Short but not long MTMR2 isoform displays an MTM1-like activity in yeast cells 

To compare the cellular function of MTM1, MTMR2-L and MTMR2-S proteins in vivo, we 

used heterologous expression of these human myotubularins in yeast cells. Yeast is a good 

model to study phosphoinositide-dependent membrane trafficking as it is conserved from 

yeast to higher eukaryotes (27). In yeast cells, vacuole volume, morphology, acidity and 

membrane potential are controlled by PtdIns(3,5)P2 that is produced through the 

phosphorylation of PtdIns3P by Fab1/PIKfyve kinase. In fab1Δ mutant cells, the vacuole is 

very large and unilobed due to low levels of PtdIns(3,5)P2 (15, 28, 29). On the contrary, 

ymr1Δ cells lacking the unique yeast myotubularin have fragmented vacuoles due to excess of 

PtdIns(3,5)P2 and/or PtdIns3P (14), and this phenotype is complemented by the expression of 

the human MTM1 that induces a large vacuole phenotype (15). To determine MTM1, 

MTMR2-L and MTMR2-S intracellular localization, we overexpressed GFP-tagged fusions in 

ymr1Δ cells. MTM1-GFP and MTMR2-S-GFP proteins were concentrated to a membrane 

punctate structure adjacent to the vacuole (also positive for the FM4-64 lipid dye), while 

MTMR2-L-GFP was mainly in the cytoplasm (Fig. 2C). We next assessed the vacuolar 

morphology upon overexpression of either GFP-tagged or untagged human myotubularins in 

ymr1Δ cells by staining the vacuolar membrane with the lipophilic dye FM4-64 (Fig. 2B-C). 

To detect MTMR2 isoforms, a mouse monoclonal antibody was raised against recombinant 

full length human MTMR2-L. This antibody was validated on the transformed yeast protein 

extracts, and specifically recognized MTMR2-L and MTMR2-S (Fig. 2A). Vacuoles were 

significantly enlarged upon expression of MTM1 or MTMR2-S in ymr1Δ cells while they 

remained fragmented with MTMR2-L. MTM1 and MTMR2-S are inducing a large vacuolar 

morphology mimicking a fab1Δ phenotype due to the high expression levels of these 
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phosphatases (overexpression plasmid). These results show that only the membrane localized 

myotubularin constructs rescued the vacuole morphology defects of ymr1Δ cells. Since the 

vacuolar morphology reflects the PtdIns(3,5)P2 level and as PtdIns(3,5)P2 is not abundant 

enough to be detected in normal growth conditions (29), we quantified by mass assay the 

level of PtdIns5P, the lipid produced by myotubularin phosphatase activity from 

PtdIns(3,5)P2 (Fig. 2F). PtdIns5P level was increased by MTM1 and MTMR2-S 

overexpression in ymr1Δ cells, while MTMR2-L had no effect. We also quantified the 

PtdIns3P myotubularin substrate level, by counting the punctate structures that were positive 

for DsRED-FYVE, a reporter for PtdIns3P-enriched membranes (27) (Fig. 2D-E). 

Overexpression of MTM1 and MTMR2-S significantly reduced PtdIns3P level while 

MTMR2-L had no effect. However, previous data showed MTMR2-L had a strong 

phosphatase activity in vitro (5, 7), suggesting that the cytoplasmic localization of this 

isoform in yeast cells does not allow PPIn substrate dephosphorylation. In conclusion, only 

MTMR2-S has a similar phosphatase activity and localization as MTM1 in yeast cells, while 

MTMR2-L behaves differently. 

 

Exogenous expression of MTMR2 short isoform in the Mtm1 KO mice rescues 

muscle weight and force similarly to MTM1 expression. 

To assess whether in mammals MTMR2-S is also functionally closer to MTM1 compared to 

MTMR2-L, we overexpressed MTM1, MTMR2-L and MTMR2-S in the Mtm1 KO mouse 

and analyzed different myopathy-like phenotypes. The different myotubularins were 

expressed from Adeno-associated virus AAV2/1 under the control of the CMV promoter and 

the recombinant virions were injected into the TA muscles of 2-3 week old Mtm1 KO mice. 

The Mtm1 KO mice develop a progressive muscle atrophy and weakness starting at 2-3 weeks 

and leading to death by 8 weeks, the TA muscle being the most affected muscle detected in 
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this model (30, 31). We have previously shown that AAV-mediated expression of MTM1 for 

4 weeks in the TA muscle, corrects the myopathy phenotype in Mtm1 KO mice (15). 

Therefore to determine the impact of introducing MTMR2-L and MTMR2-S into Mtm1 KO 

mice, we followed our previously described protocol for AAV injections (15), using MTM1 

as a positive control for the rescue, and empty AAV2/1 as a disease control in the 

contralateral muscle. The MTM1, MTMR2-L and MTMR2-S human myotubularins were 

expressed in injected TA, as revealed from anti-MTM1 and anti-MTMR2 western-blot 

analyzes (Fig. 3A). Endogenous MTMR2 proteins were not detected in muscle injected with 

empty AAV, most likely due to the low level of endogenous expression (Fig. 3A). 

Four weeks after AAV injection, the TA muscle weight of the Mtm1 KO mice was decreased 

by 2.5 fold compared to WT mice, both injected with empty AAV control. MTM1 or 

MTMR2-S expression in Mtm1 KO mice increased muscle mass significantly compared to the 

empty AAV control (1.5 fold), contrary to MTMR2-L (Fig. 3B). To address a potential 

hypertrophic effect of human MTM1 or MTMR2 constructs in wild type (WT) mice, TA 

muscle weight of injected WT mice was quantified (Supplementary material, Fig. S2). No 

muscle mass increased was noted with any myotubularins indicating that the amelioration 

observed in the Mtm1 KO mice was not due to a hypertrophic effect but to a functional 

rescue.  

The Mtm1 KO mice displayed very weak muscle force compared to WT mice, and all 

myotubularin constructs including MTMR2-L improved the TA specific muscle force (Fig. 

3C). Noteworthy, a similar rescue was observed for MTM1 and MTMR2-S, significantly 

above that observed for MTMR2-L injected muscles. These results show that both MTMR2-L 

and MTMR2-S isoforms improve the muscle weakness due to loss of MTM1, and MTMR2-S 

expression induces a rescue akin to that observed by MTM1 gene replacement. 
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The MTMR2 isoforms rescue the histopathological hallmarks of the Mtm1 KO 

mouse. 

In the Mtm1 KO mice, TA injections of AAV2/1 carrying MTM1, MTMR2-L or MTMR2-S 

increased muscle mass (except for MTMR2-L) and force (Fig. 3). To analyze the rescue at the 

histological level, fiber size and nuclei localization were determined (Fig. 4). HE 

(hematoxylin-eosin) staining revealed increased fiber size in AAV-MTM1 and AAV-

MTMR2-S than in Mtm1 KO muscle treated with empty AAV or MTMR2-L (Fig. 4A), even 

though we observed spatial heterogeneity in the muscle, with some regions still displaying 

smaller atrophic fibers. Morphometric analysis revealed that among the different 

myotubularins tested, MTM1 induced a clear shift toward larger fiber diameters compared to 

MTMR2 constructs and empty AAV (Fig. 4C). A very significant difference (P<0.0001) was 

observed between AAV-MTM1 (mean 58.4%) and AAV-MTMR2-L (mean 26.2%) in the 

percentage of muscle fibers having an area above 800 µm2, and the difference was less 

significant (P=0.033) between MTM1 and MTMR2-S (39.8%) (Fig. 4D). Since nuclei are 

abnormally located within muscle fibers in Mtm1 KO mice, we analyzed the distribution of 

nuclei. Injection of MTM1, MTMR2-S or MTMR2-L into the TA muscle of Mtm1 KO 

increased significantly the percentage of well-positioned peripheral nuclei compared with 

contralateral control muscles injected with empty AAV (Fig. 4E). The succinate 

dehydrogenase (SDH) staining shows accumulation at the periphery and center in the Mtm1 

KO fibers (15), while it is greatly ameliorated upon expression of the different myotubularin 

constructs (Fig. 4B). These results show that both MTMR2 isoforms were able to ameliorate 

the histopathological hallmarks of the MTM1 myopathy, where MTMR2-S was more 

effective. 
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MTMR2 isoforms rescue Mtm1 KO muscle disorganization and normalize 

PtdIns3P levels. 

Patients with myotubular myopathy and the Mtm1 KO mice display an intracellular 

disorganization of their muscle fibers at the ultrastructural level (30, 32). To determine the 

organization of the contractile apparatus and triads, the ultrastructure of the different injected 

TA muscles was assessed by electron microscopy. As previously published, we observed Z-

line and mitochondria misalignment, thinner sarcomeres and lack of well-organized triads in 

the Mtm1 KO muscle injected with empty AAV (15) (Fig. 5A). Expression of MTM1 and 

both MTMR2 isoforms improved these different phenotypes, with the observation of well-

organized triads with two sarcoplasmic reticulum cisternae associated with a central 

transverse-tubule (T-tubule) in muscles injected with MTM1, MTMR2-L or MTMR2-S (Fig. 

5A). Moreover, AAV-mediated expression of MTM1, MTMR2-L and MTMR2-S increased 

the number of triads per sarcomere back to almost WT levels, with a better effect for 

MTMR2-S compared to MTMR2-L (Fig. 5B).  

In yeast, only MTMR2-S but not MTMR2-L regulated the PtdIns3P myotubularin substrate 

level, as well as the one of PtdIns(3,5)P2 as assessed by vacuolar morphology (Fig. 2B). To 

determine whether the rescuing capacity of MTMR2 in mice was linked to its enzymatic 

activity, we quantified the intracellular levels of PtdIns3P in the AAV empty, MTM1, 

MTMR2-L and MTMR2-S injected TA muscles of Mtm1 KO mice (Fig. 6A). PtdIns3P level 

was 2.3 fold higher in empty AAV injected Mtm1 KO muscle than in WT muscle, reflecting 

the impact of the loss of MTM1 on its PtdIns3P lipid substrate. Upon expression of MTM1, 

the PtdIns3P level decreased to wild type levels, reflecting the in vivo phosphatase activity of 

MTM1. Both MTMR2 isoforms induced a decrease in PtdIns3P level when expressed in the 

Mtm1 KO mice, however only the short MTMR2-S isoform normalized PtdIns3P to wild type 

levels. These results show that MTMR2 displays an in vivo enzymatic activity in muscle. 
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Moreover, the MTMR2 catalytic activity correlates with the rescue observed by exogenous 

expression in the Mtm1 KO myopathic mice. 

Taken together, the results in Mtm1 KO mice expressing MTM1 or MTMR2 isoforms show 

that the different phenotypes associated to the myopathy including reduced muscle force, 

myofiber atrophy, nuclei mispositioning, sarcomere and triad disorganization and increased 

PtdIns3P levels, were ameliorated compared to the control muscle injected with empty AAV 

(Table 1). Noteworthy, as observed in yeast studies, the shorter isoform MTMR2-S provided 

a better rescue than MTMR2-L, and was often comparable to MTM1.  

 

Expression of the MTMR2 short isoform is reduced in the Mtm1 KO mice 

muscles 

Based on the GTEx expression database, the different MTMR2 mRNA variants (V1 to V4) 

producing these two MTMR2 protein isoforms are expressed in different tissues, with a low 

expression level in the skeletal muscle (Fig. 1). However, despite their strong rescue 

properties upon overexpression in TA muscles of Mtm1 KO mice (Fig. 3-5, 6A; Table 1), 

endogenous expression of MTMR2 variants does not compensate for the loss of MTM1 

function in the myopathy patients. To help understand the difference in rescue observed 

between the MTMR2-L and -S isoforms, we quantified mRNA levels of the different 

MTMR2 variants (V1 to V4) in TA muscles of Mtm1 KO compared to wild type (WT) mice 

(Fig. 6B). The results show that MTMR2 mRNA total level was decreased in Mtm1 KO 

muscles by 2 fold. This was mainly due to a strong decrease in the V2 and V3 transcripts 

encoding the MTMR2-S isoform, while the level of the V1 transcript coding for MTMR2-L 

remained statistically unchanged between Mtm1 KO and WT mice. Note that these decrease 

were not observed in Supplementary Fig. S1D since it presents a conventional RT-PCR that 

does not allow quantification. A similar downregulation of V2 and V3 transcripts encoding 

the MTMR2-S isoform was observed in XLCNM patient muscles (Fig. 6C). These data 
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suggest that the lack of compensation of MTM1 loss by endogenous MTMR2 is linked to the 

low expression level of MTMR2 associated to MTMR2-S decreased level in skeletal muscles. 

Alternatively, this could be linked to the low level of MTMR2 proteins in the muscle. 

 

Discussion 

Here we aimed to determine functional specificities and redundancies of MTM1 and MTMR2 

myotubularins belonging to the same family of proteins, but whose mutations result in 

different diseases affecting different tissues, a myopathy and a neuropathy, respectively. We 

also tested their abilities to compensate for each other as a potential novel therapeutic 

strategy. Using molecular investigations and overexpression of these human myotubularins in 

yeast cells and in the skeletal muscle of the Mtm1 KO myopathic mice, we characterized two 

MTMR2 isoforms with different catalytic activities linked to their ability to access their PPIn 

substrates. Moreover, we showed that overexpression of MTMR2 rescues the myopathy due 

to MTM1 loss and that compared to MTMR2-L, the short MTMR2-S isoform displayed a 

better PtdIns3P phosphatase activity in yeast and in mice, correlating with better rescuing 

properties in myotubularin-depleted ymr1Δ yeast cells and in Mtm1 KO mice. The fact that 

MTMR2-L partially improved the phenotypes of Mtm1 KO mice despite performing poorly in 

yeast assays could be due to a lack of regulatory proteins in the yeast heterologous system. 

 

MTMR2 isoforms and functions 

There are four naturally occurring MTMR2 mRNA variants in human and mice encoding two 

protein isoforms (MTMR2-L and -S), differing by a 72 aa extension at the N-terminal. 

MTMR2-S displayed a higher phosphatase activity than MTMR2-L in vivo in yeast and 

mouse, suggesting the N-terminal is important for the regulation of MTMR2 function. The 

phosphorylation of the serine 58, within this N-terminal extension, was shown to be important 

for MTMR2 endosomal membrane localization and catalytic function (33, 34). Indeed, the 
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MTMR2-S58A phosphorylation-deficient mutant was localized to membrane structures and 

was active towards PtdIns3P, contrary to the phosphomimetic mutant MTMR2-S58E (33, 34). 

Here, we show that the MTMR2-S protein lacking the N-terminal sequence encompassing the 

S58 phosphorylated residue is concentrated to membranes when expressed in yeast (Fig. 2B) 

and is more active towards PtdIns3P compared to MTMR2-L in yeast (Fig. 2D) and in murine 

muscles (Fig. 6A). The N-terminal extension of MTMR2 was not resolved in the 

crystallographic structure, supporting the hypothesis that it can adopt different conformations 

and might regulate MTMR2 functions (24, 25). These results show that there are two forms of 

MTMR2, MTMR2-S mainly membrane localized and with high phosphatase activity in vivo 

and MTMR2-L whose membrane localization is dependent on phosphorylation at the S58 

residue. Interestingly, in brain expression is biased towards the MTMR2 V1 variant coding for 

MTMR2-L (Fig. 1). The S58 phosphorylation is mediated by Erk2 kinase whose expression 

in brain is precisely higher than in other tissues, correlating with MTMR2-L expression 

(GTEx database).  

 

Functional redundancy and compensation within myotubularins 

There are 14 myotubularins mostly ubiquitously expressed in human tissues, but the loss of 

MTM1 leads specifically to a severe congenital myopathy. This reveals that MTM1 homologs, 

notably the closer MTMR2 homolog, do not compensate for the lack of MTM1 in the skeletal 

muscles when expressed at endogenous levels. We provide evidence that MTMR2-S is 

downregulated in the skeletal muscles of the myopathic Mtm1 KO mice. Moreover, compared 

to brain and other tissues, the expression of MTMR2 transcripts is low in skeletal muscles. 

Altogether this suggests that this low expression of MTMR2 in muscle exacerbated by its 

downregulation in the myopathy mouse model and in XLCNM patient muscles is the basis for 

the lack of compensation. Indeed, the MTMR2-S improves better both functional and 

structural myopathic phenotypes and is more significantly downregulated than MTMR2-L in 
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the myopathic muscles. This reveals that the molecular basis for the functional difference 

between MTM1 and MTMR2 resides in the N-terminal extension upstream the PH-GRAM 

domain, with the MTMR2-S lacking this extension displaying similar in vivo functions as 

MTM1 in yeast and in mice. Removal of this N-terminal extension in the native MTMR2-L 

isoform converts MTMR2 activity into an MTM1-like activity. 

The ability of MTMR2-S to rescue myopathic phenotypes in Mtm1 KO mice after muscle 

expression could be due to the observed normalization of PtdIns3P levels. A previous study in 

the drosophila mutant of the MTM1 ortholog (mtm) showed that impairment of class II PtdIns 

3-kinase prevents the phenotypes and death of the mtm mutant (35). More recently, two 

studies proposed that normalization of PtdIns3P levels through downregulation of class II 

PtdIns 3-kinase PIK3C2B or broad inhibition of PtdIns 3-kinase activity and thus PtdIns3P 

production by wortmannin, rescues the muscle phenotypes of Mtm1 KO mice (36, 37). Other 

therapeutic proof-of-concepts have been reported that do not target PPIn normalization, such 

as downregulation/normalization of DNM2 (31), expression of catalytic dead MTM1-C375S 

(15) or inhibition of autophagy (38). Thus, it is also possible that the exogenously expressed 

MTMR2-L or MTMR2-S act in a PPIn-independent way to improve the Mtm1 KO 

phenotypes. Of note, the MTM1-C375S dead-phosphatase mutant does not improve the triad 

shape that is well rescued upon expression of active MTM1 or MTMR2-S, supporting an 

important role of PPIn at the triad.  

 

MTMR2 as a novel therapeutic target for myotubular myopathy 

Here we provide the proof-of-concept that MTMR2 could be used as a therapeutic target. 

Intramuscular AAV transduction of human MTMR2 into Mtm1 KO mice greatly improved 

the phenotypes, supporting the rescue is cell autonomous in muscle. While this actual protocol 

aimed to investigate the cell autonomous compensation by MTMR2 through intramuscular 

injection, it was not possible to determine the extent of the rescue and the long-term potential 
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of MTMR2-mediated rescue as Mtm1 KO mice die at around 2 months most probably from 

respiratory failure and feeding defect. Complementation of myotubular myopathy by 

recombinant MTM1 or MTM1 re-expressed from injected AAVs were previously proposed as 

potential therapies (39, 40). Expression of MTMR2 in muscle could be an attractive 

alternative that may not elicit immune response against the transgene, as the majority of 

patients with myotubular myopathy have a strong decrease or a total loss of MTM1 (41, 42). 

Our data support that MTMR2-S isoform has a better rescuing ability than the main described 

MTMR2-L isoform and is a naturally occurring variant, including in muscle. Since MTMR2-

S transcripts are decreased in the Mtm1 KO muscles, a potential strategy will be to promote 

their expression by modulation of MTMR2 alternative splicing or exogenous expression. 

Alternatively, since MTMR2 ameliorates the myopathy due to the lack of MTM1, it would be 

interesting to test whether MTM1 delivery may be a therapeutic option for CMT4B caused by 

MTMR2 mutations. 

 

Materials and methods 

Ethic statement 

Mice were humanely killed by cervical dislocation after injection of pentobarbital, according 

to national and European legislations on animal experimentation. 

Sample collection was performed with written informed consent from the patients or parents 

according to the declaration of Helsinki. The 3 XLCNM patients had the following mutations 

in MTM1:  

 

Plasmids and constructs  

The human MTM1 (1812 bp, 603 aa) and MTMR2-L (1932 bp, 643 aa) ORFs were cloned into 

the pDONR207 plasmid (Invitrogen, Carlsbad, CA) to generate entry clones (pSF108 and 

pSF98 respectively). The pDONR207-MTMR2-S (1716 bp, 571 aa, pSF101) has been 
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obtained by site-directed mutagenesis on MTMR2-L into the pSF98 vector, to delete the 216 

first nucleotides corresponding to the 72 first amino acids. Gateway system (Invitrogen, 

Carlsbad, CA) was used to clone the different myotubularin constructs into yeast destination 

expression vectors pAG424GPD-ccdB-EGFP (43) and pVV200 (44) obtained from the 

European Saccharomyces cerevisiae Archive for Functional Analysis EUROSCARF, or into a 

pAAV-MCS vector (CMV promoter). All constructs were verified by sequencing. The 

pCS211 DsRED-FYVE plasmid was previously described (27). 

 

Antibodies  

Primary antibodies used were rabbit polyclonal anti-MTM1 (2827), mouse monoclonal anti-

MTMR2 (4G3), mouse monoclonal anti-phosphoglycerate Kinase 1 (PGK1, Invitrogen) and 

mouse monoclonal anti-glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH, Chemicon 

by Merk Millipore, Darmstadt , Germany). Anti-MTM1 and anti-MTMR2 antibodies were 

made onsite at the antibodies facility of the Institut de Génétique et Biologie Moléculaire et 

Cellulaire (IGBMC). Anti-MTMR2 antibodies were raised against full length human MTMR2 

and validated in this study using transfected COS-7 cells. Secondary antibodies against mouse 

and rabbit IgG, conjugated with horseradish peroxidase (HRP) were obtained from Jackson 

ImmunoResearch Laboratories (West Grove, PA). 

 

 

In vivo models 

The S. cerevisiae ymr1Δ (MATα, ura3-52, leu2-3,112, his3-Δ200, trp1-Δ901, lys2-801, suc2-

Δ9 ymr1::HIS3) (14) and  WT (MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0) strains were grown 

at 30°C in rich medium (YPD): 1% yeast extract, 2% peptone, 2% glucose or synthetic drop-

out medium (SC): 0.67% yeast nitrogen base without amino acids, 2% glucose and the 

appropriate amino acids mixture to ensure plasmid maintenance. We did not use the ymr1Δ 

(MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0, ymr1::KanMX) in the BY4742 background from 
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the yeast systematic deletion collection, because it does not have the ymr1Δ phenotype 

described by Scott D Emr’s laboratory (14). 

In this study we used wild-type and Mtm1 KO 129 PAS mice. The Mtm1 KO mice are 

characterized by a progressive muscle atrophy and weakness starting at 2-3 weeks and leading 

to death by 8 weeks (30). Animals were housed in a temperature-controlled room (19–22°C) 

with a 12:12-h light/dark cycle.  

 

 

Bioinformatics analysis 

Expression levels of MTMR2 mRNA isoforms was obtained by mining the Genotype-Tissue 

Expression (GTEx, www.gtexportal.org/home/) database, which has been built by systematic 

RNA-sequencing using samples of 51 different tissues from hundreds of donors and two 

transformed cell types in culture. We then used this data to calculate the relative expression of 

MTMR2 mRNA isoforms in the 20 most relevant tissues, and to create a heat map underlining 

in which tissue a specific isoform is the most/least expressed. 

Alignment of the N-terminal part of MTM1, MTMR2-L and MTMR2-S was done using 

Jalview (www.jalview.org/) and aligning amino acids were identified by Clustalx color 

coding. 

 

Expression analysis 

Total RNA was purified from tibialis anterior (TA) muscle and liver of 7 week-old wild-type 

and Mtm1 KO mice, or from muscle biopsies of XLCNM patients and controls, using trizol 

reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. cDNAs were 

synthesized from 500 ng of total RNA using Superscript II reverse transcriptase (Invitrogen) 

and random hexamers.  

PCR amplification of 1/10 diluted cDNA from TA muscle and liver was performed using a 

forward primer from the 5’-UTR of MTMR2: 5’-AGCGGCCTCCAGTTTCTCGCGC-3’ and 
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a reverse primer from exon 3: 5’-TCTCTCCTGGAAGCAGGGCTGGTTCC-3’, for 35 cycles 

of amplification at 72°C (and 65°C as melting temperature) and 30 min of final extension at 

72°C, as previously described (23). The products were analyzed on a 2% agarose gel, each 

band has been purified using Nucleospin Gel and PCR cleanup kit (Macherey-Nagel, Düren, 

Germany), then cloned into a pJet2.1 vector using the CloneJet PCR cloning kit 

(ThermoFisher Scientific, Waltham, MA), and sequenced by Sanger. 

Quantitative PCR amplification of 1/10 diluted cDNAs from mouse TA muscles or human 

muscle biopsies was performed on Light-Cycler 480 II instrument (Roche, Basel, Swiss) 

using 53°C as melting temperature. Specific sets of primers were used for each mouse 

MTMR2 isoform: forward 5’-GACTCACTGTCCAGTGCTTC-3’ and reverse 5’-

CCTCCCTCAGGACCCTCA-3’ for mouse V1, forward 5’-

GACTCACTGTCCAGTGCTTC-3’ and reverse 5’-CAGCTGGGCACTCCCTCA-3’ for 

mouse V2, forward 5’-AAGATAAAACATCTCAAAAATTATAATTGCTTC-3’ and reverse 

5’-CAGCTGGGCACTCCCTCA-3’ for mouse V3, forward 5’-

AAGATAAAACATCTCAAAAATTATAATTGCTTC-3’ and reverse 5’-

GACTCACTGTCCAGTGCTTC-3’ for mouse V4. Another set of primers (forward 5’-

TCCTGTGTCTAATGGCTTGC-3’ and reverse 5’-AACCAAGAGGGCAGGATATG-3’) 

amplifying a sequence common to all mouse isoforms has been used to quantify total mouse 

MTMR2. Other specific sets of primers were used for each human MTMR2 isoform: forward 

5’-ACTCCTTGTCCAGTGCCTC-3’ and reverse 5’-GACTCCCTCAGGACCCTC-3’ for 

human V1, forward 5’-AAGATAAAACATCTCAAAAATTATAATTGCCTC-3’ and reverse 

5’-GACTCCCTCAGGACCCTC-3’ for human V2, forward 5’-

AAGATAAAACATCTCAAAAATTATAATTGCCTC-3’ and reverse 5’-

GAGCGAGACTCCCTCCTC-3’ for human V3, forward 5’-

AAGATAAAACATCTCAAAAATTATAATTGCCTC-3’ and reverse 5’-
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CTGGACTGCATGGGCCTC-3’ for human V4. Another set of primers (forward 5’-

TTTCCTGTCTCTAATAACCTGCC-3’ and reverse 5’-CCAGGAGGGCAGGGTATG-3’) 

amplifying a sequence common to all human isoforms has been used to quantify total human 

MTMR2. For all qPCR, the HPRT gene expression was used as control because of the non-

variation in its expression between control and XLCNM muscles. 

 

Western blot 

Total proteins were extracted from yeast cells (OD600nm=0.5-0.9, minimum 3 clones per 

construct) by TCA precipitation and NaOH lysis (45), and from TA muscles (minimum 10 

muscles per construct) by homogenization in RIPA buffer using a tissue homogenizer (Omni 

TH, Kennesaw, GA). Protein lysates were analyzed by SDS-PAGE and Western blotting on 

nitrocellulose membrane. Proteins were detected using primary antibody (anti-MTM1 1/500, 

anti-MTMR2 1/1000, anti-PGK1 1/1000 and anti-GAPDH 1/1000) followed by incubation 

with the secondary antibody coupled to HRP, and extensive washing. Membranes were 

revealed by ECL chemiluminescent reaction kit (Supersignal west pico kit, ThermoFisher 

Scientific, Waltham, MA).  

 

Yeast phenotyping 

ymr1Δ yeast cells were transformed using the LiAc-PEG method (46) by yeast expression 

plasmids pAG424GPD-ccdB-EGFP (2µ, GFP tag at C-ter) or pVV200 (2µ, no tag) containing 

MTM1, MTMR2-L or MTMR2-S cDNA. Yeast cells transformed by empty plasmids were 

used as controls.  

For vacuole staining, 1 OD600nm unit of cells was harvested by a 500xg centrifugation for 1 

min, incubated in 50 µl YPD medium with 2 µl FM4-64 (200 µM, Invitrogen) for 15 min at 

30°C, prior washing with 900 µl YPD and chasing by incubation at 30°C for 10 min followed 

by a second wash in SC complete medium, the stained living yeast cells were observed by 
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fluorescent microscopy. Between 100 and 600 cells per clone (three different clones per 

construct) were counted and classified into two categories: large or medium unilobar vacuole, 

and small or fragmented vacuole. 

For PtdIns3P quantification, yeast cells were co-transformed by a pVV200 plasmid (empty or 

containing MTM1, MTMR2-L or MTMR2-S cDNA) and the pCS211 plasmid expressing the 

DsRED-FYVE reporter for PtdIns3P-enriched membrane structures (27). After fluorescence 

microscopy, the number of dots per cell was quantified on minimum 100 cells per clone (2 

different clones per construct). 

For PtdIns5P quantification, yeast ymr1Δ cells producing the different MTM1 and MTMR2 

constructs were grown to exponential phase. Lipid extraction was done as described in Hama 

et al. on 200 OD600nm units of cells (47). Quantification of the PtdIns(5)P level was performed 

as described by Morris et al. (48) and the results were normalized based on the total lipid 

concentration. 

All fluorescence microscopy observations were done with 100X/1.45 oil objective (Zeiss) on 

a fluorescence Axio Observer D1 microscope (Zeiss) using GPF or DsRED filter and DIC 

optics. Images were captured with a CoolSnap HQ2 photometrix camera (Roper Scientific) 

and treated by ImageJ (Rasband W.S., ImageJ, U. S. National Institutes of Health, Bethesda, 

Maryland, USA, http://imagej.nih.gov/ij/). 

 

PtdIns3P quantification by ELISA in muscle extracts 

PtdIns3P Mass ELISAs were performed on lipid extracts from whole tibialis anterior (TA) 

muscle preparations according to the manufacturer's recommendations and using the PtdIns3P 

Mass ELISA kit (Echelon Biosciences, Salt Lake City, UT). TA muscles from 7 week-old 

wild-type of Mtm1 KO mice were weighed, grinded into a powder using a mortar and pestle 

under liquid nitrogen and then incubated in ice cold 5% TCA to extract lipids. Extracted lipids 

were resuspended in PBS-T with 3% protein stabilizer and then spotted on PtdIns3P Mass 
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ELISA plates in duplicates. PtdIns3P levels were detected by measuring absorbance at 450 

nm on a plate reader. Specific amounts were determined by comparison of values to a 

standard curve generated with known amounts of PtdIns3P.  

 

AAV production 

rAAV2/1 vectors were generated by a triple transfection of AAV-293 cell line with pAAV2-

insert containing the insert under the control of the CMV promoter and flanked by serotype-2 

inverted terminal repeats, pXR1 containing rep and cap genes of AAV serotype-1, and 

pHelper encoding the adenovirus helper functions. Viral vectors were purified and quantified 

by real time PCR using a plasmid standard pAAV-eGFP. Titers are expressed as viral 

genomes per ml (vg/ml) and rAAV titers used here were 5-7.1011 vg/ml. 

 

AAV transduction of tibialis anterior muscles of wild-type and Mtm1 KO mice 

Two- to 3-week-old wild-type or Mtm1 KO male 129PAS mice were anesthetized by 

intraperitoneal injection of 5 ml/g of ketamine (20 mg/mL; Virbac, Carros, France) and 

xylazine (0.4%, Rompun; Bayer, Wuppertal, Germany). Tibialis anterior (TA) muscles were 

injected with 20 ml of AAV2/1 preparations or sterile AAV2/1 empty vector. Four weeks 

later, mice were anesthetized and the TA muscle was either functionally analyzed (as 

described below), or directly dissected and frozen in nitrogen-cooled isopentane for histology, 

or fixed for electron microscopy (as described below). 

 

Functional analysis of the muscle 

Muscle force measurements were evaluated by measuring in situ muscle contraction in 

response to nerve and muscle stimulation, as described previously (31). Animals were 

anesthetized by intraperitoneal injection of pentobarbital sodium (50 mg per kg). The distal 

tendon of the TA was detached and tied with a silk ligature to an isometric transducer 

(Harvard Bioscience, Holliston, MA). The sciatic nerve was distally stimulated, response to 
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tetanic stimulation (pulse frequency of 50 to 143 Hz) was recorded, and absolute maximal 

force was determined. After contractile measurements, the animals were sacrificed by cervical 

dislocation. To determine specific maximal force, TA muscles were dissected and weighed. 

 

Histology 

Transverse cryosections (9 µm) of mouse TA skeletal muscles were stained with hematoxylin 

and eosin (HE) or Succinate dehydrogenase (SDH) and viewed with a NanoZoomer 2.0HT 

slide scanner (Hamamatsu, Hamamatsu city, Japan). Fiber area was analyzed on HE sections, 

using the RoiManager plugin of ImageJ image analysis software. The percentage of peripheral 

nuclei was counted using the cell counter plugin of ImageJ image analysis software. 

 

Electron microscopy 

TA muscles of anesthetized mice were fixed with 4% PFA and 2.5% glutaraldehyde in 0.1 M 

phosphate buffer (pH 7.2) and processed as described (49). Ratio of triads/sarcomere was 

calculated by dividing number of triad structure identified by the total number of sarcomere 

present on the section (2 mice per genotype, minimum 10 fibers analyzed per mice, minimum 

20 triads per fiber). 

 

Statistical analysis 

Data are mean ± s.e.m. or ± SD as noted in the figure legend. Statistical analysis was 

performed using 1-way ANOVA followed by Tukey's multiple comparisons test for all data 

except for the expression analysis (Fig. 6B-C) where an unpaired 2-tailed Student’s t test was 

performed. A P value less than 0.05 was considered significant. 
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Figure legends 

 

Figure 1: MTMR2 splicing isoforms are differentially expressed and encode for long and 

short protein isoforms. (A) Comparative expression of MTMR2 mRNA isoforms V1 to V4 

in 20 human tissues from GTEx database mining (top). Human MTMR2 V2 isoform contains 

additional exons 1a and 2a compared to V1, V3 contains exon 1a and V4 contains exons 1a 

and 2b. Tissue expression of each isoform independently (bottom). (B) Protein domains 

MTMR2-L encoded by V1 mRNA isoform, and MTMR2-S encoded by the other isoforms, 

compared to MTM1. 

 

Figure 2: Short but not long MTMR2 isoform displays an MTM1-like activity. 

Exogenous expression of human MTM1 and MTMR2 long and short isoforms using the high 

copy number plasmid 2µ in ymr1Δ yeast cells. (A) Detection of exogenously expressed 

human myotubularins by western blot using anti-MTM1 or anti-MTMR2 antibodies, in two 

independents blots with the same samples. Wild-type (WT) and ymr1Δ yeast strains with 

empty vectors are used as controls. Pgk1p is used as a loading control. This blot is 

representative of at least 3 independent experiments. (B) Quantification of vacuolar 

morphology in yeast cells over-expressing untagged myotubularins. Three clones analyzed 

per constructs; the number of cells counted per clone is indicated above. Data represent means 

± s.e.m. ****p<0.0001, ns not significant (ANOVA test). (C) Localization of GFP-tagged 

human myotubularins. Vacuole morphology is assessed by the lipophilic dye FM4-64 and 

Nomarski differential contrast. ymr1Δ yeast cells and MTMR2-L expressing cells display a 

fragmented vacuole while MTM1 and MTMR2-S over-expressing cells have a large vacuole. 

(D) FYVE punctuated localization in yeast clones expressing untagged myotubularins and 

DsRED-tagged FYVE domain that specifically binds PtdIns3P. (E) PtdIns3P quantification 

by counting the number of FYVE-positive dots per cell, as represented in (D). . PtdIns3P is 



29 
 

decreased upon MTM1 and MTMR2-S expression but not with MTMR2-L. Data represent 

means ± s.e.m. *p<0.05, **p<0.01 (ANOVA test). (F) PtdIns5P quantification by mass assay 

on total lipid extract from yeast cells over-expressing untagged myotubularins. Three clones 

analyzed per constructs. Data represent means ± s.e.m. *p<0.05 (ANOVA test). 

 

Figure 3: The MTMR2 short isoform rescues muscle weight and force similarly as 

MTM1 in the Mtm1 KO myopathic mouse. TA muscles from 2-3 week-old Mtm1 KO mice 

were injected with AAV2/1 expressing myotubularins and analyzed 4 weeks later. (A) 

Detection of exogenously expressed human myotubularins by western blot using anti-MTM1 

or anti-MTMR2 antibodies; GAPDH is used as a loading control. Unspecific bands are 

indicated by a star. This blot is representative for each construct, and at least 10 muscles per 

construct were analyzed. (B) Ratio of muscle weight of TA expressing human myotubularins 

compared to the contralateral leg injected with empty AAV. MTMR2-S improved muscle 

mass similarly as MTM1 while MTMR2-L had no effect. A value of 1 was set for the Mtm1 

KO mice injected with empty AAV. n>10. Data represent means ± s.e.m. ****p<0.0001, ns 

not significant (ANOVA test). (C) Specific maximal force of TA muscle (absolute values). 

Both MTMR2 isoforms improved muscle force. n>7. Data represent means ± s.e.m. 

**p<0.01, ****p<0.0001, ns not significant (ANOVA test). 

 

Figure 4: Both long and short MTMR2 isoforms improve the histological hallmarks of 

the Mtm1 KO mouse. TA muscles from Mtm1 KO mice were injected with AAV2/1 

expressing myotubularins 2-3 week-old and analyzed 4 weeks later. (A) Hematoxylin-eosin 

staining of TA muscle sections. Scale bar 100 µm. (B) Succinate dehydrogenase (SDH) 

staining of TA muscle sections. Scale bar 100 µm. (C) Quantification of fiber area. Fiber size 

is grouped into 200 µm2 intervals and represented as a percentage of total fibers in each 

group. n>1000 for 8 mice. (D) Percentage of fibers above 800 µm2. n>8. Data represent 
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means ± s.e.m. *p<0.05, ***p<0.001, ****p<0.0001 (ANOVA test). The value for WT is 

statistically different from all Mtm1 KO injected groups. (E) Nuclei positioning in TA muscle. 

Percentage of well-positioned peripheral nuclei. n>6 animals. Data represent means ± s.e.m. 

***p<0.001, ****p<0.0001 (ANOVA test). The value for WT is statistically different from 

all Mtm1 KO injected groups. 

 

Figure 5: MTMR2 isoforms rescue the muscle ultrastructure and triad morphology of 

the Mtm1 KO muscles. TA muscles from Mtm1 KO mice were injected with AAV2/1 

expressing myotubularins. (A) Electron microscopy pictures displaying sarcomere, 

mitochondria and triad organization. Scale bar 1 µm. Representative triads are displayed in 

the zoom square. (B) Quantification of the number of well-organized triads per sarcomere. 

n>20 images for 2 mice each. All muscles expressing myotubularins quantify differently than 

the Mtm1 KO. Data represent means ± s.e.m. *p<0.05, ****p<0.0001 (ANOVA test). 

 

Figure 6: The MTMR2-S short isoform is reduced in the Mtm1 KO mouse and its 

overexpression normalizes PtdIns3P level. (A) Quantification of PtdIns3P level by 

competitive ELISA in TA muscles from Mtm1 KO mice expressing different myotubularins 

and in WT muscles. n>3 mice. Data represent means ± s.e.m. *p<0.05, **p<0.01, ***p<0.001 

(ANOVA test). PtdIns3P levels in Mtm1 KO muscles expressing the different myotubularins 

are not statistically different from the WT controls. (B) Quantification by qRT-PCR of 

MTMR2 isoforms (V1 to V4) in the TA muscle of Mtm1 KO mice compared to WT mice. 

n>6. Each isoform is presented as an independent ratio, with a value of 1 set for expression in 

WT mice. Data represent means ± s.d. **p<0.01, ***p<0.001, ****p<0.0001, ns not 

significant (Student’s t-test). (C) Quantification by qRT-PCR of MTMR2 isoforms (V1 to 

V4) in muscles of MTM1 patients compared to controls. N=3. Each isoform is presented as an 
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independent ratio, with a value of 1 set for expression in control patients. Data represent 

means ± s.d. The P value is indicated for each isoform (Student’s t-test). 
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Table 1: Rescuing effects of MTM1 and MTMR2 isoforms on several hallmarks of 

myotubular myopathy. 

 

Mtm1 KO + 

empty AAV 

Mtm1 KO + 

MTM1 

Mtm1 KO + 

MTMR2-L 

Mtm1 KO + 

MTMR2-S 

WT + empty 

AAV 

Muscle weight - ++ - ++ +++ 

Muscle force - ++ + ++ +++ 

Fiber size - ++ + + +++ 

Nuclei  

positioning 

- ++ ++ ++ +++ 

Number of well-

organized 

triads/sarcomere 

- ++ + ++ +++ 

PtdIns3P level - +++ ++ +++ +++ 

  “+,++,+++”: increasing rescuing ability of myotubularins, ranging from “-“: no rescue to 

“+++”: WT phenotype 
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Supplementary Figure S1: MTMR2 mRNA and protein isoforms in human and mouse. (A) Genomic 

structure and mRNA isoforms of MTMR2 in mouse. Inclusion of any combination of the alternative exons 1a 

or 2a brings a premature stop codon and unmasks an alternative start site in exon 3. Murine MTMR2 V1 

encodes for the MTMR2-L while isoforms V2 to V4 encode for MTMR2-S. (B) Protein alignment of the N-

terminal region of human and mouse MTM1, MTMR2-L and MTMR2-S. The PH-GRAM domain starts at 

position 75. (C) Sequence of mouse alternative exons 1a and 2a from sequencing of RT-PCR products from 

muscle. (D) PCR between exons 1 and 3 of MTMR2 on cDNA from TA muscles isolated from WT and Mtm1 

KO mice and from WT liver. The 4 mRNA variants are detected. 

 

 

Supplementary Figure S2: Expression of MTMR2 isoforms does not induce muscle hypertrophy in WT 

mice. TA muscles from WT mice were injected with AAV2/1 expressing myotubularins at 3 week-old and 

analyzed 4 weeks later. Ratio of muscle weight of TA expressing human myotubularins compared to the 

contralateral leg injected with empty AAV. A value of 1 is set for the WT TA muscle weight. n>5. Data 

represent means ± s.e.m. No significant differences (ANOVA test). 

 



 

 

 

Matthieu RAESS 
Deciphering the functional and 

molecular differences between MTM1 
and MTMR2 to better understand two 

neuromuscular diseases. 

 

Résumé 
MTM1 et MTMR2 sont 2 phosphatases de phosphoinositides appartenant à la famille des 

myotubularines, conservée pendant l’évolution. Bien qu’étant très similaires, des mutations dans MTM1 

entraînent la sévère myopathie XLCNM alors que les mutations dans MTMR2 entraînent la neuropathie 

CMT4B. On ne comprend pas encore les bases moléculaires de cette spécificité de tissu, et il n’existe aucun 

traitement spécifique pour ces maladies. 

J’ai tout d’abord caractérisé l’activité des 2 isoformes endogènes de MTMR2, nommés MTMR2-L et 

MTMR2-S. J’ai démontré que la différence fonctionnelle entre MTM1 et MTMR2 s’explique principalement 

par l’extension N-terminale de MTMR2, et que l’isoforme MTMR2-S dépourvu de cette extension entraîne les 

mêmes phénotypes que MTM1. Ensuite, grâce à l’injection d’AAV dans les souris Mtm1 KO, j’ai démontré 

que l’expression exogène des isoformes de MTMR2, et surtout de MTMR2-S, améliore grandement l’atrophie 

musculaire, la force musculaire et les marqueurs histologiques de ces souris myopathiques. 

Ces résultats révèlent une première base moléculaire expliquant les spécificités fonctionnelles de 

MTM1 et MTMR2, et montrent que MTMR2 est une cible thérapeutique potentielle pour la myopathie 

XLCNM. 

Mots-clés : myopathie centronucléaire liée à l’X, myotubularine, phosphoinositides, thérapie génique. 
 

 

Abstract 
MTM1 and MTMR2 are 2 phosphatases of phosphoinositides that belong to the myotubularin family 

conserved through evolution. Despite their high level of similarity, mutations in MTM1 lead to the severe 

XLCNM myopathy while mutations in MTMR2 lead to the CMT4B neuropathy. The molecular bases for the 

surprising tissue-specific functions of these ubiquitously expressed proteins was unclear. Moreover, there is no 

specific therapy for these diseases. 

I first characterized the activity of the two naturally occurring isoforms of MTMR2, that we named 

MTMR2-L (long) and MTMR2-S (short). I found that the functional differences between MTM1 and 

MTMR2 reside mostly in the N-terminal extension of MTMR2-L, and that the endogenous MTMR2-S 

isoform lacking this N-terminal extension behaves similarly as MTM1. Then, using the myopathic Mtm1 KO 

mouse and AAV-mediated expression, I showed that exogenous expression of MTMR2 isoforms, and 

specifically of MTMR2-S, strongly improved the muscle atrophy, muscle force and the histological 

hallmarks of the myopathic mice. 

These data reveal a first molecular basis for the functional specificities of MTM1 and MTMR2, and 

highlight MTMR2 as a therapeutic target for XLCNM myopathy. 

Key words: X-linked centronuclear myopathy, myotubularin, phosphoinositides, gene therapy. 
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