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Abstract

Sign Languages (SLs) have developed naturally in Deaf communities. With no written

form, they are oral languages, using the gestural channel for expression and the visual

channel for reception. These poorly endowed languages do not meet with a broad consensus

at the linguistic level. They make use of lexical signs, i.e. conventionalized units of

language whose form is supposed to be arbitrary, but also – and unlike vocal languages,

if we don’t take into account the co-verbal gestures – iconic structures, using space to

organize discourse. Iconicity, which is defined as the existence of a similarity between the

form of a sign and the meaning it carries, is indeed used at several levels of SL discourse.

Most research in automatic Sign Language Recognition (SLR) has in fact focused on

recognizing lexical signs, at first in the isolated case and then within continuous SL. The

video corpora associated with such research are often relatively artificial, consisting of the

repetition of elicited utterances in written form. Other corpora consist of interpreted SL,

which may also differ significantly from natural SL, as it is strongly influenced by the

surrounding vocal language.

In this thesis, we wish to show the limits of this approach, by broadening this perspective

to consider the recognition of elements used for the construction of discourse or within

illustrative structures.

To do so, we show the interest and the limits of the corpora developed by linguists. In

these corpora, the language is natural and the annotations are sometimes detailed, but

not always usable as input data for machine learning systems, as they are not necessarily

complete or coherent. We then propose the redesign of a French Sign Language dialogue

corpus, Dicta-Sign-LSF-v2, with rich and consistent annotations, following an annotation

scheme shared by many linguists.

We then propose a redefinition of the problem of automatic SLR, consisting in the recog-

nition of various linguistic descriptors, rather than focusing on lexical signs only. At the

same time, we discuss adapted metrics for relevant performance assessment.

In order to perform a first experiment on the recognition of linguistic descriptors that are

not only lexical, we then develop a compact and generalizable representation of signers in

videos. This is done by parallel processing of the hands, face and upper body, using existing

tools and models that we have set up. Besides, we preprocess these parallel representations

to obtain a relevant feature vector. We then present an adapted and modular architecture

for automatic learning of linguistic descriptors, consisting of a recurrent and convolutional

neural network.

Finally, we show through a quantitative and qualitative analysis the effectiveness of the

proposed model, tested on Dicta-Sign-LSF-v2. We first carry out an in-depth analysis of
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the parameterization, evaluating both the learning model and the signer representation.

The study of the model predictions then demonstrates the merits of the proposed approach,

with a very interesting performance for the continuous recognition of four linguistic de-

scriptors, especially in view of the uncertainty related to the annotations themselves. The

segmentation of the latter is indeed subjective, and the very relevance of the categories

used is not strongly demonstrated. Indirectly, the proposed model could therefore make

it possible to measure the validity of these categories. With several areas for improve-

ment being considered, particularly in terms of signer representation and the use of larger

corpora, the results are very encouraging and pave the way for a wider understanding of

continuous Sign Language Recognition.

Keywords: Sign Language Recognition, Continuous Sign Language, Iconicity, Sign Lan-

guage Linguistics, Signer Representation, Recurrent Neural Networks



Résumé

Les langues des signes (LS) se sont développées naturellement au sein des communautés de

Sourds. Ne disposant pas de forme écrite, ce sont des langues orales, utilisant les canaux

gestuel pour l’expression et visuel pour la réception. Ces langues peu dotées ne font pas

l’objet d’un large consensus au niveau de leur description linguistique. Elles intègrent

des signes lexicaux, c’est-à-dire des unités conventionnalisées du langage dont la forme est

supposée arbitraire, mais aussi – et à la différence des langues vocales, si on ne considère

pas la gestualité co-verbale – des structures iconiques, en utilisant l’espace pour organiser

le discours. L’iconicité, ce lien entre la forme d’un signe et le sens qu’il porte, est en effet

utilisée à plusieurs niveaux du discours en LS.

La plupart des travaux de recherche en reconnaissance automatique de LS se sont en

fait attelés à reconnaitre les signes lexicaux, d’abord sous forme isolée puis au sein de

LS continue. Les corpus de vidéos associés à ces recherches sont souvent relativement

artificiels, consistant en la répétition d’énoncés élicités sous forme écrite, parfois en LS

interprétée, qui peut également présenter des différences importantes avec la LS naturelle.

Dans cette thèse, nous souhaitons montrer les limites de cette approche, en élargissant

cette perspective pour envisager la reconnaissance d’éléments utilisés pour la construction

du discours ou au sein de structures illustratives.

Pour ce faire, nous montrons l’intérêt et les limites des corpus de linguistes : la langue y

est naturelle et les annotations parfois détaillées, mais pas toujours utilisables en données

d’entrée de système d’apprentissage automatique, car pas nécessairement cohérentes. Nous

proposons alors la refonte d’un corpus de dialogue en langue des signes française, Dicta-

Sign-LSF-v2, avec des annotations riches et cohérentes, suivant un schéma d’annotation

partagé par de nombreux linguistes.

Nous proposons ensuite une redéfinition du problème de la reconnaissance automatique

de LS, consistant en la reconnaissance de divers descripteurs linguistiques, plutôt que de

se focaliser sur les signes lexicaux uniquement. En parallèle, nous discutons de métriques

de la performance adaptées.

Pour réaliser une première expérience de reconnaissance de descripteurs linguistiques non

uniquement lexicaux, nous développons alors une représentation compacte et généralisable

des signeurs dans les vidéos. Celle-ci est en effet réalisée par un traitement parallèle

des mains, du visage et du haut du corps, en utilisant des outils existants ainsi que des

modèles que nous avons développés. Un prétraitement permet alors de former un vecteur

de caractéristiques pertinentes. Par la suite, nous présentons une architecture adaptée

et modulaire d’apprentissage automatique de descripteurs linguistiques, consistant en un

réseau de neurones récurrent et convolutionnel.
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Nous montrons enfin via une analyse quantitative et qualitative l’effectivité du modèle

proposé, testé sur Dicta-Sign-LSF-v2. Nous réalisons en premier lieu une analyse appro-

fondie du paramétrage, en évaluant tant le modèle d’apprentissage que la représentation

des signeurs. L’étude des prédictions du modèle montre alors le bien-fondé de l’approche

proposée, avec une performance tout à fait intéressante pour la reconnaissance continue

de quatre descripteurs linguistiques, notamment au vu de l’incertitude relative aux anno-

tations elles-mêmes. La segmentation de ces dernières est en effet subjective, et la perti-

nence même des catégories utilisées n’est pas démontrée de manière forte. Indirectement,

le modèle proposé pourrait donc permettre de mesurer la validité de ces catégories. Avec

plusieurs pistes d’amélioration envisagées, notamment sur la représentation des signeurs

et l’utilisation de corpus de taille supérieure, le bilan est très encourageant et ouvre la voie

à une acception plus large de la reconnaissance continue de langue des signes.

Mots-clefs : Reconnaissance de langue des signes, Langue des signes continue, Iconicité,

Linguistique des langues des signes, Représentation du signeur, Réseaux de neurones

récurrents
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Introduction

This thesis concludes a research project in a sub-domain of Artificial Intelligence, namely Natural

Language Processing (NLP). It focuses on Sign Languages (SLs) with most experiments carried out

on French Sign Language (LSF).

Contrary to popular belief, SLs are in no way coding systems and have not been invented by anyone.

They have instead developed naturally inside Deaf communities and, like other natural languages,

they fit into historical, geographical and political environments. Granted, since these environments

are partly shared with hearing people, each SL is, to some extent, influenced by the co-occurrent vocal

language(s). However, because of the very specific visual-gestural modality, SLs hardly fall into the

linguistic frameworks used to describe vocal languages.

Perhaps partly because of misconceptions about SLs and the fact that SLs are poorly endowed lan-

guages, the field of Sign Language Recognition (SLR) has mostly focused on the recognition of lexical

signs, which are conventionalized units that could loosely be compared to words. Yet, if SLR is con-

sidered as a step towards Sign Language Understanding (SLU) and Sign Language Translation (SLT),

this approach is bound to be ineffective. Indeed, SLs are much more than sequences of signed words:

they are iconic languages, that use space to organize discourse benefitting from the use of multiple

simultaneous language articulators.

Therefore – and bearing in mind that the recognition of lexical signs alone remains a rather complicated

task – to what extent can we propose and experiment a redefinition of SLR, so that it effectively points

towards SLU and SLT? This is the main question addressed in this thesis, that we have organized into

three parts.

Part I aims to introduce the context behind this research, and present the state of the art in the field

of SLR. In Chapter 1, we elaborate on what SLs are, through their specific modality, sociolinguistic

matters and different levels of observed variety. Then, we discuss Sign Language Processing (SLP) in

a general way, especially the objectives the implications of processing poorly endowed languages. In

Chapter 2, we dive into the linguistics of SLs. The evolution in the linguistic theories is first presented

with and emphasis on iconicity, then we highlight the challenges these theories imply for the field

of SLR. Relatedly, we discuss how SLs can be transcribed and annotated. Chapter 3 then details

the state of the art in automatic SLR, outlining the general framework then the usual acceptation of

SLR, that we call Isolated Lexical Sign Recognition (ILSR) and Continuous Lexical Sign Recognition

(CLexSR). This chapter ends with a discussion of the few experiments that fall outside this framework.

Our proposed approach to answer the above research question is then developed in Part II. Valuable

27



natural SL corpora made by linguists that include detailed annotations are first presented in Chap-

ter 4 along with their intrinsic limits, then a SLR-oriented remake of a LSF dialogue corpus that we

propose, Dicta-Sign–LSF–v2, is introduced. The strong assets of this corpus for SLR purposes are

highlighted in the same chapter. In Chapter 5, we reformulate the problem of SLR as the recognition

of parallel linguistic descriptors. We also discuss appropriate performance metrics and loss functions

for training models based on this approach. Motivated proposals for a compact learning framework

and a generalizable signer representation are then introduced in Chapter 6.

Finally, Part III is aimed at the validation and evaluation of the proposed approach, including the

redefined SLR acceptation, the signer representation and learning model, all based on the Dicta-Sign–

LSF–v2 corpus. This validation is first carried out quantitatively in Chapter 7, using metrics developed

in Part II, then more qualitatively in Chapter 8 through a detailed analysis of the predictions of our

model. Finally, perspectives for the future of SLR are drawn, hopefully accounting for a larger part

of SL linguistics.



Qu’importe la surdité de l’oreille quand l’esprit entend ?

La seule surdité, la vraie surdité, la surdité incurable,

c’est celle de l’intelligence.

Victor Hugo
Correspondence with Ferdinand Berthier (1843)





Part I

Sign? Language? Recognition?

31





Chapter 1
Sign Languages and Sign Language Processing

This first chapter consists in a short and general introduction on Sign Languages (SLs) and on Sign

Language Processing (SLP), leaving out detailed linguistic considerations for Chapter 2.

In the current chapter, the specific signed modality that SLs involve is first discussed in Section 1.1.1,

then ethical and sociolinguistic aspects are considered in Section 1.1.2 and the question of variety and

variability in SL is analyzed in Section 1.1.3. Finally, we reflect on the sense, objectives and current

limits of SLP in Section 1.2.1.

1.1 Sign Languages

First and foremost, we want to discuss a few generalities with respect to the specificities of SLs,

which can be defined as natural languages that originate in the communication between Deaf peo-

ple. Although we will sometimes refer to the particular case of French Sign Language (LSF), most

observations can actually be extended to all SLs.

1.1.1 A specific modality: signed languages

One of the most obvious ways to start the description of SLs is to analyze their specific modality.

They can be considered as a form of oral language, in the sense that they include both expressive

and receptive language. The expressive and receptive parts of traditional vocal languages are usually

referred to as speaking and listening. For Sign Languages they can respectively be referred to as

signing and watching. Also, oral may be understood as the opposite of written language, which is a

further argument for classifying sign languages as oral languages.

Thus, SLs form a face-to-face oral language, with a specific expressive-receptive gestural-visual modal-

ity (Figure 1.1). The many language articulators comprise hands, arms, shoulders, torso, head, face

and eyes.

In light of this discussion on the modality of SLs, we would like to raise a note of caution. Although

the name Sign Language might suggest a language made of signs – or gestures – with similar linear

structure as that of common vocal languages –, we feel that signed language could be more informative.

Indeed, as a result of their specific modality and the number of visual articulators, SLs hardly fit into

the formal framework used for the description of vocal languages. As this will be detailed in the next

chapter, SLs allow for a simultaneous use of different articulators while they make a strong use of
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Message

Sign Language

Channel

Gestural-visual modality

Sender

Gestural

Receiver

Visual

Context

Outside world

Figure 1.1: Sign Language: a face-to-face oral language, with a gestural-visual modality. Illustration
of Laurent Verlaine, from [Guitteny, 2006].

space and iconicity to construct discourse. We will however keep on using the name Sign Language

for the rest of this thesis, since it is predominantly used in the literature and the Deaf community.

1.1.2 Sociolinguistics of Sign Languages and Deaf identity

Because SLs have naturally developed within Deaf communities, originating in the communication

between Deaf people, they each have historical, geographical and political properties, like other natural

languages. What makes them fundamentally different is their intrinsic relationship to the absence of

the hearing modality.

Therefore, while deafness is clinically defined as the state of hearing loss – that is an audiological con-

dition –, Deafness is rather the affiliation to a linguistic, thus social, cultural, geographical, historical

and political community. In this sense, sociologists Bernard Mottez and Harry Markowicz have shown

that hearing loss is a form of shared handicap that SL contributes to dissolve [Mottez et al., 1990].

We have thus chosen to use the capital letter D when referring to Deaf people.

In fact, the Deaf identity described by Mottez and Markowicz [1979] has been shaped by and through

SL. This foundation is nevertheless very fragile. Indeed, SLs have not been officially recognized and

accepted until very recently, and only in some countries. In France, LSF has long been banned as a

language of instruction for deaf children (from 1880 to 1991) and its official recognition as a language

of France is very recent (2005)1.

As a result, studies on SL, whether on a linguistic level or in terms of automatic processing, are

understandably a sensitive subject. In this respect, we take a strong stance: our research is focused

on the language of the Deaf, rather than on an abstract and disembodied apprehension of language.

1Loi n°2005-102 du 11 février 2005 pour l’égalité des droits et des chances, la participation et la citoyenneté des
personnes handicapées https://www.legifrance.gouv.fr/eli/loi/2005/2/11/2005-102/jo
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M A X

(a) Fingerspelling for ”Max”

(b) The sign for FRIDAY (VENDREDI in French) initialized with the ”V” hand
shape

Figure 1.2: A few examples of the influence of French on French Sign Language (LSF): fingerspelling
and initialization with a letter from the French alphabet.

1.1.3 Variety of Sign Languages

Because Deaf people belong to national communities, it makes sense that SLs are somehow influenced

by – or, in a more neutral perspective, related to – the official language(s) of the associated countries.

Fingerspelling for proper nouns, variable levels of mouthing or the initialization of some signs by using

the manual alphabet of the official language are three examples of this influence (see Figure 1.2).

More generally, the Deaf and hearing people share numerous aspects of the national culture, which

obviously results in a certain degree of proximity between languages.

At the intra-national level, because of the lack of standardization in the national education of the Deaf,

regional varieties are easily observed, mostly with respect to the lexicon, with a strong relationship

to the history of important schools for the Deaf. As far as the grammar is concerned, the variability

is significantly lower [Schembri et al., 2010]. The same line of argument car be pursued regarding the

international comparison of different SLs, with even larger disparities on the lexical level, and different
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grammar usage, still within the linguistic constraints developed in Section 2.2.

1.2 Automatic Sign Language Processing

1.2.1 What, and for whom?

In Section 1.1.2, we insisted on the fact that language and identity are inherently related. Noting that

identity is never a neutral subject, research on SL – especially with applicative claims – should not be

conducted without questioning one’s objectives and their limitations.

A first goal for developing SLP systems is obviously to focus on applications, like Sign Language

Translation (SLT). As we will develop in Chapter 3, the best performing2 models for this task process

SL videos with a black box architecture.

On the other hand, one may consider the development of SLP systems as a way to advance both ap-

plications and language descriptions, thus excluding such black box frameworks. Indeed, determining

the key characteristics for Sign Language Recognition (SLR), for instance, can bring light on what

should be further analyzed by linguists – and vice versa. This is the direction that is followed in this

thesis.

Last, the issue of standardization of language is not to be overlooked. SLP systems are trained and

tested with SL corpora, that are not necessarily representative of the inner variability of SLs, and

with linguistic elicitation that can be highly constrained. Care should then be taken when extrapo-

lating trained SLP systems or making them publicly available. Typically, most SLR models detailed

in Chapter 3 focus on the recognition of lexical signs, which are fully conventional signs, equivalent

to common words in English. Potential users (signers) of such applicative models would thus be dis-

couraged to integrate natural illustrative structures – distinct from lexical signs – into their discourse,

for instance. More generally, it is clear that such systems are not neutral with respect to the use and

evolution of language.

1.2.2 Automatic Processing of Poorly Endowed Languages

Many difficulties faced by the field of automatic SLP actually stem from the fact that SLs are poorly

endowed languages. Indeed, research on SL in general is quite recent, whether on linguistic, historical

or sociological bases.

Because of the novelty of this research, linguistic descriptions of SLs are unfortunately lacking consen-

sus and robustness. SL corpora are few and limited in size and scope, which also adds to the absence

of written form of SLs. Even more significantly, a lot of research on machine intelligence and SLP has

been conducted by hearing researchers. At best, even the most experienced of them remain people

whose mother language is not a SL – with very rare exceptions like Professor Christian Vogler. At

worst, many of them are unaware of the linguistic complexity of these SLs and may design processing

systems with very poor – if any – linguistic relevance or real effective usability.

Conclusion

SLs are thus a very specific family of languages, with an original signed modality, no written form and

small communities of signers. Some SLs have been officially recognized and accepted very recently,

2There is still a very long way to go before reaching quality SLT.
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and few resources are available. The variety of SLs is also important, which is often neglected. For

these reasons, automatic SLP is still in its early stages.

In the next chapter, we will dive into the main key linguistics properties of SLs, and try to identify

the main challenges for SLR.
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Chapter 2
Linguistics of Sign Languages

In this chapter, we emphasize the different linguistic descriptions of SLs, and highlight the relationship

to automatic Sign Language Processing (SLP). In Section 2.1, we present three main approaches for

the description of SL linguistics, that differ from each other in their relationship with the linguistics

of traditional vocal languages and in the role they give to iconicity. The implications of the choice of

linguistic description on Sign Language Recognition (SLR) is outlined in Section 2.2, then we discuss

how SLs can be transcribed and annotated in Section 2.3.

2.1 Evolution in the description of Sign Languages

2.1.1 Signs as lexical units and arbitrariness – a parametric convergent approach

Historically, lexical units (or words) have been defined as the conventionalized minimal form-meaning

pairings found in a language, also referred to as free morphemes1. More precisely, they are the combi-

nation of meaningless units (phonemes), and their form is arbitrary, i.e. not motivated [De Saussure,

1916].

Stokoe [1960, 1972], in an effort to show that manual languages used by the Deaf communities in

the United States were proper languages with the same expressive power as spoken languages, and

drawing inspiration from the precursor work of Bébian [1825] with respect to the Deaf communities in

France, derived a phonology of SLs. His parametric theory indeed describes signs, that is meaningful

gestural units, as manual units, combination of the following three sub-lexical units, or parameters, or

components: hand location (at the beginning of the sign), hand shape and hand movement – trajectory

or hand transition. Minimal pairs of signs are then formed by the modification of a single component,

like minimal pairs of words are formed by changing a single phoneme. Signs can be bimanual (two-

handed) or unimanual (one-handed). In the latter case, the sign is then realized with the dominant

hand (the right – resp. left – hand for a right-handed – resp. left-handed – person).

A fourth parameter, the hand orientation, is then included by Battison [1974]. Battison also de-

velops on the specificities of bimanual signs versus unimanual signs, observing that the relationship

between the parameters of the two hands in bimanual signs is subject to either symmetry or dominance

constraints.

1Morphemes are the first level of meaningful units in language, and free morphemes are morphemes that can stand
alone as words.
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(a) Vehicle proform, used to
represent a car moving

(b) Person proform, used to show
a person diving

(c) Animal proform, used to rep-
resent an animal hoping

Figure 2.1: Very common proforms (classifiers) used in American Sign Language [Supalla, 1986]

This parametric approach, which is consistent with the structuralist theory, was subsequently adopted

by others, like Nève [1996] in France. In the words of Millet and Colletta [2002], it is referred to as

convergent approach, in the sense that it is based on the same theoretical concepts as those developed

for analyzing vocal languages – especially phonology and syntax. Because it is reliant on the Saussurian

definition of language, where arbitrariness is key, iconicity is set aside.

2.1.2 Iconic Sign Languages – a differentialist approach

Unlike the convergent approach, differentialists – as per Millet and Colletta [2002] – like Liddell [1998]

then Cuxac [1999, 2000]; Cuxac and Sallandre [2007]; Pizzuto et al. [2007], have chosen to describe the

linguistics of SLs without resorting to the epistemological tools usually employed for describing vocal

languages. In those models, a key concept is iconicity, that is the direct form-meaning association in

which the linguistic sign resembles the denoted referent in form.

Related claims had actually been made earlier for American Sign Language (ASL). The structuring

aspect of iconicity in ASL is for instance noted by DeMatteo [1977], who insisted that iconicity should

be taken into account in the grammar of ASL, not only as a component of it, but as its basis.

Macken et al. [1993] also proposed that ASL is a dual-representation language, with both Arbitrary

Conventional Symbols (ACSs) and Richly Grounding Symbols (RGSs).

The work of Cuxac is nonetheless unique, in that iconicity holds a pivotal role at every level of his

semiological model. On the one hand, iconicity is analyzed through a theory of intent – the illustrative

and non illustrative intents ; on the other hand, three types of iconicity are described, on a grammatical

level – imagic as opposed to degenerated iconicity, as well as diagrammatic iconicity.

2.1.2.1 The illustrative intent (imagic iconicity)

When there is a deliberate intent of showing, illustrating and demonstrating while telling, very iconic

structures are used in SL discourse. These Highly Iconic Structures (Structures de Grande Iconicité,

SGIs) are at the core of Cuxac’s theory. They are often referred to as transfers, in the sense that they

are assumed to result from the transfer of cognitive operations in the mental universe of imagery to

the three-dimensional signing space.

These transfers generally use proforms, that are very iconic hand shapes and generic forms used to

represent the form2 of a referent entity, similarly to a pronoun. Figure 2.1 shows three examples

2Either the general form of the referent entity – a flat hand for the ”car” proform in French Sign Language (LSF) –,
or some salient features of it – for instance the legs of a person in Figure 2.1b.
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of proforms in ASL. Very often, they are referred to in the literature as classifiers, while some au-

thors propose the more indicative expression property marker [Slobin et al., 2003]. Within transfers,

proforms are used together with other manual and non-manual parameters.

Three main categories of transfers are described by Cuxac, and illustrated in Figure 2.2:

Transfers of Form and Size (Ts-FS) use proforms to describe the shape, size and position

of entities. In Figure 2.2a, the signer draws a kind of sketch in space, representing the surface

of an object with her hands. The shape of her lips and cheeks, her partially closed eyes and her

lowered head emphasize the imposing character of this object.

Situational Transfers (Ts-S) are used to describe the movement and/or action of entities,

usually with the dominant hand, while the weak hand is used as a reference point. In frames 3

and 4 of Figure 2.2b, the weak (left) hand depicts a reference point, like the corner of a room,

while the dominant (right) hand uses a specific proform to represent a person, which is rotated

inside the depicted room to illustrate a person going round and round in circles.

Transfers of Persons (Ts-P) go one step further, with the signer playing the role of the de-

scribed entity, using many body articulators. This is the case in the four frames of Figure 2.2b,

where the signer enacts a bored person, which is particularly visible on her face expression (cheeks

and lips), her gaze looking away and her head moving side to side.

Ts-FS, Ts-S and Ts-P can then be combined into many sub-types of transfers, according to the signers’s

point of view and intent [Sallandre and Cuxac, 2002]. The eye gaze moving away from the addressee

to the signing space is also shown to be a property of transfers [Cuxac, 1999].

Other widely used expressions for transfers are:

• For Ts-FS: size-and-shape specifiers or size-and-shape classifier constructions [Supalla, 1986].

• For Ts-S: polycomponential signs [Slobin et al., 2003] or classifier predicates [Supalla, 1986].

• For Ts-P: role playing, referential shifts, role shifts or constructed action [Taub, 2001].

Because some authors may assimilate classifiers to classifier constructions, we prefer to use the distinct

expressions proforms and transfers in the rest of this thesis, as suggested by Sallandre [2006].

2.1.2.2 The non-illustrative intent (degenerated iconicity)

Without reducing the role of iconicity in SL discourse, early research [Frishberg, 1975] has shown

that, although many signs may originate from imitating or miming, their conventionalization is such

that they progressively lose their readily inferable meaning – that is their immediate iconic property

[Macken et al., 1993]. More recent research [Ortega, 2017; Östling et al., 2018], however, brings out

clear evidence of iconic origin in both SLs and vocal languages. They suggest the presence of a

continuum of iconicity across the lexicon of SLs, with various degrees. One should note that if a

wide proportion of conventional signs can be iconically motivated – by the physical structure of their

referents –, their form can still be seen as arbitrary. For instance, the lexical sign PLANE is iconically

motivated in British Sign Language (BSL), ASL and Korean Sign Language (KSL), but the three SLs

use different hand shapes to represent the form of a plane [Ortega, 2017] (Figure 2.3).

For Cuxac [2000], such units signed without iconic intent but with an iconic origin fall within the

category of degenerated or downgraded iconicity. They are units that have stabilized – i.e. lexicalized

– through time such that they are semantically dormant, but which iconic properties can easily be
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(a) Transfer of Form and Size. The signer draws a sketch
in space, representing the surface of an object with her
hands. The shape of her lips and cheeks, her partially
closed eyes and her lowered head emphasize the imposing
character of this object.

1 2 3 4

(b) Transfer of Persons (bored person) mixed with a Situational Transfer in frames 3 and 4 (going round and

round in circles ). The signer enacts a bored person, which is particularly visible on her face expression
(cheeks and lips), her gaze looking away and her head moving side to side. In frames 3 and 4, the weak (left)
hand depicts a reference point (corner of a room), while the dominant (right) hand uses a specific proform to
represent a person, which illustrates a person going round and round in circles.

Figure 2.2: Examples of transfers in Highly Iconic Structures (Structures de Grande Iconicité), ac-
cording to the typology of Cuxac [1999]

(a) BSL (b) ASL (c) KSL

Figure 2.3: Hand shapes used in the lexical sign PLANE in British Sign Language (BSL), American Sign
Language (ASL) and Korean Sign Language (KSL) [Ortega, 2017]. Although iconically motivated by
the shape of the fuselage, some arbitrariness in the precise choice of hand shape can be observed.
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Figure 2.4: Citation form and several variations of the directional verb GIVE [Meier, 1987]

reactivated, for instance in SGIs. In other words, even fully conventionalized signs can be modified,

in a way that is readily inferable, thanks to the visual modality: iconicity can be reactivated in

conventionalized signs, if needed [Cuxac, 2000]. An example is given in Figure 2.8 – with more

explanations in Section 2.3.4 – in which the degenerated iconicity of the lexical sign EIFFEL TOWER is

reactivated into a SGI. Individual components of signs – hand shape, orientation, location, movement

and facial expression – can thus be individually meaningful, even in conventionalized units. For Cuxac

[2000], these components should thus be considered as morphemes instead of phonemes.

2.1.2.3 Diagrammatic iconicity

Present both in the illustrative and non-illustrative intents, the diagrammatic iconicity is a form of

syntactical iconicity and consists in using the signing space as a diagram where space, time or entities

referents can be built and subsequently reactivated, with a constant use of eye gaze and pointing signs.

The iconic use of space thus plays a major role in the construction of SL discourse.

The role of this syntactic iconicity is for instance clear when analyzing what has been called directional

verbs, which are verbs that vary depending on person, number and location [Padden, 1986]. A very

typical example is the verb GIVE, that varies depending on person and number, like SHOW, TELL, SEND,

etc. Other directional verbs, like MOVE, rather depend on location only. An illustration for GIVE is

shown in Figure 2.4, with the citation form (top left) and three different use cases.
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2.1.3 Iconic dynamics – an intermediate approach

Besides the convergent and differentialist approaches, a third and intermediate direction for describing

the linguistics of SLs consists in integrating iconicity into traditional parametric linguistic models. This

is for instance the case of Millet et al. [2015], who integrates iconicity at the lexical, syntactic and

discursive levels in a dynamic fashion. Related work includes [Risler, 2007; Van der Kooij, 2002]. This

approach is compatible with the concept of semantic phonology [Stokoe, 1991].

2.2 Key Sign Language challenges for recognition

In Section 2.1, we have outlined different approaches for the description of SLs. Building on the main

findings of these theories, we want to highlight the key SL properties that must be accounted for in

the case of automatic SLR.

2.2.1 General properties

Although there are different conceptions for the linguistics of SLs, we can unequivocally mention three

properties of SLs that stem from the visual-gestural modality and require special care in the case of

SLR: the multilinearity, the specific use of signing space and the iconicity of SLs [Filhol and Braffort,

2012]. For sake of clarity, we will develop them separately, even though they are inter-dependent.

2.2.1.1 Multilinearity

The property of multilinearity is related to the ability of signers to convey information through the

simultaneous use of different language articulators, possibly in an asynchronous way. These articulators

include that of the hands, arms, upper body, head and face. Typically, the weak hand might represent

a static passive entity, the dominant hand a second entity interacting with the first one while the face

and the body posture convey additional information, which is exactly the case of Figure 2.2b. For

more detail on the role of simultaneity in SL, refer to [Vermeerbergen et al., 2007].

In terms of SLR, it implies that the temporal correlation between articulators is not guaranteed – a

fortiori it should not be assumed.

2.2.1.2 Use of space

At the discursive level, the use of space is fundamental. Elements of discourse are indeed introduced

spatially, then related to each other visually – in this sense, the signing space is part of the iconic

structure of SLs. Previously introduced elements can also be reactivated if needed, for instance using

pointing signs. This corresponds to the diagrammatic iconicity (Section 2.1.2.3). A good example

is the concept of directional verb (see for instance Figure 2.4), or a detailed sequence analysis in

Section 2.3.4.

If SLR is considered as a step towards Sign Language Understanding (SLU) or even Sign Language

Translation (SLT), the signing space must obviously be accounted for, as it structures SL discourse.

2.2.1.3 Iconicity

Iconicity is certainly a major challenge for SLR. As described in Section 2.1.2, the iconic properties of

SLs disqualify the vision of language as a sequence of conventional units that can be listed. Although
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conventional units do exist in SL, many of them possess an iconic origin that can be reactivated if

needed, by adding sense to a form that may initially have seemed arbitrary (Section 2.1.2.2).

Furthermore, very complex illustrative structures referred to as transfers or classifier constructions

make use of proforms to visually represent the size, shape, movement or action of entities, possibly

with strong role shift (Section 2.1.2.1).

2.2.2 Movement epenthesis

An important challenge for Continuous Sign Language Recognition (CSLR) is the presence of move-

ment epenthesis, also called co-articulation. In a comparable way to what happens is natural speech,

the transition between signs in natural SL is continuous, with a modification of the beginning and end

of signs with respect to their citation form. Therefore, the segmentation of any manual unit can be

somehow unclear, especially with low frequency video recordings or fast signers. For short units, the

observed form within continuous signing can also be quite different from the citation form.

2.2.3 Discourse types

As it will be developed in Section 2.3, no writing system exists for SLs. However, this does not mean

that only one discourse type can be observed, obviously. Sallandre [2003] analyzed the semantic and

enunciative categories of LSF, showing that proportions of SGI are highly dependent upon the type

of discourse.

Because they are often used as resources for training SLR systems, we also want to discuss the

specificities of translated and interpreted SL.

Interpretation consists in translating an utterance while it is being produced, either from a spoken

language to a SL – the way we focus on – or the opposite direction. The interpreter has to speak both

languages, thus this task is realized by hearing people, which first language is generally the spoken

language and not the SL.

On the contrary, translation – from a written language to a SL – is usually realized by professional Deaf

people, who are not subject to the same time constraints that interpreters have to respect. Practically

speaking, translated SL is bound to be more natural than interpreted SL, in the sense that the latter

results from hard time stresses and the simultaneous presence of the spoken language, which influence

on the interpreted message may be strong. Metzger [1999] recalls that there are many differences

between translated and interpreted SL, among which the fact that

while [translation and interpretation] both aim to convey an equivalent sense of the source

message, translators have the time to address linguistic meaning whereas interpreters do

not.

Janzen [2005] also warns about the risk of a reduced usage of visual structures like classifier construc-

tions in interpreted SL. In some extreme cases, it has been suggested that the TV news interpreters

use signed English rather than natural SL [Wehrmeyer, 2014, South African TV].

It is important to note that the nature and type of SL discourse will impact the variety and types

of linguistic structures used, which may have an effect on the representativeness of the corpus used

for SLR, and therefore on the generalizability of the system to other types of discourse. Another
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important aspect to take into account for SLR is the annotation, which is used as ground truth during

the learning phase.

Depending on the underlying linguistic theory and the type of discourse, the annotation of SL corpora

may indeed vary significantly. This is an important aspect to keep in mind for the remainder of this

thesis, as SLR systems are trained with and are thus highly dependent upon these annotations. We

will develop this point in the next section.

2.3 Transcription and annotation of Sign Languages

SLs have no written forms. Although it is also the case for many vocal languages, no straightforward

transcription like the International Phonetic Alphabet (IPA) can be used for SLs.

A few graphical transcription codes have been developed, like HamNoSys or SignWriting (Section 2.3.1).

Most frequently, corpora are annotated with a gloss-based system that focuses on lexical units (Sec-

tion 2.3.2). Nevertheless, some SL corpora are annotated with much more detail and account for

non-lexical structures (Section 2.3.3).

2.3.1 Transcription into graphical forms

In the case of SL, transcription refers to the action of writing down the gestural flow of a SL discourse.

It is thus a specific form of annotation. The existing codes are based on the system of Stokoe [1972],

either at the phonologic or phonetic level.

The Hamburg Notation System for Sign Languages [Hanke, 2004] (HamNoSys) encodes – in a linear

and quite rigid fashion – the parameters described by Stokoe. Although it is relatively effective for

the representation of isolated signs, HamNoSys does not allow for a straightforward integration of

multilinear and/or non-manual structures of SL. Therefore, it is not adapted to the representation

of discourse, characterized by a great use of space and the simultaneous involvement of the different

body articulators.

SignWriting [Sutton, 1995] consists in a system of glyphs, that are iconic symbols possibly combined

to represent manual units. However, its writing rules are known to lack standardization while its

implementation in terms of annotation software is tricky.

Other systems have been developed but are not detailed here for sake of brevity. Figure 2.5 presents

the HamNoSys and SignWriting encodings for the German Sign Language (DGS) or ASL sign HOUSE,

along with four other codes.

In conclusion, there is to date no usable effective system for the transcription of SLs. However, this is

an active research field with ongoing experiments, like Typannot [Boutet et al., 2020].

2.3.2 Gloss-based annotation for lexical units

By far the most popular annotation system, glosses are used to annotate lexical units in SL corpora.

From Section 2.1.2.2, it appears that the arbitrariness of lexical signs of SLs, in the sense of De

Saussure, is not necessarily verified (nor is it for other vocal languages, actually). However, this does

not mean that conventional signs do not exist. These conventional units, shared across the signers

of a Sign Language, form what is usually called a lexicon. In the classification of Johnston and

De Beuzeville [2016] (see Section 2.3.3), they are referred to as Fully Lexical Signs (FLSs):
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SignWriting HamNoSys Si5s

ASLphabet Stokoe notation SignFont

Figure 2.5: Six Sign Language transcription codes for the DGS or ASL sign HOUSE. From [Hanke,
2004] and https://en.wikipedia.org/wiki/American_Sign_Language.

1 2 3 4 5 6 7 8 9

Gloss PARIS EIFFEL TOWER RESTAURANT

Figure 2.6: LSF sequence from Dicta-Sign–LSF–v2 (video reference: S7 T2 A10, see Chapter 4), with
gloss annotations for lexical signs. Frames 4 to 8 can not be described with gloss annotations, as they
correspond to SGIs, or classifier predicates (see Section 2.3.4 for a detailed analysis).
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(a) LIKE/SAME/ALSO

(b) GLASS1 (c) GLASS2

Figure 2.7: LSF glosses: on top, one gloss corresponds to different meanings (LIKE/SAME/ALSO). On
the bottom, two glosses (two forms) for one meaning (GLASS – the solid material). From [Moody et al.,
1997].

Fully-lexical signs are highly conventionalised signs in both form and meaning in the sense

that both are relatively stable or consistent across contexts. Fully-lexical signs can easily be

listed in a dictionary.

FLSs are identified by glosses, more exactly by ID-glosses, which are unique identifiers, related to the

form of the sign only, without consideration for meaning. As a result, two signs with the same form

but a different meaning will have the same ID-gloss. It is important to note that ID-glosses are chosen

somehow arbitrarily and do not represent the meaning of the sign in a given context. They can be

composed of a succession of words separated by ’/’ in order to indicate different possible meanings,

without looking for completeness (e.g. LIKE/SAME/ALSO). If different signs express the same concept,

they are identified differently (e.g. GLASS1, GLASS2). See Figure 2.7 for an illustration.

Because FLSs can be defined outside of any context, they can be signed in an isolated fashion, which is

usually the case in SL dictionaries. This specific case is usually referred to with the term citation-form
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lexical sign, corresponding to the most standard and isolated form of a lexical sign.

The main limit of gloss-based annotation systems is that lexical units only account for a fraction of the

content of SL discourse: in Figure 2.6, frames 1, 2, 3 and 9 can be glossed, as these frames correspond

to lexical signs. Frames 4 to 8, however, do not correspond to any known conventional unit, but are

well described by SGIs or classifier predicates. These illustrative structures are by nature infinite, and

thus can not be annotated using a lexicon.

In order to annotate more content in SL discourse in a consistent fashion, detailed schemes have been

developed like that of Johnston and De Beuzeville [2016]. This is presented below.

2.3.3 Classification of units based on the degree of lexicalization

We have chosen to present the classification of Johnston and De Beuzeville [2016], used for the annota-

tion of the Auslan Corpus [Johnston, 2009]. This classification has since been used to finely annotate

many SL corpora (see Section 4.1). In this classification, two main categories are listed:

• Lexicalized signs, referred to as Fully Lexical Signs (FLSs)

• Non-conventional, highly context-dependent signs, referred to as Partially Lexical Signs (PLSs)

A third category, referred to as Non Lexical Signs (NLSs), is also included.

2.3.3.1 Fully Lexical Signs

Annotated Fully Lexical Signs (FLSs) correspond to the core of popular annotation systems that use

a gloss-based coding (see Section 2.3.2). They are conventionalized units ; a FLS may either be a

content sign or a function sign (which roughly correspond to nouns and verbs in English).

2.3.3.2 Partially Lexical Signs

PLSs are formed by the combination of conventional and non-conventional elements, the latter being

highly context-dependent. Thus, they can not be listed in a dictionary. For Johnston and De Beuzeville

[2016], PLSs are defined by having one or two of the following characteristics:

(i) they have little or no conventionalised or language-specific meaning value in addition to

that carried by their formational components (e.g. handshape, location, orientation etc.)

(ii) they have a meaning that is incomplete in some way – one needs to refer to the context

of utterance [...] in a non-trivial way to ‘complete’ the meaning of the sign.

In the PLS category are listed:

Depicting Signs (DSs) or illustrative structures. DSs generally use proforms, and correspond

to what is often called classifier constructions, or SGIs in the typology of [Cuxac, 1999].

DS-Location (DS-L) for the location of an entity

DS-Motion (DS-M) for the motion of an entity

DS-Size&Shape (DS-SS) for the size and shape of an entity

DS-Ground (DS-G) for a spatial or temporal reference (ground)

DS-Hold (DS-H) for the handling of an entity
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Pointing Signs (PTSs) or indexing signs

Buoys are hand postures held during some time of a discourse, usually on the weak hand, that

are used as physical reference points for a referent [Liddell, 2003].

List Buoy (LBuoy) for a maintained hand posture, with fingers stretched out, that

is used to list a certain number of entities

Fragment Buoy (FBuoy) for the hold of a fragment or the final posture of a two-handed

lexical sign, usually on the weak hand

Theme Buoy (TBuoy) for an extended finger to mark a theme or subject, or even a

moment in time

2.3.3.3 Non Lexical Signs

NLSs include:

Fingerspelled Signs (FSs) for proper names or when the sign is unknown

Gestures (Gs) for non-lexicalized gestures, which may be culturally shared or idiosyncratic –

these gestures are not assigned an ID-gloss

2.3.4 An annotated example

In order to illustrate the different annotation categories, let us look at the sequence example of

Figure 2.8.

This sequence from the Dicta-Sign–LSF–v2 corpus [Belissen et al., 2020a, see Chapter 4] is annotated

with a similar code as that of [Johnston and De Beuzeville, 2016].

Three lexical signs are produced (thumbnails 1, 2-3, 9), while thumbnails 4-8 correspond to a Highly

Iconic Structure (Structure de Grande Iconicité), which is related to the illustrative intent. According

to the typology of Cuxac [1999], thumbnails 4 and 5 correspond to a Situational Transfer – representing

someone climbing up to the middle of the tower, using a proform on the right hand –, while thumbnails

6 and 7 would be accurately described by a Transfer of Form and Size – representing the shape of a

restaurant.

Interestingly, the degenerated iconicity of EIFFEL TOWER, which is a conventional unit signed in thumb-

nails 2-3, is reactivated by thumbnail 4 (a fragment of the tower is maintained so that the visual scene

is kept coherent).

Conclusion

Following this linguistic description of SLs, it should be clear that detailed annotation systems are

needed to accurately describe SL discourse. Unfortunately most corpora are only transcribed through

glosses, that correspond to the very conventionalized manual units of SL, leaving out all other types

of structures. Non-manual features are generally ignored, while spatial information is at best over-

simplified, when it is accounted for. In light of this conclusion, the next chapter will be dedicated to

reviewing the state of the art in automatic SLR.
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1 2 3 4 5 6 7 8 9

"In Paris, if you climb the Eiffel Tower, you will find a square-shaped restaurant at the middle

floor."

F
L

S
gl

os
se

s RH

2H PARIS EIFFEL TOWER RESTAURANT

LH

P
L

S

RH DS-Motion PTS

2H DS-Size&Shape

LH Fragment Buoy

Figure 2.8: LSF sequence from Dicta-Sign–LSF–v2 (video reference: S7 T2 A10, see Chapter 4). Ex-
pert annotations for right-handed (RH), two-handed (2H) and left-handed (LH) Fully Lexical Signs
(FLSs) and Partially Lexical Signs (PLSs) are given.
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Chapter 3
Automatic Sign Language Recognition: state of

the art

In this chapter, we aim to review the state of the art in automatic Sign Language Recognition (SLR),

that is to describe and analyze the common acceptation of SLR. Building on the linguistic findings

presented in Chapter 2, we formalize the problem, first introducing a general framework (Section 3.1),

then distinguishing between isolated signs (Section 3.2) and Continuous Sign Language (Section 3.3).

In each section, we introduce some popular and important corpora, then we discuss common learning

frameworks and associated results. Finally, we discuss a few works that have gone beyond this common

acceptation of SLR.

3.1 General framework

Data acquisition often represents the first step of a SLR system. Although early SLR methods used

data gloves and accelerometers [Murakami and Taguchi, 1991; Kadous et al., 1996; Braffort, 1996],

vision based approaches have progressively become more popular. Whereas gloves offer the clear

advantage of a low-dimensional, directly usable feature vector, they are nonetheless very intrusive and

strongly restrict the field of application of SLR. On the contrary, there are many publicly available

SL video corpora, with different kinds of annotation.

In this thesis, the starting point is assumed to be a SL video recording. Indeed, we have insisted in

Section 1.2.1 that our main concern is that SLR systems can widely benefit the Deaf. By recognition,

we mean the recognition of elements within such a video recording, which we will detail later.

In order to formalize the general problem of SLR, let:

• X = [f1, . . . , fT ] a SL video sequence of T frames

• R an intermediate representation of X, often called features

• M a learning and prediction model

• Y the element(s) of interest from X

• Ŷ an estimation of Y
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The process of SLR can be seen as a function, or model, using R and M to estimate Y :

X
R,M−−−→ Ŷ (3.1)

The performance of such a model is then evaluated through a function P that measures the difference

between Y and Ŷ , the objective being of course that Ŷ is as close as possible to Y :

P(Y, Ŷ ). (3.2)

Obviously, the performance is always evaluated on videos unseen during training of both R and M .

A crucial setting is the choice of signer-dependency: a signer-independent setting, in which tested

signers are excluded from training videos, makes learning a much harder task than a signer-dependent

training, but also drastically increases the generalizability of the trained model.

The different categories of SLR rely in the form and content of X and Y . Within each category,

different options can be considered for R, M and P. It is important to note that R and M , that is

the representation of data and the learning-prediction model, are usually chosen in conjunction. Some

learning architectures are indeed better adapted to some representations than others. Also, R and M

are sometimes one and the same, for instance in the case of Convolutional Neural Networks (CNNs)

like detailed later.

The next sections formalize these differences and present a state of the art for the past and current

research.

3.2 Isolated Lexical Sign Recognition

The case of isolated signs does not actually involve language processing, and is usually considered

without referring to SL linguistics. Indeed, we have shown in Section 2.2 that SL is much more

complex than a simple process of aligning standard signs. Nevertheless, since a substantial fraction of

SLR research focuses on this case, we have decided to include it in this chapter.

Also, it is important to note that the recognition of isolated signs is actually focused on lexical signs

only. Non lexical signs are usually context-dependent, hence, the recognition of isolated non lexical

signs would hardly make sense. Still, we will use the expression Isolated Lexical Sign Recognition

(ILSR) for clarity. It is sometimes referred to as the recognition of citation-form lexical signs (see

Section 2.3.2).

In this section, we formalize (Section 3.2.1) the problem of ILSR – objective and performance metric

– as well as present common corpora (Section 3.2.2) and associated experiments (Section 3.2.3).

3.2.1 Formalization

The case of models focusing on the recognition of isolated lexical signs falls within the framework of

isolated gesture recognition. It is a classification problem, and requires a dictionary of lexical sign

glosses, i.e. a list of words.

Formally, let G a dictionary of G lexical sign glosses:

G = {g(1), . . . , g(G)}. (3.3)
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In this framework, a SL video i is supposed to contain a unique annotated element of interest gi ∈ G

that the prediction model is aimed at recognizing: Yi,ILSR = gi ∈ G

Ŷi,ILSR = ĝi ∈ G .
(3.4)

The individual recognition performance Pi is either 0 or 1:

Pi(gi, ĝi) = 1(gi, ĝi) =

{
1 if ĝi = gi

0 if ĝi 6= gi.
(3.5)

Usually, for a test dataset comprising N videos, the global performance metric P is then defined as

the accuracy, that is:

P = Acc =
1

N

N∑
i=1

1(gi, ĝi) =
# correctly recognized signs

N
. (3.6)

Sometimes, top-n accuracy is also used, with different values of n. Top-n accuracy counts how often

the correct class falls in the top n predicted values. By definition, accuracy Acc and top-1 accuracy

are equal.

Obviously, the performance is highly dependent upon the corpus type and variability (size of lexicon,

number of signers, . . . ), which is addressed in the following section.

3.2.2 Corpora

In this section, we aim to give an overview of various corpora of isolated lexical signs, popular in the

field of ILSR. We do not look for completeness, but rather try to present different types of corpora

and associated experiments for ILSR. Some of them also include a Continuous Sign Language (CSL)

part, which will be detailed in Section 3.3.

3.2.2.1 American Sign Language Lexicon Video Dataset

The American Sign Language Lexicon Video Dataset (ASLLVD) [Neidle et al., 2012] is a video collec-

tion of 2284 American Sign Language (ASL) citation-form lexical signs – 2793 when including variants

–, each produced by one to six native signers. The total number of instances reaches 8585.

Although the number of instances per sign is rather low – 3.8, 3.1 when accounting for variants – the

size of the lexicon makes ASLLVD a valuable corpus. Furthermore, the recording setup is very well

thought (see Figure 3.1), with two front view cameras (640 × 480 at 60 frames per second (fps) and

1600 × 1200 at 30 fps), as well as a side view and head region close-up (640 x 480 at 60 fps). The

quite high frame rate and carefully adjusted lighting widen the range of possibilities in terms of image

processing methods.

Apart from the lexical sign glosses, the annotations also include information on dominant and weak

hand shapes, at the beginning and end of each sign.

Finally, we mention that 2D skeleton estimates calculated with OpenPose (OP) [Cao et al., 2017] have
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Front view

Side view Head region close-up

Figure 3.1: Recording setup for the ASLLVD corpus [Neidle et al., 2012]
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Figure 3.2: A YouTube lexical sign video included in the MS-ASL corpus [Joze and Koller, 2018]

been publicly released1 by de Amorim et al. [2019]. They include body, head and hand joint locations

(see Section 6.1.1 for more detail on OP).

3.2.2.2 MS-ASL

The Microsoft American Sign Language (MS-ASL) corpus [Joze and Koller, 2018] is one of a kind,

as it is made of a partially automatic gathering of ASL lessons on YouTube. In detail, the authors

start with a selection of ASL lessons videos – more precisely, a selection of ASL lexicon lessons. Some

shorter ones only teach one sign, while longers ones are aimed at teaching many signs. For instance,

the video shown on Figure 3.2 includes 45 food signs. The authors then automatically extracted the

glosses from video titles, description or subtitles, depending on the type of video.

As a result, MS-ASL comprises four sets, ASL1000, ASL500, ASL 200 and ASL100, with respec-

tively 1000, 500, 200 and 100 sign classes; 222, 222, 196 and 189 signers; 25513, 17823, 9719 and

5736 instances; 11, 20, 34 and 47 instances per sign class on average. A signer-independent train-

ing/validation/test split is released for each of the four sets.

Because of the nature of the corpus, there is a great variability in terms of recording conditions, video

quality, lighting, clothing and camera view point. Also, one should note that the number of sign

instances per signer, which on average is about 115 in ASL1000, is actually very variable too. This is

visible on Figure 3.3, and results from the fact that some teachers are much more active than others

on YouTube. In this very uneven distribution, three signers have more than 1000 video samples and

ten signers only appear once in the corpus.

A very similar corpus – the Word-Level American Sign Language (WLASL) dataset – is proposed by

Li et al. [2020], with 2000 lexical sign classes and four subsets from online ASL lessons.
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Figure 3.3: Distribution of the number of sign instances per signer in the MS-ASL corpus [Joze and
Koller, 2018]. A few signers account for more than 1000 sign instances each, and many signers only
have a few instances.

RGB Depth 2D skeleton

Figure 3.4: Recording setup for the DEVISIGN-L corpus [Chai et al., 2014]. The Kinect setup provides
RGB, depth and 2D skeleton data.
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Figure 3.5: Random frame from the SIGNUM Database [Von Agris and Kraiss, 2007]

3.2.2.3 DEVISIGN-L

The DEVISIGN-L corpus [Chai et al., 2014] is a Chinese Sign Language (ChSL) corpus recorded with

a RGB-Depth (RGBD) setup, covering 2000 lexical signs. The recording is realized with a Microsoft

Kinect, with a Red-Green-Blue (RGB) resolution of 1280× 720, and a depth resolution of 512× 424,

both at 30 fps. A 2D skeleton for the upper body is also provided.

Eight signers are involved, with a total number of instances equal to 24000. The recording setup

is shown on Figure 3.4. Two smaller subsets are also released under the names DEVISIGN-G and

DEVISIGN-D.

3.2.2.4 Isolated SLR500

The Isolated SLR500 (ISLR500) corpus [Pu et al., 2016] is, like DEVISIGN-L (Section 3.2.2.3), a

ChSL with RGBD Kinect recording, thus with identical resolution and frame rate, as well as skeleton

data.

This dataset comprises 500 lexical signs, each produced five times by each of the 50 signers. The total

number of instance is, thus, 125000.

3.2.2.5 SIGNUM Database

The SIGNUM Database [Von Agris and Kraiss, 2007] is a German Sign Language (DGS) corpus,

including 450 lexical signs and 25 signers. A reference signer performs the signs three times, whereas

the 24 others only realize them once. The total number of instances is equal to 12150. The recording

format is RGB, with 776× 578 resolution at 30 fps.

As can be seen in Table 3.1 which provides a brief overview of the characteristics in popular datasets

1https://www.cin.ufpe.br/~cca5/asllvd-skeleton/

3.2. Isolated Lexical Sign Recognition 59

https://www.cin.ufpe.br/~cca5/asllvd-skeleton/


Chapter 3. Automatic Sign Language Recognition: state of the art

SL Data Signers Lexicon Instances

ASLLVD
[Neidle et al., 2012]

ASL
RGB
30-60 fps

6 2284
8585
(' 1 per signer per sign)

DEVISIGN-L
[Chai et al., 2014]

ChSL
RGBD
skeleton

8 2000
24000
(1 or 2 per signer per sign)

ISLR500
[Pu et al., 2016]

ChSL
RGBD
skeleton
30 fps

50 500
125000
(5 per signer per sign)

MS-ASL
[Joze and Koller, 2018]

ASL RGB 222 1000
25513
(from 1500 per signer per sign
to 1 per signer per sign)

SIGNUM
[Von Agris and Kraiss, 2007]

DGS
RGB
30 fps

25 450
12150
(1 per signer per sign)

Table 3.1: Overview of the main characteristics in popular datasets of isolated lexical signs: Sign
Language, data formatting, number of signers, size of lexicon and number of sign instances.

used for ILSR, the field of ILSR still lacks large scale multi-signer corpora. The most recent corpus, MS-

ASL, shows an interesting variability in terms of signers and lexicon, however it is highly imbalanced

(a few signers account for most sign instances).

3.2.3 Experiments: signer representation, learning frameworks and results

In this section, we focus on the past and recent trends in ILSR, in terms of signer representation R

and learning-prediction model M . While some surveys describe the two components separately [Ong

and Ranganath, 2005; Cooper et al., 2011], we prefer to insist on the importance of pairing them

accordingly. Results of these models are then outlined, mostly on the representative corpora listed

in Section 3.2.2. This section is organized in five sub-sections, corresponding to different types of

approaches to ILSR.

3.2.3.1 Early vision-based approaches

Early vision-based methods focused on so-called Manual Features (MFs), compatible with the model

of Stokoe [1972]: they include hand pose – shape or configuration and orientation – as well as hand

position. The dynamics of these parameters can also be included. Hand tracking methods were first

employed, with colored gloves, then skin segmentation techniques, which also led to accounting for

Non-Manual Features (NMFs).

In [Von Agris et al., 2008], the authors use a generic skin color model to detect and track the face and

hands. Static and dynamic MFs are derived, with computations like area, compactness or eccentricity

of each hand. An Active Appearance Model (AAM) [Edwards et al., 1998] is used to model the face,

using Principal Component Analysis (PCA). A 2D estimate on the facial pose is then obtained, which

enables the calculation of facial features like eyebrows or lips shape. On the 450 isolated lexical signs

of the SIGNUM Database (Section 3.2.2.5), they get respectively 96.9% and 80.2% accuracy when

training in a signer-dependent and -independent fashion, with both manual and facial features. More

details are given in Table 3.2.
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Setting
Features

Manual Facial Combined

Signer-Dependent (SD) 94.4% 37.1% 96.9%

Signer-Independent (SI) 78.7% 10.0% 80.2%

Table 3.2: Detailed Isolated Lexical Sign Recognition results (accuracy) of [Von Agris et al., 2008] on
the 450 isolated lexical signs of the SIGNUM Database [Von Agris and Kraiss, 2007]. Signer-dependent
and -independent settings are evaluated, with manual features, facial features or both as input.

Setting Top-1 Top-5 Top-10

Signer-Dependent (SD) 67.3% 86.6% 89.8%

Signer-Independent (SI) 54.4% 77.3% 82.7%

Table 3.3: Detailed Isolated Lexical Sign Recognition results of [Pu et al., 2016] on 100 isolated lexical
signs from the ISLR500 corpus. Signer-dependent and -independent settings are evaluated, with top-1,
top-5 and top-10 accuracy.

Traditional vision-based methods, using features like optical flow are still being used. In the work of

Lim et al. [2016], background subtraction is used to help hand detection, then a block-based histogram

of optical flow is computed on the hands region. A simple histogram distance is used for ILSR. Their

model is evaluated on small subsets of three ASL corpora: RWTH-Boston-50 [Zahedi et al., 2005],

Purdue RVL-SLLL [Mart́ınez et al., 2002] and ASLLVD [Neidle et al., 2012]. The performance is

moderate, with for instance 85% accuracy on a subset of 20 lexical signs from ASLLVD, in a signer-

independent setting.

3.2.3.2 The importance of 3D

The progressive use of 3D data from RGBD recording or 3D reconstruction methods led to more con-

sideration for the importance of trajectory. Pu et al. [2016] built the ISLR500 corpus (Section 3.2.2.4)

and used the depth data from a Kinect recording to analyze the trajectories of hands during produc-

tion of signs. First, curve features are derived from a codebook training with K-means algorithm.

Curve segmenting is realized with a Discrete Contour Evolution algorithm, then a Hidden Markov

Model (HMM) model2 is trained for classification. On a subset of 100 isolated lexical signs from the

ISLR500 corpus, they get respectively 67.3% and 54.4% accuracy when training in a signer-dependent

or -independent fashion. More details are given in Table 3.3

The work of Dilsizian et al. also highlighted the importance of accounting for 3-dimensionality in ASL.

Dilsizian et al. [2014] used the data from the ASLLVD dataset to develop and train a hand tracker and

3D handshape classifier, with 87 hand shapes, using Histogram of Oriented Gradients (HOG) features

and a Spectral Latent Variable Model (SLVM). Dilsizian et al. [2016] also analyzed the importance of

3D motion trajectory on a small RGBD ASL corpus, in which they trained a SVM-HMM (Support

2HMMs have been very popular in the Machine Learning (ML) community and broadly applied to speech recognition,
handwriting recognition and SLR – among others. HMMs use the assumption that a signing sequence is a Markov process
describing how hand locations change through the sign production, and a certain number of states are used to represent
different parts of the signing action.
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Figure 3.6: Isolated Lexical Sign Recognition framework in [Dilsizian et al., 2018]

Vector Machine-Hidden Markov Model) to distinguish between signs with similar handshapes but

different hand trajectories.

3.2.3.3 The importance of linguistic input

More recently, Dilsizian et al. [2018] used their previous work to build a complete ILSR framework,

shown on Figure 3.6. In this model, a first CNN model inspired by [Wei et al., 2016] is trained and

used to build a discriminative/generative 3D upper body pose and head pose estimator. Another CNN

model learns hand shape features, which are then completed by linguistic-inspired sign-level features

like the relationship between start and end hand shapes, as well as that between dominant and weak

hands. Probabilities of relevant contacts are also computed thanks to the 3D body pose estimate.

In the learning phase, they use Conditional Random Fields (CRFs). Their recognition results on a

subset of 350 signs from the ASLLVD corpus are very good, given the very low number of instances per

lexical sign on the corpus. Top-1 and top-5 accuracy amount respectively to 93.3% and 97.9%, with

a signer-dependent setting. The benefit of including the different features can be seen in Table 3.4.
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Features Top-1 Top-5

3D pose 64.3% 81.3%

2D pose + hand shape 80.0% 89.8%

3D pose + hand shape 90.0% 92.9%

3D pose + hand shape + contact events 92.1% 94.6%

3D pose + hand shape + all linguistic parameters 93.3% 97.9%

Table 3.4: Detailed Isolated Lexical Sign Recognition results of [Dilsizian et al., 2018] on a subset of
350 signs from the ASLLVD corpus [Neidle et al., 2012], in a signer-dependent setting, with top-1 and
top-5 accuracy.

3.2.3.4 Covariance matrix–based representation

Wang et al. [2016] used a simple representation of signers in videos, applied to the RGBD and skeleton

data of the DEVISIGN-L dataset. Hand features are derived by using HOG, while body features are

obtained by pairwise relative position on the skeleton data. Then, a Grassmann Covariance Matrix

(GCM) is computed for the feature vector, and the Grassmann metric is used as a kernel in a SVM

classifier for ILSR. Experiments are conducted on the DEVISIGN-L dataset (Section 3.2.2.3) with

1000 lexical signs. Reported accuracy reaches respectively 92.4% and 70.9% when training in a signer-

dependent or -independent fashion. Wang et al. [2019] presented a refined model, with hierarchical

GCM, but no performance improvement on DEVISIGN-L are reported.

3.2.3.5 Most recent methods: Convolutional and Recurrent Neural Networks

RGB input

Recent methods for action recognition have given a lot of importance to CNNs. They can be used and

trained to detect body keypoints, like in [Dilsizian et al., 2018], or directly to learn global signer features

on images, although they require a lot of training data, like in the gesture recognition task of [Pigou

et al., 2014]. Regarding the case of gesture recognition, CNNs are known to be a good match with

Recurrent Neural Networks (RNNs), which are very effective at learning temporal dependencies. Pigou

et al. [2018] showed that temporal convolutions could significantly improve recognition performance

in a Recurrent Convolutional Neural Network (RCNN) framework.

In the specific case of isolated gestures or signs, 3DCNNs, that is networks computing convolutions

both in space and time, have also become quite popular. They are used by Wu et al. [2016] inside

a HMM framework, to enable fusion of other features. In the work of Joze and Koller [2018], the

3DCNN architecture I3D [Carreira and Zisserman, 2017] is compared to many different others on the

MS-ASL dataset. I3D is shown to be the best performing method, with detailed results presented

in Table 3.5. We can also cite Liao et al. [2019], who have demonstrated the effectiveness of mixing

the Faster R-CNN algorithm [Ren et al., 2015] for hand tracking, 3D convolutions and Bidirectional

LSTM (BLSTM) layers for ILSR. Their results on ISLR500 and a subset of DEVISIGN-L are included

in Table 3.6.

Skeleton input

Instead of realizing convolutions between close pixels on RGB frames, Spatial-Temporal Graph Con-

volutional Networks (ST-GCNs) [Yan et al., 2018] use a graph representation of skeletons to compute

3.2. Isolated Lexical Sign Recognition 63



Chapter 3. Automatic Sign Language Recognition: state of the art

Subset Top-1 Top-5

ASL100 81.8% 95.2%

ASL200 82.0% 93.8%

ASL500 72.5% 89.8%

ASL1000 57.7% 81.1%

Table 3.5: Detailed Isolated Lexical Sign Recognition results of [Joze and Koller, 2018] on the four
subsets of the MS-ASL corpus. All results are signer-independent, with top-1 and top-5 accuracy.

convolutions between adjacent body joints, both in space and time. They have been applied to ILSR

on the skeleton version of ASLLVD [de Amorim et al., 2019], with mediocre results compared to Lim

et al. [2016] and a fortiori to [Dilsizian et al., 2018] (see Table 3.6).

In conclusion, although we have insisted on the fact that ILSR is a very different task from Continuous

Sign Language Recognition (CSLR), it appears that some features and frameworks can be very effective

for sign recognition, and may also be used for CSLR – among others, the 3D representation of signers,

hand shapes, sign-level linguistic features as well as convolutional and recurrent Neural Networks

(NNs).
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Corpus Paper N SD SI

ASLLVD

[Lim et al., 2016] 20 (subset) - 85.0%

[de Amorim et al., 2019]?
20 (subset) 61.0%??

2745 16.5%??

[Dilsizian et al., 2018] 350 (subset) 93.3% -

MS-ASL [Joze and Koller, 2018]

100 (subset) - 81.8%

200 (subset) - 82.0%

500 (subset) - 72.5%

1000 - 57.7%

DEVISIGN-L
[Liao et al., 2019] 500 (subset) 89.8% -

[Wang et al., 2016, 2019] 1000 92.4% 70.9%

ISLR500
[Pu et al., 2016] 100 (subset) 67.3% 54.4%

[Liao et al., 2019] 500 86.9% -

SIGNUM [Von Agris et al., 2008] 450 96.9% 80.2%

Table 3.6: Reported accuracy of methods detailed in Section 3.2.3 applied to Isolated Lexical Sign
Recognition on the corpora presented in Section 3.2.2. N is the number of lexical signs in the corpus,
and SD and SI stand for Signer-Dependent and Signer-Independent.
? Using the ASLLVD-skeleton data.
?? Unclear whether SD or SI.
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3.3 Continuous Lexical Sign Recognition

The case of Continuous Sign Language (CSL) is of different nature to the case of isolated lexical signs,

discussed in Section 3.2. Indeed, the production of isolated signs is analogous to the production of

isolated gestures, in the sense that language and linguistics do not play any major role, if any. As a

matter of fact, we can only regret that many research articles mention Sign Language Recognition in

their title, abstract or claimed objectives, while they focus on isolated lexical signs only.

The study of CSL is, on the other hand and as in the case of any language, an extremely difficult

task. Language recognition problems involve linguistic issues, as well as difficulties related to signal

processing. In the case of SLs, these two questions are crucial and require special care, as they must

be dealt with in a very different manner than usual vocal or written languages.

In this section, we focus on the most common acceptation of CSLR, that is better qualified as Con-

tinuous Lexical Sign Recognition (CLexSR). After formalizing this framework (Section 3.3.1), popular

corpora (Section 3.3.2) and different types of experiments (Section 3.3.3) are presented.

3.3.1 Formalization

In the case of CSL, most research has focused on the recognition of lexical signs within continuous

signing. It sets aside the spatial grammar and iconicity of SLs, but still enables to understand simple

utterances. It can also be seen as an efficient way to build towards sign spotting models. Recognition

can be aligned or not, as described in the next sections.

3.3.1.1 Unaligned recognition

A first setting for CLexSR – by far the most popular – is, for a SL sequence, to aim at the recognition

of the sequence of produced lexical signs, omitting temporal information. In this case, the recognized

lexical signs are not aligned with the original video frames, therefore we choose to call it unaligned

recognition.

Formally, let GU a dictionary of G lexical sign glosses:

GU = {g(1), . . . , g(G)}. (3.7)

In this framework, a SL video X is supposed to contain N consecutive lexical signs (N ≥ 1). We

assume N̂ lexical signs are recognized, such that:
YCLexSR,U =

[
g1 · · · gN

]
, gi ∈ GU

ŶCLexSR,U =

[
ĝ1 · · · ĝ

N̂

]
, ĝi ∈ GU .

(3.8)

Note than in general, N 6= N̂ , so YCLexSR,U and ŶCLexSR,U have different lengths.

The sequence-wise recognition performance PCLexSR,U is then usually defined as the Word Error Rate

(WER), also referred to as Levenshtein Distance, applied to the expected sequences of lexical sign

glosses. WER measures the minimal number of insertions I, substitutions S and deletions D to turn

the recognized sequence into the expected sequence of length N :

PCLexSR,U(Y, Ŷ ) = WER =
I + S +D

N
. (3.9)
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Let us note that Gloss Error Rate would be a more appropriate naming of this metric. In any case,

whether Word or Gloss, we insist on the fact that the choice of metric says a lot on the – often

implicit – linguistic assumptions on SL. In this particular setting, a SL production is always assumed

to be reducible to a sequence of standard signs, seen as words. Based on the linguistic description of

Chapter 2, the serious limits of this assumption should appear clearly.

Furthermore, even in the field of Automatic Speech Recognition, the use of WER is questioned and

better alternatives are developed that are better correlated with human performance [Favre et al.,

2013].

For information, a related metric is sometimes used, called Word Accuracy, and defined as:

WAcc = 1−WER. (3.10)

However, WER can be greater than 1, and WAcc smaller than 0, so the term Accuracy is not exactly

appropriate.

3.3.1.2 Aligned recognition

The case we choose to call aligned recognition is slightly more informative than that of unaligned

recognition. Indeed, every video frame is then assigned a label, which can be either a sign from the

dictionary or nothing (the null class).

Formally, let G a dictionary of G lexical sign glosses, plus a null class g(0):

GA = {g(0), g(1), . . . , g(G)} = GU ∪ {g(0)}. (3.11)

If the model is able to align predicted lexical signs with video frames, the output can be expressed as

a sequence, the length of which is equal to the original sequence length T :
YCLexSR,A =

[
g1 · · · gT

]
, gt ∈ GA

ŶCLexSR,A =

[
ĝ1 · · · ĝT

]
, ĝt ∈ GA

(3.12)

In this case, the accuracy Acc defined as the ratio of correctly labeled frames over the total number

of frames T is generally used as a straightforward performance metric:

PCLexSR,A(Y, Ŷ ) = Acc =
1

T

T∑
t=1

1(gt, ĝt) =
# correctly labeled frames

T
(3.13)

where 1 is the identity function, defined as:

1(gt, ĝt) =

{
1 if ĝt = gt

0 if ĝt 6= gt.
(3.14)

As for the case of ILSR, the recognition performance is necessarily highly dependent upon the corpus

type. Different types of corpora are thus detailed in the next section.
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3.3.2 Corpora

In this section, we have chosen to focus on the three corpora mainly used in the field of CLexSR.

3.3.2.1 SIGNUM Database

Adding to the isolated lexical signs corpus presented in Section 3.2.2.5, the DGS SIGNUM Database

[Von Agris and Kraiss, 2007] also integrates a CSL part. More precisely, 780 sentences are elicited,

based on the 450 lexical signs contained in the isolated part of the database. In total, approximately

five hours of video are recorded.

The elicited sentences are shown to the signers in the form of a gloss sequence, along with a video

reference, which is visible on Figure 3.7. Because of the rigorous elicitation procedure, it is safe to say

that the level of spontaneity as well as the interpersonal variability in the observed SL are very low.

Signers indeed repeat the original reference sentences with no initiative. The elicited gloss sequences

have lengths ranging from two to eleven glosses, with a few random examples given in Table 3.7.

3.3.2.2 RWTH-Phœnix-Weather

The RWTH-Phœnix-Weather (RWTH-PW) corpus [Forster et al., 2012, 2014] is made from 11 hours

of live DGS interpretation of weather forecast on German television. The 2012 release contains a

single signer, therefore, we will focus on the 2014 version, also referred to as RWTH-Phœnix-Weather-

2014-Multisigner. It is made public by Koller et al. [2015], with gloss annotation for the lexical signs

observed in the signed recordings. Koller et al. [2017] then released a signer-independent version,

named RWTH-Phœnix-Weather-2014-Signerindependent (RWTH-PW-2014-SI5). Last, a release with

German translations was published by Camgoz et al. [2018] (RWTH-PW-2014-T).

Nine signers are present in the corpus, wearing dark clothes in front of an artificial grey background

(see Figure 3.8) and the video format is RGB, with a quite low resolution of 210 × 260 pixels at 25

fps.

This corpus has established itself as a reference dataset for SLR, with many experiments detailed

in Section 3.3.3.2. Conversely to many corpora produced in laboratory conditions and/or strong

elicitation rules, RWTH-PW has been described by its authors as real life data [Forster et al., 2012].

However, because of the specific topic, the language variability and complexity are bound to be limited.

Furthermore, it is crucial to note that interpreted SL is necessarily a specific type of SL, quite different

from spontaneous SL. There is a good chance that the translation will be strongly influenced by the

original speech (in German), especially in terms of syntax, and make little use of the structures typical

of SL (see Section 2.2.3).

This observation is actually shared by the original authors of the RWTH-PW corpus [Forster et al.,

2012]:

Moreover, the domain of weather forecasting features a limited vocabulary and a restricted

use of specific sign language phenomena such as classifier signs.

Even though we are not able to qualify the quality of the interpretation in the RWTH-PW corpus, one

should be careful regarding the generalizability of the results for SLR models trained on this corpus.
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Figure 3.7: Elicitation procedure for the Continuous Sign Language part of the SIGNUM Database
[Von Agris and Kraiss, 2007]. The signers are shown a gloss sequence along with a reference video.

Ref

GERMAN GLOSS SEQUENCE

ENGLISH GLOSS SEQUENCE

German translated sequence
English translated sequence

116

ICH SCHOKOLADE KAUFEN

I CHOCOLATE BUY

Ich kaufe Schokolade.
I am buying chocolate.

165

ICH WEIN UND BIER neg-MÖGEN

I WINE AND BEER neg-LIKE

Ich mag keinen Wein und kein Bier.
I like neither wine nor beer.

418

WIR-beide JETZT FRISCH LUFT BRAUCHEN

WE-both NOW FRESH AIR NEED

Wir brauchen jetzt frische Luft.
We need some fresh air now.

713

FREIZEIT DU OFT-häufig TANZEN KOMMEN-nach?

LEISURE-TIME YOU OFTEN-frequently DANCE COME-to?

Gehst du in der Freizeit oft tanzen?
Do you often go dancing in your leisure time?

Table 3.7: Random elicitation sequences from the SIGNUM Database [Von Agris and Kraiss, 2007],
with German and English translations.
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Figure 3.8: Weather forecast on German television, with live DGS interpretation that forms the
RWTH-Phœnix-Weather corpus [Forster et al., 2012, 2014]

Ref

GERMAN GLOSS SEQUENCE

ENGLISH GLOSS SEQUENCE

German translated sequence
English translated sequence

-

SAMSTAG WECHSELHAFT

SATURDAY CHANGING

Am Samstag ist es wieder unbeständig.
On Saturday it is changing again.

-

BESONDERS FREUNDLICH NORDOST BISSCHEN BEREICH

ESPECIALLY FRIENDLY NORTH-EAST LITTLE-BIT AREA

Am freundlichsten ist es noch im Nordosten sowie in teilen Bayerns.
It is friendliest still in the north-east as well as parts of Bavaria.

-

SONNTAG REGEN TEIL GEWITTER

SUNDAY RAIN PART THUNDER-STORM

Am Sonntag ab und an Regenschauer teilweise auch Gewitter.
On Sunday rain on and off and partly thunderstorms.

Table 3.8: Random annotated gloss sequences from the RWTH-Phœnix-Weather corpus [Forster et al.,
2012, 2014], with German and English translations.
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Ref Chinese elicitation sequence English translated sequence

16 他的外祖母是园丁 His grandmother was a gardener.

33 你婆婆是盲人 Your mother-in-law is blind.

74 他的盆是绿的 His pot is green.

96 我们的婚姻是幸福的 We are happily married.

Table 3.9: Random elicitation sequences from the Continuous SLR100 corpus [Huang et al., 2018],
with English translations.

3.3.2.3 Continuous SLR100

The Continuous SLR100 (CSLR100) dataset [Huang et al., 2018] is a continuous ChSL corpus, asso-

ciated to the database of isolated signs ISLR500 presented in Section 3.2.2.4. The format is RGBD,

with a recording setup similar as that of Figure 3.4. 2D skeleton data is also provided.

In terms of duration, this corpus is definitely major. Indeed, more than 100 hours are recorded.

However, the level of variability and spontaneity in the produced language is very low: the corpus

is based on 100 pre-defined sentences, that are repeated five times by 50 signers. In total, 25000

sentences are thus recorded. The lexicon only amounts to 178 different lexical signs. A few examples

are given in Table 3.9.

Corpus SL Source Signers Hrs. Discourse type Translation

CSLR100 ChSL
RGBD
skeleton

50 100 Artificial -

RWTH-PW DGS RGB 9 11 Interpreted German

SIGNUM DGS RGB 25 5 Artificial German/English

Table 3.10: Three main corpora used for Continuous Lexical Sign Recognition.

Although the three corpora we have described are not representative of the diversity of discourse types

in SL, they have been the testing ground for many experiments of CLexSR, which we present below.

3.3.3 Experiments: frameworks and results

In this section, we focus on the experiments of CLexSR, mainly on the three corpora presented in

Section 3.3.2. We start by going back to the way movement epenthesis was dealt with by the first

CLexSR architectures, then we develop the recent developments with more complex neural architec-

tures, mainly applied to the RWTH-PW corpus.

3.3.3.1 Developing architectures to account for movement epenthesis

A first notable difference between the recognition of citation-form lexical signs and signs within con-

tinuous signing is the movement epenthesis, also called co-articulation (see Section 2.2.2).

HMMs enable to model explicitly the transition between signs in CSL. This is demonstrated by

Braffort [1996], using data gloves, then by Vogler and Metaxas [1997], with RGB video input. Fang
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et al. [2001] show that embedding a Simple Recurrent Network into a HMM framework can deal with

co-articulation, and trained their model for the recognition of continuous ChSL in a signer-independent

fashion. In [Gao et al., 2004], an even more refined HMM-based transition model is proposed, with a

modified k-Means algorithm for spatio-temporal clustering.

3.3.3.2 Modern architectures for CLexSR on bigger corpora

An ongoing competition for the best CLexSR results on the RWTH-Phœnix-Weather corpus was

initiated by a sophisticated model presented by Koller et al. [2015]. In their model, the authors

use dynamic programming to track hands, then extract HOG-3D features, imitating the work of

Dilsizian et al. [2014], as well as inter-hand features. High-level facial features are obtained by using

an AAM [Edwards et al., 1998]. A class language model is used in addition to a more classical HMM

framework, and the inter-signer variability is accounted for with a constrained maximum likelihood

linear regression. They tested their model on both RWTH-PW and SIGNUM.

Thereafter, CNNs have become more and more popular and predominantly used as an effective way to

derive visual features. Koller et al. [2016a] embedded a CNN into an iterative Expectation Maximiza-

tion (EM) algorithm in order to train Deep Hand, a powerful hand shape classifier, on weak labels.

Training is realized on data from three SLs, namely DGS, New Zealand Sign Language (NZSL) and

Danish Sign Language (DTS). Interestingly, for each lexical sign, weak hand labels are obtained by

parsing SignWriting3 dictionaries, then extracting information on hand shape and leaving out hand

pose related data. Finally, the authors used Deep Hand instead of the HOG-3D for hand features in

the model of [Koller et al., 2015], with improved results. Later, the authors built a unified CNN-HMM

model, trained in an end-to-end fashion [Koller et al., 2016b].

Similarly to [Koller et al., 2016a], Camgoz et al. [2017] trained SubUNets, a CNN-BLSTM network

trained for hand shape recognition and CLexSR, in an end-to-end fashion, with a Connectionist

Temporal Classification (CTC) loss. The same kind of model is proposed by Cui et al. [2017]. Koller

et al. [2017] then released a new model, consisting of embedding a CNN-BLSTM into a HMM, and

treat the annotations as weak labels. Thanks to several EM re-alignments, the performance improves

significantly, both on RWTH-PW and on SIGNUM, with WER of 26.8% and 4.8% on the respective

signer-dependent test sets. Moreover, they also tested their model on the signer-independent version

of RWTH-PW and obtained a WER of 44.1%, that is a relative 65% higher, which shows that the

signer-independence is a challenge that should not be overlooked.

Using two CNN streams – one for the hands and a global one – for feature extraction, Huang et al.

[2018] used a combination of Long Short-Term Memory (LSTM) and Attention [Luong et al., 2015]

to tackle the temporal modality, with an encoder-decoder architecture, along with a Dynamic Time

Warping (DTW) algorithm. They published results on RWTH-PW and the signer-independent version

of the Continuous SLR100 dataset. Note that this version consists of testing on unseen signers, but

on sentences seen during training, which makes the learning task much easier.

Recently, 3DCNNs – that is convolution blocks taking videos as input – have proven effective for action

recognition, and have progressively replaced traditional 2D convolutions. Applied to CLexSR on the

RWTH-PW and Continuous SLR100 datasets, this is the case for Guo et al. [2018, 2019a,b]; Pu et al.

[2019]; Yang et al. [2019]; Zhou et al. [2019]. The LSTM encoder-decoder architecture with Attention

is used by Guo et al. [2018] and Pu et al. [2019], and CTC decoding by Guo et al. [2019a,b]; Pu et al.

3SignWriting [Sutton, 1995] is a simplified pictorial representation of signs, with open online resources. See Sec-
tion 2.3.1.
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Figure 3.9: Continuous Lexical Sign Recognition framework in [Koller et al., 2019], using a 3-stream
CNN-LSTM-HMM

[2019]; Yang et al. [2019]; Zhou et al. [2019]. Guo et al. [2019a,b] also compute temporal convolutions.

Recently, Koller et al. [2019] used different sources of data to train a sophisticated multi-stream CNN-

LSTM embedded into a HMM framework. They indeed trained the network to recognize lexical sign

glosses, mouth shapes and hand shapes, in a weakly supervised fashion, with the three HMMs having

to synchronize at the end of each sign, as shown in Figure 3.9. The originality of their work also stems

from the way weak labels were obtained. Hand shape labels are estimated by parsing SignWriting

dictionaries, as for Deep Hand [Koller et al., 2016a], and mouth shape labels are derived by using a

phonetic model on the German translations of the RWTH-PW corpus [Camgoz et al., 2018].

Table 3.11 summarizes most CLexSR results on RWTH-PW, SIGNUM and CSLR100. From this table,

it appears that most experiments are conducted in a signer-dependent fashion. Signer independence

appears to be quite a challenge, with a best result of 44.1% WER on RWTH-PW. This table confirms

that RWTH-PW corresponds to the most difficult CLexSR task, whereas some models yield WERs

lower than 5% on SIGNUM and CSLR100.

3.4 Going past Continuous Lexical Sign Recognition: a few perspec-

tives

As exemplified by Table 3.11, competition in the field of SLR is highly focused on the task of CLexSR,

especially on the RWTH-PW corpus. However, a few works have tried to explore the task of end-to-end

Sign Language Translation (Section 3.4.1), while others have attempted to tackle grammar-oriented

issues in CSL (Section 3.4.2).

3.4.1 A new trend towards Sign Language Translation?

Sign Language Translation (SLT) is obviously a long-standing objective in the field of Sign Language

Processing (SLP) while being strongly related to the field of CSLR. A few attempts have been proposed,

all on the 2018 release of the RWTH-PW corpus [Camgoz et al., 2018].

3.4.1.1 Text → Sign [Stoll et al., 2018]

A first Sign Language Generation (SLG) model is proposed by Stoll et al. [2018] addressing the task of

Text → Sign, where Text and Sign respectively stand for English sentences and SL sequences. More
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Paper
RWTH-Phœnix-Weather SIGNUM Continuous SLR100†

SD SI SD SI SD SI?

[Von Agris et al., 2008] - - 12.7 34.9 - -

[Koller et al., 2015] 53.0 - 10.0 - - -

[Koller et al., 2016a] 45.1 - 7.6 - - -

[Koller et al., 2016b] 38.8 - 7.4 - - -

[Camgoz et al., 2017] 40.7 - - - - -

[Cui et al., 2017] 38.7 - - - - -

[Koller et al., 2017] 26.8 44.1 4.8 - - -

[Koller et al., 2018] 32.5 - 7.4 - - -

[Huang et al., 2018] 38.3 - - - - 17.3

[Guo et al., 2018] - - - - 63.0 10.2

[Pu et al., 2019] 36.7 - - - 32.7 -

[Guo et al., 2019a] 38.7 - - - 61.9 -

[Guo et al., 2019b] 36.5 - - - 44.7 14.3

[Zhou et al., 2019] 34.5 - - - - 4.5

[Yang et al., 2019] 34.9 - - - - 3.8

[Koller et al., 2019] 26.0 - - - - -

[Camgoz et al., 2020] 24.5 - - - - -

Table 3.11: Reported Word Error Rate (WER) (%) of methods detailed in Section 3.3.3 applied to
Continuous Lexical Sign Recognition on the corpora presented in Section 3.3.2. SD and SI stand for
Signer-Dependent and Signer-Independent.
?The exact same annotated sentences are present in training and test sets.
†It is unclear whether the training/test splits of the different papers are comparable.
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precisely, the authors break the problem down into three sub-problems, with the following pipeline:

Text → Gloss → Skeleton → Sign.

Text → Gloss is realized by a Neural Machine Translation (NMT) encoder-decoder architecture;

Gloss → Skeleton is simply the result of averaging the OP skeleton data for each gloss instance

of the training set;

Skeleton → Sign is dealt with by a VAE-GAN (Variational Auto-Encoder - Generative Adver-

sarial Network).

One of the major drawbacks of this architecture is that it assumes SL can be represented by sequences

of lexical sign glosses.

3.4.1.2 Sign → Text [Camgoz et al., 2018]

Symmetrically and at the same time, another model is proposed by Camgoz et al. [2018], aiming at

SLT, also using the NMT architecture. Several models are actually trained:

Sign → Text with no intermediate supervision;

Sign → Gloss & Gloss → Text two models trained independently4 and used to form a com-

plete Sign → Gloss - Gloss → Text model (with no additional training);

Sign → Gloss → Text a unified model with intermediate gloss supervision, trained in an end-

to-end fashion.

This model, which is closer to the object of this thesis than that of Stoll et al. [2018], actually exhibits

the same limitations. It explicitly assumes that the gloss sequence representation is a satisfactory way

of analyzing CSL discourse. This can be read in [Camgoz et al., 2018, p. 1-3]:

This translation task is illustrated in Figure 1, where the sign language glosses give the

meaning and the order of signs in the video, but the spoken language equivalent (which is

what is actually desired) has both a different length and ordering.

[...] Translating sign videos to spoken language is a seq2seq learning problem by nature.

Yet, as we detailed in Section 2.2.1, the gloss sequence representation misses the multilinearity of

conveyed information, the use of space and the common use of non-conventional depicting signs, that

is to say the three major characteristics that are usually highlighted by linguists. Thus, we can only

disagree with the following quote, where the authors put forward the idea that the Gloss → Text

4The Sign → Gloss part of their architecture uses that of [Koller et al., 2017].
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Figure 3.10: Sign → (Gloss+Text) architecture of Camgoz et al. [2020], with two simultaneous
training objectives: CLexSR and SLT.

model, when fed with ground truth gloss labels, would yield an upper limit for the performance of

SLT. From Camgoz et al. [2018, p. 5-6]:

We categorize our experiments under three groups:

1. Gloss2Text (G2T), in which we simulate having a perfect SLR system as an interme-

diate tokenization.

2. Sign2Text (S2T) which covers the end-to-end pipeline translating directly from frame

level sign language video into spoken language.

3. Sign2Gloss2Text (S2G2T) which uses a SLR system as tokenization layer to add

intermediate supervision.

[...] G2T experiments [...] create an upper bound for end-to-end SLT.

3.4.1.3 Sign → Text [Camgoz et al., 2020]

In a more recent publication, Camgoz et al. [2020] have somehow revised their position with respect

to the assumed superiority of the gloss representation for SLT:

glosses [...] represent an information bottleneck for any translation system. This means

that under ideal conditions, a Sign2Text system could and should outperform Gloss2Text.

In this newer paper, Camgoz et al. experiment a state-of-the-art NMT architecture, namely trans-

former networks [Vaswani et al., 2017], instead of the legacy attention based encoder-decoder approach

of [Camgoz et al., 2018]. Interestingly, in addition to the model already presented in Section 3.4.1.2,

Camgoz et al. introduce a different model, called Sign → (Gloss+Text), illustrated on Figure 3.10, in

which the encoder-decoder architecture simultaneously aims at recognizing the sequence of glosses and

at outputting the translated text sequence, without using glosses as an intermediate representation.

The effectiveness of the transformers architecture can be seen in Table 3.12, with improved performance

for all model types – the chosen performance metric is Bleu score [Papineni et al., 2002], which is

the most common metric for machine translation, corresponding to a form of modified precision using

n-grams. Furthermore, the simple Sign → Text model of [Camgoz et al., 2020] – that is, with no
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Release Model type Bleu-1 Bleu-2 Bleu-3 Bleu-4

[2018]

Gloss → Text 44.1 31.5 23.9 19.3

Sign → Gloss → Text 43.3 30.4 22.8 18.1

Sign → Gloss - Gloss → Text 41.5 29.5 22.2 17.8

Sign → Text 32.2 19.0 12.8 9.6

[2020]

Gloss → Text 48.9 36.9 29.5 24.5

Sign → Gloss → Text 48.5 35.4 27.6 22.5

Sign → Gloss - Gloss → Text 47.7 34.4 26.6 21.6

Sign → (Gloss+Text) 46.6 33.7 26.2 21.3

Sign → Text 45.3 32.3 24.8 20.2

Table 3.12: Bleu scores (%, unigrams (Bleu-1) to 4-grams (Bleu-4) – higher is better) for the
different Sign Language Translation models of Camgoz et al. [2018, 2020], applied to the test set
of the RWTH-Phœnix-Weather corpus. Gloss → Text results are also computed, based on ground
truth gloss annotations. Bleu score [Papineni et al., 2002] is the most common metric for machine
translation, corresponding to a form of modified precision using n-grams.

gloss supervision – performs better than the Gloss → Text model of [Camgoz et al., 2018]. However,

within the transformers architecture, the Gloss → Text model remains the most effective. This shows

that either the interpreted SL of the RWTH-PW corpus makes little use of the structures typical of

SL (refer to the discussion of Section 3.3.2.2), or the translation performance is actually rather poor.

3.4.2 Realistic expectations involving linguistics

As emphasized in the previous section, acceptable SLT performance – which can be seen as a long-term

goal of SLR – is not nearly achieved. Other SLR works have opted for more realistic goals and yet

tackling some complex linguistics processes of SL.

Very early on, Braffort [1996] proposed that the recognition of spatial information should be integrated

into SLR systems, in order to go towards Sign Language Understanding (SLU). In this work, that

relies on the use of data gloves, a SLR system integrates the recognition of standard lexical signs,

proforms and directional verbs (see Section 2.1). This HMM-based model was tested on a small self-

made corpus, with encouraging results, although scaling up to bigger corpora with coarser annotation

schemes is not straightforward.

More recently, the NCSLGR corpus was released by Neidle and Vogler [2012]. With more details

given in Section 4.1, this ASL corpus is made of short elicited utterances and longer spontaneous

narratives, with grammar-related annotations. Using a stochastic face tracker, Metaxas et al. [2012]

trained a HMM-SVM model to recognize five nonmanual markers – in this case, face expressions – on

a subset of the NCSLGR corpus5. These markers are relevant at the syntactic level, namely: Negation,

Wh-questions, Yes/no questions, Topic or focus and Conditional or ’when’ clauses.

5 It is not clear if the chosen utterances in the training and test sets belong to the more artificial part of the corpus,
to the more spontaneous or both.
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Setting
Features

Manual Facial Combined

Signer-Dependent (SD) 19.2% 87.7% 12.7%

Signer-Independent (SI) 39.4% 94.6% 34.9%

Table 3.13: Detailed Continuous Lexical Sign Recognition results (WER) of [Von Agris et al., 2008]
on the SIGNUM Database [Von Agris and Kraiss, 2007]. Signer-dependent and -independent settings
are evaluated, with manual features, facial features or both as input.

Still on the NCSLGR corpus5, Yanovich et al. [2016] trained and tested a sign type classifier. Their

model, based on optical flow and a CRF architecture, classifies any frame into one of three main sign

types: Lexical sign, Fingerspelled sign and Classifier sign (see Section 2.1). The advertised accuracy

is high (91.3% at the frame level), but it is computed on frames that belong to the three categories

only.

We can also mention the punctual but effective inclusion of so-called Non-Manual Features (NMFs).

On the SIGNUM Database, Von Agris et al. [2008] used the model described in Section 3.2.3 and

analyzed the importance of NMFs for CLexSR. Their results in terms of WER are given in Table 3.13.

On a much smaller dataset – 98 sentences and 24 lexical signs – Yang and Lee [2013] built a hybrid

model, with a hierarchical CRF for segmentation of the manual activity, a BoostMap embedding

for hand shape analysis and a SVM for the classification of the facial expression into five different

categories. The final WER is 15.9%. However, as pointed out by Cooper et al. [2011], NMFs should

not be restricted to facial expression.

At this stage, the state of the art we have outlined in this chapter enables us to derive some general

conclusions as well as lay out the objectives and position of this thesis.
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Problem statement

In Chapter 3, we have sought to provide a current state of the art in the field of Sign Language

Recognition (SLR). Because Isolated Lexical Sign Recognition (ILSR) is formally equivalent to gesture

recognition, we have chosen to insist on Continuous Sign Language Recognition (CSLR), which is a

research domain that involves language-related questions.

It appears that the current acceptation of CSLR is what we refer to as Continuous Lexical Sign

Recognition (CLexSR), that is the recognition of lexical sign glosses within continuous signing (Sec-

tion 3.3). On the basis of the arguments we have developed in Chapter 2, it appears that this direction

is strongly biased, and will not make it possible to go towards Sign Language Understanding (SLU)

and a fortiori to Sign Language Translation (SLT). Indeed, the gloss sequence description misses the

three main SL characteristics that we have detailed in Section 2.2: the multilinearity, that makes it

possible to convey several types of information at once; the prevalent use of space, that structures SL

discourse; the iconicity, that enables to show while saying.

Our point is hardly new, and has been put forward early on, by a few researchers in the field of SLR.

For instance, Braffort [1996] insisted on the importance of space as a grammar component of French

Sign Language (LSF):

Since the order of the signs is much less significant in LSF than their relative spatial

arrangement, statistical grammars (based on succession frequencies of symbols) are not

sufficient to deal with sentences in which spatial information is fully utilized (translated

from French, p. 164).

In another work, Edwards [1997] mentioned complementary arguments. He observed that the focus

had been on conventional signs – gestures –, leaving out the grammar of SL. In terms of grammar,

Edwards primarily referred to the iconic characteristic of SLs, for which he used the expression property

of richly grounding. Also, he insisted on considering multilinear aspects of SL, like facial expression

or body posture:

To date the research emphasis has been on the capture and classification of the gestures of

sign language [...]. However, it is suggested that there are some greater, broader research

questions to be addressed before full sign language recognition is achieved. The main areas

to be addressed are sign language representation (grammars) and facial expression recog-

nition [...], though there are others [...], such as body posture.

[...]

Most researchers are either unaware of or have chosen to ignore [these areas].
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Related to the fact that CLexSR has been the main concern of researchers, leaving out the three

linguistic characteristics we have just mentioned, specific types of SL corpora have become popular.

Many of them consist of artificial elicited sentences, repeated several times, with eliciting material – and

annotation schemes – consisting of sequences of glosses, precisely. This is for instance the case of the

SIGNUM Database (Section 3.3.2.1) and the Continuous SLR100 (CSLR100) corpus (Section 3.3.2.3).

Of a somewhat different type, RWTH-Phœnix-Weather (RWTH-PW) is another very popular corpus,

probably the most used to this day for performance assessment and comparison of CLexSR systems.

Although the annotation scheme is similar to that of SIGNUM and CSLR100, the discourse type

is necessarily more spontaneous, as it consists of interpreted SL. However, we have pointed out in

Sections 2.2.3 and 3.3.2.2 the fact that interpreted SL is inevitably influenced by the original speech,

especially in terms of syntax, which means that the use of structures typical of SL is definitely restricted

– an observation that is shared by the authors of this corpus. The generalizability of this corpus is

thus limited, which is not always acknowledged by SLR researchers.

Another limitation of using glosses as training objective of SLR systems that should be noted, is the

fact that glosses do not necessarily represent the meaning of signs they are associated to. This is

highlighted by Johnston and De Beuzeville [2016]:

ID-glosses are likely to confuse a general audience because they might not closely reflect

(literally “gloss”) the meaning of the sign. That is not their purpose or function. A gloss

which is the best translation equivalent for a given context is much more appropriate in

other cases. One of the keywords associated with an ID-gloss is probably going to be the

most suitable word to use in these cases. [...] Used alone like this, glosses almost invariably

distort face-to-face SL data. Their use may well be counter-productive.

We appreciate that a few leads have been initiated towards different directions than CLexSR. SLT is

one of them, although it has been mostly driven by gloss supervision, on the limitative RWTH-PW

corpus (Section 3.4.1).

On the other hand, focusing on SLT or on the recognition of lexical signs only, with black box archi-

tectures, may prevent developments in the linguistic description and automatic analysis of SL. A few

approaches have actually chosen to deal with linguistic matters, yet on very small corpora or only

superficially (Section 3.4.2).

In light of all these observations, it seems necessary to find a new way for automatic SLR that would

take into account the specificities of SL as a visual-gestural language. In the next chapters, we will

propose to drive research in SLR in this direction, with a relevant corpus and a methodology that do

not rely on lexical signs only.
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Part II

A more general paradigm for SLR
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Chapter 4
Towards better corpora for SLR

Sign Language Recognition (SLR) systems are highly dependent on and driven by SL corpora. In

this chapter, we discuss possible improvements with respect to the corpora largely used by the SLR

community.

A first group of corpora, developed by linguists, is presented in Section 4.1. They are carried out with

particular care to the linguistic quality and generalizability of the studied SL. However, the annotations

are not always consistent, with many videos only partially annotated. Then, a remake of the French

Sign Language (LSF) part of the Dicta-Sign corpus, that is intended to be both linguistically relevant

and interesting for the SLR community, is detailed in Section 4.2.

4.1 Linguistic-driven corpora

In this section, we introduce six Continuous Sign Language (CSL) corpora realized by linguists (see

Figure 4.1). Their respective annotation guidelines are usually quite detailed, with lexical signs,

depicting signs and more. Except for NCSLGR, these corpora are very large in terms of duration,

they include many signers and are made of dialogues, narratives and conversations. Undoubtedly, they

can be considered very representative of natural SL. However, because these corpora have been made

by linguists and intended for linguistic analyzes, using them for SLR tasks is not straightforward. The

main reason for this is the lack of consistency in the annotations across the corpora: most of them are

still ongoing work, with annotations being updated continuously.

An overview of these corpora, along with those presented in Section 3.3.2, is given in Table 4.1. In this

table, we include the number of signers, total duration, discourse type, whether a written translation

is included in the annotation as well as the annotation categories (besides lexical sign glosses).

Auslan Corpus

The Auslan Corpus [Johnston, 2009], belonging to the Endangered Languages Archive, consists of 300

hours of video recording – 150 hours of usable language production – from 100 signers of Australian

Sign Language (Auslan). The elicitation procedure was extensive, with an interview, the production

of narratives, responses to questions, free conversation among others.

The annotations are rich and include lexical sign glosses, detailed grammatical class (Depicting Signs

(DSs), Pointing Signs (PTSs), etc.), gaze, constructed action (refer to Section 2.1 for more detail).
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Auslan Corpus BSLCP

DGS Korpus NCSLGR

LSFB Corpus

Corpus NGT

Figure 4.1: Random frames from the six Continuous Sign Language corpora presented in Section 4.1
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Only a fraction of the videos have been annotated at this time.

BSL Corpus

The BSL Corpus (BSLCP) [Schembri, 2008] contains video data recordings of dialogue in British Sign

Language (BSL) from 249 deaf signers, for a total duration of 180 hours. Only a part of the corpus is

publicly available.

Annotations are progressively released, with lexical sign glosses and English translations, as well as –

for a fraction of released annotations – labels for PTSs, DSs and different types of buoys.

DGS Korpus

The DGS Korpus [Prillwitz et al., 2008] is an ongoing long-term project aiming at collecting 500 hours

of German Sign Language (DGS) narratives and conversations, from more than 300 signers. A fraction

of this corpus – about 50 hours of video – is released as the Public DGS Korpus [Jahn et al., 2018].

The public corpus also contains 2D skeleton data, computed by OpenPose (OP) [Cao et al., 2017]. A

rich DGS dictionary with local variants should be released by 2023. As of now, it seems that the data

collection is completed, although annotation tasks are still ongoing.

The annotation scheme covers lexical sign glosses, translation and mouthing.

LSFB Corpus

The LSFB Corpus [Meurant et al., 2016] is a dialogue corpus, with 100 signers of French Belgian Sign

Language (LSFB) and 150 hours of recording. The type of discourse is natural and spontaneous, with

general discussions and narratives.

As of now, ten hours are annotated, with lexical sign glosses and a general DS label1. Two hours of

video are also translated in French.

NCSLGR

The NCSLGR corpus [Neidle and Vogler, 2012] includes two categories of discourse, in American

Sign Language (ASL), for a total of two hours from seven signers. Most videos are made of artificial

elicited utterances, in a similar way to Signum (Section 3.3.2.1). However, the corpus also includes

spontaneous short stories, with more language variability.

Annotations for the manual activity follow the conventions from Baker and Cokely [1980]; Smith et al.

[1988], with: lexical sign glosses, Fingerspelled Signs (FSs), hold signs (hand position held at the

end of a sign, not necessarily with a linguistic function), PTSs, DSs (seven categories) with proforms

and Gestures (Gs). Non-manual activity is also annotated, with head movement and eye gaze among

others.

Corpus NGT

The Corpus NGT [Crasborn and Zwitserlood, 2008; Crasborn et al., 2008] is an online open archive

corpus including 72 hours of – partially – annotated data from 92 native signers of Dutch Sign Language

(NGT). This corpus is mainly a dialogue and conversation corpus, supplemented by a few elicited and

spontaneous narratives.

1The authors envision to further specify the different DS categories in the future.
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Annotations mostly cover lexical signs (glosses) and Dutch translations, but sometimes include infor-

mation on mouthing or classifier constructions.

4.2 The example of Dicta-Sign–LSF–v2

This section focuses on Dicta-Sign–LSF–v2, a remake of the LSF part of the Dicta-Sign corpus. This

new corpus is especially intended for assessing the automatic recognition of elements within the iconic

and spatial modalities.

In this section, we discuss the relationship between Dicta-Sign–LSF–v2 and Dicta-Sign (Section 4.2.1),

the recording conditions (Section 4.2.2), elicitation material (Section 4.2.3) and annotation categories

as well as guidelines (Section 4.2.4), then we present some statistics (Section 4.2.5).

4.2.1 From the Dicta-Sign project to Dicta-Sign–LSF–v2

With an initial objective of improving web-based human-computer interfaces for the Deaf, the Euro-

pean project Dicta-Sign [Efthimiou et al., 2010] focused on four different SLs: British (BSL), Greek

(GSL), German (DGS) and French (LSF). Targeting both SLR and Sign Language Generation (SLG),

this project also emerged from the shared interest of researchers in the cross-comparison of different

SLs. In terms of produced data, we can mention :

• a shared lexicon with 1000 concepts and a citation-form realization for each SL, transcribed with

the Hamburg Notation System for Sign Languages [Hanke, 2004] (HamNoSys);

• a comparable CSL dialogue corpus for the four SLs, with, for each SL, at least 14 signers and

10 dialogue tasks all related to the concept of travel.

Recently, we published Dicta-Sign–LSF–v2 [Belissen et al., 2020a], a remake of the French part for the

CSL corpus from Dicta-Sign. Video data was standardized, annotations were cleaned, synchronized

and made reliable, and the redesigned corpus was published on the language platform Ortolang23. We

also published fully preprocessed signer data, following the proposed signer representation features

developed in Section 6.1.

The rest of this chapter is focused on Dicta-Sign–LSF–v2, that is the redesigned LSF part of Dicta-

Sign.

4.2.2 Recording setup

For each of the eight couples in the corpus, the two signers faced each other. Two recording cameras

were placed just above their head, so that they were facing the person being recorded almost perfectly,

while a third camera recorded the scene from the side. The setup can be seen on Figure 4.2.

These three views were released in Dicta-Sign–LSF–v2, with identical resolution (720 × 575 at 25

fps). Other views, like a top-down view, a frontal RGB-Depth (RGBD) camera recording, or better

resolution may have existed in the original corpus. They are not part of this release for various

reasons, including the absence of consistency across all videos, and our intent to stimulate research

and applications on common front-view RGB recordings.

2https://www.ortolang.fr/market/corpora/dicta-sign-lsf-v2 [LIMSI and IRIT, 2019]
3Ortolang is a platform for language, which aims at constructing an online infrastructure for storing and sharing

language data (corpora, lexicons, dictionaries etc.) and associated tools for its processing
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Figure 4.2: Recording setup in Dicta-Sign–LSF–v2, with two frontal cameras and a side one.

4.2.3 Elicitation material and type of discourse

Since the original multilingual corpus Dicta-Sign was made to be comparable, nine common tasks were

shared, all related to the concept of travel in Europe:

Task 1 Public Transportation

Task 2 Travel Agency

Task 3 Planning a Holiday

Task 4 Airport

Task 5 City Map

Task 6 Expectation & Reality

Task 7 Travel then & now

Task 8 Signed Story/Picture Story

Task 9 Dates, Isolated Signs

Elicitation methods consisted in having the participants watch videos and slides describing the purpose

of the task. For instance in task 1, the elicitation video and the slides ask a signer to explain to the

other signer of the couple how to get from A to B, using public transportation. See Figure 4.3 for an

illustration.

Because all tasks were related to the theme of travel, it is obvious that the lexical field is somehow

biased in the corpus. However – except for task 9 –, as elicitation guidelines were sufficiently loose,

the type of discourse was very natural and spontaneous, exhibiting specific structures of SL and a

significant variability between signers (see Section 4.2.5).
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(a) Elicitation video (b) Elicitation slide

Figure 4.3: Elicitation video (a) and slide (b) for the task 1 of the Dicta-Sign corpus. Signers are
asked to explain how to go from point A (green flag) to point B (red flag) using public transportation.

4.2.4 Annotations

In order to make the annotation as consistent and comprehensive as possible, an annotation guide has

been written and made public. In this section, we present the main guidelines on the tracks used, the

segmentation rules for manual units and the categories used.

Beforehand, we remind that although the chosen guidelines correspond to commonly used decision

rules amongst linguists, there is no such thing as annotation standards on this subject, especially on

the number of tracks or the method for segmenting units. For a detailed discussion, see [Crasborn,

2010].

4.2.4.1 Tracks

Manual units

Three tracks are used for manual units. The goal is to annotate the units carried by each of the left

and right hands independently and those for which both hands carry the unit in such a way that they

are considered inextricable:

LH for manual units made with the left hand. This also includes lexical signs usually performed

only with the left hand in a given context.

RH for manual units made with the right hand. This also includes lexical signs usually performed

only with the right hand in a given context.

2H for two-handed manual units, i.e. units that have a global meaning and for which the initial

and final postures of each hand are approximately aligned with each other. This also includes

lexical signs that are usually one-handed and are performed with both hands in a given context.

Translation

A French translation was realized orally by an interpreter, who then transcribed and aligned the text

to the video using annotation software. The style is therefore close to oral French, as in the case of

real-time interpretation.
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4.2.4.2 Segmentation

Start and end of a manual unit

A manual unit starts when a key posture is identified, that is when the hand parameters that constitute

the beginning of the unit are met: configuration, orientation, location. Note that the parameters are

defined a priori for lexical signs but not for other manual units. As in Dicta-Sign–LSF–v2 the frame

rate is 25 fps, this often corresponds to a sharp image. If this posture seems to fall between two

frames, the unit starts at the next frame.

A unit ends when at least one of the hand parameters that make up the end of the unit is no longer

in place: configuration, orientation, location.

Case of repeated signs

When a manual unit consists in the repetition of subparts, it is considered a single unit only when

transitions are very short and hand parameters are unchanged. Repeated manual units are thus

divided into subunits when transitions are longer or when at least one hand parameter (usually the

location) is changed.

Case of hold signs

Sometimes two-handed units end but one of the hands – usually the weak hand – maintains the final

posture of the two-handed unit in a more or less committed fashion.

If an interaction with the other hand is observed while the hold is active, the hold is annotated with

the Fragment Buoy (FBuoy) category. This annotation segment begins at the image following the

end of the annotation segment for the two-hand unit and ends as described earlier. It should be

noted that this type of unit often dies out slowly over time. As a result, the end of the unit is more

frequently indicated by a change in orientation or configuration: a simple change of location is not

always sufficient. If the hold only lasts a few frames, the posture dies out rapidly and there is no

interaction between the two hands, the hold is not annotated.

4.2.4.3 Categories and values

The annotation categories are strongly influenced by the guidelines of [Johnston and De Beuzeville,

2016] that are detailed in Section 2.3.3. Once segmented, each manual unit was assigned one of the

categories listed below. All annotations are binary, except for FLS which are annotated as a categorical

variable.

Fully Lexical Signs (FLSs) for conventional units. The value is an identifier (ID), in the form

of an integer, associated to an ID-gloss in French.

Partially Lexical Signs (PLSs) for non-conventional, context-dependent units, including:

Depicting Signs (DSs) for illustrative structures,

Pointing Signs (PTSs) or indexing signs,

Fragment Buoys (FBuoys) for the hold of a fragment or the final posture of a two-handed

lexical sign, usually on the weak hand [Liddell, 2003]. List Buoys (LBuoys) and Theme Buoys

(TBuoys) are not part of the annotation guidelines of Dicta-Sign–LSF–v2.

Non Lexical Signs (NLSs) for units that are neither lexicalized nor illustrative, including:
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Numbering Signs (NSs) for numbers greater than 10 (no values),

Fingerspelled Signs (FSs) for proper names or when the sign is unknown,

Gestures (Gs) for non-lexicalized gestures, which may be culturally shared or idiosyncratic

– these gestures are not assigned an ID-gloss.

These categories are considered mutually exclusive, although one should note that ambiguity is often

present. This is the case for some very iconic units that can be categorized as lexical signs but also as

illustrative structures. Cases that could have been annotated into more than one category should be

further investigated in the future.

Because it is defined as an elimination category, category G also raises some difficulties. It may well

be that an annotated unit G can be considered a lexical sign if its systematic use is found in the same

form to convey the same meaning.

Also, the original corpus Dicta-Sign included sub-categories4 for DSs that will be proposed in a future

release:

DS-Location (DS-L) for the location of an entity,

DS-Motion (DS-M) for the motion of an entity,

DS-Size&Shape (DS-SS) for the size and shape of an entity,

DS-Ground (DS-G) for a spatial or temporal reference (ground),

DS-Action (DS-A) for the handling of an entity – originally DS-H in [Johnston and

De Beuzeville, 2016],

DS-Trajectory (DS-T) for a trajectory shown in the signing space,

DS-Other (DS-X) for any other deformation of a standard lexical sign.

4.2.4.4 Annotation procedure and limits

Without going into too much detail, the annotation procedure consisted in having two experts an-

notate in parallel each video recording. The two experts then monitored each other and discussed

disagreements. In the case a disagreement could not be resolved this way, a supervisor was called in.

In spite of this solid supervision, annotation errors may remain, for instance omissions.

More generally, the linguistic theories for describing SLs are relatively recent and lack consensus –

see for instance the developments on the role of iconicity in Section 2.1. The relevance of different

types of annotation categories is still subject to debate amongst linguists, and more research is needed.

Practically speaking, assigning a category to a manual unit is a complicated and sometimes ambiguous

task.

4.2.5 Statistics

This section presents some statistics on Dicta-Sign–LSF–v2, in order to get a grasp on the variability

between considered gestural units, signers and tasks of the corpus.

4These sub-categories are actually not mutually exclusive

4.2. The example of Dicta-Sign–LSF–v2 91



Chapter 4. Towards better corpora for SLR

0 200 400 600 800
0

50

100

150

200

250

300

350

400

450

500

550

600

867

587

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600 587

# of occurrences

#
of

si
gn

s

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

# of occurrences

#
of

si
gn

s
(c

u
m

u
la

ti
ve

)

# of occurrences

#
of

si
gn

s

Figure 4.4: Distribution of the number occurrences of Fully Lexical Signs in the Dicta-Sign–LSF–v2
corpus. A detailed view is given for signs with less than 100 occurrences (top figure), along with the
cumulative distribution (bottom figure). 587 signs only appear once in the corpus, whereas the sign
YES has 867 occurrences. The total number of FLSs is 2081.
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# of occurrences
# of signs with a smaller or equal

# of occurrences
# of signs with a greater # of

occurrences

0 0 2081

1 585 1496

10 1556 525

20 1789 292

50 1997 84

100 2051 30

200 2072 9

400 2080 1

Table 4.2: Numbers derived from the cumulative distribution of the number of occurrences for the
Fully Lexical Signs of Dicta-Sign–LSF–v2. The way this table can be read is for instance: 1789 signs
have less or exactly 20 occurrences, while 292 signs have more than 20 occurrences.

Dicta-Sign–LSF–v2 is made up of more than 11 hours of video recording (1007593 annotated frames),

with 16 signers. Figure 4.4 presents the distribution of the number of occurrences for the 2081 FLS

of the corpus. 587 signs only appear once in the corpus, whereas the sign YES has 867 occurrences.

More detail is given in Table 4.2.

Table 4.3 and associated Figure 4.5 present the frame-wise and unit-wise statistics for the main anno-

tation categories, that is FLS, DS, PTS, FBuoy, NS and FS. The category G is not included, because

of the very low number of instances and the fact that it is defined by elimination (see Section 4.2.4.3).

In terms of annotated frames, the ratio FLS : PLS is about 2 : 1, and reaches 3 : 1 with respect to

manual units. One will notice that PTSs are usually very short (252 ms per unit on average) whereas

DSs and FBuoys are longer, with respectively 674 ms and 975 ms per unit on average. NLSs – which

are relatively long units too – only account for 0.9% (resp. 1.8%) of the total annotated units (resp.

frames). Results from Table 4.3 are actually quite consistent with [Sallandre et al., 2019], which

includes a fine analysis of the distribution of units according to different discourse genres, including

dialogue.

Figure 4.6 presents a finer analysis on the distribution of frame counts, for the main annotation

categories. Figure 4.6a illustrates that signers have significantly different distributions in terms of

FLSs, DSs, etc. For instance, the frame-wise distribution for Signer 4 is 81% for FLS, 11% for DSs

and 1% for FBuoys, whereas for Signer 6 these categories respectively amount to 57%, 28% and 8%. In

terms of tasks, the variation in distribution is also significant, with some tasks exhibiting particularly

high or low values for certain categories. For instance, task 9 mainly consisted in signing dates, so the

very high value in the NS category is unsurprising – as well as the very low value in DS. Also, task 8,

consisting in a short signed story of a narrative type, has a quite high value for DSs at 32%.

Even though we have not released corresponding annotations yet, detailed statistics for sub-categories

of DSs are also presented in Table 4.4 and associated Figure 4.7.

The original DS categories from the guidelines of Johnston and De Beuzeville [2016], that is DS-L,

DS-M, DS-SS, DS-G and DS-A amount to 92.4% of the annotated DS frames.
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FLS
PLS NLS

Total

DS PTS FBuoy NS FS

Non blank frames 205530 60794 23045 14359 3830 1941 309499

% 66.4% 19.7% 7.5% 4.6% 1.2% 0.6%

Cumulative % 66.4% 86.1% 93.6% 98.2% 99.4% 100.0%

Manual units 24565 3606 3651 589 155 118 32684

% 75.2% 11.0% 11.2% 1.7% 0.5% 0.4%

Cumulative % 75.2% 86.2% 97.4% 99.1% 99.6% 100.0%

Avg. frames/unit 8.4 16.8 6.3 24.4 24.7 16.4

Avg. duration (ms) 335 674 252 975 988 658

Table 4.3: Frame count and sign count (manual unit) statistics for the main annotation categories of
Dicta-Sign–LSF–v2

FLS DS PTS FBuoy NS FS

0
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0.2

0.3

0.4
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0.8
Frame-wise
Unit-wise

Figure 4.5: Frame count and sign count (manual unit) distribution for the main annotation categories
of Dicta-Sign–LSF–v2
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(a) Statistics per signer
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(b) Statistics per task

Figure 4.6: Frame count statistics for the main annotation categories of Dicta-Sign–LSF–v2, for each
signer (a) and for each task (b) of the corpus.
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In terms of unit count, DS-L and DS-M account for the majority of manual units. Frame-wise, the

unit length is quite uniform, except for DS-G that are about twice longer than other depicting signs.

These units are indeed used as reference points with the weak hand, held for a long time while other

lexical or depicting signs are produced on the dominant hand.

Conclusion

In light of the above description for the redesigned corpus Dicta-Sign–LSF–v2, its relevance for SLR

is established.

Conversely to the common corpora that are used to train SLR systems (Section 3.3.2), Dicta-Sign–

LSF–v2 is made of natural and spontaneous SL, in the form of dialogue. With varied tasks, it is fairly

representative of the different linguistic phenomena one can observe in SL dialogue. Furthermore, it is

annotated very finely in a consistent manner, with three hand tiers (LH, RH, 2H) and many categories

following the guidelines of Johnston and De Beuzeville [2016].

Thus, this corpus should be a very good base for experimenting generalizable automatic SLR systems,

also enabling to go towards Sign Language Understanding (SLU) and Sign Language Translation

(SLT). The limitations we can mention include the modest size of the corpus (11 hours) and the fact

that a better way to annotate the discourse in terms of the linguistically relevant use of signing space

remains to be defined.

All of the data composing this corpus can be downloaded from the Ortolang website: video and OP

preprocessed data, elicitation material, annotation guide and annotation files. This corpus constitutes

the first contribution of this thesis.

In the next chapter, we will propose an appropriate framework for SLR experiments.
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DS-L DS-M DS-SS DS-G DS-A DS-T DS-X Total

Non blank frames 22725 16378 7044 16286 9056 5081 626 77196

% 29.4% 21.2% 9.1% 21.1% 11.7% 6.6% 0.8%

Manual units 1389 1170 535 581 590 310 41 4616

% 30.1% 25.3% 11.6% 12.6% 12.8% 6.7% 0.9%

Avg. frames/unit 16.4 14.0 13.2 28.0 15.3 16.4 15.3

Avg. duration (ms) 654 560 527 1121 614 656 611

Table 4.4: Frame count and sign count (manual unit) statistics for the Depicting Sign categories of
Dicta-Sign

DS-L DS-M DS-SS DS-G DS-A DS-T DS-X

0

0.1

0.2

0.3

Frame-wise
Unit-wise

Figure 4.7: Frame count and sign count (manual unit) statistics for the Depicting Sign categories of
Dicta-Sign
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Chapter 5
A broader definition of Continuous Sign

Language Recognition

Previously (Section 3.3), we have shown that the current acceptation of Continuous Sign Language

Recognition (CSLR) should actually be referred to as Continuous Lexical Sign Recognition (CLexSR),

since it is focused on the recognition of fully conventionalized signs (lexical signs) within Continuous

Sign Language (CSL) videos. In this chapter, we propose a much more general definition of CSLR, as

the simultaneous recognition of several linguistic descriptors.

In order to define CSLR in a very general way, we go back to the formalization of Sections 3.1 and

3.3.1. With X = [f1, . . . , fT ] as a CSL video made of T frames (f), the purpose of this chapter is to

define a general form for YCSLR, the recognition objective, such that the process of CSLR consists in

computing estimates ŶCSLR:

X
R,M−−−→ ŶCSLR (5.1)

where R – an intermediate representation of X (features) – and M – a learning and prediction model

– will be discussed in Chapter 6.

The quality of the estimates must then be assessed with a performance metric P(Y, Ŷ ).

An introduction to the descriptors is the purpose of Section 5.1, then we discuss associated perfor-

mance metrics in Section 5.2 and adapted error functions for training neural networks on this task in

Section 5.3.

5.1 Linguistic descriptors

Generally speaking, we propose interpreting CSLR as the continuous recognition of different linguistic

descriptors. By using the most linguistically relevant descriptors, one can hope to progress towards

Sign Language Understanding (SLU) and Sign Language Translation (SLT).

Let us consider such a CSLR acceptation with M different linguistic descriptors dm,m ∈ {1, . . . ,M},
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1 2 3 4 5 6 7 8 9

"At the very center of this area, there is a large building surrounded by restaurants."

F
L

S

RH RESTAURANT

2H CENTER

LH

P
L

S

RH DS-L PTS DS-SS+L

2H DS

LH DS-G FBuoy

Figure 5.1: French Sign Language sequence from Dicta-Sign–LSF–v2 (video reference: S7 T2 A10, see
Chapter 4). Expert annotations for right-handed (RH), two-handed (2H) and left-handed (LH) Fully
Lexical Signs (FLSs) and Partially Lexical Signs (PLSs) are given.

SLR type Y P

Unaligned CLexSR (Section 3.3.1.1)
[
g1 g2

]
WER

Aligned CLexSR (Section 3.3.1.2)
[
g0 g0 g0 g1 g0 g2 g0 g0 g0

]
Acc

CSLR:



d1 : FLSs

d2 : DSs

d3 : PTSs

d4 : FBuoys


g0 g0 g0 g1 g0 g2 g0 g0 g0

1 1 1 0 1 0 1 1 1

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1




P1 : Acc

P2 : F1

P3 : F1

P4 : F1


Table 5.1: Illustration of unaligned and aligned Continuous Lexical Sign Recognition (CLexSR) on the
sequence example from Figure 5.1, as well as a proposal for Continuous Sign Language Recognition
(CSLR), including aligned Fully Lexical Signs (FLSs), and binary prediction for the presence or absence
of Depicting Signs (DSs), Pointing Signs (PTSs) and Fragment Buoys (FBuoys).
Here, the lexicon is G = {(g0 : NULL, )g1 : CENTER, g2 : RESTAURANT, . . . }.
Y and P respectively stand for the recognition objective and the performance metric.
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so that YCSLR can be written as:

YCSLR =


d1

...

dM

 (5.2)

with performance metric as a vector of size M , each descriptor having its own metric:

P(Y, Ŷ ) =


P1

...

PM

 . (5.3)

One may notice that unaligned and aligned CLexSR, as defined in Sections 3.3.1.1 and 3.3.1.2, cor-

respond to the continuous recognition of one linguistic descriptor (M = 1). The form of the unique

descriptor d1 is detailed in Equations 3.8 and 3.12.

Because we are considering continuous recognition, the temporal dimension is necessarily present in

YCSLR. Without loss of generality, we will suppose that all descriptors dm,m ∈ {1, . . . ,M} have a

temporal dimension of length T , that is the original number of video frames, like in the case of aligned

CLexSR (going from YCLexSR,A to YCLexSR,U is straightforward, as it consists in removing duplicates

and frames with no label). With this assumption, we can write:

Y =


d1

1 · · · · · · · · · d1
T

...
. . .

...

dM1 · · · · · · · · · dMT

 . (5.4)

As SLs are four-dimensional languages [Vermeerbergen et al., 2007, (Sallandre, p. 103)], with signs

and realizations located not only in time but also in the three dimensions of space, each dmt (m ∈
{1, . . . ,M}, t ∈ {1, . . . , T}) could also include spatial information – for instance they could be described

by a vector of size 3, indicating the location of each sign realization. However, for sake of simplicity,

and because we have no knowledge of a CSL corpus that would be annotated both in space and time,

we will consider each dmt as a scalar. Each of these scalars can be binary, categorical or continuous,

depending on the associated information.

In Table 5.1, we give an example of fine CSLR, with d1 encoding recognized Fully Lexical Signs (FLSs)

– categorical –, d2 the presence/absence of Depicting Signs (DSs) – binary –, d2 the presence/absence

of Pointing Signs (PTSs) – binary – and d4 the presence/absence of Fragment Buoys (FBuoys) –

binary.

For categorical (including binary) descriptors, these scalars can be encoded by one-hot vectors for the

annotations, while prediction models usually estimate probabilities for each category. For instance,

for a classification problem with five categories c ∈ {1, 2, 3, 4, 5}, dmt = 4 is equivalent to dmt =[
0 0 0 1 0

]
, while a (good) prediction could look like d̂mt =

[
0.13 0.01 0.19 0.62 0.31

]
.
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5.2 Performance metrics

As mentioned earlier, each descriptor dm should be assigned an adapted performance metric Pm,

which is developed in this section.

5.2.1 Frame-wise performance metrics

5.2.1.1 Accuracy

Each categorical descriptor dm, like the continuous – aligned – recognition of FLS glosses, can be

analyzed with a simple accuracy metric Accm:

Accm =
1

T

T∑
t=1

1(dmt , d̂
m
t ) =

# correctly labeled frames

T
(5.5)

where 1 is the identity function (see Equation 3.14). Of course, accuracy can also be used for binary

descriptors, which is a specific case of categorical descriptor with two categories.

5.2.1.2 Precision, recall and F1-score

Binary descriptors, which can be seen as categorical with two possible values, often correspond – in

our case – to relatively rare events, such that predicting the value ”0” for all frames may correspond

to a very high accuracy. In order to address this issue, one may resort to the calculation of precision

P and recall R:

Pm =
TP

TP + FP
=

∑
t d

m
t d̂

m
t∑

t d̂
m
t

(5.6)

Rm =
TP

TP + FN
=

∑
t d

m
t d̂

m
t∑

t d
m
t

(5.7)

where TP, FP and FN respectively stand for true positives, false positives and false negatives. The

precision is then the ratio of correct positive predictions with respect to the total number of positive

predictions, whereas the recall is the ratio of correct positive predictions with respect to the total

number of positive annotations. The F1-score, defined as the harmonic mean of precision and recall,

is then used as a trade-off metric for binary classification:

F1m = 2
(

(Pm)−1 + (Rm)−1
)−1

. (5.8)

One advantage of F1-score is that the minimum of the two performance values is emphasized, which

can be seen on a graph for this function, shown on Figure 5.2.

As a matter of fact, precision and recall – and thus F1-score – can actually be generalized to non-binary

values, with the following definitions:

Pm =

∑
t 1(dmt = d̂mt and dmt 6= 0)∑

t 1(d̂mt 6= 0)
(5.9)

Rm =

∑
t 1(dmt = d̂mt and dmt 6= 0)∑

t 1(dmt 6= 0)
(5.10)
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Figure 5.2: F1-score as a function of precision and recall (contour plot)

5.2.2 Unit-wise refined metrics for activity recognition and localization

Although accurate temporal localization is aimed for, frame-wise performance metrics may not be

perfectly informative. Indeed, because the start and end of each unit can be quite subjective, even a

good recognition model can get poor frame-wise Acc, P, R, F1 etc., especially if the units are short,

like in the case of PTSs (cf. Table 4.3). Unit-level metrics are then needed to get a better perspective

on a system performance. They require to define what a good prediction is, with variants detailed in

the next paragraphs. A detailed calculation for these metrics is given in Appendix A, with an example

in the case of binary classification.

The starting point is to list UG, corresponding to the set of all ground-truth annotated units, and UD,

corresponding to that of all detected units. The notion of precision and recall for categorical values

in a temporal sequence format can then be extended to units. True and false positives and negatives

are counted with respect to two points of view: either analyzing each annotated unit – and deciding

whether it is sufficiently close to any detected unit –, or each detected unit – and deciding whether

it is sufficiently close to any annotated unit. Modified versions of precision and recall are defined as

follows:

P ? =
# of correctly detected units w.r.t. UD

# of detected units
=

1

|UD|
∑

ud∈UD

IsCorrectlyPredicted(ud, UG) (5.11)

R? =
# of correctly detected units w.r.t. UG

# of annotated units
=

1

|UG|
∑

ug∈UG

IsCorrectlyPredicted(ug, UD) (5.12)

where IsCorrectlyPredicted is a counting function (values are 0 or 1). The F1-score is defined as in

Equation 5.8.
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5.2.2.1 Counting units within a certain temporal window tw

We propose a first and straightforward counting function that consists in positively counting a unit

ud ∈ UD if and only if there exists a unit of the same class in UG, within a certain margin tw –

respectively a unit ug ∈ UG is counted positively if and only if there exists a unit of the same class in

UD, within a certain margin tw.

More precisely, the time gap between the middle of ud and the middle of the closest unit of the same

class in UG is compared to tw, in order to decide whether ud is a correct detection – respectively,

the time gap between the middle of ug and the middle of the closest unit of the same class in UD is

compared to tw, in order to decide whether ug is correctly detected.

In this configuration, precision, recall and F1-score are named P ?
w(tw), R?

w(tw) and F1?w(tw).

5.2.2.2 Counting units with thresholds t̄p and t̄r on their normalized temporal intersec-

tion

Wolf et al. [2014] have proposed and applied a similar but refined set of metrics, adapted for human

action recognition and localization, both in space and time:

This measure is designed to penalize information loss, which occurs if actions or (spatial or

temporal) parts of actions have not been detected, and it should penalize information clutter,

i.e. false alarms or detections which are (spatially or temporally) larger than necessary.

Because our data are only labeled in time, we set aside the space metrics, although they would

definitely be useful with adapted annotations. The metrics derived below are thus slightly modified

with respect to [Wolf et al., 2014].

In this setting P ? and R? are calculated by finding the best matching units. Precision matches each

unit of the detected list to one of the units in the ground truth list, whereas recall matches each unit

of the ground truth to one of the units in the detection list, as for P ?
w(tw) and R?

w(tw).

For each unit ud in the list UD, one can define the best match unit in UG as the one maximizing the

normalized temporal overlap between units (and a symmetric formula for the best match of a unit ug
in UD):

BestMatch (ud, UG) = argmax
ug∈UG


2 # of frames (ug ∩ ud)

# of frames (ug) + # of frames (ud)
if Class(ug) = Class(ud)

0 otherwise

(5.13)

BestMatch (ug, UD) = argmax
ud∈UD


2 # of frames (ug ∩ ud)

# of frames (ug) + # of frames (ud)
if Class(ug) = Class(ud)

0 otherwise.

(5.14)

P ?
pr(t̄p, t̄r) and R?

pr(t̄p, t̄r) are then expressed as:

P ?
pr(t̄p, t̄r) =

1

|UD|
∑

ud∈UD

IsMatched (BestMatch (ud, UG) , ud, t̄p, t̄r)) (5.15)
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R?
pr(t̄p, t̄r) =

1

|UG|
∑

ug∈UG

IsMatched (ug,BestMatch (ug, UD) , t̄p, t̄r)) . (5.16)

IsMatched decides whether two units are sufficiently similar, with two criteria (not counting the fact

that the two units must obviously belong to the same class):

• The number of frames which are part of both units is sufficiently large with respect to the number

of frames in the detected set, i.e. the detected excess duration is sufficiently small.

• The number of frames which are part of both units is sufficiently large with respect to the number

frames in the ground truth set, i.e. a sufficiently long duration of the unit has been found.

This can be written down as follows:

IsMatched (ug, ud, t̄p, t̄r) =


1 if



# of frames (ug ∩ ud)

# of frames (ud)
> t̄p

# of frames (ug ∩ ud)

# of frames (ug)
> t̄r

Class(ug) = Class(ud)

0 otherwise.

(5.17)

In the end, the F1-score can be derived similarly to Equation 5.8:

F1?pr(t̄p, t̄r) = 2
(
P ?
pr(t̄p, t̄r)

−1 +R?
pr(t̄p, t̄r)

−1
)−1

. (5.18)

Equations 5.15, 5.16 and 5.18 enable to plot curves for variable thresholds t̄p and t̄r. Integrated metrics

can finally be defined as follows:

Ip =

∫ 1

0
F1?(t̄p, 0) dt̄p (5.19)

Ir =

∫ 1

0
F1?(0, t̄r) dt̄r (5.20)

which correspond to areas under curves of F1?, and a final average measure:

Ipr =
1

2
(Ip + Ir) . (5.21)

Other interesting values include P ?
pr(0, 0), R?

pr(0, 0) and F1?pr(0, 0), that correspond to counting matches

as units with at least one intersecting frame.

5.3 Training error function

5.3.1 Categorical cross-entropy

When training Neural Networks (NNs), global metrics like the ones proposed in Section 5.2 are not

sufficient. A continuously differentiable function – the training loss – is required, in order to use gra-

dient descent algorithms. For the mth categorical descriptor (including the case of binary descriptors),

the categorical cross-entropy L m is an adapted metric. It estimates the discrepancy between ground
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truth values dmt and predicted values d̂mt – encoded with a one-hot vector format:

L m = −
T∑
t=1

C∑
c=1

dmt (c) log
(
d̂mt (c)

)
. (5.22)

This is used to update the network weights and prevent overfitting, but can not be easily interpreted

to estimate model performance.

5.3.2 Weighted error

Because of class imbalance, especially in the case of the detection of rare events, one may penalize

very frequent classes with class weights αc. These weights are usually computed as:

αc =

(
# training frames with label c

# training frames

)−1

. (5.23)

The weighted training loss can then be expressed as:

L m = −
T∑
t=1

C∑
c=1

αcd
m
t (c) log

(
d̂mt (c)

)
. (5.24)

Last, we can look for a compromise between unweighted loss 5.22 and 5.24 by introducing a global

weight correction factor β ∈ [0, 1] such that different levels of weight correction can be used:

L m = −
T∑
t=1

C∑
c=1

((1− β) + βαc)d
m
t (c) log

(
d̂mt (c)

)
. (5.25)

Unweighted loss then corresponds to β = 0 and fully weighted loss to β = 1.

Conclusion

In this chapter, we have introduced the second contribution of this thesis, that is a broader definition for

Continuous Sign Language Recognition along with some proposals in terms of performance metrics.

It consists of stacking many linguistic descriptors together, in an effort to describe SL discourse

as precisely as possible, according to available linguistic annotations. Performance metrics can be

computed at the frame level or unit-wise, which is most likely more meaningful. Last, we also discussed

training error functions.

In the next chapter, we will introduce an adapted framework that is both generalizable and compact.
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In Chapter 3, two main frameworks for Sign Language Recognition (SLR) were discussed. On the one

hand, signer representation features can be built independently from the learning model, as a first

step. On the other hand, some end-to-end frameworks only have one learning phase, in which the

signer representation and SLR part are simultaneously learned.

Both approaches have benefits and drawbacks. The end-to-end frameworks – using Convolutional

Neural Networks (CNNs) for instance – are easier to set up and do not require any prior knowledge

on the signer representation. However, they require more data and may not be easily generalizable,

for instance they may be sensible to changes in scaling appearance, lighting etc. When signer repre-

sentation and learning model are decoupled, the generalizability with respect to new types of videos

is increased, and one does not need to retrain the whole network in case new linguistic descriptors

are added to the model. The reduced demand on training data is also an important benefit of such

models, as annotated SL corpora are not that large, and allows for much faster training. Also, the

black box architecture of end-to-end models does not enable one to get a straightforward feedback on

which signer features are linguistically relevant for recognition.

For all these reasons, especially the fact that available training data are limited in quantity, we have

chosen to resort to a separated approach. Section 6.1 details our proposal for a relevant, light and

generalizable signer representation, then Section 6.2 outlines how such a signer representation can be

coupled to a Recurrent Neural Network (RNN) for general Continuous Sign Language Recognition

(CSLR).

6.1 Signer representation

Since available training data are limited in quantity, we have decided to partly rely on pre-trained

models for signer representation. Therefore, it made sense to handle upper body, face and hands

separately – which are usually dealt with in very specific ways, whether in SL-specific or non SL-

specific models.

6.1.1 Upper body processing

While ten years ago, most SLR methods were usually based on optical flow and skin color detection

[Gonzalez Preciado, 2012; Cooper et al., 2011; Lefebvre-Albaret, 2010], CNNs have emerged as a very
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Figure 6.1: 2D upper body keypoints from OpenPose

effective tool to get relevant features from images. OpenPose (OP) [Cao et al., 2017; Wei et al., 2016]

is a powerful open source library, with real-time capability for estimating 2D body pose.

In this section, we discuss the benefits of OP and variants. We then introduce more advanced 3D

pose estimation modules, that should enable to leverage more information than plain 2D. Indeed, as

discussed above, SLs are 3-dimensional in space, by nature.

6.1.1.1 2D pose (Image → 2D)

Widely used in the gesture recognition community, the 2D body pose estimation module of OP has

multiple benefits. It is fast – close to real-time for 25 frames per second (fps) videos on a modestly

powerful desktop computer –, easy to use and works well even when part of the body is missing from

the image. This is a great benefit, as most SLs videos only show the upper body. Many other pose

estimation models we have experimented do not offer this feature.

As a matter of fact, we only keep the 14 upper body keypoints and leave out the leg keypoints. An

illustration is given in Figure 6.1.

As pointed out by the work of Dilsizian et al. [2016, 2018], and since SLs are 3-dimensional, 3D pose

might be a good aid for SLR. Therefore, we developed a 3D pose estimation model, presented below.

6.1.1.2 3D pose (Image → 3D)

Although Image → 3D models do exist [Xiang et al., 2018; Pavlakos et al., 2017; Yang et al., 2017; Rogez

et al., 2017], we have not been able to find one fitting our requirements. Indeed, as for Image → 2D

models, prediction usually fails when part of the body is missing from the image, or when the person

is not centered with respect to the image. Another type of issue is related to the training data of these

models. As they have not been trained with SL data, our experience is that they do not perform well

when fed with SL images.

6.1.1.3 3D pose (Image → 2D → 3D)

Fortunately, the 2D OP estimates have proven robust even on SL videos. Therefore, we decided to

rely on OP in order to get good 2D estimates (see Section 6.1.1.1), then train a 2D → 3D Deep Neural

Network (DNN), reproducing the architecture from [Zhao et al., 2016] (see Figure 6.2).
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Figure 6.2: Deep Neural Network architecture for 2D → 3D estimation [Zhao et al., 2016]

Formalization Such a model aims to learn the function f that estimates the third coordinate for

each landmark of the signer in frame t, that is, with n as the number of landmarks (n = 14 in our

case):

f : R2n −→ Rn[
(x̂1t, ŷ1t), (x̂2t, ŷ2t), . . . , (x̂nt, ŷnt)

]
7−→ [ẑ1t, ẑ2t, . . . , ẑnt]

(6.1)

where x̂it, ŷit and ẑit are standardized version of the original coordinates xit, yit and zit, with respect to

the whole training dataset. Standardization if applied so that the process in invariant to translations

and scaling: 

x̂it =
xit − x̄i

Σ

ŷit =
yit − ȳi

Σ

ẑit =
zit − z̄i

Σ

(6.2)

Σ =
1

2
(σstdev(xi) + σstdev(yi)) (6.3)

with average values x̄i, ȳi and z̄i and standard deviations σstdev(xi) and σstdev(yi) computed on the

whole training dataset. Note that σstdev(zi) is not used. The reason is that Equations 6.1 and 6.2

must be invertible if non-normalized predictions are to be computed on a test set, where obviously zi
is unknown.

The training loss is defined as the Euclidean distance between predictions and ground-truth data.

Choice of training data The training data we decided to use for training consisted in motion

capture data from the French Sign Language (LSF) corpus MOCAP1 [LIMSI and CIAMS, 2017].

This data has been particularly valuable since it contains high precision 3D landmarks recording of

LSF, from four different signers.

Data preprocessing Because the position of sensors in MOCAP1 did not exactly match that of OP

landmarks – as it can be seen in Figure 6.3 – preprocessing motion capture data mostly consisted in

establishing simple relations between the latter and the former. In detail, each OP landmark position

was estimated as a linear combination of some motion capture sensors position – for instance, OP
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Figure 6.3: OpenPose estimate on a frame from MOCAP1 [LIMSI and CIAMS, 2017]. The motion
capture sensors and OpenPose keypoints position do not match perfectly.

Figure 6.4: Camera angles: pan, tilt, roll

wrist position is calculated as the average of the position of two sensors that were placed around the

wrist during motion capture.

Data augmentation In order to increase model generalizability, data augmentation techniques are

used during training. In detail, the 3D data from MOCAP1 are randomly rotated at each training

epoch, with added pan ∆θp ∈ [−45◦,+45◦], added tilt ∆θt ∈ [−20◦,+20◦] and added roll ∆θr ∈
[−5◦,+5◦] (see angles definition on Figure 6.4). With this technique, the generalizability of the trained

model is drastically increased.

Implementation details The proposed DNN is implemented with Keras [Chollet et al., 2015] on

top of Tensorflow [Abadi et al., 2016]. All hidden layers use Rectified Linear Unit activation [Nair

and Hinton, 2010], with Dropout to prevent overfitting [Srivastava et al., 2014]. RMSProp is used

as the gradient optimizer [Tieleman and Hinton, 2012]. Six neuron layers are stacked, with sizes

[28, 28, 28, 28, 28, 14].

The proposed Image → 2D → 3D pipeline for processing the 3D upper body pose from signers in

Red-Green-Blue (RGB) frames is shown in Figure 6.5.
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RGB frame 2D pose
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Figure 6.5: Proposed Image → 2D → 3D pipeline for the upper body pose, applied to a random frame
from the French Sign Language corpus LS-COLIN [Braffort et al., 2001]. OpenPose enables to get 2D
estimates, then a DNN model is used to estimate the missing third coordinate of each landmark.

6.1.2 Hand processing

Hands are obviously one of the main articulators in SL. Although linguists do not all share a common

ground for the description and linguistic role of sub-units for the hands, three important parameters

have been identified. More specifically – at least from an articulatory point of view – the location,

shape and orientation of both hands are known to be critical, along with the dynamics of these three

variables, that is: hand trajectory, shape deformation and hand rotation.

In this section, we present different possible ways of processing hands.

6.1.2.1 2D pose (Image → 2D)

In addition to the body pose feature, the OP library also includes a 2D hand pose estimation module,

with RGB images as input [Simon et al., 2017], illustrated on Figure 6.6.

From our experience, this module is quite sensitive to the image resolution, and even more to the

video frame rate. Indeed, very poor results are obtained on blurred images, which is often the case

for the hands with 25-30 fps videos in standard resolution. This is mostly due to the fact that hands

can move fast in SL production, causing motion blur arounds the hands and forearms.

Moreover, the hand shapes used in SL can be very sophisticated, and somehow never used in the daily

life of non-signing people. Therefore, in all likelihood, the data that were used to train the OP models

did not include such hand configurations, which sometimes makes predictions unreliable.

That being said, the OP hand module can still be seen as a good and light proxy for hand represen-

tation.

6.1.2.2 3D pose (Image → 3D)

Ideally, one would greatly benefit from a frame-wise 3D hand pose estimate on RGB images. Hands are

indeed an extremely fine means of carrying information in SL discourse with strong iconic properties

in a natively continuous space, possible interactions between dominant and weak hands, conventional

hand shapes to represent proforms, etc.
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OpenPose rendering 2D hand keypoints

Figure 6.6: 2D hand pose renderings from OpenPose [Simon et al., 2017], with keypoints numbering.

Although such algorithms have been developed [Xiang et al., 2018; Iqbal et al., 2018; Spurr et al.,

2018; Zimmermann and Brox, 2017; Mueller et al., 2017; Panteleris et al., 2018], we have not found

any that was able to provide a reliable estimate on hand pose on real-life 25 fps SL videos. Indeed,

the same issues as described in Section 6.1.2.1 are encountered. First, the motion blur issue described

earlier makes the frame-wise estimation of hand pose very difficult. Also, most of these models were

trained with still images of high resolution, which is usually not the case in SL videos. Furthermore,

specific SL hand shapes are almost never reconstructed correctly, as they were not seen during the

training phase of these sophisticated models.

6.1.2.3 Hand shape estimates

While 3D hand pose estimation models – and, to a lesser extent, 2D models – have not appeared to

be reliable to this day when applied to real-life RGB videos, another possible direction is to extract

more global features from hand crops.

As written earlier, hand parameters include location, shape and orientation. Focusing on hand shape

– thus setting aside location and orientation –, a SL-specific model was developed in [Koller et al.,

2016a]. This CNN model classifies cropped hand images into 61 predefined hand shapes classes.

Training data and generalizability The model was trained on more than a million frames, in-

cluding motion blurred images. Three SL corpora of different types were compiled, with different

proportions: isolated lexical signs from Danish Sign Language (DTS) – 12% – and New Zealand Sign

Language (NZSL) – 23%; Continuous Sign Language (CSL) in German Sign Language (DGS) – 65%.

The final hand shape distribution can be seen on Figure 6.7.

Even though the hand shapes frequency of occurrence is very likely to vary between different SLs, we

have made the assumption that SLs other than DTS, NZSL and DGS could still be dealt with without

retraining the model. Indeed, a lot of hand shapes are obviously shared across most SLs, since they

are used to depict salient and/or primary forms (flat, round, square, etc.)
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Figure 6.7: Hand shapes distribution in the dataset used by Koller et al. [2016a]

Hand crop

CNN layers
FC

layer
1× 61

Shape prediction

Softmax

Figure 6.8: Synoptic architecture for the 1-miohands-v2 model from [Koller et al., 2016a]. Hand
crop images are processed by several Convolutional Neural Network (CNN) layers, then a final Fully
Connected (FC) layer enables to estimate probabilities for each of the 61 classes, with a softmax
operation.
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(a) 2D (OpenPose) (b) 3D [Bulat and Tzimiropoulos, 2017]

Figure 6.9: 2D (a) and 3D (b) face keypoints

Model usage and details The trained prediction model 1-miohands-v2 is publicly available1,

under the Caffe architecture [Jia et al., 2014]. A simplified scheme is presented on Figure 6.8. The

input of the model is a cropped hand image, that is processed by several CNN layers. The final layer

is of Fully Connected (FC) type, with 61 neurons, one for each class. The model outputs the most

probable class with a softmax operation. However, one can also choose to extract the output of the

last fully-connected layer and thus get a representation vector of size 61, for each hand, instead of the

unique value corresponding to the most probable class.

Because the model takes centered hand crops as input, one should note that the position of each hand

must be estimated first. To this end, we use the upper body estimation from OP – Koller et al. [2016a]

originally used a hand tracker based on dynamic programming. With Er and Wr as the right elbow

and right wrist positions, the position of the center of the right hand Hr is estimated as

−−−→
ErHr ' 1.2

−−−→
ErWr (6.4)

that is  xHr ' 1.2xWr − 0.2xEr

yHr ' 1.2yWr − 0.2yEr

(6.5)

where xWr , yWr , xEr and yEr are provided by the OP upper body estimate. The equations for the left

hand position (xHl
, yHl

) are identical.
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6.1.3 Face and head pose processing

6.1.3.1 2D pose (Image → 2D)

Similarly to body pose – Section 6.1.1.1 – and to hand pose – Section 6.1.2.1 –, the OP library makes

it possible to get an estimate on the 2D face pose. The 70 keypoints are shown on Figure 6.9a.

6.1.3.2 3D pose (Image → 3D)

Although OP outputs a 2D estimate on the facial pose, a reliable 3D estimate is directly obtained from

video frames thanks to a CNN model [Bulat and Tzimiropoulos, 2017] trained on 230, 000 images.

The 68 landmarks are identical to that of the 2D model of Section 6.1.3.1, minus the two pupils. An

illustration is given on Figure 6.9b.

6.1.4 Final signer representation: from raw data to relevant features

With X as video frames, the final signer representation x = R(X) that we propose is simply a

combination of the previously introduced raw data, and/or manufactured features that are known or

assumed to be relevant for SLR.

6.1.4.1 Hand shapes

Based on the Deep Hand model [Koller et al., 2016a], the xhandshapes vector consists of hand shapes

probabilities for both hands, with size 122 (2× 61 scalars per hand).

6.1.4.2 Raw pose data

Based on Sections 6.1.1, 6.1.2 and 6.1.3, a raw feature vector could be set up as a simple combination

of some of the following raw body part features:

xbraw2D 2D raw body pose, size 28 (14 2D landmarks)

xbraw3D 3D raw body pose, size 42 (14 3D landmarks)

xfhraw2D 2D raw face/head pose, size 140 (70 2D landmarks)

xfhraw3D 3D raw face/head pose, size 204 (68 3D landmarks)

xhandraw2D 2D raw hand pose, size 126 (2×[21 2D landmarks plus 21 confidence scores])

However, raw data might not be optimal for training SLR systems. Indeed, raw values are highly

correlated, with a lot of redundancy, they can be difficult to interpret and are not always meaningful

for SLR. Thus, we propose to derive a more relevant feature vector for body, face and head pose, after

normalizing raw data with distance between shoulders, in order to increase generalizability.

6.1.4.3 Relevant 3D feature vector xbfhfeat3D

Drawing inspiration from previous work in gesture recognition [Granger and el Yacoubi, 2017; Wu

et al., 2016; Neverova et al., 2014], a relevant feature vector xbfhfeat3D should include pairwise positions

and distances, as well as joint angles and orientations:

1https://www-i6.informatik.rwth-aachen.de/~koller/1miohands/
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• Relative position (3D vector) and Euclidean distance of each hand with respect to parent elbow,

plus first and second order derivatives,

• Relative position (3D vector) and Euclidean distance of each elbow with respect to parent

shoulder, plus first and second order derivatives,

• Relative position (3D vector) and Euclidean distance of each shoulder with respect to point 1 in

Figure 6.1, plus first and second order derivatives,

• Cosinus and orthonormal vector of the elbow and shoulder angles, plus first and second order

derivatives.

In order to reduce the dimensionality of the face/head feature vector, the following components are

computed and included in xbfhfeat3D:

• 3 Euler angles for the rotation of the head, plus first and second order derivatives,

• Mouth size (horizontal and vertical distances),

• Relative motion of each eyebrow to parent eye center,

• Position of nose landmark with respect to point 1 in Figure 6.1.

In SL, the location of hands with respect to specific parts of the body and head is known to be related

to families of concepts – which is a strong argument for the iconic origin of many signs [Östling et al.,

2018]. Relatedly, the detection of contacts between hands and specific locations of the body is known

to increase recognition accuracy [Dilsizian et al., 2018]. Therefore, the feature vector also includes the

relative position between each wrist and the nose, plus first and second order derivatives.

Moreover, because SLs make intensive use of hands, their relative arrangement is crucial. Battison

[1974], for instance, establishes a typology of bimanual signs based on the relative motion and shapes

of hands. Therefore, we also include the relative position and distance of one wrist to the other to

xbfhfeat3D, plus first and second order derivatives.

Finally, the 3D feature vector is of size 176.

6.1.4.4 Relevant 2D feature vector xbfhfeat2D

Because the advantage of 3D data over 2D is not proven, and because one may want to further reduce

the feature vector size, we also derived a relevant 2D feature vector, in the same manner as the 3D

one. In this case, positions, distances and angles are actually projected positions, distances and angles

on the 2D plane.

With the exact same features as in Section 6.1.4.3, xbfhfeat2D is of size 96.

6.2 Learning framework: a convolutional and recurrent architecture

With a signer representation x = R(X) as a concatenation of some of the vectors introduced in

Section 6.1.4, setting up a learning and prediction model consists in defining M such that: M (x) = ŶCSLR

ŶCSLR ' Y.
(6.6)
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Figure 6.10: Diagram illustrating the internal function of a Long Short-Term Memory (LSTM) unit,
with x as input, h as hidden state and c as cell state.

In Section 3.3.3, we presented different types of learning frameworks taking one-dimensional time-

series as input, which is our case. The most effective architectures have used Hidden Markov Models

(HMMs), Conditional Random Fields (CRFs) and RNNs.

HMMs are generative models, with the assumption that the system is a Markov process, with hidden

states. One of the strong assumptions of HMMs is that state transitions only depend on the current

state, not on anything in the past. Also, the number of states must be pre-defined. CRFs are

discriminative models that can accommodate context information. The training phase of CRFs is

somehow tricky, and does not allow for easy retraining when new data are available.

On the other hand, RNNs are discriminative models that use a form of memory to learn temporal

dependencies. Conversely to HMMs and CRFs, they are very good at learning complex hidden features

from data. In this sense, they are sometimes considered as feature extractors and integrated into RNN-

HMM frameworks, for instance.

In this section, we present the compact architecture that we have built for training CSLR models,

compatible with the signer representation detailed in Section 6.1. It is mainly designed around recur-

rent layers (Section 6.2.1), which are complemented by a first convolutional layer (Section 6.2.2). The

final setup is summarized in Section 6.2.3.

6.2.1 Recurrent layers

In our experiments, we have chosen to use RNNs, mainly for the following reasons: they are good to

build complex features from not always meaningful input, they are very modular and straightforward

to train, and they exhibit the best results in the field of Gesture Recognition (GR) and SLR.

One issue with traditional RNNs is that they undergo vanishing gradient issues, making them im-

practical for learning long-time dependencies – or with high-frequency data. To overcome this issue,

a specific type of RNN, referred to as Long Short-Term Memory (LSTM) was introduced [Gers et al.,

2000].
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6.2.1.1 Long Short-Term Memory units

LSTMs include a cell state c in addition to the usual hidden state h of RNNs. A schematic for the

internal function of a LSTM unit is shown on Figure 6.10, with input x, cell state c and hidden state

h. The equations of any LSTM cell can be written as:

i〈t〉 = σ
(
W xix〈t〉 +W hih〈t−1〉 + bi

)
f 〈t〉 = σ

(
W xfx〈t〉 +W hfh〈t−1〉 + bf

)
c〈t〉 = f 〈t〉c〈t−1〉 + i〈t〉 tanh

(
W hch〈t−1〉 +W cxx〈t〉 + bc

)
o〈t〉 = σ

(
W hoh〈t−1〉 +W xox〈t〉 + bo

)
h〈t〉 = o〈t〉 tanh

(
c〈t〉
)

(6.7)

where W are matrices and b are vectors which values are updated during training, and σ is the sigmoid

or logistic function:

σ : R −→ ]0, 1[

x 7−→ 1

1 + exp(−x)
.

(6.8)

We have chosen LSTMs as the base unit for our learning networks, which can easily be stacked in

several LSTM layers.

6.2.1.2 Stacked Bidirectional LSTM layers

When real-time predictions are not needed, forward and backward LSTM units can be paired to

form Bidirectional LSTMs (BLSTMs). Several layers of BLSTMs can then be stacked, as shown on

Figure 6.11 detailing a two-layer BLSTM. Our experiments usually include one to four BLSTM layers.

6.2.2 Adding temporal convolutions

An interesting addition for helping the network build relevant features is to set up the first layer as

a one-dimensional temporal convolution. Temporal convolutions can help with noisy high-frequency

data like ours, and are good to learn temporal dependencies [Pigou et al., 2018]. A convolution layer

with a kernel width of three frames is included on Figure 6.11.

6.2.3 Final setup and list of parameters

Using the Keras library [Chollet et al., 2015] on top of Tensorflow [Abadi et al., 2016], we have then

built a modular architecture2 with the following options and parameters:

• A convolutional layer

– Number of filters

– Kernel size

• One or multiple LSTM or BLSTM layers

2https://github.com/vbelissen/cslr_limsi/
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Figure 6.11: Unrolled representation of a two-layer Bidirectional LSTM (BLSTM) network for tempo-
ral classification, with input x and output y. The cell state c – visible on Figure 6.10 – is omitted, for
sake of clarity. Upstream of the LSTM layers, the input is first convolved, with a convolution kernel
width of three frames on this scheme.
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– Number of units

• A FC layer

• A final softmax operation for classification.

Finally, the training phase is associated to many parameters as well:

• Learning rate and optimizer

• Batch size

• Sequence length

• Dropout rate

• Data imbalance correction (cf. Equation 5.25)

• Choice of metric.

Conclusion

This chapter has presented the chosen strategies and architecture for the data representation and the

CSLR model. This has led to an open access implementation, which is the third contribution of this

thesis.
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A new model requiring validation

In Part II of this thesis, we have sought to open the way to a broader acceptation of Continuous Sign

Language Recognition (CSLR) and proposed three contributions to the field.

In Chapter 4, we have introduced some linguistic-driven SL corpora. Although the recorded SL is

very natural, they are not directly usable for CSLR purposes, primarily because the annotation data

are not consistent. Thus, we have developed a remake of a French Sign Language (LSF) dataset,

Dicta-Sign–LSF–v2, that is a very natural dialogue corpus with fine and consistent annotation.

Then, we have proposed in Chapter 5 a newer formulation of the CSLR problem, consisting in the

simultaneous recognition of many linguistic descriptors, instead of focusing on very conventionalized

signs, also referred to as Fully Lexical Signs (FLSs). This recognition of descriptors captures a much

more important part of SL discourse, for instance Depicting Signs (DSs) or Pointing Signs (PTSs),

that are crucial for Sign Language Understanding (SLU). Along with it, we have suggested the use of

appropriate performance metrics, especially at the level of manual units, that can be used to assess

both time-wise and space-wise reliability of prediction models with respect to expert annotations.

Finally, an adapted framework was developed in Chapter 6. A compact and generalizable represen-

tation of signers in videos was laid out, which can be used as input to a large spectrum of learning

models. In fact, we propose to use a convolutional Recurrent Neural Network (RNN) architecture,

with Long Short-Term Memory (LSTM) as base units, which are known to be effective for learning

long-time dependencies.

In the next and last part of this thesis, we aim to validate this work. In Chapter 7, we focus on the

signer representation and learning architecture, in a quantitative way. Then, in Chapter 8, we analyze

prediction results, more qualitatively, in order to validate the point of a wider acceptation of CSLR.

Last, we lay out perspectives for the future of CSLR.
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Part III

Validation, results and perspectives
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Chapter 7
Model validation: quantitative results

The purpose of the current chapter is to validate different choices and proposals presented in Chapters 5

and 6. First, we introduce the general settings and choices for this chapter (Section 7.1). Then,

we analyze the global performance of the proposed model and signer representation in Section 7.2,

using a unique standard configuration. Subsequently, we analyze the sensitivity of the recognition

performance with respect to the network parameters and training settings (Section 7.3). Last, we

compare the performance of different signer representation options (Section 7.4).

7.1 General settings

In this section, we discuss the linguistic descriptors that we have decided to focus on for the model

validation (Section 7.1.1), the metrics used (Section 7.1.2) and the common training settings for all

experiments (Section 7.1.3).

7.1.1 Model outputs

In this chapter, we have decided to focus on the – binary – recognition of four manual unit types: Fully

Lexical Signs (FLSs), Depicting Signs (DSs), Pointing Signs (PTSs) and Fragment Buoys (FBuoys).

These categories are representative of the variety of SL linguistic structures, with conventional and

illustrative units, as well as elements highly used within the diagrammatic iconicity of SL. Other types

show a too small number of instances for the results to be significant, or even for the network to

converge (see detail in Table 4.3 and Figure 4.5).

7.1.2 Metrics

Following the discussion of Section 5.2, the chosen performance metrics for validation include frame-

wise and unit-wise measures, with detail below:

Frame-wise metrics:

– Accuracy

– F1-score

Unit-wise metrics:
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– Margin-based F1-score F1?w(tw), with margin tw = 12 frames (half a second)

– Normalized intersection-based F1-score F1?pr(t̄p, t̄r), with t̄p = 0, t̄r = 0 (counting positive

recognition for units with at least one intersecting frame)

– Associated integral value Ipr.

Although we have included it for the sake of completeness, the frame-wise accuracy is not really

informative (see Section 5.2). Therefore, we mostly rely on unit-wise metrics and frame-wise F1-score

to look for the best network settings, training hyperparameters and signer representation.

7.1.3 Common training settings

All training sessions, unless otherwise specified, are conducted with the following common settings:

• The training loss is the weighted binary/categorical cross-entropy of Equation 5.25.

• The gradient descent optimizer is RMSProp [Tieleman and Hinton, 2012].

• A common cross-validation split of the data is realized in a signer-independent fashion, with 12

signers in the training set, 2 in the validation set and 2 in the test set.

• Each run consists of 150 epochs. Only the best model is retained, in terms of performance on

the validation set. During training, only the frame-wise F1-score is used to make this decision.

Although we have argued that unit-wise metrics are better fitted for performance assessment,

the frame-wise F1-score is actually strongly correlated with unit-wise metrics and is much faster

to compute, which is why we focus on this measure during training.

7.2 Baseline performance of a standard configuration

As a first baseline, we develop in this section the results of a standard configuration. This reference

point can then be compared to variations in the network architecture (Section 7.3) or in the signer

representation (Section 7.4).

7.2.1 A standard configuration (S)

The standard configuration is defined with the following settings, that are set to reach a sort of

compromise, so that the model converges quickly while showing a good average performance:

In terms of network architecture:

• Network parameters:

– One Bidirectional LSTM (BLSTM) layer;

– 50 units in each LSTM cell;

– 200 convolutional filters as a first neural layer, with a kernel width of size 3.

• Training hyperparameters:

– A batch size of 200 sequences;

– A dropout rate of 0.5;
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Frame-wise Unit-wise

Acc F1 (P/R) F1?w(tw = 12) (P/R) F1?pr(0, 0) (P/R) Ipr

FLS
µ 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

σ 0.01 0.01 (0.02/0.02) 0.02 (0.02/0.03) 0.04 (0.05/0.01) 0.03

DS
µ 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

σ 0.01 0.04 (0.07/0.08) 0.06 (0.07/0.06) 0.06 (0.07/0.06) 0.04

PTS
µ 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

σ 0.01 0.02 (0.07/0.05) 0.04 (0.06/0.10) 0.05 (0.06/0.11) 0.03

FBuoy
µ 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

σ 0.01 0.04 (0.07/0.04) 0.03 (0.02/0.05) 0.04 (0.05/0.05) 0.03

Table 7.1: Average (µ) and standard deviation (σ) values from 7 identical simulations for the binary
recognition of Fully Lexical Signs, Depicting Signs, Pointing Signs and Fragment Buoys, for the stan-
dard configuration defined in Section 7.2, on the validation set of Dicta-Sign–LSF–v2.
Metrics displayed are frame-wise accuracy and F1-score, as well as unit-wise margin-based F1-score
F1?w(tw), with margin tw = 12 frames (half a second), and normalized intersection-based F1-score
F1?pr(0, 0) (counting positive recognition for units with at least one intersecting frame).

– No weight penalty in the learning loss (β = 0 in Equation 5.25);

– Samples arranged with a sequence length of 100 frames.

In terms of signer representation:

The chosen signer representation corresponds to configuration #16 in Table 7.4, that is: 3D body and

face preprocessed data, along with both OpenPose and Deep Hand estimates as hand features, for a

total feature vector size of 424.

7.2.2 Results

The results are summarized in Table 7.1, in which we report average values and standard deviation

after seven identical simulations, for the binary recognition of FLSs, DSs, PTSs and FBuoys.

From this table, it appears that the best results are obtained for the recognition of FLSs, with a 64%

frame-wise F1-score and a 52% Ipr. DSs and PTSs get comparable performance values, while FBuoys

are not very well recognized – 14% frame-wise F1-score and 11% Ipr. Except for FBuoys, one can note

that the recall is usually higher than the precision, which means that there are more false positives

than false negatives.

These differences in terms of performance can be explained first by the discrepancy with respect to

the number of training instances: as can be seen in Table 4.3, FLSs account for about 75% of the

manual units, while this drops to 11% for DSs and for PTSs. Only 589 FBuoy instances are annotated

in Dicta-Sign–LSF–v2, that is about 2% of the total number of manual units.

However, other reasons could explain these differences. DSs are a very broad category of units – many
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sub-categories can be listed, as detailed in Section 4.2.4.3 – with a lot of inner variability. Also, the

role of eye gaze is known to be crucial in DSs, however our signer representations include no gaze

information. PTSs are very short, sometimes they last only one or two frames in 25 frames per second

(fps) videos. As for FBuoys, they correspond a to a maintained hand shape at the end of a bimanual

sign, when it bears a linguistic function, which is not easy to detect (sometimes the hand shape is

held for other reasons, and is not annotated as a FBuoy).

Now we have established baseline results, the next sections will focus on evaluating the influence of

network parameterization and signer representation on the performance.

7.3 Validation of the network architecture

The focus of this section is on the validation of the Recurrent Neural Network (RNN) architecture

presented in Section 6.2. We aim at analyzing the sensitivity of the performance with respect to the

network parameters, as well as find the best hyperparameters for training.

7.3.1 Validation setup

Signer representation

In this series of experiments, the signer representation is set the same for all runs and corresponds

to configuration #16 in Table 7.4, that is: 3D body and face preprocessed data, along with both

OpenPose and Deep Hand estimates as hand features, for a total feature vector size of 424.

Network configurations

The 18 network configurations are all defined as variations of S, the standard configuration, by chang-

ing the value of one parameter at a time:

• Network parameters:

– 1 (S), 2 or 3 BLSTM layers;

– 10, 50 (S) or 90 units in each LSTM cell;

– 50, 200 (S) or 350 convolutional filters as a first neural layer, with a kernel width of size 3,

or no convolution layer at all (0 filters);

• Training hyperparameters:

– A batch size of 50, 100, 200 (S) or 400 sequences;

– A dropout rate of 0, 0.25, 0.5 (S) or 0.75;

– No weight penalty (S) in the learning loss – β = 0 in Equation 5.25 –, or a weight penalty

of 0.5 or 1;

– Samples arranged with a sequence length of 50, 100 (S) or 200 frames.

Then, for FLSs, DSs, PTSs and FBuoys, the performance of this standard configuration can be

compared to that of the same configuration, with only one setting changed.
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7.3.2 Results

Results on the validation set are presented in Tables 7.2 for FLSs and DSs, and 7.3 for PTSs and

FBuoys.

In these two tables, each line corresponds to a certain network configuration, either the standard one,

or a modified version (one setting changed). For each metric (except accuracy), the best setting is

in bold. Not all metrics yield the same conclusion with respect to the best settings, although the

agreement is generally strong. In case of disagreement, we have used the integrated unit-wise metric

Ipr as decision rule, which is highlighted in the two tables.

For instance, let us focus on Depicting Signs (Table 7.2). With a batch size of 200 sequences, the

standard configuration yields a Ipr of 0.31. With a value of Ipr of 0.44, a batch size of 50 sequences is

thus preferable, although other metrics like F1?w(tw = 12) and F1?pr(0, 0) would indicate a best batch

size of 100 sequences.

Some general conclusions can then be noted1:

• It appears that annotations with the fewest instances – typically FBuoys – are more sensitive

to network parameters, which is expected (see for instance the variation of Ipr with respect to

the number of convolution filters). Conversely, categories with the most training instances like

FLSs show very little sensitivity to the hyperparameters.

• From the results, it seems that the first convolution layer is always beneficial to the performance,

especially when few training instances are available.

• In any case, there is no point in stacking more than two BLSTM layers. One is generally enough,

which is also beneficial to training time.

• The standard configuration is generally very close to the best performing configuration and thus

can be used for further experiments on all considered linguistic descriptors.

1When drawing conclusions, one should be careful of the inner variability of the results, which is visible through the
standard deviation of the results for the standard configuration, in Table 7.1. Differences are not necessarily significant.
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Frame-wise Unit-wise

Acc F1 (P/R) F1?
w(tw = 12) (P/R) F1?

pr(0, 0) (P/R) Ipr

F
u
ll
y

L
ex

ic
a
l

S
ig

n
s

BLSTM
layers

1 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

2 0.88 0.62 (0.58/0.66) 0.88 (0.79/0.98) 0.81 (0.69/0.98) 0.58

3 0.82 0.61 (0.58/0.65) 0.88 (0.80/0.97) 0.83 (0.74/0.95) 0.56

LSTM
units

10 0.88 0.67 (0.57/0.80) 0.88 (0.80/0.98) 0.81 (0.69/0.98) 0.56

50 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

90 0.88 0.62 (0.60/0.64) 0.87 (0.82/0.92) 0.84 (0.76/0.93) 0.56

Conv.
filters

0 0.83 0.60 (0.47/0.83) 0.73 (0.64/0.86) 0.75 (0.60/0.99) 0.47

50 0.83 0.64 (0.56/0.75) 0.87 (0.77/1.00) 0.79 (0.65/0.98) 0.52

200 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

350 0.84 0.64 (0.60/0.69) 0.88 (0.79/1.00) 0.77 (0.63/0.98) 0.52

Batch
size

50 0.86 0.67 (0.66/0.68) 0.90 (0.83/0.98) 0.83 (0.74/0.93) 0.58

100 0.88 0.67 (0.59/0.77) 0.86 (0.76/0.98) 0.78 (0.66/0.96) 0.55

200 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

400 0.84 0.64 (0.54/0.80) 0.82 (0.69/0.99) 0.73 (0.57/1.00) 0.46

Dropout

0 0.87 0.60 (0.55/0.65) 0.85 (0.78/0.92) 0.78 (0.69/0.90) 0.51

0.25 0.83 0.63 (0.57/0.71) 0.84 (0.73/0.98) 0.81 (0.69/0.97) 0.56

0.5 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

0.75 0.82 0.65 (0.53/0.84) 0.82 (0.71/0.98) 0.75 (0.61/0.99) 0.49

Weight
balance

0 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

0.5 0.82 0.67 (0.54/0.88) 0.81 (0.72/0.91) 0.84 (0.73/1.00) 0.57

1 0.80 0.66 (0.50/0.97) 0.70 (0.75/0.66) 0.85 (0.74/1.00) 0.56

Seq.
length

50 0.89 0.65 (0.60/0.71) 0.88 (0.79/0.99) 0.80 (0.67/0.98) 0.54

100 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

200 0.86 0.66 (0.58/0.77) 0.86 (0.77/0.97) 0.82 (0.71/0.97) 0.55

D
ep

ic
ti

n
g

S
ig

n
s

BLSTM
layers

1 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

2 0.97 0.55 (0.54/0.57) 0.51 (0.37/0.84) 0.59 (0.45/0.85) 0.34

3 0.95 0.39 (0.49/0.32) 0.45 (0.45/0.46) 0.49 (0.49/0.48) 0.31

LSTM
units

10 0.98 0.52 (0.45/0.61) 0.30 (0.20/0.60) 0.32 (0.22/0.60) 0.26

50 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

90 0.98 0.41 (0.72/0.29) 0.50 (0.64/0.41) 0.49 (0.65/0.39) 0.36

Conv.
filters

0 0.97 0.26 (0.56/0.17) 0.43 (0.45/0.41) 0.43 (0.44/0.41) 0.28

50 0.95 0.41 (0.37/0.46) 0.53 (0.42/0.71) 0.53 (0.42/0.71) 0.39

200 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

350 0.93 0.31 (0.24/0.44) 0.31 (0.20/0.72) 0.31 (0.20/0.72) 0.20

Batch
size

50 0.97 0.64 (0.65/0.63) 0.52 (0.43/0.67) 0.54 (0.44/0.68) 0.44

100 0.98 0.54 (0.63/0.47) 0.49 (0.39/0.65) 0.62 (0.58/0.67) 0.42

200 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

400 0.92 0.28 (0.26/0.31) 0.46 (0.34/0.72) 0.47 (0.35/0.74) 0.30

Dropout

0 0.98 0.61 (0.66/0.58) 0.51 (0.39/0.72) 0.64 (0.54/0.78) 0.42

0.25 0.96 0.49 (0.46/0.53) 0.56 (0.43/0.80) 0.56 (0.43/0.80) 0.39

0.5 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

0.75 0.95 0.21 (0.21/0.21) 0.41 (0.30/0.62) 0.41 (0.30/0.62) 0.16

Weight
balance

0 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

0.5 0.95 0.39 (0.34/0.45) 0.49 (0.37/0.71) 0.49 (0.37/0.71) 0.34

1 0.91 0.39 (0.26/0.82) 0.36 (0.23/0.81) 0.39 (0.25/0.81) 0.28

Seq.
length

50 0.98 0.54 (0.61/0.49) 0.40 (0.31/0.57) 0.40 (0.31/0.55) 0.33

100 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

200 0.91 0.20 (0.20/0.20) 0.41 (0.31/0.62) 0.40 (0.29/0.62) 0.25

Table 7.2: Best validation performance on Dicta-Sign–LSF–v2, with different network and training
settings, for FLSs and DSs. Each line corresponds to a particular configuration of the network, either
the standard configuration (S), or with only one setting changed. Bold values correspond to the best
value for each setting category. In the end, Ipr is used to decide the best settings.
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Frame-wise Unit-wise

Acc F1 (P/R) F1?
w(tw = 12) (P/R) F1?

pr(0, 0) (P/R) Ipr
P

o
in

ti
n
g

S
ig

n
s

BLSTM
layers

1 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

2 0.97 0.22 (0.25/0.20) 0.34 (0.27/0.45) 0.25 (0.18/0.42) 0.19

3 0.97 0.12 (0.41/0.07) 0.34 (0.39/0.31) 0.33 (0.38/0.30) 0.23

LSTM
units

10 0.97 0.16 (0.14/0.18) 0.43 (0.36/0.54) 0.27 (0.21/0.39) 0.19

50 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

90 0.97 0.18 (0.34/0.12) 0.33 (0.35/0.30) 0.33 (0.39/0.28) 0.25

Conv.
filters

0 0.98 0.04 (0.17/0.02) 0.15 (0.27/0.11) 0.07 (0.12/0.05) 0.05

50 0.95 0.23 (0.18/0.31) 0.32 (0.21/0.65) 0.26 (0.17/0.62) 0.20

200 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

350 0.97 0.30 (0.31/0.30) 0.46 (0.37/0.60) 0.45 (0.35/0.60) 0.32

Batch
size

50 0.97 0.10 (0.14/0.07) 0.18 (0.19/0.17) 0.17 (0.18/0.16) 0.13

100 0.98 0.03 (0.19/0.02) 0.18 (0.46/0.11) 0.12 (0.31/0.08) 0.08

200 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

400 0.95 0.09 (0.18/0.06) 0.35 (0.30/0.41) 0.25 (0.20/0.33) 0.15

Dropout

0 0.97 0.21 (0.18/0.24) 0.38 (0.30/0.51) 0.34 (0.26/0.49) 0.24

0.25 0.97 0.29 (0.33/0.26) 0.45 (0.35/0.64) 0.45 (0.35/0.64) 0.34

0.5 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

0.75 0.96 0.31 (0.26/0.39) 0.50 (0.37/0.77) 0.45 (0.32/0.77) 0.32

Weight
balance

0 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

0.5 0.95 0.26 (0.19/0.40) 0.40 (0.27/0.77) 0.35 (0.24/0.68) 0.27

1 0.95 0.27 (0.21/0.39) 0.43 (0.31/0.73) 0.41 (0.28/0.73) 0.29

Seq.
length

50 0.98 0.02 (0.10/0.01) 0.12 (0.49/0.07) 0.07 (0.25/0.04) 0.05

100 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

200 0.96 0.09 (0.31/0.05) 0.50 (0.55/0.46) 0.38 (0.43/0.34) 0.24

F
ra

g
m

en
t

B
u
oy

s

BLSTM
layers

1 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

2 0.98 0.06 (0.22/0.03) 0.06 (0.12/0.04) 0.06 (0.15/0.04) 0.04

3 0.98 0.10 (0.24/0.06) 0.06 (0.07/0.06) 0.12 (0.23/0.08) 0.06

LSTM
units

10 0.97 0.19 (0.20/0.17) 0.15 (0.10/0.27) 0.21 (0.17/0.31) 0.13

50 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

90 0.98 0.09 (0.22/0.06) 0.07 (0.08/0.06) 0.13 (0.23/0.09) 0.08

Conv.
filters

0 0.98 0.01 (0.30/0.01) 0.03 (0.11/0.02) 0.01 (0.05/0.01) 0.01

50 0.98 0.11 (0.29/0.07) 0.11 (0.12/0.10) 0.15 (0.20/0.12) 0.09

200 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

350 0.97 0.21 (0.23/0.20) 0.15 (0.10/0.27) 0.22 (0.17/0.30) 0.13

Batch
size

50 0.98 0.01 (0.18/0.01) 0.03 (0.09/0.02) 0.03 (0.12/0.02) 0.02

100 0.97 0.10 (0.16/0.07) 0.12 (0.11/0.13) 0.17 (0.21/0.15) 0.10

200 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

400 0.98 0.17 (0.28/0.13) 0.10 (0.10/0.10) 0.15 (0.19/0.12) 0.09

Dropout

0 0.98 0.08 (0.19/0.05) 0.11 (0.11/0.11) 0.16 (0.18/0.15) 0.09

0.25 0.98 0.20 (0.39/0.13) 0.15 (0.16/0.14) 0.20 (0.32/0.15) 0.12

0.5 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

0.75 0.97 0.20 (0.19/0.20) 0.15 (0.10/0.31) 0.23 (0.17/0.35) 0.14

Weight
balance

0 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

0.5 0.92 0.18 (0.11/0.43) 0.09 (0.05/0.44) 0.14 (0.08/0.53) 0.08

1 0.71 0.10 (0.05/0.77) 0.05 (0.03/0.33) 0.10 (0.06/0.84) 0.06

Seq.
length

50 0.98 0.02 (0.20/0.01) 0.06 (0.17/0.04) 0.04 (0.14/0.02) 0.03

100 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

200 0.98 0.07 (0.33/0.04) 0.06 (0.11/0.04) 0.08 (0.30/0.05) 0.05

Table 7.3: Best validation performance on Dicta-Sign–LSF–v2, with different network and training
settings, for PTSs and FBuoys. Each line corresponds to a particular configuration of the network,
either the standard configuration (S), or with only one setting changed. Bold values correspond to
the best value for each setting category. In the end, Ipr is used to decide the best settings.
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7.4 Validation of the signer representation

Besides validating the network architecture and parametrization, different options in terms of signer

representation must be evaluated, which is the purpose of the current section.

7.4.1 Validation setup

In order to adopt the best possible signer representation, we have defined 16 combinations of the

feature vectors presented in Section 6.1.4. The detail of these configurations is given in Table 7.4,

in which we also indicate the final representation vector size (for each frame), ranging from 218 for

combination 5 to 494 for combination 9. Body and face data are either 2D or 3D, raw or made of

preprocessed features, while hand data are made of OpenPose estimates, Deep Hand predictions or

both.

Combination #16 corresponds to the signer representation in the standard configuration (S, Sec-

tion 7.2.1).

Then, for FLSs, DSs, PTSs and FBuoys, the performance of each combination was computed, with

the network parameters and training settings defined as those of the standard configuration of Sec-

tion 7.2.1. Results are presented below.

7.4.2 Results

Tables 7.5 and 7.6 present the model performance metrics on the validation set, for each of the 16

combinations and each of the four different annotation types.

In each table, one line corresponds to a particular combination, i.e. a certain signer representation.

As for Section 7.3, for each metric (except accuracy), the best setting is in bold. Not all metrics

yield the same conclusion with respect to the best settings: in case of disagreement, we have used the

integrated unit-wise metric Ipr as decision rule, which is highlighted in the two tables.

For instance, for the binary recognition of Fully Lexical Signs, the best combination – with an Ipr of

0.60 – is #15: 3D features, with hand shapes from the Deep Hand model. For Depicting Signs, best

performance is reached by 2D features, with both OpenPose and hand shape data. Pointing Signs are

better recognized with 3D features and both OpenPose and hand shape data. Last, Fragment Buoys

should be recognized with 2D or 3D features, with OpenPose data alone.

A few general insights can be drawn from these results:

• From the results, it is clear that using preprocessed data instead of raw values is always beneficial

to the model performance, whatever the linguistic category. For linguistic annotations with few

training instances like PTSs or FBuoys, the model is not even able to converge with raw data.

• In the end, it appears that 3D estimates do not always improve the model performance, compared

to 2D data. FLSs and FBuoys are better recognized when using 3D, while DSs and PTSs should

be predicted using 2D data.

However, this surprising result might stem from the limited quality of the 3D estimates that we

used. True 3D data (instead of estimates trained on motion capture recordings) might indeed

be more reliable thus beneficial in any case.

• In terms of hand representation, it appears that the Deep Hand model is beneficial when rec-

ognizing FLSs, while OpenPose estimates alone correspond to the best choice – or very close to

132 7.4. Validation of the signer representation



Chapter 7. Model validation: quantitative results

#

Configuration Corresponding feature vectors and size (Section 6.1.4)
Total
size

Body and face
Hands xbraw2D xbraw3D xfhraw2D xfhraw3D xhandraw2D xhandshapes xbfhfeat2D xbfhfeat3D

OP HS 28 42 140 204 126 122 96 176

1

2D

Raw

3 3 168

2 3 3 3 3 294

3 3 3 3 3 290

4 3 3 3 3 3 3 416

5

Features

3 96

6 3 3 3 222

7 3 3 3 218

8 3 3 3 3 3 344

9

3D

Raw

3 3 246

10 3 3 3 3 372

11 3 3 3 3 368

12 3 3 3 3 3 3 494

13

Features

3 176

14 3 3 3 302

15 3 3 3 298

16 (S) 3 3 3 3 3 424

Table 7.4: Detail of the 16 signer representations that are compared in Section 7.4. Configuration
#16 corresponds to the standard configuration (S).
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it – for the other linguistic categories. The fact that Deep Hand alone performs quite well for

the recognition of FLSs and not for the other types of units could be explained that FLSs use a

large variety of hand shapes, whereas other units like DSs use few hand shapes, but are rather

very determined by the hand orientation, that is not captured by Deep Hand. In other words,

it is likely that DSs give a more balanced importance to all hand parameters than FLSs.
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Frame-wise Unit-wise

Body and face
Hands

Acc F1 (P/R) F1?
w(tw = 12) (P/R) F1?

pr(0, 0) (P/R) Ipr

OP HS

F
u
ll
y

L
ex

ic
a
l

S
ig

n
s

2D

Raw

0.80 0.58 (0.51/0.68) 0.57 (0.75/0.46) 0.75 (0.76/0.73) 0.42

3 0.79 0.16 (0.44/0.10) 0.45 (0.87/0.30) 0.34 (0.68/0.23) 0.19

3 0.82 0.55 (0.56/0.55) 0.83 (0.85/0.80) 0.75 (0.76/0.74) 0.45

3 3 0.80 0.19 (0.52/0.12) 0.60 (0.86/0.46) 0.42 (0.61/0.32) 0.26

Features

0.86 0.68 (0.65/0.71) 0.88 (0.81/0.97) 0.78 (0.66/0.94) 0.56

3 0.85 0.66 (0.61/0.73) 0.85 (0.75/0.99) 0.79 (0.67/0.98) 0.57

3 0.84 0.63 (0.60/0.66) 0.87 (0.78/0.99) 0.75 (0.61/0.96) 0.49

3 3 0.85 0.69 (0.60/0.82) 0.87 (0.78/0.98) 0.81 (0.69/0.98) 0.59

3D

Raw

0.81 0.42 (0.56/0.34) 0.68 (0.81/0.59) 0.57 (0.64/0.52) 0.32

3 0.82 0.47 (0.59/0.40) 0.82 (0.82/0.82) 0.64 (0.65/0.64) 0.40

3 0.83 0.45 (0.64/0.34) 0.73 (0.87/0.62) 0.62 (0.76/0.52) 0.38

3 3 0.80 0.37 (0.51/0.29) 0.73 (0.83/0.66) 0.58 (0.66/0.51) 0.34

Features

0.83 0.65 (0.55/0.78) 0.84 (0.73/0.99) 0.73 (0.59/0.97) 0.51

3 0.87 0.69 (0.66/0.73) 0.89 (0.81/0.98) 0.80 (0.69/0.95) 0.57

3 0.86 0.69 (0.64/0.75) 0.90 (0.82/0.99) 0.83 (0.73/0.97) 0.60

3 3 (S) 0.83 0.64 (0.56/0.74) 0.86 (0.76/0.98) 0.78 (0.65/0.98) 0.52

D
ep

ic
ti

n
g

S
ig

n
s

2D

Raw

0.92 0.24 (0.18/0.36) 0.20 (0.14/0.34) 0.22 (0.16/0.37) 0.15

3 0.94 0.30 (0.24/0.40) 0.35 (0.24/0.62) 0.34 (0.23/0.59) 0.21

3 0.92 0.10 (0.08/0.13) 0.28 (0.19/0.56) 0.28 (0.18/0.55) 0.16

3 3 0.93 0.36 (0.27/0.53) 0.40 (0.27/0.77) 0.42 (0.28/0.81) 0.27

Features

0.95 0.41 (0.37/0.46) 0.33 (0.25/0.48) 0.32 (0.24/0.47) 0.25

3 0.97 0.55 (0.54/0.56) 0.67 (0.58/0.78) 0.68 (0.60/0.78) 0.44

3 0.95 0.43 (0.37/0.52) 0.40 (0.29/0.64) 0.37 (0.26/0.62) 0.26

3 3 0.97 0.59 (0.53/0.66) 0.61 (0.50/0.81) 0.64 (0.53/0.81) 0.46

3D

Raw

0.97 0.24 (0.68/0.14) 0.32 (0.66/0.21) 0.32 (0.65/0.21) 0.23

3 0.90 0.28 (0.18/0.60) 0.39 (0.26/0.75) 0.41 (0.27/0.80) 0.24

3 0.94 0.14 (0.13/0.16) 0.31 (0.25/0.43) 0.24 (0.18/0.34) 0.15

3 3 0.88 0.25 (0.16/0.62) 0.32 (0.20/0.80) 0.25 (0.15/0.81) 0.17

Features

0.93 0.36 (0.27/0.53) 0.25 (0.16/0.55) 0.22 (0.14/0.50) 0.17

3 0.97 0.50 (0.52/0.49) 0.52 (0.44/0.63) 0.55 (0.46/0.70) 0.37

3 0.92 0.34 (0.24/0.57) 0.29 (0.18/0.72) 0.25 (0.16/0.60) 0.17

3 3 (S) 0.95 0.40 (0.35/0.49) 0.48 (0.36/0.74) 0.44 (0.32/0.72) 0.31

Table 7.5: Performance assessment on the validation set of Dicta-Sign–LSF–v2, for different signer
representations, applied to the recognition of FLSs and DSs. Each line corresponds to a particular
signer representation, see Table 7.4. Bold values correspond to the best value for each setting category.
In the end, Ipr is used to decide the best representation.
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Frame-wise Unit-wise

Body and face
Hands

Acc F1 (P/R) F1?
w(tw = 12) (P/R) F1?

pr(0, 0) (P/R) Ipr

OP HS

P
o
in

ti
n
g

S
ig

n
s

2D

Raw

—— Not converged ——

3 0.97 0.23 (0.25/0.21) 0.28 (0.24/0.34) 0.24 (0.19/0.33) 0.21

3 —— Not converged ——

3 3 0.97 0.14 (0.22/0.10) 0.22 (0.26/0.18) 0.22 (0.26/0.18) 0.18

Features

0.97 0.14 (0.27/0.10) 0.31 (0.35/0.29) 0.21 (0.22/0.20) 0.12

3 0.97 0.30 (0.40/0.24) 0.46 (0.38/0.59) 0.45 (0.37/0.59) 0.29

3 0.97 0.14 (0.17/0.12) 0.51 (0.41/0.67) 0.28 (0.21/0.41) 0.17

3 3 0.97 0.32 (0.41/0.27) 0.48 (0.42/0.58) 0.43 (0.35/0.58) 0.32

3D

Raw

—— Not converged ——

3 0.97 0.04 (0.10/0.03) 0.17 (0.24/0.13) 0.17 (0.24/0.13) 0.12

3 —— Not converged ——

3 3 0.96 0.15 (0.16/0.13) 0.30 (0.32/0.28) 0.22 (0.22/0.21) 0.13

Features

0.96 0.11 (0.13/0.10) 0.37 (0.28/0.54) 0.24 (0.19/0.35) 0.12

3 0.96 0.27 (0.26/0.28) 0.48 (0.35/0.72) 0.44 (0.32/0.67) 0.31

3 0.97 0.09 (0.13/0.06) 0.43 (0.42/0.43) 0.24 (0.20/0.28) 0.12

3 3 (S) 0.97 0.31 (0.41/0.26) 0.46 (0.40/0.56) 0.45 (0.39/0.55) 0.33

F
ra

g
m

en
t

B
u
oy

s

2D
Raw ? ? —— Not converged ——

Features

0.97 0.24 (0.26/0.23) 0.16 (0.12/0.24) 0.24 (0.21/0.29) 0.15

3 0.98 0.32 (0.43/0.26) 0.17 (0.15/0.20) 0.25 (0.26/0.23) 0.16

3 0.98 0.23 (0.40/0.16) 0.14 (0.16/0.13) 0.22 (0.32/0.17) 0.15

3 3 0.96 0.30 (0.24/0.39) 0.19 (0.12/0.40) 0.24 (0.16/0.46) 0.15

3D
Raw ? ? —— Not converged ——

Features

0.98 0.13 (0.31/0.08) 0.15 (0.20/0.12) 0.20 (0.35/0.14) 0.12

3 0.98 0.31 (0.43/0.25) 0.19 (0.15/0.26) 0.26 (0.24/0.30) 0.16

3 0.98 0.12 (0.35/0.07) 0.16 (0.25/0.12) 0.21 (0.41/0.14) 0.13

3 3 (S) 0.98 0.14 (0.25/0.10) 0.13 (0.12/0.15) 0.19 (0.22/0.18) 0.11

Table 7.6: Performance assessment on the validation set of Dicta-Sign–LSF–v2, for different signer
representations, applied to the recognition of PTSs and FBuoys. Each line corresponds to a particular
signer representation, see Table 7.4. Bold values correspond to the best value for each setting category.
In the end, Ipr is used to decide the best representation.
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Conclusion

In this chapter, we have quantitatively assessed the performance of the recognition model presented

in the previous chapter. Using adapted metrics, we have sought the appropriate values in terms of

training hyperparameters and learning settings. Because we have only varied one parameter at a time

in terms of network configuration, there remains room for performance improvement.

Then, we have used this model to look for the best signer representation, based on many options

developed earlier on. In the end, this analysis provides interesting insights on the influence of signer

representation on the recognition capabilities of a model such as the one we have developed. These

first results suggest that hand representation is crucial, and should be built in conjunction with the

linguistic descriptors. Furthermore, preprocessed features are very effective and should be analyzed

further.

More generally, this chapter has proven that very interesting Continuous Sign Language Recognition

(CSLR) performance results could be met by the compact model and generalizable signer representa-

tion that we developed earlier on.

In the next chapter, we will use the trained models and analyze their results on the test set, mostly

in a more qualitative way.
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Recognition results and qualitative analysis

After analyzing the framework and signer representation options in Chapter 7, we intend to develop

in this chapter a more qualitative analysis.

We have decided to focus on the binary recognition of four manual unit types – Fully Lexical Signs

(FLSs), Depicting Signs (DSs), Pointing Signs (PTSs) and Fragment Buoys (FBuoys) – that show a

sufficient number of instances for the prediction model to converge during training.

First, we will analyze the impact of signer-independence and task-independence on the prediction

results (Section 8.1), then we will present a certain number of test sequences, along with prediction

results.

8.1 Signer-independence, task-independence

8.1.1 Setup

In this first set of experiments, we set the network parameters and training settings as those of the

standard configuration of Section 7.3.1. As for Chapter 7, we focus on the binary recognition of four

manual unit types: FLSs, DSs, PTSs and FBuoys. Also, the metrics used for performance assessment

are those defined in Section 7.1.2.

Because we are considering both the problem of signer-independence and that of task-independence,

four cases are to be analyzed. Task 9 is excluded from all of them, as it corresponds to a very different

task from the others (more detail in Section 4.2).

Signer-dependent and task-dependent (SD-TD)

In this case, we randomly pick 60% of the videos for training, 20% for validation and 20% for testing.

Some signers and tasks are then shared across the three sets.

Signer-independent and task-dependent (SI-TD)

In this case, we randomly pick 10 signers for training, 3 signers for validation and 3 signers for testing.

All tasks are then shared across the three sets.
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Signer-dependent and task-independent (SD-TI)

In this case, we randomly pick 5 tasks for training, 2 tasks for validation and 1 task for testing. All

signers are then shared across the three sets.

Signer-independent and task-independent (SI-TI)

In this last case, we randomly pick:

• 8 signers for training, 4 signers for validation and 4 signers for testing;

• 3 tasks for training, 3 tasks for validation and 2 tasks for testing.

This roughly1 corresponds to a 55%-27%-18% training-validation-testing split in terms of video count.

Notably in this setting, a fraction of the videos has to be left out – videos that correspond to sign-

ers in the training set, and tasks in the other sets, etc. In the end, it is thus expected that the

amount of training data is more likely to be a limiting factor than for the three previously described

configurations.

8.1.2 Results

The four different settings correspond to different sets of videos. For the results to be as comparable

as possible, we have actually repeated seven times the random video split and training of each model.

In the end, the presented results are actually averaged out values from seven repeats.

These results are summarized in Table 8.1, using the same performance metrics as in Chapter 7.

Surprisingly, it appears that results for the configurations SD-TD, SI-TD and SD-TI perform relatively

close, which supports the idea that the proposed signer representation and learning framework are

good at generalizing to unseen signers and unseen tasks. The fact that performance is much lower in

the SI-TI configuration thus suggests that the amount of training data is indeed a limiting factor in

our case.

1Some particular tasks are missing for some signers.
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Frame-wise Unit-wise

SI TI Acc F1 (P/R) F1?w(tw = 12) (P/R) F1?pr(0, 0) (P/R) Ipr

FLS

0.78 0.57 (0.48/0.71) 0.77 (0.69/0.88) 0.72 (0.61/0.90) 0.47

3 0.78 0.54 (0.46/0.67) 0.79 (0.72/0.88) 0.72 (0.62/0.86) 0.46

3 0.79 0.56 (0.52/0.62) 0.83 (0.77/0.91) 0.73 (0.65/0.85) 0.48

3 3 0.65 0.45 (0.34/0.72) 0.67 (0.60/0.80) 0.65 (0.53/0.89) 0.39

DS

0.94 0.26 (0.41/0.20) 0.30 (0.35/0.28) 0.31 (0.39/0.28) 0.20

3 0.92 0.30 (0.43/0.26) 0.33 (0.39/0.30) 0.35 (0.43/0.33) 0.22

3 0.92 0.24 (0.38/0.21) 0.33 (0.37/0.38) 0.32 (0.37/0.35) 0.19

3 3 0.92 0.11 (0.22/0.08) 0.19 (0.23/0.18) 0.18 (0.25/0.16) 0.11

PTS

0.96 0.20 (0.19/0.25) 0.35 (0.28/0.52) 0.26 (0.21/0.41) 0.18

3 0.97 0.15 (0.28/0.12) 0.30 (0.37/0.30) 0.23 (0.29/0.23) 0.15

3 0.96 0.20 (0.26/0.19) 0.40 (0.38/0.42) 0.30 (0.29/0.33) 0.20

3 3 0.94 0.07 (0.09/0.11) 0.20 (0.21/0.31) 0.11 (0.11/0.20) 0.07

FBuoy

0.97 0.19 (0.22/0.20) 0.12 (0.11/0.26) 0.21 (0.18/0.36) 0.12

3 0.94 0.10 (0.20/0.07) 0.11 (0.15/0.19) 0.11 (0.15/0.14) 0.08

3 0.93 0.07 (0.07/0.07) 0.06 (0.05/0.09) 0.08 (0.06/0.10) 0.05

3 3 0.98 0.01 (0.01/0.01) 0.02 (0.01/0.09) 0.02 (0.01/0.09) 0.01

Table 8.1: Performance assessment with respect to signer-independence (SI) and task-independence
(TI) on the test set of Dicta-Sign–LSF–v2, for the binary recognition of four linguistic descriptors
(FLSs, DSs, PTSs and FBuoys).
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8.2 Example-based analysis

Although performance metrics provide interesting insights on the results of the proposed model, a

more qualitative analysis is needed. In this section, we analyze the prediction results of the model

developed in Chapter 6, on six test sequences of Dicta-Sign–LSF–v2. The network parameters and

signer representation are decided from the optimization tables from Chapter 6.2.3. The chosen setup

is signer-independent and task-dependent (SI-TD). The test signers are then unknown both from the

training and validation sets. These results complement preliminary analyses focused on DSs and

developed in [Belissen et al., 2020b].

In this analysis, we have trained four binary descriptors, corresponding to FLSs, DSs, PTSs and

FBuoys. In the following figures (8.1 to 8.6), we show, from top to bottom: a few key thumbnails,

a proposed English translation, expert annotations for FLSs and Partially Lexical Signs (PLSs) –

each on three tracks, corresponding to right-handed, two-handed or left-handed units – and model

predictions. Because all descriptors are binary, a positive prediction is equivalent to a probability

greater than 0.5.

For each sequence, the quantitative performance is summarized in Table 8.2. This includes frame-

wise – Accuracy, F1-score – and unit-wise metrics – margin-based F1-score F1?w(tw), with margin

tw = 12 frames (half a second), normalized intersection-based F1-score F1?pr(t̄p, t̄r), with t̄p = 0, t̄r = 0

(counting positive recognition for units with at least one intersecting frame), and associated integral

value Ipr.

It is important to note that the values in Table 8.2 are not really comparable to those of the tables

in Chapter 7. Indeed, the videos of the current chapter belong to the test set and are then different

than the validation videos from Chapter 7. Furthermore, in Chapter 7 the performance was computed

on the whole length of the videos. Because Dicta-Sign–LSF–v2 is a dialogue corpus with continuous

recording for each signer, about half of each video has almost no annotations, which in the end results

in a higher rate of false positives in terms of predictions, thus in a lower precision.

Video S3 T1 B0, frames 7340-7375 (Figure 8.1)

We have translated this very short sequence as ”From my experience, here is what I would advise.”. Its

syntactic structure is quite simple, making use of two FLSs and one PTS, according to the annotation,

in a sequential way. The PTS is a self reference, playing the role of a subject. No iconic structure is

observed in this sequence.

The model predictions appear to be very good for FLSs, with the two signs segmented close to what

is annotated. This is confirmed in Table 8.2, with Ipr = 0.89. The probabilities for DS and FBuoy

remain close to zero, which is consistent with the annotation. This can only be evaluated through

frame-wise accuracy (equal to 100%), since all other metrics are undefined due to the absence of

positive predictions and annotations.

As regards PTSs, two units are detected, although only one is annotated. However, looking at thumb-

nail 6, it seems that a very short – only one frame – but real PTS is realized (pointing to the first

person), very similar to the one that was annotated. One should thus be aware that annotators some-

times miss some units, especially very brief ones. In the end, the Ipr for PTSs is only 0.44 on this

simple sequence.
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Video S7 T2 A10, frames 660-790 (Figure 8.2)

This is a longer and much more complex sequence with all four types of annotations – ten FLSs, two

DSs, three PTSs and one FBuoy. We propose the following translation: ”For you to decide between

those two [touristic] options, I will present them one after the other, then we will also discuss prices.”.

This sequence makes extensive use of space at the syntactic level. Indeed, the lexical sign HESITATE

is iconically reactivated, with one hand corresponding to an option A and the other hand to another

option B. Using pointing signs and a visible tilt in the upper body, as well as localized signs like

EXPLAIN, the two options are sequentially referred to in a very spatial and visual way.

FLSs are detected quite correctly, with an Ipr of 0.60. Two pointing signs are detected, while one is

missed. The two successive DSs are correctly detected, even though they are not segmented like the

annotations. In the end of the sequence – and to a lesser extent the beginning – DSs are predicted

by the model although they are not annotated. However, they do include a form of iconicity – as

mentioned earlier, it is spatial iconicity used at the syntactic level.

The unique FBuoy is not detected, resulting in Ipr = 0.

Video S7 T2 A10, frames 885-990 (Figure 8.3)

This sequence is rather sequential and includes an illustrative structure around frame 920, with the

left hand of the lexical sign PARIS iconically reactivated into a FBuoy, while the right hand performs

a DS-Size&Shape (DS-SS). We propose the simple translation ”You will need some time to explore

Paris!”.

All FLSs are detected correctly, but two false positives are observed in the vicinity of the illustrative

structure. The unique PTS is perfectly recognized. The DS unit is very well detected too, while the

simultaneous FBuoy is detected but much shorter than it is annotated.

Interestingly, the FLS VISIT is also detected as a DS. This makes some sense as it is produced in quite

an iconic way, in a form of Transfer of Persons (T-P), emphasized by the gaze moving away from the

addressee and the crinkled eyes.

Video S7 T2 A10, frames 1710-1820 (Figure 8.4)

This sequence, translated as ”I advise you to climb up the Eiffel Tower, you will then get a very nice

panoramic view.”, includes six FLSs, one DS, one PTS and one FBuoy. A form of T-P can be observed

– thumbnails 3 and 9-10 – although Ts-P were not annotated in Dicta-Sign–LSF–v2

Most FLSs are accurately detected, although the last one is detected as two separate units and a false

positive can be seen during the illustrative structure. The unique DS is detected with a temporal

shift. Simultaneously, the FBuoy is also detected, but much shorter than the annotation. The FLS

VISIT is detected as a DS, probably for the same reason as explained in the previous sequence. The

unique annotated PTS is missed by the prediction model – though one will notice that the recognition

probability peaks at the right time, with a maximum value of about 0.3.

Video S7 T2 A10, frames 3398-3485 (Figure 8.5)

Translated as ”At the very center of this area, there is a large building surrounded by restaurants.”,

this sequence is particularly interesting in that it delivers the message in a straightforward spatial

way, fully exploiting the signing space. Only two FLSs are annotated, while four DS units, two PTSs
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and one long FBuoy are noted. An area is first introduced, then a large building is introduced in the

middle and restaurants are placed around it using a proform.

Predictions for FLSs are not very satisfying, with an Ipr of 0.30, due to many false positives. However,

it seems that some of these could actually have been annotated, in some way, as FLSs. For instance,

the first false positive (around frame 3400) strongly resembles the lexical sign AREA, which presents

an inner degenerated iconicity. Similarly, around frame 3435 the DS for building very much looks like

the lexical sign BUILDING, although it is performed in a very iconic way, hence the DS annotation.

The three DS units are well detected, as well as the unique FBuoy, although for a shorter time than

the annotation. The two PTSs are accurately detected, and a false PTS positive can be seen around

frame 3445, which may stem from the particular hand shape used for the lexical sign RESTAURANT (see

thumbnail 6). A false FBuoy positive is detected at the beginning of the sequence, which actually

makes sense since the left-hand DS-Ground (DS-G) is highly similar to a FBuoy, both in form and

function.

Video S7 T2 A10, frames 5285-5385 (Figure 8.6)

This sixth and last sequence is quite illustrative. We have proposed the following translation: ”You

should definitely go see this place where birds fly all around buildings.”.

The annotation includes four FLSs and three DSs. The first annotated unit, BUILDING, is annotated

as a FLS although it is produced very iconically, and thus could have been annotated as DS. This unit

is not recognized as FLS. Then, the illustrative structure around frame 5300 is recognized as such and

as a lexical sign too. The lexical sign BIRD is very well detected as a FLS, and is indeed performed

in a very standard way. The subsequent DS is well detected too and includes proforms for birds on

both hands. The final two FLSs are accurately detected. One can note that the lexical unit GO is also

recognized as a DS, which makes sense as it is clearly signed in the form of a T-P.
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Frame-wise Unit-wise

Acc F1 (P/R) F1?w(tw = 12) (P/R) F1?pr(0, 0) (P/R) Ipr

Figure 8.1

FLS 0.92 0.89 (1.00/0.80) 1.00 (1.00/1.00) 1.00 (1.00/1.00) 0.89

DS 1.00 - - - -

PTS 0.92 0.57 (0.50/0.67) 0.67 (0.50/1.00) 0.67 (0.50/1.00) 0.44

FBuoy 1.00 - - - -

Figure 8.2

FLS 0.64 0.53 (0.71/0.43) 1.00 (1.00/1.00) 0.85 (0.80/0.90) 0.60

DS 0.82 0.56 (0.47/0.68) 0.67 (0.50/1.00) 0.67 (0.50/1.00) 0.44

PTS 0.91 0.40 (0.80/0.27) 0.80 (1.00/0.67) 0.80 (1.00/0.67) 0.59

FBuoy 0.77 0.00 ( - /0.00) 0.00 ( - /0.00) 0.00 ( - /0.00) 0.00

Figure 8.3

FLS 0.77 0.65 (0.73/0.58) 0.92 (0.86/1.00) 0.83 (0.71/1.00) 0.61

DS 0.93 0.88 (0.83/0.93) 0.67 (0.50/1.00) 0.67 (0.50/1.00) 0.63

PTS 0.93 0.75 (1.00/0.60) 1.00 (1.00/1.00) 1.00 (1.00/1.00) 0.80

FBuoy 0.78 0.38 (1.00/0.23) 1.00 (1.00/1.00) 1.00 (1.00/1.00) 0.57

Figure 8.4

FLS 0.68 0.63 (0.67/0.60) 0.94 (0.89/1.00) 0.88 (0.78/1.00) 0.64

DS 0.85 0.41 (0.35/0.50) 0.80 (0.67/1.00) 0.80 (0.67/1.00) 0.26

PTS 0.97 0.00 ( - /0.00) 0.00 ( - /0.00) 0.00 ( - /0.00) 0.00

FBuoy 0.81 0.36 (1.00/0.22) 1.00 (1.00/1.00) 1.00 (1.00/1.00) 0.61

Figure 8.5

FLS 0.72 0.29 (0.20/0.50) 0.73 (0.57/1.00) 0.44 (0.29/1.00) 0.30

DS 0.81 0.88 (0.86/0.90) 1.00 (1.00/1.00) 1.00 (1.00/1.00) 0.83

PTS 0.84 0.22 (0.18/0.29) 0.80 (0.67/1.00) 0.40 (0.33/0.50) 0.30

FBuoy 0.73 0.69 (0.84/0.59) 0.50 (0.33/1.00) 0.80 (0.67/1.00) 0.53

Figure 8.6

FLS 0.73 0.58 (0.70/0.50) 0.80 (0.67/1.00) 0.60 (0.50/0.75) 0.48

DS 0.78 0.54 (0.72/0.43) 0.89 (0.80/1.00) 0.75 (0.60/1.00) 0.49

PTS 1.00 - - - -

FBuoy 1.00 - - - -

Table 8.2: Frame-wise accuracy, F1-score and integrated unit-wise metric Ipr for six sequence examples,
illustrating the recognition of FLSs, DSs, PTSs and FBuoys. In case of no unit in the annotation (resp.
the predictions), recall (resp. precision) can not be computed.
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Conclusion

In this chapter, we have evaluated the proposed approach on the test videos of Dicta-Sign–LSF–v2,

for the binary recognition of four linguistic descriptors: Fully Lexical Signs, Depicting Signs, Pointing

Signs and Fragment Buoys.

First, we have shown that the original model and signer representation that we have built are good

at generalizing to unseen signers or unseen tasks, with consistent results in Signer-Independent and

Task Independent settings. This is especially interesting for extensions of this work, as eventually, all

Sign Language Recognition (SLR) systems are to be replicable to new signers and tasks. We have

also shown that the amount of training data currently appears to be a limiting factor for the model

performance. A challenge for the future is thus to get many more hours of finely annotated SL corpora,

or develop unsupervised or partially supervised frameworks.

In a more qualitative sequence-base analysis of the predictions, we have then highlighted the merits of

our approach. The predictions of the four descriptors are generally well in line with the annotations,

and could be used to describe a much broader part of SL discourse than the pure Continuous Lexical

Sign Recognition (CLexSR) approach. Moreover, many of the observed discrepancies can actually

be explained by the subjectivity in the annotation, some annotation mistakes or even the unclear

boundary between certain categories, in terms of linguistic definition. In particular, the degenerated

or dormant iconicity in many lexical signs is such that these units can be signed in a more or less

iconic fashion, so that the FLS versus DS opposition may not always make sense. Consequently, it

may have been more appropriate to allow for both unit types to be positively annotated at the same

time in the original corpus. More generally, the predictions of the proposed model could help question

the exclusivity and relevance of certain linguistic categories. This will however require an even more

thorough analysis of the results in order to ensure that no erroneous conclusions are drawn due to

shortcomings in the signer representation or learning model.
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Conclusions and perspectives

Now is the time to bring this thesis to a conclusion. In these last pages, we start by going back to the

original motivations and the related problem statement. We then summarize and discuss our main

contributions and findings. Finally, we consider future perspectives of this work and Continuous Sign

Language Recognition (CSLR) in general.

Back to the problem statement

In Chapters 1 and 2, we have developed on the complexity and specificities of SLs. Each SL has

its own lexicon, made of conventionalized units called lexical signs. However, with a visual-gestural

modality, all SLs include context-dependent illustrative or iconic structures and exploit the signing

space to organize discourse, while simultaneously making use of multiple language articulators.

This visual syntax of SLs as well as these complex illustrative structures, referred to as transfers or

classifier constructions, are generally ignored from the field of CSLR. Instead, CSLR has focused on

the development of models for the recognition of lexical signs in the form of sequences within SL

videos – hence the more appropriate naming Continuous Lexical Sign Recognition (CLexSR) –, which

is thoroughly developed in Chapter 3. These models can be used to understand the general meaning of

simple utterances, however they are bound to fail in the case of more illustrative or spatial discourse,

that is the very natural features of SLs. Relatedly, available corpora for SLR are very specific. They are

often elicited from simple and artificial sentences, even though the popular RWTH-Phœnix-Weather

corpus, made of interpreted German Sign Language (DGS), is somehow more natural. In any case,

the annotation of these corpora only include lexical signs. These works are in no way useless, and

they have definitely contributed to push SLR forward. We can only regret that the authors almost

never acknowledge the complexity of SL linguistics and the limited scope of their work in this regard.

In light of this state of the art, we have then asked ourselves the following question: what should and

could be envisioned so that CSLR can effectively be seen as a stepping stone towards – in the medium

term – Sign Language Understanding (SLU) and – in the long run – Sign Language Translation (SLT)?

Our main contributions and findings

Our first contribution focuses on improving the input data for CSLR systems. Corpora made by

linguists are very relevant in terms of language quality and representativeness, yet the annotation is

generally inconsistent and incomplete, thus not usable as such. Therefore, we have redesigned a French

Sign Language (LSF) corpus previously made by linguists, Dicta-Sign–LSF–v2. In particular, we have
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ensured quality and consistency in the annotation for 11 hours of recordings, which we have also made

public. This is presented in Chapter 4, with detailed explanations on the annotation categories and

statistics.

We then developed in Chapter 5 a formal and general description of the problem of CSLR, understood

as the parallel recognition of linguistic descriptors, which should be as relevant as possible. Accord-

ingly, we have discussed and introduced adapted performance metrics, going past the commonly used

measures in the case of CLexSR. This represents our second contribution.

Our third contribution is an open-access proposal and implementation for an original combination of

signer representation and learning model, which is detailed in Chapter 6. Using a mix of publicly

available and self-developed models, we were indeed able to derive a generalizable and compact rep-

resentation of signers in videos, with a separate processing of upper body, hands and face and the

manufacturing of linguistically relevant features. This signer data can then be used as input to a

convolutional and recurrent neural network, which allows fast training while being known to be an

effective architecture for gesture recognition. This decoupled framework presents a few advantages

compared to end-to-end approaches, like the reduced needs in terms of training data since only the

learning model has to be trained, or the feedback it can give on the relative importance of different

signer representation features for the recognition performance.

Finally, we have conducted a thorough analysis of the recognition performance of the proposed model

for four very different linguistic descriptors – Fully Lexical Signs (FLSs), Depicting Signs (DSs),

Pointing Signs (PTSs) and Fragment Buoys (FBuoys) – on Dicta-Sign–LSF–v2. Although the amount

of training data can be a limiting factor, quantitative results on the validation set – Chapter 7 –

show that with the right choice of signer representation and learning parameters, very promising

performance values are met. Subsequently, a qualitative analysis on the test set demonstrates the

merits of the proposed approach. The model is shown to be resilient to signer-independence and task-

independence, which is a relief as the generalizability is often an overlooked issue in SLR. A detailed

analysis on a few test sequences shows that there is generally good agreement between annotations

and predictions. Furthermore, many cases of disagreement can be explained by errors, subjectivity or

ambiguity in the annotation process.

Perspectives

As a first attempt of generalizing CSLR on a linguistically relevant SL corpus, our work has proven

effective while leaving room for improvement.

In terms of signer representation and learning framework, we have tried to build a compact solution

requiring limited data while ensuring generalizability. As there is an important overlap with the very

active research field of human activity recognition, this part of our work could easily be improved

in the near future. As regards the signer representation, the hand area is notably critical and we

have to acknowledge that the solution we could come up with is not optimal. Three-dimensional

hand modeling, for instance, would enable to capture more of the signed information. Furthermore,

we have shown that preprocessed signer features performed better than raw data. This lead should

definitely be explored further, and will imply the work of linguists to determine features that are

as relevant as possible. More refined state-of-the-art learning architectures developed for Natural

Language Processing (NLP) are also a potential lead although generally they can not be used as is for

frame-wise predictions.
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Another direction for improvement is related to the availability of data. As we have pointed out,

the amount of training data appears to be a bottleneck for the performance of CSLR models: this is

thus a major challenge for the evolution of CSLR. Similarly to the work we have conducted when re-

designing Dicta-Sign to Dicta-Sign–LSF–v2, a corpus made for SLR purposes, adapting corpora made

by linguists seems both realistic and highly cost-efficient. However, because ensuring consistency in

the annotation is highly time-consuming, another direction worth exploring is the adoption of weakly

supervised or even unsupervised learning methods for these partially or inconsistently annotated cor-

pora. Exploiting methods to help annotate videos much faster using visual and dynamic cues like

[Chaaban et al., 2019] could also be very useful.

On a close topic, the content of data itself and the recognition objectives of CSLR models, which

are obviously related, could and should definitely be extended in order to capture much more of the

information conveyed in SL. In particular, SL corpora are always – to the best of our knowledge –

annotated along a temporal axis alone, which makes it especially unnatural to capture the spatial

characteristics of signed utterances. As we have detailed in this thesis, the diagrammatic iconicity

of SLs indeed consists in organizing discourse spatially, which temporal annotation alone can not

describe. Research in this direction is crucial and should allow for better integration of the way

information and discourse are represented in SLs, which eventually will lead to much better SLU.

Finally, and in contrast to the usual approach of using linguistic knowledge to support NLP appli-

cations, models such as the ones we have developed in this thesis could be of great help to linguists.

Primarily, for linguists who aim at improving the description of SLs, the ability or inability of a pre-

diction model to effectively discriminate between different types of units, for instance, could indeed be

used as a measure of the very relevance of such categories. Incidentally, our research may also be used

to analyze other oral languages and specifically the role of co-verbal gestures with respect to cognitive

operations, as suggested by Cuxac [2001] (SLs are ideal analyzers for the language faculty). In this

way, we hope that this work will have started to bridge the gap between the communities of linguists

and computer scientists, for the benefit of both.
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Appendix A
Performance metrics for temporal data:

illustration
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Figure A.1: Annotated (top, blue) and predicted (bottom, red) data in a dummy binary classification
problem. Four units are annotated, while three are detected.

In this appendix, we illustrate the performance metrics presented in Section 5.2. We choose the case

of binary classification, with a dummy sequence for which fictitious annotated and predicted data are

given in Figure A.1.

A.1 Frame-wise metrics

The frame-wise metrics presented in Section 5.2.1 are easily computed. First, the accuracy is the rate

of correctly predicted frames, including class 0:

Acc = 0.61.
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Frame-wise precision and recall are computed from the count of true positives, false positives and false

negatives frames (see Equations 5.6 and 5.7):

P =
15

15 + 11
' 0.58

R =
15

15 + 28
' 0.35

which yield:

F1 ' 0.44.

A.2 Unit-wise metrics

A.2.1 P?
w, R?

w, F1?
w

Let us first note that:

• The closest unit from uD1 is unit uG1 , with 4 frames of shift between their respective centers.

• The closest unit from uD2 is unit uG1 , with 14 frames of shift between their respective centers.

• The closest unit from uD3 is unit uG2 , with 0.5 frame of shift between their respective centers.

Also:

• The closest unit from uG1 is unit uD1 , with 4 frames of shift between their respective centers.

• The closest unit from uG2 is unit uD3 , with 0.5 frame of shift between their respective centers.

• The closest unit from uG3 is unit uD3 , with 21 frames of shift between their respective centers.

• The closest unit from uG4 is unit uD3 , with 32.5 frames of shift between their respective centers.

From Equations 5.11 and 5.12, unit-wise precision and recall as a function of a margin tw can be

written as:

P ?
w(tw) =

1

3
(1tw>4 + 1tw>14 + 1tw>0.5)

R?
w(tw) =

1

4
(1tw>4 + 1tw>0.5 + 1tw>21 + 1tw>32.5) .

With margins of half a second (12 frames) or one second (25 frames):

P ?
w(12) ' 0.67

R?
w(12) = 0.5

F1?w(12) ' 0.57

and

P ?
w(25) = 1

R?
w(25) = 0.75

F1?w(25) ' 0.86.
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A.2.2 P?
pr, R?

pr, F1?
pr

From Equations 5.13 and 5.14, one can note that:

• The best match for unit uD1 is unit uG1 , with 7 intersecting frames over the original 7 frames of

uD1 .

• The best match for unit uD2 is unit uG1 , with 3 intersecting frames over the original 11 frames of

uD2 .

• The best match for unit uD3 is unit uG2 , with 5 intersecting frames over the original 8 frames of

uD3 .

Also:

• The best match for unit uG1 is unit uD1 , with 10 intersecting frames over the original 23 frames

of uG1 .

• The best match for unit uG2 is unit uD3 , with 5 intersecting frames over the original 5 frames of

uG2 .

• The best match for unit uG3 is any unit uDi , because there is no intersection.

• The best match for unit uG4 is any unit uDi , because there is no intersection.

Then, with IM standing for IsMatch, P ?
pr and R?

pr of Equations 5.15 and 5.16 can be simply expressed

as:

P ?
pr(t̄p, t̄r) =

1

3

(
IM(uD1 , u

G
1 , t̄p, t̄r) + IM(uD2 , u

G
1 , t̄p, t̄r) + IM(uD3 , u

G
2 , t̄p, t̄r)

)
=

1

3

(
1{ 7

7
>t̄p,

7
23

>t̄r} + 1{ 3
11

>t̄p,
3
23

>t̄r} + 1{ 5
8
>t̄p,

5
5
>t̄r}

)
R?

pr(t̄p, t̄r) =
1

4

(
IM(uD1 , u

G
1 , t̄p, t̄r) + IM(uD3 , u

G
2 , t̄p, t̄r) + IM(uDi , u

G
3 , t̄p, t̄r) + IM(uDi , u

G
4 , t̄p, t̄r)

)
=

1

4

(
1{ 7

7
>t̄p,

7
23

>t̄r} + 1{ 5
8
>t̄p,

5
5
>t̄r} + 0 + 0

)
.

These formula make it possible to draw curves for P ?
pr, R

?
pr and F1?pr, either with fixed t̄r = 0 or fixed

t̄p = 0. This is shown in Figure A.2.

The calculation of area under curves (Equations 5.19, 5.20 and 5.21) then yields:

Ip ' 0.490

Ir ' 0.385

and finally:

Ipr ' 0.438 .
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Figure A.2: Unit-wise P ?
pr, R

?
pr and F1?pr values, in the case of the dummy sequences of Figure A.1,

as a function of t̄p (t̄r = 0), or as a function of t̄r (t̄p = 0).
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Valentin Belissen, Michèle Gouiffès, and Annelies Braffort. Improving and Extending Continuous Sign

Language Recognition: Taking Iconicity and Spatial Language into account. In Proceedings of the

9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources

in the Service of the Language Community, Technological Challenges and Application Perspectives.

Satellite Workshop to the 12th International Conference on Language Resources and Evaluation

(LREC 2020), ELRA, 2020.

Valentin Belissen, Annelies Braffort, and Michèle Gouiffès. Towards Continuous Recognition of Illus-

trative and Spatial Structures in Sign Language. In Sign Language Recognition, Translation and

Production (SLRTP), ECCV Workshops, vol. 4, 2020.

Doctoral consortia

Valentin Belissen. Sign Language Video Analysis For Automatic Recognition and Detection, 14th

IEEE International Conference on Automatic Face and Gesture Recognition, Lille, France, 2019.

Valentin Belissen. Sign Language Video Analysis For Automatic Recognition and Detection, 20th

International ACM SIGACCESS Conference on Computers and Accessibility, Galway, Ireland, 2018.

161





Bibliography

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-

scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), volume 16, pages 265–283, 2016.

(cited p. 110, 118)

Charlotte Baker and Dennis Cokely. American Sign Language. A Teacher’s Resource Text on Grammar

and Culture. Silver Spring, MD: TJ Publ, 1980.

(cited p. 86)

Robbin Battison. Phonological Deletion in American Sign Language. Sign Language Studies, 5(1):

1–19, 1974.

(cited p. 39, 116)
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muets. L. Colas, 1825.

(cited p. 39)
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Robert Östling, Carl Börstell, and Servane Courtaux. Visual Iconicity Across Sign Languages: Large-

Scale Automated Video Analysis of Iconic Articulators and Locations. Frontiers in psychology, 9:

725, 2018.

(cited p. 41, 116)

Carol Padden. Verbs and Role-shifting in American Sign Language. In Proceedings of the fourth na-

tional symposium on sign language research and teaching, volume 44, page 57. National Association

of the Deaf Silver Spring, MD, 1986.

(cited p. 43)

Paschalis Panteleris, Iason Oikonomidis, and Antonis Argyros. Using a Single RGB Frame for Real

Time 3D Hand Pose Estimation in the wild. In Proceedings of the 2018 IEEE Winter Conference

on Applications of Computer Vision (WACV), pages 436–445. IEEE, 2018.

Bibliography 173

http://www.bu.edu/asllrp/ncslgr.html


Bibliography

(cited p. 112)

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Automatic

Evaluation of Machine Translation. In Proceedings of the 40th annual meeting of the Association

for Computational Linguistics, pages 311–318, 2002.

(cited p. 76, 77)

Georgios Pavlakos, Xiaowei Zhou, Konstantinos Derpanis, and Kostas Daniilidis. Coarse-to-Fine Vol-

umetric Prediction for Single-Image 3D Human Pose. In Proceedings of the 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 1263–1272. IEEE, 2017.

(cited p. 108)

Lionel Pigou, Sander Dieleman, Pieter-Jan Kindermans, and Benjamin Schrauwen. Sign Language

Recognition Using Convolutional Neural Networks. In Proceedings of the 2014 European Conference

on Computer Vision (ECCV), pages 572–578. Springer, 2014.

(cited p. 63)
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(SDL) - Université Paris 8, 2003.
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Eren, Moez Baccouche, Emmanuel Dellandréa, Charles-Edmond Bichot, et al. Evaluation of video

activity localizations integrating quality and quantity measurements. Computer Vision and Image

Understanding, 127:14–30, 2014.

(cited p. 104)

Di Wu, Lionel Pigou, Pieter-Jan Kindermans, Nam Do-Hoang Le, Ling Shao, Joni Dambre, and

Jean-Marc Odobez. Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and

Recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 38(8):1583–1597,

2016.

(cited p. 63, 115)

Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocular Total Capture: Posing Face, Body, and

Hands in the Wild. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

(cited p. 108, 112)

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial Temporal Graph Convolutional Networks for

Skeleton-Based Action Recognition. In Thirty-second AAAI conference on artificial intelligence,

2018.

(cited p. 63)

Hee-Deok Yang and Seong-Whan Lee. Robust Sign Language Recognition by Combining Manual and

Non-Manual Features based on Conditional Random Field and Support Vector Machine. Pattern

Recognition Letters, 34(16):2051–2056, 2013.

(cited p. 78)

Wei Yang, Shuang Li, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Learning Feature Pyramids

for Human Pose Estimation. In Proceedings of the 2017 IEEE International Conference on Computer

Vision Workshops (ICCV), 2017.

(cited p. 108)

Zhaoyang Yang, Zhenmei Shi, Xiaoyong Shen, and Yu-Wing Tai. SF-Net: Structured Feature Network

178 Bibliography



Bibliography

for Continuous Sign Language Recognition. arXiv preprint arXiv:1908.01341, 2019.

(cited p. 72, 73, 74)

Polina Yanovich, Carol Neidle, and Dimitris N Metaxas. Detection of Major ASL Sign Types in

Continuous Signing For ASL Recognition. In Proceedings of the 10th International Conference on

Language Resources and Evaluation (LREC 2016), 2016.

(cited p. 78)

Morteza Zahedi, Daniel Keysers, Thomas Deselaers, and Hermann Ney. Combination of Tangent

Distance and an Image Distortion Model for Appearance-Based Sign Language Recognition. In

Proceedings of the 27th DAGM Joint Pattern Recognition Symposium, pages 401–408. Springer,

2005.

(cited p. 23, 61)

Ruiqi Zhao, Yan Wang, C Fabian Benitez-Quiroz, Yaojie Liu, and Aleix M Martinez. Fast and Precise

Face Alignment and 3D Shape Reconstruction from a Single 2D Image. In Proceedings of the 2016

European Conference on Computer Vision (ECCV), pages 590–603. Springer, 2016.

(cited p. 108, 109)

Hao Zhou, Wengang Zhou, and Houqiang Li. Dynamic Pseudo Label Decoding for Continuous Sign

Language Recognition. In Proceedings of the 2019 IEEE International Conference on Multimedia

and Expo (ICME), pages 1282–1287. IEEE, 2019.

(cited p. 72, 73, 74)

Christian Zimmermann and Thomas Brox. Learning to Estimate 3D Hand Pose from Single RGB

Images. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV),

2017. URL https://lmb.informatik.uni-freiburg.de/projects/hand3d/.

(cited p. 112)

Bibliography 179

https://lmb.informatik.uni-freiburg.de/projects/hand3d/


180



Titre : De la reconnaissance de signes à la compréhension automatique de langue des signes :
une prise en compte des unités non conventionnalisées
Mots clés : Reconnaissance de langue des signes, Langue des signes continue, Iconicité, Linguistique
des langues des signes, Représentation du signeur, Réseaux de neurones récurrents
Résumé : Les langues des signes (LS) se sont
développées naturellement au sein des commu-
nautés de Sourds. Elles intègrent des signes lex-
icaux, c’est-à-dire des unités conventionnalisées du
langage, mais aussi des structures iconiques, i.e.
où forme et sens du message sont liés. La plu-
part des travaux de recherche en reconnaissance
automatique de LS se sont pourtant attelés à re-
connaitre les signes lexicaux, utilisant des corpus
artificiels, parfois en LS interprétée.

Dans cette thèse, nous souhaitons élargir
cette perspective pour envisager la reconnaissance
d’éléments utilisés pour la construction du discours
ou au sein de structures illustratives.

Les corpus de linguistes sont pour cela intéres-
sants car la langue y est naturelle et les annota-
tions détaillées, cependant pas toujours cohérentes.
Nous proposons donc la refonte d’un corpus de di-
alogue en langue des signes française, Dicta-Sign-

LSF-v2, annoté de manière détaillée et cohérente.
Nous redéfinissons alors le problème de la recon-
naissance automatique de LS comme la reconnais-
sance de divers descripteurs linguistiques, avec des
métriques adaptées. Nous développons par ailleurs
une représentation compacte et généralisable des
signeurs dans les vidéos par un traitement parallèle
des mains, du visage et du haut du corps, puis une
architecture d’apprentissage adaptée consistant en
un réseau de neurones récurrent et convolutionnel.

Nous montrons enfin l’effectivité du modèle
proposé, d’abord via une analyse approfondie du
paramétrage du modèle et de la représentation des
signeurs, puis par l’étude détaillée de prédictions
pour la reconnaissance de quatre descripteurs lin-
guistiques. Cette étude, avec des résultats très
encourageants, montre le bien-fondé de l’approche
proposée et ouvre la voie à une acception plus large
de la reconnaissance continue de langue des signes.

Title: From Sign Recognition to Automatic Sign Language Understanding: Addressing the
Non-Conventionalized Units
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guistics, Signer Representation, Recurrent Neural Networks
Abstract: Sign Languages (SLs) have developed
naturally in Deaf communities. They make use
of lexical signs, i.e. conventionalized units of lan-
guage, but also iconic structures, i.e. when the
form of an utterance and the meaning it carries
are related. Most research in automatic Sign Lan-
guage Recognition (SLR) has however focused on
recognizing lexical signs, using corpora that are ar-
tificial, sometimes made of interpreted SL.

In this thesis, we wish to broaden this perspec-
tive and consider the recognition of elements used
for the construction of discourse or within illustra-
tive structures.

To this end, corpora developed by linguists are
valuable as the language is natural and the anno-
tations are detailed, however not necessarily com-
plete or coherent. We thus propose the redesign of a
French Sign Language dialogue corpus, Dicta-Sign-

LSF-v2, finely and consistently annotated. We
then redefine the problem of automatic SLR as the
recognition of various linguistic descriptors, with
adapted performance metrics. Moreover, we de-
velop a compact and generalizable representation
of signers in videos by parallel processing of the
hands, face and upper body, then an adapted learn-
ing architecture based on a recurrent and convolu-
tional neural network.

Finally, we show the effectiveness of the pro-
posed model, first through an in-depth analysis of
the parameterization of the learning model and the
representation of the signers, then by studying in
detail predictions for the recognition of four linguis-
tic descriptors. This study, with very encouraging
results, shows the soundness of the proposed ap-
proach and paves the way for a wider understand-
ing of continuous Sign Language Recognition.
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