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Résumé

Le but de l’ingénierie numérique de protéines (ou Computational Protein Design CPD) est

de construire des systèmes moléculaires capables d’accomplir des fonctions biologiques. Pour

concevoir ce type de systèmes, nous utilisons comme modèles des systèmes optimisés naturelle-

ment, les protéines. Ainsi, il est possible de construire ces machines moléculaires en utilisant

la machinerie de traduction biologique. L’approche générale consiste à utiliser le paradigme

reliant la structure tridimensionnelle d’une protéine à sa fonction. Ces approches ont déjà

prouvé leur efficacité, par exemple avec la production d’enzymes capables de digérer du plas-

tique ([Tournier et al., 2020]). Néanmoins, les techniques et les principes fondamentaux liés à

la conception de tels systèmes n’en sont qu’à leur début. En effet, une récente étude à grande

échelle montre que le taux de réussite de ce type d’approches est de 6% ([Rocklin et al., 2017]).

Dans ce travail de thèse, nous avons étudié plusieurs aspects de l’ingénierie de protéines.

Nous avons d’abord entièrement redessiné un domaine PDZ impliqué dans de nombreuses voies

métaboliques. Nous utilisons une approche physics-based basée sur la mécanique moléculaire, un

modèle de solvant implicite et un échantillonnage Monte Carlo ([Mignon et al., 2020]). Parmi

plusieurs milliers de variants prédits pour adopter le repliement PDZ, trois ont été sélectionnés

et montrent expérimentalement un repliement correct. Deux ont une affinité détectable pour

les ligands peptidiques naturels. Ce travail permet d’étayer l’utilisation des principes fonda-

mentaux quand la stratégie actuelle tend à s’appuyer sur des descriptions statistiques. Cette

étude a ainsi montré le premier succès de l’utilisation d’une fonction physics-based pour une

application de cette taille ([Opuu et al., 2020b]).

Nous avons ensuite étudié l’aspect catalytique au travers du redessin du site actif d’une

enzyme impliquée dans le mécanisme de traduction génétique, la Méthionyl-ARNt synthétase

(MetRS) ([Opuu et al., 2020a]). Ce travail s’inscrit dans un projet d’expansion du code géné-

tique à des acides aminés non naturels. Dans ce travail, nous avons modifié la Methionyl-ARNt

9



Résumé

synthétase pour modifier son activité de catalyse avec la Méthionine. Nous avons utilisé un

nouveau paradigme de dessin basé sur l’état de transition (TS) de la réaction de catalyse. Nous

avons ainsi démontré l’efficacité de cette approche pour le redessin d’enzymes, tout d’abord

pour le ligand naturel. D’autre part, nous avons retrouvé des résultats expérimentaux pour la

catalyse d’un ligand non-naturel, l’azidonorleucine (AnL).

Puis, nous avons étudié la possibilité de modifier la MetRS pour étendre son activité aux

acides aminés β, afin d’étendre le code génétique. Ces acides aminés non-naturels permet-

traient d’enrichir le répertoire structural des protéines. 20 variants MetRS obtenus à partir

de prédictions d’affinité MetRS/β-Met ont été testés. 5 variants actifs ont été détectés mais

aucun n’augmente l’activité. Toutefois, trois ont amélioré la sélectivité en faveur de la β-Met

par des facteurs de 2 à 8. Pour explorer l’espace de mutation de manière systématique, nous

avons implémenté une méthode de sélection de positions d’intérêt et production de variants

pour β-Met et β-Val. Une vingtaine de prédictions sont en cours de tests expérimentaux.

Pour finir, nous avons étudié la possibilité de créer des paires de domaines PDZ avec une

contrainte de codage chevauchant. Le codage chevauchant est une stratégie de codage ex-

ploitée par tous les domaines de la Vie mais plus particulièrement par les virus. D’un point

de vue biotechnologique, cette stratégie de codage permet de mettre en place des stratégies

de bio-confinement nécessaires pour l’exploitation de génomes modifiés. Dans ce travail, nous

avons utilisé un algorithme de programmation dynamique développé récemment permettant de

concevoir des paires de gènes codées de manière chevauchante sur la base de protéines mod-

èles. Près de 2000 paires de séquences PDZ chevauchantes ont été calculées. 3 paires ont été

choisies pour des validations numériques par dynamique moléculaire tout-atomes. Une paire a

été validée par 3 microsecondes de dynamique moléculaire. Des tests expérimentaux sont en

cours.
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Chapter 1

Introduction

The purpose of Computational Protein Design (CPD) is to build molecular systems capable of

biological functions. To design such systems, we use as models naturally optimized components,

proteins. Thus, it is possible to produce these molecular components using the biological trans-

lation machinery. The general approach is to use the paradigm connecting the three-dimensional

structure of a protein to its biological function. CPD has already shown some successes. For ex-

ample, an enzyme capable of digesting plastics was recently reported ([Tournier et al., 2020]).

Nevertheless, techniques and fundamental principles related to the design of such machines

are only in the early stage. Indeed, a recent large study shows that the success rate of these

approaches for whole protein redesign is around 6% ([Rocklin et al., 2017]).

In this work, we studied several aspects of CPD, from numerical predictions to experi-

mental testing. First, we completely redesigned a protein domain involved in protein-protein

interactions. For this study, we used techniques based on physics to sample protein variants ac-

cording to their stability. We call this approach physics-based or φ-CPD ([Mignon et al., 2020]).

We selected three variants for experimental validation. All three variants showed evidence of

adopting the correct fold. Moreover, two variants showed a binding affinity for natural peptide

ligands. This work supports the use of physical principles, in contrast to the current strategy

which relies heavily on statistical information. This study represents the first successful use of

a physics-based energy function for a whole protein redesign of this size ([Opuu et al., 2020b]).

Next, we will present work on the engineering of an enzyme involved in the translation

machinery, methionyl tRNA synthetase (MetRS) ([Opuu et al., 2020a]). In this work, we re-

designed MetRS for its activation reaction. We used a recently developed method that allows

11



Chapter 1. Introduction

the sampling of variants rigorously on their binding free energy. We were able to select variants

that were then shown to be active in experiments. We also performed design calculations for the

activation of azidonorleucine, a Methionine analog, where we recovered experimentally known

variants. Then, we extended the design method to the binding of a transition state ligand.

Therefore, we were able to sample MetRS variants according to their catalytic power for the

Met substrate.

In a third chapter, we will present the redesign of MetRS for the activation of two β amino

acids. First, we searched for variants where only three positions were allowed to vary. Three

variants were shown experimentally to have a slightly improved selectivity for β-Met com-

pared to α-Met. The improvement factors were 2-8. However, the β-Met activity was not

improved. To go further, we explored additional positions in the active site. We introduced a

new method to select positions for design according to their binding potential. We computa-

tionally redesigned eight positions in search of β-Met and β-Val activity. Some variants from

these predictions are in an experimental testing phase (Y. Mechulam, E. Schmitt, personal

communication).

Finally, we report the design of two pairs of PDZ domains with a fully overlapping coding

scheme at the DNA level. Overlapping coding is a strategy used especially by viruses. From a

biotechnological perspective, this coding can help in the bio-containment of modified genomes.

In this work, we used an algorithm we developed earlier for designing pairs of overlapping genes,

based on protein sequences. First, we designed almost two thousand pairs of PDZ proteins

encoded in an overlapping fashion. Then, three of the designs were selected for molecular

dynamic simulation testing. Two were found stable during simulations of at least 500 ns. One

pair was validated by simulations of 3 µs. Experimental testing is underway (G. Travé, personal

communication).

In this chapter, we recall some biological and structural aspects of the PDZ protein family.

We detail the specificity of PDZ domains and some experimental and computational studies.

Then, we present the aminoacyl-tRNA synthetase (AARS) structures and some associated

studies. Finally, we present technical and theoretical aspects of CPD with special attention to

φ-CPD using the Proteus software ([Mignon et al., 2020]).

12



1.1. PDZ domains

1.1 PDZ domains

PDZ domains (postsynaptic protein-95 Disk wide Zonula occludens-1) are recognition domains

involved in protein-protein interactions. This is a ubiquitous family that can be found sev-

eral times in the same protein. These domains bind specifically their protein partners. The

engineering of such domains may enable the engineering of biological networks.

1.1.1 Three-dimensional structure of a PDZ domain

PDZ domains are small globular domains of about 90 amino acids. They are composed of five

to six β sheets numbered β1-β6 and two α helices (α1 and α2). PDZ domains are usually paired

or grouped in modules. The PDZ domains recognize a short sequence (or motif) of four to

seven terminal amino acids. This recognition occurs between the β2 and β3 strands (figure

1.1). The specificity of the PDZ domains allows biochemical messages in signaling pathways.

Therefore, one can disrupt these signaling pathways, e.g. by using molecules that inhibit the

PDZ domain recognition. This approach was used by ([Thorsen et al., 2009]). They identified

a molecule that inhibits specifically a PDZ domain that interacts with the protein C kinase 1

(PICK1). The affinity of the identified molecule is equivalent to the natural ligand. Finally,

molecular docking methods and mutational analyzes allowed the identification of the binding

conformation.

Synthesis and experimental testing can be expensive, and high-throughput approaches may

not find a specific ligand ([Chen et al., 2007]). A second approach is using artificial peptides.

[Amacher et al., 2014] identified peptides with an improved affinity for the PDZ domain of the

protein CFTR-Associated Ligand. However, it seems difficult to produce inhibitory peptides

without systematic methods. Also, artificial peptides are difficult to maintain in vivo since

proteases may degrade them. One approach is to use unnatural amino acids, such as β amino

acids.

1.1.2 Computational studies of PDZ domains

Experiments are difficult, resource consuming and, may not provide enough details. For PDZ

domains, several computational approaches have complemented the experiments, such as molec-

ular dynamics.

13



Chapter 1. Introduction

Figure 1.1: Three-dimensional structure of the Cask PDZ domain.

A study by [Blöchliger et al., 2015] unveiled the peptide recognition mechanism of PDZ

domain partners. Ten independent simulations for a total of 57 µs established two phases in

the binding process. The peptide was first recognized by non-specific long-range electrostatic

interactions with side chains around the binding site. Positively charged residues around the

binding site guided the peptide. In a second phase, the complex is held by hydrophobic in-

teractions and the C-terminal side chain is buried in the binding site. This contrasts with the

standard mechanism of protein folding where specific interactions are the key.

A second study by molecular dynamics identified quantitatively different contributions to

affinity and specificity between PDZ and peptide motifs ([Basdevant et al., 2006]). To identify

these contributions, 12 different PDZ domains were studied with MD trajectories from 20 to

25 ns. These simulations showed that the electrostatic contribution is minor compared to the

nonpolar contribution and suggested that such contributions do not explain specific recognition.

They concluded that a peptide can bind a given PDZ if it can provide a certain level of non-polar

interactions, while the entropy contribution may explain the specificity. During the binding,

14



1.1. PDZ domains

one observes a loss of degrees of freedom and thus a loss of entropy. [Basdevant et al., 2006]

proposed that the variability observed for the entropic contribution could explain the specificity

of the interactions PDZ/peptide.

A study conducted by [Smith and Kortemme, 2010] showed the effectiveness of a prediction

method based on the PDZ peptide complex. This method is based on a Monte Carlo algorithm

from the Rosetta suite, allowing the sampling of peptide variants. The sampling of variants

allows them to construct an affinity profile. Then, Smith & Kortemme used phage display data

from 17 human PDZ domains to describe their peptide preferences in the form of a profile. This

approach allowed them to recover 70 to 80% of the most common amino acids experimentally

found.

Another approach recently developed allowed the design of peptides based on their affinity

to PDZ domains ([Bhattacherjee and Wallin, 2013, Villa et al., 2018]). It used an importance

sampling method called Adaptive Landscape Flattening (ALF). Explicit modeling of bound and

unbound states are used. With statistical physics concepts, Villa et al introduced a method

capable of sampling peptide variants directly and rigorously on their affinity. This approach

allowed the evaluation in silico of around 75,000 peptides for the affinity to the Tiam1 PDZ

domain. Affinity free energies estimated in this study were in fair agreement with available

experimental data.

While the usual strategy for pathway engineering is the use of inhibitors, it is possible to

create new PDZ domains. The ability to create new PDZ domains and new signaling pathways

is an interesting strategy. [Mignon et al., 2017] studied the complete redesign of the Tiam1

PDZ domain. They used a physics-based approach which is a key point for the understanding

of fundamental protein design principles. Mignon et al sampled several thousand variants. Ten

representative designs were selected and tested by molecular dynamics simulations up to 1.2

µs. This study paved the way for the use of a rigorous physical model to understand and design

proteins.

1.1.3 The PDZ domain of the protein Cask

We studied here the PDZ domain of the protein Calcium calmodulin-dependent serine protein

kinase (Cask). The Cask protein is involved in neuronal development and regulation of genes

([Hsueh et al., 2000]). A study of mice mortality demonstrated the role of Cask in neuronal
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Chapter 1. Introduction

development ([Hsueh, 2009]). The Cask protein has several protein-protein interaction domains

with one PDZ domain (Figure 1.2).
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Figure 1.2: Schematic representation of the Cask domains and their partners (from
[Hsueh, 2009]) Each domain is represented by a rectangle. The numbers indicate the positions
of amino acids in the protein sequence. The partners of each domain are listed.

The three-dimensional structure of the Cask PDZ domain with the peptide Neurexin-1

(6nid) highlights the binding interactions (Figure 1.3). The binding site is located between the

β3 sheet and the α2 helix. The C-terminal position is completely buried, ARG 517 interacts

with K- 6 via a salt bridge. Other polar contacts illustrated in figure 1.3 involve Y-1 and the

backbone atoms in the binding site.

1.2 Aminoacyl-tRNA synthetases

Protein synthesis is a biological process involving several families of macromolecules. In this

thesis, we will study the family of aminoacyl tRNA synthetases (aaRS). aaRSs link genetic

information stored in genomes and the production machine called the ribosome. Each aaRS
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1.2. Aminoacyl-tRNA synthetases

Figure 1.3: Three-dimensional structure of Cask PDZ domain with Neurexin-1 pep-
tide (pdb code 6nid). In blue, the PDZ domain. Gray, peptide residues numbered is reversed
order (0 for the last position, then -1 to position -5). Yellow, polar interactions between the
peptide and binding site.
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catalyzes the two-step aminoacylation reaction:

aa+ ATP ⇋ aaAMP + PPi

aaAMP + PPi + ARNt ⇋ aa-ARNt+AMP
(1.1)

This first reaction creates an aminoacyl adenylate (aaAMP ) and releases a pyrophosphate

(PPi). The second reaction connects the tRNA to the amino acid ().

Each aaRS specifically binds an amino acid and tRNA. This specific relationship between

aaRS, amino acids, and tRNA is essential for the accuracy of protein translation. Specificity

results from the side chain composition of the active site and the backbone geometry (figure

1.4). However, errors may occur. To manage these errors, some aaRSs have an editing site.

Figure 1.4: Both aaRS classes for the 20 canonical amino acids, pyrolysine and,
phosphoserine (from [Kaiser et al., 2020]) Each aaRS is associated with its cognate amino
acid. Ligands are grouped by physicochemical properties. Interaction properties were deter-
mined with PLIP tool ([Salentin et al., 2015]) whose types are represented by an annotated
color code. The quality of the interaction is represented by pie charts.

With increasing antibiotic resistance, bacterial inhibitors against aaRSs have been developed

([Vondenhoff and Aerschot, 2012]). Although aaRS structures are highly conserved in different

areas of life, some differences can be used by specific molecules. A common strategy is to create

molecules similar to aaRS substrates.
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1.2. Aminoacyl-tRNA synthetases

In addition, some parasites involved in diseases like malaria (Plasmodium falciparum) lack

effective vaccines ([Organisation, 2015]). In the case of malaria, the World Health Organiza-

tion reported about 438,000 deaths for 200 million infections in 2015 ([Organisation, 2015]).

Inhibitors of the protein translation system were used as anti-parasite compounds. For exam-

ple, inhibitors that bind specifically Alanyl-tRNA synthetase and threonyl tRNA synthetase

were discovered ([Khan et al., 2011]).

AaRSs are also a target of interest for applications in biotechnology. Indeed, engineering of

such enzymes is used to extend the genetic code by the incorporation of unnatural amino acids.

The incorporation of new amino acids in proteins provides new or improved properties such

as improved resistance to proteases with β amino acids ([Daura et al., 2001]). The additional

carbon in the main chain decreases protease recognition. Here, we will first recall the structural

properties of aaRS. Then, a few applications of aaRS engineering will be shown. Then, we will

show some examples of genetic code expansion.

1.2.1 Three-dimensional structures of aminoacyl tRNA synthetases

Structural studies have shown that class I aaRSs contain a Rossman fold domain while class

II aaRSs contain an ensemble of β sheets instead ([Ibba and Söll, 2000]) (Figure 1.5). The

Rossman fold contains two well-known motifs involved in the production of the aminoacyl-

adenylate. The KMSKS motif is contained in a mobile loop called the activation loop (figure

1.5). When the activation loop changes its conformation, this motif stabilizes the ATP moiety in

the active site ([First and Fersht, 1995]). The second motif is HIGH whose role is linked to the

stabilization of the transition state for aaAMP formation ([Schmitt et al., 1995]). Although

the association error rate between amino acid and tRNA is low, a system of correction is

needed. Class I has a domain called Connective polypeptide 1 (CP1) which in some cases is an

editing domain able to correct errors ([Ling et al., 2009]). Except for Tyrosyl-tRNA synthetase

and tryptophanyl-tRNA synthetase, class I aaRSs are monomeric and are grouped into three

subclasses. The first, denoted Ia, handles hydrophobic amino acids. The second, denoted Ib,

handles residues with a long side chain. The third, denoted Ic, handles aromatics.

Class II has a different structural organization (Figure 1.6). The first point is the absence

of the Rossman fold. Indeed, the catalytic site consists of seven β sheets associated with

α helices, as described in the first class II structures (Seryl-tRNA synthetase and aspartyl-
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ARNt

Ligand

Anticodon-binding

CP

Rossman Fold

Figure 1.5: Three-dimensional structures of class I, the example of glutaminyl-tRNA
synthetase with glutamine and tRNA. The ligand is represented by red spheres. The
domain of interest are highlighted in red. The non-active tRNA is shown in orange.

tRNA synthetase) ([Kowal et al., 2001, Cusack et al., 1990]). ATP binds to class II in a bent

conformation, and to class I in a more extended conformation (figure 1.7). Class II aaRSs can be

grouped into three subgroups. The first, denoted IIa, groups aaRSs whose C-terminal domains

are homologous. The C-terminal region is involved in recognizing tRNA. The second subclass,

denoted IIb, has an N-terminal domain organized in β barrels, involved in binding tRNA. The

third, denoted IIc, includes aaRSs whose aaRS oligomeric structure is not preserved.

1.2.2 aaRS engineering for genetic code extension

One application of interest is the extension of the genetic code to unnatural amino acids. Thus,

nearly 70 new unnatural amino acids (UAA) have been added to the genetic code of Escherichia

coli ([Liu and Schultz, 2010]). To expand the genetic code, it is necessary to design aaRS/tRNA

couples that does not disturb the existing translation system. Usually, the amber codon is used
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ARNt Ligand

Anticodon-binding

Editing domain

Figure 1.6: Three-dimensional structure of Class II, the example of aspartyl-tRNA
synthetases in complex with aspartyl-adenylate and tRNA. The ligand is represented
by red spheres. The domains of interest are highlighted in red. The non-active tRNA is shown
in orange.

to encode the UAA.

Rajbhandary et al. built two specific aaRS/tRNA couples. The first is the glutaminyl-

tRNA synthetase of E. coli paired with the human suppressor tRNA. The second is tyrosyl-

tRNA synthetase (TyrRS) paired to a tRNA with the amber anticodon. However, the modified

aaRS still process the natural tRNA, but in small quantities. Therefore, these two couples are

not perfectly orthogonal to the expression system. Moreover, the expression plasmid carrying

the gene for the modified aaRS cannot be maintained in E. coli ([Kowal et al., 2001]). This

application illustrates the difficulty of introducing changes in the translation system.

Schultz et al. built a aaRS/tRNA couple which satisfies the principle of orthogonality. It

uses Methanococcus jannashii TyrRS, which differs from E. coli TyrRS. Methanococcus jan-

naschii TyrRS has no editing domain and a minimalist anticodon binding domain. Thus, the

aaRS will not eliminate the unnatural amino acid. Then, a amber anticodon is incorporated in
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Classe I Classe II

Figure 1.7: Representation of ATP conformations bound to an aaRS in extended
conformation (left, bound to a Class I, tyrosyl-tRNA synthetase, 1h3e) and com-
pact (right, bound to a class II, histidyl-tRNA synthetase, 1kmn).

the tRNA. The couple was optimized by a directed evolution method. First, positions to mutate

were determined using crystallographic structures. Positive selection was applied to variants

that activated the unnatural amino acid through its ability to suppress an amber mutation in

a specific gene. Then, a negative selection was applied through a cytotoxic Barnase processing

([Xie and Schultz, 2006]).

1.2.3 Computational approaches to genetic code extension

Computational methods are important for the design of binding sites for bio-catalysts in in-

dustry. To illustrate these approaches, we present two applications to TyrRS. Baumann et al

proposed a variant of TyrRS which binds the ortho-nitrobenzyl tyrosine (ONBY), a tyrosine

homolog ([Baumann et al., 2019]). The active site of TyrRS contains around 30 residues. For

the design of this variant, ten mutations were introduced in the active site. This set of muta-

tions allows the selective activation of ONBY. To design this variant, the first numerical step

was to create a library of variants predicted to bind ONBY. This step used the design procedure

implemented in Rosetta3 ([Richter et al., 2011]). 143 variants were identified by the procedure.

To refine these variants, 26 positions were allowed to mutate to obtain 3575 new variants. 49
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variants with a satisfying Rosetta score were finally selected to form a profile. This set allowed

the detection of a selective variant for ONBY.

Simonson et al proposed to change the stereospecificity of TyrRS from L-tyrosine (L-Tyr) to

D-Tyrosine (D-Tyr) ([Simonson et al., 2016]). The subtle change of symmetry in ammonium

is challenging. For this application, the Proteus software was used ([Simonson et al., 2013,

Simonson, 2019]). The specificity of this approach is the use of a rigorous physical descrip-

tion of molecular interactions. Indeed, for such systems, a realistic description is neces-

sary to discriminate the active variants. The design of variants was based on two types of

approach: a high-throughput approach based on a heuristic algorithm for quick sampling

([Busch et al., 2008]). Then, alchemical free energy simulations were used to estimate free

energy changes ([Simonson, 2001]). Mutations were introduced in a set of four positions (D81,

Y175, N179, and N201). A variant whose preference has been improved for D-Tyr was discov-

ered and validated experimentally. The agreement between experimental measurements and

calculated ones shows that the use of physical models is a promising route for this type of

application.

1.3 The Proteus framework

Here we present the main aspects of CPD using Proteus. First, we will describe the folded

and unfolded models. Then, we will detail the energy function and the approach used for the

exploration of sequences. Finally, we will illustrate the other techniques with two examples,

involving Rosetta and Toulbar2.

1.3.1 Folded and unfolded models

Numerical applications related to the three-dimensional protein structure usually suffer from

the curse of dimensionality. Indeed, a protein is a flexible object whose space of accessible

configurations is large. This difficulty is added to the combinatorial mutation space. Thus, a

simplification used here consists in considering a fixed backbone. Only the side chains remain

flexible. A second simplification is the discrete set of conformations for the side chain called

rotamers. Here, we use the Tuffery library ([Tuffery et al., 1997]).

Since the unfolded state is even more complex, one standard approach is to model it as an
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extended peptide. In such a model, residues interact with the solvent but not with the other

positions of the polypeptide. For a given sequence, the energy is the sum of the contributions

of each amino acid independently.

1.3.2 The energy function

Proteus uses an energy function that can be divided into two contributions: protein-protein

interactions and protein-solvent interactions. For the first contribution, we use the Amber force

field ff99SB ([Tian et al., 2019]). The second contribution uses continuum electrostatics.

The interaction with the solvent in the folded state is divided into a polar contribution for

the electrostatic effects and a non-polar contribution for the dispersion and hydrophobic effects.

The polar contribution is computed with the Generalized Born (GB) model where the protein

is modeled as a low dielectric medium embedded in a high dielectric medium:

EGB =
1

2
(
1

ǫW
−

1

ǫP
)
∑

i,j

qiqj(r
2
ij + bibjexp[−r

2
ij/4bibj])

−1/2 (1.2)

Here, ǫW and ǫP are the dielectric constants of the solvent and the protein, rij is the distance

between atoms i and j, qi and qj represent the partial charges on the atoms i and j; bi and bj

represent GB radii. GB models generally differ in how solvation radii are calculated. Proteus

mainly uses the HCT method ([Hawkins et al., 1995]).

The GB term is a multi-body term which is very penalizing for the calculation speed.

However, Simonson and Archontis ([Archontis and Simonson, 2005]) introduced the concept of

residue GB which makes the GB method pairwise additive. This approach allows the GB calcu-

lation (figure 1.8) to be done in a reasonable time. This variant is called Fluctuating Dielectric

Boundary (FDB) ([Villa et al., 2017]). A more approximate methode computes the GB radii

of each side chain assuming it is in its native environment (NEA, [Simonson et al., 2013]).

For the non-polar contribution, Proteus offers two models. The first is a surface area model

(SA):

ESA
nonpolar =

∑

i

σiAi (1.3)

The σi parameter reflects the preference of atom i to be buried or exposed. Ai is the solvent

accessible surface area of the atom. Moreover, this model is also multi-body since more than
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two atoms may overlap. Here we use a pairwise approximation ([Street and Mayo, 1998]).

q
p

εW

εP

bq

bp

Figure 1.8: Schematic representation of solvation radii for two charges p and q. The
two charges q and p are shown as red spheres. The solvation radii induced by the environment
are represented by an arrow and a non-continuous circle. The protein is modeled by a dielectric
medium of constant ǫp solvated in a dielectric medium of constant ǫW .

The second model proposed is the Lazaridis-Karplus model (LK) ([Lazaridis and Karplus, 1999,

Michael et al., 2017]):

ELK
nonpolar =

∑

i

Wi =
∑

i

(W ref
i −

∑

j 6=i

∫

V j

gi(rij)dV ) ≈
∑

i

(W ref
i −

∑

j 6=i

gi(rij)Vj) (1.4)

For each atom i, the contribution Wi to the solvation energy corresponds to the transfer of this

atom from a fully solvated state to a partially buried one. W ref
i is a parameter that corresponds

to the free energy in the fully solvated state. Every other atom j contributes to a screening

effect. The screening is here proportional to the volume of each j atom (Vj) and a Gaussian

function (gi) which depends on the distance between atoms i and j (rij).
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1.3.3 Sampling of sequence space

Proteus uses an exploration based on the Monte Carlo approach. This method coupled with a

physical energy function allows the sampling of sequences from the Boltzmann distribution. It is

thus possible to deduce certain quantities of interest such as folding or binding free energies. In

the context of a fixed backbone, implicit solvent and flexible side chains, consider a polypeptide

sequence S = S1, S2, ...Sp of p positions. Each position is associated with a rotamer denoted

ri. We denote C(S) = r1, r2, ..., rp a conformation of S. Sampling is defined by two types of

motion: a change of rotamers (ri → r’i) or type (Si → S’i).

The polypeptide evolves with the energy function EM(S) = Ef (S) − EU(S) where EM(S)

is the energy of folding, Ef (S) is the energy in the folded state, and EU is the energy in the

unfolded state. For a mutation Si → S ′
i, we have the following energy change:

∆EM = EM(S)− EM(S ′) = Ef (S
′)− Ef (S)− Eu(S

′)− Eu(S) (1.5)

S’ is the polypeptide with the S’i mutation. A mutation in the folded state is thus accompanied

by the reverse mutation in the unfolded state (figure 1.9). We obtain the following ratio of

probabilities for S and S’:

P (S)

P (S ′)
=

∑

c exp(−βEM(S, c))
∑

c exp(−βEM(S ′, c))
=

exp(−β∆Gfolding(S))

exp(−β∆Gfolding(S ′))
(1.6)

We recognize the Boltzmann ratio; ∆Gfolding(S) is the folding energy (respectively ∆Gfolding(S
′)).

Therefore, variants are populated according to their relative folding energy, or stability.

Figure 1.9: Representation of a MC move. A mutation in the folded state is accompanied
by the reverse mutation in the unfolded state.
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A second approach was proposed to design ligand binding. We allow the competition, not

between the folded and unfolded states but between the bound and the unbound states. This

required a new approach. The solution is to create an approximation of the free energy surface

of sequences in the unbound state with an adaptive MC approach called Adaptive Landscape

Flattening ([Villa et al., 2018]). This approximation, or bias, B is gradually incremented in an

MC simulation of the unbound state. At the end of the simulation, the bias B approximates

the free energy of sequences in the unbound state Eu(S). In a second simulation, the bias is

applied to the sampling of variants for the bound state. Now, sequences evolve with the energy

function Ea(S) = Eb(S) + B(S). Since B(S) approximates the free energy of sequences in the

bound state, sequences are sampled according to Boltzmann distribution, but now controlled

by the binding free energy. Details for this method are provided in chapter 4.

1.4 Other approaches

We can categorize existing methods according to two criteria: representation of the system

ranging from strictly physical models to ones based on biological data. Another criterion

is the exploration algorithm. One category seeks to produce one or more solutions (with or

without guarantees) using stochastic and/or heuristic approaches such as Monte Carlo methods

([Mignon and Simonson, 2016]) or genetic algorithms. A second category seeks to find the

optimal solution in the context of a given energy function.

1.4.1 A knowledged-based energy function paired with a stochastic

search

We illustrate the stochastic approach and knowledged-based energy function with the design

tool Rosetta fixbb ([Richter et al., 2011]). This approach can provide acceptable solutions in

reasonable time. Also, the knowledged-based approach optimizes the energy function for a

specific task. Like Proteus, Rosetta uses an all-atom representation. For the folded state,

the backbone is also held fixed while side chains remain flexible. The flexibility of the ro-

tamers is modeled with a library of rotamers depending on the local geometry of the backbone

([Shapovalov and Dunbrack, 2011]).
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The energy function used to describe the interactions in the folded state is based on phys-

ical terms to which is assigned a weight. The energy function uses a modified Lennard Jones

potential to model short-distance interactions. Electrostatic interactions are modeled by the

Coulomb potential, modified to take account of a change in dielectric medium between buried

regions and exposed regions. For the interaction with the solvent, Rosetta uses an implicit rep-

resentation modeled by a Lazaridis-Karplus term ([Lazaridis and Karplus, 1999]). Although

hydrogen bonds in standard force fields are described by the Coulomb potential, Rosetta uses

a dedicated and optimized term to reproduce hydrogen networks of a set of 8,000 crystallo-

graphic structures. The bonded interactions are modeled by a statistical potential optimized

on observed rotamers.

This energy function can compare a configuration to another for the same sequence but

not different sequences. Thus, a type-dependent unfolded model is needed. Its parameters are

empirically selected to reproduce sequences observed in crystal structures of high resolution.

Thus, the fitness function used by Rosetta to search sequences is based on the folding energy

of stability.

To search sequences, Rosetta uses a simulated annealing algorithm in which the temperature

is reduced using a specific path during a Monte Carlo simulation. It is thus possible to obtain

solutions that may be close to the global minimum. However, this approach cannot provide

any guarantee.

The statistical optimization of the energy function improves the performance in real-world

applications. In addition, the cost of the energy evaluation is similar to the energy calculation

using ff99SB. Since the function is imperfect, finding the exact global minimum energy is not

necessary. However, heavy use of empirical optimization makes this type of function non-

transferable. In addition, the interpretation may be difficult. Finally, dependence on biological

data limits its use for protein-ligand applications, since there are only little data.

1.4.2 Combinatorial exploration for an exact solution

To illustrate the exact approach, we use the example of ToulBar2 ([Traoré et al., 2013]). This

type of approach focuses on the search for the optimal solution or Global Minimum Energy

Conformation (GMEC). ToulBar2 uses an energy function based on the ff94SB force field

([Traoré et al., 2013]) calculated with OSPREY ([Hallen et al., 2018]). One of the exact search
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algorithms proposed by Toulbar2 is based on a cost function network (CFN). A first element to

note here is the need for a discrete representation of the protein. Indeed, this approach models

the search as a linear programming problem. Also, the energy function must be decomposable

in pairs to allow an exact search.

The CFN approach models the research problem by a triplet P = (X, D, C) where X is a set

of variables representing the positions or the pairs of positions for a given polypeptide, whose

possible values correspond to the D rotamers. A cost function, unary or binary, representing

the energy contribution is associated with each variable. A depth-first branch and bound

algorithm is used to identify the GMEC. The second benefit of this approach is the possibility

of determining a set of sub-optimal solutions in a given energy interval above the GMEC.

The enumeration of sub-optimal solutions in a range of values energy may ensure an effective

sampling of the most favorable variants according to the model used. Nevertheless, the required

decomposition into pairs of interaction prevents the use of more realistic physical models such

as GB FDB for the solvent.
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Chapter 2

A physics-based energy function allows

the computational redesign of a PDZ

domain

The following chapter uses the text from the article: A physics-based energy function

allows the computational redesign of a PDZ domain , Vaitea Opuu, Young Joo Sun,

Titus Hou, Nicolas Panel, Ernesto J. Fuentes, Thomas Simonson (2020), Scientific Reports 10,

11150.
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A physics‑based energy function 
allows the computational redesign 
of a pDZ domain
Vaitea opuu1,3, Young Joo Sun2,3, Titus Hou2, Nicolas Panel1, Ernesto J. Fuentes2* & 

thomas Simonson1*

Computational protein design (CPD) can address the inverse folding problem, exploring a large 
space of sequences and selecting ones predicted to fold. CPD was used previously to redesign several 
proteins, employing a knowledge-based energy function for both the folded and unfolded states. We 
show that a pDZ domain can be entirely redesigned using a “physics‑based” energy for the folded 

state and a knowledge-based energy for the unfolded state. Thousands of sequences were generated 
by Monte Carlo simulation. Three were chosen for experimental testing, based on their low energies 
and several empirical criteria. All three could be overexpressed and had native-like circular dichroism 
spectra and 1D-NMR spectra typical of folded structures. Two had upshifted thermal denaturation 
curves when a peptide ligand was present, indicating binding and suggesting folding to a correct, PDZ 
structure. Evidently, the physical principles that govern folded proteins, with a dash of empirical post-
filtering, can allow successful whole-protein redesign.

Protein sequences have been selected by evolution to fold into specific structures, stabilized by a subtle balance 
of interactions involving protein and  solvent1,2. In contrast, random polymers of amino acids are very unlikely 
to adopt a specific, folded  structure3,4, and exhibit instead a more disordered  structure5. A powerful approach 
to understand the evolution of proteins and the basis of folding is to perform computer simulations that mimic 
evolution. This can be done with computational protein design (CPD), which explores a large set of sequences 
and selects ones predicted to adopt a given  fold6–8. A typical simulation imposes a specific geometry for the pro-
tein backbone, corresponding to the experimental conformation of a natural protein. Side chains are mutated 
randomly. Variants with a favorable predicted folding free energy are saved. The folded state energy function 
can be physics-based or knowledge-based9–11 while the unfolded state energy is knowledge-based. The protein 
is considered “redesigned” if most of the protein side chains are allowed to mutate during the simulation.

The successful redesign of complete proteins was reported in  20037,12 and small miniproteins were redesigned 
even  earlier6,13. Several other successes were  obtained14–17, including a study where 15000 miniproteins (40–43 
amino acids) were  redesigned18. 6% of the designs were shown to be successful; i.e., the designed miniproteins 
folded into the correct tertiary structure. The others either could not be overexpressed and purified, or did not 
fold as predicted. All of the applications to proteins described the folded structure with an energy function 
that was at least partly knowledge-based, or statistical. Statistical energy terms included terms derived from 
experimental amino acid propensities and evolutionary  covariances17, terms derived from inter-residue distance 
distributions in crystal  structures16, and terms derived from torsion angle and hydrogen-bond distance distribu-
tions in crystal  structures11,14,15. All of the applications described the unfolded structure with a fully statistical, 
knowledge-based model.

Energy functions for the folded state can also be non-empirical, or physics-based, and taken from molecular 
 mechanics19. There are then only two energy terms for nonbonded interactions between protein atoms, which 
correspond to the elementary Coulomb and Lennard-Jones effects. Their parameterization relies mainly on 
fitting quantum chemical calculations performed on small model compounds in the gas phase. The solvent is 
described implicitly, using varying levels of  approximation20. The most rigorous model used so far is a dielectric 
continuum  model21. This requires solving a differential equation, which is technically impractical in a protein 
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design framework. Therefore, a Generalized Born (GB) approximation is more common. GB contains much of 
the same physics but provides a simpler, analytical energy  expression20. GB models have been studied extensively 
in the context of protein design but also molecular dynamics, free energy simulations, acid/base calculations, 
ligand binding and protein  folding22–25. They reproduce the behavior of the dielectric continuum model rather 
accurately. Therefore, an energy function that combines molecular mechanics for the protein with a GB solvent 
can be considered “physics-based”, even though it is not entirely constructed from first principles. A molecular 
mechanics energy, combined with a very simple solvent model, was used to design two artificial proteins that 
each consisted of a four-helix bundle, where an elementary unit of 34 amino acids was replicated four  times26,27. 
However, until now, there has not been a complete, experimentally-verified redesign of a natural protein using 
a physics-based energy function for the folded protein.

Here, we report the successful use of a physics-based energy function to completely redesign a PDZ domain of 
83 amino acids. PDZ domains (“Postsynaptic density-95/Discs large/Zonula occludens-1”) are globular domains 
that establish protein-protein interaction  networks28. They interact specifically with target proteins, usually by 
recognizing a few amino acids at the target C-terminus. They have been extensively studied and used to eluci-
date principles of protein evolution and  folding29,30. Our design started from the PDZ domain of the Calcium/
calmodulin-dependent serine kinase (CASK) protein. It used the backbone conformation from a new, high-
resolution X-ray structure of apo CASK reported here. Several other CASK X-ray structures are also known, 
with bound peptides. The CASK melting temperature is about 10 °C higher than that of the Tiam1 PDZ domain, 
which we attempted to redesign  earlier33. This increased thermostability could aid in retrieving folded CASK 
designs. Design was performed by running long Monte Carlo (MC) simulations where most positions were 
allowed to mutate and all positions could explore a library or conformers, or rotamers. Positions occupied by 
glycine (seven) or proline (two) were not allowed to mutate. 13 positions that directly contact a peptide ligand 
in CASK:peptide complex structures (such as PDB 6NID) also kept their wild-type identity. All 61 of the other 
side chains (73.5% of the sequence) were allowed to mutate freely into any amino acid type except Gly or Pro, 
for a total of 3.7 ×  1076 possible sequences. To describe the folded state, we used a physics-based energy function 
that combined the Amber molecular mechanics force  field31 and a GB  solvent32. To describe the unfolded state, 
we used a knowledge-based energy  function33. The Proteus software was  used34. Three sampled sequences, or 
designs were chosen for experimental testing, based on their low energies and several empirical criteria. All 
three were shown to fold, with good evidence the folded structure was the target, native PDZ fold. In particular, 
secondary structure content was native-like and binding to one or two peptides that are known CASK ligands 
was demonstrated for two of the three designs. Therefore, the redesign is considered a success. Evidently, the 
physical principles that govern folded proteins, as captured by molecular mechanics and continuum electrostatics 
are sufficient to allow whole-protein design, at least when assisted by a moderate empirical post-filtering. This 
is encouraging, since these methods give physical insights, can be systematically improved, and are transferable 
to nucleic acids, sugars, noncanonical amino acids, and ligands of biotechnological interest.

Results
MC simulations were done using the CASK backbone conformation (Fig. 1). The method is detailed in Sup-
plementary Material. 61 of 83 residues were allowed to mutate into all types except Gly and Pro. 13 residues 
known to be directly involved in peptide binding were not allowed to mutate (but could explore rotamers). The 
exploration did not use any bias towards natural sequences or any limit on the number of mutations. The 2,000 
sequences with the lowest folding energies were kept for analysis. Below, we describe their computational char-
acterization and the selection of three representative sequences for experimental characterization.

Computational characterization and sequence selection. The top 2,000 sequences spanned a fold-
ing energy interval of 1.5 kcal/mol. They were analyzed by the Superfamily fold recognition  tool35, which assigns 
sequences to  SCOP36 structural families. None of the top 2,000 Proteus sequences were assigned by Superfam-
ily to any other fold in SCOP; all were recognized as belonging to the PDZ family. Blosum40 similarity scores 
between the designed sequences and natural sequences from the Pfam database were also computed (Fig. 2). 
The scores were high, and comparable to those of natural PDZ domains. The peaks in the Proteus histograms are 
narrow, indicating that the 2,000 lowest-energy sequences are similar to each other. Similarities to CASK are in 
Supp. Material (Fig. S1).

To narrow down the number of sequences for experimental testing, we excluded those with isoelectric points 
estimated to be close to the physiological pH, between 6.5 and 8.5, which might be subject to aggregation 
and difficult to express. This reduced the number of sequences from 2,000 to 1,268. Next, we used a criterion 
of negative design, by considering the confidence levels for the Superfamily assignments to the PDZ family, 
instead of another SCOP family. Of the 1,268 sequences left, we only retained those that had Superfamily match 
lengths above the mean value (over the 1,268) and E-values above the mean (log10 E < − 31). This left us with 
692 sequences. We reduced the number further using four empirical criteria. (1) We excluded sequences with 
similarity scores versus Pfam below the mean (over the 692 remaining sequences). This eliminated a window 
of candidate sequences about 10 points wide, to the left of the mean, plus a few sequences in the lefthand tail 
of the distribution. We were left with 215 sequences. (2) We excluded sequences that had a cavity buried in the 
predicted 3D structure. (3) We required a total unsigned protein charge of less than 6. (4) We allowed no more 
than 15 mutations that drastically changed the amino acid type (defined by a Blosum62 similarity score between 
the two amino acid types of − 2 or less).

We were left with 16 candidate sequences, shown in Fig. 3. They were separated into four groups by visual 
inspection. Group 2 was eliminated based on its Arg494 residue, absent from CASK homologs. One candidate 
was selected from each of the other groups (highlighted in Fig. 3), with a preference for native or homologous 
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residue types at positions 492 (candidate 1350), 494 (candidate 1555), and 548 (candidate 1669)—positions 
that are close to the peptide binding interface. The three candidates were simulated by molecular dynamics 
with explicit solvent for one microsecond each, and their stabilities and flexibilities appeared comparable to the 
wild-type (Supplementary Material, Figs. S2–S3). Therefore, the three sequences were retained for experimental 
testing. The number of mutations, compared to wild-type CASK, were 50 (candidate 1350), and 51 (candidates 
1555 and 1669), representing just over 60% of the sequence.

Experimental characterization of selected sequences. Earlier designs based on the Tiam1 tem-
plate. Computational redesign of Tiam1 was described  earlier33. It used the Tiam1 PDZ domain structure 
(PDB code 4GVD; Supplementary Material, Fig. S4). The GB electrostatics model included an additional “Native 
Environment Approximation” (NEA)37, where each atom experienced a constant dielectric environment that 
corresponded to the native sequence and conformation (see Computational Methods in Supplementary Mate-

K495

M501

R517

I503

T504

L505

I518

M519

V549
E550

L552

Q553

L556

Figure 1.  CASK 3D structure. The 13 amino acids in yellow are involved in ligand binding and were not 
allowed to mutate in the simulations.

Figure 2.  Blosum similarity scores compared to natural Pfam sequences. Black line: histogram of scores for the 
top 2,000 Proteus sequences, considering only 15 core positions (left) or all positions (right). Dashed line: scores 
for the Pfam sequences themselves. WT CASK score is indicated by an arrow.
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rial). This removed the many-body character of the GB model and made the calculations very efficient. Eight 
designs were expressed and purified. Their yields were low. CD gave spectra typical of random coil polymers, 
suggesting the proteins were misfolded (Supplementary Material, Fig. S5). 1D-NMR spectra of the amide region 
of the NEA designs had limited dispersion and broad resonances compared to the native Tiam1 PDZ domain, 
corroborating the CD data. An example is shown below; others are in Fig. S6. Differential scanning fluorimetry 
(DSF) in the presence of known Tiam1 ligands did not show any binding by the Tiam1 NEA designs, while the 
Tiam1 PDZ domain showed robust binding (Supplementary Material, Fig. S7). Together, these data indicate that 
the NEA-based designs of the Tiam1 PDZ domain could be overexpressed but adopted unfolded structures, un-
able to bind known Tiam1 peptide ligands.

Designs based on the CASK template. Next, we characterized the three designs selected above, which we refer 
to as FDB-1350, FDB-1555, and FDB-1669. They were obtained using as template a new apo CASK PDZ domain 
structure (PDB code 6NH9, reported here). The Tiam1 and CASK backbone conformations have a small rms 
deviation of 1.0 Å, despite a low sequence identity of 20.5%. CASK has a ~ 10 °C higher melting temperature, 
which could facilitate its redesign. The new calculations used a more rigorous GB electrostatics model (Supple-
mentary Material), termed the “Fluctuating Dielectric Boundary” model (FDB)38. With this model, the dielectric 
environment of each atom was updated on-the-fly during the simulation, instead of being represented by a mean 
environment. The expression yields in E. coli were improved over the NEA Tiam1 designs, though not to the 
level typically seen with native PDZ domains. In contrast to the NEA Tiam1 designs, CD spectra were similar 
to native PDZ domains, suggesting these designs were structured (Fig. 4). 1D-proton NMR of the amide region 
showed good dispersion and sharp lines, consistent with a folded protein (Fig. 5B) and in contrast to the earlier, 

Figure 3.  WT and the 16 final candidate designed sequences based on the CASK template (Clustal colors). The 
sequences tested experimentally are indicated by red arrows. Asterisks (above) indicate positions not allowed to 
mutate during the design, in addition to Gly, Pro.

Figure 4.  Circular dichroism spectra of a natural PDZ domain (CASK, black) and three selected designs based 
on the CASK template and the FDB electrostatic model. FDB-1350 (green), FDB-1555 (red), and FDB-1669 
(blue) all have α helix and β strand signals similar to a native PDZ domain like CASK (black). The concentration 
of each protein ranged from 10 to 20 μM.
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Tiam1 redesigns (Figs. 5A and S6). The designed proteins’ spectra had noisier baselines, due to a seven- to ten-
fold lower concentration, compared to CASK.

We tested the ability of the designs to bind CASK ligands, using DSF experiments. The CASK PDZ domain 
showed binding to SDC1, Caspr4 and NRXN (Fig 6 and Table 1), as expected. Strikingly, two of the three CASK 
FDB designs characterized also showed binding to some of the peptides. Thus, FDB-1350 had a significant ther-
mal shift in the presence of NRXN and SDC1. FDB-1669 showed a 1.0 °C change in T 1/2 in the presence of the 

Figure 5.  Proton NMR spectra of the natural Tiam1 PDZ domain and selected designs. (A) Left: a design 
obtained with the Tiam1 template and the NEA electrostatic model; right: Tiam1. (B) 3 designs obtained based 
on the CASK template and the FDB electrostatic model. The concentration of the designed proteins ranged from 
14 to 22 μM; Tiam1 concentration was 150 μM.

Table 1.  DSF for wild-type CASK and three Proteus designs. a Protein concentration was ~ 25 μM (about 
0.25 mg/ml). Peptide concentration was 300 μM. b When δT1/2 was larger than sum of the standard deviation 
of apo and each peptide, we considered the peptides to have a significant change in T 1/2 , indicating binding to 
the PDZ domain. ± indicates standard deviation of three biological replicates. Peptides in bold (right column) 
produced the largest changes.

Proteina

T1/2 ( ◦ C) and δT1/2 = T 
apo
1/2 − T 1/2 (in parentheses)

BindingbApo SDC1 Caspr4 NRXN

CASK PDZ 57.2 ± 0.2
58.4 ± 0.1 58.7 ± 0.1 58.1 ± 0.2 SDC1, Caspr4

(+ 1.2) (+ 1.5) (+ 0.9) NRXN

FDB-1350 49.8 ± 0.4
50.7 ± 0.2 50.4 ± 0.4 51.3 ± 0.2 SDC1

(+ 0.9) (+ 0.6) (+ 1.5) NRXN

FDB-1669 49.1 ± 0.1
49.6 ± 0.1 49.5 ± 0.0 50.1 ± 0.1 NRXN

(+ 0.4) (+ 0.4) (+ 1.0)

FDB-1555 49.9 ± 0.2
50.2 ± 0.1 50.3 ± 0.1 50.5 ± 0.6 –

(+ 0.3) (+ 0.5) (+ 0.6)
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NRXN peptide. In contrast, FDB-1555 did not show significant thermal shifts in the presence of any peptide. 
From these data, we conclude that the three CASK FDB designs were folded and two were capable of interacting 
with peptide ligands. In principle, the CD and NMR spectra could be obtained with an alternative protein fold, 
distinct from the target PDZ fold. However, the structural data clearly indicate that the designs are well-ordered 
and have a secondary structure content similar to the CASK target. Importantly, the ordered character, the 
secondary structure content, the ability to bind CASK ligands, the structural stability during microsecond MD 
runs, and the Superfamily classification as a PDZ domain strongly suggest that the designed proteins adopt the 
target PDZ fold. 

Discussion
Protein folding is thought to be induced by protein–solvent and solvent–solvent  interactions39, since folding 
buries nonpolar groups and allows waters to interact with polar amino acid side chains and other waters. In this 
picture, the protein dielectric properties play a role, with the low-dielectric interior pushing polar protein groups 
out towards high-dielectric solvent. The protein nonpolar surface also plays a role, with exposed surface leading 
to fewer water–water  interactions40. Thus, it is common to discuss protein solvation in terms of nonpolar and 
electrostatic components, and most implicit solvent models rely on this  separation20. Small proteins have been 
found to fold correctly in MD simulations with both explicit solvent and accurate implicit solvent  models22,41, 
which can all be considered physics-based. The inverse folding problem is even more complex, since it explores 
an enormous space of sequences, albeit with a reduced conformation set. Modeling the solvent is a key step to 
solve this problem, and a key ingredient of our procedure.

The first solvation component in our model is nonpolar and uses accessible surface areas and atomic surface 
tensions. Nonpolar solvation of a large collection of small molecules correlated well with surface  area42, support-
ing this treatment. The surface tension parametrization was updated recently, compared to our earlier Tiam1 
 designs43. Surface interactions in proteins are complex and have a many-body  character6,32, since three or more 
groups can have surfaces that all overlap. Our model explicitly includes backbone-side chain triple overlaps, 
while others are accounted for  implicitly43.

(A) (B)

(C) (D)

Figure 6.  Differential scanning fluorimetry of (A) a natural PDZ domain (CASK) and (B–D) three selected 
designs based on the CASK template and the FDB electrostatic model. Signals in the absence and presence of 
the SDC1, Capr4 and NRXN peptides.
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The largest solvation effects are electrostatic, and they also have a many-body character. Indeed, a side chain 
can desolvate an interacting pair, affecting the strength of their interaction. The electrostatic, Generalized Born 
component of our model captures this effect. However, for previous Tiam1 design  calculations33, we had used 
an approximation where each protein residue experienced a constant, native-like, dielectric environment. This 
removed the many-body character of electrostatic solvation. The Tiam1 designs were shown here to be largely 
unsuccessful: the proteins could be overexpressed but were only weakly structured. In contrast, preserving the 
many-body solvation was shown previously to give improved accuracy for side chain pKa’s38 and increased 
similarity between CPD sequences and natural sequences of several PDZ  proteins38. Therefore, for the CASK 
redesign, we applied the newer, many-body FDB model and obtained improved results. We did not test whether 
the improved, FDB model would have also produced valid designs with the Tiam1 backbone as the template.

Our calculations used a CASK X-ray structure reported here, determined at 1.85 Å resolution. In our design 
procedure, the protein backbone was held fixed in the X-ray conformation, while side chains mutated and 
explored rotamers. More precisely, the backbone motions were not ignored but were treated implicitly, through 
the protein dielectric constant, ǫP . The value used here, ǫP = 4 , is known to be physically reasonable for proteins. 
MD simulations further showed that the tested sequences have backbone structures very similar to the wild-type 
protein and native-like flexibilities.

While our folded state model was physics-based, the design procedure included two other elements that were 
knowledge-based. For the unfolded state, we assumed a simple, extended peptide model, to which an empirical 
correction was added that involved type-dependent amino acid chemical  potentials37. All successful whole-
protein redesigns have used similar, knowledge-based unfolded models. Second, we used several filters to choose 
a handful of sequences for experimental testing, and most of the filters were empirical. Indeed, the folded and 
unfolded models are imperfect, and while they produced at least three sequences that fold correctly (true posi-
tives), they presumably also produced false positives. The empirical filtering did not affect the sequence design, 
but was used to increase the chances that we would pick true positives for experimental testing. Starting from 
sequences within 1.5 kcal/mol of the top folding energy, we used the (computed) isoelectric point to reduce the 
chances of aggregation. We also used negative design, based on the Superfamily fold recognition tool. Indeed, 
negative design against aggregation or alternate folds was not included in the MC calculations. This left us with 
692 designed sequences. Next, we eliminated sequences whose Blosum similarity to natural PDZ sequences was 
below the average of the 692 remaining sequences. This criterion was not very stringent, because the distribu-
tion of the Blosum scores was already very narrow (see Fig. 2, right panel, solid line and Fig. S1). At this point, 
we were left with 215 sequences. We then eliminated sequences whose structural models included large cavities 
and ones with a large net charge, which could lead to electrostatic repulsion within the folded structure. Finally, 
we eliminated sequences with more than 15 “drastic” mutations (corresponding to Blosum scores of − 2 or less). 
This left us with 16 sequences. We chose 3 that were representative.

The three tested proteins could be overexpressed, had sharp 1D-NMR peaks typical of a folded protein and 
native-like CD spectra. Two exhibited a shift of their thermal denaturation in the presence of one or two peptides 
that are known CASK ligands. Evidently, our physics-based folded model and empirical unfolded model can be 
used to successfully redesign a whole protein, at least with the help of some empirical post-filtering. The expres-
sion yields, protein solubilities and stabilities of the designed sequences were lower than for wild-type CASK, 
so that it was not possible to produce large amounts of pure protein for 2D-NMR or X-ray crystallography. It 
may be possible to improve this behavior by testing a larger number of designs, by using a more sophisticated 
filtering of candidate sequences for solubility (beyond estimating the isoelectric point), or by improving the 
physical model even further. Model improvements might include backbone-dependent rotamers and/or multiple 
backbone conformations.

The present design method, which combines molecular mechanics, continuum electrostatics, and Boltzmann 
sampling, is an example of physics-based CPD. It is striking and encouraging that this approach allows whole 
protein redesign to be done successfully. We expect that the physics-based route will increasingly yield valuable 
insights and should be a valuable complement to knowledge-based CPD and experimental design.

Received: 18 March 2020; Accepted: 8 June 2020
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Below, we first provide Material and Methods. Then, we provide supplementary Re-

sults. We report sequence similarities between the Proteus designed sequences and the

CASK sequence. We provide information on the stability and flexibility of the CASK-

based designs in microsecond molecular dynamics (MD) simulations. We report the ex-

perimental characterization of PDZ sequences designed using the Tiam1 template struc-

ture and the NEA electrostatics model. Finally, we report the crystallographic structure

statistics for the apo CASK PDZ domain.
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1 Material and Methods

1.1 Computational design methods

Energy function for the folded state

We used the following energy function for the folded state:

E = EMM + EGB + ESA (1)

EMM is the protein internal energy, taken from the Amber ff99SB molecular mechanics

(MM) energy function [1]. EGB is a Generalized Born (GB) implicit solvent contribution

[2, 3]:

EGB =
1

2

(

1

ǫW
−

1

ǫP

)

∑

ij

qiqj
(

r2ij + bibj exp[−r2ij/4bibj]
)

−1/2
(2)

Here, ǫW and ǫP are the solvent and protein dielectric constants (80 and 4, respectively);

rij is the distance between atoms i, j and bi is the “solvation radius” of atom i [2, 4]. The

dependency of the bi on the protein conformation corresponds to a GB variant we call

GB/HCT (for “Hawkins-Cramer-Truhlar”) [2, 4]. For some of the design calculations, an

additional “Native Environment Approximation”, or NEA was used for efficiency [3, 5],

where the solvation radius bi of each particular group (backbone, sidechain or ligand)

was computed ahead of time, with the rest of the system having its native sequence

and conformation [6, 7]. For the other designs, we computed the solvation radii on the fly

during the MC simulation, using a very fast implementation called “Fluctuating Dielectric

Boundary,” or FDB [7] that uses lookup tables.

The last term in Eq. (1) is a surface area term:

ESA =
∑

i

σiAi (3)

Ai is the exposed solvent accessible surface area of atom i; σi is a parameter that reflects

each atom’s preference to be exposed or hidden from solvent. The solute atoms were

divided into four groups with specific σi values. The values were -60 (nonpolar), 30

(aromatic), -120 (polar), and -110 (ionic) cal/mol/Å2. The coefficient for hydrogens was

zero. Negative values are physically correct, since the SA term includes favorable protein-

solvent dispersion interactions, in addition to hydrophobic effects. Surface areas were

computed by the Lee and Richards algorithm [8], implemented in the Proteus software

[5], using a 1.5 Å probe radius. Surface burial is not additive, since the same area on a
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side chain can be buried by two other residues. To avoid overcounting, a scaling factor

was applied to the contact areas involving at least one buried side chain [9]. In previous

tests, a value of 0.65 gave the best surface areas, compared to an exact calculation [3, 4].

The unfolded state energy

For a sequence S, the unfolded energy is:

Eu =
∑

i∈S

Eu(ti, Bi). (4)

The sum is over all amino acids; ti represents the side chain type at position i; Bi rep-

resents the buried or exposed character of position i in the folded state. The quantities

Eu(t, B) ≡ Eu
t an be thought of as effective chemical potentials of each amino acid type.

Their values were chosen empirically, to maximize the likelihood of a set of experimen-

tal PDZ sequences. This means that an MC simulation should give overall amino acid

frequencies that match those in the experimental sequences [10]. We assigned different

values to buried and exposed positions, because we assume residual structure is present

in the unfolded state, so that amino acids partly retain their buried/exposed charac-

ter. Thus, the simulations should reproduce the overall composition of the buried and

exposed positions separately. To define the target amino acid frequencies for likelihood

maximization, we used a set of PDZ sequences collected earlier [10]. CASK positions were

considered buried or exposed based on their solvent-accessible surface area in the CASK

3D structure, with a threshold designed to place roughly half of the positions in either

category. Positions in the other PDZ sequences were considered buried or exposed based

on a sequence alignment that included CASK: positions aligned with a buried CASK po-

sition were buried. Likelihood maximization was initiated with Eu(t, B) values obtained

from a non-empirical, tripeptide model [10, 11]. The first iterations then optimized the

frequencies of 11 groups of homologous amino acid types [10]. This corresponds to 20

independent, adjustable, unfolded energies (10×2 independent groups). The values after

convergence (16 iterations) are reported in Table S1. They differ only moderately from

the initial, non-empirical values. 5 more iterations were done to optimize the individual

type frequencies. This corresponds to 34 adjustable unfolded energies (17 independent

types, since Gly and Pro were not allowed, × 2 regions) [10]. In these iterations, the

energies changed very little, by 0.15 kcal/mol on average. Thus, while the number of

parameters is large, the departure from the non-empirical values is very small.
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Table S1: Unfolded energies (kcal/mol)

Exposed positions Buried positions

initiala interm.b finalc initiala interm.b finalc

ALA 0.00 0.00 0.00 0.00 0.00 0.00

ARG -54.76 -56.54 -56.85 -51.37 -51.85 -52.00

ASN -17.80 -20.01 -20.13 -14.02 -14.34 -14.44

ASP -18.82 -19.95 -20.11 -14.55 -14.57 -14.76

CYS -1.64 -1.64 -1.78 -1.06 -1.06 -1.01

GLN -16.61 -18.82 -19.25 -13.14 -13.46 -13.53

GLU -18.21 -19.34 -19.80 -14.52 -14.54 -14.52

HISδ 7.37 6.94 6.66 10.41 10.57 10.54

HISǫ 8.12 7.69 7.41 10.85 11.01 10.98

HIS+ 10.98 10.55 10.27 12.86 13.02 12.99

ILE 3.06 2.48 2.41 5.50 5.40 5.43

LEU -2.94 -3.52 -4.03 0.00 -0.10 -0.09

LYS -11.35 -10.69 -10.88 -8.24 -7.70 -7.65

MET -3.09 -3.94 -4.26 -2.85 -2.09 -1.90

PHE -3.18 -3.27 -3.32 0.17 0.77 0.93

SER -5.24 -5.23 -5.46 -4.45 -4.24 -4.26

THR -6.68 -6.68 -7.09 -4.84 -4.84 -4.96

TRP -5.53 -5.62 -5.74 -1.94 -1.34 -1.30

TYR -10.14 -10.29 -10.36 -5.91 -5.56 -5.50

VAL -1.66 -2.24 -2.25 -0.05 -0.15 -0.30

aInitial values from tripeptide model. bOptimized for 11 groups of amino acid types (20 independent

parameters). cOptimized for each amino acid type, which corresponds to 34 independent, adjustable

parameters. With respect to the 20-parameter stage, the mean Eu change was just 0.15 kcal/mol.
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Structural model and energy matrix

For CASK, we used a new X-ray structure of the apo PDZ domain, reported here (PDB

entry 6NH9). To carry out the MC simulations, an energy matrix was computed using

procedures described previously [10]. Briefly, for each pair of amino acid side chains, the

interaction energy was computed after 15 steps of energy minimization, with the backbone

held fixed and only the interactions of the pair with each other and the backbone included

[12]. Side chain rotamers were described by the Tuffery library [13], expanded to include

additional hydrogen orientations for OH and SH groups [3]. The energies were stored in

an energy table, or “matrix” for use during MC.

Monte Carlo simulations

Sequence design was performed by running long MC simulations where 61 out of 83 posi-

tions could mutate freely: all but 7 Gly, 2 Pro and 13 positions that are directly involved

in binding the peptide ligand. Non-mutating positions could explore different rotamers.

The MC simulations used one- and two-position moves, where either rotamers, amino acid

types, or both changed. For two-position moves, the second position was near the first in

space. Sampling was enhanced by using Replica Exchange Monte Carlo (REMC), where

eight MC simulations (“replicas”) were run in parallel, at different temperatures [14].

Periodic swaps were attempted between the conformations of two replicas i, j (adjacent

in temperature), subject to a Metropolis acceptance test [14]. Thermal energies ranged

from 0.125 to 3 kcal/mol. Simulations were done with the Proteus software [5, 14].

Molecular dynamics simulations

Wild-Type CASK and six sequences designed with Proteus were subjected to MD sim-

ulations with explicit solvent and no peptide ligand. The starting structures were taken

from the MC trajectory or the crystal structure and slightly minimized with harmonic

restraints to maintain the backbone geometry. Each protein was immersed in a solvent

box using the CHARMM GUI [15, 16]. The boxes had a truncated octahedral shape. The

minimum distance between protein atoms and the box edge was 15 Å. The final models

included about 11,000 water molecules. A few sodium or chloride ions were included

to ensure overall electroneutrality. The protonation states of histidines were assigned to

be neutral, based on visual inspection. MD was performed with periodic boundary con-

ditions, at room temperature and pressure, using Langevin dynamics with a Langevin
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Piston Nosé-Hoover barostat [17, 18]. Long-range electrostatic interactions were treated

with a Particle Mesh Ewald approach [19]. The Amber ff14SB force field and the TIP3P

model [20] were used for the protein and water, respectively. Simulations were run for

one microsecond, using the Charmm and NAMD programs [16, 21].

1.2 Protein expression and purification

The codon optimized gene of the human CASK PDZ domain (residues 487–572) was

chemically synthesized (GenScript Inc., Piscataway, NJ) and ligated into the pET28a

vector (Novagen). The DNA sequence of the pET28a-CASK PDZ vector was verified by

automated DNA sequencing (University of Iowa, DNA Facility). Protein expression was

conducted in BL21(DE3) (Invitrogen) E. coli cells. Typically, E. coli cells were grown

at 37◦C in Luria-Bertani (LB) medium supplemented with kanamycin (15 µg/mL) under

vigorous agitation until an absorbance at 600 nm wavelength (A600) reached 0.6-0.8. Cul-

tures were subsequently cooled to 18◦C and protein expression was induced by the addition

of isopropyl 1-thio-β-d-galactopyranoside (IPTG) to 1 mM final concentration. Induced

cells were incubated for an additional 16–18 hrs at 18◦C. and harvested by centrifugation.

The CASK PDZ domain was purified by cation exchange (SP media, GE-Healthcare) and

size-exclusion chromatography (GE-Healthcare). Superdex 75 (S75) size-exclusion chro-

matography was performed with desired final buffer (20 mM phosphate, pH 6.8, 50 mM

NaCl, and 0.5 mM EDTA). The final yield was 50 mg of CASK PDZ protein >98% pure as

judged by SDS-PAGE from 1 L of culture. Samples were used immediately or lyophilized

and stored at -80◦C. The Tiam1 PDZ domain was purified as previously published [22].

The genes encoding the Proteus PDZ designs were codon-optimized for E. coli ex-

pression and chemically synthesized by GenScript Inc. (Piscataway, NJ). The genes were

cloned into a modified pET21a vector (Novagen) that contains a His6-tag and Tobacco

etch virus protease cleavage site at the 5′-end of the multiple cloning site. The nucleotide

coding sequence of the pET21a-PDZ vector was verified by automated DNA sequencing

(University of Iowa, DNA Facility). Protein expression was conducted in BL21(DE3)

(Invitrogen) E. coli cells. Typically, cells were grown at 37◦C in Luria-Bertani medium

supplemented with ampicillin (100 µg/mL) under vigorous agitation until an A600 of

0.6–0.8 was reached. Cultures were subsequently cooled to 18◦C and protein expression

was induced by the addition of IPTG to 1 mM final concentration. Induced cells were

incubated for an additional 16-18 hrs at 18◦C and harvested by centrifugation. Proteins
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were initially purified by nickel-chelate chromatography (GE-Healthcare). The proteins

were further purified by size-exclusion chromatography (Superdex 75, GE Healthcare)

using a buffer containing 20 mM phosphate, pH 6.8, 50 mM NaCl, and 0.5 mM EDTA.

Samples were used immediately.

1.3 Crystal structure of the wild-type apo CASK PDZ domain

A crystal structure of the apo CASK PDZ domain was determined in this work. High-

throughput hanging-drop, vapor-diffusion screens using a Mosquito drop setter (TTP

LabTech) were used to determine the crystallization conditions. The CASK PDZ do-

main was prepared in 20 mM Tris pH 7.5 and 50 mM NaCl. 200 nL of precipitant and

PDZ domain (10-30 mg/mL) was used for each screening condition. Initial screening

for diffracting crystals was done with an in-house Rigaku RAXIS-IV rotating anode X-

ray source. Collection of full X-ray diffraction datasets for structure determination was

done at beamline 4.2.2 at the Advanced Light Source (Berkeley, CA). Proper space group

handedness was verified by analysis of the electron density.

XDS was used for indexing, integration, and scaling of the diffraction data [23, 24], to

1.85 Å resolution. XSCALE was used to merge multiple datasets. We used PHASER and

previously-determined PDZ structures for initial phasing [25]. We used Refmac [26, 27] for

the early stages of refinement and PHENIX [28, 29] for the final refinement. Refinement

statistics are given in Supplementary Information (Table S1). Manual model building was

done based on visualized electron density in Coot [30, 30]. 4.6% of the reflections were

randomly selected to be excluded from the refinement and used to calculate Rfree values.

Alignment of structures and generation of figures were done with PyMOL (Schrodinger,

LLC, The PyMOL Molecular Graphics System).

1.4 Biophysical characterization of designed proteins

Synthetic peptides

All peptides were chemically synthesized by GenScript Inc. (Piscataway, NJ) and were

>95% pure as judged by analytical HPLC and mass spectrometry. Peptides were dansy-

lated at the N-terminus and had a free carboxyl at the C-terminus. The peptides used

in this study were derived from the following proteins: Neurexin (residues 1,470–1,477:

NKDKEYYVCOOH), Caspr4 (residues 1,301–1,308: ENQKEYFFCOOH) and Syndecan1
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(residues 303–310: TKQEEFYACOOH).

Circular dichroism

Circular dichroism signals were measured using a Jasco J-815 circular dichroism spec-

tropolarimeter. The concentration of each protein ranged from 10 to 20 µM. All proteins

were in a buffer composed of 20 mM phosphate, pH 6.8, 50 mM NaCl, and 0.5 mM EDTA.

Spectra were taken from the 190 nm to 260 nm wavelength window with a 1 nm data

interval at 25◦C. Data integration time was 2 seconds and the scanning speed was 100

nm/min.

NMR

Nuclear magnetic resonance (NMR) experiments were carried out at 298 K (calibrated

with methanol) on Bruker Avance II 800 MHz (equipped with a CryoProbe), Bruker

Avance II 500 MHz, and Varian 600 MHz spectrometers (equipped with room temperature

probes). All protein samples were prepared in 20 mM phosphate, pH 6.8, 50 mM NaCl,

0.5 mM EDTA, and 10% (v/v) D2O with a concentration of 14 µM to 22 µM.

Differential scanning fluorimetry

Standard methodology was used for differential scanning fluorimetry (DSF) [31, 32].

Briefly, DSF was performed using 96-well PCR plates and the Sypro Orange (Thermo

Fisher) dye. Each well in the PCR plate had a 20 µL final volume containing 0.25

mg/mL of protein, 300 µM of peptide, and 5x Sypro Orange final concentration (from a

5000x stock) in a buffer containing 20 mM phosphate, pH 6.8, 50 mM NaCl, and 0.5 mM

EDTA. The DSF assays were performed using a Bio-Rad CFX96 real-time polymerase

chain reaction instrument equipped to read 96-well plates. The protein of interest was

thermally denatured from 5◦C to 95◦C at a ramp rate of 1◦C/min. The protein melt-

ing/unfolding curves were generated by monitoring changes in Sypro Orange fluorescence

(at 610 nm wavelength). Raw fluorescence data were analyzed using DMAN, and the first

derivative value from the denaturation data was used to determine the apparent melting

temperature [33] (T1/2). Each peptide was assayed in triplicate. A 96-well plate contain-

ing no peptide was assayed to determine the apparent T1/2 of each PDZ domain in the

absence of any peptide. A shift of more than 1◦C in T1/2 indicates binding (based on

SEM).
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2 Supplementary Results

2.1 Sequence similarities between designed sequences and CASK
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Figure S1: Histograms of Blosum40 similarity scores (above) and sequence identities (below)

compared to CASK, for the 2000 lowest-energy designed sequences.
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2.2 Stability of the three selected CASK-based designs in molec-

ular dynamics

As a first test of the three selected sequences, FDB1350, FDB1555, and FDB1669, they

were subjected to MD simulations using an explicit solvent environment, for 1000 ns.

Wild-Type CASK (WT) was also simulated. Convergence of the simulations was good

(based on a principal component analysis, not shown). The WT protein was quite stable,

with rms deviations from the starting, X-ray structure of 1–1.5 Å (excluding 3–4 residues

at each terminus and one very flexible loop, residues 495–502; see Fig. S2). Deviations

from its own mean MD structure were similar (Fig. S2). The designed proteins exhibited

only slightly larger deviations from the WT X-ray structure (1.2–1.8 Å) and similar, small

deviations from their respective mean MD structures, with no visible drift (Fig. S2).
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Figure S2: MD simulations of CASK-based designs. A) Backbone rms deviations for WT

and the FDB1350 designed variant relative to the starting structure (black) and the mean MD

structure (grey). B) Mean MD structures of WT and designed variant FDB1350.

We also characterized the backbone flexibility of the designed proteins by computing

NMR order parameters for the backbone amide groups (Fig. S3). Experimental values

were not available for WT CASK, but were available for Tiam1 and a quadruple mutant

of Tiam1 [34]. These proteins were also simulated by MD for one microsecond, with and

without the peptide ligands Sdc1 and Caspr4, respectively. In Fig. S3, we show the order

parameters for both proteins in the apo and holo states, from experiment (circles) and MD

(continuous lines) (top two panels). The agreement is very good. Next, we show (Fig. S3,

bottom panel) the order parameters for WT CASK and the three selected CASK-based

designs, FDB1350, FDB1555, and FDB1669 (apo proteins). Comparing the designed
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proteins to WT CASK, the results were similar, with some differences in loop regions.

Two designs were slightly less flexible than WT (see positions 492-502 in β1-β2, 521-524

in β3-α1), while FDB1350 was slightly more flexible (see 492–496 in β1-β2 and 559-561 in

α2-β5). Evidently, the design calculations do not produce overly-rigid or overly-flexible

proteins in a systematic way.
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Figure S3: Backbone amide NMR order parameters for natural and designed proteins. Top

panel: Tiam1 with and without the Sdc1 peptide ligand. Circles are experimental values;

lines are from µsec MD simulations. Middle panel: analogous data for the Tiam1 quadruple

mutant and the Caspr4 peptide. Bottom panel: Apo WT CASK and the three designed

variants; values from MD.
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2.3 Experimental characterization of Proteus designs obtained

with the Tiam1 template and the NEA electrostatic model
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Figure S4: Tiam1 structure. Yellow: 13 positions whose types were fixed in the Proteus designs.

α-helix and β-strand features
µ

Figure S5: CD spectra of Tiam1 and two designs based on the Tiam1 template and NEA

electrostatics.
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Figure S6: Proton NMR spectra of the Tiam1 PDZ domain and four designs obtained with the

Tiam1 template and NEA electrostatics.
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the absence and presence of SDC1, Capr4 and NRXN peptides. The protein concentration used was ~25μM 
∆ ∆

∆Tm = Tm-Apo – Tm-peptide). The SEM of for each assay was obtained from 

(A) (B)

(C)

Figure S7: Differential scanning fluorimetry of a natural PDZ domain (Tiam1) and two designs

based on the Tiam1 template and the NEA electrostatic model. Signals in the absence and

presence of the SDC1, Capr4 and NRXN peptides.

S14



2.4 Human apo CASK PDZ domain X-ray structure statistics

Table S2: Crystallographic statistics for the human apo CASK PDZ domain

Data collection statistics

Beam line ALS 4.2.2

Wavelength (Å) 1.0003

Space group C 1 2 1

Unit cell dimensions (a, b, c) (Å) 61.1, 35.4, 119.5

Unit cell dimensions (α, β, γ) 90◦, 90.3◦, 90◦

Resolution range (Å) 59.8—1.85

Total reflections 37,385 (7,461)

Unique reflections 20,769 (1,910)

Multiplicity 1.8 (1.7)

Completeness (%) 93.7 (93.7)

I/σ (I) 10.4 (2.1)

Wilson B-factor (Å2) 50.7

Rmeas 0.030 (0.402)

CC1/2 99.8 (91.1)

Refinement statistics

Resolution (Å) 1.85

No. of reflections used in refinement 20,739 (2,705)

No. of reflections used for Rfree 964 (133)

Rwork/Rfree 0.226/0.263

No. of atoms (Protein/Water) 4,188 (4,037/151)

B-factors (Å2) 53.0

R.M.S.D.a

Bond length (Å) 0.29

Bond angle (degrees) 0.46

Ramachandran plot statistics (%)

In preferred regions 98.0

In allowed regions 2.0

Outliers 0.0

PDB accession code 6NH9

Numbers in parentheses are for the highest-resolution shell. aRMS deviation from ideal values.
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Chapter 3

Engineering methionyl-tRNA synthetase

for ligand:substrate binding and catalytic

power

The following chapter uses the text from the article: Adaptive landscape flattening allows

the design of both enzyme:substrate binding and catalytic power , Vaitea Opuu, Giu-

liano Nigro, Thomas Gaillard, Emmanuelle Schmitt, Yves Mechulam, Thomas Simonson. Plos

Computational Biology, (2020), 16(1):e1007600.

We report here the redesign of Methionyl-tRNA synthetase (MetRS) binding site for the

enzyme/ligand binding using an adaptive Monte Carlo approach. This application allowed us to

predict variants that were found active experimentally for the Met ligand. Then, we extended

the method to the transition state of the activation reaction. Variants were selected for the

first time according to their binding affinity for the transition state.

In complementary work, we studied the effect of native rotamers in the MetRS complex

with the transition state. In the work described by the article, we used only the side chain

conformations from a rotamer library. We repeated the catalytic efficiency calculations with

the native rotamers. We observed a loss in correlation with experiments for the least active

variants. However, it seems that it leads to a better selection of true positives.
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RESEARCH ARTICLE

Adaptive landscape flattening allows the
design of both enzyme: Substrate binding and
catalytic power

Vaitea Opuu, Giuliano NigroID, Thomas GaillardID, Emmanuelle Schmitt,

Yves MechulamID, Thomas SimonsonID*

Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France

* thomas.simonson@polytechnique.fr

Abstract

Designed enzymes are of fundamental and technological interest. Experimental directed

evolution still has significant limitations, and computational approaches are a complemen-

tary route. A designed enzyme should satisfy multiple criteria: stability, substrate binding,

transition state binding. Such multi-objective design is computationally challenging. Two

recent studies used adaptive importance sampling Monte Carlo to redesign proteins for

ligand binding. By first flattening the energy landscape of the apo protein, they obtained

positive design for the bound state and negative design for the unbound. We have now

extended the method to design an enzyme for specific transition state binding, i.e., for its

catalytic power. We considered methionyl-tRNA synthetase (MetRS), which attaches methi-

onine (Met) to its cognate tRNA, establishing codon identity. Previously, MetRS and other

synthetases have been redesigned by experimental directed evolution to accept noncanoni-

cal amino acids as substrates, leading to genetic code expansion. Here, we have rede-

signed MetRS computationally to bind several ligands: the Met analog azidonorleucine,

methionyl-adenylate (MetAMP), and the activated ligands that form the transition state for

MetAMP production. Enzyme mutants known to have azidonorleucine activity were recov-

ered by the design calculations, and 17 mutants predicted to bind MetAMP were character-

ized experimentally and all found to be active. Mutants predicted to have low activation free

energies for MetAMP production were found to be active and the predicted reaction rates

agreed well with the experimental values. We suggest the present method should become

the paradigm for computational enzyme design.

Author summary

Designed enzymes are of major interest. Experimental directed evolution still has signifi-

cant limitations, and computational approaches are another route. Enzymes must be sta-

ble, bind substrates, and be powerful catalysts. It is challenging to design for all these

properties. A method to design substrate binding was proposed recently. It used an adap-

tive Monte Carlo method to explore mutations of a few amino acids near the substrate. A
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bias energy was gradually “learned” such that, in the absence of the ligand, the simulation

visited most of the possible protein mutations with comparable probabilities. Remarkably,

a simulation of the protein:ligand complex, including the bias, will then preferentially

sample tight-binding sequences. We generalized the method to design binding specificity.

We tested it for the methionyl-tRNA synthetase enzyme, which has been engineered in

order to expand the genetic code. We redesigned the enzyme to obtain variants with low

activation free energies for the catalytic step. The variants proposed by the simulations

were shown experimentally to be active, and the predicted activation free energies were

in reasonable agreement with the experimental values. We expect the new method will

become the paradigm for computational enzyme design.

Introduction

One of the most important challenges in computational protein design (CPD) is to modify

a protein so that it will bind a given ligand [1–4]. This is essential for problems like enzyme

design, biosensor design, and building tailored protein assemblies. To design ligand binding

means optimizing a free energy difference between bound and unbound states. This two-state

optimization is not directly tractable by the most common CPD methods, such as simulated

annealing, plain Monte Carlo (MC), or simple branch-and-bound and dead end elimination

methods [4, 5]. Rather, most studies have used either heuristic methods that optimize the

bound state energy [1–4, 6], or enumeration methods that are rigorous but expensive and

explore a limited free energy range [7–10].

Recently, a new approach was proposed, using Monte Carlo simulation and importance

sampling. The energy landscape in sequence space is flattened adaptively over the course of

a simulation, thanks to a bias potential [11]. Flattening can be done for the bound state, the

unbound state, or both [12]. Remarkably, this leads to a situation where sequence variants are

sampled according to a Boltzmann distribution controlled by the binding free energy, exactly

the quantity we want to select for. Several variations have been employed, including one that

used molecular dynamics instead of MC [13]. The method allows sequences to be designed for

binding affinity, but also binding specificity. This is especially important for enzyme design,

since catalytic power is directly related to the enzyme’s ability to preferentially stabilize the

transition state [14]. We apply the method here to an enzyme of biological and technological

importance, methionyl-tRNA synthetase (MetRS). We demonstrate that the method can be

used to design an enzyme for its catalytic power.

Each aminoacyl-tRNA synthetase (aaRS) attaches a specific amino acid to a tRNA that car-

ries the corresponding anticodon, establishing the genetic code [15]. Two reactions are cata-

lyzed. In the first, the amino acid reacts with ATP to give aaAMP and pyrophosphate. In the

second, tRNA reacts with aaAMP. For MetRS, the first reaction does not require tRNA. Several

aaRSs have been engineered experimentally to bind noncanonical amino acids (ncAAs) [16–

20]. Obtaining an aaRS that binds an ncAA and uses it as a substrate is a key step to allow the

ncAA to become part of an expanded genetic code [17, 20, 21]. The ncAA can then be geneti-

cally encoded and incorporated into proteins by the cellular machinery. Several MetRS vari-

ants that accepted the ncAA azidonorleucine (AnL) as a substrate were obtained earlier by

experimental directed evolution [22]. The AnL azide group can be used for protein labeling

and imaging.

The design procedure has two stages. First, a bias potential is optimized adaptively over the

course of a MC simulation of the apo protein. The adaptation method is closely analogous to

Computational design of enzyme catalytic power
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the Wang-Landau and metadynamics approaches [23, 24]. The bias is chosen so that all the

allowed residue types achieve comparable probabilities at all mutating positions. This implies

that the free energy landscape in sequence space has been flattened, and the bias of each

sequence is approximately the opposite of its apo free energy. In the second stage, the holo

state is simulated. The bias is included in the energy function, “subtracting out” the apo free

energy. Thus, the method achieves positive design for the bound state and negative design for

the unbound. The sequences sampled in the second stage are distributed according to their

binding free energies, with tight binders exponentially enriched.

In an analogous procedure, a bias potential can be optimized for the protein bound to one

ligand, say L. Then a complex with another ligand is simulated, say, L0, including the bias. The

sequences sampled preferentially in the second simulation are those with a strong binding free

energy difference between the two ligands, i.e., the most specific binders. Importantly, L0 can

be an activated, transition state ligand, while L is the non-activated substrate. In this case, the

first simulation flattens the ground state landscape, while the second preferentially samples

sequences that stabilize the transition state, relative to the ground state. Thus, the method can

be used to select directly for low activation free energies. It is then straightforward to rank the

sampled sequences based on their catalytic efficiency, the ratio between the rate constant for

the catalytic step, kcat and the Michaelis constant KM.

Here, we report CPD calculations that aim to increase the binding of several ligands by

MetRS. We first considered AnL. Three residues in the active site were allowed to mutate. The

CPDmethod was tested for its ability to recover the known experimental variants [22]. The

top six experimental variants were visited by the MC simulations and were highly ranked

among the predicted sequences. We next considered the natural ligand methionyl adenylate

(MetAMP). Another set of three residues near the ligand side chain were allowed to mutate.

The wildtype sequence was highly ranked by the computational design. 17 other sequences

among the top 40 predictions were tested experimentally and all found to be active. The com-

puted binding free energy differences between variants were mostly in good agreement with

the experimental values, obtained from kinetic measurements of the enzyme reaction. Next,

we predicted MetRS variants that were specifically designed to bind the transition state for

the enzymatic reaction Met+ATP!MetAMP+PPi. The wildtype enzyme was highly ranked

among 5832 possible variants, and for 20 variants that were characterized experimentally, the

transition state binding free energies from the simulations were in good agreement with the

values deduced from the experimental reaction rates. These calculations represent the first

time an enzyme is specifically designed to optimize its transition state binding free energy rela-

tive to ground state binding, i.e., its catalytic power. We expect the method will become the

paradigm for computational design of enzymes.

Materials andmethods

Theoretical approach: Designing for ligand binding

Stage 1: Adaptive apo simulation. We consider a polypeptide, with or without a bound

ligand. Below, we will use a fixed backbone geometry, but the method is valid with a flexible

backbone. Side chains can explore a few discrete conformations, or rotamers, and a few selected

positions are allowed to mutate. In a first stage, we perform aMC exploration of the protein

with no ligand, using the usual Metropolis-Hastings scheme [25–27]. We gradually increment a

bias potential until all the side chain types at the mutating positions have roughly equal popula-

tions, thus flattening the free energy landscape. We number the mutating positions arbitrarily

Computational design of enzyme catalytic power
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1, . . ., p. The bias EB at time t has the form:

EBðs1ðtÞ; s2ðtÞ; . . . ; spðtÞ; tÞ ¼
X

i

EBi ðsiðtÞ; tÞ þ
X

i<j

EBijðsiðtÞ; sjðtÞ; tÞ ð1Þ

Here, si(t) represents the side chain type at position i. The first sum is over single amino

acid positions; the second is over pairs. The individual terms are updated at regular intervals

of length T. At each update, whichever sequence variant (s1(t), s2(t), . . ., sp(t)) is populated is

penalized by adding an increment eBi ðsiðtÞ; tÞ or e
B
ijðsiðtÞ; sjðtÞ; tÞ to each corresponding term in

the bias. The increments have the form:

eBi ðsiðtÞ; tÞ ¼ e0 exp ½�E
B
i ðsiðtÞ; tÞ=E0� ð2Þ

eBijðsiðtÞ; sjðtÞ; tÞ ¼ e0 exp ½�E
B
ijðsiðtÞ; sjðtÞ; tÞ=E0� ð3Þ

where e0 and E0 are constant energies. Thus, the increments decrease exponentially as the bias

increases. This scheme is adapted from well-tempered metadynamics [24, 28, 29]. The individ-

ual bias terms depend on the system history, and can be written:

EBi ðs; tÞ ¼
X

n;nT<t

eBi ðs; nTÞds;siðnTÞ ð4Þ

EBijðs; s
0; tÞ ¼

X

n;nT<t

eBijðs; s
0; nTÞds;siðnTÞds0;sjðnTÞ ð5Þ

where δa,b is the Kronecker delta. Over time, the bias for the most probable states grows until

it pushes the system into other regions of sequence space. Two-position biases were imple-

mented in the Proteus software [30, 31] during this work.

Stage 2: Biased holo simulation. In the second stage, the protein:ligand complex is simu-

lated using the bias potential from stage 1. The sampled population of a sequence S is normal-

ized to give a probability, denoted ~pHðSÞ, where the subscript means “holo” and the tilde

indicates that the bias is present. The apo state probability ~pAðSÞ was obtained in stage 1. Both

probabilities can be converted into free energies ~G:

~pXðSÞ ¼
1

ZX
exp ð�~GXðSÞ=kTÞ

~GXðSÞ ¼ �kT ln ~pXðSÞ � kT lnZX

ð6Þ

where X = A orH and ZX is a normalization factor that depends on X but not S. We also have a

relation between the free energies with and without the bias:

~GXðSÞ ¼ GXðSÞ þ EBðSÞ ð7Þ

whose (straightforward) derivation is given in the Supporting Appendix (S1 File). Note that if

the apo state flattening were ideal, ~pAðSÞ would be a constant, so that (from Eqs 6 and 7) EB(S) =

−GA(S), up to an additive constant. Thus, the ideal bias is the opposite of the apo free energy.

Computational design of enzyme catalytic power
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The binding free energy relative to a reference sequence R can be deduced from the popula-

tions. We have:

DD~GðSÞ ¼
�

~GHðSÞ � ~GAðSÞ
�

�
�

~GHðRÞ � ~GAðRÞ
�

¼ �kT ln
~pHðSÞ

~pHðRÞ
þ kT ln

~pAðSÞ

~pAðRÞ

¼ DDGðSÞ

ð8Þ

Since the bias is the same in the bound and unbound states, it cancels out from DD~GðSÞ,

which is equal to the relative binding free energy in the absence of bias, ΔΔG(S). While the bias

does not appear explicitly in (8), it is essential for accurate sampling. Perfect flattening, how-

ever, is not usually achieved, nor is it needed.

In the holo state, the probability of a sequence S (with bias) is:

~pHðSÞ / exp �
~GHðSÞ

kT

� �

¼ exp �
GHðSÞ þ EBðSÞ

kT

� �

� exp �
GHðSÞ � GAðSÞ

kT

� �

ð9Þ

Thus, holo sampling follows a Boltzmann distribution governed by GH(s) + E
B(S), which is

approximately the binding free energy GH(S) − GA(S). This is exactly the quantity we want to
design for. If the apo state is well-flattened, the biased holo simulation will be exponentially

enriched in tight binders.

Energy function and matrix

The energy was computed using either an MMGBLK or an MMGBSA function (“molecular

mechanics + Generalized Born + Lazaridis-Karplus” or “Surface Area”):

E ¼ EMM þ EGB þ ELKjSA ð10Þ

The MM term used the Amber ff99SB force field [30, 32]. The SA term was described earlier

[33–35]. The LK term and its parameterization were described earlier [35]. The GB term cor-

responds to a variant very similar to the one used in Amber, detailed in previous articles [33,

36, 37]. To make the calculation efficient, we compared two strategies. The first used a Native

Environment Approximation (NEA), where the GB solvation radii for a given side chain

were computed with the rest of the system in its native conformation [36, 38]. The second

used a “Fluctuating Dielectric Boundary” (FDB) method, where the GB interaction between

two residues I, J was expressed as a polynomial function of their solvation radii [39]. These

were kept up to date over the course of the MC simulation, so the GB interaction could be

deduced with little additional calculation [37, 39]. The solvent dielectric constant was 80; the

protein one was 4.0 with the GBSA variants and 6.8 with GBLK [35]. Each solvent model is

referred to by its GB variant and nonpolar term; for example, the FDBLK model combines

FDB with LK.

To allow very fast MC simulations, we precomputed an energy matrix for each system [34,

40]. For each pair of residues I, J and all their allowed types and rotamers, we performed a

short energy minimization (15 conjugate gradient steps) [30]. The backbone was fixed (in its

crystal geometry) and the energy only included interactions between the two side chains and

with the backbone. At the end of the minimization, we computed the interaction energy

between the two side chains. Side chain–backbone interaction energies were computed simi-

larly (and formed the matrix diagonal) [30].

Computational design of enzyme catalytic power
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Structural models

MetRS:AnL and MetRS:MetAMP complexes. For MetRS:AnL, we started from the crys-

tal structure of a complex between a triple mutant of E. coliMetRS and AnL (PDB code 3H9B)

[41]. The protein mutations were L13S, Y260L, H301L. We refer to this mutant as SLL. The

protein backbone was held fixed. Side chains more than 20 Å from the ligand were held fixed.

The other side chains were allowed to explore rotamers, taken from the Tuffery library, aug-

mented to allow multiple orientations for certain hydrogen atoms [42, 43]. Side chains 13 and

301 were allowed to mutate into the following 14 types: ACDEHIKLMNQSTV; position 260

was allowed to mutate into the same types, except that Tyr replaced Asp. Thus, there were

143 = 2744 possible sequences in all. Histidine protonation states at non-mutating positions

were assigned by visual inspection of the 3D structure. System preparation was done using the

protX module of the Proteus design software [31].

For MetRS:MetAMP, we started from a crystal complex (PDB code 1PG0) between E. coli

MetRS and a methionyl adenylate (MetAMP) analogue [44]. The protein backbone was held

fixed. Side chains more than 20 Å from the ligand were held fixed. The other side chains were

allowed to explore rotamers [42, 43]. Side chains 13, 256 and 297 were allowed to mutate into

all types except Gly or Pro, for a total of 5832 possible sequences in all. Histidine protonation

states at non-mutating positions were assigned by visual inspection of the 3D structure.

Unfolded state. The unfolded state energy was estimated with a tri-peptide model [45].

For each mutating position, side chain type, and rotamer, we computed the interaction

between the side chain and the tri-peptide it forms with the two adjacent backbone and Cβ

groups. Then, for each allowed type, we computed the energy of the best rotamer and averaged

over mutating positions. The mean energy for each type was taken to be its contribution to the

unfolded state energy. The contributions of the mutating positions were summed to give the

total unfolded energy.

Ligand force field and rotamers

Force field. For the AnL azido group, we used atomic charges and van der Waals parame-

ters obtained earlier for azidophenylalanine [46]. Parameters for the implicit solvent energy

terms were assigned by analogy to existing groups. For methionyl adenylate (MetAMP), we

mostly used existing Met and AMP parameters. For atoms close to the Met:AMP junction, we

used atomic charges computed earlier for ThrAMP (G. Monard, personal communication)

from ab initio quantum chemistry, in a manner consistent with the rest of the Amber force

field [32]. Van der Waals parameters for atoms near the junction were assigned the same

types as in Met or AMP. Parameters for bond lengths, angles and dihedrals involving junction

atoms were taken from the experimental geometry of MetAMP. Stiffness parameters were

assigned by analogy to existing parameters. The complete set of parameters for AnL and

MetAMP is in Supplementary Material (S2 and S3 Files, respectively).

Rotamers. AnL was positioned in the protein complex so that its backbone had the posi-

tion occupied in the MetRS:AnL crystal structure [41]. The ligand’s side chain was allowed to

explore rotamers. These were defined by the usual side chain rotamers of Met [42, 43]. We

started by positioning Met in the pocket by superimposing it on AnL in the mutant MetRS:

AnL crystal complex (PDB code 3H9B). We then positioned the 17 Met side chain rotamers

from the Tuffery library. We extracted the AnL side chain from the experimental complex and

superimposed it on each of the 17 Met rotamers, producing 17 AnL conformers. Finally, for

each one, we performed a short energy minimization with the AnL backbone held fixed. The

17 minimized conformers defined the AnL rotamers. Notice that with this procedure, the

azido group always had the same orientation relative to the aliphatic part of the AnL side

Computational design of enzyme catalytic power
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chain. For MetAMP, we allowed the Met rotamers from the Tuffery library, with the rest of the

ligand held fixed. The ϕ and ψ dihedral angles around the MetAMP Cα were not allowed to

rotate and the whole AMPmoiety stayed fixed.

Modeling the MetRS transition state complex

MetRS catalyzes two reactions. In the first, Met reacts with ATP to give MetAMP and pyro-

phosphate. In the second, tRNA reacts with MetAMP. Here, we considered the first reaction,

which occurs in the absence of tRNA. A model for the ground state ligands Met + ATP was

first obtained, starting from the crystal complex between MetAMP and PPi (PDB code 3KFL).

The covalent structure was reset to that of Met + ATP and the geometry was adjusted by a

short energy minimization. The complex included a magnesium ion. Next, a model for the

activated ligand [Met:ATP]‡ was obtained, starting from the Met + ATP complex. First, a

phosphate and carboxylate fragment were positioned in a geometry close to the expected pen-

tacoordinate transition state arrangement [44, 47–49] and an ab initio energy minimization

was done, including planarity constraints for the phosphorus and three oxygens. This led to a

length of 2.4 Å for the P–O bonds perpendicular to the plane. Next, the molecular mechanics

model was constructed. A covalent bond was introduced between the reacting Met carboxylate

oxygen and the α phosphorus atom. The lengths for this bond and the symmetric one on the

other side of the phosphorus were set to 2.4 Å. Planarity restraints were imposed on the phos-

phorus and the three α phosphate oxygens. A short energy minimization was done (with

molecular mechanics). This led to an α phosphate geometry with three oxygens in plane

and two perpendicular (Fig 1), as expected for in-line attack of the Met carboxylate on the

Fig 1. MetRS transition state for MetAMP formation. Closeup of the ligands.

https://doi.org/10.1371/journal.pcbi.1007600.g001
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phosphate [44, 47–49]. Ab initio atomic charges were then computed for the entire activated

ligand in this geometry, from a Merz-Kollman population analysis of the HF/6-31G� wave-

function [32], using Gaussian 9.0. The magnesium ion, which bridges the α, β and γ phos-
phates, was included in the calculation. The resulting charges were applied to atoms close to

the α phosphate group, while other atoms kept their usual Met or ATP charges. Small manual

adjustments were made to establish the correct total charge of -4. The final Mg charge was

+1.5. Charges are in Supplementary Material (S3 File).

The geometry of the protein around the ligands was relaxed slightly by performing a short,

restrained molecular dynamics simulation, with the ligands held fixed. The entire system was

placed in a large box of explicit TIP3P water [50]. Harmonic restraints were applied to nonhy-

drogen atoms, with force constants that decreased gradually from 5 to 0.5 kcal/mol/Å2 over

575 ps of dynamics, performed with the NAMD program [51]. The final protein geometry was

used for the design calculations.

Monte Carlo simulations

To optimize the bias potential, we performed MC simulations of the apo state with bias

updates every T = 1000 steps, with e0 = 0.2 kcal/mol and E0 = 50 kcal/mol [12]. During the first

108MC steps, we optimized a bias potential including only single-position terms. There were

p = 3 mutating positions, which all contributed to the bias. In the second stage, we ran MC

or (in one case: MetAMP complex with the FDBSA solvent model) Replica Exchange MC

(REMC) simulations of 5.108 MC steps [27], using 8 replicas with thermal energies (kcal/mol)

of 0.17, 0.26, 0.39, 0.59, 0.88, 1.33, 2.0 and 3.0. Temperature swaps were attempted every 500

steps. All the replicas experienced the same bias potential. Both stages used 1- and 2-position

moves.

Experimental mutagenesis and kinetic assays

Purification of wildtype and mutant MetRS. Throughout this study, we used a His-

tagged M547 monomeric version of E. coliMetRS, fully active, both in vitro and in vivo [41].

The gene encoding M547 MetRS from pBSM547+ [52, 53] was subcloned into pET15blpa [54]

to overproduce the His-tagged enzyme in E. coli ([55]). Site-directed mutations were generated

using the QuickChange method [56], and the whole mutated genes verified by DNA sequenc-

ing. The enzyme and its variants were produced in BLR(DE3) E. coli cells. Transformed cells

were grown overnight at 37˚C in 0.25 L of TBAI autoinducible medium containing 50 μg/ml

ampicillin. They were harvested by centrifugation and resuspended in 20 ml of buffer A (10

mMHepes-HCl pH 7.0, 3 mM 2-mercaptoethanol, 500 mMNaCl). They were disrupted by

sonication (5 min, 0˚C), and debris was removed by centrifugation (15,300 G, 15 min). The

supernatant was applied on a Talon affinity column (10 ml; Clontech) equilibrated in buffer A.

The column was washed with buffer A plus 10 mM imidazole and eluted with 125 mM imidaz-

ole in buffer A. Fractions containing tagged MetRS were pooled and diluted ten-fold in 10

mMHepes-HCl pH 7.0, 10 mM 2-mercaptoethanol (buffer B). These solutions were applied

on an ion exchange column Q Hiload (16 mL, GE-Healthcare), equilibrated in buffer B con-

taining 50 mMNaCl. The column was washed with buffer B and eluted with a linear gradient

from 5 to 500 mMNaCl in buffer B (2 ml/min, 10 mM/min). Fractions containing tagged

MetRS were pooled, dialyzed against a 10 mMHepes-HCl buffer (pH 7.0) containing 55%

glycerol, and stored at -20˚C. The homogeneity of the purified MetRS was estimated by

SDS-PAGE to be higher than 95%.

Measurement of ATP-PPi exchange activity. Prior to activity measurements, MetRS was

diluted in a 20 mM Tris-HCl buffer (pH 7.6) containing 0.2 mg/ml bovine serum albumin

Computational design of enzyme catalytic power
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(Aldrich) if the concentration after dilution was less than 1 μM. Initial rates of ATP-PPi

exchange activity were measured at 25˚C as described [57]. In brief, the 100 μl reaction mix-

ture contained Tris-HCl (20 mM, pH 7.6), MgCl2 (7 mM), ATP (2 mM), [32P]PPi (1800-3700

Bq, 2 mM) and various concentrations (0-16 mM) of the Met amino acid. The exchange reac-

tion was started by adding catalytic amounts of MetRS (20 μl). After quenching the reaction,
32P-labeled ATP was adsorbed on charcoal, filtered, and measured by scintillation counting.

kcat and KM values were derived from iterative nonlinear fits of the theoretical equation to the

experimental values using either MC-fit [58] or Origin (Origin Lab).

Results

Designing MetRS to bind azidonorleucine

As a first test, we searched for MetRS variants with strong azidonorleucine (AnL) binding.

Positions 13, 260 and 301 were allowed to mutate, for comparison to the earlier experimental

data [22]. 14 types were allowed at each position (see Methods), for a total of 2744 possible

sequences. We compared three variants of the solvent model, which gave similar results. The

first stage was to optimize a bias potential that flattened the free energy landscape in sequence

space for apo MetRS. We used a bias potential including single-position terms only. After

the adaptation period, we ran a further simulation of 108 MC steps to determine the biased

populations. With the FDBLK solvent model, 2099 sequences were visited at least 1000 times,

thanks to the adaptive bias. The second stage was to simulate the MetRS:AnL complex in the

presence of the bias. 1957 sequences were visited at least 1000 times in both the first and sec-

ond stages. For these, we used the sampled populations to deduce the AnL binding free energy

(Eq 8), relative to the X-ray sequence. The overall computation time for system setup, energy

matrix precalculation and both MC stages was about one day (per solvent model). Sequences

sampled with and without the bias and ligand are shown in Fig 2 as logos.

Experimental directed evolution had revealed 21 active variants [22]. 13 of them were sam-

pled by the computations and are listed in Table 1. 8 others either were not sampled or were

predicted to have low stability. Each variant is referred to by the sequence of the three mutating

positions; for example, the X-ray variant is SLL. The top six experimental sequences are the

ones that were observed in multiple clones. The others were seen in just one clone [22]. The

top six were all sampled by the computations and had good predicted stabilities and affinities

(Table 1). SML was ranked the highest, 17th. The five others had lower ranks, between 45 and

104, but they were all within 1.4 kcal/mol of the top predicted variant (which was HMS). Other

predicted variants may also be active, even though they were not revealed by the directed evo-

lution experiments. For the SLL variant, the predicted rotamers for binding site residues were

in good agreement with the X-ray structure (Supplementary Material; S1 File). The results in

Table 1 were obtained with the FDBLK solvent treatment. The FDBSA solvent model gave

similar results, while NEASA was slightly poorer (not shown), probably due to its simpler GB

treatment [37].

We also searched for MetRS variants that maximized the AnL binding specificity, relative

to Met. A bias potential was adaptively optimized for the MetRS:Met complex, then used in a

simulation of the MetRS:AnL complex. The mutating positions and allowed types were the

same as above. Specificity ranks are included in Table 1. Three of the top six experimental

variants had high specificity ranks. The top experimental variant NLL was 36th, the next-best

experimental variant SLL was 2nd, AQL was 18th, and CLL was 3rd. Thus, among the top 40

specificity ranks, there were 4 sequences that are known to be active. Evidently, selecting for

specificity can help reveal active variants.

Computational design of enzyme catalytic power
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Fig 2. MetRS sequence logos. Sequences sampled without and with the AnL ligand (FDBLK solvent model) are shown in the form
of logos, including the three mutating positions, 13, 260, 301. The logos represent the apo state (left), the biased apo state (middle),
and the biased holo state (right). The height of each letter measures the frequency of its type. The 3D view below is a closeup of
azidonorleucine (AnL) in the binding pocket, with selected side chains.

https://doi.org/10.1371/journal.pcbi.1007600.g002

Table 1. MetRS redesigned for AnL binding affinity or specificity.

a
seq.

b
pop.

c
fold

d
bind

e
rank

f
spec.

g
rank

a
seq.

b
pop.

c
fold

d
bind

f
rank

e
spec.

g
rank

NLL 62 6.7 0.3 104 5.7 36 CVL 1 6.9 -0.4 23 10.9 164

SLL 12 0.0 0.0 55 0.0 2 ACL 1 5.0 0.2 86 11.0 175

SML 4 4.6 -0.5 17 8.3 74 SCM 1 -0.9 0.4 123 18.8 589

AVL 3 6.7 -0.1 45 11.0 165 SLV 1 -2.3 1.4 688 7.4 57

AQL 2 4.2 0.0 57 3.3 18 SNLh 1 7.6 0.0 – 10.2 –

CLL 2 -0.6 0.1 73 1.0 3 SSLh 1 7.2 -0.1 – 10.3 –

STLh 1 7.2 0.6 – 10.2 –

aSequence at the designed positions 13, 260, 301, ranked by
bpopulation among the experimental clones.
cFolding and
dbinding free energies (kcal/mol) relative to the X-ray sequence SLL.
eRank based on affinity or
gspecificity.
fSpecificity, defined by the binding free energy difference between AnL and Met (relative to SLL).
hNot ranked, since folding free energy is above the 7 kcal/mol threshold.

Calculations used the FDBLK solvent.

https://doi.org/10.1371/journal.pcbi.1007600.t001
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Redesigning MetRS to bind MetAMP

As a second test, we searched for MetRS variants with a high affinity for the natural ligand

methionyl adenylate (MetAMP). These should include the wildtype (WT) sequence and close

homologs. Three positions close to the Met side chain (Fig 3), 13, 256, and 297 were allowed to

mutate into all types except Gly or Pro, for a total of 5832 possible sequences. The first stage

was to optimize a bias potential that flattened the free energy landscape in sequence space

for apo MetRS. We performed calculations with both the FDBSA and the FDBLK variants of

the solvent model, which gave similar results. We report the FDBSA results, since they were

obtained first and were the basis for choosing which sequences to test experimentally. Selected

FDBLK results are also reported. With the FDBSA solvent model, using Replica Exchange MC,

4178 variants were visited at least 1000 times.

The second stage was to simulate the MetRS:MetAMP complex in the presence of the bias

potential. For sequences visited at least 1000 times in both stages (528 sequences), we used the

sampled populations to deduce the MetAMP binding free energy (Eq 8), relative to the wild-

type (WT) sequence LAI. The folding energy of each variant was also estimated (see Methods)

and sequences less stable thanWT by 5 kcal/mol or more were discarded. The top 20 remain-

ing sequences, with the largest binding free energies, are shown in Table 2. The top sequence,

CDV, had an Asp at position 256, positioned to form a salt bridge with the MetAMP ammo-

nium group. Its binding free energy, relative to WT, was -1.4 kcal/mol. The next 19 variants

had types similar to WT. Their computed binding free energies were close to WT, with relative

values between -0.2 and 0.6 kcal/mol. The WT sequence was sixth overall. Among the top 40

variants, 17 mutants were produced experimentally. They were representative of the computa-

tional variants, while providing ease of construction (see Methods). CDV was left out, as the

A256Dmutation, selected for binding, might reduce the catalytic activity. All 17 tested variants

had detectable activity, a 100% success rate for the design procedure. One other sequence, SAI,

was tested experimentally and found to be active, but did not show up in the MC simulation.

Thus the method produced one false negative along with 17 true positives.

Going further, we made a quantitative comparison between the computed and experimen-

tal binding free energies. The experimental dissociation constants were estimated from the

Michaelis constants KM. In the experimental conditions (excess ATP) and under the usual

Michaelis-Menten assumptions [14, 59], KM represents the dissociation constant for Met

binding in the presence of bound ATP. Here, we computed relative binding free energies for

binding MetAMP, not Met. Nevertheless, we expect that these MetAMP binding free energy

changes can be compared to the experimental Met binding free energy changes; i.e., we make

the additional assumption that the relative effects of the mutations will be conserved going

fromMetAMP to Met+ATP.

Fig 3. MetRS:MetAMP complex. Binding site closeup (stereo). Mutating side chains are 13, 256, 297.

https://doi.org/10.1371/journal.pcbi.1007600.g003
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Certain mutations at position 297 involved significant changes in the side chain volume,

where the largest type, Ile or the smallest type, Ala was introduced or removed. For these, the

computed binding free energies departed significantly from the experimental ones. However,

if these two types were excluded, there were 25 point mutations between experimental variants,

and for these, agreement was very good. The computed binding free energy differences had

an rms error of just 0.52 kcal/mol and a mean unsigned error (mue) of 0.43 kcal/mol. The cor-

relation between the experimental and computed sets was 0.52. Fig 4 shows the binding free

energy changes. Note that the good agreement supports the assumption that the experimental

KM values are good proxies for the relative MetAMP binding free energies.

With the FDBLK solvent model, results were similar. The WT variant was ranked slightly

lower, 20th. The top sequence was SAN, with a binding free energy of -1.3 kcal/mol relative to

the WT. 7 of the 17 experimental sequences were ranked among the top 20 predictions. The

computed and experimental binding free energy changes associated with point mutations

are shown in Supplementary Material (Figure B in S1 File). Excluding (as above) mutations

involving the types Ile or Ala at position 297, the mue and rms error were 0.76 and 0.98 kcal/

mol, respectively, only slightly larger than with FDBSA.

Redesigning MetRS for catalytic power

For enzyme design, it is of great interest to select for a low activation free energy [14]. There-

fore, we considered a model of the transition state complex (Fig 1). The ATP α phosphorus

was bound to five oxygens: three coplanar and two perpendicular, corresponding to in-line

attack of the Met carboxylate. In the first stage, we simulated a competing, ground state com-

plex between MetRS, Met, and ATP. The same three binding pocket residues as above, 13, 256,

and 297 were allowed to mutate into all types except Gly, Pro. We used the FDBLK solvent

model. We optimized a bias potential during the MC simulation, flattening the free energy

Table 2. MetRS redesigned for MetAMP binding by mutating positions 13, 256, 297.

__binding__ ___binding___

rank variant afolding bcomp. bexp. rank variant afolding bcomp. bexp.

1 CDV 4.5 -1.36 11 LAC -0.3 0.25 1.8

2 MAV 1.3 -0.23 1.8 12 MAT 4.6 0.28 2.4

3 MAI 2.5 -0.20 13 LSV 0.4 0.29

4 LAV -1.3 -0.16 1.8 14 LAA -0.6 0.31 3.8

5 MAC 2.3 -0.09 2.3 15 CAV -8.8 0.34 2.8

6 LAI 0.0 0.00 0.0 16 CAI -7.4 0.37 1.2

7 MAA 2.0 0.02 17 MSC 4.1 0.45

8 MSV 3.1 0.11 3.4 18 MCV 1.0 0.46

9 MSI 4.4 0.15 2.2 19 MCI 2.3 0.48

10 LSI 1.6 0.20 20 MSA 3.8 0.56

21 LAT 1.8 0.59 2.2

26 CAC -7.9 0.69 3.0 28 SAI -3.5 0.72 1.2

51 SAC -4.0 1.11 3.0 68 LAS 1.3 1.34 3.4

70 SSI -1.9 1.35 2.2 81 SSC -2.2 1.45 3.6

MST 6.2 0.98 3.5 MSS 5.8 1.64 3.4

Calculations with the FDBSA solvent model.
aFolding and
bMetAMP binding free energies (kcal/mol) from computations and experiment, relative to the WT sequence LAI.

https://doi.org/10.1371/journal.pcbi.1007600.t002
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surface in sequence space. In the second stage, we simulated the transition state complex, with

the bias included. All the variants that had been tested experimentally (Table 2) were sampled

(WT and 19 variants, including five that Proteus had predicted (with FDBLK) to be above our

5 kcal/mol instability threshold). For each one, from the sampled populations, we deduced the

free energy difference (Eq 8) between its ground state and transition state complexes, i.e., its

activation free energy. From transition state theory [14], this difference can be identified with

the log of the catalytic reaction rate, kcat. We also computed the Met dissociation free energies

for the ground state complexes, which can be identified with the Met Michaelis constants, KM.

We first simulated the ground state complex with ATP but no Met, flattening its free energy

surface with an adaptive bias. We then simulated the MetRS+Met+ATP complex, including

the bias. From the sampled populations, we deduced the Met binding free energy of each vari-

ant, relative to WT (Eq 8). The overall protocol is schematized in Fig 5.

Fig 6 compares the kcat/KM ratios from experiment and simulations. We refer to them as cat-

alytic efficiencies. We recall that they represent the 2nd order rate constant for the reaction of

Met with the MetRS:ATP complex. Fig 6 shows the quantities kT log (kcat/KM) / (kcat/KM)WT,

Fig 4. MetRS:MetAMP binding free energies, relative to the wildtype protein (WT). Shown are data for 28 point
mutations. 3 gray points correspond to two mutations at position 297 (labeled) that change the side chain volume, plus
one involving a variant (MST) that was predicted to be weakly stable (above our 5 kcal/mol threshold, see text) but was
produced and measured experimentally nevertheless. Two other mutations with sizable errors are labeled.

https://doi.org/10.1371/journal.pcbi.1007600.g004
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which express the catalytic efficiencies on a log scale, in thermal energy units, relative to the WT

value. The figure includes WT and 19 other experimental variants. 5 of these had low predicted

stabilities and are shown as gray points. WT defines the origin. For the other 14 points, agree-

ment between calculations and experiment is quite good, with a correlation of 0.73 and mean

errors of 1.36 kcal/mol (rms) and 1.18 kcal/mol (mue). Experimentally, WT has the largest effi-

ciency. Computationally, two variants are predicted to be slightly better, by 0.9 and 0.2 kcal/

mol, respectively, which is less than the mean error. Overall, by designing directly for a low acti-

vation free energy, we retrieve all the experimental variants and reproduce the catalytic efficien-

cies semi-quantitatively.

Discussion

Adaptive importance sampling solves the design problem for ligand binding and specificity. It

applies positive design to one state (say, bound) and negative design to the other (unbound). It

provides quantitative values for relative binding free energies or activation free energies. Vari-

ants sampled for one criterion, such as activation free energy (kcat), can be reranked a posteriori

based on another criterion, such as kcat/KM. A posteriori reranking or filtering does not leave

out any important solutions; rather, the initial selection brings in too many solutions (e.g.,

unstable variants), which are then filtered out at very little cost. In the first stage of the proce-

dure, the sampling is very aggressive, if not exhaustive. In the second stage, it does not need to

be exhaustive, since the best designs are exponentially enriched, and the unsampled variants

are the ones with poor affinities or specificities. If one wants to reveal weak binders or perform

reranking on another property, one can also flatten the energy landscape in the second stage.

One can also use a more aggressive bias in one or both stages, including two-position biases.

Replica Exchange MC can also be used to increase sampling. Using plain MC, one-position

Fig 5. Computational scheme used to obtain the catalytic efficiencies kcat/KM. A) A bias B is optimized to flatten the sequence
landscape of the enzyme without the Met ligand. Mutating positions are 13, 256, 297. B) The same bias B is used to simulate the
complex including Met. Sequences are populated according to their Met binding affinities. C) A bias B0 is optimized to flatten the
sequence landscape of the complex including Met.D) B0 is used to simulate the transition state complex. Sequences are populated
according to their activation free energies. The lefthand simulations yield the predicted KM values. The righthand simulations yield
the predicted kcat values.

https://doi.org/10.1371/journal.pcbi.1007600.g005
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biases and no flattening of the holo state, our simulations produced 200 MetRS variants,

enriched in tight binders, spanning a 7–8 kcal/mol range of binding free energies.

A difficulty when designing ligand binding is to choose one or more poses for the ligand.

Here, we redesigned MetRS in cases where the ligand pose was known from an X-ray structure

for one sequence: the SLL sequence in the AnL case and the wildtype sequence in the MetAMP

case. For these ligands, we used the experimental ligand pose and protein backbone conforma-

tion. Three residues close to the ligand were then allowed to mutate. Not surprisingly, the cal-

culations produced designed sequences that were homologous to the X-ray sequence. The

experimental binding free energies in the MetAMP case were well-reproduced (the AnL values

are not known). It is likely that other poses exist that would be compatible with other muta-

tions, and would possibly lead to even stronger binding. The exploration of such alternate

poses was left aside in this work. For the transition state complex, the position of the ligands

could also be inferred with some confidence, since the enzyme achieves catalysis with little

reorganization or motion of the substrates [15], and the modeled transition state geometry

of the α phosphate was intermediate between that seen in two Met RS X-ray structures: the

Fig 6. MetRS catalytic efficiencies kT log (kcat/KM) / (kcat/KM)WT relative to the wildtype (kcal/mol). Four gray
points correspond to variants that were predicted to be weakly stable but were produced and measured experimentally
nevertheless. Results obtained with the FDBLK solvent model.

https://doi.org/10.1371/journal.pcbi.1007600.g006

Computational design of enzyme catalytic power

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007600 January 9, 2020 15 / 19



MetRS product (adenylate) complex and the reactant (ATP) complex (PDB 4QRE). By design-

ing the protein to stabilize this ligand pose, we may have biased the results towards native-like

solutions. Here, too, the experimental relative activation free energies were well-reproduced,

supporting the structural model.

Another important model component is the implicit solvent model. Here, we used a care-

fully-parameterized Generalized Born variant [33], a physically-plausible value of the protein

dielectric constant and an “FDB” computational scheme that maintains the many-body nature

of the GB model. The simpler, NEA scheme gave somewhat poorer results, similar to another

recent study [35]. For nonpolar contributions to solvation, we compared a Surface Area (SA)

treatment and a Lazaridis-Karplus (LK) treatment, which gave similar results. In the reported

calculations, no water molecules were modelled explicitly. We also tested a model where three

waters in the MetRS active site were explicitly represented: those that directly coordinate the

Mg2+ ion in the substrate and transition state complexes for MetAMP formation. With both

the FDBSA and FDBLK treatments, their explicit representation led to kcat values well within

the mean error of the calculations (relative to experiment). Most kT log (kcat/KM) / (kcat/

KM)WT, values were with 0.2–0.3 kcal/mol of those reported above. Overall, the results were

reasonably robust with respect to model details, with FDB giving improved performance.

Agreement with experiment was very good for three MetRS redesign test problems: rede-

sign to bind the AnL ncAA, redesign to bind the natural intermediate MetAMP, and redesign

for catalytic power for the reaction that produces MetAMP. Except for the earlier AnL data

[22], the experiments were done in this work. Transition state modeling was done simply,

by combining two X-ray structures and running a standard quantum chemistry protocol

for atomic charges, consistent with the usual Amber force field [32]. All the procedures were

carried out with the Proteus software, which is freely available to academics (https://proteus.

polytechnique.fr). An entire calculation (setup, matrix calculation, MC simulations, postpro-

cessing) lasted around one day on a 16-core desktop computer. We expect the present adaptive

MCmethod will become the paradigm for computational enzyme design in the future.
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S1 File. Supplementary appendix. This file includes a short theoretical derivation, some

explanation of force field parameters, atomic charges for the MetRS transition state ligands, a

figure showing the MetRS:AnL complex structure, and MetRS:MetAMP binding free energy

results obtained with the FDBLK solvent model.
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S2 File. Azidonorleucine force field information. This file contains the “topology” or 2D

structure of AnL, including the atomic charges, followed by energy parameters for covalent

bonds, angles, dihedrals, impropers, van der Waals terms and Generalized Born.
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of MetAMP, including the atomic charges, followed by energy parameters for covalent bonds,

angles, dihedrals, impropers, van der Waals terms and Generalized Born.
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Adaptive landscape flattening allows the design of both enzyme:substrate

binding and catalytic power
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Thomas Simonson∗

Laboratoire de Biochimie, Ecole Polytechnique, Palaiseau, France

Relation between free energies with and without the bias potential

The free energy of a sequence S is denoted GX(S), where X indicates the apo or holo system.

GX(S) is defined by a Boltzmann average over all possible conformations r:

e−βGX(S) =

∫
e−βEX(S,r) dr (1)

where β is the inverse of the thermal energy kT . The bias potential EB(S) depends only on the

sequence, not r. Therefore, for the free energy G̃X(S) in the presence of the bias, we have

e−βG̃X(S) =

∫
e−β(EX(S,r)+EB(S)) dr = e−βEB(S)

∫
e−βEX(S,r) dr = e−βEB(S)e−βGX(S) (2)

which gives Eq. (7) in the main text.

Force field parameters for AnL and MetAMP

Force field information is given in the files AnL.ff and MetAMP.ff. Each file contains the “topol-

ogy” or 2D structure of each molecule, including the atomic charges. This is followed by the

energy parameters for covalent bonds, angles, dihedrals and impropers, van der Waals and Gen-

eralized Born terms. The data are in the format of the Proteus software, with comments for

clarity. With minor reformatting, they can also be read by XPLOR, CHARMM and NAMD.

Atomic charges for the Met + ATP → MetAMP + PPi transition state

The transition state charges are given below, in the form of a Proteus topology file:

ATOM MG TYPE=MG CHARGE= 1.5000 ATOM O2A TYPE=O2 CHARGE=-0.7016

ATOM O3A TYPE=OA CHARGE=-0.8680

ATOM N TYPE=N3 CHARGE=-0.3025 ATOM O5’ TYPE=OS CHARGE=-0.4478

ATOM HN1 TYPE=H CHARGE= 0.2770 ATOM C5’ TYPE=CT CHARGE= 0.0558

ATOM HN2 TYPE=H CHARGE= 0.2770 ATOM H5’1 TYPE=H1 CHARGE= 0.0679

S1



ATOM HN3 TYPE=H CHARGE= 0.2770 ATOM H5’2 TYPE=H1 CHARGE= 0.0679

ATOM CA TYPE=CT CHARGE= 0.0204 ATOM C4’ TYPE=CT CHARGE= 0.1065

ATOM HA TYPE=HP CHARGE= 0.0741 ATOM H4’ TYPE=H1 CHARGE= 0.1174

ATOM CB TYPE=CT CHARGE= 0.0297 ATOM O4’ TYPE=OS CHARGE=-0.3548

ATOM HB2 TYPE=HC CHARGE= 0.0195 ATOM C1’ TYPE=CT CHARGE= 0.0394

ATOM HB3 TYPE=HC CHARGE= 0.0195 ATOM H1’ TYPE=H2 CHARGE= 0.2007

ATOM CG TYPE=CT CHARGE=-0.0027 ATOM N9 TYPE=N* CHARGE=-0.0251

ATOM HG2 TYPE=H1 CHARGE= 0.0394 ATOM C8 TYPE=CK CHARGE= 0.2006

ATOM HG3 TYPE=H1 CHARGE= 0.0394 ATOM H8 TYPE=H5 CHARGE= 0.1553

ATOM SD TYPE=S CHARGE=-0.2782 ATOM N7 TYPE=NB CHARGE=-0.6073

ATOM CE TYPE=CT CHARGE=-0.0580 ATOM C5 TYPE=CB CHARGE= 0.0515

ATOM HE1 TYPE=H1 CHARGE= 0.0638 ATOM C6 TYPE=CA CHARGE= 0.7009

ATOM HE2 TYPE=H1 CHARGE= 0.0638 ATOM N6 TYPE=N2 CHARGE=-0.9019

ATOM HE3 TYPE=H1 CHARGE= 0.0638 ATOM HN61 TYPE=H CHARGE= 0.4115

ATOM C TYPE=C CHARGE= 0.9610 ATOM HN62 TYPE=H CHARGE= 0.4115

ATOM O TYPE=O CHARGE=-0.7856 ATOM N1 TYPE=NC CHARGE=-0.7615

ATOM OXP TYPE=OA CHARGE=-0.7517 ATOM C2 TYPE=CQ CHARGE= 0.5875

ATOM H2 TYPE=H5 CHARGE= 0.0473

ATOM PG TYPE=P CHARGE= 1.4463 ATOM N3 TYPE=NC CHARGE=-0.6997

ATOM O1G TYPE=O3 CHARGE=-1.0141 ATOM C4 TYPE=CB CHARGE= 0.3053

ATOM O2G TYPE=O3 CHARGE=-0.9438 ATOM C3’ TYPE=CT CHARGE= 0.2022

ATOM O3G TYPE=O3 CHARGE=-0.9153 ATOM H3’ TYPE=H1 CHARGE= 0.0615

ATOM PB TYPE=P CHARGE= 1.5390 ATOM C2’ TYPE=CT CHARGE= 0.0670

ATOM O1B TYPE=O2 CHARGE=-0.9582 ATOM H2’ TYPE=H1 CHARGE= 0.0972

ATOM O2B TYPE=O2 CHARGE=-0.8900 ATOM O2’ TYPE=OH CHARGE=-0.6139

ATOM O3B TYPE=OS CHARGE=-0.6252 ATOM HO2’ TYPE=HO CHARGE= 0.4186

ATOM PA TYPE=P5 CHARGE= 1.2530 ATOM O3’ TYPE=OH CHARGE=-0.6541

ATOM O1A TYPE=O2 CHARGE=-0.6138 ATOM HO3’ TYPE=HO CHARGE= 0.4376
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Structure of the SLL:AnL complex from Proteus and experiment

Figure A: Complex between AnL and the SLL MetRS mutant. Red: lowest-energy Proteus

structure; green: X-ray. Side chains close to the ligand; the 4 largest deviations are labeled.
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Chapter 3. Engineering methionyl-tRNA synthetase for ligand:substrate binding

and catalytic power

3.1 The effect of native rotamers

We tested the effect of native rotamers on the MetRS complex with the transition state [α-

Met:ATP]‡. We repeated the earlier estimations of catalytic efficiencies for α-Met, using MetRS

with its backbone relaxed in the context of the wild type sequence. Positions 13, 256, and 297

were allowed to vary. Computed values are then compared to the values obtained previously

without native rotamers.

3.1.1 Results

We considered two states: MetRS:ATP and MetRS:[α-Met:ATP]‡. We flattened the sequence

space of both states with simulations of 108 steps. Then, we performed two biased simulations

of the same length and computed the catalytic efficiencies. These simulations were produced

with the FDBLK solvent model.

Figure 3.1 compares the catalytic efficiencies obtained with and without the native rotamers.

The estimates are less accurate with the native rotamers when compared to experiments since

the sampling is now biased toward the native-like variants. The L13M mutation present in

{MAC, MAV, MAT, MSV, MST, MSA} showed a high loss of accuracy. SAI and CAI are no

longer predicted as better variants than the wild type LAI. Indeed, figure 3.2 shows that the

wild type sequence is the most active variant in the new simulations.

3.1.2 Conclusions

The fixed backbone approximation introduces a bias in the side chain packing. Combined with

a small number of rotamers for some side chain types, it is sometimes impossible to have a

satisfying packing, even for the wild type sequence. Thus, Phe has only 3 conformations in

the library used and is one of the most difficult side chains to place. Therefore, it is necessary

to introduce the native rotamers so the wild type conformation can be correctly reproduced.

This allowed us to eliminate false positives. However, the estimates are now less accurate

when compared to experiments. Variants with the L13M mutation are underestimated. This

variant involves a small change of the backbone geometry (Y. Mechulam, E. Schmitt, and G.

Nigro, personal communication). Therefore, this mutation is not fully consistent with the fixed

backbone CPD. However, we expect that the loss of accuracy in favor of better discrimination
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3.1. The effect of native rotamers
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Figure 3.2: Distribution of all the variants at positions 13, 256, and 297, sampled
according to catalytic efficiencies and stabilities. Values are computed relative to the
wild type sequence LAI.

of true positives will be beneficial overall. The use of a richer rotamer library may improve the

accuracy ([Shapovalov and Dunbrack, 2011]).
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Chapter 4

Engineering methionyl-tRNA synthetase

for β amino acid activity: background and

methods

The incorporation of β amino acids into proteins is an important biotechnological challenge.

Each canonical amino acid (i.e. α) has two β homologs (figure 4.1) which have an additional

carbon atom between the carboxylate and amine groups. Incorporating such molecules into

proteins could enhance available backbone geometries. One standard approach is to engineer

an appropriate aminoacyl-tRNA synthetase (aaRS).

CH2CN+H3 C O−

OH

CH2

CH2

S

CH3

C CH2 C O−

OH

N+H3

CH2

CH2

S

CH3

C C O−

OH

N+H3

CH2

CH2

S

CH3

Figure 4.1: β-Methionines (left) and α-Methionine (right) examples

Here, we present the engineering of Methionyl-tRNA synthetase (MetRS), which allows

the aminoacylation of tRNA(Met), for the incorporation of two β amino acids. Experimental

directed evolution has been used to redesign aaRSs to accept unnatural amino acids (uaa)
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background and methods

([Tanrikulu et al., 2009]). However, these approaches have limitations. Computational design

is another possibility. In a previous project ([Opuu et al., 2020a]), we designed active MetRS

variants for Met and recovered known variants for azidonorleucine (ANL), a Met homolog. We

used a Monte Carlo algorithm that performs an adaptive sampling with a few positions allowed

to mutate. Then, we considered the transition state of the aminoacylation reaction, to select

variants by their catalytic power. Now, we apply this method to the redesign of MetRS for β-

Met and β-Val activity. Wild type MetRS can process β-Met but with a weak activity. Hence,

we searched for variants with better activity than the wild type variant.

First, we recall the relationship between biochemical constants (kcat, KM et kcat
KM

) and free

energy. Next, we detail the MC approach for free energy estimations. Then, we briefly present

the activation reaction associated with the transition state we modeled and some structural

properties of MetRS and β amino acids.

Next, we present a first calculation strategy we used for the search of active variants for

β-Met and β-Val. First, we considered the MetRS complexes with β-MetAMP and β-ValAMP,

the products of the reaction. We sampled MetRS variants according to ligand binding, with

three positions allowed to mutate {13, 256, 297}. To investigate further these three positions,

we then considered transition state binding for both β amino acids.

Finally, we introduce a new method to pick positions to mutate according to binding free en-

ergy. We will apply this method to the MetRS complex with the [β-Met:ATP]‡ or [β-Val:ATP]‡

transition states. It allows to select quartets of positions to study in detail. With these positions

varying, we then produce mutations for β-Met or β-Val activity.

4.1 Enzyme kinetics and standard free energy

To sample enzyme variants, we use the binding to enzyme substrates, reaction products, and

transition states. Now, we recall the Mechaelis-Menten kinetic model that we use to describe

binding affinity and catalytic power.
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4.1. Enzyme kinetics and standard free energy

4.1.1 Protein ligand binding

Portein ligand binding and its specificity is due to the side chain composition and backbone

geometry of the binding site. Let E be an enzyme that binds to a ligand S:

E + S ⇋ ES. (4.1)

The binding affinity of E for S is measured by the ratio of equilibrium concentrations Ka:

Ka =
[ES]

[E][S]
=

1

Kd

(4.2)

[E], [S], and [ES] are the equilibrium concentrations of enzyme E, substrat S, and ES complex.

Kd is the dissociation constant. We derive a binding free energy from Ka, the association

constant:

∆Gb = −kT × ln(K∗
a) (4.3)

k (kcal.K-1.mol-1) is the Boltzmann constant, T (K) is the temperature, and ∆Gb (kcal/mol) is

the standard binding free energy. K∗
a is the association constant:

K∗
a =

[ES]
C0

[E][S]
C0C0

(4.4)

Where C0 = 1 M. Free energy is computed at standard concentrations although C0 may not

be explicitly written ([General, 2010]).

To improve the binding of a given ligand L, the quantity we are interested in is the relative

free energy. Let E be an enzyme and E’ a variant of E, the relative binding free energy is

defined as follows:

∆∆Gb(E → E ′) = −kT × ln(
K ′

a

Ka

) (4.5)

K ′
a is the binding constant of E’ for L. Here, the dependence on C0 is canceled.

4.1.2 Michaelis-Menten model

The activation reaction can be modeled with the Michaelis-Menten approach. First, we recall

the model, then we detail the principles of catalytic power.
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4.1.2.1 The model

We consider the non-covalent binding between enzyme E and substrat S, then the transforma-

tion into a product P:

E + S
k1
⇋
k−1

ES
kcat⇀ E + P (4.6)

k1 (M-1s-1) a second order reaction rate constant for complex formation. k−1 (s-1) is a dis-

sociation rate constant. kcat (s-1) measures the rate of product formation. For equilibrium

concentrations, the association constant is given by: Ka = k1/k−1. The enzyme concentration

is conserved, [E]0 = [E] + [ES].

Elementary reactions for the evolution of each species lead to the following system of dif-

ferential equations:

d[ES]/dt = k1[E][S]− (k−1 + kcat)[ES]

d[E]/dt = (k−1 + kcat)[ES]− k1[E][S]

d[S]/dt = k−1[ES]− k1[E][S]

d[P ]/dt = kcat[ES]

(4.7)

To express the product formation, we assume that the system is in a quasi-stationary state

([Briggs and Haldane, 1925]) such that the bound enzyme concentration is time-independent.

Now we have:
[E][S]

[ES]
=

k−1 + kcat
k1

= KM (4.8)

We recognize the Michaelis constant, KM (M)

Since the enzyme concentration is conserved, one can substitute [E] by [E]0 − [ES] in 4.8.

In addition, we assume that we are in an early stage of the process, so $[S] ≡ [S]0. We obtain

the bound enzyme concentration as a function of initial concentrations:

[ES] =
[E]0[S]0

[S]0 +KM

(4.9)

Now, we can substitute [ES] in the last equation of system 4.7 to obtain:

d[P ]/dt = kcat[ES] = kcat
[E]0[S]0

[S]0 +KM

=
Vmax[S]0
[S]0 +KM

(4.10)
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4.1. Enzyme kinetics and standard free energy

This gives:

d[P ]/dt =
kcat
KM

[E][S]0 (4.11)

As established by Mechaelis-Menten (figure 4.2), enzyme kinetics is described by the initial

concentrations [S]0 and [E]0, and two constants kcat and KM . KM can approximate Kd if

kcat ≪ k−1.

K!
M

V !
max

! V !
1

2
maxV

[S] !
0

Figure 4.2: Michaelis-Menten kinetic model for the initial rate.

4.1.2.2 Binding to the transition state according to Michaelis Menten

In the Michaelis-Menten model, catalytic power is measured by the product formation rate. A

high power corresponds to strong transition state binding. The catalytic efficiency is defined

as the second order reaction rate kcat
KM

(M-1s-1) that measure the effectiveness of enzymes. It

measures the transition state binding. Indeed, Figure 4.3 shows the sequence of states for a

given system along the reaction coordinate for the non-catalyzed path (in red) and the catalyzed

one. First, a complexe ES is formed with the binding free energy ∆Gb, then the substrat is

activated with the activation free energy ∆Ga, and the product is released. The limiting step is

the activation for the formation of the transition state denoted S‡. Natural enzymes stabilize

the transition state such that the activation free energy is lower (∆Ga < ∆G∗
a).

The catalytic power can be decomposed into two energetic contributions. First, the binding

free energy:
1

KM

≈ Ka = exp(−
∆Gb

kT
) (4.12)
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Then, thanks to the transition state theory ([Jencks, 1987, Garcia-Viloca, 2004, Marti et al., 2004]),

we have the activation free energy:

kcat ∝ exp(−
∆Ga

kT
) (4.13)

The catalytic power can be expressed as follow:

kcat
KM

∝ exp(−
∆G‡

kT
)

∆G‡ = ∆Ga +∆Gb

(4.14)

Therefore, the relative catalytic power between E and one of its variants E’ is:

(
kcat
KM

)′/(
kcat
KM

) = exp(−
∆∆G‡(E → E ′)

kT
)

−kT × ln((
kcat
KM

)′/(
kcat
KM

)) = ∆∆G‡(E → E ′)

(4.15)

(kcat
KM

)′ is the relative catalytic power. ∆∆G‡(E → E ′) is the change of binding free energy for

the transition state S‡.

E + S

ES

ES !
‡

!
G

Δ

E+P

! G!Δ
b

! G!Δ
‡

! G!Δ
a

Coordonnée de réaction

E+S !
‡

! G!Δ *
a

Figure 4.3: Free energy profil along the reaction coordiante The non-catalyzed path is
showed in red with an acitivation energy denoted ∆G∗

a.
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4.2. Biological context

The binding process is accompanied by a lost of entropy. The overall binding free energy

is ∆Gb = ∆H − T∆S where ∆H is the enthalpy and ∆S the entropy. This is due to the loss

of geometrical degrees of freedom, compensated by molecular interactions in the binding site.

For ES → ES‡, the enzyme binding site is pre-organized, so the stabilization of the transition

state is mainly due to the enthalpic contribution. Many studies showed that the electrostatic

contribution is predominant ([Warshel, 1978, Jindal et al., 2017]).

4.2 Biological context

4.2.1 Methionine aminoacylation reaction

aaRSs binds a specific canonical amino acid to its cognate tRNA. This reaction is called aminoa-

cylation. MetRS catalyses the aminoacylation of Met in two steps (4.4). First, α-Met-adenylate

(MetAMP) is produced and pyrophosphate (PPi) is released. Then, Met is transferred to its

cognate tRNA from the MetAMP molecule.

We consider the part of the reaction, in the absence of tRNA. MetRS binds a molecule

of adenosine triphosphate (ATP) and one amino acid. Complex formation is accompanied

by change of conformation of the activation, or KMSKS loop (figure 4.6). The conformation

associated to the complex is called active. The active conformation has its KMKSK motif

positioned to stabilize the tri-phosphate fragment ([Schmitt et al., 1994]).

Once the complex MetRS:Met:ATP is formed, a nucleophilic attack occurs on the ATP

α phosphate (in the presence of a Mg2+ ion). It leads to transition state [Met:ATP]‡ for-

mation where P-O bonds form a plane and two are perpendicular to the plane (figure 4.5)

([Leatherbarrow et al., 1985]). The KMSKS loop stabilizes the adenine fragment in the re-

verse conformation ([Denessiouk and Johnson, 2003]). Next, PPi is released and MetAMP is

produced.

MetRS+ATP+Met
KATP

MetRS:ATP+Met

K ′
Met

MetRS:Met:ATP
K ′

ATP

MetRS:Met+ATP

KMet

kf

kb
MetRS:MetAMP:PPi

Kpp

MetRS:MetAMP+PPi

Figure 4.4: Met aminoacylation catalyzed by MetRS. [Nigro et al., 2020]
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Figure 4.5: KMSKS loop conformations and the binding site. MetRS E. coli. (code 1PG0)
is shown in blue. KMSKS loop is shown in yellow with the active conformation (code 3KFL
from L. major).

PPi

AMP

Mg

Met

Figure 4.6: Met transition state model [Met:ATP]‡.
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4.2. Biological context

Figure 4.7: Close view of the MetRS binding site with adnine fragment and py-
rophosphate. A) Figure adapted from [Denessiouk and Johnson, 2003] shows the reverse
adenine binding conformation. B) It shows the stabilization of pyrophosphate and adenine
fragments.
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4.2.2 β amino acids

β amino acids have an additional methylene in between the amino and carboxylate groups

(figure 4.8). They can allow new geometries for protein backbones and reduce the recognition by

proteases ([Daura et al., 2001]). They can also change the alternation of side chain orientations.
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CH2
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CH3
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CH2
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CH3

C CH2 C O−
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H3C CH3
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OH

N+H3

CH

H3C CH3

Figure 4.8: β amino acids, the examples of β-Methionine and β-Valine. In the right
are shown canonical amino acids. In the left are shown β amino acids.

4.3 Theoretical methods

Here, we use Monte Carlo approaches implemented in the Proteus software ([Simonson et al., 2013,

Simonson, 2019]). First, we recall the Monte Carlo sampling and how free energy is derived

from simulations. Next, we present a new method to select mutating positions.

4.3.1 Design of proteins with a Monte Carlo approach

Proteus is based on three components: a discrete confromational space, an energy function

based on molecular mechanics, and a Monte Carlo search algorithm.
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4.3.1.1 Bound and unbound modelisation of a polypeptide

CPD needs a rapid evaluation of energies. To achieve this, we use an approximation in which

the backbone is held fixed and the side chain flexibility is modeled with a discrete set of

conformations called rotamers. Here, we use the Tuffery library ([Tuffery et al., 1997]), which

has 17 rotamers for Met for example (figure 4.9). Once the ligand is placed in the binding site,

we assign a set of rotamers to model its flexiblity as well (based on an existing library).

Figure 4.9: Methionine rotamers

4.3.1.2 Energy function

The energy function takes the form Etot = Evac +∆Gsolv, where Evac is the potential energy in

gas phase and ∆Gsolv is the free energy of solvation. For the potential energy, we use the ff99sb

force field ([Cornell et al., 1996]). The electrostatic contribution is modeled with a Coulomb

potential. Hydrogen bonds are included in the electrostatic contribution with their specific

partial charge parameters.

Generalized Born (GB) model the polar solvent contributions ([Schaefer and Karplus, 1996]),

and Lazaridis-Karplus model is used for the non-polar solvent contributions ([Lazaridis and Karplus, 1999,

Michael et al., 2017]). Here, we used two recent GB variants ([Villa et al., 2017]): the Native

Environment Approximation (NEA), where GB radii are computed in the native conforma-

tion, and the Fluctuating Dielectric Boundary (FDB) in which GB radii take into account the

changes of each atom’s environment along the MC simulation.
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4.3.1.3 Monte Carlo exploration

Monte Carlos allows us to sample a probability distributions. Here, it allows us to sample

variants S of a protein according to Boltzmann distribution, P (S) = 1
Z
exp(−E(S)

kT
). E(S) is the

variant energy, Z is the partition function, k is Boltzmann constant, and T is the temperature.

First, we consider a polypeptide with a sequence S = S1, S2, ...Sp. We assign to each

position Si a rotamer ri. We denote C(S) = (r1, r2, ..., rp) the conformation of S. We consider

two sampling moves, the change of a rotamer (ri → r’i) or the change of a type (Si → S’i).

Next, we create an ergodic and reversible Markov chain using the Metropolis-Hasting algorithm

([Hastings, 1970]). A Markov chain is a sequence of moves in the protein sequence/conformation

space S → S ′ → ...→ S ′′. The sampling of variants along this sequence converges to a unique

distribution, the Boltzmann distribution. The probability of a move depends on the change

of energy ∆E(S → S ′). Let P (S → S ′) be the probability to chose the move S → S ′.

The probability of such a move is π(S → S ′) = P (S → S ′)acc(S → S ′), where acc(S →

S ′) = min(1, exp(−∆E(S→S′)
kT

)P (S→S′)
P (S′→S)

) is the acceptance probability. Under a detailed balance

hypothesis, the populations of sequences N(S) at equilibrium follow the Boltzmann distribution.

Since populations follow the Boltzmann distribution, each sequence has the probablitiy

P (S) = 1
Z

∑

C exp(−E(C(S))
kT

) where C(S) are the conformations. Therefore, −kT ln(P (S ′)/P (S)) =

∆G(S → S ′) gives the free energy change for a sequence mutation. We have:

P (S ′)

P (S)
= exp

(

−
∆G(S → S ′)

kT

)

∆G(S → S ′) = G(S ′)−G(S)

(4.16)

G(S) is the free energy of S (respectively S ′).

Now, we consider the complex with a ligand L. Populations in the bound state obtained

from a MC simulation still follow equation 4.16. Bound state free energies are denoted with an

L subscript. We can derive the relative free energy of binding:

∆∆G(S → S ′) = ∆GL(S → S ′)−∆G(S → S ′) (4.17)

With two simulations, one can derive relative binding free energies of a ligand L if mutations

have been sampled in both independent simulations. This raises one important issue. Since
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sequences are populated exponentially according to free energy differences, only a fraction of

sequences are sampled in each simulation. In practice, only a handful of sequences overlap in

the two simulations. Therefore, we need a more sophisticated method.

4.3.1.4 Adaptive landscape flattening with Monte Carlo simulation

To tackle the sampling issue, we use a method called Adaptive Landscape Flattening (ALF)

([Villa et al., 2018, Bhattacherjee and Wallin, 2013]). For a polypeptide of p positions, first we

consider it in the absence of ligand. Then, calculations will be repeated in the presence of a

ligand L. Corresponding free energies will be denoted with an index u ou b, for unbound or

bound. ALF is based on two separate MC simulations. First, we develop a bias potential such

that all sequences are sampled with comparable probabilities. Next, we apply the bias to a

simulation. It allows us to compute free energy changes for almost the entire sequence space

considered.

For the first step, the bias potential EB
u (S; t) of a sequence S at time t takes the following

form ([Villa et al., 2018, Villa and Simonson, 2018]):

EB
u (S; t) =

∑

i

EB
i (Si(t); t) +

∑

i<j

EB
ij (Si(t), Sj(t); t) (4.18)

EB
i (Si; t) is the bias term associated with side chain type Si at position i. EB

ij (Si(t), Sj(t); t)

is another bias term for the position pair i and j. After a segment of T MC steps, the bias is

incremented as follows ([Villa and Simonson, 2018, Villa et al., 2018]):

eBi (Si(t); t) = e0 × exp(−EB
i (Si(t); t)/E0)

eBij(Si(t), Sj(t); t) = e0 × exp(−EB
i (Si(t), Sj(t); t)/E0)

(4.19)

where eBi (Si(t); t) and eBij(Si(t), Sj(t); t) are increments added to the corresponding bias terms.

e0 is the initial bias increment. This update rule is borrowed from well tempered metadynamic

([Barducci et al., 2008]). E0 controls the speed at which the increment decreases (high values

mean a low decrease rate). At the end of the adaptive simulation, we have obtained the bias

EB
u (S) ≡ EB

u (S; t). In pratice, the bias doesn’t need to flatten perfectly the sequence space

distribution.
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In a second step, we produce a biased simulation in which we apply the bias learned above.

Sequence probabilities are now governed by:

P̃ (S ′)

P̃ (S)
= exp(−∆G̃u(S → S ′)/kT )

∆G̃u(S → S ′) = [Gu(S
′) + EB

u (S
′)]− [G(S) + EB

u (S)]

(4.20)

G̃u(S → S ′) is the free energy change in the biased simulation. If the bias flattened the

distribution perfectly, one would have G̃u(S → S ′) = 0. We convert population ratios into free

energies and remove the bias contribution (EB
u (S)) to obtain the mutation free energy changes:

∆∆Gu(S → S ′) = −kT × ln
(

P̃ (S ′)

P̃ (S)

)

−∆EB
u (S → S ′)

∆EB(S → S ′) = EB(S ′)− EB(S)

(4.21)

Now, we apply the same procedure to the complex with the ligand. First, we build a bias

potential (EB
b ) from an adaptive simulation. Next, we produce a simulation including the bias.

We obtain the mutation free energy changes in the bound state ∆Gb(S → S ′). Finally, we

subtract the unbound energy to obtain the relative binding free energy:

∆∆G(S → S ′) = ∆Gb(S → S ′)−∆Gu(S → S ′) (4.22)

If L was a transition state L‡, ∆∆G(S → S ′) would be the catalytic efficiency. Also, we can

apply this procedure to a second ligand, say L’, in order to derive selectivity estimations.

The method can be slightly modified to allow the sampling of variants directly on their

binding free energy. Instead of applying the bias derived from the bound state (EB
b (S)), we

apply the unbound state bias (EB
u (S)) to sample sequences in the bound state. If the bias

achieves near-perfect flattening, sequences are populated according to their binding free energy:

∆G̃‡(S → S ′) = [Gb(S) + EB
u (S)]− [Gb(S) + EB

u (S)]

∆G̃‡(S → S ′) ≈ [Gb(S)−Gu(S)]− [Gb(S)−Gu(S)]

∆G̃‡(S → S ′) ≈ ∆G‡(S → S ′)−∆G‡(S → S ′)

∆G̃‡(S → S ′) ≈ ∆∆G‡(S → S ′)

(4.23)
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Finally, we apply equation 4.22, where the bias cancels out since it is the same in both states.

In practice, ALF can be applied on a small number of mutable positions, 4-5 positions, since it

needs to sample heavily each sequence in order to make a robust statistical estimation.

4.3.1.5 Screening method for position selection

A pertinent selection of mutable positions is crucial for ALF, since only 4-5 positions are

allowed to mutate. To fully explore a binding site of 20 positions, we would need to consider

4845 possible sets of 4 positions. With four simulations per quartet, we would have to perform

19380 MC simulations. Only a fraction of these combinations would produce good variants.

Here, we describe a screening method that allows the selection of positions of interest. First,

we select 20-30 positions within a distance threshold to the ligand (panel A, figure 4.10). We

form pairs of positions whenever the Cα-Cα distance is below 12 Å (panel B, figure 4.10). For

each such pair of positions, we perform an ALF to evaluate the catalytic efficiency of each pair

of residue types (panel C, figure 4.10). Figure 4.10 shows eight ALFs, one for each pair.

For each pair of positions, we select the best pair of residue types with a catalytic efficiency

threshold. We use the average catalytic efficiency to score the pair. The residues observed

in those pairs are stored and will be used to restrain the mutation space of future quartets.

Finally, the score of each quartet is the average score of the pairs of which it consists. All 4845

quartets can be evaluated with this score. A few will be selected for further investigation.

This score reflects the quality of the pairs that compose a quartet. We assume that a score

based on pairs is enough to describe the quality of a given quartet. This might to simplistic if

there are too many correlations within the quartet.

4.4 Structural models

4.4.1 KMSKS loop conformations

The Escherichia coli (E. coli) MetRS model started with three crystal structures (tableau 4.1).

First, we used E. coli MetRS structure (PDB 1PG0 [Crepin et al., 2003]) with the KMSKS

loop in the inactive state (in blue, figure 4.6). Then, the active conformation was modeled

with Leishmania major (L. major) MetRS structure (PDB 3KFL [Larson et al., 2011]) with
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Figure 4.10: Representation of the selection of positions and pairs. A) Only positions
close to the binding are considered. B) Closed pairs only are considered. For the sake of
simplicity, only seven positions are shown by numbered squares. C) Catalytic efficiency is
computed for each pair of residues with an ALF. Residue pairs are sorted according to catalytic
efficiency.
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the alignment of common ligand fragments in both structures. L. major was mutated into the

E. coli sequence with Scwrl4 ([Krivov et al., 2009]). Finally, we adjusted its geometry using 40

steps of conjugate gradient minimization to obtain a model of E. coli MetRS with the KMSKS

loop in the active conformation. Adenylate and pyrophosphate fragments were used to align

ATP in the binding site. The Mg2+ ion was already in 3KFL structure and was transferred to

the new model. We used visual inspection to assign histidine protonation states. Other ionisable

groups were held in their standard protonation state. We call this complex MetRS:ATP.

Tableau 4.1: Experimental structures used to build the active model for E. coli

MetRS

1PG0 3KFL 6SPN
Resolution (Å) 1.9 2.00 1.45
ligand Methionine phosphinate Methionyladenylate + PPi β-Methionine
KMSKS conformation inactive active inactive
organism E. coli L. major E. coli
MG2+ Non Oui Non

4.4.2 Ligand: force field and catalytic pose

For the β-Met side chain pose, we used a recent complex of E. coli MetRS with β-Met (PDB

6SPN [Nigro et al., 2020]). The experimental data showed two conformations for the carboxy-

late fragment (figure 4.11). The B conformation is closer to a catalytic geometry although it is

the less populated (30% occupancy in the crystal). We aligned MetRS:ATP with that structure

to form RS:β-Met (figure 4.14). If the ligand in the binding site is the canonical Met, we call

it RS:α-Met.

To create the complex with the transition state [β-Met:ATP]‡, we started from the RS:β-

Met complex and [Met:ATP]‡ active geometry (figure 4.14). We apply harmonic constraints to

maintain the B conformation of the carboxylate. We add a bond of 2.4 Å between the Pα and

the carboxylate. We apply planar constrains to the phosphate α fragment. Then, we use a few

steps of minimization to obtain the β-Met transition state [β-Met:ATP]‡. We call this complex

RS:[β-Met:ATP]‡. If the transition state in the binding site is the canonical Met, we call it

MetRS:[α-Met:ATP]‡. For β-Val models, we aligned the side chain fragment to the β-Met side

chain.

β-Met flexibility is limited to its side chain. The other fragments are held fixed. To model
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Figure 4.11: β-Met observed conformations in the crystal structure (6SPN) A confor-
mation is the most populated (70% occupancy). B is the second conformation observed (30%
occupancy). In blue and transparent, we show the β-Met transition state. In grey in the crystal
structure 6SPN backbone.

Met flexibility, we used Tuffery Met rotamers ([Tuffery et al., 1997]). β-Val rotamers (initially

three) are enriched with intermediate χ angles, to give 17 β-Val rotamers (figure 4.12). Table

4.2 shows the list of structural models.

� -Metβ � -Valβ

Figure 4.12: [β-Met:ATP]‡ et [β-Val:ATP]‡ rotamers.
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Tableau 4.2: List of structural models used for catalytic efficiency, stability, and
affinity estimations

MetRS:ATP RS:β-Met RS:[β-Met:ATP]‡ MetRS:[α-Met:ATP]‡ RS:[β-Val:ATP]
organism E. coli E. coli E. coli E. coli E. coli
KMSKS conformation active active active active active
ligand ATP β-Met+ATP [β-Met:ATP]‡ [Met:ATP]‡ [β-Val:ATP]‡
Mg2+ oui oui oui oui oui

4.4.3 Backbone relaxation

We used short MD based relaxation, since we have observed that the sampling and free energy

calculations are sensitive to this step. It seems that energy minimization procedures may

overspecialize the backbone to the wild type sequence in one state, say APO. Then, the relative

catalytic efficiency estimates may be shifted. This can impact the final free energy calculations.

Conversely, it can overspecialize the structure for the bound state and shifts the wild type value

in to the opposite direction.

First, systems are truncated at 25 Å from the ligand Pα and solvated in a large box of TIP3P

water ([Jorgensen et al., 1983]). Then, we perform 100 conjugate gradient minimization steps.

Harmonic restraints were applied to nonhydrogen atoms with force constants that decreased

gradually from 5 to 0.5 kcal/mol/Å2 except for groups near the truncation sphere. 575 ps of

MD were performed with NAMD ([Phillips et al., 2005]). For the RS:[β-Met:ATP]‡ complex,

we first performed the relaxation with RS:[β-Met:ATP]‡ and we aligned the transition state

geometry on it. The protein geometry remains the same in both complexes.

4.4.4 Unfolded state

The unfolded state allows us to estimate roughly the decrease of stability of predicted variants.

We model the unfolded state of a sequence as an extended peptide where the energy is the

sum of position dependent terms ([Pokala and Handel, 2005]). For each mutable position, we

computed the energy between atoms in the side chain, local backbone, and the two adjacent

Cα positions. The energy term for a given side chain type is the average of the best rotamers

at each position. We call this energy the reference energy (tableau 4.3). The sum of reference

energies of a given sequence is its energy in the unfolded state.

Stability is the free energy difference between the unfolded and folded state. The folded
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Tableau 4.3: Reference energies (ref. ener.) for the 18 side chain types. Mutation to
Pro and Gly are not allowed.

type ref. ener. type ref. ener.
ALA 6.80 ILE 10.15
ARG -18.79 LEU 5.99
ASN 0.31 LYS 4.61
ASP -4.23 MET 5.74
CYS 5.91 PHE 9.50
GLN 2.58 SER 3.58
GLU -1.24 THR 3.07
HISδ 23.27 TRP 11.13
HISǫ 22.50 TYR 6.21
HIP+ 27.14 VAL 5.46

state energy is computed for the complex MetRS:ATP. It implies that ATP and Mg2+ are

already in the binding site, and the KMSKS loop is in the active conformation. Stability is

therefore a more complex quantity since it takes into account the binding of ATP and Mg2+

and the loop conformation change.

4.4.5 Catalytic efficiency estimation

For the catalytic efficiency, we considered the process MetRS:ATP→ RS:[β-Met:ATP]‡ since the

experiments are performed under ATP saturation ([Nigro, 2019, Nigro et al., 2020]). MetRS:ATP

is the complex of MetRS with ATP and Mg2+, with the KMSKS loop in the active conforma-

tion. The catalytic efficiency does not take into account ATP binding or the loop conformation

change.

ATP binding mode, in general, involves the Watson-Crick side of the base ([Denessiouk and Johnson, 2000

Denessiouk and Johnson, 2003], [Denessiouk et al., 2001]) as shown in figure 4.7. We don’t al-

low mutations in positions involved in the recognition. We assume that ATP binding is therefore

constant for all the variants we will produce. The stability criterion will help filter out ones

that may not reproduce such geometries and binding.

Figure 4.13 shows a view of MetRS binding sites in the states considered (table 4.2). These

states allow us to compute catalytic efficiency for Met, β amino acids, and also the selectivity

between activated ligands. The selectivity quantifies the preference for a ligand compare to

another. It is measured by the binding free energy difference between two activated ligand

considered (∆∆G‡). As shown in figure 4.13, the selectivity in favor of β-Met with respect to
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α-Met involved the change MetRS:[α-Met:ATP]‡ → RS:[β-Met:ATP]‡.

Figure 4.13: Four structured states to evaluate the catalytic efficiency and selectivity.
We show a closed view of the four states {MetRS:ATP, MetRS:[α-Met:ATP]‡, RS:[β-Met:ATP]‡,
RS:[β-Val:ATP]‡} binding sites. MetRS is in grey. Relative free energy changes are represented
by arrows.

4.5 Numerical methods

Now, we present the parameters we used for the energy function and MC simulations. Finally,

we present the screening approach we used for the selection of positions to design in both β-Met

and β-Val complexes.
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Figure 4.14: Junction atoms for Met+ATP & [β-Met:ATP]‡. β amine and carboxylate
fragments (top left). α and β phosphate is showed in the top right corner. The transition state
is showed in the bottom.

4.5.1 Energy function

The partial charges of ribose, adenine and side chain fragments were derived from existing

parameters in ff99SB from analog fragments. For the junction atoms, we performed an HF/6-

31G* ab initio calculation. Then, partial charges were chosen to reproduce the electrostatic

potential according to Merz and Kollman ([Cornell et al., 1995]). These calculations were per-

formed with Gaussian 9. This procedure is consistent with the Amber force field. β-Val charge

parameters for the junction, the ATP, and the adenine fragments are the same. Bonded and

van der Waals parameters were assigned by analogy to the α-Met model ([Opuu et al., 2020a]).

Finally, bonded terms were assigned by analogy to existing parameters.
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Tableau 4.4: Junction charge parameters for β amino acids in RS:β-Met and RS:[β-
Met:ATP]‡ ligands

Atomic name Atomic type RS:β-AA RS:[β-AA:ATP]‡
MG MG 1.5000 1.5000
N N3 -0.3025 -0.3025
HN1 H 0.2770 0.2770
HN2 H 0.2770 0.2770
HN3 H 0.2770 0.2770
CA CT -0.2298 -0.2298
HA HP 0.1208 0.1208
CAA CT -0.0620 -0.0620
HAA2 HC -0.0554 -0.0554
HAA3 HC -0.0554 -0.0554
C C 0.8326 0.9610
O O -0.7856 -0.7856
OX OX -0.7257 -0.7517
PB P 1.3586 1.4664
O1B O2 -0.8280 -0.9582
O2B O2 -0.8933 -0.8900
O3B OS -0.5746 -0.6252
PA PA 1.2412 1.1805
O1A O2 -0.6153 -0.6138
O2A O2 -0.7853 -0.7016
O3A OS -0.7561 -0.8680
O5’ OS -0.5025 -0.4478
C5’ CT 0.0558 0.0558

4.5.2 Parameters of MC simulations

4.5.2.1 Pair designs

Pair scores were computed from the aggressive ALF procedure applied to each pair of positions

considered. Mutations to GLY and PRO are not allowed. 324 pairs of residues need to be

visited per position pair. First, we flatten the sequence space for MetRS:ATP. Then, we flatten

the activated states, MetRS:[α-Met:ATP]‡ and MetRS:[α-Met:ATP]‡.

We used 5 millions steps MC simulations with a bias update frequency T = 1000 steps, e0 =

0.2 kcal/mol, E0 = 40 kcal/mol, and the NEALK solvent model ([Villa et al., 2018]). Table 4.5

shows the other MC parameters. Only pair bias terms are used here. Then, biased simulations

are performed. When the simulation is done, we remove from the mutation space types that

need more than 10 kcal/mol of bias to be sampled at room temperature (kT=0.6).

If the bias does not allow the sampling of the wild type sequence and at least 95% of the

mutation space, we add another iteration of ALF on top of the current bias. When the sampling
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is sufficient, we compute the catalytic efficiency with respect to the wild type sequence.

4.5.2.2 Quartet designs

The quadruplets with high pair scores are investigated with a second MC simulation. We

used an aggressive ALF procedure with the more accurate solvent FDBLK. We performed 108

MC steps to flatten the quadruplet sequence space at room temperatures for all the states:

MetRS:ATP, RS:[β-Met:ATP]‡, and RS:[β-Val:ATP]‡. The bias is refined until the flattening

is sufficient.

Tableau 4.5: The list of MC simulation parameters. Rot is the probability of changing
one rotamer. Mut is the probability of one mutation. Rot-Rot is the probability of changing
two rotamers. Rot-Mut is the probability of changing a rotamer then a type.

Parameters Pair Quartet
Energy function NEALK FDBLK
Number of MC steps 5.106 108

kT 0.6 0.6
Number of replicas 1 1
Bias parameters
e0 0.2 0.2
E0 40 40
t 1000 1000
Move probabilities(a)
Rot-Mut 0.1 0.1
Rot-Rot 0.9 0.9
Mut 0.1 0.1
Rot 0.9 0.9

4.5.3 Selection of mutable positions with binding site screening

First, we chose 19 positions from the first and second layers in the binding site within 20 Å of the

α phosphorus (except Pro and Gly). Positions in the KMSKS loop are not allowed to mutate

since they stabilize the PPi fragment ([Schmitt et al., 1994]). Active positions are shown in

table 4.6 and figure 4.15. Then, position pairs are formed when the Cα-Cα distance is less than

12 Å. 263 flexible positions are modelled with Tuffery rotamer libary ([Tuffery et al., 1997])

enriched with the native rotamers.

We considered 87 of the 171 possible pairs for the 19 positions selected. For each pair, we

first flattened the position pair space with a MC of 5.106 steps. Then, a biased simulation
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Tableau 4.6: 19 active positions selected in the binding site with a distance threshold
of 12 Å.

positions types positions types positions types
11 CYS 50 ALA 253 TRP
12 ALA 51 ASP 256 ALA
13 LEU 52 ASP 293 ILE
15 TYR 97 THR 296 ASP
16 ALA 251 TYR 297 ILE
17 ASN 252 VAL 300 PHE
24 HIS

Figure 4.15: Closed view (stereo) of MetRS binding site with RS:[β-Met:ATP]‡ lig-
and. The transition state RS:[β-Met:ATP]‡ is showed in blue, mutable positions are showed in
magenta, and KMSKS loop in yellow.

is performed to compute stability and catalytic efficiency. We removed the unstable pairs of

types. For each pair, the score is the average of the 10 best pairs of types sampled. The score

of a quadruplet of positions is the average of pair scores.

Pair scores are used to selected the quartet of positions that are likely to produce effective

variants. For β-Val, we computed the scores for the 3876 quadruplets of positions. Residue

types sampled to build the pair scores is used to build the mutation spaces. For β-Met, the

pair score is a bit different. Since positions 13 and 297 already provided active variants (see

below) we allow LMCS types for 13 and IC for 297 positions. For these augmented pairs, we

computed the average over the 100 best pairs of types.
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To select quadruplets with β-Met we used a different approach. To build a given quadruplet,

we start by a position i chosen among the 19 positions. Among the 18 positions left, we select

j so the score is maximized. Now, we have two positions. Then, we select a third position k

among the 17 position that maximize the pair score with j. Finally, we performed the same

search for the 4th position. We repeated the same procedure by starting with the 19 other

positions. This gave 19 quartets of positions. We repeated the procedure twice, with the

structure relaxed with either the MAC sequence or the wild type sequence for positions 13,

256, and 297.

110



Chapter 5

Engineering methionyl-tRNA synthetase

for β amino acid activity: results

5.1 First search for active variants

We begin with a first round of predictions of variants for β-Met and β-Val activity. We inves-

tigated three positions selected manually: 13, 256, and 297. To design variants, we used the

binding to the activation reaction products β-MetAMP and β-ValAMP. 20 variants were then

selected for experiments. 11 were directly chosen from the sampling and 9 were derived from

the mutation observed in the sampling. Among the 11 predicted variants, five have a weak

but measurable catalytic efficiency. For three variants, the selectivity for α-Met is reduced by

factors of 2-8. Details are in the next sections.

5.1.1 Affinity design for β-MetAMP and β-ValAMP

First, we modeled the binding of MetRS to β-MetAMP or β-ValAMP. Ligands were aligned in

the binding site using the α-Met pose as described in [Opuu et al., 2020a]. In those models, the

KMSKS loop is in the inactive conformation. For the APO system denoted RS, we removed

the ligand from the binding site.

We considered the free energy changes RS → RS:β-MetAMP and RS → RS:β-ValAMP

reactions. We used the FDBSA solvent with a dielectric constant of 80 for the water and 4

for the protein. Charge parameters were assigned from α-MetAMP model. Bonded and other
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non-bonded parameters were assigned by analogy to existing parameters.

First, we flattened the apo sequence space with an adaptive MC simulation. Then, we

applied the bias to the sampling of variants in the bound states with β-MetAMP and β-

ValAMP. Variants were sampled directly according to their binding affinity for the products

of the activation reaction. Table 5.1 shows the best variants for β-MetAMP and β-ValAMP

binding affinity. Only variants with a stability loss below 3 kcal/mol with respect to the wild

type sequence are shown.

Eleven variants were chosen for the experiments directly from the sampling based on the

mutations observed in the predicted variants. Table 5.2 shows the bindings and catalytic

efficiencies obtained experimentally. The selected variants are denoted with a * of ** in table

5.1. Eleven variants have a measurable catalytic efficiency but only five were directly sampled

in the MC simulation. However, four of the false positive are unstable variants (stability >

3 kcal/mol). Here, the wild type variant LAI was not sampled, therefore, the affinities are

estimated with respect to a slightly different variant, LAA. The catalytic efficiency of the

tested variants were not better than the wild type for β-Met but three improved slightly the

selectivity in favor of β-Met. These variants all have the mutation I297C.

For β-ValAMP, MAC is the best predicted variant with 6.3 kcal/mol gain in binding free

energy compare to the wild type sequence. The I297C mutation appears in the six best β-Val

variants. None of the 19 best variants have the A256S mutation which appeared in the best

β-MetAMP predicted variants.
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Tableau 5.1: Best variants with a stability threshold of 3 kcal/mol sorted by the
β-MetAMP binding (left) or β-ValAMP binding (right). β-Met variants free energy
binding are compared to the reference sequence LAA since LAI (the wild type sequence is not
sampled here). Variants with a measurable catalytic efficiency are annotated with ** and other
tested variants are annotated with *. Not sampled variants with β-MetAMP (respectively β-
ValAMP) are assumed to have a free energy of binding > 0.88 kcal/mol (> 1.2 kcal/mol for
β-ValAMP).

reference LAI LAA LAI LAI LAA LAI
variants stability β-Met β-val variants stability β-Met β-val
MAA 2.01 -3.50 -1.93 MAC 2.28 -3.41 -6.29
MAC** 2.28 -3.41 -6.29 CAC -7.87 -0.57 -4.22
MAV** 1.28 -2.38 -2.67 SAC -4.00 0.17 -4.13
CSA -6.34 -2.18 0.82 LAC -0.32 0.88< -3.80
HSA 2.65 -2.12 1.2< AAC -7.59 0.32 -3.33
CSC -6.18 -2.11 -0.97 HAC 0.35 0.88< -2.74
LSC 1.25 -2.06 -0.46 MAV 1.28 -2.38 -2.67
LSA 1.05 -1.97 1.2< CAT -5.65 0.88< -2.53
SSA -2.46 -1.79 -0.04 CAS -6.18 -0.04 -2.49
ASA -5.92 -1.78 1.2< SAT -1.72 0.88< -2.38
CSS -4.38 -1.61 1.2< SAS -2.35 0.88< -2.25
HSC 2.77 -1.60 1.2< LAS 1.33 0.88< -1.93
CSV -7.00 -1.50 1.2< MAA 2.01 -3.50 -1.93
CST -3.90 -1.46 1.2< LAT 1.78 0.88< -1.78
ASC -5.76 -1.24 0.19 AAT -5.40 0.88< -1.70
SSC* -2.21 -1.15 -0.83 AAS -5.90 0.88< -1.45
HSV 1.86 -1.10 1.2< MAI 2.53 -0.42 -1.39
LSV 0.36 -0.92 1.2< AAD 0.06 0.88< -1.34
CAA -8.10 -0.70 1.2< CAD -0.34 0.88< -1.28
ASS -4.06 -0.61 1.2< CSC -6.18 -2.11 -0.97
CAC** -7.87 -0.57 -4.22 HAS 2.95 0.88< -0.94
SSV -3.21 -0.57 1.2< HAT 2.53 0.88< -0.89
SST 0.01 -0.42 1.2< SSC -2.21 -1.15 -0.83
MCC 1.94 -0.42 -0.60 MCC 1.94 -0.42 -0.60
MAI 2.53 -0.42 -1.39 CAV -8.78 0.34 -0.58
HAA 2.17 -0.36 -0.33 LSC 1.25 -2.06 -0.46
TSA -1.48 -0.33 1.2< HAA 2.17 -0.36 -0.33
AAA -7.84 -0.23 1.2< SAV -5.02 0.88< -0.20
ASD 1.96 -0.23 0.45 SSA -2.46 -1.79 -0.04
CSD 1.49 -0.21 0.64 HAV 1.38 0.88< -0.04
SSS -0.70 -0.10 1.2< LAI 0.00 0.88< -0.00
CAS -6.18 -0.04 -2.49 MCV 1.02 0.88< 0.16
LAA* -0.62 -0.00 1.2< ASC -5.76 -1.24 0.19
TSS 0.35 0.00 1.2< CCS -6.36 0.88< 0.33
LSI 1.64 0.11 1.2< SCA -4.29 0.88< 0.43
SAC** -4.00 0.17 -4.13 ASD 1.96 -0.23 0.45
AAC -7.59 0.32 -3.33 AAV -8.57 0.88< 0.58
ASV -6.54 0.33 1.2< LAV -1.33 0.88< 0.58
CAV** -8.78 0.34 -0.58 CSD 1.49 -0.21 0.64
MST* 6.21 -3.97 -1.28
MSV* 3.06 -3.95 0.64
MAT* 4.56 -2.70 -4.55
MSI* 4.36 -2.36 1.2<
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Tableau 5.2: Experimental biding affinity and selectivity for variants of positions
13, 256, and 297 for β-Met. ND = not determined (details about experiments are in
[Nigro, 2019]). specificity

specificity(WT)
is the reduction of selectivity in favor of α-Met, relative to the wild

type sequence LAI.

variants KM (β) kcat (β) kcat
KM

(β) kcat
KM

(α) kcat/KM (α)
kcat/KM (β)

specificity
specificity(WT)

(mM) (10-3s-1) (10-3s-1mM-1) (s-1mM-1) (103)
CAC* 6.3 21 3.4 9.8 2.9 7.7
MAC* 7.7 16 2.1 14.0 6.7 3.3
SAC* 20 22 1.1 12.0 10.9 2.0
LAC 3.5 18 5.0 108.0 21.6 1.0
LAI 0.4 51 138 3073.0 22.3 1.0
LAT 6.2 5.2 0.83 26.0 31.3 0.7
MAV* 7.1 5.4 0.75 28.0 37.3 0.6
CAI 2.6 21 8.9 412.0 46.3 0.5
SAI 4.2 23 5.4 326.0 60.4 0.4
CAV* 38 13 0.35 23.0 65.7 0.3
LAV 11 8.0 0.74 66.0 89.2 0.2
SSI 7.5 <3.5 ND 70.0 ND ND
MAT 8.2 <3.6 ND 4.9 ND ND
MSI 8.4 <3.7 ND 27.0 ND ND
MST 19 <5.7 ND 0.5 ND ND
LAS 21 <6.1 ND 0.4 ND ND
MSV 39 <10 ND 1.5 ND ND
PAI 47 <11 ND 3.1 ND ND
SSC* 60 <14 ND 4.5 ND ND
LAA* 180 <38 ND 0.5 ND ND
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5.1.2 Residence time in molecular dynamic simulations

We investigated a few variants with molecular dynamics simulations in explicit solvent, to

calculate the residence times of the β amino acids. First we model the complexes with the

β amino acids instead of the adenylate ligands. Then, the complexes were truncated at 25 Å

from the ligand and solvated in a large water box. Harmonic constraints were applied to non-

hydrogen atoms in the layer close to the truncated region. When the ligand RMSD is above 4

Å compare to the initial pose, we considered that the ligand has become unbound.

Table 5.3 shows the residence times for selected variants. For β-Val, three variants have

a residence time above 30 ns (LAI, LAS, and MSC). MSC is the most stable variant in the

selection although it has the worst stability estimation. Among the best predicted binders

with the MC simulations, only one has a residence time above 40 ns. For β-Met, four variants

have a residence time of at least 60 ns (CSS, MAC, MAV, and MSV). MAC and MAV have a

measurable catalytic efficiency. CSS and MSV are false positives. Among all the variants and

complexes, the wild type system is the most stable.
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Tableau 5.3: Residence time per complex and ligand β-Met and β-Val. aff. and sta.

are the stability and the binding free energy estimated with the MC simulations.

ligands variants sta. aff. Simulation time Residence time RMSD
(ns) (ns) Å

α-Met LAI (native) 80 _ 1.06
β-Val CAC -7.87 -4.22 60 1 7.37

LAC -0.32 -3.80 80 20 4.43
LAI 0.00 -0.00 70 _ 2.62
LAS 1.33 -1.93 30 _ 2.62
MAC 2.28 -6.29 60 1 4.70
MAI 2.53 -1.39 46 13 4.55
MAV 1.28 -2.67 60 36 5.09
MSC 4.06 -3.15 80 _ 1.81
SAC -4.00 -4.13 80 14 7.32

β-Met CSS -4.38 -1.61 69 _ 1.62
CSV -7.00 -1.50 30 3 4.17
LAC** -0.32 0.88< 30 18 4.19
LSC 1.25 -2.06 30 18 4.26
MAC** 2.28 -3.41 60 _ 2.65
MAS 3.92 -2.17 30 _ 3.01
MAT* 4.56 -2.70 30 5 5.02
MAV** 1.28 -2.38 60 _ 2.33
MSA 3.76 -4.89 60 30 4.6
MSC 4.06 -4.85 60 5 4.11
MSS 5.77 -3.91 30 3 4.83
MST* 6.21 -3.97 60 58 4.14
MSV* 3.06 -3.95 60 _ 3.67
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5.1.3 Selection using catalytic efficiency

To investigate further those three positions 13, 256, and 297 and improve the β-Met activity, we

searched for variants according to the catalytic efficiency. Here, we modeled the MetRS:ATP

→ RS:[β-Met:ATP]‡ binding. The binding free energy correspond to the catalytic efficiency.

We used an aggressive ALF to compute the catalytic efficiency of 2474 variants with respect to

the wild type sequence.

Figure 5.1 shows all the variants catalytic efficiencies. Two groups appear: one group of

stable variants but with positive catalytic efficiency and a second group of improved catalytic

efficiency but unstable. This can be an artefact of the fixed backbone approximation. 86 vari-

ants have a stability loss of 2 kcal/mol or less when compared to the wild type. 8 of the 11 active

variants are in this region of sequence space, {MAV,MAC,SAI,CAV,CAI,LAC,LAT,LAV}.

Table 5.4 compares predicted and experimental values of catalytic efficiency. LAV and CAV

are overestimated by 1.7 and 1.2 kcal/mol. CAI, SAI, and LAT (simple mutants) have an

absolute error of 1 kcal/mol. CAC, SAC, and MAV are underestimated by 2 kcal/mol. MAC

is the worst prediction with an error of 4 kcal/mol. The average absolute error is 1.9 kcal/mol

and the highest errors are for MAC and MAV.

Tableau 5.4: Stability, catalytic efficiency (with experimental values) compared to
the wild type sequence LAI for positions 13, 256, and 297

variants stability ∆G‡(β-Met) predicted ∆G‡(β-Met) experiments
CAC 2.2 4.5 2.2
CAI 0.9 1.0 1.6
CAV 1.5 2.4 3.6
LAC 1.4 3.2 2.0
LAI 0.0 0.0 0.0
LAT 1.7 2.3 3.1
LAV 0.6 1.4 3.1
MAC 0.8 8.1 2.5
MAV 0.0 6.1 3.1
SAC 2.5 5.3 2.9
SAI 1.1 2.0 1.9
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Figure 5.1: Distribution of variants according to stability and catalytic efficiency for
the positions 13, 256, and 297. The reference sequence is LAI (Wt). Stable variants are
shown in orange and least stable variants are shown in red. Variants with measurable activity
are shown in green and blue dots are tested variants but without measurable activity.
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5.2 Screening of pairs, formation of β-Met quadruplets

To improve the activity, we enlarged the search space to the whole active site, through a

new screening approach. We modeled the binding MetRS:ATP → RS:[β-Met:ATP]‡. We

considered 87 pairs of positions for which we computed the scores of pairs based on β-Met

catalytic efficiency. From the screening we selected two quadruplets of positions in the wild

type context and one quartet of positions in the MAC context. Talbes 5.5 and 5.6 show the

selected positions.

Tableau 5.5: Selected positions for the backbone relaxed in the wild type context.
In the top of the table are shown the variants selected with a stability threshold of 5 kcal/mol
and an average score over the 100 best variants. In the bottom of the table are shown the
selection of variants with a threshold of 10 kcal/mol and an average score over the best 200
variants. The selected four positions are annotated with a *. A mutation space is assigned to
each position.

Pos Score Space
a b c d a’ b’ c’ d’

17 24 13 51 -2.3 EFMLQRTV H SQKMC ACIKMLNSTV
51 24 13 17 -2.1 ACKMLNS H SQKMC EFMLQRTV

* 297 24 13 51 -2.1 ACSTV QHIV CHKMNQST ACIKMLNSTV
11 24 13 51 -1.9 AS IHELV CHKMNQST ACIKMLNSTV
24 13 51 11 -1.8 IHELV CHKMNQST ACIKMLNSTV ADMNSTV
52 24 13 51 -1.8 ACNSTV H SQKMC ACIKMLNSTV

252 24 13 51 -1.7 AHCST H SQKMC ACIKMLNSTV
296 24 13 51 -1.6 ACEFHJML H SQKMC ACIKMLNSTV

NQSRTWVY
97 24 13 51 -1.6 ACS H SQKMC ACIKMLNSTV
12 24 13 51 -1.5 SC IHMNTV CHKMNQST ACIKMLNSTV
16 24 13 51 -1.5 SC H SQKMC ACIKMLNSTV
50 11 24 13 -1.3 CS AS IHELV CHKMNQST

293 11 24 13 -1.3 ATV AST IHELV CHKMNQST
17 24 13 51 -2.4 EFMLQRTV H CHKMQSH ACIKMLNSTV

* 297 24 13 17 -2.3 ACSTV EIHNQV ACHKVMQSTH EFMLQRTV
51 24 13 17 -2.3 ACKMLNQST H CHKMQSH EFMLQRTV
52 24 13 17 -1.9 ACNSTV H CHKMQSH EFMLQRTV
11 24 13 17 -1.9 AST IHELV CHKMNQSTH EFMLQRTV

252 24 13 17 -1.8 ACHNST H CHKMQSH EFMLQRTV
24 13 17 297 -1.8 IHELV CHKMNQSTH EFMLQRTV C

296 24 13 17 -1.7 ACEFIHKJ H CHKMQSH EFMLQRTV
MLNQSRTW
HYV

16 24 13 17 -1.6 CST H CHKMQSH EFMLQRTV
97 24 13 17 -1.6 ACS H CHKMQSH EFMLQRTV
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Tableau 5.6: Selected positions for the backbone relaxed in the MAC context. In the
top of the table are shown the variants selected with a stability threshold of 5 kcal/mol and an
average score over the 100 best variants. The selected four positions are annotated with a *.
A mutation space is assigned to each position.

Pos Score Space
a b c d a’ b’ c’ d’

* 297 24 13 51 -6.25 CEDMLQSRV SHCT ACEIKMQSTV H
51 24 13 297 -6.24 ACEIHMNQST H ACEIKMQSTV C

-6.24 V H ACEIKMQSTV C
13 24 297 51 -6.23 ACIKMQSTV SHCT C H
24 13 297 51 -6.22 ACHKMNQST ACEIKMQSTV C H

252 24 13 297 -5.42 ACEDIKMLNQ H ACEIKMQSTV C
-5.42 SRT H ACEIKMQSTV C

11 24 13 297 -5.40 ADIHNQSTV HKV ACEIKMQSTV C
52 24 13 297 -5.22 ACEIHLNSTH H ACEIKMQSTV C

-5.22 V H ACEIKMQSTV C
17 24 13 297 -5.20 ACEDFHKMLQ H ACEIKMQSTV C

-5.20 SRTWYV H ACEIKMQSTV C
97 24 13 297 -5.03 ACDIHKMNQS H ACEIKMQSTV C

-5.03 RV H ACEIKMQSTV C
296 24 13 297 -4.69 ACEFIHKMLN H ACEIKMQSTV C

-4.69 QSRTWVY H ACEIKMQSTV C
50 24 13 297 -4.62 CEDNQSTHV H ACEIKMQSTV C
16 24 13 297 -4.56 CSTV H ACEIKMQSTV C
12 24 13 297 -4.29 CENSTV AHSV ACEIKMQSTV C

256 24 13 297 -4.22 SNTDV H ACEIKMQSTV C
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Tableau 5.7: Selected quadruplets of positions and the assigned mutation space. NB.
= the number of possible variants.

positions Initial types Mutation space Nb.
13 LEU LEU CYS HIS LYS MET ASN GLN SER THR

Q1 24 HIS GLN HIS ASN ILE VAL 2970
51 ASP ASP ALA CYS ILE LYS MET LEU ASN SER THR VAL

297 ILE ILE ALA CYS SER THR VAL
13 LEU LEU ALA CYS HIS LYS VAL MET GLN SER THR

Q2 17 ASN ASN GLU PHE MET LEU GLN ARG THR VAL 3564
24 HIS HIS GLU ILE ASN GLN VAL

297 ILE ILE ALA CYS SER THR VAL
13 MET ALA CYS GLU ILE LYS MET GLN SER THR VAL

Q3 24 HIS SER HIS CYS THR 720
51 ASP ASP HIS

297 CYS CYS GLU ASP MET LEU GLN SER ARG VAL

Q1 is the first selected quartet of positions 13, 24, 51, and 297 with a score of -2.1 kcal/mol.

We used a stability threshold of 5 kcal/mol and a score of pairs averaged over the 100 best

visited pairs of types. Two positions were among the three positions investigated earlier. Q1

contains 2970 different variants. Q2 is composed of positions 13, 17, 24, and 297 with a score

of -2.3 kcal/mol averaged over the 200 best pairs of types sampled. It allows us to enlarge the

search to less stable pairs of residues. Q3 is composed of positions 13, 14, 51, and 297. It was

obtained using the backbone relaxed in the MAC context with a score of -6.25 kcal/mol (table

5.6). We used a stability threshold of 5 kcal/mol and averaged the pair scores over the 100 best

pairs of types. Q3 contains 720 variants.

5.3 Design of β-Met quadruplets

For Q1, we sampled all the variants in MetRS:ATP and RS:[β-Met:ATP]‡ states at least 1000

times per variant. We estimated the catalytic efficiency for all the variants in Q1. Then, we ran

a biased simulation of the complex MetRS:[α-Met:ATP]‡ for to calculate the β-Met selectivity.

The variants with a stability loss compared to the wild type sequence are removed. Variants

that do not improve the catalytic efficiency are also removed. From the 95 variants left, we

removed the variants those with a selectivity of more than 2 kcal/mol against β-Met, to obtain

89 variants (table 5.8). The best variant is TQAI with a catalytic efficiency of -4.3 kcal/mol

compared to the wild type sequence.

To show the composition and the co-occurrences of types for the 89 variants selected, we used
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a circular logo representation (figure 5.2). We computed the co-occurrences of types ti, tj with:

c(ti, tj) = P (ti, tj) × log(
P (ti,tj)

P (ti)×P (tj)
). An arc represents the co-occurrences if c(ti, tj) ≥ 0.03.

Positions 13 and 297 are populated by native types Leu and Ile. Mutation to small hydrophobic

side chains are observed for positions 24 and 51 where the native types are His and Asp. Three

pairs of correlated side chains appeared between the positions 13 and 24. Correlation is also

observed between types Q13, V24, and I297 but no correlations were detected between the

positions 297 and 51 and only two between the positions 13 and 297.

Figure 5.2: Circular logo for selected Q1 sequences for the backbone relaxed in the
wild type contexte.

Q2 is composed of positions 13, 17, 24, and 297. We used the same protocol as for Q1. For

MetRS:ATP, we sampled 3450/3564 sequences at least 1000 times. For the activated states

MetRS:[α-Met:ATP]‡ and RS:[β-Met:ATP]‡, we sampled 3168 sequences. Then, we estimated

stability, catalytic efficiency, and selectivity in favor of β-Met. We removed variants less stable

than the wild type variant. We were left with 97 variants. Sequences with a loss of catalytic

efficiency above 2 kcal/mol were removed. Table 5.9 shows the 81 variants selected. The most

active variant is TNII with two mutations at positions 13 and 24. Figure 5.3 shows correlations

between the positions 13, 24, and 51 but none with position 17, which stays in its native type.

Q3 is composed of positions 13, 24, 51, and 297 with the backbone relaxed in the context of

the M13, A256, and C297 mutant (MAC). For both states MetRS:ATP and RS:[β-Met:ATP]‡, all

the sequences were sampled at least 1000 times. Catalytic efficiency and stability are computed

with respect to the variant MHDC (used for the relaxation of the backbone).
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Tableau 5.8: Q1 variants filtered with threshold for the stability (≤ 0), the catalytic
efficiency (cat. eff. ∆G‡(β-Met) ≤ 0), and selectivity (sel. ∆∆G‡(β-Met) ≤ 2). The
reference variant is the wild type LHDI.

seq. sta. cat. eff. sel. seq. sta. cat. eff. sel. seq. sta. cat. eff. sel.
TQAI -0.1 -4.8 -1.4 MICV -0.3 -1.3 -4.7 TISA -1.6 -0.4 -1.4
LQCI -1.1 -4.2 -0.0 MIAV -1.1 -1.3 -4.7 TISV -3.8 -0.4 -1.9
LQSI -0.8 -4.1 0.4 TVDI -0.2 -1.2 0.0 QNAI -2.9 -0.4 -4.2
CQAI -0.0 -4.1 -1.5 QIVV -0.6 -1.1 -2.3 HIVI -1.7 -0.3 0.7
QICI -0.4 -3.9 -3.6 CVNI -1.0 -1.1 -0.6 HVAV -0.6 -0.3 -2.3
LQAI -2.1 -3.9 0.0 TISI -5.2 -1.1 -1.2 TNNI -1.5 -0.3 -0.7
QISI -0.1 -3.8 -3.2 HITI -0.6 -1.1 0.6 CVDI -0.2 -0.3 0.0
QIAI -1.3 -3.8 -3.8 HVCI -0.9 -1.0 -1.3 NIAV -2.7 -0.3 -2.2
LQAV -0.6 -3.6 -0.8 TIAI -6.2 -0.9 -1.4 QNSI -1.8 -0.3 -3.5
TQVI -0.8 -2.9 0.5 LHNI -0.6 -0.9 -0.5 LVDI -2.0 -0.3 1.6
HIAI -0.8 -2.6 -1.5 HVAI -1.9 -0.9 -1.4 MITI -2.3 -0.3 -1.8
HICI -0.1 -2.6 -1.6 TICI -5.5 -0.9 -1.6 LICI -7.4 -0.2 -0.3
LINI -2.1 -2.5 1.1 HVSI -0.7 -0.9 -0.9 TIAA -2.8 -0.2 -1.9
QITI -1.0 -2.4 -1.6 LVNI -3.0 -0.9 0.9 LIAI -8.2 -0.2 -0.3
LINV -0.5 -2.3 0.2 NIAI -4.1 -0.9 -1.6 NISV -1.6 -0.2 -1.6
QVSI -1.0 -2.1 -2.9 SVNI -0.0 -0.9 -0.7 TICA -1.9 -0.2 -1.8
QVAI -2.3 -2.1 -3.5 NICI -3.3 -0.9 -1.4 NIAT -0.8 -0.2 -1.5
LIDI -1.0 -2.1 1.4 LVKI -0.9 -0.8 1.5 QVVI -2.9 -0.2 -1.5
CQVI -0.8 -2.0 0.4 TICC -1.1 -0.7 -1.9 NICV -1.9 -0.2 -2.1
QHAI -0.0 -2.0 -5.2 TIAC -1.9 -0.7 -1.8 CISI -5.1 -0.2 -1.2
LQTV -0.3 -2.0 1.3 NISI -3.0 -0.7 -0.9 CICI -5.4 -0.2 -1.6
QVCI -1.5 -2.0 -3.4 QVTI -1.9 -0.7 -1.6 MVAI -3.5 -0.2 -3.8
TVNI -0.9 -1.9 -0.3 TISC -0.8 -0.6 -1.4 MVCI -2.6 -0.1 -3.7
MIAI -2.5 -1.8 -3.9 TICT -2.2 -0.5 -2.0 LISI -7.1 -0.1 0.3
QIVI -2.0 -1.8 -1.5 TIST -1.8 -0.5 -1.4 NIAA -0.7 -0.1 -1.8
MISI -1.3 -1.8 -3.3 TICV -4.1 -0.5 -2.6 TIAS -1.8 -0.0 -1.9
MICI -1.6 -1.8 -3.8 TIAV -5.0 -0.5 -2.5 TICS -0.9 -0.0 -1.8
QVCV -0.0 -1.5 -4.2 QNCI -2.0 -0.4 -4.2 MVSI -2.3 -0.0 -3.2
QVAV -1.0 -1.5 -4.3 TIAT -3.0 -0.4 -1.8 LHDI 0.0 0.0 0.0
LQVV -1.4 -1.4 1.4 LVNV -1.6 -0.4 0.1

Once the catalytic efficiency and stability are estimated, we removed the variants with a

loss of stability above 3 kcal/mol and a degradation of the catalytic efficiency. 37 variants were

left. Since the variant MAC already showed an improvement in selectivity in favor of β-Met,

we did not used the selectivity to select variants. Here, we want to improve the activity of

variants compared to MAC.

Figure 5.4 shows that positions 13 and 51 are mainly populated with the native types Met

and Asp. Only a few correlated position appeared in this analysis, and no correlations with

the position 17.
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Figure 5.3: Circular logo for selected Q2 sequences for the backbone relaxed in the
wild type contexte.

Figure 5.4: Circular logo for selected Q3 sequences for the backbone relaxed in the
MAC contexte.
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Tableau 5.9: Q2 variants filtered with thresholds for the stability (≤ 3) and the
catalytic efficiency (cat. eff. ∆G‡(β-Met) ≤ 3). The reference variant is the wild type
LNIH.

seq. sta. cat. eff. sel. seq. sta. cat. eff. sel. seq. sta. cat. eff. sel.
TNII 0.9 -3.0 0.2 CNHI 2.0 0.1 -1.3 VNHI 2.8 1.3 -1.8
TNIV 2.4 -2.5 -0.7 CNVV 1.3 0.1 -0.7 VNVV 2.1 1.3 -1.1
ANII 1.4 -2.2 0.4 ANVV 1.5 0.2 -0.4 LTHI 1.4 1.3 1.0
CNII 1.1 -2.1 0.3 LNVA 1.5 0.2 1.2 SNNI 0.4 1.5 -0.5
LNII -0.9 -1.9 1.7 ANHI 2.2 0.3 -0.9 LNNC 1.9 1.5 0.9
TTII 2.3 -1.8 1.0 LNVV -0.8 0.3 0.8 LNNV -0.9 1.5 0.3
SNII 1.9 -1.8 0.0 SNVV 2.3 0.3 -0.8 CNNT 2.9 1.5 -0.5
LNIV 0.4 -1.6 0.8 TNNI -0.6 0.3 -0.2 LNNT 1.0 1.5 0.8
ANIV 2.6 -1.4 -0.3 LNVT 1.3 0.3 1.4 ANNV 1.2 1.5 -0.8
CNIV 2.3 -1.4 -0.6 SNHI 2.9 0.4 -1.5 CNNV 0.9 1.6 -1.2
LNIT 2.4 -1.4 1.4 TTVV 2.7 0.4 0.4 VTVI 2.2 1.7 0.3
TNVI -0.2 -1.4 0.0 LQNV 2.6 0.5 1.4 TTNV 2.3 1.8 -0.3
LNIA 2.6 -1.3 1.4 CTVI 1.4 0.6 0.9 LNNA 1.1 1.8 0.8
VNII 1.9 -1.1 -0.4 LNHV 1.3 0.7 -0.8 LTHV 2.7 1.8 0.1
ATII 2.6 -1.0 1.1 VNVI 0.7 0.8 -0.2 SNNV 1.8 1.8 -1.4
CTII 2.3 -0.9 1.0 ATVI 1.5 0.8 1.3 CTNI 1.0 2.0 0.4
LQVV 3.0 -0.9 2.0 LNVS 2.5 0.9 1.6 VNNI 0.5 2.1 -0.7
TNVV 1.2 -0.7 -0.7 TNNT 2.7 0.9 -0.4 LNNS 2.2 2.2 1.0
TNHI 1.8 -0.6 -1.4 TNNV 0.9 0.9 -1.0 TVVI 2.7 2.2 1.2
ANVI 0.3 -0.5 0.4 TTNI 1.1 1.0 0.4 ATNI 1.3 2.2 0.8
LTIV 1.7 -0.5 1.6 STVI 2.2 1.0 0.8 CTNV 2.5 2.4 -0.5
TTVI 1.4 -0.3 1.0 CNNI -0.4 1.0 -0.4 STNI 1.8 2.6 0.5
CNVI -0.0 -0.3 0.3 LNNI -2.3 1.0 1.2 LTNV 0.3 2.6 1.0
LNVI -2.2 -0.2 1.7 LTVV 0.8 1.0 1.5 VNNV 1.9 2.7 -1.5
SNVI 0.8 -0.2 -0.0 ANNI -0.2 1.2 0.1 LTNT 2.3 2.7 1.8
LNHI -0.0 0.0 0.0 ATVV 3.0 1.2 0.4 LTNA 2.5 2.8 1.5
LNVC 2.3 0.1 1.5 CTVV 2.7 1.2 0.1 ATNV 2.5 2.9 0.0

Tableau 5.10: Q3 variants filtered with thresholds for the stability (≤ 3) and the
catalytic efficiency (cat. eff. ∆G‡(β-Met) ≤ 3). The reference variant is the wild type
MHDC.

seq. sta. ∆G‡(β-Met) seq. sta. ∆G‡(β-Met) seq. sta. ∆G‡(β-Met)
MCHM 1.5 -7.6 TCHS 1.6 -4.0 TTDQ 0.7 -0.5
MSHM 1.2 -7.4 TSHS 1.3 -3.8 MCDL 1.5 -0.4
MTHC 1.8 -7.0 VCHS 1.8 -3.3 MCDR -1.1 -0.4
MCHC -0.1 -6.8 CCHS 1.3 -3.1 QCDQ 0.5 -0.3
MSHC -0.5 -6.5 VSHS 1.4 -3.0 TCDQ -1.3 -0.3
TSHC 2.0 -5.8 CSHS 1.1 -3.0 MSDL 1.3 -0.3
MTHS 1.2 -5.1 ACHS 1.5 -2.8 ICDQ 0.1 -0.3
MCHS -0.9 -4.9 ASHS 1.1 -2.5 MSDR -1.3 -0.2
CCHC 1.9 -4.9 MTDQ -1.8 -1.2 QSDQ 0.2 -0.2
CSHC 1.7 -4.8 MCDQ -3.8 -1.0 SCDQ 0.0 -0.1
MSHS -1.2 -4.6 MSDQ -4.1 -0.8 TSDQ -1.7 -0.1
ASHC 1.8 -4.3 MTDR 1.0 -0.7 ISDQ -0.2 -0.1

MHDC -0.0 0.0

125



Chapter 5. Engineering methionyl-tRNA synthetase for β amino acid activity:

results

5.4 Screening of pairs, formation of β-Val quadruplets

Next, we searched variants active for β-Val. We started from RS:[β-Met:ATP]‡ where we

removed the [β-Met:ATP]‡ ligand and replaced it with [β-Val:ATP]‡. MetRS:ATP is the same

structure as for β-Met catalytic efficiency estimation. We considered the same set of 19 positions

and 87 pairs as before. For the score of pairs, we don’t allow the additional mutations at

positions 13 and 297. Score of pairs is computed with the 18× 18 = 324 possible pair of types.

We scored all the quadruplets of positions, and selected one. We investigated that quadruplet

of positions to search for active variants with β-Val.

For the MC simulations of pairs, we used 5.106 step simulations for both adaptive and

biased simulations. Then, the score was computed with the 10 best pairs of types sampled in

each MC procedure. With these catalytic efficiency estimation for pairs, we scored all the 3876

quadruplets. Table 5.11 shows the 20 best quadruplets. We chose to investigate the positions

13, 16, 24, and 51 with a score of -4.77 kcal/mol. Three positions overlap Q1 and Q3 from the

β-Met selection. It will allow us to draw some comparisons with β-Met. Finally, the mutation

space is assigned according to the side chains sampled in the MC of pairs. We denoted this last

selection of positions Q4.
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Tableau 5.11: 20 best quadruplets of positions for β-Val with the backbone relaxed
in the wild type context. The stability threshold used is 5 kcal/mol and the average score
is computed over the 10 best variants. The mutation space of each positions was assigned by
the side chain sampled in the pair MCs. The selected four positions is denoted *.

Pos Score Space
a b c d a’ b’ c’ d’

11 15 16 51 -5.06 ACEDKMSR IKMQRTWVY CDNST CIMLSRTHV
*13 16 24 51 -4.77 ACHKMLNQ CDNST F CIHMSTV

STD
11 15 24 253 -4.54 ACDKMQSR AIKMNQRTW F ACDKMNSR

TVA VY
11 16 17 51 -4.53 ACEDKMSR ACDNST FHKMLNQRW CIHVMST

YD
11 15 51 256 -4.45 ACEDKMSR RTWVI VILQRH DFHMNT
11 15 24 51 -4.44 ACEDKMQS AIKMNQRTW F RHL

RTV VY
11 15 51 253 -4.43 ACEDKMSR IRTWV RHL ACDKMNSR
13 16 51 253 -4.43 CDIHKMLN CDNST CIHMSTV ASK

QT
13 15 16 51 -4.39 CIHKMLNQ IKMQRTWVY CDNST CIHMLSRTV

TD
13 17 24 51 -4.36 ACHKMLNS FHKMLQRWY F H

TD
13 15 24 51 -4.34 ACIHKMLN AIKMNQRTW F HLR

STD VY
12 16 51 252 -4.29 AS CDNST CIHMLSTWV ACDFHNSTVD
13 16 17 51 -4.26 CDHKMLNQ ACDNST FHKMLNQRW CIHMSTV

T YD
11 15 16 24 -4.23 ACDKMQSR AIKMNQRTVY CS F
11 15 16 24 -4.23 TV AIKMNQRTVY CS F
12 16 17 51 -4.22 AS ACDNST FHKMLNQRW CIHMLSTWV

YD
13 16 51 297 -4.19 CDHKMLNQ CDNST CIHMSTV RYH

T
13 16 51 256 -4.17 CDHKMLNQ DCTSN CIHMQSRTV AEDFHMNQSD

T
11 15 17 51 -4.13 ACEDKMSR IRTWV FHKMLQRWY RHL
11 15 17 24 -4.09 ACDKMQSR AIKMNQRTVY FKLQRW F

TV
11 15 24 256 -4.09 ACDKMQSR AIKMNQRTVY F DHMNT

TV
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Tableau 5.12: Q4 mutation space assigned for the RS:[β-Val:ATP]‡ selected positions

Positions Initial types Mutation space
13 LEU ALA CYS LYS MET LEU ASN GLN SER THR ASP HIS

Q4 16 ALA ALA CYS ASN SER THR ASP
24 HIS HIS PHE TYR
51 ASP CYS ILE LEU HIS MET SER THR VAL ASP

5.5 Design of β-Val quadruplets

Q4 is composed of 1782 sequences. All the sequences were sampled at least 1000 times in both

states. However, no variant with aromatic mutation were sampled for position 24 with the

wild type complex MetRS:[α-Met:ATP]‡. 661 variants sampled have a stability and catalytic

efficiency improved compared with the wild type variant (figure 5.5). 301 of them were sampled

with the complex MetRS:[α-Met:ATP]‡. Table 5.13 shows the catalytic efficiency, stability, and

selectivity in favor of β-Val for the 120 best variants according to the predicted activity. The

best variant is MTYV with a catalytic efficiency predicted at -8.5 kcal/mol while the most

active variant also sampled in the wild type system is CTHV.

Figure 5.5 shows that position 13 is populated with hydrophobic side chains. Position 16 is

mainly mutated from Ala into Thr or Cys. Position 24 is mutated from His into Phe. Position

51 is mutated from Asp into non-polar side chains (Val, Ile). Positions 13 and 51 don’t seem to

be correlated in this analysis. However, positions 16 and 24 have some correlations between the

types Cys16 and Ala16 with Phe24. The wild type variant is not among the variants predicted

as highly active.
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Figure 5.5: Circular logo for selected Q4 sequences for the backbone relaxed in the
wild type contexte.
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Tableau 5.13: Q4 120 best variants filtered with threshold for the stability (≤ 0), the
catalytic efficiency (cat. eff. ∆G‡(β-Met) ≤ 0), and selectivity (sel. ∆∆G‡(β-Met)
≤ 0). The reference variant is the wild type LAHD. Here, the wild type variant is not among
the 120 best variants.

seq. sta. cat. eff. sel. seq. sta. cat. eff. sel. seq. sta. cat. eff. sel.
MTYV -0.6 -8.5 ND DCFI -0.2 -7.1 ND SCFI -1.3 -5.8 ND
LTYV -0.0 -8.5 ND TNHI -0.3 -6.8 -34.1 MSFV -2.5 -5.7 ND
MTYI -0.9 -8.4 ND HCFV -0.0 -6.6 ND LSFT -0.6 -5.7 ND
CTHV -1.1 -8.4 -21.9 HCFI -0.2 -6.6 ND HAFT -0.5 -5.7 ND
CTHI -1.4 -8.4 -28.4 TTHM -0.3 -6.5 -20.6 LSFV -1.9 -5.7 ND
HTHI -0.4 -8.3 -30.6 TNHV -0.1 -6.5 -25.1 ASFV -1.5 -5.7 ND
LTYI -0.5 -8.3 ND CCFI -1.6 -6.4 ND QCFI -1.0 -5.6 ND
HTHV -0.3 -8.3 -24.2 HSFV -0.2 -6.4 ND HAFI -2.2 -5.6 ND
ATYI -0.1 -8.2 ND CCFT -0.1 -6.4 ND QCFV -0.7 -5.6 ND
LTHV -1.9 -8.2 -19.1 CCFV -1.3 -6.4 ND LSFI -2.2 -5.6 ND
MTHI -0.4 -8.2 -26.3 DAFV -1.9 -6.2 ND ASFT -0.3 -5.6 ND
KTHI -0.2 -8.2 -31.6 DAFT -0.7 -6.2 ND MSFI -2.9 -5.6 ND
MTHT -1.4 -8.2 -25.7 KCFV -0.5 -6.2 ND MCFS -0.5 -5.5 ND
MTHV -2.6 -8.1 -27.6 LCFV -2.2 -6.2 ND MSFC -0.5 -5.5 ND
LTHT -0.8 -8.1 -17.4 MCFI -3.0 -6.2 ND HAFC -0.8 -5.4 ND
ATHT -0.5 -8.0 -20.5 DAFI -2.1 -6.2 ND ASFI -2.0 -5.4 ND
LTHI -2.4 -8.0 -25.7 CSFV -0.9 -6.2 ND DAFM -0.4 -5.4 ND
ATHV -1.7 -7.9 -22.2 MCFT -1.5 -6.2 ND LCFM -0.7 -5.4 ND
STHI -1.0 -7.9 -29.2 MAFH -0.5 -6.2 ND CAFV -3.5 -5.4 ND
STHV -0.7 -7.8 -22.5 KCFI -0.7 -6.1 ND NAFV -1.0 -5.4 ND
ATHI -2.0 -7.8 -28.7 CAFL -0.0 -6.1 ND TCFV -1.9 -5.4 ND
MTHC -0.7 -7.7 -25.6 LCFC -0.2 -6.1 ND NAFI -1.3 -5.3 ND
MNHI -1.3 -7.6 -41.1 LAFL -0.8 -6.1 ND CAFI -3.8 -5.3 ND
LNHI -0.7 -7.6 -33.0 LCFT -1.0 -6.0 ND TCFT -0.6 -5.3 ND
MDHV -0.0 -7.6 -26.1 LCFI -2.7 -6.0 ND SSFV -0.7 -5.3 ND
LTHM -0.4 -7.6 -19.5 HSFI -0.7 -6.0 ND SSFI -1.1 -5.3 ND
LNHV -0.4 -7.5 -24.0 ACFV -1.9 -6.0 ND CAFT -2.3 -5.3 ND
QTHV -0.5 -7.5 -23.7 ACFT -0.6 -6.0 ND KAFT -1.1 -5.3 ND
QTHI -1.0 -7.5 -30.4 KSFI -0.1 -6.0 ND TAFL -0.4 -5.3 ND
MTHS -0.3 -7.5 -24.4 MCFV -2.9 -6.0 ND KAFV -2.4 -5.2 ND
MNHV -1.0 -7.5 -32.4 DAFC -0.0 -6.0 ND MCFM -1.4 -5.2 ND
TTYI -0.2 -7.5 ND CSFI -1.3 -5.9 ND TCFI -2.3 -5.2 ND
MDHI -0.3 -7.4 -33.9 ACFI -2.3 -5.9 ND KAFC -0.4 -5.2 ND
ANHI -0.5 -7.3 -36.0 KSFV -0.0 -5.9 ND QSFV -0.4 -5.2 ND
TTHI -1.9 -7.3 -27.0 AAFL -0.5 -5.9 ND ACFM -0.4 -5.2 ND
ANHV -0.1 -7.3 -27.1 HAFV -1.7 -5.9 ND MCYH -0.5 -5.2 ND
TTHT -0.5 -7.2 -18.7 MAFL -1.4 -5.8 ND LAFT -3.1 -5.1 ND
MTHM -1.1 -7.2 -27.5 MCFC -0.9 -5.8 ND CAFC -1.6 -5.1 ND
ATHM -0.2 -7.2 -22.0 MSFT -1.0 -5.8 ND LAFV -4.4 -5.1 ND
TTHV -1.6 -7.1 -20.3 SCFV -1.0 -5.8 ND MAFV -5.0 -5.1 ND
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Figure 5.6: 661 variants from Q4 for the activity of β-Val. In the top are shown the
catalytic efficiency and stability of variants grouped into 4 groups A-D. In the bottom are shown
the four group logos.

Figure 5.6 shows the distribution of variants with respect to the stability and the catalytic

efficiency grouped into four sets A, B, C, and D. For each group, we show the composition and

the correlation between positions with a logo representation. Group A is the closest to the wild

type sequence LAHD. Variants at position 16 and 24 are populated by homologous side chains

ACS and HF. Group B is the most stable. Positions are populated mainly by wild type side

chains except for position 51. Group C contains the most active variants compare to the wild

type where position 24 is mutated into Phe. This mutation seems to favor native side chains

for the position 16 and 13. Finally, group D contains even more active variants. Position 13 is

populated by non-polar side chains MLA; 16 is mutated into small, slightly polar side chains

TCS; 51 is mutated into small side chains IVTC, and Phe or His populate position 24.
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5.6 Concluding discussion

For the search of active MetRS variants for β-Met and β-Val, we first considered the triplet of

positions 13, 256, and 297. We applied a selection based on the affinity for β-MetAMP and

β-ValAMP. At this point, we cannot conclude on the β-Val prediction power. For β-Met, we

produced a set of predictions in which eleven were tested experimentally. Five have a weak but

measurable catalytic activity. The structural models used here take into account the strictly

APO state and the complex with the reaction product.

Two of six variants validated experimentally showed residence times for β-Met above 60 ns

in molecular dynamic simulations. Three predicted variants have reduced slightly the selectivity

in favor of α-Met. To improve the β-Met activity, we used the transition state [β-Met:ATP]‡

and the catalytic efficiency. The wild type variant is predicted as the most active variant among

the stable ones. The use of native rotamers could explain partially this result. Using a stability

threshold of 2 kcal/mol, we recovered eight of the eleven experimentally active variants. The

absolute deviation from experiments is 1.9 kcal/mol. These points show that the modelling

of the catalytic efficiency is able to discriminate active variants for this system. However, the

initial triplet of positions does not yield a higher activity.

The design of active MetRS variants for β amino acids raise other issues. First, we used

two structural models where the KMSKS loop is in the active conformation to compute the

catalytic efficiency. In addition, one ATP and one Mg2+ are modelled in the active site for

both states. We assumed that the conformation change, the binding of ATP and Mg2+ are

identical for all variants. This hypothesis seems reasonable since we were able to reproduce

semi-quantitatively the catalytic efficiency of half of the variants. Underestimated variants have

the mutation L13M known to deform the backbone. These variants are not well modeled with

the rigid backbone approximation.

The ligand pose is another issue for such an application. There is no known structure for

the complex MetRS with a β amino acid and ATP. We guessed the β amino acid and ATP

poses based on α-Met and β-Met experimental complexes. This assumes that we search for

variants where the reaction coordinate is identical ([Crepin et al., 2003, Banik and Nandi, 2010,

Zurek et al., 2004]). Designs for β-Met activity showed the same issues as for α-Met. L13M

and I297C showed a loss of accuracy for the predictions. However, 8 out of 11 variants were
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experimentally active. Therefore, we assume that the hypotheses for the fragments poses are

satisfying for this system.

Another computational problem is the choice of parameters for the MC simulations. As

for simulated annealing, those parameters are system specific. To converge to a satisfying

bias potential, we iteratively optimized the bias with multiple MC simulations. Using a stop

condition based on the increment, one can refine the bias potential with a small dependency

on parameters.

Another crucial point is the choice of the positions allowed to mutate. For a robust es-

timation with ALF, one has to produce a sufficient sampling. We empirically determined a

visiting threshold of 1000 times. Also, model error may accumulate when a lot of mutations

are performed. To reduce the number of positions to investigate, we introduced a selection

strategy based on a score of pairs of positions. It represents the contribution of a given pair

to the catalytic efficiency. For the search of MetRS variants active with β-Met and β-Val,

we restrained the search to groups of four positions simultaneously. To score a quadruplet of

positions, we computed the average of pair scores. We chose three quartets for β-Met denoted

Q1, Q2, and Q3 and one for the complex β-Val denoted Q4.

From the chosen quartets, we predicted 89 + 81 + 37 active variants for β-Met where we

applied different stability and activity thresholds to limit the number of variants to analyze.

The predictions showed that mutations to small and slightly polar side chain (Asn, Thr, Ile,

and Val) at positions 17 and 24 may improve β-Met activity. Positions 13 and 297 are mainly

populated by their native types Leu and Ile. The choice of these positions could be an artefact

of the residual mutation space we allowed at those positions. Q3 was constructed with the

backbone relaxed in the context of the sequence MAC. It favored the mutation D51H.

For β-Val, we obtained 661 variants where the best catalytic efficiency is estimated at -8

kcal/mol. Since we don’t have experimental values to confirm or disprove the prediction, we

can’t conclude on its performance. However, we observed that H24F is especially favorable for

the activation of β-Val in the predictions.
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Chapter 6

Design of PDZ pairs with overlapping

coding

A gene is encoded by a stretch of DNA. In principle, the same stretch can encode more than

one protein: up to six in theory, if all available reading frames are used. The encoding of

gene pairs represents a goal in biotechnology. Indeed, the progress in genome engineering

raises the question of the confinement of these genes in modified organisms, and overlapping

genes have reduced drift. In addition, overlapping coding schemes allow a size reduction, for

the design of compact genomes. Also, the evolutionary processes associated with overlapping

genes may explain the rapid appearance of new viral proteins by the process called overprinting

([Williams, 1978]).

Here we present an engineering project of pairs of structured proteins with an overlapping

coding constraint. We considered five PDZ domains with known structures. We designed

pairs of homologous sequences with their DNA sequences completely overlapping. Below, we

first recall the results known to date on overlapping genes and the algorithm we used for this

work. Indeed, for the production of protein pairs with an overlapping coding scheme, we used

a dynamic programming algorithm we developed earlier ([Opuu et al., 2017]), able to derive

the overlapping sequences that maximize similarity to a given protein pair. Details of the

earlier study are provided in appendix A. Next, we present the production and characterization

protocol. We consider here all five overlapping reading frames. To characterize the pairs of

produced sequences we used analyses based on similarity, physical and structural properties.

Also, we estimated disorder from the Iupred software ([Mészáros et al., 2018]) to determine the

135



Chapter 6. Design of PDZ pairs with overlapping coding

fraction of potentially disordered residues. Finally, we selected three pairs among the designs

with satisfying scores for numerical validation by molecular dynamics. One pair had stable

structures in a simulation of 500 ns long. Another pair was stable for 3 µs.

6.1 Biological context

Genetic information is stored in the form of sequences of nucleotide triplets, or codons. Each

codon is associated with one amino acid. The translation machinery reads the sequence of

codons to create the corresponding protein sequence. Within one DNA sequence, there are in

fact six possible reading frames (figure 6.1). So, with respect to a first sequence X, there are

five overlapping phases in which to encode another protein Y, as shown in figure 6.1. This

possibility has been exploited by different areas of Life, especially viruses.

 | 7:  | DOI:10.1038/s41598-017-16221-8

Figure 6.1: The six possibles reading frames and the five overlapping phases F of
protein Y with respect to protein X.

6.1.1 Natural examples of overlapping codings

There are several examples of overlapping genes in nature and especially in viruses. However,

this type of coding scheme has also been detected in Eukaryotes ([Pavesi et al., 2018]). An ex-

ample of overlapping genes in humans is the anti-oncogene pair INK4a and ARF ([Ouelle et al., 1995]).
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These two genes produce proteins involved in aging and cell death. The proteins have 156 and

132 amino acids respectively. The overlapping region is 198 nucleotides long. Relative to

INK4a, the ARF gene is encoded in the phase F = 1 (figure 6.1). For the INK4a protein,

there are several structures in the PDB (1A5E, 1BI7, 1DC2, 2A5E) with a scaffold composed of

alpha-helices. For the ARF protein, there is a crystallographic structure (1HN3) from mouse.

A second example in the human genome is the pair of Gs subunit αXL and αAlex ([Abramowitz et al., 2004]).

This example has a large overlapping region of 1884 nucleotides i.e. 628 amino acids. The

αAlex subunit is encoded in the phase F = 1 relative to the αXL sequence. There is no known

structure for theses proteins. For the Alex subunit, there are only certain regions with known

structures in the PDB.

A final striking example is the presence of two overlapping regions involving three genes

in the SARS-COV-2 virus from the COVID-19 pandemic. The three Uniprot codes associated

with these proteins are NCAP_SARS2, ORF9B_SARS2, Y14_SARS2. The protein NCAP_SARS2 has a

known structure. This protein is a component of the viral capsid. The two overlapping pairs are

ORF9B_SARS2/NCAP_SARS2 and NCAP_SARS2/Y14_SARS2. Thus, the two proteins ORF9B_SARS2

and Y14_SARS2 overlap the capsid protein. The overlapping regions are respectively 96 and 73

amino acids long, and the two non-annotated sequences are completely embedded in the capsid

protein-coding region.

6.1.2 Biotechnological applications

Overlapping coding genes have several technical advantages. The first is genome compaction.

The compaction of the genome is a factor in viral selection due to the fixed size of the capsids.

There is a clear interest in compaction for the production of artificial genomes. In gene therapy,

overlapping encoding gives stability to genomes. Indeed, overlapping genes are less sensitive

to genetic drift since, in such encoding, a modification of the DNA sequence can introduce

a deleterious mutation in two proteins. Therefore, the modified organism is less likely to

accumulate mutations. Thus, overlapping genes could be a bio-confinement strategy for the

safe use of modified organisms.

One bio-confinement strategy involves the overlap of a gene of interest with a deleterious

gene ([Blazejewski et al., 2019]). In such a case, the deleterious gene will kill the organism

to which the pair of genes is transferred except under special environmental conditions. For
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example, a cytotoxic gene is encoded in one overlapping phase of a given gene of interest.

Thus, the organism only survives in a medium containing the anti-toxin. A recent study

([Blazejewski et al., 2019]) showed the effectiveness of this strategy. This study allowed the de-

sign of two overlapping protein pairs validated experimentally. The design method consisted of

two main steps. The first one used a dynamic programming algorithm allowing the search for ini-

tial solutions. This algorithm is equivalent to the one we proposed earlier in [Opuu et al., 2017].

The second step optimized correlations between positions, using a stochastic heuristic. This

second step was deemed crucial for the designs produced.

6.1.3 Evolutionary hypothesis

Overlapping encoding could be used for the acquisition of new genes in viruses. The derivation

of a new gene from an existing one is known as overprinting ([Williams, 1978]). This scenario

breaks down into two stages: first, a new gene appears in an overlapping phase of an existing

gene and produces a potentially functional protein. Next, a duplication of the overlapping

sequences occurs. Eventually, only one gene remains active in each copy. For genes whose

coding has remained overlapping, the overlapping encoding may ensure coordination between

genes whose functions are linked ([Krakauer, 2000]).

One study ([Kovacs et al., 2010]) showed a correlation between overlapping encoding and

disordered proteins. However, this study was limited to 67 human genes with overlapping

regions at least 35 amino acids long. A disordered protein or region is defined by its ability to

adopt several conformations under physiological conditions. A contrario, an ordered structure

under physiological conditions folds into a native conformation. Using the IUPRED software

([Mészáros et al., 2018]) for disorder predictions, the study found a correlation with overlapping

coding regions.

Another recent study showed that it is possible to encode two aminoacyl-tRNA synthetase

homologs on opposite DNA strands ([Martinez-Rodriguez et al., 2015]). This study designed

two structured and stable proteins with measured catalytic activity. For this study, no numerical

method was used.
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6.2 Material and methods

To design pairs of homologous sequences based on selected PDZ domains we use a three-

step approach. First, we design solutions guided by sequence similarity. Next, the solutions

are characterized by several metrics based on the recognition of sequences or physicochemical

properties. Finally, we select a few pairs for numerical validation with long MD simulations.

Experimental tests are underway.

6.2.1 Selected proteins

For this study, we have chosen sequences from the PDZ domain family. These are small glob-

ular domains of about 90 amino acids. The secondary structure includes 5-6 β sheets and two

α helices. It is an interesting test candidate since it has been investigated heavily with nu-

merical studies and has well-known properties. We reported a recent complete redesign study

of Tiam1 and CASK ([Mignon et al., 2017, Opuu et al., 2020b]). Those studies were based on

PDZ domain three-dimensional structures, but did not include any coding constraint. Here, we

focused on five PDZ domains: CASK, DLG2, NHREF, Tiam1, and Grip1. Here, no structural

information is involved in the design of the sequence pairs. However, 3D structures will be

analyzed in a second phase.

Tableau 6.1: List of sequences and structures used. For each structure, we have the size,
the protein name, and the isoelectric point calculated by Propka.

PDB Organism Size Name Pi
1KWA Homo sapiens 88 Cask 10.23
4GVD Homo sapiens 94 Tiam1 5.84
1G9O Homo sapiens 91 NHRF1 6.82
1N7E Rattus norvegicus 95 Grip1 9.44
2BYG Homo sapiens 97 DLG2 8.03

6.2.2 Overlapping pairs design algorithm

Finding an overlapping coding for an arbitrary pair of sequences is usually impossible. Here,

for a pair of protein sequences (X, Y) we determine the pair of maximally similar homologs

(X’, Y’) such that (X’, Y’) can be coded by overlapping sequences. To achieve this goal, we

use a dynamic programming algorithm we introduced earlier ([Opuu et al., 2017]).
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6.2.2.1 Algorithm specifications

Let (X, Y) be a pair of protein sequences. We first choose the overlapping region in which

amino acids will be paired between the two sequences and we choose the phase F ∈ {-2, -1,

0, 1, 2} in which Y will be encoded with respect to X. For this overlapping region, we use

the Blosum62 similarity matrix B ([Henikoff and Henikoff, 1992]) to determine the similarity

between the pairs of amino acids Xi, X’i and Yj, Y’j. The similarity score of X’, Y’ then takes

the form:

S(X ′, Y ′) =
∑

i

piB(Xi, X
′
i) +

∑

j

qjB(Yj, Y
′
j ) (6.1)

We have included weights pi and qj depend on the position and reflect the conservation in an

alignment. Weights are derived from the entropy Hi of alignment positions: pi = exp(−Hi).

Here, the entropy is based on a reduced alphabet: {LVIMC}, {FYW}, {G}, {ASTP}, {EDNQ}

and {KRH}.

First, we consider the phase F = 0 where the codons are in register on opposite strands. This

phase is a special case, since X’ and Y’ codons fully overlap. Maximizing the score corresponds

to choosing from 64 possible codons the one that contributes the most to S(X ′, Y ′) for each

position.

For the other phases, each X’ codon overlaps with two Y’ codons, so a different method is

necessary. First, we consider the phase F = -2. In figure 6.2 A, we represent the nucleotide

sequence of the overlapping region for X and Y. We denote cX(k) and cY(k) the codons at

position k of the overlapping region. These two codons define the quartet Qk, a quadruplet

of nucleotides. Note that the Qk+1 quartet shares its 5’ end with the quartet Qk: Qk+1(1) =

Qk(4). The nucleotide sequence of the overlapping region can be re-expressed as a linked list

of quartets (figure 6.2 B).

This reformulation into a linked sequence of quartets allows the use of a dynamic program-

ming approach illustrated in figure 6.3. Let N be the size of the overlapping region. For a

position k, one has 256 possible quartets divided into groups of 64 according to the nucleotide

at their 3’ end: Qk(4) ∈ {A, C, G, T}. This last nucleotide defines the quartet state: S(Qk)

= Qk(4). Let s(Qj) be the contribution to S for the couple of codons cX(k), cY(k). At the first

overlapping position Q0, we choose a quartet per group that maximises the scoring function

s(Q0). These four optimal quartets are then stored in the first column of a 4×N table M. At
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Figure 6.2: Formulation of the overlapping region of X and Y into a linked quartet
list (figure [Opuu et al., 2017]). A) A segment of DNA with a quartet in gray. B) The
same segment represented as a linked sequence of quartets
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position k, we assume that the four optimal quartets of the position k-1 are known. For each

of the 256 possible quartets, the score is added to the quartet Qk-1 if Qk(1) = Qk-1(4). Thus,

we use the following recursion:

M(j; ν) = max
Qj∈ν











s(Qj) +M(j − 1; ν ′ ≡ Qj(1)) if j > 0

s(Qj) if j = 0

(6.2)

Among the 64 quartets whose state is ν (Qj(4) ν), we choose the one that maximizes the score

M(k-1; ν ’≡ Qj(1)) where ν is the state to which Qj is linked. When the end of the overlapping

region is reached, one can carry out standard backtracking to obtain the quartet sequence i.e.

the DNA sequence encoding X’ and Y’ whose score is maximum.

Figure 6.3: Algorithm for overlapping pair design ([Opuu et al., 2017]). Representa-
tion of the 4×N dynamic programming table centered on positions k and k-1, two consecutive
positions in the sequence of quartets. Each box of a column k-1 represents the optimal quartets
for the four states ν ∈ {A, C, T, G}. For each optimal quartet Qk-1, we represented by an
arrow the pointer to the quartet Qk-2 to which it is linked. To choose the optimal quartet for
the state ν = A at position k, we choose the one where M(k, ν = A) is the highest among the
64 quartets ending with A.

This approach is generalizable to all the phases F ∈ {-2, -1, 1, 2}. Indeed, the quartet is the

minimum unit of nucleotides to define a pair of overlapping codons ([Lèbre and Gascuel, 2017]).

We implemented this method in an iterative way (algorithm 1). The program takes two pro-

tein sequences X, Y defining the overlapping region, the size of the region N and the phase

F. We produce a DNA sequence where the two sequences X’ and Y’ are encoded. For this

implementation, the complexity is O(N) where N is the size of the overlap.
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Data: X, Y, N, F
Result: X’, Y’, DNA

// create an N × 256 table to store the quartets and their scores

table ← create_table(N, 256);
// create an N × 4 table to store the optimal quartets and their scores

find_best ← create_table(N, 4);
// create a list of quartet

l_quartet ← create_quartet_list(N, 256);

// loop in all positions

for i ∈ 1→ N do
// loop in all possible quartets

for j ∈ 1→ 256 do
// the special case of the first position

if i = 0 then
table[i,j ] ← blosum_score(l_quartet[j ], X[i ], Y[i ]);

else
// Get the best quartet of the corresponding state

mi ← find_best[i− 1, l_quartet[j ]];
// add the current score to the one saved in the table

table[i,j ] ← blosum_score(l_quartet[j ], X[i ], Y[i ]) + table[mi, i-1 ];
end

end
// Saved the best score for each state in a table

foreach nuc ∈ A,C, T,G do
find_best[i, nuc] ← max(table, nuc);

end
end

// get the best DNA sequence using a backtracking

DNA ← max(table);

// Translate the DNA into two protein sequences

X’, Y’ ← translation(DNA,);
Algorithm 1: Optimization algorithm for the design of X’ and Y’, two overlapping
protein sequences based on X and Y

6.2.2.2 Proof by induction

The algorithm used here provides an exact solution. We use the dynamic programming scheme

to deduce a proof by induction. First, we define the concept of an optimal quartet. An optimal

quartet Qi(S) is one of the 64 quartets in state ν ∈ {A, C, T, G} maximizing the contribution

of the score M(i ν) at position i.
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1. Initialization P(1): For the first position, we choose the four quartets maximizing the

score s(Q, ν) for the four different states. Therefore, we obtain four optimal quartets for

the first position of the overlapping region. Thus, for the position n = 1, we know the

best quartets of the previous position.

2. Induction hypothesis P(n): At the position n of the overlapping region, we know the

four best quartets of the position each state ν.

3. Inheritance P(n + 1): Assuming P (n), we have 4 optimal quartets at position n. The

choice of the optimal quartets for the n + 1 position is trivial. Simply connect each of

the 256 possible quartets to the corresponding optimal quartet. Since a quartet is only

linked to the consecutive positions, it is the only solution to have an optimal quartet.

Therefore, we obtain the optimal quartets for the position n + 1. We note here that the

essential point is to keep the 4 states optimal along the table.

6.2.2.3 The genetic code degeneracy

The coding possibilities depend on the degeneracy of the genetic code. An amino acid may be

translated from one or more codons (Table 6.2). In addition, the coding constrains depend on

the phase F. Table 6.3 shows the number of pairs of amino acids that can be encoded in an

overlapping manner. The reading frame F = -2 is the most flexible and F = -1 is the least.

Tableau 6.2: Degeneracy of the genetic code: number of codons per amino acid type.

type nb codons type nb codons type nb codons
SER 6 GLY 4 ASP 2
ARG 6 ILE 3 GLU 2
LEU 6 STO 3 PHE 2
THR 4 ASN 2 TYR 2
PRO 4 LYS 2 CYS 2
VAL 4 HIS 2 MET 1
ALA 4 GLN 2 TRP 1
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Tableau 6.3: Number of unique overlapping residue pairs per phase with and without
the pairs containing the stop codon.

phase F with stop codons without stop codons
-2 212 196
-1 42 35
0 56 52
1 90 80
2 90 80

6.2.2.4 Production pairs exploiting systematic offsets

We considered five PDZ sequences and 15 sequence pairs. For each pair, we considered the five

overlapping phases F. For each triplet (X, Y, F), we considered different offsets between the

sequence X and Y as shown in Figure 6.4. We authorized a shift of 10% of the longest sequence

in both directions (Figure 6.4). On average, for each triplet (X, Y, F) we produced 21 designs

(X ’, Y’). In total, we produced 1,715 pairs of designed sequences (X ’, Y’). It is important to

note the coding symmetries between different overlapping phases. In the phases F ∈ {-2, -1,

0}, the pairs (X, Y) and (Y, X) are equivalent. In phase F = 1, (X, Y) is equivalent to (Y, X)

in phase F = 2. These elements of symmetry simplify the pair production.
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X ....RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR
Y RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR....

X ...RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR
Y RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR...

X ..RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR
Y RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR..

X .RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR
Y RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR.

X RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR..
Y ..RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR

X RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR...
Y ...RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR

X RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR....
Y ....RSRLVQFQKNTDEPMGITLKMNELNHCIVARIMHGGMIHR

Figure 6.4: Representation of sequence pair shifts tested.
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6.2.3 Designed sequence characterization

We introduce here a step of manual characterization and filtering. The purpose of this filter is

to select a restricted set of sequence pairs to test by molecular dynamics and experimentally.

6.2.3.1 Evolutionary and structural properties

We assume that the pairs of sequences (X’, Y’) produced here are homologous to the initial

sequences (X, Y). One way to support this is to build the inverse relationship with a Blast

analysis. Thus, a Blast search starting from X’ should find X as the closest sequence.

Optimization of an overlapping region using similarities does not take into account structural

information. Therefore, we apply here a negative design filter using the software Superfamily

([Gough et al., 2001]). Superfamily matches sequences to a SCOP structural family using hid-

den Markov models. Searches with X’, Y’ should return the PDZ family.

One experimental issue is protein solubility. To promote soluble sequences, we estimate the

isoelectric point (Pi) using the software Propka ([Olsson et al., 2011]). Pi is the pH at which

the protein is neutral. If Pi is close to the physiological pH, proteins tend to precipitate. Pi

depends on the composition and structure of the protein. Also, we calculated the net charge of

each protein. Indeed, charged residues could destabilize folding if there are too many because

of electrostatic repulsion.

Finally, mutations creating internal cavities could destabilize folding and are excluded. To

detect cavities, we built models using Scwrl ([Krivov et al., 2009]) for all designed pairs (X’,

Y’) using the structures of the initial sequences (X, Y). For each structure, we searched for

cavities with the McVol software ([Till and Ullmann, 2009]).

6.2.3.2 Disorder measurement

It has been shown that overlapping coding regions often involve intrinsically disordered protein

regions ([Kovacs et al., 2010]). Here, we used the software Iupred ([Mészáros et al., 2018]) to

predict disordered regions. We used the protocol established in a previous study ([Kovacs et al., 2010]).

A disorder score was assigned to each position of each designed sequence. We applied a thresh-

old of 0.4 to assign the disordered nature of each position and determined for each sequence

the percentage of disordered positions.
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To assign disorder scores, Iupred uses an energy function based on a coarse-grained model.

The score for position k takes the following form:

eki =
∑

1≤j≤20

MijCj (6.3)

eki is the disorder score for position i with type k. Cj is the probability to have the types j and

j at the neighboring positions. Mij is an energy term obtained empirically. The score is then

normalized to be included in the [0, 1] interval. The 0.4 threshold represents the average score

by position in the Disprot database ([Hatos et al., 2020]).

6.2.4 Molecular dynamics protocol

The structural stability of the best pairs is estimated by MD. We start by rebuilding the

three-dimensional structure of each sequence using the reference structure. Then, the folded

structures are simulated in an explicit solvent for at least 500 ns. These simulations allow us

to test the global stability as well as local stability of secondary structures. Also, it allows us

to compare the behavior of designed sequences with a wild-type PDZ. However, they do not

determine whether these structures are capable of folding since we started the simulations with

folded structures.

We rebuilt each structure by applying the designed sequence onto the experimental structure

with the Scwrl4 software. The protonation state of histidines was predicted using Propka and

visual inspection. Then, the structure was solvated in an octahedral water box using the

CHARMM GUI ([Jo et al., 2008]). The system was neutralized by adding counter ions (Na+,

Cl-).

Simulations were done at ambient temperature and pressure with Langevin dynamics and a

Nosé Hoover piston ([Martyna et al., 1994, Feller et al., 1995]) , and under periodic boundary

condition. The long-range electrostatic interactions were handled by Particle Mesh Ewald

([Becker et al., 2001]).

To analyze simulations, we used the global RMSD to the average MD structure. We removed

some highly flexible regions such as the β2 − β3 loop. We also calculated the contact lifetimes

between positions using their center of mass and a contact threshold of 6.5 Å. For this contact

map, we don’t consider positions less than four amino acids away in the sequence.
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6.2.5 Ab initio structure prediction

For the variants validated by MD, we tested folding by an ab initio structure prediction from

their protein sequence. This test, although less stringent, aims to support the robustness of

designs. We used the Robetta server ([Kim et al., 2004]) for these predictions. The server takes

as input a sequence in fasta format and provides a set of structural models. The first step in

the procedure is to create two libraries of three-dimensional fragments from known proteins.

To obtain these fragments Robetta performs a Blast search to identify similar domains. Then,

using a Monte Carlo approach, the fragments are assembled into 10,000 structures. Fragment

based decoys are then filtered with a coarse-grained energy function ([Bonneau et al., 2002]).

Finally, side chain conformations are refined using a Monte Carlo based optimization with the

all-atom Rosetta energy function ([Bonneau et al., 2002]).

6.3 Results

6.3.1 Overlapping pair designs

We produced 1,715 homologous sequences pairs with an average of 21 different overlapping

regions per pair and phase. Table 6.4 shows the composition of wild-type sequences of the RP55

alignment of the PDZ family in the Pfam database and of the designed sequences. We observe

that {LEU, ARG, SER} are over-represented in the designed sequences (column PDZ 6.4) by

at least 1% compared to Pfam. The types {ALA, GLY, VAL, ASP} are underrepresented. The

over-represented types are coded by 6 codons.

Table 6.5 gives Blast and Superfamily scores for the designed sequences. The Superfamily

score allows us to detect sequences that may fold into a non-PDZ structure. The sequences

based on the Nhrf1 domain give the best Blast scores. We see that the sequences based on Dlg2

have the highest average log score (-log10(Evalue)) with 17.2 points (Table 6.5). The Tiam1

domain produces sequences on average less reliable with 6.4 points.

The Blast scores confirm that phase F = -2 is the most favorable. For the Superfamily scores,

the differences are weaker. Nevertheless, we do find phases F = -1 and 0 as least favorable.

However, there are a few isolated sequences in these phases with a score greater than 40 (figure

6.5).
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Tableau 6.4: Amino acid composition of wild-type sequences (Pfam and PDZ) and
designed pairs. (A) Composition of the Pfam RP55 alignment. (B) Average composition of
five selected PDZ domains. (C) Average composition of the designed sequences.

type PFAMa PDZb Caskc Dlg2c Tiam1c Grip1c Nhrf1c

ALA 6.6 4.9 2.4 4.5 6.9 6.4 4.4
ARG 5.3 7.5 10.3 5.2 6.7 6.0 9.4
ASN 4.1 3.9 4.5 4.1 4.4 2.4 4.1
ASP 5.6 3.2 2.5 3.1 4.3 2.8 3.6
CYS 0.9 1.4 1.7 1.0 0.9 1.0 2.6
GLN 3.9 3.3 4.9 2.9 2.0 3.0 3.9
GLU 6.1 4.7 4.4 4.7 4.6 3.8 6.0
GLY 11.6 8.8 7.0 10.0 8.0 10.0 8.9
HIS 2.2 2.6 3.5 2.0 2.3 2.0 3.1
ILE 7.9 6.4 7.9 6.5 4.5 9.0 4.2
LEU 9.8 12.2 11.2 11.7 13.6 12.4 12.2
LYS 5.6 4.7 4.5 5.3 4.3 4.7 4.6
MET 1.7 1.9 3.5 1.6 1.9 1.1 1.5
PHE 2.3 2.1 2.3 3.1 2.7 1.1 1.2
PRO 3.3 4.4 3.6 3.6 3.3 5.4 5.9
SER 6.5 11.9 10.8 11.3 14.7 14.0 8.9
THR 4.8 6.0 6.2 6.5 5.5 7.0 4.6
TRP 0.3 0.4 0.2 0.5 0.4 0.4 0.4
TYR 1.2 2.5 1.3 3.0 3.2 2.5 2.7
VAL 10.1 7.0 7.1 9.4 5.8 4.8 7.9

Tableau 6.5: Average Blast and Superfamily scores for designed seqeuences.

log10(Evalue) log10(Evalue)
PDZ Blast Superfamily Phase F Blast Superfamily
Cask 24.6 11.2 -2 28.5 14.0
dlg2 25.0 17.2 -1 19.4 9.3
grip1 25.0 12.5 0 23.2 11.3
nhrf1 28.9 15.5 1 27.7 14.3
tiam1 22.8 6.5 2 27.5 14.1

Regarding the similarity to PDZ family members in the PFAM database, similarities are

only favorable for the Cask domain. Comparing these similarities to those obtained for the

complete redesign of the Cask domain (with no overlapping constraints) ([Opuu et al., 2020b]),

the scores are lower (figure 6.6). In addition, we studied the effect of omitting the conservation

weights (figure 6.6, curves denoted OG). It appears that the weights slightly, but systematically

improve the final similarity. As showed in table 6.6, the scores for the phases F=0 and F=-1

are the least favorable. Note that we calculate the similarity for the entire sequence.
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Figure 6.5: Blast et Superfamily scores per phase F.

Tableau 6.6: Pfam similarity scores using Blosum40 substitution matrix.

PDZ Pfam score Phase F Pfam score
Cask 8.45 -2 -15.70
Dlg2 -14.33 -1 -40.46
Grip1 -34.10 0 -31.67
Nhrf1 -22.55 1 -13.24
Tiam1 -57.38 2 -13.64
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Figure 6.6: Histograms of Pfam similarity scores per PDZ domain The curves denoted
Pfam represent the Pfam vs. Pfam similarity scores. The curves denoted OG mean overlapping
sequence similarities produced without weighting compared to Pfam. Curves denoted OGE
mean overlapping sequence similarities produced with weighting compared to Pfam. The curve
denoted Proteus compares the designed Cask sequences from ([Opuu et al., 2020b]) compare
to Pfam.
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Finally, we analyzed the tendency for disorder of the designed pairs. We calculated the

proportion of positions per sequence to have an Iupred score less than 0.4 ([Kovacs et al., 2010]).

The designed sequences are not predicted to be disordered on average. Indeed, over 65% of the

designs have at least 80% of non-disordered positions. Moreover, fewer than 3% of designs are

predicted to have 90% disordered positions. Figure 6.7 shows that phases F=1 and F=2 seem

to produce the most disordered sequences. The Dlg2 domain produced the least disordered

sequences.
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Figure 6.7: Percent of disorder positions. A threshold of 0.4 Iupred score is used to
determine the disorder propensity.

6.3.2 Pairs selected for MD

For each designed sequence, we constructed three-dimensional models using the experimental

structures of the initial PDZ domains and computed various properties. First, we looked at

buried cavities. 796 pairs among the 1715 have no cavity. Among the 796 pairs, four had a

Pfam similarity score ≥ 25 (see table 6.7). Of these four pairs, we explored the stability of

the first three (C1, C2, and C3). These pairs have a low number of drastic mutations (1-4 per

sequence). However, the sequence X’ in the pair C1 has a Pi very close to the physiological pH

(table 6.7).
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Tableau 6.7: Properties of the four selected pairs. (A) the number of residues for the
shift which define the overlapping region. (b) The Blast score on the logarithmic scale. (c)
the mean Pfam similarity score. (d) The Superfamily score on the logarithmic scale. (e) The
match length detected by Superfamily. (f) The number of drastic mutations. (g) The overall
net charge.

PDZ shifta phase F Blastb Pfamc Superfamilyd

id X Y X Y X Y X Y
C1 Cask Cask 6 -2 30.0 29.4 31.0 27.3 35.9 33.5
C2 Cask Cask 0 -2 26.2 25.0 31.2 28.9 35.2 35.4
C3 Cask Cask 8 -2 24.5 26.2 26.1 34.9 31.1 35.1
C4 Cask Cask 7 0 24.3 24.7 25.9 28.0 37.6 37.3

PDZ matche Pi Drasticf Chargeg

id X Y X Y X Y X Y X Y
C1 Cask Cask 79 79 7.4 10.0 1 1 2 4
C2 Cask Cask 80 80 11.3 11.3 1 1 7 8
C3 Cask Cask 80 76 12.0 12.0 4 3 8 9
C4 Cask Cask 80 80 11.4 11.6 4 4 10 10

Figure 6.8 shows the C1 overlapping region with the two Cask sequences encoded in the

phase F = -2 with an offset of 6 residues. We denote this pair (X1, Y1). The C-ter ends are

not constrained by the overlapping encoding. X1 has 34 mutations relative to Cask; Y1 has

36. Figure 6.9 shows the overlapping region of pair C2=(X2, Y2), two Cask domains encoded

in the phase F = -2 with an offset of one residue. X2 has 31 mutations and Y2 has 32. Figure

6.10 shows the overlapping region of pair C3=(X3, Y3) with two Cask domains encoded in the

phase F = -2 with an offset of 8 residues. X3 has 28 mutations and Y3 has 27. This pair is the

least mutated among the three pairs chosen for MD simulations (figure 6.11).
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Y   S  P  V  I  K  F  T  I  S  G  R  M  E  R  L  M  K  Q  L  Q  E  V  T  Q  N  A 
Y'  .  .  .  .  .  .  S  I  A  G  R  M  E  R  L  I  K  Q  L  A  E  L  S  Q  N  A 
  TTCTTCCTTGTTAGAATTTTCTCTAGCGCGGAGCGTAGAGAGAGTTTTAGAAGACTTCTCGGAGATCCCTAACTAAACG 

  AAGAAGGAACAATCTTAAAAGAGATCGCGCCTCGCATCTCTCTCAAAATCTTCTGAAGAGCCTCTAGGGATTGATTTGC 

X' .  .  .  .  .  .  .  R  S  R  L  A  S  L  S  K  S  S  E  E  P  L  G  I  D  L 
X  .  .  .  .  .  .  .  R  S  R  L  V  Q  F  Q  K  N  T  D  E  P  M  G  I  T  L 

 

Y   V  S  I  G  N  I  E  R  I  E  D  G  V  H  L  T  G  Q  R  H  I  M  G  G  H  M 
Y'  V  S  C  G  N  V  S  R  L  E  D  G  V  H  L  L  G  Q  E  H  V  L  G  G  E  R 
  GCTGACTTGTTGGCAAGTGTGACGCATCAAGCAGCGGATGCACTTCCTCCGGAACAAGTACTTGTTCCGGGGGAAGTGC 

  CGACTGAACAACCGTTCACACTGCGTAGTTCGTCGCCTACGTGAAGGAGGCCTTGTTCATGAACAAGGCCCCCTTCACG 

X' R  L  N  N  R  S  H  C  V  V  R  R  L  R  E  G  G  L  V  H  E  Q  G  P  L  H 
X  K  M  N  E  L  N  H  C  I  V  A  R  I  M  H  G  G  M  I  H  R  Q  G  T  L  H 

 

Y   I  R  A  V  I  C  H  N  L  E  N  M  K  L  T  I  G  M  P  E  D  T  N  K  Q  F 
Y'  L  R  R  V  V  C  H  S  R  S  R  L  R  L  D  I  G  L  P  E  E  S  S  K  S  L 
  CATCCGCTGCTTGATGCGTTACACTTGCCCTAGAGTCAGCGTTTAGTTAGGGATCTCCGAGAAGTCTTCTAAAACTCTC 

  GTAGGCGACGAACTACGCAATGTGAACGGGATCTCAGTCGCAAATCAATCCCTAGAGGCTCTTCAGAAGATTTTGAGAG 

X' V  G  D  E  L  R  N  V  N  G  I  S  V  A  N  Q  S  L  E  A  L  Q  K  I  L  R 
X  V  G  D  E  I  R  E  I  N  G  I  S  V  A  N  Q  T  V  E  Q  L  Q  K  M  L  R 

 

Y   Q  V  L  R  S  R  .  .  .  .  .  .  . 
Y'  S  A  L  R  S  R  .  .  .  .  .  .  . 
  CTCTACGCTCCGCGCTAGAGTAAGTTTTATCATGGTTCGT 

  GAGATGCGAGGCGCGATCTCATTCAAAATAGTACCAAGCA 

X' E  M  R  G  A  I  S  .  .  .  .  .  . 
X  E  M  R  G  S  I  T  F  K  I  V  P  S 

X1’

Y1’

X1’

Y1’

X1’

Y1’

X1’

Y1’

Figure 6.8: C1 pair of overlapping sequences Cask = X Cask = Y in phase F = -2
with a 6 residues shift.
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Y   S  P  V  I  K  F  T  I  S  G  R  M  E  R  L  M  K  Q  L  Q  E  V  T  Q  N  A 
Y'  S  P  V  L  E  F  T  L  S  G  R  M  E  R  L  L  K  E  L  Q  E  V  T  S  N  A 
  GCGAGCCTTGATCAAGTTTACAGTTTCTTGGGGAGTAGAGGGAATCCTCAAAGAGATTGACAAGTTGTCAACTTAAGCG 

  CGCTCGGAACTAGTTCAAATGTCAAAGAACCCCTCATCTCCCTTAGGAGTTTCTCTAACTGTTCAACAGTTGAATTCGC 

X' R  S  E  L  V  Q  M  S  K  N  P  S  S  P  L  G  V  S  L  T  V  Q  Q  L  N  S 
X  R  S  R  L  V  Q  F  Q  K  N  T  D  E  P  M  G  I  T  L  K  M  N  E  L  N  H 

 

Y   V  S  I  G  N  I  E  R  I  E  D  G  V  H  L  T  G  Q  R  H  I  M  G  G  H  M 
Y'  V  S  L  G  N  I  E  R  I  E  D  G  G  H  L  S  G  E  R  H  L  R  S  G  H  F 
  GATGACTATCGGGCAAATAAAGTGCCTAGAGCAGAGGTGGCACTTCCCTGGGAAGTGCTACCTCTGCTCTAGGCACTTT 

  CTACTGATAGCCCGTTTATTTCACGGATCTCGTCTCCACCGTGAAGGGACCCTTCACGATGGAGACGAGATCCGTGAAA 

X' L  L  I  A  R  L  F  H  G  S  R  L  H  R  E  G  T  L  H  D  G  D  E  I  R  E 
X  C  I  V  A  R  I  M  H  G  G  M  I  H  R  Q  G  T  L  H  V  G  D  E  I  R  E 

 

Y   I  R  A  V  I  C  H  N  L  E  N  M  K  L  T  I  G  M  P  E  D  T  N  K  Q  F 
Y'  L  R  A  I  L  L  S  N  L  Q  R  V  A  L  S  V  G  L  P  S  S  L  N  K  S  M 
  TATTTGCCCGATAGTCATCGCTTAAGTTGACAGCTTGTCGATCTCTTTGAGGATTCCCTCTACTCTCCAAGAAACTGTA 

  ATAAACGGGCTATCAGTAGCGAATTCAACTGTCGAACAGCTAGAGAAACTCCTAAGGGAGATGAGAGGTTCTTTGACAT 

X' I  N  G  L  S  V  A  N  S  T  V  E  Q  L  E  K  L  L  R  E  M  R  G  S  L  T 
X  I  N  G  I  S  V  A  N  Q  T  V  E  Q  L  Q  K  M  L  R  E  M  R  G  S  I  T 

 

Y   Q  V  L  R  S  R 
Y'  Q  V  L  E  S  R 
  AAACTTGATCAAGGCTCGC 

  TTTGAACTAGTTCCGAGCG 

X' F  E  L  V  P  S 
X  F  K  I  V  P  S 

X2’

Y2’

X2’

Y2’

X2’

Y2’

X2’

Y2’

Figure 6.9: C2 pair of overlapping sequences Cask = X Cask = Y in phase F = -2
with a 1 residues shift.
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Y   .  .  .  .  .  .  .  .  S  P  V  I  K  F  T  I  S  G  R  M  E  R  L  M  K  Q 
Y'  .  .  .  .  .  .  .  .  S  C  V  L  S  F  P  I  S  G  R  M  S  R  L  M  K  Q 
  TCTTCGTCTGATCATGTTAAGGTTTTCTTGTGTGTTCTCTTTTACCCTAACTGGGAGAGTAACTTGCTTCGTAGAAGAC 

  AGAAGCAGACTAGTACAATTCCAAAAGAACACACAAGAGAAAATGGGATTGACCCTCTCATTGAACGAAGCATCTTCTG 

X' .  .  .  .  .  .  .  .  K  N  T  Q  E  K  M  G  L  T  L  S  L  N  E  A  S  S 
X  R  S  R  L  V  Q  F  Q  K  N  T  D  E  P  M  G  I  T  L  K  M  N  E  L  N  H 

 

Y   L  Q  E  V  T  Q  N  A  V  S  I  G  N  I  E  R  I  E  D  G  V  H  L  T  G  Q 
Y'  L  Q  Q  V  S  Q  G  R  L  S  S  G  N  I  Q  R  V  E  D  G  L  H  L  V  G  S 
  CGTTAACAACGTGCCTAACAGGTGCCTCCCTACTAGGTAAATAGACCGCGTGAAGTAGAGGTTCTACTTCATGCGGTCT 

  GCAATTGTTGCACGGATTGTCCACGGAGGGATGATCCATTTATCTGGCGCACTTCATCTCCAAGATGAAGTACGCCAGA 

X' A  I  V  A  R  I  V  H  G  G  M  I  H  L  S  G  A  L  H  L  Q  D  E  V  R  Q 
X  C  I  V  A  R  I  M  H  G  G  M  I  H  R  Q  G  T  L  H  V  G  D  E  I  R  E 

 

Y   R  H  I  M  G  G  H  M  I  R  A  V  I  C  H  N  L  E  N  M  K  L  T  I  G  M 
Y'  L  H  I  M  G  G  H  V  I  R  A  V  I  A  F  S  A  E  N  L  S  L  T  L  G  M 
  TATTTACCTAGTAGGGAGGCACTTGTTAGGCACGTTGTTAACGTTTTCTACGAAGCAAGTTACTCTCCCAGTTAGGGTA 

  ATAAATGGATCATCCCTCCGTGAACAATCCGTGCAACAATTGCAAAAGATGCTTCGTTCAATGAGAGGGTCAATCCCAT 

X' I  N  G  S  S  L  R  E  Q  S  V  Q  Q  L  Q  K  M  L  R  S  M  R  G  S  I  P 
X  I  N  G  I  S  V  A  N  Q  T  V  E  Q  L  Q  K  M  L  R  E  M  R  G  S  I  T 

 

Y   P  E  D  T  N  K  Q  F  Q  V  L  R  S  R 
Y'  K  E  Q  T  N  K  .  .  .  .  .  .  .  . 
  AAAAGAGAACACATAAGAAGACTTTGACTTGGTTGGATCTTGC 

  TTTTCTCTTGTGTATTCTTCTGAAACTGAACCAACCTAGAACG 

X' F  S  L  V  Y  S  .  .  .  .  .  .  .  . 
X  F  K  I  V  P  S  .  .  .  .  .  .  .  . 

X3’

Y3’

X3’

Y3’

X3’

Y3’

X3’

Y3’

Figure 6.10: C3 pair of overlapping sequences Cask = X Cask = Y in phase F = -2
with a 8 residues shift.

Figure 6.11: All selected sequence pairs for molecular dynamic simulations.
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6.3.3 Molecular dynamic validation

We selected three overlapping pais (C1, C2, and C3) for molecular dynamic investigations. For

the C1 pair, we performed 500 ns simulations. The average structures of both sequences are

well reproduced when compared to the WT (figure 6.12, panel A). Next, we computed the

RMSD to the average structure found in the simulation. The X1 RMSD evolution during the

simulation shows that the sequence is stable with an average RMSD of 1.4 Å (figure 6.12, panel

C). The secondary structure analyses performed with DSSP confirmed that X1 reproduced well

the PDZ fold. However, Y1 sequence is slightly less stable. As shown in figure 6.12, β2 and β3

sheets are slightly degraded. This instability appeared after the first 100 ns of simulation and

the RMSD seems to grow after 200 ns of simulation. This RMSD profile may be the signal of

the nascent unfolding of Y1 structure.

For C2 pair, both designs showed instabilities in 500 ns simulations. X2 is the most stable

design here, as shown by the RMSD (figure 6.13, panel C) and the conservation of secondary

structures (figure 6.13, panel A and B). However, the β2, β3, and α2 secondary structures

are slightly degraded. For Y2, the structure did not reproduce well the secondary structures,

according to DSSP. The frames displayed and the RMSD show that Y2 is more flexible and

may unfold soon.

Next, we analyzed C3 with 3 µs simulations, the longest test. The C3 pair is the most

stable. As described by the frames sampled during the simulation, X3 and Y3 conformations

are close to the average structure (figure 6.14). This observation is supported by the DSSP and

RMSD analyses, with an average RMSD around 1.2 Å.
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Figure 6.12: Simulation results for X1 and Y1 sequences of the pair C1. Panel
A shows the average structures of X and Y compared (a few sampled frames are displayed
in transparency) to the WT (grey) with the mutated position in red. Panel B shows the
secondary structure analyses performed with DSSP. Panel C shows the evolution of the RMSD
to the average structure found in the simulation.
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Figure 6.13: Simulation results for X2 and Y2 sequences of the pair C2. Panel A
shows the average structures of X and Y (a few sampled frames are displayed in transparency)
compared to the WT (grey) with the mutated position in red. Panel B shows the secondary
structure analyses performed with DSSP. Panel C shows the evolution of the RMSD to the
average structure found in the simulation.
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Figure 6.14: Simulation results for X3 and Y3 sequences of the pair C3. Panel A
shows the average structures of X and Y (a few sampled frames are displayed in transparency)
compared to the WT (grey) with the mutated position in red. Panel B shows the secondary
structure analyses performed with DSSP. Panel C shows the evolution of the RMSD to the
average structure found in the simulation.
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For Y2, we extended the analyses to the study of contact lifetimes. The goal of this analysis

is to detect missing native contacts which may explain the instabilities observed. First, we

computed the contact lifetimes for the WT simulation. Then, we computed the ones from the

Y2 simulation. Figure 6.15 shows the log lifetime ratios for Y2 and WT proteins. 503-518 is one

striking missing contact (red circle in figure 6.15). When we compare both average structures,

there is a shift in the aligned structures (left, red circle in figure 6.15). The mutation M519F

may destabilize Y2 although the mutation cost in Blsoum62 score is only 0.

Figure 6.15: Comparison of lifetime contacts between the wild type and Y2. On the
left are average structures alignment with Y2 in blue and WT in grey. On the right side is the
contact lifetime differences between WT and Y2. Red values indicate longer contacts for Y2.
Blue values indicate longer contacts for the WT.

6.3.4 Ab initio structure prediction for the C3 pair

We performed another test to support the designed pair C3. We made an ab initio structure

prediction using the Robetta server ([Kim et al., 2004]). As shown in figure 6.16, the two

sequences processed by Robetta were folded into a PDZ type conformation. We can recognize

the secondary structures of PDZ family folds, the five β sheets, and the two α helices.
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Figure 6.16: Results of structure prediction using the ab initio method implemented
in Robetta server for the C3 pair.

6.4 Concluding discussions

To create compact genomes and bio-confinement strategies, we explored overlapping coding.

Indeed, this type of coding helps contain mutations, since a mutation in an overlapping region

results in two protein mutations. Nevertheless, finding an overlapping scheme for an arbitrary

pair of sequences (X, Y) is in general impossible. The approach we used here allows us to

produce a pair X’, Y’ homologous to X and Y’.

We generated 1715 pairs of overlapping coded sequences based on five PDZ domains. From

a compositional point of view, the sequences produced are slightly enriched in LEU, ARG, and

SER types (from 1% to 5% enrichment) compared to PFAM. This enrichment can be explained

by the code degeneracy for these types. Indeed, these types are the most degenerate with 6

codons.

The effect of composition bias appears to be systematic for overlapping genes ([Rancurel et al., 2009]).

We do not observe an over-representation of disordered regions in the designed sequences.

Therefore, we conclude that the correlation between overlapping regions and disorder is not

systematic. The disorder of naturally occurring overlapping genes observed in the human

genome may not be due to the overlap constraint.
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The dynamic programming algorithm described here allows us to produce homologous pairs

of proteins with an overlapping encoding scheme. To validate the homology relationship be-

tween X → X’ (Y → Y’), we used Blast. Indeed, using the same threshold of log10(Evalue) =

10 as in previous work ([Opuu et al., 2017]), we have 1593 out of 1715 pairs of homologous to

their reference sequence.

We confirmed some results of the previous work ([Opuu et al., 2017]) especially in terms of

phase performance. Indeed, the pairs produced in phase F = -2 have more favorable scores. A

contrario, the pairs produced with phases 0 or -1 have the lowest scores. This difference can be

explained by the flexibility of the coding in phase F = -2. Indeed, it is possible to overlap 196

pairs of different amino acids while the phase F = 0 allows only 52 pairs.

We show here that it is possible to design a structured protein pair in an overlapping coding

scheme. Among the 1715 designed pairs, we selected three where Blast, Superfamily, and Pfam

similarities scores were high. For these three pairs, we produced MD trajectories. The C2 pair

shows partial instability and the β-2, and β-3 sheets vanished for one sequence. The pairs

C1 was stable over trajectory of 500 ns. The pair C3 was stable over trajectories of 3 µs.

Furthermore, we have shown that the ab initio structure prediction recovered the PDZ fold for

C3.

C2 instability could be a result of a design method using only a position-based score. In-

deed, a recent study ([Blazejewski et al., 2019]) shows that the addition of the correlations

between positions is beneficial. This approach could take into account collisions between dis-

tant positions in the sequence. Besides, the lifetime of contacts between positions has shown

that although the cost of some mutations is weak from an evolutionary point of view (blosum

score), the interaction network can be greatly affected.

To take into account the correlations between positions, one can add to the cost function a

weight in the form of the logarithm of the joint probabilities taken from an alignment. However,

this approach assumes that we have an alignment of sequences rich enough to describe the

correlations in a relevant way. A more satisfactory approach is to use structural information.

We could thus apply the approach described in ([Blazejewski et al., 2019]) for the optimization

of correlations using a physics-based energy function. At this point, we also looking forward to

experimental tests for the pairs C1 and C3 (G. Travé, personal communication).
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6.5 Design perspectives

We introduce several perspectives for the dynamic programming algorithm. First, we discuss

the use of quintuplets instead of nucleotide quartets. This reformulation makes it possible to

use the full potential of the overlapping encoding, so that one can encode up to six sequences

in a single DNA section. Then, we discuss the generalization of the algorithm for overlapping

designs by deriving the dynamic programming scheme used for pairwise sequence alignment.

This generalization allows a more flexible optimization but also allows insertions and deletions.

It constitutes a path to whole genome compaction.

6.5.1 Quintuplets of nucleotides

In this work, we used a formulation in sequences of linked quadruplets, or quartets. In fact,

this formulation is much more flexible. It allows the encoding of up to four sequences on

the same overlapping region. Moreover, this generalization was used in the previous study

([Opuu et al., 2017]) for the design of triplets where three sequences are embedded in the same

DNA section. For those designs, we used the following scoring function:

S(X ′, Y ′, Z ′) =
∑

piB(Xi, X
′
i) +

∑

qjB(Yj, Y
′
j ) +

∑

tkB(Zk, Z
′
k) (6.4)

Similarly, we introduce a sequence of linked quintuplets, in order to use up to six reading frames

(figure 6.17). Indeed, as shown in Figure 6.17, each quintuplet potentially includes six different

codons. Each quintuplet is linked by the pairs of nucleotides at each end. The only change for

this generalization is the number of optimal quintuplets. Now, for each column of the dynamic

programming table, we have 16 states instead of 4, representing the 16 possible pairs of end

nucleotides.

To illustrate this generalization, we have tried to encode six times the Cask sequence in the

same coding region (Figure 6.18). For the six reading frames X, Y, Z, U, V, and W, we obtain

respectively the similarity scores 119, 86, 118, 88, 97, and 114. For the identity percent, we

obtain respectively 32.1, 27.3, 32.1, 28.5, 28.5 and 30.9 %. These identity scores are on average

half of those obtained by dual coding.
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G C A A A C T T G T A

C G T T T G A A C A T

: : : : : : : : : : :

Nucleotide quintuplet !Qk

3’

3’

5’

5’

A)

C G T T T G A A C A T

C G T T T T T G A A A A C A T≡≡≡ ≡

B) 3’5’

!Ck!Ck−1
!Ck+1

Codon sequence

Quintuplet sequence

!Qk!Qk−1
!Qk+1

Protein X

Protein Y

Protein Z

Protein U

Protein V

Protein W

Protein U

Figure 6.17: Reformulation of the overlapping region of six protein sequences into
a linked list of quintuplets. A) A DNA segment with a shaded quintuplet. B) The same
segment represented as a linked sequence of quintuplets
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X  S  P  V  I  K  F  T  I  S  G  R  M  E  R  L  M  K  Q  L  Q  E  V  T  Q  N  A  V  S  I

X' S  P  S  I  D  F  I  C  S  V  R  S  S  G  K  P  N  E  A  L  E  F  S  N  S  C  T  N  Y

Y   S  P  V  I  K  F  T  I  S  G  R  M  E  R  L  M  K  Q  L  Q  E  V  T  Q  N  A  V  S  I

Y'  L  P  L  Y  R  F  Y  L  F  G  E  F  E  G  Q  P  K  R  C  A  R  V  L  Q  F  M  H  Q  I

Z    S  P  V  I  K  F  T  I  S  G  R  M  E  R  L  M  K  Q  L  Q  E  V  T  Q  N  A  V  S  I

Z'   P  P  S  I  S  F  V  L  F  G  R  V  G  R  P  T  K  Q  L  S  S  R  T  P  V  H  T  T  D

  TCTCCCCCTCTATAGCTTTTATGTTCTTTGGGAGCTTGAGGGGAACCCCAAAAGACGTTCGAGCTTGCTCAACCTTGTACACAACATA

  AGAGGGGGAGATATCGAAAATACAAGAAACCCTCGAACTCCCCTTGGGGTTTTCTGCAAGCTCGAACGAGTTGGAACATGTGTTGTAT

U' R  G  G  D  I  E  N  T  R  N  P  R  T  P  L  G  V  F  C  K  L  E  R  V  G  T  C  V  V

U  R  S  R  L  V  Q  F  Q  K  N  T  D  E  P  M  G  I  T  L  K  M  N  E  L  N  H  C  I  V

V'  E  G  E  I  S  K  I  Q  E  T  L  E  L  P  L  G  F  S  A  S  S  N  E  L  E  H  V  L  Y

V   R  S  R  L  V  Q  F  Q  K  N  T  D  E  P  M  G  I  T  L  K  M  N  E  L  N  H  C  I  V

W'   R  G  R  Y  R  K  Y  K  K  P  S  N  S  P  W  G  F  L  Q  A  R  T  S  W  N  M  C  C  I

W    R  S  R  L  V  Q  F  Q  K  N  T  D  E  P  M  G  I  T  L  K  M  N  E  L  N  H  C  I  V

X  G  N  I  E  R  I  E  D  G  V  H  L  T  G  Q  R  H  I  M  G  G  H  M  I  R  A  V  I  C

X' G  G  I  D  R  P  P  D  G  V  R  L  P  G  R  A  H  P  L  G  G  W  L  I  R  P  I  C  C

Y   G  N  I  E  R  I  E  D  G  V  H  L  T  G  Q  R  H  I  M  G  G  H  M  I  R  A  V  I  C

Y'  G  R  Y  R  A  P  P  R  G  C  A  L  S  G  K  R  T  P  S  G  G  L  S  Y  P  P  Y  L  V

Z    G  N  I  E  R  I  E  D  G  V  H  L  T  G  Q  R  H  I  M  G  G  H  M  I  R  A  V  I  C

Z'   G  S  I  E  R  P  T  E  W  V  C  P  V  G  Q  T  H  S  V  G  G  S  F  V  P  S  V  V  C

  AGGGGGCTATAGAGCGCCCCCCAGAGGGTGTGCGTTCCCTGGGGAACGCACACCCTCTGGGGGGGTCTCTTATGCCCCCTATGTTGTG

  TCCCCCGATATCTCGCGGGGGGTCTCCCACACGCAAGGGACCCCTTGCGTGTGGGAGACCCCCCCAGAGAATACGGGGGATACAACAC

U' S  P  D  I  S  R  G  V  S  H  T  Q  G  T  P  C  V  W  E  T  P  P  E  N  T  G  D  T  T

U  A  R  I  M  H  G  G  M  I  H  R  Q  G  T  L  H  V  G  D  E  I  R  E  I  N  G  I  S  V

V'  P  P  I  S  R  G  G  S  P  T  R  K  G  P  L  A  C  G  R  P  P  Q  R  I  R  G  I  Q  H

V   A  R  I  M  H  G  G  M  I  H  R  Q  G  T  L  H  V  G  D  E  I  R  E  I  N  G  I  S  V

W'   P  R  Y  L  A  G  G  L  P  H  A  R  D  P  L  R  V  G  D  P  P  R  E  Y  G  G  Y  N  T

W    A  R  I  M  H  G  G  M  I  H  R  Q  G  T  L  H  V  G  D  E  I  R  E  I  N  G  I  S  V

X  H  N  L  E  N  M  K  L  T  I  G  M  P  E  D  T  N  K  Q  F  Q  V  L  R  S  R

X' M  N  W  S  T  R  A  Q  L  F  G  W  P  S  T  S  P  K  K  Y  K  R  Y  R  G  R

Y   H  N  L  E  N  M  K  L  T  I  G  M  P  E  D  T  N  K  Q  F  Q  V  L  R  S  R

Y'  H  E  L  E  N  S  S  A  S  F  G  L  P  F  D  L  T  E  Q  V  K  S  I  E  G  E

Z    H  N  L  E  N  M  K  L  T  I  G  M  P  E  D  T  N  K  Q  F  Q  V  L  R  S  R

Z'   T  G  V  R  E  L  K  C  F  V  G  L  P  L  R  P  N  R  T  S  E  I  D  G  G  R

  GTACAAGGTTGAGCAAGCTCGAACGTCTTTTGGGGTTCCCCTTCAGCTCCCAAAGAACATGAAAGCTATAGAGGGGGAGC

  CATGTTCCAACTCGTTCGAGCTTGCAGAAAACCCCAAGGGGAAGTCGAGGGTTTCTTGTACTTTCGATATCTCCCCCTCG

U' H  V  P  T  R  S  S  L  Q  K  T  P  R  G  S  R  G  F  L  V  L  S  I  S  P  P

U  A  N  Q  T  V  E  Q  L  Q  K  M  L  R  E  M  R  G  S  I  T  F  K  I  V  P  S

V'  M  F  Q  L  V  R  A  C  R  K  P  Q  G  E  V  E  G  F  L  Y  F  R  Y  L  P  L

V   A  N  Q  T  V  E  Q  L  Q  K  M  L  R  E  M  R  G  S  I  T  F  K  I  V  P  S

W'   C  S  N  S  F  E  L  A  E  N  P  K  G  K  S  R  V  S  C  T  F  D  I  S  P  S

W    A  N  Q  T  V  E  Q  L  Q  K  M  L  R  E  M  R  G  S  I  T  F  K  I  V  P  S

3’

5’

Figure 6.18: Overlapping encoding of six PDZ Cask domains denoted X, Y, Z, U,
V, and W
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Chapter 6. Design of PDZ pairs with overlapping coding

6.5.2 From Smith & Watermann to overlapping designs

One problem encountered when designing pairs is the optimal choice of the overlapping region

for a pair of sequences. The choice of this region has so far been either arbitrary or based on

exhaustive explorations of the shift between the two sequences. We propose here an approach

based on the local sequence alignment algorithm illustrated in figure 6.19.

Let X and Y be a pair of protein sequences of size N and P . Let M be a N × P dynamic

programming table. For each pair of positions i, j of X and Y, we have a vector of four elements

defining the four possible states {A, C, T, G}. For the first pair of positions i = 0 and j = 0, we

choose an optimal quartet per group among the 64 possible. For other pairs of positions i and

j, we assume that the optimal quartets of cell M(i-1; j-1), M(i-1; j) and M(i; j-1) are known.

We add the score of 256 quartets Qij to the three optimal quartets of the previous boxes to

choose the four optimal quartets of the positions i, j. Thus, we have the following dynamic

programming scheme:

M(j; i; ν) = max
Qij∈ν







































s(Qj) +M(i− 1; j − 1; ν ′ ≡ Qij(1)),

M(i; j − 1; ν ′ ≡ Qij(1))−W,

M(i− 1; j; ν ′ ≡ Qij(1))−W,

0

if i > 1, j > 1(6.5)

W is the gap penalty. When the dynamic programming table is completed, we perform a

backtracking from the quartet with the highest score in the table and finish when the score is

zero. We notice that if we use the same reading frame, we fall back on an algorithm similar

to the local alignment established by Smith and Watermann ([Smith and Waterman, 1981]).

Thus, it is possible to introduce modifications such as insertion or deletion which may represent

in some cases non-coding introns.

To illustrate this approach, we searched for the largest overlapping regions in a set of natural

sequence pairs. For a given sequence pair, we are looking for the largest pair of sub-sequences

that can be encoded in an overlapping fashion. First, we created a database of 500 representative

domains chosen randomly from SCOP superfamilies ([Conte, 2000]). The sequence sizes range

from 19 to 690 amino acids with an average of 164 amino acids. To guide the search for the
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M(i-1;j-1)AGTA

M(i-1;j-1)GCCC

M(i-1;j-1)ATGG

M(i-1;j-1)GTAT

M(i;j-1)  GTTA

M(i;j-1)  GTAC

M(i;j-1)  TGTG

M(i;j-1)  CGAT

M(i-1;j)  TTTA

M(i-1;j)  TTAC

M(i-1;j)  GCAG

M(i-1;j)  TTAT

AAAA s( ! )Q1

CAAA s( ! )Q1

TAAA s( ! )Q1

GAAA s( ! )Q1

ACAA s( ! )Q1

GGGT s( ! )Q1

GGGG s( ! )Q1

?

…

Sequence X

S
eq

u
en

ce
 Y

!Qi,j

!Qi,j−1

!Qi−1,j

!Qi−1,j−1

Identify 

 best of 64  

quartets

!

M(i; j; A) =

max

s(Qj) + M(i − 1; j − 1; Qij(1)),

M(i; j − 1; Qij(1)),

M(i − 1; j; Qij(1)),

0

Figure 6.19: Diagram representing the overlapping local alignment algorithm deduce
from the pairwise local alignment algorithm. Representation of the dynamic program-
ming table 4×N − by−P centered on the cells M(i; j),M(i− 1; j− 1),M(i− 1; j),M(i; j− 1)
which contain 4 optimal quartets. To choose the optimal quartet for the state ν = A for (i, j),
we choose the one that maximizes M(i; j; ν = A) among the 64 quartets ending with A.
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maximum size, we used the following scoring function:

f(Xi, Yj) =











1 if Xi = X ′
i ∧ Yi = Y ′

i

−∞ else
(6.6)

Figure 6.20: Distribution of the maximum lengths for overlapping regions in natural
sequences.

This approach recently allowed us to recover the two overlapping genes in SARS-COV-2

genome. It has the potential to detect proteins that appeared recently from overprinting. Also,

this approach is more flexible, as it allows the addition of introns/deletions/insertions in the

form of gaps. In addition, one can use the developments made on multiple alignment algorithms

to compress a whole genome. A tree-based multiple alignment method can be used to guide the

overlapping encoding of all the sequences from a single genome. The last point that we want

to raise here is about the detection of interactions between genes. Indeed, it was proposed that

new genes that appeared by overprinting interact with the initial gene. Thus, the design of a

successful sequence pair may be a signal of overprinting or interaction.
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To design molecular systems, we start from naturally optimized components, namely proteins.

Proteins can act as structural components, information transporters, or catalysts. It is then

possible to create molecular systems composed of one or more proteins capable of complex

tasks. To design such new systems, we used natural proteins as templates, with known three-

dimensional structures and functions. Design methods use the paradigm that links three-

dimensional structures to biological functions. Here, we studied the possibility to design new

protein domains, PDZ domains. Because of their role in protein/protein recognition, PDZ

domain designs are interesting for the engineering of metabolic pathways. Then, we studied

the methodological aspects of biocatalysts design through the redesign of MetRS. Finally, we

introduced a protocol to design overlapping PDZ genes, in view of bio-confinement strategies.

For the structural aspect of proteins, we report here the complete redesign of a PDZ do-

main. We modeled the folded state of the Cask PDZ domain with a physics-based energy

function combining molecular mechanics, continuum electrostatics, and Monte Carlo sampling.

We described the unfolded state with an empirical model. We produced three variants for ex-

perimental validations. Circular dichroism experiments showed conservation of the secondary

structures and 1D-NMR spectra were typical of folded structures for all three variants. Two

had detectable binding for natural PDZ binders.

This complete redesign of a PDZ domain is encouraging for the use of physics-based ap-

proaches since it does not suffer from biological data dependencies or biases. Indeed, biological

data form a biased ensemble because of the nature of experiments by which they are produced

or the sampling trends in databases. In addition, physical model parameters are transferable

and can be interpreted with ease.

For the catalytic aspect, we redesigned the active site of an enzyme involved in the transla-

tion machinery, methionyl-tRNA synthetase (MetRS). First, we studied Met recognition MetRS
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through a design method that favors variants that bind Met. It allowed us to produce 17 vari-

ants that were all found to be active experimentally. Then, we extended for the first time the

method to transition state bindings, so the variants can be sampled according to their catalytic

efficiency.

Although we used rather rigorous and non-empirical approaches, we were not able to

detect variants with a higher activity than the wild type enzyme. The size of the muta-

tion/conformation space implies the use of approximations for the solvent and the protein

flexibility. In addition, the physical model has some additional approximations. Also, we used

a parsimony strategy in which we assumed that a small number of mutations could produce

a highly active variant. Indeed, modeling errors might accumulate with a larger number of

mutations. However, it might be necessary to mutate more positions so one can surpass the

optimization of natural proteins.

Next, we considered the incorporation of unnatural amino acids into proteins. Expansion

of the genetic code can enrich the properties of designed systems. One example is the use of β

amino acids to enrich the backbone geometries and allow protease resistance. This is of interest

for the design of stable peptides in vivo. In this work, we searched for MetRS variants that can

activate β amino acids such as β-Met or β-Val. First, we considered three positions. We used

the adaptive MC approach to sample variants according to their β-Met binding affinity. 20

variants were selected for experiments of which 11 were directly obtained from the simulations

and 7 had a good predicted stability. Five of the seven stable variants were found to have

a measurable catalytic activity for β-Met. For all variants, catalytic efficiencies were weak,

however, three had slightly improved selectivity in favor of β-Met, by factors of 2-8. Then, we

introduced a screening method that allowed us to scan the whole active site and select positions

according to catalytic efficiency. We selected and investigated four quadruplets of positions for

the activation of β ligands. At this point, we produced variants predicted as stable and with

a gain of activity. A few of these variants are under experimental testing (Y. Mechulam, E.

Schmitt, personal communication)

The modeling of the considered states is crucial in this approach. The catalytic efficiency

is a subtle equilibrium between a sequence of complex states. Therefore, we introduced a

few hypotheses about the contribution of ATP binding and the KMSKS loop conformational

change. Since we don’t have all the structural information for β amino acids, we made additional
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hypotheses for the ligands placements. However, the collaboration with the experimental part

will allow us to refine the predictions and improve the calculation models.

Finally, we studied overlapping coding schemes for pairs of PDZ domains. This coding

would allow genome compaction and would reduce genetic drift. We produced almost 2000

pairs of overlapping pairs based on five PDZ domains. Three were selected at the end of a

filtering process based on physicochemical and evolutionary properties. We investigated these

three pairs further with molecular dynamics simulations. One pair was found stable with a

simulation of 500 ns. A second pair was found stable for 3 µs. Experimental testing of these

pairs is underway (G. Travé, personal communication). This work suggests that filtering on

structural features may be sufficient to produce stable pairs. However, explicit correlation

optimization may improve the quality of the predictions further. Also, we showed that one can

extend these methods to detected natural overlapping pairs in existing proteomes.

We covered many aspects of CPD. However, we are still redesigning existing proteins. CPD

also allows the design of new proteins de novo without starting from a structural template

([Huang et al., 2016]). New proteins with new backbones and biochemical functions absent in

nature can then be designed.

To reduce the problem complexity, we used the fixed backbone approximation where only

side chains remain flexible. Other approaches take explicitly into account flexibility. The

first uses local "backrub" changes in the backbone geometry ([Smith and Kortemme, 2008]).

The search for sequences is then accompanied by local backbone adjustments. Another uses

structural fragments obtained from the decomposition of existing structures stored in the PDB

([Mackenzie et al., 2016]). Fragments are grouped into a library that is capable of reproducing

the geometries of experimentally observed structures. Assembling those fragments allows taking

into account local adjustment in the backbone ([Mackenzie and Grigoryan, 2017]). Proteus

proposes a multi-backbone approach where the flexibility is modeled by a pre-defined ensemble

of structures, produced by MD simulation for example. Sequences can then populate the

available backbone geometries using a hybrid MC algorithm ([Druart et al., 2016]).

We mainly investigated physics-based CPD. However, statistical potentials are also impor-

tant for CPD. The recent rise of deep-learning ([LeCun et al., 2015]) allowed new approaches

to push further the use of biological data. Progress was made by that type of approach

for structure predictions ([Senior et al., 2020]), and similar methods are now applied to CPD
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([Ingraham et al., 2019]). Also, our team started to applied machine learning methods to the

selection of positions to redesign.

This work provides a consistent set of methodological tools for the design of molecular

systems using CPD approaches. The design of new proteins may allow the design of a system

composed of one or more of these compounds and could be incorporated into living organisms.
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Titre : Dessin computationel de protéines et d’enzymes

Mots clés : Ingénierie de protéines, mécanique moléculaire, interactions protéine ligand, gènes chevauchants

Résumé : Nous proposons un ensemble

de méthodes pour la conception de systèmes

moléculaires. Notre stratégie consiste à utiliser

comme modèle des machines naturellement opti-

misées, les protéines. Les protéines peuvent être

des briques structurales, des transporteurs d’informa-

tions ou des catalyseurs chimiques. Nous utilisons ici

des approches computationnelles, complémentaires

aux voies expérimentales, pour concevoir de tels

systèmes.

Nous avons d’abord entièrement redessiné un do-

maine PDZ impliqué dans des voies métaboliques.

Nous utilisons une approche physics-based basée

sur la mécanique moléculaire, un modèle de solvant

implicite et un échantillonnage Monte Carlo. Parmi

plusieurs milliers de variants prédits pour adopter le

repliement PDZ, trois ont été sélectionnés et montrent

un repliement correct. Deux ont une affinité détectable

pour les ligands peptidiques naturels.

Nous avons ensuite re-dessiné le site actif de l’en-

zyme méthionyl-ARNt synthétase (MetRS). En uti-

lisant un algorithme de type Monte Carlo adapta-

tif, nous avons sélectionné des variants pour l’affi-

nité MetRS/méthionine (Met). Sur 17 variants testés

expérimentalement, 17 sont actifs. La méthode a

été ensuite appliquée à l’état de transition pour

sélectionner des variants directement sur leur effica-

cité catalytique.

Nous avons étudié la possibilité de modifier la MetRS

pour étendre son activité aux acides aminés β, afin

d’étendre le code génétique. Ces acides aminés non-

naturels permettraient d’enrichir le répertoire structu-

ral des protéines. 20 variants MetRS obtenus à partir

de prédictions d’affinité MetRS/β-Met ont été testés.

Aucun n’augmente l’activité mais trois ont amélioré

la sélectivité en faveur de la β-Met. Nous avons

implémenté une méthode de sélection de positions

d’intérêt et production de variants pour β-Met et β-Val.

Une vingtaine de prédictions sont en cours de tests

expérimentaux.

Enfin, la modification de protéines in vivo pose la

question de leur dérive génétique. Nous introduisons

ici une méthode de conception de paires de gènes

chevauchants pour des domaines PDZ. Ce codage

permettrait de limiter la dérive génétique. Nous avons

produit près de 2000 paires de domaines PDZ au

codage chevauchant, dont une a été validées par 3

microsecondes de dynamique moléculaire. Des tests

expérimentaux sont en cours.

Title : Computational design of proteins and enzymes

Keywords : Protein engineering, molecular mechanics, protein/ligand binding, overlapping genes

Abstract :
We propose a set of methods to design molecular

systems. We start from naturally optimized compo-

nents, namely proteins. Proteins can act as structu-

ral components, information transporters, or catalysts.

We use computational methods to complement expe-

riments and design protein systems.

First, we fully redesigned a PDZ domain involved in

metabolic pathways. We used a physics-based ap-

proach combining molecular mechanics, continuum

electrostatics, and Monte Carlo sampling. Thousands

of variants predicted to adopt the PDZ fold were selec-

ted. Three were validated experimentally. Two showed

binding of the natural peptide ligand.

Next, we redesigned the active site of the methionyl-

tRNA synthetase enzyme (MetRS). We used an adap-

tive Monte Carlo method to select variants for methio-

nine (Met) binding. Out of 17 predicted variants that

were tested experimentally, 17 were found to be ac-

tive. We extended the method to transition state bin-

ding to select mutants directly according to their cata-

lytic power.

We redesigned the MetRS binding site to obtain acti-

vity towards two β-amino acids, in order to expand the

genetic code. These unnatural amino acids can en-

hance the structural repertoire of proteins. 20 predic-

ted mutants were tested. Although none had increa-

sed β-Met activity, three had a gain in selectivity for

β-Met. We then implemented a method to select op-

timal positions for design and applied it to β-Met and

β-Val. Around 20 variants are being experimental tes-

ted.

Finally, in vivo protein modifications raise the question

of their eventual drift away from the original design.

We introduce here a design approach for overlapping

genes coding PDZ domains. This overlap would re-

duce genetic drift and provide bio-confinement. We

computationally produced almost 2000 pairs of over-

lapping PDZ domains. One was validated by 3 micro-

second molecular dynamic simulations. Experiments

are underway.
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