
HAL Id: tel-03082647
https://theses.hal.science/tel-03082647v1

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automotive embedded software design using formal
methods

Vassil Todorov

To cite this version:
Vassil Todorov. Automotive embedded software design using formal methods. Modeling and Simula-
tion. Université Paris-Saclay, 2020. English. �NNT : 2020UPASG026�. �tel-03082647�

https://theses.hal.science/tel-03082647v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
G
0
2
6

Automotive embedded software
design using formal methods

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de
l’Information et de la Communication

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, CNRS, Laboratoire de

recherche en informatique, 91405, Orsay, France
Référent: CentraleSupélec

Thèse présentée et soutenue à Gif-sur-Yvette,
le 9 décembre 2020, par

Vassil TODOROV

Composition du jury:

Pascale Le Gall Présidente et examinatrice
Professeur, CentraleSupélec
Gérard Berry Rapporteur et examinateur
Professeur émérite, Collège de France
Cesare Tinelli Rapporteur et examinateur
Professeur, University of Iowa
Sylvie Putot Examinatrice
Professeur, Ecole Polytechnique
Fabrice Kordon Examinateur
Professeur, Sorbonne Université
Sylvain Conchon Examinateur
Professeur, Université Paris-Saclay

Frédéric Boulanger Directeur de thèse
Professeur, CentraleSupélec
Safouan Taha Co-encadrant de thèse
Maître de conférences, CentraleSupélec

V
A

S
S
IL TO

D
O

R
O

V
A

U
TO

M
O

TIV
E
 E

M
B

E
D

D
E
D

 S
O

FTW
A

R
E
 D

E
S
IG

N
 U

S
IN

G
 FO

R
M

A
L M

E
TH

O
D

S

Automotive Embedded
Software Design Using
Formal Methods

Vassil Todorov

PhD thesis defended on December 9th, 2020

Gérard Berry
Cesare Tinelli
Sylvie Putot
Pascale Le Gall
Fabrice Kordon
Sylvain Conchon
Frédéric Boulanger
Safouan Taha
Armando Hernandez

Professor Emeritus at Collège de France
Professor at University of Iowa
Professor at Ecole Polytechnique
Professor at CentraleSupélec
Professor at Sorbonne Université
Professor at Université Paris-Saclay
Professor at CentraleSupélec
Associate Professor at CentraleSupélec
Senior software expert at Groupe PSA

(assert (not (=> (and (= FlipFlopReset~0.L3$0 (>= Timer~0.L5$0 2400))
 $PropDecelerationHigh$0 (>= AtLeastNTicks~0.L5$0 0)
 (>= Timer~0.L5$0 AtLeastNTicks~0.L5$0)
 (=> FlipFlopReset~0.L3$0 true)
 (=> false FlipFlopReset~0.L3$0))
 (and (= FlipFlopReset~0.L3$1 (>= Timer~0.L5$1 2400))
 $PropDecelerationHigh$1 (>= AtLeastNTicks~0.L5$1 0)
 (>= Timer~0.L5$1 AtLeastNTicks~0.L5$1)
 (=> FlipFlopReset~0.L3$1 true)
 (=> false FlipFlopReset~0.L3$1)))))
(check-sat)
(echo "@DONE")
; Yices2: sat
; Yices2: @DONE
(get-model)
(echo "@DONE")

A U T O M O T I V E E M B E D D E D S O F T WA R E D E S I G N
U S I N G F O R M A L M E T H O D S

D O C T O R A L T H E S I S

Vassil Todorov

A thesis submitted in fulfillment of the requirements
for the degree of

Doctor of Philosophy in Computer Science

Committee in charge

Pr. Gérard Berry (Collège de France) Reviewer

Pr. Cesare Tinelli (University of Iowa, USA) Reviewer

Pr. Sylvie Putot (Ecole Polytechnique, France) Examiner

Pr. Pascale Le Gall (CentraleSupélec, France) Examiner

Pr. Fabrice Kordon (Sorbonne Université, France) Examiner

Pr. Sylvain Conchon (Université Paris-Saclay, France) Examiner

Pr. Frédéric Boulanger (CentraleSupélec, France) Thesis advisor

Ass. Pr. Safouan Taha (CentraleSupélec, France) Thesis co-advisor

Armando Hernandez (Groupe PSA, France) Industrial tutor

December 2020

This document was typeset using LATEX and inspired from the typographical
style classicthesis by André Miede and Ivo Pletikosić, and the nice book
style adaptation by Hai Nguyen Van.

Vassil Todorov: Automotive embedded software design using formal methods,
Doctoral Thesis, © December 2020

Dedicated to the loving memory of my dear aunt

Prof. Magdalina Todorova

1954 – 2019

A B S T R A C T

The growing share of driver assistance functions, their criticality, as well as
the prospect of certification of these functions, make their verification and vali-
dation necessary with a level of requirement that testing alone cannot ensure.

For several years now, other industries such as aeronautics and railways have
been subject to equivalent contexts. To respond to certain constraints, they have
locally implemented formal methods. We are interested in the motivations and
criteria that led to the use of formal methods in these industries in order to
transpose them to automotive scenarios and identify the potential scope of
application.

In this thesis, we present our case studies and propose methodologies for the
use of formal methods by non-expert engineers. Inductive model checking for a
model-driven development process, abstract interpretation to demonstrate the
absence of run-time errors in the code and deductive proof for critical library
functions.

Finally, we propose new algorithms to solve the problems identified during
our experiments. These are, firstly, an invariant generator and a method using
the semantics of data to process properties involving long-running timers in an
efficient way, and secondly, an efficient algorithm to measure the coverage of
the model by the properties using mutation techniques.

vii

R É S U M É

La part croissante des fonctions d’assistance à la conduite, leur criticité, ainsi
que la perspective d’une certification de ces fonctions, rendent nécessaire leur
vérification et leur validation avec un niveau d’exigence que le test seul ne peut
assurer.

Depuis quelques années déjà d’autres domaines comme l’aéronautique ou le
ferroviaire sont soumis à des contextes équivalents. Pour répondre à certaines
contraintes ils ont localement mis en place des méthodes formelles. Nous nous
intéressons aux motivations et aux critères qui ont conduit à l’utilisation des
méthodes formelles dans ces domaines afin de les transposer sur des scénarios
automobiles et identifier le périmètre potentiel d’application.

Dans cette thèse, nous présentons nos études de cas et proposons des métho-
dologies pour l’usage de méthodes formelles par des ingénieurs non-experts.
Le model checking inductif pour un processus de développement utilisant des
modèles, l’interprétation abstraite pour démontrer l’absence d’erreurs d’exé-
cution du code et la preuve déductive pour des cas de fonctions critiques de
librairie.

Enfin, nous proposons de nouveaux algorithmes pour résoudre les problèmes
identifiés lors de nos expérimentations. Il s’agit d’une part d’un générateur
d’invariants et d’une méthode utilisant la sémantique des données pour traiter
efficacement des propriétés comportant du temps long, et d’autre part d’un al-
gorithme efficace pour mesurer la couverture du modèle par les propriétés en
utilisant des techniques de mutation.

ix

Ре зюме

Нарастващият дял на функциите за помощ на водача, тяхната критичност,
както и перспективите за сертифицирането им, правят тяхната проверка и
валидиране на ниво, на което само тестването не е достатъчно.

От няколко години насам други области, като аеронавтиката и железо-
пътният транспорт, се намират в подобен контекст. Ние се интересуваме от
мотивациите и критериите, довели до използването на формални методи в
тези области и как те биха могли да се приложат в автомобилна среда.

В тази теза представяме нашите изследвания и предлагаме методологии
за тяхното използване от инженери, които не са специалисти по формални
методи. Индуктивна проверка на модели за процес на разработка използващ
модели, статичен анализ базиран на абстрактна интерпретация, за да се де-
монстрира липсата на грешки при изпълнение на код и дедуктивен анализ
за критични библиотечни функции.

А накрая, предлагаме нови алгоритми за решаване на проблемите, иден-
тифицирани по време на нашите експерименти. Става въпрос от една страна
за генератор на инварианти и метод, използващ семантиката на данните за
ефективна обработка на свойства, включващи времеви таймери, и от друга
страна за ефективен алгоритъм за измерване на покритието на модел по
свойства, използвайки мутационни техники.

xi

C O N T E N T S

1 introduction 1

1.1 The Car – a Software-driven Electronic Device 1

1.2 Problem . 2

1.3 Research Objectives . 3

1.4 Contributions . 3

1.5 Plan . 4

2 automotive software design and development 5

2.1 The V-Model . 6

2.2 Requirements Engineering . 7

2.2.1 Requirement Types . 7

2.3 Software Architecture . 8

2.3.1 AUTOSAR . 9

2.3.2 AUTOSAR and Software Verification 10

2.4 Model-Based Design vs Manual Coding 10

2.4.1 Traditional Manual Coding 10

2.4.2 Model-Based Design . 11

2.5 Towards the Autonomous car . 12

2.6 Proving the Safety of the Autonomous Vehicle 14

2.7 Conclusions . 17

i formal methods and certification standards 19

3 safety standards and certification 21

3.1 Safety Standards . 21

3.1.1 Why do we Need Standards? 21

3.1.2 Goal- and Prescription-Based Standards 22

3.1.3 Functional Safety and IEC 61508 Derivated Standards . . 22

3.1.4 Railway – IEC 62279 / EN 5012x 23

3.1.5 Medical – IEC 62304 . 24

3.1.6 Aviation – DO-178C . 24

3.1.7 Automotive – ISO 26262 . 25

3.2 Certification and Qualification . 25

3.3 Conclusions . 26

4 formal methods – from theory to practice 27

4.1 Formal Methods and Tools – A Brief Introduction 28

4.1.1 Abstract Interpretation . 28

4.1.2 Model Checking . 31

4.1.3 Deductive Methods . 39

4.1.4 Combining Program Verification Methods 41

4.2 Industrial Applications of Formal Methods 41

xiii

xiv contents

4.2.1 Formal Methods Comparison 42

4.2.2 Abstract Interpretation Applications 43

4.2.3 Model Checking Applications 45

4.2.4 Deductive Proof Applications 48

4.2.5 Interactive Proof Applications 49

4.3 Formal Methods and Certification 49

4.4 Challenges for the Application of Formal Methods 50

4.5 Conclusions . 50

ii automotive software design using formal methods 51

5 methodologies for using formal methods in an automo-
tive context 53

5.1 Related Work . 53

5.2 Methodology for Model-Based Design 55

5.2.1 Motivation and Objectives 55

5.2.2 High and Low-Level Requirements 56

5.2.3 Guidelines for Writing Good Formal Properties 56

5.2.4 Synchronous Observers . 57

5.2.5 Libraries and Imported Functions 58

5.2.6 Workflow . 59

5.2.7 Run-time Errors Check . 60

5.2.8 Proving Non-regression . 60

5.2.9 Strategies . 60

5.2.10 Limitations . 60

5.2.11 Experiments . 61

5.3 Methodology for Sound Static Analysis 63

5.3.1 Component-Level Analysis 63

5.3.2 Complete System Analysis 64

5.3.3 Hints for Reducing False Alarms 64

5.4 Conclusions . 65

6 invariant generation for model checking of time prop-
erties 67

6.1 Use Case Presentation . 67

6.1.1 Model and Environment . 67

6.1.2 Writing Formal Properties 69

6.1.3 Compositional Approach 71

6.1.4 Results Analysis . 72

6.2 Approach and Contribution . 74

6.2.1 SCADE to Lustre Transformation 74

6.2.2 Understanding the Problem 74

6.2.3 Contribution . 75

6.3 Results and Benchmarks . 78

6.3.1 Our Use Cases . 78

6.3.2 JKind Benchmark . 79

contents xv

6.3.3 Kind Benchmark . 79

6.3.4 Collins Aerospace Use Cases 80

6.4 Conclusions . 80

7 coverage measure based on mutation and model checking 83

7.1 Preliminaries . 84

7.1.1 The JKind Model Checker 84

7.1.2 IVC Formalizations . 86

7.2 Model Coverage Techniques . 88

7.2.1 Simple Running Example 89

7.2.2 Slicing . 89

7.2.3 Inductive Validity Cores . 90

7.2.4 A Simple Mutator for Must-Cov: Equation remover 90

7.2.5 Using Other Mutators for Deep Coverage 90

7.3 From Mutation testing to Mutation proof 92

7.3.1 Mutators . 92

7.3.2 Our Contribution: Mutation Proof Algorithm 93

7.4 Implementation and Initial Results 95

7.4.1 Implementation . 95

7.4.2 Optimizations . 95

7.4.3 Initial Results . 96

7.4.4 Industrial Use Case Results 97

7.5 Conclusions . 97

8 deductive proof applied to a discrete-valued function 99

8.1 Environment . 100

8.2 Experiment . 100

8.3 Results . 103

8.3.1 From Frama-C to the SMT solver 103

8.3.2 The Difficult Goal . 104

8.3.3 Direct Proof with SMT-LIB 104

8.3.4 Experience with the Why3 SMT Output Files 104

8.3.5 Abstract Interpretation Combined with Deductive Proof . 105

8.4 Methodology . 105

8.5 Related Work . 105

8.6 Conclusions . 107

9 conclusion and perspectives 109

9.1 Research Objectives Fulfillment . 109

9.1.1 Research Objective 1: Industrial Applications of Formal
Methods . 109

9.1.2 Research Objective 2: Experimental Application on Auto-
motive Use Cases . 110

9.1.3 Research Objective 3: Methodologies 111

9.2 Concrete Productions . 111

9.3 Future Research Directions . 112

xvi contents

publications 113

bibliography 115

list of figures , tables and listings 135

list of definitions and theorems 139

list of acronyms 141

acknowledgments 145

declaration of authorship 147

1
I N T R O D U C T I O N

Computing is fundamentally invisible. When your tires are flat, you look
at your tires, they are flat. When your software is broken, you look at your
software, you see nothing.

— Gérard Berry

A few years ago, the idea of cars driving themselves on our streets seemed
unbelievable. However, the rapid advances in machine learning in recent years
make us think that one day it could become reality. Today, trained machine
learning algorithms are capable of driving cars in most of the common situa-
tions. Most of the time, the decisions taken by those algorithms are good but
sometimes they can be wrong, which could cause fatalities. The problem is that
when they are wrong, nobody can explain why and fix the problem. We can
just train them more and hope/pray that next time there will be fewer errors.
Furthermore, machine learning algorithms could not be certified in the sense of
a critical system because there is no specification against which an implementa-
tion could be verified. As autonomous vehicles can be considered safety-critical
systems similar to trains and airplanes, it is expected that authorities require
their certification in the future.

In order to ensure the safety of the system and provide safety arguments
for the certification authority, we cannot use only machine learning algorithms.
The decisions taken by the machine learning algorithms should be supervised
by more classical algorithms based on domain expert knowledge. These non-
machine learning supervision algorithms will be the safety-critical part of the
software and could then be certified.

1.1 the car – a software-driven electronic device

In the 20th century automobile, the engine was the core technology. Two main
periods can be distinguished for the engine control: mechanical control before
the 70-80s and electronic control after. The electronic fuel control injection sys-
tem offered a better fuel dosage and reduced the fuel consumption compared
to the previous carburetor-based mechanical injection system.

In the 21st century automobile, we observe a transition from a hardware-
driven machine to a software-driven electronic device. Today, software, large

1

2 introduction

computing power, and advanced sensors enable most modern innovations, from
efficiency to connectivity to electrification to autonomous driving and new mo-
bility solutions.

However, as the importance of electronics and software has grown, so has
complexity. As portrayed in Figure 1, the complexity of software-based auto-
motive functions is increasing rapidly.

Figure 1: Automotive innovations and complexity

To some extent, we can observe a link between the complexity and the num-
ber of software Lines Of Code (LOC) contained in a modern car. In 2010, some
vehicles had about 10 million LOC; by 2020, this expanded by a factor of 10, to
roughly 100 million lines.

1.2 problem

The effort to verify these systems increases with the amount of software to ver-
ify. Nowadays, test scenarios and peer reviews are used during the verification
process but it is practically impossible to test all the combinations of possible
states in which the system can be put. And in practice, it is not necessary to
make such an effort for all the embedded software because only a little part
can be considered as critical. For example, a radio that reboots during driving
cannot harm the passengers of the car but if the front lights go off during night
driving it can cause fatalities. Therefore, it is important to have the highest ro-
bustness and reliability for those functions that are safety-related and that have
a potential impact on human lives or can cause economic losses.

Model-based design has been introduced to cope with the complexity issue
and with the cost of fixing bugs that are found during the late phases of the
design. By allowing the simulation of a model of the software in the early
design phases, Model Based Design allows fixing the model as soon as possible

1.3 research objectives 3

and limiting the propagation of errors down to the implementation. However,
similar to testing, simulation suffers from the same limitations: the number
of scenarios to be checked in a model to get full confidence goes beyond any
reasonable subset of scenarios that can be examined in practice and cannot
guarantee the absence of errors for highly critical systems.

A way to bring higher guarantees for safety-critical software systems is to use
formal verification techniques. Formal methods are techniques based on math-
ematical logic, which goal is to bring in the software and hardware verification
the same rigorous mathematical background already used by other engineering
disciplines. Formal methods can be seen as exhaustive testing but need some
methodologies and tools in order to be used in practice by non-expert software
engineers.

1.3 research objectives

The work presented in this thesis focuses on the introduction of formal meth-
ods in an automotive industrial context in order to bring more guarantees and
robustness for the safety-critical part of the embedded software. Indeed, there
is a gap to bridge between the formal methods capabilities and the systems and
specifications present in the industry. In practice, verification of arbitrary func-
tional properties on realistic systems often requires expert knowledge about
the analyzed system and verification technique(s) used. The spread of formal
verification in the industrial community is hindered by this need for costly and
time-consuming expert intervention. Our work contributes to the understand-
ing of how formal methods can be used by the engineers and for what type of
scenario.

The goal of this thesis is also to improve on the state of the art of formal
verification in our application domain by:

• studying the use of formal methods in other industries (railway, aviation)
and identify which techniques are used and at which design stage;

• experimenting with different formal methods on representative automo-
tive models and code in order to get an insight on their limitations and
eventually find workarounds;

• proposing methodologies that could be used by non-expert engineers and
use cases on which they could be applied.

1.4 contributions

To achieve these goals, we studied in the literature the industrial use of existing
formal methods – abstract interpretation, model checking, deductive proof – and
then applied them to some automotive use cases.

4 introduction

We proposed a new algorithm for invariant generation for symbolic model
checking of properties involving time. It provides useful relational invariants
based on a template that strengthen the inductive proof.

We also proposed a mutation framework to measure the coverage of the
proved properties, which is important when using formal methods in a certi-
fication context. In this context, a demonstration of the coverage of the proof
when using formal methods is generally required.

Finally, our experiments served to propose some methodologies that can be
used by serious (motivated) non-experts software engineers. These methodolo-
gies go from providing contracts for the inputs and outputs of the designed
functions to how to describe in a formal way what the function is expected
to do, where to find good requirements that can be formalized, what are the
strategies to begin with and how to structure the proved function and its formal
requirements.

1.5 plan

We divided this thesis as follows:

• Chapter 1: introduces the PhD work and states the challenges we tackle.

• Chapter 2: presents the industrial context in which our work evolves.

• Part 1: Formal methods and Certification standards presents the automo-
tive context

– Chapter 3: presents an overview of the safety standards.

– Chapter 4: presents the formal methods from the theoretical founda-
tions to the applications that can be found in the industry today.

• Part 2: Automotive embedded software design using formal methods
presents our contributions

– Chapter 5: presents some methodologies that can be applied by en-
gineers and some hints for writing formal properties.

– Chapter 6: presents our new improved invariant generation algo-
rithm for long duration properties and its integration in JKind.

– Chapter 7: proposes an efficient algorithm and a new coverage met-
rics for evaluating the quality of properties that are proved valid
using model checking.

– Chapter 8: presents our experiments with automatic deductive proof
of a discrete-valued function calculating a square root.

• Chapter 9: concludes this thesis and outlines future research directions.

2
A U T O M O T I V E S O F T WA R E D E S I G N A N D D E V E L O P M E N T

There is not a vehicle currently available to US consumers that is self-
driving. Every vehicle sold to US consumers still requires the driver to be
actively engaged in the driving task, even when advanced driver assistance
systems are activated. If you are selling a car with an advanced driver
assistance system, you’re not selling a self-driving car. If you are driving
a car with an advanced driver assistance system, you don’t own a self-
driving car.

— Robert Sumwalt (2020, Feb. 25), Chairman of National
Transportation Safety Board

The modern car has evolved from a mechanical device to a distributed cyber-
physical system, which relies on software to function correctly. Starting from
the 1970s, the amount of software and electronics used in a car has gradually
increased from as little as one Electronic Control Unit (ECU) to as much as 150

in 2020.
The main reason to introduce electronics in the 1970s was the 1973 oil crisis

followed by another oil crisis in 1979. We needed to reduce the fuel consump-
tion, and electronic engine control helped in doing so. Another reason was
the introduction of safety-related functions such as Anti-lock Braking System
(ABS) in the early 1970s preventing the wheels from locking up during brak-
ing. But the part of embedded software significantly increased since 2000 with
the introduction of driver assistance functions. At the beginning, it was simply
for Cruise Control and then it was coupled with a radar to have an Adaptive
Cruise Control adjusting automatically the car speed to the front vehicle speed.
Today the radar can be coupled with a camera and control the braking in case
of emergency, keep the lane in traffic jams or on highway, thus taking control
over the steering wheel. Since 2010, we observe the evolution of new advanced
connected services and infotainment systems based on the Linux kernel, which
have significantly contributed to the increase of the number of lines of code in
the car, achieving 100 million lines of code.

The software in a modern car provides plenty of new opportunities, but
it also requires to be more careful in the design, implementation, verification
and validation phases. Although the practices in software engineering include

5

6 automotive software design and development

methods and tools to respect safety and security requirements of the software,
they are often applied in an automotive-specific manner.

Today we can clearly see that the automotive industry is moving to a field
less dominated by mechanical engineering but with a growing part of electronic
and software engineering. The trend of using software will continue to increase
and there is a need for professional software engineering. To maintain a higher
quality level of the software, we need to have rigorous processes of software
engineering, providing guarantees that the software will not be harmful to its
users.

One of the good practices in software engineering is the high-level design of
software systems, referred to as software architecture. The software architecture
offers the possibility to define how the software functions are distributed on
software components, what interface mechanisms they use and how compo-
nents interact with each other.

The other important phase in the software design is its verification. This
phase is of a greater importance, in particular when developing highly critical
safety systems. Testing is the general practice but we can also use formal meth-
ods for some parts of the software and obtain higher confidence that bugs are
absent.

In the following, we describe each phase of the automotive software develop-
ment process and discuss it from a verification point of view.

2.1 the v-model

The V-Model shown in Figure 2 is the mostly used methodology today for devel-
oping embedded software in the automotive industry. However, new method-
ologies brought from the software engineering (agile/scrum) start to break
through.

Figure 2: The V-Model illustrated

2.2 requirements engineering 7

The V-Model is a full life cycle methodology that emphasizes the importance
of testing. Actually, tests are designed in parallel with each phase of the life
cycle. This early design of test cases with each development phase can be an
effective way for early defect detection and removal. This method can be con-
sidered an extension of the waterfall model.

ISO 26262, the standard for functional safety of road vehicles, proposes also
to use the V-Model as a reference phase model for the product development at
the software level [ISO18].

The V-Model is suitable for developments in which requirements are well
defined and stable, and the technology to be used is well understood. This is
especially necessary in a certification context for safety-critical software. The
safety assessor needs to have a stable documentation of the project to be able
to analyze it within a given time.

2.2 requirements engineering

As we saw in the previous section, the first and very important phase required
by the V-Model and the ISO 26262 standard is to completely elicit and docu-
ment all the requirements necessary for the project prior to the actual develop-
ment.

Definition 1 (Requirement)

(1) A condition or capability needed by a user to solve a problem or achieve an
objective.

(2) A condition or capability that must be met or possessed by a system or sys-
tem component to satisfy a contract, standard, specification, or other formally
imposed documents.

(3) A documented representation of a condition or capability as in (1) or (2).

[IEEE 610.12-1990]

This work is done by the system engineer who captures the needs from differ-
ent stakeholders (marketing, regulations, etc.) and writes down textual require-
ments of what the system is expected to do. Each requirement has a unique
number and a version and is stored in a database. If a requirement should be
changed, its version is incremented.

2.2.1 Requirement Types

In the literature [Poh10] and many requirement engineering standards, three
main types of requirements are generally presented :

8 automotive software design and development

• Functional requirements

• Quality requirements

• Constraints

Functional requirements specify the functionalities/services that the system
should or should not provide. Different levels of functional requirements can
exist depending on the level of details. Requirements defining the data, func-
tions and behavior of the system are in most cases solution-oriented since they
are defined in a way that mainly supports the realization of the system. They de-
scribe how the system should be developed. An example for such a requirement
can be the following statement: “When LightSwitch = ManualON and Ignition =
ON Then LightsOutput = ON Else LightsOutput = OFF.”. In contrast, user require-
ments are more abstract and give the goals of the system in a solution-neutral
way. They describe the problem or what the system is expected to do. An ex-
ample for such a requirement can be the following statement: “If the brake ECU
detects a fault, the system shall inform the user by showing an alert message.”.

Quality requirements specify quality properties such as performance, reliabil-
ity, stability for entire system or for a component, service or function. Very
often, they influence the architecture of the system. An example for such a re-
quirement can be the following statement: “When LightsOutput changes its value
the application module should emit the new value on the network in less than 50 ms.”.

In practice, the term “non-functional requirements” is sometimes used but very
often it refers to either quality requirements or underspecified functional re-
quirements. In the reference book about Requirements engineering [Poh10], the
author recommends avoiding the category of “non-functional requirements”
when writing specifications. He proposes to classify them as quality require-
ments or refine them to functional ones.

Besides defining functional and quality requirements for a system, constraints
are also documented during the requirements design phase. They are organi-
zational or technological requirements that restrict the development process or
the properties of the system to be developed. They have different origins: cul-
tural, legal, physical, project and so on. An example for such a requirement can
be the following statement: “The source code should be Motor Industry Software
Reliability Association (MISRA) compliant.”.

2.3 software architecture

Software architecture is fundamental for the automotive software design. It is
a high-level design view of the system and combines multiple views used to
communicate with the project teams. It is also used to make technical decisions
about the organization of the functionalities of the system. The software archi-
tecture can help understanding and predicting the performance of the system
before it is designed.

2.3 software architecture 9

2.3.1 AUTOSAR

AUTomotive Open System ARchitecture (AUTOSAR) is a global partnership
between automotive actors founded in 2003. Its objective was to create and es-
tablish an open and standardized software architecture for automotive ECUs.
It defines the reference architecture and methodology for the development of au-
tomotive software systems and provides the language (meta-model) for their
architectural models.

Today, AUTOSAR proposes two main platforms: the Classic Platform1 and the
Adaptive Platform2. To give an example, in Figure 3, we show the Classic Platform,
which contains three software layers:

• an application layer called Application Software (ASW);

• a middleware software represented by the Runtime Environment (RTE);

• a Basic Software (BSW) including the real-time operating system and ser-
vices.

Figure 3: AUTOSAR Classic Platform Release R19-11

The application layer is composed of hardware-independent software and
contains application modules (components) that are visible and used by the fi-
nal user. It is in this layer that formal methods are most valuable to be deployed
because these modules are updated more often than the operating system and
the low-level services (BSW). Another reason is that most of the modules are
model-based and thus can support model checking.

The RTE is automatically generated during compilation phase. It is used for
managing communications between application software components and for
communicating with the BSW services. The BSW provides different services
that are specified by the standard and the operating system. As the services are
standardized by AUTOSAR and the operating system shared between multiple
car manufacturers, we can consider their validation done by the practice.

1 AUTOSAR Classic Platform: https://www.autosar.org/standards/classic-platform
2 AUTOSAR Adaptive Platform: https://www.autosar.org/standards/adaptive-platform

https://www.autosar.org/standards/classic-platform
https://www.autosar.org/standards/adaptive-platform

10 automotive software design and development

2.3.2 AUTOSAR and Software Verification

From the perspective of this thesis, the AUTOSAR standard is important in the
sense that it formalizes some important elements about the system that can be
used for software verification, even if not using mathematical logic. We can use
them for example to extract semantic information about the software such as
specific types declaration for physical dimensions (speed, acceleration, time).
They can be used to facilitate the proof of some properties combining objects
of same type together to generate more useful invariants. We discuss this topic
in Chapter 6.

As in the AUTOSAR definitions we can find the ranges for the inputs, out-
puts, internal variables, other parameters, we can automatically extract this in-
formation to help the deductive proof of a function or the static analysis based
on abstract interpretation. For the deductive proof, we could provide contracts
in the form of pre-/post- conditions that normally take a lot of time to be
written manually. For the sound static analysis, we could provide assertions to
obtain more precision reducing thus the amount of false alarms. This could be
the subject of a future work.

2.4 model-based design vs manual coding

Traditionally, the entire software of the car was written manually based on the
low-level detailed software requirements. Assembly language was used at the
beginning but it was progressively replaced by higher-level languages such as
C or C++.

Today, the trend is to replace C programming by higher-level domain spe-
cific languages for some part of the control software. The principle is to make
a model of the needed functional behavior by simply dragging and dropping
library blocks and linking them. The obtained specification model is then simu-
lated by the designer to check if its behavior corresponds to the specification.
Once the specification model is validated there are two ways to embed it in
the ECU. The oldest one was to use the model as software specification and
write manually the code corresponding to the model. This method could be
error-prone and time consuming. That is why the preferred method today is to
transform the specification model into a design model that can be used to gener-
ate the code for the target ECU automatically. The design model is optimized to
fit in the ECU’s memory and resources and integrates the AUTOSAR routines
and other system libraries not present in the specification model.

2.4.1 Traditional Manual Coding

After the system requirements have been written and allocated to an ECU, a
software architecture is defined for it and the design of the software modules

2.4 model-based design vs manual coding 11

can begin. This process consists of refining the system specification to have a
new detailed specification ready for implementation by the software developer.
This specification looks like pseudocode and uses the names of the variables
that will be present in the final code. However, it can abstracts some complex
services or routines that the developer is aware of. For example, it can require
calculating a square root with some precision without providing technical de-
tails how it should be calculated. The software developer uses C or C++ lan-
guages to code this detailed specification. The module is then compiled and
unit tests are run to verify its behavior. Coverage tests are also run to check the
coverage of the code, and static analysis is used to check the MISRA compli-
ance and the presence of run-time errors. The code is then reviewed by another
person that was not involved in the coding. After its approval, it is integrated,
compiled with the target compiler and tested again as a black-box. The inte-
gration is a complex process in which a set of application modules that are
compatible with each other are assembled with the basic software (real-time
operating system, network services, memory services, etc.), parameter values
chosen for the concrete project, and all the AUTOSAR glue is generated and
assembled with the rest. Because of the generic nature of the software (it can
goes on multiple vehicle projects), there can be a few thousand parameters to
be configured.

The choice of the programming language depends on the problem to be
treated: C is commonly used because it provides an optimized code necessary
for the embedded micro-controllers that have limited resources. Assembly lan-
guage is still used for some low-level functions of the operating system, even in
modern multi-core real-time operating systems. C++ is more suitable for data-
oriented functions where a large amount of data need to be processed, such as
Advanced Driver-Assistance Systems (ADAS)3 functions.

2.4.2 Model-Based Design

Model-Based Design (MBD), as the name supposes, uses models for the design
of software. The model should reflect the behavior of the function of a car and is
created in a formalism that reflects the physical world rather than the software
world. Different kinds of models may exist: Physical process model, Environ-
ment model, Prototyping model, System model, Implementation model, and
so on.

Designing using models has impacts on the design process and the compe-
tence of the designers, who should be trained before using a modeling tool. A
typical process is shown in Figure 4.

The process starts with the description of the function of a car as mathemat-
ical equations defined by the inputs, the outputs, and a focus on the internal
data flow between them. At this stage, the designer often operates by using

3 ADAS are electronic systems that assist drivers in driving and parking functions.

12 automotive software design and development

Figure 4: Model-based design process

mathematical models and ignores some practical issues such as the modular
arithmetic used by computers, the precision of the floating-point numbers, the
limited size of the memory, etc. The difference between reasoning with mathe-
matical numbers and the implemented code can result in divergence of the final
behavior from the one that was calculated with the mathematical model. After
the physical process is modeled, simulated and validated, two other models are
developed to prepare and produce the code: a prototyping model and an imple-
mentation model. The prototyping model is used to verify the behavior of the
entire function within its environment. Generally, this model is not optimized
to run on a micro-controller. The implementation model is an optimization
(CPU usage, memory consumption) and adaptation of the prototyping model
that integrates AUTOSAR routines. This adaptation is error-prone: overflows
and different behaviors can appear and should be verified, using for example
the same simulation scenarios that were used during prototyping.

Once the implementation model is completed and validated, it is used to
generate the code in the target programming language – usually C.

There are two types of code generators: unqualified (example: Embedded
Coder for Simulink) and qualified (example: SCADE Suite Compilator (KCG)
for SCADE Suite). The difference is that for an unqualified code generator
the code should be reviewed and additional testing called back-to-back testing
should be done to demonstrate that the model and the code have the same
behavior. Back-to-back tests are tests that have a good coverage ratio and such
that their results are the same for the model and for the generated code. With
a qualified code generator, the behaviors of the model and the code are guar-
anteed by the tool certification to be the same. In this case, a generated code
review and a back-to-back testing are not necessary.

2.5 towards the autonomous car

Research projects in innovation stimulated by public authorities around the
world aim to clear the way for a step-by-step introduction of automated vehi-

2.5 towards the autonomous car 13

cles. The projects comprise a number of aspects like standardization, testing,
safety, or in-vehicle technology. As mentioned in [noa15] it is expected that
automated driving will:

• Improve safety by reducing human driving errors

• Significantly contribute to the optimization of traffic flow

• Help to reduce fuel consumption and CO2 emissions

• Enhance the mobility of elderly people and unconfident drivers

Several forecasts [WH16] predict a limited availability of automated driving
functions at level 2 and 3 (partial and conditional automation) in 2020 and a
wide availability by 2040 until level 4. Today’s ADAS such as Adaptive Cruise
Control (ACC), Lane Keeping Assist (LKA), or Pedestrian Detection (PD) will
form the backbone of tomorrow’s mobility. Vehicles will communicate with
each other and with the infrastructure. Vehicle-to-Vehicle (V2V) communica-
tion will allow vehicles to exchange traffic data information (e.g. nearby ac-
cidents) and data about their driving intention. Vehicle-to-Infrastructure (V2I)
communication will be used to optimize the road traffic and thereby will help
to reduce pollution. The role allocation between a human driver and an auto-
mated driving system in this scenario is specified by the Society of Automotive
Engineers (SAE) as six levels of driving automation going from no automation to
full automation (see Table 1).

SAE
Level

Name Narrative definition

Human driver monitors the driving environment

0 No Automation The full-time performance by the human driver of all aspects of
the dynamic driving task, even when "enhanced by warning or
intervention systems"

1 Driver Assistance The driving mode-specific execu-
tion by a driver assistance sys-
tem of "either steering or acceler-
ation/deceleration"

2 Partial Automa-
tion

The driving mode-specific execu-
tion by one or more driver as-
sistance systems of both steering
and acceleration/deceleration

using information about the
driving environment and with
the expectation that the human
driver performs all remaining
aspects of the dynamic driving
task

Automated driving system monitors the driving environment

3 Conditional Au-
tomation

with the expectation that the hu-
man driver will respond appro-
priately to a request to intervene

4 High Automation even if a human driver does not
respond appropriately to a re-
quest to intervene

5 Full Automation

The driving mode-specific
performance by an automated
driving system of all aspects of
the dynamic driving task under all roadway and environ-

mental conditions that can be
managed by a human driver

Table 1: Levels of driving automation for on-road vehicles according to SAE J3016

14 automotive software design and development

There is a key distinction between level 2 (“Partial Automation”) and level
3 (“Conditional Automation”) as in the latter case the system performs the
entire dynamic driving task (execution of steering, acceleration, braking and
monitoring of the environment). In contrast to level 4 (“High Automation”),
in level 3 the driver is expected to be ready for taking over the control upon
demand (within a predefined time period e.g. 10 seconds) at all times. At level
4, the driver is no more asked to take over the control.

We present in Table 2 a brief overview of driver assistance systems that have
already been introduced or systems that are on the way to be introduced in the
market. The majority of the systems today are level 1 or 2. Levels 3 and 4 are
still under development.

Level of automa-
tion

Current and future vehicle automation sys-
tems and functions

Market introduc-
tion

0 Lane change assist (LCA) Available

0 Lane departure warning (LDW) Available

0 Front collision warning (FCW) Available

0 Park distance control (PDC) Available

1 Adaptive cruise control (ACC) Available

1 Park assist (PA) Available

1 Lane keeping assist (LKA) Available

2 Park assistance Available

2 Traffic jam assist Available

3 Traffic jam chauffeur/pilot 2020+

3 Motorway chauffeur (MWC) 2020+

3 Highway pilot 2020+

4 Piloted parking 2020+

5 Robot taxi (fully automated private vehicle) 2030+

Table 2: Summary of current and future vehicle automation systems and functions

Figure 5 illustrates the Groupe PSA’s “Autonomous Vehicle for All” program
roll-out. The first level 3 functions to be proposed by the group will be Traffic
Jam Chauffeur (TJC) and Highway Chauffeur (HC) respectively for automated
driving in traffic jams and on highways.

There is an important liability gap between levels 6 2 and levels > 3. Actu-
ally, for levels up to level 2 the driver is responsible for the entire driving, the
assistance functions only assist him. Functions at levels > 3 can take the con-
trol over the driving for some period of time. If there is an accident during this
period, the car manufacturer’s liability can be engaged for production defects:
manufacturing defects, design defects, incorrect or missing instructions.

2.6 proving the safety of the autonomous vehicle

To help proving that the critical software of an autonomous vehicle is safe,
we propose in this thesis to introduce formal methods in some parts of the

2.6 proving the safety of the autonomous vehicle 15

Fi
gu

re
5

:G
ro

up
e

PS
A

’s
“A

ut
on

om
ou

s
Ve

hi
cl

e
fo

r
A

ll”
pr

og
ra

m
ro

ll-
ou

t

16 automotive software design and development

development process. We expect that if autonomous cars are to be massively
launched in the future, the authorities could require their certification, as is
actually the case for the railway and aviation industries. Probably, the machine
learning algorithms could not be certified because they have no specification to
be verified that they respect. Internal experiments at Groupe PSA have shown
that machine learning algorithms are not 100% reliable. To guarantee the safety
of the passengers, they should be supervised by simpler algorithms developed
in a classical manner (based on requirements). Supervising consists in checking
that the results (the outputs) of the executed complex function correspond to
what is defined by the specification and expected by the supervising function.
Otherwise, the supervisor takes over and put the system into a safe mode. For
an autonomous vehicle, this safe mode could be to stop in the emergency lane
on the highway. The critical part of the software is then the supervisor, which
could be certified.

The supervisor is not a new concept. It already exists in the trains and can
for example decide to activate the emergency braking when the autopilot is not
reacting well. In this case, the supervisor has the highest critical level (SIL 4)
and is certified at that level.

The general principle of a supervisor and a supervised modules is shown in
Figure 6. It consists of a supervised function, for which a basic Quality Manage-
ment (QM) is sufficient. It means that this function has no Automotive Safety
Integrity Level (ASIL)4 level and is not considered critical. This function may
be too complex to be verified, for instance containing complex algorithms or
even neural networks. In order to control that its critical outputs obey the spec-
ification, we use a supervisor module, which is critical (ASIL A to D) and is
developed using traditional verification and certification methods.

Figure 6: Example of a supervisor monitoring a software component

Today, there are already multiple supervisors in the automotive software. For
example, if there is a problem with the lighting control software, a supervisor
can take over and turn on the lights. The different strategies and mechanisms
used at Groupe PSA, such as supervision and partitioning for coexistence of
critical and non-critical modules, are discussed in [MBF18].

4 ASIL is a risk classification scheme defined by the ISO 26262.

2.7 conclusions 17

One of our targets for the formal methods application are the supervision
modules. They are intended to be simple and they are based on clearly defined
safety requirements. We want to obtain a proof that no matter what happens,
the safety requirements expressed as safety properties will be respected by
the software without exceptions. A safety property is generally invariant and
should always be true.

The other potential targets for the application of formal methods in the auto-
motive software are the source code analysis based on abstract interpretation
to prove the absence of run-time errors or estimate the Worst-Case Execution
Time (WCET) and the unitary function proof based on deductive methods.

2.7 conclusions

This chapter presented the context in which the automotive embedded software
is developed in respect to the safety standard ISO 26262. We introduced the
V-Model, based on the central notions of specification and requirement. New
methodologies such as Agile are being currently introduced. They need to be
adapted if a certification of the software were required in the future.

We briefly presented AUTOSAR, which defines the reference architecture
and methodology for the development of automotive software. AUTOSAR is a
great source of inspiration for research because it offers a quantity of data that
can be used to verify the software in different ways.

We presented the MBD paradigm, which is more and more used for design-
ing software components in replacement of the traditional manual coding.

We presented the way towards the autonomous car. Today most of the
driver’s assistance systems are level 2 but in the next years level 3 will probably
appear and become the standard.

We presented how a complex software module can be supervised. These
supervisors are of a particular interest for the application of formal methods
because they are simpler than the supervised module and are based on a safety
specification, which can be formalized and proved.

In the next chapter, we present an overview of the safety standards to under-
stand what could be necessary to prepare for the autonomous vehicles tomor-
row.

Part I

F O R M A L M E T H O D S A N D C E RT I F I C AT I O N
S TA N D A R D S

3

S A F E T Y S TA N D A R D S A N D C E RT I F I C AT I O N

All too often, writers of standards focus on questions of what constitutes
good practice, and lose sight of what the followers of those standards truly
need to demonstrate in order to show safety. Safety is demonstrated not by
compliance with prescribed processes, but by assessing hazards, mitigating
those hazards, and showing that the residual risk is acceptable.

— A. Rae (2007). Acceptable Residual Risk: Principles, Philosophy
and Practicalities. 2nd IET International Conference on System Safety.

The correctness and the quality of the embedded software play a key role
in the safety as a whole. To ensure safety, engineers make a significant effort
to show the correctness of individual subsystems and their integration using
testing or simulation. They eventually need to certify that the developed vehicle
as a whole is indeed safe using artifacts and evidences produced during the
development process. Such a certification process can help to increase the safety
confidence in the product and to reduce the automaker’s liability.

However, software certification in the automotive domain is not yet a com-
mon practice compared to other safety-critical domains, such as aviation, rail-
way, nuclear and medical [YLK16]. Even if the safety standard ISO 26262 has
been well adopted, the authorities do not require for the time being to certify
the car’s software. It is probably because the driver is still responsible for the
driving task but with the advent of higher levels of automation, things could
change.

3.1 safety standards

3.1.1 Why do we Need Standards?

In some areas, we can easily imagine the usefulness of the standards. For ex-
ample, the electronic devices that we buy have a standard electric plug (for a
country or a continent) and we can plug it to a standard electrical socket. The
size of the car’s tires and some other pieces are standardized in order to replace
them easily.

21

22 safety standards and certification

For safety-critical software, it is less obvious why we need a standard. Actu-
ally, it comes from the disasters people have experienced. A disaster occurs and
people ask that it never occurs again. It results in a standard written by some
experts to which the industry must comply. It generally results in increased
product quality and provides a better protection for the users.

Standards can also be useful to new companies for their product develop-
ment. They can find some good practices, techniques and tools listed in the
standard. In the event of a court case, if a company complies with a standard
it can defend itself by claiming they are following the industry best practices.

Another point of view is that of a company that wants to buy a safety-critical
system for which the standard helps formalizing the contract. It is easier to
require that the product must comply with ISO 26262 at ASIL B level than to
write the explicit conditions of acceptable failure rate, tools to be used for the
development process, and so on.

3.1.2 Goal- and Prescription-Based Standards

The standards can be classified into two categories: prescriptive and goal-
based [Hob15].

Prescriptive standards prescribe and proscribe means: processes, procedures,
techniques and tools. If a certificate were issued for a prescriptive standard, a
company could for example claim that their product meets the requirements of
ISO 26262 standard.

Goal-based standards, in contrast, require some goals to be achieved and leave
the selection of appropriate processes, techniques and tools to the development
organization. This type of standard needs more effort to be done by the devel-
opment team because they need to not only define their processes but also
justify their adequacy. The auditing for certification is also much more diffi-
cult because there is no checklist of prescriptions to be checked. However, if a
certificate were issued to a company, it could in principle claim that their prod-
uct is safe. The avionics standard, DO-178C, is probably the most goal-based
standard that exists today.

3.1.3 Functional Safety and IEC 61508 Derivated Standards

Functional safety can be described as the part of the safety of a system that
depends on automatic protection operating correctly in response to its inputs
or failure in a predictable manner. For example, if for some reasons (software
bug, component failure, etc.) the car’s lights switched off when they should be
on (driver has requested them, or in automatic mode when it is dark) a safety
function that permanently monitors the conditions can decide to turn them on
to protect the driver.

3.1 safety standards 23

IEC 61508 is a basic and maybe the most important standard for functional
safety from which are derived some other standards for different industries.
The standard is entitled Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems and covers general project management and the
development of hardware and software components.

The standard considers that a piece of equipment can give rise to safety
hazards and it should be accompanied by a safety function that monitors it
and moves it into a safe state when a hazardous situation is detected.

From a software development point of view, the most interesting part is the
prescription of tools and techniques that are not recommended, recommended
or highly recommended for each stage of the software development life cycle.

IEC 61508 has been specialized for a number of industries as shown in Fig-
ure 7. The linkage level between IEC 61508 and the industry-specific standards
varies between industries. The railway standards (EN 5012x), are probably the
closest to IEC 61508. The medical standard IEC 62304 is not considered a deriva-
tion from IEC 61508 because it is not directly concerned by functional safety.
The aviation standard DO-178C is another example of standard that is not de-
rived from IEC 61508.

Figure 7: Derivation of safety standards from IEC 61508

3.1.4 Railway – IEC 62279 / EN 5012x

IEC 62279 provides a specific interpretation of IEC 61508 for railway applica-
tions. It reuses from IEC 61508 the Safety Integrity Level (SIL) levels (SIL 0 to 4,
SIL 4 is the most critical) and is intended to cover the development of software
for railway systems. On the other hand, CENELEC emitted a set of EN stan-
dards for railway applications such as EN 50126 (system), 50128 (software) and
50129 (hardware). In EN 50128, the requirements for SIL 3 are the same as for

24 safety standards and certification

SIL 4, and the requirements for SIL 1 are the same as for SIL 2. So in practice,
only three levels are used: SIL 0, SIL 1/2 and SIL 3/4. We can note that in SIL
3 and SIL 4 formal methods are highly recommended.

3.1.5 Medical – IEC 62304

IEC 62304 is a standard, which specifies life cycle requirements for the develop-
ment of software within medical devices. It defines three classes of risk: Class A
when no injury or damage to the health of a patient or device operator would
result if the software failed; Class B if non-serious injury is possible; Class
C if death or serious injury is possible (pacemakers, defibrillators, etc.). IEC
62304 focuses exclusively on processes (software development, management
and configuration) and its only reference to formal methods is somewhat nega-
tive. Paragraph 5.2.6 states, “This standard does not require the use of a formal
specification language.”

3.1.6 Aviation – DO-178C

DO-178C/ED-12C, called “Software Considerations in Airborne Systems and
Equipment Certification” provides guidance to the development of safety-
critical avionics software and is used for its certification. It was jointly devel-
oped by Radio Technical Commission for Aeronautics (RTCA) and European
Organisation for Civil Aviation Equipment (EUROCAE) and defines five dif-
ferent critical levels for the software named Design Assurance Level (DAL):
Catastrophic (A), Hazardous (B), Major (C), Minor (D); No effect (E). They are
determined from the safety assessment process and hazard analysis by exam-
ining the effects of a failure condition in the system.

DO-178C is particular in that it does not provide prescriptions on tools
and techniques to be used. Instead, it provides objectives that should be
achieved, which is more difficult but the system is considered safer compared
to prescription-based standards.

DO-178C also provides the following supplements for tool qualification and
technologies:

• DO-330 “Software Tool Qualification Considerations”;

• DO-331 “Model-Based Development and Verification Supplement to DO-
178C and DO-278A”;

• DO-332 “Object-Oriented Technology and Related Techniques Supple-
ment to DO-178C and DO-278A”;

• DO-333 “Formal Methods Supplement to DO-178C and DO-278A”.

3.2 certification and qualification 25

We are particularly interested in DO-333, which provides guidelines how
formal methods can be applied in a certification context and which activities
they can replace.

3.1.7 Automotive – ISO 26262

ISO 26262 is the specialization of IEC 61508 for the automotive domain. Part
6 deals with software and includes tables of recommended (+) and highly-
recommended techniques (++) for different phases of the development process
and for each Automotive Safety Integrity Level – ASIL (from level A to D, D is
the most critical). ASIL replaces the concept of IEC 61508’s SIL which is based
on probability of failure per hour of use. Instead, in ISO 26262 the events that
could cause injury are listed and an ASIL is calculated (using a table proposed
in the standard) for each of them by considering three aspects:

• Severity (S0 to S3): classifies the type of injuries that could result from this
event;

• Probability of Exposure (E0 to E4): probability that the event occurs in nor-
mal operation;

• Controllability (C0 to C3): classifies the difficulty of the driver to control
the situation and avoid injury.

For example, a hazardous event combining S3 (fatal injury), E4 (high probabil-
ity) and C3 (uncontrollable) is assigned to ASIL D level. For many positions,
there is no ASIL level assigned – “QM” is listed instead. It means that there is
no requirement to comply with ISO 26262 but the product must be developed
in accordance with a quality management process approved in an international
standard such as ISO 16949 or ISO 9001.

In [YLK16], Toyota prepares the advent of the certification by providing a
survey of the software certification approaches in different domains (aviation,
medical, railway). They propose to use assurance cases as a promising tech-
nique to automotive software certification. The authors also point out that even
if ISO 26262 provides some recommendations to improve the software quality,
it does not provide a quantified and rigorous process for software certification.

3.2 certification and qualification

The quality of the safety-critical embedded software has been, for many years
now, ensured by applying precise and constraining development processes on
each activity of the system development: from requirements elicitation to inte-
gration of the embedded code through software design, code production and
code verification. For each of these activities artifacts are produced aiming at

26 safety standards and certification

providing evidence of the means used for the activity achievement. These arti-
facts are mandatory to provide parts of the information required by the certifi-
cation bodies.

Certification stands for the process of ensuring that a product (system or
equipment) is “approved” for use. When a company wants/needs to certify a
product against a particular standard, it can self-declare that the product meets
all the requirements of the appropriate standard, possibly asking an external
auditing company to confirm the declaration. Alternatively, the company could
employ an independent certification body to assess and certify the product.

In order to be able to emit certificates, the certification body must be ac-
credited to issue certificates for a particular standard. Certification bodies are
accredited by national accreditation authorities to carry out particular certifica-
tions. There is no accreditor for the accreditation authorities – they verify each
other’s compliance in continuous evaluations.

Qualification is used in the context of tools when these ones are expected to
be used for the “elimination, reduction or automation” of certification activities
“without its [the tool] output being verified” [DO-178C]. Each standard defines
different levels of qualification e.g. from TQL-1 (the strongest) to TQL-5 (TQL
stands for Tool Qualification Level) in DO-178C or TCL-3 (the strongest) to
TCL-1 (TCL stands for Tool Confidence Level) in ISO 26262. The approach of
qualification is also different between avionics and automotive standards. For
avionics, according to the chosen TQL, a specific set of objectives have to be
fulfilled to ensure the tool qualification. For the automotive, it is based on the
confidence of the tools and their error detection capabilities (ISO 26262, part
8). For example, a code generator (can introduce bugs when generating a code
from a model) is permitted to be used without qualification (TCL-1) if it is
accompanied by qualified error detection tools.

3.3 conclusions

In this chapter, we introduced some safety standards, their usefulness and no-
tions about certification and qualification. Some of the standards are more rig-
orous because they require achieving objectives instead of giving prescriptions
to follow. Some of them are also proposing to use formal methods, which is a
good motivation for their application in the industry.

In the next chapter, we present the formal methods from their theoretical
foundations to their concrete applications in the industry.

4

F O R M A L M E T H O D S – F R O M T H E O RY T O P R A C T I C E

Formal methods should be part of the education of every computer scientist
and software engineer, just as the appropriate branch of applied mathemat-
ics is a necessary part of the education of all other engineers.

— John Rushby, SRI International

Engineering, as a whole, relies on mathematical models to take decisions
about the design. However, software development has traditionally been less
formal by using testing to confirm its goodness. The goal of formal methods
is to bring the same rigorous mathematical background already used by other
engineering disciplines to both software and hardware. Formal methods apply
mathematical logic and discrete mathematics to model the behavior of a system
and formally verify that the model of the system satisfies the properties that it
is expected to have. Generally, the expected properties are written as a set of
requirements called a specification. The properties can be functional or safety. It
is practically impossible to verify all the functional properties because a simple
embedded computer can have more than twenty thousand requirements allo-
cated. Thus during the design of the system specification, the important prop-
erties should be identified. They are not necessarily only safety-related but can
also be security-related or even effects seen by the user that could reduce its
confidence in the system e.g. a radio-navigation that is rebooting frequently is
not safety-related problem but the user could doubt about the quality of the
rest of the system. Finally, formal verification can be seen as exhaustive testing
and yielding systems of a very high dependability in a cost-effective manner.

Basically, a formal method is a formal model and a formal analysis. Even
if formal models can benefit the software development process e.g. for auto-
matic code generation, the most beneficial aspect from our point of view is
the formal analysis of the formal models. Formal analysis is used to prove or
guarantee that the software complies with the requirements specification. Dur-
ing the analysis phase, bugs can be found not only in the software but also in
the specification. Because the specification is often written in natural language,
it can contain ambiguities or contradictions. Formalizing the specification is a
way to review it and fix its discrepancies.

27

28 formal methods – from theory to practice

In this chapter, we propose a brief introduction into different types of formal
methods that seemed to us promising from industrial point of view for software
verification. Hardware verification is also possible but it is not in the focus
of this work. Finally, we illustrate the industrial application of some formal
methods and the reasons why they were adopted.

4.1 formal methods and tools – a brief introduction

The first work on formal methods dates back to 1949 [Tur49]. The central idea
is to guarantee the behavior of a computing system using mathematical methods.

For many years, formal methods have essentially been used in academia.
Today, formal methods get more and more connected with applied engineering
and many industries are using them in their development process. They are
better applied in the electronic hardware design because the hardware cannot
be updated piecewise. Software tools and technologies (such as requirements
and design methodology) are still changing rapidly.

We propose here a short presentation of the three main categories of formal
methods to introduce the principles and terminology. We also present indus-
trial and academic tools for each category. A complete survey of tools and
techniques for formal verification can be found in [DKW08]. Another report on
the trends in formal verification of autonomous robots software presents the
research done for tools such as FIACRE and RT BIP [Ing19]. These reports are
general and present multiple tools and methods but we will stay more focused
on tools that could be used by the automotive industry for embedded software
verification.

4.1.1 Abstract Interpretation

Abstract Interpretation is a formal method introduced by Cousot et al. [CC77]
in 1977. It automatically computes information about the program behavior
without executing it. Most questions about this behavior are either undecid-
able or it is practically impossible to compute an answer. The main goal of the
abstract interpretation is to efficiently compute an approximate/abstract rep-
resentation of the program and bring sound guarantees about dynamic prop-
erties. Sound means that the approximation calculated is reliable and bugs are
not missed (no false negatives). A spurious alarm also known as a false positive
is a warning about a bug that does not exist in the program. Sometimes false
positives can be generated due to the approximation precision. A detailed intro-
duction of the formal verification by abstract interpretation is given in [CC10].

4.1.1.1 Purpose of Static Analysis based on Abstract Interpretation

Static analysis based on abstract interpretation can be used to prove that no
timing or space constraints are violated, no numeric precision problems are

4.1 formal methods and tools – a brief introduction 29

present when using floating-point numbers or that run-time errors are absent:
the absence of errors is guaranteed for the entire program as the method is
based on mathematical proof. These are non-functional properties and they are
required by most of the safety standards.

A demonstration that the software respects timing (WCET) and space con-
straints is required for example by the aviation safety standard (DO-178C).
Even if a safety standard do not require this demonstration, it is useful for the
software architect to know if the timing is correct (all real-time tasks meet their
deadlines) or if the stack size is large enough to keep the data in all possible
execution paths. Without using abstract interpretation, WCET tends to be over-
approximated because modern processors possess caches and pipelines, which
significantly reduces the execution time. When using abstract interpretation for
timing and stack size worst-case estimation, the results are more precise and
a less powerful and cheaper micro-controller could be chosen. Moreover, for
real-time applications, WCET is more important to know than the average-case
performance for which the processors are optimized.

The numeric precision problem is presented in [DGP+
09]. It consists of com-

puting value intervals that the variables of the program can take at each control
point, for all possible executions, with two different semantics:

• semantics corresponding to executions of the program on an ideal ma-
chine that handles real mathematical numbers;

• semantics corresponding to the implementation of floating-point num-
bers and modular integers with finite precision, by means of IEEE-754.

An upper bound for the difference between values taken by variables for
these two semantics is then computed, and breaks it down according to the
contributions of the different control points. This enables the user to determine
the main sources of numerical imprecision in his or her program.

A run-time error is:

• any bad memory manipulation including out-of-bounds array access,
NULL or invalid pointer dereference

• any arithmetic error and undefined behavior in the calculus including di-
visions by zero, modular arithmetic overflow or floating-point arithmetic
Not a Numer (NaN)

• any usage of the programming language that is being defined in the stan-
dard as undefined behavior (e.g. section J2 in C99 standard);

• any violation of an assertion provided by the user (e.g. check of the output
values ranges or other program invariants).

30 formal methods – from theory to practice

4.1.1.2 The core of the abstract interpretation: abstract domains

The core of the abstract interpretation are the different methods of abstraction,
which are called domains. The difference between the domains is the precision
of the results that can be obtained for different use cases. To illustrate one of
these abstractions, let us take the following example:

−8.5871×−45.6587× 2.5678

Even though the calculation of the solution to the problem takes time if it
is done by hand, it is possible to apply the rules of the multiplication sign to
determine that the result is always positive (invariant). The determination of
the sign of this calculation is an example of abstraction. With this technique,
we can verify a set of properties of a final result, such as the sign, without
having to do the whole calculation. This property of the program can be useful
if, for example, the result of this calculation must be used as a parameter of the
function calculating the square root of a number.

Over the years, other domains were developed and extended to tools us-
ing abstract interpretation. They are non-relational such as the intervals domain
(recording the minimum and maximum value for each variable) or relational
such as the octagons domain (can find invariant relations between two variables,
e.g. a < b). More details about this method and its abstractions can be found
in [CC10].

4.1.1.3 Using Partitioning to Increase Precision

When the behavior of a program strongly depends on the precise values of
certain expressions, such as test conditions or array indexes, the use of abstract
domains can produce results that are too imprecise to prove the absence of
run-time errors. In this case, it is recommended to proceed by case analyses,
by conducting several local analyses of the same part of the program to join
results later in the program, where the problematic expressions have no longer
an important role. This case analysis is called partitioning [BCC+

03, MR05].
We take an example from [Bou11] to show that without partitioning Astrée (a
static analysis tool based on abstract interpretation) cannot prove the absence
of division by zero in the code shown in Figure 8.

1 t y p ed e f enum {FALSE = 0 , TRUE = 1} Boolean ;
2 v o l a t i l e Boolean B ;
3 v o i d main () {
4 un s i gned i n t X, Y ;
5 i f (B) {X = 0 ; Y = 1 ;}
6 e l s e {X = 1 ; Y = 0 ; } ;
7 X = 1 / (X + Y) ;
8 }

Figure 8: Example of code where Astrée cannot prove the absence of division by 0

4.1 formal methods and tools – a brief introduction 31

Actually, the other abstract domains return the invariants X ∈ {0, 1} and
Y ∈ {0, 1} before the division, but none automatically captures the (implicit)
relation X+ Y = 1. To increase the precision locally, the user can add two As-
trée directives before the if and after the final calculation of X to perform two
separate analyses of the division:

• one for the case where B = TRUE and therefore X = 1/(0+ 1);

• one for the case where B = FALSE and therefore X = 1/(1+ 0).

With this partitioning, after the division we obtain the invariant X = 1 that
can also be useful for other parts of the program.

4.1.1.4 Difference between Sound and Unsound Static Analyzers

The tools that are using abstract interpretation to analyze programs are called
sound static analyzers. They can be opposed to another category of static ana-
lyzers called unsound. They differ by the analysis depth and exhaustiveness.
Sound static analyzers guarantee to find all bugs even if they can bring some
false alarms. If there are no alarms, it means that the code is free from the class
of bugs the tool can find. At the opposite, unsound static analyzers use heuristics
to find some common bugs but they are not exhaustive and cannot guarantee
the absence of bugs. However, using at first step an unsound static analyzer
to fix the bugs it founds and then as a second step, using a sound static an-
alyzer can reduce the effort of analyzing the alarms produced by the sound
static analyzer. In general, the code should be as clean as possible before using
sound static analysis. For example, if we have a constantly increasing value
such as a++ in an infinite loop’s body it should be protected from overflowing.
Otherwise, the sound static analyzer will show an overflow alarm.

4.1.1.5 ISO 26262 Recommends Abstract Interpretation

The latest version of the ISO 26262 standard published in 2018 added a special
item for the static analysis based on abstract interpretation (see Table 3 and Ta-
ble 4). Sound static analysis is now recommended (noted by +) for all critical ASIL
levels for software unit verification and for verification of software integration.

4.1.2 Model Checking

Model checking is a formal method introduced in the early 1980s by two
teams: Edmund M. Clarke, E. Allen Emerson [CE82], and Jean-Pierre Queille,
Joseph Sifakis [QS82]. E. M. Clarke, E. Allen Emerson and J. Sifakis won the
2007 Turing Award, frequently referred to as the ‘Nobel Prize’ of computing
for their work on model checking. This method was proposed for verifying
finite state concurrent systems. The advantage of this restriction (finite state
systems) is that the verification could be done automatically by performing an

32 formal methods – from theory to practice

Methods ASIL

A B C D

Walk-through ++ + o o

Pair-programming + + + +

Inspection + ++ ++ ++

Semi-formal verification + + ++ ++

Formal verification o o + +

Control flow analysis + + ++ ++

Data flow analysis + + ++ ++

Static code analysis ++ ++ ++ ++

Static analyses based on abstract interpretation + + + +

Requirements-based test ++ ++ ++ ++

Interface test ++ ++ ++ ++

Fault injection test + + + ++

Resource usage evaluation + + + ++

Back-to-back comparison test between model and code + + ++ ++

Table 3: Methods for software unit verification (ISO 26262 – Table 7)

Methods ASIL

A B C D

Requirements-based test ++ ++ ++ ++

Interface test ++ ++ ++ ++

Fault injection test + + ++ ++

Resource usage evaluation ++ ++ ++ ++

Back-to-back comparison test between model and code + + ++ ++

Verification of the control flow and data flow + + ++ ++

Static code analysis ++ ++ ++ ++

Static analyses based on abstract interpretation + + + +

Table 4: Methods for verification of software integration (ISO 26262 – Table 10)

exhaustive search of the state space of the system (explicit state model checking)
to determine if some specification is true or not. Given sufficient resources, the
procedure would always terminate with yes or no answer. When the answer
is no a counterexample is produced to show an execution trace leading to the
error state. A counterexample is generally represented by a sequence of values
for the input variables of the model and can be analyzed or simulated by the
user to understand the violation. This is the most valuable feature of the model
checking for the system design engineers.

As hardware controllers and communication protocols are finite state sys-
tems, model checking was first adopted to verify their correctness.

The difficulty in software verification compared to the hardware, is that in-
stead of using bits, the software variables are at least represented as bytes (8,
16, 32 bits are common in practice), which for industrial models resulted in
a state space explosion [DLS06]. Furthermore, for some systems it was neces-
sary to reason with mathematical real numbers, which resulted in infinite state

4.1 formal methods and tools – a brief introduction 33

systems. To cope with such complexities, model checking was combined with
various abstraction, induction and invariant generation principles.

4.1.2.1 The Process of Model Checking

Applying model checking consists of several tasks:

• Modeling: consists of converting a design into a formal language ac-
cepted by the model checking tool (also called model checker). Some-
times, the modeling may need to abstract some irrelevant details or parts
of the design that cannot be taken into account by the model checker e.g.
nonlinear arithmetic calculations.

• Specification: consists of defining what properties the design must sat-
isfy. The properties are usually defined using temporal logic [Pnu77] or
synchronous observers [HLR93]. The difficulty in this point is to choose rel-
evant properties. As reported in [CM14b], writing good formal properties
shares many similarities with writing good requirements and is as much
art as science. This report also mentions that properties that cut across
an entire system often find the most errors and that the best sources of
formal properties are found in the safety-related requirements for the sys-
tem. We comment on the methodological aspect of choosing properties in
Chapter 5.

• Verification: once we have a model and properties, ideally the verification
can be done automatically. However, in practice it often needs human
assistance for example for analyzing the results. In case of a negative
result, the user can use the provided trace (counterexample) to analyze
the origin of the problem: incorrect modeling or incorrect specification.
Sometimes the verification task can fail to terminate due to the size of the
model, which is too large to fit into the computer memory. In all of these
cases after fixing a problem or changing the parameters of the model
checker, the verification should be redone.

4.1.2.2 Symbolic Model Checking

In the original implementation of model checking algorithm, transition rela-
tions were represented explicitly by adjacency lists (explicit state model check-
ing). It was limited only for small systems. To verify larger systems, McMil-
lan proposed in 1987 to use a symbolic representation [BCM+

89, McM93]. It
was based on the Bryant’s Ordered Binary Decision Diagrams (OBDD) [Bry86].
OBDD provided a canonical form for Boolean formulas that was more compact
than conjunctive or disjunctive normal form. This representation captures some
of the regularity in the state space determined by sequential circuits and proto-
cols and it became possible to verify systems with extremely large number of
states.

34 formal methods – from theory to practice

However, verifying software causes some problems even for implicit state
model checking. Software is less structured than hardware. In addition, con-
current software is usually asynchronous, that is, most of the activities are
executed independently without a global synchronizing clock. The most suc-
cessful technique to cope with concurrent software was based on partial order
reduction [GP93]. It aims to reduce the number of states to be explored by re-
moving equivalent interleaving events. Another technique to reduce the state
explosion by symmetry [CFJ93] was proposed for concurrent systems and pro-
tocols, which often contain replicated components.

While these symbolic techniques have greatly increased the size of the sys-
tems that can be verified, many realistic software systems are still too large
to be handled. Thus it is important to associate symbolic methods with new
techniques to extend the size of the systems that can be verified. Four such
techniques are compositional reasoning, abstraction, induction and invariant genera-
tion.

4.1.2.3 Compositional Reasoning

Compositional reasoning is a technique that can be used on large models when
they can be decomposed in independent components [BCC97, GNP18]. The
specification is also decomposed into local properties that describe each com-
ponent. If it is possible to show that the system satisfies each local property,
and if the conjunction of the local properties implies the global specification,
then the complete system must satisfy this specification as well. The difficulty
is to determine the local properties that can infer the global specification. When
this is not feasible because of mutual dependencies between the components,
they should be analyzed one by one, making assumptions about the behav-
ior of the other components. The assumptions must later be discharged when
the correctness of the other components is established. This strategy is called
assume-guarantee reasoning [Pnu89, GL94, PDH99, FQ03, GPC04, GBPG08].

This technique is crucial for the scalability of real industrial systems. A suc-
cessful implementation of compositional reasoning for reactive systems verifi-
cation can be found in the Kind 2 model checker [CMST16].

4.1.2.4 Abstraction

Abstraction is a technique that does not consider directly the model but an
abstract version of it to reduce the complexity of model checking. The abstrac-
tion consists in approximating the behaviors of the model, so if this abstraction
meets the required specification the original model will do. For example, we
could abstract a square root calculation by providing the range of the values
the result can take. The difficulty is to find the right level of abstraction.

The Counterexample Guided Abstraction Refinement (CEGAR) approach
[CGJ+00] proposes an automatic iterative abstraction-refinement methodology.

4.1 formal methods and tools – a brief introduction 35

It consists of generating an abstract model based on the analysis of the con-
crete model. If in the abstract model an erroneous counterexample is found,
it is removed and the abstract model is refined until no more erroneous coun-
terexamples are found.

An alternative form of abstraction-refinement comes from using the so-called
Craig interpolants [McM05, McM06]. While the intention is similar to that of
CEGAR, a different method of analysis, based on proofs of inconsistency, is
performed to determine the refined formula, requiring a solver that supports
interpolant generation.

It is also possible to use abstract interpretation combined with model checking
to abstract complex models [CC99].

Slicing [Tip95] is another technique for reducing the size of the initial model
based on a cutting criterion without losing information. If the criterion is prop-
erty related then it is called property-based slicing.

The size of the model can also be reduced by removing variables that do
not influence the proved property. This technique is called the Cone Of Influence
(COI) reduction [BCC97] and is often used in modern model checkers.

Another form of abstraction is called predicate abstraction where a predicate
is converted into a Boolean variable. For example, the predicate a > b+ c can
be replaced by the Boolean a_b_c.

4.1.2.5 Induction: SMT-model checking

Before explaining how induction is used with model checking, it is necessary to
introduce some other frameworks that induction will use. Today, induction is
the most scalable technique for industrial software model checking combined
with SAT or Satisfiability Modulo Theories (SMT)-based model checkers rather
than OBDD-based ones. It has been observed [Bry86] that SAT/SMT solvers
are often able to solve much larger formulas than classical techniques based on
OBDD.

The Boolean Satisfiability Problem (commonly abbreviated as SAT) for a given
propositional logic formula, consists in determining whether there exists a
variable assignment such that the formula evaluates to true (for example, it
will find a = true and b = true for the formula a∧ b). Because verification
of properties on software models and other practical problems can be formu-
lated as SAT instances, it motivated the research since fifty years. The original
algorithm used behind the SAT solvers is called Davis–Putnam–Logemann–
Loveland (DPLL) algorithm [DLL62] and is still used today improved and com-
bined with Conflict-Driven Clause Learning (CDCL) [MSS03].

One area of particular interest is in exploring these highly efficient satisfi-
ability techniques to solve formulas from non-Boolean domains is known as
SMT [Tin10]. It refers to the problem of determining whether a first-order for-
mula is satisfiable (SAT) with respect to some logical theory. There are now
several powerful and sophisticated SMT solvers providing decision procedures

36 formal methods – from theory to practice

for the most common theories: Alt-Ergo [CCIM18], CVC4 [BCD+
11], Math-

SAT5 [CGSS13], SMTInterpol [CHN12], Yices2 [Dut14] and Z3 [DMB08]. An
initiative called SMT-LIB [BST+

10] was proposed to standardize the language
and the theories used to request the SMT solvers. Today the SMT-LIB repository
also proposes more than 100 000 benchmarks and there is an annual competi-
tion called SMT-COMP to compare the different SMT-solvers and stimulate
their improvement.

A number of practical applications of SAT/SMT, as we will see later, involve
iterative solving called incremental SAT/SMT. It consists of communicating min-
imal changes in the formula when calling the SAT/SMT solver and thus reuse
the learned clauses from the previous calls without recalculating them. It could
be stack based or assumption based. In a stack based incremental solving, each
pushing to the stack creates a local context. Assertions added under a push are
removed after a matching pop. Furthermore, any lemmas that are derived un-
der a push are also removed. We use it to freeze a state and be able to resume
to it. In an assumption based incremental solving, the learned clauses are not
removed.

For some applications, SAT/SMT solvers are expected to provide unsatisfiable
cores [ZM03]. It is a subset of the original formula used to prove unsatisfiability
and can be used for example to provide a traceability between the model and
the proved properties [GBW+

18].
Bounded Model Checking (BMC) [BCCZ99] is a technique used to discover

property violations that in practice can represent real bugs. In BMC, a model
(represented by a transition system) and a property (represented by its nega-
tion) are jointly unwound for a given number of steps. The obtained formula
(conjunction between the model and the property) is then passed to a SAT/SMT
solver. If the formula is satisfiable, it means that the property is violated (a bug
is found) and we obtain a counterexample (an execution trace) for the property
up to the selected number of steps. If the formula is unsatisfiable, it means that
the property is valid. For a valid property, there could be many unsatisfiable
cores. Each of them presents the variables necessary for the proof.

SAT/SMT-based model checking is generally well suited to check whether
a given model satisfies a given inductive property. The advantage of the induc-
tion is that a property can be proved valid for a system without exploring its
entire state space. We use I to denote the initial state of the system and T – the
transition relation.
Definition 2 (Inductive property)

Given a state space S and a state s ∈ S, a property P is inductive iff:

(1) P holds in the initial state, that is ∀s. I(s)⇒ P(s), and

(2) P holds in all states reachable from states that satisfy P, that is
∀s, s ′. P(s)∧ T(s,s’)⇒ P(s’)

4.1 formal methods and tools – a brief introduction 37

If the first condition (base case) does not hold, then it should be possible to
extract a counterexample from the invalidity proof. The problem is that if P
is not inductive (provable via induction), the second condition (step case) fails
and nothing can be concluded. Unfortunately, this often arises when attempt-
ing to verify real systems. We need to strengthen P automatically by provid-
ing additional lemmas or invariants that are always true for the system. Thus,
we can have more chances to succeed. Next, we present some techniques for
strengthening the properties.

4.1.2.6 k-Induction

An automated technique to increase the strength of the property is to increase
the depth of the unwinding and look at progressively larger windows of the
system execution paths. It is called k-induction. It unrolls the property over k
steps of the transition system and checks its validity. For example, 1-induction
consists of the formulas proposed in Definition 2, whereas 2-induction consists
of the following formulas:

Definition 3 (2-induction)

Base step 1: ∀s. I(s)⇒ P(s)

Base step 2: ∀s, s ′. I(s)∧ T(s,s’)⇒ P(s’)

Inductive step: ∀s, s ′, s ′′. P(s)∧ T(s,s’)∧ P(s’)∧ T(s’,s”)⇒ P(s”)

There are two base step checks and one inductive step check. In general, for
an arbitrary k, k-Induction consists of k base step checks and one inductive step
check as in the following formulas:

Definition 4 (k-Induction)

Base step 1: I(s0)⇒ P(s0)
...

Base step k: I(s0)∧ T(s0,s1)∧ · · ·∧ T(sk−2,sk−1)⇒ P(sk−1)

Inductive step: P(s0)∧ T(s0,s1)∧ · · ·∧ P(sk−1)∧ T(sk−1,sk)⇒ P(sk)

We say that a property is k-inductive if it satisfies the k-Induction constraints
for the given value of k. We begin by checking for k = 1 and then k is increased
until proving the formulas. The hope is that the additional formulas in the
antecedent of the inductive step make it provable. We use a SAT/SMT solver
to check the validity of the formulas.

38 formal methods – from theory to practice

4.1.2.7 Property-Directed Reachability

The previous approach for strengthening the property rely on an unwinding of
the transition relation, that is the formula given to the solver consists of multi-
ple copies of the transition relation. The resulting memory consumption can be
prohibitive for large systems. Property-Directed Reachability (PDR) also known as
IC3 [Bra11, Bra12] is a technique that performs SAT-based reachability checking
without making copies of the transition relation. PDR was also generalized for
SMT solvers [CG12, HB12].

It consists in dividing the initial problem into a big number of small prob-
lems. A sequence of frames blocking the dangerous states is constructed in-
crementally, mixing backward analysis of the proof obligation and forward
propagation taking into account the initial states. The process is repeated until
the sequence reaches a fix-point or a bad state is shown to be reachable. Com-
pared to k-Induction, there are much more requests sent to the solver but the
formulas to be decided are much simpler.

4.1.2.8 Invariant Generation

Invariant generation techniques construct auxiliary inductive assertions for
strengthening the property to become inductive and to be proved automatically.
Invariant means that these assertions hold over all iterations of a program loop
or over all reachable states of a transition system. Automatic invariant genera-
tion has been investigated since the 1970s. In [MP95, BL99, TNW+

10], the au-
thors present a number of methods for generating invariants to prove safety
properties. These methods could be classified as either top-down or bottom-
up [BM08].

Top-down invariant generation techniques focus on a given (non-inductive)
property to be proved to calculate auxiliary assertions that can make the prop-
erty inductive. One such technique is PDR.

Bottom-up invariant generation considers the system and uses it to deduce
properties of it. It could be based on abstract interpretation [CC77] or based on
a template also called instantiation-based invariant discovery [KGT11]. Abstract
interpretation is used for example in Kind 2 [CMST16] to provide bounds on
the state variables and to generalize counterexamples [WDD+

12].
We are particularly interested in the instantiation-based invariant discovery be-

cause compared to the others it produces more complex invariants in a rather
efficient way. Furthermore, during our experiments it showed to cope better
with industrial models and properties. It is based on a somewhat brute-force
discovery scheme by sifting through a large set of automatically generated for-
mulas, which are instances of the same template. The approach relies on the
efficiency of the SAT/SMT solvers to quickly generate counter-models. A spe-
cialized template can be used to solve different problems. As example, we suc-
cessfully enriched the template of JKind [GBW+

18] to handle long-duration
time properties by automatic generation of relational invariants [TTBH19a].

4.1 formal methods and tools – a brief introduction 39

This is one of the contributions of this dissertation and we present it in de-
tails in Chapter 6. Another application of the templates is to identify “mode
variables” in models containing state machines and generate invariants specif-
ically for them [KGTW12]. This technique was implemented in Kind [HT08]
and showed increased precision and speed. The discovery of invariants to
strengthen and automate the proof is also a topic of interest for the aviation
industry. In [Cha14], Adrien Champion proposed a heuristic for potential rela-
tional invariants generation directed by the proof objective. In practice, when
combining invariants with k-induction, the k to obtain the proof is often very
small even equal to one.

A complementary technique to reduce the number of invariants in order to
show only those that were useful for the proof of a property is called Inductive
Validity Cores (IVC) [GWGH19]. It can also be used to show the coverage that
a proved property has on a model. The coverage of the proved properties is
of great interest for the industry. We worked on a new method using mutation
and incremental SMT solving providing a more detailed traceability metrics than
IVC. This method is our second major contribution and we present it in details
in Chapter 7.

4.1.3 Deductive Methods

Deductive methods use mathematical arguments to establish each property of
a formal model. Proofs are normally constructed using a theorem proving tool,
either automatically or in an interactive way.

4.1.3.1 Introduction

The foundations of the proof of logical properties on an imperative language
program were put forward by C. A. R. Hoare in 1969 [Hoa69]. Based on the
precise semantics of a computer program, Hoare proposed to prove certain
properties by mathematical deductive reasoning, generally at the end of the
program.

He introduced a notation called the Hoare triple, which associates a program
Q, start hypotheses P, and expected output properties R:

P {Q} R

The logical meaning of this triple corresponds to: if P is true, then after exe-
cuting program Q, R will be true if Q terminates. The calculus of Hoare’s triples
is, in general, undecidable.

The proving by application of Hoare’s rules is an intellectual process and is
not tool driven. It is up to the author of the proof to define the correct proper-
ties between each instruction of the program and to establish its demonstration
by applying the different theorems. This activity is not adapted to process thou-
sands of lines of code in an acceptable time.

40 formal methods – from theory to practice

An initial automation of the process of proving programs was brought by
the calculation of the Weakest Precondition (WP) from Dijkstra in 1975 [Dij75].
The principle consists in automatically calculating the most general property
WP(S,P) holding before a statement S such that the property P holds after the
execution of S:

WP(S,P) {S} P

The calculus of WP is defined for each instruction. The proof process consists
in calculating WP by going backward from the end of the program for which
we want to prove P, up to the beginning. For full correctness, S must terminate.
A detailed explanation of how WP is calculated for different instructions is
given in [Gri87].

The returned predicate from the WP calculation can rapidly become rather
complex. Efficient (quadratic instead of exponential) verification condition
generation (including WP generation) were proposed in the following pa-
pers: [SAB08, BL05, FFS01]. In order to automate the process, all modern tools
based on WP use automatic theorem provers or SMT solvers as back-end.

4.1.3.2 Tools for Deductive Reasoning

We can distinguish between two categories of tools for deductive reasoning:
based on contracts (annotations representing the specification a program must
implement) or based on an abstract machine notation (begins with an abstraction
of the program and refines it until all the details are integrated).

Caveat [RSB+
99, SFF04] and Frama-C WP [KKP+

15] are tools for deductive
reasoning on C programs based on contracts annotations. Although the objec-
tive of the two tools is similar (prove the correctness of C programs based on
WP calculus) there exist some differences. Caveat was created for industrial
use at Airbus and it was qualified together with Alt-Ergo (Why3 [FP13] was
not used by Caveat to address the different automatic provers). Frama-C uses
a different specification language named ANSI/ISO C Specification Langage
(ACSL)1 for writing annotations. ACSL is a language based on the paradigm of
programming by contracts [JM97]. Frama-C lies on top of the Why3 framework
to request different provers or SMT solvers.

SPARK with the latest SPARK 2014 version is a tool set for deductive reason-
ing based on the SPARK language (a formally defined subset of the Ada pro-
gramming language) [Bar00, Bar03]. Similar to Frama-C WP, it uses the Why3

platform to request the supported provers. The differences between SPARK and
Frama-C are discussed in [Moy09].

Frama-C and SPARK can also be used for dynamic software verifica-
tion [KMMS16], which has the advantage to use the contracts already written
for the proof and test them on a running software.

1 ACSL specification language: https://frama-c.com/acsl.html

https://frama-c.com/acsl.html

4.1 formal methods and tools – a brief introduction 41

The B-method [Abr96] uses a particular abstract machine notation to begin
reasoning on a simpler abstract representation of a program (for example: “the
airplane has one landing gear”). After multiple refinements (more details are
added at each step, for example: “the airplane has three landing gears”) un-
til a deterministic version is achieved (the implementation). This deterministic
version, also known as B0, can be directly translated into a programming lan-
guage for compilation. Individual refinement steps must be proved correct, that
is the effect of the concrete specification must not contradict the effect of the
abstract/refined specification, in order for the final program to enjoy the same
properties as the original specification. Each step thus generates a number of
proof obligations that must be discharged by an automatic prover. The idea
is that the correctness of each individual step is in principle much easier to
establish than the overall correctness.

The B-method was originally developed in the 1980s by Jean-Raymond Abrial
in France and the UK. B is related to the Z notation (also originated by Abrial)
and the name was chosen to take the first free letter of the alphabet after
Z (there was already the A programming language, so Abrial took B for its
new language)2. The B-method was initially provided with two complete tool
sets (Atelier-B from ClearSy (France) and B-Toolkit from B-Core (UK)) and a
methodology that could be used in the industry. The first real industrial suc-
cess was Meteor line 14 driverless metro in Paris (110 000 lines of B mod-
els) [LSP07]. Recently, another formal method using refinement called Event-
B3 has been developed to cover the modeling of a complete system. It came
with the Rodin tool developed and maintained by Systerel. B and Event-B are
compared in [Abr18].

4.1.4 Combining Program Verification Methods

Since no single formal method can ultimately solve the verification problem,
the current trend is to combine formal methods.

For example, as proposed in [Sai00] one can rely on a user designed abstrac-
tion and derive a finite abstract model of the program semantics by abstract
interpretation, prove the correctness of the abstraction by deductive methods
and later verify the abstract model by model-checking.

In one of our experiments [TTBH19b], we also used a combination of formal
methods to help the deductive proof. We used the results obtained by an ab-
stract interpretation tool to substitute a verification condition that the deductive
prover could not prove. This experiment is presented in details in Chapter 8.

2 Seminar lecture of Jean-Raymond Abrial at Collège de France: https://www.college-de-france.
fr/site/gerard-berry/seminar-2015-04-01-17h30.htm

3 Event-B and the Rodin Platform: http://www.event-b.org

https://www.college-de-france.fr/site/gerard-berry/seminar-2015-04-01-17h30.htm
https://www.college-de-france.fr/site/gerard-berry/seminar-2015-04-01-17h30.htm
http://www.event-b.org

42 formal methods – from theory to practice

4.2 industrial applications of formal methods

Formal methods can contribute to the development of systems in two ways
(and ideally both together):

• They can improve the development process, leading to a better product,
and/or reduced time and cost;

• They can contribute to the assurance and certification of the system.

In order to apply formal methods in the industry, these two items should be
estimated in terms of potential gain: how many bugs are removed when using
formal methods in the development process; how time and cost are reduced;
what certification activity is reduced when using formal languages and tools;
etc.

Formal methods can be applied at different stages of the development pro-
cess. Considering a standard V-model, they can be used at requirements de-
sign phase to check their consistency. At system design stage, they can be
applied to formalize and check some system functional properties. At archi-
tecture design stage, they can be used to check the integration of the soft-
ware [CGM+

12, LBCG16, BW16]. However, the most of the applications that
exist today are found at the module design phase (the lowest part of the V-
model). Nevertheless, the most effective applications seems to be in the early
design phases because of the errors coming from the natural language specifica-
tion as proposed in Rusby’s report [Rus95]. This report also gives an overview
of the industrial application of formal methods and their role in the certification
of critical systems. Another more recent report on the industrial application of
formal methods is given by Woodcock in [WLBF09]. It proposes a survey of the
formal techniques and where they are mostly used. It introduces the notions
of lightweight and heavyweight formal methods. Lightweight formal methods
emphasize partial specification and focused application on safety for example.
They are easier to be introduced in the industry than heavyweight ones, which
aim at full formalization of the system.

4.2.1 Formal Methods Comparison

There is no universal formal method and thus we need to know which formal
method can be used for what kind of problem and at what level of abstraction.
This comparison can also depend on the point of view (industrial or academic).
Here we present a panorama of formal verification tools initially proposed by
Xavier Leroy4, which from our point of view reflects best the industrial practice.

It uses three axes: automation level, security and scalability. The security axis
represent also the expressiveness level of the tool category.

4 Panorama of formal tools: https://xavierleroy.org/talks/ERTS2018.pdf

https://xavierleroy.org/talks/ERTS2018.pdf

4.2 industrial applications of formal methods 43

Figure 9: Panorama of formal verification tools (X. Leroy)

Static analyzers based on abstract interpretation are focused on efficiency rather
than expressiveness. Thus these tools have the highest automation level and are
the most scalable (few million lines of code can be analyzed). They work on the
code level (in comparison model checkers work on a model level) and provide
basic security guarantees.

Model checkers work generally on a model representing the system. Some-
times, models can have formal semantics (based on a formal language) and if
they are accompanied by a certified code generator such as KCG, the produced
code is proved to be equivalent to the model. Thus, the guarantees obtained on
the model level are valid on the code level. The properties that can be expressed
provide more security compared to the static analyzers but model checking is
less scalable because of the state space explosion problem.

Deductive program provers work generally on the level of the code. They pro-
vide more security and correctness compared to the model checkers because of
the use of more expressive languages (based on First-Order Logic (FOL)). Be-
cause of the amount of annotations needed to be written (sometimes as much
as the code), these methods are generally less scalable.

Interactive provers (also known as proof assistants) use a Higher-Order Logic
(HOL) and have the best expressiveness and security level. They aim at full
functional correctness rather than efficiency. They are rarely used in the indus-
try and we do not focus our work on them. However, their use in the industry
can be indirect – using tools or applications that are already proved correct
with a proof assistant by an expert.

4.2.2 Abstract Interpretation Applications

In 1993 Connected Components Corporation created in the U.S.A. by W.L. Har-
rison used abstract interpretation for compiler design [Har97].

In 1998 AbsInt Angewandte Informatik GmbH was created in Germany by
R. Wilhelm and C. Ferdinand. The company commercialized the program an-

44 formal methods – from theory to practice

alyzer generator PAG and an application (aiT) to determine the worst-case
execution time for modern computer architectures with memory caches and
pipelines [AFMW96]. Lately, the company commercialized a sound static ana-
lyzer for C/C++ code called Astrée [CCF+

05]. Astrée was initially developed by
the computer science laboratory at the Ecole normale supérieure in Paris and
then was transferred to AbsInt to be commercialized for Airbus. Airbus is using
Astrée to prove the absence of run-time errors in their critical code. The objec-
tive to obtain zero false alarms was achieved by non-expert users by fine-tuning
Astrée (e.g. use of partitioning, particular abstract domains) [DS07, SD07]. As-
trée and some of its industrial applications in the aviation and space industries
are presented in [Bou11]. Today, Astrée focuses on large-scale analysis with
some few million lines of code [Kss+19]. The aim is to be able to analyze for ex-
ample large automotive codes at the integration stage, which is recommended
by ISO 26262 since 2018 (see Table 4).

In 1999 Polyspace Technologies was created in France by A. Deutsch and
D. Pilaud to develop and commercialize ADA and C program analyzers. At
some extent, the development of Polyspace was motivated from the failure of
Ariane 501 maiden flight in 1996. This failure was due to an overflow (trying
to put a 64 bits floating-point number into a 16 bits integer). Before creating
Polyspace Technologies A. Deutsch proposed to use a Software Architect ac-
tivity [LMR+

98], which consisted of static analysis of the embedded control
software of Ariane 502 and 503. As this space software was written in ADA,
Polyspace supported since its first versions ADA. Nowadays, C and C++ are
also supported. Polyspace tend to be more user-friendly than Astrée and re-
quires less user expertise, which is a good point for beginners. However, when
a finer control of the tool is necessary (e.g. select a particular abstract domain
for better precision or increase precision for some part of the code) it is often im-
possible to modify the tool’s automatic strategies. Polyspace and its industrial
applications are presented in [Bou11]. Examples are given for the automotive,
medical, military, nuclear domains. The book [Bou11] also presents a study
about the use of static analysis with Polyspace to evaluate the robustness of the
software by propagating the ranges of the input variables and observe if they
generate run-time errors. Finally, in [BNSV14] the National Aeronautics and
Space Administration (NASA) considered that Polyspace was very successful
for Ada code but fell short for C/C++ with difficulties to scale and reporting a
big number of warnings.

In 2013 was founded TrustInSoft as a spun off from the French Alternative
Energies and Atomic Energy Commission (CEA). It developed a static ana-
lyzer called TrustInSoft Analyzer (TIS Analyzer) using abstract interpretation and
based on the open-source Frama-C value plugin [CCM09]. The objective was to
simplify the use of a static analyzer by proposing to take into account user’s
test scenarios or even to extend the ranges of some input variables and find run-
time errors or security issues. Today, the CEA continues to improve Frama-C in
parallel by proposing the plugin EVA [Bü17] as an open-source alternative.

4.2 industrial applications of formal methods 45

It is generally hard to compare the different sound static analyzers. We can
cite a study done by the French Electric Utility Company (EDF) for the analysis
of the nuclear plants control software [Our15]. They compared Polyspace to
Frama-C and found that the results of Frama-C were more precise. Actually,
Polyspace raised too many orange alarms (potential bugs to be confirmed).

CodePeer is a sound static analyzer developed by SofCheck and AdaCore to
analyze ADA programs. The idea was to propose a deeper code understanding
by providing in an IDE annotations about the returned value or compute the
contracts of a procedure even if the code is not completely written. A detailed
presentation is given in [Bou11].

IKOS (Inference Kernel for Open Static Analyzers) is an open-source sound
static analyzer for C/C++ programs developed at NASA Ames [BNSV14]. The
novelty is that it can parse C/C++ dialects or idioms that are commonplace
in the embedded world by using Low Level Virtual Machine (LLVM) [LA04]
instead of Common Intermediate Language (CIL) [NMRW02].

Other static analyzers based on abstract interpretation are Julia [FCS18] for
Java and Infer [noa20] developed at Facebook for Java and C/C++.

Fluctuat [GP15] is a static analyzer developed by the CEA. It is dedicated
to the numerical precision analysis of C programs and uses abstract interpre-
tation. Airbus is using it to check the numeric precision of the floating-point
calculations [DGP+

09]. A typical scenario is to see if there is a regression in the
precision between the previous version of the software and the current one.

Today, sound static analyzers report bugs and even if they can provide the
values calculated for each variable, for complex programs, it is sometimes diffi-
cult to understand the origin and the propagation of the problem. In [Moy10],
the author proposes that tools should compute functional properties like val-
ues, relations, preconditions, postconditions, and dependencies but also non-
functional properties like coverage, memory footprint, WCET, and profiling. It
can help a programmer understand complex behaviors and detect subtle bugs.

4.2.3 Model Checking Applications

In order to be accepted by the users, a new technology needs to be as transpar-
ent as possible to the process that the engineer is used to have. The difficulty in
the transfer of model checking to the industry is that it cannot be transparent
and the complete process is changed. It requires developers to become part of
the verification process (by specifying properties). It requires test team to learn
a completely new tool with new concepts that are not transparent at all for
someone who understands testing in terms of executing the design through
scenarios.

Even if at the beginning the transfer to industry was operated mostly by start-
ups, in 1990 Intel became the first exception and the first design company to
seriously support model checking [Kur08]. Other companies such as IBM have
also applied model checking for hardware verification.

46 formal methods – from theory to practice

The application of model checking on software was much harder than for
hardware. There were cases of successful application to restricted forms of C
language [BR02, KT14, PDBC+

15, ARG+
20] but the full support of the C syn-

tax seems to be a major difficulty, which limits the industrial use. Furthermore,
model-based design is massively used today in the automotive industry in re-
placement of direct C coding. Thus it is more convenient to use model checking
at the model level.

A successful application of model checking for the industry was proposed
by Gérard Berry in 2000, when Esterel Technologies was created (Esterel comes
from the name of a beautiful mountain in Southern France and also from Real-
Time, “temps réel” in French). The background technology of the first prod-
uct proposed by the company – Esterel Studio – was the Esterel synchronous
formal language [BG92]. It was meant to bring synchronous programming lan-
guage benefits into the industry (initially telecommunications and then elec-
tronic design automation). It was also applied to avionics software verification
at Dassault Aviation [BBF+

00]. In 2003, Esterel Technologies bought a Lustre-
based (one of the other synchronous programming language) tool set named
Safety Critical Application Development Environment (SCADE) and the two
academic communities behind these languages proposed a way to merge them.
Lustre [CPHP87, HCRP91] (the name comes from “Lucid synchone temps-réel”
in reference to the Lucid dataflow language [WA85]) was used for the dataflow
constructions and Esterel (based on SyncCharts [And03]) was used for the
synchronous automata. It resulted in the SCADE Suite modeling tool and its
Scade 6 formal language [CPP17]. Because SCADE Suite is based on a formal
language, it can be used for formal analysis of high-level models for critical
applications in aerospace, railway and automotive, thereby circumventing the
obstacles of the C code verification.

To make the use of model checking easier, a tool called Prover Plug-In from
Prover Technology was integrated in SCADE Suite and named Design Verifier
(DV). It was based on the use of synchronous observers [HLR93, BD05] to design
the properties with the same principles and blocks as the model is designed. It
consists of connecting the observer block (representing a modeled property) to
the inputs and outputs of the model. Compared to the use of temporal logic
in classical model checking, it has the advantage that the engineers are already
familiar with the formalism and do not need a special expertise to use model
checking.

Another modeling tool that lately adopted a similar concept of application of
model checking was Simulink/Stateflow from MathWorks but some differences
with SCADE Suite exist:

• Compared to SCADE Suite, Simulink and Stateflow does not have a con-
sistent semantics, which means that some features of these tools should
be avoided when modeling embedded software [BP13]. These features
could only be used for prototyping but not for formal verification;

4.2 industrial applications of formal methods 47

• The evolution of the Prover plug-in integrated with Simulink/Stateflow
seems to be managed internally by MathWorks. SCADE Suite continues
to integrate updates and last improvements from Prover Technologies.
For example, today SCADE Design Verifier (SCADE DV) can reason with
floating-point numbers but not Simulink Design Verifier (SLDV), which
still uses rational numbers;

• SLDV can be used for automatic test generation, which is used for back-to-
back testing to bring some guarantees that the code behaves as the model
(the Simulink/Stateflow code generator is not certified). As SCADE Suite
has a certified code generator, back-to-back testing is not necessary and
there is no automatic test generation.

• With the last versions of SCADE Suite it is possible to export the code sent
to the prover in the High Level Language (HLL) [OBC18]. Thus it can be
proved by other model checkers such as S3 from Systerel [PDBC+

15].

• For Simulink/Stateflow, NASA Ames has developed a framework5 to
parse and export a subset of the Simulink blocks into Lustre language.
The aim is to use other model checkers such as Kind 2 [CMST16] and
JKind [GBW+

18] for proving properties. As far as we know, there is no
tool that can export SCADE Suite into Lustre. The reason seems to be that
there are many Lustre variants and no unique standard, which motivated
the creation of the HLL.

An experience showing the use of SLDV can be found in [EFJ10]. In this re-
port, Safe River shows how they used model checking to prove the correctness
of the safety properties of the train tracking function for an Automatic Train
Protection (ATP) system based on Thales specifications.

SCADE DV is used in railway but also in aviation. The HLL language used to
communicate the model and the properties to the model checker, is the result
of a collaboration between Prover Technology and RATP. It is the successor
of Prover’s Tecla language. The main goal of HLL was to add the necessary
features to enable formal verification of Communication-Based Train Control
(CBTC) systems.

The Airbus experience with model checking is detailed by Thomas Bochot in
his thesis [Boc09]. It examines all the experiments done using SCADE DV on
the Flight Control System (FCS) models and the encountered problems, in par-
ticular the possibility to provide several counterexamples and their structural
coverage [BVWW10].

The company that has done the greatest experiments of model checking for
software verification in an industrial context is probably Collins Aerospace.
They had developed a framework [CWM08] to convert Simulink or SCADE
models into Lustre and use different model checkers as back-end. As far as

5 CoCoSim: https://ti.arc.nasa.gov/tech/rse/research/cocosim

https://ti.arc.nasa.gov/tech/rse/research/cocosim

48 formal methods – from theory to practice

we now, this framework is no more supported but they continued develop-
ing tools for software design verification based on Lustre language and using
JKind [GBW+

18] as a back-end. All the studies are published on their website6.
A first study [WCM+

08] permitted to discover 12 errors in analyzing 62 proper-
ties of a system model developed by Lockheed Martin. Another study [Mil09]
used model checking to analyze a complex cockpit application and fix 98 de-
sign errors. An important topic for the industry is the use of model checking
to obtain certification credits in a certification context. This topic is discussed
in [Cof10, CHHL13, CM14a, CM14b].

4.2.4 Deductive Proof Applications

The motivations to introduce deductive proof in the industry can be different
but it is always necessary to take into account the return of investment. A strat-
egy to justify it can be to replace a costly development process activity such as
unit testing. Airbus used this strategy – replacing unit testing by unit proof – to
introduce Caveat tool [RSB+

99] in 2002 for the development of Airbus A380. As
reported in [Bou11], the first motivations for introducing unit proof was the
mastering of the verification process and its costs in the face of a constant in-
crease in the complexity of the software being developed. Even if there were an
extra cost to qualify Caveat and Alt-Ergo, Airbus obtained a global cost reduc-
tion and quality improvement. Caveat was able to analyze C programs (with
some restrictions in terms of language constructs) and had its own specifica-
tion language based on a first-order logic. Today, Caveat is no longer supported
and Airbus moved to a specifically developed version of Frama-C WP, which
has a better ratio of automatically proved goals. The entire work on Caveat and
Frama-C was done in partnership with CEA and the industrial applications of
Frama-C are described in [DMLK+

16].
To further automate the development process of embedded handwritten C

code, Airbus proposes to use another language named Compilable Design De-
scription Assistant (CoDDA) to describe the software architecture and a new
language named Design Contract Specification Language (DCSL) based on a
FOL to describe the the software low-level requirements [BDE+

18, BCD+
20].

This tool chain is used to address multiple methods of software verification:
unit proof (DCSL is translated into ACSL for Frama-C WP), testing (for goals
that cannot be proved automatically), static analysis (flow control check with
Fan-C [Del12] and value range check with Astrée). A 12-day training was neces-
sary for the engineers. From an engineer point of view it was more interesting
(a more intellectual activity) to do unit proof than unit testing.

The first serious application of SPARK came with the project SHOLIS (27

kloc of SPARK code) in 1995 [Cha00, CS14]. 75.5% of the proof goals were
proven automatically and the rest was proved in an interactive way. Another

6 Collins Aerospace formal methods group: http://loonwerks.com

http://loonwerks.com

4.3 formal methods and certification 49

successful application of SPARK was for the mission computer software of the
Lockheed-Martin C130J. As far as we know, the applications of SPARK today
are mostly in the military and defense domain, but some applications were
done in other domains such as automotive [Sch19]. A recent report [DFJ+18]
presents the use of SPARK at Thales and a methodology with different levels
of adoption of formal methods – from stone (the lowest guarantees) to platinum
(total correctness) level.

B and the B-method are used today mainly in the railway industry. When in-
venting it, Jean-Raymond Abrial thought that it could be successfully deployed
in other industries such as energy, automotive, aeronautics, space, etc. How-
ever, he says that today people in charge of these industries consider that it is
too difficult to modify engineering approaches, which have been established
for many years [Abr18]. In [LDPM17], the authors summarize 25-year return of
experience in the effective application of B and Event-B in diverse application
domains (railways, smartcard, automotive) and report on the difficulties they
have encountered.

4.2.5 Interactive Proof Applications

Interactive provers need expert knowledge to be used and are rarely directly
used in the industry by the engineers. However, they can be used indirectly. For
example, the interactive proof assistant Coq [BCHPM04] was used to formally
specify, verify and generate the CompCert optimizing compiler. In 2011, Airbus
evaluated its performance for the development of level A critical flight control
software and the results were rather promising [BFFFL+

11]. Another practical
use was to formally verify the seL4 OS kernel [KEH+

09] using Isabelle/HOL proof
assistant [NPW02], which provided similar performance as other L4 kernels
but with formal guarantees. Prove & Run also provides a proven OS kernel
called ProvenCore, which is a minimal trusted operating system that can run
alongside a conventional OS in an embedded systems.

4.3 formal methods and certification

There seems to be two reasons why an applicant might consider using formal
methods in support of certification [Rus95]: (1) to achieve the same level of
quality control and assurance as by other means, but to derive some other
benefits such as reduced cost; or (2) to provide a greater level of quality control
and assurance than can be achieved by other means. For example, for reason
number (1) we can cite the replacement of unit tests by unit proof with Frama-
C WP at Airbus Group [Bou11] and the use of SCADE for code generation. The
reason number (2) was the motivation for the HACMS program [FLR17] for
providing greater assurance in cyber security.

50 formal methods – from theory to practice

Several concrete applications of formal methods in the certification of safety-
critical software systems have been conducted by: Airbus Group presented by
Souyris in 2009 [SWDD09], Bedin França in 2011 [BFFFL+

11] and Brahmi in
2018 [BDE+

18]; Dassault Aviation presented by Moy in 2013 [MLD+
13]; Collins

Aerospace presented by Cofer in 2014 [CM14a] and Wagner in 2017 [LAC+
17];

in the railway company RATP presented by Halchin in 2020 [HAAS+20].
An extensive discussion on advances regarding software certification is pro-

vided in a 2013 Dagstuhl report [CHHL13].
The qualification of some formal tools seems to be particularly difficult be-

cause of the complexity of the tools. An interesting approach through gener-
ation of proof certificates and verifying them with a qualified proof checker
(simpler to qualify than a model checker) is proposed in [LAC+

17].

4.4 challenges for the application of formal methods

We can found in the literature many publications about the application of for-
mal methods but we should distinguish two cases: formal methods that are
really used for production code and formal methods that have been experi-
mented by a research department of a company or research laboratory but still
not deployed in production. The most of the publications are about the sec-
ond category. The reason is that there are few formal tools that can be used
by the engineers without training them for months. Rustan Leino, a prominent
researcher in formal program verification, reported that program verification is
currently unusable, because current tools require too much expertise from the
user [LM10]. To massively introduce formal methods, the tools should be acces-
sible in a cost-effective way to serious (motivated) non-expert users. He put a
strong emphasis on the user-interface considerations and a better explanation
of the errors reported to the user.

Toyota has been investigating how they can use formal verification and what
are the challenges for them. In [JDK+

14] they discuss about the challenges
of applying formal methods for model-based design and propose to extract
design knowledge from the simulations of the design to construct a formal
model. Other papers [HKAS14, HAK+

16, HAKA16, HAKA17, Are19] seem to
be more research papers than an industrial application of formal methods.

4.5 conclusions

In this chapter, we proposed a brief overview and comparison of formal meth-
ods that can be used in the industry. Static analysis based on abstract inter-
pretation provides a sound approximation of the values that the variables can
take in the code and can be used to guarantee the absence of run-time errors.
This method is recommended by ISO 26262 for all ASIL levels. Model check-
ing can be used together with model-based design to guarantee that the safety

4.5 conclusions 51

requirements are correctly implemented early in the design phase and there
are no regression when the model is updated. In our opinion, even if there are
some limitations, SAT/SMT induction-based model checking is one of the most
promising techniques because it gives a simple way for non-expert engineers
to describe the properties using the same graphical language they use for the
model. Furthermore, SAT/SMT solvers are being constantly improved so some
limitations could be overwhelmed in the future. Finally, deductive proof can be
used when manually coding C and Ada programs or for proving critical library
functions.

In the next chapter, we present some methodologies that can be applied by
non-expert engineers to use formal methods in the automotive embedded soft-
ware development.

Part II

A U T O M O T I V E S O F T WA R E D E S I G N U S I N G
F O R M A L M E T H O D S

5

M E T H O D O L O G I E S F O R U S I N G F O R M A L M E T H O D S I N A N
A U T O M O T I V E C O N T E X T

Simplicity is the ultimate sophistication.

— Leonardo da Vinci

The automotive industry has nowadays largely adopted model-based design
tools such as Simulink and SCADE to design models and generate embedded
code. Recent advances in formal analysis tools have made it practical to for-
mally verify important properties of these models to ensure that design defects
are identified and corrected early in the development process. For cases where
formal analysis cannot be used at the model level, other tools can statically an-
alyze the code to find run-time errors that could cause the software to behave
unexpectedly.

Formal analysis tools are classified in the literature as lightweight and heavy-
weight based on how easy they are to be used and on their automation level.
Lightweight formal tools do not require deep expertise, by opposition to heavy-
weight ones, which are more complex, less automatic, but more expressive and
powerful. In the automotive industry, we target lightweight tools that are ma-
ture enough to be used and are provided with tool support. Academic tools
are not to be neglected as well because they can provide ways to understand a
problem that are not supported by an industrial tool.

This chapter describes how formal analysis tools can be introduced into the
development process to decrease the cost and increase the quality of critical
automotive systems. We target their potential use by non-expert engineers that
are already familiar with model-based design and C code. We provide method-
ologies and some examples of concrete applications.

5.1 related work

Formal methods exist since 1960’s but they began to be used in the industry
since 1980. One of the reasons was that there were no methodologies presenting
how they could be used in the industry.

55

56 methodologies for using formal methods in an automotive context

For the first time, Balzer and his colleagues [BCG83] proposed in 1983 a
way to integrate formal methods in an industrial development process. This
integration comprises:

• requirements analysis;

• construction of a formal specification and development of a functional pro-
totype;

• development of the implementation (code), having as a basis the model
and the prototype.

The novelty of Balzer’s life cycle was that it explicitly advocated the use
of formal methods at different development stages, and in particular, where
the relationship between the requirements, the formal specification and the
implementation was concerned. An aggregate representation of Balzer’s life
cycle is shown in Figure 10.

Figure 10: Balzer’s software life cycle

Adapting Balzer’s principles to the contemporary formal methods, their in-
tegration in the V cycle can be done in one of the following ways:

• Vertical application: the Formal Specification phase of Balzer’s life cycle en-
compasses the inner design stages of the V life cycle (see Figure 11) from
System Design to Coding. This is, for instance, the approach followed by
B, VDM and SCADE. It is also referred as the correct-by-construction ap-
proach.

• Horizontal application: Balzer’s life cycle can be applied on each design
stage. For example, during the system architecture design, it is translated
into a formal specification, which is then formally analyzed and verified.
In this context, the application of the Balzer’s Implementation stage is op-
tional.

For our methodologies, we take inspiration from Balzer’s life cycle and apply
it in a vertical way for tools that have no significant impact on our current
development process (for example, using model checking to verify an existing
model) or in a horizontal way for particular design stages (for example, using
abstract interpretation to verify the code).

5.2 methodology for model-based design 57

Figure 11: Horizontal and vertical applications of Balzer’s life cycle

5.2 methodology for model-based design

When using a modeling tool, different errors can be introduced. They may be
due to ambiguous or wrong specifications, wrong requirements interpretation,
overflows in the arithmetic operations, divisions by zero, copy-paste blocks
with parameters that should be adjusted differently and so on. Even if the
code is generated automatically, all the errors introduced in the model will
be present in the final code. Neither the automatic code generator, nor the
compiler will prevent such errors. If they are not discovered early, these errors
can be found when the software is already in the car resulting in higher costs
to fix them.

5.2.1 Motivation and Objectives

We want to apply inductive SMT-based model checking to prove that safety
requirements are implemented without bugs. We can even extend the scope to
other requirements that could have an impact on the driving or the image of
the brand. Current model checking tools are very powerful and provide much
more automation than theorem or deductive provers. In general, they require
less user expertise but the user must be able to rewrite textual requirements in
a formal language. Some of these tools are mature enough to be used in the
industry and, in our opinion, the benefits of using formal methods are greatest
at the model’s level. We propose to introduce model checking during the design
of the implementation model to obtain the highest benefits (see Figure 12).

To demonstrate in a certification context, that all the requirements are im-
plemented in the production code, we can use testing and/or formal proof.
The principal motivation to use formal proof is its exhaustiveness and reduced

58 methodologies for using formal methods in an automotive context

Figure 12: Methodology for using model checking in a model-based design

cost. Actually, writing good test scenarios with one hundred percent Modified
Condition/Decision Coverage (MC/DC) coverage is rather complicated and
can take much more time compared to defining formal properties and proving
them. Because of this difficulty with testing, DO-178C and DO-333 accept the
use of formal proof instead of coverage testing.

5.2.2 High and Low-Level Requirements

Multiple levels of requirements can exist in a model-based design process. In
most of the industries, there are at least two levels of requirements: system level
(High-Level Requirements (HLR)) and software level (Low-Level Requirements
(LLR)). System requirements are often expressed on the bounds of the system
(inputs and outputs). On the other hand, software requirements are detailed
and in addition of the inputs and outputs of a system, they can also specify the
behavior of the internal data of the system.

During design phase, the implementation model is tested to verify the soft-
ware requirements (LLR) but it is often difficult to conclude at that stage that
system requirements (HLR) are met. Actually, the system requirements valida-
tion is done later in the design process on the target platform, which can result
in costly bug fixing.

We propose to introduce formal proof in the safety-critical models for sys-
tem requirements (HLR) to have an early insight about the system’s validation.
The advantage of verifying system level requirements on the implementation
model is that verifying a single high-level property can find many errors in
the implementation. The errors found can be design errors or specification in-
consistencies. In the following, we propose some guidelines for writing good
formal properties.

5.2.3 Guidelines for Writing Good Formal Properties

Writing good formal properties has many similarities with writing good re-
quirements and is as much an art as a science. Actually, once the properties are
written it is easy to replay or update them, but writing the first set of proper-
ties for a function can be challenging. However, it is possible to put a set of
properties into a library and reuse them for other projects.

One of the best sources for formal properties is the safety-related require-
ments for the system. In the automotive domain, these requirements can be

5.2 methodology for model-based design 59

found in a document called Technical Safety Concept (TSC) or Functional Safety
Concept (FSC) (document required by ISO 26262). These requirements are not
only important from the safety point of view but very often, their implementa-
tion affects several parts of the system. This cross-system scope of the properties
is beneficial to find most of the errors.

Another excellent source of formal properties is the system (high-level) re-
quirements specification because its intent is to describe what the system
should do instead of how. A good practice is to transform the system require-
ment into multiple textual properties and then rewrite them using a formal
language.

When system developers are available, a good strategy is to ask them what
are the things they are the most worried about in their system. Refining their
concerns into properties can require an ongoing dialogue but their knowledge
of the system can be invaluable.

User manuals can be another excellent source for writing formal properties.
Actually, these manuals contain fewer details than the system requirements and
are more user oriented.

Once all the sources of properties have been exhausted, we can carefully an-
alyze the model, looking for anything that has not been checked by a property.
For example, we can look for inputs and outputs that are not present in the
current properties, and try to write properties about them. The discovery of
such inputs can also be automated with techniques such as slicing and mu-
tation coverage (see Chapter 7). Surprisingly, even writing properties directly
from the model itself will often expose errors in understanding the semantics
of the model and should not be excluded as a strategy.

When a property is found to be false, this only means that there is a discrep-
ancy between the property and the model. Before looking for problems in the
model, we should begin by looking for missing assumptions in the property. It
is generally better to write and check the properties incrementally rather than
writing all the properties and check them after that. In this way, we gain a bet-
ter knowledge of the conditions that are necessary to validate the properties,
and of the assumptions about the environment of the system. This knowledge
helps in writing the rest of the properties.

5.2.4 Synchronous Observers

We propose to use the method called synchronous observers [HLR93], mentioned
in Chapter 4, to model the properties in a model-based design environment.
An observer “observes” the behavior of the model and decides if it respects the
properties. Technically, an observer is a model connected to the model under
verification in a synchronous way. Figure 13 shows a typical architecture for
verification, which includes two categories of observers:

60 methodologies for using formal methods in an automotive context

• environment assumptions (A): used to constrain the input values. For the as-
sumptions, it is possible to use the previous values of the outputs. The as-
sumption observer computes a Boolean output A that the model checker
is not allowed to falsify. This avoids that the model checker generates
counterexamples that violate the assumptions;

• properties (P): modeled to produce a Boolean output P (one per property),
which is TRUE while the model satisfies the property under the environ-
ment assumptions;

Figure 13: Model-based design model checking using synchronous observers

It is a good design practice before beginning the modeling of the properties
to add environmental constraints (assumptions) to reduce the range of the in-
puts in order to get a faster proof. Once all the properties are proved valid,
we can remove the assumptions and try to prove again the properties. It will
show us if the model is robust for input values that we do not expect to re-
ceive. An example of properties expressed as synchronous observers is given
in Chapter 6.

5.2.5 Libraries and Imported Functions

In a model-based design tool, not everything can be expressed only with the
blocks provided by the tool. In practice, the implementation model often uses li-
brary blocks, for example to call some AUTOSAR routines. These functions are
represented in SCADE as imported operators and their behavior is unknown
in the modeling tool. In this case, the model checker considers that all the vari-
ables of the imported operator are free variables, that is they can take every
value of their type. We can use assumptions (assume operator) to constrain the
possible values of the inputs, if we know them. These constraints should be de-
fined in the top-level (root) operator. An alternative approach of constraining
the ranges for input variables is to use their type. For example, instead of using
an integer type to return an error code, we can use an enumeration. If a prop-
erty is falsified, we need to use a stubbed version of the imported operators
in order to simulate the counterexample. Actually, without the stubs, SCADE
cannot run the traces obtained from the counterexample.

5.2 methodology for model-based design 61

To simplify the model checking process, a good practice whenever possible
is to have a model to be proved without imported functions. The imported
functions should be kept outside of this model as shown in Figure 14.

Figure 14: Model checking without imported functions

More generally, taking into account within the design choices at the begin-
ning of the design process that a model will be verified by model checking is
an important point that can largely facilitate the verification process.

5.2.6 Workflow

The workflow for using model checking in a MBD process is presented in Fig-
ure 15. It consists of successive tasks that can be iterated as long as we need,
beginning from designing a model, expressing and proving properties and an-
alyzing the results.

Figure 15: Model checking workflow in a MBD process

62 methodologies for using formal methods in an automotive context

5.2.7 Run-time Errors Check

In addition to the proof of functional properties modeled as observers, the
model checker can also be used to prove the absence of some run-time errors.
For example, SCADE DV proposes to check the absence of divisions by zero
and overflows.

5.2.8 Proving Non-regression

The model checker can also be used for proving non-regression by checking
model equivalence. We can simply create a new operator/block with an in-
stance of the old model and check whether their outputs are equivalent. Unlike
regression testing, this method saves time and brings exhaustiveness (for all
combinations of values of the inputs, the outputs of the two models provide
the same values).

5.2.9 Strategies

Model checkers have plenty of useful options but they can be challenging to un-
derstand for non-expert engineers. That is why industrial tools propose some
strategies combining the most common options of the model checker to address
different stages of the development process. For example, SCADE DV proposes
the following strategies:

• Debug strategy: based on BMC. It cannot prove the validity of a property.
It is meant to be used during development to quickly find counterexam-
ples when the model is suspected to be incorrect;

• Induction strategy: based on k-Induction (see Definition 4). It is meant
to perform non-regression when knowing the induction depth, which is
provided as a parameter to the strategy;

• Prove strategy: based on k-Induction, invariant generation and interpola-
tion. It is meant to validate a design once the development is stable;

• Custom strategy: based on different options of the model checker. It can
be adapted upon the customer’s needs to fine-tune the parameters of the
invariant generation, interpolation or induction engines.

5.2.10 Limitations

While models containing only Boolean logic (Boolean inputs and outputs) are
well-suited for model checking, most model checkers can also handle models
with enumerated types and small integers. Some model checkers can handle
models with real numbers (Kind 2) and others can also handle models with

5.2 methodology for model-based design 63

small floating-point numbers (SCADE DV) as they are bit-blasted and solved
by a SAT solver.

Models containing nonlinear arithmetic cannot be handled by the commer-
cial tools today. Kind 2 and JKind also do a check for nonlinear arithmetic and
stop if it is present in the model. As modern SMT solvers integrate theories for
reasoning on nonlinear fragments, we experimented it on a nonlinear version
of our Cruise controller function, enabling JKind to use this theory. It took two
days to prove a property on that model compared to some seconds for a lin-
ear model. As the SMT solvers are competing every year1, we hope that these
theories will be improved in the future.

5.2.11 Experiments

5.2.11.1 Application 1 – Cruise Controller

Our first experiment was to model with SCADE Suite an already existing cruise
controller function (a linear one and a nonlinear one) to see if we are able to
find more bugs thanks to the formal approach.

As a result, we were able to express and prove all the critical properties
of the linear model in a reasonable time. For the nonlinear one, some of the
properties were rejected by the model checker because it cannot work with
nonlinear arithmetic.

We discovered that the presence of counters and time in the properties was
rather challenging for model checking. We discuss this topic and present our
contribution in Chapter 6.

Another interesting point is that the nonlinear cruise controller use a square
root function, which computes a square root by applying a discrete-valued
method (lookup table) instead of the standard C library function. As this square
root function can be proposed in a library of imported functions for the final
embedded code, we experimented how we can prove its correctness for a given
contract using deductive methods. We present this experiment in details in
Chapter 8.

5.2.11.2 Application 2 – ADAS function

In 2018, we experimented the use of SCADE Suite by a function design engineer
who, after a short training, was able to model a function that was managing
the automation level of a car. We wanted to prove that the safety requirements
from the FSC were implemented in the model without errors. After rewriting
these requirements to match the names and the values of the variables used by
the model, we could prove them valid or invalid.

1 SMT-COMP 2020: https://smt-comp.github.io/2020

https://smt-comp.github.io/2020

64 methodologies for using formal methods in an automotive context

We found that some requirements were missing the exact conditions in which
they should be applied and fixed them. For the other invalid properties, the
reason was an error in the design.

We noticed an interesting point about the use of the prover. It can be used
to prove properties one by one or to prove multiple properties at the same
time. The difference is that checking multiple properties together can bring a
bigger cone of influence and more lemmas (invariants) about the entire system,
which can be beneficial if the properties are provable by the prover. However,
in case of unprovable properties, checking them all together can render all the
properties unprovable. If checking them all together seems to take too much
time, it would be preferable to check them one by one. A good practice is to
check them one by one using the Debug strategy to try to falsify them at a
certain depth or for a given time. Properties that can not be falsified can be
grouped and checked all together using other strategies such as Induction or
Prove.

5.2.11.3 Application 3 – Lighting Supervisor

In 2020, we did another experiment with SCADE Suite to see how formal proof
can be integrated in the software design process and produce formally proved
production code. It was a step further compared to the 2018 experiment because
in addition of the proof, it also targeted the integration with the AUTOSAR
environment.

The first function to be developed was a module that supervises the lighting
of a car, which is critical. It ensures that no matter what happens, the car lights
will stay switched on unless the driver turns them off. After passing with suc-
cess all the test scenarios, we used SCADE DV to prove eleven properties based
on the FSC. Two bugs were found with the proof and the designer could fix
them rapidly. These bugs uncovered an inconsistency between the specification
and the model and were never found before with testing. If the designer had
achieved 100% MC/DC coverage, maybe he could have found these bugs by
testing, but achieving 100% MC/DC for some models may take a few weeks or
months of work. With the proof process, it took only some minutes to describe
the properties and analyze them.

Finally, we experimented the proof of absence of run-time errors for this
module using model checking and abstract interpretation tools. We first used
Astrée, which found one alert about a variable that was not initialized and two
alerts about potential overflows. We fixed the first error by indicating in SCADE
a pragma for a default state of an automaton. The problem came from the fact
that SCADE, working at a higher level of abstraction compared to the code,
knew that a state variable was always initialized because of the finite number
of states present in an automaton. At the code level, this information is lost.
Another way to solve this issue was to provide Astrée extra information about
the number of possible states. As for the overflows, they could actually occur

5.3 methodology for sound static analysis 65

and result in an endless loop. We also used SCADE DV to check for run-time
errors and it found the same. After fixing them, the two tools proved there were
no more run-time errors.

5.3 methodology for sound static analysis

Abstract interpretation is the most automated of the three formal techniques
(see Chapter 4) and typically requires less user expertise. We use it to check
non-functional requirements (e.g. run-time errors) that are specified in the tool
(the user does not need to specify them).

Figure 16 presents the place in the development process where abstract in-
terpretation can be introduced without too much impact. It can be used in the
implementation model design phase to analyze the generated code or during
coding (if MBD approach is not used). In the software integration phase, it
could be beneficial for verifying in particular for data races and run-time errors
that cannot be seen in a unitary component verification.

Figure 16: Methodology for using abstract interpretation

5.3.1 Component-Level Analysis

Since 2018, ISO 26262 recommends the use of abstract interpretation for soft-
ware unit verification (see Table 3). We want to detect potential run-time errors
and fix them early, preventing late-stage integration problems. In a process,
where an unsound2 static analysis tool is used, abstract interpretation can com-
plement it by providing a precious information for understanding issues of the
unsound tool when they are difficult to understand.

To apply component-level sound static analysis, very often the component
alone will not be enough. Because the component may not contain a main
function, may call library functions or even the definition of its data structures
may be absent (they are generated at compilation time by the AUTOSAR tool
chain), we need to have stubs for all the functions and data definitions that are
absent. These stubs should be representative of what will be generated by the
AUTOSAR tool chain. Unlike unsound static analyzers, which could analyze

2 Unsound means that the tool is unable to report all potential problems.

66 methodologies for using formal methods in an automotive context

partially defined code and show zero alarms if the code is unreachable, sound
static analyzers need to have access to all the types and functions definitions
used by the analyzed code otherwise we can obtain false alarms or unreachable
and not analyzed code. For a component-level analysis, a good metrics to check
is the code reachability, which must be 100%.

5.3.2 Complete System Analysis

ISO 26262 also recommends the use of abstract interpretation for the verifica-
tion of software integration (see Table 4). When analyzing programs integrated
with the operating system, there can be a significant use of libraries. One pos-
sible solution is to include the source code of the libraries with the program
but this is not always convenient (case of complex libraries, unavailable source
code or not written in C). Furthermore, AUTOSAR increases significantly the
number of library functions to be called. An alternative, proposed by some
tools such as Astrée is to provide a stub for the standard C functions and also
for the AUTOSAR standard functions.

The embedded software is composed of tasks and interrupts that can be run
on a specific core of the microprocessor. To analyze a complete AUTOSAR sys-
tem, Astrée proposes to import the operating system’s configuration (generally
an AUTOSAR XML file), which can be obtained from the AUTOSAR tool chain.
Then the complete system analysis can be run. In practice, it needs a significant
amount of RAM (more than 128 GB). A recent paper [Kss+19] presents the ex-
perience of Robert Bosch GmbH for a complete system analysis of industrial
software. The experimental results confirm that sound static analysis can be
successfully applied for integration verification of large-scale automotive sys-
tems.

5.3.3 Hints for Reducing False Alarms

Writing code has many similarities as writing poetry – it can be easy to read
and understand or very difficult. Static analyzers based or not on abstract in-
terpretation can have a partial “understanding” for a code, which can result in
false alarms. During our experiments, we found such cases and propose some
hints for decreasing the number of false alarms:

• When using a protection (a check if a variable is within an interval), the
nearer the protection code is to the problematic construction (potential
instruction that can cause a division by zero, overflow or out-of-bound
array access) the best will be the precision of the static analyzer. For ex-
ample, if we have an increasing counter in a loop, we should protect it
from overflowing by checking before the increment that the result will be
in the bounds of its type. Same is for all division operations that should
be protected from dividing by zero;

5.4 conclusions 67

• When using arrays, we should check that the index is inside the autho-
rized interval. It is also preferable that the index is a variable instead of
another array. For example, the instruction a = tab1[tab2[x]] could be
rewritten as: b = tab2[x];a = tab1[b]; In this way, the static analyzer will
propagate all the invariants found for b everywhere it is used in the code
or even infer relational invariants.

• Partitioning (see Section 4.1.1.3) is a rather useful feature to be activated
on parts of the code, where there seems to be a false alarm. It increases
the precision of the analysis locally to remove false alarms.

5.4 conclusions

In this chapter, we proposed two methodologies for using formal methods in
an automotive context: one for models, based on model checking, and one for
static code analysis, based on abstract interpretation. We targeted lightweight
formal methods for non-expert engineers. We gave some examples of applica-
tion of these methodologies and the obtained results.

We did not experiment deductive proof at the system level because it is not
supported by tools usable by non-expert engineers. However, it can be used at
the code level to verify code using Hoare logic and we made some experiments.
We propose some preliminary ideas for methodology in Chapter 8.

To conclude, we think that the most important thing when using formal
methods is to keep the software and its architecture as simple as we can for a
better scaling of the formal analysis tools.

In the following chapters, we present the improvements we have done on
the invariant generator of JKind to take into account long running time prop-
erties. It is followed by a new algorithm for coverage metrics for evaluating
the quality of properties (specification) that are proved valid. We finish by pre-
senting our experience using deductive proof for proving the correctness of a
discrete-valued function.

6
I N VA R I A N T G E N E R AT I O N F O R M O D E L C H E C K I N G O F
T I M E P R O P E RT I E S

The noblest pleasure is the joy of understanding.

— Leonardo da Vinci

Modern automotive embedded software is mostly designed using model-
based design tools such as Simulink or SCADE, and source code is generated
automatically from the models. Formal proof using symbolic model checking
has been integrated in these tools and can provide a higher assurance by prov-
ing safety-critical properties. Our experience shows that proving properties in-
volving time is rather challenging when they involve long durations and timers.
These properties are generally not inductive and even advanced techniques
such as PDR/IC3 are unable to handle them on production models in reason-
able time. As timers are something very common in industrial models, this
difficulty motivated us to understand the problem and look for a solution.

In this chapter, we first present our industrial use case and comment on
the results obtained with the existing model checkers. Then we present our
new invariant generation algorithm and methodology for selecting invariants
according to physical dimensions. They enable the proof of properties with
long-running timers. Finally, we discuss their implementation and benchmarks.

6.1 use case presentation

6.1.1 Model and Environment

We illustrate the use of symbolic model checking to prove the correctness of
safety properties on a representative production model of a cruise control func-
tion. This function manages the speed of the car, switches to the right operating
mode, manages the user interface, detects faults and decides whether the func-
tion should be turned on or off. It uses only linear arithmetic over integers.

We used ANSYS SCADE Suite to design the model from low-level soft-
ware textual requirements. The properties to be checked were also modeled
in SCADE from high-level system safety requirements. The proof was done

69

70 invariant generation for model checking of time properties

with SCADE DV [BD05], which is a symbolic model checker integrated in
SCADE. We chose SCADE for our experiments because it has formal foun-
dations [CPP17] compared to Simulink, which is more simulation oriented and
without a single formal background [ZZWF]. Actually, SCADE has a formal
language based on Lustre, thus we could compare its internal model checker
with other open source model checkers for Lustre.

At Groupe PSA, the embedded software is developed according to a standard
V-Model methodology. HLR (system requirements) are allocated to an ECU.
Then they are decomposed into LLR (software requirements) used to develop
the code (handwritten or model-based).

We present our use case environment in Figure 17. It is composed of a
SCADE model, properties, and assumptions when needed. We used multiple
model checkers to compare their performances (GATeL [MB05], SCADE DV,
JKind, Kind 2, and addressed multiple SMT solvers in the back-end (CVC4,
MathSAT, SMTInterpol, Yices2, Z3). GATeL has its own SMT called Colibri de-
veloped at CEA. SCADE DV has its own SMT provided by Prover Technologies.
JKind can use CVC4, MathSAT, SMTInterpol, Yices2 and Z3 via SMT-LIB. Kind

2, the successor of PKind and Kind, can use CVC4, Yices2 and Z3 also via SMT-
LIB. At the moment of our experiments, Kind 2 was unable to use IC3 with
Yices2.

Figure 17: Verification using multiple model checkers and multiple SMT solvers

Figure 18 shows the principal blocks of our SCADE model. It contains an
automaton for managing modes, a function for enabling/disabling the cruise
control and a function for managing transitions. These components communi-
cate with each other. We want to prove the correctness of the model by writing
safety-properties as observers over the SCADE model.

6.1 use case presentation 71

Figure 18: Cruise controller SCADE model’s principal blocks

6.1.2 Writing Formal Properties

We formalized our properties from the safety-related requirements, and ex-
tended them to all HLR concerning the deactivation of the function. We have
safety-related requirements separated from the HLRs because they are writ-
ten by a safety engineer and the HLRs are written by the function designer.
We want to prove the validity of all these properties i.e. no matter what hap-
pens, the cruise controller will deactivate upon the specified conditions. Some
of these requirements are listed in Table 5.

REQ-01 A simple press on the Cancel button shall disable the
cruise controller.

REQ-02 Switching off the ignition shall disable the cruise con-
troller.

REQ-03 In order to respect the safety objectives when the brake
pedal sensor is not working: a deceleration (Decel) un-
der a defined threshold value (T2) and the brake pedal
not seen pressed during 2 seconds shall turn off the
function.

Table 5: System requirements used for model checking

REQ-01 and REQ-02 are typical safety properties without timers (stateless in-
variants) that are well handled and easy to prove with the actual model check-
ers.

REQ-03 uses time. When time is increased in the property and in the model,
this makes the proof difficult because the number of states explodes. For our
experiments, we modeled this property at three different levels:

• We name PG the global property that is checked at the bounds of the whole
system (1300 lines of Lustre code and 78 nodes), see Figure 19.

• Then we keep the model of the whole system but we rewrite PG into PL,
which is the same property expressed locally on the bounds of the node
that implements the authorization function, see Figure 20.

72 invariant generation for model checking of time properties

• Finally, we isolate the node that implements the authorization function
(320 lines of Lustre code and 3 nodes) to reduce the state-space, and call
PI the property to be checked, which is the same as PL, only the context
is different, see Figure 21.

The inductive model checkers that we considered implement slicing algo-
rithms such as the COI. Roughly, the cone of influence of a property is the
structural part of the design on which the property depends. Before starting
an analysis, the COI is computed in order to remove the parts of the design
that have no influence on the property under analysis. We decided to check the
PL property in order to see the efficiency of the slicing algorithms, and also
to use it for compositional analysis, see Section 6.1.3. It is equivalent to PI but
has some sort of environment that can give preconditions and reduce its state
space.

In the case of PI (Figure 21), we noticed that two things made the proof
difficult. Firstly, trying to prove a property over a long period of time, such as 2

minutes instead of 2 seconds, takes too much memory or time for some model
checkers. We call this property PI-X where X is the number of 50 ms time steps
(for example, 2 seconds represent 40 steps). Secondly, we want to check the
difficulties that a model checker would have when checking a valid property
that does not match exactly what the code does. We consider two variants of
PI-X depending on the deceleration threshold:

• PI-X-T2: (Decel < T2∧X)⇒ PI is the original property;

• PI-X-T1: (Decel < T1 ∧ X) ⇒ PI has a stronger precondition because
T1 < T2, thus it is a weaker property, which is valid when PI-X-T2 is
valid.

Figure 19: Property PG-40 expressed on the bounds of the model

Figure 20: Property PL-40 expressed on a sub-node

6.1 use case presentation 73

Figure 21: Property PI-40 expressed on an isolated sub-node

Our final goal was to prove the global property PG (involving the entire
model) directly, but we noticed that for long-running time properties it was
impossible to scale. We decomposed it in two smaller properties and used a
compositional approach to prove the property on the entire model. Property
PL (expressed locally on the node implementing it) was used for compositional
reasoning as discussed in the next section.

6.1.3 Compositional Approach

A compositional approach reduces the complexity of the verification of a big
model by dividing it into 2 or more components. We divided our model into
two components as shown in Figure 22:

Figure 22: Compositional approach for properties PL and PLH

• C1 (pink): The authorization function takes into account the inputs of the
model and produces an intermediate result.

• C2 (brown): The rest of the model that produces outputs which uses the
intermediate result.

Then we used two properties applied on C1 and C2, that put together, are
equivalent to the global property PG:

• PL (pink): Property PL is expressed locally on the node implementing
the authorization function. It takes into account the inputs of the whole
model and the intermediate output.

74 invariant generation for model checking of time properties

• PLH (brown): The local output of the authorization function is used to
prove the global model output.

6.1.4 Results Analysis

In this section, we comment on the results obtained for PG, PL and PI with a
small number of time steps (40, which is equivalent to 2 seconds) and with a
large number of time steps (2400, equivalent to 2 minutes). We also used two
different values for the properties deceleration threshold: T1 and T2, where
T1 < T2. Experiments were run on an Intel® Xeon® CPU E5-2609 v2 @ 2.50GHz
and 64 GiB of memory with SCADE DV, Kind 2 1.1.0 and JKind 4.0.1. We
used all available SMT solvers with Kind 2 and JKind but found that Kind 2

generally works best with Z3 (4.7.1) and JKind with Yices2 (2.5.2). Our results
listed below are obtained with these solvers. Kind 2 does not support PDR/IC3

with Yices2 and thus cannot be compared to JKind with Yices2, which supports
it. The timeout option of the model checkers was set to 2 hours (wall-clock time).
The results obtained by GATeL were unsound and we do not comment further
on this model checker.

6.1.4.1 Invariant Generation is Mandatory

Our first experiment was to disable PDR and invariant generation processes
and we found that this type of time properties were not k-inductive even for
2-step models. We needed additional invariants to strengthen the property.

6.1.4.2 PDR/IC3 only for Small Timers and Models

Our results show that PDR is a good strengthening algorithm only for small
numbers of time steps and small models. With the time span of properties and
the size of the model, there is a combinatorial explosion.

6.1.4.3 Threshold Impact

The deceleration threshold T1 affected essentially SCADE DV. We noticed that
Kind 2 and JKind had no problem with it, even if it slowed down the proof.
The SMT solvers behind them have stronger theories on integers. The threshold
T2 affected essentially Kind 2, as long-running timers were impossible to prove
with it.

6.1.4.4 Subnode Property PI

Increasing the time span from 40 to 2400 steps for the small model with prop-
erty PI took more time with Kind 2, but resulted in a timeout for JKind. JKind

and Kind 2 use a different implementation of the template-based invariant gen-
eration techniques described in [KGT11]. Even when the PDR process produces

6.1 use case presentation 75

the proof, it sometimes uses invariants provided by the invariant generator, we
noted it PDR+Invgen in the results below.

6.1.4.5 Compositional Approach with Property PL

We used property PL combined with PLH to decompose the complex property
PG into two simpler problems. Proving PL is almost equivalent to PI when us-
ing slicing because it eliminates the code that is not concerned by the property.
JKind was unable to prove the long time PL property, and Kind 2 showed that
for the T1 threshold it was possible to prove it using its invariant generator, but
not for T2.

6.1.4.6 Global Property PG

Our final goal was to prove the global property PG, taking into account the
entire model with a long-running timer (2400 steps). We encountered some
difficulties with SCADE to prove it when using the T1 threshold, and Kind 2

was unable to prove it with the T2 threshold. JKind was unable to prove long-
running timers at all. This motivated us to try to understand these difficulties.

Table 6 and Table 7 present the results obtained with different number of time
steps and thresholds. The measured time is in seconds of wall-clock time. As
Kind 2 and JKind run multiple engines such as PDR, k-Induction and invariant
generation in parallel, we put the engine that provided the first result. The
second one helped the first with a useful invariant.

SCADE DV Kind2 / Z3 JKind / Yices2

PI-40 2972 141.7 | PDR+Invgen 10.7 | Invgen

PI-2400 Timeout 139.6 | PDR+Invgen Timeout

PL-40 Timeout 156.8 | Invgen 12.6 | PDR

PL-2400 Timeout 1353 | PDR+Invgen Timeout

PG-40 Timeout 373.7 | Invgen 7064 | PDR

PG-2400 Timeout 155.2 | Invgen Timeout

Table 6: Results using deceleration threshold T1

SCADE DV Kind2 / Z3 JKind / Yices2

PI-40 3 3.8 | Invgen 0.8 | Invgen

PI-2400 2 8.1 | Invgen Timeout

PL-40 7 23.9 | Invgen 12.5 | PDR

PL-2400 11 Timeout Timeout

PG-40 9 1370 | Invgen 51.2 | PDR

PG-2400 11 Timeout Timeout

Table 7: Results using deceleration threshold T2

76 invariant generation for model checking of time properties

6.2 approach and contribution

Although our model used linear arithmetic over integers, we noticed that in-
creasing the time span of our global property based on REQ-03, e.g. from 2

seconds to 2 minutes, made the proof with SCADE DV fail in a reasonable
time (24 hours). To understand the problem, we translated the SCADE model
with its properties into the Lustre language, and used open source SMT-based
model checkers, putting them into debug mode to analyze the situation.

6.2.1 SCADE to Lustre Transformation

As SCADE has a textual language inherited from Lustre, we developed a tool
based on an XSLT transformation called SCADE2Lustre. We used SCADE to
convert our model into the SCADE textual language and then we transformed
this textual representation of our model into Lustre code using our tool. As
JKind does not support SCADE automata, we rewrote our automaton in Lustre
and checked using JKind and Kind 2 that we had the same proof results as
those obtained by SCADE DV.

6.2.2 Understanding the Problem

We analyzed our model with different numbers of time steps, different algo-
rithms such as k-Induction, PDR/IC3 and invariant generation, at different lev-
els of abstraction (properties PG, PL, PI). We also used different model checkers
and different SMT solvers as back-ends. We found use cases with long-running
timers in production models that all available model checkers were unable to
prove. In order to understand the problem we decided to use and modify JKind

for its particular implementation of IVC [GGW16]. We used IVC to get the
invariants that had enabled the proof. It was useful for understanding what
candidates we needed to generate for the proof.

6.2.2.1 k-Induction

The basic idea behind k-Induction is to make use of invariants that are not 1-
inductive. With the increase of k, there is a combinatorial explosion, so it can
run for a very long time. It was the case for our property involving time because
it was not k-inductive for a small k. This is why we needed a smarter invariant
generator to help strengthen the property before k goes too high.

6.2.2.2 PDR/IC3

PDR can strengthen the property, but the number of invariants it constructs
from the property explodes when the time span of the property and the size
of the model increase. Because of the interval generation, most invariants are

6.2 approach and contribution 77

useless for our proof and just slow down the proof process. Furthermore, these
invariants appear to find relations only between variables and constants but not
between multiple variables. For long-running time properties on production
models, PDR suffered from the same combinatorial explosion problem as k-
Induction.

6.2.2.3 The JKind Invariant Generator

JKind uses a template-based lemma generation, as described in [KGT11], for
its invariant generation procedure. In order to obtain invariants to strengthen
the proof, JKind creates a list of candidates representing literals. Four different
types of candidates are generated automatically:

• Boolean candidates: all boolean system variables and their negations e.g.
a and not a where a is a boolean.

• Init candidates: integer variables are compared with > and 6 operators
to their initial values e.g. (i > 0), (i 6 0) where 0 is the initial value of i.

• Subrange candidates: variables of an integer subrange type are compared
for equality to all the values in the subrange, e.g. (s = 0), (s = 1), (s = 2)

for s ∈ [0..2].

• Enum candidates: variables of an enum type are compared for equality
to all the values of the enum.

The invariant generator checks all propositional formulae (with boolean op-
erators) involving these literals, whether they are invariants or not. The number
of formulae grows exponentially with the number of literals. To avoid this com-
binatorial explosion, JKind reduces its candidates to those listed above and no
relational candidates (explained in Section 6.2.3) are considered.

All these candidates were not strong enough for proving our long-running
timer properties.

6.2.3 Contribution

JKind uses multiple cooperative engines in parallel, including k-Induction, PDR
and template-based invariant generation. We worked on the improvement of
the invariant generation. We noticed that our property used a constant value for
the number of time steps and the code also used a constant for it. The same was
true for other clauses in the property. We needed invariants that could provide
information about the relation (essentially a comparison) between constants
and variables of the property and constants and variables of the model. In
order to find relations between the property and the model, we propose two
new additional categories of relational candidates (atoms):

78 invariant generation for model checking of time properties

• INT × INT: for all integer variables in the model and the property, add a
comparison relation with the > operator, e.g. Variable1 > Variable2

• INT × CONST: for all integer variables and constants in the model and
the property, add comparison relations with the > and 6 operators, e.g.
Variable1 > Constant1; Variable1 6 Constant1

We implemented this new invariant generation algorithm in JKind and ap-
plied it to a sub-node of our model with a large number of time steps (property
PI-2400). We were able to prove the property within a few seconds although
it was impossible to prove before. Once we could prove the property, it was
possible to use IVC to find the invariant that had enabled the proof. We used
it to understand what were the most useful candidates we needed to generate
for the proof.

Next, we wanted to prove the entire model with a long time property (prop-
erty PG-2400). With our new invariant generator, we had the needed candidates
but for the entire model their number was too big. We noticed also that numer-
ous candidates did not make sense, e.g. when comparing a variable about speed
to a constant about deceleration, or comparing counters with non counter ele-
ments. To get interesting invariants, we propose to use the physical type (speed,
deceleration, counter, etc.) of the variables and the constants, and to keep only
candidates that compare elements of the same physical type. We explain this
in details in the next section.

6.2.3.1 Physical types methodology

A physical quantity is a physical property that can be quantified by measure-
ment. A physical quantity can be expressed as the combination of a number and
a unit. For example, in the physical world, we measure the quantity of speed
using the unit ms−1 and its derivations. The same is true for other physical
quantities. In the automotive and other industries, most of the external inter-
faces of a function represent a physical quantity (speed, deceleration, battery
voltage, etc.) and has a physical unit.

At the code level, information about units is lost and only numbers are
present. Fortunately, at the software architecture design level, the physical units
are present. As most of the software is designed using model-based design
tools, this information can be used for model verification. We propose to use
this semantic information to have a deeper understanding of the variables and
to generate less invariant candidates while increasing their usefulness. As a
methodology, we propose the introduction of physical types at the model level
for tools such as Simulink or SCADE. Instead of using a base representation
types such as int, we declare a type for each physical quantity, e.g. tSpeed, tDe-
celeration, tVoltage, tCounter etc. Then all the variables and constants are typed
according to their appropriate physical type. Actually, these new types are just
aliases of the base representation types, but they carry more semantics for our

6.2 approach and contribution 79

algorithm. Thus we can recognize data of the same physical type and reason
on them using the appropriate relations, see Figure 23.

Figure 23: Constants and variables partitioned by their physical types

For our use case, we defined physical types in SCADE during the design
phase. Then, we used them for all the constants and variables of the model.
This takes little when done during the design stage. As types are immediately
evaluated and shown on the SCADE model, it also gave a better readability
during the review of the model. Once the model was validated, we converted
it into Lustre code using our SCADE2Lustre converter, which preserves types.

6.2.3.2 Timers patterns

We wanted to optimize further our algorithm, and to push only the most rel-
evant candidates. By analyzing the useful candidates from the minimal invari-
ants used for the proof (based on IVC), we noticed that all the variables that
were useful were assigned a previous value (they correspond to state variables).
We propose to eliminate variables that are not assigned a previous value, which
correspond to combinatorial variables for which SMT solvers are very efficient,
so invariant generation is not necessary. An example of state and combinatorial
variables is shown in Figure 24.

Figure 24: Variables encoding a state are kept. The others are dismissed.

80 invariant generation for model checking of time properties

6.2.3.3 Implementation in JKind

We introduced our improvement on a GitHub branch of JKind
1 called “invgen-

timers”. We modified JKind to be able to preserve the original Lustre types
because they were lost after inlining. We introduced an option “-inv_gen_level”
proposing more and more candidates when the level increases:

• Level 0: Default JKind level before our improvements

• Level 1: Use the physical types methodology with INT × INT and INT ×
CONST relational candidates, restricted to state variables (variables with
an assignment of a value from a previous state). This level performs best
if our physical types methodology is applied.

• Level 2: Uses INT × INT and INT × CONST relational candidates no
matter their type, restricted to state-variables. This level works for models
that do not use physical semantic types.

• Level 3: Uses INT × INT and INT × CONST relational candidates includ-
ing state-variables and combinatorial variables. This level can be used if
the other levels do not provide the necessary invariants.

The idea behind this new option is to provide different amount of invariants so
that the user can begin with the lowest level. If the property cannot be proved
with it, the next level could be used until the property is proved. Beginning
with the highest level may degrade the performance for properties where a
lower level would be sufficient.

6.3 results and benchmarks

In this section, we examine the results obtained by our invariant generation
algorithm and methodology using physical types compared to the results ob-
tained with the official versions of JKind and Kind 2. We also used JKind’s and
Kind’s benchmarks to find use cases about timers and compare performances.
Finally, we asked Collins Aerospace for use cases about timers and found that
some properties on production models, which were not proved before with
JKind, were now proved within a few seconds thanks to our improvements.

6.3.1 Our Use Cases

We summarize here the results obtained with our cruise controller model.
In Table 8 and Table 9 we present the results in seconds obtained using our

methodology (JKind new) based on physical types compared to the previous
results (Kind 2 and JKind official versions).

1 JKind on GitHub: https://github.com/agacek/jkind

https://github.com/agacek/jkind

6.3 results and benchmarks 81

SCADE DV Kind 2 JKind (official) JKind (new)

PI-40 2972 141.7 10.7 0.2 | Invgen

PI-2400 Timeout 139.6 Timeout 0.2 | Invgen

PL-40 Timeout 156.8 12.6 4.7 | Invgen

PL-2400 Timeout 1353 Timeout 5.3 | Invgen

PG-40 Timeout 373.7 7064 4.3 | Invgen

PG-2400 Timeout 155.2 Timeout 4.8 | Invgen

Table 8: Results using our new invgen and types for threshold T1

SCADE DV Kind2 JKind (official) JKind (new)

PI-40 3 3.8 0.8 0.1 | Invgen

PI-2400 2 8.1 Timeout 0.1 | Invgen

PL-40 7 23.9 12.5 4.2 | Invgen

PL-2400 11 Timeout Timeout 4.2 | Invgen

PG-40 9 1370 51.2 4.2 | Invgen

PG-2400 11 Timeout Timeout 4.4 | Invgen

Table 9: Results using our new invgen and types for threshold T2

We notice that JKind new (Level 1) outperforms the official versions of the
other model checkers for both deceleration threshold values T1 and T2.

6.3.2 JKind Benchmark

JKind provides with its source files, 56 Lustre programs with properties to be
proved. We used it to compare the performance of our different algorithms
with the official one. We did not find long-running timers in this benchmark
and the new levels of invariant generation we introduced in JKind did not
bring better results. We suppose that this benchmark was tuned for the current
JKind version, as there are no unsolvable problems in it (everything can be
proved or invalidated).

6.3.3 Kind Benchmark

We also used a suite of 1047 Lustre programs developed as a benchmark for
Kind [HT08]. Most of them were very small and not containing timers. Their
properties were proven in less than a second. However, we found some pro-
grams that were using timers. We present their results in Table 10 using our
implementation of the three different levels of invariant generation (L1, L2 and
L3), compared to the JKind and Kind 2 official versions. The timeout was set
to 10 minutes, Z3 was used with Kind 2 and Yices2 with JKind.

The full names of these programs are:

• P1: DRAGON_11.lus

• P2: DRAGON_11_e1_2450.lus

82 invariant generation for model checking of time properties

Program Kind2 JKind JKind-L1 JKind-L2 JKind-L3

P1 Timeout 13.2 4.3 9.2 6.6

P2 Timeout 9.9 7.9 10.3 4

P3 Timeout 13.2 9.4 7.6 13.6

P4 Timeout 6.5 8.7 10.1 3.8

P5 Timeout 9.1 58.7 6.9 5.6

P6 Timeout Timeout Timeout 1.7 1.3

P7 Timeout Timeout 1.8 1.4 Timeout

P8 19.3 50.4 6.3 4.4 7.7

P9 0.4 1.3 1.3 0.2 0.2

Table 10: Results using our new invgen on Kind benchmark

• P3: DRAGON_11_e1_2450_e1_5887.lus

• P4: DRAGON_11_e1_2450_e2_1483.lus

• P5: DRAGON_11_e2_5396_e3_282.lus

• P6: durationThm_3_e3_442_e6_113.lus

• P7: durationThm_3_e7_334_e8_369.lus

• P8: microwave05.lus

• P9: twisted_counters.lus

This benchmark does not use physical types. All the variables and constants
are of type integer, real or boolean. Our level 1 invariant generator is more
suitable when physical types are used. However, we can see that levels 2 and 3

performed well on these programs containing counters.

6.3.4 Collins Aerospace Use Cases

At Collins Aerospace, Lustre is used as an intermediate language to make for-
mal proofs of high-level properties. Some models have properties with long-
running timers. First, they provided us with a representative version of their
production model with a property using 6000 time steps that was impossible
to prove before. We proved it in a few seconds. Then we shared our new ver-
sion of JKind with them so that they try it on their internal production models
that they could not share with us. They told us that it proved in a few seconds
properties that were not proved before.

6.4 conclusions

In this chapter, we proposed an algorithm that brings an improvement to in-
variant generation, enabling the automatic proof of properties involving long-
running timers, which are present in most embedded software. This algorithm

6.4 conclusions 83

consists in injecting new relational invariant candidates to enrich the invariant
generation. However, if too few candidates do not allow concluding, too many
candidates can slow down the proof and lead to timeouts. That is why we
propose a new methodology using physical types (speed, deceleration, etc.),
which restricts the number of candidates to only those that make sense (e.g.
deceleration variables compared to deceleration constants or speed variables
compared to other speed variables) and may therefore be useful for the proof.
Our algorithm is applicable to all forms of inductive model checkers. We have
implemented it as part of the open source model checker JKind. We have shown
that it outperforms the official versions of JKind, Kind 2 and SCADE DV on
benchmarks and on several industrial use cases.

We also want to show a way to improve the state of the art in formal methods.
When using model checking in the industry, we do not have access to advanced
academic model checkers and solvers because industrial companies essentially
use black-box tools that cannot be put in a debug mode or modified. If the
proof is not possible, it is very difficult to understand why. We used the Lustre
language as an intermediate language between the black-box tools and the
open source model checkers. This allowed us to understand what was missing
to automatically strengthen the proofs, and to implement our new algorithm
in JKind as a proof of concept.

The presented method for generating invariants is working fine when the
counter in the property and the counter in the model evolve at the same rate
and sequentially. This is the most common case for industrial models. There
can exist models that increment counters at different rates. For the moment,
these models need additional invariants provided by the user as assertions.

7

C O V E R A G E M E A S U R E B A S E D O N M U TAT I O N A N D
M O D E L C H E C K I N G

What saves a man is to take a step. Then another step.

— Antoine de Saint-Exupéry

When using formal verification on Simulink or SCADE models, an important
question about their certification is how well the specified properties cover the
entire model. A method using unsat cores and inductive model checking called
IVC has been recently proposed within modern SMT-based model checkers
such as JKind. The IVC algorithm determines a minimal set of model elements
necessary to establish a proof and gives back the traceability to the design
elements (lines of code) necessary for the proof. These metrics are interesting
but are rather coarse grain for certification purposes.

The problem is that even if the model checker has proved all the properties
to be valid, we cannot answer the question about whether our model contains
features that are not covered by the properties. Unlike testing, where we can
follow the execution trace, the proof process uses the whole model, but many
parts of it may not be necessary to prove the properties. This problem has
been studied using the following approaches: mutation proof [CKKV01, Cla07,
GKD07, SAP+

05] and IVC [BGWC18, BCB18, Ber19, GWGH19].
The mutation approach shown in Figure 25 consists in mutating a model

for which safety properties were proved valid, and trying to prove the same
properties on the mutated models (mutants) again. If they are proved valid (the
mutant has survived), the mutant reveals a part of the model that is not covered
by the properties. There can also be dead code that will never be accessed. The
algorithms used to compute coverage in the aforementioned papers can under-
approximate which parts of the model are necessary to prove the properties and
tend to be computationally very expensive because there are many mutated
models to be verified.

The algorithms using IVC proposed in the articles cited above are based on
the Unsatisfiable Core support built into current SMT solvers. They can efficiently
generate over-approximated inductive validity cores or exhaustively compute
minimal ones. The inductive validity cores represent the minimal sets of model

85

86 coverage measure based on mutation and model checking

Figure 25: Mutation proof framework

elements necessary to construct inductive proofs. The authors show that calcu-
lating IVC is more efficient than classical state-of-the-art mutation. Calculating
IVC gives the coverage of properties in terms of lines of code of the model,
which is more precise than a simple syntactic slicing, but does not look inside
the lines of code and therefore does not consider the coverage of elementary
operations inside an equation.

We propose to go further in the precision of the coverage and zoom into
the lines of code. Actually, a property can be covered by a line of code but
inside the line there may still be some code that has no impact on the prop-
erty. We argue that it is inside the lines of code that some subtle bugs can still
subsist, and it is useful to uncover them. We use mutation to mutate some op-
erators of the model, and symbolic model checking combined with induction-
based techniques (k-induction, PDR/IC3), and take advantage of the incremen-
tal query capabilities of modern SMT solvers (see Section 4.1.2.5). We observed
that mutation-based coverage for model checking is no longer out of reach,
and this technique scales with our industrial use cases. We implemented this
algorithm in the JKind open-source model checker, which is based on the Lus-
tre formal language. Lustre is used as base language for SCADE, so we could
transform a SCADE model into Lustre. Simulink can also be transformed into
Lustre using the CoCoSim framework developed at NASA Ames1.

7.1 preliminaries

In this section, we introduce the architecture of the industrial inductive model
checker JKind [GBW+

18] which is representative of other model checkers such
as Kind 2 and PKind.

7.1.1 The JKind Model Checker

JKind is an open-source industrial infinite-state model checker for safety prop-
erties. Models and properties are written in Lustre, a synchronous data-flow

1 CoCoSim: https://ti.arc.nasa.gov/tech/rse/research/cocosim

https://ti.arc.nasa.gov/tech/rse/research/cocosim

7.1 preliminaries 87

language, using theories of real and integer arithmetic. JKind uses SMT-solvers
(SMTInterpol, Z3, Yices, CVC4, MathSAT) to prove or falsify the properties. It is
structured as several parallel engines that cooperate to prove properties. Some
engines are directly responsible for proving properties, some contribute to that
effort by generating invariants, and others are for post-processing proofs or
counterexample results. Each engine can be enabled or disabled separately. The
architecture of JKind is shown in Figure 26. At the center of this architecture
the Director allows any engine to broadcast information (invariants, valid and
invalid properties) to the other engines.

Figure 26: The JKind model checker architecture

The BMC engine performs a standard iterative unrolling of the transition re-
lation to find counterexamples or to serve as the base case of k-induction. The
BMC engine guarantees that any counterexample it finds is minimal in the num-
ber of steps from the initial state. The k-Induction engine performs the induc-
tive step of k-induction, possibly using invariants generated by other engines.
The Invariant Generation engine uses a template-based invariant generation
technique using its own k-induction loop. The PDR engine performs property
directed reachability using the implicit abstraction technique [CGMT13]. Un-
like BMC and k-induction, each property is handled separately by a different
PDR sub-engine. The Advice engine saves invariants from previous runs of
JKind and reuses them for new proofs to decrease the verification time.

A great effort was done in JKind on the post-processing of the results. We can
cite the Smoothing counterexamples feature based on MaxSat which minimizes
the number of changes to input variables. The other important post-processing
feature is IVC.

For a proven property, an IVC is a subset of Lustre equations from the input
model for which the property still holds. An IVC is minimal when no equation
can be removed without breaking the provability. Depending on the model and
property, there may exist several IVC with different sizes. A minimum IVC has
the smallest number of equations, and is not necessarily unique. Computing a
minimum IVC is more difficult than computing any IVC, because it involves
an exhaustive search. The IVC engine uses a heuristic algorithm to efficiently
produce minimal IVC but not minimum ones. As a side-effect, the IVC algo-

88 coverage measure based on mutation and model checking

rithm also minimizes the set of invariants used to prove a property, and shares
this reduced set with other engines (notably the Advice engine).

7.1.2 IVC Formalizations

In this section we re-use and adapt the formalization of IVC given by Ghassa-
bani et al. in [GGW+

17] to compare IVC to our mutation proof using similar
definitions of coverage.

7.1.2.1 Models, Requirements and Provability.

Given a state space U, a transition system (I, T) consists of an initial state pred-
icate I : U → bool and a transition step predicate T : U×U → bool. A safety
property P : U→ bool is a state predicate that holds on a transition system (I, T)
when it satisfies the following formulas:

∀u. I(u)⇒ P(u)

∀u,u ′. P(u)∧ T(u,u ′)⇒ P(u ′)

When this is the case, we write (I, T) ` P.
Coming from the Lustre model consisting of a set of equations {eq1 . . . eqn},

the transition relation T has the structure of a top-level conjunction T =

t1 ∧ · · · ∧ tn where each ti is an equality corresponding to eqi. By further
abuse of notation, T is identified with the set of its top-level equalities. When
an equation is removed from the Lustre model, an equality ti is removed from
T and the transition relation becomes T \ {ti}.

Definition 5 (Inductive Validity Core (IVC))

S ⊆ T for (I, T) ` P is an Inductive Validity Core, iff
(I,S) ` P∧ ∀ti ∈ S. (I,S \ {ti}) 0 P.

As defined here, we are only interested in minimal sets that satisfy a property
P. Note that given (I, T) ` P, P always has at least one IVC, which is not neces-
sarily unique. For example, consider 2 boolean variables a and b initialized to
true, i.e. I = a∧ b, and assigned true at each step T = (t1 : a = true)∧ (t2 :

b = true). If P = a∨ b then both {t1} and {t2} are IVCs. We note AIVC(P) the
set of all IVCs of P. Computing the AIVC for each property, one gets a clear
picture of all the model elements constrained by the property. The set AIVC for
all properties demonstrates a complete mapping from the requirements to the
design elements, which is called complete traceability [MWGH16].

7.1.2.2 Property and Model Coverage.

The article by Ghassabani et al. [GGW+
17] defines the two following metrics

of coverage.

7.1 preliminaries 89

Definition 6 (MayCov)

ti ∈ T is covered by P iff ti ∈ May-Cov(P), where
May-Cov(P) = {ti | ∃S ∈ AIVC(P) · ti ∈ S}.

Definition 7 (MustCov)

ti ∈ T is covered by P iff ti ∈ Must-Cov(P), where
Must-Cov(P) = {ti | ∀S ∈ AIVC(P) · ti ∈ S}.

This categorization of coverage helps to identify the role and relevance of each
design element in satisfying a property. Must-Cov specifies the parts of the
model that are absolutely necessary for the property satisfaction. Any change
to these parts will affect the provability of the property. On the other hand, May-
Cov parts are relevant to the proof but may be modified without affecting the
satisfaction of P. The May-Cov heuristic leads to higher coverage scores, because
Must-Cov(P) ⊆ May-Cov(P).

In JKind, the IVC engine computes one IVC and avoids exploring all possible
ones. Therefore, it partially computes the May-Cov(P) and it does not handle
Must-Cov(P).

7.1.2.3 Mutation.

A mutator is a function that mutates any transition predicate T to a set of
mutants {T1

mut, . . . , Tm
mut}, where each mutant T i

mut is obtained by applying a
small change to T .

A very simple mutator is the one that simply removes an equality ti from
T , which amounts to removing the corresponding line of code from the Lustre
model. In our framework, we call this basic mutator eq_remove (see Section 7.3).
The authors of [GWG17] only consider this simple mutator and define the cor-
responding coverage as follows:

Definition 8 (Mutation Coverage)

ti ∈ T is covered by property P iff ti ∈ Mut-Cov(P), where
Mut-Cov(P) = {ti | (I, T) ` P∧ (I, T \ {ti}) 0 P}.

An immediate corollary proved in [GWG17] states that if an equation is cov-
ered by such a mutation, it is also covered by all IVC and conversely:

Lemma 9 (MutCov and MustCov)

Mut-Cov(P) = Must-Cov(P).

The Mut-Cov metrics can be generalized to more advanced mutators. In Sec-
tion 7.3, we will show how the Mut-Cov metrics can be improved to give a very
precise coverage inside each ti detected within Must-Cov or May-Cov.

90 coverage measure based on mutation and model checking

7.2 model coverage techniques

An important question for the certification of safety-critical systems is whether
the requirements and tests are covering the implementation. For example, in
ISO 26262, which is the functional safety standard for road vehicles, tests are
derived from requirements. An argumentation of why the performed tests give
sufficient coverage shall be provided. As the critical level increases, a more
rigorous method for test coverage (statement, branch, MC/DC) is required. If
complete coverage is not achieved, an analysis is performed to decide whether
additional tests or/and requirements are needed to increase coverage. DO-178C
with its supplement DO-333 (Formal Methods) go further in offering the pos-
sibility to use formal methods in replacement of all structural coverage objec-
tives (including heavyweight MC/DC), but arguments showing that coverage
is achieved by the formal proof should then be provided, see Table 11.

DO-178C Table A-7 Objective DO-333 Table FM.A-7 Objective

1. Test procedures are correct. FM1. Formal analysis cases and procedures are
correct.

2. Test results are correct and discrepancies ex-
plained.

FM2. Formal analysis results are correct and dis-
crepancies explained.

3. Test coverage of High Level Requirements
(HLRs) is achieved.

FM3. Coverage of HLRs is achieved.

4. Test coverage of Low Level Requirements
(LLRs) is achieved.

FM4. Coverage of LLRs is achieved.

5. Test coverage of software structure (modified
condition/decision coverage) is achieved.

FM5 – FM8. Verification coverage of software
structure is achieved.

6. Test coverage of software structure (decision
coverage) is achieved.

(A single objective that replaces the four struc-
tural coverage objectives in DO-178C)

7. Test coverage of software structure (statement
coverage) is achieved.

8. Test coverage of software structure (data cou-
pling and control coupling) is achieved.

9. A verification of additional code, that cannot
be traced to source code, is achieved.

FM9. Verification of property preservation be-
tween source and object code.

N/A FM10. Formal method is correctly defined, justi-
fied, and appropriate.

Table 11: DO-333 accepts replacing MC/DC coverage by formal proof coverage

In this section, we present different techniques for model coverage, going pro-
gressively from coarse-grained coverage to fine-grained coverage. We consider
the application of these techniques to the domain of inductive symbolic model
checking. We propose to use mutation-based proof, taking advantage of the pos-
sibility to request SMT solvers in an incremental way, in order to look inside
the operators in a way MC/DC does for testing. We show that the performance
of this technique is equivalent to IVC and therefore quite faster than state of the
art mutation-based methods. To the best of our knowledge, this technique has
never been studied. The closest related work on mutation-based proof does not
use inductive model checking for software verification nor incremental SMT

7.2 model coverage techniques 91

solving. The work of Chockler et al. [CKKV01] presents an algorithm to re-use
previously computed inductive invariants and counterexamples to identify the
parts of a hardware system that are covered by a property. In [Cla07], Claessen
presents a coverage analysis based on Linear Temporal Logic (LTL) that gives
the possibility to have underconstrained properties. In [GKD07], the authors
present an approach to estimate coverage in BMC. They generate coverage
properties for each important signal for hardware verification purposes. Finally,
in [SAP+

05], Sayantan et al. present a method for determining the coverage of
a formal LTL specification against a high-level fault model for hardware verifi-
cation.

7.2.1 Simple Running Example

1 node demo () r e t u r n s (Prop1 : boo l ; d : boo l) ;
2 va r
3 L1 , L2 , L3 , L4 : boo l ;
4 l e t
5 L1 = L2 or L3 ;
6 L2 = t r u e ;
7 L3 = not L2 ;
8 L4 = not L1 ;
9 Prop1 = L1 ;

10 d = L4 ;
11 −−%PROPERTY Prop1 ;
12 t e l

Figure 27: A simple running example in Lustre

We use a simple running example to illustrate the difference between slicing,
IVC and mutation proof. Consider the SCADE model shown both graphically
and textually in Figure 27. The property Prop1 we want to prove concerns
the output of an OR block which takes a constant input equal to true and its
negation. Obviously this property is always true. The Lustre code is obtained
by using the SCADE option “Convert to textual” and we just add the comment
on line 11 to tell JKind which output represents our safety property to be
proved (invariant that shall always be true).

7.2.2 Slicing

The backward static slicing (or slicing for short) is a coarse-grained technique
that allows to remove the parts of the code that do not affect the properties to be

92 coverage measure based on mutation and model checking

proved. It works by simply calculating the dependency graph for the variables
used in the properties. Modern inductive model checkers use slicing to reduce
the size of the queries sent to the SAT/SMT solver. It is interesting to see how
much of the code is removed and to check if we really need this code or if our
properties are simply not complete enough. After slicing, d and L4 are removed
and we obtain the lines:

1 L1 = L2 or L3 ;
2 L2 = t r u e ;
3 L3 = not L2 ;
4 Prop1 = L1 ;

7.2.3 Inductive Validity Cores

IVC are much smaller and more precise than static slicing. For our short exam-
ple, the IVC engine will either remove the equation of L3 because L1 does not
depend on it since L2 is true, or it will keep the equation of L3 and remove the
equation of L2 since the equation of L1 is a tautology when we consider the
equation of L3. When running IVC on Prop1, it turns out that we obtain the
first inductive validity core: {L1, L2}

1 L1 = L2 or L3 ;
2 L2 = t r u e ;

7.2.4 A Simple Mutator for Must-Cov: Equation remover

We want to go further than IVC, so we propose to use a simple mutator called
“equation remover” which removes equations one by one and replays the proof
process in an incremental way (using the SMT-LIB [BST+

10] pop and push com-
mands). Our equation remover does not affect the properties because we want
to mutate only the model and not the specification. If after removing an equa-
tion the properties are still proved (surviving mutant), it means that the re-
moved equation has no impact on the proof. If the properties do not hold
anymore (killed mutant), this means that the removed equation is essential for
the proof. This mutator computes the minimum core defined as Must-Cov in
Section 7.1, whereas IVC is working in May-Cov mode. Using this technique,
we obtain that only the equation of L1 is essential for any proof of Prop1 :

1 L1 = L2 or L3 ;

7.2.5 Using Other Mutators for Deep Coverage

We propose to add other mutation operators to zoom inside a line of code/e-
quation and see what is covered by the properties. We explain these operators

7.2 model coverage techniques 93

in detail in Section 7.3. For the moment, we give an example to see the differ-
ence between mutation and IVC. Our example is shown in Figure 28.

1 node demo2 (a1 , a2 : i n t)
2 r e t u r n s (Prop1 : boo l ; b : i n t) ;
3 va r
4 d : boo l ;
5 l e t
6 d = (a1 > 0) ;
7 b = i f d or (a2 < 0) then a1 e l s e a2 ;
8 Prop1 = (b = a1 or b = a2) ;
9 −−%PROPERTY Prop1 ;

10 t e l ;

Figure 28: Example of inlined code and if-then-else operator mutations

This model takes two inputs a1 and a2, and depending on whether their
value is positive or negative, a1 or a2 is assigned to the output b. We have a
property Prop1 specifying that the output b should take the value of a1 or a2. If
slicing is applied to this model, it will remove nothing because Prop1 depends
statically on the entire model. However, applying IVC tells us that we should
only keep b to cover our property Prop1. It is more precise than slicing because
d is not necessary to prove that property (b is always equal to a1 or a2).

Now, let us apply some mutations such as: replacing the condition of the if
statement by true or false, replacing or by xor, replacing > by < etc. This leads
to 22 possible mutations.

For Prop1 we have 5 mutants killed out of 22. If we want to cover 100% of
the code, we need to kill all mutants. To achieve this coverage, we need to
strengthen our properties. We add a second property: Prop2 = ((a1 > 0) =>

b = a1). At this stage IVC covers 100% of the model as d is now necessary to
Prop2. However, only 14 mutants are killed out of 22 (Figure 29). For example,
if the condition of the if statement at line 7 (Figure 28) is replaced by true,
Prop1 and Prop2 are proved valid. This means that the condition has no impact
on these properties. Let us add a third property: Prop3 = ((a2 < 0) => b =

a1). This time, we kill 16 mutants out of 22. Finally, we need a fourth property:
Prop4 = (((a1 <= 0) and (a2 >= 0)) => b = a2) to kill all 22 mutants.

94 coverage measure based on mutation and model checking

1 INDUCTIVE VALIDITY CORE: b , d
2 ++
3 MUTATION:
4 KILLED at 6 :3 e qu a l_ f a l s e by [Prop2]
5 KILLED at 6 :3 equat ion_remove by [Prop2]
6 KILLED at 6 :3 i n i t _ f a l s e by [Prop2]
7 KILLED at 6 :11 g2 l by [Prop2]
8 KILLED at 6 :13 (con s t i n t 0 −> 1) by [Prop2]
9 KILLED at 7 :3 in i t_ −1 by [Prop1 , Prop2]

10 KILLED at 7 :3 equal_5 by [Prop1 , Prop2]
11 KILLED at 7 :3 equal_−2 by [Prop1 , Prop2]
12 KILLED at 7 :3 equat ion_remove by [Prop1 , Prop2]
13 KILLED at 7 :3 i n i t_5 by [Prop1 , Prop2]
14 KILLED at 7 :7 i f e l s e t h e n by [Prop2]
15 KILLED at 7 :7 i f e l s e by [Prop2]
16 KILLED at 7 :12 o r 2 r i g h t by [Prop2]
17 KILLED at 7 :12 o r2xo r by [Prop2]
18 SURVIVED at 6 :3 i n i t_ t r u e
19 SURVIVED at 6 :3 equa l_t rue
20 SURVIVED at 6 :11 g2ge
21 SURVIVED at 7 :7 i f t h e n
22 SURVIVED at 7 :12 o r 2 l e f t
23 SURVIVED at 7 :19 l 2 g
24 SURVIVED at 7 :19 l 2 l e
25 SURVIVED at 7 :21 (con s t i n t 0 −> 1)

Figure 29: IVC and Mutation proof results on demo2 for properties Prop1 and Prop2

7.3 from mutation testing to mutation proof

Mutation testing is used to evaluate the quality of a test suite that is a set of
test cases. It consists in modifying the program under test in small ways. Each
mutated version of the program is called a mutant and test cases are replayed
on it to detect whether its behavior is different from the behavior of the orig-
inal version. This process is called ‘killing the mutant’. The more mutants are
killed, the better are the test cases. The quality of a test suite is measured as
the percentage of killed mutants. Mutants that are left can be killed by spec-
ifying additional test cases or justified as equivalent to the original program.
Mutators are mutation operators used to generate mutants, and they tend to
mimic standard programming errors. A mutation builds a mutant by applying
a mutator on some position in the code. Taking ideas from mutation testing, we
developed a mutation proof framework for standard inductive model checking
using incremental SMT solving. In this section, we present our mutators and
describe our mutation proof algorithm.

7.3.1 Mutators

Our mutators directly modify the Lustre code. We implemented classical mu-
tators, but more advanced ones may be easily added to our framework. We
present our mutators in Table 12.

Our first category of mutators are the boolean mutators. For example, the
and2or mutator transforms a AND b into a OR b. Then we have relational mu-

7.3 from mutation testing to mutation proof 95

Mutator Description

or2xor OR is mutated to XOR

xor2implies XOR is mutated to =⇒
implies2and =⇒ is mutated to AND

and2or AND is mutated to OR

or2left X OR Y is mutated to X

or2right X OR Y is mutated to Y

and2left X AND Y is mutated to X

and2right X AND Y is mutated to Y

rm_not NOT is removed

eq2neq = is mutated to 6=
neq2eq 6= is mutated to =

g2ge > is mutated to >

ge2g > is mutated to >

l2le < is mutated to 6

le2l 6 is mutated to <

g2l > is mutated to <

l2g < is mutated to >

ge2le > is mutated to 6

le2ge 6 is mutated to >

plus2minus + is mutated to −

minus2plus − is mutated to +

rm_minus − is removed

ifthen IF condition is replaced by TRUE

ifelse IF condition is replaced by FALSE

ifelsethen THEN and ELSE statements are reversed

ConstantMutator Constant is replaced by 1

eq_remove Removes an entire equation/line of code

Table 12: Mutators for deep coverage measurement

tators such as ge2le, which transforms a ‘>’ operator into ‘6’. We also have
some arithmetic mutators such as plus2minus, which replaces ‘+’ by ‘−’. Branch-
ing mutators act on if-then-else statements replacing the condition by TRUE or
FALSE or reversing the THEN and ELSE statements. Finally, we have the con-
stant mutator that replaces all constants by 1, and the equation remover mutator
that removes an entire line of code as seen before.

7.3.2 Our Contribution: Mutation Proof Algorithm

Our contribution is the mutation proof algorithm that can be applied to mod-
ern inductive model checkers. It takes as input the proved properties and the
invariants found during the proof process. It uses BMC and k-induction to
retry the proof on mutants. Then, it returns a verdict: KILLED (proof fails with
a counterexample), SURVIVED (proof succeeds), or UNKNOWN (proof fails
with no counterexample). Our quality metrics is the ratio of killed mutants
over the total number of mutants. The more mutants are killed, the better is the

96 coverage measure based on mutation and model checking

quality of the specification, because the better is the coverage of the model by
the properties in the specification.

Algorithm 1: Mutation proof algorithm
input :M,P
output : report

1 Prove P : {P0,P1 . . .} on M
2 Invs← invariants from the proof of P on M
3 kproof ← maximum k-depth for proving P on M
4

5 foreach mutation LCM do
6 Mmut ←MUTATE(M,LCM)
7 if BMC((Mmut,∅,∅),P,kproof) = SAT then
8 MSAT ← getModel()
9 report += KILLED(mut:LCM, KillingProps:{Pi ∈ P | MSAT � ¬Pi})

10 else
11 SI← FilterInvs(Invs,Mmut)
12 UP← ∅
13 SP← P
14 while KIND((Mmut,SI,∅),SP,kproof) = SAT do
15 MSAT ← getModel()
16 UP = UP∪ {Pi ∈ SP | MSAT � ¬Pi}

17 SP = P \UP

18 if SP = P then
19 report += SURVIVED(mut:LCM)

20 else
21 if BMC((Mmut,SI,SP),UP,kkill) = SAT then
22 MSAT ← getModel()
23 report += KILLED(mut:LCM, KillingProps:{Pi ∈UP|MSAT � ¬Pi})

24 else
25 report += UNKNOWN(mut:LCM, SurvivingProps:SP)

Before describing our algorithm, let us define its variables and functions:
P are the specification Properties, M is the original Model, Mmut is the
current mutated Model (Mutant), LCM represents a mutation in the form
Line:Column of code and Mutator, function MUTATE(M,LCM) returns the
mutant Mmut corresponding to LCM applied to M, KP are the Killing Prop-
erties, SI are the Surviving Invariants, SP are the Surviving Properties, UP are
the Unknown Properties, kkill is a parameter for maximum k-depth to kill
a mutant, functions BMC((Model, Invariants,ValidProperties),Prop,k) and
KIND(. . .) run respectively BMC and K-INDuction on a model together with
its invariants and its valid properties to check new properties Prop at depth k

and answer UNSAT (all Prop are valid) or SAT (some of Prop are not valid).
When the answer is SAT , the function getModel() gives the counterexample.
Finally, function FilterInvs(invariants,Mmut) filters the invariants of the
original Model M using BMC and k-induction to find the ones that survive the
mutation and are still invariants of the current mutant Mmut.

Starting from the proof of P on M which requires the generation of invariants
Invs and induction at depth kproof, our algorithm applies a mutation LCM at
each iteration to obtain a mutant Mmut and retries the proof of P on Mmut.

7.4 implementation and initial results 97

It runs first BMC at depth kproof to verify whether all properties in P hold on
Mmut for the first kproof steps. If it is not the case, the mutant Mmut is already
killed by some properties in P reported within the verdict KILLED. When all
properties in P hold, which means that the base step is valid, the algorithm
will try the k-induction step after filtering the invariants Invs of M to keep
only those that are still valid for Mmut. When the k-induction step succeeds
(UNSAT), all properties in SP are k-inductive and survive, otherwise we use
the counterexample model to find the properties that are not k-inductive, add
them to the unknown properties UP, and we try again the k-induction on the
remaining properties SP \ UP. We add the non k-inductive properties to UP

because they can be valid but may require a k-induction of a higher depth. The
verdict is SURVIVED when the k-induction succeeds at the first iteration and
in this case all properties in P hold for Mmut (i.e. P = SP and UP is empty). If
UP is not empty, we run again BMC at maximum depth kkill to try to kill the
current mutant by any property from UP. If this last attempt to kill Mmut fails,
we return the verdict UNKNOWN.

7.4 implementation and initial results

7.4.1 Implementation

We implemented our algorithm on a GitHub fork of JKind
2. Our algorithm,

shown in Figure 30, runs as a separate engine (module) of JKind and starts
at the end of the proof process. It retrieves the invariants and kproof used for
proving the properties and returns mutations verdicts.

Figure 30: Mutation engine implementation in JKind

7.4.2 Optimizations

Our implementation is very efficient because instead of submitting the entire
mutated model to the SMT-solver it works in an incremental way, using pop
and push only on the mutated lines. Furthermore, to take maximum advantage
of this incremental feature, we group the mutations of the same line of code
and run them all on the same SMT-solver instance.

We introduced two major optimizations as parameters in JKind: parallelMu-
tants and ivcMutation. Firstly, unlike IVC, which cannot be parallelized, our

2 JKind with Mutation on GitHub: https://github.com/v-todorov/jkind

https://github.com/v-todorov/jkind

98 coverage measure based on mutation and model checking

mutation algorithm can run each mutation proof on a different thread. We
group mutations that affect a given line of code. Different groups can be ex-
ecuted in parallel. The second optimization is intended for large models and
runs the mutation only over the resulting minimal core produced by IVC. Thus
IVC eliminates the unused part of the model, and mutation runs faster based
on the results of IVC. The designer should be informed of the unused part in
order to be able to write some additional properties about it.

7.4.3 Initial Results

We used the benchmark of JKind (from GitHub), which provides Lustre files
and properties to be proved. We selected 22 example Lustre files with only valid
properties, because it is not useful to analyze the coverage of invalid properties.
We used a laptop equipped with an Intel Xeon E-2176M CPU and 32GB RAM to
run the benchmarks. We applied IVC alone, Mutation with equation removing
only, and Mutation with all mutators activated. We activated the parallelMutants
option to use the 6 cores of our CPU and we did not activate IVC when running
Mutation. The results are shown in Figure 31. On the left, we see the results that
compare Mutation with only the equation removing mutator (Mut-Eq) to IVC.
We notice that in 82% of the use cases we obtained equal times for calculating
IVC and Mut-Eq, in 9% of the cases mutation (Mut-Eq) was faster than IVC
and in another 9% it was slower. For Mutation using all mutators (Mut-All), we
had same execution times in 59% of the cases, mutation (Mut-All) was faster
than IVC in 5% of the cases, and it was slower in 36% of the cases.

The unsat cores given by most SMT solvers being not necessarily minimal,
IVC needs some backtracking to reduce them to minimal ones. The IVC imple-
mentation in JKind is sequential and requires calculation power. On the other
hand, our algorithm runs in parallel and uses incremental SMT solving. Thus,
we obtain a greater coverage precision thanks to the mutation, with an equiva-
lent performance most of the time.

Figure 31: Comparison between equation remover mutation/full mutation and IVC

7.5 conclusions 99

7.4.4 Industrial Use Case Results

We also used a representative industrial use case that is a cruise control function
developed in SCADE (1250 lines of Lustre code), with some valid safety prop-
erties coming from high level requirements [TTBH19a]. Using IVC, as well as
using mutation with equation removing only, shows that all lines of code were
covered and therefore necessary to the specification proof, but when running
our mutation proof framework with all mutators activated, we only obtained
39% of killed mutations. This means that we need to strengthen the properties
e.g. by adding additional ones to kill the 61% surviving mutations. In partic-
ular, we found some interesting mutations of if-then-else statements revealing
branches that were not covered by the original properties.

7.5 conclusions

In this chapter, we proposed a new coverage metrics for evaluating the quality
of properties (specification) that are proved valid using model checking on a
given model (program). The algorithm we used is particularly efficient unlike
classical mutation testing techniques. Its efficiency comes from the fact that in-
stead of submitting each mutant to the SMT solver, we only submit the original
model once and we iteratively remove (pop) an equation and push its mutated
version to check all mutants. The mutation process can also be run in parallel
and thus its performance is almost equivalent to IVC, another heuristic algo-
rithm to find the coverage of the properties on a model. The main advantage of
our mutation framework over IVC is that we can look inside the lines of code
and see the effect of mutating a constant, a variable or an operator.

8
D E D U C T I V E P R O O F A P P L I E D T O A D I S C R E T E - VA L U E D
F U N C T I O N

Negative results are just what I want. They’re just as valuable to me as
positive results. I can never find the thing that does the job best until I find
the ones that don’t.

— Thomas A. Edison

In the automotive software, discrete-valued functions (also known as Lookup
table (LUT)) are frequently used to avoid complex calculations because of the
limited resources of the ECU.

For our study, we take as example a discrete-valued function calculating a
square root using a linear interpolation table. During the design stage in an
MBD process, the simulation can use a complex function (see Figure 32) but in
the implementation it is replaced by an optimized version.

Figure 32: Complex functions vs. discrete-valued ones

In this chapter, we give details about the application of deductive proof to
production code, the problems we encountered with off-the-shelf tools, and
some approaches to solve this type of problems. Our function has been imple-
mented in C and we used Frama-C WP for proving its correctness. As some
of the goals were impossible to prove with Frama-C and its solvers, we imple-
mented it in SPARK (based on Ada) to prove it with GNATprove. We discuss
the results as well as how other methods such as Abstract interpretation can be
combined with deductive proof.

101

102 deductive proof applied to a discrete-valued function

8.1 environment

We present our environment in Figure 33. We have C code, which is anno-
tated with contracts using the ACSL language. We use two different features of
Frama-C WP. First, we use it to parse and then transform the C code together
with the contracts into Verification Conditions (VC) that are directly sent to
the SMT solvers. Second, we also use Frama-C WP to transform the C code
together with the contracts into WhyML language files. The Why3 framework
then transforms the WhyML files into VC and addresses the SMT solvers. The
main difference between these two approaches is that the direct SMT-LIB out-
put was initially developed for the Colibri SMT solver, which does not support
quantifiers. Thus, the direct SMT-LIB output provides a set of quantifier-free
formulas. The other way, through WhyML, allows for richer theories and sup-
ports quantified formulas even within the specification contracts.

Figure 33: Environment for deductive proof on C and SPARK code

We used GNATprove to prove the equivalent code written in SPARK. This
approach is similar to using Frama-C with WhyML and quantified formulas.
The advantage of SPARK for our use case is that we can use bit vector types for
modular arithmetic and thus facilitate the proof.

Because we experienced some difficulties with the analysis of our C code,
we also analyzed it with an Abstract interpretation tool to get additional confi-
dence.

8.2 experiment

We took the C code implemented in an on-board computer to prove its correct-
ness using deductive proof. The function calculates the square root Y of X by
linear integer interpolation between two known points (Xa, Ya) and (Xb, Yb)
using the following formula:

Y = Ya + (X−Xa)
(Yb − Ya)

(Xb −Xa)

8.2 experiment 103

Figure 34: Square root calculation in [0, 1.00] by linear interpolation from eight known
values

This code is used in an implementation on an on-board computer, which
cannot use floating-point numbers. We calculate the square root for numbers
between 0.00 and 100.00 using an integer representation. We consider it as a
fixed-point number (multiplied by 100 to have a precision of 2 digits after the
decimal separator), thus the input range is between 0 and 10000 (representing
0 and 100.00) and the returned result is a linearly interpolated value between
0 and 1000 (to be interpreted as a number between 0 and 10.00). We want to
prove that the calculation is correct for a given precision.

We proceeded in two steps. First, we proved a simplified version of the code
using only eight values in the interpolation table (Figure 34) and limited to
the range [0, 1.00]. These values were a subset of the full table present in the
code, which contains 41 values. Then, we added the other values in the table
and updated the contracts to take into account the new bounds. To our surprise,
this did not scale up with Frama-C. We worked with the developers of Frama-C
to understand why (we explain it in Section 8.3).

The code of our main function is given in Figure 35. This function takes a
number and returns its square root using a table for some known values or
interpolates a value when the number is between two known points. Using the
ACSL annotation language, we define two behaviors for this function: when-
ever the number is less than 10000 the function is defined, otherwise it returns
the maximum value i.e. 1000. For more readability, we removed some interme-
diate values from the two tables.

As we have a loop, in formal verification we need to specify a loop invariant
for it. A loop invariant is a predicate (condition) that holds for every iteration
of the loop (before and after the iteration). This predicate should be strong
enough and its automatic generation is generally a difficult problem.

With Frama-C we also need to define precisely which variables are modified
(assigned) during the loop. In our example, i is incremented on each iteration.

104 deductive proof applied to a discrete-valued function

1 /*@ assigns \ nothing ;
2 behavior in_range :
3 assumes number <= 10000;
4 ensures number -30 <= (\ result) *(\ result) /100 <= number +10;
5 behavior out_of_range :
6 assumes number > 10000;
7 ensures \ result == 1000;
8 complete behaviors in_range , out_of_range ;
9 disjoint behaviors in_range , out_of_range ;

10 */
11 u i n t 16 I n t S q r t (u i n t 16 number) {
12 u i n t 8 i = 0 ;
13 u i n t 16 TabX [4 1] = {0 , 5 , 10 , 25 , 40 , . . . , 7 500 , 8000 , 8600 , 9200 , 10000} ;
14 u i n t 16 TabY [4 1] = {0 , 22 , 32 , 50 , 63 , . . . , 8 66 , 894 , 927 , 959 , 1000} ;
15 /*@ loop invariant 0 <= i <= 40 && number >= TabX [i];
16 loop assigns i;
17 loop variant 40-i; */
18 f o r (i = 0 ; i < 40 ; i++) {
19 i f ((number >= TabX [i]) && (number <= TabX [i +1])) {
20 r e t u r n (L i n e a r I n t e r p o l a t i o n (TabX [i] , TabY [i] , TabX [i +1] , TabY [i +1] ,

number)) ;
21 }
22 }
23 r e t u r n TabY [4 0] ;
24 }

Figure 35: Annotated square root function for Frama-C WP automatic proof

For the loop to be proved, we also need to write a variant function which is a
function whose value is monotonically decreased with respect to a (strict) well-
founded relation by the iteration of the loop. It is used to ensure the termination
of the loop.

Then we rewrote the function in SPARK1 to see whether it would scale better.
Figure 36 presents the SPARK code. The main difference between C and SPARK
is that we can specify a bit vector data type in SPARK, which is then commu-
nicated to the SMT solver via Why3. For our use case, it helped the solver to
reason using modular arithmetic. Most SMT solvers used as back-end of Why3

have a theory of bit vectors. If we do not use bit vectors, the SMT solver is
reasoning by default using non-modular arithmetic.

The proof of the simplified code succeeded on both Frama-C and SPARK.
However, when using the full table of 41 values, Frama-C failed where only
SPARK succeeded.

We also analyzed our complete C code with Astrée [Mau04] from AbsInt, a
static analysis tool using abstract interpretation, to prove some difficult goals.
The abstract interpretation results can be used as assumptions for Frama-C WP
or bring more confidence for certification if Frama-C can reason on them. We
discuss the results in the next section.

1 Special thanks to Yannick Moy from AdaCore

8.3 results 105

1 t ype Uns igned i s mod 2∗∗32 ;
2 sub type u i n t 16 i s Uns igned r ange 0 . . 65535 ;
3 t ype UINT16_ARR i s a r r a y (P o s i t i v e r ange <>) o f u i n t 16 ;
4 Max : c on s t an t := 10_000 ;
5 f u n c t i o n L i n e a r I n t e r p o l a t i o n (Xa , Ya , Xb , Yb , X : u i n t 16) r e t u r n u i n t 16 i s
6 Re su l t : u i n t 16 ;
7 beg i n
8 i f Xa /= Xb then
9 Re su l t := Ya + (X − Xa) ∗ (Yb − Ya) / (Xb − Xa) ;

10 e l s e
11 Re su l t := Ya ;
12 end i f ;
13 r e t u r n Re su l t ;
14 end L i n e a r I n t e r p o l a t i o n ;
15 f u n c t i o n I n t S q r t (number : u i n t 16) r e t u r n u i n t 16
16 wi th G loba l => n u l l , Contract_Cases =>
17 (number <= Max => In tSq r t ’ R e s u l t ∗ I n t Sq r t ’ R e s u l t / 100 + 30 >= number

and number+10 >= In tSq r t ’ R e s u l t ∗ I n t Sq r t ’ R e s u l t / 100 , number > Max
=> In tSq r t ’ R e s u l t = 1000) i s

18 TabX : UINT16_ARR(1 . . 41) := (0 , 5 , 10 , 25 , 40 , . . . , 8 000 , 8600 , 9200 , 10000) ;
19 TabY : UINT16_ARR(1 . . 41) := (0 , 22 , 3 2 , 5 0 , 6 3 , . . . , 8 94 , 9 27 , 959 , 1 000) ;
20 beg i n
21 f o r I i n 1 . . 40 l o op
22 pragma Loop_Inva r i an t (f o r a l l J i n 1 . . I => number >= TabX(J)) ;
23 i f number i n TabX(I) . . TabX(I +1) then
24 r e t u r n L i n e a r I n t e r p o l a t i o n (TabX(I) , TabY(I) , TabX(I +1) , TabY(I +1) ,

number) ;
25 end i f ;
26 end l oop ;
27 r e t u r n TabY(41) ;
28 end I n t S q r t ;

Figure 36: SPARK code for automatic proof with GNATprove

8.3 results

In this section, we explain the results and why Frama-C failed to scale-up from
8 to 41 values, and what should be done to cope with this type of problems.

8.3.1 From Frama-C to the SMT solver

To understand the reason why automatic proof failed for the full table, we
have to detail the transformations between the C code through Frama-C, Why3

and the solvers. First, Frama-C transforms the C code and its ACSL contracts
using the weakest precondition calculus into VC in the WhyML language. It
also introduces additional goals to verify the absence of runtime errors such as
overflows. The WhyML output contains all the theories necessary for the proof
and is sent to Why3. Then Why3 transforms it into the language of the chosen
prover. For our use case, the WhyML transformation contained quantified for-
mulas and had redefined some operators such as division using uninterpreted
functions.

106 deductive proof applied to a discrete-valued function

8.3.2 The Difficult Goal

There were 51 goals (verification conditions) to be proved and two of them were
not proven. The most difficult goal was about proving that the contract of the
post condition in the linear interpolation function had the same behavior as the
code. We show it in Figure 37.

1 t y p ed e f un s i gned s h o r t u i n t 16 ;
2 t y p ed e f un s i gned cha r u i n t 8 ;
3 /*@
4 requires 0 <= Xa <= 10000 && 0 <= Xb <= 10000;
5 requires 0 <= Ya <= 1000 && 0 <= Yb <= 1000;
6 requires Yb > Ya && Xb >= Xa;
7 requires Xa <= X <= Xb;
8 ensures Xa != Xb ==> \ result == (Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));
9 ensures Xa == Xb ==> \ result == Ya;

10 assigns \ nothing ;
11 */
12 u i n t 16 L i n e a r I n t e r p o l a t i o n (u i n t 16 Xa , u i n t 16 Ya , u i n t 16 Xb , u i n t 16 Yb ,

u i n t 16 X)
13 {
14 i f (Xa != Xb) {
15 r e t u r n (Ya + (X − Xa) ∗ (Yb − Ya) / (Xb − Xa)) ;
16 } e l s e {
17 r e t u r n (Ya) ;
18 }
19 }

Figure 37: Annotated interpolation function for Frama-C WP automatic proof

Actually, contracts use mathematical arithmetic (without overflow), but code
uses modular arithmetic, where overflows may occur. For our use case, we used
a 16-bit unsigned integer to store the returned value of the interpolation.

8.3.3 Direct Proof with SMT-LIB

Since 2 goals were not proven with the official Frama-C version, we obtained
a new version that could address directly SMT solvers using the SMT-LIB stan-
dard [BST+

10]. We proved our goals with Colibri, CVC4 and Yices2. We re-
marked that the SMT-LIB file did not contain quantifiers and did not rede-
fine operators such as division. We concluded that this approach scaled and
worked better for problems with nonlinear arithmetic such as interpolation
functions. Furthermore, some SMT solvers such as Yices2 do not support quan-
tification.

8.3.4 Experience with the Why3 SMT Output Files

We wanted to understand what was the impact of the redefined division using
uninterpreted functions and of quantified formulas, so we modified manually
the SMT request sent to the solver. First, we removed the specific functions

8.4 methodology 107

about division and used the standard SMT-LIB div operator. Then, the proof
succeeded with CVC4 but only if using nonlinear logic containing bit vectors.
Disabling bit vectors from that logic resulted in a failure to prove the formula.
On the other hand, the quantifier-free SMT output did not need bit vector logic
to be proved.

8.3.5 Abstract Interpretation Combined with Deductive Proof

Because it is difficult to understand how the SMT solvers proved the difficult
goal, we used Astrée to prove the absence of overflow in the returned value
of the linear interpolation function. This proof can then be used as hypothesis
in Frama-C WP. Astrée could find the dependency between Yb and Ya and
estimate a precise interval for (Yb − Ya). The same was done for (Xb −Xa) and
(X− Xa). Thus a precise interval was calculated for Y in [0, 10000], which fits
in a 16-bit unsigned integer without overflow.

8.4 methodology

In this section, we propose a methodology based on our experience to solve
problems using discrete-valued functions such as linear interpolation. Our use
case is a simple one and we could have tested it for each value in the domain of
validity of the function. However, in practice, there are more complex discrete-
valued functions implemented with linear interpolation tables called lookup
tables. These functions are often called by other discrete-valued functions. The
number of cases to test can be the product of the cardinalities of the domains
of the individual functions. We propose to use the methodology shown below
in Figure 38 in order to prove those functions.

First, we need to isolate all the functions we want to prove together and
annotate the code with contracts specifying the behavior expected from each
function. Then, we can try to prove it in Frama-C via Why3. If the proof suc-
ceeds, we can stop. Otherwise, we can try to use the direct SMT-LIB output of
Frama-C WP with the SMT solvers. As we have seen, this approach removes
quantifiers and uses native mathematical operators. If it does not succeed, for
some goals (VC) we can try to prove them using abstract interpretation tools.
If this method does not succeed, we need to use a proof assistant to prove the
difficult goals.

8.5 related work

Our work concerns the formal verification of the square root function used
for embedded automotive applications and using fixed-point numbers. Embed-
ded software generally needs to be optimized because of the limited power of
the micro-controllers. We used deductive proof engines (Frama-C and GNAT-

108 deductive proof applied to a discrete-valued function

Figure 38: Methodology for proving Discrete-Valued Functions

prove) that create verification obligations discharged mostly automatically by
SMT solvers. For our application, we only need to calculate square root for
a predefined interval and the precision of our lookup table is enough to sat-
isfy the requirements. We could use other methods such as Newton method
but it would be more resources consuming. To the best of our knowledge, a
linearly-interpolated fixed-point square root algorithm has not been the subject
of formal verification work. In this section, we give a survey on some related
work about the correctness proof of square root algorithms for machine repre-
sentation and for standard mathematical functions in general.

The problem of the specification and validation of standard functions is also
discussed in [Kul07]. Even if a standard for representing floating-point num-
bers has been defined (IEEE 754), this standard does not provide requirements
for the specification of standard functions. This work is a systematic presen-
tation of ideas from other studies about the formal specification and testing
of standard mathematical functions. The author does not use automatic proof
assistance.

We think that the first floating-point algorithms verifications were motivated
by some hardware bugs such as the Pentium FDIV bug discovered in 1994.
For example, in 1998 Russinoff used the ACL2 theorem prover to verify the
square root algorithm in the K7 microprocessor [Rus98]. Later, in 1999 he also
verified the square root microcode of the K5 microprocessor [Rus99]. In 2000,
researchers from Intel Corporation verified the square root algorithm used in
an Intel processor with the Forte system that combines symbolic trajectory eval-
uation and theorem proving [AJK+

00]. In 2002, IBM presented a research paper
about the formal verification of the IBM Power4 processor that uses Chebyshev
polynomials to calculate square root [SG02]. The team used the ACL2 theo-
rem prover to mechanically verify the square root algorithm. In 2002, Bertot et
al. verified the divide-and-conquer part of Gnu MultiPrecision Library (GMP)’s
square root using the Coq proof assistant [BMZ02]. In 2003, Harrison published
his work about a square root algorithm verification using HOL Light [Har03].
This particular algorithm used for floating-point numbers was provided by In-
tel for a new 64-bit architecture called Itanium to replace some less efficient
generic libraries. The main benefits of using theorem proving for the verifica-

8.5 related work 109

tion of this algorithm were reliability and re-usability. Actually, its proof in-
volved Diophantine equations that were very tedious and error-prone to do by
hand. The author argues that all the proof process should be done in the same
tool – the proof assistant – because it uses a strict logical deduction process. In
2011, Shelekhov proposed a specification and verification of square root using
PVS [She11]. The paper concludes that synthesis of programs of the standard
functions such as floor, isqrt, and ilog2 is found to be less tedious than the deduc-
tive verification of these programs. In 2016, Oracle presented a research work
about the formal verification of a square root implementation [REN+

16]. They
used ACL2 and interval arithmetic to verify the low-level Verilog descriptions
of the floating-point division and square root implementations in the SPARC
ISA, and discovered new optimizations (lookup table reductions) while doing
so. In 2018, Intel Corporation presented a research paper about the proof of cor-
rectness of square root using a digit serial method (DSM) and a theorem prover
(HOL-Light) [FBE+

18]. A DSM is an algorithm that determines the digits of a
real number serially, starting with the leading digit. In 2019, Melquiond et al.
presented a paper about the formal verification of the GMP library’s algorithm
for calculating the square root of a 64-bit integer using Why3 [MRH19]. This
algorithm can be seen as a fixed-point arithmetic algorithm that implements
Newton method. The authors used the WhyML modeling language to imple-
ment GMP’s algorithm together with its specification and then the Why3 tool
to prove its correctness automatically. The resulting proved WhyML model was
then extracted to correct-by-construction C code, which was binary compatible
to the one from GMP. The authors reported that this work took a few days.
They also used ghost code in WhyML to simplify the verification conditions.

The studies about standard mathematical functions and in particular square
root specification and validation cited above are all platform-dependent. A new
approach proposed by Shilov et al. consisted in a platform-independent veri-
fication of standard mathematical functions. In [NDI+18], this approach was
applied to the square root function and combines a manual (pen-and-paper)
verification of a base case that proves the algorithm’s correctness with real
numbers to provide a proof-outline for the verification of the algorithm for ma-
chine numbers. The function implements Newton method and uses a lookup
table for initial approximations. The specification is done in terms of total cor-
rectness assertions with use of precise arithmetic and the mathematical square
root and the verification is done in Floyd-Hoare style. A proof of correctness of
the algorithm is given for a fixed-point arithmetic and for a floating-point arith-
metic. The primary purpose of the paper is to make explicit the properties of
the machine arithmetic that are sufficient to perform the verification presented
in the paper. Computer-aided implementation and validation of the proof us-
ing ACL2 was partially done, the complete ACL2 implementation was left for
future studies.

110 deductive proof applied to a discrete-valued function

8.6 conclusions

In this chapter, we presented our experiments with automatic deductive proof
of correctness applied to a discrete-valued function calculating a square root
by interpolation. We used Frama-C WP and GNATprove to prove the correct-
ness of the function, but we encountered some difficulties with the nonlinear
formula of the linear interpolation. Three non-standard approaches worked
well for us: the use of bit vectors in SPARK, the direct SMT-LIB quantifier-
free output of Frama-C and the static analysis with Astrée. bit vectors are well
supported in most modern SMT solvers and are well suited for problems that
involve modular arithmetic, but scaling is sometimes difficult. For our use case,
SMT requests without quantifiers performed and scaled better because there
was no need for bit vectors. Abstract Interpretation analysis gave more confi-
dence in proving that there was no overflow in the linear interpolation calculus.
We have proposed a methodology to use a combination of these different meth-
ods until the proof is done. We also show that using industrial use cases with
off-the-shelf tools does not always scale, but if we work with researchers, we
can find a solution and improve the tools.

Using deductive methods is very promising in an industrial context for
safety-critical applications. It can replace unit testing as shown in [MLD+

13]
and thus decrease cost while increasing quality. It is also an intellectual activity
that brings more satisfaction for engineers compared to testing.

9

C O N C L U S I O N A N D P E R S P E C T I V E S

Formal methods will never have a significant impact until they can be used
by people who don’t understand them.

— Tom Melham, University of Oxford

In this thesis, we targeted the introduction of formal methods in the auto-
motive embedded software development to bring more robustness and reliabil-
ity especially for safety-critical applications. Actually, the advent of automated
driving and autonomous vehicles can change the current methods and ways
of working and will require new ones. The increasing amount of software in
the car, along with the complexity of the functionalities it implements, makes
its validation challenging. Furthermore, public authorities could require in the
future the certification of the software as is already the case in the aviation and
railway industries. The liability of the car manufacturers could be engaged in
case of fatalities due to software bugs.

To answer these challenges some industries have brought formal methods
into their software development process. Their motivation was the exhaustive-
ness of these methods compared to testing, and the lesser effort necessary to
use them compared to thorough testing.

In this final chapter, we first summarize the key elements from our work
and review the fulfillment of the research objectives detailed in Chapter 1. We
detail in Section 9.2 its concrete results. Section 9.3 presents the future works
regarding both the integration of formal methods in the automotive industry
and wider scale research directions.

9.1 research objectives fulfillment

9.1.1 Research Objective 1: Industrial Applications of Formal Methods

In order to achieve this objective, we have illustrated the use of formal methods
in industries such as aviation and railway in Chapter 4. We based our study on
published papers and discussions with industrial companies and academics
that have worked with the industry.

111

112 conclusion and perspectives

In a certification context, these industries are required to provide enough ar-
guments about the safety of their systems. We identified that model checking was
rather convenient when using a model-based design approach to verify safety
properties about the entire system early. Deductive proof is also used for partic-
ular scenarios such as verifying handwritten C or ADA code but can require
a great amount of annotations. Our industrial feedback was that it provided
more satisfaction to people used to make tests before because it is a more in-
tellectual activity. Finally, static analysis based on abstract interpretation can be
used to prove the absence of run-time errors on the final code. This method is
recommended by ISO 26262 at all ASIL levels.

9.1.2 Research Objective 2: Experimental Application on Automotive Use Cases

Our second objective was experimental. We needed to apply formal methods
and tools in order to get an insight on how they can be used in an automotive
context and which tools could be accessible for a non-expert engineer.

We used SCADE to model a cruise controller and apply model checking to
it. Globally, specifying formal properties with SCADE turned out to be rather
easy and accessible for the engineers already familiar with a modeling tool. The
proof process worked rather well for this model, which contained only linear
arithmetic with Boolean and integer variables. Then we modeled another func-
tion using nonlinear arithmetic and floating point-numbers. Thus, we reached
the limits of the current industrial model checkers capabilities. For now, they
cannot cope with the nonlinear arithmetic and have a limited support for float-
ing point-numbers. We also identified some limitations for proving properties
containing long duration timers.

Our nonlinear model contained a square root calculation based on a lookup
table and linear interpolation. We used Frama-C WP to put into practice the
deductive proof method. This method is also easily accessible to the engineers
but we encountered some difficulties with the scaling of the method. As the
linear interpolation is a nonlinear function, Frama-C WP had some difficulties
to scale with our complete lookup table. It only handled a subset of the table.
We noted that using modern SMT solvers to solve this problem was rather
efficient instead of those provided with Frama-C. Another difficulty with this
method is the amount of annotations necessary for the proof. In an industrial
context, a part of these annotations could be generated automatically.

Finally, we used the abstract interpretation tools Astrée and Polyspace Code
Prover on handwritten code and on automatically generated code. In the in-
dustry, sound static analysis is often seen as producing too many false alarms
but we found that these tools have improved. For our code, there were few
false alarms that we fixed using the hints in Section 5.3.3. Polyspace has a more
user-friendly interface but is much slower than Astrée. On the other hand, As-
trée proposes more advanced options and can be fine-tuned to attain zero false
alarms.

9.2 concrete productions 113

9.1.3 Research Objective 3: Methodologies

To achieve our third objective, we used production specifications, models and
code to apply different methodologies with different methods and tools. In
order to be used by non-expert engineers, formal methods need to be integrated
in tools available for industrial use and with provided user support. Thus, even
a beginner can use them but the following prerequisite are important to take
into account:

• Model checking and Deductive proof require us to identify the properties
to be proved. Generally, a specification is present in the safety-critical
domain and can be used as a source for formal properties. A domain
expert is also necessary for the analysis of the invalid properties to point
whether the property, the model and/or the specification are wrong and
need to be fixed;

• Abstract interpretation tools do not need a specification because the proper-
ties to be verified are already integrated in the tool. However, the analysis
of the alerts can require some knowledge of the code, its internal/external
interactions and the programming language’s side effects.

9.2 concrete productions

This thesis permitted to bridge the gap between the industry and academy in
three aspects:

• By proposing a new algorithm improving the invariant generation, en-
abling the automatic proof of properties involving long-running timers,
which are present in most embedded software. This algorithm was inte-
grated in JKind on GitHub1 as proof of concept and tested successfully
at Groupe PSA and Collins Aerospace;

• By proposing a new coverage metrics for evaluating the quality of prop-
erties (specification) that are proved valid using model checking and mu-
tation techniques. This algorithm was integrated in JKind on GitHub2 as
proof of concept and tested successfully on a representative automotive
model;

• By providing researchers a concrete example of the square root function
used in the automotive domain to help the improvement of the automatic
deductive provers.

1 JKind, branch “invgen-timers” on GitHub: https://github.com/agacek/jkind
2 JKind, branch “mutation” on GitHub: https://github.com/v-todorov/jkind

https://github.com/agacek/jkind
https://github.com/v-todorov/jkind

114 conclusion and perspectives

9.3 future research directions

Our invariant generation technique and methodology using types could also be
applied to a more difficult problem: proving properties on nonlinear systems.
Modern SMT solvers take into account some nonlinear theories, but it is time
consuming to obtain models for complex nonlinear queries. Model checking
for nonlinear systems based on invariant generation could be the subject of a
future work.

Another subject of a future work can be to continue developing the link
between invariant generation and mutation proof. It consists in finding parts
of the code that are not covered by the automatically generated invariants and
highlight them to give an immediate feedback to the designer who will need
to strengthen the specification on those particular parts of the code. It will
improve the provability of the specification and its quality.

P U B L I C AT I O N S

2020 Conference papers
V. Todorov, S. Taha, and F. Boulanger, “Specification Quality Metrics
Based on Mutation and Inductive Incremental Model Checking” in Pro-
ceedings of the NASA Formal Methods - 12th International Symposium,
NFM 2020, Moffett Field, CA, USA, May 11-15, 2020, May 2020, vol.
12229, pp. 187–203, doi: 10.1007/978-3-030-55754-6_11.
https://hal-centralesupelec.archives-ouvertes.fr/hal-02956436

2019 Journal articles
V. Todorov, S. Taha, F. Boulanger, and A. Hernandez, “Proving Proper-
ties of Discrete-Valued Functions Using Deductive Proof: Application
to the Square Root” in Modeling and Analysis of Information Systems,
vol. 26, no. 4, pp. 520–533, Dec. 2019, doi: 10.18255/1818-1015-2019-4-
520-533.
https://www.mais-journal.ru/jour/article/view/1274/930

V. Todorov, S. Taha, F. Boulanger, and A. Hernandez, “Proving Proper-
ties of Discrete-Valued Functions Using Deductive Proof: Application
to the Square Root” in System Informatics, no. 14, pp. 45–54, Jul. 2019.
https://system-informatics.ru/en/article/248

Conference papers
V. Todorov, S. Taha, F. Boulanger, and A. Hernandez, “Improved Invari-
ant Generation for Industrial Software Model Checking of Time Prop-
erties” in IEEE 19th International Conference on Software Quality, Re-
liability and Security (QRS), Sofia, Bulgaria, Jul. 2019, pp. 334–341, doi:
10.1109/QRS.2019.00050.
https://hal-centralesupelec.archives-ouvertes.fr/hal-02322576

2018 Conference papers
V. Todorov, F. Boulanger, and S. Taha, “Formal Verification of Automo-
tive Embedded Software” in Proceedings of the 6th Conference on For-
mal Methods in Software Engineering, New York, NY, USA, Nov. 2018,
pp. 84–87, doi: 10.1145/3193992.3194003.
https://hal.archives-ouvertes.fr/hal-01768687

115

https://hal-centralesupelec.archives-ouvertes.fr/hal-02956436
https://www.mais-journal.ru/jour/article/view/1274/930
https://system-informatics.ru/en/article/248
https://hal-centralesupelec.archives-ouvertes.fr/hal-02322576
https://hal.archives-ouvertes.fr/hal-01768687

B I B L I O G R A P H Y

[Abr96] Jean-Raymond Abrial. The B-book : assigning programs to meanings.
Cambridge [u.a.] Cambridge Univ. Press, 1996.

[Abr18] Jean-Raymond Abrial. On B and Event-B: Principles, Success and
Challenges. pages 31–35. 2018.

[AFMW96] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard
Wilhelm. Cache behavior prediction by abstract interpretation.
Static Analysis, pages 52–66, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[AJK+
00] Mark D. Aagaard, Robert B. Jones, Roope Kaivola, Katherine R.

Kohatsu, and Carl-Johan H. Seger. Formal Verification of Iterative
Algorithms in Microprocessors. In Proceedings of the 37th Annual
Design Automation Conference, DAC ’00, pages 201–206, New York,
NY, USA, 2000. Association for Computing Machinery. event-
place: Los Angeles, California, USA.

[And03] Charles André. Semantics of S . S . M . (Safe State Machine).
Université de Nice-Sophia Antipolis/CNRS, April 2003.

[Are19] Nikos Arechiga. Specifying Safety of Autonomous Vehicles in Sig-
nal Temporal Logic. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 58–63, 2019.

[ARG+
20] Omar M. Alhawi, Herbert Rocha, Mikhail R. Gadelha, Lucas C.

Cordeiro, and Eddie Batista. Verification and refutation of C pro-
grams based on k-induction and invariant inference. International
Journal on Software Tools for Technology Transfer, May 2020.

[Bar00] John Barnes. The SPARK Way to Correctness is via Abstraction.
Ada Lett., XX(4):69–79, December 2000.

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to
Safety and Security. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[BBF+
00] Gérard Berry, Amar Bouali, Xavier Fornari, Emmanuel Ledinot,

Eric Nassor, and Robert de Simone. Esterel: A Formal Method
Applied to Avionic Software Development. Sci. Comput. Program.,
36(1):5–25, January 2000.

117

118 bibliography

[BCB18] Jaroslav Bendik, Ivana Cerná, and Nikola Beneš. Recursive On-
line Enumeration of All Minimal Unsatisfiable Subsets. In Shu-
vendu K. Lahiri and Chao Wang, editors, Automated Technology for
Verification and Analysis, pages 143–159, Cham, 2018. Springer In-
ternational Publishing.

[BCC97] Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M.
Clarke. Compositional Reasoning in Model Checking. In Revised
Lectures from the International Symposium on Compositionality: The
Significant Difference, COMPOS’97, pages 81–102, Berlin, Heidel-
berg, 1997. Springer-Verlag.

[BCC+
03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Lau-

rent Mauborgne, Antoine Miné, David Monniaux, and Xavier Ri-
val. A Static Analyzer for Large Safety-Critical Software. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, PLDI ’03, pages 196–207, New
York, NY, USA, May 2003. Association for Computing Machinery.
event-place: San Diego, California, USA.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 193–207.
Springer Berlin Heidelberg, 1999.

[BCD+
11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana

Hadarean, Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Ce-
sare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV ’11), volume 6806 of Lecture Notes in Com-
puter Science, pages 171–177. Springer, July 2011.

[BCD+
20] Abderrahmane Brahmi, Marie-Jo Carolus, David Delmas, Mo-

hamed Habib Essoussi, Pascal Lacabanne, Victoria Moya Lamiel,
Famantanantsoa Randimbivololona, and Jean Souyris. Industrial
use of a safe and efficient formal method based software engineer-
ing process in avionics. In 10th European Congress on Embedded Real
Time Software and Systems (ERTS 2020), Toulouse, France, January
2020.

[BCG83] R. Balzer, Jr. Cheatham, T. E., and C. Green. Software Technol-
ogy in the 1990’s: Using a New Paradigm. Computer, 16(11):39–45,
November 1983.

[BCHPM04] Yves Bertot, Pierre Castéran, Gérard (informaticien) Huet, and
Christine Paulin-Mohring. Interactive theorem proving and program
development : Coq’Art : the calculus of inductive constructions. Texts

bibliography 119

in theoretical computer science. Springer, Berlin, New York, 2004.
Données complémentaires http://coq.inria.fr.

[BCM+
89] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.

Symbolic Model Checking: 1020 States and Beyond. Information
and Computation, 98:142–170, 1989.

[BD05] Amar Bouali and Bernard Dion. Formal Verification for Model-
Based Development. In SAE Technical Paper 2005-01-0781, 2005.

[BDE+
18] Abderrahmane Brahmi, David Delmas, Mohamed Habib Essoussi,

Famantanantsoa Randimbivololona, Abdellatif Atki, and Thomas
Marie. Formalise to automate: deployment of a safe and cost-
efficient process for avionics software. In 9th European Congress
on Embedded Real Time Software and Systems (ERTS 2018), Toulouse,
France, January 2018.

[Ber19] Ryan Berryhill. Chasing Minimal Inductive Validity Cores in
Hardware Model Checking. October 2019.

[BFFFL+
11] Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pan-

tel, and Jean Souyris. Towards Formally Verified Optimizing Com-
pilation in Flight Control Software. In PPES 2011: Predictability and
Performance in Embedded Systems, volume 18 of OpenAccess Series in
Informatics, pages 59–68, Grenoble, France, March 2011. Schloss
Dagstuhl, Leibniz-Zentrum fuer Informatik.

[BG92] Gérard Berry and Georges Gonthier. The ESTEREL Synchronous
Programming Language: Design, Semantics, Implementation. Sci.
Comput. Program., 19(2):87–152, November 1992.

[BGWC18] Jaroslav Bendik, Elaheh Ghassabani, Michael Whalen, and Ivana
Cerná. Online Enumeration of All Minimal Inductive Validity
Cores. In Einar Broch Johnsen and Ina Schaefer, editors, Soft-
ware Engineering and Formal Methods, pages 189–204, Cham, 2018.
Springer International Publishing.

[BL99] Saddek Bensalem and Yassine Lakhnech. Automatic Generation
of Invariants. Formal Methods in System Design, 15(1):75–92, July
1999.

[BL05] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of
Unstructured Programs. SIGSOFT Softw. Eng. Notes, 31(1):82–87,
September 2005.

[BM08] Aaron R. Bradley and Zohar Manna. Property-directed incremen-
tal invariant generation. Formal Aspects of Computing, 20(4):379–
405, 2008.

120 bibliography

[BMZ02] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A Proof of
GMP Square Root. Journal of Automated Reasoning, 29(3-4):225–252,
2002.

[BNSV14] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet.
IKOS: A Framework for Static Analysis Based on Abstract Inter-
pretation. In Dimitra Giannakopoulou and Gwen Salaün, editors,
Software Engineering and Formal Methods: 12th International Confer-
ence, SEFM 2014, Grenoble, France, September 1-5, 2014. Proceedings,
pages 271–277. Springer International Publishing, Cham, 2014.

[Boc09] Thomas Bochot. Vérification par Model Checking des commandes de
vol : applicabilité industrielle et analyse de contre-exemples. PhD thesis,
2009. Thèse de doctorat dirigée par Wiels, Virginie et Waeselynck,
Hélène Informatique Toulouse, ISAE 2009 2009ESAE0003.

[Bou11] Jean-Louis Boulanger. Utilisations industrielles des techniques
formelles : interprétation abstraite, volume 1. Paris, hermès science
publications-lavoisier edition, June 2011.

[BP13] Timothy Bourke and Marc Pouzet. ZéLus: A Synchronous Lan-
guage with ODEs. In Proceedings of the 16th International Confer-
ence on Hybrid Systems: Computation and Control, HSCC ’13, pages
113–118, New York, NY, USA, 2013. Association for Computing
Machinery. event-place: Philadelphia, Pennsylvania, USA.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM Project: Debug-
ging System Software via Static Analysis. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 1–3, New York, NY, USA, 2002. Asso-
ciation for Computing Machinery. event-place: Portland, Oregon.

[Bra11] Aaron R. Bradley. SAT-Based Model Checking without Unrolling.
In Ranjit Jhala and David Schmidt, editors, Verification, Model
Checking, and Abstract Interpretation: 12th International Conference,
VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings,
pages 70–87. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Bra12] Aaron R. Bradley. Understanding IC3. In Alessandro Cimatti and
Roberto Sebastiani, editors, Theory and Applications of Satisfiability
Testing – SAT 2012: 15th International Conference, Trento, Italy, June
17-20, 2012. Proceedings, pages 1–14. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Trans. Comput., 35(8):677–691, August 1986.

bibliography 121

[BST+
10] Clark Barrett, Aaron Stump, Cesare Tinelli, Sascha Boehme, David

Cok, David Deharbe, Bruno Dutertre, Pascal Fontaine, Vijay
Ganesh, Alberto Griggio, Jim Grundy, Paul Jackson, Albert Oliv-
eras, Sava Krstić, Michal Moskal, Leonardo De Moura, Roberto
Sebastiani, To David Cok, and Jochen Hoenicke. The SMT-LIB
Standard: Version 2.0. Technical report, 2010.

[BVWW10] Thomas Bochot, Pierre Virelizier, Hélène Waeselynck, and Virginie
Wiels. Paths to Property Violation: A Structural Approach for An-
alyzing Counter-Examples. In 2010 IEEE 12th International Sympo-
sium on High Assurance Systems Engineering, pages 74–83, Novem-
ber 2010.

[BW16] Steffen Beringer and Heike Wehrheim. Verification of AUTOSAR
Software Architectures with Timed Automata. In Maurice H. ter
Beek, Stefania Gnesi, and Alexander Knapp, editors, Critical Sys-
tems: Formal Methods and Automated Verification: Joint 21st Interna-
tional Workshop on Formal Methods for Industrial Critical Systems
and 16th International Workshop on Automated Verification of Critical
Systems, FMICS-AVoCS 2016, Pisa, Italy, September 26-28, 2016, Pro-
ceedings, pages 189–204. Springer International Publishing, Cham,
2016.

[Bü17] David Bühler. EVA, an Evolved Value Analysis for Frama-C : structur-
ing an abstract interpreter through value and state abstractions. PhD
thesis, 2017.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977.
ACM.

[CC99] Patrick Cousot and Radhia Cousot. Refining Model Checking by
Abstract Interpretation. Automated Software Engineering, 6(1):69–95,
January 1999.

[CC10] Patrick Cousot and Radhia Cousot. A gentle introduction to for-
mal verification of computer systems by abstract interpretation.
In J. Esparza, O. Grumberg, and M. Broy, editors, Logics and Lan-
guages for Reliability and Security, NATO Science Series III: Com-
puter and Systems Sciences, pages 1–29. IOS Press, 2010.

[CCF+
05] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne,

Antoine Miné, David Monniaux, and Xavier Rival. The ASTREÉ

122 bibliography

Analyzer. In Mooly Sagiv, editor, Programming Languages and Sys-
tems, pages 21–30, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[CCIM18] Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and
Alain Mebsout. Alt-Ergo 2.2. In SMT Workshop: International Work-
shop on Satisfiability Modulo Theories, Oxford, United Kingdom, July
2018.

[CCM09] Géraud Canet, Pascal Cuoq, and Benjamin Monate. A Value Anal-
ysis for C Programs. In Proceedings of the 2009 Ninth IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation,
SCAM ’09, pages 123–124, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and Synthe-
sis of Synchronization Skeletons Using Branching-Time Temporal
Logic. In Logic of Programs, Workshop, pages 52–71, London, UK,
UK, 1982. Springer-Verlag.

[CFJ93] Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. Exploiting
Symmetry In Temporal Logic Model Checking. In Proceedings of
the 5th International Conference on Computer Aided Verification, CAV
’93, pages 450–462, Berlin, Heidelberg, 1993. Springer-Verlag.

[CG12] Alessandro Cimatti and Alberto Griggio. Software Model Check-
ing via IC3. In P. Madhusudan and Sanjit A. Seshia, editors,
Computer Aided Verification: 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings, pages 277–293.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-Guided Abstraction Refinement.
In E. Allen Emerson and Aravinda Prasad Sistla, editors, Com-
puter Aided Verification, pages 154–169, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

[CGM+
12] Darren Cofer, Andrew Gacek, Steven Miller, Michael W. Whalen,

Brian LaValley, and Lui Sha. Compositional Verification of Archi-
tectural Models. In Proceedings of the 4th International Conference on
NASA Formal Methods, NFM’12, pages 126–140, Berlin, Heidelberg,
2012. Springer-Verlag.

[CGMT13] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano
Tonetta. IC3 Modulo Theories via Implicit Predicate Abstraction.
CoRR, abs/1310.6847, 2013.

bibliography 123

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma,
and Roberto Sebastiani. The MathSAT5 SMT Solver. In Nir Piter-
man and Scott A. Smolka, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 93–107, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[Cha00] Roderick Chapman. Industrial Experience with SPARK. Ada Lett.,
XX(4):64–68, December 2000.

[Cha14] A. Champion. Collaboration of formal techniques for the verification
of safety properties over transition systems. Theses, ISAE - Institut
Supérieur de l’Aéronautique et de l’Espace, January 2014.

[CHHL13] Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford.
Software Certification: Methods and Tools (Dagstuhl Seminar
13051). Dagstuhl Reports, 3(1):111–148, 2013.

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInter-
pol: An Interpolating SMT Solver. In Alastair Donaldson and
David Parker, editors, Model Checking Software, pages 248–254,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[CKKV01] Hana Chockler, Orna Kupferman, Robert P. Kurshan, and
Moshe Y. Vardi. A Practical Approach to Coverage in Model
Checking. In Gérard Berry, Hubert Comon, and Alain Finkel, ed-
itors, Computer Aided Verification, pages 66–78, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[Cla07] K. Claessen. A Coverage Analysis for Safety Property Lists. In
Formal Methods in Computer Aided Design (FMCAD’07), pages 139–
145, November 2007.

[CM14a] Darren Cofer and Steven Miller. DO-333 Certification Case Stud-
ies. In Julia M. Badger and Kristin Yvonne Rozier, editors, NASA
Formal Methods: 6th International Symposium, NFM 2014, Houston,
TX, USA, April 29 – May 1, 2014. Proceedings, pages 1–15. Springer
International Publishing, Cham, 2014.

[CM14b] Darren Cofer and Steven P. Miller. Formal Methods Case Studies
for DO-333. Technical report, April 2014.

[CMST16] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare
Tinelli. The Kind 2 Model Checker. In Swarat Chaudhuri and
Azadeh Farzan, editors, Computer Aided Verification: 28th Interna-
tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II, pages 510–517. Springer International Publish-
ing, Cham, 2016.

124 bibliography

[Cof10] Darren Cofer. Model Checking: Cleared for Take Off. In Jaco
van de Pol and Michael Weber, editors, Model Checking Software:
17th International SPIN Workshop, Enschede, The Netherlands, Septem-
ber 27-29, 2010. Proceedings, pages 76–87. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE:
A Declarative Language for Real-time Programming. In Proceed-
ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’87, pages 178–188, New York, NY,
USA, 1987. ACM.

[CPP17] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. Scade 6: A
Formal Language for Embedded Critical Software Development.
In TASE 2017 - 11th International Symposium on Theoretical Aspects
of Software Engineering, pages 1–10, Nice, France, September 2017.

[CS14] Roderick Chapman and Florian Schanda. Are We There Yet? 20

Years of Industrial Theorem Proving with SPARK. 2014.

[CWM08] Darren Cofer, Michael W. Whalen, and Steven P. Miller. Software
Model Checking for Avionics Systems. In Proceedings of the 27th
Digital Avionics Systems Conference (DASC’08), St. Paul, MN, Octo-
ber 2008. IEEE.

[Del12] David Delmas. Fan-C, a Frama-C plug-in for data flow verification.
2012.

[DFJ+18] Claire Dross, Guillaume Foliard, Théo Jouanny, Lionel Matias, Stu-
art Matthews, Jean-Marc Mota, Yannick Moy, Pascal Pignard, and
Romain Soulat. Climbing the Software Assurance Ladder - Prac-
tical Formal Verification for Reliable Software. Oxford, UK, July
2018.

[DGP+
09] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim

Tekkal, and Franck Védrine. Towards an Industrial Use of FLUC-
TUAT on Safety-Critical Avionics Software. In Proceedings of the
14th International Workshop on Formal Methods for Industrial Crit-
ical Systems, FMICS ’09, pages 53–69, Berlin, Heidelberg, 2009.
Springer-Verlag.

[Dij75] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and
Formal Derivation of Programs. Commun. ACM, 18(8):453–457,
August 1975.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Auto-
mated Techniques for Formal Software Verification. Trans. Comp.-
Aided Des. Integ. Cir. Sys., 27(7):1165–1178, July 2008.

bibliography 125

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A Ma-
chine Program for Theorem-Proving. Commun. ACM, 5(7):394–397,
July 1962. Place: New York, NY, USA Publisher: Association for
Computing Machinery.

[DLS06] S. Demri, F. Laroussinie, and Ph Schnoebelen. A parametric anal-
ysis of the state-explosion problem in model checking. Journal of
Computer and System Sciences, 72(4):547 – 575, 2006.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin,
Heidelberg, 2008. Springer-Verlag.

[DMLK+
16] Stéphane Duprat, Victoria MOYA LAMIEL, Florent Kirchner, Loïc

Correnson, and David Delmas. Spreading Static Analysis with
Frama-C in Industrial Contexts. In 8th European Congress on Em-
bedded Real Time Software and Systems (ERTS 2016), TOULOUSE,
France, January 2016.

[DS07] David Delmas and Jean Souyris. Astrée: From Research to Indus-
try. In Proceedings of the 14th International Conference on Static Anal-
ysis, SAS’07, pages 437–451, Berlin, Heidelberg, 2007. Springer-
Verlag.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem,
editors, Computer Aided Verification, pages 737–744, Cham, 2014.
Springer International Publishing.

[EFJ10] J. F. Etienne, S. Fechter, and E. Juppeaux. Using Simulink Design
Verifier for Proving Behavioral Properties on a Complex Safety
Critical System in the Ground Transportation Domain. In Marc
Aiguier, Francis Bretaudeau, and Daniel Krob, editors, Complex
Systems Design & Management: Proceedings of the First International
Conference on Complex System Design & Management CSDM 2010,
pages 61–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[FBE+
18] W. E. Ferguson, J. Bingham, L. Erkök, J. R. Harrison, and J. Leslie-

Hurd. Digit Serial Methods with Applications to Division and
Square Root. IEEE Transactions on Computers, 67(3):449–456, March
2018.

[FCS18] Pietro Ferrara, Agostino Cortesi, and Fausto Spoto. CIL to Java-
Bytecode Translation for Static Analysis Leveraging. In Proceedings
of the 6th Conference on Formal Methods in Software Engineering, For-
maliSE ’18, pages 40–49, New York, NY, USA, 2018. Association
for Computing Machinery. event-place: Gothenburg, Sweden.

126 bibliography

[FFS01] Cormac Flanagan, Cormac Flanagan, and James B. Saxe. Avoid-
ing Exponential Explosion: Generating Compact Verification Con-
ditions. SIGPLAN Not., 36(3):193–205, January 2001.

[FLR17] Kathleen Fisher, John Launchbury, and Raymond Richards. The
HACMS program: using formal methods to eliminate exploitable
bugs. Philosophical transactions. Series A, Mathematical, physical, and
engineering sciences, 375(2104):20150401, October 2017.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – Where
Programs Meet Provers. In ESOP’13 22nd European Symposium on
Programming, volume 7792, Rome, Italy, March 2013. Springer.

[FQ03] Cormac Flanagan and Shaz Qadeer. Assume-Guarantee Model
Checking. Technical report, 2003.

[GBPG08] Mihaela Gheorghiu Bobaru, Corina S. Păsăreanu, and Dimitra
Giannakopoulou. Automated Assume-Guarantee Reasoning by
Abstraction Refinement. In Aarti Gupta and Sharad Malik, edi-
tors, Computer Aided Verification: 20th International Conference, CAV
2008 Princeton, NJ, USA, July 7-14, 2008 Proceedings, pages 135–148.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[GBW+
18] Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and

Elaheh Ghassabani. The JKind Model Checker. In Hana Chock-
ler and Georg Weissenbacher, editors, Computer Aided Verification,
pages 20–27, Cham, 2018. Springer International Publishing.

[GGW16] Elaheh Ghassabani, Andrew Gacek, and Michael W. Whalen. Ef-
ficient Generation of Inductive Validity Cores for Safety Proper-
ties. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, pages
314–325, New York, NY, USA, 2016. ACM.

[GGW+
17] Elaheh Ghassabani, Andrew Gacek, Michael W. Whalen, Mats P. E.

Heimdahl, and Lucas Wagner. Proof-based Coverage Metrics for
Formal Verification. In Proceedings of the 32Nd IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2017,
pages 194–199, Piscataway, NJ, USA, November 2017. IEEE Press.
event-place: Urbana-Champaign, IL, USA.

[GKD07] Daniel Große, Ulrich Kühne, and Rolf Drechsler. Estimating Func-
tional Coverage in Bounded Model Checking. In Proceedings of
the Conference on Design, Automation and Test in Europe, DATE
’07, pages 1176–1181, San Jose, CA, USA, 2007. EDA Consortium.
event-place: Nice, France.

bibliography 127

[GL94] Orna Grumberg and David E. Long. Model Checking and Mod-
ular Verification. ACM Trans. Program. Lang. Syst., 16(3):843–871,
May 1994. Place: New York, NY, USA Publisher: Association for
Computing Machinery.

[GNP18] Dimitra Giannakopoulou, Kedar S. Namjoshi, and Corina S.
Păsăreanu. Compositional Reasoning. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors,
Handbook of Model Checking, pages 345–383. Springer International
Publishing, Cham, 2018.

[GP93] Patrice Godefroid and Didier Pirottin. Refining dependencies im-
proves partial-order verification methods (extended abstract). In
Costas Courcoubetis, editor, Computer Aided Verification, pages 438–
449, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[GP15] Eric Goubault and Sylvie Putot. A Zonotopic Framework for Func-
tional Abstractions. Form. Methods Syst. Des., 47(3):302–360, De-
cember 2015.

[GPC04] Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M.
Cobleigh. Assume-Guarantee Verification of Source Code with
Design-Level Assumptions. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages 211–220, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[Gri87] David Gries. The Science of Programming. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1st edition, 1987.

[GWG17] Elaheh Ghassabani, Michael Whalen, and Andrew Gacek. Efficient
Generation of All Minimal Inductive Validity Cores. In Proceedings
of the 17th Conference on Formal Methods in Computer-Aided Design,
FMCAD ’17, pages 31–38, Austin, TX, November 2017. FMCAD
Inc. event-place: Vienna, Austria.

[GWGH19] E. Ghassabani, M. Whalen, A. Gacek, and M. Heimdahl. Inductive
Validity Cores. IEEE Transactions on Software Engineering, pages 1–
1, January 2019.

[HAAS+20] Alexandra Halchin, Yamine Ait-Ameur, Neeraj Kumar Singh,
Julien Ordioni, and Abderrahmane Feliachi. Handling B models
in the PERF integrated verification framework: Formalised and
certified embedding. Science of Computer Programming, 196:102477,
2020.

[HAK+
16] Ashlie B. Hocking, M. Anthony Aiello, John C. Knight, Shinichi

Shiraishi, Masahiro Yamaura, and Nikos Arechiga. Proving Prop-

128 bibliography

erties of Simulink Models that Include Discrete Valued Functions.
May 2016.

[HAKA16] Ashlie B. Hocking, M. Anthony Aiello, John C. Knight, and Nikos
Aréchiga. Proving Critical Properties of Simulink Models. In Sym-
posium Theme: Mission Resilience with High Assurance Systems Engi-
neering, Orlando, Florida, USA, 2016.

[HAKA17] Ashlie B. Hocking, M. Anthony Aiello, John C. Knight, and Nikos
Aréchiga. Input Space Partitioning to Enable Massively Parallel
Proof. In Clark Barrett, Misty Davies, and Temesghen Kahsai, edi-
tors, NASA Formal Methods: 9th International Symposium, NFM 2017,
Moffett Field, CA, USA, May 16-18, 2017, Proceedings, pages 139–145.
Springer International Publishing, Cham, 2017.

[Har97] Luddy Harrison. Can abstract interpretation become a main-
stream compiler technology? In Pascal Van Hentenryck, editor,
Static Analysis, pages 395–395, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg.

[Har03] John Harrison. Formal Verification of Square Root Algorithms.
Formal Methods in System Design, 22(2):143–153, March 2003.

[HB12] Kryštof Hoder and Nikolaj Bjørner. Generalized Property Directed
Reachability. In Proceedings of the 15th International Conference on
Theory and Applications of Satisfiability Testing, SAT’12, pages 157–
171, Berlin, Heidelberg, 2012. Springer-Verlag.

[HCRP91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pi-
laud. The synchronous dataflow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[HKAS14] A. B. Hocking, J. Knight, M. A. Aiello, and S. Shiraishi. Proving
Model Equivalence in Model Based Design. In Software Reliabil-
ity Engineering Workshops (ISSREW), 2014 IEEE International Sym-
posium on, pages 18–21, November 2014.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous ob-
servers and the verification of reactive systems. In M. Nivat, C. Rat-
tray, T. Rus, and G. Scollo, editors, Third Int. Conf. on Algebraic
Methodology and Software Technology, AMAST’93, Twente, June 1993.
Workshops in Computing, Springer Verlag.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming.
Commun. ACM, 12(10):576–580, October 1969.

[Hob15] Chris Hobbs. Embedded Software Development for Safety-Critical Sys-
tems. Auerbach Publications, USA, 2015.

bibliography 129

[HT08] George Edward Hagen and Cesare Tinelli. Scaling Up the Formal
Verification of Lustre Programs with SMT-Based Techniques. In
2008 Formal Methods in Computer-Aided Design, pages 1–9, Novem-
ber 2008.

[Ing19] Félix Ingrand. Recent Trends in Formal Validation and Verification
of Autonomous Robots Software. In IEEE International Conference
on Robotic Computing, Proceeedings of the Third IEEE International
Conference on Robotic Computing (IRC), Naples, Italy, February
2019.

[ISO18] ISO. ISO 26262, Road vehicles - Functional safety. ISO, Geneva,
Switzerland, 2018. Type: Norm.

[JDK+
14] Xiaoqing Jin, Jyotirmoy Deshmukh, James Kapinski, Koichi Ueda,

and Ken Butts. Challenges of Applying Formal Methods to Au-
tomotive Control Systems. 2014 NATIONAL WORKSHOP ON
TRANSPORTATION CYBER-PHYSICAL SYSTEMS PROGRAM
COMMITTEE, 2014.

[JM97] J. M. Jazequel and B. Meyer. Design by contract: the lessons of
Ariane. Computer, 30(1):129–130, January 1997.

[KEH+
09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. SeL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA,
2009. Association for Computing Machinery. event-place: Big Sky,
Montana, USA.

[KGT11] Temesghen Kahsai, Yeting Ge, and Cesare Tinelli. Instantiation-
based Invariant Discovery. In Proceedings of the Third Interna-
tional Conference on NASA Formal Methods, NFM’11, pages 192–206,
Berlin, Heidelberg, 2011. Springer-Verlag.

[KGTW12] Temesghen Kahsai, Pierre-Loïc Garoche, Cesare Tinelli, and Mike
Whalen. Incremental Verification with Mode Variable Invariants in
State Machines. In Proceedings of the 4th International Conference on
NASA Formal Methods, NFM’12, pages 388–402, Berlin, Heidelberg,
2012. Springer-Verlag.

[KKP+
15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-

noles, and Boris Yakobowski. Frama-C: A software analysis per-
spective. Formal Aspects of Computing, 27(3):573–609, 2015.

130 bibliography

[KMMS16] Nikolai Kosmatov, Claude Marché, Yannick Moy, and Julien Sig-
noles. Static versus Dynamic Verification in Why3, Frama-C and
SPARK 2014. In 7th International Symposium on Leveraging Appli-
cations, volume 9952 of Lecture Notes in Computer Science, pages
461–478, Corfu, Greece, October 2016. Springer.

[Kss+19] Daniel Kästner, bernard schmidt, maximilian schlund, Laurent
Mauborgne, Stephan Wilhelm, and Christian Ferdinand. Analyze
This! Sound Static Analysis for Integration Verification of Large-
Scale Automotive Software. 2019.

[KT14] Daniel Kroening and Michael Tautschnig. CBMC – C Bounded
Model Checker. In Erika Ábrahám and Klaus Havelund, editors,
Tools and Algorithms for the Construction and Analysis of Systems,
pages 389–391, Berlin, Heidelberg, 2014. Springer Berlin Heidel-
berg.

[Kul07] V. V. Kuliamin. Standardization and Testing of Implementations
of Mathematical Functions in Floating Point Numbers. Program.
Comput. Softw., 33(3):154–173, May 2007.

[Kur08] R. P. Kurshan. Verification Technology Transfer. In Orna Grum-
berg and Helmut Veith, editors, 25 Years of Model Checking, pages
46–64. Springer-Verlag, Berlin, Heidelberg, 2008.

[LA04] C. Lattner and V. Adve. LLVM: a compilation framework for life-
long program analysis transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pages 75–86,
2004.

[LAC+
17] Lucas Wagner, Alain Mebsout, Cesare Tinelli, Darren Cofer, and

Konrad Slind. Qualification of a Model Checker for Avionics Soft-
ware Verification. 2017.

[LBCG16] Jing Liu, John D. Backes, Darren Cofer, and Andrew Gacek. From
Design Contracts to Component Requirements Verification. In
Sanjai Rayadurgam and Oksana Tkachuk, editors, NASA Formal
Methods: 8th International Symposium, NFM 2016, Minneapolis, MN,
USA, June 7-9, 2016, Proceedings, pages 373–387. Springer Interna-
tional Publishing, Cham, 2016.

[LDPM17] Thierry Lecomte, David Deharbe, Etienne Prun, and Erwan Mot-
tin. Applying a Formal Method in Industry: A 25-Year Trajectory.
In Simone Cavalheiro and José Fiadeiro, editors, Formal Methods:
Foundations and Applications, pages 70–87, Cham, 2017. Springer
International Publishing.

bibliography 131

[LM10] K. Rustan M. Leino and Michał Moskal. Usable Auto-Active Ver-
ification. Technical report, Research in Software Engineering Mi-
crosoft Research, Redmond, WA, USA, November 2010.

[LMR+
98] Ph Lacan, Jordi Monfort, Le Vinh Quy Ribal, Alina Deutsch, and

Anne Gonthier. The software reliability verification process: The
ariane 5 example. 1998.

[LSP07] Thierry Lecomte, Thierry Servat, and Guilhem Pouzancre. Formal
Methods in Safety-Critical Railway Systems. 2007.

[Mau04] Laurent Mauborgne. Astrée: Verification of Absence of Runtime
Error. In Renè Jacquart, editor, Building the Information Society: IFIP
18th World Computer Congress Topical Sessions 22–27 August 2004
Toulouse, France, pages 385–392. Springer US, Boston, MA, 2004.

[MB05] Bruno Marre and Benjamin Blanc. Test Selection Strategies for
Lustre Descriptions in GATeL. Electron. Notes Theor. Comput. Sci.,
111(C):93–111, January 2005.

[MBF18] Alin Mihalache, Fabrice Bedoucha, and Yann-Mikaël Foll. CO-
EXISTENCE OF CRITICAL AND NON-CRITICAL SOFTWARE
MODULES USING PARTITIONING AND SUPERVISION. In Con-
grès Lambda Mu 21, “ Maîtrise des risques et transformation numérique
: opportunités et menaces ”, Reims, France, October 2018.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, USA, 1993.

[McM05] K. L. McMillan. Applications of Craig Interpolants in Model
Checking. In Nicolas Halbwachs and Lenore D. Zuck, editors,
Tools and Algorithms for the Construction and Analysis of Systems,
pages 1–12, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[McM06] Kenneth L. McMillan. Lazy Abstraction with Interpolants. In
Thomas Ball and Robert B. Jones, editors, Computer Aided Verifica-
tion, pages 123–136, Berlin, Heidelberg, 2006. Springer Berlin Hei-
delberg.

[Mil09] Steven P. Miller. Bridging the Gap Between Model-Based De-
velopment and Model Checking. In Stefan Kowalewski and
Anna Philippou, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 443–453, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[MLD+
13] Yannick Moy, Emmanuel Ledinot, Herve Delseny, Virginie Wiels,

and Benjamin Monate. Testing or Formal Verification: DO-178C
Alternatives and Industrial Experience. IEEE Softw., 30(3):50–57,
May 2013.

132 bibliography

[Moy09] Yannick Moy. [Frama-c-discuss] Frama-C vs Ada/SPARK, Novem-
ber 2009.

[Moy10] Yannick Moy. Static analysis is not just for finding bugs. 23:5–8,
2010.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer-Verlag New York, Inc., New York, NY,
USA, 1995.

[MR05] Laurent Mauborgne and Xavier Rival. Trace Partitioning in Ab-
stract Interpretation Based Static Analyzers. In Mooly Sagiv, ed-
itor, Programming Languages and Systems, pages 5–20, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

[MRH19] Guillaume Melquiond and Raphaël Rieu-Helft. Formal Verifica-
tion of a State-of-the-Art Integer Square Root. In Sylvie Boldo and
Martin Langhammer, editors, 2019 IEEE 26th Symposium on Com-
puter Arithmetic (ARITH), pages 183–186, Kyoto, Japan, June 2019.

[MSS03] João P. Marques Silva and Karem A. Sakallah. Grasp—A New
Search Algorithm for Satisfiability. In Andreas Kuehlmann, editor,
The Best of ICCAD: 20 Years of Excellence in Computer-Aided Design,
pages 73–89. Springer US, Boston, MA, 2003.

[MWGH16] A. Murugesan, M. W. Whalen, E. Ghassabani, and M. P. E. Heim-
dahl. Complete Traceability for Requirements in Satisfaction Ar-
guments. In 2016 IEEE 24th International Requirements Engineering
Conference (RE), pages 359–364, September 2016.

[NDI+18] Nikolay V. Shilov, Dmitry A. Kondratyev, Igor S. Anureev, Eugene
V. Bodin, and Alexei V. Promsky. Platform-independent Specifica-
tion and Verification of the Standard Mathematical Square Root
Function. Modeling and Analysis of Information Systems, 25(6):637–
666, 2018.

[NMRW02] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley
Weimer. CIL: Intermediate Language and Tools for Analysis
and Transformation of C Programs. In R. Nigel Horspool, edi-
tor, Compiler Construction, pages 213–228, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[noa15] Tech.AD. Conference Proceedings, Berlin, February 2015.

[noa20] Infer Static Analyzer, May 2020. Page Version ID: 954772395.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS 2283.
Springer, 1 edition, 2002.

bibliography 133

[OBC18] Julien ORDIONI, Nicolas BRETON, and Jean-Louis Colaço. HLL
v.2.7 Modelling Language Specification. Other STF-16-01805,
RATP, May 2018.

[Our15] Alain Ourghanlian. Evaluation of static analysis tools used to as-
sess software important to nuclear power plant safety. Nuclear
Engineering and Technology, 47(2):212–218, March 2015.

[PDBC+
15] Marielle Petit-Doche, Nicolas Breton, Roméo Courbis, Yoann

Fonteneau, and Matthias Güdemann. Formal Verification of In-
dustrial Critical Software. In Formal Methods for Industrial Critical
Systems - 20th International Workshop, FMICS 2015, Oslo, Norway,
June 22-23, 2015 Proceedings, pages 1–11, 2015.

[PDH99] Corina S. Păsăreanu, Matthew B. Dwyer, and Michael Huth.
Assume-Guarantee Model Checking of Software: A Comparative
Case Study. In Dennis Dams, Rob Gerth, Stefan Leue, and Mieke
Massink, editors, Theoretical and Practical Aspects of SPIN Model
Checking: 5th and 6th International SPIN Workshops Trento, Italy,
July 5, 1999 Toulouse, France, September 21 and 24, 1999 Proceed-
ings, pages 168–183. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1999.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer Science,
SFCS ’77, pages 46–57, USA, 1977. IEEE Computer Society.

[Pnu89] A. Pnueli. In Transition from Global to Modular Temporal Rea-
soning about Programs. In Logics and Models of Concurrent Systems,
pages 123–144. Springer-Verlag, Berlin, Heidelberg, 1989.

[Poh10] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer Publishing Company, Incorporated, 1st edi-
tion, 2010.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concur-
rent systems in CESAR. In Mariangiola Dezani-Ciancaglini and
Ugo Montanari, editors, International Symposium on Programming:
5th Colloquium Turin, April 6–8, 1982 Proceedings, pages 337–351.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1982.

[REN+
16] D. L. Rager, J. Ebergen, D. Nadezhin, A. Lee, C. K. Chau, and

B. Selfridge. Formal verification of division and square root imple-
mentations, an Oracle report. In 2016 Formal Methods in Computer-
Aided Design (FMCAD), pages 149–152, October 2016.

134 bibliography

[RSB+
99] Famantanantsoa Randimbivololona, Jean Souyris, Patrick Baudin,

Anne Pacalet, Jacques Raguideau, and Dominique Schoen. Apply-
ing Formal Proof Techniques to Avionics Software: A Pragmatic
Approach. In Proceedings of the Wold Congress on Formal Methods
in the Development of Computing Systems-Volume II, FM ’99, pages
1798–1815, London, UK, UK, 1999. Springer-Verlag.

[Rus95] John Rushby. Formal Methods and their Role in the Certification
of Critical Systems. Technical Report SRI-CSL-95-1, Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, March 1995.
Also available as NASA Contractor Report 4673, August 1995, and
to be issued as part of the FAA Digital Systems Validation Hand-
book (the guide for aircraft certification).

[Rus98] David M. Russinoff. A Mechanically Checked Proof of IEEE Com-
pliance of the Floating Point Multiplication, Division and Square
Root Algorithms of the AMD-K7™ Processor. LMS Journal of Com-
putation and Mathematics, 1:148–200, 1998.

[Rus99] David M. Russinoff. A Mechanically Checked Proof of Correctness
of the AMD K5 Floating Point Square Root Microcode. Formal
Methods in System Design, 14(1):75–125, January 1999.

[SAB08] N. V. Shilov, I. S. Anureev, and E. V. Bodin. Generation of correct-
ness conditions for imperative programs. Programming and Com-
puter Software, 34(6):307–321, November 2008.

[Sai00] Hassen Saidi. Model Checking Guided Abstraction and Analy-
sis. In Jens Palsberg, editor, Static Analysis, pages 377–396, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

[SAP+
05] Sayanlan Das, Ansuman Banerjee, Prasenjit Basu, Pallab Dasgupta,

P. P. Chakrabarti, Chunduri Rama Mohan, and L. Fix. Formal
methods for analyzing the completeness of an assertion suite
against a high-level fault model. In 18th International Conference
on VLSI Design held jointly with 4th International Conference on Em-
bedded Systems Design, pages 201–206, January 2005.

[Sch19] Florian Schanda. SPARK in an automotive context, Frama-C &
SPARK Day 2019, Paris, June 2019.

[SD07] Jean Souyris and David Delmas. Experimental Assessment of As-
trée on Safety-Critical Avionics Software. pages 479–490. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[SFF04] Jean Souyris and Denis Favre-Felix. Proof of properties in avion-
ics. In Building the Information Society, IFIP 18th World Computer

bibliography 135

Congress, Topical Sessions, 22-27 August 2004, Toulouse, France, pages
527–535, 2004.

[SG02] Jun Sawada and Ruben Gamboa. Mechanical Verification of a
Square Root Algorithm Using Taylor’s Theorem. In Mark D. Aa-
gaard and John W. O’Leary, editors, Formal Methods in Computer-
Aided Design, pages 274–291, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[She11] V. I. Shelekhov. Verification and synthesis of addition programs
under the rules of correctness of statements. Automatic Control and
Computer Sciences, 45(7):421–427, December 2011.

[SWDD09] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny.
Formal Verification of Avionics Software Products. In Proceedings
of the 2Nd World Congress on Formal Methods, FM ’09, pages 532–546,
Berlin, Heidelberg, 2009. Springer-Verlag.

[Tin10] Cesare Tinelli. Foundations of Satisfiability Modulo Theories. In
Anuj Dawar and Ruy de Queiroz, editors, Logic, Language, Infor-
mation and Computation: 17th International Workshop, WoLLIC 2010,
Brasilia, Brazil, July 6-9, 2010. Proceedings, pages 58–58. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[Tip95] Frank Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 3:121–189, 1995.

[TNW+
10] Max Thalmaier, Minh D. Nguyen, Markus Wedler, Dominik Stof-

fel, Jörg Bormann, and Wolfgang Kunz. Analyzing k-Step In-
duction to Compute Invariants for SAT-Based Property Checking.
In Proceedings of the 47th Design Automation Conference, DAC ’10,
pages 176–181, New York, NY, USA, 2010. Association for Com-
puting Machinery. event-place: Anaheim, California.

[TTBH19a] Vassil Todorov, Safouan Taha, Frédéric Boulanger, and Armando
Hernandez. Improved Invariant Generation for Industrial Soft-
ware Model Checking of Time Properties. In 2019 IEEE 19th In-
ternational Conference on Software Quality, Reliability and Security
(QRS), pages 334–341, Sofia, Bulgaria, July 2019. IEEE.

[TTBH19b] Vassil Todorov, Safouan Taha, Frédéric Boulanger, and Armando
Hernandez. Proving Properties of Discrete-Valued Functions Us-
ing Deductive Proof: Application to the Square Root. System Infor-
matics, (14):45–54, July 2019.

[Tur49] Alan M. Turing. Checking a Large Routine. pages 67–69, 1949.

136 bibliography

[WA85] W W Wadge and E A Ashcroft. LUCID: The data flow program-
ming language. 1985.

[WCM+
08] Michael Whalen, Darren Cofer, Steven Miller, Bruce H. Krogh, and

Walter Storm. Integration of Formal Analysis into a Model-based
Software Development Process. In Proceedings of the 12th Interna-
tional Conference on Formal Methods for Industrial Critical Systems,
FMICS’07, pages 68–84, Berlin, Heidelberg, 2008. Springer-Verlag.

[WDD+
12] V. Wiels, R. Delmas, D Doose, P.L. Garoche, J. Cazin, and G. Dur-

rieu. Formal Verification of Critical Aerospace Software. Aerospace-
Lab, (4):p. 1–8, May 2012.

[WH16] D. Watzenig and M. Horn. Automated Driving: Safer and More Effi-
cient Future Driving. Springer International Publishing, 2016.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John
Fitzgerald. Formal Methods: Practice and Experience. ACM Com-
put. Surv., 41(4):19:1–19:36, October 2009.

[YLK16] Huafeng Yu, Chung-Wei Lin, and BaekGyu Kim. Automotive Soft-
ware Certification: Current Status and Challenges. SAE Int. J. Pas-
seng. Cars – Electron. Electr. Syst., 9:74–80, 2016.

[ZM03] Lintao Zhang and Sharad Malik. Validating SAT Solvers Using
an Independent Resolution-Based Checker: Practical Implementa-
tions and Other Applications. In Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 1, DATE ’03, page
10880, USA, 2003. IEEE Computer Society.

[ZZWF] Liang Zou, Naijun Zhan, Shuling Wang, and Martin Fränzle. For-
mal Verification of Simulink/Stateflow Diagrams. In Automated
Technology for Verification and Analysis, ATVA 2015, pages 464–481.
Springer.

L I S T O F F I G U R E S

Figure 1 Automotive innovations and complexity 2

Figure 2 The V-Model illustrated 6

Figure 3 AUTOSAR Classic Platform Release R19-11 9

Figure 4 Model-based design process 12

Figure 5 Groupe PSA’s “Autonomous Vehicle for All” program
roll-out . 15

Figure 6 Example of a supervisor monitoring a software component 16

Figure 7 Derivation of safety standards from IEC 61508 23

Figure 8 Example of code where Astrée cannot prove the absence
of division by 0 . 30

Figure 9 Panorama of formal verification tools (X. Leroy) 43

Figure 10 Balzer’s software life cycle 54

Figure 11 Horizontal and vertical applications of Balzer’s life cycle 55

Figure 12 Methodology for using model checking in a model-
based design . 56

Figure 13 Model-based design model checking using synchronous
observers . 58

Figure 14 Model checking without imported functions 59

Figure 15 Model checking workflow in a MBD process 59

Figure 16 Methodology for using abstract interpretation 63

Figure 17 Verification using multiple model checkers and multiple
SMT solvers . 68

Figure 18 Cruise controller SCADE model’s principal blocks 69

Figure 19 Property PG-40 expressed on the bounds of the model . 70

Figure 20 Property PL-40 expressed on a sub-node 70

Figure 21 Property PI-40 expressed on an isolated sub-node 71

Figure 22 Compositional approach for properties PL and PLH . . . 71

Figure 23 Constants and variables partitioned by their physical types 77

Figure 24 Variables encoding a state are kept. The others are dis-
missed. 77

Figure 25 Mutation proof framework 84

Figure 26 The JKind model checker architecture 85

Figure 27 A simple running example in Lustre 89

Figure 28 Example of inlined code and if-then-else operator mutations 91

Figure 29 IVC and Mutation proof results on demo2 for properties
Prop1 and Prop2 . 92

Figure 30 Mutation engine implementation in JKind 95

137

Figure 31 Comparison between equation remover mutation/full
mutation and IVC . 96

Figure 32 Complex functions vs. discrete-valued ones 99

Figure 33 Environment for deductive proof on C and SPARK code 100

Figure 34 Square root calculation in [0, 1.00] by linear interpolation
from eight known values 101

Figure 35 Annotated square root function for Frama-C WP auto-
matic proof . 102

Figure 36 SPARK code for automatic proof with GNATprove . . . 103

Figure 37 Annotated interpolation function for Frama-C WP auto-
matic proof . 104

Figure 38 Methodology for proving Discrete-Valued Functions . . 106

L I S T O F TA B L E S

Table 1 Levels of driving automation for on-road vehicles ac-
cording to SAE J3016 . 13

Table 2 Summary of current and future vehicle automation sys-
tems and functions . 14

Table 3 Methods for software unit verification (ISO 26262 – Table
7) . 32

Table 4 Methods for verification of software integration (ISO
26262 – Table 10) . 32

Table 5 System requirements used for model checking 69

Table 6 Results using deceleration threshold T1 73

Table 7 Results using deceleration threshold T2 73

Table 8 Results using our new invgen and types for threshold T1 79

Table 9 Results using our new invgen and types for threshold T2 79

Table 10 Results using our new invgen on Kind benchmark 80

Table 11 DO-333 accepts replacing MC/DC coverage by formal
proof coverage . 88

Table 12 Mutators for deep coverage measurement 93

138

list of figures , tables and listings 139

L I S T I N G S

Content/lustre/example1.lus . 89

Content/lustre/example2.lus . 91

L I S T O F D E F I N I T I O N S

1 Definition (Requirement) . 7

2 Definition (Inductive property) . 36

3 Definition (2-induction) . 37

4 Definition (k-Induction) . 37

5 Definition (Inductive Validity Core (IVC)) 86

6 Definition (MayCov) . 87

7 Definition (MustCov) . 87

8 Definition (Mutation Coverage) . 87

L I S T O F T H E O R E M S A N D L E M M A S

9 Lemma (MutCov and MustCov) 87

141

L I S T O F A C R O N Y M S

ABS Anti-lock Braking System. 5

ACC Adaptive Cruise Control. 13

ACSL ANSI/ISO C Specification Langage. 40, 48, 100,
101, 103

ADAS Advanced Driver-Assistance Systems. 11, 13

ASIL Automotive Safety Integrity Level. 16, 22, 25, 31,
50, 110

ASW Application Software. 9

ATP Automatic Train Protection. 47

AUTOSAR AUTomotive Open System ARchitecture. 9–12, 17,
58, 62–64

BMC Bounded Model Checking. 36, 60, 85, 89, 93–95

BSW Basic Software. 9

CBTC Communication-Based Train Control. 47

CDCL Conflict-Driven Clause Learning. 35

CEA French Alternative Energies and Atomic Energy
Commission. 44, 45, 48, 122

CEGAR Counterexample Guided Abstraction Refinement.
34

CIL Common Intermediate Language. 44

CoDDA Compilable Design Description Assistant. 48

COI Cone Of Influence. 35, 70

DAL Design Assurance Level. 24

DCSL Design Contract Specification Language. 48

DPLL Davis–Putnam–Logemann–Loveland. 35

DV Design Verifier. 46

ECU Electronic Control Unit. 5, 8–10, 68, 99

143

144 list of acronyms

EDF French Electric Utility Company. 44

EUROCAE European Organisation for Civil Aviation Equip-
ment. 24

FCS Flight Control System. 47

FOL First-Order Logic. 43, 48

FSC Functional Safety Concept. 57, 61, 62

GMP Gnu MultiPrecision Library. 106, 107

HC Highway Chauffeur. 14

HLL High Level Language. 46, 47

HLR High-Level Requirements. 56, 68, 69

HOL Higher-Order Logic. 43

IVC Inductive Validity Cores. 39, 74, 76, 77, 83–91, 95–
97

KCG SCADE Suite Compilator. 12, 43

LKA Lane Keeping Assist. 13

LLR Low-Level Requirements. 56, 68

LLVM Low Level Virtual Machine. 44

LOC Lines Of Code. 2

LTL Linear Temporal Logic. 88, 89

LUT Lookup table. 99

MBD Model-Based Design. 11, 17, 59, 63, 99

MC/DC Modified Condition/Decision Coverage. 56, 62,
88

MISRA Motor Industry Software Reliability Association.
8, 11

NaN Not a Numer. 29

NASA National Aeronautics and Space Administration.
44

list of acronyms 145

OBDD Ordered Binary Decision Diagrams. 33, 35

PD Pedestrian Detection. 13

PDR Property-Directed Reachability. 37, 38, 67, 72–75,
84, 85

QM Quality Management. 16, 25

RTCA Radio Technical Commission for Aeronautics. 24

RTE Runtime Environment. 9

SAE Society of Automotive Engineers. 13

SCADE Safety Critical Application Development Environ-
ment. 46, 47, 49, 53, 54, 58, 62, 67, 68, 73, 74, 76,
77, 83, 84, 89, 96, 110

SCADE DV SCADE Design Verifier. 46, 47, 60–62, 68, 72, 74,
81

SIL Safety Integrity Level. 23, 25

SLDV Simulink Design Verifier. 46, 47

SMT Satisfiability Modulo Theories. 35–40, 50, 55, 61,
68, 72, 74, 77, 83, 84, 88, 89, 92, 95–97, 100, 102,
104–106, 108, 110, 112

TJC Traffic Jam Chauffeur. 14

TSC Technical Safety Concept. 57

V2I Vehicle-to-Infrastructure. 13

V2V Vehicle-to-Vehicle. 13

VC Verification Conditions. 100, 103, 105

WCET Worst-Case Execution Time. 17, 29, 45

WP Weakest Precondition. 39, 40

A C K N O W L E D G M E N T S

We must find time to stop and thank the people who make a difference in
our lives.

— John F. Kennedy

First and foremost, I would like to express my gratitude to my academic
advisors Frédéric Boulanger and Safouan Taha, for their advice and devotion
during the last five years and for the things I have learned from them. No
less, I would like to thank my industrial tutor Armando Hernandez without
whom this rich experience may not have been possible. Gérard Berry gave me
the inspiration and motivation to love formal methods during its passionate
lectures in Collège de France and I am very grateful to him for that.

I would like to thank as well my colleagues at Groupe PSA, my manager
François Gouzonnat who was behind me during the difficult moments and
Mihai Socoliuc for inventing and supporting this executive PhD.

Likewise, I cannot forget the great support of my family who has witnessed
challenges I faced: my father Atanas, my mother Rayna, my sisters Sonya and
Biliana, my wife Victoria and my daughters Anna and Elena. Thank you for
your patience and understanding. I’m particularly grateful to my aunt Mag-
dalina who first initiated me into computer programming and who left us in
2019. You were a great teacher and aunt, I miss you so much.

I would like to thank the VALS research group at LRI for the exceptional
discussions we had over lunch and coffee breaks, especially Sylvain, Fatiha,
Sylvie, Christine, Jean-Christophe, Chantal, Delphine, Claude, Guillaume, An-
drei, Benoît, Frédéric V. and Burkhart.

For all the knowledge not present in official papers and all the amazing dis-
cussions we had during conferences all over the world, I would like to thank:
Patrick Cousot, Xavier Leroy, Gilles Dowek, Nicolas Halbwachs, Jean Souyris,
David Delmas, Hervé Delseny, Emmanuel Ledinot, Dillon Pariente, Christine
La Porte, Nicolas Valot, Jean-Marie Cottin, Jérémie Kirsch, David Lesens, Yan-
nick Moy, Jean-Louis Boulanger, Marc Pouzet, Timothy Bourke, David Mentré,
Denis Cousineau, Adrien Champion, Elodie Bernard, Roberto Giacobazzi, An-
drew Gacek, Michael Whalen, César Muñoz, Hamza Bourbouh, Bruno Dutertre,
Danielle Stewart, Moshe Vardi, Joost-Pieter Katoen, Marta Kwiatkowska, Mar-
gus Veanes, Nikolaj Bjørner, Nikolay Shilov, Andrey Palyanov, Mikhail Lavren-
tiev, Igor Anureev, Sergey Staroletov, Bin Fang, Milen Petrov and many others

147

148 acknowledgments

as well as the people from the CEA LIST team – Florent Kirchner, Julien Sig-
noles, Loïc Correnson, François Bobot, Franck Vedrine, Nikolay Kosmatov.

My grateful thanks are also extended to my past teachers during Bachelor
and Master studies at the University Pierre and Marie Curie especially to Chris-
tian Queinnec, one of my best teachers, Emmanuel Saint-James, Anne Derieux,
Fabrice Kordon, Guy Pujolle, Olivier Fourmaux and many others.

I appreciate the amount of time spent by Gérard Berry and Cesare Tinelli for
reviewing this work, but also Sylvie Putot, Pascale Le Gall, Fabrice Kordon and
Sylvain Conchon for being part of the final jury.

D E C L A R AT I O N O F A U T H O R S H I P

I, Vassil Todorov, declare that this thesis titled, “Automotive embedded soft-
ware design using formal methods” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Gif-sur-Yvette, France, December 2020

Vassil Todorov

149

150

151

R É S U M É É T E N D U

Contexte. Cette thèse s’intéresse à l’introduction des méthodes formelles dans le processus de déve-
loppement logiciel embarqué automobile. Nous observons ces dernières années une part croissante
des fonctions d’assistance à la conduite dont le niveau de criticité et la complexité sont de plus en
plus élevées. Leur vérification et leur validation nécessitera un niveau d’exigence que le test seul
ne pourrait assurer.

Objectifs de la thèse. L’objectif de cette thèse est d’améliorer de façon significative le processus
de construction et surtout de vérification des applications de l’informatique à l’automobile. Très
réduites avant l’an 2000, ces applications jouent maintenant un rôle fondamental dans presque
toutes les fonctions d’une voiture, allant du contrôle global du véhicule aux nouvelles aides à la
conduite en passant par l’information au conducteur et le divertissement des passagers. Les voi-
tures évoluent aussi vers une autonomie accrue et les processus de certification qu’on trouve depuis
longtemps en avionique et ferroviaire finiront forcément par arriver dans l’automobile pour garan-
tir la sécurité de ces systèmes. Nous proposons d’utiliser des méthodes formelles pour contribuer
à leur robustesse et à leur certification.

Etat de l’art. En première partie de la thèse nous présentons le contexte automobile à travers AUTO-
SAR, l’ingénierie des exigences, le cycle de développement en V et la généralisation de la concep-
tion à base de modèles. Nous étudions ensuite les standards de certification. Enfin, nous présentons
les différentes méthodes formelles et en particulier celles qui sont adaptées au domaine automo-
bile : interprétation abstraite ; model checking simple ou symbolique, par BDDs ou SAT/SMT ;
les augmentations plus récentes du model-checking par génération d’invariants, abstraction, etc.
Nous décrivons ensuite les principes des méthodes déductives plus ou moins automatisées. Nous
terminons cette partie en présentant quelques applications industrielles.

Contributions. En première partie, nous proposons des méthodologies utilisables par des ingé-
nieurs non-experts basées sur des cas d’utilisation concrets pour l’application des méthodes for-
melles au domaine automobile. Au niveau du code, nous proposons d’utiliser l’interprétation abs-
traite pour détecter les erreurs d’exécution et la preuve déductive pour vérifier la correction des
fonctions de librairie. Au niveau du modèle, nous proposons d’utiliser le model checking inductif
basé sur SAT/SMT pour prouver les propriétés critiques ainsi que vérifier la couverture des pro-
priétés prouvées. En effet, le model checking classique proposé à l’origine ne passe plus à l’échelle
pour la vérification des logiciels embarqués modernes.
Ensuite, nous nous intéressons à l’amélioration de l’état de l’art. Nous proposons une nouvelle
méthode de génération d’invariants permettant de prouver à l’aide de model-checking inductif
avec solveurs SMT, des propriétés qui font intervenir des timers sur de longues durées. L’idée
est double : d’abord introduire des invariants sous la forme d’inégalités simples concernant ces
timers et les autres variables, ensuite éviter une explosion de ces introductions par une analyse des
dimensions de ces variables au sens physique (m, s−1, ms−1) : les couplages n’ont pas d’utilité pour
des dimensions indépendantes. Cette contribution a permis de prouver rapidement des propriétés
qui menaient auparavant à des timeouts.
Nous avons également constaté que pour valoriser les méthodes formelles dans un contexte de cer-
tification, il est important de pouvoir donner la couverture du modèle par les propriétés prouvées.
Nous proposons un nouvel algorithme plus précis que ceux qui existaient, grâce à l’utilisation de
la mutation. Cet algorithme est également efficace grâce à l’usage du mode incrémental des sol-
veurs SMT. En plus d’aider à fournir une traçabilité plus précise que les méthodes existantes, notre
méthode permet aussi d’améliorer la spécification.
Enfin, nous proposons une étude de la preuve déductive sur une fonction calculée par table d’in-
terpolation, cas que l’on retrouve relativement souvent dans l’automobile. Le passage à l’échelle
de la preuve déductive a été difficile et il a fallu utiliser l’interprétation abstraite pour compléter la
preuve, faisant ainsi collaborer deux méthodes formelles.

Conclusion. Nous terminons ce document en rappelant les objectifs et les différents apports de
cette thèse. Nous proposons aussi quelques idées pour des travaux futurs en lien avec les apports
de la thèse.

V
A

S
S
IL TO

D
O

R
O

V
A

U
TO

M
O

TIV
E
 E

M
B

E
D

D
E
D

 S
O

FTW
A

R
E
 D

E
S
IG

N
 U

S
IN

G
 FO

R
M

A
L M

E
TH

O
D

S

Automotive Embedded
Software Design Using
Formal Methods

Vassil Todorov

PhD thesis defended on December 9th, 2020

Gérard Berry
Cesare Tinelli
Sylvie Putot
Pascale Le Gall
Fabrice Kordon
Sylvain Conchon
Frédéric Boulanger
Safouan Taha
Armando Hernandez

Professor Emeritus at Collège de France
Professor at University of Iowa
Professor at Ecole Polytechnique
Professor at CentraleSupélec
Professor at Sorbonne Université
Professor at Université Paris-Saclay
Professor at CentraleSupélec
Associate Professor at CentraleSupélec
Senior software expert at Groupe PSA

(assert (not (=> (and (= FlipFlopReset~0.L3$0 (>= Timer~0.L5$0 2400))
 $PropDecelerationHigh$0 (>= AtLeastNTicks~0.L5$0 0)
 (>= Timer~0.L5$0 AtLeastNTicks~0.L5$0)
 (=> FlipFlopReset~0.L3$0 true)
 (=> false FlipFlopReset~0.L3$0))
 (and (= FlipFlopReset~0.L3$1 (>= Timer~0.L5$1 2400))
 $PropDecelerationHigh$1 (>= AtLeastNTicks~0.L5$1 0)
 (>= Timer~0.L5$1 AtLeastNTicks~0.L5$1)
 (=> FlipFlopReset~0.L3$1 true)
 (=> false FlipFlopReset~0.L3$1)))))
(check-sat)
(echo "@DONE")
; Yices2: sat
; Yices2: @DONE
(get-model)
(echo "@DONE")

Titre: Intégration de méthodes formelles dans la conception des fonctions logicielles au-
tomobiles

Mots clés: Génie logiciel, Vérification de logiciel, Méthodes formelles, Model checking, Inter-
prétation abstraite, Preuve déductive

Résumé: La part croissante des fonctions
d’assistance à la conduite, leur criticité, ainsi
que la perspective d’une certification de ces fonc-
tions, rendent nécessaire leur vérification et leur
validation avec un niveau d’exigence que le test
seul ne peut assurer.

Depuis quelques années déjà d’autres do-
maines comme l’aéronautique ou le ferroviaire
sont soumis à des contextes équivalents. Pour
répondre à certaines contraintes ils ont locale-
ment mis en place des méthodes formelles. Nous
nous intéressons aux motivations et aux critères
qui ont conduit à l’utilisation des méthodes
formelles dans ces domaines afin de les trans-
poser sur des scénarios automobiles et identifier
le périmètre potentiel d’application.

Dans cette thèse, nous présentons nos études

de cas et proposons des méthodologies pour
l’usage de méthodes formelles par des ingénieurs
non-experts. Le model checking inductif pour
un processus de développement utilisant des
modèles, l’interprétation abstraite pour démon-
trer l’absence d’erreurs d’exécution du code et
la preuve déductive pour des cas de fonctions
critiques de librairie.

Enfin, nous proposons de nouveaux algo-
rithmes pour résoudre les problèmes identifiés
lors de nos expérimentations. Il s’agit d’une
part d’un générateur d’invariants et d’une méth-
ode utilisant la sémantique des données pour
traiter efficacement des propriétés comportant
du temps long, et d’autre part d’un algorithme
efficace pour mesurer la couverture du modèle
par les propriétés en utilisant des techniques de
mutation.

Title: Automotive embedded software design using formal methods

Keywords: Software engineering, Software verification, Formal methods, Model checking, Ab-
stract interpretation, Deductive proof

Abstract: The growing share of driver assis-
tance functions, their criticality, as well as the
prospect of certification of these functions, make
their verification and validation necessary with
a level of requirement that testing alone cannot
ensure.

For several years now, other industries such
as aeronautics and railways have been subject
to equivalent contexts. To respond to certain
constraints, they have locally implemented for-
mal methods. We are interested in the motiva-
tions and criteria that led to the use of formal
methods in these industries in order to trans-
pose them to automotive scenarios and identify
the potential scope of application.

In this thesis, we present our case studies
and propose methodologies for the use of formal
methods by non-expert engineers. Inductive
model checking for a model-driven development
process, abstract interpretation to demonstrate
the absence of run-time errors in the code and
deductive proof for critical library functions.

Finally, we propose new algorithms to solve
the problems identified during our experiments.
These are, firstly, an invariant generator and
a method using the semantics of data to pro-
cess properties involving long-running timers in
an efficient way, and secondly, an efficient algo-
rithm to measure the coverage of the model by
the properties using mutation techniques.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Dedication
	Abstract
	Contents
	1 Introduction
	1.1 The Car – a Software-driven Electronic Device
	1.2 Problem
	1.3 Research Objectives
	1.4 Contributions
	1.5 Plan

	2 Automotive Software Design and Development
	2.1 The V-Model
	2.2 Requirements Engineering
	2.2.1 Requirement Types

	2.3 Software Architecture
	2.3.1 AUTOSAR
	2.3.2 AUTOSAR and Software Verification

	2.4 Model-Based Design vs Manual Coding
	2.4.1 Traditional Manual Coding
	2.4.2 Model-Based Design

	2.5 Towards the Autonomous car
	2.6 Proving the Safety of the Autonomous Vehicle
	2.7 Conclusions

	Formal Methods and Certification Standards
	3 Safety Standards and Certification
	3.1 Safety Standards
	3.1.1 Why do we Need Standards?
	3.1.2 Goal- and Prescription-Based Standards
	3.1.3 Functional Safety and IEC 61508 Derivated Standards
	3.1.4 Railway – IEC 62279 / EN 5012x
	3.1.5 Medical – IEC 62304
	3.1.6 Aviation – DO-178C
	3.1.7 Automotive – ISO 26262

	3.2 Certification and Qualification
	3.3 Conclusions

	4 Formal Methods – From Theory to Practice
	4.1 Formal Methods and Tools – A Brief Introduction
	4.1.1 Abstract Interpretation
	4.1.1.1 Purpose of Static Analysis based on Abstract Interpretation
	4.1.1.2 The core of the abstract interpretation: abstract domains
	4.1.1.3 Using Partitioning to Increase Precision
	4.1.1.4 Difference between Sound and Unsound Static Analyzers
	4.1.1.5 ISO 26262 Recommends Abstract Interpretation

	4.1.2 Model Checking
	4.1.2.1 The Process of Model Checking
	4.1.2.2 Symbolic Model Checking
	4.1.2.3 Compositional Reasoning
	4.1.2.4 Abstraction
	4.1.2.5 Induction: SMT-model checking
	4.1.2.6 k-Induction
	4.1.2.7 Property-Directed Reachability
	4.1.2.8 Invariant Generation

	4.1.3 Deductive Methods
	4.1.3.1 Introduction
	4.1.3.2 Tools for Deductive Reasoning

	4.1.4 Combining Program Verification Methods

	4.2 Industrial Applications of Formal Methods
	4.2.1 Formal Methods Comparison
	4.2.2 Abstract Interpretation Applications
	4.2.3 Model Checking Applications
	4.2.4 Deductive Proof Applications
	4.2.5 Interactive Proof Applications

	4.3 Formal Methods and Certification
	4.4 Challenges for the Application of Formal Methods
	4.5 Conclusions

	Automotive Software Design Using Formal Methods
	5 Methodologies for Using Formal Methods in an Automotive Context
	5.1 Related Work
	5.2 Methodology for Model-Based Design
	5.2.1 Motivation and Objectives
	5.2.2 High and Low-Level Requirements
	5.2.3 Guidelines for Writing Good Formal Properties
	5.2.4 Synchronous Observers
	5.2.5 Libraries and Imported Functions
	5.2.6 Workflow
	5.2.7 Run-time Errors Check
	5.2.8 Proving Non-regression
	5.2.9 Strategies
	5.2.10 Limitations
	5.2.11 Experiments
	5.2.11.1 Application 1 – Cruise Controller
	5.2.11.2 Application 2 – ADAS function
	5.2.11.3 Application 3 – Lighting Supervisor

	5.3 Methodology for Sound Static Analysis
	5.3.1 Component-Level Analysis
	5.3.2 Complete System Analysis
	5.3.3 Hints for Reducing False Alarms

	5.4 Conclusions

	6 Invariant generation for model checking of time properties
	6.1 Use Case Presentation
	6.1.1 Model and Environment
	6.1.2 Writing Formal Properties
	6.1.3 Compositional Approach
	6.1.4 Results Analysis
	6.1.4.1 Invariant Generation is Mandatory
	6.1.4.2 PDR/IC3 only for Small Timers and Models
	6.1.4.3 Threshold Impact
	6.1.4.4 Subnode Property PI
	6.1.4.5 Compositional Approach with Property PL
	6.1.4.6 Global Property PG

	6.2 Approach and Contribution
	6.2.1 SCADE to Lustre Transformation
	6.2.2 Understanding the Problem
	6.2.2.1 k-Induction
	6.2.2.2 PDR/IC3
	6.2.2.3 The JKind Invariant Generator

	6.2.3 Contribution
	6.2.3.1 Physical types methodology
	6.2.3.2 Timers patterns
	6.2.3.3 Implementation in JKind

	6.3 Results and Benchmarks
	6.3.1 Our Use Cases
	6.3.2 JKind Benchmark
	6.3.3 Kind Benchmark
	6.3.4 Collins Aerospace Use Cases

	6.4 Conclusions

	7 Coverage measure based on mutation and model checking
	7.1 Preliminaries
	7.1.1 The JKind Model Checker
	7.1.2 IVC Formalizations
	7.1.2.1 Models, Requirements and Provability.
	7.1.2.2 Property and Model Coverage.
	7.1.2.3 Mutation.

	7.2 Model Coverage Techniques
	7.2.1 Simple Running Example
	7.2.2 Slicing
	7.2.3 Inductive Validity Cores
	7.2.4 A Simple Mutator for Must-Cov: Equation remover
	7.2.5 Using Other Mutators for Deep Coverage

	7.3 From Mutation testing to Mutation proof
	7.3.1 Mutators
	7.3.2 Our Contribution: Mutation Proof Algorithm

	7.4 Implementation and Initial Results
	7.4.1 Implementation
	7.4.2 Optimizations
	7.4.3 Initial Results
	7.4.4 Industrial Use Case Results

	7.5 Conclusions

	8 Deductive Proof Applied to a Discrete-valued Function
	8.1 Environment
	8.2 Experiment
	8.3 Results
	8.3.1 From Frama-C to the SMT solver
	8.3.2 The Difficult Goal
	8.3.3 Direct Proof with SMT-LIB
	8.3.4 Experience with the Why3 SMT Output Files
	8.3.5 Abstract Interpretation Combined with Deductive Proof

	8.4 Methodology
	8.5 Related Work
	8.6 Conclusions

	9 Conclusion and Perspectives
	9.1 Research Objectives Fulfillment
	9.1.1 Research Objective 1: Industrial Applications of Formal Methods
	9.1.2 Research Objective 2: Experimental Application on Automotive Use Cases
	9.1.3 Research Objective 3: Methodologies

	9.2 Concrete Productions
	9.3 Future Research Directions

	Publications
	Bibliography
	List of Figures, Tables and Listings
	Figures
	Tables
	Listings

	List of Definitions and Theorems
	Definitions
	Theorems

	List of Acronyms
	Acknowledgments
	Declaration of Authorship

