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INTRODUCTION 
 
De nos jours, les changements climatiques et l’épuisement des ressources fossiles sont les 
principales préoccupations des différents gouvernements. Par conséquent et afin de réduire 
la dépendance aux énergies fossiles, de nouvelles législations nous impose de trouver des 
nouvelles technologiques capables de réduire notre dépendance aux énergies fossiles. 
Malheureusement, la résolution d’un problème a créé un autre via l’épuisement des 
ressources minières nécessaire à la fabrication de ces nouvelles technologies. En effet, 
toutes ces technologies considérées comme des “technologies à faible émission de 
carbone», tel que les éoliennes, les voitures électriques et les convertisseurs catalytiques 
utilisent des métaux rares et précieux. 
 
L’utilisation des appareils électroniques (PC, téléphones portables et appareils de 
divertissement) a fortement augmenté durant les dernières décennies. En 1994, on estimait 
qu’environ 20 millions de PC (environ 7 millions de tonnes) étaient devenus obsolètes. En 
2004, ce chiffre est passé à plus de 100 millions de PC. Bien qu’il n’existe pas d’estimation 
précise, l’ONU estime que la quantité mondiale des déchets électroniques produite par an 
est comprise entre 20 et 50 millions de tonnes. Entre 1997 et 2007, 500 millions 
d’ordinateurs ont été jetés aux États-Unis et 610 millions d’ordinateurs sont devenus 
obsolètes au Japon en 2010. Ce flux de déchets s’accélère car la demande de PC augmente 
et la durée de vie d’un PC diminue rapidement. Une étude plus récente a montré que la 
0quantité totale de déchets électroniques en Inde entre 2007 et 2011 est de 2,5 millions de 
tonnes, avec un taux de croissance annuel de 7 à 10%. 
 
La composition des déchets électroniques est hétérogène, complexe et dépend du type de 
produit. De plus, il diffère selon l’année de fabrication du fait que les nouvelles 
technologiques ont été développées progressivement. Dans les déchets électroniques, on 
estime qu’il existe plus de 30 substances, dont un mélange de métaux ferreux, de verre, de 
plastique, de métaux de base (cuivre, aluminium, etc.), de métaux lourds (mercure, plomb, 
chrome, etc.), métaux précieux (or, argent, métaux du groupe du platine) et autres. 
 
Les appareils électroniques usuels (PC, tablette, téléphone portable) sont considérés comme 
des “mines urbaines” car ils accumulent des concentrations relativement élevées de métaux 
précieux tels que le cobalt, le galium, le tantale ou l’indium. Les métaux précieux peuvent 
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être présents à des concentrations dix fois plus élevées dans les appareils électroniques que 
dans le mineraux dont ils sont issus. En recyclant une tonne appareils électroniques, on peut 
récupérer plus de 300g d’or, d’argent, de palladium et d’autres métaux précieux. À tire 
d’exemple, on récupère moins 10 grammes d’or dans une tonne de minerai. De plus, la 
quantité d’énergie requise pour recycler les métaux est beaucoup plus faible que pour 
l’extraction de métaux des minerais. Par exemple, la production d’une tonne d’aluminium 
nécessite 4700 tétra-joules et 100000 tonnes de minerai, alors que le recyclage d’une tonne 
d’aluminium requiert 240 tétra joules pour la même masse de déchet électronique. 
 
Généralement, huit métaux sont classés dans le groupe des métaux précieux y compris l’or, 
l’argent et les métaux du groupe du platine (Ru, Rh, Pd, Os, Ir, et Pt) compris. Grâce à leur 
propriétés physiques et chimiques particulières, notamment leur bonne conductivité 
électrique, leur point de fusion élevé et leur résistance à la corrosion, ils sont couramment 
utilisés dans de nombreuses applications industrielles. 
 

La quantité moyenne de métaux précieux dans les produits électroniques typiques (mg/unité) 
Métaux précieux Téléphone portable Ordinateur Ecran Laptop 

Ag 261 6378 515 343 
Au 26.1 92.7 161 160.8 
Pd 11.6 39.9 42 40.2 

 
À l’avenir, le développement technologique garantira l’arrivée des nouvelles substitutions 
aux métaux précieux. De plus, les ressources en métaux précieux seront sécurisées et 
maintenues grâce à les innovations de technologie de recyclage et les politiques 
harmonisées pertinents pour les déchets électroniques. 
 
L’objectif de mon travail était de développer de nouveaux nano-adsorbants pour 
l’extraction d’or et de palladium présents dans les lixiviats provenant des procédés de 
recyclage des déchets électroniques. Ce travail a été réalisé en collaboration avec la société 
MORPHOSIS située au HARVE. MORPHOSIS, société fondée en 2008, est l’un des 
leaders de l’extraction et du raffinage de métaux rares et précieux provenant des différents 
équipements électriques et électroniques usagés. 
 
Le manuscrit est divisé en 5 chapitres et se termine par des conclusions générales, des 
perspectives. Toutes les références sont rassemblées à la fin du manuscrit. 
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Le chapitre 1 est une introduction générale qui aborde les différents aspects de l'économie 
mondiale liés aux recyclages des déchets électroniques. 
 
Le chapitre 2 présente un état des lieux des procédés de recyclage des métaux précieux 
tels que l'or, le palladium et le platine et donne un aperçu des nano-absorbants déjà 
existants. Après cet état des lieux, les défis et les objectifs de ce projet seront abordés. 
 
Le chapitre 3 fournit des informations sur les matières premières, les produits chimiques 
et les procédures expérimentales qui ont été effectuées pour les synthèses et les 
caractérisations des matériaux. 
 
Le chapitre 4 tente de mieux comprendre la nature de la liaison et les performances de 
recyclage de différents ligands carboxyliques et phosphoniques à la surface de ZrO2. La 
capacité d'adsorption du matériau nano-ZrO2 modifié avec un acide thioctique sera 
largement étudiée. Il est important de noter que les processus de modification de la surface 
seront réalisés en deux étapes afin d’améliorer la robustesse des liaisons du ligand sur la 
surface de ZrO2. 
 
Le chapitre 5 se concentre sur la conception du nano-revêtement sur les textiles en 
polypropylène par dip-coating ou par un procédé dit « couche par couche » afin de créer 
une couche ZrO2 homogène et robuste. 
 
Enfin, une conclusion générale résume les principaux résultats de ce travail et propose des 
perspectives pour d'autres travaux. 
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CHAPTER 1. GENERAL INTRODUCTION 

 
1.1. Overview about metal sustainability in high-tech society 

Climate change and peak oils crises have been making headlines with increasing intensity 
over the past decade. Consequently, solutions are being sought to lessen our dependence 
on fossil fuel with new legislations and key “buzz phrases” like “low carbon technology” 
and “low carbon future” driving technological change. Unfortunately, there is a serious 
problem emerging that new technologies have been developed to tackle one challenge, 
while we are creating another issue through resource depletion [1]. Many of the new 
technologies considered as “low carbon technologies”, for instances, wind turbines, electric 
cars, energy saving light bulbs, fuel cells, and catalytic converters, require rare and precious 
metals for their production. For most technologies using these metals, substitutive materials 
neither exist nor replace the functionality of the original material. In some cases, they are 
also considered critical materials, for example antimony tin oxide as a substitute for indium 
tin oxide in liquid crystal display. However, according to a report by European 
Commission, antimony is classified as one of the most critical materials among others 
(Table 1-1). 

Table 1-1. Critical metals for a range of countries [2] 
Country or 

region 
Critical metals 

Japan Ni, Mn, Co, W, Mo, V 
European 

Union 
Li, Sb, Sc, Be, Co, Cr, Co, Ga, Ge, In, Mg, Nb, REEs, Ta, W, PGMs 

The 
Netherlands 

Ag, As, Au, Be, Bi, Cd, Co, Ga, Ge, Hg, In, Li, Mo, Nb, Nd, Ni, Pb, PGMs, REEs, 
Re, Ru, Sb, Sc, Se, Sn, Sr, Ta, Te, Tl, V, W, Y, Zn, Zr. 

China Sb, Sn, W, Fe, Hg, Al, Zn, V, Mo, REEs. 
South Korea As, Ti, Co, In, Mo, Mn, Ta, Ga, V, W, Li, REEs, PGMs, Si, Zr. 

Australia Ta, No, V, Li, REEs. 
Canada Al, Ag, Au, Fe, Ni, Cu, Pb, Mo. 

Germany Ag, Be, Bi, Co, Cr, Ga, Ge, In, Mg, Nb, PGMs, Re, REEs, Sb, Sn, Ta, W. 
France Au, Co, Cu, Ga, Ge, In, Li, Mg, Ni, Nb, Re, REEs, Se, Ta. 
Finland Ag, Co, Cr, Cu, Fe, Li, Mn, Nb, Ni, PGMs, REEs, Ti, Zn. 

United States Ce, Co, Dy, Eu, Ga, In, La, Li, Nd, Pr, Sm, Tb, Te, Y. 
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The use of electronic devices has increased in recent decades in proportion to their quantity, 
such as PCs, mobile phones and entertainment devices that are being disposed of. In 1994, 
it was estimated that approximately 20 million PCs (about 7 million tons) became obsolete. 
By 2004, this figure increased to over 100 million PCs [3]. In spite of the lack of an accurate 
estimate of the global e-waste production, the UN estimates that the global quantity of waste 
electric and electronics equipment (WEEE) or e-waste is 20-50 million tons per year. 
Between 1997 and 2007, 500 million computers were discarded in the United States and 
610 million computers became obsolete in Japan by the end of 2010. This fast-growing 
waste stream is accelerating because the global market for PCs is far from plateau and the 
average lifespan of a PC is decreasing rapidly – for instance, CPUs from 4-6 years in 1997 
to 2 years in 2005. A more recent study showed that the total WEEE amount in India 
between 2007 and 2011 is 2.5 million tons with an annual growth rate of within 7-10 %. 

The material composition of e-waste is heterogeneous, complex and dependent on the type 
of the product. Additionally, it differs according to the year of manufacture due to the fact 
that the new technologies have been developed progressively. For instance, liquid crystal 
display (LCD) is replacing cathode ray tubing (CRT) technology. In e-waste, it is estimated 
that there are over 30 substances including a mixture of ferrous metals, glass, plastics, base 
metals (copper, aluminum, etc.), toxic heavy metals (mercury, lead, chromium, etc.), 
precious metals (gold, silver, platinum group metals), and others. Information and 
telecommunication equipment appliances in particular are considered “urban mines” as 
they accumulate relatively high concentrations of precious and critical metals such as 
cobalt, gallium, tantalum, or indium. Precious metals can occur at concentrations more than 
ten-fold higher in PCBs than in commercially mined minerals. By recycling one ton of 
scrap information technology (IT) appliances, over 300 g of gold, silver, palladium, and 
other precious metals can be recovered. The computer motherboards contain around 200- 
250 g.t-1 of gold and around 80 g.t-1 of palladium; mobile phone handsets carry up to 350 
g.t-1 of gold and 130 g.t-1 of palladium; and automotive catalytic converters may contain up 
to 2000 g.t-1 PGMs in the ceramic catalyst brick, the active part of the converter [4]. This 
is significantly higher than the gold content in primary ores (on average < 10 g.t-1). 
Moreover, the amount of energy required for recycling metals is much lower than for 
mining primary metals from ore. Producing one ton of primary aluminum, for instance, 
requires 4700 tetra joules per 100000 tons, which is almost 20 times as much as the energy 
needed to recycle the same quantity from scrap (240 tetra joules per 100000 tons) [5]. 
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Importantly, over 50 % of the e-waste arising fail to enter the recycling chain. Currently, it 
is estimated that only around 30% of the total e-waste are being collected by the strategy 
developed  by member states of European Union [5]. In other words, metal recycling rates 
from end-of-life (EOL) high-tech products, in most cases, are very low. As a result, a large 
number of metals contained in EOL products have been lost to the dumpsites or landfills 
after single or short use. The EOL recycling rate (EOLRR) of a certain metal is defined as 
its fraction in discarded products that is reused in such a way to retain its functionality. The 
EOLRR depends on the collection rate of end-of-life products and the efficiency of the 
subsequent separation and pre-processing steps [6]. Recycling rates of 60 elements are 
defined and quantified by UN (Figure 1-1). 

 
Figure 1-1 – Global estimates of end-of-life recycling rates for 60 metals and metalloids by UN. 

Recycling requires an economical compromise between benefits derived from recycling 
and input of primary resources required for recycling. This has been resulting in concerns 
about improving recycling efficiency so as to increase metal sustainability. In the article of 
Christian Hageluken, the “seven conditions” for effective recycling and their impact within 
Europe are discussed, including: (i) Technical recyclability, (ii) Accessibility, (iii) 
Economic viability, (iv) Collection mechanisms, (v) Entry into the recycling chain, (vi) 
Optimal technical and organizational, and (vii) Sufficient capacity [4]. 
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1.2. Mining production, consumption and future demand of precious metals 
Generally, eight metals are categorized into the precious metals group consisting of gold, 
silver, and the platinium group metals (PGMs). The Platinum Group Metals (PGM, also 
referred as the PGM’s, platinoids, platidises, platinum groups, platinum family, or the 
platinum group elements – PGE’s) comprise of six metallic elements: Ruthenium (Ru), 
Rhodium (Rh), Palladium (Pd), Osmium (Os), Iridium (Ir) and Platinum (Pt). Thanks to 
their special physical and chemical properties including good electrical conductivity, high 
melting point and corrosion resistance, they have been commonly used in many industrial 
applications. For instances, in the electronics industry, computer hard disk drives 
manufacturing employs a good amount of precious metals when it comes to increasing the 
storage capcity. The average quantity of precious metals in typical electronic products (mg 
per unit) is shown in Table 1-2. 

Table 1-2. The average quantity of precious metals in typical electronic products (mg/unit)[7] 
Precious metals (mg/unit) Mobile phone PC Flat screen on TV monitor Laptop 

Ag 261 6378 515 343 
Au 26.1 92.7 161 160.8 
Pd 11.6 39.9 42 40.2 

In 2014, 72% of global production of gold from natural mines was represented by the twelve 
leading countries including China, Australia, United States, Russia, Peru, South Africa, 
Canada, Mexico, Uzbekistan, Ghana, Colombia, and Brazil. Described in Figure 1-2 is the 
gold production in the major countries. Currently, supply from secondary sources 
contributes 28% to the total global production. Gold is predomiantly used in EEE for 
contacts and in ICs  which accounts for 6% of global consumption in 2012. Global demand 
for gold in 2015 was 4124 tons, approximately 20% lower than the record demand of 5087 
tons reached in 2013. 
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Figure 1-2 – World gold production in 2015 and 2016 (source: USGS) 

The major commercial stocks of PGMs are located in only few places – Russia, South 
Africa, Canada, United States, and Zimbabwe. The PGM supply in United States, Canada, 
and Russia derives from Cu and Ni mining. Vast PGM stocks were discovered in the 
Transvaal in South Africa in 1935, leading to this region becoming a producer of the 
majority of the world’s PGM. In 2014, South Africa produced 94 tons of Platinum (Pt) and 
60 tons of Palladium (Pd), which represented 64% and 30% of the world Pt and Pd 
productions. For other PGMs, South Africa was also the main contributor to global 
production, which accounts for 78%. Generally, PGMs such as Pt, Pd and Rh have been 
widely used in auto-catalyst industry and electronics manufacture. For instance, 65% of Pd, 
45% of Pt and 84% of Rh were used in auto-catalyst industry. 

 

The skyrocketing increase in precious metals consumption has been recorded over decades 
since 1980 along with computer technology, especially precious metals. However, albeit 
the number of electronic appliances is still increasing, the demand for precious metals tends 
to have been decreasing recently owing to technology advancement (Table 1-3). 

 

0

300

600

900

M
in

e 
pr

od
uc

tio
n 

(to
ns

)

2015 2016



6 
 

 

Table 1-3. The consumption of precious metals in EEE during 2005-2014 (in tons) (source: USGS) 
Year Gold Platinum Palladium 
2005 277 11.0 30 
2006 302 13.3 33 
2007 311 13.2 40 
2008 293 7.00 41.2 
2009 246 5.90 39.5 
2010 327 6.84 43.9 
2011 320 7.15 42.9 
2012 285 5.13 37.3 
2013 279 5.88 38.2 
2014 279 5.85 38.8 

In the future, the momentum of technology development will guarantee the advent of the 
new substitutions for the precious metals. Moreover, with the innovations in recycling 
technology and harmonized policies related to WEEE, the precious metals resources will 
be secured and sustained. 

The aim of the present work was to develop new nanoadsorbents for the extraction of trace 
of gold and palladium that are present in the leachates coming from  recycling processes of 
WEEE (waste from electrical and electronic equipment) or e-waste. This work has been 
done in collaboration with company MORPHOSIS located at Le Havre. MORPHOSIS, a 
French company founded in 2008, is one of the leaders in the extraction and the refining of 
rare and precious metals mainly originating from the various waste electrical and electronic 
pieces of equipment. It has developed a unique process to recycle precious metals such as 
gold, silver, copper and platinoïds (Pt, Pd) from E-waste. This process is the outcome of 4 
years of research and several R&D programs which represents a total budget of 1 M€. 

 
The manuscript is divided in 5 chapters and finished with general conclusions, perspectives. 
All the references are gathered at the end of the manuscript. 
 
Chapter 1 is a general introduction that discusses different aspects about worldwide 
recycling economy on E-waste. 
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Chapter 2 presents the state-of-art about recycling processes for precious metal such as 
gold, palladium and platinum and gives an overview about nanoadsorbents. In the context 
of this literature review, challenges and objectives of this project are addressed. 
 
Chapter 3 provides information about the raw materials and chemical used in this project 
and experimental procedures that has been carried out for syntheses and characterizations. 
 
Chapter 4 attempts to gain some insights into the bonding nature and the recycling 
performances of different carboxylic and phoshonic ligands on ZrO2’s surface. The 
adsorption capability of thioctic surface-modified nano-ZrO2 material toward Pd and Au 
was extensively investigated. Importantly, two-step surface modification processes were 
studied as an approach to improve the robustness of ligand bonds onto ZrO2 surface. 
 
Chapter 5 focuses on the design of the nano-coating on polypropylene textiles through 
either dip coating or Layer-by-Layer process with the aim to create a homogeneous, rugged 
and robust ZrO2 layer. 
 
Finally, a general conclusion summarizes the main results of this work and proposes 
perspectives for further works. 
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CHAPTER 2. STATE-OF-ART OF RECYCLING 
PROCESSES 

 
2.1. Recycling Processes 

2.1.1. Definitions, classifications, and compositions of E-waste 

There is no standard definition for WEEE (waste from electrical and electronic equipment) 
or e-waste. This latter includes various forms of electrical and electronic equipment (EEE). 
According to European WEEE Directive, “electrical and electronic equipment (EEE) which 
is waste including all components, sub-assemblies and consumables, which are parts of the 
product at the time of discarding.” Based on description of Basel Action Network, “E-waste 
encompasses a broad and growing range of electronic devices ranging from large household 
devices such as refrigerators, air-conditioners, cell phones, personal stereos, and consumer 
electronics to computers which have been discarded by their users.”[3] 
 
The European WEEE Directives classified WEEE or e-waste into ten categories (Table 2-1) 
in which categories 1-4 constitute 95% of WEEE generated. The main constituent of WEEE 
is the printed circuit board (PCB) which contains a large fraction of precious metals. By 
way of illustration, one metric ton of circuit boards can contain between 80 and 1500 g of 
gold and between 160 and 210 kg of copper – in other words, the gold amount in PCBs is 
40-800 times higher than that in gold ore and the concentration of copper in PCBs is 30-40 
times more than that in copper ore mined in the United States. 

Table 2-1. WEEE categories according to the EU directive on WEEE 
No. Category Label 
1 Large household appliances Large HH 
2 Small household appliances Small HH 
3 IT and telecommunications equipment ICT 
4 Consumer equipment CE 
5 Lighting equipment Lighting 
6 Electrical & electronic tools (with the exceptions of large-scale stationary 

industrial tools) 
E & E tools 

7 Toys, leisure and sport equipment Toys 
8 Medical devices (with the exception of all implanted and infected products) Medical 

equipment 



9 
 

9 Monitoring and control instruments M & C 
10 Automatic dispensers dispensers 

 

Almost all WEEE have printed circuit boards (PCBs). Their amount has been estimated 
around 3% of all WEEE produced. Moreover, PCBs have been received a great deal of 
attention due to their valuable portions, especially some precious metals which are 
classified as scare or critical material. Yet, their diverse constituents physically and 
chemically intertwined in such a small platform of PCBs pose a technical challenge for the 
separation, recovery, and recycling. The heterogeneous mixture of organic, glass fiber, 
plastics, precious metals as well as heavy metals is shown in the Table 2-2. 

 
Table 2-2. Main materials found in electrical and electronic equipment (EEE) 

Material Ferrous Non-ferrous Plastics Glass Wood Other 
Percentage 

(%) 
38 28 19 4 1 10 

 
2.1.2. Metal recycling rates 

End-of-life recycling rates (EOLRR) of 60 elements were identified and determined by UN 
in the early 2011 and indicated that: (i) EOLRR values of common base metals are a little 
above 50%, (ii) the EOLRR value of Pb is around 80%, (iii) specialty elements, including 
REE are seldom recycled, and (iv) EOLRR values of precious metals (Au, Ag, Pt, Pd, Rh) 
are various depending on the end-of-life products, for example EOLRR of 80-90% for 
catalysts in industrial applications, 50-60% in automotive applications, and only 5-10% in 
electronic applications [8]. 
 
The main reason for such a variation is linked to an effective collection system for EOL 
products. Considering the electronic products, the recycling circumstance becomes worse, 
for instance EOLRR value for Au, an important constituent of cell and smart phone, is 10-
15%, the one for Ru, a necessary part of hard disk is 0-5%, the same as for Pd. These very 
low EOLRR values indicate that most of EOL electronic product ended up in dumpsites 
including landfill, incineration wastes, ocean disposal, unregulated dumping, and other 
repositories (closets and drawers). As aforementioned, the EOLRR values for precious 
metals in e-wastes would be improved if collection systems for formal recycling of e-wastes 
in OECD nations were adequate or feasible – that means the choice is based on economics 
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and convenience, which is balanced by the shareholders. If a collection system is effectively 
developed and operated, many benefits will be achievable in terms of economic, 
evironmental, public health and safety benefits. These have been driving forces for 
innovations in e-waste recycing industry whose many issues will be addressed in the 
following part. 
 

2.1.3. Metal recovery approaches 

2.1.3.1. Informal recycling and formal recycling 

Informal recycling includes the processes which are employed to recover precious metals 
without controlling emission of pollutant, including heavy metals and persistent organic 
pollutants. In some developing countries or non-OECD nations, informal recycling is very 
popular and refers to unregulated practices or primitive activities to retrieve valuable 
material, mainly precious metals (Au, Pd, and Pt) and copper. Limited capital, untrained 
workers, as well as low-technologies extraction and separation are used. Informal recycling 
processes have been widely employed and become crucial in many developing countries 
because of economic benefits. The most challenging underlying reason is to find a 
compromise and cooperation between the stakeholders in searching for viable and effective 
solutions. 

 
In contrast, with advanced industry in some developed countries, metals in WEEE are 
recovered through mechanical dismantling and metallurgical refining processes. In these 
processes, environmental, health problems and energy security are considered in each 
stages, including controlling the emissions (pollutants and wastes) and optimizing the 
energy consumption. By using the amount of plastic in the former fractions as energy 
inputs, it is estimated that 80% of CO2 emissons are cut down in smelters at Hoboken, 
Belgium[8]. Nevetheless, the capital cost for the integrated smelter is quite high, generally 
above US$1billion, so there are quite a few of companies operating this process all over the 
world [UMICORE (Belgium), Aurubis (Germany), Boliden (Sweden and Finland), Xstrata 
(Canada), and DOWA (Japan)]. 
 

2.1.3.2. Separation of metallic and non-metallic fraction 

Physical processes 
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In the recycling process, e-wastes undergo three main stages, including collection, 
preprocessing (mechanical processing or physical processing), and metallurgical 
processing (chemical processing). Physical processing consists of disassembling 
(dismantling), grinding, classification, and separation of materials. The separation of 
materials based on the physical properties includes differences in density, weight, particle 
size, magnetic properties or electrical properties, which is divided to 2 steps: crushing 
process and metals enrichment (concentration) process. 

 
The purpose of the crushing process is to separate metals from non-metals in PCB waste. 
Generally, the crushing process is performed in two steps. In the first step, the boards are 
shredded by the shearing machine to a size of around 50 x 50 mm, then sucessively reduced 
to a size of less than 10 mm and finally ground to a size that permits the release of metals 
in the second step (< 2 mm) by hammer mills. After grinding, it is important to make a 
particles size separation (vibrating screen) prior to other separation processes.  
 
Alternating step (concentration step) could be carried out according to gravimetric or 
density-based separation, magnetic and electrostatic separation. Table 2-3 shows the 
current separating technologies which fullfill the demands in terms of performance, and 
environmental protection. To employ the advantages and overcome the downside of each 
methods, the widely used processes are the combined processes of two or all 
aforementioned methods. An illustration of an integrated system is the recycling system 
employed in Shanghai Xinjinqiao Environmental Company Ltd. and Yangzhou Ningda 
Precious Metal Company Ltd. with the productivity of 5000t of WPCBs per year. Two-step 
crushing and cyclone air – corona electrostatic sepration are utilized, in which the WPCBs 
are first crushed in the form of particles with the size between 0.6 and 1.2 mm. Not only 
have these processes been providing the advantages of environmental protection, but there 
are also some improvements in efficiency and expenses. Thanks to this automatic line, 
above 95% of metals could be recovered with the purity of about 97.5% of metals [9]. 
 

Table 2-3. Contemporary mechanical separation processes [10] 
Methods Description Main advantages and disadvantages 

Magnetic 
separation 

Separation of ferrous metals 
Most suitable for separating steel and iron, 
but not suitable for separating non-ferrous 

materials. 
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Eddy current 
separation 

Separation of ferrous and non-
ferrous materials 

Mainly used to separate non-ferrous 
materials such as aluminium and copper 

Cyclone Air 
current separation 

Separation of light particles from 
heavy particles 

Wind velocity, particle size, particle 
density, etc. are the critical parameters 

Corona 
electrostatic 
separation 

Separation of metallic particles (size 
from 0.2 mm to 1 mm) from non-

metallic particles 

The movement trajectory and collection 
position of metallic particles are hard to 

predict and to compute 

 

According to the technological points of view, mechanical processes are necessary to 
simplify the composition of the wastes and improve the efficiency of the following 
processes (metallurgical processes). Different techniques have been used in the final step, 
including pyrometallurgical, hydrometallurgical and biometallurgical. 

2.1.3.3. Metallurgical processes for the extraction of gold and PGM from 
E-waste 

Pyrometallurgical processes 
 
Smelting in furnaces, incineration, combustion and pyrolysis are typical e-waste recycling 
processes. State of the art smelters and refineries can extract valuable metals and isolate 
harzadous substances efficiently. The liberation of metals is not achieved by leaching, 
crushing or grinding but by smelting in furnaces at high temperatures. Nevetheless, 
subsequent steps such as separation and purification employ the same principles of 
hydrometallurgical approaches. In these processes, metals are sorted based on their 
chemical and metallurgical properties. Pyrometallurgical processing is done at plants with 
equipment that was initially developed for the primary metallurgical processing of copper 
and lead. Currently, industrial processes for recycling metals integrate all aforementioned 
processes including pyrometallurgical, hydrometallurgical and electrometallurgical 
processes. Some metals extracting companies are operating the incorporated process 
consisting of Umicore (Belgium) with integrated smelting and refining facility, Noranda 
(Quebec, Canada), Rönnskär smelters (Sweden), Kosaka’s recycling plant (Japan), the 
Kayser recycling system (Austria) [11]. 
 
Hydrometallurgical Processes 
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Hydrometallurigical processes consist of two main steps: (i) leaching step using acidic or 
caustic solutions and (ii) separation and purification processes, such as precipitation, 
solvent extration, adsorption and ion-exchange enrichment processes [12]. The Table 2-4 
summarizes typical chemical reactions used as leaching step for gold recovery. 

 

Table 2-4. Typical hydrometallurgical processes (leaching processes) of gold  from WPCB 
Reagent Typical reaction Conditions Efficiency References 

Aqua regia 
2Au + 11HCl + 3HNO3  
2HAuCl4 + 3NOCl + 6H2O 

Fixed ration of metals 
to leachant = 1/20 

g/mL 

98% Ag, 93% 
Pd, and 97% Au 

[13] 

Cyanide 
4Au + 8CN- + O2 + 2H2O  

4[Au(CN)2]- + 4OH- 
[CN-] = 4 g/mL, pH = 

10.5-11 
46.6% Au [14] 

Thiourea 
Au + CS(NH2)2 + 2Fe3+  
[Au(CS(NH2)2)]2+ + 2Fe2+ 

[Thiourea] = 24 g/L, 
[Fe3+] = 0.6%, 

90% Au, 50% 
Ag 

[15] 

Thiosulfate 
4Au + 8S2O3

2- + O2 + 2H2O 
  4[Au(S2O3)2]3- + 4OH- 

Ammonium thiosulfate ≥ 90% Au [16] 

 

Because of the high degree of toxicity, leaching processes using cyanide have prompted the 
needs to find new substitutes. Gold leaching processes with thiourea, thiosulfate, and halide 
have been studied. In a study of Jing-Ying et al., the solution containing 24 g/L of thiourea 
and 0.6% of Fe3+ in the recovery of gold and silver from the PCBs of mobile phones were 
used to obtain leaching rates of 90% for gold and 50% for silver [15]. The high 
concentration of copper found in PCBs significantly affects the dissolution of gold. 
Therefore, a pretreatment with sulfuric acid and hydrogen peroxide to recover the copper 
beforehand if often used. However, there are some drawbacks using the leaching processes 
with thiourea: (i) thiourea is more expensive than cyanide; (ii) consumption is higher 
because thiourea is oxidized in solution. 

 
Halide leaching especially chlorine/chloride leaching has proved to be well-established 
route for dissolution of gold in acidic medium. Nevertheless, the handling of chlorine gas 
and requirement of special reactor hinders its application in the full-scale process. Xu et al. 
[9] attempted the iodide leaching of gold from waste PCBs and achieved 95% gold 
recovery. Iodine leaching is considered to be non-toxic, non-corrosive and very selective 
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toward gold as gold – iodide complex is the most stable compound in gold – halide 
complexes. 
 
With a raising level of concern about toxicity of the conventional cyanide leaching stage, 
thiosulfate leaching has been developed as an less-toxic and cost-efficient alternative, that 
Au(0) is converted to [Au(S2O3)2]- in the presence of additional reagents such as 
ammonium/ammonia and oxidation catalyst (Cu2+) [15]. 
 
The reduction-precipitation with metal hydrides has been used to reduce gold and silver 
from the leachate at a commercial scale. The most used metal hydride reductant is sodium 
borohydride. The recovery of gold from solutions of thiourea, thiosulfate or thiocyanate 
using a solution containing 12 % of NaBH4 and 40 % of NaOH was successfully carried 
out. The results showed that gold could be reduced at ambient temperature either in very 
diluted or more concentrated solution [14]. 
 
Solvent extraction has been successfully applied to recover some metals after leaching 
processes. Fray and Park used toluene, followed by precipitation using dodecaenthiol and 
sodium borohydride to selectively recover the gold leachate from PCBs using aqua regia 
solution[13]. Kinoshita et al. used the commercial solvent LIX®984 (a 1:1 mixture of 5-
dodecylsalicylaldoxime and 2-hydroxy-5-nonylacetophenone oxim in a high flash point 
hydrocarbon diluent) in the selective extraction of copper in leachate containing copper, 
nitric acid, and nickel impurities[17]. The commercial solvent LIX®79 (cyanide-based 
solvent) can be used in the extraction of gold in alkaline solutions containing cyanide, while 
Cyanex 921 (tri-n-octylphosphine oxide extractant) can be used for all pH ranges. 
 
Finally, in the recovery of gold and PGMs, some organophosphorus derivatives, guanidine 
derivatives and mixtures of amines-organophosphorus derivatives products have been 
studied.  
 
Organophosphorus class of extractants has been widely studied and used for removal of 
Pd(II). The extractability increased in the following order: organophosphate < 
organophosphonate < organophosphine oxide. Tributyl phosphate (TBP) (Figure 2-1, I) can 
extract Pd quantitatively from 0.1-1.0 M HNO3 with maximum distribution (DPd) in the 
acidicity range of 0.4 M to 0.8 M; however, no Pd is extracted when nitric acid 
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concentration exceeded 4.0 M and distribution of Pd was low in the range of 0.6 – 1.0. Co-
extraction of other actinides and fission products became unavoidable. Also, the extraction 
was highly suppressed by increase in the nitric acid concentration regardless of the higher 
extractability of trialkyl phosphine oxide TRPO (R = butyl, isoamyl, or octyl). 

I

P
O

O O

O
CH3

CH3
CH3  

P
OH

R R

O

II   
Figure 2-1 – Structural formula of tributyl phosphate (TBP, I) and trialkyl phosphine oxide (TRPO, II) 

To improve performance and distribution of Pd(II) extraction, some bidentate and tridentate 
ligands have been used and showed effective Pd extraction, namely, alkyl(phenyl)-N,N-
diisobutylcarbamoylmethylphosphine oxide (CMPO-1), and diphenyl-N,N-
diisobutylcarbamoylmethylphosphine oxide (CMPO-2), malonamide [18-21], 
dyglycoamide [22, 23] and dioxodiamide (Figure 2-2).  
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Figure 2-2 – Structural formulas of carbamoylmethylphosphine oxide derivatives (CMPO, III) and malonamide derivatives (IV) 
and N,N’-dimethyl-N,N’-dialkyltetradecylmalonamide 

The research group of Ana Paula Paiva et al. has carried out many works related to the 
development of amide derivatives for the solvent extraction of PGMs from HCl solutions, 
particularly N,N’-tetrasubstituted malonamides. The structures of extractants synthesized 
and investigated by this group are shown in Figure 2-2. The capability of N,N’-dimethyl-
N,N’-diphenyltetradecylmalonamide to extract Pt and Rh and mutual separation of Pd, Pt, 
and Rh have been extensively investigated [19, 21, 24, 25]. 
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Figure 2-3 – Structural formulas of diglycoamide derivatives and dioxodiamide derivatives 

Precious metals, such as Pd and Au are categorized in the soft acids group based on HSAB 
theory. They will accordingly form stronger coordinate bonds to ligands bearing soft donor 
atoms like “N” or “S”. Following are the typical extractants/ adsorbent developed for 
mutual separation of precious metals. 
 
Dialkyl sulfide derivatives have then appeared to be very effective in terms of high 
distribution ratios for Pd(II) [26]. However, their uses are limited due to very slow 
adsorption kinetics and instability in nitric acid medium. 
 

         

S
R R S S

R R

  
Figure 2-4 – Structural formulas of dialkylsulfide (left) and dialkyl disulfide (right) 

Recently, ligands such as thiodiglycoamides and dithiodiglycoamides have been 
regconized as one of the most promising extractants for Pd, Au, and Pt removal (Figure 
2-4). Paiva, A. P. et al synthesized N,N’-dimethyl-N,N’-dicyclohexylthidiglycoamide and 
applied it for solvent extraction of Pt(IV) and Pd(II) from concentrated hydrochloric acid 
media [27]. It was found that Pd(II) and Pt(IV) at the concentrations of 102 and 85 mg/L 
were efficiently extracted from 8 M HCl feed aqueous solution. By using subsequent a 1 M 
HCl solution and a mixture of 0.1 M thiourea and 1 M HCl, Pt(IV) and Pd(II) could be 
mutually separated. Compared to thidiglycoamides derivatives, a novel multidentate ligand, 
namely, tetra-(2-ethylhexyl)-dithiodiglycoamide (DTDGA) was believed to separate Pd 
more efficiently thanks to the higher number of “S” donor sites [28, 29]. Furthermore, this 
ligand was impregnated in Amberlite XAD-16 resin beads and evaluated for the gold 
separation from electronic waste solutions [30]. The kinetics of adsorption occurred rapidly 
and quantitatively in approximately 180 min, which followed the pseudo-second order 
model. The maximum experimental adsorption capacity was found to be 35 mg/g. The 
adsorption data demonstrated to fit well the Langmuir isotherm model. 
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Figure 2-5 – Structural formulas of thiodiglycoamide derivatives (left) and dithiodiglycoamide derivatives (right) 

Compared to calix[n]arenes, thiacalix[n]arenes have also received increasing attention due 
to bridging sulfur moieties, and hence they form complexes with a wide range of metal 
ions. Thiacalix[n]arenes (n = 4, 6 and 8) are composed of phenol rings linked with sulfur 
sites and can be modified to create upper and and lower-rim functionalized derivatives that 
increase intermolecular interactions with various guest species. Functionalization of the 
upper and lower rims of thiacalix[n]arenes with heteroatoms (O, N, S, P, etc.) leads to 
several-fold increase in the extraction properties. 
 
C. Fontàs et al. tested functionalized thiacalix[4]arenes as extractants for Au, Pd and Pt 
[31]. Four thiacalix[4]arenes were selected including p-tert-butyl-thiacalix[4]arenes with 
amide (1)  and ester (2) group, p-tert-butyl-thiacalix[4]arenes (3) and thiacalix[4]arenes (4) 
(Figure 2-6). It was found that derivative 1 bearing amide group showed highest extraction 
capability and selectivity toward Au (in the order: Au > Pd > Pt) via ion exchange 
mechanism, whereas derivative 4 selectively extracted Pd through complexation 
mechanism. In all cases, a solution of 0.5 M thiourea in 1 M HCl effectively eluted extracted 
metals. In this study, it was observed that impregnated commercial adsorbents showed 
remarkably enhanced adsorption toward Au, Pd and Pt. 
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Figure 2-6 – Structure of thiacalix[4]arenes derivatives [31] 

A series of functionalized thiacalix[n]arenes were synthesised by a Japanese research group 
led by Prof. Fumio Hamada to recover Pt(IV), Pd(II), and Rh(III) ions from a spent 
automotive catalyst residue using liquid-liquid extraction. Authors have synthesized and 
compared different thiacalix[n]arene derivatives (Figure 2-7) and the extractant 1 named p-
diethylaminomethylthiacalix[4]arene has shown a remarkable high affinity and selectivity 
for Pt(IV) ions [32]. The extraction of Pt(IV) ions from HCl solutions was mainly governed 
by an ion-pair mechanism (Figure 2-8) and partially supported via coordination mechanism. 
Almost all the other metal ions in leachate were not extracted; however, Pd(II) was still be 
co-extracted with Pt(IV). 

  
 Figure 2-7 – Strutural formulas of synthesized thiacalix[n]arene [32] 
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Figure 2-8 – Proposed major composition of Pt(IV) extracted species by extractant 1  

2.2. Adsorbents for treatment of precious metals from water and wastewater 
Various technologies such as chemical precipitation, flotation, ion exchange, 
electrochemical processes, solvent extraction, membrane technologies, and adsorption have 
been used to extract metals from water and wastewater. Each of methods has its inherent 
advantages and limitations. 
Among metal treatment methods, adsorption has emerged as an attractive method due to 
many its advantages such as cost-effectiveness, high performance and ease of use. The 
driving force of this method is based on mass transfer and physical/chemical interactions 
between solid and liquid phase. In turn, these processes are affected mainly by properties 
of solid phase (adsorbent) including specific surface area, and reactive sites.  
 

2.2.1. Mechanisms in precious metals adsorption 

Many types of interactions have been suggested including physisorption, surface 
complexation, ion exchange, electrostatic interaction, and hard/soft acid-base interaction 
(HSAB) [33]. 
With respect to amine-functionalized adsorbents, the mechanism for the sorption of metal 
ions can be expressed by the following reactions: 

-NH2 + H+    -NH3+    (1) 
-NH2 + Mn+    -NH2Mn+    (2) 
-NH2 + OH-    -NH2OH-    (3) 
-NH2OH- + Mn+    -NH2OH-…Mn+  (4) 
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At pH < pKa (-NH3+), the reactions (1) and (2) may occur simultaneously. However, the 
reaction (1) is dominant, so only a few active sites are availabe for the adsorption of metals. 
Additionaly, the electrostatic repulsion between Mn+ and the positive charged nanoparticles 
increases with the formation of more -NH3+, hence the adsorption capacity decreases. 
 
With the increase of pH, the concentration of H+ diminishes and the reaction (1) shifts to 
left, the number of -NH2 sites increases and favor the complexation reaction (2). Albeit OH- 
ions in the solution compete with Mn+ for -NH2 sites [reactions (2) and (3)] at pH values 
beyond pKa(-NH3+), the adsorption capacity still increases owing to the electrostatic 
attraction between Mn+ and -NH2OH- sites [reaction (4)]. 
 
One of the most used interaction in metal adsorption processes was based on Lewis Acid-
Base ones (following the HSAB or Pearson concept). In the case of thiol-functionalized 
nanoparticles, the adsorption of metal ions underwent two types of interactions including 
favorable complexation according to Pearson’s hard/soft acid-base theory (primary) and 
electrostatic interaction (secondary). Based on Pearson’s theory, soft metal ions interacts 
with soft bases which are ligands carrying S, N, P atoms; conversely, hard metal ions 
strongly bond to hard bases which are ligands bearing O, halogen atoms.  
 
Many factors contribute to the efficiency and selectivity, such as the type and concentration 
of ligands on the substrate, the nature of substrate, pH of solution, and the presence of 
competing ion. Furthermore, when it comes to adsorption selectivy toward metals with the 
same physical/chemical properties (lanthanides or actinides), the density (steric hindrance) 
[34] conformation (the freedom of movement) [35] of immobilized ligands on a surface are 
of crucial importance.  
 

2.2.2. Biosorbents – carbonaceous adsorbents 

General speaking, biosorption has been a promising process in various applications relevant 
to metal removal thanks to its abundant availability and eco-friendliness. As a result of 
striving toward sustainable development, biosorption has been gaining tremendous 
attention. A variety of biosorbents have been developed and studied in recovering precious 
metals, especially gold and palladium. In the review of Nilanjana Das, different 
biomaterials were introduced ranging from biomass (algae, fungi, bacteria…) to 
biopolymers and biowaste materials [36]. 
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2.2.2.1. Cellulose-based and lignin-based materials 

Algae, fungi, bacteria, or yeast… are classified as cellulose-based materials that are 
considered as a matrix of cellulose, lignin, hemicelllulose and amino sugars. Therefore, the 
abudance of hydroxyl groups (-OH) or O-containing sites in their structure is responsible 
for capturing metal ions. 
The adsorption capabilities toward Au of different species of microorganisms were 
screened including 8 bacteria, 9 actinomycetes, 8 fungi and 5 yeasts. Among them, 
Escherichia Coli and Pseudomonas maltophimia were the bacterial strains that have higher 
maximal adsorption capacities toward Au than do actinomycetes, fungi, and yeasts [37]. 
Lignin naturally occurs in wood accounting for 10-30% of wood’s structure. Described in 
the Figure 2-9 is the structure of lignin that consists of dissimilar repeating units with 
different functional groups such as hydroxyl, ether and carbonyl. It has been found that 
lignophenol, a product of lignin and phenol, exhibits the high selectivity toward Au(III) 
regardless of whether other metals coexist in the solution or not [38, 39]. 

 
Figure 2-9 – The structure of lignin 

2.2.2.2. Tannin-based adsorbents 

The pursuit of K. Inoue et al. in tannin-based adsorbents deriving from persimmon extract 
is illustrated as a representative of studies about tannin-based biosorbents[40-44]. It has 
been realized that persimmon extract is rich in tannin (Figure 2-10) and is known to contain 
several polyphenols such as catechol, tannic acid, gallic acid, pyrogallol…In terms of 
chloro complex of gold, the mechanism of the adsorption-reduction process has been 
proposed as follows: 
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(i) Interaction between AuCl4- and positively charged sites on the biosorbents’ 
surface. 

(ii) Reduction of AuCl4- to Au (0) by hydroxyl groups of polyphenolic subunits in 
the biosorbents’ structure. 

(iii) Aggregation of nano-gold particles to bigger to form the bigger gold aggregates 

 
Figure 2-10 – The structure of tannin 

2.2.2.3. Chitosan-based adsorbents 

 
Figure 2-11 – The structure of chitosan 

 
Chitosan is a linear polysaccharide composed of randomly distributed β-(1-4)-linked D-
glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). Thanks to 
its hydrophilicity and abundance of -NH2 groups, this kind of aminopolysaccharide has 
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been extensively studied in the applications pertaining to heavy metals removal. Moreover, 
the adsorption capacity and selectivity toward target metals of chitosan can be tuned by 
modifying the amino headgroups. For instance, thiocarbamoyl chitosan – a chitosan sulfur 
derivatives – has been synthesized via reaction in eutectic two-component system of 
ammonium thiocyanate-thiourea. The adsorption test showed a correlation between 
substitution degree and adsorption capacities toward Au and Pd [45]. 

Table 2-5.  Examples of biosorbents used for recovering Au and Pd 

Adsorbents 
Adsorption capacity (mg/g) 

References 
Au Pd 

Dealginated seaweed waste 78.89 - [46] 
Fungi Cladosporium 

cladosproriodies 1 & 2 
94.2 (Strain 1, pH 4); 104.3 

(Strain 2, pH 4) 
- [47] 

Bacteria 

5.55 (Spirulina platensis, pH 
4), 6.00 (Streptomyces 
erythraeus, pH 4) , 5.55 

(Saccharomyces cerevisiae, pH 
4) 

- [48] 

Desulfovibrio desulfuricans - 190 (pH 3) [49] 
BTU-modified PT (bisthiourea-

modified persimmon tannin) 
1020 192 [41] 

TEPA-modified PT 
(tetraethylenepentamine-modified 

persimmon tannin) 
1166 187 [40] 

Sulfuric acid cross-linked PT gel 1517 - [43] 

Aminated lignin derivatives: 
(from wood powder) 

607 (EA-lignin); 384 (PA-
lignin) 

57 (EA-
lignin); 40 

(PA-
lignin) 

[39] 

Pine (Pinus Sylvestris) sawdust-
based biosorbent modified with 

thiourea groups 
79 181 [50] 

Moss (Racomitrium 
lanuginosum) biomass 

- 
37.2 (pH 

5) 
[51] 

Glutaraldehyde-crosslinked 
chitosan 

- 180 [52] 
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Of the aforementioned biosorbents, biosorbents originating from cellulose-based materials 
appears to be versatile when it comes to its diversity, yet the susceptibility of these materials 
to the harsh conditions of effluent (low pH, high total dissolution solid content…) has been 
of main concern. In other words, most reviewed studies observed the optimal adsorption 
capability in the pH range of 3-5. Notwithstanding the high selectivity and adsorption 
capacities toward Pd and Au, the reduction of AuCl4- to Au(0) was observed in all studies 
when lignin and tannin-derivatives were employed.  The main driving force of the reduction 
process stems from the abundant presence of hydroxyl groups in their structure; hence the 
regeneration of the biosorbents and metals recovery should be carefully taken into 
consideration regarding their reusability in the real-life applications. 
 
The superiority in adsorption capacity of biosorbents in comparison with other types of 
adsorbents resulted from a combination of adsorption-reduction that leads to cycles of 
“Au(III) adsorption-Au(III) reduction-Au(0) release”[53]. 
 

2.2.3. Polymer-based adsorbents 

2.2.3.1. Ion-exchange resins and resins impregnated with ligands 

Basically, when it comes to adsorption processes based on electrostatic attraction, the 
choice of the type of ion exchanger is predicated on existing species of target metals. In 
turn, the metal species existing in the solution are dependent on recovering processes which 
are either aqueous hydrochloric acid system (HCl or Cl2/HCl) or aqueous nitric acid system 
(aqua regia).  
 
In the solutions containing >0.1M HCl or high HNO3 concentration (>1M), anionic 
complexes of Au and Pd, such as AuCl4-, PdCl42-, [Pd(H2O)(NO3)3]- or [Pd(NO3)3]-, are the 
predominant forms, so basic anion exchange resins bearing positively charged sites have 
been employed. Anion exchangers are categorized into two main types including weakly 
basic anion and strongly basic anion exchangers. The fundamental difference between 
aforementioned anion-exchangers is based on the formation of positively charged site as a 
function of pH. Strongly basic anion-exchangers tend to be readily protonated or easily 
positively charged; in either case, positive charges on the surface are present regardless of 
pH. In the meantime, weak basic anion-exchangers are limited to form positive charges 
depending on the pH of solution, especially they act as anion-exchangers at relatively high 
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acidic conditions. Table 2-6 exemplifies some applications of commercial anion exchangers 
in capturing Au and Pd from effluents. 

Table 2-6 . Examples of commercial anion-exchangers 

Adsorbent Description 
Adsorption (mg/g) 

Reference 
Pd Au 

Amberlyst A21 

Weaky basic anion-
exchanger with tertiary 
amine group -N(CH3)2 
on polystyrene skeleton 

9.12 – 9.99 - 

[54] 

Amberlyst A29 

Strongly basic anion-
exchanger type 2 with 

quartenary -
N+(CH3)2C2H4OH on a 
styrene divinylbenzene 

skeleton 

7.86 – 9.67 - 

Varion ADAM 

Weaky basic anion-
exchanger with tertiary 
amine group -N(CH3)2 

on polyacrylate 
skeleton 

9.86 - 

[55] 
Varion ATM 

Strongly basic anion-
exchanger type 1 with 
quartenary -N+(CH3)3 

on a styrene 
divinylbenzene 

skeleton 

9.52 - 

Varion ADM 

Strongly basic anion-
exchanger type 2 with 

quartenary -
N+(CH3)2C2H4OH on a 
styrene divinylbenzene 

skeleton 

9.47 - 

Amberlite XAD-7HP 
Macroreticular 

polyacrylate resin 
- 147 

[56] 
Bonlite BA304 

Strongly basic anion-
exchanger type 1 with 

- 123 
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quartenary -N+(CH3)3 
on a styrene 

divinylbenzene 
skeleton 

Purolite A-500 

Strongly basic anion-
exchanger type 1 with 
quartenary -N+(CH3)3 

on a styrene 
divinylbenzene 

skeleton 

- 78 

 
Ion exchange resins can be used in the recovery of gold from leaching solutions. Such 
commercial resins as Dowex G51, Dowex 21 K, and Amberlite IRA-410 have been tested 
with success in the recovery of gold from thiosulfate solutions. These resins are gel-type 
with a polystyrene divinylbenzene matrix, with quaternary ammonium in their functional 
groups [14]. 
 
The use of commercially available anion-exchange resins for separation and removal of 
Pd(II), Pt(IV) and Rh(III) has been thoroughly conducted [57, 58]. Generally, PGMs form 
anion species in acidic solutions permitting their adsorption via an ion-exchange and 
coordinative mechanism based on HSAB theory. 
 
In a research of S. H. Lee et al. [59], commercially strongly basic anion exchangers, such 
as IRN-78 and Dowex 1x8 were used to separate Pd (II) and Ru (III) in radioactive high-
level liquid waste. Dowex 1x8 with the ionic group of quaternary methyl ammonium 
showed a higher capacity than IRN-78 containing amine group. Pd (II) could be easily 
eluted by a mixture of 0.5 M thiourea solution and 0.1 M nitric acid, while Ru (III) was 
effectively eluted using a 6 M HCl solution. On the other hand, various ion exchange resins 
including AR-01, Dowex 1x8, IRA-93ZU and Dowex 50 were investigated in terms of 
adsorption capability toward Pd(II) and Rh(III) in high-level low radioactive liquid waste 
by the same authors [60]. They came to realization that (i) Dowex with –SO3H group 
showed significantly strong Rh(III) adsorption at dilute nitric concentration ranges below 
0.5M; (ii) Dowex 1x8 with quaternary methyl ammonium group (-CH2(CH3)3 N +) had a 
higher Pd(II) adsorption capacity than that of IRA-93ZU with amine group (-N(CH3)2OH); 
AR-01 with benzimidazole group showed significantly strong Pd(II) adsorption. 
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In a study relevant to Pd(II) recovery in the leachate of automotive catalysts, p-tert-
butylthiacalix[4/6]arenes and their thiocarbamoyl-modified derivatives were impregnated 
into Amberlite XAD-7 resin[61]. Authors have demonstrated that thiacalixarenes 
derivatives bearing thiocarbamoyl (-OC(=S)N(CH3)2) displayed an enhance Pd(II) 
extraction via coordination between PdCl42- and “S” sites of thiocarbamoyl. XAD-7 resins 
immobilized with thiacalixarenes derivatives captured 99% of Pd(II) ions from automotive 
catalysts leachate containing Rh, Pd, Pt, Zr, Ce, Ba, Al, La and Y in 0.1 M HCl media. 
Furthermore, the desorption for Pd (II) ions from the thiocarbamoyl derivatives 
immobilized resins was exceeded 96% when a mixture of 0.1 M thiourea solution and with 
1 M HCl solution was used as a stripping agent and their sorption capacity was still high 
after five sorption cycles. 
 

Furthermore, the adsorption performance (adsorption capacity, selectivity, applicability) 
toward Pd or Au could be tailored or improved by ligand impregnation into the polymer 
network. A series of studies based on this process were conducted in which different 
macromolecules deriving from thiacalixarenes were synthesized and impregnated into the 
XAD-7 resin and the resultant materials were applied to Pd recovery from leach liquors of 
automotive catalysts. It was found that all materials showed a profound augmentation in 
adsorption capacity compared to bare XAD-7 and the recyclability [61-63]. R. Ruhela et al. 
in the same direction synthezised a novel multidentate ligand N, N, N’, N’-tetra(2-
ethylhexyl)dithiodglycoamide (DTDGA) and impregnated this ligand in XAD-16. The 
resultant material showed a high selectivity toward Au in a simulated electronic waste 
solution containing different metal ions [30]. 

 
2.2.3.2. Functionalized polymers 

Another approach to increase selectivity of resins is to modify or graft functional groups 
bearing electron-donating atoms such as S or N on the backbone of polymer. By way of 
illustration, J. M. Sánchez et al. have synthesized a collection of polymers based on grafting 
the moiety bearing the diisobutyl phosphine sulfide headgroups and/or spacer arms 
containing S/O divinylbenzene polystyrene backbone. Authors have demonstrated that 
polymers carrying S or O atoms in the spacer arms increased the hydrophilicity of polymers, 
and hence impart the improved adsorption capacity toward Au and Pd. The adsorption 
capabilities of polymers with spacer arms containing O and S atoms were tested following 
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batch and column modes and it was found that polymer with S atoms in spacer arm 
possesses the poorer separation in the column mode albeit it has higher adsorption toward 
Au and Pd than polymer with O atoms in spacer arm [64]. Both polymers are highly 
selective toward Pd and Au in the matrix of HCl containing different metals (Fe, Cu, Ni, 
Zn); however, the susceptibility of phosphine sulfide group and S sites in the spacer arm to 
oxidation should be taken into consideration. In order to circumvent conditions in which 
Au or Pd are present in the effluents with high concentration of nitric acid, a series of 
products, based on the macroporous backbone of polyacrylic and phosphine oxide (P=O) 
coordinating functional groups, has been commercialized by Italmatch-Magpie [65, 66]. 
MPX-310, one of those products has shown improved stability in harsh conditions with 
effluents prepared from the dissolution of mixed metals in aqua regia. In this study, the 
adsorption performance toward Pd, Pt, and Rh of MPX-310, of Lewatit Monoplus TP-124 
and of Dowex Marathon WBA were compared and MPX-310 displayed the highest 
selectivity and adsorption capacity; for instance, MPX-310 was able to capture 100-110 mg 
PGMs/kg and 5-7 g Cu/kg , whereas Dowex reached about 70 mg PGMs/kg and 25 g Cu/kg. 
TP-124 adsorbent (S-containing adsorbent) has shown lower selectivity in simple solutions 
and poor compatibility with the  simulated solution with high oxidizing condition (abundant 
nitrate and copper ions). 
 
Development of polymers based on triisobutyl phosphine sulfide (TIPS) were conducted in 
order to investigate the effect of spacer arms between polymer matrix and the functional 
group on the adsorption process of resulting polymers [67, 68]. According their findings, 
these polymers were selective toward Pd and Au compared to other noble metals (Pt, Rh 
and Ir) and base metals (Fe, Cu, Ni, and Zn) metals. Moreover, authors have observed a 
significant improvement with respect to adsorption capcity and selectivity with polymers 
containing ethylene sulfide or/and ethylene oxide. 
 

Table 2-7 . Experimental adsorption capacities toward Au and Pd of different synthesized polymers [67] 

Polymer Structure 
Capacity (mmol/g) 

Au Pd 

1 
 

0.40 0.11 

2 
 

2.82 0.51 
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3 
 

6.50 0.72 

 
This surface functionalization concept has been widely used with nano-oxide supports to 
achieve more stable and more efficient hybrid (Organic-Inorganic) nanoabsorbents. 
 

2.2.4. Hybrids Nanocomposites : Nano-oxides based adsorbents and 
polymer/Metal oxide  

 

 
 Figure 2-12 – The number of publications on nanotechnology or its applications for environmental remediation [69]. 

In water treatment technologies based on adsorption, two intrinsic concerns are technical 
capability and cost-effectiveness. From technological point of view, the adsorption process 
must be able to capture the target adsorbates rapidly, while the capital investment (cost of 
adsorbent, system construction…) operational cost (chemicals, labor) and maintenance 
expense (regeneration, reusability of the adsorbent) are the prioritized considerations in 
terms of economical points of view. With respect to adsorption efficiency, specific surface 
area and reactive sites of the adsorbent play important roles. Activated carbon has been 
commonly employed in heavy metals removal, but its increasing price has been restricting 



30 
 

its applicability. The search for alternatives which are abundant and inexpensive has been 
of crucial interest, hence the adsorbents based on natural source such as fruit peels, 
agricultural waste as well as carbonaceous material (seeds, woods, eucalyptus bark…) have 
been studied and their adsorption capability has been confirmed but the industrial 
applicability is still limited. Since 1990, the researches and manipulation of materials and 
systems at nanoscale (less than 100nm) have increased exponentially in terms of quantity; 
mainly driven by their uses in water pollution treatment as shown in the Figure 2-12.  
 
Owing to their nanoscale,  materials express some superior characteristics in comparision 
to the bulk counterparts, for instances, the large surface to volume ratio, high reactive sites 
(high surface energy). This increasing number of atoms or excess of energy at the surface 
led to thermodynamic metastability of the system that could be reduced by surface 
adsorption (that was the strategy of plenty of publications for water pollutant remediation). 
Moreover, surface modifications of nanoparticles have been employed to overcome 
agglomeration/aggregation and to improve their dispersibility/compatibility in different 
matrixes. This surface-modification process can be carried out via physical (physisorption 
through weak interactions including hydrogen bonding, van der Waals, π – π or weak 
electrostatic interactions) or chemical routes (chemisorption through strong ionocovalent 
or coordinative bonds). A drawback of physical modification is that the resultant bonds are 
more labile [70].  
 

Then, if organic complexants can be effectively attached onto the surface of nanoparticles, 
capacity and selectivity toward specific target adsorbates can be tuned. Among 
nanoadsorbents, nano metal-oxide supports have attracted much interest thanks to 
commercial availability, ease of synthesis or modification and regeneration and reusability. 

 

Therefore, the following sections will be dedicated to reviewing applications of metal-oxide 
nanocomposites in precious metal (Au and Pd) adsorption . Three classes of molecules have 
been commonly used as surface coupling agent : organosilanes, carboxylates and more 
recently organophophorus derivatives. 

 



31 
 

2.2.4.1. Coupling molecule and nanocomposites applications 

Organosilane chemistry is powerful to anchor functional groups on the surface of 
nanoparticles. There are organosilicon compounds that have two different functional 
groups. The general formula for a silane coupling agent typically show two classes of 
functionality is X-(CH2)n-Si-R3. The X group represents the functional organic groups that 
can be modifed to attach the desired functional groups, for instances, amino (-NH2), 
mercapto (-SH) and etc. In contrats, the R group represents hydrolyzable groups such as 
alkoxy or chloro ones that react with –OH groups on the metal oxide surface through a 
condensation reaction. 
 
Thanks to its magnetic property, magnetite (Fe3O4)-based adsorbents has also become 
attractive with regard to the simplicity of synthetic procedure and the ease of liquid-solid 
adsorption operation in which the separation usually is conducted by application of external 
magnet instead of centrifugation or filtration. Magnetite can be easily oxidized to 
maghemite (γ-Fe2O3) with the standard redox potential of 0.444V (vs. SHE) that is lower 
than that of AuCl4-/Au (1.002V vs. SHE). Therefore, magnetite could be used as an reactive 
adsorbent that reduces AuCl4- to Au0 [71]. Nevertheless, from the recovery point of view, 
most of the processes aimed at separating the target metals to end up in the form of 
concentrated solution or purified metals, regenerating and reusing  the used adsorbent. An 
approach to tune the redox activity of magnetite nanoparticles and to improve the chemical 
resistance of magnetite nanoparticles to gold extraction is to elaborate Fe3O4-SiO2 core-
shell structures from which the surface SiO2 coating will be modified with specific 
organosilane to impart the selectivity toward target metals. 
 
A very recent publication that was published during our study by M. Shamsuddin et al. has 
demonstraded this strategy by synthetizing thioctic acid functionalized silica coated 
magnetite nanoparticles for capturing Au(III) ions [72]. In this study, authors created a layer 
of SiO2 on the magnetite particles through codensation reaction with tetraethylorthosilicate 
(TEOS), then the surface modification of Fe3O4@SiO2 with thioctic acid proceeded via two 
steps: (i) grafting -NH2 functional groups to the Fe3O4@SiO2 and (ii) amide coupling with 
thioctic acid in the presence of N,N’-dicyclohexylcarbodiimide (DCC) and N-
hydroxysuccinimide (NHS). With regard to gold adsorption, they found that the maximum 
adsorption capacity of resultant material was 222 mg/g (pH 5, 25oC) and the as-synthesized 
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material can be reusable through 5 cycles of adsorption/desorption demonstrated despite a 
slight reduction in adsorption capacity. 

 
Figure 2-13 – Schematic representation of Fe3O4@SiO2-TOA [62] 

Furthermore, R. Roto et al. have demonstrated that the SiO2 coating layer could protect the 
Fe3O4 from being dissolved by HCl, and could avoid agglomeration of Fe3O4 nanoparticles 
[73]. According to this study, SiO2 was coated on the surface of Fe3O4 nanoparticles 
through the hydrolysis of Na2SiO3 under acid condition [74]. The thiol functional groups (-
SH) were introduced to Fe3O4@SiO2’s surface by silanization reaction between -Si-OH and 
3-mercaptopropyltrimethoxysilane (3-MPTS). It was found that the adsorption of 
Fe3O4@SiO2-SH toward [AuCl4]- followed the Langmuir isotherm model with the 
maximum adsorption capacity of 115 mg/g at pH 3. 
 
Surface modified mesoporous silicas (such as SBA-15, MCM41, …) have also been used 
as nanostructured support for extracting precious metals such as gold, platinum, palladium 
from wastewater. J. Yi et al. have demonstrated that the modification of SBA-15 surface 
with imidazole functional groups led to high adsorption selectivity toward Pd and Pt in the 
precence of excess  Ni2+, Cu2+ and Cd2+ (Figure 2-14) [75]; for instance, the selectivity 
coefficients of this material ranges from 3.8x102 – 6.6x102 for Pt2+ and 9.7x102 – 1.8x103 
for Pd2+ in solutions containing 1mM Pt2+ or Pd2+, 10 mM Ni2+, 10 mM Cd2+, and 10 mM 
Cu2+. The decrease in the BET surface area, pore diameter, and pore volume was observed 
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after surface modification (from 712 m2/g for SBA-15 to 161 m2/g for Imidazole-SBA-15). 
The mesoporous structure remained intact, as proven by the similar patterns of N2 
adsorption/desorption isotherms. 
 

 
Figure 2-14 – Schematic representation of Imidazole-SBA-15[70] 

 
Surface modification of MCM-41 by aminopropyl (-C3H6NH2) moiety was made through 
the condensation between 3-aminopropyltrimethoxysilane (APTS) and hydroxyl groups of 
MCM-41 [76]. Despite the reduction in BET surface area from 1140 m2/g to 750 m2/g, the 
adsorption Pd and Au behaviors of the final material dependent on the pH of the solution. 
The Pd and Au adsorption processes were subsequently carried out at pH 1 and at pH 2.5 
with the presence of competing metals (Cu, Ni, Co and Zn) and desorptions were conducted 
in between using HCl 5M. These findings, including pH dependence of adsorption 
capacities toward Pd and Au and utilization of HCl for recovering the target metals 
demonstrated that the electrostatic attraction plays the key role in the adsorption process of 
NH2-modified MCM-41. 
 
However, in the case of organosilane coupling molecules, the quality of surface 
modification (to obtain a monolayer for instance) is very sensitive to the amount of water 
in the solvent or adsorbed on the surface of the oxide that can induce homo-condensation 
reactions between Si-OH groups to end Si-O-Si bonds (Figure 2-15). 
 
Carboxylate-based ligands have been also tremendously used for modifying the surface of 
metal oxide nanoparticles. Adsorption can occur through physisorption or chemisorption 
and the surface binding modes could be size-dependent. Generally, physisorption 
decreases, as the size of nanoparticles gets smaller, whereas the proportion of the 
chemisorption forms increase. In other words, carboxylic acid groups are capable of 
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binding to the oxide surface through “outer-sphere adsorption complexes” and “inner-
sphere adsorption complexes” (Figure 2-16). In inner-sphere adsorption complexes, there 
are three common carboxylate coordination modes: mono or unidentate metal-ester 
coordination (d), bridging bidentate (e), and chelating bidentate (f), whereas the 
interactions of carboxylic groups and metal oxide surface via hydrogen bonding are 
classified to outer-sphere adsorption complexes (b, c). In addition, adsorption may occur 
through an Lewis acid-base reaction between the conjugated base (RCOO-) and the acid 
sites at the surface (M+) (a) [77]. 
 

 
Figure 2-15 –  Schematic representation of the impact of water on the surface modification of oxide surface using 

trimethoxysilane [78] 

 
 

 
Figure 2-16 – The binding modes of carboxylic acids on oxide surfaces. 
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Very few studies have been conducted in order to apply the carboxylate-surface modified 
nano-oxides in the heavy metals removal generally and PGMs recovery particularly. In a 
study of Md. Rabiul Awual et al., 3-(((5-ethoxybenzenethiol)imino)methyl)-salicylic acid 
ligand bearing hydroxyl and carboxylic as grafting groups was immobilized onto 
mesoporous silica monoliths substrate. The resultant material showed a high adsorption 
capacity and selectivity toward Pd (164.2 mg/g at pH 3) and the reusability through 10 
cycles adsorption/desorption [79]. 
 
Recently, and in particular thanks to the work of Dr André VIOUX and Dr Hubert MUTIN, 
organophosphorus acids (PAs) have emerged as a fascinating class of coupling agents for 
the surface functionalization of nanoparticles. The main advantages compared to the 
organosilane and the carboxylate ligands are (i) the elaboration of monolayer since only 
hetero-condensation is possible (homo-condensation to give P-O-P is not favorable) (ii) the 
high hydrolytic stability of the P-O-M (M ≠ Si) due to multiple bonding mode (mono-, bi- 
and tridentate) [78]. A dissolution-precipitation process may compete with surface 
modification depending on the reaction conditions and chemical stability of the oxide. 

 
Figure 2-17 – Competition between surface modification and dissolution/precipitation processes using phosphonic acids [78] 

PAs bind to a wide range of metal oxide surfaces by formation of M-O-P bonds, resulting 
from the condensation of P-OH groups with surface hydroxyl groups and the coordination 
of P=O groups to M atoms (Figure 2-18); however, PAs cannot be used to modify silica 
surfaces in aqueous medium due to the low hydrolytic stability of Si-O-P bond. In seft-
assembled monolayers formed by the reaction of carboxydodecyl-phosphonic acid with a 
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metal oxide surface, the PA groups were found to bind preferentially to the surface, leading 
to monolayers terminated by free carboxylic acids. 

 
Figure 2-18 – Schematic illustration of surface modification of phosphonic acids on oxide surface, R’ represents the introduced 

functional group [80] 

Because of little versatility of commonly used silanization route particulary in water, H. 
Mutin et al. have been studied the surface modification of nanoparticles such as alumina-
coated silica nanoparticles and TiO2 nanoparticles with low molecular-weight phosphonic 
acids (PAs) bearing organic groups of various hydrophobicities and charges [81]. In their 
studies, 31P MAS NMR was used to detect the presence of physisorbed and chemisorbed 
PA molecules or crystalline metal phosphonate phases. Generally, the 31P MAS NMR 
spectra of grafted NPs show broad resonances in the 0 – 40 ppm where the main signals 
between 20 – 40 ppm are ascribed to grafted phosphonate species, links to the surface by 
M-O-P bonds. Moreover, the presence of physisorbed free PAs is confirmed by a sharp 
resonance at around 30 ppm and a small, sharp resonance at about 7 – 17 ppm suggest the 
presence of phosphonate phase. 
 
Various alkyl and aryl phosphonic acids can be synthesized through carbon-phosphorus or 
carbon-nitrogen bond formations. The Michaelis-Arbuzov rearrangement, also known as 
the Arbuzov rearrangement, Arbuzov reaction or Arbuzov transformation, is one of the 
most reactions for the formation of carbon-phosphorus bonds which involves the reaction 
of ester of trivalent phosphorus with alkyl halides [82].  
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Figure 2-19 – Illustration Arbuzov reation 

In our group, the aza-Michael reaction of amines to diethyl vinylphosphonate followed by 
hydrolysis was employed to form the carbon-nitrogen, focussing on aromatic amines 
towards 2-(arylamino)ethylphosphic compounds [83]. 
 

 
Figure 2-20 – Illustration of aza-Michael reaction 

Gulaim A. Seisenbaeva et al. obtained the insight into the molecular aspects of ligand 
grafting of hybrid organic-inorganic adsorbents bearing phosphonate ligand monolayers as 
active functions. Using single crystal X-ray method to investigate the ligand-functionalized 
titanium alkoxide model complexes, they elucidated the tripodal vertical fashion of the 
attachment onto the surface of TiO2. Illustrated in Figure 2-21 are the molecular structures 
of the model compounds which elucidate that phosphonic ligands are bonded via three Ti-
(μ-O)-P bridges to three Titanium atoms Ti(2), Ti(3), Ti(4). 
 
Imino-bis-methylphosphonic acid (IMPA, NH(CH2PO3H2)2) and aminoethylphosphonic 
acid (AEPA, H2NC2H4PO3H2) were selected to modify the surface of TiO2 nanorods. The 
final hybrid adsorbents have high capacities toward adsorption of Rare Earth Element 
(REE) cations, such as Dy3+ (39 mg/g), Nd3+ (30.3 mg/g), Y3+ (16 mg/g) and La3+ (31.95 
mg/g), but adsorption processes occured relatively slowly. A possible option for application 
of the such materials could be in water remediation with long contact times in sedimentation 
baths [84]. 
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Figure 2-21 – The structure of TiO4(EtO)12(tBuPO3) (left) and Ti10O2(EtO)32(AEP)2 (AEP = 2-aminoethylphosphonate) [84] 

2.2.4.2. Synthesis of Polymer/Metal Oxide Hybrid Nanocomposites 

The role of Polymer/Metal Oxide Hybrid Nanocomposites  
 
When it comes to real-life or industrial applications, the difficulty in collecting nanoscale 
metal oxide nanoparticles and the problems pertaining to their dispersion in liquid phase 
have been observed. On the other hand, in fixed-bed column operation, they exhibit high 
pressure drop because of aggregation between nanoparticles. Besides, their tendency to 
aggregate reduces their high surface area to volume ratio. Therefore, dispersing 
nanoparticles on a polymer supports is an approach to alleviating the drawbacks and hence 
to endow the resultant material with synergistic properties (Figure 2-22). 
 
According to R. Muñoz-Espí et al., four possible strategies in the synthesis of 
inorganic/organic hybrid materials are distinguished [85]: 

(i) Strategies in which both inorganic and polymer components are synthesized ex-
situ, and the hybrid material is formed by their mechanical combination. Two 
cases can be differentiated: (i) polymer chains are attached to inorganic particles 
and (ii) polymer particles and inorganic nanoparticles are mixed together. In both 
cases, the attachment can be noncovalent and covalent (i). 

(ii) Strategies in which the inorganic nanoparticles are formed ex-situ and, 
afterwards, the polymerization of the organic component takes place in its 
presence (in-situ) (ii). 
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(iii) Strategies in which the polymer or the polymer particles are formed ex-situ and 
the precipitation/crystallization of the inorganic component takes place in-situ 
(iii). 

(iv) Strategies in which both polymer and inorganic components are simultaneously 
formed in-situ (iv). 

 

 
Figure 2-22 – Illustration of how individual shortcomings of nanoparticles and polymeric host material can be circumvented by 

polymer-supported nano particles [86] 

 

 
Figure 2-23 – Different synthetic strategies in the formation of polymer/inorganic hybrid material [85] 
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Regarding the polymer-supported metal oxides hybrid materials for applications of metals 
uptake, several examples collected and listed in Table 2-8 provide some information about 
synthetic route, target metals. 
 

Table 2-8. Applications of polymer-supported metal oxides hybrid material in heavy removal 

Adsorbent (Strategy) Brief process of synthesis 
Target 
metals 

References 

Chitosan-coated bentonite beads (i) 

Bentonite was added to a solution 
of chitosan in 5% (v/v) HCl, then 
the mixture was mixed in 3h and 
finally precipitation of chitosan 
onto the bentonite surface was 

carried out to add dropwise NaOH 
1N. 

Cu(II) [87] 

Silicagel gel microspheres 
encapsulated by imidazole 

functionalized polystyrene (ii) 

Silica gel was modified with vinyl 
triethosilane (SG-C=C). 

Polymerization and encapsulation 
were carried out to obtain the 

silicagel surface-functionalized 
with salicylic acid (core-shell 

structure) 

Cr(III), 
Mn(II), 
Fe(III), 
Ni(II), 
Cu(II), 
Zn(II), 
Hg(II), 
Pb(II), 
Pd(II), 
Pt(II), 

Ag(I), and 
Au(III) 

[88] 

Polyacrylamide-grafted iron(III) 
oxide (ii) 

Hydrous iron (III) oxide was 
immersed in aqueous solution of 

N,N’-methylenebisacrylamide and 
potassium peroxydisulphate, then 

acrylamide was added and grafting 
was performed at 70oC. 

Pb(II), 
Hg(II), and 

Cd(II). 
[89] 

Polypyrrole/maghemite and 
polyaniline/maghemite magnetic 

nanocomposites (ii) 

γ-Fe2O3 was mixed with sodium 
dodecyl sulfate and monomer 

(pyrole or aniline) and then the 
mixture was stirred for 15 min and 
initiator (FeCl3 or (NH4)2S2O8) was 

addded. The polymerization 
reaction was allowed to occur for 

24h at room temperature. 

Cr(VI) and 
Cu(II) 

[90] 
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Polymer-supported magnetite 
(Fe3O4) nanoparticles (iii) 

Cation exchange resin (gel or 
macroporous type) were loaded 

with Fe2+ ions at acidic pH under 
N2 at 60oC. 

Slow oxidation at pH 10 by 
addition of 5% NaCl and 0.5% 

NaOH with bubbling of air with 
volume concentration of O2 in 0.1-

1% range. 
Rinsing and drying after washing 

with alcohol. 

As(V), 
As(III) 

[91] 

Cation exchange resin-supported 
hydrous ZrO2 nanoparticles (iii) 

Cation exchanger D-001 was 
soaked in the solution of ZrOCl2 
(25% C2H5OH), then the mixture 

was stirred for 24h. 
Zr(IV)-preloaded D-001 beads were 
filtered, desiccated under ambient 

temperature, transferred to a binary 
NaOH-NaCl solution and stirred for 

12 hrs. 
D-001 beads containing Zr(OH)4 

were dried at 60oC for 12 hrs. 

Pb(II), 
Cd(II) 

[92] 

EDTA-modified chitosan-silica 
hybrid materials (iii) 

Reacting chitosan with 
tetraethylorthosilicate. The 

resulting hybrid material was 
functionalized with EDTA by 

reacting with EDTA anhydride. 

Co(II), 
Ni(II), 

Cd(II), and 
Pb(II) 

[93] 

Organic – inorganic interpenetrated 
hybrids based on cationic polymer 
and hydrous zirconium oxide (iv) 

The synthesis of the hybrid consists 
of two stages: (i) radical 

copolymerization between 4-
(vinylbenzyl)trimethylammonium 

chloride (CIVBTA) and [3-
(methacryloyloxy)propyl]trimethox

ysilane; (ii) sol-gel reaction that 
involves the hydrolysis of 

tetrabutoxi zirconium (TBZr). 

As(V), 
As(III) 

[94] 

 

The main difficulty in the ex-situ mixing process or blending is to tailor the homogeneity 
of the fillers in the polymer matrix because of the tendency of nanoparticles to aggregate. 
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Therefore, in-situ syntheses have been emerging as a promising alternative in which the 
preformed polymer phase acts as a micro-reactor and metal and metal oxide nanoparticles 
are generated inside the polymer phase from a precursor. Through simple precipitation or 
sol-gel reactions, size of nanoparticles are controlled, thereby, the well-dispersion of 
nanoparticles in polymer is achievable. Among all the aforementioned synthetic strategies, 
“all in-situ” method remains an uncharted field not simply because it can simplify the 
synthesis, but also because it does  probably allow to manipulate the reaction at the atomic 
or molecular scale [85]. When it comes to eco-friendliness as well as sustainable 
development, the employment of bio-polymer should be further investigated with the aim 
to extend applicability at industrial scale. 

 

Grafting nanoparticles on a support such as polymeric textiles like commercial 
polypropylene is not trivial and reports are rather scarce. Carbon textiles after surface 
modification process via heat treatment process has shown adsorption capability toward 
formaldehyde in the indoor air and the authors believe that the robustness of the resultant 
material which is based on coating the surface-modified mesoporous silica on carbon 
textiles will be markedly enhanced [95, 96]. One possible strategy that we have explored 
in this thesis was the layer by layer (LbL) method. 

 
The concept of layer-by-layer (LbL) deposition was developed in the 1990s by G. Decher. 
It starts with buildup of ultrathin multiplayer films by a self-assembly process by 
consecutively alternate adsorption of anionic and cationic polyelectrolytes on charged 
surfaces [97]. The driving force to construct multilayers on a support is mainly based on 
electrostatic attraction which involves alternate exposing a charged substrate to two 
aqueous solutions of polyelectrolytes (PEs) with opposite charges; subsequently, the initial 
charge of substrate is reversed or “overcharged”. Rinsing with water is a necessary step to 
remove unbound, loosely attached PEs. After one cycle of soaking-washing-soaking, a 
paired layer or a bilayer is formed and multilayer thin film can be obtained by repeating 
this cycle (Figure 2-24). Furthermore, various building modes between components that 
construct the layer can be exploited including the hydrogen bonding [98], hydrophobic 
interactions, van deWaals forces. 
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Figure 2-24 – Schematic representation of layer-by-layer approach based on zirconia nanosuspension and aqueous 

polypropylene solution. 

As compared to other coating methods, LbL deposition offers some superior characteristics, 
including (i) ease of coating process with respect to equipment and procedure, (ii) flexibility 
in terms of a wide range of PEs (polymers, nanosuspensions…) and substrates, and (iii) 
eco-friendliness and sustainability when it comes to limiting used chemicals, and reducing 
energy consumption. Recently, LbL coating method has been attracting more attentions in 
the separation membrane design field in which the requirements of real application about a 
membrane being able to operate at high flux with high selectivity. Currently, to fulfill the 
above needs, reseach is focused on the preparation of defect-free membranes and LbL 
appears to be attractive coating method in order to control and tune the desired composition 
and properties. 
 
Numerous studies have been done with the aim to get insights into the mechanism of the 
LbL coating process. It is realized that the formation, structure and stability of layers can 
be controlled by adjusting some basic parameters of PEs’solutions, for instance, ionic 
strength (screening effect), pH. Either of them has been of particular insterests in order to 
tune the properties of layer (thickness, roughness, porosity, hydrophilicity, and 
swellability). With respect to the effect of ionic strength, many publications reach 
unanimous explanations on the effect of salt concentration to the thickness and 
conformation of layers which are based on the screening effect of salt’s ions. At low salt 
concentration, the PE chains are more expanded because of the electrostatic repulsion 
between charged sites on the PE chains, and the charges of layer are not affected by the 
counter-ions in the medium; hence the layers of PE chains are deposited mainly by charge 
overcompensation that results in a thin but stable layer on the substrate. In contrast, at high 
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salt concentration, counter-ions of medium can pair with charged sites of PE chains; in 
other words, PE chains are “screened” by electrolyte ions [99]. The screening effect reduces 
the charge density of PEs, so PE chains tend to be coiled and loopy; as a result, layer of PEs 
will be thicker due to higher amount needed for charge overcompensation and the loops 
and tails structure of PEs. The pH of medium is another important parameter during LbL 
coating due to the fact that dissociation of PE is able to be tailored by changing pH. As 
such, the charge density of PEs can be controlled to obtain the desired properties of coating 
layer. 
 
Interestingly, even if PEs chains are screened or charge-compensated completely, the 
increase in PEs’amount on the substrate still happens. Therefore, it has been believed that 
apart from the electrostatic repulsion, layers might be built up according to non-electrostatic 
interactions or hydrophobic interactions [100]. In order to prepare polyelectrolyte 
multilayer coating, three approaches have been developed consisting of dip-coating, spray-
coating and spin-coating. It has been observed that dip-coating technique can offer a 
thicker, denser, smoother multilayer coating compared to others, but the deposition process 
is tedious and laborious. Although some automatic dip-coating systems have been studied 
and commercialized, scalability of the dip-coating process for the large substrate is the main 
limitation [101]. 
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The outlines of the thesis 
 
In the literarture context, the ojective of our collaborative project called SPONGE between 
the Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON, 
UMR5256), the Institut de Chimie Séparative de Marcoule (ICSM, UMR 5257)  and the 
companies LOTUS SYNTHESIS (Villeurbanne) and  MORPHOSIS ( Le Havre) was to 
develop novel hybrid nano-sorbents for efficient recovery of trace of precious metals (Au, 
Pd, Pt) from e-wastewater leachates.  
 
The basic principle of our project was to graft a functionalized nanostructured metal oxide 
layer on external surface of non-woven textile fibers with the aim to obtain a hybrid material 
with synergistic properties of nanoparticles and textile substrate (Figure 2-25). First, the 
chelating functional groups immobilized on the nanostructured metal oxide should offer the 
adsorption selectivity toward target metal ions to the resultant material. Second, the large 
surface area to volume of nano-metal oxide should improve the adsorption kinetics and 
capacity. Third, the textile substrate should lead to the homogeneous dispersion of 
nanostructured metal oxides; on the orther hand, thanks to its interconnected voids between 
fibers, the resultant hybrid nano-material should  possess better hydraulic properties, such 
as higher tolerance of large flux, which are required in flow-through adsorption technique 
in industry. 
 
 

 
Figure 2-25 – Schematic illustration of porposed structure of substrate-supported hybrid ZrO2 nanoparticles 
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One of the main scientific challenges of this study will be to understand the relationship 

between the final properties and the surface structure governed by the interaction between 

the textile substrate and the hybrid metal oxide layer deposited on it. Therefore, the study 

will be concentrated on the optimization of the textile surface functionalization by an hybrid 

oxide layer. Eco-friendly approach will be also taken into account all aspects of the whole 

synthetic pathway among them the prevention of wastes, the energy consumption, the atom 

efficiency, the use of benign solvents and the decrease of the required steps and time of a 

synthetic pathway, in respect with sustainable development guidelines. 

 

The ultimate goal of this thesis was to synthesize a hybrid nanomaterial which can achieve 

(i) high adsorption capacity toward Pd, Au, (ii) fast adsorption rate and (iii) reusability. The 

study will be focused on nano-ZrO2 which demonstrates high insolubility in most acids, 

alkalis and that could be supplied by our partner LOTUS SYNTHESIS in stable aqueous 

suspension. 

 

Based on the requirements, the thesis was organized into three level of activities :  

WP1 Preparation : synthesis of surface-modified  ZrO2 nanoparticles with ligands 

and screening of their Au and Pd extraction performances  

WP2 Processing: deposit of an hybrid nano-coating onto modified-surface textile 

fibers (polypropylene) in order to elaborate multifunctional and hierarchical 

(molecule/nano-coating/fabric) nano-composites 

WP3 Properties: in-depth characterization and evaluation of the properties of 

hybrid textile, namely the analysis of water containing cationic derivatives from 

simulated and real e-wastewaters. 

 

WP1: Preparation of hybrid ZrO2 nanoparticles and Au and Pd extraction 

performances 

The first aim of WP1 was to be synthesize and to characterize new hybrid ZrO2 

nanoparticles through a list of ligands proposed by the partner ICSM. Surface modification 

will be tailored using carboxylate, phosphonate derivatives or enediol ones (Figure 2-26), 
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which have already demonstrated good extraction performance to critical metals (PGM, Ln, 

Ga, Ge …). All hybrid nanomaterials will then be tested in terms of their capacity, their 

efficacy (coefficient distribution), their affinity (selectivity) and their 

regeneration/reusability. Classical studies towards physical and chemical parameters which 

influence the separation (initial concentration, contact time, HCl/Cl- concentration, 

stripping agents) will be carried out in order to select the more efficient ZrO2-ligand 

assembly. ICP-MS or ICP-OES will be used to determine the metals concentrations. 

      

 
Figure 2-26 - The tentative combination between grafting and chelating groups for specifically target metals. 

WP2: Processing of hybrid ZrO2 nano-coatings onto textiles 
The first aim of WP2 was to select an appropriate modified-surface polypropylene textile 

with carboxylic acid functions that can further react either with O-containing molecular 

precursors such as oxide nano-suspensions. Non-woven fabric will be preferable to resist 

to coating treatments without any loss of their mechanical properties. Depending on the 

selected hybrid nanomaterials in WP1, the aim of WP2 will be the processing of hybrid 

ZrO2 thin films (thicknesses between 100-500 nm), starting from ZrO2 nano-suspensions, 

on surface textile fibers containing carboxylic acid functions. LOTUS SYNTHESIS will 

supply aqueous batches of ZrO2 nano-suspensions of different concentrations (5-40g.L-1) 
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and aggregate sizes (30-250 nm) in order to check the impact of such factors onto the 

performances of the nano-coating. The results, together with detailed microstructural 

characterizations will be used to improve the understanding of selectivity and performances 

of selected nano-composite materials.  

 
WP3: Properties in metal ions removal in simulated and real e-wastewater. 

Throughout different activities, the adsorption capabilities of resultant materials 

(nanopowder and surface-modified PP textile) will be tested toward target metal ions. The 

adsorption capacity, kinetics, selectivity, the influences of experimental conditions ([HCl], 

[Cl-], stripping agents) and regeneration/reusability will be carried out in batch adsorption 

mode. 

 
MORPHOSIS will provide real wastewater solutions originating from their recycling 
process and the adsorption capabilities of the resulting materials will be checked in terms 
of capacity and selectivity. 
 
Our aspiration was to reach benchmarking activities and industrial implementation. In other 
words, prototype of the material was expected to be developed and investigated at the pilot 
or industrial scale. 
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CHAPTER 3. MATERIALS AND 
EXPERIMENTAL PROCEDURE 

 
3.1. Materials and chemicals 

DL-Thioctic acid (TOA) (> 98%, C8H14O2S2, Mw = 206.32 g/mol) and Alendronic Acid 
(AA) (> 98%, C4H13NO7P2, Mw = 249.1 g/mol) were purchased from ACROS OrganicsTM 
and Sigmal Aldrich, respectively, and used as received. N-hydroxysuccinimide NHS-
activated ester of TOA  and others ligands including dioctyldiglycoamide (DODGA), 
thioctic acid (TOA), (N,N)-bis(2-ethylhexyl)carbamoylmethylphosphonic acid 
(DEHCMPA), (N,N)-dioctylcarbamoylmethylphosphonic acid, phosphonomethylimino 
diacetic acid (PMIDAA)  were synthesized and provided by Institut de Chimie Séparative 
de Marcoule (ICSM). 
 
Standard solutions of Pd (9373 mg kg-1 ± 20 mg kg-1 in 10% HCl, TraceCERT®) and Au 
(975 mg kg-1 ± 2 mg kg-1 in 5% HCl, TraceCERT®) were purchased from Sigma-Aldrich.  
Ethanol (C2H5OH, ACS reagent, 100%) and hydrochloric acid (HCl, ACS reagent, fuming, 
≥ 37%) was purchased from Sigma-Aldrich.  
 
All solutions were prepared using 18 MΩ.cm water that is produced from VEOLIA 
company based on AQUADEM system. In this system, the feeding water is passed through 
different adsorbents including inert adosrbent (filter), active carbon, cationic and anionic 
exchangers. Resitivity of deionized water is monitor by a LED meter. 
 
Sodium chloride (ACS reagent) was purchased from Carlo Erba. All chemicals were of 
analytical grade and used without futher purification.  
 
Zirconia nanosuspensions were purchased from Sigma Aldrich or given from Lotus 
synthesis company (Villeurbanne, Fr): 

Supplier/Code Concentration pH Nanoparticles (nm) 
Lotus Synthesis/AFR-9-009-62 30 wt. % in H2O 11-12 ~ 10 

Lotus Synthesis /AFR-9-062-14.2 12 wt. % in H2O 1 ~ 10 
Sigma Aldrich/.CAS number: 1314-23-4 10 wt. % in H2O 4-5 < 100 
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Polyacrylic acid solutions were purchased from Sigma Aldrich or given from Coatex 
company (Genay, Fr): 

Supplier/Code Concentration Supplier CAS number 
PAAH Mw ~ 2000 50 wt. % in H2O Sigma Aldrich 

9003-01-04 
PAAH Mw ~ 5000 50 wt. % in H2O Coatex (Arkema group) 

PAAH Mw ~ 100000 35 wt. % in H2O Sigma Aldrich 
PAAH Mw ~ 240000 25 wt. % in H2O Sigma Aldrich 

 
Polypropylene substrates were obtained from CREAT, EMPA and SAATI companies: 

Polypropylene/Supplier 
Functional 

group 
Capacity 
(meq/g) 

Specific area 
(m2/g) 

Thickness 
(mm) 

PP-bare/CREAT No - - 3 
PP-Am/CREAT Ammonium 1.4 700 2 

PP-COOH/CREAT Carboxylic 2.7 700 3 
PP-COOH/EMPA Carboxylic - 50 0.2 

PP-COOH 
106/26/SAATI** 

Carboxylic - - 0.195 

PP-COOH 
297/35/SAATI** 

Carboxylic - - 0.420 

*CREAT: Chargeurs Recherches Études Applications Textiles 
**Carboxylic surface-functionalized by EMPA using CO2/CH4 plasma process. 
 

3.2. Characterization methods 
3.2.1. Fourier Transform Infra-Red Spectroscopy (ATR-FTIR + DRIFT) 

Surface-modified polypropylene and zirconia-coated polypropylene were characterized 
using attenuated total reflection ATR-FTIR on Thermo scientific system (model Nicolet 
Avatar 380) equipped with Diamond crystal (working range: 30000 – 200 cm-1). 
Essentially, ATR is a technique to collect the absorption data from samples and its principle 
is based on the changes in intensity of infra-red beam when the beam is totally internally 
reflected while travelling between two media with different indices. The internal 
reflectance creates an evanescent wave which protrudes from the crystal’s surface into 
samples (Figure 3-1) only a few microns (0.5 – 2 μm) and is attenuated by the energy 
absorption of the samples. The partially absorbed infra-red beam will be directed to the 
detector. Thanks to this technique, detecting the changes of functional groups and the 
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presence of zirconia on textiles would be less complicated with respect to sample 
preparation, and time of analysis. 

 
Figure 3-1 – Picture of ATR-FTIR equipment (left) and schematic representation of the measuring principle (right) 

Diffuse reflectance (DRIFT) FTIR on Nicolet 6700 was deployed that IR beams are 
directed in sample cup containing sample particles and/or transparent mixture (KBr). In 
priciple, IR beams interact with sample particles in two ways: (i) being reflected off the 
surface without absorption (specular reflection) and (ii) penetrating and interacting with the 
sample (diffuse reflection). Among them, diffuse reflection offers some spectral 
information that can be retrieved by DRIFT accessory. It has been realized that DRIFT can 
increase the resolution of spectra by reducing the signals from water bands [102, 103]. 
 
  

3.2.2. X-Ray Diffraction analysis 

Identifying phases of ZrO2 powder and detecting the 
presence of ZrO2 on the polymer network were 
carried out on the XRD system Bruker D8 Advance 
25 using radiation source Cu K alpha 1+2 1.54184 
Ao at a 2θ scan rate of 0.02o/point and step time of 
0.5s. The obtained XRD spectra reveal different 
polymorphs of ZrO2 in powder or coated on the 
polymer network.  

 

Figure 3-2 – Picture of XRD equipment 
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3.2.3. Thermo gravimetric analysis (TGA) 

The presence of organic ligands and the determination of ZrO2’s content on the 
polypropylene are carried out using TGA/DSC 1 STARe system from Mettler Toledo. 
Samples are placed in crucibles alumina 70 μL and mesurements are automatically 
operated. The change in weight is recorded in air as it is heated according to the following 
temperature program: 

 
Figure 3-3 –Temperature program used for TGA experiment 

 
Figure 3-4 – Picture of TGA equipment 
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3.2.4. Brunauer–Emmett–Teller method 

Specific areas of surface-modified nano-ZrO2 materials were determined using the 
Micrometrics ASAP 2020 system based on the BET method. Prior to measurements, 
materials were desorped at 150oC (423K) in 3h. Nitrogen (N2) gas was used as adsorptive 
gas and relative pressure (P/Po) was varied from 0.013 to 0.25. 

 
Figure 3-5 – Picture of Micrometrics ASAP 2020 

 
3.2.5. Solid-State 31P MAS-NMR Spectroscopy 

AVANCE III 500WB NMR system (500 MHz) with MAS 
technique (spinning rate of 10 KHz using a 4 mm triple 
H/X/Y probe) was used to obtain the solid-state 31P NMR 
spectra of zirconia modified with phosphonic acid 
derivatives. Importantly, the species of different 
compounds containing phosphorus on the surface of 
material and binding modes of ligands bearing phosphorus 
could be identified. The 31P chemical shifts were obtained 
using H3PO4 85% wt. as a reference. 

 
 

 
                                                                                                       

Figure 3-6 – Picture of solid-state NMR 
equipment 
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3.2.6. Scanning Electron Microscopy 

Morphology of the ZrO2 coating layer is assessed based on images obtained from scanning 
electron microscope ESEM-FEG FEI XL30, a platform in CLYM (Centre Lyonnais de 
Microscopie) located at INSA-Lyon. 

 
3.2.7. Elemental Analysis (ICP-OES) 

Elemental analyses determining the concentrations of Pd, Au, Cu, Ni, and Fe and analyzing 
the content of zirconium and phosphorus on polypropylene are conducted based on the ICP-
OES system ACTIVA from HORIBA located at IRCELyon. In regard to liquid samples, 
direct determination is carried out at suitable emission lines (Table 3-1). With respect to 
solid samples comprising modified-zirconia powder and polypropylene textiles, samples 
are prepared by heating at 250 – 300oC in the mixture of H2SO4 and HNO3 (for powder) 
and H2SO4, HNO3 and HF (for textiles) until the white fume of SO3 starts to appear, dilute 
with water and evaporate until dryness. Eventually, the residue is dissolved in HNO3 1%. 
 

Table 3-1. Selected wavelengths in elemental measurements by ICP-OES 
Element Wavelength (nm) 

Pd 340.46, 324.27 
Au 242.79, 267.27 
Cu 224.70, 327.39 
Ni 221.65, 230.30, 231.60 
Fe 240.49, 259.94 

 

 
Figure 3-7 – Picture of ICP-OES equipment 
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3.2.8. Surface zeta potential measurement of  nanosuspensions and textiles 

Zeta potential measurement and streaming potential technique were used to acquire 
information about surface charges of nanoparticles in suspensions and textiles. With respect 
to zeta potential of nanoparticles, all nanosuspensions used in this study were diluted to the 
concentration of 0.1 % wt., NaCl was added to ensure the conductive matrix of samples at 
the concentration of 10-3 M, the measurement was conducted on Zetasizer Nano ZS with 
an auto-titration unit adjusting pH of  nanosuspensions from 2-10. 
 
In terms of streaming potential technique, swatches of pristine polypropylene and 
carboxylic-surface modified polypropylene were mounted on sample holder. For each type 
of samples, 2 swatches were needed in sample holder to create the streaming channel so 
that a tangential flow of an electrolyte (NaCl 10-3 M solution, pH 2-5.5) passes through 
across a solid surface and the streaming potential will arise. 
 

3.3. Experimental procedures 
3.3.1. Surface modification of zirconia 

Brønsted acid-base reactions were selected to immobilize the ligands on the surface of 
zirconia nanoparticles consisting of 3 steps. In a typical experiment (Figure 3-8), 6 mL of 
aqueous 10% wt. ZrO2 nanosuspension (5 mmol of ZrO2), at pH 4-5 were added to a 10 mL 
round-bottom flask. A solution containing 0.1 mmol of each ligand dissolved in ethanol or 
water (for dissolving phosphomethyliminodiacetic acid – PMIDAA) was added dropwise 
to the nanosuspension and the mixture was stirred for 24 hrs at 25oC. The mole ratio of ZrO2 
to ligand was maintained at 50/1. The solid phase was separated by centrifugation for 10 
min at 10000 rpm. The supernatant was decanted and the solid phase was dispersed in 20 
mL of water, sonicated before separated by centrifugation. The washing procedure was 
repeated twice more with water and three times with ethanol. Finally, the hybrid zirconia 
powder was dried at 70oC for 24 hrs, and then ground by pestle and mortar to disaggregate. 
According to this procedure, we were able to recover about 90% of modified zirconia; in 
other words, about 0.54 g of modified zirconia was obtained with initial amount of aqueous 
10% wt. ZrO2 nanosuspension of 6 mL. On the other hand, the deposition yield of ligands 
will be discussed in section 4.2.3. 
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Figure 3-8 – Schematic representation of post-modification procedure 

 
A two-step surface modification of zirconia nanoparticles was also developed during this 
study (Figure 3-9) : 
 
1st step - surface functionalization with alendronic acid (AA): add 8 g of aqueous 10% wt. 
ZrO2 nanosuspension (0.8 g of ZrO2) and 10 mL of AA solution 10-1 M in a 100mL round-
bottom flask, then stir under reflux for 4 hrs. The medium was separated and washed with 
water (3 x 10 mL) and the powder (denoted ZrO2-AA) was dried for 24 hrs at 80oC. 
 
2nd step - covalently grafting with TOA moiety using NHS-activated ester of TOA: weigh 
0.20 g of ZrO2-AA in a round-bottom flask and add 2 mL of a solution of NHS-activated 
TOA in DMF 0.2 M reagent to ZrO2-AA, then stir the mixture for 24 hrs at 25oC, separate 
the powder by centrifugation and wash 3 times with DMF (3x15 mL) and 3 times with 
C2H5OH (3x15 mL) and eventually dry the powder at 80oC in 24 hrs. 
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Figure 3-9 – Schematic representation of two-step surface modification 

 
3.3.2. Deposition of zirconia on the surface of polypropylene and impregnation 

with ligands 

3.3.2.1. Dip coating 

Dip coating was applied for modified polypropylene substrate having high density of 
carboxylic groups (Figure 3-10). Typically, pieces of PP-COOH with the size of 1cm x 1cm 
were immersed into zirconia nanosuspension with the concentration of 10% wt. at pH 10-
11 (Lotus Synthesis) for 2 hrs at 25oC. PP-COOH pieces were then taken out, washed three 
times with water (3 x 5 mL) and three times with ethanol (3 x 5 mL) and then dried for 4 
hrs at 105-110 oC. After, zirconia coated polypropylene substrates were modified with 
suitable ligand by soaking polypropylene pieces in the solutions of a defined ligand at the 
concentration of 10-2 M for 24 hrs at 25oC, especially 20 mL of this solution were used for 
5 pieces of polypropylene. Finally, 1cm x 1cm PP pieces were washed and dried for 24 hrs 
at 105-110oC. 
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Figure 3-10 – Schematic representation of the deposition and impregnation processes onto surface-modified polypropylene 

 
3.3.2.2. Layer-by-Layer dip-coating method (LbL) 

All ZrO2 nanosuspensions were expected to be positively charged at pH 2.5, so they were 
diluted to 1% wt and adjusted to pH 2.5. In the meantime, an electrolyte was needed with 
a role as a “glue” to attach all layers of zirconia nanoparticles together, thus polyacrylic 
acid (PAA), a polymer with pKa in the range of 4.5-4.75, was chosen. 
 
In this study, three types of PAA with different molecular weights consisting of 2500, 5000, 
100000, and 240000 Da were selected. They were prepared by adding defined amount of 
PAA to certain quantity of water, dissolving by sonication and adjusting the pH to 2.5. 
Based on estimation, the fraction of PAA- was around 1% wt. of the initial concentration 
of PAA, and it makes the whole chain of PAA charge negatively. Below is the schematic 
representation of our LbL method, along with specific conditions. 



59 
 

 
Figure 3-11 – Schematic representation of our LbL coating process 

100%-ZrO2 LbL coating layer 
With the aim to create 100% nano-ZrO2 coating layer on PP-COOH textiles, ZrO2 
nanosuspensions with pH 1 and pH 10 from Lotus Synthesis were employed. They were 
diluted to the concentration of 1% wt. by deionized water, their pHs were adjusted to 6 and 
layer-by-layer coating process was carried out as illustrated in Figure 3-11. 

3.3.3. Batch adsorption experiment and adsorption isotherm 

Batch adsorption experiments were used to assess and compare adsorption capability of 
each surface-modified zirconia samples. Moreover, this method was also employed to 
investigate the effect of parameters to the adsorption process of thioctic acid-modified 
zirconia such as time contact, the effect of HCl, stripping process and so on. The experiment 
was carried out by adding a fixed amount of adsorbent (m) into a definite volume (V) of a 
solution containing Pd or/and Au with a defined initial concentration (Ci), then stirring the 
mixture in a determined period of time (t). Finally, the supernatant solution was separated 
by centrifuging at 8000 rpm and the final concentrations of Pd or/and Au (Cf) in solution  
were determined by ICP-OES technique (Figure 3-12).  
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Figure 3-12 – Schematic representation of batch adsorption experiment 

The adsorption or extraction percentages E (%) toward Pd or/and Au were calculated as 
follows: 

 

 
Similarly, batch experiments were carried out to study the adsorption capacities toward Pd 
and Au and adsorption isotherm of Pd and Au, but a series of batch experiments was 
conducted in which initial concentrations of Pd or Au were varied in the range 5-300 mg/L. 
The equilibrium adsorption capacity q (mg/g) was calculated according to the following 
formula: 

 

 
For stripping and recyclability investigations, ZrO2-TOA and ZrO2-AA-TOA 
nanomaterials (50 mg) were put in contact as described previously with 20 mL of an 
aqueous solution of Pd at 10 ppm, and then recovered by centrifugation and washed with 
water. The final solids were then stripped by a 10mL mixture of thiourea 0.1-0.2 M and 
HCl 0.5 M for 4 hrs. After, the ZrO2-materials were washed twice with 15 mL of water and 
reused in a further adsorption step. 
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CHAPTER 4. HYBRID ZrO2 NANOPOWDERS: 

SYNTHESES AND APPLICATIONS 

 
Introduction 

The objectives of this task were to modify the ZrO2 nanoparticles’ surface by organic 

complexants and assess their adsorption capability and selectivity toward palladium (Pd) 

and gold (Au). Moreover, the relationship between structure of ligands and extractability 

was interpreted. 

 

The development of hybrid nanoparticles is discussed in relation to the following aspects: 

 Syntheses of the ZrO2 hybrid nanoparticles. 

 Characterizations of the as-synthesized hybrid nanoparticles by using FT-IR 

(ATR & DRIFT), TGA, 31P solid state NMR and elemental analysis (Zr, P) and 

SEM. 

 Investigation (screening) of Pd and Au adsorptions to select the best capturing 

ligands with the highest capacity and selectivity. 

 Investigation of the adsorption capability of thioctic acid-surface modified nano-

ZrO2 material. 

 Development of two-step surface modification processes to reinforce the strength 

of bond between ligand and ZrO2’s surface 

 

4.1. Syntheses of the hybrid ZrO2 nanoparticles using different kinds of ligands 

The ligands selected contain two important features: 

(i) A grafting group based on carboxylate (-CO2), or phosphonate (-PO3) ligands 

which is capable of binding to metal oxide’s surface and not being washed out 

during application set-up (extraction, desorption/regeneration, and reuse). 
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(ii) A trapping group which plays as capturing functional group toward target metals. 

By tailoring this group, the adsorption capability of the hybrid material could be 

tuned to selectively extract one or a group of metals over a mixture. 

 

In collaboration with ICSM, five ligands were designed and provided which contain two 

types of grafting group, including carboxylate and phosphonate, and carbamoyl and 

diglycolic derivatives as trapping groups. Described in the Figure 4-1 are the specific 

structures of five ligands. Among them, thioctic acid is commercially available and 

predicted to efficiently adsorb “soft” metals (Hg, Au, Pd…) thanks to soft “S” sites. 

 
Figure 4-1. The structures of selected ligands to functionalize the zirconia’s surface 

As described in section 3.3.1, Hybrid nano-ZrO2 materials were obtained by post-surface 

modfication in which the mole ratio of ZrO2 to ligand was kept at 50/1. 

 

The powder XRD spectrum of commercial zirconia (from Sigma Aldrich) showed that two 
phases were simultaneously present, namely, tetragonal (~58%) and monoclinic (~42%). 
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Using the Rietveld analysis (structure profile refinement), the particle size of zirconia was 
estimated at around 15 nm. 
 

 
Figure 4-2 – XRD spectrum of bare zirconia nanoparticle from Sigma Aldrich 

 
4.2. Characterization of hybrid zirconia nano-powders: 

All surface-modified zirconia nano-powders are characterized by using various methods, 

namely FTIR, TGA, XRD, BET, solid state 31P MAS NMR and elemental analysis (Zr, P) 

to identify the content of ligands on the surface of zirconia and to get insights into the 

binding modes or interaction between ligands and the surface of zirconia. FT-IR is used for 

determining the presence of organic complexants on zirconia’s surface. With respect to 

phosphonate ligands modified nano-ZrO2, solid state 31P NMR is employed to study the 

bonding mode of phosphonic groups. Finally, with the help of elemental analysis (ICP-

OES), the exact ratio Zr/P of phosphonic acid-modified zirconia is determined to 

consolidate the estimated content from thermogravimetric analysis (TGA). 

 

4.2.1. FT-IR spectroscopy 

In the spectrum of nano-ZrO2 modified with thioctic acid (ZrO2-TOA) (Figure 4-3), only 

two bands associated with methylene stretching bands are present because the TOA’s 

molecular structure is just built up by methylene (-CH2) chains, carboxylic group and 
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disulfide group. New bands occur at 1559 cm-1 and 1435 cm-1 resulting from asymmetric 

and symmetric stretching of CO2-, respectively. The value of band separation Δν[νas(CO) - 

νs(CO)] can be used to understand the modes of coordination of carboxylic group. With the 

value of 124 cm-1, bidentate bridging/chelating coordination is favored. The disappearance 

of deformation band of Zr-OH at 1395 cm-1 in all FTIR spectra of modified-zirconia is most 

likely to be the result of the interaction between hydroxyl group of zirconia and grafting 

groups of ligands. The spectrum of nano-ZrO2 modified with dioctyldiglycoamide 

(DODGA) in Figure 4-4 shows the similar patterns as that of ZrO2-TOA, including the 

stretching band of C-H bonds (2850 – 2960 cm-1), the appearance of new bands (νas(CO): 

1587 cm-1 and νs(CO): 1421 cm-1), and the broad band below 500 cm-1. 

 

In regard to zirconia powders modified with carbamoyl phosphonic acid derivatives, 

namely (N,N)-bis (2-ethylhexyl)carbamoylmethylphosphonic acid (DEHCMPA) and 

dioctylcarbamoylmethylphosphonic acid (DOCMPA), their spectra indicate new bands 

between 2800 cm-1 and 3000 cm-1. These vibrations correspond to stretching of C-H bonds 

with methylene-symmetric and methylene-asymmetric stretching modes located at 2857 

cm-1 and 2924 cm-1, respectively and methyl-asymmetric stretching mode at 2960 cm-1 

(Figure 4-6 and Figure 4-7). 

 

In the case of phosphonomethylimino diacetic acid ligand which contains one phosphonic 

group and two carboxylic groups, one of the features highlighted in its spectrum is the band 

at around 1635 cm-1. As compared to the bare ZrO2’s spectrum, the intensity at this 

wavenumber in the spectrum of ZrO2-PMIDAA is higher as a consequence of carboxylic 

groups on the surface of zirconia. In the other words, the phosphonic group of PMIDAA 

shows a preferential affinity for zirconia producing pendent carboxylic groups. 

 

The spectra of ligands having phosphonic groups, namely DEHCMPA, DOCMPA and 

PMIDAA indicate the typical bands of P-O vibrations in the 900-1200 cm-1 range. Despite 

the broadness and complexity of this region, it is noteworthy that observed changes are 

likely to be interpreted. In general, the bands centered at ~1200cm-1 and 950cm-1 
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respectively correspond to P=O stretching and P-O stretching vibrations in the spectra of 

phosphonic ligands. However, these bands disappear and a broad band arises in the spectra 

of zirconia modified with DEHCMPA, DOCMPA and PMIDAA. 

 

 
Figure 4-3 – FT-IR spectra of bare nano-ZrO2, nano-ZrO2  modified with TOA and TOA  
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Figure 4-4 – FT-IR spectra of nano-ZrO2, nano-ZrO2 modified with DODGA and DODGA  

 
Figure 4-5 – FT-IR spectra of bare nano-ZrO2, nano-ZrO2 modified PMIDAA and PMIDAA 
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Figure 4-6 – FT-IR spectrum of bare nano-ZrO2, nano-ZrO2 modified with DEHCMPA 

 
Figure 4-7 – FT-IR spectrum bare nano-ZrO2, nano-ZrO2 modified with DOCMPA and DOCMPA 
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4.2.2. 31P MAS solid-state NMR 

As commonly used in the studies of phosphonate-based organic-inorganic hybrid material, 
31P solid-state NMR can be carried out to differentiate different phosphorus species on the 

surface of zirconia and to give some information about bonding modes of phosphonic 

ligand. Nonetheless, acquiring the exact bonding modes of phosphonic species require a 

more direct method to provide an unambiguous information. So far, 17O solid state NMR 

has been utilized to come to the conclusions about predominant bonding mode 

(monodentate, bidentate or tridentate) or species (physisorbed, chemisorbed and bulk metal 

phosphonate) [104, 105]. 

One of the typical features considered as the evidence of chemical bonding of phosphonate 

ligands is the broadness or the width of resonance signals. Due to bonding process of 

phosphonic ligands to the Zr-OH surface groups, the conformation of ligands and 

environment surrounding P atoms is neither well-defined nor uniform[106]. MAS 

technique in solid-state NMR, thus, is not likely to average out these effects and the 

resonance signals become broader. As a consequence, the solid-state NMR spectra of 

modified-ZrO2 show broad resonances corresponding to the isotropic peaks range from 0 

to 35 ppm (Figure 4-8 (b)), accompagnying the spinning sidebands. In contrast, all the NMR 

spectra of phosphonic ligands display a very sharp peaks located at 6.70 ppm for ZrO2-

PMIDAA, 18.31 ppm for ZrO2-DOCMPA, and 19.21 ppm for ZrO2-DEHCMPA, 

respectively (Figure 4-8 (a)). 

Not only does the bonding modes of phosphonic species on the zirconia’s surface broaden 

the NMR resonance, but they also cause the resonance peaks to shift; hence, the information 

about species on the surface of ZrO2 (physisorbed or metal phosphonate species) can be 

interpreted. In general, the upfield shift of the NMR peak will be the prevailing situation 

with respect to modification of nano-oxides with phosphonic acid[107]. Moreover, the 

magnitude of upfield shift will give the preliminary information related to the bonding 

modes of phosphonic species. In other words, the more shifted the resonance peak is, the 

higher bonding strengh of the phosphonic ligands to the surface of zirconia is, and the more 

various the bonds are (monodentate, bidentate or tridentate). 



69 
 

 
Figure 4-8 – (a)31P NMR spectra of phosphonic ligands, (b)31P MAS solid-state NMR spectra of  zirconia nanoparticles modified 

with phosphonic ligands, and (c) )31P MAS solid-state NMR spectra of  zirconia nanoparticles modified with phosphonic ligands 

after heating process. (*) spinning side bands 
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As illustrated in the NMR spectra of modified zirconia and free phosphonic acid, the 

isotropic peaks of DEHCMPA and DOCMPA shift upfield by 6.3-6.5 ppm suggesting the 

monodentate bonding mode would be the predominant, while the negligible upfield shift of 

PMIDAA modified zirconia results from the weak interaction between PMIDAA and 

zirconia’s surface. According to a study using DFT computations[108] about interaction 

between dye molecules and TiO2’s surface through anchoring groups such as carboxylic 

and phosphonic, monodentate bonding mode is predominant adsorption approach on the 

surface of titania involving the coordination of P=O group and two hydrogen bonding of 

two remaining P-OH groups. Noticeably, the absence of sharp peaks arising from free 

ligands indicates that the excess of ligands is removed during washing step. The presence 

of metal phosphonate is also eliminated because the absence of sharp peaks regularly 

located at further upfield chemical shift (~7ppm[106]). The dissolution-precipitation 

process may be excluded due to the mild reaction condition (low concentration of 

phosphonic ligands, ambient temperature). Previously reported, the harsher and more 

aggressvive reaction conditions, for instance, high concentration of phosphonic acid, high 

temperature and extending reaction time led to significant formation of metal phosphonate 

species[106, 109]. With respect to the discrepancies in mole ratios Zr/P between the results 

obtained from TGA and Elemental Analysis, the spectra of solid-state 31P NMR of 

phophonic derivatives-modified zirconia (Figure 4-8 (c)) after heated at 900oC for 24h 

show a similar all chemical shifts upfield toward the same range of phosphates chemical 

shift range because phosphonic ligands on the surface of ZrO2 are oxidized and transformed 

into phosphates after heating process. 

4.2.3. Elemental analysis and thermogravimetric analysis method 

TGA in air has been widely employed to detect the presence of ligand on the surface of 

nanoparticles after post-modification and determine the grafting densities of self-assembled 

monolayer (SAM). The grafting density could be calculated as follows: 

 

Where FL is the fraction of ligand on the surface of zirconia (%wt.), NA is Avogadro 

number, S is specific area of zirconia (m2/g), and M is the molecular of ligand (g/mol). In 
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the above equation, S is directly measured by BET method or indirectly determined which 

is based on the density (d = 5.89 g/mL) and the particle radius of zirconia (r, nm) (obtained 

by SEM imaging technique or estimated by XRD technique). 

 

Assuming the shape of zirconia particle is spherical, the specific surface is approximated 

as follows: 

 

 

 
Figure 4-9 – TGA curves of surface-modified nano-zirconia 

According to the Figure 4-9, all TGA curves show significant weight losses between 200oC 

and 800oC which represent the decomposition of ligands on the surface of zirconia. The 

estimated fraction and surface coverage (grafting density) are given in the Table 4-1. 
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Table 4-1. The fraction of ligand and calculated grafting density of modified zirconia 

 
FL (%) 

TGA 

Grafting Density 

(L/nm2) 

FL (%) 

ICP-OES 
Grafting Density (L/nm2) 

ZrO2-TOA 2.67 1.14 - - 

ZrO2-DODGA 3.56 0.88 - - 

ZrO2-PMIDAA 1.76 0.69 2.23 0.87 

ZrO2-DOCMPA 3.60 0.88 5.45 1.33 

ZrO2-DEHCMPA 3.40 0.83 - - 

 

The reliability of the amount of phosphonic ligands is confirmed by using ICP-OES method 

to determine the phosphorus content of the modified-zirconia. Of three types of phosphonic 

acid – modified zirconia, two are selected for P analysis, including ZrO2-PMIDAA and 

ZrO2-DOCMPA (because DOCMPA and DEHCMPA have similar molecular structures 

and properties). Table 4-1 indicates the discrepancies between the values obtained by two 

methods result from the formation of phosphate species during thermal processes in TGA 

method as proven by 31P solid-state NMR method. As such, the weight losses corresponding 

to the amount of phosphonic acid ligands reflect a lower value than those of ICP-OES. 

 

In conclusion, the presence of ligands on the surface of zirconia and their bonding modes 

are elucidated by the combination of various characterization methods including FT-IR, 

TGA, 31P solid-state NMR and ICP-OES. The chimisorption of ligands is the main 

interaction driven by the condensation between C-OH/P-OH groups and the surface Zr-OH 

groups and the coordination between carbonyl C=O/ phosphoryl P=O and surface ZrO2. 

 

4.3. Synthesis of ZrO2-TOA with different mole ratios of ZrO2 to TOA 

The mole ratio of ZrO2 to TOA was studied to obtain the insights into the bonding process 

as well as to find out the best ligand ratio for the modification process. The higher the 

amount of TOA on the zirconia’s surface is, the better the adsorption of ZrO2-TOA is. All 

parameters were remained as the procedure in section 3.3.1, but the ZrO2/TOA mole ratios 

were changed as follows: 100, 61, 50, 30.5, 15.7, and 5. 
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Figure 4-10 – The effect of mole ratio of ZrO2/TOA to the deposition process 

Figure 4-10 depicts three sets of data, namely theoretical mole ratio of ZrO2/TOA, real mole 

ratio and TOA deposition yield. Apparently, the deposition yield illustrates the downward 

tendency while the ZrO2/TOA mole ratio decreases, or higher amount of TOA is used 

during modification. Furthermore, the fairly decrease in the deposition yield from 93% to 

84.2% was observed coressponding to the diminution in the mole ratio of ZrO2/TOA from 

100 to 61. The constantly downward trend in mole ratio of ZrO2/TOA leads to the drastical 

and continuous drop in the deposition performance from 67.2 to 11.7%. Regarding the bar 

graphs, the theoretical and real mole ratios nearly match each other at the mole ratio of 100, 

meanwhile the deposition yield reaches quantitatively (~100%) at this ratio. 

Accompagnying the falling-off of deposition yield, the discrepancies between theoretical 

and real ZrO2/TOA mole ratio become more and more obvious. Particularly, the real 

ZrO2/TOA mole ratio tends to steadily fluctuate when theoretical ZrO2/TOA mole ratio is 

changed from 61 to 30.5. 

 

Assuming the covalent grafting between carboxylic groups of TOA and the zirconia’s 

surface, all active sites on the zirconia’s surface are accessible for interaction at the high 

ZrO2/TOA mole ratio (100, 61). However, the more the quantity of TOA during 

modification is, the less available the active sites on the zirconia’s surface are. It is most 
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likely that the ZrO2/TOA mole ratios ranging from 50 to 60 (~2.2μmol TOA/1m2/1g ZrO2-

TOA; SBET(TOA) = 50.7 m2/g) lead to the complete coverage of TOA on the zirconia’s 

surface. On the other hand, the slightly extensive increase in the amount of TOA might 

results from Van Der Waals interaction between the formerly adsorbed TOA molecules on 

the surface and latter TOA molecules. 

 

4.4. Investigation of gold and palladium adsorption capability 

Batch adsorption experiments were conducted by mixing 50 mg of a hybrid nanopowder in 

a 100-mL glass bottle containing 20 mL of an aqueous solution of 10 ppm Pd or Au in 0.5 

M HCl medium. The mixture was stirred by magnetic stirrer for 24h at 25oC. The separation 

was carried out by centrifugation, then supernatant solution was carefully transferred to a 

10-mL vial. The remaining concentration of Pd or Au was analyzed using ICP-OES. The 

percentage metal adsorption was calculated as follows: 

 

Where Co (ppm) and C (ppm) are the metal concentration in solutions before and after 

adsorption, respectively. 

 
Figure 4-11 – Extraction percentage (%) of ligand-functionalized zirconia nanoparticles based on single solution. [Pd] = 10 

ppm, [Au] = 10 ppm, V = 20 mL, mmaterial = 50 mg, time = 24h, To = 25oC 
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Figure 4-11 provides information about Au and Pd adsorption performance (adsorption 

capability, selectivity) of all hybrid nano-ZrO2 as well as demonstrates the dependence of 

the selectivity on the type of ligands bonded to ZrO2’s surface. 

 

Firstly, all modified zirconia nanoparticles indicate higher adsorption performance than 

bare zirconia. None of Au and Pd cations are extracted by bare zirconia, while modified 

zirconia nanoparticles show a significant increase of Au or Pd adsorption, especially 

zirconia nanoparticles modified with thioctic acid having Au and Pd adsorption percentages 

of nearly 100%. With regard to Pd adsorption, the adsorption percentage of all modified 

zirconia ranges from 9.2% (ZrO2-PMIDAA) to about 100% (ZrO2-TOA). Meanwhile, 4 out 

of 5 modified zirconia, namely ZrO2-TOA, ZrO2-DODGA, ZrO2-DOCMPA and ZrO2-

DEHCMPA are able to adsorb Au. 

 

Secondly, adsorption selectivity based on single solution between Au and Pd of all modified 

zirconia nanoparticles can be assessed and compared from the graph. Three hybrid 

nanoparticles clearly seem to be able to capture Pd and Au selectively, including ZrO2-

DODGA, ZrO2-PMIDAA, and ZrO2-DOCMPA. Interestingly, ZrO2-DODGA favors Au 

adsorption rather than Pd extraction, yet ZrO2-PMIDAA is not likely to adsorb Au. In the 

case of ZrO2-TOA, it’s necessary to carry out further experiments to gain more precise 

information on its selectivity because all adsoprtion sites of ZrO2-TOA are available to 

quantitatively extract Au and Pd at the selected concentration in this experiment. 

 

Generally, solid-liquid extraction includes two key processes: the diffusion of target species 

into the solid phase and the reaction between functional groups of the solid phase and aimed 

adsorbates. Accordingly, the capacity and selectivity of adsorbent can be tailored and 

modified to fullfill various demands. In the series of ligands in this work, nano-ZrO2 

modified with thioctic acid (ZrO2-TOA) is expected to effectively adsorb Au and Pd thanks 

to sulfur atoms in the molecular structure. According to HSAB (hard-soft acid-base), 

entities (molecules or adsorbent) containing sulfur donor atoms strongly interact with soft 

acids such as gold and palladium. 
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On the other hand, one of effects which is cannot be ruled out is the impact of mass transfer 

or diffusion of metals to/into the solid phase. Due to ligand’s property, the surface of 

modified zirconia will be more hydrophobic compared to the bare zirconia after 

modification, hence, the modified zirconia will hinder the accessibility of gold and 

palladium. Among the ligands selected to modifiy zirconia nanoparticles, DODGA, 

DOCMPA and DEHCMPA make the zirconia nanoparticles’ surface become hydrophobic. 

Consequently, modified zirconia nanoparticles are hardly dispersed in the aqueous medium 

by stirring, resulting in the inefficient Au and Pd adsorption. The phase transfer experiment 

is carried out to demonstrate the impact of modification of zirconia’s surface on the 

hydrophobicity/hydrophilicity of the nanoparticles. Briefly, the dry modified-zirconia 

nanoparticles are simply dispersed in water, the defined amount of CH2Cl2 solvent is added 

to the nanosuspension and then mixture is mixed and held still for 24h. As shown in the 

Figure 4-12, two out three types of zirconia modified with phosphonic ligands and zirconia 

modified with DODGA are completely transferred from the upper aqueous phase to the 

lower organic phase, whereas ZrO2-PMIDAA nanoparticles still remains in the aqueous 

phase. On the other hand, the phase transfer of ZrO2-TOA is partial. 

 
Figure 4-12 – A photograph of the location of modified-zirconia particles in the immiscible mixture of water and CH2Cl2 

H2O 

CH2Cl2 
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4.5. Investigation of adsorption capability of ZrO2-TOA 
Preliminary tests on adsorption capability of hybrid zirconia nanoparticles in the above 
section 4.4 have demonstrated that zirconia modified with thioctic acid (ZrO2-TOA) 
emerges as a potential adsorbent for Au and Pd adsorptions. With the aim to extensively 
understand adsorption characteristics and application capability of ZrO2-TOA, the 
following aspects were studied including: 

 Adsorption characteristics of ZrO2-TOA: adsorption capacity, the contact time, 
the impact of HCl and Cl- concentrations, the study of adsorption mechanism 
through experimental methods and calculation. 

 Investigation of stripping/desorption of Au and Pd out of ZrO2-TOA. 
 Application and reusability of ZrO2-TOA. 

 
4.5.1. Adsorption isotherm and capacity of ZrO2-TOA 

In adsorption studies, determining the adsorption capacity or loading capacity is crucial 
step to describe the characteristic of adsorbent. Basically, the adsorption capcity is defined 
as the maximum amount of adsorbate captured by 1g of adsorbent at equilibrium state. 
Besides, adsorption capacity is considered as an important parameter in order to assess and 
compare the adsorption performance among the adsorbents toward the certain target 
adsorbates. In this experiment, the adsorption capacity of ZrO2-TOA was investigated by 
stirring 20 mL of the single solution (contains only Pd or Au) with the increasing initial 
concentration in the range of 5 mg/L to 300 mg/L. The constant agitation was carried out 
by magnetic stirrer for 24h at 25oC. 
 
According to the Figure 4-13, Pd and Au data reflect a similar trend: (i) rapid increase in 
the range of low concentration (0 – 20 mg/L) which is a linear correlation between capacity 
and initial contration and (ii) non-proportionally rising relationship at the higher initial 
concentrations which tends to level-off in the range of more than 100 mg/L. A plausible 
reason for this tendency stems from fact that at low concentrations all active sites on the 
zirconia’s surface are sufficient for the adsorption process; however, at high concentrations 
the occupation of former Pd and Au ions limits the accessibility of the zirconia’s surface 
and adsorption of more Pd and Au ions. The maximum experimental adsorption capacity 
was determined to be 6.3 and 43 mg/g for Pd and Au, respectively. 
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Figure 4-13 – Au and Pd capacities of ZrO2-TOA  as a function of initial concentration 

Interestingly, when taking into consideration the mole ratio of TOA-M (M = Au or Pd), we 
obtained the mole ratios of 1.83 for TOA/Pd and 0.5 for TOA/Au. That means it’s very 
likely that 2 molecules of TOA were necessary to coordinate 1 Pd ion, while 1 molecule of 
TOA could form two coordinate covalent bonds to 2 Au ions. Therefore, noting that the 
major species of Pd(IV), and Au(III) in the acidic solution containing beyond 0.1M are 
chloro anionic species PdCl42-, and AuCl4-[41, 110], the reaction can be presented as 
follows: 

PdCl42- + 2TOAsolid phase ↔ [PdCl2(TOA2)solid phase]  +  2Cl-  (1) 
2AuCl4- + TOAsolid phase ↔ [(2AuCl3)TOAsolid phase]  +  2Cl-  (2) 

 
In-depth investigation of adsorption behavior of Au and Pd ions and ZrO2-TOA’s surface 
properties was conducted by applying adsorption data to Langmuir adsorption isotherm 
model. According to this model, the surface of adsorbent is assumed to be homogeneous in 
terms of adsorption energy and adsorbates would form monolayer on the adsorbent’s 
surface. In other words, active sites on the surface of adsorbent are supposed to be finite 
and identical and the interaction between adsorbates is believed to be absent. The 
mathematical formula of this theory is expressed as follows: 
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Where b (L/mg) is the Langmuir equilibrium constant, qmax (mg/g) is the maximum 
adsorption capacity, Ce (mg/L) is the equilibrium concentration, and qe (mg/g) is the 
equilibrium capacity. In reality, the linear form of the Langmuir model is often used to 
determine b and qmax: 

 

Or 

 

 

 
Figure 4-14 – Langmuir isotherm for Pd adsorption 

 
Figure 4-15 – Langmuir isotherm for Au adsorption 
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According the adsorption data of Pd and Au, the linear plots were constructed and the 
conformity to the Langmuir model was assessed through correlation coefficients (R) which 
were found to be 0.993 for Pd (Figure 4-14) and 0.999 for Au (Figure 4-15), respectively. 
The maximum Pd and Au capacities calculated from the plots were 6.3 mg/g and 44.6 mg/g, 
respectively. A good agreement between the experimental and calculated capacities 
consolidates the suitability of the Langmuir model. Besides, in relation to some published 
studies which have the same objectives, the adsorption performance of ZrO2-TOA is 
compared with that of other materials (Table 4-2) which shows comparable capabilities in 
Pd and Au adsorptions. 

Table 4-2. The adsorption capacity of studied materials 

Used adsorbents Target metals 
Capacity (mg/g) 

References 
Au Pd 

Phosphine sulphide-type chelating 
polymers 

Au, Pd 
78.8 (polymer 1) 
78.8 (polymer 2) 

11.7 (polymer 1) 
7,4 (polymer 2) 

[67] 

Diaion WA21J Pd - 4.84 [111] 
DTDGA-impregnated XAD-16 

Beads* 
Au 35 - [30] 

Amberlite XAD-16 
Functionalized with 2-Acetyl 

Amide group 
Pd - 9 [112] 

Thioctic acid functionalized silica 
coated magnetite nanoparticles 

Au 38 - [72] 

This study Au, Pd 44.6 6.3 - 

 
4.5.2. Effect of contact time 

To understand the adsorption/desorption process was to obtain insights into its 
thermodynamics and kinetics aspects and hence the overal process can be controlled. If 
building the adsorption isotherm thermodynamically unveils some information about the 
equilibrium state of the adsorption process, the study of adsorption kinetics provides some 
insights into the progress of adsorption process. In this experiment, the adsorption 
capacities of ZrO2-TOA were examined from 15 to 480 mins. 
 
The kinetics of adsorption process strongly depends on operating conditions, such as initial 
concentration, pH, temperature and stirring rate. Generally, the higher the initial 
concentration is, the longer the time required is to reach equilibrium. Pseudo-first-order and 
pseudo-second-order models have been commonly employed to shed the light on the 
adsorption process; among them, pseudo-second-order often better describes the 
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mechanism of the adsorption in which the adsorption process is mainly driven by chemical 
reaction. The prefix “pseudo” has been used to distinguish the rate expressions based on 
capacity values from those based on the concentration values [113] 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4-16 – The influence of contact time on the Pd and Au adsorption 

According to Largegren, the pseudo-first-order model is described as a differential 
equation: 

 

where qe and qt are adsorption capacities (mg/g) at equilibrium and at any time t, 
respectively and k1 is the rate constant of pseudo-first-order adsorption model (min-1).  
 
Normally, the equation is integrated and the boundary conditions are applied: t0 = 0, q0 = 0 
and tt = t, qt (equilibrium) = qe so as to obtain the following equation: 

 

As a rule of thumb, the plot of log(qe – qt) against t is conducted and the fit of this model is 
validated by R2 (coefficient of determination) value. The pseudo-second-order model is 
expressed by the following equation: 
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where k2 is the pseudo-second-order rate constant (g mg-1 min-1). After integrating and 
applying the boundary condtions, the following equation is often used to describe the 
pseudo-second-order adsorption kinetics: 

 

 
Similar to pseudo-first-order model, t/qt is plotted against t and and R2 value is the 
parameter to assess the suitability of the model. 

      
Figure 4-17 – Pseudo-first-order and pseudo-second-order models for Pd adsorption kinetics 

       
Figure 4-18 – Pseudo-first-order and pseudo-second-order models for Au adsorption kinetics 

Presented in the Table 4-3 is the summary of some crucial parameters associated with 
pseudo-first-order and pseudo-second-order adsorption kinetics models for Pd and Au. Of 
two models, the pseudo-second-order adsorption kinetics model is the most fitted approach 
to describe the adsorption process as a function of time with the determination coefficient 
of larger than 0.999. In the solid-liquid adsorption process, three stages are supposedly 
involved: (i) external mass diffusion, (ii) intraparticle (pore) diffusion and (iii) interaction 
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step [114]. During the adsorption process, agitation has been employed to accelerate the 
external mass transfer, so intraparticle diffusion and chemical reaction become the rate-
controlling steps. When it comes to the chemical interaction between ZrO2-TOA and 
[PdCl4]2- or [AuCl4]-, the HSAB Pearson’s theory that is predicated on the favorable 
coordination between target metals and sulfur sites on ZrO2’s surface is a plausible rationale 
for the fit of pseudo-second model. Essentially, the principle of pseudo-first and pseudo-
second models are based on a general differential equation [115], but the magnitude of 
concentration relative to the capturing sites on the adsorbent decides which model best 
describes the adsorption process. In other words, the adsorption process follows the pseudo-
second model at the low range of initial concentration (ppm-ppb) and follows the pseudo-
first model at the high range of initial concentration. 
 

Table 4-3. Summary of kinetic parameters of Pd and Au adsorption on ZrO2-TOA 
Model Pd Au 

Pseudo-first-order 
k1 (min-1) 
qe (mg g-1) 

R2 

 
0.00178 

1.9 
0.8474 

 
0.00152 

12.8 
0.8670 

Pseudo-second-order 
k2 (g mg-1 min-1) 

qe (mg g-1) 
R2 

 
0.0218 

6.9 
0.9992 

 
0.000538 

43.1 
0.9990 

 

Observing the curves in Figure 4-16, we will maintain the minimum contact time of 180 
mins for the following experiments. 

4.5.3. Effect of HCl and chloride to the adsorption 

Effluents from the recycling factories and refineries often contain various acids (HNO3, 
HCl) in high concentration due to mandatory utilization of acids for dissolving and 
separating stages. One of the main components is hydrochloric acid (HCl), so the effect of 
HCl to the adsorption was carried out. The impact of chloride concentration was conducted 
as well with the aim to understand the driving force governing the chelating process. In this 
experiment, extraction percentage of a single solution Pd/Au 10 ppm was monitored when 
the concetration of HCl was varied from 0.08-6 M. All remaining parameters for the 
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adsorption were similar to those of previous experiments, including 50 mg of ZrO2-TOA, 
and 180 mins of stirring. 

 
Figure 4-19 – Impact of HCl concentration on the Au and Pd extraction 

The data in Figure 4-19 illustrate a declining tendency in the extraction percentage for Au 
and Pd adsorption when HCl concentration exceeds 1M. At low HCl concentration (< 1M), 
quantitative adsorption was obtained, while at higher concentration the extraction 
percentage constantly decreased. The extraction percentage of Pd dropped to 83 % while 
HCl concentration reached 2.7M and the further decre in HCl concentration to 6M led to a 
fall in extraction percentage to 54 %. In the meantime, gold adsorption experiences a 
decrease at higher extent, especially, the extraction percentage dropped to 41 % when HCl 
concentration got to 2.7M. Therefore, the concentration of acid in the real e-wastewater 
should be paid close attention, dilution and pH adjustment particularly may be employed. 
 
A plausible explanation for this phenomenon is that the adsorption is likely to be inhibited 
due to (i) the shifting of the equilibrium to the left due to the elevated concentration of Cl- 
which favors the tetrachloro complexes of Au and Pd (according to the reactions 1 and 2) 
or (ii) the protonation of sulfur sites when concentration of H+ ion is higher than 1M which 
hinders the complexation of Au and Pd species in the solution to TOA on the ZrO2’s 
surface[67] (Figure 4-20). Therefore, the effect of Cl- was individually investigated by 
designing adsorption experiments in which solutions of Pd 10 mg/L were prepared in the 
matrices with constant H+ concentration at 0.5M and varied Cl- concentration from 0.6 – 
4M. 
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Figure 4-20 – Schematic representation of the protonation process of sulfur atoms in functional groups 

 

 
Figure 4-21 – Effect of Cl- concentration to the Pd adsorption 

 
Figure 4-21 shows the poor effect of chloride content on the adsorption process, namely 
that the extraction percentage is over 99% in the investigated Cl- concentration range of 0.6 
– 4M. In other words, the protonation of sulfur sites could be of crucial influence, yet the 
hydrolysis of Zr-O-C bonds by H+ can not be ruled out which leads to the clevage between 
thioctic acid and hydroxyl sites on the zirconia’s surface (Figure 4-22). 

 
Figure 4-22 – Schematic representation of the cleavage of the bond between thioctic acids and ZrO2’s surface 
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4.5.4. Stripping investigation 

The rudiments of recycling practices are separating, purifying and recovering the target 
adsorbates. Stripping or back-extraction process is particularly used to recover the target 
metals in the recycling processes using liquid-liquid or solid-liquid extraction techniques.  
 
In our experiment, Au and Pd adsorbed onto ZrO2-TOA were back-extracted based on 
different combinations between thiourea and hydrochloric acid. Additionally, sodium 
nitrite was used as a stripping agent with the aim to selectively back extract Pd. 
 

 
Figure 4-23 – The back-extraction (stripping) percentage of Pd and Au using different mixtures of thiourea and hydrochloric. The 

anterior adsorption was carried out using the dual solution of Au and Pd with the concentration of 10 mg/L/each. 

Figure 4-23 shows the stripping percentage of Pd and Au obtained by using different 
mixtures of thiourea (TU) and hydrochloric acid (HCl), including (i) TU 0.1M, HCl 0.5M, 
(ii) TU 0.15M, HCl 0.5M, and (iii) TU 0.2M, HCl 0.5M. As can be seen in Figure 4-23, it 
is clear that all mixtures of TU and HCl well-suit the Pd stripping process in which nearly 
100% of Pd is recovered, whereas the back-extraction of gold is less quantitative with the 
highest stripping percentage of about 75% using TU and HCl. When it comes to 
repeatability, using TU 0.2M and HCl 0.5M indicates the highest rate of repeatability 
compared to mixtures of TU 0.15M and HCl 0.5M and TU 0.1M and HCl 0.5M. In other 
words, the mixture of TU 0.2M and HCl 0.5M is the best compromise to ensure the stability 
of the stripping process. 
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In addition, a back-extraction experiment using sodium nitrite at pH 5 was conducted for 
selectively recovering Pd without co-extracting Au. The results shown in Figure 4-24 
proved that sodium nitrite at pH 5 was not an efficient for Pd back-extraction. 
 

 
Figure 4-24 – Comparison of back-extraction performance between TU + HCl and NaNO2. 

4.5.5. Reusability of the ZrO2-TOA 

In respect of cost-effectiveness, an adsorbent used in recycling applications should be a 
consequence of ease of synthesis as well as a material with reusability. Therefore, the 
regeneration and reusability of hybrid nano-powder of ZrO2-TOA were tested by repeatedly 
adsorbing/desorbing Pd up to four times in “model” medium of standard solution (20 mL 
of Pd 10 mg/L) and real effluent (20 mL, after five-fold diluting pH adjusting to pH 1) from 
the MORPHOSIS company.  
 
From the earlier experiments, all parameters related to adsorption include mZrO2-TOA = 50 
mg, contact time = 180 mins. Regarding desorption process, the mixture of thiourea 0.2M 
and HCl 0.5 M was stirred with Pd-adsorbed powder of ZrO2-TOA in 180 mins. The ZrO2-
TOA powder was washed with water and reused for consecutive adsorptions. 
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Figure 4-25 – Extraction and stripping percentage through adsoption/desorption cycles 

As illustrated in the Figure 4-25, the adsorption capability of ZrO2-TOA decreased after 
each adsoprtion/desorption cycle although adsorption was carried out in the “model” 
matrix. In the second adsorption experiment, ZrO2-TOA was just able to capture 65% of 
Pd, to the greater extent, the adsorption capability of ZrO2-TOA fell to 19% of Pd. In 
contrast, a quantitative desorption percentage using TU 0.2 and HCl 0.5M was obtained for 
four suscessive adsorption/desorption cycles. 
 

 
Figure 4-26 – Extraction performance of ZrO2-TOA through adsoprtion/desorption cycles in the real effluent 
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Similarly, a declining tendency was recorded for four successive adsorption/desorption 
cycles in the real effluent. These observations lead to possible explanation about the loss of 
thioctic acid on the surface after each cycles as described in the Figure 4-27 which 
consolidates the results obtained in the investigation of the HCl effect. 

 
Figure 4-27 – Schematic explanation about the loss of TOA on the zirconia’s surface after desorption 

 
In an attempt to reinforce the above assumption, nano-ZrO2 material modified with 
DOCMPA was used as the adsorbent in the reusability test. DOCMPA is a ligand bearing 
phosphonic groups (-PO(OH)2) as the grafting groups to the ZrO2’s surface that has been 
believed that the resultant modified nano-ZrO2 materials have higher tolerance and 
resistance toward hydrolysis. As seen in Figure 4-28, the resuability of ZrO2-DOCMPA 
was far better than that of ZrO2-TOA. The data demonstrated that despite the low adsorption 
capability toward Au and Pd, the steady trend of adsorption percentages of ZrO2-DOCMPA 
strengthens the assumption about stability of Zr-O-P bond compared to Zr-O-C. 
Consequently, it is suggested that TOA moiety be grafted to ZrO2’s surface via “linker” 
phosphonic groups anchoring to bare ZrO2’s surface. 
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Figure 4-28 – Reusability test of ZrO2-DOCMPA 

Interestingly, when it comes to selectivity of ZrO2-TOA toward Pd in the real effluent, Pd 
was quantitatively extracted despite its trace concentration in the real effluent (1.58 mg/L). 
On the contrary, Cu, Ni, and Fe were badly-extracted by ZrO2-TOA with the extraction 
percentage of 0.01-007 % notwithstanding the major presence of these metals in the initial 
effluent, namely 1320 mg Cu/L, 3940 mg Ni/L, and 1460 mg Fe/L, respectively. 

 
 

  
Figure 4-29 – The extraction percentage of metals present in the real effluent (left), and a photo of e-wastewater provided from 

MORPHOSIS (right) 
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Summary about the adsorption capability of ZrO2-TOA toward Pd and Au 
 
The results from in-depth experiments on the adsorption and desorption processes of 
thioctic surface-modified nano-zirconia (ZrO2-TOA) have demonstrated that this hybrid 
nanomaterial showed higher selectivity toward Au (43 mg/g) compared to Pd (6 mg/g) 
following the Langmuir adsorption isotherm. The adsorption process has turned out to be 
driven by coordinative interaction between sulfur sites and target metals and following the 
pseudo-second-order adsorption kintetics; however, in high concentration of HCl (>1M), 
the adsorption was limited probably owing to the effect of H+ on the bonding strength of 
carboxylic group to ZrO2’s surface. The effect of Cl- is eliminated because of the 
quantitative adsorption toward Pd in the wide range of Cl- from 0.6 – 4 M.  With respect to 
desorption process, a mixture of thiourea 0.2 M and HCl 0.5 M has ensured an efficient and 
reproducible desorption. Importantly, ZrO2-TOA nanomaterial has shown its limititations 
in terms of reusability and regeneration because the bonds between TOA and ZrO2’s surface 
were cleaved through hydrolysis by acidic components of sample’s matrix. 
 
The main drawback of ZrO2-TOA in reusability of Pd and Au adsorption process has 
motivated the study to search for an alternative for surface modification through carboxylic 
grafting group. Either a ligand bearing phosphonic group and disulfide capturing group or 
a surface modification process that improves the bonding strength of ligand on ZrO2’s 
surface would be the vital strategy in order to endow the resultant material with reusability. 
 

4.6. Two-step surface modification of ZrO2 
Surface modified nano-zirconia materials, particularly phosphonate-modified zirconia has 
not been used as an adsorbent in capturing Pd and Au in the electronic wastewater. In this 
part, we will discuss some insights into the effect of grafting groups on the bonding mode 
and stability of resultant materials. In other words, ZrO2 nanoparticles will be modified via 
a two-step functionalization process comprising (i) surface modification with alendronic 
acid (AA) and (ii) covalent grafting of AA with TOA moiety through amide coupling 
reaction (Figure 4-30). The amide coupling reaction was conducted using either TOA 
activated by N,N-dicyclohexylcarbodiimide (DCC) (pathway 1) or N-hydroxysuccinimide 
activated ester of TOA (pathway 2). 
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Figure 4-30 – Schematic representation of two-step surface modification of ZrO2 

Pathway 1 : Carbodiimide (TOA/DCC): In this pathway, a mixture of TOA and DCC was 
prepared with the aim to remove the precipitate of N,N-dicyclohexylurea (DCU) that was 
the by-product of the reaction between TOA and DCC. The solution that contained O-
acylisourea and symmetric anhydrides of TOA was immediately allowed to react with 
ZrO2-AA. The mechanism of this pathway can be described as follows: 
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Figure 4-31 – The mechanism of amide coupling reaction mediated by DCC [116] 

Pathway 2 : Activated ester (NHS-TOA): One of the drawbacks of the previous 
carbodiimide pathway was the intermediate derivative N-acylurea, a by-product of the 
rearrangement of O-acylisourea. In comparison with O-acylisourea, this compound was 
inert and created in the expense of carboxylic reactant. In order to alleviate this problem, 
carboxylic could be activated by reacting with substituted phenols or derivatives of 
hydroxylamine (OHXt) in the presence of carbodiimide compounds. Generally, Xt is 
chosen with the electron-withdrawing property that causes the acyl moiety to be effectively 
attacked by nucleophiles (R-NH2). In this study, N-succinimide active ester of TOA (NHS-
TOA) was employed due to its solubility in water that faciliates the washing step. 
 
It is important to highlight that numerous attempts to synthesize the AA-TOA ligand have 
not been successful. 
 

4.6.1. Fourier-Transform Infrared Spectroscopy 

FTIR spectrometry was first used to detect the presence of ligands and retrieve information 
relevant to bonding nature of the carboxylic and phosphonic acids headgroups to ZrO2’s 
surface.  
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ZrO2-AA sample was first characterized by ATR-FTIR. Its spectrum showed the presence 
of phosphonate groups (-PO3) of AA onto the ZrO2 surface because of the presence of broad 
absorption bands at 1130 and 993 cm-1 (blue dash lines). Tridentate bonds could be assumed 
because of disappearances of P=O and P-OH streching bands at 1200 and at 917 cm-1, 
respectively (green dash lines). 
 

 
Figure 4-32 – ATR-FTIR spectra of bare ZrO2, ZrO2-AA, and AA 

DRIFT spectra have confirmed the phosphonate grafting that exhibit a strong absorption 
band below 1200 cm-1. This technique was also used to collect spectra after amide coupling 
reaction thanks to higher sensitivity to surface modifications than ATR-FTIR [102]. 
Generally, it has been suggested that amide I (C=O strech, at 1600-1700 cm-1) and amide 
II (N-H bend in-plane and C-N strech; at 1485-1575 cm-1) bands be indicators of amide 
bonds; however, the water band (H2O bend) at 1674 cm-1 in the spectra of ZrO2-AA and 
ZrO2-AA-TOA (Figure 4-33) overlapped  with the amide I band. The big difference was 
the pattern of -CH- stretching band (2830-3000 cm-1) that the spectrum of ZrO2-AA-TOA 
showed very similar pattern of -CH- streching band as did the spectrum of ZrO2-TOA.  
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Figure 4-33 – DRIFT spectra of ZrO2-AA, ZrO2-AA-TOA (NHS-TOA), ZrO2-AA-TOA (TOA/DCC) and ZrO2-TOA 

Assumption on the overlap between water bending and amide I bands was confirmed by 
recording the spectra after water desorption for ZrO2-AA and ZrO2-AA-TOA samples at 
105oC for 24 hrs under vacuum. Figure 4-34 demonstrated an intense decrease in the 
intensity of bands at ~3400 and ~1630 cm-1 in the spectra of ZrO2-AA and ZrO2-AA-TOA. 
As such, the residual signal at 1630 cm-1 in the ZrO2-AA’s spectrum was ascribed to -OH 
group in the AA’s structure. Furthermore, intensity of the band at ~1630 cm-1 in the spectra 
of ZrO2-AA-TOA is higher than that in the spectrum of ZrO2-AA which results from the 
contribution of amide I (mainly C=O stretching band) created between -NH2 group of AA 
and -COOH group of TOA. 
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Figure 4-34 – DRIFT spectra of ZrO2-AA, ZrO2-AA-TOA (NHS-TOA) and ZrO2-AA-TOA (TOA/DCC) after water desorption 

4.6.2. Thermogravimetric analysis (TGA) 

TGA was used to further estimate, to some extent, the organic component content before 
and after amide coupling reaction in order to calculate the reaction yield (It is important to 
highlight that phosphate residues were still present after calcination at 900°C). In the Figure 
4-35, weight losses between 160 and 800oC of 1.8% wt. (0.073 mmol/g), 2.8% wt. (0.063 
mmol/g) and 2.7% wt. (0.061 mmol/g) were assigned to the organic ligand content onto the 
surface of ZrO2-AA, ZrO2-AA-TOA (pathways 1 and 2), respectively. Therefore, the 
reaction yields following two pathways were comparably estimated at about 86%. 
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Figure 4-35 – TGA curves of ZrO2-AA and ZrO2-AA-TOA (NHS-TOA) and ZrO2-AA-TOA (TOA/DCC)  

 
4.6.3. 31P MAS solid-state NMR 

Many publications have mentioned that 31P MAS solid state NMR characterization of nano-
metal oxides modified with phosphonic acids could distinguish among different species of 
phosphonic acids (physisorbed, chemisorbed, phosphonate) [81, 107]. 31P solid-state NMR 
is a powerful tool to reveal the covalent linkage between P-OH/P=O to the ZrO2’s surface. 
Because alendronic acid (AA) is an amino-biphosphonic acid existing in zwitterionic form 
that contains one neutral -P(O)(OH)2 and one anionic -P(O)(O-)(OH) group [117], its NMR 
spectrum exhibited two sharp resonance peaks at 22.7 ppm and 13.0 ppm, respectively.  
 
In terms of surface-modified nano-ZrO2 materials (ZrO2-AA and ZrO2-AA-TOA), the 
resonance peaks possessed two distinct features that were characteristic of phosphonic acid 
ligand functionalized metal oxides [118]: (i) they were shifted upfield (12.8 ppm) compared 
to pure ligand; and (ii) they broadened in the range from -4 to 34 ppm. Basically, the nature 
of surface modification of metal oxides was driven by condensation between -P-OH/-P-O- 
and -Zr-OH or/and -P-OH/-P-O- and coordinatively unsaturated Zr(IV) because of complex 
properties of the ZrO2’s surface that encompassed protonated (-Zr-OH), unprotonated (-Zr-
O-) or coordinatively unsaturated Zr(IV) sites. Moreover, 31P chemical shifts were greatly 
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affected by surrounding environment, namely the O-P-O bond length/angle and 
electronegativity of neighboring atoms. Consequently, the broadness of 31P resonance peak 
could not be averaged using MAS technique owing to the various bonds of phosphonic acid 
headgroups to the ZrO2’s surface [106, 107]. The resonance peaks of ZrO2-AA and ZrO2-
AA-TOA were shifted upfield with respect to neutral -PO(OH)2 group to 12.8 ppm that was 
very close to the chemical shift of anionic group. From these observations, alendronic acid 
probably bonds to ZrO2’s surface via mono/bidentate tripodal binding modes that came 
from heterocondensation between -P-OH head groups and -Zr-OH to lead Zr-O-P linkages. 
However, the tridentate bonding mode was likely to be present due to the disappearance  of 
P=O band in ATR-FTIR spectrum and broadening NMR resonance peaks. Interestingly, 
the downfield shift of resonance peak of ZrO2-AA-TOA compared to that of ZrO2-AA can 
plausibly be explained by the amide bond (-NH-CO) that promoted the electron-
withdrawing effect, hence deshielding the P atoms. 
 

 
Figure 4-36 – 31P solid-state MAS NMR spectra of ZrO2-AA, ZrO2-AA-TOA and AA 

 
4.6.4. BET specific surface area 

High surface area to volume ratio was of great importance at nanoscale and large specific 
surface areas (SSA) have been widely sought in applications related to adsorption process. 
Our results exhibited that BET specific areas were unchanged (around 50 m²/g) despite the 
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harsh condition of surface modification via the two-step surface modification process 
(Table 4-4). 
 

Table 4-4. Specific surface areas of surface-modified ZrO2 materials determined by BET method 
Material BET specific surface area (m2/g) 

ZrO2 (Lotus Synthesis) 52.0 ± 1.0 
ZrO2-TOA 50.7 ± 1.7 
ZrO2-AA 47.5 ± 1.1 

ZrO2-AA-TOA (NHS-TOA) 51.2 ± 1.4 
ZrO2-AA-TOA (TOA/DCC) 58.0 ± 1.4 

 
4.6.5. SEM images  

SEM images was studied in order to acquire actual morphology of surface-modified nano-
ZrO2 materials and some information on the effect of surface modification processes can 
be derived. With the aid of EDX technique, the elemental composition of the materials 
could be determined. The images of surface-modified nano-ZrO2 in Figure 4-37 showed 
that nano sizes of surface-modified nano-ZrO2 materials did not considerably differ from 
each other (~ 20 nm). This fact demonstrates that surface modification processes did not 
lead to aggregation of ZrO2 nanoparticles, in agreement with BET specific area values. 
 

 
 ZrO2-TOA (a) ZrO2-AA-TOA (NHS-TOA) (b) 
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 ZrO2-AA-TOA (TOA/DCC) (c) 

Figure 4-37 – SEM images of ZrO2-TOA (a), ZrO2-AA-TOA (NHS-TOA) (b), and ZrO2-AA-TOA (TOA/DCC) 

Nevertheless, the results from EDX technique could not reveal P, N content of materials 
for two main reasons: (i) the sensitivity of EDX technique (limit of detection was 
approximately 0.1% wt. element) was not sufficient to determine the low content of P and 
N on ZrO2-AA-TOA materials; and (ii) Lα energy of Zr (2.044 kV) overlapped Kα energy 
of P (2.010 kV) (Figure 4-38). 
 

 
Figure 4-38 – SEM-EDX spectrum of ZrO2-AA-TOA (NHS-TOA) 

4.6.6. Adsorption study of ZrO2-AA-TOA 

4.6.6.1. Maximum adsorption capacities toward Pd and Au 

In order to obtain understanding on adsorption capability of ZrO2-AA-TOA materials, the 
saturation of ZrO2-AA-TOA (NHS-TOA) and ZrO2-AA-TOA (TOA/DCC) with Pd and Au 
was carried out : 50 mg of ZrO2-AA-TOA materials were stirred with 25 mL of 25 mg Pd/L 
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or 25 mL of 135 mg Au/L. The maximum adsorption capacities toward Pd and Au of ZrO2-
AA-TOA are presented in the following table (Table 4-5). 
 

Table 4-5. The maximum adsorption capacities of ZrO2 surface-modified via NHS-activated ester of TOA and DCC-mediated 
TOA-amide coupling 

Materials nR-S-S-R (μmol/g) 
Adsorption 

capacity (mg/g) 
nM(a) (μmol/g) nR-S-S-R/nM(a) 

Pd Au Pd Au Pd Au 
ZrO2-TOA 129.4 6.3 43.0 59.2 218.3 2.2 0.6 

ZrO2-AA-TOA 
(NHS-TOA) 

64 3.2 10.6 30.1 53.8 2.1 1.2 

ZrO2-AA-TOA 
(TOA/DCC) 

64 3.5 6.4 32.9 32.5 1.9 2.0 

 
Compared with the adsorption capicities of ZrO2-TOA toward Pd and Au that were 6.3 
mg/g for Pd and 43 mg/g for Au respectively, ZrO2-AA-TOA materials showed inferior 
adsorption due to the lower amount of TOA moiety on ZrO2-AA-TOA materials. 
Interestingly, in terms of the mole ratio of disulfide moiety (R-S-S-R) to adsorbed metals, 
some conclusions could be drawn: (i) 1 Pd forms coordinative bonds to 2 R-S-S-R moieties 
with single bond to each moieties regardless of either the amount of TOA on materials’ 
surface or material types (ZrO2-TOA or ZrO2-AA-TOA); (ii) the mole ratio of disulfide to 
gold tended to fluctuate; interstingly, ZrO2-TOA with higher amount of TOA on the surface 
(0.13 mmol/g) 1 R-S-S-R seemed to be able to adsorb 2 atoms of Au that probably resulted 
from the fact that the standard oxidation potential of [AuCl4-] was somewhat high (1.004V) 
that could oxidize the R-S-S-R according to the illustration in Figure 4-39. In other words, 
disulfide moieties of TOA could reduce [AuCl4-] to Au(0). 

 
Figure 4-39 – Oxidation process of thiol group [119] 
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4.6.6.2. Adsorption kinetics of ZrO2-AA-TOA 

Similar to the nano-ZrO2 directly modified with TOA, the investigation of adsorption 
kinetics using nano-ZrO2 modified with TOA through two-step surface modification using 
NHS activated ester of TOA (pathway 2) was carried out as to whether the surface 
modification method could alter the adsorption process. For the sake of simplicity, the 
single solution of 10 mg/L Pd was used to study the adsorption capacity of Pd as a function 
of contact time. In comparison to the previous experiment about maxium adsorption 
capacity of ZrO2-AA-TOA, we observed an agreement in adsorption capacity toward Pd of 
approximately 3.5 mg/g (Figure 4-40 A). The contact time needed for Pd adsorption to 
reach saturation (60 min) is shorter than that of ZrO2-TOA probably due to the lower 
content of disulfide moiety on ZrO2-AA-TOA. Moreover, the adsorption data have also 
demonstrated the similar nature of the adsortion process as that of ZrO2-TOA because of 
the suitability of the pseudo-second adsorption kinetics model in describing the adsorption 
process (Figure 4-40 B). 
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(B) 

Figure 4-40 – A)The effect of contact time on adsorption capacity and B) pseudo-second order model of Pd adsorption kinetics of 
ZrO2-AA-TOA (NHS-TOA) 

4.6.6.3. Reusability of ZrO2-AA-TOA 

Two-step surface modification conferred a real improvement in terms of reusability of the 
final hybrid material. The adsorption percentage (more than 90%) was steadily maintained 
after 4 cycles of adsorption/stripping (Figure 4-41) . Two conclusions could be drawn from 
these results: (i) the assumption of protonation of sulfur sites of TOA moiety that inhibited 
coordination between chloro-complex of target metals and sulfur sites was not anymore 
valid and (ii) phosphonic species on the ZrO2’s surface after modification with alendronic 
acid were definitely more resistant to the harsh condition of effluent (high concentration of 
acids) than carboxylic. Importantly, this observation also consolidated the evidence of 
amide bond that was created between TOA and AA on ZrO2’s surface. 
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Figure 4-41 – Recyclability of ZrO2-AA-TOA materials  for capturing Pd in the single solution at 10 mg/L through 5 cycles of 

adsorption/desorption 

 
Furthermore, the above results demonstrated that both two-step surface modification 
pathways afforded up resultant materials with same adsorption performances toward Pd in 
the acidic condition of solution containing hydrocloric acid. 
 

4.6.6.4. Adsorption of surface modified nano-ZrO2 materials toward Pd 
and Au in the real e-waste effluent. 

The important goal of  this study in terms of industrial implementation was to achieve a 
nanoabsorbent that can be reused in the Pd and Au recovering process from the effluents. 
In this study, the underlying reason about the difference in bond strength between ligands 
and the ZrO2’s surface endows the resulting material with reusability. Figure 4-42 indicates 
the adsorption capability of ZrO2-TOA and ZrO2-AA-TOA through 4 cycles of 
adsorption/desorption that demonstrates the stability of ZrO2-AA-TOA in the harsh 
condition of the effluent with high acid concentration and predominant presence of base 
metals (Cu, Ni, Fe). The two-step surface modification appeared again to be an alternative 
pathway that circumvented the shortcoming of ZrO2-TOA in reusability. 
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Figure 4-42 – Comparison of surface-modified ZrO2 materials’recyclability toward Pd 

Figure 4-42 illustrates the difference in reusability between nano-ZrO2 materials directly 
modified with thioctic acid (ZrO2-TOA) and nano-ZrO2 materials two-step modified with 
thoctic acid (ZrO2-AA-TOA). Both materials were subjected to 4 cycles of 
adsorption/desorption in which the adsorption was carried out in the effluent containing 1.6 
mg/L Pd and non-detected Au. The observed decreasing tendency derived from the results 
showed that the matrix of effluent appeared to have an impact on the extraction performance 
of the resultant materials. In oder to clarify this effect, the effluent was spiked with Pd so 
that the final concentration of Pd was about 12 mg/L and ZrO2-AA-TOA (NHS-TOA) 
material was subjected to 5 adsorption/desorption cycles. As indicated in Figure 4-43, the 
extraction performance was gradually decreasing through adsorption/desorption cycles, 
especially in the first use of ZrO2-AA-TOA, its adsorption performance was just about 63% 
of that in standard solution. Based on this observation, the assumption predicated on the 
oxidation of disulfide moieties on ZrO2-AA-TOA was reinforced. 
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Figure 4-43 – Reusability test of ZrO2-AA-TOA (NHS-TOA) in the effluent diluted 5-fold and spiked with Pd  

 
What happened if the Pd and Au coexisted in the e-waste effluent? The scenario of co-
existence of Pd and Au in the effluent was desgined in which Pd and Au were spiked into 
the effluent so that the final concentrations of Pd and Au were approximately 10 mg/L after 
5-fold dilution. The results in Figure 4-44 showed that the adsorption performance 
decreases significantly after 2 cycles of adsorption/desorption. Combined with the above 
result, it was very likely that disulfide moiety of thioctic did not well-suit such a highly 
oxidizing condition of the e-waste effluent where aqua regia and gold complex can oxidize 
S-containing ligands. 
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Figure 4-44 – Reusability test of ZrO2-AA-TOA (NHS-TOA)  in the effluent diluted 5-fold and spiked with Pd and Au 

Summary 
 
In this chapter, the key concern was mainly concentrated on elaboration of surface 
modification process that produces the resultant material with high resitance toward the 
harsh condition of the e-waste effluent or recyclability through successive cycles of 
adsorption/desorption. Post-surface modfications of nano-ZrO2 with different ligands and 
characterizations of the surface-modified nano-ZrO2 with the aim to get insights into the 
bonding nature of ligand were first carried out. Thanks to the screening process of 
adsorption capability of nano-ZrO2 modified with different ligands, thioctic surface-
modified nano-ZrO2 appeared to be a promising material in Pd and Au adsorption. Through 
in-depth investigation of Pd and Au adsorption capability of ZrO2-TOA, some 
thermodynamic and kintetic parameters were acquired to better understand its adsorption 
behavior. The inevitable instability of carboxylic grafting groups on ZrO2’s surface led to 
the two-step surface modification processes including: (i) grafting phosphonic groups of 
AA to ZrO2’s surface, (ii) amide-coupling amine group of AA to carboxylic group of TOA. 
Obviously, via this strategy, thioctic acid was firmly anchored on ZrO2’s surface and the 
resultant materials (ZrO2-AA-TOA) showed the reusability in a simple matrix of standard 
solution of Pd. Furthermore, when applied in the harsh conditions of real effluent with the 
excess amount of competing ions (Co, Ni, Fe), ZrO2-AA-TOA showed its selectivity 
toward Pd and Au. Unfortunately, the presence of aqua regia or/and gold complex in e-
waste effluent caused the disulfide moiety to be oxidized, hence it resuability was impeded. 
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However, the concept of two-step surface modification processes in this study has paved 
the way for choosing suitable ligands in different media so that the desirable adsorption 
properties of the resultant materials can be tuned in diverse applications. 
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CHAPTER 5. DESIGN OF COMPOSITE DEVICE 

Nanomaterials have been showing promising capabilities in various applications, such as 
sensor fabrication, photocatalysis, and membrane design among others. In terms of 
remediation and wastewater treatment, many studies have been carried out based on 
different types of nanomaterials and demonstrated the superior properties to the 
conventional materials including high specific area, accessible active sites and short intra-
particle diffusion distance. However, several problems have been addressed when it comes 
to applications at industrial scale. Firstly, the chemical stability and mechanical durability 
were considered as the main drawbacks. For instance, nanoparticles can be dissolved in the 
acidic media of leachate or effluent; nanoparticles can aggregate reducing their specific 
surface area; hence, decreasing their performance. Secondly, due to their small size, 
nanoparticles could not be a good choice in high-flux systems (fixed-bed, flow-through 
systems), due to exhibiting extremely high pressure drop in these systems. Furthermore, 
complete recovery of nanomaterials or regeneration was a challenging task even in the 
batch-mode systems apart from magnetic nanoparticles. To tackle the disadvantages 
thereof, the concept of dispersing nanoparticles into or onto a support or matrix, particularly 
polymer networks, has been studied and employed and a number of publications have 
proved the feasibility of this idea [86, 120].  

In this study, we aim to develop novel hybrid nanomaterials based on the aforementioned 
idea which not only carry the advantages of each components, but also complement the 
downsides of each other. Moreover, from the technical points of view, the synergistic 
properties of this material enable the regenerability and reusability. Described in the Figure 
5-1 is the schematic structure of the hybrid inorganic/organic material; specifically, zirconia 
nanoparticles dispersed onto a polypropylene network and their modification with selected 
ligands. In this chapter, dispersion of zirconia is strongly focused with the purpose to obtain 
the following requirements: 

 High durability and nanostructure of zirconia coating. 
 Homogeneity of the layer of modified zirconia. 
 Presence of voids. 

Zirconia nano-coating was to increase highly the specific surface area of the final device 
and then the quatity of organic trapping agent. It was carried out according two approaches: 
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single dip coating and layer-by-layer dip coating methods. Decision, on which method was 
used, depended on the characteristics of poplypropylene, such as the swelling degree, and 
mainly on the density of grafting groups (COOH groups). It is noteworthy to mention that 
the supply of –COOH surface modified polypropylene is not trivial and has required to 
investigate different sources of raw materials and to collaborate with the research group of 
Prof. Dirk HEGEMANN at EMPA in Switzerland. At the beginning of this project we had 
access to CREAT facilities and products and in particular to PP-COOH with high density 
of carboxylic group (2.7 meq/g). Unfortunately, the company shut down and we could not 
find same product elsewhere. This prompted us to learn and to develop LbL method while 
using PP-COOH with low COOH group density. 
 

 
Figure 5-1 – Schematic structure of the aimed inorganic/organic material 

The complete synthetic procedure is summarized in the Figure 5-2 which includes the 
coating step and surface modification step. On the other hand, when it comes to layer-by-
layer method, parameters relevant to coating process were investigated, including the effect 
of NaCl concentration, the influence of polyacrylic acid’s molecular weight… 
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In this work, LbL method was performed using two kinds of polyelectrolytes including 
zirconia nanoparticles suspension and polyacrylic acid (PAA). Many parameters related to 
the LbL method were studied, namely:  

(i) Effect of the number or layers of (ZrO2/PAA) 

(ii) Effect of the type of zirconia nanosuspension: 2 samples of ZrO2 nanosuspension 

with pH 10 and pH 1 provided by Lotus Synthesis Company and a commercial 

product of Sigma Aldrich Company (pH 5). 

(iii) Influence of molecular weight of PAA. 

(iv) Influence of ionic strength in the aqueous solution of PAA. 

All polypropylene samples coated, regardless of methods, were thoroughly characterized 
by infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), 
thermogravimetric analysis (TGA) and powder X-ray diffraction technique (XRD). 
 

 
Figure 5-2 – Different approaches to zirconia coating on the polypropylene 
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5.1. Deposition of nano-zirconia coating on the polypropylene with high density of 
grafting group (single dip coating) 

The dip coating process accompagnying with some investigated parameters is depicted in 
Figure 5-3. Aspects of the process which strongly impact on the structure and amount of 
zirconia on the polypropylene were carefully examined, namely the effect of grafting 
groups on the polypropylene fibers, soaking conditions (time, temperature, pH…). 
 

 
Figure 5-3 – Schematic representation of single dip-coating approach 

The studied range of parameters: 
 pH of ZrO2 nanosuspension: 1 and 10 
 ZrO2 nanosuspensions’concentration: 5-20% wt. 
 Impregnating temperature: 25 – 70oC 
 Impregnating duration: 2 hrs 
 [TOA] = 10-2 M 

The ATR-FTIR spectra show that the presence of ZrO2 on PP-COOH was confirmed by 
the appeareance of a broad band below 500 cm-1. Nanoparticles could not be deposited on 
the surface of bare PP and PP-NH3+, so the surface of PP must be modified with carboxylic 
functional groups. After nano-ZrO2 deposited on PP-COOH, the intensity of carboxylic’s 
stretching band ( COOH) at 1703 cm-1 decreased dramatically due to the interaction between 
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-COOH groups and ZrO2. Bands at 1580 cm-1 and 1464 cm-1 attributed to as(COO) and 

s(COO), respectively, exhibited traditional bridging bonding of the carboxylic group. 

 
Figure 5-4 – ATR-FITR spectra of carboxylic-modified polypropylene (red), ZrO2-coated bare polypropylene (green), ZrO2-

ammonium-modified polypropylene (blue) and ZrO2-coated carboxylic-modified polypropylene (yellow). 

5.1.1. Effect of pH of zirconia nanosuspension to dip coating process 

The performance of the grafting process was studied while using LOTUS SYNTHESIS 
nanosuspensions at initial pH of 1 or 10.  
 

 
Figure 5-5 – ATR-FTIR spectra ZrO2-coated PP-COOH samples using ZrO2 nanosuspension with pH 10  and pH 1 
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The data demonstrated that both could be used because of the broad band below 500 cm-1. 

However, the nanosuspension at pH 10 was more efficient as demonstrated in ATR-FTIR 
by the large decrease of the COOH band at 1703 cm-1 (Figure 5-5). This is probably because 
of higher degree of COOH deprotonation and ZrO2 attraction due to opposite surface 
charge. It is noteworthy to mention that basic ZrO2 nanosuspensions stands in a formulation 
using polyethylene glycol (PEG) as the dispersant (stabilizer) and PEG was incorporated 
onto the surface of ZrO2 by hydrogen bonds. Therefore, PEG can play a role as a “bridge” 
to connect ZrO2 nanoparticles and surface of PP-COOH, followed by the bonding of COOH 
groups to ZrO2 via mono or bidentate modes. In the following experiments, the basic ZrO2 
suspensions from LOTUS SYNTHESIS was the only one to be used. 
 

5.1.2. Effect of zirconia nanosuspensions concentration 

Powder XRD spectra (Figure 5-6) indicate that tetragonal polymorph was the main phase 
of ZrO2’s lattice with characteristic diffraction peaks at 2θ = 30.2o, 34.5o, 50.2o and 60.2o 
for the (101), (002), (112) and (221) lattice planes. The intensity of the characteristic peaks 
was higher with higher concentration of ZrO2 nanosuspension. 
 

 
Figure 5-6 – XRD spectra of different ZrO2-coated PP-COOH 
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Figure 5-7 – SEM images of different ZrO2-coated PP-COOH 
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By investigating the surface morphology using SEM technique at high magnification 
(Figure 5-7), uniform layer of ZrO2 without cracks and visible interconnected voids were 
obtained using ZrO2 nanosuspension at 10% wt. 
 

5.1.3. Effect of temperature 

 
Figure 5-8 – ATR-FTIR of PP-COOH coated ZrO2 at different temperatures 

The Figure 5-8 shows that the higher the temperature of soaking process is, the higher 
amount of ZrO2 on the surface of PP-COOH corresponding to the increasing intensity of 
the band below 500 cm-1 is. However, temperature in the range of 25-35oC was chosen in 
terms of simplicity of the process, and the limitation of PP-COOH’s mechanical strength. 

 

5.1.4. Investigation into adsorption capability of PP-COO-ZrO2 (dip coating) 
impregnated with thioctic acid 

In this experiment, one piece of PP-COO-ZrO2 samples impregnated with TOA was 
contacted for 24 hrs with 20 mL of Pd standard solution containing 10 ppm (mg/L), the 
concentration of HCl was maintained at 0.5M. Specifically, the time of impregnating PP-
COOH-ZrO2 with TOA was increased from 5 min, 30 min, 2h and 24h. 
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Table 5-1. The results of Pd concentration after adsorption after using PP-COO-ZrO2 impregnated with TOA for 5 min, 30 min, 2 

hrs and 24 hrs. 

Description 
[Pd] 

(mg/L) 
Extraction 

percentage (%) 

Initial solution containing Pd 10.6 - 
PP-COO-ZrO2 soaked into TOA 10-2 M for 5 

min 
6.7 37.0 

PP-COO-ZrO2 soaked into TOA 10-2 M for 
30 min 

5.6 47.3 

PP-COO-ZrO2 soaked into TOA 10-2 M for 2 

hrs 
5.4 52.0 

PP-COO-ZrO2 soaked into TOA 10-2 M for 
24 hrs 

2.7 74.5 

 

The results in the Table 5-1 first proved the feasibility of the concept. Longer soaking time 
in TOA solutions led to better performance of Pd extraction. However, PP-COOH supplied 
by CREAT swelled up and became highly breakable during adsorption process, meaning 
that mechanical stability of polypropylene decreased drastically (Figure 5-9).  

  
Figure 5-9 – Photos of PP-COOH-ZrO2 impregnated with TOA before and after Pd adsorption process (left), and PP-COOH-

ZrO2 textiles from CREAT and EMPA 

Therefore, PP supplied by SAATI and EMPA were selected as alternatives. 
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5.2. Deposition of ZrO2 on the polypropylene with low density of grafting group 
(layer-by-layer dip coating method) 

5.2.1. The difference in carboxylic group density 

FTIR spectra (Figure 5-10) illustrate the difference in intensity of the COO at ~1700 cm-1 
of different surface-modified polypropylene (PP) provided by CREAT, EMPA and SAATI. 
For the sake of clarity, SAATI company supplied us PP substrates and then these substrates 
were modified through the plasma coating process at EMPA. According to Figure 5-10, 
CREAT substrate has higher quantity of -COOH group than does EMPA substrate. 
However, the former one displayed lower mechanical strength (presence of fibers in the 
media) and the closure of the CREAT company during this study were taken into 
consideration for the continuation of the thesis. Fortunately, EMPA (Swiss Federal 
Laboratories for Materials Science and Technology, Advanced Fibers, Plasma & Coating 
team) directed by Dr. Dirk HEGEMANN provided us different COOH surface-modified 
PP obtained by plasma activation. It is noteworthy that some ketone and aldehyde groups 
can also be present in the sample. Furthermore, the presence of band ~1700 cm-1 in the 
spectrum of PP SAATI after plasma-coated by EMPA also demonstrated the feasibility of 
this process. 

 
Figure 5-10 – FTIR spectra of carboxylic-modified polypropylene samples from EMPA and CREAT. 
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5.2.2. Effect of the type of nanosuspension of zirconia to the coating process 

Figure 5-11 shows that we can obtain higher quantity of ZrO2 on novel PP-COOH supports 
when using Sigma Aldrich nanosuspension. One possible reason for that is the 
nanoparticles’ size in the suspension of Lotus Synthesis (LS) (10 – 30 nm) is much smaller 
than that of Sigma Aldrich (~100 nm). Generally speaking, the smaller nanoparticles have 
higher surface charge density and the bigger ones have lower surface charge density, so 
fewer ZrO2 nanoparticles will be needed to compensate the opposite charge on the surface 
of substrate if LS nanosuspensions are used. On the orther hand, pH of nanosuspension 
affects quite seriously, especially just 1.25 % wt. of ZrO2 is obtained because of the negative 
surface charge of ZrO2 nanoparticles in pH 10. 
 

 
Figure 5-11 – The content of ZrO2 deposited on PP substrate by LbL method using different sources of nanosuspension 

In order to reinforce the asumptions thereof, surface charge’s behavior of nanosuspensions, 
PAAH (Mw ~ 100.000) and substrates were studied via the changes of surface potential as 
a function of pH. As indicated in Figure 5-12, PAAH (Mw ~ 100.000) bears negative 
charges in the whole selected pH range, while ZrO2 nanosuspension shows a charge sign’s 
reversal around their pHPIC (7.5 for ZrO2 ns (LS) pH 1, 5.2 for ZrO2 ns (LS) pH 10, 8.7 for 
ZrO2 (SA)). Therefore, the electrostatic interaction is likely the main driving force in the 
LbL coating. Specially, the surface charge of PP substrate, which is characterized by 
streaming potential technique (conducted at ISA Institute with the support of Dr. Claire 
BORDES and Ms. Marie HANGOUET) became more negative after plasma modification 
that is the plausible reason why the ZrO2 deposition is viable (Figure 5-13). 
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Figure 5-12 – Surface zeta potential curves of the used nanosuspensions and PAAH 

 

 
Figure 5-13 – Surface zeta potential curves of textiles based on streaming potential measurement 

 
The hypothesis on electrostatic interaction that plays the main role in LbL coating method 
led to a question: based on different types of ZrO2 ns, would it be possible to create a coating 
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layer with 100% of ZrO2? In oder to answer this question, LbL coating process was carried 
out on PP-COOH textiles from EMPA, but ZrO2 nanosuspensions (pH 1 and pH 10) from 
Lotus Synthesis were used instead of using ZrO2 ns (SA) and PAAH. Both ZrO2 
nanosuspensions were diluted to 1% wt. and their pHs were adjusted to 6 in order that their 
surface were counter charged to each other. The content of ZrO2 on textiles was determined 
by TGA and the results shown in Figure 5-14 demonstrate that 100%-ZrO2 layer can be 
coated on PP-COOH textiles. The maximum amount of ZrO2 on PP-COOH textiles appears 
to have reached the value of approxiamtely 5.7 % wt that corresponds to 15 layers of 
ZrO2(+)/ZrO2(-). 
 

 
Figure 5-14 – TGA curves of PP-COOH coated with 100% ZrO2 by LbL method 

5.2.3. Effect of the number of layers 

Basically, the more layers of (ZrO2/PAAH) is deposited, the higher content of ZrO2 is 
coated on PP-COOH. In this experiment, 3 batches of PP-COOH (4 pieces of 1cm x 1cm 
dimension) were LbL coated with the increasing number of layers from 10 to 30 layers of 
(ZrO2/PAAH). The exact content of ZrO2 and morphology of ZrO2-coated PP-COOH were 
determined by ATR-FTIR, TGA, elemental analysis and SEM, respectively. 
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By ATR-FTIR (Figure 5-15), one could detect the presence of zirconia on polypropylene, 
particularly, because of a broad and intense band below 700 cm-1 corresponding to 
inorganic component or zirconia.  
 

 
Figure 5-15 – ATR-FTIR spectra of bare PP-COOH, PP-COOH coated with 15 layers and 30 layers of (ZrO2/PAAH) 

 

 
Figure 5-16 – Illustration of PP-COOH (EMPA) textiles before (left) and after (right) LbL coating with nano-ZrO2. The change of 

textile’s color from brown to white after LbL process has been indicative of the presence of ZrO2 on textile’s fibers  

 
SEM images of samples (Figure 5-17) with increasing layers of (ZrO2/PAAH) have shown 
that higher the number of layers were, the more uniform the coating was. Moreover, the 
results of ZrO2 content given by TGA and Zr EA matched up quite properly. Especially, 
with 15 layers of ZrO2/PAAH, about 20% wt. of zirconia was deposited on the PP-COOH. 
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Table 5-2. The content of ZrO2 coated on PP-COOH 

# layers % wt. ZrO2  (TGA) % wt. ZrO2 (EA) 

10 12.0 10.6 
15 20.1 17.3 
30 24.5 22.7 
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Figure 5-17 – SEM images of PP-COOH coated with 10, 15, and 30 layers of (ZrO2/PAAH) 
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As the best compromise in terms of time and reactant consumption, polypropylene coated 
with 15 layers of (ZrO2/PAA) was selected for the next investigations when it comes to 
homogeneity, porosity and coating time. 
 

5.2.4. Effect of molecular weight of polyacrylic acid 

As illustrated in Figure 5-18, with the same number of (ZrO2/PAAH) layers (15 layers), the 
higher the molecular weight of PAAH was, the higher amount of ZrO2 on the surface of PP 
was. A plausible explanation was that longer PAAH chain beared more -COOH and COO- 
groups, thereby higher amount of ZrO2 was needed to overcompensate to reverse the 
surface charge of multilayer coatings. Nevertheless, a decrease of Mw of PAAH from 5000 
to 2000 did not cause a further decrease of ZrO2’s quantity that likely results from the non-
electrostatic interactions (hydrophobic interaction, hydrogen bonding) between ZrO2 and -
COOH groups of PAAH. 
 

 
Figure 5-18 – TGA curves of PP-COOH samples coated with (ZrO2/PAAH) using PAAH solutions with different MW. 
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5.2.5. The role of sodium chloride 

It has been reported that the activity of salt in the solution significantly impacts on the 
thickness, roughness, swelling and growth mechanism of the LbL coating process. As 
illustrated in the Figure 5-19 is the scheme of interaction between polyelectrolytes that has 
been of particular interest in the studies of Joseph B. Schlenoff et al. [121] 

 
Figure 5-19 – Schematic representation of the LbL buil-up process [122] 

Throughout their publication, polyelectrolytes (PEs) exist in the solution with charges 
compensated by counter-ions (a). During the LbL coating process, the polyelectrolytes 
interact with each other via electrostatic attraction and charge overcompensation without 
intervention of other small ions (“intrinsic” compensation) (b). If salt is added to the 
solution, such as NaCl, cation Na+ and anion Cl- will compensate PEs’charges (“extrinsic 
compensation) (c). To the larger extent of effect, counter-ions could cause swelling and 
destroy the LbL assembly into the free PEs coating if the salt’s concentration is sufficiently 
high. In the presence of subsequent PE, for instance negative PE, the surface charge of LbL 
coating was reversed and LbL coating process continues to proceed (d) [122].  
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Apparently, much of attention has been paid to morphology of LbL coating, so in this 
experiment we aimed at acquiring some understanding on the effect of salt in PAAH 
solution on ZrO2’s quantity of LbL coating. Specifically, 15-layer coatings were deposited 
on EMPA substrates using 4 PAAH solutions containing different salt’s concentrations at 
0, 0.05, 0.5 and 1.5 M, respectively. According to the Figure 5-20, the amount of ZrO2 did 
not change substantially ranging from 25 to 28 % wt. Then, it could be concluded that in 
our condition the presence of salt in the PAAH solution does not impact on the amount of 
ZrO2. However, some other parameters including thickness, roughness and porosity can be 
affected [121, 123]. 
 

 
Figure 5-20 – Effect of NaCl in PAAH solution on ZrO2 content (% wt.). Conditions: [ZrO2] = 1% wt. pH 2.5; [PAAH] = 0.5% 

wt. pH 2.5 with [NaCl] varied from 0 to 1.5 M 

 

5.2.6. Effect of the ZrO2 nanosuspension’s concentration 

It was evident that the concentration of the ZrO2 nanosuspension influenced the ZrO2 
content within  LbL coating (Figure 5-21). When it comes to thermodynamics and kinetics 
of the process, the higher the concentration of nanosuspension was, the higher the content 
of ZrO2’s amount on the substrates was (assuming the same number of layers and soaking 
time of 15 minutes in ZrO2 nanosuspension and PAAH solution). Therefore, the amount of 
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ZrO2 within LbL coating on the substrate could be easily tuned through varying the 
concentration of ZrO2 nanosuspension. 
 

 
Figure 5-21 – Effect of ZrO2 nanosuspension’s concentration. Conditions: [ZrO2] = 1 - 5% wt. pH 2.5; [PAAH] = 0.5% wt. pH 

2.5 with [NaCl] = 0 M 

 

5.2.7. Stability test of LbL coating on the PP-COOH substrate 

Apart from the consideration of the strength of bond between ligands and ZrO2’s surface, 
the mechanical and chemical durability of LbL coating on the substrate has been of crucial 
importance in this thesis because of possible industrial implementation with our industrial 
partner MORPHOSIS. The final hybrid nanocomposite device (PP-COO-ZrO2-TOA) was 
expected to be reusable; in other words, ZrO2 must not be released into the solution. In 
order to confirm the stability of the final material, PP-COOH pieces coated with ZrO2 via 
LbL dip-coating were subject to the reusability test in which PP-COOH pieces were 
alternately soaked in HCl 0.5M and the stripping mixture of thiourea 0.2 M and HCl 0.5 
M. 
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Figure 5-22 – Stability test of ZrO2 on PP substrate 

The results in Figure 5-22 show that the ZrO2 content was maintained intact (23-26% wt.) 
in spite of the high acidic concentration and the hazardous agents used. Moreover, one 
could conclude that other types of interactions, such as covalent bonding, H-bonding get 
involved in the build-up process of LbL coating [97, 100]. 
 

5.2.8. Application of LbL dip-coating to commercial SAATI polypropylene 
textiles 

Thanks to coating procedure using cold plasma of CO2/C2H4 from EMPA laboratory, naked 
PP textiles from SAATI company (Figure 5-3) were surface-modified with carboxylic 
group, then ZrO2 nanoparticles were coated onto these PP-COOH textiles (Figure 5-10). 
SEM images (Figure 5-23 to Figure 5-25) showed an homogeneous coating of nano-ZrO2 
on both types of textiles, yet some differences could be observed at higher magnification. 
PP textiles PP 297/35 with higher mesh (opening) appeared to possess thicker and rougher 
ZrO2 nanocoating due probably to higher density of ZrO2 nanoparticles in every voids that 
led to higher degree of aggregation. 
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Table 5-3. Specifications of SAATI PP textiles 
 PP 106/26 PP 297/35 

Mesh (sieve) opening (μm) 106 297 
Mesh count (n/cm) 47 20 

Thread diameter (μm) 100 200 
Thickness (μm) 195 425 

 
 

 
Figure 5-23 – SEM images of naked PP substrates 106/26 
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Figure 5-24 – SEM images of ZrO2-coated PP substrates 106/26 
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Figure 5-25 – SEM images of ZrO2-coated PP substrates 297/35 



133 
 

5.2.9. Investigation of adsorption capability of LbL-made PP-COO-ZrO2 
impregnated with TOA 

The versatility of the design concept of material in this study was investigated by soaking 
PP-COO-ZrO2 textiles with TOA for cycles of adsorption/desorption. At first glance, the 
selectivity toward Pd over Au and the decreasing tendency in adsorption performace were 
similar to those of ZrO2-TOA. Although the adsorption performace was lower than that of 
ZrO2-TOA because of lower content of TOA on material’s surface, this data demonstrated 
the potential of the proposed concept of material design.  
 

 
Figure 5-26 – Reusability test of PP-COOH-ZrO2 imgrenated with thioctic acid 

The uses of two-step surface modification should be taken in further consideration in this 
case. According to Figure 5-26, the extraction percentages of the final material being just 
about 24.4 % for Pd and 12.2 % for Au indicated that surface area of ZrO2 decreased after 
coating process. Therefore, from our perspective, it was not worth carrying out the two-
step surface modification while the adsorption performance of the final material has not yet 
been improved. 
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Summary  
 
Chapter 5 mainly focused on dip-coating processes that could endow the resultant material 
with properties mentioned in chapter 2. The research for a suitable substrate for nano-ZrO2 
coating was a huge challenge in this part of the study. Most of endeavors were dedicated to 
seeking an available, and abundant resource of polypropylene with surface modified with 
carboxylic functional groups. To date, carboxylic surface modification for polypropylene 
textiles supplied by SAATI company using cold plasma (CO2/C2H4) surface modification 
technology developed by EMPA has been an acceptable solution. 
 
Basically, the idea of LbL coating process was rooted in the purpose to obtain the 
homogenous ZrO2’s coating on PP-COOH textiles and inspired by the LbL method that has 
been studied since 1997. All concerns in term of parameters were gravitated toward the aim 
to acquire a malleable, stable, affordable ZrO2 layer and evironmentally friendly process. 
 
The layer-by-layer dip coating has shown its versatility in nano-ZrO2 coating on PP-COOH 
that imparted the stability of nano-ZrO2 layer to the resultant material. Nevertheless, the 
surface area of nano-ZrO2 layer on PP-COOH textile has been reduced considerably via 
this approach, so it is required that further investigation into the porosity of nano-oxides 
(SiO2@ZrO2 core-shell) should be conducted so that two-step surface modification can 
ensure the adequate density of ligand on resultant material’s surface. 
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GENERAL CONCLUSIONS & PERSPECTIVES 

Throughout this study, all work-packages were essesentially arranged and conducted into 
two main parts that turned around the objectives described in chapter 2, including (i) 
functionalizing nano-ZrO2’s surface with ligands and (ii) grafting nano-ZrO2 on 
polypropylene textiles. Our findings can be sumarized as follows: 

Functionalizing nano-ZrO2’s surface with ligands 

Diverse ligands, including carboxylic acid (TOA, DODGA) and phosphonic ones 
(PMIDAA, DEHCMPA, and DOCMPA) were selected to post-modify nano-ZrO2’s surface 
and were screened to figure out the suitable ligand in Pd and Au adsorptions. All these 
hybrid systems were thoroughly characterized by different methods, such as ATR-FTIR, 
31P MAS solid-state NMR, and elemental and thermogravimetric analyses to get 
understanding on the nature of bonding modes of carboxylic and phosphonic groups on 
nano-ZrO2’s surface. Among the surface-modified nano-ZrO2 materials, thioctic acid 
surface-modified nano-ZrO2 (ZrO2-TOA) emerged as a fulfilling material in Pd and Au 
adsorptions. 

In the case of the ZrO2-TOA with 2.2% wt of TOA, its adsorpton capability toward Pd and 
Au was extensively scrutinized with respect to adsorption isotherm and adsorption kinetics. 
Thermodynamically, the adsorption process of ZrO2-TOA follows Langmuir adsorption 
model and the adsortion capacities of ZrO2-TOA toward Pd and Au are 6.3 mg/g and 43 
mg/g, respectively. Recently, a tendency of employing nanoadsorbents based on thiol and 
amine surface-modified mesoporous SiO2 and Fe3O4@SiO2 in the adsorption of Au or/and 
Pd has emerged and provided comparable performace. For instance, considering pH of the 
adsorption medium at 1, the adsorption capacities toward Au of thiol group-modified 
Fe3O4@SiO2 in studies of Q. Xu and R. Roto [73, 74] are approximately 40-50 mg/g. 
Kinetically, pseudo-second-order model best describes the adsoprtion bahavior of ZrO2-
TOA toward Pd and Au. In terms of the reusability of ZrO2-TOA, the weak bonding of 
carboxylic groups to ZrO2’s surface was observed because of acidic hydrolysis of Zr-O-C. 
Furthermore,  the adsorption experiment using N,N-dioctylcarbamoylphosphonic acid -
surface-modified nano-ZrO2 through sucessive cycles of adsorption/desorption that showed 
an unchanged tendency in adsorption performance highlighted the necessity of surface 
modification of nano-ZrO2 with phosphonic-containing ligand. 
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When it comes to improvement of stability of TOA on ZrO2’s surface, the surface of ZrO2 
was tailored via two steps modification: (i) grafting alendronic acid (AA) on the surface 
and (ii) amide coupling between -NH2 groups of AA and -COOH groups of TOA. Two 
pathways of amide coupling reaction were investigated so that yield, ease of handling, and 
feasibility were evaluated and compared. 

 

Pathway 
Amide coupling via NHS-

activated ester of TOA 
Amide coupling with 

TOA mediated by DCC 

Yield ~ 86% 

Ease of handling 

NHS-TOA was prepared in 
DMF and reaction was 
conducted in DMF with 
ZrO2-AA in 24 hrs. at 

25oC. 

Washing: DMF and 
C2H5OH 

TOA was mixed with DCC 
in C2H5OH, then DCU 
precipitate was filtered. 
The mixture was stirred 

with ZrO2-AA in 24 hrs. at 
25oC. 

Washing: C2H5OH 

Feasibility 
NHS-TOA was provided 

by ICSM Institute. 

TOA, DCC were 
respectively purchased 

from ACROS OrganicsTM 
and Sigma Aldrich. 

 

Demonstrated in chapter 4, the reusability of the resultant materials synthesized via two 
pathways was improved significantly in the hydrochloric acid matrix. The applicability of 
these materials to the highly oxidizing conditions, however, should be taken into 
consideration becasue disulfide moiety of TOA was unavoidably oxidized by strong 
oxidants, such as nitric acid or chloro-gold complex that can co-exist in the e-wastewater. 
From our own perspectives, ligands containing carboxylic  and dialkyl-amido-phosphonate 
groups or amino phosphine groups are recommended as replacements of TOA.  

Grafting nano-ZrO2 on polypropylene textiles 
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Based on dip-coating method to deposit nano-ZrO2 polypropylene textiles. Preliminary 
investigation into the parameters affecting the process was conducted and the conditions 
are given as follows: 

 pH of ZrO2 ns: 10 (Lotus Synthesis) 
 Concentration of ZrO2 ns: 10% wt. in H2O 
 Volume of ZrO2 ns: 5 mL 
 Type of textile: COOH surface-modified non-woven polypropylene textiles from 

CREAT 
 The number of textiles: 5 1cmx1cm pieces/batch 
 Temperature = 25oC 
 Dipping time = 2h 
 Washing: H2O/C2H5OH 

ZrO2-grafted PP-COOH impregnated with TOA (PP-COOH-ZrO2) proved to be able to 
adsorb Pd in the acidic solution (HCl), but the limited mechanical stability and the shortage 
of CREAT textiles became obstacles to further development. 

With the aim to control the content of ZrO2 and to improve ZrO2 nano-coating process on 
the new polypropylene textile which was modified via cold-plasma coating and provided 
by EMPA, layer-by-layer method (LbL) was studied by using successive deposition of 
acidic ZrO2 nanosuspension (pH ~2.5, Sigma Aldrich), and polyacrylic acid (PAAH, MW 
= 100000). The results showed that this process could be controlled in terms of the quantity 
of ZrO2, for instance, the amount of ZrO2 is around 20-23%wt with 15 layers of 
(ZrO2/PAAH). 

Incessant seeking an available supplier of Polypropylene textiles brought about the 
provision of two new types of polypropylene textiles from SAATI that were suitable for 
nano-ZrO2 coating via LbL method. The smoothness and homogeneity illustrated by SEM 
depended on the void’s size of textile. In other words, the probability of nano-ZrO2 access 
to the voids and aggregation affects the quality of the ZrO2 coating, especially the ZrO2 
coating on PP textile with mesh size of 297 μm is thicker and rougher than that on PP textile 
with mesh size of 106 μm. 

Apparently, the accomplishments thereof pave the wave for next studies and developments 
of two-step surface modification and layer-by-layer coating method to scale up the recovery 
process, yet fundamental questions still need to be addressed: 
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i. Is it possible and practical to design a structure including carboxylic groups for 
amide coupling and carbamoyl phosphonate or phosphine oxide for precious 
metals removal? 
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Schematic representation of the proposed structures: A) amide-phosphonate group-containing and B) amino phosphine group-
containing 

ii. Can porosity of nano-oxide materials be tuned to obtain the coating with adequate 
density of M-OH groups for succeeding two-step surface modification? 
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RÉSUMÉ GENERAL & PERSPECTIVES 
 
Tout au long de cette étude, l’ensemble des travaux a été essentiellement organisé et conduit 
en deux parties principales en fonction des objectif décrits au chapitre 2: (i) fonctionaliser 
la surface de nano-ZrO2 avec des ligands complexants pour l’or et le palladium et (ii) greffer 
les nano-ZrO2 en surface de textiles de polypropylène (PP). Nos résultats peuvent être 
résumés comme suit: 
 
Fonctionaliser la surface de nano-ZrO2 avec des ligands complexants : 
 
Divers ligands tels que des acides carboxyliques (TOA, DODGA) et phosphoniques 
(PMIDAA, DEHCMPA, et DOCMPA) ont été selectionés (Figure 1) pour modifier la 
surface de nano-ZrO2 et ont été testés pour déterminer les ligands appropriés pour 
l’adsorption de Pd et d’Au. Tous ces systèmes hybrides ont été caractérisés de façon 
univoque par différentes méthodes, telles que l’ATR-FTIR, la RMN MAS à l’état solide du 
31P, l’analyse élémentaire, et l’analyse thermogravimétrique pour comprendre la nature des 
liaisons des groupes carboxyliques et phosphoniques à la surface des nano-ZrO2. Parmi les 
matériaux modifiés, les nano-ZrO2 modifiés en surface avec l’acide thioctique (ZrO2-TOA) 
sont apparus comme étant le matériau le plus efficace pour l’adsorption de Pd et d’Au. 

 
Structures des ligands complexants utilisés dans cette étude 
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Dans le cas du ZrO2 modifié en surface avec 2,2 %w de TOA, sa capacité d’adsorption en 
Pd et en Au a fait l’objet d’une étude approfondie via la description des isothermes et des 
cinétiques d’adsorption. D’un point de vue thermodynamique, le procédé d’adsorption de 
ZrO2-TOA suit le modèle d’adsorption de Langmuir et les capacités d’adsorption de ZrO2-
TOA pour le Pd et l’Au sont respectivement de 6,3 mg/g et 43 mg/g. Ces valeurs sont 
comparables avec celles reportées dans la littérature pour des résines échangeuses d’ions 
ou des oxydes mésoporeux tels que SiO2 ou Fe3O4@SiO2 modifiés avec des groupements 
thiol et amine. Par exemple, Q. Xu et R. Roto ont montré que les capacités d’adsorption de 
l’Au par Fe3O4@SiO2 modifié avec des groupements thiol étaient d’environ 40-50 mg/g à 
pH 1 [73, 74]. 
 
En milieu acide et d’un point de vue cinétique, le modèle de pseudo-second ordre a permis 
de décrire le comportement d’adsorption de ZrO2-TOA envers le Pd et l’Au. Généralement, 
si le transfert de masse et la diffusion dans les pores de nanoparticules sont négligeables, 
l’adsorption vis-à-vis des molécules cibles sera régit par l’interaction entre les sites actives 
sur l’adsorbant. Grâce au modèle de pseudo-second ordre, on peut conclure que 
l’adsorption est régie par l’interaction entre la surface de l’adsorbant et les molécules cibles 
[72]. Afin de réutiliser le nano-matériau ZrO2-TOA, le Pd et l’Au ont été récupérés à l’aide 
d’un mélange optimisé de thiourea 0.2 M et HCl 0.5 M. 
 
En ce qui concerne la réutilisation du nano-matériau ZrO2-TOA, nous nous sommes 
confrontés à l’instabilité de la liaison des groupements carboxyliques ZrO2-OOCR à la 
surface du matériau en raison de son hydrolyse en milieu fortement acide (réaction acide-
base de Brönsted). Cette difficulté a été surmontée via l’utilisation de nano-ZrO2 modifié 
en surface par l’acide N,N-dioctylcarbamoylphosphonique lors des cycles successifs 
d’adsorption/désorption, expériences qui ont mises en évidence la nécessité de modifier la 
surface du nano-ZrO2 avec un ligand comportant une fonction plus robuste tel qu’un acide 
phosphonique. Dans ce contexte, nous avons mis au point un procédé en deux étapes pour 
améliorer la stabilité du TOA en surface de ZrO2 : (i) greffage d’acide alendronique (AA) 
(Figure 2) en surface de ZrO2 et (ii) réaction de couplage peptique entre les groupements -
NH2 de AA et les groupements -COOH de TOA. Une étude paramétrique des paramètres 
de synthèse a été effectuée afin de comparer les rendements, la facilité et la faisabilité de la 
réaction (Tableau suivant). 
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Structure de l’acide alendronique (AA) 

 

Voie 
Via un ester de TOA 

activé par NHS 
Via TOA catalysé par 

DCC 
Rendement ~ 86% 

Facilité de manipulation 

NHS-TOA a été preparé 
dans le DMF et la réaction 
a été réalisée dans le DMF 
avec ZrO2-AA pendant 24 

hrs à 25oC. 
Lavage: DMF et C2H5OH 

TOA a été mélangé avec 
DCC dans C2H5OH, puis le 

précipité de DCU a été 
filtré. Le mélange a été 

agité avec ZrO2-AA 
pendant 24 hrs à 25oC. 

Lavage: C2H5OH 

Faisabilité 
NHS-TOA fourni par l’ 

ICSM 

TOA, DCC ont été achetés 
respectivement chez 

ACROS OrganicsTM et 
Sigma Aldrich 

 
La réutilisation des nano-matériaux synthétisés via les deux voies a été significativement 
améliorée dans une solution modèle comportant seulement de l’acide chlorhydrique. 
L’applicabilité de ces matériaux en conditions hautement oxydantes a été prise en compte 
lors de l’extraction de Pd et d’Au dans des solutions réelles fournies par la société 
MORPHOSIS. Ces conditions ont montré que la fonction disulfure du TOA était 
inévitablement oxydée par des oxydants puissants, tels que l’acide nitrique ou les 
complexes chlorés de l’or pouvant coexister dans les solutions industrielles. Suite à ces 
résultats, nous proposons comme alternatives des ligands contenant des groupes 
carboxyliques et dialkylamido-phosphonates (Figure A suivante) ou des groupes amino 
phosphine comme substituts de TOA (Figure B suivante). 
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Molécules alternatives au TOA 

Dépots de nano-ZrO2 sur des textiles en polypropylène 
 
Les nano-ZrO2 ont été deposés, soit par dip-coating soit par la technique dite Layer-by-
Layer (LbL), sur des textiles en polypropylène (PP) modifié en surface par des fonctions 
acides carboxyliques. Une difficulté majeure fut de pérenniser le sourcing en PP-COOH 
suite à l’arrêt d’exploitation de la société qui avait fourni les premiers échantillons de 
textile. La mise en place d’une collaboration avec le laboratoire du professeur Dirk 
HEGEMANN de l’EMPA (Swiss Federal Laboratories for Materials Science and 
Technology, Advanced Fibers, Plasma & Coating team) a permis la fonctionnalisation 
efficace par plasma de textile issu de la société SAATI.  
 
Le choix du dépôt de nanoparticules de ZrO2 sur PP-COOH par simple dip-coating 
(immersion dans la suspension de ZrO2) s’est avéré efficace lorsque la densité de fonctions 
acide carboxyliques était importante comme dans le cas du textile fourni par la société 
CREAT. Une étude paramétrique concernant les paramètres de dépôt a été menée et a 
permis d’établir les conditions idéales comme suit : 

 pH de nano-ZrO2: 10 (Lotus Synthesis) 
 Concentration de nano-ZrO2 : 10%w dans H2O 
 Volume de nano-ZrO2: 5 mL 
 Type de textile: textiles en polypropylène non-tissé, COOH-modifié (CREAT) 
 Le nombre de textiles: 5 pièces de 1cmx1cm/lot 
 Température = 25oC 
 Temps d’immersion = 2h 
 Lavage: H2O/C2H5OH 

 
La surface du nano-coating de ZrO2 fut ensuite post-fonctionnalisée par l’acide thioctique 
par simple immersion à nouveau dans une solution de TOA à 10-2 M. Le nano-composite 
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final (PP-COOH-ZrO2-TOA) s’est avéré capable d’adsorber le Pd dans la solution modèle 
acide (HCl), mais la stabilité mécanique limitée (fibres non tissées) et la pénurie de textiles 
CREAT sont devenus des obstacles au développement de notre technologie. 
 
Dans le but de contrôler la teneur et d’améliorer le procédé de revêtement de ZrO2 sur un 
nouveau support textile en polypropylène modifié en surface par un procédé de plasma-
froid par l’EMPA, une méthode couche par couche (LbL) a été également développée.  Une 
autre étude paramétrique a permis de mettre au point les conditions de dépôt par immersions 
successives dans une nano-suspension de ZrO2 acide (pH ~ 2.5, Sigma Aldrich) et d’acide 
polyacrylique (PAAH, Mw = 100 000) : 

 Concentration de nano-ZrO2 : 1%w dans H2O, pH = 2.5, V = 6 mL 
 Concentration de PAAH : 0.5%w dans H2O, pH = 2.5, V = 6 mL 
 Mw = 100000 Da 
 Le nombre de textiles: 5 pièces de 1cmx1cm/lot 
 Temps d’immersion = 10 min 

 
Les résultats en microscopie et en analyses thermiques ont montré que ce procédé 
permettait de contrôler finement la quantité de ZrO2 et d’atteindre d’importantes quantités 
de ZrO2 [20-23 %w avec 15 couches de (ZrO2/PAAH)]. Nous avons également mis au point 
un dépôt purement inorganique de ZrO2 par immersion successives de différentes 
nanosuspensions de ZrO2 en jouant sur les charges de surfaces des nano-crystallites en 
fonction du pH de la solution de dépôt. 
 
Nous avons observé sur les clichés MEB que la finesse et l’homogénéité des dépôts 
dépendaient de la taille de la maille du textile. En d’autres termes, la probabilité 
d’agrégation de nano-ZrO2 semblait plus élevée dans un espace restreint, ce qui affecte la 
qualité du revêtement. Par exemple, le revêtement sur un textile PP possédant une taille de 
maille de 297 μm est plus épais et plus rugueux que sur un textile PP avec une taille de 
maille de 106 μm. Il conviendrait dans le futur d’étudier  l’impact des caractéristiques de 
différents textiles (grammage, taille des fils …) sur la cinétique d’adsorption et les 
performances du process. 
 
Les résultats précédents ouvrent la voie à de nouveaux développements concernant la 
modification de surface de nano-crystallites de ZrO2 en deux étapes ainsi qu’à la méthode 
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de revêtement couche par couche (LbL) pour améliorer le procédé de recyclage. Mais des 
questions fondamentales doivent encore être abordées: La porosité des matériaux à base de 
nano-oxyde peut-elle être ajustée pour obtenir un revêtement avec une densité adéquate de 
groupements M-OH pour la modification de surface en deux étapes? 
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