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Abstract

The ability to compare and manipulate probability distributions is a crucial
component of numerous machine learning (ML) algorithms. The statistics literature
provides a rich class of divergence functions to measure the discrepancy between two
probability distributions, such as the Kullback-Leibler (KL) divergence, the total
variation (TV) distance, or more generally the family of f-divergences. Yet, these
divergences rely on comparing density functions pointwise, and saturate or diverge
when the supports of the probability measures are disjoint. This fact can be a major
drawback in ML tasks involving discrete or high-dimensional measures, and calls for
more geometry-aware discrepancies. Optimal transport (OT) has proven to be a
well-suited alternative: starting from a cost function (e.g. a distance) on the space on
which measures are supported, OT consists in finding a mapping or coupling (i.e. a joint
law) between both measures that is optimal with respect to that cost. In other words,
OT naturally extends the ground cost between two points to a discrepancy function
between probability distributions, or point histograms, in the form of an optimization
problem. The fact that OT highly depends on the geometry of the distributions’ ground
space makes it particularly well suited to numerous ML applications, notably those
that consist in fitting a probability measure, such as generative modeling. Further, as a
consequence of its strong geometric component, OT is the object of a rich mathematical
theory regarding its metric and topological properties, on which ML practitioners can
rely to build and study their models.

Despite those advantages, the applications of OT in data sciences have long been
hindered by the mathematical and computational complexities of the underlying
optimization problem. Indeed, computing OT between discrete distributions amounts
to solving a large and expensive linear program, and results in quantities that are
not differentiable, which is impractical for ML gradient-based algorithms. Worse still,
in the general non-discrete case, there are no known efficient methods for estimating
optimal transport for moderate to high dimensions — the existing methods relying
on approximating PDEs, which is only tractable in low dimension. In particular,
the approach that consists in sampling from distributions and estimating OT using
sampled measures is doomed by the curse of dimensionality: the sample convergence
rate of OT is exponentially slow w.r.t. the dimension of the ambient space.

To alleviate those issues, two main approaches have been considered. The first
consists in regularizing the optimization problem in order to obtain more favorable
properties, such as smoothness or strict convexity. Approximations of OT divergences
can then be obtained at a much lower cost from those regularized problems. In
particular, entropic regularization yields couplings and discrepancies that are smooth
and differentiable, and that can be obtained efficiently using Sinkhorn’s algorithm or
stochastic optimization. Hence, it has become the prevailing choice of regularization.
The second approach consists in keeping the optimization problem as such, focusing
on particular cases that admit closed-form solutions or that can be efficiently solved.
A notable example is given by the optimal transport problem for 1D distributions,
which can be solved in closed form from the quantile functions of the distributions
under mild assumptions on the ground cost. In particular, discrete one-dimensional
OT has a much lower computational complexity, since it can be solved with a simple
call to a sorting procedure. For this reason, variants of OT relying on 1D projections
such as sliced Wasserstein (SW) distances have recently gained popularity in the ML
community. Likewise, in the multidimensional setting, Gaussian measures and their
elliptical generalizations are one of the very few instances for which OT is available
in closed form. In this particular case, OT defines the so-called Bures-Wasserstein
geometry, due to its links with the Riemannian Bures geometry on positive semi-definite
(PSD) matrices.

Even though closed-form instances of OT have been leveraged in recent works, the
guiding principle of this thesis is that there remains many research opportunities to
develop new algorithmic tools that can leverage or extend such closed forms.

Our thesis builds extensively on the Bures-Wasserstein geometry, with the aim
to use it as basic tool in data science applications. To do so, we consider settings in



which the Bures-Wasserstein geometry is alternatively employed as a basic tool for
representation learning, enhanced using subspace projections, and smoothed further
using entropic regularization. In a first contribution, the Bures-Wasserstein geometry
is used to define embeddings as elliptical probability distributions. Our work extends
on the classical representation of data as vectors, i.e. points in R?, to naturally
encode a notion of spread or uncertainty. To train those embeddings, we propose
numerical tools that leverage the underlying Riemannian structure of the Bures
metric. In the second contribution, we propose a new approach that exploits “classical”
(unregularized) OT, the Bures-Wasserstein geometry and projected OT. Indeed, we
prove the existence of transportation maps and plans that extrapolate Monge maps
restricted to lower-dimensional projections, and a characterization of such subspace-
optimal plans. We then show that subspace-optimal plans admit closed forms in the
case of Gaussian measures, that are linked to properties of the Bures metric. Our third
contribution consists in deriving closed forms for entropic OT, as well as unbalanced
entropic OT, between Gaussian measures scaled with a varying total mass. These
expressions constitute the first non-trivial closed forms for entropic OT, providing the
first continuous test case for the study of entropic OT and shedding some light on the
mass transportation/creation trade-off in unbalanced OT. Finally, in a last contribution,
entropic OT is leveraged to tackle missing data imputation in a non-parametric and
distribution-preserving way. Although this imputation is performed according to a
very intuitive criterion, we show in extensive experiments that our algorithms are
competitive with state-of-the-art methods.



Résumé

Pouvoir manipuler et comparer des mesures de probabilité est essentiel pour de
nombreuses applications en apprentissage automatique (machine learning). Il existe
dans la littérature statistique une vaste classe de divergences permettant de mesurer la
différence entre deux distributions, comprenant par exemple la divergence de Kullback-
Leibler (KL), la distance de variation totale (VT), ou plus généralement la famille des
f-divergences. Cependant, ces divergences reposent sur la comparaison point-a-point
des fonctions de densité, et saturent ou divergent lorsque les supports des mesures sont
disjoints. Ceci peut étre un inconvénient majeur pour les applications d’apprentissage
automatique qui nécessitent de comparer des mesures discrétes ou en haute dimension,
et appelle a ’emploi de divergences reposant sur des liens plus forts avec la géométrie des
espaces sous-jacents. Le transport optimal (TO) s’est avéré constituer une alternative
adaptée : partant d’une fonction de cott (e.g. une distance) définie sur ’espace sur
lequel les mesures sont supportées, le TO consiste a trouver une application ou un
couplage (i.e. une loi jointe) entre les deux mesures qui soit optimal par rapport a ce
cotit. En d’autres termes, le TO est une extension naturelle de la fonction de cotit de
base en une divergence entre mesures de probabilité, ou entre histogrammes de points,
sous la forme d’un probléme d’optimisation. Du fait que le TO dépende fortement de
la géométrie de ’espace de base des distributions, il est particuliérement bien adapté a
de nombreuses applications en machine learning, notamment celles qui consistent a
apprendre une mesure de probabilité, tel qu’en apprentissage génératif. De plus, en
conséquence de son fort aspect géométrique, le transport optimal est ’objet d’une
riche théorie mathématique concernant ses propriétés métriques et topologiques, sur
laquelle la communauté de 'apprentissage automatique peut s’appuyer pour construire
et étudier ses modéles.

En dépit de ces avantages, ’'emploi du TO pour les sciences des données a longtemps
été limité par les difficultés mathématiques et computationnelles liées au probléme
d’optimisation sous-jacent. En effet, calculer le transport optimal entre deux mesures
discrétes revient a résoudre un cotliteux programme linéaire de grande taille, et résulte
en des quantités qui ne sont pas différentiables, ce qui est inadapté aux algorithmes de
machine learning reposant sur la descente de gradient. Pire encore, dans le cas général
non discret, il n’existe pas de méthode efficace pour estimer le TO dans des dimensions
modérées ou élevées — les méthodes existantes s’appuyant sur ’approximation d’EDP,
ce qui n’est praticable qu’en basse dimension. En particulier, ’approche qui consiste
a échantillonner les distributions et & estimer le TO a partir des mesures empiriques
résultantes souffre du fléau de la dimension : la vitesse de convergence rapportée
au nombre d’échantillons est exponentiellement faible par rapport a la dimension de
I’espace ambiant.

Pour contourner ces problémes, deux approches ont été proposées. La premiére
consiste a régulariser le probléme d’optimisation afin de lui garantir de nouvelles
propriétés, telles qu'une meilleure régularité ou encore la stricte convexité. Des approxi-
mations des divergences du TO peuvent ensuite étre obtenues a partir de ces problémes
régularisés & un plus faible cott. Tout particuliérement, la régularisation entropique
fournit des couplages et des divergences réguliers et différentiables qui peuvent étre
calculés efficacement & l’aide de ’algorithme de Sinkhorn, ou grace & des méthodes
d’optimisation stochastique. De ce fait, ’entropie est devenue le choix de régularisation
le plus répandu. La seconde approche consiste quant & elle & conserver le probléme d’op-
timisation dans sa forme initiale, en se concentrant sur des cas particuliers admettant
des solutions en forme close ou pouvant se résoudre efficacement. Un exemple primordial
est le cas du transport optimal en une dimension, qui peut étre explicitement résolu a
partir des fonctions quantile des distributions, sous des hypothéses modérées portant
sur la fonction de cott utilisée. En particulier, le transport 1D entre distributions
discrétes a une faible complexité puisqu’il peut étre calculé a I'aide d’un algorithme de
tri. Pour cette raison, des variantes du TO reposant sur des projections 1D telles que
les distances Wasserstein "tranchées" (sliced Wasserstein) ont récemment gagné en
popularité dans la communauté du ML. Dans le cas multi-dimensionnel, un second
exemple est celui des mesures gaussiennes et de leurs généralisations elliptiques qui



constituent 'un des rares cas particuliers pour lesquels le TO admet une forme close.
Dans ce second cas, le TO définit la géométrie de Bures-Wasserstein et posséde de forts
liens avec la géométrie riemannienne de Bures sur les matrices positives semi-définies
(PSD).

Bien que certains travaux récents se soient appuyés sur des formes closes du
transport optimal, le principe directeur de cette thése est que de nombreuses pistes
de recherche restent & explorer afin de développer de nouveaux outils algorithmiques
permettant d’exploiter ou d’étendre de telles formes closes.

Cette thése s’appuie tout particuliérement sur la géométrie de Bures-Wasserstein,
dans le but de 'utiliser comme outil de base pour des applications en science des données.
Pour ce faire, nous considérons des situations dans lesquelles la géométrie de Bures-
Wasserstein est tantot utilisée comme un outil pour I’apprentissage de représentations,
étendue a partir de projections sur des sous-espaces, ou régularisée par un terme
entropique. Dans une premiére contribution, la géométrie de Bures-Wasserstein est
utilisée pour définir des plongements sous la forme de distributions elliptiques. Nos
travaux étendent la représentation classique sous forme de vecteurs, i.e. de points
dans R?, pour encoder de maniére naturelle une notion d’étendue ou d’incertitude.
Pour apprendre ces plongements, nous proposons de nouveaux outils numériques qui
exploitent la structure riemannienne sous-jacente de la métrique de Bures. Dans une
deuxiéme contribution, nous proposons une nouvelle approche qui exploite le transport
optimal non régularisé “classique”; la géométrie de Bures-Wasserstein et le TO projeté.
Plus précisément, nous prouvons l'existence de fonctions et couplages de transport qui
extrapolent des applications de Monge restreintes a des projections en faible dimension,
et fournissons une caractérisation de ces plans de transport “sous-espace optimaux”.
Nous montrons que ces plans sous-espace optimaux admettent des formes closes dans le
cas de mesures gaussiennes, liés & des propriétés de la métrique de Bures. La troisiéme
contribution de cette thése consiste a obtenir des formes closes pour le transport
entropique ainsi que pour le transport entropique déséquilibré entre des mesures
gaussiennes non-normalisées. Ces formes closes constituent les premiéres expressions
non triviales pour le transport entropique déséquilibré, fournissant le premier exemple
dans le cas continu pour ’étude du transport entropique et illustrent ’arbitrage entre
transport et création de masse dans la transport déséquilibré. Finalement, dans une
derniére contribution nous utilisons le transport entropique pour imputer des données
manquantes de maniére non-paramétrique et en préservant les distributions. Bien que
cette imputation soit effectuée selon un critére trés intuitif, nous montrons dans des
expériences exhaustives que nos algorithmes sont compétitifs par rapport a ’état de
lart.
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Outline and Contributions

Optimal transport (OT) is a two-century-old problem that has given birth to a rich
mathematical theory and to numerous applications, that are both still being very actively
developed to this date. OT was first formalized by Monge in his 1781 treatise. Motivated
by his observation of workers moving earth to build fortifications, Monge raised the problem
of optimally mapping two measures pu and v of equal mass onto each other, according to
a cost that is equal to the distance traveled by the workers per unit of mass. Due to its
mathematical difficulty — most notably, the absence of guarantees regarding the existence
of a solution — very limited progress was made on Monge’s problem until the 1940s, when
Kantorovich proposed a relaxation: instead of optimizing on one-to-one maps that push
forward p to v, Kantorovich [1942] considers couplings, i.e. joint laws between p and v. This
new formulation has allowed the OT theory to flourish, as Kantorovich’s problem admits a
solution under much less restrictive conditions than Monge’s. In particular, it encompasses
the case of discrete distributions, which can be interpreted as a resource allocation problem
such as considered in [Tolstoi, 1930, Hitchcock, 1941]. This discrete version of Kantorovich’s
problem was numerically solved by Dantzig [1949], with further algorithmic refinements
starting from the 1950s with the development of the linear programming literature |[Dantzig,
1951] and min-cost flow problems [Ford and Fulkerson, 1962, Goldberg and Tarjan, 1989,
Ahuja et al., 1993], closing a fecund phase in which OT became one of the foundational
problems of mathematical programming.

OT’s renaissance in mathematics. Starting from the late 1980s and succeeding to
the preluding works of Rachev and Riischendorf [see Rachev and Riischendorf, 1998, and
references therein|, the mathematical aspects of OT were progressively better understood —
including the challenging Monge problem. In his seminal paper, Brenier [1987]| proved the
existence of an optimal Monge map between measures that admit a density in the case of a
quadratic ground cost, and characterized this map as the unique transportation map that
is the gradient of a convex function. This fundamental result served as a building block for
many theoretical works on Monge maps. In particular, it allowed to reformulate Monge’s
problem as the Monge-Ampére PDE, which Caffarelli [1991] used to prove regularity
properties of the solutions in the quadratic case. McCann [1997] then introduced measure
interpolants that now bear his name and which constitute the optimal transport geodesic
between two measures according to the Wasserstein distance, defined by OT when the
ground cost is a distance to a power p > 1. Observing that the space of measures endowed
with the Wasserstein distances shares key properties with manifolds has paved the way to
the seminal work of Jordan et al. [1998], who showed that the Fokker-Plank equation can
be recast as a Wasserstein proximal minimization scheme — known as the JKO scheme — of
a functional taking measures as arguments. This construction was perfected in [Ambrosio
et al., 2006], where a gradient flow theory generalizing that of Euclidean spaces was built
on the Wasserstein space. Further links with PDEs and fluid mechanics were developed
in [Benamou and Brenier, 2000], defining the so-called dynamic formulation of OT. These
works paved the way for decisive contributions by both Villani [2008] and Figalli et al.

11



12 OUTLINE AND CONTRIBUTIONS

[2010] whose respective works on the Ricci curvature and isoperimetric inequalities, among
others, were recognized with Fields medals.

Optimal transport in data sciences. In parallel, in the early 2000s OT has begun
to appear in more applied domains such image processing, computer vision and machine
learning. Indeed, discrete OT was “rediscovered” in [Rubner et al., 2000] for image retrieval
tasks under the name of the earth mover’s distance (EMD). From then, it was put to
application in image processing and computer graphics [Rabin et al., 2011, Bonneel et al.,
2011, Haker et al., 2004], but its usage remained limited by its O(n3log(n)) complexity
despite specialized solvers [Pele and Werman, 2009]. This issue was alleviated by the
addition of an entropic regularization term to Kantorovich’s problem by Cuturi [2013].
Entropic regularization not only ensures the uniqueness of the solution by strict convex-
ity, but also allows to solve the corresponding problem in O(n?) time using Sinkhorn’s
algorithm [Sinkhorn, 1964], and results in a differentiable divergence. Further, Solomon
et al. [2015] showed that for some domains and cost functions resulting in a separable
kernel (e.g. for measures on a 2D or 3D grid with a squared norm cost), fast convolution
techniques could be used to bring down the complexity to O(nIH/ D ). In turn, these
results opened the way to a more widespread use in data sciences and machine learning. In
particular, Frogner et al. [2015] used entropic OT with relaxed marginal constraints as a
loss function for multilabel classification, building on a contribution of Kusner et al. [2015]
who proposed to compare documents by representing them as bags-of-words and using
OT between word embeddings in RY. Remarkably, the renewed interest of the machine
learning community for optimal transport has led to applications not necessarily relying
on a regularized formulation, notably for domain adaptation [Courty et al., 2014, 2017],
generative modeling [Arjovsky et al., 2017], and distributionally robust learning [Esfahani
and Kuhn, 2018|.

Modern OT challenges in machine learning. Yet, applications of OT to data sciences
are still hindered by several issues. In particular, the unfavorable statistical properties of OT
linked to its high sample complexity have been the object of much work lately. Weed and
Bach [2019] proved a sharp bound that shows that estimating Wasserstein distances requires
an exponential number of samples w.r.t. the intrinsic dimension of the set on which measures
are supported. Entropic regularization was shown to not only alleviate computational
issues, but also to yield better sample rates [Genevay et al., 2019]. Alternatively, further
refinements on Weed and Bach’s bound can be obtained by assuming that measures
differ in a low-dimensional subspace [Niles-Weed and Rigollet, 2019]. In the unregularized
setting, those results theoretically justify a recent trend that consists in using OT between
low-dimensional projections of measures to define measure discrepancies |Rabin et al.,
2011, Bonneel et al., 2015, Paty and Cuturi, 2019] that benefit from lower computational
costs, and hopefully better sample complexity. More generally, leveraging closed forms of
transportation maps and OT distances in particular cases is a promising approach to reduce
the computational and sample complexity, even the more so as methods for OT between
continuous measures are scarce. As an example, Flamary et al. [2019] proved favorable
sample complexity bounds for linear transportation maps, which encompass (but do not
restrict to) the case of Gaussian and elliptical distributions. The issue of the statistical and
computational complexity of OT is one of the aspects that the OT community is currently
addressing, but other promising directions regarding applications of OT are also being
investigated. As an example, it appeared in several works that the marginals constraints of
OT could be too restrictive for some applications [Schiebinger et al., 2019, Frogner et al.,
2015], which has led to the development of unbalanced optimal transport [Chizat, 2017],
where the constraints are replaced with penalties. Further, OT gradient flows were shown
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to constitute a key tool in analyzing the behavior of over-parameterized models [Chizat
and Bach, 2018, Chizat et al., 2020], which is a burning topic in ML.

Contributions of this thesis. This thesis, started in 2017, makes a few contributions
towards helping optimal transport theory overcome some of its well-documented computa-
tional and statistical drawbacks, and gain applicability in machine learning.

(i) In an initial work [Muzellec and Cuturi, 2018], we leveraged the fact that OT admits
a closed form between elliptical distributions (defining the so-called Bures-Wasserstein
geometry), to propose a new tool to embed complex data: rather than embed words
as vectors in R? [Borg and Groenen, 2005, Maaten and Hinton, 2008, we proposed to
represent them as elliptical probability measures. In particular, this representation
allows to naturally encode the notion of uncertainty, which we showed to be of
particular interest for natural language processing (NLP) tasks. Proposing these
algorithms required investigating numerical methods to perform optimization using
the Riemannian structure of the Bures metric on PSD matrices.

From this starting point, we further investigated the use of the Bures-Wasserstein
geometry in conjunction with other approaches that were currently being considered in the
ML community to obtain better complexity.

(i) We studied the problem of extrapolating transportation plans from maps defined
between the projections of measures on lower-dimensional subspaces [Muzellec and
Cuturi, 2019]. We showed the existence of such plans and provided a theoretical
characterization, from which we exhibited two particular instances that generalize the
Knothe-Rosenblatt transport [Knothe, 1957, Rosenblatt, 1952], and proved that they
admit closed forms between Gaussian measures that are linked to properties of the
Bures metric.

(iii) We proposed a last contribution on the topic of OT between elliptical distributions in
[Janati and Muzellec et al., 2020], in which we provided closed forms for entropic OT
and unbalanced entropic OT between Gaussian measures. Remarkably, these are, to
our knowledge, the first example of closed-form expressions for unbalanced entropic OT,
and they can now be used as a testbed for researchers wishing to investigate numerical
algorithms for (unbalanced) entropic OT (and more generally variants of Sinkhorn’s
algorithm). They also provide a case in which the mass transportation/destruction
trade-off in unbalanced OT can be characterized exactly.

(iv) Finally, the last contribution in this thesis focuses on an application of entropic OT to
imputing missing data [Muzellec et al., 2020]. This work relies on the simple intuition
that two random batches from the same dataset should have similar distributions. We
turned this criterion into a loss function using Sinkhorn divergences, and proposed
flexible methods that can alternatively fit a parametric imputation model, or perform
imputation without any parametric assumption on the underlying data distribution.

We now turn to a more detailed presentation of the chapters constituting this thesis. For
each chapter, we present related work, and sketch the contributions of this thesis.

Chapter 1: Optimal Transport Geometries

This chapter introduces the key concepts and results on optimal transport on which this
thesis builds upon, and, as such, does not introduce original contributions. Because of our
focus on ML applications, we state these results for measures supported on R that are
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either discrete or absolutely continuous (a.c.). Three OT “geometries” are introduced: the
original Monge-Kantorovich OT geometry, the Bures-Wasserstein geometry on elliptical
distributions, and the geometry of entropy-regularized OT.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Unregularized OT v v
Bures-Wasserstein v v v
Entropy-regularized OT v v

Table 1: Summary of the OT geometries used in the main chapters of this thesis.

Monge-Kantorovich Optimal Transport. This chapter starts with the presentation
of the optimal transport problem, which was initially introduced in Monge’s 1781 memoir.
Monge studied the problem of optimally mapping masses of earth represented by measures

w and v, according to the ground cost c¢(z,y) = ||z — y||:
inf [ (e, T())du(x), (M)
T Typ=v JRd

where we denote Typ = v the fact that 7' pushes forward p to v, i.e. that v(A4) = u(T~1(A))
for all measurable sets A.

Because this problem is mathematically challenging (in particular, the existence of
solutions is not guaranteed), Kantorovich introduced in 1942 the relaxed problem

wt [ i, (K)

vel(p,v
Rd xRd
where the transportation maps from (M) are replaced with couplings v € P(R? x R?), i.e.
probability measures having 1 and v as marginals. In particular, when the ground cost is a
distance to a power p > 1, i.e. ¢(z,y) = dP(x,y), (K) defines the celebrated Wasserstein
distances.

After introducing problems (M) and (K), a collection of results based on [Santambrogio,
2015] concerning the existence of solutions to (M) and (K) and their links is recalled. In
particular, the celebrated Brenier theorem [Brenier, 1987] for the existence and characteri-
zation of Monge maps with a quadratic cost as the gradient of a convex function will play
a central role in the case of elliptical measures introduced in Section 2.

To conclude this section, the computational aspects of OT are presented. Those aspects,
which are crucial in a machine learning perspective, are discussed depending on the type of
measures that are involved - discrete, or absolutely continuous (a.c.). In particular, the
discrete case boils down to the linear program

OT(u,v) = min (P, C), (D-0T)
PeR’
P1,,=a,PT1,=b

where a € A, b € A, are probability weight vectors and C = [¢(xi, yj))i=1,...n,j=1,..m
is the ground cost matrix. (D-OT) can be solved using the network simplex algorithm
with complexity O(nm(n + m)log(nm)) [see Ahuja et al., 1993, Peyré et al., 2019]. This
high computational cost can be mitigated in some particular cases and variants based on
1D transport. Indeed, in 1D the optimal transport map can be written as a monotone
map involving the cumulative distribution functions F),, F, and their inverses, the quantile
functions:

T:2+ Fl[fl] o F,(x).
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As a consequence, in the discrete setting 1D OT can be solved in O(nlogn) time by
sorting the supporting points of the distributions. Building on those properties, sliced OT
|[Rabin et al., 2011] is defined as the expectation of OT on random 1D projections, and
Knothe-Rosenblatt couplings [Knothe, 1957, Rosenblatt, 1952| are built using a recursive
1D matching between conditional distributions.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Discrete-Discrete v
Continuous-Continuous v v v
1D & KR transport v

Table 2: Summary of the OT settings used in the main chapters of this thesis.

The two following sections are dedicated to settings in which OT enjoys particularly
favorable computational properties, namely OT for elliptical distributions, and entropic
regularization of OT.

The Bures-Wasserstein Geometry. The case of OT between Gaussian measures with
a quadratic cost is one of the very few settings in which Wasserstein distances and Monge
maps are available in closed form. This fact was independently discovered in several seminal
works [Dowson and Landau, 1982, Olkin and Pukelsheim, 1982, Givens et al., 1984]. This
exception is essentially due to the fact that the Brenier theorem proves the existence of
linear Monge maps, and serves as an essential tool to prove that the Wasserstein space of
Gaussian measures defines a Riemannian manifold |Takatsu, 2011].

In fact, most of these properties can be extended to the more general class of elliptical
distributions. Elliptically-contoured distributions can be seen as a generalization of Gaussian
distributions, either defined as having characteristic functions of the form e”TCg(etTCt)
(9 = exp(— - /2) corresponding to Gaussian measures) as in |[Cambanis et al., 1981], or
using a less compact definition based on density functions with an elliptical symmetry
as in [Gelbrich, 1990]. In his seminal paper, Gelbrich [1990] proves that the Wasserstein
distances between distributions from the same elliptical family pa A, ptb,B has the same
expression as for Gaussian measures (involving mean vectors a, b and covariance matrices

A, B)

W3 (pa,a, ib,8) = la = b||* + B(A, B), (1)
where B2(A, B) T A + TrB — 2Tv (A1/2BA1/2)1/2 is the Bures metric for PSD matri-
ces [Bures, 1969, Bhatia et al., 2018|, and so do Monge maps: Tjjia A = ib,B With

1/ 01 1\2 1
T:x— A2 <A2BA2> A 2(x—a)+b. (2)

The Bures metric is linked to a “maximum correlation” optimization problem [Olkin
and Pukelsheim, 1982] that allows to prove the joint convexity of the Bures metric and a
lower bound on the 2-Wasserstein distance between any two distributions with finite second
moments [Dowson and Landau, 1982|. The Riemannian structure of the Bures metric
on the PSD cone [Bhatia et al., 2018, Malago et al., 2018] allows to derive Wasserstein
geodesics for elliptical distributions, and to characterize Wasserstein barycentres from a
fixed-point equation on PSD matrices |[Agueh and Carlier, 2011, Bhatia et al., 2018], from
which an algorithm converging to this barycenter can be obtained [Alvarez-Esteban et al.,
2016].
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Entropic Regularization of Optimal Transport. In the general case, closed forms
for OT distances and couplings are not available. In the prevalent discrete setting, the
computational costs associated with solving (D-OT) along with the fact that OT(u,v)
is not differentiable can be prohibitive in many ML applications. Starting from [Cuturi,
2013], the prevailing approach to accommodate for these issues has been to add an entropic
regularization term to the Kantorovich problem:

OT:(p,v) def eli_{ng : // c(z,y)dy(z,y) + e KL(y||p @ v). (Ent-OT)
Y v
Rd x R4

In the discrete setting, OT, defines a differentiable discrepancy, which can be efficiently
computed using Sinkhorn’s algorithm [Sinkhorn, 1964|, at the price of no longer defining a
positive divergence. This discrepancy can be turned into a positive definite divergence by
subtracting debiasing terms to OT. This defines the Sinkhorn divergence [Genevay et al.,
2018|
S2(1,v) & OTe(,v) — L (OTe(p,v) + OT. (). (3)

When the ground cost ¢ induces a positive definite kernel exp(—c), S: is a differentiable,
convex (but not jointly) positive definite divergence which metrizes weak star convergence
and retains the favorable computational complexity of OT. [Feydy et al., 2019].

Alternative regularizations of optimal transport were considered in Blondel et al. [2018],
allowing to obtain sparse but differentiable OT plans — at the price of Sinkhorn’s algorithm
no longer applying. Further, Chizat [2017] extends regularization of OT to the unbalanced
OT problem, in which the constraints on coupling marginals are replaced with penalization
terms.

In Chapter 4, we elaborate on entropy-regularized OT and (entropic) unbalanced OT,
proving closed forms in the case of Gaussian measures.

Chapter 2: Embeddings in the Wasserstein Space of
Elliptical Distributions

This chapter is based on [Muzellec and Cuturi, 2018].

Learning mathematical representations that can be conveniently manipulated for com-
plex objects is a challenging task with numerous applications in ML. While these represen-
tations have traditionally been in the form of vectors, i.e. points in R¥, we propose in this
work to extend these points to representations as elliptical probability measures, in the
Bures-Wasserstein geometry.

Related work. There exists a vast literature on the problem of obtaining low-dimensional
representations yi, ¥z, ..., yn € R¥ of complex, high-dimensional objects 1, o, ..., T, living
in a space X. When the objects to be represented are themselves vectors in R%, a
prevalent method, often used as a pre-processing step, is principal component analysis
(PCA) [Pearson, 1901]. More generally, when these objects are equipped with a distance

dx(zi,xj), embeddings are naturally sought so that the distances ||y; — y;| are as close

as possible to d;; aof dx(z;,zj). Closeness criteria include distortion' [Johnson and

1/2
Lindenstrauss, 1984, Bourgain, 1985| or the stress (Z#j(dij — |y — yj||)2/dz2j> as in

metric multidimensional scaling [De Leeuw, 1977, Borg and Groenen, 2005]. Several

dii < o,

! An embedding has distortion « if there exists r > 0 such that Vi, j,7 < W <
i Yj
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approches have then refined these methods, departing from the original goal of finding
isometric embeddings to focus on notions of intrinsic dataset geometry |Tenenbaum et al.,
2000, Roweis and Saul, 2000, Hinton and Roweis, 2003, Maaten and Hinton, 2008|. Finally,
some tasks require to compute embeddings without the guidance of a ground distance or
similarity measure. This is notably the case in NLP, where word embeddings are computed
based on the co-occurence of similar words [Mikolov et al., 2013b, Pennington et al., 2014,
Bojanowski et al., 2017], for lack of a natural distance between words.

More recently, two distinct trends have emerged. The first (i) learns representations in
a latent space by minimizing the reconstruction error [Hinton and Salakhutdinov, 2006,
Kingma and Welling, 2014, Tolstikhin et al., 2018]. The second (ii) seeks embeddings into
more “exotic” geometries, e.g. generalized MDS on the sphere [Maron et al., 2010], or in
hyperbolic spaces [Nickel and Kiela, 2017].

As part of the second trend (ii), probabilistic embeddings were proposed by Vilnis and
McCallum [2015]. This approach consists in representing objects as parametric probability
distributions over R%, which extends the traditional representation in R* as points that can
be seen as Dirac distributions. Vilnis and McCallum propose to embed words as Gaussian
measures in the geometry of the Kullback-Leibler divergence (KL), or of the expected
likelihood (¢3) kernel [Jebara et al., 2004]. However, these geometries cannot naturally
extend point embeddings, as they saturate when measures are Diracs (to infinity or to a
constant value). Moreover, due to numerical stability issues linked to the KL divergence
between Gaussian measures, only Gaussian distributions with diagonal covariance matrices
have been considered in [Vilnis and McCallum, 2015]. In a concurrent work, Singh et al.
[2020] considered representing words as histograms over context words, based on pre-
computed word embeddings such as glove [Pennington et al., 2014]. Subsequent work
to ours considered embeddings in P(RY) in the form of empirical distributions with fixed
support cardinality using entropy-regularized OT [Frogner et al., 2019|. Finally, let us
mention that our use of OT metrics to learn embeddings was inspired by the theoretical
results of Andoni et al. [2015], who showed that P(R3) equipped with the Wasserstein
distances is snowflake-universal?.

Contributions. The main contributions of this chapter concern the benefits of repre-
senting objects as elliptical distributions in the Bures-Wasserstein geometry, along with
practical tools and guidelines for optimization within this geometry.

(i) Representing objects as elliptical distributions in the Bures-Wasserstein
geometry: We propose to represent each object as an elliptical distribution pa A using
a mean vector a and a PSD covariance matrix A, and endow these representations
with the Bures-Wasserstein distance

Wa(ptaa, ibB) = [|a — b|* + B*(A, B).

This representation has several benefits compared with Gaussian measures in the KL
or {5 geometry:

a. First, it seamlessly includes point embeddings as Dirac measures, which can
alternatively be seen as degenerate elliptical distributions with a 0 covariance
matrix. In particular, the Bures-Wasserstein distance between two degenerate
Dirac elliptical distributions is simply the Euclidean distance between their means:

Wa(pa,0, ibo) = |la— b||?;

%ie., it embedds d%, 6 € (0,1) with arbitrarily low distortion.
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b. Next, the proposed methods remain valid for any choice of representing elliptical
family, and not only Gaussian measures. In particular, this allows to represent
objects as uniform distributions over ellipsoids, which have compact supports and
are therefore more amenable to visualization;

c. Finally, used with the numerical tools we propose, the Bures distance is numerically
stable, which allows to use full covariance matrices (as opposed to diagonal covari-
ance matrices is previous works). This allows to make a fuller use of the dimension
d of the ambient space: with full covariance matrices, elliptical embeddings can
use up to d + d(d + 1)/2 scalar parameters, but diagonal elliptical embeddings are
limited to 2d.

(i) Numerical tools and methods for optimization with Bures distances: We

provide numerical tools to optimize models based on Bures distances with gradient-
based methods. More precisely, we address two issues: (a.) computing and differen-
tiating the Bures distance and (b.) ensuring that matrices remain PSD throughout
gradient descent.

a. We leverage the fact that Newton-Schulz (NS) iterations [Higham, 2008| with a
suitable initialization simultaneously yield Monge maps TAB and their inverses
TBA to minimize the amount of NS runs required to compute and differentiate
Bures distances. Our method relies on the following Bures identities:

B2(A,B) = TrA + TrB — 2Tr(TABA) and VAB2(A,B) =14 — TAB,

By keeping the maps TAB in memory, this allows to compute gradients without re-
computing any matrix roots or inverses. In comparison, automatic differentiation
has a complexity equivalent to computing the distances again. An important
practical point is that all proposed manipulations are easily parallelizable on

GPUs.

b. We avoid any projection on the PSD cone by using a A = LL” parameterization
and optimizing on the L factor, which is free to take any value in R¥*¢. Remarkably,
we show that Euclidean gradient descent on the L factor,

L + L —nVLi%*(LL",B),
is equivalent to taking a step of size 1 along the geodesic from A = LL” to B:
Cass(n) = [(1—mIa+nTAPIA[(1 - n)La + nTAP].

In other words, a A = LL” parameterization is projection-free and allows to
emulate Riemannian optimization in the Bures geometry.

(iii) Applications to similarity and hypernymy representation with word em-

beddings: In large-scale experiments, we compute word embeddings from the ukWac
and WaCkypedia corpora [Baroni et al., 2009] by minimizing the Bures-Wasserstein
equivalent of the hinge loss [Vilnis and McCallum, 2015]:

Z M_[:uwzyc]‘i‘% Z [,uw:l/c’] )
(w,c)ER eN(w) +

where R is the set of word/context pairs co-occuring in a sliding window of a given
size and N (w) a random set of negative contexts for the word w, and

def
[,U“a,A : Mb,B] = <a> b> + F(A7B)>
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where F(A,B) % Tr(AY2BAY2)Y/2 is the Bures fidelity (see Chapter 1). The

resulting 250K embeddings, trained on a 3 billion token dataset, are competitive
with then state-of-the-art skipgram embeddings [Mikolov et al., 2013b] and diagonal
Gaussian embeddings [Vilnis and McCallum, 2015| on similarity and entailment
benchmarks.

In a second experiment, we train embeddings on the WordNet dataset [Miller and
Charles, 1991] to encode hypernymy?® relations (constituting a DAG on nouns),
consistently beating the then state-of-the-art Poincaré embeddings [Nickel and Kiela,
2017] in link prediction tasks.

Chapter 3: Building Optimal Transport Plans on Subspace
Projections

This chapter is based on [Muzellec and Cuturi, 2019].

OT suffers from the curse of dimensionality. For this reason, discrepancies relying on
OT between lower-dimensional projections of measures have recently been considered. In
this chapter, we show how global transport maps and couplings can be extrapolated from a
Monge map between projected measures.

Related work. In R? the Wasserstein distance between empirical measures over n sam-
ples converges at speed O(n~1/?) to the distance between the original distributions [Dudley,
1969, Fournier and Guillin, 2015]. At best, this rate can be improved if the distribution is
actually supported on a lower-dimensional surface [Weed and Bach, 2019] — in which case
the dimension parameter in the rate can be replaced with this intrinsic dimension parameter
— or can be turned to O(n*Z/ 4) under some additional hypothesis [Chizat et al., 2020]. This
unfavorable sample complexity associated with a O(n3logn) computational complexity has
led to approaches consisting in first projecting measures on lower-dimensional subspaces
before computing OT between projected measures. Most notably, sliced Wasserstein (SW)
distances [Rabin et al., 2011, Bonneel et al., 2015 average Wasserstein distances between
1D projections (see Section 1.2):

SW2 (1, 1) /S WE(po)sts (po)s) 6,

where py is the projection on the line of direction # € R?. In the discrete setting, each
projected distance (and coupling) can be obtained via sorting in O(nlogn) time. These
favorable runtimes, along with the fact that SW defines a metric between measures (although
distinct from the Wasserstein metric), has led to a recent spark of interest for VAE and
GAN applications [Deshpande et al., 2018, Wu et al., 2019]. Paty and Cuturi [2019]
extend projections to subspaces of dimension 1 < k < d that are adversarially selected.
Extrapolating transportation maps defined in few dimensions is linked to Knothe-Rosenblatt
(KR) transport [Rosenblatt, 1952, Knothe, 1957], which defines a coupling between two
measures by recursively extending 1D transport maps. Carlier et al. [2009] shows that KR
transport can be obtained as the limit map with re-weighted quadratic costs, a result we
extend to extrapolations of k-dimensional maps.

Contributions. The previously cited approaches that rely on subspace projections allow
to define OT-based discrepancies, but do not provide transportation maps between the

3A is a hypernym of B if every B is a A, e.g. “mammal” is a hypernym of “dog”.
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original measures. In this chapter, we study how transportation maps and plans that
coincide with a given map S defined on a linear subspace E (with projection operator pg)
can be obtained. That is, we are interested in transportation plans v (resp. maps T') whose
projections g = (pg, pE)yy on that subspace E coincide with the optimal transportation

plan (Lag, S)gpe (vesp. ppoT = S o pg).

(1)

(i)

Subspace-optimal plans and maps: Given a Monge map S between two measures
pr and vg projected on a linear subspace E of RY, we define global plans between

the original measures p and v that coincide with S on E: IIg(u,v) def {y e O(u,v) :
ve = (Iag,S)sur}. We prove the existence of such subspace-optimal plans, and
further characterize them using their disintegrations (i.e. their conditionals) on E x E:
denoting p,, the disintegration of y on E+ x {xg}, any plan v € Ilg(u, v) is fully
characterized by the conditional couplings on the graph of S between p;, and vg(
for xg € E, i.e. Yup,S(p))TE € E.

TE)

TE))

Monge-Independent plans and Monge-Knothe maps: We focus on two partic-
ular instances of E-optimal plans. Monge-Independent (MI) plans are obtained by
extending v using independent couplings between fi,, and vg(,,),

def
™ = (Hap ® Vs(eg)) ® Tap, S)zhs,

and Monge-Knothe (MK) maps can be seen as a generalization of Knothe-Rosenblatt
transport that extend g using optimal couplings:

Tuk(zp,zp1) « (S(zp), T(xp;zpe)) € E® E,

where T(mE; ) : B+ — E* denotes the Monge map from Pazp 1O Vg(yy). Further, we
prove the following properties for MI and MK transport:

(a) Discrete subspace-optimal transport converges to MI transport as sample size
goes to infinity;

(b) MK transport is the subspace-optimal transport with the smallest transportation
cost;

(c) Similarly to Knothe-Rosenblatt transport [Carlier et al., 2009], MK transport can
be obtained as the limit transportation map with the re-weighted quadratic cost

clz,y) = Zle(xi — ) + ezg;lf(:cﬁk — yj+x)% when £ goes to 0;

Closed forms for Gaussian measures: Similarly to 2-Wasserstein distances and
Monge maps, we prove that MI and MK transports admit closed-form expressions
for Gaussian measures. More precisely, MI transport can be written as a degenerate
Gaussian coupling, and MK transport as a block-triangular map. Incidentally, we
give a closed form for the Knothe-Rosenblatt transport between Gaussian measures
involving the Cholesky factors of the covariance matrices.

Experiments on synthetic data, elliptical word embeddings, and for do-
main adaptation: We show on synthetic data that MI and MK transports are
more robust than classical transport in situations where the signal in distributions is
concentrated on a lower-dimensional subspace. We show how MK transport can be
used to distort the geometry of elliptical word embeddings in the case of polysemous
words. Finally, we provide an algorithm for selecting a mediating subspace E when
it is not prescribed, which we illustrate on a domain adaptation task with Gaussian
mixture models.
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Chapter 4: Entropic Optimal Transport between
(Unbalanced) Gaussian Measures

This chapter is based on [Janati and Muzellec et al., 2020).

Entropic regularization has not only proved to be an efficient method to make OT
more easily computable in a discrete setting, but also to alleviate the unfavorable sample
complexity of OT [Genevay et al., 2019]. Yet, as of recently no closed-form solution for
entropy-regularized OT between continuous distributions was known, in neither balanced
nor unbalanced settings. This absence of closed-form formulas for a fixed regularization
strength posed an important practical problem to evaluate the performance of stochastic
algorithms that try to approximate regularized OT. The purpose of this chapter is to fill
this gap, and provide closed-form expressions for balanced and unbalanced OT for Gaussian
measures, which can then be used as test cases, or as a principled regularization of the
Bures-Wasserstein distances.

Related work. That Wasserstein distances and Monge maps have a closed form between
Gaussian measures is a well-known fact [Dowson and Landau, 1982, Olkin and Pukelsheim,
1982, Givens et al., 1984, Bhatia et al., 2018|, which has been extended to elliptical
distributions from the same family [Gelbrich, 1990]. Yet, despite being widely used in
practice, no similar results were known in the case of entropy-regularized OT [Cuturi
et al., 2007, Peyré et al., 2019], until Bojilov and Galichon [2016] provided a closed form
for an “equilibrium 2-sided matching problem” which is equivalent to entropy-regularized
optimal transport. Second, a sequence of works in optimal control theory [Chen et al., 2016,
2018, Chen et al., 2016| studied stochastic systems for which entropy regularized optimal
transport between Gaussians can be seen as a special case, and found a closed form of the
optimal dual potentials. Shortly after the publication of our work [Janati and Muzellec et
al., 2020], several works with partially overlapping contributions were made public: first
Gerolin et al. [2020] found a closed form in the univariate case, then Mallasto et al. [2020]
and del Barrio and Loubes [2020] generalized the formula for multivariate Gaussians. The
closest works to this chapter are certainly those of Mallasto et al. [2020] and del Barrio and
Loubes [2020] where the authors solved the balanced entropy regularized OT and studied
the Gaussian barycenter problem. To the best of our knowledge, the closed form formula
we provide for unbalanced OT is novel. Other differences between this chapter and the
aforementioned papers are highlighted below.

Contributions. In this chapter, we present the first non-trivial closed forms for entropy-
regularized OT between continuous measures:

(i) A closed form for (Ent-OT) between Gaussian measures: We show that the
optimal entropic transportation plan between Gaussian measures is a Gaussian measure
itself. This result is obtained by proving the convergence of Sinkhorn iterations, which
lead to a fixed-point equation on symmetric matrices. We derive the solution of this
fixed-point equation to obtain a closed form for entropic OT. This closed form is
proven to remain well-defined, convex and differentiable even for singular covariance
matrices, unlike the Bures metric (which loses differentiability). Finally, we derive its
gradients and minimizers.

(ii) Debiased Sinkhorn barycenters between Gaussian measures: Using the defi-
nition of debiased Sinkhorn barycenters |Luise et al., 2019, Janati et al., 2020a|, we
show that the debiased entropic barycenter of Gaussian measures restricted to sub-
Gaussian measures is Gaussian and that its covariance verifies a fixed-point equation
that generalizes the equation in [Agueh and Carlier, 2011].
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(iii) A closed form for regularized unbalanced OT between Gaussian measures:
We provide a closed-form expression of the unbalanced transport plan between
unnormalized Gaussian measures, with entropic regularization and KL marginal
penalties. This transport plan is proven to be an unnormalized Gaussian measure
itself. We provide a closed form for the cost of unbalanced OT as a function of the
measure masses, and of the mass of the optimal plan (whose expression we provide).
The formula we obtain sheds some light on the link between mass destruction and
the distance between the means in unbalanced OT.

Chapter 5: Missing Data Imputation using Optimal
Transport

This chapter is based on [Muzellec et al., 2020).

Missing data is a fundamental issue in data sciences. Even with a moderate dimension
and missing rate, ignoring data points with missing values quickly ceases to be a valid
option [Zhu et al., 2019]. Hence, prior to performing downstream tasks (such as fitting
a classification or regression model) it is often necessary to define a method to replace
missing data with reasonable values. In this chapter, we describe an OT-based method to
impute missing values that can rely or not on parametric assumptions on the underlying
data distribution.

Related work. The missing data problem is the object of a rich literature in the statistics
community. The predominant nomenclature is that of Rubin [1976]: it distinguishes between
three settings, namely missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR) data. Most of the literature is devoted to methods for
MCAR and MAR data, which are statistically ignorable, meaning they allow to impute
without having to model the missingness mechanism itself [see Little and Rubin, 2002, van
Buuren, 2018]. Imputation methods generally aim to preserve the distribution of the data,
in order to limit the bias they introduce when performing downstream tasks. From a bird’s
eye view, imputation methods can be divided in two categories, depending on the type of
assumptions on the data distribution they rely on:

1. Methods relying on conditional models: e.g. [van Buuren and Groothuis-
Oudshoorn, 2011, MICE]| which perform iterative regression, or iterative random
forests [Stekhoven and Buhlmann, 2011|. These methods model conditional distribu-
tions by imputing variables one by one, in a round-robin fashion.

2. Methods relying on joint models: e.g. methods assuming a low-rank matrix
model [Hastie et al., 2015, Josse et al., 2016|, Gaussian joint models estimated
via the EM algorithm [Dempster et al., 1977|, or Bayesian joint models [Murray
and Reiter, 2016|. More recently, deep learning (DL) models based on variational
autoencoders [Kingma and Welling, 2014, VAE] such as [Mattei and Frellsen, 2019,
MIWAE], [Ivanov et al., 2019, VAEAC] or generative adversarial networks [Goodfellow
et al., 2014, GAN] such as [Yoon et al., 2018, GAIN] have emerged.

Contributions. In this chapter, we leverage OT to propose flexible missing value impu-
tation methods that can operate either with our without parametric assumptions on the
data distribution.

(i) An OT-based imputation criterion: Our methods stem from the simple ob-
servation that two randomly-sampled batches from the same dataset should have
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similar distributions. Using Sinkhorn divergences to measure the discrepancy between
the distributions of two batches, we turn this criterion into a loss for missing data
imputation:

Ln(X) E > Se(pm(X k), 1 (X)), (4)

K:0<ki1 <...<km<n
L:0</;1<...<fm<n

where S; is the Sinkhorn divergence [Genevay et al., 2018], X denotes the batch
constituted of points with indices in K = {ki, ka..., kn, }, and p,(Xg) = % >y 5in
is the empirical measure supported on this batch. Minimizing this loss with respect to
imputed values allows to perform missing value imputation in a distribution-preserving
way.

Sinkhorn-based imputation algorithms: We design two imputation algorithms
to minimize (4) that either rely (b.) or not (a.) on parametric models for the data
distribution:

a. Direct Sinkhorn imputation: the first algorithm makes no parametric assump-
tion on the data distribution. It minimizes (4) using gradient descent w.r.t. missing
values directly. In other words, it optimizes as many parameters as there are miss-
ing values, without additional constraints. Hence, it can be applied to any dataset
with quantitative variables without further assumptions;

b. Sinkhorn round-robin imputation: the second algorithm adapts the round-
robin imputation scheme to the Sinkhorn batch loss (4). This method can be used
to fit any differentiable parametric model, such as linear models or multi-layer
perceptrons (MLP). A key advantage of this second method is that it allows to
perform out-of-sample imputation once the model has been fitted, without running
the training algorithm again.

Large-scale experimental validation: We show that our methods are competitive
against baselines and state-of-the-art methods (including DL-based ones) on 23 UCI
datasets. We consider MCAR, MAR and MNAR settings with different mechanisms,
and a wide range of missing rates (10%, 30% and 50%).
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Le transport optimal (TO) est un probléme vieux de deux siécles qui a donné naissance
& une riche théorie mathématique ainsi qu’a de nombreuses applications, encore activement
développées a ce jour. Le TO fut initialement formalisé par Monge dans son traité de
1781. Motivé par 'observation de travaux de terrassement militaire, Monge s’interrogea
quant & la maniére optimale de transformer une mesure ;2 en une mesure v de masse égale
sous l’action d’une application, par rapport & un cotiit égal a la distance parcourue par
les travailleurs pour chaque unité de masse. Du fait de sa difficulté mathématique — et
tout particuliérement de ’absence de garanties quant a l’existence d’une solution — les
progrés accomplis sur le probléme de Monge furent trés limités jusqu’aux années 1940,
quand Kantorovich en proposa une version relachée : au lieu d’optimiser par rapport
a des applications point-a-point qui “poussent” u sur v, Kantorovich [1942] considéra
des couplages, c’est a dire des lois jointes entre p et v. Cette nouvelle formulation a
permis & la théorie du TO de s’épanouir, car le probléme de Kantorovich admet une
solution sous des hypothéses beaucoup moins restrictives que le probléme de Monge. En
particulier, il comprend le cas des distributions discrétes, qui peut étre interprété comme
un probléme d’allocation de ressources tel que posé par [Tolstoi, 1930, Hitchcock, 1941].
La version discréte du probléme de Kantorovich fut résolue numériquement par Dantzig
[1949], avant de connaitre des raffinements algorithmiques dans les années 1950 avec le
développement de la programmation linéaire [Dantzig, 1951| et des problémes de flots
de cotit minimum [Ford and Fulkerson, 1962, Goldberg and Tarjan, 1989, Ahuja et al.,
1993|, refermant une phase féconde durant laquelle le TO est devenu I'un des problémes
fondamentaux de la programmation mathématique.

La renaissance du transport optimal en mathématiques. A partir de la fin des
années 1980 et succédant aux travaux de Rachev and Riischendorf [voir Rachev and
Riischendorf, 1998, et références a l'intérieur|, les aspects mathématiques du TO furent
progressivement mieux compris — y compris ceux relevant du probléme de Monge. Dans son
article précurseur, Brenier [1987] prouva 'existence d’une application de Monge optimale
entre mesures admettant une densité et dans le cas d’une fonction de coiit quadratique,
et caractérisa cette application comme 'unique transport étant le gradient d’une fonction
convexe. Ce résultat fondamental a été un outil essentiel pour de nombreux travaux
théoriques sur les applications de Monge. En particulier, il permit de reformuler le probléme
de Monge sous la forme de 'EDP de Monge-Ampére, sur laquelle Caffarelli [1991] s’appuya
pour prouver des propriétés de régularité des solutions du cas quadratique. McCann [1997]
introduisit ensuite les interpolations de mesures qui portent désormais son nom, et qui
constituent la géodésique de transport optimal entre deux mesures selon la distance de
Wasserstein, qui est définie par le TO dans le cas ou le cotit de base est une distance
élevée a une puissance p > 1. En observant que 'espace des mesures doté de la distance
de Wasserstein partage des propriétés clé avec les variétés, McCann a ouvert la voie aux
travaux fondateurs de Jordan et al. [1998], qui montrérent que '’équation de Fokker-Plank
peut s’interpréter comme un schéma proximal en distance de Wasserstein — connu comme le
schéma JKO — d’une fonctionnelle prenant des mesures en argument. Cette construction fut
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complétée par Ambrosio et al. [2006], qui construisirent une théorie des flots de gradients en
distance de Wasserstein généralisant les flots euclidiens. Des liens ultérieurs avec les EDP et
la mécanique des fluides furent développés par Benamou [2003|, définissant la formulation
dite dynamique du TO. Ces travaux ouvrirent la voie aux contributions essentielles de Villani
[2008] et Figalli et al. [2010] dont les travaux respectifs sur la courbure de Ricci et les
inégalités isopérimétriques, entre autres, furent récompensés par deux médailles Fields.

Transport optimal et sciences des données. Parallelement, le TO apparut dés le
début des années 2000 dans des domaines plus appliqués tels que le traitement d’images,
la vision par ordinateur et 'apprentissage automatique. En effet, le transport discret fut
“redécouvert” par Rubner et al. [2000] pour des taches d’extraction d’images sous le nom
de “distance de terrassement” (earth mover’s distance, EMD). Dés lors, il fut employé en
traitement d’images et en programmation graphique [Rabin et al., 2011, Bonneel et al., 2011,
Haker et al., 2004], mais ses usages demeurérent limités par sa complexité en O(n>log(n))
malgré des solveurs spécialisés [Pele and Werman, 2009]. Cette difficulté fut contournée
par I'ajout d’un terme de régularisation entropique au probléme de Kantorovich par Cuturi
[2013]. En effet, la régularisation entropique permet non seulement d’assurer l'unicité de la
solution par stricte convexité, mais permet aussi de résoudre le probléme correspondant
en complexité O(n?) a P'aide de I'algorithme de Sinkhorn [Sinkhorn, 1964], et produit une
divergence différentiable. Qui plus est, Solomon et al. [2015] ont montré que pour certains
colts et domaines correspondant & un noyau séparable (e.g. pour des mesures sur une
grille 2D ou 3D avec un cott égal & une norme au carré), des techniques de convolution
rapide pouvaient étre employées pour réduire cette complexité a O(nHl/ Dy, A leur tour,
ces résultats ont ouvert la voie & un usage plus répandu du TO en science des données et
en apprentissage automatique. En particulier, Frogner et al. [2015] emploie le transport
entropique avec des contraintes marginales relachées comme fonction de perte pour la
classification multi-label, s’appuyant sur une contribution de Kusner et al. [2015] qui avait
proposé de comparer des documents en les représentant comme des histogrammes de mots, en
utilisant le TO entre plongements de mots dans R?. Remarquablement, cet intérét renouvelé
de la communauté du machine learning pour le transport optimal a mené & des applications
qui ne s’appuient pas nécessairement sur une formulation régularisée, notamment en
adaptation de domaine [Courty et al., 2014, 2017], en apprentissage génératif [Arjovsky
et al., 2017| et pour I'apprentissage robuste au sens des distributions [Esfahani and Kuhn,
2018].

Challenges modernes du TO en apprentissage automatique. Malgré ces progreés,
les applications du TO en sciences des données restent limitées par certaines difficultés.
En particulier, les propriétés statistiques peu favorables du TO liées a sa complexité
d’échantillonage élevée ont derniérement fait 'objet de nombreux travaux. Weed and Bach
[2019] ont prouvé une borne précise montrant qu’estimer la distance de Wasserstein requiert
un nombre d’échantillons exponentiel en la dimension de I’ensemble sur lequel les mesures
sont supportées. La régularisation entropique s’est avérée permettre non seulement de dimin-
uer la complexité calculatoire du TO, mais aussi sa complexité d’échantillonage [Genevay
et al., 2019]. De maniére alternative, des raffinements par rapport a la borne de Weed
and Bach peuvent étre obtenus en supposant que les mesures différent sur un sous-espace
de faible dimension |Niles-Weed and Rigollet, 2019]. Dans le cadre non-régularisé, ces
résultats justifient une tendance récente consistant a utiliser le TO entre des projections en
basse dimension des mesures, pour définir des divergences entre distributions [Rabin et al.,
2011, Bonneel et al., 2015, Paty and Cuturi, 2019] qui bénéficient de cofits de calcul plus
faibles, et potentiellement d’une meilleure complexité d’échantillonage. Plus généralement,
exploiter les cas particuliers pour lesquels les applications de transport et les distances de
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TO sont en forme close constitue une approche prometteuse pour réduire les complexités
de calcul et d’échantillonage, d’autant plus que les méthodes permettant de résoudre le
TO entre mesures continues sont rares. Par exemple, Flamary et al. [2019] a prouvé que le
cas des applications de transport linéaire, comprenant (mais ne se limitant pas a ces cas)
les cas gaussien et elliptique, bénéficie de meilleures bornes de complexité statistique. Les
difficultés liées aux complexités computationnelles et statistiques du TO sont un des aspects
sur lesquels la communauté du transport optimal travaille actuellement, mais d’autres
directions de recherche concernant les applications du TO sont aussi en cours d’exploration.
Par exemple, il est apparu dans plusieurs travaux que les contraintes marginales du trans-
port optimal pouvaient étre trop restrictives pour certains usages [Schiebinger et al., 2019,
Frogner et al., 2015|, ce qui a donné lieu au développement du transport optimal déséquili-
bré [Chizat, 2017|, ou les contraintes sont remplacées par des pénalités. En outre, les flots
de gradient de Wasserstein se sont avéré constituer un outil clé pour 'analyse des modéles
sur-paramétrés [Chizat and Bach, 2018, Chizat et al., 2020], qui constituent un sujet de
recherche de pointe en apprentissage automatique.

Contributions de cette thése. Cette thése, qui a débuté en 2017, propose quelques
contributions dans le but d’aider le transport optimal a dépasser ses difficultés computa-
tionnelles et statistiques bien connues, et & gagner en applicabilité pour ’apprentissage
automatique.

(i) Dans un premier projet [Muzellec and Cuturi, 2018|, I’expression en forme close du
TO entre distributions elliptiques (qui définit la géométrie de Bures-Wasserstein) est
exploité pour proposer un nouvel outil de plongement de données complexes : plutdt
que de représenter les mots comme des vecteurs dans R? [Borg and Groenen, 2005,
Maaten and Hinton, 2008]|, nous proposons de les représenter a ’aide de mesures
de probabilité elliptiques. En particulier, cette représentation permet d’encoder de
maniére naturelle la notion d’incertitude, que nous prouvons étre bénéfique dans
le cadre d’applications en traitement du langage naturel. Afin de concevoir ces
algorithmes, nous avons développé des méthodes numériques d’optimisation qui tirent
profit de la structure riemannienne de la métrique de Bures pour les matrices PSD.

Depuis ce point de départ, nous avons approfondi I'usage de la géométrie de Bures-
Wasserstein en conjonction avec d’autres approches qui étaient alors explorées par la
communauté de 'apprentissage automatique, pour obtenir une meilleur complexité.

(ii) Nous étudions I'extrapolation de plans de transport a partir d’applications définies
entre les projections de mesures sur des sous-espaces de faible dimension [Muzellec
and Cuturi, 2019]. Nous montrons ’existence de plans extrapolés et en fournissons
une caractérisation théorique, & partir de laquelle nous exhibons deux instances parti-
culiéres qui généralisent le transport de Knothe-Rosenblatt [Knothe, 1957, Rosenblatt,
1952], et prouvons qu’elles admettent des formes closes pour les mesures gaussiennes,
liées aux propriétés de la métrique de Bures.

(iii) Nous proposons une derniére contribution portant sur le TO entre distributions
elliptiques dans [Janati and Muzellec et al., 2020], dans laquelle nous fournissons la
premiére forme close pour le transport optimal entropique entre mesures gaussiennes.
Remarquablement, ces expressions constituent & notre connaissance le premier exemple
de forme closes dans le cas déséquilibré pour le transport entropique, et pourront
désormais étre utilisées comme cas de test par les chercheurs qui congoivent et
étudient les algorithmes pour le TO entropique (et plus généralement les variantes
de Palgorithme de Sinkhorn). Elles fournissent en outre un exemple dans lequel
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I'arbitrage entre création et transport de masse en transport optimal déséquilibré
peut étre caractérisé de maniére exacte.

(iv) Finalement, la derniére contribution de cette thése porte sur une application du TO
entropique a I'imputation de données manquantes [Muzellec et al., 2020]. Ce travail
s’appuie sur le fait intuitif que deux batches aléatoires tirés du méme jeu de données
devraient avoir des distributions similaires. Partant, nous transformons ce critére en
une fonction de perte utilisant la divergence de Sinkhorn, et proposons des méthodes
d’imputation flexibles qui peuvent au choix servir & entrainer un modéle d’imputation
paramétrique, ou & effectuer une imputation sans faire d’hypothése paramétrique sur
la distribution sous-jacente des données.

Nous détaillons a présent le contenu des chapitres constituant cette thése. Pour chaque
chapitre, nous présentons I'état de ’art, et esquissons les contributions de cette thése.

Chapitre 1: Les Géométries du Transport Optimal

Ce chapitre introduit les concepts et résultats en transport optimal fondamentaux sur
lesquels cette thése s’appuie. De ce fait, il ne présente pas de contributions originales.
Comme nous mettons 'accent sur les applications & 'apprentissage automatique, nous
présentons ces résultats dans le cas de mesures supportées sur R? discrétes ou absolument
continues (a.c.). Trois “géométries” du transport optimal sont introduites : la géométrie
du TO de Monge-Kantorovich, la géométrie de Bures-Wasserstein pour les distributions
elliptiques, et enfin celle du TO avec régularisation entropique.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
TO non régularisé v v
Bures-Wasserstein v v v
TO entropique v v

Table 1: Récapitulatif des géométries du TO employées dans les chapitres de cette these.

Transport optimal de Monge-Kantorovich. Ce chapitre s’ouvre sur la présentation
du probléme de transport optimal, qui fut initialement formulé par Monge dans son mémoire
de 1781. Monge s’intéressait & la maniére de déplacer des masses de terre représentées par
des mesures p et v de maniére optimale, selon une fonction de cott ¢(z,y) = ||z — y||:

it [ el T@)duo) (M)
T Typ=v JRd
ol nous notons Ty = v le fait que T" “pousse” p sur v, i.e. que la mesure image de p par T
est v, ou encore que v(A) = u(T~1(A)) pour tout ensemble mesurable A.

Pour pallier la difficulté mathématique de ce probléme (en particulier, I'existence de
solutions n’est pas garantie), Kantorovich introduisit en 1942 le probléme relaché suivant :

wt [ i, (K)
yel(p, v)

Rd xRd
ot les applications de transport intervenant dans (M) sont remplacés par des couplages
v € P(RY x R?), c’est-a-dire des mesures de probabilité ayant u et v pour marginales. En
particulier, lorsque la fonction de cotit est une distance élevée & une puissance p > 1, i.e.
lorsque c¢(z,y) = dP(x,y), (K) définit les distances de Wasserstein.
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Apreés avoir introduit les problémes (M) et (K), nous rappelons un ensemble de résultats
fondés sur [Santambrogio, 2015] portant sur I'existence de solutions pour (M) et (K), et les
liens entre ces deux formulations. En particulier, le célébre théoréme de Brenier |Brenier,
1987], qui donne 'existence d’un transport de Monge pour un coiit quadratique et le
caractérise comme le gradient d’une fonction convexe, jouera un réle essentiel dans le cas
des mesures elliptiques, présentées en Section 2.

Pour conclure cette section, nous présentons les aspects computationels du transport
optimal. Ceux-ci, qui sont essentiels dans le cadre de I’apprentissage machine, sont discutés
selon que les mesures impliquées sont discrétes, ou absolument continues (a.c.). En
particulier, le cas discret se raméne au programme linéaire suivant :

OT(u,v) = min (P, C), (D-0T)
PERXX"L
Pl,,=a,PT1,=b

ota € Ay,,b e A, sont des vecteurs de poids de probabilité et C = [¢(z4, Yj)|i=1,... .n,j=1,...,m
est la matrices des cotits. Le probléme (D-OT) peut étre résolu a 'aide de 'algorithme
de network simplex en temps O(nm(n 4+ m)log(nm)) [voir Ahuja et al., 1993, Peyré et al.,
2019]. Cette complexité de calcul élevée peut étre améliorée dans certains cas particuliers
et dans certaines variantes du TO reposant sur le transport en 1D. En effet, les applications
de transport unidimensionnelles peuvent s’écrire sous la forme d’une fonction monotone qui
fait apparaitre les fonctions de répartitions F},, F, et leurs inverses, les fonctions quantiles:

T:xw— Fp[fl] o Fy(x).

En conséquence, le TO discret unidimensionnel peut étre résolu en temps O(nlogn) en
triant les points de support des distributions. S’appuyant sur ces propriétés, le TO
“tranché” [Rabin et al., 2011] est défini comme 'espérance du TO sur des projections 1D
aléatoires, et les couplages de Knothe-Rosenblatt [Knothe, 1957, Rosenblatt, 1952] sont
construits sous la forme d’un appariement 1D récursif entre distributions conditionnelles.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Discret-Discret v
Continu-Continu v v v
1D & Transport de KR v

Table 2: Récapitulatif des cadres de TO considérés dans les chapitres de cette thése.

Les deux sections suivantes sont dédiées & des cadres dans lesquels le TO bénéficie de
propriétés calculatoires avantageuses : le transport optimal entre distributions elliptiques,
et la régularisation entropique du TO.

Géomeétrie de Bures-Wasserstein. Le TO entre mesures gaussiennes pour un cofit
quadratique est un des rares cas dans lesquels les distances de Wasserstein et les transports
de Monge sont disponibles en forme close. Ce fait fut découvert de maniére indépendante
dans plusieurs travaux précurseurs [Dowson and Landau, 1982, Olkin and Pukelsheim, 1982,
Givens et al., 1984]. Cette exception est essentiellement due au fait que le théoréme de
Brenier donne l'existence de transports de Monge linéaires. De plus, celui-ci sert d’outil
fondamental pour prouver que ’espace de Wasserstein des mesures gaussiennes définit une
variété riemannienne |Takatsu, 2011].

En fait, la plupart de ces propriétés peuvent étre étendues a la classe plus générale
des distributions elliptiques. Les distributions elliptiques peuvent étre vues comme une
généralisation des distributions gaussiennes, définies soit comme ayant des fonctions charac-
téristiques de la forme e’ g(e!” €t) (g = exp(—-/2) correspondant aux mesures gaussiennes)



30 CONTRIBUTIONS DE CETTE THESE

comme dans |Cambanis et al., 1981], ou bien a ’aide d’une définition moins compacte
reposant sur des fonctions de densité avec une symétrie elliptique comme dans [Gelbrich,
1990]. Dans son article précurseur, Gelbrich [1990] prouve que les distances de Wasserstein
entre distributions pia A, B de la méme famille elliptique a la méme expression que pour
les mesures gaussiennes (avec des moyennes a et b et des matrices de covariance A et B),

W22(Ma,A7Mb,B) = ”a_bH2 +%2(A7B)7 (5)

ot B2(A,B) f A +TrB — 2Tr (Al/zBAl/Q)l/2 est la métrique de Bures entre matrices

PSD |[Bures, 1969, Bhatia et al., 2018|, et de méme pour les transports de Monge :
Tipa,A = pp,B avec

1 1 1 1
T:z— A2 <A2BA2) A"2(z—a)+b. (6)

N|—

La métrique de Bures est liée & un probléme d’optimisation de “corrélation maximale” [Olkin
and Pukelsheim, 1982| qui permet de prouver la convexité jointe de la métrique de Bures,
ainsi qu’une borne inférieure sur la distance de Wasserstein d’ordre 2 entre toute paire de
distributions ayant des moments d’ordre 2 finis [Dowson and Landau, 1982|. La structure
riemannienne de la métrique de Bures sur le cone des matrices PSD [Bhatia et al., 2018,
Malago et al., 2018] permet d’exprimer les géodésiques de Wasserstein pour les distributions
elliptiques, ainsi que de caractériser les barycentres de Wasserstein a ’aide d’une équation
de point fixe sur des matrices PSD [Agueh and Carlier, 2011, Bhatia et al., 2018], qui peut
a son tour étre utilisée pour obtenir un algorithme convergeant vers ce barycentre [Alvarez-
Esteban et al., 2016].

Régularisation entropique du transport optimal. Dans le cas général, les distances
et couplages du TO ne sont pas disponibles en forme close. Dans le cadre prédominant du
transport discret, le coit de résolution de (D-OT), associé au fait que OT (i, ) n’est pas
différentiable partout peut se trouver étre rédhibitoire pour nombre d’applications en ML.
Depuis [Cuturi, 2013], 'approche prépondérante pour contourner ces problémes consiste a
ajouter un terme de régularisation entropique au probléme de Kantorovich :

def .
L)t [ sty +eKLO o). (Ent-OT)
yell(p,v)
Rd xR
Dans le cas discret, OT. définit une divergence différentiable qui peut étre calculée
de maniére efficace a 1'aide de algorithme de Sinkhorn [Sinkhorn, 1964|, mais qui ne
correspond cependant plus a une divergence positive. La positivité peut-étre obtenue
a nouveau en soustrayant deux termes de biais & OT.. Ceci définit la divergence de
Sinkhorn [Genevay et al., 2018]

52(1,0) 2 OTe(,v) — L(OTe(p,v) + OTa (). (7)

Lorsque la fonction de cott ¢ induit un noyau exp(—c) positif défini, S. est une divergence
positive définie, convexe (mais pas jointement) et différentiable qui métrise la convergence
faible tout en conservant les propriétés computationelles avantageuses de OT. [Feydy et al.,
2019].

Des régularisations alternatives du transport optimal sont considérées par Blondel et al.
[2018], permettant d’obtenir des plans de transports parcimonieux mais différentiables — au
prix de ne plus pouvoir appliquer 1'algorithme de Sinkhorn pour les calculer. Chizat [2017]
étend la régularisation du TO au cas déséquilibré, dans lequel les contraintes marginales
sont remplacées par des pénalisations.



31

Dans le Chapitre 4, nous étudions le transport entropique et le transport déséquilibré
entropique dans le cas de mesures gaussiennes, pour lesquelles nous prouvons 'existence de
formes closes.

Chapitre 2 : Plongements dans I’Espace de Wasserstein des
Distributions Elliptiques

Ce chapitre est adapté de [Muzellec and Cuturi, 2018].

L’apprentissage de représentations mathématiques qui peuvent étre facilement ma-
nipulées pour des objets complexes est une téche difficile qui posséde de nombreuses
applications en apprentissage automatique. Alors que les méthodes classiques utilisent des
représentations sous formes de vecteurs, i.e. de points dans R¥, nous proposons dans ce
chapitre d’étendre ces points & des représentations sous forme des mesures de probabilité
elliptiques, dans la géométrie de Bures-Wasserstein.

Travaux connexes. Il existe une vaste littérature concernant ’obtention de représenta-
tions en faible dimension y1,%s, ..., yn € R¥ d’objets complexes et /ou de haute dimension
T1,T9, ..., Ty situés dans un espace X. Lorsque les objets a représenter sont eux-mémes des
vecteurs dans R, la méthode dominante, couramment utilisée comme pré-traitement des
données, est 'analyse en composantes principales (ACP) [Pearson, 1901]. Plus générale-
ment, quand ces objets sont équipés d’une distance dx(x;,x;), un critére naturel pour la

recherche de plongements est que les distances ||y; — y;|| soient aussi proches que possible
def

de dij = dx(x;,x;). Les critéres de proximité classiques incluent la distorsion®, ou le stress
(Zi# (dij — llyi — y;11)?/ dfj) i comme en positionnement multidimensionnel métrique
(metric multidimensional scaling, MDS) |De Leeuw, 1977, Borg and Groenen, 2005|. Des
approches ultérieures ont raffiné ces méthodes, en s’éloignant du but initial consistant
& trouver un plongement isométrique pour se concentrer sur des notions de géométrie
intrinséques aux jeux de données |Tenenbaum et al., 2000, Roweis and Saul, 2000, Hinton
and Roweis, 2003, Maaten and Hinton, 2008]. Enfin, certaines taches requiérent de calculer
des plongements sans le guidage d’une distance ou d’une mesure de similarité. Cela est
notablement le cas en traitement du langage naturel (TAL), ou les plongements de mots
sont déterminés en fonction de la co-occurrence des mots similaires [Mikolov et al., 2013b,
Pennington et al., 2014, Bojanowski et al., 2017|, a défaut d’une distance naturelle entre
mots.

Plus récemment, deux tendances distinctes ont émergé. La premiére (i) consiste a
apprendre des représentations dans un espace latent en minimisant ’erreur de reconstruc-
tion [Hinton and Salakhutdinov, 2006, Kingma and Welling, 2014, Tolstikhin et al., 2018].
La seconde (ii) représente les objets dans des géométries plus “exotiques”, e.g. MDS général-
isé sur la sphére [Maron et al., 2010], ou dans des espaces hyperboliques |Nickel and Kiela,
2017].

Dans le cadre de cette seconde tendance (ii), des plongements probabilistes ont été
proposés par Vilnis and McCallum [2015]. Cette approche consiste & représenter les
objets sous la formes de distributions de probabilité paramétriques dans R?, étendant la
représentation classique dans R¥ puisque les points peuvent étre vus comme des distributions
de Dirac. Vilnis and McCallum proposent de représenter les mots sous forme de mesures
gaussiennes dans la géométrie de la divergence de Kullback-Leibler (KL), ou du noyau
de vraisemblance (¢3) [Jebara et al., 2004]. Cependant, ces géométries ne peuvent pas

4Un plongement a une distorsion « s'il existe r > 0 tel que Vi, j,r < m < ar.
i Y5
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naturellement étendre les plongements ponctuels, puisqu’elles saturent lorsque les mesures
tendent vers des Diracs (vers l'infini, ou vers une constante). Qui plus est, les problémes
de stabilité numérique liés & I’emploi de la divergence KL entre mesures gaussiennes ont
conduit les auteurs de [Vilnis and McCallum, 2015] & se restreindre & des gaussiennes avec
des matrices de covariance diagonales.

Parallélement, Singh et al. [2020] ont proposé de représenter les mots sous la forme
d’histogrammes de mots de contexte, en s’appuyant sur des plongements pré-calculés
tels que glove [Pennington et al., 2014]. Des travaux ultérieurs aux notres ont proposé
des plongements dans P(R?) sous la forme de distributions empiriques avec un support
de cardinal fixe en utilisant le TO avec régularisation entropique [Frogner et al., 2019].
Enfin, nous mentionnons que notre emploi des métriques du TO pour 'apprentissage de
plongements a été inspiré par les résultats théoriques de Andoni et al. [2015], qui ont montré
que P(R3) équipé de la distance de Wasserstein est universel sur les flocons.’

Contributions. Les principales contributions de ce chapitre concernent les avantages
liés a 'apprentissage de représentations sous forme de distributions elliptiques dans la
géométrie de Bures-Wasserstein, ainsi que la présentation d’outils pratiques et de méthodes
pour 'optimisation dans cette géométrie.

(i) Représentation d’objets sous forme de distributions elliptiques dans la
géométrie de Bures-Wassertein : Nous proposons de représenter chaque objet
comme une distribution elliptique pa A paramétrée par un vecteur de moyenne a et
une matrice de covariance PSD A, et d’équiper ces représentations de la distance de
Bures-Wasserstein :

W2(,“4a,Aa Mb,B) = ||a - b||2 + %2(Aa B)

Cette représentation présente plusieurs avantages comparée aux mesures gaussiennes
dans la géométrie KL ou 4 :

a. Premiérement, elle incorpore naturellement les plongements sous forme de points
en tant que mesures de Dirac, ou encore comme distributions elliptiques dégénérées
avec une matrice de covariance nulle. En effet, la distance de Bures-Wasserstein en-
tre deux distributions elliptiques dégénérées — deux Diracs — correspond simplement
a la distance euclidienne entre leurs moyennes : Wa(pta 0, bo) = ||a — b||?;

b. Deuxiémement, les méthodes que nous proposons sont valables pour n’importe quel
choix de distributions elliptiques, et pas seulement pour les mesures gaussiennes.
Cela permet par exemple de représenter les objets comme des mesures uniformes
sur des ellipsoides, qui ont un support compact et sont donc plus aménes & la
visualisation;

c. Enfin, grace aux outils numériques que nous proposons, la distance de Bures est
numériquement stable, ce qui permet d’utiliser des matrices de covariance pleines
(contrairement aux travaux antérieurs qui se restreignaient a des matrices diago-
nales). Ceci permet de tirer pleinement avantage de la dimension d de I’espace
ambiant : avec des matrices de covariance pleines, les plongements elliptiques peu-
vent utiliser jusqu’a d+d(d+1)/2 paramétres scalaires, tandis que des plongements
elliptiques diagonaux sont limités a 2d paramétres.

®(est-a-dire que les espaces finis munis de d%, 8 € (0,1) peuvent étre plongés dans W2 (R?) avec une
distorsion arbitrairement petite.
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(ii) Outils et méthodes pour 'optimisation de la distance de Bures : Nous
proposons des outils numériques pour optimiser des modéles fondés sur la distance
de Bures a 'aide de méthodes de gradients. Plus précisément, nous résolvons deux
difficultés: (a.) calculer et différentier la distance de Bures et (b.) garantir que les
matrices restent PSD tout au long de la descente de gradient.

a. Nous employons les itérations de Newton-Schulz (NS) [Higham, 2008| qui (avec
une initialisation adéquate) fournissent simultanément le transport de Monge T AB
et son inverse TBA pour minimiser le nombre de passes de NS nécessaires au
calcul et & la différentiation de la distance de Bures. Notre méthode repose sur les
identités suivantes :

B2(A,B) = TrA + TrB — 2Tr(TABA) et VAB2%(A,B) =1, — TAB,

En gardant les applications TAB en mémoire, celles-ci permettent de calculer

les gradients sans avoir a recalculer de racines de matrices ou d’inverses. En

comparaison, la différentiation automatique a une complexité qui revient & calculer

les distances a nouveau. De plus, un fait de grande importance pratique est que
toutes les manipulations que nous proposons se parallélisent aisément sur des

GPUs.

b. Nous évitons toute projection sur le cone PSD en employant une paramétrisation
A = LL7 et en optimisant le facteur L, qui est libre de prendre toute valeur
dans R%?. De maniére remarquable, nous montrons que la descente de gradient
euclidienne sur le facteur L,

L + L —nVLi%*(LL",B),
revient & faire un pas de taille 7 le long de la géodésique allant de A = LLT 4 B :
Ca-s(n) = [(1 = n)La + nTAPJA[(1L — n)Iq + nTAP].

En d’autres termes, une paramétrisation A = LLT permet a la fois d’éviter toute
projection et d’émuler ’optimisation riemannienne dans la géométrie de Bures.

(iii) Applications a la représentation de I’hyperonymie et de la similarité lexi-
cale a ’aide de plongements de mots : Dans des expériences de trés grande taille,
nous calculons des plongements de mots & partir des corpus ukWac et WaCkypedia |Ba-
roni et al., 2009], en minimisant I’équivalent Bures-Wasserstein de la fonction de perte
charniére [Vilnis and McCallum, 2015]:

Z M_[Nw:VC]"’% Z [/‘wzyc’] s

(w,c)ER c'eN(w) +

ol R représente I'ensemble des paires (mot, contexte) co-occurrentes dans une fenétre
glissante d’une taille donnée, et N(w) un tirage aléatoire de contextes négatifs pour
le mot w, et

def
[,uaA : Mb,B] = (a, b> + F(A,B),
def

oi F(A,B) = Tr(AY/2BA/2)1/2 est 1a fidélité de Bures (c.f. le Chapitre 1). Les 250K
plongements résultants, entrainés a partir d’un jeu de données de trois milliards de mots
(tokens), sont compétitifs par rapport a 1'état de I’art contemporain de nos travaux
sur des tache d’évaluation de similarité et d’implication, et notamment par rapport
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aux plongements skipgram [Mikolov et al., 2013b] et gaussiens diagonaux [Vilnis and
McCallum, 2015].

Dans une deuxiéme expérience, nous entrainons des plongements sur le jeu de données
WordNet [Miller and Charles, 1991] afin d’encoder les relations d’hyperonymie® (con-
stituant un graphe orienté acyclique sur les noms), et battons de maniére constante
dans des taches de prédiction de lien les plongements de Poincaré |Nickel and Kiela,
2017], qui constituaient alors 'état de I’art.

Chapitre 3 : Construire des Plans de Transport Optimaux a
partir de Projections

Ce chapitre est adapté de [Muzellec and Cuturi, 2019].

Le TO souffre du fléau de la dimension. Pour cette raison, des divergences reposant
sur le transport entre des projections en faible dimension des mesures ont récemment été
proposées. Dans ce chapitre, nous montrons comment des transports globaux peuvent étre
extrapolés a partir de transports de Monge entre des mesures projetées.

Travaux connexes. Dans R?, la distance de Wasserstein entre deux mesures empiriques
sur n échantillons converge a la vitesse O(n~/?) vers la distance entre les distributions
d’origine [Dudley, 1969, Fournier and Guillin, 2015]. Au mieux, cette vitesse peut étre
améliorée lorsque les distributions sont en fait supportées sur une surface de plus faible
dimension [Weed and Bach, 2019] — dans ce cas, le paramétre de dimension dans le taux de
convergence peut étre remplacé par cette dimension intrinséque — ou peut étre transformé
en O(n~%/%) sous des hypothéses additionnelles [Chizat et al., 2020]. Cette complexité
d’¢chantillonage peu favorable — & laquelle s’ajoute une complexité de calcul en O(n3logn)
— a motivé des approches consistant & projeter les mesures sur un sous-espace de faible
dimension avant de calculer le TO entre les mesures projetées. Par exemple, les distances
de Wasserstein tranchées (sliced Wasserstein, SW) [Rabin et al., 2011, Bonneel et al., 2015]
consistent a prendre la moyenne des distances entre des projections 1D aléatoires (voir
section 1.2):

SWEG1.0) < [ W) (o)),

ol pg désigne la projection sur la direction # € R?. Dans le cas discret, chaque distance
projetée (et chaque couplage) peut étre obtenue via un algorithme de tri en temps O(n logn).
Ces temps de calcul avantageux, ajoutés au fait que la distance SW définit une métrique
entre mesures (bien que différente de la métrique de Wasserstein), ont mené a un gain
d’intérét récent pour SW dans des applications aux GAN et VAE [Deshpande et al., 2018, Wu
et al., 2019]. Paty and Cuturi [2019] étendent cette approche a des projections en dimension
1 < k < d sur des sous-espaces sélectionnés de maniére adversariale. L’extrapolation
de transports définis en faible dimension est reliée au transport de Knothe-Rosenblatt
(KR) [Rosenblatt, 1952, Knothe, 1957|, qui définit un couplage entre deux mesures en
étendant des transports unidimensionnels de maniére récursive. Carlier et al. [2009]
montrent que le transport KR peut étre obtenu comme le cas limite du transport optimal
avec des cotits quadratiques repondérés, un résultat que nous étendons a l’extrapolation de
transports en dimension k.

5A est un hyperonyme de B si tout B est un A, e.g. “mammifére” est un hyperonyme de “chien”.
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Contributions. Les méthodes reposant sur des projections sur des sous-espaces citées
ci-dessus permettent de définir des divergences s’appuyant sur le transport optimal, mais
ne fournissent pas de plan ou de fonction de transport entre les mesures d’origine. Dans ce
chapitre, nous étudions comment obtenir des fonctions et plans de transport qui coincident
avec une fonction S donnée, définie sur un sous-espace linéaire E (avec un opérateur de
projection pg). Formellement, nous nous intéressons aux plans de transport =y (respective-
ment, aux fonctions 7") dont les projections (pg,pg)sy sur E coincident avec le plan de
transport optimal (Ig, S)sue (respectivement, pr o T = S o pg).

(i)

(if)

(iii)

Plans et fonctions de transport sous-espace optimaux : FEtant données deux
mesures fig et Vg projetées sur un sous-espace linéaire F de R?, nous définissons des
plans de transport globaux entre les mesures d’origine p et v qui coincident avec S sur

E : lg(p,v) & {vel(p,v) :ve = (Iag, S)spr}. Nous prouvons I'existence de tels
plans sous-espace optimauz, et les caractérisons par leurs désintégrations (i.e. leurs
conditionnelles) sur E x E : si I'on note j, la désintégration de p sur E+ x {zg},
tout plan v € IIg(u, v) est entiérement déterminé par les couplages conditionnels sur
le graphe de S entre py, et vg(,,) pour tout g € E, i.e. par Y(z, () TE € E.

Plans Monge-Indépendants et fonctions de Monge-Knothe : Nous étudions
plus particuliérement deux types de plans F-optimaux. Les plans Monge-Indépendants
(MI) sont obtenus en étendant vg en utilisant des couplages indépendants entre gz,
et Vs(ap),
def
™ = (Hep @ Vs(y)) @ Tap, S)spe,

et les fonctions de Monge-Knothe (MK) peuvent étre vues comme une généralisation
du transport KR qui extrapole vg en utilisant des couplages optimaux :

Tuk(zp,250) 2 (S(zp), T(zp;ap)) € E® B,

ou T(xE, ) : B+ — E* désigne le transport de Monge de Pap & V§(zp)- De plus, nous
prouvons les propriétés suivantes des transports MI et MK :

(a) Les plans sous-espaces optimaux discrets convergent vers le transport MI lorsque
le nombre d’échantillons tend vers 'infini;

(b) Le transport MK est le transport sous-espace optimal avec le plus faible cotit de
transport;

(c) De maniére analogue au transport de Knothe-Rosenblatt [Carlier et al., 2009, le
transport MK peut étre obtenu comme la limite de fonctions de transport avec
des cotits quadratiques pondérés c(z,y) = Zle(xi —yi)?+e Z;l;]f(a;]qu —Yjtk)?
lorsque ¢ tend vers 0;

Formes closes pour les mesures gaussiennes : De maniére similaire a la distance
de Wasserstein d’ordre 2 et aux fonctions de Monge, nous montrons que les transports
MI et MK admettent des expressions en forme close dans le cas des mesures gaussiennes.
Plus précisément, le transport MI s’écrit comme un couplage gaussien dégénéré, et
le transport MK comme une application triangulaire par blocs. Ce faisant, nous
prouvons une forme close pour le transport de Knothe-Rosenblatt entre mesures
gaussiennes & partir des facteurs de Cholesky des matrices de covariance.

Expériences sur des données synthétiques, des plongements de mots ellip-
tiques, et pour ’adaptation de domaine : Nous montrons & partir de données
synthétiques que les transports MI et MK sont plus robustes que le transport classique
dans des situations ot le signal des distributions est contenu dans un espace de petite
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dimension. Nous montrons comment le transport MK peut étre utilisé pour déformer
la géométrie des plongements de mots elliptiques dans le cas de mots polysémiques.
Enfin, nous proposons un algorithme pour sélectionner un sous-espace de médiation F
quand celui-ci n’est pas prescrit par le probléme, et I'illustrons dans une application
d’adaptation de domaine avec des mélanges de gaussiennes.

Chapitre 4 : Transport Optimal (Déséquilibré) entre
Mesures Gaussiennes

Ce chapitre est adapté de [Janati and Muzellec et al., 2020].

La régularisation entropique, en plus d’étre une méthode efficace pour rendre le trans-
port optimal plus facilement calculable dans un cadre discret, s’est aussi avérée étre une
maniére d’améliorer la complexité d’échantillonage défavorable du TO [Genevay et al.,
2019]. Cependant, jusqu’a récemment aucune forme close n’était connue pour le TO
entropique entre distributions continues, que ce soit dans le cas équilibré (avec contraintes
marginales) ou déséquilibré (avec contraintes relachées). Cette absence de formules connues
pour une régularisation donnée pose un probléme pratique notable lorsqu’il s’agit d’évaluer
la performance d’algorithmes stochastiques qui tentent d’approximer le TO régularisé.
L’objectif de ce chapitre est de combler ce manque en fournissant des expressions en forme
close pour le transport entropique équilibré et déséquilibré pour les mesures gaussiennes,
qui pourront ensuite étre utilisées a des fins de test, ou comme régularisation de la distance
de Bures-Wasserstein.

Travaux connexes. Le fait que la distance de Wasserstein et le transport de Monge
admettent une forme close dans le cas des mesures gaussiennes est bien connu [Dowson and
Landau, 1982, Olkin and Pukelsheim, 1982, Givens et al., 1984, Bhatia et al., 2018], et a été
étendu au cas des distributions elliptiques d’une méme famille [Gelbrich, 1990]. Cependant,
malgré un usage répandu en pratique, aucun résultat similaire n’était connu dans le cas du
TO avec régularisation entropique [Cuturi et al., 2007, Peyré et al., 2019], jusqu’a ce que
Bojilov and Galichon [2016] prouvent une forme close pour un “équilibre dans un probléme
d’appariement & 2 cotés”, équivalent au TO entropique. Deuxiémement, une suite de
travaux en théorie du controle optimal [Chen et al., 2016, 2018, Chen et al., 2016] a étudié
des systémes stochastiques dont le transport optimal entropique entre gaussiennes constitue
un cas particulier, et a prouvé une forme close pour les potentiels duaux optimaux. Peu
aprés la publication de nos travaux [Janati and Muzellec et al., 2020], plusieurs articles avec
des contributions partiellement recouvrantes ont été rendus publiques : d’abord Gerolin
et al. [2020] donnérent une forme close dans le cas univarié, puis Mallasto et al. [2020]
et del Barrio and Loubes [2020] généralisérent cette formule au cas gaussien multivarié.
Les travaux les plus proches de ce chapitre sont sans doute ceux de Mallasto et al. [2020]
et del Barrio and Loubes [2020] qui résolvent le cas du transport entropique équilibré
entre gaussiennes, et étudient le probléme de barycentre correspondant. Cependant, a
notre connaissance les formes closes que nous proposons pour le transport déséquilibré sont
entiérement nouvelles. Nous soulignons ci-dessous les autres différences entre ce chapitre et
les travaux précédemment cités.

Contributions. Dans ce chapitre, nous présentons les premiéres formes closes non triv-
iales pour le TO avec régularisation entropique entre mesures continues :

(i) Une forme close pour (Ent-OT) entre mesures gaussiennes : Nous montrons
que les plans de transport entropiques entre mesures gaussiennes sont gaussiens eux-
mémes. Ce résultat est obtenu en prouvant la convergence des itérations de Sinkhorn,
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qui ménent a une équation de point fixe sur des matrices symétriques. Nous résolvons
cette équation et obtenons une forme close pour le TO entropique. Nous montrons
que cette expression reste bien définie, convexe et différentiable méme dans le cas de
matrices de covariances singuliéres, contrairement a la distance de Bures (qui perd sa
différentiabilité). Enfin, nous calculons ses gradients et ses minimiseurs.

(ii) Barycentres de Sinkhorn débiaisés entre mesures gaussiennes: Utilisant
la définition des barycentres de Sinkhorn débiaisés [Luise et al., 2019, Janati et al.,
2020a], nous montrons que ce barycentre entre gaussiennes et restreint aux mesures
sous-gaussiennes est gaussien, et que sa matrice de covariance est solution d’une
équation de point fixe qui généralise celle de [Agueh and Carlier, 2011].

(iii) Une forme close pour le TO régularisé déséquilibré entre mesures gaussi-
ennes : Nous prouvons une expression en forme close pour le plan de transport
déséquilibré entre deux gaussiennes non normalisées, avec une régularisation en-
tropique et des pénalités KL sur le marginales. Nous prouvons que ce plan de
transport est une mesure gaussienne non normalisée. Nous fournissons des formes
closes pour le TO déséquilibré en fonction des masses des mesures, et de la masse
totale du plan optimal (dont nous donnons 'expression). Cette formule met en lumiére
le lien entre la destruction/création v.s. le transport de masse et la distance entre les
moyennes dans le TO déséquilibré.

Chapitre 5 : Imputation de Données Manquantes avec le
Transport Optimal

Ce chapitre est adapté de [Muzellec et al., 2020].

L’existence de données manquantes est un probléme fondamental en science des données.
Méme avec une dimension et un taux de données manquantes modérés, ignorer les points
avec des valeurs manquantes ne constitue pas une stratégie viable [Zhu et al., 2019].
De ce fait, il est souvent nécessaire de définir une méthode pour remplacer les données
manquantes par des valeurs raisonnables avant de pouvoir effectuer des taches ultérieures
(telles qu’entrainer un modele de classification ou de régression). Dans ce chapitre, nous
décrivons une méthode d’imputation de données manquantes reposant sur le TO. Cette
méthode peut au choix s’appuyer sur une hypothése paramétrique sur la distribution
sous-jacente des données, ou non.

Travaux connexes. Le probléme des données manquantes fait I’objet d’une vaste lit-
térature dans la communauté des statistiques. La nomenclature prédominante est celle
proposée par Rubin [1976] : elle distingue trois cadres, a savoir celui des données manquantes
complétement aléatoires (missing completely at random, MCAR), les données manquantes
aléatoires (missing at random, MAR), et les données manquantes non aléatoires (missing
not at random, MNAR). La plus grande partie de la littérature existante est dédiée aux
méthodes pour les données MCAR et MAR, qui peuvent étre ignorées statistiquement,
au sens ol il est possible de les imputer sans avoir & modéliser le mécanisme de données
manquantes lui-méme [voir Little and Rubin, 2002, van Buuren, 2018]. Les méthodes
d’imputation ont généralement pour but de préserver la distribution des données, afin de
limiter le biais qu’elles introduisent dans des taches ultérieures. De maniére schématique, les
méthodes d’imputation peuvent étre divisées en deux catégories, en fonction des hypothéses
sur lesquelles elles reposent:
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1. Les méthodes reposant sur des modéles conditionnels : e.g. [van Buuren and
Groothuis-Oudshoorn, 2011, MICE| qui effectuent une régression de maniére itérative,
ou les foréts aléatoires itératives [Stekhoven and Buhlmann, 2011]. Ces méthodes
modélisent les distributions conditionnelles en imputant les variables une & une, de
maniére cyclique.

2. Les méthodes reposant sur des modéles joints : e.g. les méthodes qui font
I'hypothése d'un modeéle de matrice de faible rang [Hastie et al., 2015, Josse et al., 2016],
les modeles de lois jointes gaussiennes estimées via l'algorithme EM [Dempster et al.,
1977, ou les modéles joints bayésiens [Murray and Reiter, 2016]. Plus récemment,
ont fait leur apparition des modéles d’apprentissage profond reposant sur les auto-
encodeurs variationnels |[Kingma and Welling, 2014, VAE]| tels que [Mattei and
Frellsen, 2019, MIWAE], [Ivanov et al., 2019, VAEAC], ou sur les réseaux génératifs
adversariaux |Goodfellow et al., 2014, GAN] tel que [Yoon et al., 2018, GAIN].

Contributions. Dans ce chapitre, nous utilisons le TO pour proposer des méthodes
d’imputation de valeurs manquantes flexibles, qui fonctionnent avec ou sans hypothése
paramétrique sur la distribution des données.

(i) Un critére d’imputation fondé sur le TO : Nos méthodes reposent sur I’observation
d’un fait intuitif : deux échantillons aléatoires tirés d’un méme jeu de données de-
vraient avoir des distributions similaires. Utilisant les divergences de Sinkhorn entre
les distributions des deux échantillons, nous transformons ce critére en une fonction
de perte pour I'imputation de données manquantes :

Lon(X) E 37 S (i (X i) i (X)), (8)

K:0<k1<...<km<n
L:0<6,<...<bm<n

ou S désigne la divergence de Sinkhorn |Genevay et al., 2018|, Xg ’échantillon
constitué des points d’indices K = {k1, k..., km}, et olt i (Xg) = =37, dx,, est
la mesure empirique supportée sur cet échantillon. Minimiser cette fonction de perte
par rapport aux valeurs imputées permet d’imputer en préservant la distribution des

données.

(ii) Des algorithmes d’imputation reposant sur Sinkhorn : Nous concevons deux
algorithmes d’imputation pour minimiser (4), qui peuvent (b.) ou non (a.) reposer
sur un modéle paramétrique de la distribution des données :

a. Imputation de Sinkhorn directe : le premier algorithme ne fait aucune hy-
pothése paramétrique sur la distribution des données. Il minimise (4) directement
par rapport aux valeurs imputées a ’aide d’une descente de gradient. En d’autres
termes, cette méthode optimise autant de paramétres qu’il y a de valeurs man-
quantes, sans contrainte additionnelle. De ce fait, elle peut étre appliquée a tout
jeu de données avec des variables quantitatives, sans plus d’hypothéses;

b. Imputation de Sinkhorn cyclique : le second algorithme adapte le schéma
d’imputation cyclique & notre fonction de perte de Sinkhorn (4). Cette méthode
peut étre utilisée pour entrainer n’importe quel modéle paramétrique différentiable,
tels que des modéles linéaires ou des perceptrons multi-couches. L’avantage clé
de cette seconde méthode est qu’elle permet d’effectuer des imputations hors
échantillon une fois que le modéle a été entrainé, sans avoir & refaire tourner
I’algorithme d’apprentissage.
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(iii) Validation expérimentale de grande échelle : Nous montrons que nos méthodes
sont compétitives par rapport aux méthodes de base, ainsi que par rapport aux
méthodes constituant 1'état de l'art (modéles d’apprentissage profond compris) sur 23
jeux de données UCI. Nous évaluons nos méthodes dans des cadres MCAR, MAR et
MNAR, avec différents mécanismes de données manquantes, et une grande plage de
taux de données manquantes (10%, 30% et 50%).
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Notation

Ambiant Spaces.

M(R?) : the set of positive measures over RY

P(R?) : the set of probability measures over R?

Pp(R?) : the set of probability measures over R? with finite p first moments [p, ||z([Pdu(z)
C(X) : the set of continuous real-valued functions on X

Cp(X) : the set of continuous, bounded real-valued functions on X

Measures.
Ty : the pushforward measure of pu by T' s.t. for all A C R, Tiu(A) = p(T1(A))
fin = ot pin = p VS € Co(RY), [ru fdpn — [ga fdu (Weak convergence)

Ay @ The Lebesgue measure on V

Norms and Matrices.

S : the set of symmetric square matrices in R4*?

Sﬂir . the set of symmetric positive semi-definite matrices in R%*¢
Sjl_ o the set of symmetric positive definite matrices in R4

A>B:A>B (resp. A>B)iff A—Be 5S¢ (resp. S?,) (Loewner partial order)

def

(A, B) : (A, B) = TrATB (Frobenius inner product)

def

|A| : |A]| = (TrATA)Y? (Frobenius norm)

Az
|z

|Allop : ||Allop = sup T (operator norm, also equal to the leading singular value of A)
x7#0

|A| : the determinant of A (also det A)
lz—ylc : llz—yl& o (z — y)TC(x — y) (Mahalanobis norm induced by C)
C' : the Moore-Penrose pseudo-inverse of C [Penrose, 1955]

Others.

[1,7] : [L,n] € 1,0 NN

S, : the set of permutations over [1, n]



Chapter 1

Optimal Transport Geometries

In this chapter, we introduce the key results and concepts from the optimal transport
(OT) theory on which this thesis will rely. This presentation puts the accent on the
computational aspects of OT, with the end goal of applying OT tools to machine learning
(ML) problems.

We start by presenting the original Monge formulation of OT and its Kantorovich
relaxation in Section 1, with an emphasis on the case where the ground cost is a distance
to a power, which defines the Wasserstein distances. The links between both formulations
and their practical aspects are discussed, depending on whether discrete or continuous
distributions are considered. The numerical challenges associated with OT will lead us to
investigate particular cases or variants based on 1D OT that can be solved in closed form,
or easily approximated.

In Section 2, we delve into the case of elliptical distributions, for which optimal transport
has links with the Bures geometry on PSD matrices. Elliptical distributions can be defined
as generalizations of Gaussian distributions, and correspond to one of the very few cases
were transport maps and Wasserstein distances are available in closed form. This geometry
will play a role in Chapters 2 to 4.

Finally, we present entropy-regularized OT (Ent-OT) in Section 3. Initially introduced
as an approximation of OT that can be easily computed using Sinkhorn’s algorithm, Ent-OT
is now widely used in the ML community as it is smooth and differentiable. The recent
introduction of Sinkhorn divergences, which inherit from the numerical advantages of
Ent-OT and its differentiability while defining divergences for probability distributions in
a rigourous sense, has reinforced the use of entropic regularization for data science. We
conclude this section by mentioning alternative regularizations of OT, and the unbalanced
OT (UOT) problem between measures with different total masses. Ent-OT is considered in
Chapters 4 and 5, in a theoretical and applied perspective respectively.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Unregularized OT v v
Bures-Wasserstein v v v
Entropy-regularized OT v v

Table 1.1: Summary of OT geometries used in the main chapters of this thesis.
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1 Monge-Kantorovich Optimal Transport

Comparing and mapping distributions is an recurring task in machine learning, in both
supervised and unsupervised settings. As will be shown in this chapter, the optimal
transport theory provides robust criteria for quantifying differences between measures, and
defining mappings between them. In this thesis, measures will be assumed to be supported
on R?. While the full scope of optimal transport allows for much more generality, this
thesis will essential consider two types of measures: (i) discrete measures and (ii) absolutely
continuous (a.c.) measures, i.e. measures that admit a density w.r.t. the Lebesgue measure.

1.1 Monge and Kantorovich formulations

Monge formulation. The optimal transport problem was first introduced by Monge
in 1781, motivated by the modelization of land leveling. Given two measures of equal
mass [,V € P(]Rd) and a cost function ¢ : R¢ x R — R, Monge raised the problem of
transporting p to v optimally w.r.t. ¢. More formally, this problem can be stated as

it [ el T(@)adno) (M)
T Typ=v Jpd

where Typ is the pushforward measure of p by T, defined by Tyu(A) = w(T~L(A)) for all
p-measurable sets A.' When it exists, an optimal map in (M) is called a Monge map.
Although it is intuitive, Monge’s formulation is mathematically challenging: in particular,
the existence of a Monge map is not guaranteed. As an example, consider the case where
 is a Dirac distribution. Then, T} is necessarily also a Dirac distribution, hence there
can be no transport in Monge’s sense if v is not a Dirac distribution as well. This also
highlights the intrinsic asymmetry of (M), as conversely, it is always possible to find a
Monge map going to a Dirac measure ¢, by setting Vz,T'(z) = y.

Kantorovich formulation. To alleviate this issue, Kantorovich [1942| introduced a
generalization of Monge’s problem. Instead of considering maps, Kantorovich proposed to
optimize over couplings, i.e. measures over the product space R x R? that have p and v
as marginals:

in / / (. y)dr (), (K)
yEll(p, v)
R4 x R4

where II(u, v) def {y € P(R? x RY) : T4y = p1, gy = v} is the set of transportation plans,

and 7 : (z,y) — x,m9 : (x,y) — y are the canonical projections. A key advantage of this
formulation is that a solution to (K) exists under weak conditions on the cost function c.

Theorem 1.1 (Santambrogio [2015, Theorem 1.7]). Let p,v € P(RY) and ¢ : R? x R? —
[0, +00] be a lower semi-continuous ground cost. Then (K) admits a solution.

Wasserstein distances. When the ground cost c is actually a distance d(z,%) on R? to

a power p > 1 and when y, v have moments of order p, the Wasserstein distances can be
defined from (K).

Definition 1.2 (Wasserstein Distances). Let p > 1 and p,v € Py(R%). The p-Wasserstein
distance is defined as

W)™ it ([ e praren) (1.1)

yEIl(p, v
R4 x R4

'Equivalently, if X is a random variable with law g, then Tyu is the law of T(X).
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Wasserstein distances satisfy all three metric axioms on P,(R%) [Santambrogio, 2015,
Prop 5.1], and metrize weak convergence plus convergence of moments of order p [San-
tambrogio, 2015, Thm 5.11]. A sequence of measures p,, converges weakly to a measure
p (denoted g, — p) i.f.f. for any continuous bounded function f € Cy(R?), the integrals
fRd fdu, converge to f]Rd fdu. In machine learning, the metrization of weak convergence is
a crucial requirement for measure discrepancies, as we are often interested in minimizing
the value of a loss function integrated against probability distributions.

Within the scope of this thesis, the ground distance will always be the Euclidean
distance d(z,y) = ||z — y||2. In particular, the p = 2 case will play a crucial role, as the
2-Wasserstein distance satisfies particular properties (most of which are consequences of
Brenier’s theorem below). Therefore, unless stated otherwise, Wasserstein distances will
designate the 2-Wasserstein distance Wa.

Bridging Monge and Kantorovich: the continuous setting. In light of the previous
considerations, it is natural to ask under which conditions a Monge map might exist, and
what links exist between Monge and Kantorovich formulations. For an absolutely continuous
measure p, Theorems 1.3 and 1.4 below show that under conditions on the cost function
and/or compactness assumptions, the Kantorovich formulation (K) generalizes Monge’s
(M), in the sense that the solution to (M) coincides with the solution of (KC) in the coupling
formalism.

T T(x)

Figure 1.1: For a.c. measures, an optimal transport map (left) has an equivalent coupling
supported on its graph (right).

Theorem 1.3 (Santambrogio [2015, Theorem 1.17.]). Let p,v € P(RY) be compactly
supported, and such that p is a.c. Consider a cost function c(x,y) = h(x — y) where h is a
strictly convex function. Then, there exists a unique optimal transport map T and a unique
optimal coupling v, and T and v are related by v = (id, T)sp.

Hence, under the conditions of Theorem 1.3, an optimal Monge map exists and can
equivalently be described as an optimal transportation plan supported on its graph (Fig-
ure 1.1). In particular, for a.c. and compactly supported p and v, Theorem 1.3 holds when
c(z,y) = ||z — y||P with p > 1 as is the case for the Wasserstein distances (Definition 1.2,
excluding the p = 1 case). The p = 2 case holds a particular place in the optimal transport
theory, as shown by Brenier in his seminal paper [Brenier, 1987].
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Theorem 1.4 (Brenier [1987]). Let u, v € Po(RY) such that u is a.c., and c(x,y) = ||z —y]|?.
Then, problem (M) admits a unique solution, which is characterized (among all transport
maps) as being the gradient of a convex function ¢: Vo € R, T*(x) = Vé(x).

Note that contrary to Theorem 1.3, Theorem 1.4 no longer requires compact supports.
Compared to Theorem 1.3, the major contribution of Theorem 1.4 is the unique characteri-
zation of the transport map as the gradient of a convex function. It will play a key role in
Section 2. As an example, it implies the following immediate corollary.

Corollary 1.5 (Theorem 1.4). Let p € Po(R?) be a.c., c(z,y) = ||z — y||? and ¢ : R? — R
a convex function. Then, V¢ : R* — RY is the unique optimal Monge map from u to Vouu.

Theorems 1.3 and 1.4 also imply that for compactly supported a.c. measures, or when
p = 2, Wasserstein distances can also be formulated from a Monge point of view:

Wy, v) = _inf (Adllx—T(x)llpdu(x)>l/p- (12)

T:Tyu=v

Monge and Kantorovich: the discrete setting. When p is a discrete distribution of
the form Y7, a;0,, with a € A, and Vi € [1,n],z; € R%, the existence of a Monge map
occurs in few specific cases, the most notable being when p and v are discrete distributions
with uniform weights and equal number of points.

Proposition 1.6. Let p=15" 6, v =215" 6 withn € N* and Vi € [1,n],z;,y; €
RY. Then there exists a (not necessarily unique) Monge map from u to v. It takes the
form of a permutation o € &, mapping each x; to yy(;), and has an equivalent optimal
Kantorovich plan v* = 371 | O (s o)) -

Proposition 1.6 is a consequence of the Birkhoff-von Neumann theorem [Birkhoff, 1946,
Von Neumann, 1953| and is sometimes referred to as the optimal matching problem.

Remark 1.7. It is sometimes said for short that whenever a transport map exists, (M)
and (K) coincide. This is a false statement: as a counter-example, consider as in Figure 1.2
two measures consisting of two Diracs each with weights (1/4,3/4), and a || - ||* ground cost.
Although a transport map exists (mapping between points with equal weights), by varying
the positions of the Diracs it can be made arbitrarily sub-optimal compared to the optimal
coupling. See [Santambrogio, 2015, §1.4] for other counter-examples.

e 9 = b
// \\\ /
-’ Y P
// \\\ ,
7’ ~ 7
7’ \\\ /
, \\
e . L7
M //, V ILL <‘s V
7’ >~
/’/ 7’ .
-, s’ ANy
-, v d ~
7 7’ N
, v N
[ R ° | °

Figure 1.2: Optimal coupling (left) v.s. matching (right): although there exists a unique
one-to-one mass-preserving matching, it is clearly sub-optimal compared to the Kantorovich
plan.
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In this thesis, both Monge and Kantorovich formulations will be used: Chapter 2
is based on the Monge point of view and Chapter 5 on the Kantorovich version, while
Chapter 3 makes heavy use of the interplay between both formulations.

1.2 Computational aspects

Optimal transport quantities, such as the Wasserstein distances, are intrinsically defined
through optimization problems. Hence, the computational aspects of solving these optimiza-
tion problems are key in determining whether OT can be of practical use in different machine
learning settings. In this section, the numerical aspects of OT are presented according to
the different possible settings, and easily computable OT variants are introduced.

The one-dimensional setting. In the one-dimensional setting, optimal transport can

be computed from the cumulative distribution functions (CDF) F),(z) déf J* . dp and their

generalized inverses Fl[fl] (z) of inf{t € R : F,(t) > x} (also called quantile functions).

Therefore, whenever those functions are easily computable, so is OT. This fact is the
building block of the Knothe-Rosenblatt transport and sliced Wasserstein distances, which
are introduced later. The following result describes one-dimensional OT in the continuous
setting.

Proposition 1.8 (Santambrogio [2015, Theorem 2.9|). Let u,v € P(R) such that p is a.c.
and c(x,y) = h(x —y) where h : R — R is a convex (resp. strictly convez) function. Then,
there exists a (resp. exists a unique) Monge map from u to v. This map is monotone, and
can be written as

T:xw— Flg_l] o F,(x).

Moreover, the value of the objectives of problems (M) and (K) is given by

/ 1 W (@) — Ff(2))da.
0

In particular, one-dimensional Wasserstein distances are equal to the L, distance
between quantile functions:

1
Wpnw) = [P — I @)pda
A -1 -1 p
LFY - BE@)1T,
A similar result holds when p and v are discrete measures.

Proposition 1.9. Let y = %Z;;l 0y, and v = %Z?Zl 8y, with x1 < xy < ... <z, and
y1 < yo < ... <y, and c,h as in Proposition 1.8. Then, there exists an optimal transport
map given by

Vi e [1,n], T(x;) = i,

and its corresponding transport cost is %2?21 h(y; — x;).

In particular, if u,v have sorted support points as in Proposition 1.9, it holds that
W} (u,v) = |z; — y;|P. This implies that in the discrete and uniform setting, optimal
transport and Wasserstein distances can be obtained by sorting supporting points, in
O(nlogn) time. If y and v are discrete but with non-uniform weights or a different number
of points in their supports, it is still possible to compute an optimal transport plan that
relies on sorting, as illustrated in Figure 1.3.



46 CHAPTER 1. OPTIMAL TRANSPORT GEOMETRIES

Figure 1.3: One-dimensional discrete transport. Left: uniform weights, right: non-uniform
weights.

This introductory one-dimensional example already hints that the computational chal-
lenges induced by OT are quite different depending on whether the distributions p and v
are discrete, or continuous?. This yields three broad settings, which are now introduced.

Discrete-discrete transport. When both distributions are discrete and can be written
as 1 = Y 1 a0y, and v = Y1 b;d,, with a € Ap,b € Ay, (K) is equivalent to the
following linear program:

i P, C), D-OT
péﬁ%ﬁb)< , C) ( )
with U(a, b) d:ef {P € Rﬁxm : P1,, = a, PT]ln = b} and C = [C(:L’i,yj)]lgign,lgjgm.

(D-OT) can be algorithmically solved using the network simplex algorithm, in O(n +
m)nmlog(n +m)) time [see Ahuja et al., 1993|. Hence, although it is tractable, discrete
optimal transport can be computationally expensive, and has the additional inconvenient
of not being differentiable w.r.t. a and b due to the non-uniqueness of an optimal plan P*.
However, discrete OT plans are sparse, which is a valuable property in matching-based
applications such as domain adaptation [Courty et al., 2014|. This sparsity comes from the
fact that there always exists an optimal plan lying on a vertex of U(a, b): such a plan has
at most n 4+ m nonzero entries.

Discrete-continuous transport. The case where p is discrete and v a.c. (often referred
to as the semi-discrete setting) is already more challenging. It can be solved using quasi-
Newton solvers relying on the computation of Laguerre cells and making piecewise constant
approximations of the density [Mérigot, 2011] in a low-dimensional setting, or approximated
using stochastic optimization [Genevay et al., 2016] (which requires however being able to
sample from v).

Continuous-continuous transport. When both g and v are a.c., closed forms or
scalable methods for optimal transport are scarce. Thanks to the Brenier theorem (Theo-
rem 1.4), the case of a quadratic cost | - — - ||? enjoys additional properties that make it
tractable in some cases. A first consequence of Theorem 1.4 is that (M) with a quadratic
cost is equivalent to the Monge-Ampére equation. Indeed, let p (resp. ¢) denote the density
function of u (resp. v). Then, (M) is equivalent to finding a convex function f such that

p
qoVf

IVfI? = (1.3)

Secondly, optimal transport maps and 2-Wasserstein distances are available in closed form
for the class of elliptical distributions, which is the subject of Section 2.

20f course, in all generality a probability measure need not be either discrete or continuous. More
complex settings could also be considered, but fall out of the scope of this thesis.
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1.3 Variants of optimal transport.

As the above considerations show, solving optimal transport can be very computationally
challenging, even so in the discrete-discrete setting if the sample size is large. A notable
exception is 1D transport, which can be conveniently solved through sorting or when
knowledge of quantile functions is available (see Section 1.2). This exception has motivated
variants of optimal transport that enjoy favorable computational properties.

Sliced Wasserstein Distances. Rabin et al. [2011] propose to average the Wasserstein
distance between projections on sampled one-dimensional directions, which defines the
Sliced Wasserstein (SW) distances:

SWi(u,v) o /S ) WP (pogis, posv)de, (SW)

where Vo € R? py(x) = (z, 0). Like Wasserstein distances, sliced Wasserstein distances
satisfy all three metric axioms. However, Wasserstein and sliced Wasserstein distances are
not equal. In practice, SW distances are estimated by averaging the projected Wasserstein
distances along a fixed number of random directions, using Proposition 1.9. Moreover,
SW distances are differentiable (even in the discrete setting) [Bonneel et al., 2015]. For
instance,

n

g 2
&stwg %25%7 % Zéyj . /Sd(<xi7 0) - <yag(i)> 9))0(10) (14)
j=1

. n
=1

where g is the permutation corresponding to the optimal map on the direction 6 € S? (see
Proposition 1.9).

The convenience of SW distances has lead to a recent interest in the ML community,
in the GAN/VAE literature in particular [Deshpande et al., 2018, Wu et al., 2019]. Note
however that even though SW provide a cheap way of comparing distributions, they have
no associated pushforward mapping. They can however be associated to a coupling that
corresponds to the average of the 1D couplings:

ef
drsw(z,y) © /S ) dyg(z,y)de.

Knothe-Rosenblatt (KR) transport. Inindependent works, Knothe [1957] and Rosen-
blatt [1952] proposed a method for defining a transport map between two a.c. measures. It
consists in a recursive scheme, relying on 1D monotone transport maps between conditional
distributions. More precisely, let f(z1,z2,...,x2q4) and g(y1, 2, ..., yq) denote the density
functions of two a.c. probability measures u, v € R%. Let f; and g; denote the marginal
density functions of u,v on the first coordinate. Then, there exists a monotone map T3
(as in Section 1.2), mapping f1 to g;. The broad idea is to then map the marginals on
the first two directions, fa(x1,z2) and g2(y1,y2), in a way that conserves the transport of
the first marginal. This implies in particular that (z1,x2) can only be mapped to a point
of the form (71(z1),y2): in other words, the conditional density fu, (z2) of fo given z;
must be mapped to gr(,,)(y2) of g2 given T'(x1). Again, there exists a monotone optimal
map Ts(z1,) : x2 — Ta(z1,r2) mapping f,, to 97(z,) optimally, and one can see that
(z1,22) — (T1(x1), Ta(z1, 2) maps fa to g2 (although this time not optimally). Applying
this method recursively yields a map of the form

TKR(.%'l,.%'Q, ...,.%'d) = (Tl(xl),T2($1,$2), ceey Td($1,$2, ...:Cd)),
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which verifies Tirspt = v, and is monotone for the lexicographic order. Although this map
Tkr is not in general an optimal map, it defines an accessible instance of a transport map.
A more precise presentation of KR transport is given in Santambrogio [2015, Chapter 2].
Chapter 3 introduces generalizations of the KR transport, with closed forms for Gaussian
distributions.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Discrete-Discrete v
Continuous-Continuous v v v
1D & KR transport v

Table 1.2: Summary of the OT settings used in the main chapters of this thesis.

2 The Bures-Wasserstein Geometry

Out of the different settings presented in Section 1.2, the continuous-continuous one seems
to be the most numerically challenging, as the only general methods available rely on
approximating the solutions of PDEs [Benamou and Brenier, 2000], which does not scale well
with the dimension of the ambient space. A noticeable exception are elliptical distributions,
which can be seen as generalizations of Gaussian distributions or multivariate generalizations
of location-scale families, for which closed-form solutions exist.

Unless stated otherwise, we consider the Frobenius inner product and norm on matrices
in the following.

2.1 Elliptical distributions

Several concurrent definitions of elliptical distributions (also known as elliptically-contoured
distributions) coexist. The most intuitive definition would be to see elliptical distributions
as distributions on R% having a density function that has elliptical level sets, i.e. density
functions of the form z — f(||z — ¢[|4_,)/+/|C], where ¢ € R? is the mean (or location)
parameter, C € S¢_ is the scale parameter, and f : R? — R satisfies [, f(||z]|?)dz = 1. As
an example, Gaussian distributions correspond to f o< exp(— - /2). However, this definition
lacks in generality as it requires C to be invertible and therefore does not encompass
degenerate distributions, supported on lower-dimensional subspaces. To address this issue,
Gelbrich [1990] proposed a more general definition, which is stated here in a simplified
version.

Definition 1.10 (Elliptical Distributions, [Gelbrich, 1990]). Let ¢ € R, C € S¢. Let Aimc
denote the Lebesgue measure over the image of C. An elliptical distribution with mean c
and scale parameter C is a probability measure of the form

dpgec(@) = g([lz - c[&r)dAme (@), (1.5)

where g : RY — R satisfies flmcg(HfU”%T)d)\ImC(l‘) =1 and C' is the Moore-Penrose
pseudo-inverse of C.

A predating definition, less intuitive but more compact, relies on the characteristic
" X ]. Recalling that the characteristic

function of a centered multivariate Gaussian random vector is e’ ¢gt" €t with g = exp(—-/2),

the intuition behind this definition is to allow the function g to be picked in a broader class.

function of a random vector: ¢x def teRY— Ex [e
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Definition 1.11 (Elliptical Distributions, [Cambanis et al., 1981]). A random vector X is
elliptically-contoured if there exist c € Rd, Cc Si and a function g : Ry — R such that
its characteristic function is of the form ¢x(t) = e“T‘:g(etTCt).

Both Definitions 1.10 and 1.11 generalize the initial intuition by encompassing degenerate
measures. Hence, an elliptical distribution is fully characterized by its mean ¢ € R¢, scale
parameter C € S%, and generating function ¢ (defined in either Definition 1.10’s or
Definition 1.11’s formalism). When two elliptical distributions share the same generating
function g, they are said to belong to the same family of elliptical distributions. Examples
of families include (multivariate) Gaussian distributions, (multivariate) t-distributions, or
uniform distributions supported on ellipsoids.

Remark 1.12. From the analogy with Gaussian measures, one could expect the covariance
matriz Xg.c of an elliptically-contoured random vector to be equal to its scale parameter
C. It is in fact equal to 74C, where 74 > 0 depends on the generating function g only.
In the setting of Definition 1.11, one has 7y = —2¢'(0) [Cambanis et al., 1981, Theorem
4.]- T4 can also be written in Definition 1.10’s setting, but has a less compact formulation
[Gelbrich, 1990, Equation (14)]. As examples, in Gelbrich’s formalism g(z) o exp(—x/2)
yields Ty = 1 and corresponds to Gaussian measures, whereas g(x) < ly<1 yields 74 = ﬁ
and corresponds to d-dimensional ellipsoids of radius 1 endowed with a uniform measure.

2.2 The Bures-Wasserstein distance

In independent seminal works, Dowson and Landau [1982], Olkin and Pukelsheim [1982] and
Givens et al. [1984] showed that the 2-Wasserstein distance between multivariate Gaussian
distributions admits a closed form, known as the Bures- Wasserstein distance or also the
Fréchet distance. Although not stated in those terms, their results also provide a closed
form for the Monge map between two Gaussian measures. All three proofs rely on a version
of Lemma 1.19, which expresses the maximal possible covariance between two random
vectors. Gelbrich [1990] then extended these results to any two (potentially degenerate)
elliptical distributions from the same family.

Theorem 1.13 (Gelbrich [1990]). Let g : Ry — R as in Definition 1.10. Then for any
two members of the same elliptical family, the 2- Wasserstein distance has a closed form:

Va,b € R VA, B € 54,
W22(:“g,a,A= HepB) = lla— b+ %2(297A7 %9B); (1.6)
where ¥g o = T4A (Remark 1.12), and

def

1 11
B2(A,B) = TrA + TrB — 2Tr(A2BA2)2 (1.7)

is the Bures [Bures, 1969, Bhatia et al., 2018] metric on the cone of PSD matrices.

By homogeneity of the Bures metric and following Remark 1.12, the Wasserstein-Bures
distance can alternatively be formulated in terms of scale parmeters as

Wg(ugvazA’ /’Lg,b7B) = ||a - b”2 + TQSB2(A7 B)

Remark 1.14 (Particular cases). When A and B commute, (1.7) further simplifies to
the Frobenius distance between matriz roots: B%(A,B) = |AY/2 — BY/2||2. When they are
both diagonal matrices, this quantity is called the Hellinger distance. When the covariance
matrices go to 0 (and distributions converge to Dirac distributions), one recovers the Lo
distance between the means.
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Proposition 1.15. Let pgaa and pgp B be two elliptical distributions from the same
family, such that ImB C ImA. Then, the map T : x — TAB(z — a) + b with

1
2

D=+

1 11
TAB & A3(A2BA2)ZA (1.8)

T
is the optimal Monge map from piga A to pgn B, where A2 is the Moore-Penrose pseudo-
1

inverse of A2.

Proof. This is a direct consequence of Brenier’s theorem [Brenier, 1987] and of Lemma 1.20
below. ]

Note that contrary to the Bures distance, the Monge map (1.8) is scale invariant and
can interchangeably be formulated using scale parameters or covariance matrices. In the
remainder of this thesis, the dagger notation will be dropped and A~! will denote the
inverse of A when it exists, and its pseudo-inverse otherwise.

Remark 1.16 (Matrix square roots). For symmetric positive semi-definite (PSD) matrices,
square roots can be defined using the eigenvalue decomposition: if A = P diag(\1, ..., \g)P7,

then A2 % p diag(v/ A1, -y )\d)PT. In this thesis, square roots of non-symmetric matrices
A with no eigenvalues in R_ will sometimes be considered: in that case, they will always be
the unique square root of A with all eigenvalues in Ry [Higham, 2008, Theorem 1.29].

Remark 1.17. The ImB C ImA assumption is required in Proposition 1.15 but not in
Theorem 1.13. Indeed, consider two cases. First, if tkB > rkA, then no transport map
going from piga A to pgn B exists, since it is informally impossible to create mass in more
dimensions than covered by piga A through the action of a map. Secondly, when rkB = rkA
but ImB ¢ ImA., transport maps exist but take other forms, as InTAB C ImA. However,
Theorem 1.13 remarkably remains valid in either case, corresponding to the cost of the
optimal coupling.

The Bures-Wasserstein distance corresponds to the equality case of a lower bound on
the Wasserstein distance, as originally proven by Dowson and Landau [1982].

Proposition 1.18 (Dowson and Landau [1982]). Let p,v € P2(R%) be two centered
probability measures with covariance matrices A, B € Si. Then,

B2(A,B) < Ex,||X — Y|” < Te(A + B + 2(AZBA2)?2). (1.9)
Y~v
An important fact is that Proposition 1.18 is not restricted to elliptical distributions,
but is applicable to any pair of probability measures with finite second order moments. In
particular, it implies that if o (resp. v) has mean vector a (resp. b) and covariance matrix
A (resp. B), then
la - b||*> + B*(A,B) < W;(A,B).

Hence, even for distributions that are not elliptically-contoured, the Bures-Wasserstein
distance is a quantity of interest, as it provides a lower bound on the transport cost. Under
the lens of Lemma 1.19, this lower bound can be seen as the cost of optimally matching the
first two moments of p and v. The RHS of (1.9) gives information on the worst possible
coupling (in a quadratic cost sense) between two distributions. However, from an optimal
transport perspective it is not so informative, as the Wasserstein distance can always be
bounded from above by the cost of the indepedent coupling 1 ® v:

W2(A,B) < |la—b|? + TrA + TrB.
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2.2.1 The Bures distance on PSD matrices

The definition of the Bures distance originates from quantum information theory, where it
is used to measure the distance between two states represented by PSD density matrices
with trace 1 [Bures, 1969, Bengtsson and Zyczkowski, 2017]. In the context of quantum
information theory, the quantity F(A,B) such that B%(A,B) = TrA + TrB — 2F (A, B),

def 111 1
F(A,B) = Tr(A2BA2)2 = Tr(AB)2,

is called the fidelity between states A and B. In an optimal transport perspective, the

fidelity represents the maximal attainable covariance.

Lemma 1.19 (Olkin and Pukelsheim [1982], Bhatia et al. [2018]). Let A,B € S, . Then,

F(A,B)= max TrC, (1.10)

o(& §)zs

and the mazimum is attained at C = ATAB = (AB)'Y/2,

TAB

An alternative characterization of the Monge map is provided by the following

lemma.

Lemma 1.20. Let A,B € SiJr (resp. A,B € Si s.t. ImB C ImA ). Then
11 11 1
TAB — A"2(A2BA2)2A 2
1 1 111
=B2(B2AB2) 2B2
is the unique symmetric positive (resp. semi-)definite solution of TATT = B.

Proof. One can check that TAB satisfies TABATAB = B in either formulation. The
uniqueness can be proven from the existence of a unique symmetric positive definite root
of A2BA1/2 or (B1/2AB1/2)717 and incidentally proves that both expressions of TAB
are indeed equal. ]

Lemma 1.20 proves that TAB is the Monge map from N(0,A) to AV (0,B) with a
quadratic cost. Indeed, let T be a linear map, and X a random vector with covariance
matrix A. Then, TX has covariance matrix TAT”. Hence, Lemma 1.20 shows that TAB
is a transport map from A (0, A) to N(0,B). According to Theorem 1.4, it is a Monge
map i.f.f. it is the gradient of a convex function, which is the case as TAB is symmetric
and positive definite.

Further, Lemma 1.19 provides a direct proof of the LHS inequality of Proposition 1.18:
indeed, if 4 and v are centered measures with covariance matrices A, B and v € II(u, v, ),
then

E(xy)r I X — Y|? = TrA + TrB — 2Tr Cov x ), (X, Y),

and Tr Cov(x y)~,(X,Y) can be bounded from above using Lemma 1.19. Further,
Lemma 1.19 shows that E(xy),[|X — Y|? = B%(A,B) if and only if the covariance

matrix of 7 is (T‘éA Arl;gAB), i.e. i.f.f v is the law of (X, TABX). Hence, given that if

Cov(X) = A then Cov(TX) = TAT?, Lemmas 1.19 and 1.20 yield another interpretation
of the Bures-Wasserstein distance: it is the minimal quadratic transportation cost associated
with matching the first two moments of two measures p and v through the action of a map.
Under this perspective, it is thus natural that the Bures-Wasserstein distance coincides with
the Wasserstein distance for elliptical distributions of a given family, which are uniquely
characterized by their means and covariances.

Another consequence of Lemma 1.19 is the joint convexity of the (squared) Bures
distance, which can be obtained from writing problem (1.10) in a dual formulation.
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Proposition 1.21. The squared Bures distance B2(A,B) is jointly conver in A and B.

Proof. Problem (1.10) can be equivalently rewritten using the variable X = (%; §z> as

F(AB)= bmax (X, (%))
X>0
X1=AX,=B

Strong duality holds, and this problem can be shown to admit the following dual
formulation:

F(A,B)= Jmin (F, A)+ (G, B). (1.11)

(, ¢')=o0

Hence, the fidelity F'(A,B) can be written as the pointwise infimum of linear functionals
in (A,B). Therefore, it is jointly concave in A and B, which makes B2(A,B) jointly
CONVEX.

O
Proposition 1.22. Let A,B ¢ Sﬁ‘h. Then VAB%(A,B) =1 — TAB,
Proof. This can be proven by direct calculus, as in Section 5. Alternatively, we can use

problem (1.11) to obtain VA F(A,B) = $F* = L TAB [Bhatia et al., 2018]. O

Riemannian structure. The Bures distance is actually a Riemmanian® metric on PSD
matrices. From this fact it can be shown that the Wasserstein space of Gaussian measures
is itself a Riemmanian manifold [Takatsu, 2011].

Proposition 1.23 (Bhatia et al. [2018], Malago et al. [2018]). The Bures distance defines
a Riemannian metric over the cone of PSD matrices, with associated metric tensor

Ga(U,V) =Tr(La(U)V),

where LA (U) is the solution of the Lyapunov equation XA + AX = U. When A, B € Si
satisfy ImB C ImA, the Bures geodesic from A to B is given by

Ca_s(t) = [(1 — t)Ig +tTABJA[(1 — t)Ig + tTAB], te0,1], (1.12)
and the exp and log maps of the Riemannian Bures metric are given by

expc(V) = (Le(V) +1a) C(Le(V) + 1a) (1.13)
loge(B) = (TP -~ 1;) C+ C (T® - 1) . (1.14)

Bures-Wasserstein barycenters. We conclude this section by mentioning the Bures-
Wasserstein barycenter problem, which is characterized by a fixed-point equation. In
Chapter 4, we extend this result to (debiased) entropy-regularized OT between Gaussian
measures.

Theorem 1.24 (Agueh and Carlier [2011, Theorem 6.1]). Let n > 0 and Vi € [1,n], \; €
Ry, A; € S$+,ui =N(0,A;) with Y-, \; = 1. Then, the Wasserstein barycenter problem

i NiW3 (s, 1.15
Vegg&d); 5 (i, v) (1.15)

3We refer to the textbook [Lee, 1997] for an introduction to Riemmanian geometry.
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admits a unique solution v* = N(0,B), where B is the unique solution of the Bures
barycenter problem

min > AB%(A;,B), (1.16)

or equivalently

n
> ONTBA =14,
=1

Theorem 1.24 can be extended to elliptical distribution, with the same relations on the
covariance matrices or scale parameters. Further, Alvarez-Esteban et al. [2016] show that
the solution of (1.16) can be obtained by the fixed-point iteration

n 2
B, =B/’ (Z (B 2A,-B}/2)%> B,/

=1

3 Entropic Regularization of Optimal Transport

As mentioned in Section 1.2, OT distances can be expensive to compute, even in the
relatively simple discrete setting. Besides, they suffer from a lack of differentiability that is
detrimental to applications in machine learning. Starting from Cuturi [2013], the prevalent
approach has consisted in adding an entropic regularization term to the optimal transport
problem, which ensures its differentiability and allows the use of efficient algorithms. Let
€ > 0 be the regularization strength, the entropy-regularized optimal transport problem is
defined as

OT.u) ™ int [ clo.ppar(es) + eKLG o), (Ent-OT)
ye(p, v

R4 xR

where KL(y[lu ® v) < ) og (et ) v w) 4 ] (@l@)du(y) — dy(e,y)) is the
R x R4

Kullback-Leibler (KL) d1vergence. As the KL divergence is strictly convex in its first

argument, this regularization term turns (K) into the strictly convex problem (Ent-OT).

In particular, strong duality holds. The dual problem of (Ent-OT) plays an important role

in characterizing the additional properties induced by entropic regularization.

Proposition 1.25. Strong duality holds, and (Ent-OT) has the following dual form

max fdu+/ gdy—e// ef(ZHQ(Z)_C(z’y)d,u(a;)dy(y). (1.17)
) JRd R?

[,9€C(Re
R4 xR4

At optimality, the dual variables f, g are linked to the optimal transport plan 7 for (Ent-OT)
via the following relation:

dm(z,y) = exp (f(:z:) +9() = clz, w) dp(x)dv(y), (1.18)

€
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and f,qg satisfy

W) —c(=z,y)
f(x) = —6log/Rd et dv(y) w— a.e.
f@)=c(z,y) (1.19)
gly)=—clog [ e = du(z) v — a.e.
R4

A detailed proof of Proposition 1.25 (generalized to alternative regularization terms)
can be found in [Chizat, 2017, Genevay, 2019].

Discrete entropic OT. Entropic regularization was initially introduced by Cuturi [2013]
in the discrete setting:

. Dij
P, C i 1
PeI(rJl%gb)< ) e Z,ijw & <aibj

) : (1.20)
with two main motivations: (i) allowing a fast approximation of OT and (ii) ensuring
smoothness and differentiability of OT [Peyré et al., 2019|. Propositions 1.26 and 1.27 show
that this convexification allows both objectives to be attained.

Proposition 1.26 (Cuturi [2013], Peyré et al. [2019]). Let o = Y i | aidy, and f =
> 71 bjdy; be two discrete distributions, and € > 0. Then, (Ent-OT) admits a unique
solution P which is of the form

P = diag(u)K diag(v), (1.21)

with K [exp(—c(%’yj))]i,j e RY™ and u € R, v € RY can be obtained using the
fixed-point iterations

I+1) _

u L and v+ = 1 (1.22)

K(V(l) ®b) - KT(u(l—H) ® a)'

The iterations (1.22) are known as Sinkhorn’s algorithm, after Sinkhorn [1964] who first
proved their convergence. With the notations f; = f(x;),8; = g(y;) and ¢;; = c(z4,y;), the
variables u, v in Equation (1.21) are linked to f, g in Equation (1.17) through the relations

u= [exp(fi/g)]ie[[l,n]b V= [eXp(gj/E)]jE[[l,mﬂ7 (123)

and are sometimes called the exponential scalings. Hence, with this parameterization
Sinkhorn’s algorithm is equivalent to iteratively enforcing (1.19). Sinkhorn’s algorithm
is easy to implement and can be efficiently parallelized using graphics processing units
(GPU) [Cuturi, 2013], but is numerically unstable for small values of €. In that case, it can
be run in the log-domain: this yields the iterations

Vi e [1,n], fl.(l+1) = —slogz b exp((gj(-l) —cij/e), (1.24)
j=1

Vi e [1,m], g§l+1) = —slogZai exp((fi(lﬂ) —cij)/e). (1.25)
i=1

The KL regularization term encourages the optimal plan to put mass on the whole
support of pu®wv. As shown in Figure 1.4 in the discrete case, this yields transportation plans
with strictly positive entries everywhere, whereas unregularized transportation plans are
sparse, with at most n + m non-zero entries (see Section 1.2). Moreover, KL regularization
ensures the uniqueness of a solution, and hence (by Danskin’s theorem [Danskin, 1967])
the differentiability of (Ent-OT).



3. ENTROPIC REGULARIZATION OF OPTIMAL TRANSPORT 55

Proposition 1.27 (Gradients, Cuturi and Doucet [2014]). Let o = 3 7" | a;0,, and B =
Z;-n:l bjdy;. Then, OT. is jointly conver w.r.t. (a,b) and differentiable, with gradients

v(a,b)OTs(a7 6) = (f7 g)? (126)

where (f,g) satisfies (1.19). If c(z,y) = ||z — y||, the gradients w.r.t. the supports are
given by

: 1
Vi € [[1777‘]]7 VxloTE(OZ?B) = CT Zplj(xl - yj)a
U

. 1
vjie[l,m], V,,0T(a,pB)= b Zpij(yj — i),
J =1

where P is the optimal plan in (Ent-OT).

(a) (D-OT) (b) (Ent-OT)

Figure 1.4: Effect of regularization on transportation plan density. Left: unregularized
(sparse) OT plan. Right: regularized (dense) entropic OT plan.

Proposition 1.27 shows that entropy-regularized OT constitutes a suitable loss function
for machine learning [Frogner et al., 2015], contrary to classical unregularized OT which
is not differentiable. In practice, two strategies can be used to compute gradients: the
first consists in using the dual potentials given by Sinkhorn’s algorithm (in virtue of
Proposition 1.27), while the second consists in performing automatic differentiation on the
Sinkhorn iterations, which is the approach suggested in Genevay et al. [2018]. The latter
method has a computational overhead equivalent to computing the (forward) Sinkhorn
iterations, but recent research [Ablin et al., 2020] shows that better approximations of the
gradients can be obtained that way:.

Finally, Proposition 1.26 shows that entropic regularization allows to compute fast and
differentiable transportation plans. However, a remaining question concerns which quantity
to use to measure the difference between two distributions based on those entropic plans.
Indeed, OT. is symmetric and has the advantage of having easily computable gradients,
but it is no longer a distance as it does not satisfy the triangle inequality, nor even a
divergence as it is not positive.* To alleviate the positivity issue, [Cuturi, 2013] propose to
use QTEere) 4 (P., C), where P, is the solution of Equation (1.20). Luise et al. [2018]
name this quantity sharp Sinkhorn and provide an algorithm to compute its gradients.
OTS’W’” ) is positive, but OTS’W”J ) (av, ) can be strictly positive and hence sharp Sinkhorn
is not a divergence.

Genevay et al. [2018] proposed to subtract debiasing terms from OT,, defining the
Sinkhorn divergence:

Se(p,v) = OTe(p,v) = H(OT<(pt, 1) + OT< (v, ).

*In particular, for € > 0, OT:(, @) < 0 and can be strictly negative.
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Feydy et al. [2019] then proved that the Sinkhorn divergence defines a suitable loss
function.

Proposition 1.28 (Feydy et al. [2019] (Simplified)). Let c¢(z,y) = ||z — y||P,p > 1. Then
for all compactly supported p,v € P(R?), S.(u,v) defines a symmetric positive definite
divergence, which is convex in p or v (but not jointly), and metrizes weak convergence.

Hence, short of the triangle inequality, Sinkhorn divergences possess all the properties
that make Wasserstein distances suitable losses between distributions in a machine learning
context. Further, Feydy et al. [2019] show that the computational overhead induced by
computing OT¢(p, 1) and OT. (v, v) terms is limited, as Sinkhorn iterations can be adapted
in a symmetric variant to obtain faster convergence. Chapter 5 will make heavy use of the
favorable properties of Sinkhorn divergences.

Semi-discrete and continuous entropic transport. Although its computational ad-
vantages are most apparent in a fully discrete setting, entropic regularization has also been
used to develop methods for the semi-discrete and continuous settings. In the semi-discrete
setting, entropic regularization leads to replacing the indicator functions of Laguerre cells
with a smoothed version [Peyré et al., 2019], resulting in a stochastic optimization problem
which is amenable for stochastic gradient methods [Genevay et al., 2016]. In the continuous
setting however, (Ent-OT) can no longer directly be cast as a stochastic optimization
problem. A stochastic formulation can be obtained again by approximating the dual form of
(4.1) using a kernel representation, which allows to use stochastic gradient methods [Genevay
et al., 2016], an approach which was refined by Mensch and Peyré [2020]. In Chapter 4,
closed forms for entropy-regularized optimal transport between Gaussian measures are
proven, which constitute the first non-trivial closed forms in the continuous setting.

Alternative regularizations. As discussed in this section, entropic regularization allows
to define approximations of OT distances that are differentiable, and to compute them
efficiently using Sinkhorn’s algorithm. However, the differentiability can be achieved
using a wider range of strictly convex regularization functions R on the transportation
plans [Blondel et al., 2018, Dessein et al., 2018, Muzellec et al., 2017]:

ROTE (u, v) o errrll(m // c(z,y)dy(z,y) + eR (7). (1.27)
e Rded

While only entropy-regularized OT can be solved using Sinkhorn’s algorithm, solutions
to (1.27) are usually computed using dual ascent methods. This implies that ROT is in
general less practical to compute or approximate than entropic OT. The main motivation
behind ROT is rather to consider regularization functions which are sparsity-preserving in a
discrete setting. In particular, Blondel et al. [2018] show that squared-norm regularization
allows to retain most of the sparsity of unregularized OT plans, while leading to differentiable
quantities.

Unbalanced optimal transport. So far, only regularization of couplings with exact
marginals have been considered, i.e. with the constraint v € II(p, v). An additional step in
relaxing OT consists in replacing couplings with positive measures that have free marginals
and total mass, and penalizing the difference between the marginals and the original
measures according to some divergence. Chizat [2017] considers in particular an unbalanced
problem with entropic regularization on the transportation plan, and penalization of the
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marginals with ¢-divergences |Csiszar, 1975]:

V0T, (e min  { [[ clop)dr@y) +eKLOue )
YEM (R4 xRE)
R4 x R4 (U-OT)

+ 7Dy (mg 1) + 7Dy, (m270) |

where Dy (p||v) & Ja @ (3’;&3) dv(x), and the KL divergence is generalized to positive

measures: KL(u||v) = [palog (iﬁgg) dp(z) — Jgadp+ [padv, ie. KL = Dy with ¢(z) =
xlogx —x+1. (U-OT) can be seen as (Ent-OT) where mass creation or deletion is allowed
along with mass transportation. This intuition is formalized from a dynamical transport
point of view in [Chizat et al., 2018a].

In the particular case where Dy, = Dy, = KL, the optimal plan is of the form
wdu(w)dy(y), where f, g € C(R?) satisfy

dr(z,y) =e
9(y)—c(z,y)
f(x) = —prlog /Rd e = dr(y) uw— a.e.

f(@)—c(z.y) (1.28)
g(y) = —pt log/ e dp(z) v —a.e.
R4

with p def - Hence, in the discrete setting, (U-OT) can be solved using the generalized

Sinkhorn iterations

1 P 1 P
(+1) — (+1) _
u = <K(v(l) 5 b)) and v = <KT(u(l+1) S a)) ) (1.29)

with K = exp (—C/¢g),u = exp(f/e), and v = exp(g/e).
In Chapter 4, closed forms for (Ent-OT) and (U-OT) are proved for Gaussian measures
based on Sinkhorn-like fixed-point equations.







Chapter 2

Embeddings in the Wasserstein
Space of Elliptical Distributions

Embedding complex objects as vectors in low dimensional spaces is a longstanding problem
in machine learning. We propose in this chapter an extension of that approach, which
consists in embedding objects as elliptical probability distributions, namely distributions
whose densities have elliptical level sets. We endow these measures with the 2-Wasserstein
metric, with two important benefits:

(i) For such measures, the squared 2-Wasserstein metric has a closed form, equal to a
weighted sum of the squared Euclidean distance between means and the squared
Bures metric between covariance matrices. The latter is a Riemannian metric between
positive semi-definite matrices, which turns out to be Euclidean on a suitable factor
representation of such matrices, which is valid on the entire geodesic between these
matrices;

(ii) The 2-Wasserstein distance boils down to the usual Euclidean metric when comparing
Diracs, and therefore provides a natural framework to extend point embeddings.

We show that for these reasons Wasserstein elliptical embeddings are more intuitive
and yield tools that are better behaved numerically than the alternative choice of Gaussian
embeddings with the Kullback-Leibler divergence. In particular, and unlike previous work
based on the KL geometry, we learn elliptical distributions that are not necessarily diagonal.
We demonstrate the advantages of elliptical embeddings by using them for visualization, to
compute embeddings of words, and to reflect entailment or hypernymy.

This chapter is based on [Muzellec and Cuturi, 2018]. In this original work, Newton-
Schulz (NS) iterations were utilized to obtain the matrix roots and inverse roots required
for the computation of the Bures distance and its gradient. In this updated version, we use
NS iterations to directly obtain Monge maps and inverse maps, resulting in a more efficient
numerical scheme.

99
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1 Introduction

One of the holy grails of machine learning is to compute meaningful low-dimensional
embeddings for high-dimensional complex data. That ability has recently proved crucial
to tackle more advanced tasks, such as for instance: inference on texts using word embed-
dings [Mikolov et al., 2013b, Pennington et al., 2014, Bojanowski et al., 2017|, improved
image understanding [Norouzi et al., 2014], representations for nodes in large graphs |Grover
and Leskovec, 2016].

Such embeddings have been traditionally recovered by seeking isometric embeddings
in lower dimensional Euclidean spaces, as studied in [Johnson and Lindenstrauss, 1984,
Bourgain, 1985]. Given n input points x1, ..., Z,, one seeks as many embeddings y1,...,yn
in a target space ) = R? whose pairwise distances ||y; —y;||2 do not depart too much from
the original distances dx (z;, ;) in the input space. Note that when d is restricted to be 2 or
3, these embeddings (y;); provide a useful way to visualize the entire dataset. Starting with
metric multidimensional scaling (mMDS) [De Leeuw, 1977, Borg and Groenen, 2005], several
approaches have refined this intuition [Tenenbaum et al., 2000, Roweis and Saul, 2000, Hinton
and Roweis, 2003, Maaten and Hinton, 2008]. More general criteria, such as reconstruction
error [Hinton and Salakhutdinov, 2006, Kingma and Welling, 2014|; co-occurence |Globerson
et al., 2007]; or relational knowledge, be it in metric learning [Weinberger and Saul, 2009]
or between words [Mikolov et al., 2013b] can be used to obtain vector embeddings. In
such cases, distances ||y; — y;|2 between embeddings, or alternatively their dot-products
(¥i, yj) must comply with sophisticated desiderata. Naturally, more general and flexible
approaches in which the embedding space ) needs not be Euclidean can be considered,
for instance in generalized MDS on the sphere [Maron et al., 2010], on surfaces |[Bronstein
et al., 2006], in spaces of trees [Biadoiu et al., 2007, Fakcharoenphol et al., 2003] or, more
recently, computed in the Poincaré hyperbolic space [Nickel and Kiela, 2017].

Probabilistic Embeddings. Our work belongs to a recent trend, pioneered by Vilnis
and McCallum, who proposed to embed data points as probability measures in R? [2015],
and therefore generalize point embeddings. Indeed, point embeddings can be regarded as a
very particular—and degenerate—case of probabilistic embedding, in which the uncertainty
is infinitely concentrated on a single point (a Dirac). Probability measures can be more
spread-out, or event multimodal, and provide therefore an opportunity for additional
flexibility. Naturally, such an opportunity can only be exploited by defining a metric,
divergence or dot-product on the space (or a subspace thereof) of probability measures.
Vilnis and McCallum proposed to embed words as Gaussians endowed either with the
Kullback-Leibler (KL) divergence or the expected likelihood kernel [Jebara et al., 2004]. The
Kullback-Leibler and expected likelihood kernel on measures have, however, an important
drawback: these geometries do not coincide with the usual Euclidean metric between point
embeddings when the variances of these Gaussians collapse. Indeed, the KL divergence and
the ¢5 distance between two Gaussians diverges to oo or saturates when the variances of
these Gaussians become small. To avoid numerical instabilities arising from this degeneracy,
Vilnis and McCallum must restrict their work to diagonal covariance matrices. In a
concurrent approach, Singh et al. represent words as distributions over their contexts in
the optimal transport geometry [Singh et al., 2020].

Contributions.  We propose in this work a new framework for probabilistic embeddings,
in which point embeddings are seamlessly handled as a particular case. We consider arbitrary
families of elliptical distributions, which subsume Gaussians, and also include uniform
elliptical distributions, which are arguably easier to visualize because of their compact
support. Our approach uses the 2-Wasserstein distance to compare elliptical distributions.
The latter can handle degenerate measures, and both its value and its gradients admit
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closed forms |Gelbrich, 1990|, either in their natural Riemannian formulation, as well as in
a more amenable local Euclidean parameterization. We provide numerical tools to carry
out the computation of elliptical embeddings in different scenarios, both to optimize them
with respect to metric requirements (as is done in multidimensional scaling) or with respect
to dot-products (as shown in our applications to word embeddings for entailment, similarity
and hypernymy tasks) for which we introduce a proxy using a polarization identity.

2 The Geometry of Elliptical Distributions in the
Wasserstein Space

We recall in this section basic facts about elliptical distributions in R%. We adopt a general
formulation that can handle measures supported on subspaces of R% as well as Dirac
(point) measures. That level of generality is needed to provide a seamless connection
with usual vector embeddings, seen in the context of this chapter as Dirac masses. We
recall results from the literature showing that the squared 2-Wasserstein distance between
two distributions from the same family of elliptical distributions is equal to the squared
Euclidean distance between their means plus the squared Bures metric between their scale
parameter scaled by a suitable constant.

Elliptically-contoured densities. In their simplest form, elliptical distributions can be
seen as generalizations of Gaussian multivariate densities in R?: their level sets describe
concentric ellipsoids, shaped following a scale parameter C € Sf‘ﬁ 1, and centered around a
mean parameter ¢ € R? [Cambanis et al., 1981]. The density at a point x of such distribu-
tions is f(||x —c||c-1)/1/|C| where the generator function f is such that [, f(||x|/*)dx = 1.
Gaussians are recovered with f =g, ¢g(-) x e~/ while uniform distributions on full rank
ellipsoids result from f = u,u(-) x 1.<;.

Because the norm induced by C~! appears in formulas above, the scale parameter C
must have full rank for these definitions to be meaningful. Cases where C does not have full
rank can however appear when a probability measure is supported on an affine subspace’
of R%, such as lines in R2, or even possibly a space of null dimension when the measure is
supported on a single point (a Dirac measure), in which case its scale parameter C is O.
We provide in what follows a more general approach to handle these degenerate cases.

Elliptical distributions. To lift this limitation, several reformulations of elliptical distri-
butions have been proposed to handle degenerate scale matrices C of rank rkC < d. Gelbrich
[1990, Theorem 2.4| defines elliptical distributions as measures with a density w.r.t the

Lebesgue measure of dimension rkC, in the affine space ¢ + ImC, where the image of C is

ImC % {Cx,x € R?%}. This approach is intuitive, in that it reduces to describing densities

in their relevant subspace. A more elegant approach uses the parameterization provided
by characteristic functions [Cambanis et al., 1981, Fang et al., 1990|. In a nutshell, recall
that the characteristic function of a multivariate Gaussian is equal to ¢(t) = e’ ¢g(t7Ct)
where, as in the paragraph above, g(-) = e~/2. A natural generalization to consider
other elliptical distributions is therefore to consider for g other functions h of positive
type [Ushakov, 1999, Theo.1.8.9], such as the indicator function u above, and still apply
them to the same argument t” Ct. Such functions are called characteristic generators and
fully determine, along with a mean ¢ and a scale parameter C, an elliptical measure. This
parameterization does not require the scale parameter C to be invertible, and therefore
allows to define probability distributions that do not have necessarily a density w.r.t to

!For instance, the random variable Y in R? obtained by duplicating the same normal random variable
X in R, Y = [X, X], is supported on a line in R? and has no density w.r.t the Lebesgue measure in R?.
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Figure 2.1: Five measures from the family of uniform elliptical distributions in R®. Each
measure has a mean (location) and scale parameter. In this carefully selected example, the
reference measure (with scale parameter A) is equidistant (according to the 2-Wasserstein
metric) to the four remaining measures, whose scale parameters B, B1, By, B3 have ranks
equal to their indices (here, v = [3,7, —2]).

the Lebesgue measure in R?. Both constructions are relatively complex, and we refer the
interested reader to these references for a rigorous treatment.

Rank-deficient elliptical distributions and their variances. For the purpose of this
work, we will only require the following result: the variance of an elliptical measure is
equal to its scale parameter C multiplied by a scalar that only depends on its characteristic
generator. Indeed, given a mean vector ¢ € R%, a scale semi-definite matrix C € Si and a
characteristic generator function h, we define yj ¢ c to be the measure with characteristic
function t — eitTch(tTCt). In that case, one can show that the covariance matrix of puy, ¢ .c
is equal to its scale parameter C times a constant 75, that only depends on h, namely

var(,uh’qc) = Thc . (2.1)

For Gaussians, the scale parameter C and its covariance matrice coincide, that is 7, = 1.
For uniform elliptical distributions, one has 7, = 1/(d + 2): the covariance of a uniform
distribution on the volume {c + Cx,x € R? ||x|| < 1}, such as those represented in
Figure 2.1, is equal to C/(d + 2).

The 2-Wasserstein Bures metric. A natural metric for elliptical distributions arises
from optimal transport (OT) theory. We refer interested readers to [Santambrogio, 2015,
Peyré et al., 2019] for exhaustive surveys on OT. Recall that for two arbitrary probability
measures , v € P(R?), their squared 2-Wasserstein distance is equal to

2 def .
Wolpv) = | inf  Ejx-vyz:
This formula rarely has a closed form. However, in the footsteps of Dowson and Landau

[1982] who proved it for Gaussians, Gelbrich [1990] showed that for o« o fhaa and

6 def finb,B in the same family Py, = {jipc.c,c € R4, C € S%}, one has

W3 (@, 8) = [la— b|3 + B2(var a, var 3)

2.2
= |la = bl + 7:B*(A, B), 22
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where B2 is the (squared) Bures metric on Si, proposed in quantum information geome-
try [1969] and studied recently in [Bhatia et al., 2018, Malago et al., 2018|,

D=

2 def 1 1
BAX,Y) L Tr(X +Y — 2(X2YX2)2). (2.3)
The factor 75, next to the rightmost term 2 in (2.2) arises from homogeneity of B? in its
arguments (2.3), which is leveraged using the identity in (2.1).

A few remarks.

(i) When both scale matrices A = diagda and B = diagdp are diagonal, W3 (a, 3) is
the sum of two terms: the usual squared Euclidean distance between their means,
plus 73, times the squared Hellinger metric between the diagonals da,dg:

$%(da,dp) & [|v/da — Vds|l2.

(ii) The distance Wa between two Diracs d0a, dp is equal to the usual distance between
vectors ||a — bl|a.

(iii) The squared distance W22 between a Dirac d, and a measure p B in Pj, reduces
to |la — b||? + 7, TrB. The distance between a point and an ellipsoid distribution
therefore always increases as the scale parameter of the latter increases. Although
this point makes sense from the quadratic viewpoint of W3 (in which the quadratic
contribution |la — x||3 of points x in the ellipsoid that stand further away from a than
b will dominate that brought by points x that are closer, see Figure 2.3) this may be
counterintuitive for applications to visualization, an issue that will be addressed in
Section 4.

(iv) The W, distance between two elliptical distributions in the same family Py, is always
finite, no matter how degenerate they are. This is illustrated in Figure 2.1 in which
a uniform measure 5 A is shown to be exactly equidistant to four other uniform
elliptical measures, some of which are degenerate. However, as can be hinted by the
simple example of the Hellinger metric, that distance may not be differentiable for
degenerate measures (in the same sense that (y/z — /y)? is defined at 2 = 0 but not
differentiable w.r.t z).

(v) Although we focus in this chapter on uniform elliptical distributions, notably because
they are easier to plot and visualize, considering any other elliptical family simply
amounts to changing the constant 7, next to the Bures metric in (2.2). Alternatively,
increasing (or tuning) that parameter 75, simply amounts to considering elliptical
distributions with increasingly heavier tails.

3 Optimizing over the Space of Elliptical Embeddings

Our goal in this chapter is to use the set of elliptical distributions endowed with the W5
distance as an embedding space. To optimize objective functions involving Ws terms, we
study in this section several parameterizations of the parameters of elliptical distributions.
Location parameters only appear in the computation of Ws through their Euclidean metric,
and offer therefore no particular challenge. Scale parameters are more tricky to handle
since they are constrained to lie in Si. Rather than keeping track of scale parameters,
we advocate optimizing directly on factors of such parameters, which results in simple
Euclidean (unconstrained) updates reviewed below.
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Geodesics for elliptical distributions. When A and B have full rank, the geodesic
from « to 8 is a curve of measures in the same family of elliptic distributions, characterized
by location and scale parameters c(t), C(t), where

c(t)=(1—-ta+tb; C@t)=((1-I+tTAB)A((1-t)I+tTAB), (2.4)

and where the matrix TAB is such that x — TAB(x —a) + b is the so-called Monge
or Brenier optimal transportation map [1987] from « to (3, given in closed form as

1 1 11 1
TAB ' A-2(A2BA2)2A 2, (2.5)

and is the unique PSD matrix such that B = TABATAB (Lemma 1.20). When A is
degenerate, such a curve still exists as long as ImB C ImA, in which case the expression
above is still valid using pseudo-inverse square roots Af/2 in place of the usual inverse
square-root (Proposition 1.15).

Wy geodesic (1) from g to py (¢ € [0,1]) and extrapolation Metric derivative on curve
5 T T _

li\\\ — B e T ——

= Ht — H-2

E 09
% -~ - — [l
< 0.85 e = i
= -l — L3
= 08 : : : -

2 - 0 1 2 3

curve time

Figure 2.2: (left) Interpolation (u¢): between two measures g and pq following the geodesic
equation (2.4). The same formula can be used to interpolate on the left and right of times
0,1. Displayed times are [—2,—1,—.5,0,.25,.5,.75,1,1.5,2,3]. Note that geodesicity is
not ensured outside of the boundaries [0, 1]. This is illustrated in the right plot displaying
normalized metric derivatives of the curve p; to four relevant points: pg, g1, t—2, 3. The
curve i is not always locally geodesic, as can be seen by the fact that the metric derivative
is strictly smaller than 1 in several cases.

Differentiability in Riemannian parameterization. Scale parameters are restricted
to lie on the cone Si. For such problems, it is well known that a direct gradient-and-project
based optimization on scale parameters would prove too expensive. A natural remedy
to this issue is to perform manifold optimization [Absil et al., 2009]. Indeed, as in any
Riemannian manifold, the Riemannian gradient gmdw%d2 (x,y) is given by —log, y [Lee,
1997|. Using the expressions of the exp and log given in Proposition 1.23, we can show that
minimizing %%Q(A, B) using Riemannian gradient descent with step length 7 corresponds
to making updates of the form

A= (1-nI+nTAB)A ((1—n)I+nTAB). (2.6)

When 0 < n < 1, this corresponds to considering a new point A’ closer to B along the
Bures geodesic between A and B. When 7 is negative or larger than 1, A’ no longer lies
on this geodesic but is guaranteed to remain PSD, as can be seen from (2.6). Figure 2.2
shows a Wy geodesic between two measures po and 1, as well as its extrapolation following
exactly the formula given in (2.4). This figure illustrates that p is not necessarily geodesic
outside of the boundaries [0, 1] w.r.t. three relevant measures, because its metric derivative
is smaller than 1 [Ambrosio et al., 2006, Theorem 1.1.2]. When negative steps are taken (for
instance when the WZ distance needs to be increased), this lack of geodisicity has proved
difficult to handle numerically for a simple reason: such updates may lead to degenerate
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scale parameters A’; as illustrated around time ¢ = 1.5 of the curve in Figure 2.2. Another
obvious drawback of Riemannian approaches is that they are not as well studied as simpler
non-constrained Euclidean problems, for which a plethora of optimization techniques are
available. This observations motivates an alternative Euclidean parameterization, detailed
in the next paragraph.

Differentiability in Euclidean parameterization. A canonical way to handle a PSD
constraint for A is to rewrite it in factor form A = LL”. In the particular case of the
Bures metric, we show that this simple parametrization comes without losing the geometric
interest of manifold optimization, while benefiting from simpler additive updates. Indeed,
one can (see Section 5) that the gradient of the squared Bures metric has the following
gradient:

1
VL5 B%(A,B) = (I- TAB)L, with updates L' = ((1 - p)I+7TAB)L. (2.7

Links between Euclidean and Riemannian parameterizations. The factor updates
in (2.7) are exactly equivalent to the Riemannian ones (2.6) in the sense that A’ = L/L/".
Therefore, by using a factor parameterization we carry out updates that stay on the
Riemannian geodesic and yet only require linear updates on L, independently of the factor
L chosen to represent A (given a factor L of A, any right-side multiplication of that matrix
by a unitary matrix remains a factor of A).

When considering a general loss function £ that takes as arguments squared Bures
distances, one can also show that £ is geodesically convex w.r.t. to scale matrices A if
and only if it is convex in the usual sense with respect to L, where A = LL”. Write now
Lg = TABL. One can recover that LgLL = B. Therefore, expanding the expression 82
for the right term we obtain

B%(A,B) = B* (LL",LgLg)
— %7 (LL”, TAPL (TAPL)")
= [IL - TAPL|% (2.8)

Indeed, the Bures distance simply reduces to the Frobenius distance between two factors
of A and B. However these factors need to be carefully chosen: given L for A, the factor
for B must be computed according to an optimal transport map TAB. In fact, the Bures
distance is equal to the minimal Frobenius norm between factors of A and B [Bhatia et al.,
2018]:

B(A,B) = min M — N||p.
M,NecRdxd
MMT=A NNT=B

Polarization between elliptical distributions. Some of the applications we consider,
such as the estimation of word embeddings, are inherently based on dot-products. By
analogy with the polarization identity, (x, y) = (||x—0]|*+||y —0|* - ||[x—y]?)/2, we define
a Wasserstein-Bures pseudo-dot-product based on the quantum fidelity F(A,B) [Bures,
1969] (see Section 2), where dg = pi,, is the Dirac mass at O,

Odxd
def
(Haa : o] = L (Wi(taasdo) + Wi (B do) — W3 (fiaa, b B)) (2.9)
1 11
= (a, b) + Tr(A2BA2)2. (2.10)
Note that [- : -] is not an actual inner product since the Bures metric is not Hilbertian,

unless we restrict ourselves to diagonal covariance matrices, in which case it is the the inner
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product between (a,v/da) and (b,/dg). We use [uaA : tbB] as a similarity measure
which has, however, some regularity: one can show that when a, b are constrained to have
equal norms and A and B equal traces, then [pa A : b B| is maximal when a = b and
A = B. Differentiating all three terms in that sum, the gradient of this pseudo dot-product
w.r.t. A reduces to Va[taa : tbB] = TAB,

3.1 Computational aspects

The computational bottleneck of gradient-based Bures optimization lies in the matrix square
roots and inverse square roots operations that arise when instantiating transport maps T
as in (2.5). A naive method using eigenvector decomposition is far too time-consuming,
and there is not yet, to the best of our knowledge, a straightforward way to perform it in
batches on a GPU. We propose to use Newton-Schulz iterations (Algorithms 1 and 2, see
[Higham, 2008, Theorem 5.2 and Ch. 6|) to directly compute Monge maps TAB and TBA.
These iterations rely exclusively on matrix-matrix multiplications, and stream efficiently

on GPUs.

Algorithm 1 NS ROOt [terations Algorithm 2 NS Monge Iterations
Inpl.lt': PSD matrix A, €A> 0 Input: PSD matrices A,B, ¢ > 0
Imt.lahzatlon: Y (DI Z+1 Y (HSIIBH JZ — (HSHAH
while not converged do while not converged do
T+ 3I-72Y)/2 T+ (3I-72Y)/2
Y«~YT Y« YT
7 +— TZ 7 +— TZ
end while end while

Y V(L allAllY Y « /[BI/A[Y
(1+o)A] Z «+ /||All/IIB|Z

Output: Y = A2 Z = A~1/2 Output: Y = TAB Z = TBA

In a gradient update, both the loss and the gradient of the metric are needed. A naive
computation of B2(A,B), VAB2(A,B) and VgB2(A, B) would require the knowledge of
6 roots:

11 1 11 1 11 1 1
A2 B2,(A2BA2)2,(B2AB2)2,A" 2, and B 2,
to compute the following transport maps:
101 1.1 1 11 1.1 1
TAB - A"2(A2BA2)2A"2, TBA=-B 2(B2AB2)2B 2,

namely four matrix roots and two matrix inverse roots, which can be computed using SVD
or Algorithm 1. However, we can avoid computing those six matrices using Algorithm 2,
i.e. Newton-Schulz iterations with a different initialization, which directly yields TAB and
TBA [Higham, 2008, §5.3]. From there, Bures distances and gradients can directly be
computed using (2.8) and (2.7).

When computing the gradients of n x m squared Wasserstein distances Wg(ai, Bj) in
parallel, one only needs to run Algorithm 2 n x m times (in parallel) to compute matrices
(TAZ'BJ'7 TBfAi)i§n7jSm. On the other hand, using an automatic differentiation framework
would require an additional backward computation of the same complexity as the forward
pass, hence requiring roughly twice as many operations per batch.

Avoiding rank deficiency at optimization time. Although B2(A,B) is defined for
rank-deficient matrices A and B, it is not differentiable with respect to these matrices
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if they are rank-deficient. Indeed, as mentioned earlier, this can be compared to the
non-differentiability of the Hellinger metric, (v/z — /7)* when z or y becomes 0, at which
point if becomes not differentiable. If InB ¢ ImA , which is notably the case if rkB > rkA,
then VAB2(A,B) no longer exists. However, even in that case, VgB2(A, B) exists iff
ImA C ImB. Since it would be cumbersome to account for these subtleties in a large scale
optimization setting, we propose to add a small common regularization term to all the
factor products considered for our embeddings, and set A, = LLY + I were € > 0 is a
hyperparameter. This ensures that all matrices are full rank, and thus that all gradients
exist. Most importantly, all our derivations still hold with this regularization, and can be
shown to leave the method to compute the gradients w.r.t L unchanged, namely remain
equal to (I — TAfB) L.

4 Experiments

We discuss in this section several applications of elliptical embeddings. We first consider a
simple mMDS type visualization task, in which elliptical distributions in d = 2 are used
to embed isometrically points in high dimension. We argue that for such purposes, a
more natural way to visualize ellipses is to use their precision matrices. This is due to the
fact that the human eye somewhat acts in the opposite direction to the Bures metric, as
discussed in Figure 2.3. We follow with more advanced experiments in which we consider
the task of computing word embeddings on large corpora as a testing ground, and equal or
improve on the state-of-the-art.

Points in 2D . Isoanetric Wy Elliptical Embedding  Precision Matri isualization
2 2 !
] 1 0 6} 3
0 -1
0/ ® B N ) 2 X
0 2 jPi 0 2 4 _ -1 0 1 2 3

Figure 2.3: (left) three points on the plane. (middle) isometric elliptic embedding with the
Bures metric: ellipses of a given color have the same respective distances as points on the
left. Although the mechanics of optimal transport indicate that the blue ellipsoid is far
from the two others, in agreement with the left plot, the human eye tends to focus on those
areas that overlap (below the ellipsoid center) rather than those far away areas (north-east
area) that contribute more significantly to the Wj distance. (right) the precision matrix
visualization, obtained by considering ellipses with the same axes but inverted eigenvalues,
agree better with intuition, since they emphasize that overlap and extension of the ellipse
means on the contrary that those axis contribute less to the increase of the metric.

Visualizing datasets using ellipsoids. Multidimensional scaling [De Leeuw, 1977]

alms at embedding points x1,...,X, in a finite metric space in a lower dimensional one
by minimizing the stress >, (|lx; — x;[| — [ly: — y;l)?. In our case, this translates to the
minimization of Lyps(ay, ... an, A1, ..., Ay) = ZU(HXZ — x| —Wg(uahAi,uaj,Aj))Q. This

objective can be crudely minimized with a simple gradient descent approach operating on
factors as advocated in Section 3, as illustrated in a toy example carried out using data
from OECD’s PISA study?.

’http://pisadataexplorer.oecd.org/ide/idepisa/



68 CHAPTER 2. EMBEDDINGS IN THE WASS. SPACE OF ELLIPTICAL DIST.

thle
021 Einland
tralia
0.1 aca  Qustralid Grance
Est&ﬁ‘é‘ Greece
.
0 ermany °
Belgiupech Republic
-0 Denm%ﬁstria ¢
-0.2 ’ ¢
-1.5 -1 -0.5 0 0.5 1 1.5 2 25 3

Figure 2.4: Toy experiment: visualization of a dataset of 10 PISA scores for 35 countries
in the OECD. (left) MDS embeddings of these countries on the plane (right) elliptical
embeddings on the plane using the precision visualization discussed in Figure 2.3. The
normalized stress with standard MDS is 0.62. The stress with elliptical embeddings is
close to be — 3 after 1000 gradient iterations, with random initializations for scale matrices
(following a Standard Wishart with 4 degrees of freedom) and initial means located on the
MDS solution.

Word embeddings. The skipgram model [Mikolov et al., 2013a| computes word embed-
dings in a vector space by maximizing the log-probability of observing surrounding context
words given an input central word. Vilnis and McCallum [2015] extended this approach
to diagonal Gaussian embeddings using an energy whose overall principles we adopt here,
adapted to elliptical distributions with full covariance matrices in the 2-Wasserstein space.
For every word w, we consider an input (as a word) and an ouput (as a context) represen-
tation as an elliptical measure, denoted respectively u,, and v, both parameterized by a
location vector and a scale parameter (stored in factor form). Given a set R of positive

Table 2.1: Results for elliptical embeddings (evaluated using our cosine mixture) compared
to diagonal Gaussian embeddings trained with the seomoz package (evaluated using expected
likelihood cosine similarity as recommended by Vilnis and McCallum).

Dataset W2G/45/C  Ell/12/CM
SimLex 25.09 24.09
WordSim 53.45 66.02
WordSim-R 61.70 71.07
WordSim-S 48.99 60.58
MEN 65.16 65.58
MC 59.48 65.95
RG 69.77 65.58
YP 37.18 25.14
MT-287 61.72 59.53
MT-771 57.63 56.78
RW 40.14 29.04

word /context pairs of words (w,c), and for each input word a set N(w) of n negative
contexts words sampled randomly, we adapt Vilnis and McCallum’s loss function to the
W2 distance to minimize the following hinge loss:

2.

(w,c)€ER

M — [py v + 1 Z [ : V]|
/€N (w) n

where M > 0 is a margin parameter. We train our embeddings on the concatenated ukWaC
and WaCkypedia corpora [Baroni et al., 2009], consisting of about 3 billion tokens, on
which we keep only the tokens appearing more than 100 times in the text (for a total
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number of 261583 different words). We train our embeddings using adagrad [Duchi et al.,
2011], sampling one negative context per positive context and, in order to prevent the norms
of the embeddings to be too highly correlated with the corresponding word frequencies (see
Figure in supplementary material), we use two distinct sets of embeddings for the input
and context words.

mill= Bach
memn classical
mdem famous
m@m composer
@ man

T T I T T T T

—6 -4 -2 0 2 4 6
Figure 2.5: Precision matrix visualization of trained embeddings of a set of words on the
plane spanned by the two principal eigenvectors of the covariance matrix of “Bach”.

We compare our full elliptical to diagonal Gaussian embeddings trained using the
methods described in [Vilnis and McCallum, 2015] on a collection of similarity datasets by
computing the Spearman rank correlation between the similarity scores provided in the
data and the scores we compute based on our embeddings. Note that these results are
obtained using context (1) rather than input (u,,) embeddings. For a fair comparison
across methods, we set dimensions by ensuring that the number of free parameters remains
the same: because of the symmetry in the covariance matrix, elliptical embeddings in
dimension d have d + d(d + 1)/2 free parameters (d for the means, d(d + 1)/2 for the
covariance matrices), as compared with 2d for diagonal Gaussians. For elliptical embeddings,
we use the common practice of using some form of normalized quantity (a cosine) rather
than the direct dot product. We implement this here by computing the mean of two cosine
terms, each corresponding separately to mean and covariance contributions:

1 11
SslHa,As fib,B] « @,b) | THATBAT)>
R lalllibl ~ VIrATIB

Using this similarity measure rather than the Wasserstein-Bures dot product is motivated
by the fact that the norms of the embeddings show some dependency with word frequencies
(see figures in supplementary) and become dominant when comparing words with different
frequencies scales. An alternative could have been obtained by normalizing the Wasserstein-
Bures dot product in a more standard way that pools together means and covariances.
However, as discussed in the supplementary material, this choice makes it harder to deal
with the variations in scale of the means and covariances, therefore decreasing performance.
We also evaluate our embeddings on the Entailment dataset ([Baroni et al., 2012]), on
which we obtain results roughly comparable to those of [Vilnis and McCallum, 2015]. Note
that contrary to the similarity experiments, in this framework using the (unsymmetrical)
KL divergence makes sense and possibly gives an advantage, as it is possible to choose the
order of the arguments in the KL divergence between the entailing and entailed words.

Hypernymy. In this experiment, we use the framework of [Nickel and Kiela, 2017] on
hypernymy relationships to test our embeddings. A word A is said to be a hypernym of
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Table 2.2: Entailment benchmark: we evaluate our embeddings on the Entailment dataset
using average precision (AP) and F1 scores. The threshold for F1 is chosen to be the best
at test time.

Model AP F1
W2G/45/Cosine  0.70  0.74
W2G/45/KL  0.72  0.74
Ell/12/CM  0.70 0.73

a word B if any B is a type of A, e.g. any dog is a type of mammal, thus constituting
a tree-like structure on nouns. The WORDNET dataset [Miller, 1995] features a transitive
closure of 743,241 hypernymy relations on 82,115 distinct nouns, which we consider as an
undirected graph of relations R. Similarly to the skipgram model, for each noun u we
sample a fixed number n of negative examples and store them in set AV'(u) to optimize the
following loss:

e[#uvﬂv]

log '
(u%éf/z e[uuvl‘«v] + ZU,EN(u) e[/‘u,,uav/]

We train the model using SGD with only one set of embeddings. The embeddings are then
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Figure 2.6: Reconstruction performance of our embeddings against Poincare embeddings
(reported from |Nickel and Kiela, 2017|, as we were not able to reproduce scores comparable
to these values) evaluated by mean retrieved rank (lower=better) and MAP (higher=better).

evaluated on a link reconstruction task: we embed the full tree and rank the similarity of
each positive hypernym pair (u,v) among all negative pairs (u,v’) and compute the mean
rank thus achieved as well as the mean average precision (MAP), using the Wasserstein-
Bures dot product as the similarity measure. Elliptical embeddings consistently outperform
Poincare embeddings for dimensions above a small threshold, as shown in Figure 2.6, which
confirms our intuition that the addition of a notion of variance or uncertainty to point
embeddings allows for a richer and more significant representation of words.

4.1 Model Hyperparameters and Training Details

Word Embeddings. We train our embeddings on the concatenated ukWaC and WaCk-
ypedia corpora [Baroni et al., 2009], consisting of about 3 billion tokens, on which we keep
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only the tokens appearing more than 100 times in the text after lowercasing and removal of
all punctuation (for a total number of 261583 different words). We optimize 5 epoches using
adagrad [Duchi et al., 2011] with e = 10~® with a learning rate of 0.01. We use a window
size of 10 (i.e. positive examples consist of the first 5 preceding and first 5 succeeding
words), set the margin to 10, sample one negative context per positive context and, in order
to prevent the norms of the embeddings to be too highly correlated with the corresponding
word frequencies (see Figure 2.7), we use two distinct sets of embeddings for the input and
context words. In order to use as much parallelization as possible, we use batches of size
10000, but believe that smaller batches would lead to improved performances. We limit
matrix square root approximations to 6 Newton-Schulz iterations and add 0.0114 to the
covariances to ensure non-singularity.

To generate batches, we use the same sampling tricks as in [Mikolov et al., 2013b],
namely subsampling the frequent terms (using a threshold of 1075 as recommended for
large datasets) and smoothing the negative distribution by using probabilities { fig/ 4 /Z}
where f; is the frequency of word ¢ for sampling negative contexts {c;}.

We then evaluate our embeddings on the following datasets:

e Simlex [Hill et al., 2015],

e WordSim |Finkelstein et al., 2002],

e MEN [Bruni et al., 2014],

e MC |Miller and Charles, 1991],

e RG [Rubenstein and Goodenough, 1965],

e YP [Yang and Powers, 2005],

e MTurk [Radinsky et al., 2011, Halawi et al., 2012],
e RW [thang Luong et al., 2013],

using the context embeddings and the Wasserstein-Bures cosine as a similarity measure.

Hypernymy. We train our embeddings on the transitive closure of the WORDNET
dataset [Miller, 1995| which features 743,241 hypernymy relations on 82,115 distinct nouns.
For disambiguation, note that if (u,v) is a hypernymy relation with u # v, (v,u) is in
general not a positive relation, but (u,u) is as a noun is always its own hypernym.

We perform our optimization using SGD with batches of 1000 relations, a learning rate
0.02 for dimensions 3 and 4 and 0.01 for higher dimensions, sample 50 negative examples per
positive relation, use 6 square root iterations and add 0.01I4 to the covariances. Contrary to
the skipgram experiment, we use a single set of embeddings and use the Wasserstein-Bures
dot product as a similarity measure.

4.2 The Wasserstein-Bures cosine

As discussed in Section 4, a natural choice of similarity measure would be the Wasserstein-
Bures cosine, obtained by normalizing the Wasserstein-Bures dot product with the means’
norms and covariances’ root traces jointly:

1 11

def  (a, b) +Tr[AZBA2]2

cos [[la, Ay bB] = 1 1-
(lalf2 + TrA)2 (b2 + TvB)*
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Figure 2.7: log-log plot of the norms (top) and traces (bottom) of the embeddings’ means
vs. word frequency: the sizes of the input embeddings (left) follow a power law, whereas
context embeddings (right) give less importance to very frequent words and emphasize on
medium frequency words.

However, we have found that in some applications (and notably in our skipgram
experiments) such a joint normalization can result in either the means or the covariances to
have a negligible contribution if the scales of the parameters differ too much. To circumvent
this problem, we introduce another similarity measure, which is a mixture of two cosine
terms:

1 11
S |.— @b  Tr[A2BAZ2J2
B |Ma,A; Ub,B] : B TrATrB

This latter similarity measure allows to gather information from the means and the
covariances independently. Note that while the term corresponding to the covariances is
obtained in a cosine-like normalization, it takes values between 0 and 1 as it only involve
traces of PSD matrices, whereas the means term is a regular Euclidean cosine and therefore
takes values between -1 and 1. We compare the behaviors of these two measures on the
word similarity evaluation task by introducing a mixing coefficient p, and defining
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Figure 2.8: Pearson rank correlation scores on similarity benchmarks as a function of the
mixing coefficient: ©g smoothly attains a maximum in performance around p = 1, whereas
cosy has a less regular behavior.

1 11
def <a7 b> + pTr[AQBAﬁ]Q
cos[fta, A b B P) = 1 1
(Jalf2 + #TrA) 3 ([b]2 + pTiB)
1 11
def (a, b) Tr[A2BAZ]2
& , Wb,B; P = + '
Bl 1o L o o /AT

As can be seen from Figure 2.8, the Wasserstein-Bures cosine is less well behaved and
makes it difficult to find an optimal mixing value. On the other hand, the mixture of cosines
similarity measure varies more smoothly and seems to reach a performance maximum

around p = 1, and achieves better performance than the Wasserstein-Bures cosine on most
datasets.

Conclusion

We have proposed to use the space of elliptical distributions endowed with the W5 metric
to embed complex objects. This latest iteration of probabilistic embeddings, in which a
point an object is represented as a probability measure, can consider elliptical measures
(including Gaussians) with arbitrary covariance matrices. Using the Wy metric we can
provides a natural and seamless generalization of point embeddings in R?. Each embedding
is described with a location ¢ and a scale C parameter, the latter being represented in
practice using a factor matrix L, where C is recovered as LLT. The visualization part of
work is still subject to open questions. One may seek a different method than that proposed
here using precision matrices, and ask whether one can include more advanced constraints
on these embeddings, such as inclusions or the presence (or absence) of intersections across
ellipses. Handling multimodality using mixtures of Gaussians could be pursued. In that
case a natural upper bound on the W5 distance can be computed by solving the OT
problem between these mixtures of Gaussians using a simpler proxy: consider them as
discrete measures putting Dirac masses in the space of Gaussians endowed with the Wy
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metric as a ground cost, and use the optimal cost of that proxy as an upper bound of
their Wasserstein distance. Finally, note that the set of elliptical measures pc c endowed
with the Bures metric can also be interpreted, given that C = LLT,L € R*** and writing
1; = I; — 1 for the centered column vectors of L, as a discrete point cloud (c+ ﬁiz)z endowed
with a Wy metric only looking at their first and second order moments. These k points,
whose mean and covariance matrix match ¢ and C, can therefore fully characterize the
geometric properties of the distribution pc ¢, and may provide a simple form of multimodal
embedding.
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5 Appendix: Derivation of the Euclidean Gradient of the
Bures metric

Let ® denote the Kronecker product of matrices. Recall [see Fackler, 2005] that
BT ® AJvec(X) = vec(AXB) and [A®B]J[C®D]=[AC®BD).

In the following, we will often omit the vec(:) and treat matrices as vectors when the
context makes it clear. We will make use of the following identities:

Ox fog(X)=0x[f(9(X))oxg(X)
dx (f9)(X) = [9(X)T © I3)ox f(X) + [Iq ® g(X)]0xg(X).

Likewise, we will write the solution £a (B) of the Lyapunov equation XA + AX = B using
Kronecker notations:

Ox X'?[H] = Ly1,»(H)
= [X?2 @I+ 14 @ X/ 'H.

1 11
Gradient of B2?(A,B). Let F(A,B) = Tr(B2AB2)2 denote the fidelity, let us differ-
entiate F' w.r.t A for the Frobenius inner product:

[ 1o 117"
VAF(A,B) = 6A(B2AB2)2} I4

2
where the fourth line comes from the fact that VA € 5%, LA (14) = %Afl/z.

AB

Gradient of B2(LL”,B). Let now A = LLT, let us differentiate w.r.t L :
- 11177
VLf(LL',B) = [QL(B2AB2)2] I

- 111"
= 0JLA [8A(B2AB2)2] I4

= TAPL,

where T, ,, is the transposition tensor, such that VX € R"*" T, ,vec(X) = vec(XT).
Finally, using the same calculations and the fact that O, [LL—r + 5Id] = 0L [LLT], one
can see that if A = LLT + eI, then we still have

ViF(LLT +¢I4, B) = TABL,






Chapter 3

Building Optimal Transport Plans on
Subspace Projections

Computing optimal transport (OT) between measures in high dimensions is doomed
by the curse of dimensionality. A popular approach to avoid this curse is to project
input measures on lower-dimensional subspaces (1D lines in the case of sliced Wasserstein
distances), solve the OT problem between these reduced measures, and settle for the
Wasserstein distance between these reductions, rather than that between the original
measures. This approach is however difficult to extend to the case in which one wants to
compute an OT map (a Monge map) between the original measures. Since computations
are carried out on lower-dimensional projections, classical map estimation techniques can
only produce maps operating in these reduced dimensions. We propose in this work two
methods to extrapolate, from an transport map that is optimal on a subspace, one that is
nearly optimal in the entire space. We prove that the best optimal transport plan that
takes such “subspace detours” is a generalization of the Knothe-Rosenblatt transport. We
show that these plans can be explicitly formulated when comparing Gaussian measures
(between which the Wasserstein distance is commonly referred to as the Bures or Fréchet
distance). We provide an algorithm to select optimal subspaces given pairs of Gaussian
measures, and study scenarios in which that mediating subspace can be selected using
prior information. We consider applications to semantic mediation between elliptical word
embeddings and domain adaptation with Gaussian mixture models.

This chapter is based on [Muzellec and Cuturi, 2019].

7
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1 Introduction

Minimizing the transport cost between two probability distributions [Villani, 2008] results
in two useful quantities: the minimum cost itself, often cast as a loss or a metric (the
Wasserstein distance), and the minimizing solution, a function known as the Monge
map [Monge, 1781] that pushes forward the first measure onto the second with least expected
cost. While the former has long attracted the attention of the machine learning community;,
the latter is playing an increasingly important role in data sciences. Indeed, important
problems such as domain adaptation [Courty et al., 2014|, generative modelling [Goodfellow
et al., 2014, Arjovsky et al., 2017, Genevay et al., 2018], reconstruction of cell trajectories in
biology Schiebinger et al. [2019] and auto-encoders |[Kingma and Welling, 2014, Tolstikhin
et al., 2018] among others can be recast as the problem of finding a map, preferably optimal,
which transforms a reference distribution into another. However, accurately estimating
an OT map from data samples is a difficult problem, plagued by the well documented
instability of OT in high-dimensional spaces [Dudley, 1969, Fournier and Guillin, 2015|
and its high computational cost.

Optimal transport on subspaces. Several approaches, both in theory and in practice,
aim at bridging this gap. Theory [Weed and Bach, 2019] supports the idea that sample
complexity can be improved when the measures are supported on lower-dimensional
manifolds of high-dimensional spaces. Practical insights [Cuturi, 2013| supported by
theory |Genevay et al., 2019] advocate using regularizations to improve both computational
and sample complexity. Some regularity in OT maps can also be encoded by looking
at specific families of maps [Seguy et al., 2018, Paty et al., 2020]. Another trend relies
on lower-dimensional projections of measures before computing OT. In particular, sliced
Wasserstein (SW) distances [Bonneel et al., 2015| leverage the simplicity of OT between
1D measures to define distances and barycentres, by averaging the optimal transport
between projections onto several random directions. This approach has been applied to
alleviate training complexity in the GAN/VAE literature |Deshpande et al., 2018, Wu
et al., 2019] and was generalized very recently in [Paty and Cuturi, 2019] who considered
projections on k-dimensional subspaces that are adversarially selected. However, these
subspace approaches only carry out half of the goal of OT: by design, they do result in more
robust measures of OT costs, but they can only provide maps in subspaces that are optimal
(or nearly so) between the projected measures, not transportation maps in the original,
high-dimensional space in which the original measures live. For instance, the closest thing
to a map one can obtain from using several SW univariate projections is an average of
several permutations, which is not a map but a transport plan or coupling [Rowland et al.,
2019][Rabin et al., 2011, p.6].

Our approach. Whereas the approaches cited above focus on OT maps and plans in
projection subspaces only, we consider here plans and maps on the original space that
are constrained to be optimal when projected on a given subspace E. This results in the
definition of a class of transportation plans that figuratively need to make an optimal “detour’
in E. We propose two constructions to recover such maps corresponding respectively (i) to
the independent product between conditioned measures, and (ii) to the optimal conditioned
map.

)

Chapter structure. After recalling background material on OT in Section 2, we intro-
duce in Section 3 the class of subspace-optimal plans that satisfy projection constraints
on a given subspace E. We characterize the degrees of freedom of E-optimal plans using
their disintegrations on E and introduce two extremal instances: Monge-Independent plans,
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which assume independence of the conditionals, and Monge-Knothe maps, in which the
conditionals are optimally coupled. We give closed forms for the transport between Gaussian
distributions in Section 4, respectively as a degenerate Gaussian distribution, and a linear
map with block-triangular matrix representation. We provide guidelines and a minimizing
algorithm for selecting a subspace E when it is not prescribed a priori in Section 5. Finally,
in section 6 we showcase the behavior of MK and MI transports on (noisy) synthetic data,
show how using a mediating subspace can be applied to selecting meanings for polysemous
elliptical word embeddings, and experiment using mx maps with the minimizing algorithm
on a domain adaptation task with Gaussian mixture models.

Notations. For F a linear subspace of R¢, E* is its orthogonal complement, Vg € R%*
(resp. Vi € R¥¥4=F) the matrix of orthonormal basis vectors of E (resp E+). pgp:x —
ng is the orthogonal projection operator onto E. Pg(Rd) is the space of probability
distributions over R? with finite second moments. B(R?) is the Borel algebra over R, —
denotes the weak convergence of measures. ® is the product of measures, and is used in
measure disintegration by abuse of notation.

2 Reminders on Optimal Transport Plans, Maps and
Disintegration of Measure

Let us start by recalling basic facts on Monge-Kantorovich optimal transport.

Kantorovich plans. For two probability measures u,v € PQ(Rd), we refer to the set of
couplings
def d dy . d dy _ d _

() % {7 € PRY x RY) : VA, B € BRY,7(A x RY) = u(4),7(R? x B) = v(B)}
as the set of transportation plans between pu,v. The 2-Wasserstein distance between p and
v is defined as o

W2(u,v) = min Ex vy [[|X = Y?].
5 (1, v) etiny) (XY )~y [” | ]
Conveniently, transportation problems with quadratic cost can be reduced to transportation
between centered measures. Indeed, let m,, (resp. m,) denote first moment of y (resp. v).
Then,

¥y € (), B(x,yyan [I1X = V%] = [y — my |2 + By [[(X —my) = (V= my)|?].

Therefore, in the following all probability measures are assumed to be centered, unless
stated otherwise.

Monge maps. For a Borel-measurable map 7', the push-forward of p by T is defined
as the measure Tyu satisfying for all A € B(R?), Tyu(A) = p(T~1(A)). A map such that
Ty = v is called a transportation map from p to v. When an optimal transportation map
exists, the Wasserstein distance can be written in the form of the Monge problem

W3(nv) = min Exou[|lX — (X)) (3.1)

When it exists, the optimal transportation map 7% in the Monge problem is called the
Monge map from p to v. It is then related to the optimal transportation plan v* by the
relation v* = (I4,7%)yp. When p and v are absolutely continuous (a.c.), a Monge map
always exists [Santambrogio, 2015, Theorem 1.22].
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Global maps or plans that are locally optimal. Considering the projection operator
on E, pg, we write g = (pg)gp for the marginal distribution of  on E. Suppose that we
are given a Monge map S between the two projected measures pup and vg. One of the
contributions of this chapter is to propose extensions of this map S as a transportation
plan v (resp. a new map T') whose projection g = (pg, pg)yy on that subspace E coincides
with the optimal transportation plan (I3g, S)sur (resp. pgoT = S opg). Formally, the
transports introduced in Section 3 only require that S be a transport map from pup to vg,
but optimality is required in the closed forms given in section 4 for Gaussian distributions. In
either case, this constraint implies that + is built “assuming that” it is equal to (Iqg, S)iur
on F. This is rigorously defined using the notion of measure disintegration.

Disintegration of measures. The disintegration of y on a subspace E is the collection
of measures (fizp,)zper supported on the fibers {xx} x EL such that any test function ¢
can be integrated against p as [pq ¢dp = [p, (fEi o(y)dpiz (y)) dpp(zg). In particular, if
X ~ p, then the law of X given g is p;,. By abuse of the measure product notation
®, measure disintegration is denoted as p = pz, ® pg. A more general description of
disintegration can be found in [Ambrosio et al., 2006, Ch. 5.5].

3 Lifting Transport from Subspaces to the Full Space

Given two distributions p, v € Po(R?), it is often easier to compute a Monge map S between
their marginals pg, vg on a k-dimensional subspace E rather than in the whole space R,
When k = 1, this fact is at the heart of sliced wasserstein approaches [Bonneel et al., 2015],
which have recently sparked interest in the GAN/VAE literature [Deshpande et al., 2018,
Wu et al., 2019]. However, when k < d, there is in general no straightforward way of
extending S to a transportation map or plan between p and v. In this section, we prove
the existence of such extensions and characterize them.

Subspace-optimal plans. A transportation plan between ug and vg is a coupling living
in P(E x E). In general, it cannot be cast directly as a transportation plan between p and
v taking values in P(R? x R?). However, the existence of such a “lifted” plan is given by
the following result, which is used in OT theory to prove that W), is a metric:

Lemma 3.1 (The Gluing Lemma, Villani [2008]). Let u1, po, uz € P(RY). If y12 is a
coupling of (p1,p2) and yos is a coupling of (ua, u3), then one can construct a triple of
random variables (Z1, Za, Z3) such that (Z1,Z2) ~ v12 and (Za, Z3) ~ ~ya3.

By extension of the lemma, if we define (i) a coupling between p and ug, (i) a coupling
between v and vg, and (iii) the optimal coupling between pp and vg, (I, S)jpur (where S
stands for the Monge map from pug to vg), we get the existence of four random variables
(with laws u, pg, v and vg) which follow the desired joint laws. However, the lemma does
not imply the uniqueness of those random variables, nor does it give a closed form for the
corresponding coupling between p and v.

Definition 3.2 (Subspace-Optimal Plans). Let p,v € P2(R?) and E be a k-dimensional
subspace of RY. Let S be a Monge map from ug to vg. We define the set of E-optimal

plans between p and v as Mg (p, v) e {vel(u,v):ve = (Xag, S)ipe}-

Degrees of freedom in IIg(u, v). When k < d, there can be infinitely many E-optimal
plans. However, we can further characterize the degrees of freedom available to define
plans in IIg(p,v). Indeed, let v € IIg(u,v). Then, disintegrating v on E x E, we get
Y = Vapyp) @ VE; i-e. plans in Hg(u,v) only differ on their disintegrations on E x E.
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Figure 3.1: A d = 2,k = 1 illustration. Any vy € IIg(u, v) being supported on G(S) x (E+)?,
all the mass from z is transported on the fiber {S(zg)} x E*. Different +’s in M g(u,v)
correspond to different couplings between the fibers {xg} x E+ and {S(zg)} x E*.

Further, since yp stems from a transport (Monge) map S, it is supported on the graph
of Son E, G(S) ={(xp,S(xzg)) : g € E} C E x E. This implies that v puts zero mass
when yp # S(zp) and thus that v is fully characterized by (., s@zp)),TE € E, i.e. by
the couplings between fi,,, and vg ) for zp € E. This is illustrated in Figure 3.1. Two
such couplings are presented: the first, Monge-Independent (MI) transport (Definition
3.3) corresponds to independent couplings between the conditionals, while the second
Monge-Knothe (MK) transport (Definition 3.4) corresponds to optimal couplings between
the conditionals.

Definition 3.3 (Monge-Independent Plans). The Monge-Independent plan disintegrates
as the product of the independent couplings between fi,, and vg(,,) for g € E, and the
coupling corresponding to S on E:

MI def

Monge-Independent transport only requires that there exists a Monge map S between
ur and vi (and not on the whole space), but extends S as a transportation plan and not a
map. Since it couples disintegrations with the independent law, it is particularly suited to
settings where all the information is contained in F, as shown in section 6.

When there exists a Monge map between disintegrations jiz,, to vg(,,) for all zp € E
(e.g. when p and v are a.c.), it is possible to extend S as a transportation map between p
and v using those maps. The Monge-Knothe transport corresponds to the E-optimal plan
with optimal couplings between the disintegrations.

Definition 3.4 (Monge-Knothe Transport). For all zp € E, let T(zp;-) : B+ — EL
denote the Monge map from fiy, to Vg(y,). The Monge-Knothe transportation map is
defined as

Tux :E®Et - E® E*

(rp,xpL) — (S(I'E),T(J'E;I'EJ_)).
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The proof that Ty defines a transport map from p to v is a direct adaptation of the
proof for the Knothe-Rosenblatt transport [Santambrogio, 2015, Section 2.3]. When it is
not possible to define a Monge map between the disintegrations, one can still consider
the optimal couplings 79T (11, VS(zy)) and define 7% = 7T (11, Vs(ar)) ® (Lag, S)spe,
which we still call Monge-Knothe plan by abuse. In either case, 7™¥ is the E-optimal plan
with lowest global cost:

Proposition 3.5. The Monge-Knothe plan is optimal in I g(u,v), namely

7 € argmin E(x y), [|1X — Y%
v€elg(pv)

Proof. E-optimal plans only differ in the couplings they induce between p;,, and vg(, ) for
xp € E. Since ¥ corresponds to the case when these couplings are optimal, disintegrating

yover ExEin [ |z —y|*dy(z,y) shows that v = 7™ has the lowest cost. O
RIxR4

Relation with the Knothe-Rosenblatt (KR) transport. These definitions are re-
lated to the KR transport [Santambrogio, 2015, section 2.3|, which consists in defining a
transport map between two a.c. measures by recursively (i) computing the Monge map T}
between the first two one-dimensional marginals of ;1 and v and (ii) repeating the process
between the disintegrated measures piz, and vy, (4,). MI and MK marginalize on the k£ > 1
dimensional subspace E, and respectively define the transport between disintegrations iz,
and vg(,) as the product measure and the optimal transport instead of recursing.

MK as a limit of optimal transport with re-weighted quadratic costs. Similarly
to KR [Carlier et al., 2009], MK transport maps can intuitively be obtained as the limit of
optimal transport maps, when the costs on E-+ become negligible compared to the costs on
E.

Proposition 3.6. Let R = E @ E+, (VE VEJ_) an orthonormal basis of E ® E+ and
v € Po(RY) be two a.c. probability measures. Define

def

Ve >0, P.& def

VeVi+eVpi Ve and dp (2,y) S (z—y) Po(z—y). (32)
Let T, be the optimal transport map for the cost d%i. Then T. — Thyx in Lo(p).

Proof. The proof is a simpler, two-step variation of that of [Carlier et al., 2009], which we
refer to for additional details. For all € > 0, let 7. be the optimal plan for dz _, and suppose
there exists 7 such that m. — 7 (which is possible up to subsequences). By definition of 7,
we have that

Ve > 0,/d%sd7r5 < /d%gdeK.

Since d%,g converges locally uniformly to d%,E def (z,y) = (x —y) ' VEVL(z —y), we get
Jd3 dr < [dj, d7™. But by definition of =™, mj¥ def (pE, pe)ym™* is the optimal

transport plan on F, therefore the last inequality implies that both marginals on E coincide,

ie. g =mp".
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Next, notice that the 7.’s all have the same marginals ug,vg on E and hence cannot
perform better on E than 7™*. Therefore,

/ & dr 4 e / & dre < / dp_dr.
ExXE
< /d%sdﬂ'MK

— / d%,Ed(WMK)E+s/d%,ELd7rMK.
ExXE

Hence, passing to the e — 0 limit, we have

/ & dr < / dyy, , dm,

Let us now disintegrate this inequality on F x E (using the equality 7 = (7™¥)g):

/(/ d%’ELdﬁ(ﬂ?anE)>d7rl\EAK(mEvyE) < /(/ d%fEldﬂ-é\g;,yE))dﬂ-%K(anyE)'

ELxE+L ELlxEL

Again, by definition, for (zg,yg) in the support of mi¥, W&ZVyE)

tion plan between p;, and vy, and the previous inequality implies 7(;, ) = Wé\;[:}; i)
mp-a.e. (xg,yE), and finally 7 = 7%, Finally, by the a.c. hypothesis, all transport plans

me come from transport maps 7., which implies T, — Ty in La(p). O

is the optimal transporta-
for

MI as a limit of the discrete case. When u and v are a.c., for n € N let u,, v, denote
the uniform distribution over n i.i.d. samples from g and v respectively, and let 7, be an
optimal transportation plan between (pg)yun and (pg)svy, given by a Monge map (which is
possible assuming uniform weights and non-overlapping projections). We have that p,, — u
and v, — p. From [Santambrogio, 2015, Th 1.50, 1.51], we have that m, € P2(E x E)
converges weakly, up to subsequences, to a coupling m € Pa(E x E) that is optimal for
pp and vg. On the other hand, up to points having the same projections, the discrete
plans 7, can also be seen as plans in P(Rd X ]Rd). A natural question is then whether the
sequence m, € P(R? x R?) has a limit in P(R? x RY).

Proposition 3.7. Let u,v € Po(RY) be a.c. and compactly supported, pi,,vn,n > 0 be
uniform distributions over n i.i.d. samples, and 7, € Ug(up,vn),n > 0. Then m, —

T (p,v).

Proof. Let X C R? be a compact set, and consider two a.c. probabilty measures p and v
supported on X. Let E be a k-dimensional subspace which we identify w.l.o.g. with R* and
M € P(RY x RY) as in Definition 3.3. For n € N, denote n-sample empirical measures of
pand v by g, = 235" 6, and v, = 2 377 | 5, where the z; (resp. y;) are ii.d. samples

from p (resp. v). nLet S, : R¥ — R* be the Monge map from the projection on F (PE)thin
of p, to that of v,, and m, def (Ia, Sn)s[(PE) s tn)-

Since p and v are supposed absolutely continuous, almost surely no two points have
the same projection on E. Hence, t,, can be extended to a transport between u, and v,
whose transport plan we will denote ~,,.

Let f € Cp(X x X). Since X is compact, by density (given by the Stone-Weierstrass
theorem) it is sufficient to consider functions of the form

f(mla sy Ldy Y1y -0y yd) = g(xla -y Tl Y1, "'ayk’)h('rk-i-l? cey Tds Yk+15 "'7yd)'



84 CHAPTER 3. BUILDING OT PLANS ON SUBSPACE PROJECTIONS

We will use this along with the disintegrations of v, on £ x E (denoted (Vn)z,..,y1. fOr
(1.5, y1:k) € E X E) to prove convergence:
/ fdyn = / (@1, Y1:k) P(Tht1:ds Ykt 1:0) AV
XxX XxX
- / g(xl:lm yl:k)dﬂ—n / h(warl:d’ yk+1:d)d(’yn)xlckvy1;k
ExXE
= / g(xl:lmyl:k)dﬂn/h<$k+1:da yk+1:d)d(un)z1;kd(l/’n)tn(xl;k)-
ExXE

Then, we use (i) the Arzela-Ascoli theorem to get uniform convergence of ¢,, to Tx to

get d(Vn)t, (z1.) — AV)Tp(ay.,) and (ii) the convergence m, — mp' def (pE, pE)4T™" to get

/ o1 1) A / Bt 1sds Yo ) dpin) s )t o)
ExFE

— / g(xlzkvylzk:)dﬂ%l/h(mk—&-l:dayk—i—l:d)dﬂxl:deTE(ng:k)
ExXE

— / de['MI
XxX
which concludes the proof in the compact case. ]

We conjecture that under additional assumptions, the compactness hypothesis can be
relaxed. In particular, we empirically observe convergence for Gaussians.

4 Explicit Formulas for Subspace Detours in the Bures
Metric

Multivariate Gaussian measures are a specific case of continuous distributions for which
Wasserstein distances and Monge maps are available in closed form. We first recall basic
facts from Section 2 about optimal transport between Gaussian measures, and then show
that the E-optimal transports MI and MK introduced in section Section 3 are also in closed
form. For two Gaussians u, v, one has

WE(1,v) = my, — my |2 + B2(var i, var v)
where B2 is the Bures metric [Bhatia et al., 2018] between PSD matrices:

def

B2(A,B) ¥ TrA + TvB — 2Tr(AY/2BAY/2)1/2,

The Monge map from a centered Gaussian distribution g with covariance matrix A to one
v with covariance matrix B is linear and is represented by the matrix

TAB def A_1/2(Al/QBA1/2)1/2A_1/2.

For any linear transport map, Tyu has covariance TAT ', and the transportation cost from
wtovis

Ex~,u[|X — TX|*] = TrA + TrB — Tr(TA + AT ).
In the following, p (resp. v) will denote the centered Gaussian distribution with covariance

. . Ap A
matrix A (resp. B). We write A = (AT

EEL
basis (VE VEJ_) wrt. E@ EL.

L . .
AE e ) when A is represented in an orthonormal

EL



4. EXPLICIT FORMULAS FOR SUBSPACE DETOURS IN THE BURES METRICS85

Figure 3.2: MI transport from a 2D Gaussian (red) to a 1D Gaussian (blue), projected
on the z-axis. The two 1D distributions represent the projections of both Gaussians on
the z-axis, the blue one being already originally supported on the x-axis. The oblique
hyperplane is the support of 7, onto which its density is represented.

Monge-Independent transport between Gaussian measures. The MI transport
between Gaussian measures is given by a degenerate Gaussian, i.e. a measure with Gaussian
density over the image of its covariance matrix X.

Proposition 3.8 (Monge-Independent (MI) transport for Gaussian measures).

LetC % (VEAE TV AETEQ TABE (VET + (Bp) 'Bypt VEL) (3.3)

and © < (C{"T g) Then 7 (u,v) = N (024, %) € P(R? x RY).
Due to its being lengthy and merely technical, the proof of Proposition 3.8 is deferred
to Section 7.

Knothe-Rosenblatt and Monge-Knothe transport between Gaussian measures.
Before giving the closed-form MK map for Gaussian measures, we derive the KR map
[Santambrogio, 2015, §2.3] with successive marginalization! on x1, 3, ..., 74. When d = 2
and the basis is orthonormal for E @ E*, those two notions coincide.

Proposition 3.9 (Knothe-Rosenblatt (KR) transport between Gaussian measures). Let
L4 (resp. Lp) be the Cholesky factor of A (resp. B). The KR transport from p to v is a
linear map whose matriz is given by TAB = Lp(La)~'. Its cost is the squared Frobenius
distance between the Cholesky factors Ly and Lp:

Ex~ullX — T X|*) = |ILa — Ll

Proof. The KR transport with successive marginalization on x1, 9, ..., x4 between two a.c.
distributions has a lower triangular Jacobian with positive entries on the diagonal. Further,
since the one-dimensional disintegrations of Gaussian measures are Gaussian measures
themselves, and since Monge maps between Gaussian measures are linear, the KR transport

!Note that compared to Santambrogio [2015], this is the reversed marginalization order, which is why
the KR map here has lower triangular Jacobian.
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between two centered Gaussians is a linear map, hence its matrix representation equals its
Jacobian and is lower triangular.
Let T = Lp(La)~!. We have

TAT' = LpL'L4LjL, 'L}
= LgL}
= B,

i.e. Typ = v. Further, since TL, is the Cholesky factor for B, and since A is supposed
non-singular, by unicity of the Cholesky decomposition T is the only lower triangular
matrix satisfying Tyu = v. Hence, it is the KR transport map from p to v.

Finally, we have that

Ex~ul| X — Txr X |[] = Tr(A + B — (A(Tkr) " + TxrA))
= Tr(LyL) + LpL} — (LsL} + LgL)))
= |La—Lg|?*
L]

Corollary 3.10. The (square root) cost of the Knothe-Rosenblatt transport (Ex.,[|| X —
T X ||2])Y/? between centered gaussians defines a distance (i.e. it satisfies all three metric
azxioms).

Proof. This comes from the fact that (Ex.,[[|X — TKRXHQ])I/2 =|La—Lg|. O

As can be expected from the fact that MK can be seen as a generalization of KR, the
MK transportation map is linear and has a block-triangular structure. The next proposition
shows that the MK transport map can be expressed as a function of the Schur complements

A/AE déf AEJ_ _AEELAEIAEEL and B/BE déf BEJ_ _BEELBE}BEEL
of A wrt. Ag, and B w.r.t. Bp, which are the covariance matrices of u (resp. v)
conditioned on F.

Proposition 3.11 (Monge-Knothe (MK) Transport for Gaussians). Let A and B be
represented in an orthonormal basis w.r.t. E@® EL+. The MK transport map on E between
w=N(0g,A) and v = N (04,B) is linear, and represented by the following matriz:

= TAEBE Ok x (d—k)
T = [BEEL (TAEBr)—1 _ T(A/AE)(B/BE)AEEL] (Ap)~! TA/AR)(B/Bg) |-

Proof. As can be seen from the structure of the mx transport map in Definition 3.4, Ty has
a lower block-triangular Jacobian (with block sizes k and d — k), with PSD matrices on the
diagonal (corresponding to the Jacobians of the Monge maps (i) between marginals and (ii)
between conditionals). Further, since p and v are Gaussian measures, their disintegrations
are Gaussian as well. Hence, all Monge maps from the disintegrations of p to that of v are
linear, and therefore the matrix representing T is equal to its Jacobian. One can check
that the map T in the proposition verifies TAT " = B and is of the right form. Finally,
one can verify that it is the unique such matrix, hence it is the MK transport map. ]

5 Selecting the Supporting Subspace

Both MI and MK transports are highly dependent on the chosen subspace E. Depending
on applications, E can either be prescribed (e.g. if one has access to a transport map
between the marginals in a given subspace) or has to be selected. In the latter case, we give
guidelines on how prior knowledge can be used, and alternatively propose an algorithm for
minimizing the MK distance.
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= ©) 0 0

(a) Usual Monge Interpolation of Gaussians

@;)@/@/@ "

(b) Monge-Knothe Interpolation through E

Figure 3.3: (a) Wasserstein-Bures geodesic and (b) Monge-Knothe interpolation through
E ={(x,y) : x = y} from pup to pi, at times t = 0,0.25,0.5,0.75, 1.

Subspace selection using prior knowledge. When prior knowledge is available, one
can choose a mediating subspace F to enforce specific criteria when comparing two distri-
butions. Indeed, if the directions in E are known to correspond to given properties of the
data, then MK or MI transport privileges those properties when matching distributions
over those not encoded by E. In particular, if one has access to features X from a reference
dataset, one can use principal component analysis (PCA) and select the first k& principal
directions to compare datasets X; and Xs. MK and MI then allow comparing X; and Xo
using the most significant features from the reference X with higher priority. In section 6,
we experiment this method on word embeddings.

Minimal Monge-Knothe subspace. Alternatively, in the absence of prior knowledge, it
is natural to aim at finding the subspace which minimizes MK. Unfortunately, optimization
on the Grassmann manifold is quite hard in general, which makes direct optimization of MK
w.r.t. E impractical. Optimizing with respect to an orthonormal matrix V of basis vectors
of R% is a more practical parameterization, which allows to perform projected gradient
descent (Algorithm 3). The projection step consists in computing a polar decomposition,
as the projection of a matrix V onto the set of unitary matrices is the unitary matrix in
the polar decomposition of V. The proposed initialization is V' = Polar(AB), as this is the
optimal solution when A and B are co-diagonalizable. Note that since the function being
minimized is non-convex, Algorithm 3 is only guaranteed to converge to a local minimum.
In section 6, experimental evaluation of Algorithm 3 is carried out on noise-contaminated
synthetic data (Figure 3.6) and on a domain adaptation task with Gaussian mixture models
on the Office Home dataset [Venkateswara et al., 2017| with inception features (Figure 3.7).
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Algorithm 3 MK Subspace Selection
Input: A,B € PSD,k € [1,d],n
V «+ Polar(AB)
while not converged do
L+ MK(VTAV, V'BV;k)
V—V-—nVyvL
V « Polar(V)
end while
Output: F = Span{vy,.., v}

6 Experiments

(a) Gray Source (b) Gray OT (c) Gray Target

Figure 3.4: OT color transfer between gray projections.

(b) Full OT (2.67s) (c¢) MK (0.052s)  (d) Sliced (0.057s) (e) Target

Figure 3.5: Color transfer, after quantization using 3000 k-means clusters, with correspond-
ing runtimes.

Color transfer. Given a source and a target image, the goal of color transfer is to map
the color palette of the source image (represented by its RGB histogram) into that of the
target image. A natural toolbox for such a task is optimal transport, see e.g. Bonneel et al.
[2015], Ferradans et al. [2014], Rabin et al. [2014]. First, a k-means quantization of both
images is computed. Then, the colors of the pixels within each source cluster are modified
according to the optimal transport map between both color distributions. In Figure 3.5,
we illustrate discrete MK transport maps for color transfer. In this setting, we project
images on the 1D space of grayscale images, relying on the 1D OT sorting-based algorithm
(Figure 3.4). Then, we solve small 2D OT problems on the corresponding disintegrations.
We compare this approach with classic full OT maps and a sliced OT approach (with 100
random projections). As can be seen in Figure 3.5, MK results are visually very similar to
that of full OT, with a x50 speedup allowed by the fast 1D OT sorting-based algorithm
that is comparable to sliced OT.

Synthetic data. We test the behavior of MK and MI in a noisy environment, where
the signal is supported in a subspace of small dimension. We represent the signal using
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two normalized PSD matrices A, B € R4*% and sample noise X1, X9 € R¥2*% d, > d,;
from a Wishart distribution with parameter I. We then build the noisy covariance A, =
(4 8) +eX; € R%2%% (and likewise B.) for different noise levels e and compute MI and
MK distances along the first k£ directions, k = 1,...,ds. As can be seen in Figure 3.6, both
MI and MK curves exhibit a local minimum or an “elbow” when k = dy, i.e. when F
corresponds to the subspace where the signal is located. However, important differences in
the behaviors of MI and MK can be noticed. Indeed, MI has a steep decreasing curve from
1 to dy and then a slower decreasing curve. This is explained by the fact that MI transport
computes the OT map along the k directions of E only, and treats the conditionals as
being independent. Therefore, if & > dy, all the signal has been fitted and for increasing
values of £ MI starts fitting the noise as well. On the other hand, MK transport computes
the optimal transport on both E and the corresponding (d2 — k)-dimensional conditionals.
Therefore, if k # dy, either or both maps fit a mixture of signal and noise. Local maxima
correspond to cases where the signal is the most contaminated by noise, and minima k = dj,
k = dy to cases where either the marginals or the conditionals are unaffected by noise.
Using Algorithm 3 instead of the principle directions allows to find better subspaces than
the first k& directions when k < dj, and then behaves similarly (up to the gradient being
stuck in local minima and thus being occasionally less competitive). Overall, the differences
in behavior of MI and MK show that MI is more adapted to noisy environments, and
MK to applications where all directions are meaningful, but where one wishes to prioritize
fitting on a subset of those directions, as shown in the next experiment.
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Figure 3.6: (a)-(b): Difference between (a) MI and Bures and (b) MK and Bures metrics
for different noise levels e and subspace dimensions k. (¢): Corresponding Bures values.
For each ¢, 100 different noise matrices are sampled. Points show mean values, and shaded
areas the 25%-75% and 10%-90% percentiles. Top row: d; = 4,ds = 8. Bottom row:
dy = 4,dy = 16.

Semantic mediation. We experiment using reference features for comparing distribu-
tions with elliptical word embeddings [Muzellec and Cuturi, 2018|, which represent each
word from a given corpus using a mean vector and a covariance matrix. For a given
embedding, we expect the principal directions of its covariance matrix to be linked to its
semantic content. Therefore, the comparison of two words w1, we based on the principal
eigenvectors of a context word ¢ should be impacted by the semantic relations of w; and
weg with respect to ¢, e.g. if wy is polysemous and c is related to a specific meaning. To test
this intuition, we compute the nearest neighbors of a given word w according to the MK
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distance with E taken as the subspace spanned by the principal directions of two different
contexts ¢; and ca. We exclude means and compute MK based on covariances only, and
look at the symmetric difference of the returned sets of words (i.e. words in KNN(w|cq)
but not in KNN(w|ez), and inversely). Table 3.1 shows that specific contexts affect the
nearest neighbors of ambiguous words.

Table 3.1: Symmetric differences of the 20-NN sets of w given ¢; minus w given co using
MK. Embeddings are 12 x 12 pretrained normalized covariance matrices from [Muzellec
and Cuturi, 2018]. E is spanned by the 4 principal directions of the contexts. Words are
printed in increasing distance order.

Word Context 1  Context 2 Difference
instrument  monitor oboe cathode, monitor, sampler, rca, watts, instrumentation, telescope, synthesizer, ambient
oboe monitor  tuned, trombone, guitar, harmonic, octave, baritone, clarinet, saxophone, virtuoso
windows pc door netscape, installer, doubleclick, burner, installs, adapter, router, cpus
door pc screwed, recessed, rails, ceilings, tiling, upve, profiled, roofs
fox media hedgehog  Penny, quiz, Whitman, outraged, Tinker, ads, Keating, Palin, show
hedgehog media panther, reintroduced, kangaroo, Harriet, fair, hedgehog, bush, paw, bunny

MK domain adaptation with Gaussian mixture models. Given a source dataset
of labeled data, domain adaptation (DA) aims at finding labels for a target dataset by
transfering knowledge from the source. Such a problem has been successfully tackled
using OT-based techniques [Courty et al., 2014]. We illustrate using MK Gaussian maps
on a domain adaptation task where both source and target distributions are modeled
by a Gaussian mixture model (GMM). We use the Office Home dataset [Venkateswara
et al., 2017], which comprises 15000 images from 65 different classes across 4 domains:
Art, Clipart, Product and Real World. For each image, we consider 2048-dimensional
features taken from the coding layer of an inception model, as with Fréchet inception
distances |Heusel et al., 2017|. For each source/target pair, we represent the source as a
GMM by fitting one Gaussian per source class and defining mixture weights proportional
to class frequencies, and we fit a GMM with the same number of components on the
target. Since label information is not available for the target dataset, data from different
classes may be assigned to the same component. We then compute pairwise MK distances
between all source and target components, and solve for the discrete OT plan P using
those distances as costs and mixture weights as marginals (as in Chen et al. [2019] with
Bures distances). Finally, we map the source distribution on the target by computing the
P-barycentric projection of the component-wise MK maps ﬁ > j PijTlifK, and assign
target labels using 1-NN prediction over the mapped source data. The same procedure is
applied using Bures distances between the projections on E. We use Algorithm 3 between
the empirical covariance matrices of the source and target datasets to select the supporting
subspace E, for different values of the supporting dimension k (Figure 3.7).

Several facts can be observed from Figure 3.7. First, using the full 2048-dimensional
Bures maps is regularly sub-optimal compared to Bures (resp. MK) maps on a lower-
dimensional subspace, even though this is dependent on the source/target combination.
This shows the interest of not using all available features equally in transport problems.
Secondly, when F is chosen using the minimizing algorithm 3, in most cases MK maps
yield equivalent or better classification accuracy that the corresponding Bures maps on
the projections, even though they have the same projections on E. However, as can be
expected, this does not hold for an arbitrary choice of E (not shown in the figure). Due
to the relative simplicity of this DA method (which models the domains as GMMs), we
do not aim at comparing with state-of-the-art OT DA methods Courty et al. [2014, 2017]
(which compute transportation plans between the discrete distributions directly). The goal
is rather to illustrate how MK maps can be used to compute maps which put higher priority
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Figure 3.7: Domain Adaptation: 1-NN accuracy scores on the Office Home dataset v.s.
dimension k. We compare the k-dimensional projected Bures maps with the E-MK maps
and the 2048-D Bures baseline. E is selected using Algorithm 3 between the source and
target covariance matrices for k = 32,64, 128,256,512,1024. Rows: sources, Columns:
targets.

on the most meaningful feature dimensions. Note also that the mapping between source
and target distributions used here is piecewise linear, and is therefore more regular.

Conclusion and Future Work

We have proposed in this chapter a new class of transport plans and maps that are built
using optimality constraints on a subspace, but defined over the whole space. We have
presented two particular instances, MI and MK, with different properties, and derived
closed formulations for Gaussian distributions. Future work includes exploring other
applications of OT to machine learning relying on low-dimensional projections, from which
subspace-optimal transport could be used to recover full-dimensional plans or maps.
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7 Appendix: Proof of Proposition 3.8

Proof. Let Tg : AEl/Z(AgQBEAg2)1/2AEI/2 be the Monge map from ug o (pE)41 to

Vg déf (pE)ﬁI/. Let
| . |

V=|v ... vg Vg1 ... v4 :(VE VEJ_)ERdXd,

where (vy ...v;) is an orthonormal basis of F and (vj41 ...v4) an orthonormal basis of E+.

Let us denote Xg « pe(X) € R* and Xp. « ppL(X) € R¥ (and likewise for Y). Denote

Ag = pEApg,AEL = pELApEl, and AgpL = pEApI;.
With these notations, let us decompose E[X YT] along E and E*:

EXY ]| =E[VeXp(VeYe) | +EVe Xpr (Vi Vi) ]
+E[Vp Xp (VEYE)T]
+ E[VEXE(VEJ_YEJ_)T].

We can condition all four terms on Xg, and use independence given coordinates on F
which implies (Yg|Xg) = Xg. The constraint Yy = TpXpg allows us to derive E [V | Xg]:

indeed, it holds that
YE BE BEEJ_
() = (. 8)),

which, using standard Gaussian conditioning properties, implies that
E(Yp.|Ye = TpXp) = BLp. Bp' TeXE,
and therefore
E[Ypi|Pp(Y)=TpXg] = Vp B, B, ' ViTpXp.
Likewise,
E[Xpi|Pe(X)] = Vg AL AL'VLXE.
We now have all the ingredients necessary to the derivation of the four terms of E[XY ]:
(i)
E[VEXp(VeYe)'] = ViEx, |E|XpV{ |Xp|| VE

= VpEx, | X5E [YET\XEH \'g

= ViEx, [XpX[TE| VE

= VgEx, _XEXJ—EF] T;V
= VEApTgVL;
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(ii)
E[VEXE(VpiYp)'] = VEEx,

E[XpY,, yXE] VL,
— VEEx, | XpE |Vl |Xp = TeXg|| V.

[ T —1x7T T T
— ViEx, | X5 (VELBEELBE VETEXE)) vl

— ViEx, | XpX}| TEVEB; Bppi V]
= VEAET-EVEBE}BEEL Vi
=VpApTpVEBL'ViBrg Vo
(iii)
E[V . X5 (VEYE) ] = Vi Ex, [E[XELYET\XE} \'g
= Vi Eyx, [IE (X 5o | X5 XETH A3
=VEyx, [AEEL AEIXEXETH \'g
=V Vi AL A'VLATEV]
=V VAL, TpVy
=Vpi AL, TEV;
(iv)
B[V X1 (VY ) ] = Vi pEx, [E[XEL I XEE[Y,, |XE]] VI,
= V. Ex, [VELAE S AL VI XX LT LVEBE Bypd| V]
=VpiAL AL'VIAETEVEBL' By VL
=V AL, TeBL'Bgp VL,
=Vgi AL TEVEBL'VEBpp..
Let ~ def N (024, 27,,). 7, is well defined, since X, is the covariance matrix of 75 and

is thus PSD. From then, + clearly has marginals N'(0q, A) and N(04,B), and (pg, pg)yy is
a centered Gaussian distribution with covariance matrix

<pE 0d><d> ( A EW[XYT]> <pE Od><d> _ < Agp AETE>

Odxa  Pe ) \Er[YX] B Oaxa P ) \TeAg Bgp )’
where we use that pppr = pp and pgppL = 0. From the k = d case, we recognise the

covariance matrix of the optimal transport between centered Gaussians with covariance

matrices Ag and Bg, which proves that the marginal of v over E x E is the optimal

transport between up and vg.

To complete the proof, there remains to show that the disintegration of v on F x F is
the product law. Denote

c ¥ EXxYT)

— VpApTp (Vg n (BE)_lVEBEEQ YV Ap pTs (vg n (BE)_lVgBEE¢>

= (VEAE + VELAELE) TE <V—Er + (BE)ilBEELVgL> ,
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+
and let X, = < A EXY

E[yXT] B > as in Proposition 3.8. It holds that
Cr ¥ VICVy = ATy,
CEL déf

def

V,.CVp=A, ;Tp(Bg) By,
CEEL -

VLCVp. = ApTep(Bg) 'Bgp.,
CELE déf VELCVE — AELETE

Therefore, if (X,Y) ~ v, then

XEJ_

AEi CEL AELE CELE
YEi CEJ_ BEJ_ C;EL BEJ-E
COV(X’Y)NPY XE AEEJ_ CEEJ- AE‘ CE‘ ’
YE CEJ_E BEEL CE BE
and therefore

Cov (XELXE> B <AEL cEL> - <AELE cELE> (AE cE>T <AEEL cEEL)
YEJ_‘YE CEJ_ BEJ_ C;Ei BEJ-E CE BE C—lE—'LE BEEJ_ ’

where M denotes the Moore-Penrose pseudo-inverse of M. In the present case, one
can check that

Az Cg T_ 1 A;Jl AEITEI
Cg Bp) 4\Tz'A;' Bj' )’
which gives after simplification

B AEJ_EAélAEEJ_ CEJI_ >
CELE BEEJ_ CEL BELEBE BEEL ’

CEEL BEJ-E CE BE
and thus

XEJ_‘XE AEJ_ —AEJ_E(AE)ilAEEJ_
Cov =
YEL‘YE

04
Od BE'L - BELE(BE)_IBEEL>
_ (Cov(Xp1|XE) 04

N 04 Cov(Yg|Yr))’

that is, the conditional laws of X1 given Xg and Y. given Yg are independent under

O]



Chapter 4

Entropic Optimal Transport between
(Unbalanced) Gaussian Measures

Although optimal transport (OT) problems admit closed form solutions in a very few
notable cases, e.g. in 1D or between Gaussians, these closed forms have proved extremely
fecund for practitioners to define tools inspired from the OT geometry. On the other
hand, the numerical resolution of OT problems using entropic regularization has given rise
to many applications, but because there are no known closed-form solutions for entropic
regularized OT problems, these approaches are mostly algorithmic, not informed by elegant
closed forms. In this chapter, we propose to fill the void at the intersection between
these two schools of thought in OT by proving that the entropy-regularized optimal
transport problem between two Gaussian measures admits a closed form. Contrary to the
unregularized case, for which the explicit form is given by the Wasserstein-Bures distance,
the closed form we obtain is differentiable everywhere, even for Gaussians with degenerate
covariance matrices. We obtain this closed form solution by solving the fixed-point equation
behind Sinkhorn’s algorithm, the default method for computing entropic regularized OT.
Remarkably, this approach extends to the generalized unbalanced case — where Gaussian
measures are scaled by positive constants. This extension leads to a closed form expression
for unbalanced Gaussians as well, and highlights the mass transportation / destruction
trade-off seen in unbalanced optimal transport. Moreover, in both settings, we show that
the optimal transportation plans are (scaled) Gaussians and provide analytical formulas of
their parameters. These formulas constitute the first non-trivial multivariate closed forms
for unbalanced entropy-regularized optimal transport, thus providing a ground truth for
the analysis of (unbalanced) entropic OT and Sinkhorn’s algorithm.

This chapter is based on [Janati and Muzellec et al., 2020].

95
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1 Introduction

Optimal transport (OT) theory [Villani, 2008, Figalli, 2017| has recently inspired several
works in data science, where dealing with and comparing probability distributions, and
more generally positive measures, is an important staple (see [Peyré et al., 2019] and
references therein). For these applications of OT to be successful, a belief now widely
shared in the community is that some form of regularization is needed for OT to be
both scalable and avoid the curse of dimensionality [Dereich et al., 2013, Fournier and
Guillin, 2015]. Two approaches have emerged in recent years to achieve these goals: either
regularize directly the measures themselves, by looking at them through a simplified lens;
or regularize the original OT problem using various modifications. The first approach
exploits well-known closed-form identities for OT when comparing two univariate measures
or two multivariate Gaussian measures. In this approach, one exploits those formulas
and operates by summarizing complex measures as one or possibly many univariate or
multivariate Gaussian measures. The second approach builds on the fact that for arbitrary
measures, regularizing the OT problem, either in its primal or dual form, can result in
simpler computations and possibly improved sample complexity. The latter approach can
offer additional benefits for data science: because the original marginal constraints of the
OT problem can also be relaxed, regularized OT can also yield useful tools to compare
measures with different total mass — the so-called “unbalanced” case [Benamou, 2003]—
which provides a useful additional degree of freedom. Our work in this chapter stands at
the intersection of these two approaches. To our knowledge, that intersection was so far
empty: no meaningful closed-form formulation was known for regularized optimal transport.
We provide closed-form formulas of entropic (OT) of two Gaussian measures for balanced
and unbalanced cases.

Summarizing measures wvs. regularizing OT. Closed-form identities to compute
OT distances (or more generally recover Monge maps) are known when either (1) both
measures are univariate and the ground cost is submodular [Santambrogio, 2015, §2]: in
that case evaluating OT only requires integrating that submodular cost w.r.t. the quantile
distributions of both measures; or (2) both measures are Gaussian, in a Hilbert space, and
the ground cost is the squared Euclidean metric [Dowson and Landau, 1982, Gelbrich,
1990], in which case the OT cost is given by the Wasserstein-Bures metric [Bhatia et al.,
2018, Malago et al., 2018|. These two formulas have inspired several works in which data
measures are either projected onto 1D lines [Rabin et al., 2011, Bonneel et al., 2015], with
further developments in [Paty and Cuturi, 2019, Kolouri et al., 2019, Titouan et al., 2019|;
or represented by Gaussians, to take advantage of the simpler computational possibilities
offered by the Wasserstein-Bures metric [Heusel et al., 2017, Muzellec and Cuturi, 2018,
Chen et al., 2019].

Various schemes have been proposed to regularize the OT problem in the primal [Cuturi,
2013, Frogner et al., 2015] or the dual [Shirdhonkar and Jacobs, 2008, Arjovsky et al., 2017,
Cuturi and Peyré, 2016]. We focus in this work on the formulation obtained by Chizat
et al. [2018b], which combines entropic regularization |[Cuturi, 2013 with a more general
formulation for unbalanced transport [Chizat et al., 2018a, Liero et al., 2016, 2018|. The
advantages of unbalanced entropic transport are numerous: it comes with favorable sample
complexity regimes compared to unregularized OT [Genevay et al., 2019], can be cast
as a loss with favorable properties [Genevay et al., 2018, Feydy et al., 2019], and can be
evaluated using variations of the Sinkhorn algorithm [Genevay et al., 2016].

On the absence of closed-form formulas for regularized OT. Despite its appeal,
one of the shortcomings of entropic regularized OT lies in the absence of simple test-cases
that admit closed-form formulas. While it is known that regularized OT can be related, in
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the limit of infinite regularization, to the energy distance [Ramdas et al., 2017|, the absence
of closed-form formulas for a fixed regularization strength poses an important practical
problem to evaluate the performance of stochastic algorithms that try to approximate
regularized OT: we do not know of any setup for which the ground truth value of entropic
OT between continuous densities is known. The purpose of this chapter is to fill this gap,
and provide closed form expressions for balanced and unbalanced OT for Gaussian measures.
We hope these formulas will prove to be useful in two different ways: as a solution to
the problem outlined above, to facilitate the evaluation of new methodologies building on
entropic OT, and more generally to propose a more robust yet well-grounded replacement
to the Bures-Wasserstein metric.

Related work. From an economics theory perspective, Bojilov and Galichon [2016]
provided a closed form of for an “Equilibrium 2-sided matching problem” which is equivalent
to entropy regularized optimal transport. Second, a sequence of works in optimal control
theory Chen et al. [2016, 2018], Chen et al. [2016] studied stochastic systems, of which
entropy regularized optimal transport between Gaussian measures can be seen as a special
case, and found a closed form of the optimal dual potentials. Finally, a few recent concurrent
works provided a closed form of entropy regularized OT between Gaussian measures: first
Gerolin et al. [2020] found a closed form in the univariate case, then Mallasto et al. [2020]
and del Barrio and Loubes [2020] generalized the formula for multivariate Gaussian measures.
The closest works to this paper are certainly those of Mallasto et al. [2020] and del Barrio
and Loubes [2020] where the authors solved the balanced entropy regularized OT and
studied the Gaussian barycenters problem. To the best of our knowledge, the closed form
formula we provide for unbalanced OT is novel. Other differences between this paper and
the aforementioned papers are highlighted below.

Contributions. Our contributions can be summarized as follows:

e Theorem 4.2 provides a closed form expression of the entropic (OT) plan 7, which is
shown to be a Gaussian measure itself (also shown in [Bojilov and Galichon, 2016,
Chen et al., 2016, Mallasto et al., 2020, del Barrio and Loubes, 2020]). Here, we
furthermore study the properties of the OT loss function: it remains well defined,
convex and differentiable even for singular covariance matrices unlike the Bures
metric.

e Using the definition of debiased Sinkhorn barycenters |Luise et al., 2019, Janati et al.,
2020a], Theorem 4.12 shows that the entropic barycenter of Gaussian measures is
Gaussian and its covariance verifies a fixed point equation similar to that of Agueh
and Carlier [2011]. Mallasto et al. [2020] and del Barrio and Loubes [2020] provided
similar fix point equations however by restricting the barycenter problem to the set
of Gaussian measures whereas we consider the larger set of sub-Gaussian measures.

e As in the balanced case, Theorem 4.14 provides a closed form expression of the
unbalanced Gaussian transport plan. The obtained formula sheds some light on
the link between mass destruction and the distance between the means of «, 5 in
Unbalanced OT.

Notations. Let A'(a, A) denote the multivariate Gaussian distribution with mean a € R?
and variance A € 8¢, . f = Q(a, A) denotes the quadratic form f : 2 — —1(z" Az—2a'z)
with A € 8. For short, we denote Q(A) = Q(0, A). Whenever relevant, we follow the
convention 0log 0 = 0. M;‘ denotes the set of non-negative measures in R¢ with a finite
p-th order moment and its subset of probablity measures P,. For a non-negative measure
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a € M;(Rd), Ls(c) denotes the set of functions f : R? — R such that E,(|f|?) =
Jga | fPda < +o0.

2 Reminders on Optimal Transport

The Kantorovich problem. Let «, 5 € Ps and let II(a, 8) denote the set of probability
measures in Py with marginal distributions equal to o and 5. The 2-Wasserstein distance
is defined as

def .
Wham) ™ wmin [ o - ylPdne.g). (@)
mell(a,f)
R4 xR?

This is known as the Kantorovich formulation of optimal transport. When « is absolutely
continuous with respect to the Lebesgue measure (i.e. when « has a density), Equation (4.1)
can be equivalently rewritten using the Monge formulation, where Tha = 3 i.f.f. for all
Borel sets A, v(T(A)) = a(A):

Wiad) = min [ o= T(@)|daa). (12)

The optimal map 7% in Equation (4.2) is called the Monge map.

The Wasserstein-Bures metric. Let N (m,Y) denote the Gaussian distribution on
R with mean m € R? and covariance matrix ¥ € Si +- A well-known fact [Dowson and
Landau, 1982, Takatsu, 2011] is that Equation (4.1) admits a closed form for Gaussian
distributions, called the Wasserstein-Bures distance (a.k.a. the Fréchet distance):

W3 (N (a, A), N'(b,B)) = la — b]* + B*(A, B), (4.3)
where B is the Bures distance [Bhatia et al., 2018| between positive matrices:

def

1 1 1
.B) = TrA + TrB — 2Tr(A2BA?2)2. )
B2(A.B TrA + TrB — 2Tr(A2BA 4.4

Moreover, the Monge map between two Gaussian distributions admits a closed form:
T*: 2 — TAB(z — a) + b, with

101 11 1 11 1.1 1
TAB & A~3(A2BA2)2A"2 = B2(B2AB2) 2B2, (4.5)
which is related to the Bures gradient:
VaB%(A,B) =14 — TAB, (4.6)

B(A,B) and its gradient can be computed efficiently on GPUs using Newton-Schulz
iterations which are provided in Algorithm 1 along with numerical experiments in the
appendix.

3 Entropy-Regularized Optimal Transport between
Gaussian Measures

Solving (4.1) can be quite challenging, even in a discrete setting [Peyré et al., 2019]. Adding
an entropic regularization term to (4.1) results in a problem which can be solved efficiently
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using Sinkhorn’s algorithm [Cuturi, 2013|. Let o > 0. This corresponds to solving the
following problem:

OT,(a, )% min [[ 1z = Pantzy) + 20 KLmlaw ), @)
’ R xR4

where KL(7||ja ® B f | log ( Tod ﬂ) dr is the Kullback-Leibler divergence (or relative
R4 xR4

entropy). As in the Kantorovich case (4.1), OT, can be studied with centered measures

with no loss of generality.

Lemma 4.1. Let o, 8 € P and &, 3 their respective centered transformations. It holds that

OT,(a, ) = OT,(a, 3) + ||la— b (48)

Proof. Let da(z) = da(x +a) (resp. dB(y) = dB(y +b), d7(z,y) = dr(z + a,y + b), such
that @, 8 and 7 are centered. Then, V7 € Il(«, ),

(i) 7 e (a, ),
(ii) KL(n[le ® 8) = KL(7|la ® )

(i) / le — ylPd7 (e, y) = / |z — a) — (y — b)|2dn(x,y)

R4 xRd Rd x R4
— bl + [[ e~ ylPante.y
R4xRd
Plugging (i)-(iii) into (4.7), we get OT,(a, ) = OT,(a, 3) + |]a — b||2. O

Dual problem and Sinkhorn’s algorithm. Compared to (4.1), (4.7) enjoys additional
properties, such as the uniqueness of the solution 7*. Moreover, problem (4.7) has the
following dual formulation:

OTy(a.) = max Ea() +Baty) ~20%( [[ "5 dawan) 1)
-, _fel[lgg(ﬁ), o (g o2 oz Yy )
geL2(B) R x R4

(4.9)

If @ and (3 have finite second order moments, a pair of dual potentials (f,g) is optimal if
and only they verify the following optimality conditions S-a.s and a-a.s respectively [Mena
and Niles-Weed, 2019]:

f(z) —llz—yl>+9(v) 9(z) —lle—yl>+/ ()
e 202 / e 202 ds(y) | =1, e20? / e 202 da(y) | =1. (4.10)
R4 R4

Moreover, given a pair of optimal dual potentials (f, g), the optimal transportation plan is
given by
dr* f@)+9w) —lle—y?

(x,y)=e 202 . (4.11)
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Starting from a pair of potentials (fy,go), the optimality conditions (4.10) lead to an
alternating dual ascent algorithm, which is equivalent to Sinkhorn’s algorithm in log-

J ) —llz—y|I>+fn(2)
gn+1 = |y € R - =20 log/ e 207 da(z) |,
R4

J ) —llz=yll*+gn+1(y)
for1 =[x €R - =20 log/ e 2072 dg(y) | -
Rd

Séjourné et al. [2019] showed that when the support of the measures is compact, Sinkhorn’s
algorithm converges to a pair of dual potentials. Here in particular, we study Sinkhorn’s
algorithm when a and  are Gaussian measures.

domain:

(4.12)

3.1 Closed form expression for Gaussian measures.

Theorem 4.2. Let A,B € Si, and a ~ N(a,A) and 8 ~ N(b,B). Define D, =
(4A2BA:Z + 0*14)2. Then,

OT,(a, B) = |la—b|> + B2(A,B), where (4.13)

B2(A,B) = Tr(A + B — D,,) + do*(1 — log(20?)) + 0*log det (D, + 0%L4) . (4.14)
1 1
Moreover, with C, = %AiDUA_ﬁ — %QId, the Sinkhorn optimal transportation plan is also
a Gaussian measure over R? x R% given by

W*NN((g),(c‘;}%)). (4.15)

Remark 4.3. While for our proof it is necessary to assume that A and B are positive
definite in order for them to have a Lebesgue density, notice that the closed form formula
given by Theorem 4.2 remains well-defined for positive semi-definite matrices. Moreover,
unlike the Bures-Wasserstein metric, OT, is differentiable even when A or B are singular.

A simplified version of Theorem 4.2 was concurrently proven by Gerolin et al. [2020] for
univariate centered Gaussians. The proof we provide is more general and is broken down
into smaller results, Propositions 4.4 to 4.6 and lemma 4.8. Using Lemma 4.1, we can focus
in the rest of this section on centered Gaussians without loss of generality.

Sinkhorn’s algorithm and quadratic potentials. We obtain a closed form solution
of OT, by considering quadratic solutions of (4.10). The following key proposition charac-
terizes the obtained potential after a pair of Sinkhorn iterations with quadratic forms.

Proposition 4.4. Let a« ~ N(0,A) and B ~ N(0,B) and the Sinkhorn transform T, :
RR* — RR’:

. —llz—yl?
To(h)(z) & —log / e 207 ThWqa(y). (4.16)
Rd
Let X € Sg. If h = m+ Q(X) i.e h(z) = m — 22" Xz for some m € R, then T,(h) is
well-defined if and only if X' def y2x +0?A~t + 14 = 0. In that case,
(i) Ta(h) = Q(Y) +m' where Y = 5(X'~! —14) and m’ € R is an additive constant,

(i1) Tg(To(h)) is well-defined and is also a quadratic form up to an additive constant,

observing that Y’ © 52y + 2B 4+ Is = X1 +0°B~! = 0 and using (7).
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Proof. The integrand of T, (h)(x) can be written as

_”x_yHZ _Hx_y”27l T~ T A—1
e 202 +h(y)da(y) x e 207 sy Xy—y' A y)dy
1 I _ z!
o e 2 WTGEFXFAT Y+ g

which is integrable if and only if X + A~! + %Id > 0. Moreover, up to a multiplicative
factor, the exponentiated Sinkhorn transform is equivalent to a Gaussian convolution of an
exponentiated quadratic form. Lemma 4.17 applies:

e~ Ta(h) — / e ”202yH +f(y)da(y)
Rd
_ _ 2
(Ld)) xexp (Q(X) + Q(A™)
0.2
(%

0_2)) wexp (Q(X +A™Y)
(O((Tg + o*X + ?A ™ HHX + A7) .

1
e QLXK 1)) )

x exp (Q((;(Id - X"1>>) -

Therefore T, (h) is equal to Q(%(X/_l —14)), up to an additive constant.
Finally, since B and X’ are positive definite, the positivity condition of Y’ holds and
T can be applied again to get Tg(Tw(h)). O

Consider the null inialization fy = 0 = Q(0). Since 02A~! + I = 0, Proposition 4.4
applies with X = 0 and a simple induction shows that (f,, g,) remain quadratic forms
for all n. Sinkhorn’s algorithm can thus be written as an algorithm on positive definite
matrices.

Proposition 4.5. Starting with null potentials, Sinkhorn’s algorithm is equivalent to the
followig iterations:

Foi1=0*A"' + G 1, Gpy1 =0’B7'+F, 1, (4.17)

with Fo = 02 A~ +14 and Go = 0B~ +14. Moreover, the sequence (F,,, Gy,) is contractive
i the matriz operator norm and converges towards a pair of positive definite matrices

(F,G).

At optimality, the dual potentials are determined up to additive constants fy and go:
% = Q(U) + fo and 5% = Q(V) + go where U and V are given by

202 T
F=0’U+0?A7 1 +14, G=0’V+’B ' +1,. (4.18)
Proof.

(i) Deriving the iterations. Let Uy = V= 0. Applying Proposition 4.4 to the initial
pair of potentials Q(Uy), Q(Vy) leads to the sequence of quadratic Sinkhorn potentials
I = Q(U,) and 2{% = Q(V,,) where

202

Vo1 = ((0‘2Un + 0'2A_1 + Id)_l — Id)

1

2
1 —_ —

Upi1 = ?((UQVnJrl + 0’ BT 417 - 1),
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The change of variable

F, =c’U, + c?A7 + 1,4
G,=0’V,+ B+ 14

leads to (4.17).

(ii) Contractivity of the iterations. We now turn to show that this algorithm con-
verges. First, note that since Fg, Gy € Si 1, a straightforward induction shows that
vn>0,F,, G, € Sjir+. Next, let us write the decoupled iteration on F:

F« o?A 4 (o?B L+ F 1)L (4.19)

Let VX € 8¢, (X) & 0241 + (62B~1 + X~1)"L € §¢, . For X € S, and H € R4,

he first differential of ¢ w.r.t. the Frobenius inner product admits the following expression:
DO(X)[H] = (Ig + o*XB ) ' H(c*B™ !X + 1) .

Hence, [|[Do(X)[H]|lop < [[(Ia + o?XB™H) 72 |H||op. Plugging H = I4, we get that
| DP(X)|op = ||(Ta + JzXB_l)_ngp. Finally, by matrix similarity

1 1
[(Ta + o*XB ™) Hop = |(Iqg + 0*B72XB72) |-

Hence, to bound |[D¢(X)[H]||op from above we need a lower bound on the smallest
eigenvalue of the iterates. For a matrix M, let A\y(M) and A4(M) denote the smallest
(resp. largest) eigenvalue of M. From (4.19) and using Weyl’s inequality, we can bound
the smallest eigenvalue of F,, from under:

0.2

A1(A)

2

Hence, the iterates live in A o S N{X: A(X) > (A }. Finally, for all X € A,

1 1 1
I B 2XB 2) Yop =
[(Ia+ 0o )l P Aa(Ig +02B_1/2XB_1/2)
1
1+ 02)(B~1/2XB-1/2)
1

<
= T+ 0B HnX)

<”A<B>A<A>>

IN

1
which proves that || Dp(X)|[op < (1 + W;(A» <1 for X € A and 0% > 0. The

same arguments hold for the iterates (Gy)n>0, and show that the iterations (4.17) are

contractive, and thus convergent.
O

Closed-form solution of the fixed-point equation. Taking the limit of Sinkhorn’s
equations (4.17) along with the change of variable (4.18), there exists a pair of optimal
potentials determined up to an additive constant:

Lmow-o(het-w).  L-evi-o(LE 1), 4

202 o2
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where (F, G) is the solution of the fixed point equations

F=c’A"'+G!, G=0¢’Bl+F L (4.21)

Let C % AG-1. Combining both equations of (4.21) in one leads to
G=0’B '+ (G +02A 1),
which can be shown to be equivalent to
C?+02C-AB=0. (4.22)

Notice that since A and G~! are positive definite, their product C = AG™! is similar to
1 1

A2G~'A2. Thus, C has positive eigenvalues. Proposition 4.6 provides the only feasible

solution of (4.22).

Proposition 4.6. Let 02 > 0 and C satisfying Equation (4.22). Then,

c—(aB+21,)" - 1
_< +4d> S 2 (4.23)

101 1,1 1
=A2(A2BA2 + % 14)2A72 - 51
Proof. Combining the two equations in (4.21) yields
G=0"B '+ (Gt +o2AH!
& GA' =0"BTAT + (AGT 4+ 0%1) !
& Cl1=03AB) 1+ (C+o%1y) !
& CHC +0%1y) = c*(AB) 1 (C + 0°1y) + 14
e Ig+0’C7 = 0*(AB) H(C + 0%14) + 14
& C+ 0%y = 0?(AB)1(C + ¢%I4)C + C
& C?*+0’C-AB=0. (4.24)
Let us now plug (4.23) in (4.22):
4 4 :
2
C? = AB + %Id P <AB 1 21d>
= AB - ¢2C,

which proves that (4.23) is indeed the solution of (4.22).
Finally, the second expression of C is obtained by observing that

N[

1 1 1 1 1 1 1 1
(AZ(A2BA? + 9'19)2A72)2 = AZ(AZBA2 + 5 13)A™2 = AB + 91,

i.e. that

N[

4 1 1 1 RN SR §
(AB+51.)" = A2(AZBAZ + %14)2A72.

O
Corollary 4.7. The optimal dual potentials of (4.20) can be written in closed form as
_B or -1 ld _ 21 \—
U=—5(C+ola)" — =, V=(C+oly)  — — . (4.25)
o o

Moreover, U and V remain well-defined even for singular matrices A and B.
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Optimal transportation plan and OT,. Using Corollary 4.7 and (4.20), Equation (4.11)
leads to a closed-form expression of . To conclude the proof of Theorem 4.2, we introduce

lemma 4.8 that computes the OT, loss at optimality. Detailed technical proofs are provided
in the appendix.

Lemma 4.8. Let A, B, C be invertible matrices such that H = (C‘:AT g) >~ 0. Let a =
N(0,A),8=N(0,B), and 7 = N(0,H). Then,

(1) / |z — y|2dr(x, y) = Tr(A) + Tr(B) — 2Tx(C); (4.26)
R4 xRd
(i1) KL (n]|a® ) = 3 (logdetA+logdetB—logdet(é"Tg)) . (4.27)

Proof. Tt follows from elementary properties of Gaussian measures that the first and second
marginals of 7 are respectively o and 3. Hence,

/||:cy||2dmy /uxudmy /||y|rdmy //:cydmy

R4 xR Rd x R4 R4 xR Rd x R4

= [ lalPda@)+ [ slPas) -2 [[ o vanta)

R x R4
=Tr(A) + Tr(B) — 2Tr(C).

Next, using the closed-form expression of the Kullback-Leibler divergence between Gaussian
measures, we have

L(rle® f) =

<T1~ [(0 3) ! (C{}Tg)} —2n +logdet (4 3) — logdet ( & g))

CT
(logdetA + log det B — log det (éXT g)) .

1
2
1
2

O

Closed-form expressions of the optimal transport plan and OT,. We are now
ready to conclude the proof of Theorem 4.2. Using (4.11) and (4.20), we have

dm T x —yl? d
m(%w:exp(ﬂ )+ol0) e =31 )dx( )2,

X T — 2

QU + A~)(&) + OV + B (y) + o . ><x,y>)
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def F/O’2 —Id/02
with 1= <—Id/02 G/co?
satisfies (F — G~ 1) /0% = A~! = 0, we have that T = 0. Therefore 7 is a Gaussian N'(H)

where H = I'"! can be obtained using the block inverse formula:

>. Moreover, since % > 0, and the Schur complement of I

H=T"
a(? <iie>"’1§35 )
A C
= CT B/’

where we used the optimality equations (4.21) and the definition of C = AG™1.

Let us now finally computeOT, (v, 5) using Lemma 4.8. Let R = A2BA:. Using the
closed form expression of C in (4.23), it first holds that

1
ZY A 2CAL = (R+ %12 — 91, (4.28)

Moreover, since R = R, it holds that Z = Z . Hence,
det ( = det(A)det(B—-CTA1C)
= det(AzBAz —A:CTAICA2)
= det(R —Z"Z)
— det(R — 22) (4.29)

o

?Id)
— (62/2)* det((4R + 0*14)? — o°I,).

CTB)

— det(02(R + %Id)% -

Since the matrices inside the determinant commute, we can use the identity P — Q =
(P2 - Q?)(P + Q) ! to get rid of the negative sign. Equation (4.29) then becomes

(02/2) det((AR + 0%14)% — 0Ly) = (02/2)% det(4R) det (((4R +oty)E + a2xd)—1)
— (202)% det(AB) det (((4R +otLy)E + U2Id)’1> .

Plugging this expression in (4.27), the determinants of A and B cancel out and we finally
get,
B,2(A,B) = Tr(A) + Tr(B) — Tr(4A2BA? + ¢1,)?
+ 0% log det ((4A%BA% + oty ¢ 02Id> +o2d(1 — log(202)).

3.2 Properties of B,-.

Theorem 4.2 shows that m has a Gaussian density. Proposition 4.9 allows to reformulate
this optimization problem over couplings in R%*? with a positivity constraint.

Proposition 4.9. Let a = N(0,A), 3 = N(0,B), and 0% > 0. Then,
OTO’(a7 6) =B,z (Av B)
= gliI(l: {Tr(A + B —2C) + o*(log det AB — log det (é"T g))} (4.30)
Cz(CT B)ZO

1 1
= r?hn ” TrA + TrB — 2TrA2KB2 — o2 Indet(Ig — KK '). (4.31)
. KeRdxd;|K op<1

Moreover, both (4.30) and (4.31) are convex problems.
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Proof. Using Lemma 4.8, (4.7) becomes

B2(A,B)=  min r(A r(B) — 2Tr(C
2(A,B) c:(ng)zo{T( ) + Te(B) - 2Tx(C)

+ o%(log det A + log det B — log det (éXT g))},
which gives (4.30).
Let us now prove (4.31). A necessary and sufficient condition for (CT B) >0 is that
1
there exists a contraction K (i.e. K € R s.t. |K||op < 1) such that C = A2 KB?2 [Bhatia,
2007, Ch. 1]. With this parameterization, we have (using Schur complements) that
det (& ) = det Bdet(A —CB'C")
= det Bdet A det(Iy — KK ).

Hence, injecting this in Equation (4.30), we have the following equivalent problem:

1 1
B2(A,B) = min TrA + TrB — 2TrA2KB2 — 0% Indet(Iy — KK ). (4.32)
KeRYX || K||op<1

Let’s prove that both problems are convex.

e (4.30): The set {C: (éAT g) > 0} is convex, since (éT ?31) > 0 and (% C];?> >0
implies that

(1odhaer 5 %) = 00 (&%) 10 (&) 20

Following the same decomposition, the concavity of the log det function implies that
C — logdet ( is concave, and hence that the objective function of (4.30) is
convex;

CTB)

e (4.31): The ball By, e {K € R4 : |K||op < 1} is obviously convex. Hence, there
remains to prove that f(K) : K € B,p, — logdet(Iq — KK ') is concave. Indeed, it

holds that f(K) = log det (KT < ) Hence, VK, H € Bop, ¥t € [0, 1],

F((1 =K + tH) = logdet { (1= 1) (10 )+ (5 11 ) }
> (1- )logdet<KT1 )—l—tlogdet(HT?)
= (1 =) f(K)+tf(H),
where the second line follows from the concavity of log det.

O]

We now study the convexity and differentiability of 9Bz, which are more conveniently
derived from the dual problem of (4.30) given as a positive definite program:

Proposition 4.10. The dual problem of (4.30) can be written with no duality gap as

—(F,A) - (G,B 2] FG -1
guax { — (F. A) — (G, B) + 0” log det (FG ~ 1) )
+ Tr(A) + Tr(B) + 02 log det AB + 2do*(1 — log 02))}.
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Proof. By Proposition 4.9, (4.30) is convex, hence strong duality holds. Ignoring the terms
not depending on C, problem (4.30) can be written using the redundant parameterization

X1 X2 .
x= (&%)

D(A,B)=  min - Tr(Xp) - Tr(X3) - o2 log det (X) (4.34)
1=AS(4=B

_ : - 0 Iq 2
= min (X, (Id ; )> o2 log det (X) (4.35)
X1=A X4=B

= min F(X), (4.36)
X>0
X,=AX,=B

where the functional F is convex. Moreover, its Legendre transform is given by

F(Y) :r)r(lgx<X Y + ( ) Id>> + o log det (X)

- (—a log det)* ( + ( ! Id)))
= 02(~ log det)* (UQ (v+ (2 151»)
_ a2logdet< 01 (v (4 Id))) — 202

= —c?log det (— (Y + <I(31 I(‘)i ))) —2d(c% — 0 1log(c?)).

Let ‘H Dbe the linear operator H : X (X1 X4). Its conjugate operator is defined on
8¢ x84, and is given by H*(F,G) = (§ &). Therefore, Fenchel’s duality theorem leads
to

D(A,B) = max — (F,A) — (G,B) — 7* (-H*(F,G))

F,G>~0

_ o - 2 F -1 2 o 2

= max (F,A) — (G,B) + 0”log det <_Id G ) + 20%d(1 — log(c?))

= max — (F,A) - (G,B) + o?logdet (FG — I4) + 20%d(1 — log(c?)), (4.37)
, G-

where the last equality follows from the fact that I and G commute. Therefore, reinserting
the discarded trace terms, the dual problem of (4.30) can be written as

—(F, A) — B 2] FG -1
gax { — (P, A) — (G, B) + 0” log det (FG ~ 1)

+ Tr(A) + Tr(B) + 02 log det AB + 2do*(1 — log 02))}.
O

Feydy et al. [2019] showed that on compact spaces, the gradient of OT, is given by
the optimal dual potentials. This result was later extended by Janati et al. [2020a] to
sub-Gaussian measures with unbounded supports. The following proposition re-establishes
this statement for Gaussian measures.

Proposition 4.11. Assume o > 0 and consider the pair U,V of Corollary 4.7. Then
(i) The optimal pair (F*, G*) of (4.33) is a solution to the fized point problem (4.21);
(i) B2 is differentiable and VB ,2(A,B) = — (02U, 0?V). Thus,

4 2 -1 1
o 1
+ —I B2;
2 d> ’

1
Va%B,2(A,B)=1; — B2 ((B2AB2 + ZId)

[N
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(i1i) (A,B) — B,2(A,B) is convexr in A and in B, but not jointly;

(iv) For a fized B with spectral decomposition B = PYXP', the function ¢ : A —

B,2(A,B) is minimized at Ag = P(X — 0%14) P " where the thresholding operator
is defined by x4 = max(z,0) for any x € R and extended element-wise to diagonal
matrices.

Proof.

(i)

(i)

(i)

Optimality: Canceling out the gradients in (4.33) leads to the following optimality
conditions:
~A +0°G(FG —14) ' =0

4.38
-B+0%(FG -1)'F =0, (4.38)

1.e.

F=0’A"'+G™!

4.39
G=0¢"B'+F L (4:39)

Thus (F, G) is a solution of the Sinkhorn fixed point equation (4.21).

Differentiabilty: Using Danskin’s theorem [Danskin, 1967] on problem (4.33) leads
to the formula of the gradient as a function of the optimal dual pair (F, G). Indeed,
keeping in mind that V5 logdet(A) = —A~! and using the change of variable of
Proposition 4.5, we recover the dual potentials of Corollary 4.7:

V®B,:(A,B) = (Ig—F*+0°A™ 114 — G* + o°B™)
= —0%(U,V).

Using Corollary 4.7, it holds that

Va%,2(A,B) = —¢*U
=14 - B(C+0%Iy) !

ot 1 g2 -t
~I,-B ((AB + 712 + Sl
1.1 gt 1 g2 N\l 1
=1, — B2 ((BQAB2 +—14)2 +21d> B2

1 1
where D © B2AB2 + 2'1,.

Converxity: Assume without loss of generality that B is fixed and let G : B —
VaB,2(A,B). Aslong as 0 > 0, G is differentiable as a composition of differentiable
functions. Let’s show that the Hessian of ¢ : A — B,2(A, B) is a positive quadratic
form. Take a direction H € Si. It holds that

V4%B,2(A,B)(H,H) = (H, Jacg(A)(H))
= Tr(H Jacg(A)(H)).
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For the sake of clarity, let us write G(A) = Iy — L(W(¢(A))) with the following
intermediary functions:
1 1
L:A— B2AB?2
1
Q:A— A2
p
¢:A— Q(L(A) + ZId)

02
W:Aw— (A+ 7Id)—1

Moreover, their derivatives are given by

Jacr(A)(H) = B%HBz
Jacw (A)H) = (A + S 1) H(A + S 1)

Jacg(A)(H) = Z,

1 1
where Z € Sfﬁ is the unique solution of the Sylvester equation ZA2 + A2Z = H.

Using the chain rule:

Jacg(A)(H) = — Jac, (W(¢(A)))(Jacw ((A))(Jacy(A)(H)))

— “B2 Jacw(6(A))(Jacy(A) (H))B2
2

B2 <¢>(A) + 2101) - Jacy(A)(H) <¢>(A) + "221d> g}

1/ 1 g2 \ ! 1 g2 \7' 1
1 L o L o 1
= B2 <D2 + 21d> Jacy(A)(H) <D2 + 21d> B2.
Again using the chain rule:

Y 2 Jacy(A)(H) = Jacg(L(A) + 7 1y)((Jacz (A))(H))
= Jacg(L(A) + T1y) (BIHB2)
1

= JacQ(D)(B%HB2).

Therefore, Y > 0 is the unique solution of the Sylvester equation:

l\)\»—\

YD2 2 + D2 2 Y =B?2 2 HB
Combining everything, we get

VaB,:(A,B)(H,H) = (H, Jacc(A)(H))
= Tr (H Jacg(A)(H)

)
(5(;;
B

1 1
2<D2+

1 2 Ly
(2 GI) B2>
2
Y

) .
o2 1 g2 -1
— D2 + —1I .
2 ( T d>

o
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Since H and Y are positive, the matrices
B2HB2 and <D2 —|—21d> Y<D2 +2Id>

are positive semi-definite as well. Their product is similar to a positive semi-definite
matrix, therefore the trace above is non-negative.

Hence, given that A and H are arbitrary positive semi-definite matrices, it holds that
V4%B,2(A,B)(H,H) > 0.
Therefore, A — B,2(A,B) is convex.

Counter-example of joint converity: If B, 2 were jointly convex, then ©fA -
B,2(A, A) would be a convex function. In the 1-dimensional case with ¢ = 1, one
can see that this would be equivalent to z — In((z? + 1)/2 4 1) — (22 4 1)/2 being
convex, whereas it is in fact strictly concave.

(iv) Minimizer of ¢p: With fixed B, cancelling the gradient of ¢p e A B,2(A,B)

leads to A = B — ¢2I4 which is well defined if and only if B > ¢?I;. However,
if B — 0214 is not positive semi-definite, let us write the eigenvalue decomposition
B =PXP' and define Ay def P(X — 0%13), P where the operator z; = max(z,0)
is applied element-wise. Then,

1 4 2 Ly
Vads(Ag) =14 — PY2PT ((P(22 —o?%),PT + %Id)i + ‘;Id> PYIP’
1 4 1 2 !
—1, - PY2 (((22 ) %Id)i 4 ‘;Id) n2p’T

1 _ 1
— 1, - P22 (£ — 0%14)4 +0°Ly) ' £2P 7
1 _ 1
—P(Ii -2 (S —0’Ly); +0%1y)  £2)PT
1
= PP(a21d1 -2, P
Thus, given that (X — 0214)4 (0?14 — £)4 = 0, for any H € S¢ it holds that
(H— Ao, Vagn(Ag)) = (PTHP — (2 - 0°Ly)4, (0°1a — T)4)
(PTHP, (6?1 — %))
= Tr(PTHP (0’14 — £)4) >0,

where the last inequality holds since both matrices are positive semi-definite. Given
that ¢p is convex, the first order optimality condition holds so ¢g is minimized at
Ay.

O]

3.3 Debiased Sinkhorn Barycenters

When A and B are not singular, we recover the gradient of the Bures metric given in
(4.6) by letting 0 — 0 in VAB,2(A,B). Moreover, (iv) illustrates the entropy bias of
B,2. Feydy et al. [2019] showed that it can be circumvented by considering the Sinkhorn
divergence:

o 5 (@ 8) = 0T, B) = (0T (0,) + OTo (5, 5)) (1.40)
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which is non-negative and equals 0 if and only if @ = . Using the differentiability and
convexity of S, on sub-Gaussian measures [Janati et al., 2020al, we conclude this section
by showing that the debiased Sinkhorn barycenter of Gaussian measures remains Gaussian.

Theorem 4.12. Consider the restriction of OT, to the set of sub-Gaussian measures

g {pePa3dg>0,E (eq”X”2) < 400}

and K Gaussian measures o, ~ N (ag, Ay) with a sequence of positive weights (wi)k=12,... K
summing to 1. Then, the weighted debiased barycenter defined by

B & argmingeg Z wiSe (o, B) (4.41)
k=1

is a Gaussian measure given by N (Zszl wkak,B) where B € Si 1s a solution of the

equation
X N B ! , ol 1
D wp(B2AB2 + —la)2 = (B + 1a)2. (4.42)

Proof. This theorem is a generalization of [Janati et al., 2020a, Thm 3| for multivariate
Gaussian measures. First, we are going to break it down using the centering Lemma 4.1. For
any probability measure p, let i denote its centered counterpart. The debiased barycenter
problem is equivalent to

mmg wi Sy (g, B

K
— min >~ 00T, (o, ) — 5(OTo(ar.ar) + OT, (3, 6)

=1
- 1 (4.43)
= min E w||lay, — Eg(X)||? + wpOTo (%, B) — = (wpOTy (., i) + 0T, (B, B))
Beg Py 2

K

= [nin > willag — bl|* + wpOT, (i, B) — %(kaTJ(O?k, ag) + 0T, (8, 8))
BEG k=1
Therefore, since both arguments are independent, we can first minimize over b to obtain
b = Zi{zl wgag. Without loss of generality, we assume from now on that a = 0 for all k.

The rest of this proof is adapted from [Janati et al., 2020a, Thm 3|, to d > 1. Janati
et al. [2020a] showed that for sub-Gaussian measures S, is convex (w.r.t. one measure at a
time) and admits first variations: a function F': G — R has a first variation at « if there
exists ( lec (RY) such that for any displacement ¢y with ¢ > 0 and ¥ = @ — a with
aeg verlfylng

F(a)

X i 5o ) +o(t) , (4.44)

Fa+tx) = F(a) +t(

where (x, 6F(a) (@) = [pa 51;&&) dx (see [Santambrogio, 2015, §7.2]).
Moreover F is convex if and only if for any o, o’ € G:
SF (o) >
da ’

F(a) > F(d) + {(a — o/, (4.45)

Let (fx,gx) denote the potentials associated with OT,(a, ), and hg the autocorrelation
potential associated with OT, (8, 8). If 8 is sub-Gaussian, it holds that 2 (a’“’ﬁ) = g — hg.



112 CHAPTER 4. ENT-OT BETWEEN (UNBALANCED) GAUSSIAN MEASURES

Therefore, from (4.45) a probability measure [ is the debiased barycenter if and only if for
any direction p € G, the following optimality condition holds:

K

5a ;
’“2 (4.46)
Z {9k — hp,p— B) >
k=

Moreover, the potentials (fx), (gx) and h must verify the Sinkhorn optimality conditions
(4.10) for all k and for all x S-a.s and y a-a.s:

fr (@) =yl +gx (»)
e 202 / e 202 dﬁ(y) =1,
R4

g (x) lz—yl|*+ £k (v)
e 202 / e 202 dag(y) | =1, (4.47)
Rd

hs(z) l—yl1>+hs (y)
e 202 / e 202 dg(y) | =1.
Rd

Let us now show that the Gaussian measure 8 given in the statement of the theorem
is well-defined and verifies all the optimality conditions (4.47). Indeed, assume that g
is a Gaussian measure given by N(B) for some unknown B € S¢ (remember that 3 is
necessarily centered, following the developments (4.43)). The Sinkhorn equations can then
be written as a system on positive definite matrices:

Fr=0?A '+ G !
Gy =0’B+F,'
H=0’B+H !,

where for all k

%,kz = Q(%(Gil — L)) + £x(0)
29%2 - Q(%(Flzl —14)) +9x(0) (4.48)
% = Q(%(H‘1 —14)) + hp(0).

Moreover, provided B exists and is positive definite, the system (4.48) has a unique set of
solutions (F)x, (Gg)r, H given by

F,=BC.', G,=C.'A;, and H=B'J, (4.49)

1 1
where C, = (AxB + %Id)i — %QId and J = (B? + %Id)ﬁ + %Id. Therefore, the first
variation in the LHS of (4.46) can be written as

ak’ Zwk gk — hg)

K

k=1

K
(7(2 wpF = H) + ) wi(gx(0) — h(0)) (4.50)
= w=1

K K

Z wpCB ™ =T 'B) + Y wi(gk(0) — hs(0))

k= w=1
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and
(4.51)

which is null if and only if B is a solution of the equation
X N B ! , ol 1

D wp(B2AB2 + —la)2 = (B + 1a)2. (4.52)
k=1

Therefore, provided (4.52) holds, for any probability measure p € G:

K

55, (au, K
<Zwk(;g€ﬁ),u =By = wigk — g, p— B)
k=1 k=1

K
= () wkgr(0) — hs(0),n — B)
1

/K
— (3 wrgn(0) - hﬂ(m) / (dp— dB)
w=1

(4.53)

)

since both measures integrate to 1. Therefore, the optimality condition holds.

To end the proof, there remains to show that (4.52) admits a positive definite solution.
To show the existence of a solution, the same proof as in [Agueh and Carlier, 2011] applies.
Indeed, let A\y(Ay) and A;(Aj) denote respectively the smallest and largest eigenvalue of
Aj. Let A = ming A\g(Ay) and A = maxy \(Ay). Let K o be the convex compact subset
of positive definite matrices B such that AI§ = B = AI4. Define the map:

K 2 1/2
1 1 ot 1 ot
B 2 2 4+ 2 1,)2 _
— (Z wk(B AB2 + 1 Id) ) 1 I
k=1
Now for any B € K 4, it holds that
My X T(B) < Aly. (4.54)

T is therefore a continuous map that maps K 5 to itself, thus Brouwer’s fixed-point
theorem guarantees the existence of a solution. O

4 Entropy Regularized OT between Unbalanced Gaussian
Measures

We proceed by considering a more general setting, in which measures «, 8 € M;(]Rd) have
finite integration masses mq = «(R%) and mg = B(RY) that are not necessarily the same.
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Following [Chizat et al., 2018b]|, we define entropy-regularized unbalanced OT as

def .
V0T (a.8) & int { [[ 1o =slan(a.n)
M i R (4.55)

+ 202 KL(7||a ® B) + v KL(m [|a) + ’YKL(W2H@}7

where v > 0 and 7y, 7o are the marginal distributions of the coupling 7 € M3 (R? x R9).

Duality and optimality conditions. The KL divergence in (4.55) is finite if and only
if 7 admits a density with respect to a ® 5. Moreover, the objective is finite if and only if
dg—gﬁ € Lo(a® B). Therefore (4.55) can be formulated as a variational problem:

VT (a.8) = _jin | [[ la=ul*r(z.dala)asi
R x R4 (4.56)

+ 202 KL(rl|o @ ) +7 KL(r1 o) + 7 KL(ra]8) }.

where r; % Jra (- y)dB(y) and 7 def Jga7(x,.)da(z) correspond to the marginal density
functions and the Kullback-Leibler divergence is defined for f € £2(u) as KL(f|lp) =
Jra(flog(f) + f —1)du. As in Chizat et al. [2018b], Fenchel-Rockafellar duality holds and
(4.56) admits the following dual problem:

UOT,(a,8) = sup {7/ (1—e_£)doz+7/ (1—6_%)(15
feLlo(a) R4 R4

gEL2(B) (4.57)

—le—yl| 2+ (@)+9(y)
—20? [ daaasin)}
Rd x R4

for which the necessary optimality conditions read, with 7 def as

04
y+2027

s @) —llz—yl? a.s F)—lz—yl||?
J;SEQ) = —Tlog/ e 20T df(y) and ggfg = —Tlog/ ST da(y). (4.58)
R4 Rd

Moreover, if such a pair of dual potentials exists, then the optimal transportation plan is
given by

dm f@+g(w)—llz—y|?

m(m,y) =e 2z . (4.59)

The following proposition provides a simple formula to compute UOT, at optimality. It
shows that it is sufficient to know the total transported mass 7(R? x R?).

Proposition 4.13. Assume there exists an optimal transportation plan w*, solution of
(4.55). Then

UOT,(a, B) = v(ma +mg) + 20°mamp — 2(0? + 7)7* (R? x RY). (4.60)
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Proof. Using Fubini-Tonelli along with the optimality conditions (4.58), we can write the
total mass of the optimal transportation plan as

—llz—ylI>+f (@) +9(»)

(R x RY) = / / e et da(e)dB(y)

R4 xR4

—lle—y| >+ (z) )
= [ (L5 0w ) s
R4 R4

= [ s
Ra

And similarly: 7(R? x RY) = [, e” . da (). Plugging this in the dual objective (4.57),
we get

V/Rd(l — e M)da+ ”/Rd(l — e 5)dp — 207 // (e AT ) da(e)dB(y)

R4 x R4
=y(ma — mx) +y(Mmg —my) — 2(72(m7T — Mamg),

which yields the desired expression. O

Unbalanced OT for scaled Gaussians. Let o and 8 be unnormalized Gaussian mea-
sures. Formally, « = m,N(a, A) and 8 = mgN(b,B) with m,,mg > 0. Unlike for
balanced OT, o and 8 cannot be assumed to be centered without loss of generality. How-
ever, we can still derive a closed form formula for UOT,(«, 8) by considering quadratic
potentials of the form

1 1
fx) = — (2" Ux — 22" u) + log(m,) and 9(@) _ = — (2" Vx —2z"v) + log(m,).
202 2 202 2
(4.61)
Let o and «y be the regularization parameters as in (4.56), and 7 def 20;+v’ b f‘i = 02—|—%
Let us define the following useful quantities:
_(a+AX!(b—a)
= (b +BX (a—b) (4.62)
o (@t 1C)(A - AX'A) C+ (Is+3C)AX'B (4.63)
“\CT+(Ia+1iCTHBX A (I4+1iCT)(B-BX 'B) '
1 )
do? det(AB)” e Ha2<ﬂ}§;1
my = o071+> | mqmpgdet(C) dct(AB) — (4.64)
\/det(C — 2AB)
with
X = A+ B+ AL, A= (L= MA+L) ),
~ 1 1w~ o* \2 o2
B=—-(I4- B+ C=(-AB+—1I - —I4.
Dy AB L)), (1aB+7L) -G

Theorem 4.14. Let « = m N (a, A) and ﬁ mgN (b, B) be two unnormalized Gaussian

measures. Let T = 20;’+ and \ = T =0%+ g and p, H, and m; be as above. Then
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(i) The unbalanced optimal transport plan, minimizer of (4.55), is also an unnormalized
Gaussian over R x R given by m = m N (u, H),

(ii) UOT, can be obtained in closed form using Proposition 4.13 with 7(R? x R?) = m,.

As in the balanced setting, the proof of Theorem 4.14 relies on proving the contractivity
and stability of generalized Sinkhorn iterations [Chizat, 2017, Peyré et al., 2019] w.r.t.
quadratic potentials. As it is quite long and at times technical, we defer it to Section 6.2.

Remark 4.15. The exponential term in the closed-form formula above provides some
intuition on how transportation occurs in unbalanced OT. When the difference between
the means is too large, the transported mass m}. goes to 0 and thus no transport occurs.
However for fized means a,b, when v — +00, we have X~* — 0 and the exponential term
approaches 1.

5 Numerical Experiments

5.1 Empirical validation of the closed-form formulas

Figure 4.1 illustrates the convergence towards the closed form formulas of both theorems.
For each dimension d in [5, 10|, we select a pair of Gaussian measuress a ~ N(a, A)
and 8 ~ mgN(b,B) where mg equals 1 (resp. 2) in the balanced (resp. unbalanced)
setting, and randomly generated means a, b uniformly in [—1,1]¢ and covariance matrices
A B ¢ Sﬁlr + following the Wishart distribution W;(0.2 x Iy, d). We generate empirical
distributions «,, and f, with n ii.d. samples from N(a,A) and N (b, B) respectively
(with total masses 1 and mg) and compute OT, / UOT,. We report means and + shaded
standard-deviation areas over 20 independent trials for each value of n.

Balanced | d =5 Balanced | d =10 Unbalanced | d=5 Unbalanced | d =10
7.5 14 e 10
7 9
7.0 8 £=0.5
_ 6 £=1.0
6.5 7 £=5.0
5 6
6.0
_____________________________________ P s — — STee———————
55 U= 9 | | |— 7 A —
10! 102 10° 10! 102 103 10t 102 103 10t 102 10°
# of samples # of samples # of samples # of samples

Figure 4.1: Numerical convergence of discrete OT between empirical distributions,
OT,(an, Brn) and UOT,(aw, Br), towards the closed form of OT,(a, 8) and UOT,(a, 3)
(dashed) given by Theorem 4.2 and Theorem 4.14 for random Gaussians «, 5. For unbal-
anced OT, v = 1.

5.2 Transport plan visualization with d =1

Figure 4.2 confronts the expected theoretical plans (contours in black) given by Theorems 4.2
and 4.14 to empirical ones (weights in shades of red) obtained with Sinkhorn’s algorithm
using 2000 Gaussian samples. The density functions (black) and the empirical histograms
(red) of a (resp. ) with 200 bins are displayed on the left (resp. top) of each transport
plan. The red weights are computed via a 2d histogram of the transport plan returned by
Sinkhorn’s algorithm with (200 x 200) bins. Notice the blurring effect of € and increased
mass transportation of the Gaussian tails in unbalanced transport with larger ~.
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Balanced | £ =0.02 Balanced | £=0.1 Unbalanced | y=0.001 | £=0.1 Unbalanced | y=0.25 | £=0.1

.

Figure 4.2: Effect of € in balanced OT and 7 in unbalanced OT. Empirical plans (red)
correspond to the expected Gaussian contours depicted in black. Here o = N(0,0.04) and
B =mgN(0.5,0.09) with mg = 1 (balanced) and mg = 2 (unbalanced). In unbalanced OT,
the right tail of 8 is not transported, and the mean of the transportation plan is shifted
compared to that of the balanced case — as expected from Theorem 4.14 specially for low ~.

Bures geodesic

0.50 A
0.25
0.00 1
-0.25 4
—0.50 A
Slnkhorn Bures geodeS|c o 1.0
0.50
0.25
| WV
-0.25 4
—0.50 A
I Euclldean geodesic
0.50
0.25 1
= S\YZ/ /
-0.25 1
-0.50 4
-4 -3 -2 -1 0 1 4

Figure 4.3: Bures, Sinkhorn-Bures, and Euclidean geodesics. Sinkhorn-Bures trajectories
converge to Bures geodesics as o goes to 0, and to Euclidean geodesics as o goes to infinity.

5.3 Effects of regularization strength

We provide numerical experiments in Figures 4.4 and 4.5 to illustrate the behaviour of
transportation plans and corresponding distances as o goes to 0 or to infinity. As can be seen
from (4.14), when o — 0 we recover the Wasserstein-Bures distance (4.3), and the optimal

transportation plan converges to the Monge map (4.5). When on the contrary o — oo,

Sinkhorn divergences &.(a, 3) def OT.(a, B) — (0T (e, ) + OT.(B, B)) convergence to

MMD with a —c¢ kernel (where ¢ is the optlmal transport ground cost) [Genevay et al.,
2018|. With a —/5 kernel, MMD is degenerate and equals 0 for centered measures.
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Figure 4.4: Numerical convergence of B,2(A,B) — 1(B,2(A, A) +B,2(B,B)) to B(A,B)
as o goes to 0 and to 0 as o goes to infinity.

5.4 The Newton-Schulz algorithm

The main bottleneck in computing TAB is that of computing matrix square roots. This
can be performed using singular value decomposition (SVD) or, as suggested in [Muzellec
and Cuturi, 2018], using Newton-Schulz (NS) iterations [Higham, 2008, §5.3|. In particular,
Newton-Schulz iterations have the advantage of yielding both roots, and inverse roots.
Hence, to compute TAB, one would run NS a first time to obtain A'/2 and A=/2, and a
second time to get (AY/2BAY2)Y/2 (c.f. Chapter 2).

In fact, as a direct application of [Higham, 2008, Theorem 5.2|, one can even compute
both TAB and TBA = (TAB) “lina single run by initializing the Newton-Schulz algorithm
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Figure 4.5: Effect of regularization on transportation plans. When o goes to 0 (left), the
transportation plan concentrates on the graph of the linear Monge map. When o goes to
infinity (right), the transportation plan converges to the independent coupling.

Algorithm 4 NS Monge Iterations
Input: PSD matrix A,B, e >0
Y — mromer 2 < mroral
while not converged do
T+ 3I-72Y)/2
Y« YT
Z +— TZ
end while
Bl

1Bl ILAL
Y 1A Y, Z < /1812

Output: Y = TAB 7 = TBA

with A and B, as in Algorithm 4. Using (4.6), and noting that B(A,B) = TrA +
TrB — 2Tr(TABA), this implies that a single run of NS is sufficient to compute B(A, B),
VaAB(A,B) and V%B(A,B) using basic matrix operations. The main advantage of
Newton-Schultz over SVD is that it its efficient scalability on GPUs, as illustrated in
Figure 4.6.

Newton-Schulz iterations are quadratically convergent under the condition

I — (A 9)% <1,

as shown in [Higham, 2008, Theorem 5.8|. To meet this condition, it is sufficient to rescale A
and B so that their norms equal (1+¢)~! for some € > 0, as in the first step of Algorithm 4
(which can be skipped if ||A|| < 1 (resp. ||BJ|| < 1)). Finally, the output of the iterations
are scaled back, using the homogeneity (resp. inverse homogoneity) of eq. (4.5) w.r.t. A
(resp. B).

A rough theoretical analysis shows that both Newton-Schulz and SVD have a O(d?)
complexity in the dimension. Figure 4.6 compares the running times of Newton-Schulz

iterations and SVD on CPU or GPU used to compute both A% and A_%. We simulate a
batch of positive definite matrices A following the Wishart distribution W (I44,d) to which
we add 0.114 to avoid numerical issues when computing inverse square roots. We display
the average run-time of 50 different trials along with its + std interval. Notice the different
magnitudes between CPUs and GPUs. As a termination criterion, we first run EVD to

obtain Aiﬁl and Ae_vld/ % and stop the Newton-Schultz algorithm when its n-th running

estimate Ay/? verifies: ||A711/ 2 AY 2||1 < 107, Notice the different order of magnitude

evd
between CPUs and GPUs. Moreover, the computational advantage of Newton-Schultz on

GPUs can be further increased when computing multiple square roots in parallel.



120 CHAPTER 4. ENT-OT BETWEEN (UNBALANCED) GAUSSIAN MEASURES

cPu Newton-Schultz — EVD GPU
0.6 1
14
12 A 0.5 4
10 A 0.4 -
w w
- 8 - -
) o 0.3 A
€ S
= 61 [
0.2 1
4 -
2 0.1
0 A 0.0 4
0 500 1000 1500 2000 0 500 1000 1500 2000
dimension d dimension d

Figure 4.6: Average run-time of Newton-Schulz and EVD to compute on CPUs and GPUs.

Conclusion

In this chapter we have provided — to the best of our knowledge — the first nontrivial
closed form expressions of entropy-regularized optimal transport for both balanced and
unbalanced measures. While our contributions are mostly theoretical and would certainly
promote new theoretical findings in entropic OT, the entropy-regularized Bures-Wasserstein
distance obtained here is better suited for real data applications where covariance matrices
are prone to be ill-conditioned.
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6 Appendix: Technical Lemmas and Proof of Theorem 4.14

6.1 Proofs of technical lemmas

We provide in this appendix the statement of the lemmas used in this chapter along with
their proofs.

Lemma 4.16. [Sum of factorized quadratic forms| Let A,B € Sy such that A # B and
a,b € R%. Denote a = (A,a) and B = (B,b). Let Py(x) = —3(x —a)T A(x — a) and
P3(x) = —3(x —b) 'B(x — b). Then

1
Pa() + Py(a) = —5 ((x o) TCx—c) + qa,ﬁ) : (4.65)
where
C =A+B
(A+B)c =(Aa+ Bb) (4.66)
Qa8 =a'Aa+b'Bb—c¢'Cec.

In particular, if C = A + B is invertible, then

{ c=C~!(Aa+Bb) (467)

c'Cc= (Aa+Bb)'C !(Aa+ Bb).

Proof. On the one hand, we have

P(2) + Ps(a) = —% (x— ) TAGx —a) + (x—b) B(x b))

1
-2 (;J(A +B)x —2x' (Aa+Bb) +a'Aa+ bTBb) .

On the other hand, for an arbitrary v = (¢, C) and ¢ € R, we have

Pya)~ L= 7 ((x~0)TC(x - ©) +4)
1

=5 (xTC:c —22'Cc+c'Ce+ q) .

If A # B, identification of the parameters of both quadratic forms leads to (4.66). O

Lemma 4.17. [Gaussian convolution of factorized quadratic forms] Let A € Sy, a € R?
and o > 0 such that 0> A+14 = 0. Let Qu(x) = —3(x—a)  A(x—a). Then the convolution

of €2« by the Gaussian kernel N <0, %) is given by

Iy def [ 1 (= =yl
N (0, gz> cep (@) [ (2no?)? P ( 202!l v+ Q““”) Y )
= Cq eXp(Q(an))7

where

J=(cA+1y) A
1

Vdet(o2A +14)

Co =
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Proof. Using Lemma 4.16 one can write for any fixed z € R¢

_2%2”“" — 4> + Qaly) = Q=, %)(y) + Q(a,A)(y)

x I
= Q(Aa+t 5, A+ U—‘;)(y) + h(z),
with h(z) = — (a" Aa+ U%HxHZ - %(U2Aa + )" (02A +14) ' (0?Aa + z)). Therefore,
the convolution integral is finite if and only if A + (f—% > 0, in which case we get the integral
of a Gaussian density:

1 T I det(2m(A + 14)-1) ,
(2707)% /Rd exp (Q(Aa + 3 A+ U—C;)(y) + h(x)) d(y) = \/ Era?) @)
h(@)

© Jdet(o?A + 1)
For the sake of clarity, let’s separate the terms of h depending on their order in z:
h(x) = _% (ha(x) + hi(z) + ho) where

1
ho(z) = ﬁ(HxH2 —z (PA + 1)
hi(z) = =2z (62A +14) " 'Aa
ho = aAa—c%a' A(c?A +14) 'Aa.

Finally, we can factorize hy and hg using Woodbury’s matrix identity which holds even for
a singular matrix A:

(2A +19)7 ' =14 — 0%(0?A +1q) A, (4.69)
Let J = (02A +13) 'A. Then,
1 _
ha(x) = ;(Hﬂcll2 — 2" (la—o?(0®A+1a)'A)z

=z (0?A+ 1) Az

= xTJ:c,
hi(z) = —2x ' Ja,

ho = aAa—oc’a' A(0?A +1;) 'Aa
=a A(Iq—0%(0?A +14) tA)a
—a'A(c’A +1y)ta
=a'(0?A+13) tAa
=a'Ja.
Therefore, h(z) = —3 (z'Jz —22"Ja+a'Ja) = —(z—a)'J(z —a) = Q(a,J)(z). O

Lemma 4.18. [Gaussian convolution of generic quadratic forms| Let A € Sq and a € R?
and 0 > 0 such that 0?A +1q = 0. Let Qa(x) = —1(x" Ax —2x"a). Then the convolution

of €2« by the Gaussian kernel N (O, %) s given by:

I, def [ 1 (L e
N (07 gz) *exp(Qa) = /R @ro2)3 T ( 2ozl —yl"+ Q“(y)) Y )
= cqoexp(Q(Ga, GA)),
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where

G = (O'QA + Id)_l

o2a'Ga
é 2

Vdet(o?A 4+ 14)
Proof. Using Lemma 4.16 one can write for any fixed z € R?, we have

gl — ol + Qule) = Q. 4)y) + Qa. A)y)

Cq —

T I 1
=Qa+ 5, A+ 5)(y) — 53l
I
= Of((oa+ =5, A+ 5)(y) + h(a),

with h(z) = -1 (U—lgHuvH2 - %(0’2& + )" (6?A +14)"'(c%a + z)). Therefore, the convolu-
tion integral is finite if and only if A + % > 0, in which case we get the integral of a

Gaussian density:

1 x I det(2m(A + 14)-1) ,
/Rdexp<Qf(a+a2,A+UdQ)(y)+h(:E)>d(y):\/ (A 4 A)70) o

(270%)3 2ro?)
ch(@)

Vdet(o2A + 1)

For the sake of clarity, let’s separate the terms of h depending on their order in z:
h(z) = —% (ha(z) + ha(z) + ho) where:

1 -
ha(x) = g(\lfb’ll2 —z' (A + 1) e

hi(z) = =2z (62A 4+ 1) ta
ho = —c?a’ (6?A +14) la

Finally, we can factorize hg and ho using Woodbury’s matrix identity (4.69) which holds
even for a singular matrix A. Let G = (0?A + I4)~ !, then

1 _
ho(x) = P(””HQ — 2 (Ig— o?(c’A+ 1)) 'A)z

=z (A 41y Az
= 2" GAz,

hi(z) = —2z' Ga,
ho = —c%a' (6?A +14) ta
= —¢%a' Ga.
Therefore, h(z) = —3 (2" GAz — 22" Ga— o%a' Ga) = Q(Ga, GA)(z) + ‘TQaTTGa O

6.2 Proof of Theorem 4.14

In the balanced case, we showed that Sinkhorn’s transform is stable for quadratic potentials
and that the resulting sequence is a contraction. Similarly, the following proposition shows
that the unbalanced Sinkhorn transform is stable for quadratic potentials.
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Proposition 4.19. Let « be an unnormalized Gaussian measure given by moN(a, A). Let

T = 2027+,Y. Define the unbalanced Sinkhorn transform T : RR? _ RR?;

—Jlz—y]?
To(h)(z) & —71log / e 27 HhWqq(y) (4.71)
R4

Let U € 84, u € R? and my, > 0. If h = log(m,)+Q(u, U) i.e h(z) = log(my,) — 3(z ' Uz —

22 "), then T, (h) is well defined if and only if F © 22U +o2A 1 + I4 = 0, in which case
To(h) = Q(v, V) + log(my) with the following parameters:

1,
V=15(F L1y (4.72)

v=—1F YA 'a+u) (4.73)
_— ( det(A) det(F))T )

qu,x

MmyMmee 2 o2d

where qy,o = Z—;VTFV —a'Ala.
Proof. The exponent inside the integral can be written as

—llz—yll? “le=yll® 1. Ty, T A-1
e 202 +h(y)da(y)oce 552 2y Xy—y A y)dy

1oL -1 2y
x e 2(?/ (02+X+A )y)+ 52 dy7

which is integrable if and only if U + A~! 4+ U—lzld = 0 < F = 0. Moreover, up to a
multiplicative factor, the exponentiated Sinkhorn transform is equivalent to a Gaussian
convolution of an exponentiated quadratic form. Lemma 4.18 applies:

_T(h _Hm_y||2+f( )
e~ Talh) :/ e 207 Yda(y)
Rd

exp(—3 TA‘la)/ e o)A taA ) g
det(2mA) R4

exp(—% TA‘la)
det(2mA)

= My Mg, Yy

\/ (2m02) 2 exp (N (0°14)) *xexp (Qu+ A 'a, U+ A1)

= My Mg,

= MyMy, exp (N(0%Iq)) xexp (Qu+ A~ 'a, U+ A™))

)ca exp (Q(F_l(u +A'a),F'(U+ A_l))

Ca €XP <Q(F1(u + Ala), %Ffl(F — Id)>

= MyMe 2 )Ca exp <Q(F1(u + Ala), %(Id - F1)> ,

exp(%a2 (u+A~1a)TF~1(u+A~1a))

where ¢, = N

Therefore, by applying —7 log we can identify V and v. Substituting u + A~'a by
—%FV leads to the expression of m,,. ]

Unlike in the balanced case, the unbalanced Sinkhorn iterations require 2 more parame-
ters (v and m,) with tangled updates. Proving the convergence of the resulting algorithm
is more challenging. Instead, we directly solve the optimality conditions and show that a
pair of quadratic potentials verifies (4.58).
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Proposition 4.20. The pair of quadratic forms (f,g) of (4.61) verifies the optimality
conditions (4.58) if and only if

FY2A-1 4 62U+ 15> 0

o (4.75)
G= B 1 +0°V 414 =0,
mumaequT’aad ’ mvmgequ’Bad ’
My =1 My =1
det(A) det(F) det(B) det(G)
v=—7F 1A latu) u=-7G 1B b+v) (4.76)
G=1F'4+B ' +(1-114 F=7G '+0?A '+ (1 -7y
T By _aTA 'a _ % uTGu_b"B b
Qu,a = 72 Qg = ﬁu u

Proof. The equations on my, my, u, v follow immediately from Proposition 4.19. Using the
definition of F and G and substituting U and V leads to the equations in F and G. O

We now turn to solve the system (4.76). Notice that in general, the dual potentials can
only be identified up to a an additive constant. Indeed, if a pair (f,g) is optimal, then
(f + K,g— K) is also optimal for any K € R (the transportation plan and dual objective
do not change). Thus, at optimality, it is sufficient to obtain the product m,m,. We start
by identifying (F, G) then (u,v) and finally m,m,.

Identifying F and G. The equations in F and G can be shown to be equivalent to
those of the balanced case up to a change of variables. Let A = 1;—27 Then,

F =7G'+o2A 1+ (1-1)1y

G =7F 1 4+2B ' +(1-1)]4

($)7 4 Zra! + i)

F
g T 02 fry—
{? =F '+ 2B+ 3L
_ -1 2/A\—1
G =F'1+¢’B!,

W~hich correspond to the balanced OT fixed point equations (4.21) associated with the pair
( %, ]~3) with the following change of variables:

GG (4.77)
T

A de — 1 _

A@ﬂA1+f@1 (4.78)

~ 1

B@T®4+thk (4.79)

Notice that since 0 < 7 < 1, A and B are well-defined and positive-definite. Therefore,
Proposition 4.6 applies and we obtain the closed form

1
-~ 1~ ~ 3 2
chG4:<AB+Zh>—Zh
(4.80)
~1/1~1~~1 4 N2 o1 2
= A2 <A2BA2 + Id> A2 — 1.
T
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Similarly, by symmetry:

1
~ l~~ o1 2 g2
BF '=(-BA+-1;] ——I;=C". 4.81
(+Ba+5n) -G (4.81)
Therefore we obtain F and G in closed form:
F=BC! (4.82)
G=C'A. (4.83)

Finally, to obtain the formulas of A and B of Theorem 4.14, we use Woodburry’s identity
to write

B = 1AIg — A(B+ Ay )
Y 204y 1
= ha0? 2 (Ia — A(B + ALy) ™)

- %(Id —A(B + ALy)™h).

The same derivation applies for A.

Identifying u and v. Combining the equations in u and v leads to

v=—1F YA a4 ru)

o Fv=—-7A"1!a—ru

s Fv=-7A"a+7°G (B 'b+v)

& GFv=-—7GA'a+ (B 'b+v)

& (GF — 72Iy)v = —7GAla+ 2B~ 'b.

Similarly, (FG — 72I3)u = —7FB~!b + 72A~'a. Moreover, since 0 < 7 < 1, it holds that

(F — T2G71) — (F — TGfl)
=o?A"l = 0.

Therefore, (FG —7214) = (F —72G~'14)G is invertible. The same applies for (GF —7%14).
Finally, both equations can be vectorized:

GF — 1, 0 vy (-G 214 Al 0 a (4.84)
0 FG —7213) \u/  \ 213y —7F 0 B1l/\b '

Identifying m,m,. Now that F,G,u and v are given in closed form, m,m,, is obtained
by taking the product of both equations:

(mymy) ™ = (x/detéiiﬁ;m(})) exp(_%(qu,a +qu.9))- (4.85)
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def mamg

Transportation plan. Let w = —(——F— 3(@’A7latbTB7b)
det(4n2AB)

My Mye 2 At optimality,

the transport plan 7 is given by

dr F(@) + gly) ~ e —y)*\ da,_d3
) = e ) ) E@Tw

2
—we (@A atua U - I 0B v B V)

_=d
o2

von (2
cor(0((ap 10)- (AT vawh))en)
sew(e((p0) 7 (A @) )

xp (Q(u, T)(2,9))

O(U + A-)(&) + OV + BY(y) + (2 1 ><x,y>)

exXp

def (A la+u o (5 X . . .

with p = nd I' = o g% ). Let us show that I'" is positive definite.
H= (B—lb + v) < L & P

Since % > 0, it is sufficient to show that Schur complement % — %G_l is positive

definite. First, we have

F-Gg!
2

g

~ 1
=7A - -GL
! Y
Next, it holds that A< 7MLy and B < 7AI4. Thus, for any = € R? we have
11
A2 BA?2
T

~1
z! < MN|A2z|? = Az Az < 7A?||z|?,

which implies

~1 <1
A2BA2 ot / ot A AM1+7)
- + 4Id <A/TA+ 4Id 2( A7+ (1 —71)?)14 5 1.

Therefore, using the second equality of (4.80) and inverting (4.82) to obtain G~!:

N[ =

1
2

~1 -1
1| (AZBAZ o4 2 1
2TGlr=a"A 2| [ 222 2] —Z 1) | A2
T 4 2
L ((aBRE o\ oo 1
~_ = g — T ~_ 1
= (A 22)" ( — ] - Iy) | (A 22)

Hence G < 7AA L. We can therefore conclude that the Schur complement L(F-Gh

is positive definite. By completing the square, we can factor d%x as a Gauss1an density.
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Let z & (3)- Then,

dr
dxdy

(z,y) = wexp (Q(p, ) (7, y))

1
= wexp <—2(2TF2 - ZzTu)>

1 _ 1 _ _
_ wexp (2/& Y b T T T 1u)))

— webt T (Hps, H) (2),

ILL_

where H =T L.

Detailed expressions. To conclude the proof of Theorem 4.14, we need to simplify the
formulas of m, Hy and H. Let us start with the mean Hp.

Hypu: Using the optimality conditions of Proposition 4.20 and the closed form formula of v
and u, we get

()
-+ (&)
()
LA™ re ) G TRV ) ()
(0 &)™ welm) (5% )G 25)6)
(6 &) (ed s A (5 6 ()
-(5 (5 E) ()0
(i 75) (0 s0) () »
() Gt ) () 6)
(M) (5 @) (0 69 6)
(TS )TV =) () e
(U ) (8 ()

(AL Mg\ /AT 0 (a
“\ o B4 o B 1)\b)
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Let us now compute the inverse of

def Al 4+ lId —lId >
7 X A . 4.88

Let S and S’ be the respective Schur complements of A~ + %Id and B! + %Id in Z. The
block inverse formula yields

71 _ S %S(Bfl + %Id)fl
T \iAat 4 %Id)_IS S/ :

Using Woodbury’s identity twice and denoting X = def A + B + A\lg, we get

sz(A*1+§Id—ﬁ(B +i ) H!
= (A" (B+ A H!
=(A-AA+B+ )y 'A)

=A - AX'A,

and similarly: 8’ = B — BX"'B. The off-diagonal blocks can be simplified as well:
1 1 —1\—1 —1 1 —1

X(A +(B+Ay) ) (B + XId)

= (A7 + (B+ALy)~")"'(Mlq + BLy)'B

= ((B+ M) — (B+ALy)(A+B+A4) (B + ) (Alq +BIy) 'B
=B - (B+ )X 'B

=B-(X-A)X'B

= AX 'B.

1.
1ot =

1
~S(B!
A ( D)

Similarly, (A + 1I 4)~'S = BX'A. Thus, the inverse of Z is given by

_ —1 -1
Z1:<A AX A AX'B > (4.89)

BX A B-BX !B
and finally:

mea (40 ) (R ) ()

- a+ AX! (b —a)
~ \b+BX~™ (a b)

-1
Finding the covariance matrix H: To compute H = (012 < FI‘ _éd>) one may
—4d

use the block inverse formula. However, the Schur complement (F — G~1)~! is not easy to
manipulate. Instead notice that the following holds:

1(F -L\( I, F1 1 (F-rGl —(1-7)I,
o2 \-Is4 G Gt Iy ) 22 \-(1-7)Ii G-7F!

_ <A—1 +3L 3L >
—3la B7l4iIy)’
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where the last equality follows from the optimality conditions (4.76). Therefore,

_ _ -1
e ()
TG~ I _XId B_+XId

Notice that we have already computed the inverse matrix on the right side above in the
developments of Hu. Thus,

H— < Iy TF_1> (A—AX—lA AX"B >

Gl 14 BX'A B-BX'B
B I, 7CB™'\ /A-AX!'!A AX!B
“\cTAl 1y BX'A B-BX !B
- I, CB'+1L)) (A-AX'A AX'B
~\CT(A™1 4+ 11a) I4 BX'A B-BX'B
_ I CB'+1L)) (A-AX'A AX'B
~\CT(A™1 4+ 11y) I, BX'A B-BX !B
_ I, 1C(AMIs+B)B™1\ (A-AX'A AX'B
~ \JCTC(\I; + A)A! I, BX'A B-BX'B
_ Iy 1C(X-A)B™ ([A-AX"'A AX''B
T \3CT(X-B)A™! I, BX'A B-BX'B
[ A-AX A+ 1CA-AXTA) AX B+ IC(X - A)(I4-X'B)
T \JCTX-B)(I4-X'A)+BX'A 1CT(X-B)X"'B+B-BX'B
B (Is + +C)(A — AX!A) AX"'B+1C(X-A-B+AX'B)
~ \\CT(AI;+BX'A)+BX'A 1C'(X-B)X''B+B-BX'B
_ I+ 5C)(A-AX'A)  AX'B+ irC(/\Id + AX"!B)
“\CT+1CTBX'A+BX A (I +iC") (B -BX'B)

(I +1iC)A-AXTA) C+(I4+1C)AX'B
“\CT+(Iq+3C"BX'A (I;+5CT)(B-BX"'B)/"

Finding the mass of the plan n: The optimal transport plan is given by
dm

Judy @) = wezt T /et (2rH)N (Hp, H) (2), (4.90)
where
W — mamg mumve_%(aTA—la_i_bTB—lb)
/det(472AB)

_ maomeg < \/det(AB> det(FG)) T e*ﬁ(Qu,oﬂr%ﬁ)e—%(aTA*1a+bTB*1b)

Vdet(472AB) o2dmamg
_1_ _T_
_ 1 < mampg T+1 A /det(FG) T+1 e_ﬁ(qu’a_i_qvﬁ)eié(aTA71a+bTBflb) )
)

(2m)d \ \/det(AB o2
First, let us simplify the argument of the exponential terms. Isolating the terms that

depend only on the input means a, b it holds that

2
g
Qua + Qv = ﬁ(VTFV =+ uTGu) +a'A'a+b'B7'b.

Therefore, the full exponential argument is given by
o? 1

b def p' Tl — L—(VTFV +u'Gu) - ——(a'Ala+b B b). (4.91)
T+172 T+1
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First, using (4.87) we may replace p with its expression:

p' T = p Hy

(A Iy FNT'/F I\ /Iy G\ /A la
“79\B ) \r¢ ! 14 I; G FlIy B'b/"

Next, we have

)

2 (v Fv+u'Gu) =% (A'a+uw) F (A la+u)+ (B 'b+v) G (B 'b+v))
.

F1 0
=02uT< 0 G_l)u
LA\ (I FN\TU/ED 0 L, 7G1\'/Ala
“79\B ) \re¢ ! 1 0 G ')\sFr 1 14 B'b)"

(L4 Gt _(F 0
Let J = <7‘F1 I > and K = (0 G>' It holds that

2

_ T 2 1
Tp—1, T 0 7 T A~ la T-1 ot 1 (A "a
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Let us compute the matrix JT_I(H - ;j‘rlK DJ=L. First keep in mind that JK =
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Therefore,
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The full exponential argument ¢ defined in Equation (4.91) is given by
(b _ 1 A_la ! Zfl A_la o TAfl _ bTBflb
T r+1\\B b Blp)  * @

1 0 z-1_ (A0 Al 0 (a
T+1 0 B 0 B!')\b

1 O —AX'A AX"'B At 0 a
T+1 BX'A -BX'B 0 B')\b
1 -x-t x-! a

_|_ xX-1 —_x-! b

—b) X l(a—Db)

= L bl
Substituting in (4.90) leads to

my, & m(R? x RY)

L T
dor(E) [ mems T [ VAUFG) N T (bl ).
det(AB) o2d

The determinants can be easily expressed as functions of C. First notice that

1 O.4d

det(T) ~ det(FG — 1)’

det(H) =

and using the definition of C, it holds that
FG = BC2A.
Therefore, det(FG) = %ﬁ)ﬁg.

C given in (4.82) is applied to the pair (%_/X,E) in the unbalanced case, it holds that
C?2+o2C= %AE Hence,

Keeping in mind that the closed-form expression of

FG - I, = BC2A(L; - A~1C?B™Y)
— BC2A(1, - A—lggﬁ — 2B
- BcA L, + 2R 0B
_ 021§02]&(—3ld +AICBY)
_ g2§0—2(—3§1§ +C)B!
and therefore

det((~2AB + C)
det(C)?

det(FG — I3) = ¢
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Replacing the determinant formulas of FG and FG — I3 and re-arranging the common
terms det(C) and o finally leads to

(mam 3 o2 det(C) d;;(é%;

1
d d ) — sty (la=Pbl% 1)
W(R XR): e 20(7+1) x-1
det(C—2AB)
o2d

1

det(AB)T
(mamg det(C) 7§§§(AB))

> T+1
e_ﬁ(“a_bllg(—l)

\/det(C ~ 2AB) (193)

1

— T4+1
det(AB)™
(mamg det(C) deet((AB)) )
AT o~ 2 (la=bliy 1)

(mamlg det(C) %

)m
o~ (la=bl2 )

Deriving a closed form for UOT,. Using Equation (4.93), a direct application of
Proposition 4.13 yields

UOT, (v, B) = y(ma +mg) + 20%(mamg) — 2(0? + 29) M. (4.94)

This ends the proof of Theorem 4.14.






Chapter 5

Missing Data Imputation using
Optimal Transport

Missing data is a crucial issue when applying machine learning algorithms to real-world
datasets. Starting from the simple assumption that two batches extracted randomly from
the same dataset should share the same distribution, we leverage optimal transport distances
to quantify that criterion and turn it into a loss function to impute missing data values.
We propose practical methods to minimize these losses using end-to-end learning, that can
exploit or not parametric assumptions on the underlying distributions of values. We evaluate
our methods on datasets from the UCI repository, in MCAR, MAR and MNAR settings.
These experiments show that OT-based methods match or out-perform state-of-the-art
imputation methods, even for high percentages of missing values.

This chapter is based on [Muzellec et al., 2020].
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1 Introduction

Data collection is usually a messy process, resulting in datasets that have many missing
values. This has been an issue for as long as data scientists have prepared, curated and
obtained data, and is all the more inevitable given the vast amounts of data currently
collected. The literature on the subject is therefore abundant [Little and Rubin, 2002, van
Buuren, 2018]: a recent survey indicates that there are more than 150 implementations
available to handle missing data [Mayer et al., 2019]. These methods differ on the objectives
of their analysis (estimation of parameters and their variance, matrix completion, prediction),
the nature of the variables considered (categorical, mixed, etc.), the assumptions about
the data, and the missing data mechanisms. Imputation methods, which consist in filling
missing entries with plausible values, are very appealing as they allow to both get a guess for
the missing entries as well as to perform (with care) downstream machine learning methods
on the completed data. Efficient methods include, among others, methods based on low-rank
assumptions |[Hastie et al., 2015|, iterative random forests [Stekhoven and Buhlmann, 2011]
and imputation using variational autoencoders [Mattei and Frellsen, 2019, Ivanov et al.,
2019]. A desirable property for imputation methods is that they should preserve the joint
and marginal distributions of the data. Non-parametric Bayesian strategies [Murray and
Reiter, 2016] or recent approaches based on generative adversarial networks [Yoon et al.,
2018| are attempts in this direction. However, they can be quite cumbersome to implement
in practice.

We argue in this work that the optimal transport (OT) toolbox constitutes a natural,
sound and straightforward alternative. Indeed, optimal transport provides geometrically
meaningful distances to compare discrete distributions, and therefore data. Furthermore,
thanks to recent computational advances grounded on regularization [Cuturi, 2013|, OT-
based divergences can be computed in a scalable and differentiable way [Peyré et al., 2019].
Those advances have allowed to successfully use OT as a loss function in many applications,
including multi-label classification [Frogner et al., 2015], inference of pathways Schiebinger
et al. [2019] and generative modeling |Arjovsky et al., 2017, Genevay et al., 2018, Salimans
et al., 2018|. Considering the similarities between generative modeling and missing data
imputation, it is therefore quite natural to use OT as a loss for the latter.

Contributions. This chapter presents two main contributions. First, we leverage OT to
define a loss function for missing value imputation. This loss function is the mathematical
translation of the simple intuition that two random batches from the same dataset should
follow the same distribution. Next, we provide algorithms for imputing missing values
according to this loss. Two types of algorithms are presented, the first (i) being non-
parametric, and the second (ii) defining a class of parametric models. The non-parametric
algorithm (i) enjoys the most degrees of freedom, and can therefore output imputations
which respect the global shape of the data while taking into account its local features. The
parametric algorithm (ii) is trained in a round-robin fashion similar to iterative conditional
imputation techniques, as implemented for instance in the mice package van Buuren and
Groothuis-Oudshoorn [2011|. Compared to the non-parametric method, this algorithm
allows to perform out-of-sample imputation. This creates a very flexible framework which
can be combined with many imputing strategies, including imputation with Multi-Layer
Perceptrons. Finally, these methods are showcased in extensive experiments on a variety
of datasets and for different missing values proportions and mechanisms, including the
difficult case of informative missing entries. The code to reproduce these experiments is
available at https://github.com/BorisMuzellec/MissingData0T.

Notations. Let Q = (w;;);; € {0,1}"*? be a binary mask encoding observed entries, i.e.
wij = 1 (resp. 0) iff the entry (i, j) is observed (resp. missing). We observe the following
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incomplete data matrix:
X =X 0 Q0+ NA® (Lyxag — ),

where X (°0s) ¢ R"*4 contains the observed entries, ® is the elementwise product and 1,54
is an n X d matrix filled with ones. Given the data matrix X, our goal is to construct an
estimate X filling the missing entries of X, which can be written as

X = X o Q + X)) (1,4 — Q),

where X (@) ¢ R"*d contains the imputed values. Let x;. denote the i-th row of the data
set X, such that X = (x7)1<;<n. Similarly, x.; denotes the j-th column (variable) of the
data set X, such that X = (x.1]...|x.q), and X._; denotes the dataset X in which the j-th
variable has been removed. For K C {1,...,n} a set of m indices, X = (Xx.)xex denotes
the corresponding batch, and by i, (Xx) the empirical measure associated to X, i.e.

m(XK) =5 O

keK

Finally, A, of {aeR% : Y a; =1} is the simplex in dimension n.

2 Background

2.1 Missing data

Rubin [1976] defined a widely used - yet controversial [Seaman et al., 2013] - nomenclature
for missing values mechanisms. This nomenclature distinguishes between three cases:
missing completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR). In MCAR, the missingness is independent of the data, whereas in
MAR, the probability of being missing depends only on observed values. A subsequent
part of the literature, with notable exceptions [Kim and Ying, 2018, Mohan and Pearl,
2019], only consider these “simple” mechanisms and struggles for the harder yet prevalent
MNAR case. MNAR values lead to important biases in the data, as the probability of
missingness then depends on the unobserved values. On the other hand, MCAR and MAR
are “ignorable” mechanisms in the sense that they do not make it necessary to model
explicitly the distribution of missing values when maximizing the observed likelihood.

The naive workaround which consists in deleting observations with missing entries is
not an alternative in high dimension. Indeed, let us assume as in Zhu et al. [2019] that
X is a n X d data matrix in which each entry is missing independently with probability
0.01. When d = 5, this would result in around 95% of the individuals (rows) being retained,
but for d = 300, only around 5% of rows have no missing entries. Hence, providing
plausible imputations for missing values quickly becomes necessary. Classical imputation
methods impute according to a joint distribution which is either explicit, or implicitly
defined through a set of conditional distributions. As an example, explicit joint modeling
methods include imputation models that assume a Gaussian distribution for the data,
whose parameters are estimated using EM algorithms [Dempster et al., 1977]. Missing
values are then imputed by drawing from their predictive distribution. A second instance
of such joint modeling methods are imputations assuming low-rank structure [Josse et al.,
2016|. The conditional modeling approach [van Buuren, 2018|, also known as “sequential
imputation” or “imputation using chained equations” (ice) consists in specifying one model
for each variable. It predicts the missing values of each variable using the other variables
as explanatory, and cycles through the variables iterating this procedure to update the
imputations until predictions stabilize.
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Non-parametric methods like k-nearest neighbors imputation [Troyanskaya et al., 2001]
or random forest imputation [Stekhoven and Buhlmann, 2011] have also been developed
and account for the local geometry of the data. The herein proposed methods lie at
the intersection of global and local approaches and are derived in a non-parametric and
parametric version.

2.2 Reminders on Wasserstein distances, entropic regularization and
Sinkhorn divergences

Let a = >0 aidx,, B = Z:‘;l bidy, be two discrete distributions, described by their
supports (x;)I"; € R"*P and (yz)lil € R"*P and weight vectors a € A, and b € A,
Optimal transport compares « and 3 by considering the most efficient way of transporting
the masses a and b onto each-other, according to a ground cost between the supports. The
(2-)Wasserstein distance corresponds to the case where this ground cost is quadratic:

def .
W3 (o, B) = pdin (P, M), (5.1)

where U(a,b) def {P e R : P1,, = a,PT1, = b} is the set of transportation plans,
and M = (||z; — yJHQ)Z e R™" is the matrix of pairwise squared distances between the
supports. Ws is not diﬁzerentiable and requires solving a costly linear program via network
simplex methods [Peyré et al., 2019, §3]. Entropic regularization alleviates both issues:
consider

OT.(a, 8) ¥ plnin (P, M) +ch(P) (5.2)
where ¢ > 0 and h(P) dof Zij pijlog pi; is the negative entropy. Then, OT.(«, ) is
differentiable and can be solved using Sinkhorn iterations |Cuturi, 2013]. However, due
to the entropy term, OT. is no longer positive. This issue is solved through debiasing, by
subtracting auto-correlation terms. Let

def 1

Se(a, B) = OTe(a, B) — §<OT6(C“704) + O0T:(8,8)). (5.3)

Equation (5.3) defines the Sinkhorn divergences [Genevay et al., 2018], which are positive,

convex, and can be computed with little additional cost compared to entropic OT [Feydy

et al., 2019]. Sinkhorn divergences hence provide a differentiable and tractable proxy for
Wasserstein distances, and will be used in the following.

OT gradient-based methods. Not only are the OT metrics described above good
measures of distributional closeness, they are also well-adapted to gradient-based imputation
methods. Indeed, let X5, X be two batches drawn from X. Then, gradient updates for
OT:(pim(Xg), tm (X)), € > 0 w.r.t a point xg. in X correspond to taking steps along the
so-called barycentric transport map. Indeed, with (half) quadratic costs, it holds [Cuturi
and Doucet, 2014, §4.3| that

Vi OTe (i (X ), i (X)) = m Y Pho(xp: — X,
J4

where P* is the optimal (regularized) transport plan. Therefore, a gradient based-update
is of the form
Xg: — (1 —t)xp: + tmz Pyx;.. (5.4)
!
In a missing value imputation context, Equation (5.4) thus corresponds to updating values
to make them closer to the target points given by transportation plans. Building on this
fact, OT gradient-based imputation methods are proposed in the next section.
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3 Imputing Missing Values using OT

Let Xx and Xy, be two batches respectively extracted from the complete rows and the
incomplete rows in X, such that only the batch X contains missing values. In this one-
sided incomplete batch setting, a good imputation should preserve the distribution from
the complete batch, meaning that X i should be close to Xy, in terms of distributions. The
OT-based metrics described in Section 2 provide natural criteria to catch this distributional
proximity and derive imputation methods. However, as observed in Section 2, in high
dimension or with a high proportion of missing values, it is unlikely or even impossible to
obtain batches from X with no missing values. Nonetheless, a good imputation method
should still ensure that the distributions of any two i.i.d. incomplete batches X and X,
both containing missing values, should be close. This implies in particular that OT-metrics
between the distributions g, (Xx) and g, (X ) should have small values. This criterion,
which is weaker than the one above with one-sided missing data but is more amenable, will
be considered from now on.

Direct imputation. Algorithm 5 is a direct implementation of this criterion, aiming
to impute missing values for quantitative variables by minimizing OT distances between
batches. First, missing values of any variable are initialized with the mean of observed entries
plus a small amount of noise (to preserve the marginals and to facilitate the optimization).
Then, batches are sequentially sampled and the Sinkhorn divergence between batches
is minimized with respect to the imputed values, using gradient updates (here using
RMSprop [Tieleman and Hinton, 2015]).

Algorithm 5 Batch Sinkhorn Imputation
Input: X € (RUNA}N™ © € {0,1}"*% a,n,e >0, n >m >0,
Initialization: for j =1,...,d,

o forist. wij =0, &y X?]bs + €ij, with €5 ~ N(0,7) and xf’]bs corresponds to the
mean of the observed entries in the j-th variable (missing entries)

o forist. wj; =1, Z;; < zi; (observed entries)

fort =1, 2, ....tyqz do
Sample two sets K and L of m indices
£(X e, K1) S (i (KX)o (X1))
X%ﬁ? +— ngﬁi) — aRMSprOp(VXump)E)
KUL
end for R
Output: X

OT as a loss for missing data imputation. Taking a step back, one can see that
Algorithm 5 essentially uses Sinkhorn divergences between batches as a loss function to
impute values for a model in which “one parameter equals one imputed value”. Formally,
for a fixed batch size m, this loss is defined as

Lon(X) E 7 S (s (X0), m (X1)). (5.5)
K:0<ki<...<km<n
L:0</1<...<bpm<n
Equation (5.5) corresponds to the “autocorrelation" counterpart of the minibatch Wasser-
stein distances described in Fatras et al. [2019], Salimans et al. [2018].
Although Algorithm 5 is straightforward, a downside is that it cannot directly generate
imputations for out-of-sample data points with missing values. Hence, a natural extension is
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to use the loss defined in Equation (5.5) to fit parametric imputation models, provided they
are differentiable with respect to their parameters. At a high level, this method is described
by Algorithm 6. Algorithm 6 takes as an input an imputer model with a parameter ©

Algorithm 6 Meta Sinkhorn Imputation
Input: X € R™*¢ Q ¢ {0,1}"*¢ Imputer(-,-,-), Og, € > 0, n > m > 0,
X0 + same initialization as in Algorithm 5
é — @0
fort=1,2,...,tmax do
for k=1,2,..., K do
X Imputer(f{t, Q, @)
Saqlple two sets K andA L ofm ipdicos
['(XKa XL) < SE(/J/TTL(XK)7 Nm(XL))

VoLl + AutoDiff(£(X, X))
O + O — aAdam(VeL)
end for
X!+« Imputer(X?, 2, ©)
end for
Output: Completed data X = X'tmax, Imputer(-, -, é))

such that Imputer(X, €2, ©) returns imputations for the missing values in X. This imputer
has to be differentiable w.r.t. its parameter ©, so that the batch Sinkhorn loss £ can be
back-propagated through X to perform gradient-based updates of ©. Algorithm 6 does not
only return the completed data matrix X, but also the trained parameter é, which can
then be re-used to impute missing values in out-of-sample data.

| < |
T T
(imp)| | X5 | | X5 | \
X x(imp) . x(imp)
i Imputer( -, 0;41) K "7+
— T(o05) T (imp) Vi1
X7 [c-o)ex"+a0x] I/
wes 0 .
5(7; 9] — 0] - 7]V0J &5 : I XT:{ I
1
L] N o
] Batch X5, ..i. Batch X, j,.
1 .
0 . )
1 . A @‘
[ S b <. 20
H Sinkhorn batch loss
1 sl -
om0 o0 e e o L s
s A . e )
Per™ . =2 2
. e N =5
for k=1,2... K

Figure 5.1: Round-robin imputation: illustration of the imputation of the j-th variable in
the inner-most loop of Algorithm 7.

Round-robin imputation. A remaining unaddressed point in Algorithm 6 is how to
perform the “X Imputer(f{t, ,0)” step in the presence of missing values. A classical
method is to perform imputations over variables in a round-robin fashion, i.e. to iteratively
predict missing coordinates using other coordinates as features in a cyclical manner. The
main advantage of this method is that it decouples variables being used as inputs and those
being imputed. This requires having d sets of parameter (6;)1<j<q, one for each variable,
where each 0; refers to the parameters used to to predict the j-th variable. The j-th
variable is iteratively imputed using the d — 1 remaining variables, according to the chosen
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model with parameter ¢;: éj is first fitted (using e.g. regression or Bayesian methods),
then the j-th variable is imputed. The algorithm then moves to the next variable j + 1,
in a cyclical manner. This round-robin method is implemented for instance in R’s mice
package [van Buuren and Groothuis-Oudshoorn, 2011] or in the IterativeImputer method
of the scikit-learn |[Pedregosa et al., 2011] package. When using the Sinkhorn batch loss
eq. (5.5) to fit the imputers, this procedure can be seen as a particular case of Algorithm 6
where the imputer parameter © is separable with respect to each variable (x.;)i1<j<q, i.e. ©
consists in d sets of parameter (0;)1<;<d.

Making this round-robin imputation explicit in the step “X < Imputer(Xt, 2,0)” of
Algorithm 6 leads to Algorithm 7. In Algorithm 7, an imputation X, ¢ = 0, ..., tmax iS

Algorithm 7 Round-Robin Sinkhorn Imputation
Input: X € R™? Q¢ {0,1}"*¢, Imputer(-,-,-), Og, € >0, n >m >0,
XAO ¢ same initialization as in Algorithm 5
(91, cery Gd) + O
fort=1,2,... thax do
for j=1,2,....d do
for k=1,2,...,.K do
X:j — Imputer(XLj, Q;, éj)
Sample two sets K anq L of m indices
L Se(pm(X k), i (X1))
Vo, L < AutoDiff(L)
0, 0; — aAdam(Vy, L)
end for
th — Imputer(f(:t_j,
end for
X+l . Xt
end for
Output: Imputations Xtmax, Imputer(-, -, @)

A~

Q.5,0;)

updated starting from an initial guess XO. The algorithm then consists in three nested
loops. (i) The inner-most loop is dedicated to gradient-based updates of the parameter éj,
as illustrated in Figure 5.1. Once this inner-most loop is finished, the j-th variable of X1 is
updated using the last update of éj. (ii) This is performed cyclically over all variables of
X!, yielding X‘+1. (iii) This fitting-and-imputation procedure over all variables is repeated
until convergence, or until a given number of iterations is reached.

In practice, several improvements on the generic Algorithms 6 and 7 can be implemented:

1. To better estimate Equation (5.5), one can sample several pairs of batches (instead
of a single one) and define £ as the average of S, divergences.

2. For Algorithm 7 in a MCAR setting, instead of sampling in each pair two batches
from X, one of the two batches can be sampled with no missing value on the j-th
variable, and the other with missing values on the j-th variable. This allows the
imputations for the j-th variable to be fitted on actual non-missing values. This helps
ensuring that the imputations for the j-th variable will have a marginal distribution
close to that of non-missing values.

3. The order in which the variables are imputed can be adapted. A simple heuristic is
to impute variables in increasing order of missing values.

4. During training, the loss can be hard to monitor due to the high variance induced by
estimating Equation (5.5) from a few pairs of batches. Therefore, it can be useful to
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define a validation set on which fictional additional missing values are sampled to
monitor the training of the algorithm, according to the desired accuracy score (e.g.
MAE, RMSE or W5 as in Section 4).

Note that item 2 is a priori only legitimate in a MCAR setting. Indeed, under MAR or
MNAR assumptions, the distribution of non-missing data is in general not equal to the
original (unknown) distribution of missing data.! Finally, the use of Adam [Kingma and
Ba, 2015] compared to RMSprop in Algorithm 5 is motivated by empirical performance,
but does not have a crucial impact on performance. It was observed however that the
quality of the imputations given by Algorithm 5 seems to decrease when gradient updates
with momentum are used.

4 Experiments
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Figure 5.2: (30% MCAR) Imputation methods on 23 datasets from the UCI repository
(Table 5.1). Sinkhorn denotes Algorithm 5 and Linear RR, MLP RR the two instances of
Algorithm 7 precedently described. 30% of the values are missing MCAR. All methods
are evaluated on 30 random missing values draws. Error bars correspond to + 1 std. For
readability we display scaled mean W3, i.e. for each dataset we renormalize the results by
the maximum W2. For some datasets W3 results are not displayed due to their large size,
which makes evaluating the unregularized W5 distance costly.

Baselines. We compare our methods to three baselines:

(i) mean is the coordinate-wise mean imputation;

! Consider as an example census data in which low/high income people are more likely to fail to answer
an income survey than medium income people.
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(ii) ice (imputation by chained equations) consists in (iterative) imputation using
conditional expectation. Here, we use scikit-learn’s [Pedregosa et al., 2011]
iterativeImputer method, which is based on mice |[van Buuren and Groothuis-
Oudshoorn, 2011]. This is one of the most popular methods of imputation as it
provides empirically good imputations in many scenario and requires little tuning;

(iii) softimpute [Hastie et al., 2015] performs missing values imputation using iterative
soft-thresholded SVD’s. This method is based on a low-rank assumption for the data
and is justified by the fact that many large matrices are well approximated by a
low-rank structure [Udell and Townsend, 2019].

Deep learning methods. Additionally, we compare our methods to three DL-based
methods:

(iv) MIWAE |Mattei and Frellsen, 2019] fits a deep latent variable model (DLVM) [Kingma
and Welling, 2014|, by optimizing a version of the importance weighted autoencoder
(IWAE) bound [Burda et al., 2016] adapted to missing data,;

(v) GAIN [Yoon et al., 2018] is an adaptation of generative adversarial networks
(GAN) [Goodfellow et al., 2014| to missing data imputation;

(vi) VAEAC |[Ivanov et al., 2019] are VAEs with easily approximable conditionals that
allow to handle missing data.

Transport methods. Three variants of the proposed methods are evaluated:

(vii) Sinkhorn designates the direct non-parametric imputation method detailed in Algo-
rithm 5.

For Algorithm 7, two classes of imputers are considered:

(viii) Linear RR corresponds to Algorithm 7 where for 1 < j < d, Imputer(-, ;) is a linear
model w.r.t. the d — 1 other variables with weights and biases given by 6;. This is
similar to mice or IterativeImputer, but fitted with the OT loss eq. (5.5);

(ix) MLP RR denotes Algorithm 7 with shallow Multi-Layer Perceptrons (MLP) as
imputers. These MLP’s have the following architecture: (i) a first (d — 1) x 2(d — 1)
layer followed by a ReLU layer then (ii) a 2(d — 1) x (d — 1) layer followed by a ReLU
layer and finally (iii) a (d — 1) x 1 linear layer. All linear layers have bias terms. Each
Imputer(-,6;),1 < j < d is one such MLP with a different set of weights 6;.

Toy experiments. In Figure 5.3, we generate two-dimensional datasets with strong
structures, such as an S-shape, half-moon(s), or concentric circles. A 20% missing rate is
introduced (void rows are discarded), and imputations performed using Algorithm 5 or the
ice method are compared to the ground truth dataset. While the ice method is not able to
catch the non-linear structure of the distributions at all, Sinkhorn performs efficiently by
imputing faithfully to the underlying complex data structure (despite the two half-moons
and the S-shape being quite challenging). This is remarkable, since Algorithm 5 does not
rely on any parametric assumption for the data. This underlines in a low-dimensional
setting the flexibility of the proposed method. Finally, note that the trailing points which
can be observed for the S shape or the two moons shape come from the fact that Algorithm 5
was used as it is, i.e. with pairs of batches both containing missing values, even though
these toy examples would have allowed to use batches without missing values. In that case,
we obtain imputations that are visually indistinguishable from the ground truth.
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4.1 Large-scale experimental setup

We evaluate each method on 23 datasets
from the UCI machine learning repository?
(see Table 5.1) with varying proportions
of missing data and different missing data
mechanisms. These datasets only contain
quantitative features. Prior to running the
experiments, the data is whitened (i.e. cen-
tered and scaled to variable-wise unit vari-
ance). For each dataset, all methods are
evaluated on 30 different draws of missing
values masks. For all Sinkhorn-based impu-
tation methods, the regularization param-
eter € is set to 5% of the median distance
between initialization values with no further
dataset-dependent tuning. If the dataset
has more than 256 points, the batch size
is fixed to 128, otherwise to 2L3] where n
is the size of the dataset. The noise pa-
rameter n in Algorithm 5 is fixed to 0.1.
For Sinkhorn round-robin models (Linear
RR and MLP RR), the maximum num-
ber of cycles is 10, 10 pairs of batches are
sampled per gradient update, and an (-
weight regularization of magnitude 107> is
applied during training. For all 3 Sinkhorn-
based methods, we use gradient methods
with adaptive step sizes as per algorithms 5
and 7, with an initial step size fixed to 1072.
For softimpute, the hyperparameter is se-
lected at each run through cross-validation
on a small grid. This CV is performed by
sampling additional missing values. For DL-
based methods, the implementations pro-
vided in open-access by the authors were
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Figure 5.3: Toy examples: 20 % missing values
(MCAR) on toy datasets. Blue points have no
missing values, orange points have one miss-
ing value on either coordinate. ice outputs
conditional expectation imputations, which
are irrelevant due to the high non-linearity of
these examples. Since algorithm 5 does not
assume a parametric form for the imputations,
it is able to satisfyingly impute missing values.

, with the hyperparameter settings recommended in the corresponding papers. In

particular, for GAIN the a parameter is selected using cross-validation. GPUs are used for
Sinkhorn and deep learning methods. The code to reproduce the experiments is available
at https://github.com/BorisMuzellec/MissingDataOT.

Missing value generation mechanisms.

The implementation of a MCAR mechanism

is straightfoward. On the contrary, many different mechanisms can lead to a MAR or
MNAR setting. We here describe those used in our experiments. In the MCAR setting,
each value is masked according to the realization of a Bernoulli random variable with a
fixed parameter. In the M AR setting, for each experiment, a fixed subset of variables that
cannot have missing values is sampled. Then, the remaining variables have missing values
according to a logistic model with random weights, which takes the non-missing variables

’https://archive.ics.uci.edu/ml/index.php

Shttps://github.com/pamattei/miwae
‘https://github.com/jsyoon0823/GAIN
Shttps://github.com/tigvarts/vaeac
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Table 5.1: Summary of datasets

dataset n d
airfoil self noise 1503

blood transfusion 748 4
breast cancer diagnostic 569 30
california 20640 8
climate _model crashes 540 18
concrete compression 1030 7
concrete slump 103 7
connectionist bench sonar 208 60
connectionist _bench vowel 990 10
ecoli 336 7
glass 214 9
ionosphere 361 34
iris 150 4
libras 360 90
parkinsons 195 23
planning relax 182 12
gsar_biodegradation 1055 41
seeds 210 7
wine 178 13
wine quality red 1599 10
wine quality white 4898 11
yacht hydrodynamics 308 6
yeast 1484 8

as inputs. A bias term is fitted using line search to attain the desired proportion of missing
values. Finally, two different mechanisms are implemented in the MINAR setting. The
first is identical to the previously described MAR mechanism, but the inputs of the logistic
model are then masked by a MCAR mechanism. Hence, the logistic model’s outcome now
depends on potentially missing values. The second mechanism, ’self masked’, samples
a subset of variables whose values in the lower and upper p-th percentiles are masked
according to a Bernoulli random variable, and the values in-between are left not missing.
As detailed in the Section 5, MCAR experiments were performed with 10%, 30% and 50%
missing rates, while MAR and both MNAR settings (quantile and logistic masking) were
evaluated with a 30% missing rate.

Metrics. Imputation methods are evaluated according to two “pointwise” metrics: mean
absolute error (MAE) and root mean square error (RMSE); and one metric on distributions:
the squared Wasserstein distance between empirical distributions on points with missing
values. Let X € R"*? be a dataset with missing values. When (i, ) spots a missing entry,
recall that #;; denotes the corresponding imputation, and let us note x%ue the ground truth.
Let mo #{(i,7),wi; = 0} and my ey #{i: 3j, wij = 0}} respectively denote the total
number of missing values and the number of data points with at least one missing value.
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Figure 5.4: (30% MNAR) Imputation methods on 23 datasets from the UCI repository
(Table 5.1). Values are missing MNAR according to the logistic mechanism described
in Section 4, with 30% variables used as inputs of a logistic masking model for the 70%
remaining variables. 30% of those input variables are then masked at random. Hence, all
variables have 30% missing values. All methods are evaluated on the same 30 random
missing values draws. Error bars correspond to + 1 std. For readability we display scaled
mean W2, i.e. for each dataset we renormalize the results by the maximum W3. For some
datasets Wy results are not displayed due to their large size, which makes evaluating the
unregularized Wy distance costly.

Set M; % {i:3j,w;; = 0}. We define MAE, RMSE and W5 imputation metrics as

= Z |2 — 241, (MAE)
(4,4):wij=0
o > (@i — 245)?, (RMSE)
(1,5):wij=0
W3 (ptm (R, )s s (X57)) (W2)

Results. The complete results of the experiments are reported in Section 5. In Figure 5.2
and Figure 5.4, the proposed methods are respectively compared to baselines and Deep
Learning (DL) methods in a MCAR and a logistic masking MNAR setting with 30% missing
data. As can be seen from Figure 5.2, the linear round-robin model matches or out-performs
scikit’s iterative imputer (ice) on MAE and RMSE scores for most datasets. Since both
methods are based on the same cyclical linear imputation model but with different loss
functions, this shows that the batched Sinkhorn loss in Equation (5.5) is well-adapted to
imputation with parametric models. Comparison with DL methods (Figure 5.4) shows that
the proposed OT-based methods consistently outperform DL-based methods, and have the
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Figure 5.5: (OOS) Out of sample imputation: 70% of the data is used for training (filled
bars) and 30 % for testing with fixed parameters (dotted bars). 30% of the values are
missing MCAR accross both training and testing sets.

additional benefit of having a lower variance in their results overall. Interestingly, while the
MAE and RMSE scores of the round-robin MLP model are comparable to that of the linear
RR, its Wy scores are generally better. This suggests that more powerful base imputer
models lead to better Wy scores, from which one can conclude that Equation (5.5) is a
good proxy for optimizing the unavailable Equation (5.1) score, and that Algorithm 7 is
efficient at doing so. Furthermore, one can observe that the direct imputation method is
very competitive over all data and metrics and is in general the best performing OT-based
method, as could be expected from the fact that its imputation model is not restricted by a
parametric assumption. This favorable behaviour tends to be exacerbated with a growing
proportion of missing data, see Figure 5.9 in Section 5.

MAR and MNAR. Figure 5.4 above and Figures 5.10 to 5.12 in Section 5 display
the results of our experiments in MAR and MNAR settings, and show that the proposed
methods perform well and are robust to difficult missingness mechanisms. This is remark<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>